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Resumo

Estudamos propriedades estruturais de médulos de Weyl truncados. Dados uma &lgebra
de Lie simples g e um peso integral dominante A, o médulo de Weyl local graduado
W(A) é o objeto universal na categoria dos médulos de dimensao finita graduados de
peso maximo para a agebra de correntes g[t] = g ® C[t]. Para cada inteiro positivo N, o
quociente Wx () de W () pelo submédulo gerado pela agio do ideal g ® t" C|[t] sobre o
vetor de peso maximo é chamado um moédulo de Weyl truncado. Ele satisfaz a mesma

propriedade universal de W (\) quando visto como um médulo para a correspondente
Cl]

tNClt]

se N < |A|, Wx () deve ser isomorfo a um produto de fusdo de certos médulos irredutiveis.

algebra de correntes truncada g[t|y = g® . Chari-Fourier-Sagaki conjecturaram que

Nosso principal resultado prova essa conjectura quando A é um miultiplo de um peso
minusculo e g é de tipo ADFE. Também damos um passo adiante para provar a conjectura
para multiplos de um peso fundamental "pequeno" que nao é mintisculo provando que
o modulo de Weyl truncado correspondente é isomorfo ao quociente de um produto de
fusao de modulos de Kirillov-Reshetikhin por uma simples relagao. Uma parte importante
da demonstracao de nosso resultado principal é dedicada a provar que qualquer médulo
de Weyl truncado é isomorfo a um moédulo de Chari-Venkatesh com a correspondente
familia de parti¢oes explicitamente descrita. Este fato é o segundo resultado principal
deste trabalho e nos leva a novos resultados no caso g = sl, relacionados a bandeiras de

Demazure e cadeias de inclusdes de Modulos de Weyl truncados.

Palavras-chave: Médulo de Weyl, produto de fusao, algebra de correntes, teoria de

representacao, algebra de Kac-Moody.



Abstract

We study structural properties of truncated Weyl modules. Given a simple Lie algebra g
and a dominant integral weight A, the graded local Weyl module W () is the universal
finite-dimensional graded highest-weight module for the current algebra g[t] = g ® C[¢].
For each positive integer N, the quotient Wy () of W () by the submodule generated
by the action of the ideal g ® tV C[t] on the highest-weight vector is called a truncated

Weyl module. It satisfies the same universal property as W (\) when regarded as a module
CIt]
tNC|t]
conjectured that if N < ||, Wi () should be isomorphic to the fusion product of certain

for the corresponding truncated current algebra g[t|y = g ® . Chari-Fourier-Sagaki

irreducible modules. Our main result proves this conjecture when \ is a multiple of a
minuscule weight and g is simply laced. We also take a further step towards proving
the conjecture for multiples of a “small” fundamental weight which is not minuscule by
proving that the corresponding truncated Weyl module is isomorphic to the quotient of a
fusion product of Kirillov-Reshetikhin modules by a very simple relation. One important
part of the proof of the main result, and the second main result of this work, shows that
any truncated Weyl module is isomorphic to a Chari-Venkatesh module and explicitly
describes the corresponding family of partitions. This leads to further results in the case

that g = sl, related to Demazure flags and chains of inclusions of truncated Weyl modules.

Keywords: Weyl module, fusion product, current algebra, representation theory, Kac-

Moody algebra.
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Introduction

In [14], Chari and Pressley introduced a family of finite dimensional repre-
sentations called Weyl modules for the affine Kac Moody algebras and their quantized
versions. The definition, given via generators and relations, was inspired by the modular
representation theory of algebraic groups. Later, others authors gave similar definitions
for Weyl modules for others classes of algebras. For example, while Chari and Pressley
considered algebras of the form g@C|[t, ¢ '], with g a finite-dimensional simple Lie algebra,
Feigin and Loktev, in [19], considered the more general class of algebras of the form g® A,
where A is a coordinate ring of an algebraic variety, which was then further generalized in
[9] to A being a commutative associative algebra with unit. The Lie bracket on g ® A is
given by [t ® a,y ®b] = [z,y] ® (ab) for z,y € g,a,b e A. For the most general contexts

on which Weyl modules are being studied nowadays, see [5, 25, 37] and references therein.

The context of current algebras, i.e., when A is the polynomial ring C[¢] is
certainly the most studied for several reasons. On one hand, some structural questions about
the structure of quantum Weyl modules and their irreducible quotients can be reduced
to similar questions about certain remarkable quotients of the graded Weyl modules for
glt] = g ® CJt], called Chari-Venkatesh modules [16] (which include the classes of graded
Kirillov-Reshetikhin and g-stable Demazure modules), and their fusion products in the
sense of [18]. On the other hand, the study of the category of graded finite-dimensional
representations of the current algebra is motivated by applications in mathematical physics,

algebraic geometry and geometric Lie theory, as well as combinatorics.

The definition of Weyl modules for current algebras can be explained as
follows. Given a triangular decomposition of g, say g =n~ ®bh®n' where § is a Cartan
subalgebra and n* are choices of positive and negative nilpotent parts, consider the induced
decomposition on g[t]: the sum of the current algebra over each summand (this can be
done for general A). Any linear functional A on h can be extended to one on h[t] ® n™[¢]
by setting it to be zero on h ® tC[t] @ n™ [¢]. Then, one can consider the one-dimensional
module for h[t] ® n"[t] determined by A and the induced module M (\) for g[t], which is
the Verma type module associated to the above triangular decomposition and A. The way
A was extended allows us to equip M (\) with a Z-grading by inducing it from that of n™[¢].
If \ is a dominant integral weight, the irreducible quotient of M (\) is finite-dimensional:
it is the corresponding finite-dimensional simple g-module V' (\) with trivial action of
g ® tCJ[t]. It turns out that M () has other finite-dimensional graded quotients and the
graded local Weyl module W () is the largest of them, i.e., any other finite-dimensional
graded quotient of M () is also a quotient of W (). In other words, W (\) is the universal
highest-weight module of highest weight A\ in the category of finite-dimensional graded
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g|t]-modules. The definition for more general A is similar, but the discussion about the
extension of A to a functional on h ® A has to be done more carefully. Even for A = C[¢],

different extensions will lead to non graded local Weyl modules.

In this work we focus on the study of graded Weyl modules for the truncated
Cli]
tNC|t]

definition explained in the previous paragraph applies in this context as well and we denote

current algebras gty = g ® with N a positive integer. The description of the

the associated truncated Weyl module by W (). Moreover, since g[t]y is a graded quotient
of g[t], every g|t]y-module can be regarded as a module for g[t]. In particular, W ()) is
a quotient of W (). The motivation for studying the truncated Weyl modules comes from
a conjecture stated in [10] related to Schur positivity which, as seen in [21, 32, 38], can be
formulated in terms of conjectural answers for the following question: are the truncated
Weyl modules isomorphic to fusion products of irreducible modules and non-truncated
Weyl modules? The answer for such question, in particular, produces a way of computing

the characters of truncated Weyl modules which is still not known in general.

The notion of fusion products was introduced in [18] as certain operations
between cyclic objects in the category of graded finite-dimensional g[t]-modules related to
tensor products. Given a collection of such objects V4, ..., V;, a fusion product of these
objects is constructed as follows. Choose distinct complex numbers ay, ..., q; and twist
the action of g[t] on V; by the automorphism of g[t] induced by the automorphism of C[¢]
given by t — t + a;. This produces a family of non-graded modules V}aj . It is known that,
if v; is a choice of cyclic vector for V}, then V(" @ --- ® V™ is cyclicon v =1 ® - Qv
which can then be used to define a filtration on this tensor product. The associated graded
module is called a fusion product of Vi,...,V; and, conjecturally, for the relevant cases,
the construction should not depend on the choices of aq, ..., a;. For this reason, the fusion
product is simply denoted by Vj #-- -+ V. Fusion products provide a powerful tool to study
several graded finite-dimensional g[t]-modules. In particular, it was proved in [22] and [35],
for simply laced g and non-simply laced case, respectively, the following decomposition of

the graded local Weyl module as a fusion product:
W) = W) s e W), I A= Ar -+ A

For some structural questions, such as character, this reduces the study to the case of
fundamental weights. The question left in the previous paragraph is nothing but the quest

for truncated versions of this decomposition.
To explain the conjectural answer, consider the set P*(\, N) of the elements

N

A = (A1,...,Ay) such that, A\, \; are dominant weights and \ = Z Ai. A partial order
i—1

on PT(\, N) was defined in [10] and an algorithm for computing its maximal elements

was described in [20]. It turns out that all maximal elements are in the same orbit of
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the obvious action of the symmetric group and, hence, there exists essentially only one

maximal element. The following conjecture was then stated in [32]:

Conjecture: Suppose X = (A1,...,\y) is a mazimal element of PT(\,N). If N < |},
Wy(A) = V(A)#-- = V(Ay).

The conjecture has been proved for certain particular values of A or N. For
instance, it follows from the results of [21] for N = 2, g = sl,,, and A any multiple of a
fundamental weight. Other cases for general N, with restrictions on A or g are proved in
(32, 38]. The main result of this work extends, in a relevant way, the list of cases on which

the conjecture is proved:

Theorem A: The above conjecture holds if g is simply laced and X is a multiple of a

minuscule weight.

Note that, if g = sl,,, then the set of nonzero minuscule dominant weights is
exactly the set of fundamental weights. Hence, Theorem A expands for general N the
case that followed from [21]. In fact, the proof is completely different from that of [21] for
N = 2. Actually our proof of the conjecture has more sophisticated approach than the
other cases. Typically, Demazure modules are used directly in the other cases proved while
our proof relies on the theory of Chari-Venkatesh (CV) modules, which, in particular,
include the class of g-stable Demazure modules. The CV modules, introduced in [16],
form a family of graded quotients of Weyl modules indexed by |R™|-tuples of partitions
where RT is the set of positive roots of g. Given such a partition £ = (£(a)), we denote
the corresponding CV module by C'V (). For instance, when () is the the partition
with A(h,) parts all equal to 1 for every a € R, where h,, is the associated co-root, then
CV (&) = W(A). For the other extremal case, i.e., when £(«) has exactly one part which
is A(hy), for every a € R™, then CV(§) = V()) is the irreducible quotient of W(\). For
other possibilities of £ with each £(a) a partition of A(h,), CV(§) will be something in
between W (A) and V(A). Although this produces many interesting quotients of W (M), it
is not true that all quotients of W (\) are obtained in this way. The second main result of
this work, and crucial ingredient in the proof of Theorem A, says that all truncated Weyl

modules are obtained in this way:
Theorem B: For every X\ and N, Wy(\) is isomorphic to CV(§) for some .

In fact, we explicitly describe the partition £ in Theorem B. Note that there
is no hypothesis on g in this theorem. Theorem B, together with results from [3, 15, 16],
gives us tools to obtain further results in the case that g = sl, related to Demazure flags
and chains of inclusions of truncated Weyl modules. For instance, from the description
of £ and results of [16], one can immediately identify the truncated Weyl modules which
are isomorphic to Demazure modules. Otherwise, the results of [3, 15] allows us to study

Demazure flags for truncated Weyl modules since every CV module (for g = sly) admits a
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Demazure flag: a sequence of inclusions of submodules such that the successive quotients

are isomorphic to Demazure modules.

The proof of Theorem A also relies on a result from [36] about fusion products
of Kirillov-Reshetikhin (KR) modules. The KR modules were originally considered in
the quantum setting motivated by mathematical physics [29]. In that setting, a KR
module is a minimal irreducible module for the quantum affine algebra, in the sense of
[7], having highest weight a multiple of a fundamental weight. The graded KR modules
are the so called graded limits of the original KR modules, in the sense of [33]. If i is
the node of the Dynkin diagram of g associated to this fundamental weight, the graded
KR module is isomorphic to CV (§) where &(a) is exactly that for W(\) except when «
is the corresponding simple root «;, in which case, {(«;) has just one part as in the case
of V(A). The minimality property of the KR modules can be interpreted informally by
saying that the KR module is very close to being irreducible. Indeed, if g is simply laced
and the fundamental weight is minuscule, the KR module is indeed irreducible (a fact
used crucially in the proof of Theorem A). In [36], it was given a presentation of the fusion
product of K R-modules in terms of generators and relations. This is also used crucially in
the proof of Theorem A. Moreover, it allows us to take a further step towards proving
Theorem A with no hypothesis on g and letting A be a multiple of any fundamental weight.
In this work, we consider only the case that the fundamental weight is “minimal” (in some
sense) among those which are not minuscule, and prove Proposition 1.6.6 which says that
the corresponding truncated Weyl module, under the hypothesis of the above conjecture, is
isomorphic to a quotient of a fusion product of KR modules by introducing a very simple
relation. We expect to be able to extend Proposition 1.6.6 to other fundamental weights

before submitting the results of this Thesis for publication [23].

