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RESUMO

A presente tese mostra que é possı́vel reestabelecer a teoria tradicional da informação semântica

(no que segue apenas TSI, originalmente proposta por Bar-Hillel e Carnap (1952, 1953)) a par-
tir de uma descrição adequada das condições epistemológicas de nossa competência semântica.
Uma consequência clássica de TSI é o assim chamado escândalo da dedução (no que segue
SoD), tese segundo a qual verdades lógicas têm quantidade nula de informação. SoD é prob-
lemático dado que conflita com o caráter ampliativo do conhecimento formal. Baseado nisso,
trabalhos recentes (e.g., Floridi (2004)) rejeitam TSI apesar de suas boas intuições sobre a na-
tureza da informação semântica. Por outro lado, esta tese reconsidera a estratégia de assumir
a semântica urna (RANTALA, 1979) como o pano de fundo metateórico privilegiado para o
reestabelecimento de TSI sem SoD. A presente tese tem o seguinte plano. O capı́tulo 1 introduz
o plano geral da tese. No capı́tulo 2, valendo-se fortemente de trabalhos clássicos sobre o ex-

ternalismo semântico, eu apresento algum suporte filosófico para essa estratégia ao mostrar que
a semântica urna corretamente caracteriza as condições epistemológicas de nossa competência
semântica no uso de quantificadores. O capı́tulo 3 oferece uma descrição precisa da semântica
urna a partir da apresentação de suas definições básicas e alguns de seus teoremas mais funda-
mentais. No capı́tulo 4, eu me concentro mais uma vez no tema da informação semântica ao
formalizar TSI em semântica urna e provar que nesse contexto SoD não vale. Finalmente, nos
capı́tulos 5 e 6 eu considero resultados modelo-teóricos mais avançados sobre semântica urna
e exploro uma possı́vel aplicação paraconsistente das ideias principais dessa tese, respectiva-
mente.

Palavras-chave. Informação semântica; Teoria de modelos; Externalismo semântico; Escândalo
da dedução; Semântica urna; Teorema de Fraı̈ssé-Hintikka; Categoricidade; Paraconsistência;
Lógicas da inconsistência formal.



ABSTRACT

This thesis shows that it is possible to reestablish the traditional theory of semantic information

(TSI, originally proposed by Bar-Hillel and Carnap (1952, 1953)) by providing an adequate ac-
count of the epistemological conditions of our semantic competence. A classical consequence
of TSI is the so-called scandal of deduction (hereafter SoD) according to which logical truths
have null amount of information. SoD is problematic since it does not make room for the am-
pliative character of formal knowledge. Based on this, recent work on the subject (e.g., Floridi
(2004)) rejects TSI despite its good insights on the nature of semantic information. On the other
hand, this work reconsiders the strategy of taking urn semantics (RANTALA, 1979) as a privi-
leged metatheoretic framework for the formalization of TSI without SoD. The present thesis is
planned in the following way. Chapter 1 introduces the thesis’ overall plan. In chapter 2, relying
heavily on classical works on semantic externalism, I present some philosophical support for
this strategy by showing that urn semantics correctly characterizes the epistemological condi-
tions of our semantic competence in the use of quantifiers. Chapter 3 offers a precise description
of urn semantics by characterizing its basic definitions and some of its most fundamental the-
orems. In chapter 4, turning the focus once again to semantic information, I formalize TSI in
urn semantics and show that in this context SoD does not hold. Finally, in chapter 5 and 6 I
consider more advanced model-theoretic results on urn semantics and explore a paraconsistent
possible application of the present idea, respectively.

Keywords. Semantic information; Model theory; Semantic externalism; Scandal of deduction;
Urn semantics; Fraı̈ssé-Hintikka theorem; Categoricity; Paraconsistency; Logics of formal in-
consistency.
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wenheim-Skolem theorems for i-urn semantics . . . . . . . . . . . . . 84

5.3.2 Finite categoricity in i-urn semantics . . . . . . . . . . . . . . . . . . . 92
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Internalizing semantic information: preliminary studies on Logics of formal incon-
sistency and TSI 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Model theory for QmbC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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Chapter 1