The text is divided in three chapters. In the first chapter, we give a briefly review
on simple Lie algebras, current algebras and their representations. We also define fusion
products, CV modules, and KR modules and state our mains results more precisely. The
proofs of the main results are given in the second chapter, which also include further results
and properties of fusion products and CV modules which are needed in the arguments.
In the third chapter, we discuss the aforementioned results related to Demazure flags for

g = sly, including a discussion about chains of inclusions of truncated Weyl modules.
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1 Background and the Main Results

In this chapter we review the basic definitions and background needed to state
the main results of this work. Let C, Z, Z~y and Z-, denote the sets of complex numbers,

integers, nonnegative and positive integers, respectively.

1.1 Simple Lie Algebras

We start fixing the basic notation and main results about simple Lie algebras
that will use in this thesis. For more details about this section see [42, Chapters 1-10], [27,
Chapters I-V].

Let g be a finite-dimensional simple Lie algebra over C, fix a Cartan subalgebra
h < g as well as a Borel subalgebra b 2 h. Let R < b* (respectively, RT) be the set of
roots (respectively, the set of positive roots) corresponding to these choices and denote by
1_[ = {ay,...,a,} the corresponding set of simple roots. Let also wy, ...,w, denote the

corresponding fundamental weights. For convenience, set [ = {1,...,n}. lf a = Z n;o; € R

then hta = an is the height of a. Let 6 be the highest root of R and let ¥ be the

highest short root (we use the convention that, for simply laced g, all roots are short
and long at the same time). The root and weight lattices and their positive cones will be
denoted by Q,Q", P, PT, respectively, namely, @) = ZZO@-, QF = Z Zoo;, P = Z Zw;,

P+ = 2220%‘

The restriction of the Killing form of g to h induces an isomorphism between
and h* and a symmetric non-degenerate form ( on h*. We normalize this form
y g

so that the square length of a long root is 2. Given a € R, let t,, € h be the element that
2t

(a, @)
be the corresponding root space of g and set n* = 2 O+a- We have

aERT

g=n @hdn". (1.1.1)

maps to a under the aforementioned isomorphism and set h, = . For a € R, let g,

Fix elements xi € §+a, such that [z), 2] = h,. Also, set xzi — = . In particular, h; = R, -

arHa o

Recall that, for all « € RT, the vector subspace sl, spanned by x2, h, is isomorphic to sly.

Given any Lie algebra a over C, we let U(a) be the universal enveloping algebra

of a.

Theorem 1.1.1. (Poincaré-Birkhoff-Witt (PBW)) For any basis {z;, j € J} of a Lie
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algebra a with ordered index set .J, the monomials
T R

with 1 form a basis for the enveloping algebra U (a).

We give a brief review on the category O™ of integrable representations of g in
Bernstein-Gelfand-Gelfand’s category O. For more details see [6, 28] for example. Consider
the decomposition (1.1.1). We say that a g-module V' is an object in the category O if the

following conditions are satisfied:

(i) V.= V,, where V, = {ve V: hv = p(h)v, forall heh};

ueh*

(ii) dim V), is finite for each p € h*;

(ili) there exists a finite set {u1,..., s} < b* such that each p with V), # 0 satisfies
< p; for some i e {1,...,s}.

The morphisms in category O are the homomorphisms of g-modules.

The space V), is said to be the weight space of V' of weight p, and the nonzero
vectors of V), are called weight vectors of weight p. Let wt(V') = {pr€ P: V,, # 0} be the
set of weights of V. Note that

0V, S Vi forall peb* aeR. (1.1.2)

A weight vector v is said to be a highest-weight vector if n*v = 0. A module which is

generated by a highest-weight vector is said to be a highest-weight module.
If V is a highest-weight module of highest weight A, it follows from the PBW

Theorem together with (1.1.2) that V' has a unique maximal proper submodule and, hence,
a unique irreducible quotient. In that case, V' = U(n )v and, hence dim (V) = 1 and
V, # 0 only if p <A

Definition 1.1.2. Given A € h*, the Verma module M()) is the g-module generated by a

nonzero vector v with defining relations

nv=0, hv=Ah)v forall heb.

In particular, M () is a highest-weight module and all highest-weight modules
whose highest weight is A are quotients of M (\). We denote by V() the unique irreducible
quotient of M (X). The PBW Theorem together with (1.1.2) implies that M () is an object
in O for any .

A g-module V is said to be integrable if the elements z;,x;, i € I, act

[ A A

locally nilpotently, i.e., if for any v € V and ¢ € I, there exists m € Z-o such that
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(7)™ = 0 = (z; )™v. In that case, > also act locally nilpotently for all « € R*. The

category O™ is the full subcategory of O consisting of integrable modules.

Theorem 1.1.3. Let A\ € h* and v be a highest-weight vector of M (). The module
V()) is integrable if and only if A € P*. In that case, it is the quotient of M (\) by the
submodule generated by (z;)*")*1y for all i € I and dim V ()\) < .

Theorem 1.1.4. If V is a simple module in category O™ it is isomorphic to V(\) for
some A € PT. Moreover, every object in O™ is a finite direct sum of simple submodules.

In particular, O™ is the category of finite-dimensional g-modules.

1.2 Current Algebras

In this section we review the basics about finite-dimensional representations
of truncated current algebras. For more details see [9, 34, 37]. For any Lie algebra a and
associative commutative algebra A, the vector space a ® A can be equipped with a Lie

algebra structure by setting
[t ®a,y®0] = [x,y] ® ab for all r,yea, a,beA.

If A has an identity element, then the subspace a®1 is a Lie subalgebra of a® A isomorphic
to a. Hence, we identify a with this subalgebra.

In the case that A = C[t] is the polynomial ring in one variable, this algebra is
C[t]
tNC|[t]
N € Z~y, the algebra a ® A is called the truncated current Lie algebra of nilpotence index

N and will be denoted by a[t]x

for some

called the current algebra over a and will be denote by a[t] and if A =

For simplicity, given the goals of this work, assume A is quotient of C[¢], say,

L_C

composition of the canonical projection A — A/ M with the isomorphism

for some ideal J. Given a maximal ideal M of A, let evy : A — C be the

A/M—C
1— 1.

Since

Je  with T = Mt

::]3

J =

k=

~—

for some m = 0, My, € specm(C[t]), Ny > 0, we have, by the Chinese Remainder Theorem,

i
J

||2

(1.2.1)
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Moreover, My, = (t — a;,)C[t] for some a;, € C, specm(A) = {M;, ..., M,,}, and

cvri (F(t) = flax).

By abuse of notation, we identify specm(A) with {a,...,a,} and write ev, instead of
evp if M = (t — a)C[t].

Given a € specm(A) we also denote by ev, the Lie algebras homomorphism defined by
1d, Qev, :a®@A — a, ie.,

eva(z @ f(t)) = fla)z.

To simplify notation, set a[t]7 = a® A. Thus, if V' is an a-module, we can consider the
a[t] 7-module V, obtained by pulling-back the action of a to one of a[t]s via ev,. Modules
of this form are called evaluation modules. Notice that V, is simple if and only if V is

simple.

If a =g, given A € P*, we will denote by V,()\) the corresponding evaluation

module. Since V() is generated by a vector v satisfying
nfov=0 and hv=Ah)v forall heb,
when v is regarded as an element of V,()), we have
MtAv=0 and (h@t" v =a"A(h)v forall heb,reZso.

Given k = 0,\1,..., \x € PT\{0}, and a4, ..., ax € specm(A), it is well-known (see [34]

and reference therein) that
Vo, (M) ® - ®V,, (M) isirreducible < a; #a; for @#j.

Moreover, every irreducible finite-dimensional g[t] 7-module is isomorphic to a unique

tensor product of this form.
Let 27 be the set of functions from specm(A) to P* with finite support, where
the support of m € =7 is

supp(m) = {a € specm(A) : 71(M) # 0}.

We let = = Zy which is identified with the set of functions with finite support from C
to P". Since specm(A) can be naturally identified with a subset of C as mentioned after
(1.2.1), we can and will regard an element of =7 as an element of = by extending it to be

zero outside specm(A). Given m, 7' € =, let 7 + 7’ be defined by
(r +7')(a) = 7(a) + 7'(a), aeC.

In particular,

supp(m + 7') = supp(m) U supp(w’).
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Given 7 € =7 and an enumeration ay, . .., ay of supp(m) < specm(A), let
Vi(r) = Vo, (M) ® -+ @ Vo (M) (1.2.2)

Evidently, any other enumeration of supp(m) gives rise to an isomorphic tensor product.

Thus, we have:

Theorem 1.2.1. The assignment 7 — V() induces a bijection between =7 and the set

of isomorphism classes of finite-dimensional simple g[t] 7-modules.

It is also interesting to note that if ay,...,ax, A\1,..., A\r are as in (1.2.2),

v; € V(Aj)x,\{0} for 1 < j <k, and v =0, ®--- @ vy, then

n[tlv =0, (h® f(t))v = (Zkl > v and (z;)M)tly =0, (1.2.3)

k

for all & € RT, where A\ = Z/\j. Note that if k = 1, i.e., if 7 = MY for some M e
j=1

specm(C[t]) and N > 0, then =7 is naturally identified with P*. In other words, for each

A € P*, there exists a unique finite dimensional simple g[t] 7~-module generated by a vector
v satisfying n*[tJv = 0 and hv = A(h)v for all h € b.

As a consequence of (1.2.1), we have

(C[ N m Nm Nm

k= k

Moreover, for each a € C, the automorphism (, of C[t], t — ¢ + a, induces an isomorphism

G —S)[f\]’(C[t] = ](\(fj([:t[]t] . Because of this, from now on we focus on A = ; ](\(fj ([:t[]t]

and write g[t]y as before. It will be convenient to set g[t], = g[t].

of algebras:

Note that g[t]y is Z-graded and that the evaluation module V,(\) is also
Z-graded. We shall denote the k-th graded piece of a graded vector space V' by V[k]. It

will be convenient to introduce the notation

Vi = (‘D V[k]

k>0

Denote Gy the category of graded finite-dimensional g[¢]y-modules, where the morphisms
are those preserving grades. Set G = G4. Since we have a surjective Lie algebra map
glt] — g[t]n, every object from Gy can be regarded as an object in G. For m € Z, we
consider the grade-shift functor 7,,, which does not change the given action on an object

and shifts the grades by the rule

T (V)[k] = V[k — m].
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Set
V(A,m) = 1n(Vo(A))
which can be regarded both as a g[t]-module as well as a g|t]y-module. It follows that

the assignment (A, m) — V/(A\,m) induces a bijection between P* x Z and the set of

isomorphism classes of simple objects in Gy (including N = o).

1.3 Weyl Modules

Chari and Pressley introduced in [14] a family of finite dimensional representa-
tions, called Weyl modules, for the affine Kac-Moody algebras and their quantized versions.
These modules were introduced inspired by the modular representation theory of algebraic
groups. The notion can be generalized for Lie algebras of the form g ® A and the study of
these modules in the case of truncated algebras is the main goal of this work. We proceed

with a review of the background we shall need about them. For more details see [9].

Observe that (1.1.1) implies
IRA=n"QRA®HRA®N ® A. (1.3.1)

We consider the highest-weight theory associated to the decomposition (1.3.1). For more
details see [9, 37, 44].

Definition 1.3.1. A nonzero vector v € V is a highest-weight vector with respect to
(1.3.1) if

(i) (0" ®A)v = 0;

(ii) there exists A € (h ® A)* such that (h® a)v = A(h® a)v, for all (h®a) e h® A.

The functional A € (h ® A)* satisfying Definition 1.3.1 is called the highest
weight of v. A (g ® A)-module V' is said to be highest-weight module (of highest weight A)
if it is generated by a highest-weight vector (of highest weight A). If V = U(g® A)v is a
highest-weight module with highest-weight vector v, it follows from the PBW Theorem
that V = U(n~ ® A)v.

Let A = (C:g], as in the previous section. Given A € (h[t]7)*, let M(A) be the

g[t] 7-module generated by a vector v satisfying the defining relations n™[tJv = 0 and
xv = A(h)v for all z € h[t]7. Thus, M(A) is the Verma module of highest weight A with
respect to the decomposition (1.3.1). Denote by V(A) the irreducible quotient of M(A).
Note that, by Theorem 1.2.1,

V(A) is finite dimensional < V(A) = V(7) for some we=j.

It then follows from (1.2.3) that:
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Proposition 1.3.2. The module V(A) is finite-dimensional if and only if there exist £ > 0,
a,...,a, € C, \,..., A\ € P" such that

k
Ah®T) =Y Nj(h)a; forall heb,r=>0.
j=1

In other words, we can identify =7 with a subset of (h[t]7)*. Let wt : E7 — P
be defined by
wt(m) = Z m(a).
aesupp(m)
Suppose V is a finite-dimensional quotient of M (7) and let v € Viy(r). Then, U(sly(av))v is

finite-dimensional for all & € R* and, hence,
(z;)Mhe)*ly =0, forall ae R

Definition 1.3.3. Let m € £5. The Weyl module W 7() is the quotient of M () by the

submodule generated by (7)™ *1y e I.

For a proof of the next theorem see [9, 34].

Theorem 1.3.4. For every m € =7, W (7) is finite-dimensional.

Hence, it follows from the comments preceding Definition 1.3.3 that W (r)
is the universal finite-dimensional highest-weight g[¢] 7-module with highest weight =. If
J =0, we denote it simply by W (x). It was proved in [9] that

Wi(r+7') = Wi(r)@W4(x') forall m 7' € Zs s.t. supp(n) nsupp(n’) = &. (1.3.2)

The automorphism (, of C[¢] induces an equivalence between the categories
of finite-dimensional g[t]y modules and g[t] 7-modules with J = (t — ) C[t]. Moreover,
Weyl modules are mapped to Weyl modules. This fact, together with (1.3.2), allows us to
focus on the case J = t" C[t] which we do henceforth. Set =5 = Z; and Wy () = W ()
for 7 = t"C[t], 7 € 2. Note that, for all 7 € Zy,

T(h@t") = wt(m)(h)dr.o

and, hence, Wy () is Z-graded. Since Zy is naturally identified with P* as mentioned
before, for A € P* we set Wi () := Wy(w) where 7 is the unique element of Zy such
that wt(m) = A. Since every g[t]y-module can be naturally regarded as a g[t]-module,
the universal property of W(\) immediately implies that we have an epimorphism of
g[t]-modules:

W(A) — Wy (A). (1.3.3)
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Moreover, set Ly, the submodule of W () generated by (z @ " )v for x € n™, i.e.,

Ly = {U(a[t])(x @t ), Vo en ). (1.3.4)

Observe that, when regarded as a g[t]-module, W () is isomorphic to a module

generated by a vector v satisfying the Definition 1.3.3 together with
(@t w=0 forall zen  r>=N.

Hence, Ly ) is the kernel of the epimorphism (1.3.3), and we have the following isomorphism

of g[t]-modules
W)

LNM\ = WN ()\) .

Thus, we can define the truncated Weyl module Wy (\) directly as a g[t]-module as the

module generated by a nonzero vector vy with the following defining relations
n*tloy = 0; (h@t*)on = dorA(h)on, Yheb;

(2, H = 0 = (z; @tV )y, Yae R,

In particular, we have epimorphisms of g[¢t]-modules

Wy(A) =» Wx(\) if N=N. (1.3.5)
Also, it follows from the proof of Theorem 1.3.4 that, for all « € R*,

(x, @t v =0 if 7= Ahg). (1.3.6)

Hence,

Wx(\) = W) if N = Ahy). (1.3.7)

Note that, if g is simply laced, all the roots have the same length and the condition in
(1.3.7) becomes N = A(hyp).

1.4 Examples

We will now present some properties and examples of local Weyl modules
and truncated Weyl modules when g is sly. Let {x7,h,2"} be a basis of g such that
[h,27] = =22~ ,[x",27] = h,[h,x"] = 22™. Moreover, we are considering m € Z, w the
fundamental weight, w a generator of the local Weyl module W (mw) and v a generator of
the truncated Weyl module Wy (mw) for some N € Z-.

By (1.3.6),
(z=@t™)w = 0. (1.4.1)

The first property tells us that the submodule of W(mw) generated by
(z~ ®@t™ Hw can be realized as a quotient of the local Weyl module W ((m — 2)w).
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Lemma 1.4.1. If m > 1, then U(g[t])(z~ @ t™ ")w is isomorphic to a quotient of the
local Weyl module W ((m — 2)w).

Proof. Tt is enough to show that (z~®t™ ! )w satisfies the defining relations of W ((m—2)w).

(i) Given k € Zo, since w is a generator of W (mw), we have
(2T @t (2~ @t Hw = (h@t™ "Fw + (2~ @™ ) (2" @ t")w = 0.
Therefore n*[t](z~ @™ Hw = 0.
(i)

(hD(z"@t" Hw = 2@ t" w4+ (2~ t" ) (h® 1w
= 22" ® tm_l)w + (7 ® tm_l)mw
= (m—2)(z @t"™ Hw.

(iii) For k > 1,

(h@t*) (z~@t™ Hw = —2(z~ @™ M w+ (@t ) (h@ tH)w = —2(z~ @™ HF)w.
0

By (1.4.1), (z~ ®@t™)w = 0 and since m — 1 + k = m, it follows
(- @t™ " Mw = —; (h@t* (@ @t™) — (z~ @t™)(h@t" ")) w=0.

Therefore (h @ t*)(z~ @™ Hw = 0.

(iv) We need to prove that (z~ ® 1) *(z~ @ "™ ')w = 0. Note that (z~ @ t™ w €
W ((m)w)m-2,\{0} and by (i), n*[t](z~ @ ™ Hw = 0, then (z~ @ 1) D+ (2~ @
t" Nw = 0.

Lemma 1.4.2. If A € PT\{0}, then 27wy # 0, where wy € W(\),.

Proof. Let V5(X\) be the evaluation g[t]-module constructed from V()), the irreducible
highest-weight module of highest weight A, and vy € Vi(\)y. Clearly vy satisfies the
defining relations of W (\). Then there exists a surjective homomorphism W () — V4 (),
which maps w)y to vg. Since Vy(A) = U(n"[t])vo implies that x vy # 0 and consequently
x-wy # 0. ]

Remark 1.4.3. Note that (1.4.1) and the Lemmas 1.4.1 and 1.4.2 are valid if instead of

the local Weyl modules we consider the truncated Weyl modules.
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In the following we give some examples of local Weyl modules and truncated
Weyl modules. Each module will be associated to a diagram that we will now describe:
- Each vertex corresponds to a generator of the module. The vertices are distributed in
lines and columns.
- Each line corresponds to the degree of the generator according to the gradation of the

Lie algebra and each column corresponds to a weight of the generator.

Example 1.4.4.
W(w) = Ulg[t)w; Wi(w) =U(glt])v.

By definition, w and v satisfy:
() w=0=(2"); h@t"hNw=0=(h®t"), Yk=1;

n*[tlw =0 =n*[t]lv; hw =w and hv = v.

Then W(w) = Cw @ C(z w) ~ Wy(w), as U(g[t])-module and we have the following

diagram:

Example 1.4.5.
W(2w) = U(g[thw; Wy(2w) = U(g[t])v.

By definition, w and v satisfy:
(z Yw=0= () v; (ht"hw=0=(het), Yk=1;

n[tjlw =0 =n*[t]v; hw =2w and hv = 2v.

By (1.4.1), (v~ ® t*)w = 0 and

(i) (2~ @thw = ;[x_ Rt h@tlw =0

(i) (z~ ®@t)z w=0= (2~ ®@t)*w, in fact,
(2t @) (a7 )3w =0
= (h@t+a (27 @1t)(z7)w =0
= (=22 @t+a (h@t)+2 (h®@t)+ (z7 ) (" ®t)z w=0
= (2(r @t)z” —4da (2~ @t) +2(z" )2 (h@t) + () (h®t) + (v )3 (2T ®1))w = 0
= —62 (27 ®t)w =0
= (- ®@t)z w=0.
On the other hand, (z~ ® t*)w = 0, hence —;[(h@t,w Rtlw =0

= (~3t@06 90 + e onten ) uw=0
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_ 1 _ 1,
= —§(h®t)(x ®t)+§(x ®t)(h®t))w=0
= —(z7®@t)*w =0

= (1~ @t)*w = 0.

(iii) For iy =i, (v @t") (2~ @t°)w = (z @) (x " )w.
Ifig =2 or i; = 2, then (z~ @) (2~ @t°)w = 0.
Ifip=0=4i = (z @t")(z @t°)w = (v )*w.
Ifig=1=14, = (z~ @t") (v @t°)w = (z~ ®t)*w = 0.
Ifip=0andi;=1= (2~ ®t)z"w = 0.

By Lemma 1.4.2, x~w # 0.

By (1.3.7), for all N > 1, the truncated Weyl module Wy (2w) is isomorphic to the local
Weyl module W (2w). Then W (2w) = Cw @ C(z~w) ®C(z™ ) *w®C(z~ @ t)w ~ Wx(2w),
as U(g[t])-module and we have the following diagram:

For N = 1 we have W;(2w) = Cv ® C(z~v) @ C(x~)*v and the following diagram:

Example 1.4.6.
W (3w) = U(g[t))w; Wi (3w) = U(g[t])v

By definition, w and v satisfy:
() 'w=0= () ht"hw=0=((ht")Ww, Yk=1;

n[tjw =0 =n"[tlv; hw = 3w and hv = 3v.

By (1.4.1), (v~ @ t*)w = 0 and for 2 > i; > ig = 0,
(- @t (2~ Qt°)w = (z~ @) (z @t )w.

We have (z~ ®@t)(z " )*w =0 = (2~ ®t*)(z " )?w. In fact, (2" @t)(z")*w =0

= (2(r~ @)™ —4r~ (2~ ®t) + 2(27)2(h®1t) + (z7)*(h®t) + (z7)} (2T @)z~ w = 0
= (—6(x )z @)w+3(x ) (h@t)z w+ (v )*(z" @t)x w =0

= 12z @t)(z )*w =0

= (v~ @1t)(z7)*w = 0.

On the other hand, (z* ® t*)(z™)*w = 0, hence

—6(z )z @thw + 3z Y (h@t)r w+ (v ) (z” @)z w =0
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= —12(z~ @t*)(z )?w =0

= (2~ @t} (27)*w = 0.

By Lemma 1.4.2, x~w # 0. For N > 2,

Wr(Bw) ~W(Bw) = Cwud®Cz w)®Ca PuwdC PudClr @t)wdCla~ @t)wd®
Clr~ @t)r w@Clr @t})z w

and we have the following diagram:

However, for N = 1 or N = 2 we have some differences. If N = 2, then (z~ @ t*)v = 0,

~ W(Sw) eretore w) = Cv xr v z )% z )3
W2(3W)—U(g[t])(x_®t2)w,th fore Wy(3w) = Co@® C(z v) ®C(z" )*vdC(z )’v ®

Clz~ ®@t)v®C(z~ ®t)x~v and we have the diagram:

[ [ ]
[ J [ 4 [ 4 [ ]
If N =1 then (z~ ®t)v = 0, Wa(3w) ~ W(3w) , therefore W;(3w) = Cv @

U(glth(z~ @ H)w
C(z™v) ®C(z7)*v ® C(27)%v and we have the diagram:

Example 1.4.7.
W(dw) = U(g[thw; Wy(dw) = U(g[t])v.

By definition, w and v satisfy:
(7)Y Pw=0=(z")v; (h@t"Hhw=0=(h@t"), Vik=1;
n[tjw =0=n"[tlv; hw = 4w and hv = 4v.
By (1.4.1), (z~ ® tY)w = 0 and for 3 = i; =iy = 0,
(- @t")(z @t)w = (v ) (z t")w.
Similarly to the previous examples, we can prove
(= @)z Pw=0=(z" @tz )w= (2~ @t*)(z")*w.
For N > 3,
Wy(dw) ~ W(4w) = Cu ® C(z w) ®Cz V2w ®Cz 2w ®Clr ) 'wdClz~ @ t)w ®
Cla~ @ wdClr @)z wdClz~ @t)(z ) wdClz~ @t wd Clz~ @°)(z7)*w d
Clr~ @t) (2 ) w@Clz~ @)1 w®C(z~ @t)r " wdC(z~ @t)*w ® C(z~ @t*)*w and

we have:
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[ J L] L]
L] O [ J
L] L] L]
[ J [ J L] [ J [ ]

The unique different vertex means that the dimension of this part is two. In this case, we

are talking about the submodule generated by (z~ @ t*)z~w and (2~ ®t)*w.
_ W (4w) . _
If N = 3 then (z~ ® t*)v = 0, W3(dw) ~ . Moreover, since (2~ &
e = Gl o (
t*)(x)?v = 0 then

(zt @) (z~ @t (27 )% v =0

= @Rt + (2~ @) (2T @) (27 )3 v =0

= (@'t (2@ @) ()P +r (ht) (2 )+ (2 @) (h@t+z (2t 1)) (2 )*)v =0

= (" ®1) [:2(35’)2(95’ ® t3)2J) + 3\67(—295’ Rt +2 (h® t3))$"zj +Ha @) (20 @t
427 (h®t)+ 27 (h@t+ 2~ (27 ®t)))z"v] =0

= (@TRN)[-4(@" @) (2" @t)r v+ (27 @) (2" @t)z Jv =0

= —6h@t+ (2~ @) (2" ®t)) (2~ @)z v =0

= —6[20"Rt'+ (27 R)(hR) + (2T @) (h Rt + (2~ @t)(zT ®1))]z7v =0

= —6r (22 @t +2 (h@t)v =0

= —12(z ®t*)*v =0

= (z ®tH*w =0.