Introduction

This thesis has as its central goal to provide a defense of the traditional theory of semantic

information (hereafter TSI, originally proposed by Bar-Hillel and Carnap (1952, 1953)). The
general purpose of TSI is to provide criteria for the measurement of the amount of information
that is carried by sentences solely in function of their propositional content. Broadly speaking,
in model-theoretic terms, TSI measures the amount of information of a sentence by counting
how many models it has: the more models it has, the less informative it is. Now it is well-known
that, in its original setup, TSI implies the scandal of deduction (SoD) (Such nomenclature is due
to Hintikka (1970a)), a problematic thesis according to which logical truths carry null amount
of information. In this sense, the main job here is to show that TSI can be subtly modified in
order to block SoD.1

Preliminarily, let me restrict the scope of the present work in two ways. First of all, this
work’s scope is limited by the consideration of first order languages only. This limitation of
scope is reasonable, given that my direct motivation is to provide an account of the semantic
information carried by logical truths. Furthermore, let me note that “information” is a polysemic
expression (see Adriaans (2013) for a presentation of different possible interpretations of the
concept) in a so pervasive sense that, even focusing on the subcategory “semantic information”,
we still face difficulties in delimiting an univocal notion. Although I do not intend to face this
challenge here, according to Bar-Hillel and Carnap’s own original motivation, I would like to
make progress in a minimum characterization of semantic information associated with the mere
propositional content of sentences (in disregard of their actual truth-values). In other words, the
minimum semantic information of a sentence is all the information that is grasped by anyone2

1In an earlier version of this project I have also intended to face the problem that TSI implies the so-called Bar-
Hillel and Carnap’s paradox of semantic information (hereafter BCP) according to which contradictions carry
maximum amount of information. In fact, BCP and SoD are dual facts about TSI and the modifications of the
traditional theory that I am proposing here are sufficient for blocking BCP as well. However, the philosophical
argument that justifies this work is better-suited as a treatment of the problem of SoD. Hence, I will focus on this
problem here and will ignore the problem of BCP.

2The use of the expression ”grasp” may mislead the reader in thinking that “minimum semantic information”
denotes some kind of psychological entity. This is not the case: by this I mean a purely semantic entity grasped by
anyone with any mental configuration who understands the considered sentence.
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who simply understands the sentence.3

Naturally, it is reasonable to ask: why should we bother with re-establishing TSI without
SoD?4 Roughly speaking, the motivation for such a work is the recognition that mathematical
knowledge, in general, and logical knowledge, in particular, have an ampliative character in the
sense that when we learn of, for instance, the validity of a mathematical theorem we discover
something new about the world as it is.5 As an evidence of the ampliative character of logical
knowledge, note that the question of whether a certain first order sentence expresses a logical
truth is in general just semi-decidable (Cf. BOOLOS; BURGESS; JEFFREY, 2002, pp. 126-
132). Moreover, even though the propositional fragment of first order logic is, by its turn,
decidable, the problem of determining whether a quantifier-free sentence expresses a logical
truth usually has huge computational complexity. Now, the ampliative character of logical
knowledge is incompatible with SoD: if a logical truth does not carry any minimum semantic
information, nothing new can be learned from such a sentence, what contradicts the ampliative
character of logical knowledge.

Despite the evidence for the ampliative character of logical knowledge, we inherit from
philosophical tradition the opposite, widely shared idea that logical knowledge is non-ampliative.
So, such preliminary justification of the present thesis needs greater development. Accord-
ing to philosophical tradition, we can say (not without some controversy) that at least logical
knowledge is analytic knowledge.6 However, philosophers have often equated analyticity with
non-ampliative knowledge. For an important example, this equation is crystallized in Wittgen-
stein’s highly influent “picture theory” of meaning in Tractatus. Details apart, his picture theory
characterizes propositions similarly to pictures of state of affairs, the basic components of re-
ality (WITTGENSTEIN, 1963, §1.1). According to Wittgenstein (1963, §§2.224,2.225), state

3I do not discard that a sentence can carry even more information than this. In this sense, the theory of semantic
information that I am advancing here does not intend to capture the complete informativeness of a sentence, but
just what I am calling its minimum informativeness. Someone could sustain, as Floridi (2004), that sentences carry
also an additional amount of information associated with their actual truth-values. However, for present purposes
it is sufficient to consider only a theory of minimum semantic information.