Therefore Ws(4w) = Co@C(z v) ®C(z™ v ®C(z™ v ®C(z7) v ®C(z~ @t)v DC(r~ ®
@ C(z~ @t)r v®C(r~ ®@t) (27 ) v@C(r~ @) (27) v ®C(r~ @t vdC(r~ ®t)%v

and we have:

W (4w)

If N =2 then (z~ ®@t*)v = 0, Wy(4w) ~ TGl @B therefore Ws(4w) = Co @
C(z7v)@C(27)*v®C(z7)*v®C(z7 )@ C(r~ @)@ C(r~ @)z v®C(z~ ®t)(z7)*v®

C(r~ ®t)%v and we have:
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W (4w)

U(g[th) (2~ @ Hw
C(z ) ®C(z7 )0 @®C(x)*v®C(z)*v and we have:

If N =1 then (z 7 ®t)v =0, Wi(4w) ~

, therefore W;(4w) = Co @

1.5 Fusion Products

The notion of fusion products was introduced in [18], and consists of certain
operations between cyclic objects in G closely related to tensor products, providing a
very powerful tool to study several objects in G. We now review the definition and a few

properties (for more details see [12] and [38]).

Consider the Z-gradation on the universal enveloping algebra U(g[t]) induced
from that of g[t]. Then, if V' is a cyclic g[t]-module and v generates V', define a filtration
on V by

F'v =) Ug[t][s]o. (1.5.1)
0s<r
For convenience of notation, we set 'V to be the zero space. The associated graded
v
module grV = g—% iy becomes a cyclic g[t]-module with action given by

(2@t (w+ F~V) = (z@t)w + FH71V

forall ze g, we F'V,r s € Z.

Given a € C, consider the Lie algebra automorphism (, of g[t] defined in Section

1.2. Then, given a g[t]-module V', denote by V, the pullback of V' by (,. Note that, if

V e G and a # 0, then V, is not a graded module. The notation V, might sound conflicting

with that for evaluation modules introduced earlier. However, one easily checks that, if

V = W, for some g-module W, then the pullback of V' by (, is isomorphic to the pullback
of W by ev,, i.e.,

V, = W,. (1.5.2)

Thus, the coincidence of notations should not cause confusion. Observe that if v* = v
viewed as an element of V,, then 2® (t—a)v® = 0 if xv = 0. Given k € Zq, let ay, ..., a; be
a family of distinct complex numbers and let v, . .., v; be generators of objects V!, ... V¥

from G, respectively. It was proved in [18] that
1 k
Vi --evk

is generated by v = v ® --- ® v;*. By abuse of notation, we will often simply write v
g Y 1 k y Yy

instead of v® from now on.
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Definition 1.5.1. The fusion product of V', ... V¥ with respect to the parameters
ai,...,a is the associated graded module corresponding to the filtration (1.5.1) on

V) ®- - @V} . It will be denoted by
ViV
and we notice it that it depends on the choice of cyclic generators too.

Note that we have an isomorphism of g-modules
VIR -V >, Vall *"'*Vai'

It was conjectured in [18] that, under certain conditions, the fusion product does not
actually depend on the choice of the parameters aq, ..., a;. Motivated by this conjecture,
it is usual to simplify the notation and write V' = -+ V" instead of V| # .- Vai This
conjecture has been proved in some special cases (see [12, 17, 18, 22, 32, 36] and references
therein). In all these special cases, each V7 is a quotient of a graded local Weyl module
and the cyclic generator v; is a highest-weight generator. All cases relevant to us are of
this form and, hence, we make no further mention about the choice of cyclic generators.
In particular, it is known from [22], for simply laced g, and from [35] for the non-simply

laced case, that we have an isomorphism of graded g[t]-modules:
W) #- s W) =2 W) i A=A+ 4+ M\ (1.5.3)
Inspired by (1.5.3), for all A € P*, we have
W) = W(w) 2 s s W (w,,) ), (1.5.4)

Inspired in (1.5.4), we want to obtain a similar decomposition for the truncated Weyl
modules. We now recall a conjectural generalization of (1.5.4) for truncated Weyl modules
stated in [32] which is the subject of the main result of this work. This conjecture was

motivated by previous work of Chari, Fourier, and Sagaki on Schur positivity [10].

Given A € PT and N € Z-, let PT()\, N) be the subset of (P™)" consisting of
elements A = (Aq,...,A\y) such that

AMA Ay = A
Given a € R" and 1 < k < N, define

Tar(A) =min{(A; + -+ X, )(ha) 1 1 <iy <--- <idp < N}
Following [10], equip P*(\, N) with the partial order defined by

<A & rox(p) <rar(X) forall ae R, 1<k<N,
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In [20, Lemma 3.1], it was proved that the maximal elements of P (A, N) form a unique
orbit under the obvious action of the symmetric group Sy on P*(\, N). Moreover, an
algorithm for computing such a maximal element was also obtained and can be described

as follows.

IfA=

n
biw;, let p; and 7;, 7 € I, be the unique nonnegative integers satisfying

i=1

n

Zblzpl-N—i-m and 0<r; <N.

=1
Foriel,1<j <N, set
mm-:

Clearly m; ; = m;.1; for any ¢, j and, hence, \; := Zmi,j(wi —w;_1) € P, where wy =0
i=1
by convention. Then, the following element is maximal in P*(\, V)
Amaa} = ()\17 ey )\N)

Note that, if N > || := Z A(h;), then an element of P™(\, N) is maximal if and only if
i€l
all its nonzero entries are fundamental weights.

Conjecture 1.5.2 ([32, Section 4.1]). Let N € Z-o, A € P*, and suppose XA = (A1,..., \x)
is a maximal element of PT(\, N). If N < |A|, Wy(A) = V(A1) =--- = V(Ay) as graded
g[t]-modules.

Conjecture 1.5.2 has been proved in the following special cases:

(i) for A = Nu + v with g€ L and v minuscule, where L™ = {\ € P* : d;|\(h;)} with

2
di= —2 ielin[32].
(Oél',Oéi)

(ii) for g of type A, N =2, and A\ = mw; for some i € [ in [21].

(iii) for simply laced g, A = mé for some m = 0, and N = |A| in [38].

Recall that X\ € P* is said to be minuscule if {u € PT : y < A\} = J. The
following is the list of non zero minuscule weights.
A, w, 1<i<n
B, Wn
C, w1
D, wi,wn_1,Wn,
Eg W1, We

E; wr



Chapter 1. Background and the Main Results 31

We follow the numbering of vertices of the Dynkin diagram for g as in [4]. Our main result

generalizes and provides an alternative proof for item (ii) above.

Theorem 1.5.3. Suppose g is simply laced and w; is minuscule. Then, Conjecture 1.5.2
holds for A = mw; for all m = 0.

The proof of Theorem 1.5.3 will rely on results about Kirillov-Reshetikhin (KR)

and Chari-Venkatesh (CV) modules which we review in the next subsections.

Note that Conjecture 1.5.2 is not a complete generalization of (1.5.4) since we
may have || < A(hy). Regarding the region |A\| < N < A(hy), it was proved in [38] for
simply laced g that

Wi (mb) = W (0)* V=) & v (g)*@m=N), (1.5.5)

1.6 Chari-Venkatesh and Kirillov-Reshetikhin Modules

We now recall the definition of certain objects of G introduced in [16], which

are now referred to as Chari-Venkatesh (or CV) modules.

Given a sequence m = (m;);ez., of nonnegative integers, we let
supp(m) = {j : m; # 0}.

We denote by & the set of non-increasing sequences with finite-support and refer to the
elements of &2 as partitions. For any sequence m with finite support, we denote by m the
partition obtained from m by re-ordering its elements. Given m € &, set
¢(m) = max{j : m; # 0} and lm| = Z m;.
j=1
If |m| = m, then m is said to be a partition of m. We denote by &2, the set of partition
of m. The element m; of a partition m will be often referred to as the j-th part of m.
Hence, ¢(m), which is often referred to as the length of m, is the number of nonzero parts

of m. Given distinct nonnegative integers ki > ko --- > k; and a4, ..., a;, we denote by
(K )

the partition where each £; is repeated a; times.

Given A € P*, a family of partitions £ = (£(@))aer+ indexed by R™ is said
to be A\-compatible if {(a) € Py,) for all a € R*. Namely, ¢ is A\-compatible if
la)=(¢Ea)yr=...2&a)s=...=0) and

A(ha) = Y &(a); forall aeR".

j=1

We will denote by &2, the set of families of \-compatible partitions.
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Definition 1.6.1. Given £ € &2, the CV-module CV(£) is the quotient of W () by the

submodule generated by

{(SC;F Q) () "w:ae RY, s,;r #0, s+7 >k + 2 &(av); for some k € Z>0} ,

7>k

where w € W(A)\{0}.

Note that the submodule from Definition 1.6.1 is generated by homogeneous

vectors of positive degree and, hence, C'V (§) # 0.

Fix A\e P™ and N € Z-q u {w}. For each a« € RT, if N < oo, let ¢, and p, be

the unique non negative integers such that
AMho) = Ngo +po and 0 < p, < N.
If N = o0 set ¢o = 0 and p, = A(hy). Consider the element &3 € &2y given by

En () = ((go + 1)@, g(N77)), (1.6.1)

Note that, if N > A(hy) for all a € R*, then &x(a) = (1)), The second of our main

results is:

Theorem 1.6.2. The modules C'V (£x) and Wy (A) are isomorphic graded g[t]-modules.

For N = oo or, more precisely, in the case that Wy (\) = W(\), this theorem
was already known (see Proposition 2.2.5). The proof of Theorem 1.6.2 will be given in
Section 2.3. In Chapter 3, we will obtain further results about truncated Weyl modules in

the case g = sly as consequences of Theorem 1.6.2 together with results from [3, 15].

Beside Theorem 1.6.2, the other crucial ingredient for the proof of Theorem
1.5.3 is a result from [36] about fusion products of Kirillov-Reshetikhin (KR) modules
which we now review. The graded KR modules are the so called graded limits of the
quantum KR modules, which are finite-dimensional irreducible modules for quantum affine

algebras (see [13, 33, 36] and references therein).

Definition 1.6.3. Let w € W (mw;)ms, be nonzero. The graded KR module K R(mw;) is
the quotient of W (mw;) by the submodule generated by

(x; @t)w.

Quite clearly, K R(mw;) # 0. Moreover, K R(mw;) is isomorphic to CV'(§) where ¢ is
exactly that for W (\) except when « is the corresponding simple root «;, in which case,

€(a;) has just one part as in the case of V()\), namely, £(a) = (1)) if @ # a; and
§(ai) = (m).
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N
Given N > 0, i1,...,iy € I, my,....my € Z-o, set X = ijwij,
Jj=1

i= (i1,...,in), m = (my,...,my), Si(i) = {j : i; = i}, and define the following fu-
sion products

KRi(m) = KR(mjw;,) * - -+ * KR(myw;,, ),
‘/l(m) = V(mlwil) B w V(meiN)7

for some choice of parameters in the definition of fusion products. If ¢; = ¢ for some i € [
and all 1 < j < N, we write K R;(m) in place of K R;(m) and we similarly define V;(m).
In [36], it is given a presentation for K R;(m) in terms of generators and relations which,
in particular, proves the independence of K R;(m) on the choice of parameters for the

fusion product.

Theorem 1.6.4 ([36, Theorem B]). For every N > 0, i € IV, m € Z%,, the module
K R;(m) is isomorphic to the quotient of W () by the submodule generated by

xi(r,s)w forall iel, r>0, s+r> Z min{r, m;},
jGSi(i)

where z;(r, s) is defined as in (2.2.1) below.

Together with Theorem 1.6.2; this presentation will imply the following Corol-

lary, that we will prove in Section 2.4.

Corollary 1.6.5. Let m, N >0, ¢ € I, and m = £3“"(c;). Then, there exists an epimor-
phism of graded g[t]-modules K R;(m) — Wy (mw;).

Combined with results of [8, 13, 22] on the structure of KR modules (see (2.4.3)
below), this corollary will lead to a proof of Theorem 1.5.3.

We also prove a further step towards a proof of Theorem 1.5.3 without any

hypothesis on g and 7. To explain that, introduce the following notation. Given n =

Z a;c; € @, set

Forie I, k=0, set also
R, = {ae R" : hty(a) = k}.

By inspecting the root systems, one checks that the set R;., = {a € R" : ht;(a) > 1} is
empty if w; is minuscule and has a unique minimal element otherwise, which of course
lies in RZ ,. Let v be a highest-weight generator for K R;(m), where m is any sequence
m = (my,...,my) with m; # 0 for all 1 < j < N, and denote by T;(m) the quotient by
the submodule generated by

(z, @tV)v  with o =minR},.
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Recall that, if g is not of type A, then § = mw; for some 1 <m < 2 and ¢ € [I.
In fact, m = 1 unless g is of type C' in which case § = 2w;. Let iy denote this node. We
have the following list, in which we also follow the numbering of vertices of the Dynkin

diagram for g as in [4].

t9=1 for g of types CFFEy
19 =2 for g of types BDFgG;
19 =8 for g oftype FE;s.

Recall that
RY ., = {0).

19,2
The third of our main results is:

mw;

Proposition 1.6.6. Let ¢ = iy and m = £ («;) for some m = 0. Then, for all N < m,
Wi (mw;) = T;(m).