4Note that Bar-Hillel and Carnap acknowledge that SoD is a consequence of TSI but do not evaluate it as
a problematic feature of the theory. According to the authors, logical truths in fact do carry a non-null amount
of information. However, in their opinion, the non-null informativeness of logical truths has nothing to do with
semantic content, but just with a “psychological content” that people associate with sentences (BAR-HILLEL;
CARNAP, 1952, p. 3).

5To make it very clear, by recognizing that mathematical and logical knowledge have an ampliative character I
surely do not intend to equate those kinds of knowledge with knowledge generated by either inductive or abductive
reasoning. The body of knowledge of Mathematics and logic flourishes strictly through deductive reasoning. How-
ever, this state of affairs is pretty compatible with the acknowledgement that we learn something new, something
that we did not know previously, every time that a new logico-mathematical theorem is proved.

6I say “not without some controversy” obviously because of Quine’s skeptical arguments against the notion of
analyticity. Unfortunately, I cannot consider this issue here, limiting myself to dogmatically rely on a reply by
Grice and Strawson (1956 ): if we read Quine’s arguments as claims that analyticity is an incoherent concept, it is
reasonable to reply that a respectable philosophical tradition commits itself with a widely shared and well-behaved
analytic-synthetic distinction, even though we cannot provide an adequate, explicit definition of it. Further, if we
read Quine’s arguments as claims that there are no analytic sentences, it is reasonable to reply that there is a wide
agreement in philosophical tradition that at least logical truths are analytic (For more on Grice and Strawson’s
reply to Quines’s arguments, see Juhl and Loomis (2009 , pp. 102-104)).
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of affairs are essentially bipolar, that is, it is an essential property of a state of affairs that it is
possible for it to be the case as well as it is possible for it to not be the case. Now, since analytic
sentences are necessarily true, it follows that those sentence do not picture any state of affairs.
In sum, analytic sentences are senseless (Ibid., §4.462).7 In turn, in early Wittgenstein’s opin-
ion analytic sentences show the structure of reality, something that is always presupposed in the
use of language and in its intended match with the world as it is (Ibid., §2.172). There are no
new facts about logic and Mathematics. Actually, there are no facts at all in formal sciences, a
claim that influenced Carnap as well as other members of Vienna’s circle in sustaining that log-
ical and mathematical knowledge consist just in (stipulated) linguistic rules which are always
presupposed in every meaningful use of language (Cf. JUHL; LOOMIS, 2009, pp. 20–ff.).

I agree with Wittgenstein’s premise that bipolarity is an essential property of propositions,
but not exactly in the same Wittgensteinian terms.8 Propositions are the contents of possible
claims, that is, possible entries in the public space of belief commitment and reasoning. Now,
any such entry is in principle subject to doubt, that is, it needs to be possible for us to wonder
whether such a claim is in fact true. But this is only possible for us if we can picture a situa-
tion in which that claim is not true. So, maybe we should read the bipolarity of propositions
through the lenses of a conceptual distinction between semantic and epistemic modalities asso-
ciated with our linguistic competence. Our ability to understand sentences that say something
about a certain object depends on certain epistemic possibilities of us (namely, the possibility
of doubting the truthfulness of a given claim) which perhaps do not reduce themselves to the
possibilities of the object itself. More precisely, even though logical truths just provide knowl-
edge about logical concepts, concepts that form the necessary structure of language, they have
a contingent aspect associated with our knowledge of the actual character of that structure, and
in this sense they are contents of possible claims: they do have a sense, namely, they mean the
limits of sense. In fact, one of the central claims of the present thesis is that, although logic is
presupposed in any meaningful use of language, this does not mean that we know what those
bounds are. We can be surprised, and normally we do, in discovering how narrow the logical
limits of sense are. However a logical truth is an analytical sentence, and, consequently, it is
necessarily true. So, I still maintain that logical truths do not express contingent facts. The
prima facie contingency of logic lies just in our knowledge about the subject. We can usu-
ally mistake what are the real logical conditions of our linguistic practice. Still, this is a relevant
sense in which logic can augment our knowledge of the world: more specifically, it can augment
our knowledge of the logical structure of our language and reality.