We shall see in Proposition 2.1.3 below that, if m € Z;VO, there exists an
mw;

epimorhism Wy (mw;) — V;(m) for all i € I. If m = {y“(«;) for some 0 < m < N,

Corollary 1.6.5 then implies that we have epimorphisms
T;(m) - Wy (mw;) — V;(m). (1.6.2)

Proposition 1.6.6 says that the first of these is an isomorphism when i = 74, while Conjecture

1.5.2 expects that the second is also an isomorphism for all ¢ € I. This motivates:

Conjecture 1.6.7. Let i € I, m = 0. Then, for every m € &,,, V;(m) is isomorphic to
T;(m).

Note that item (iii) after Conjecture 1.5.2, together with Proposition 1.6.6,
proves this Conjecture for types DFE, © = iy, and m = 5%‘”. Evidently, Conjecture 1.6.7,
together with (1.6.2), implies Conjecture 1.5.2. We will prove Proposition 1.6.6 in Section
2.5.
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2 Proofs

In this chapter we present the proofs of our main results. For this, we will need
some extra facts concerning CV modules, fusion products, and KR modules which will be

reviewed as required.

2.1 More about Fusion Products

Given a filtered g[t]-module V| recall that F"V denotes the corresponding
filtered piece. One checks that

(2@ (t — f(t))we Frr1v, (2.1.1)

forallzeg, r,seZ, we F'V, f(t) =t° +bs_1t"' +--- + by € C[t].

We have the following lemma as a consequence of the definition of fusion

product.

Lemma 2.1.1. If m; : M; — V;,1 < j < N, is a family of epimorphisms of cyclic graded

g[t]-modules, m ® - - - ® my induces an epimorphism of graded g[t]-modules

Ml*...*Mn_)‘/l*...*VN.

Proof. For each 1 < j < N, let w; be the chosen generator for M; and set v; = 7;(w;).
Letalsoll =m Q- - Q7rn, w =w1 Q- Quw,, and v = 11 ® - Qvy. Then, if F"M
and F"V are defined as in (1.5.1) using w and v, respectively, we have II(F"M) = F"V.
Thus, IT induces an epimorphism of the associated graded modules corresponding to these
filtrations. L

Lemma 2.1.2. For each 1 < j < [, let V7 be a finite-dimensional cyclic graded g[t]-
module generated by v;. Suppose (r ® t"C[t])v; = 0 for some = € g, N; > 0, and set
N =Ny + ...+ N;. Then

(2@t (v ...+ 1) = 0.

Proof. For any choice of distinct aq,...,a; € C, let v ® ... ® v; be the generator of
!

V., ®...QV, andv =y x...+v. Let f(t) = n(t —a;)™. By (2.1.1), we have

j=1

(2@t = (z® f(t))v.
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Recall that (, is the Lie algebra automorphism of g[t] induced by ¢ +— ¢ 4+ a and in V,
!
R fE))v=(2@f(t+a)v=(® n(t +a — a;)™)v. On the other hand,

j=1

(x®f(t))(vl®"'®vl):ZU1®"'®<x®H(t+aj—ak)Nk> V; Q- QU

J=1 k=1
l l
:ZU1®"'®<$®th< H (t—l—aj—ak)Nk))Uj@...@w
Jj=1 k=1,k#j
=0
O

Proposition 2.1.3. Let , N € Z, 0 <1 < N. For each 1 < j < [, suppose V7 is a quotient
of W()\;), for some \; € P*. If (g@t"iC[t])V’ =0, N; € Zog and N = N; + ... + N,
then, for any choice of distinct aq,...,a; € C, there exists an epimorphism of graded

l
g[t]-modules Wy(A) = V! -+ V! where A = Z Aj.

Jj=1

Proof. Let v; be a highest-weight vector for V7,5 =1,...,1 and denote by v the image
of vy ®---@u in V| #---+ V] Then, quite clearly, n"[tJv = h[t] v = 0,h(v) = A(h)v
for all h € b, and (z;7)*") 1y = 0 for all i € I. Thus, by (1.3.4), it suffices to show that
(z; ®tV)v =0 for all @ € RT, but this follows from Lemma 2.1.2. O

2.2 More about CV Modules

Given r, s > 0, consider

S

S(r,8) = {(bp)ospes © bp € Zzo, D by =1, > pb, = s}.
p=0 p=0
Clearly, S(r, s) is finite, S(0, s) is empty if s > 0 and it has a unique element if s = 0. If
r =1, S(1,s) also has a unique element, the sequence with 1 in the s-position and zero

elsewhere.

Given f(u) e U(n [t])[[u]] and s € Zso, let f(u)s be the coefficient of u* in f.

Let also .
f) = = f(u) forall r=0.
7!
For o € R", set
Xa(u) = Y (x5 @) e U™ [¢])[[u]].
k=0
and

Ta(r,s) = (Xa(u)),ps forall r.s>0.
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In other words,

Ta(rs) = Y (12 @)™ (z; @) . (ag @), (2.2.1)
(bp)eS(r,s)

The following lemma is a reformulation of a result of Garland [26] (see also [11, 14]).

Lemma 2.2.1. Given s € Z~q, r € Zo and a € RT, we have
(Tq ®)°(2,)"" + (=1)°za(r,s) € Ug[thn" [t} @ Un " [t]) (h @ C[t]).
Given k > 0, define also

S (r,s) = {(bp)ogpss € S(rys) : b, =0 if p <k}
and (2.2.2)
KZa(r,s) = Z (z; @t (z; @t5)b).

(bp)erS(r,s)

Note that
wa(r kr) = (x, @)1, (2.2.3)

If & = a; for some i € I, we may simplify notation and write x;(u), etc.

Lemma 2.2.2. ([16, Proposition 2.6]) Let V' be any representation of g[t] and let w e V,
rx € gand K € Z-g. Then, for all s,r, k € Z~¢ with s +r > rk + K, we have

To(r,s)w =0 <  ry(r,s)w =0.

Let £ € & and w € W(A),\\{0}. Denote by CV'(§) the quotient of W(\) by
the submodule generated by

zo(r,s)w forall aeR", r,s >0 suchthat s+r>rk+ Z E(a)j, (2.2.4)
>k

for some k > 0. Consider also the quotient CV" (&) of W () by the submodule generated
by
kTo(r,s)w forall ae RY, s,r k>0 suchthat s+r>rk+ Z E(a);.  (2.2.5)
>k

Proposition 2.2.3. The modules CV'(£) and CV"(&) are isomorphic to CV (€).

Proof. Tt follows from Lemma 2.2.1 that CV () = CV’(§) and from Lemma 2.2.2 that
CV'(&) = CV"(§). O
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We will often denote by v a nonzero element of CV (), if £ € 2. It follows

from the previous proposition and from (2.2.3) that

(z; @t Dve =0 forall aeR* kr>0st r> Z &(a);. (2.2.6)

ji>k

In particular, since Z &(a); =0 for all k = ((&(a)),

7>k
(27 @tF)we =0 forall ae RT k= ((¢(a)). (2.2.7)

Lemma 2.2.4 ([38, Lemma 6]). Let A € P, w € W(A))\{0}, and £ € £,. Then,

To(r,s)w =0 for all € R™,r = £(a)1, s,k > 0 such that s +r > rk + Z E(a);.
7>k

Proof. Let a € R", s,k € Z~g, be such that s +7 > rk + Z £(av);. Given r = &(a)y, it

j=ktl
follows that

s+r>rk+ Z E(a); > Z&(a)j = Ma).

j=k+1 j=1
Therefore, since (2, @ 1)*") 1y = 0, we have (z) @ t)*(x,)* " w = 0 and it follows from

Lemma 2.2.1, z,(r, s)w = 0. O

Given X € P*, consider the two extreme family of A-compatible partitions:

€ = (AMha))acr+ and & = ((1M))) cps.

The next proposition shows that they correspond to the two extreme nonzero quotients of
W(N).

Proposition 2.2.5. Given A € P, let £ and ¢ be defined as above. Then,

CV(E) = evyV () and CV(E) = W(N).

Proof. For the first isomorphism, since CV (§) is a quotient of W (), it is quite clearly

that there exists a surjective homorphism
CV (&) — evgV (N).

We should prove that there exists the opposite surjective homomorphism, i.e.,
evgV(A) = CV(§).

If ve € CV(€),, it is enough to show that (g ® tC[t])ve = 0, namely, we should show that
(z, @tC[t])ve =0, for all € R™. This is clear from (2.2.7).

For the second isomorphism, by definition, CV (£') is a quotient of W (). Hence,

it is enough to show that there exists a surjective homomorphism CV (£') — W (\), i.e.,
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we should show that v € W(\),, satisfies only one more defining relation of CV(¢'). In
fact, since £(a) = ((1)*"*)), by Lemma 2.2.4, since £(a); < 1, then z,(r, s)v = 0 in W()),

forallae RY, s,k € Z-g, s +1 > 1k + Z ¢(a); and we have our statement. ]
j=k+1

Assume, for the rest of this section that g = sl, and identify P with Z as usual.
We simplify notation and write 2=, h in place of 27, hy. For A € P, the set &, is just the
set of partitions of \. We then simplify the notation and write { = ({1 =& = -+ = & = 0).

Given a partition £ = (§; > & > ... = & > 0), define partitions ¢* as follows.
If j =1, then 7 = £ and £~ is the empty partition. If j > 1, then £~ = (§f = ... =

§ 9 =& 4 =0)is given by

57‘7 T<j_17
57‘_= gjfl_gja T:j—l,
0, r=7.

And " = (§ = ... 2 ¢ = £ > 0) is the unique partition associated to the sequence
(61, R ,53;2,5]',1 + 175]' — 1) Note that if 6 S y,\ then €+ S y)\ and 57 S @)\,25].. The

following was proved in [16, Theorem 5].

Theorem 2.2.6. Let £ € P2, | = ((§).

(i) For [ > 1, there exists a short exact sequence of g[t]-modules

0 — 711y, CV(§7) = CV(§) — CV (") — 0.

(ii) For any choice of distinct aq, ..., a; € C, there exists an isomorphism

cv(e)

lle

Val (fl) B # ‘/az (fl)

of graded g[t]-modules. O

This theorem provides us with a presentation in terms of generators and relations
for fusion products of irreducible modules. Return to the case & = &y = ((q+ 1)@, ¢V P)
where A = Ng+p with 0 <p < N.

Corollary 2.2.7. With the above notation, V(g + 1)*” « V(q)*¥~? is isomorphic to the
quotient of W(A) by the submodule generated by

(" @t)°(x7)*"w forall rs>0 st. s+r>rk+qN—k);+((p—Fk),

for some k > 0 e w e W(A)\\{0}, where m = m if m >0 and m, = 0 if m <O0.
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Proof. By Theorem 2.2.6, we have V(g + 1)*7 « V(¢)*N P =~ CV(£x). Thus, if v is a
highest-weight generator of C'V (£%), it suffices to show that

(.T+ ®t)8(x—)8+rv — O
for all 7, s as in the statement. From (1.6.1) we have

(27 ®t)°(z7)* v =0 forall s,r>0,s+r>rk+ Z §; for some k> 0.

7>k

But if £ > p, then

s+r>rk+2§j < s+r>rk+q(N—k),
Jrams}

and, if k < p,

s+r>rk+ Z & < s+r>rk+qN—k)+(b—k).

j>kt1

Hence,

s+r>rk+ Z & e s+r>rk4+q(N—k)s+ (p—Fk);.
j=k+1

2.3 Proof of Theorem 1.6.2

In this section we prove that every truncated Weyl module is isomorphic to a
CV module for an explicited family of partitions. For this, let &€ = £y and ve € CV (Ex)2\{0}
as defined in (1.6.1). It follows from (2.2.7) that

(z; @tV)ve =0 forall aeR",
and, hence, there exists a surjective homomorphism of g[¢]-modules
Wx(X) = CV (&)
To prove the converse, observe that Proposition 2.2.3 implies that it suffices to show

wa(r,s)w =0 forall a€ Ry s rkeZ.g suchthat s+r>rk+ ) &(a);,
>k

with w € Wi (\)a. Hence, if we prove Theorem 1.6.2 for g = sl, the general case follows

by considering the subalgebra sl [¢].

By (1.3.7), for N = A, Theorem 1.6.2 becomes Proposition 2.2.5 hence, we can

assume N < \. By Proposition 2.1.3, there exists a surjective homomorphism

Wh(A) = V(g +1)* = V(g)*™ P = CV(&Q).
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Thus, by Corollary 2.2.7, it suffices to show that, if w € Wx(\),, then
(7 ®@t)°(z7)*"w=0 forall rs>0 st. s+r>rk+q(N—k,+((p—k),
for some k£ > 0. Thus, assume s, r, k satisfy this condition. If » > ¢, we will see
s+r>A\

hence, (27 ®t)°(27)* 7w = (27 ®1)* - 0 = 0 as desired. To prove the above inequality,
note that

k=zp = s+r>rk+q(N—k); =(q+Dk+q(N—k),
>p+qk+(N—Fk).)=p+Ng= A

while

k<p = s+r>rk+q(N—k)+(p—Fk)=rk—Fk(g+1)+A= X\

It remains to treat the case r < ¢ which implies
s+1r> Nr. (2.3.1)
Indeed, if k£ < N then
s+r>rk+q(N—k); +(p—Fk)r =rk+qN—k)+(p—Fk)s+
>rk+r(N—k)+(p—Fk)r =Nr+(p—k)y = Nr.
While if N < k we have s +r > rk > Nr. By Lemmas 2.2.1 and 2.2.2, we have
(7)) Tw=0 < ja(rs)w=0,

where z(r, ) is given by (2.2.2). Note that, if (b,,) € pS(r, s) is such that b; > 0 for some
j = N, then (z~ @t")®) ... (2~ ®t*)®)w = 0. Thus, it suffices to show that this is the
case for every element of ;S(r,s). Fix (by,) € xS(r,s) and note that this is obvious when
k = N (take j = k). Otherwise, if £ < N and we have b; = 0 for all j > N, it would follow
that

s= Y, jh<(N—-1) > b <(N-1r

k<j<N k<j<N

contradicting (2.3.1). This completes the proof of Theorem 1.6.2.

2.4 Proof of Theorem 1.5.3

In this section we use Theorem 1.6.2 as one of the tools to prove Conjecture
1.5.2 when g is simply laced and A\ = mw;, for a minuscule weight w; and a non negative

integer m. Given i and m as in Theorem 1.6.4, let

m; = (m;)jes,i) forall iel
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and let &M € &) be given by

g =47
. Q) =
(1Mhe)y " otherwise.

if a = «; for some i € I,

The following corollary was observed in [36, Remark 3.4(b)].

Corollary 2.4.1. There is an isomorphism CV (§™) =~ K R;(m).

Proof. To simplify notation, let £ = &™. We will show that there are surjective maps
CV(¢) — KR;(m) and K R;(m) — C'V (), thus proving the corollary. Let v g € K R;(m)y
and ve € CV(£), be nonzero vectors. By the isomorphism C'V () = CV'(§) of Proposition

2.2.3, in order to prove the existence of the first map, it suffices to check that
To(r,s)vgr =0 forall aeR", rs>0 st s+r>rk+ Z £();, (2.4.1)
>k
for some k > 0. If a is not a simple root, then r > 1 = £(a); and this follows from Lemma

2.2.4. Let 1 € I, assume a = «;, and write
m,; = (mi,h cee ami,N,-)

for some N; = 0. Then, by definition of £, we have {(a); = m;; for 1 < j < N; and we

have
N;
rk + Z ) =rk+mip+-+mn = Z min{r, m; ;} = Z min{r, m,}.
>k j=1 j€S;(i)

Thus, if s+ 7> 1k + Z £(av);, we also have s + 1 > Z min{r, m;} and Theorem 1.6.4
j>k ]ESZ(I)
implies z,(r, s) vgr = 0 as desired.

In order to show the existence of the second map, we need to show that
zi(r,s)ve =0 forall iel, r>0, s+r> Z min{r, m;}. (2.4.2)
Jjesi(i)
Fix 7,7, s as above. We claim that there must exists k& > 0 such that s+r > rk + Z E(av);-
Assuming this claim, (2.4.2) follows from the isomorphism C'V (§) = CV'() of Pﬁggosition

2.2.3. To prove the claim, assume, by contradiction, that

s+r<rk+2£(ai)j=rk—|—2mi,j forall k& >0.

>k >k

In particular, taking k = max{j : m,; > r}, we have

N;
s+r<rk+ Z mi; = Z min{r, m; ;},
j>k j=1

contradicting the choice of r, s in (2.4.2). O
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Proof of Corollary 1.6.5. Since Wy (mw;) = CV(£y*") by Theorem 1.6.2 and K R;(m) =
CV (&™) with i = (i) by the previous corollary, we are left to show that there exists an
epimorphism

CV(&") — CV(EN™).

Letting v € CV (£3“")a, this is in turn equivalent to showing that

To(r,s)v =0 forall aeR", rs>0 st. 5—|—7’>rk+2§im(a)jforsomek>0.
>k

Since §"(a;) = {5 (oy) by definition, we can assume « is not simple, in which case

r>1=¢&"(a); and we are done by Lemma 2.2.4. O

It is known (see [8, 13, 22]) that, if g is simply laced and w; is minuscule, then
KR(mw;) = V(mw;). (2.4.3)

Hence, in that case, K R;(m) = V;(m). Since we have an epimorphism Wy (mw;) — V;(m)

by Proposition 2.1.3, Theorem 1.5.3 follows from Corollary 1.6.5.

2.5 Proof of Proposition 1.6.6

In this section we see that the discussion preceding Proposition 1.6.6 implies
that the proof of this proposition follows from Lemma 2.5.2 below. We, also, shall need

the following simple, however useful lemma.

Lemma 2.5.1. Let V be a g[t]-module, and suppose v € V satisfies h[t] v = 0. Suppose
also that z € g satisfies (z @ t")v = 0 and [h, z] = cz for some r = 0, h € h and ¢ € C\{0}.
Then, (z @ t*)v = 0 for all k& > 7.

Proof. In fact, if k = r we have nothing to do. Suppose & > r, then by hypothesis
(h®@t"")v = 0 for all h € b, hence we have

(z®@th)v = i[h Rt r @t v
Lot eerw - @ormhetw =o.

C

]

Let m = {5 (a;), 0 < N <m and i € I. Corollary 1.6.5 implies that we have
a projection T;(m) — Wi (mw;). Thus, we are left to prove that there exists a projection

Wi (mw;) — T;(m). Equivalently, we have to prove that

ve KRy(m),,\{0} = (2, ®tN)v=0 forall aeR".
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Recall that if o = Zajaj then ht(a); = a; and for k = 0, Rf}, = {a € R" : hty(a) = k}.
jel

Moreover, if ¢ = iy as in the proposition and k£ > 1 then RZ . 1s empty if w; is minuscule

and has a unique minimal element otherwise, # € R} ,. By definition, T;(m) is the quotient

of KR;(m) by the submodule generated by
(22 @tM)v with o = min R},.
Thus, the proof of Proposition 1.6.6 follows from the next lemma.

Lemma 2.5.2. Let v € K R;(m),,,,\{0}. Then, (z, @ t"")v = 0 for every a such that

Proof. If ht;(«) = 0, then
(z; @ 1))ty = (27 @ 1)v = 0,

hence by Lemma 2.5.1, (z, ®t")v = 0.

If ht;(a) = 1 we proceed by induction on ht(a). If ht(a) = 1, then a = «;. Let v; €
KR(m;jw;)m,w;, 1 < j <N, be such that v = vy ...+ vy. By the definition of K R(m;w;),
(z; ®t)v; = 0. Then, by Lemma 2.1.2 (z; ® t")v = 0, showing that induction begins.

If ht(a) > 1, we can write @ = v+ 3, 7,3 € Rt and we may assume without loss of

generality that ht;(3) = 0 and ht;(y) = 1. In particular, z5v = 0. Since
T, @t =alz; @13, QtV],

for some nonzero complex number a, the result follows by applying the inductive hypothesis
to 7. O
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3 Further results for sl

In this chapter, we study truncated Weyl modules, for g = sly, from the
perspective of the theory of Demazure modules. In particular, the truncated Weyl modules
which are isomorphic to Demazure modules will be explicitly characterized. For those
which are not isomorphic to a Demazure module, we study their Demazure flags of lowest

possible level.

3.1 Demazure Flags

First we recall, from [22], the definition of g-stable Demazure modules which is

appropriate to our study and some known results about this class of representations.

Definition 3.1.1. Given ¢ € Z- and A € P", the g-stable level-¢ Demazure module
D(¢, \) is the quotient of W (A) by the submodule generated by

{(z, @t*)v:ae RY} U {(z, @t 1"y ae R" such that m, < ¢r)},
where v is a highest-weight generator of W(\) and rY, s,, and m, are the integers defined
by

1, if « is long,
= and  A(hq) = (sa — D)lr) +my, 0<m, < lr)

o
rY, if « is short,

Q<

where 7" is the lacing number of g. Set D(¢, \,m) = 7, D({, \).
Remark 3.1.2. As mentioned before, the definition of Demazure modules above is the
more appropriate for our study, but we refer to [22] and [35] for a more traditional definition
of a Demazure module. The Demazure modules are integrable ¢-highest weight modules
for the Borel subalgebra b of the affine Kac Moody algebra g.
In particular, if g is simply laced, it follows from (1.3.6) that
W(A) = D(1, ). (3.1.1)
It is well known that there are epimorphisms of graded g[t]-modules
D(l,\) — Dl \) for all Ae Pt i</, (3.1.2)
In particular, D(¢,\) = V() if € is such that s, =1 for all « € R™.
Let &\ € &2, be given by
Eon(a) = ((tr))* "1 m,) for aeR'. (3.1.3)

The following was shown in [16, Theorem 2:
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Theorem 3.1.3. For all £ € Z.; and A € P*, the modules D(¢,\) and CV (&) are

isomorphic.

It is not always true that a truncated Weyl module is isomorphic to a Demazure
module. It is then natural to ask whether truncated Weyl modules can be "approximated"
by Demazure modules, which leads us to the concept of Demazure flags. For results about

Demazure flags beyond what we will review here, see [3, 15] and references therein.

Definition 3.1.4. A g[t]-module V' admits a Demazure flag of level-£ if there exist

k>0,XeP" mjeZ,j=1,... k and a sequence of inclusions

0=VycVic---c Ve cVp=V with V;/V;y =D, \j,m;)V1<j<k.

Let V be a level-¢ Demazure flag of V' as in Definition 3.1.4 and, for a Demazure
module D, define the multiplicity of D in V by

[V:D]|=#{1<j5<1:V;/V;_y = D}.
As observed in [15, Lemma 2.1], the multiplicity does not depend on the choice of the
flag and, hence, by abuse of language, we shift the notation from [V : D] to [V : D]. Also
following [15], we consider the generating function

[V:D](t)= > [V:7uD] t" € Z[t,t7'].

meZ
It is easy to see that if V' is a graded g[t]-module and U is a graded g[t]-submodule of V'
such that U and V /U both admit a Demazure flag of the same level, then V' also admits
one, and
[V : D](t) = [U : D](t) + [V/U : D](¢). (3.1.4)
In the category of non-graded g[t]-modules we have 7,,D = D and, hence, one may also
be interested in computing the ungraded multiplicity of D in V which is given by

[V:DJ(1) = > [V:7.Dl.

meZ

3.2 Loewy Series

In the theory of local Weyl modules a problem which is often studied is that of
Loewy structure of these modules, especially to determine two standard Loewy series: the
radical series and the socle series. We are interested in studying such series for truncated

Weyl modules. In this section, we recall these concepts. For more details see [30, 31].

Let A be a C-algebra and M a finite-dimensional A-module. A semisimple

filtration of an A-module M is a chain of inclusions of A-modules
0=F'Mc---cF'M=M (3.2.1)

such that each successive quotient is semisimple.
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Definition 3.2.1. The radical of M, denoted by radM, is the smallest submodule of M

such that the corresponding quotient is semisimple.

Equivalently, rad M is the intersection of all submodules of M such that the corresponding
the head of the module M. Write

quotient is semisimple. We call the quotient
ra

rad’M = M and, for k > 1, define inductively
rad”M = rad(rad® *M).
This defines a semisimple filtration on M called the radical series
0c---crad*M c radM < rad’M = M.

Definition 3.2.2. The socle of M, denoted by socM , is the largest semisimple submodule
of M.

Equivalently, socM is the sum of all simple submodules of M. Consider soc’ M = 0 and for
k =1, let soc* M be the unique submodule of M such that

M sock M
soc| ——— | = ————.
sock—1 M sock=1 M

This defines a semisimple filtration on M called the socle series

0 = soc® M < socM < soc*?M < --- < M.

If we consider a semisimple filtration as in (3.2.1) then,
rad"M < F'=*M < socd ="M

holds for each k. This implies that the lengths of the radical series and the socle series are

equal and that the length of any semisimple filtration of M is greater than or equal to it.

Definition 3.2.3. A Loewy series of a finite-dimensional A-module M is a semisimple
filtration on M which has the smallest length.

By the comment preceding Definition 3.2.3, the radical series and the socle
series are Loewy series. Following [31], we will say that a module is rigid if its radical
series and socle series coincide. Equivalently, M is rigid if it has a unique Loewy series. Let
A be a Z-graded C-algebra. If A is positively graded and M is Z-graded, we can consider
the filtration defined by

F*M = @ Ms).

szk
This filtration is called the grading filtration or grading series. Observe that M[s] is
an A[0]-submodule of M for all s. Moreover, if m = max{s : M[s] # 0}, M[m] is an

A-submodule of M. The next lemma is easily established.
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Lemma 3.2.4. Assume A|s] = 0 for s < 0 and let m = max{s : M|s] # 0}. If N is a
simple A[0]-submodule of M[m], then N is also a simple A-submodule of M. In particular,

the socle of M[m] as an A[0]-module is contained in the socle of M.

Lemma 3.2.5. ([31, Lemma 2.3]) Let A be a positively graded C-algebra and M a

finite-dimensional A-module such that the grading series on M is semisimple.

(i) If is simple, the radical series of M coincides with the grading series.

ra

(ii) If socM is simple, the socle series of M coincides with the grading series.

Recall that if V' is a highest weight module, then it has a unique simple
quotient, hence, its radical series coincide with the grading series. In particular, W (\)
is a graded finite-dimensional highest weight module, thus its radical series and grading
series coincide.It is well known that the socles of Demazure modules are simple. Then, by
(3.1.1), if g is of type ADE, the socle of W () is simple and, hence, by Lemma 3.2.5, the

socle series of W () coincides with its grading series. In particular, W () is rigid.

3.3 The sl,-Case

In this section, fix g = sl, and identify P with Z as usual. Given A € P* N €
Z~g, set ¢ and p such that A = Ng+p, 0 < p < N. Recall that &y = ((¢ + 1)7, () P)
and by Theorem 1.6.2, CV(£x) = Wi (A). We have the following corollary from Theorem
3.1.3.

Corollary 3.3.1. If ¢ = ((a)*',b) € £, 0 < b < a, then CV(£) = D(a, \).

Proof. Tt follows from Theorem 3.1.3 noting that A = (k — 1)a + b. O

Theorem 3.3.2. We have the following isomorphisms of g[t]-modules

D(q, ), if N|A,

WN()\) =
D(g+1,)), ifpe{N—1,A}

Note that p = X if and only if N > \.

Proof. If N|A then p = 0 and &3 = (¢ ', ¢). Hence, by Corollary 3.3.1, CV (&x) = D(gq, \).
If p = N — 1, note that &y = ((¢ + 1)V, ¢) and, hence, Corollary 3.3.1 implies that
CV(&x) = D(q + 1,)). Finally, if N > A, then ¢ = 0, &y = (17), and Corollary 3.3.1
implies CV (¢éx) = D(1,\) = D(q + 1, \). Thus the proof follows from Theorem 1.6.2. [J



Chapter 3. Further results for sly 49

Recall from Section 2.2 thatif { = (& = ... > ¢ > 0)then & = (&,...,&-2,&-1—
¢;) and £ is the partition associated to the sequence (£1,. .., &2, &j—1+1,&;—1). Moreover,

by Theorem 2.2.6, there exists a short exact sequence of g[t]-modules
0 — 71, CV(ET) = CV(§) = CV(ET) — 0. (3.3.1)

If N <Xand p = N — 2, then (£3)" = ((¢ + D)V ', ¢ — 1). Hence by Corollary 3.3.1,
CV((Ex)T) = D(g+1,)). Thus, by (3.3.1), we have the following surjective homomorphism

Wx(A) = CV(&y) - CV((Ex)") = D (g + L, A).
In general, we have:

Proposition 3.3.3. If A€ P", N € Z., there exists a surjective homomorphism
Wn(A) = D(qg+1,)\).
Proof. If N = X, by (1.3.7) and (3.1.1)
Wx(A) = W(N) = D(1,\),

and the statement follows from (3.1.2). If N < A we have two cases. If N |\ the proof follows
from Theorem 3.3.2 and (3.1.2). Otherwise, define recursively (€3)*7 = ((&x)TU~Y)*. For
example, (£x) 72 is the partition ((€3)7)". We claim there exists j such that the partition
(€x)™ has at most one part different from ¢ 4 1, hence by Corollary 3.3.1 yields the
following isomorphism

CV((&n)™) = D(g+ 1))
and, by (3.3.1), we have

Wy (X) = CV(Ex) = CV((Ex)") = CV((EN) ™) — ... » CV((Ey) ™) = D (g + L)

To prove the above claim we proceed by induction on N, the number of non zero parts

of &. If N = 1, we consider j = 0 and &3 is such partition. Assume the result for all

N
partitions &) with k < N. If ¢ > m := {ZPJ then

hence if N — p is even, take j = m, otherwise take j = m + 1
If ¢ < m, then
(€37 = ((g + )P+, ¢V r2)

has N — ¢ parts. The induction hypothesis applies to (£x)™ implies that there exists £
such that ((£3)™)™ has at most one part different from ¢ + 1. Take j = ¢ + £ and we

have our statement. O
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Now, we will study the partition (£3) . First, consider N < X and p = N — 2
in which case we have (&3)” = ((¢ + 1)V72) € P\ _y,. In this case, by Corollary 3.3.1 and

(3.3.1), we have the following injective homomorphism
Tv-1)gD (¢ + 1,0 = 29) = 7v-1 CV((E3)7) = CV((ER)) = W (W)

Ifp=N-=3 (&) = ((g+ 1DV 3¢ € Py, and we get the following injective

homomorphism
Tv-1D (¢ + 1, = 29) = 7v-1), CV ((63)7) = CV((6x)) = Wi (N).
In general, we have:

Proposition 3.3.4. If A€ P*, \ # N € Z-, there exists an injective homomorphism
Tm]-D(q + 17:“) - WN(/\)a

for some m; € Z=o and p € P*, p < .

Proof. If N > X the proof follows from (1.3.7) and (3.1.1). Suppose N < A\. Ilf p=N —1
the statement follows from Theorem 3.3.2. Then, assume set 0 < p < N — 1 and define
(E) 77 = ((63)"U7)~ recursively. Note that, in this case, the first element &7 of the
partition (£x)77 is ¢ + 1, for any j which the corresponding partition has at least two
entries q. Moreover, in this case, each time that we add 1 to j, two ¢ entries become 0.

Hence, the partition (£3)77 is (A — 2j¢)-compatible. Now, observe that:

(i) if N — p is even, there exists j such that N —p = 2j and (£x) 7 = ((¢ + 1)P) and,
hence, by Corollary 3.3.1,

CV((&x) ™) = D(q+ 1, X — 2jq).

(ii) if N — p is odd, there exists j such that N —p =25 + 1 and (&3) 7 = ((¢ + 1)7,q),
hence by Corollary 3.3.1

CV((En) ™) = D(g+ 1, A = 2jq).

N
Thus, by (3.3.1), for j = {2]9| we have
Ty D (g 4+ 1, A = 2jq) = 70, CV((E3) ) = .. > 7, CV((EX)7) — CV(EX) = Wi ().
This completes the proof. n

We will see below that Wy () is not a Demazure module for all other values of
p which are not included in the Theorem 3.3.2. The following was proved in [15, Theorem
3.3].
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Theorem 3.3.5. Let £ € &), for some A\ € P*. Then, CV (§) admits a level-¢ Demazure
flag if and only if £ > & . In particular, D(¢,\) admits a level-¢' Demazure flag if and only
if /' > (.

Proof. Set £ = (& = -+ =& > 0) € Z). Consider £ = & and proceed by induction on s.
If s =1, then CV(§) = V(\) and our induction starts. Assume that we have proved the
result for all partitions with at most (s — 1) parts. The hypothesis applies to £+, and if
we consider ¢ > £, we see that 7,_;CV(£7) and CV(£7) both have a Demazure flag of
level ¢, and by (3.1.4), CV(€) has a Demazure flag of level £. Now, if £ < &, ie., (=&
and & = & 1, hence £ = (&§71,&,), then CV(€) = D(4, \) and there is nothing to prove.
On the other hand, if CV (&) has a Demazure flag of level £ then D(/, 1) is a quotient of
CV (&) for some p € P and since hvg = Avg for ve € (CV())y then p = . It remains to
show that £ > &. By (2.2.6), (r ®t)' 2285y, = 0 then (z ® )" 2225w = 0, where w
is the generator of D(¢, ). From the original definition of Demazure modules which we
mentioned in Remark 3.1.2, it follows Z § = A —( and thus £ > &;. O]

j=2

Together with (3.1.1), this theorem implies that W () admits a level-¢ Demazure
flag for all £ = 1. We have the following corollary of Theorems 1.6.2 and 3.3.5.

Corollary 3.3.6. The module Wy (\) admits a level-¢ Demazure flag if and only if

q, it NJ|A,

q+ 1, otherwise.

Proof. By Theorem 3.3.5, CV (&x) = Wi (\) admits a level-¢ Demazure flag if and only if
0= ¢&. But

(i) if N|A then p = 0 and &y = (()™);

(ii) otherwise, if N does not divide A then p # 0 and &y = ((¢ + 1)?, () 77).
[

In light of (3.1.2), it follows that, in order to show that Wy () is not a Demazure
module for p # 0, N — 1, A, it suffices to show that its level-(¢ + 1) Demazure flag has
length bigger than 1. To see this, we will use the short exact sequence (3.3.1). Recall that

er € gz)\ and fi € gz)\,ggl. (332)
One also easily checks that

=& and p#0O,N—-1 = ¢ =q+1 (3.3.3)
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Hence, the length of a level-(¢ + 1) Demazure flag of CV(¢) is the sum of lengths of
level-(q + 1) Demazure flags of OV (%), showing that Wy () is not a Demazure module.

Example 3.3.7. If p= N — 2 # )\ we have a length-2 flag:
0> D(g+1,A—2¢,(N—1)q) > Wn(A) > D(g+1,)\) = 0.
Consider the case A =4 and N = 3, so p = ¢ = 1 and the above sequence becomes
0—V(2,2) > W5(4) — D(2,4) — 0.
One can check, using (3.3.1), that we have exact sequences
0—V(0,2) > D(2,4) - D(3,4) - 0 and 0—-V(2,1) - D(3,4) - V(4,0) — 0.

The grading series is described by

degree | D(2,4) | V(2,2)
0 V(4)
1 V(2)
2 V(0) V(2)

This implies that soc(D(2,4)) = V(0,2) and, using Lemma 3.2.4, we see that
soc(W3(4)) = W3(4)[2] = V(2,2) @ V(0,2).

This shows that, differently from the non truncated case, truncated Weyl modules may

have non simple socle. o

Example 3.3.8. If p = N — 3 # )\, the flag has length 2 or 3. To see this, observe that

€ =(@+1)" % qq-1) and & =((¢+1)" 7 q).

In particular, CV(§ ) = D(¢+ 1,A —2q). If ¢ =1 (i.e., A = 2N — 3), we have a length-2
flag:

0—->D2,A=2,N—1)—> Wx(\) — D(2,\) — 0.
Otherwise, one easily checks using Theorem 2.2.6 that CV (£¥) has a length-2 flag:

0—D(q+1,A-2(q—1),(N-1)(¢—1)) > CV({") - D(g+1,)) — 0.

The following characterization of the truncated Weyl modules having a De-

mazure flag of length 2 is easily deduced from the computations of the above two examples.
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Proposition 3.3.9. Suppose p # 0, N — 1. The level-(¢ + 1) Demazure flag of Wx () has
length 2 if and only if either p= N —2# Aorp= N —3 and ¢ = 1.

Remark 3.3.10. By Lemma 3.2.5, since Wy () obviously has a simple head, its radical
series coincides with its grading series. Example 3.3.7 shows that truncated Weyl modules
may not have simple socle, hence, Lemma 3.2.5 does not guarantee that the socle series

coincides with the grading series, but in this case they coincide.

Given a, b, l € Z~q, let
ﬁ,b = ((E + 1)(1’ (E)b) € {@Aﬁ,b’ )‘f;,b = E(a + b) + a,
and note that

& =& N p (3.3.4)

or, equivalently,
CV( ﬁb) = Wa+b()‘f1,b)'

In particular,
CV(&vo) = CV (& ) = D(U,NL) = Wy(NO).

Given p € P*, consider the function

Yan(t:t) = [CV () : DL+ 1, )](1).

Such functions were studied in [3, 15], but a full understanding is still not achieved. For

instance, it follows from [15] that

Yoa(A =2k, t) = [W(X) : D(2,A — 2k)](t) = t*VA[ V2] (3.3.5)

t?
for all 0 < k < A\, where
k—1 i
1—tmd
o] I sen

_ tk—j
A

Our next goal is to study the generating function

Tpn—p(tts ) = [Wx(A) = D(g + 1, m)](2),

for A\ =X y_, =qN +p,ue P, N € Z.g. It follows from Propositions 3.3.3 and 3.3.4
that
Vg,pr()V t) =1 and ryz,pr(/% t) =0 if A-— H ¢ 2220'

Also,
7§,N_p(ﬂ7t) =0y, if N>Xorp=N-1,
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because in this case, by Theorem 3.3.2 Wy (A) = D(q + 1, A). Note that, for N = \, we
have ¢ = 1 and p = 0, hence (3.3.5) gives us a formula to compute 73 r_, (1, 1). Let us

look at the other cases for which ¢ = 1, i.e., assume
N <A< 2N -1
Note that, in this case, we have A= N +p, pe {l,..., N — 2} and
£ = (2(19)7 1(N—p))_
More generally, let £ € &, be a partition of the form ¢ = ((2)%,1°), with a +b = N.
Example 3.3.11. If a = 0, by Corollary 3.3.1, CV(§) = D(1,A) = W()), then by (3.3.5),
[CV(E) : DR = [, = 1.

On the other hand, if a # 0, we have £ = ((2)*"1, 1 %) e 2, and & = ((2)%,1°72) € Py _.
We have the following equality:

[CV(€) : D2, w](t) = [CV(€7) - D(2, w](t) + tNIN[CV(ET) - D2, w)](t), (3.3.6)
equivalently

[CV(EY) - D(2,w](t) = [OV(€) : D2, w)](t) — tN"IN[CV(ET)  D(2, w)](#)-

For simplicity, we will write C'V ((q + 1), ¢") instead of CV (§) € &\, where
¢ = ((g+1)"¢"). Hence, by (3.3.6) we have

[CV(2°71,1°7%) - D2, w)](t) = [CV(2°,1°) - D(2, W] (&)t~ [CV(29,172) - D(2, w)] (D).

Thus, an induction on a shows that [CV () : D(2, u)](t) can be written in terms of the
case a = 0, namely, in terms of [D(1, \), D(2, p)](t).

Example 3.3.12. If a = 1, b > 2, using (3.3.6) we have

[CV(2,1°) : D(2,w](t) = [CV(1"*%) : D(2,w)](t) — " [CV(1") - D(2, )] (1).

Example 3.3.13. If a = 2, b > 2, using (3.3.6) we have

[CV(2%,1°) : D(2,w)](t) = [CV(2,1"*%) : D(2, w)](t) — t"2[CV(2,1°) - D(2, )] (1).
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In general, if a #0,b>2and N =(a—1)+ (b+2)=a+b+1,
[CV(2%,1%) : D(2, W)](t) = [CV(2*7,1°%2) - D(2, )] (1) =tV [CV (2*71,1°) - D(2, u)](2).
Note that, ifa # 0and b=0or b =1, CV(£) = D(2, \) and the length of level-2 Demazure
flag of C'V(£) is one.

Henceforth, assume a > 0. For b = 0, 1, we have

Yap(t:t) = [D(2,20 +b) : D(2, w)](t) = d2atp-

Hence, we can assume b > 2. In this case, it follows from Theorem 2.2.6

/y;,b(:uv t) = Vclt—l,b-i-Q(/”L? t) - ta+b7c1L—1,b(Ma t)7 (337)

which, combined with (3.3.5), gives a recursive procedure to compute 7, ,(11,t). However,

one can use an approach producing a formula without minus signs, as we shall see next.

Given a partition &, let £* be the partition obtained from £ by removing its

largest part. In particular, if £ € &), then

f* S ‘@)\*51'
Note that, if a > 0, then
(€ap)* = Eacp (3.3.8)
The following equality was obtained in [15, Lemma 3.8]
Ap .
[CV(E) : D&, w)](8) = 12 [CV(EY) - D(&rs i = &) (3.3.9)

In particular,
[CV(E): D&, w](t) =0 if & > p
Using (3.3.8) and iterating (3.3.9) we get

7Ly t) = 3008 A a(0 4 1), 1). (3.3.10)
In particular, (3.3.4) implies
[Wy(N) : D(g+ 1, m](t) = 207 [D(q, ¢(N = p)) : D(g + 1, 11— p(g + 1)](2).
Example 3.3.14. Given A =4 and N = 3, we have by (3.3.10):
Ma(A =2k, t) = t*(192(A = 2(k + 1),1)),

where k € {0, 1, 2}.

k= 0 = 711,2(47t) = 17

where the last equality in the second case is from (3.3.5). o
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Example 3.3.15. Given A =5 and N = 4, we have by (3.3.10):
711,3(/\ - 2ka t) = tk(75,3(/\ - Q(k + 1)7 t))v
where k € {0, 1, 2}.

k=2 = 75(Lt) = t*(13(-1,1) = 0;
k=1 = 711,3(37t) = tl(’)/(%,S(lat)) = tg;
k =0 = 711,3(5775) = 15

where the last equality in the second case is from (3.3.5). o
Example 3.3.16. Given A = 6 and N = 4, we have by (3.3.10):
7%,2(/\ - 2k7 t) = tk(711,2(>\ - Z(k + 1)7 t))?

where k € {0, 1,2, 3}.

k=3 = 721,2(0’t) = t3(711,2(_27t)) = 0;
k=2 = 75(2.1) = t(,(0,)) = * - *(15,(=2,1)) = 0;
F=1 = ady(4,0) = 11 (314(2,8)) = 1 t230(0,1)) = £
k=0 = 72172(6:75) = t0(711,2(4> t) =1,
where the last two equalities in the cases are from (3.3.5). o

In view of (3.3.7), we have another formula for the particular case ¢ = 1 using
(3.3.10).

Proposition 3.3.17. Let \,u € P*, = XA — 2k for some k = 0 and A = N + p, with
0 <p< N —1. Then,

FRIN2] [ |22 ]
k )

t

2N — )\
k< 7
if k { 5 J

[Wn(A) = D(2, W](¢) =
0, otherwise.

Proof. By (3.3.10),

7;,N—p(u7t) = tk(’Y;—l,N—p()‘ - 2(k + 1)7t))

The idea of the proof is to iterate this formula. The process stops in two cases: when the
weight and the index of the truncation are the same, i.e., when we have 737 y(t,t) or when
the weight at position A — 2(k + 1) is less than zero and, by definition, v, y_,(x,t) = 0.

Suppose that after the first step we still do not have either of the above situation. Then

’Y;,N—p(/la t) = tk(”Y;—LN—p()\ —2(k +1),1))
= () (A= 20k +2),1)).
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If we could continue this process indefinitely, we would have

’7;,pr(:“7 t) = tjk(V;fj,pr(A - 2(k + .]))7 t))u

where 7 is the number of steps that we iterate the formula. Note that because of our

conditions for the process to stop we have two situations to consider:
. H .
)\—2(]€+j)<0<:>§<j or

A=2j=N—-jeA\—N=j
We can choose j such that one of the cases happens: either % <jand A — N = j or we
choose % >j=A—N.1If g < j then A — 2(k + j) < 0, hence 7;,N_p(ﬂ>t) = 0.
On the other hand, if% >j=A— N then A —2j = N — j, hence

’Y;,N—;;(/% t) = t()\iN)k(ﬁ)/(%,QN—)\()‘ - 2(k +A— N)a t))
= t(AfN)k(”Yé,QNfA(QN — A —2k,t))

— =Nk (tk[#1 [ L%J] )
kol

. t()\fN+[2N2_/\])k|:|_2N27)\J:|
t

k
R [ L%J] ,
kg

]

In summary, given A € P*, N € Z~g, such that \= N -q¢+p, with0<p < N

A
and g = A — 2k, with k € {0, ..., [§J}, we have the following:
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p q WN()‘) VS,N—p(Mv t)

0 ¢ | =D(gAN

0 1| ~D(,N e |
A=N>X) | q¢|=D(@+1,A) W

N-—-1 q | =D(g+1,)\) I
(... ,N-2)*|q| ——— £ (7 (= (g +1),8))
{1,...,N—-2}* | 1 S tmm[[%]]t’ itk < lQNz_ AJ’
0, otherwise.

(*) Wx(A) is not a Demazure module, but it admits a level-(q + 1) Demazure
flag.
Proposition 3.3.17 can be used to compute the length of the level-2 Demazure flag. Namely,
recall from [15, Section 3.8] that, for every partition &,

[CV(E) - DU, w]t) #0 = [€] = 2p € 22,

Then, if we consider the generating function

lgl/2
Li(z,t) = ) [CV(E) : D(L, || —2k)](¢) ",

k=0

the length of the level-¢ Demazure flags of C'V (£) is
Lg = Le(1,1).

In the case & = €3 with A and N as in Proposition 3.3.17, we get

l2N—/\

) 7| [2N7/\J [QN_AJ
-y ( : >:2 ),
k=0
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3.4 Inclusions

In this section we will discuss the inclusions of truncated Weyl modules. In
the non truncated case, inclusions of local Weyl modules are almost always related with
stability of bases of W (), see [39, 40, 41]. It is not our propose here discuss about stability
of bases for Wy (A). Moreover, there are not so many results about bases for truncated
case, see for instance [2, 32]. Our proposal is to verify if there exist chains of inclusions of
truncated Weyl modules or in which cases it is possible to guarantee such existence. In
general, we obtain negative answers in the most of the cases. In [14], Chari and Pressley
produce monomials bases for local Weyl modules when g = sl; which the construction
was extended for bases to the case g = sl,, in [12]. The main focus of [39, 40, 41] was to
investigate wheter these bases respect inclusions of local Weyl modules. The inclusions in
these papers were obtained from the identification of local Weyl modules as Demazure

modules. We do not use this approach here. Our main tools are Theorems 1.6.2 and 2.2.6.

Note that, for A = )\i’b and N = a+b,b # 0, the exact sequence from Theorem

2.2.6 can be rewritten as

0— TN*1WN*1*5p,N_1()‘ — 2) - WN(A) g WNfl(/\) — 0. (341)

This answers the question about inclusions of truncated Weyl modules when ¢ = 1.

Let A € P*. Note that, Theorem 2.2.6 together with Proposition 2.2.5 give us
the following inclusion

T WA —=2) > W(N).

Combining this with (1.3.3), it follows that we have an exact sequence
0— T)\_1W(/\ — 2) - W(/\) - WA—I()\) — 0. (342)

In other words, if N = A and N’ = N — 1, the kernel of the projection (1.3.5) is, up to
grade shift, isomorphic to W(A —2) = Wy _o(A — 2) and (3.4.2) can be rewritten as

0— 7’>\_1W,\_2()\ - 2) — W,\()\) — W)\_l()\) — 0. (343)

Our next goal is two-fold. On one hand, we want to study the kernel of (1.3.5)
with N < A, specially for N' = N —1. Note that (3.4.1) gives the answer of this special case
when N < A < 2N and it coincides with the case N = X as seen in (3.4.3). Unfortunately,
as we shall see in Example 3.4.1, the kernel is not always a truncated Weyl module and,
in fact, may not even be a CV module. On the other hand, we want to study possible
inclusions of truncated Weyl modules. For instance, if A = ¢N +p with 0 < p < N as

before and, either p < N — 1 or ¢ = 1, then Theorem 2.2.6 gives rise to the inclusion

T(N—l)qWN72(>\ —2q) — Wx(N).
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The corresponding quotient is a truncated Weyl module if and only if ¢ = 1 which is
(3.4.1) again. If ¢ > 1 and p = N — 1, Theorem 2.2.6 does not give rise to an inclusion of

truncated Weyl modules, but a second application gives rise to the inclusion

TN727—(N71)qWN72()\ — 2(q + 1)) — WN()\)

Denote by WZJ\V,' the projection (1.3.5) and, for N’ = N — 1, simplify the notation

and write my. Note
W%IZWNrHO---OWN,lmrN for all N’ < N.
Moreover, (1.3.4) implies that
ker(my) = Un™ [t])(z~ @t Hwy
where wy € Wi (A)A\{0}. From Lemma 1.4.1 and Remark 1.4.3 we have a surjective map
wy TN A WN (A —2) = ker(my).

Let
In(A) = dim(Wy(N)).

It follows from Theorems 1.6.2 and 2.2.6 that
Sn(A) = (g +2)P(¢ + D)V7.

Therefore, wy is an isomorphism if and only if

IN(A) — O (A —2) =dy_1(N). (3.4.4)
Note that
vo g+ DD NPy iy > 0,
=
(N2 (g = D)@, if p=0,1,
while

=g+ d + DD (¢+HNVP), 0<p < N -1,

with p4+ ¢ = ¢ (N — 1) + p'. One can rewrite (3.4.4) in terms of the parameters g and p.
In particular, one can easily check that (3.4.4) is always satisfied for N = 2, hence, we

have exact sequences
0— Wao(A—=2) > Wy(A) - Wi (A) = V(N - 0.

For ¢ = 1 the lack of injectivity of wy follows from (3.4.1). Hence, we may assume ¢ > 1.
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Example 3.4.1. The smallest example of non injective wy happens with N = 3 and A = 6.
One can easily check that (3.4.4) is not satisfied. Alternatively, note that W5(6) = D(2,6)
has simple socle. If w3 were injective, then it would contain a submodule isomorphic to
ToW3(4) which does not have simple socle by Example 3.3.7. In fact, in this case, we see

that there exists a short exact sequence
0— V(O, 2) - W3(4) =, ker(ﬂ'g) —0

since

We now explain why ker(m3) is not a CV module in this case. If it were, then ker(ms)
would be isomorphic to CV (&) with £ being a partition of 4. However, using Theorem
2.2.6, one easily sees that dim(CV(§)) # 11 for all such partitions.

The only inclusion of a truncated Weyl module in W3(6) comes from Theorem
2.2.6 which reads

0— nWi(2) - W3(6) > V() -0 with £=(3,2,1).

In particular, soc(W3(6)) = V(2,0) = W1(2). o
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