The remarks above on an epistemic reading of the bipolarity of propositions are pretty much

7There is a long debate about Wittgenstein’s claim that analytic sentences are senseless, a debate that is inserted
in a wider discussion on early Wittgenstein’s notion of “lacking of sense” (and the place of Tractarian phrases
themselves in this philosophical framework), see Moyal-Sharrock (2007) for an overview. For questions of space,
I will entirely skip this exegetical discussion here.

8In fact, early Wittgenstein had not a precise argument for the essential bipolarity of propositions, being an
unquestioned preconception of his work. About Tractatus’ dogmatism on the nature of propositions, see McGinn
(2006, pp. 21-27).



13

general: how can we give flesh and blood to these ideas? Consider that φ is a sentence express-
ing a logical truth. If we do not know this, then, given the analytic character of any logical
truth, we do not know the real truth-conditions of this sentence. Hence, this observation shows
that (i) understanding a sentence does not require full knowledge of its truth-conditions. Of
course, some partial knowledge of truth-conditions is still a necessary condition for semantic
competence. So, secondly, we can argue that (ii) understanding a sentence requires some par-

tial knowledge of its truth-conditions. Let me call the concept of semantic competence defined
by claims (i) and (ii) the epistemically weak account of semantic competence. Now, if this
account is correct, anyone who simply understands a sentence has a partial knowledge of its
truth-conditions. In this sense, the minimum semantic information of a sentence is associated
with some partial knowledge of its truth-conditions.

This work shows that, in certain special cases, we can formalize this partial knowledge of
the truth-conditions of a sentence φ as the set of models of φ in a non-classical logic known
as urn semantics (originally proposed by Rantala (1979)). Moreover, if we substitute classical
logic by urn semantics as our underlying logic, we can formalize TSI without SoD. So, I hope to
show that, based on a more adequate epistemological conception of semantic competence, TSI
provides accurate criteria for measuring the amount of minimum semantic information carried
by sentences of first order languages.

This is enough to give a general description of the thesis’ central claim. Still, several ques-
tions remain in need of development. I list some of them below.

A. What kind of partial knowledge of truth-conditions is associated with semantic competence?

B. How does urn semantics formalize this partial knowledge of truth-conditions?

C. What happens with TSI when we replace classical logic by urn semantics as its underlying
semantic framework?

D. Finally, does this project allow further generalizations (e.g., the consideration of minimum
semantic information in the context of non-classical logics)?

In the rest of this work I consider all of these questions. In what follows, I summarize the
way in which I tackle each one of them. First, question A is too general and hugely escapes the
scope of this work. In fact, the partial knowledge of truth-conditions associated with semantic
competence depends on semantic aspects of both logical and non-logical vocabulary. However,
the consideration of non-logical vocabulary is relatively uninteresting in this context of discus-
sion. Indeed, even considering just logical vocabulary, to offer an account of the epistemological
conditions for the competent use of this vocabulary is still a huge task. For methodological rea-
sons, in this work I focus particularly on the examination of the epistemological basis of our
semantic competence in the use of quantifiers. Let me note, however, that the choice of restrict-
ing my focus in such a way is based on methodological reasons: whether this proposed solution
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can be generalized is an open question to be left for further investigation.9

Chapter 2 aims to present an answer to question A (under such qualifications). First I show
that classical works on semantic externalism give support for the epistemically weak account
of semantic competence. Semantic externalism says that the semantic contents of linguistic
expressions are not constituted by facts about either our mental or physiological history, but are
constituted by facts about the external world. To cite a recurring example in this literature, from
the perspective of semantic externalism, the meaning of “water” does not depend on the way
that English speakers’ minds and bodies are constituted but just on the real nature of the natural
kind water (for a broad exposition on externalism in Philosophy of mind and language, see Lau
and Deutsch (2016)).

Classic arguments on semantic externalism such as Putnam’s Twin Earth argument (PUT-
NAM, 1973) as well as Kripke’s puzzle about belief (KRIPKE, 1979) show evidence that se-
mantic competence is accompanied by a partial knowledge of truth-conditions. Moreover, Loar
(1996), Stalnaker (1990) and Jackson (2004) offer classic accounts of the partial knowledge of
truth-conditions considered in Kripke’s and Putnam’s mental experiments. Now, I claim two
things: first, even though Putnam’s and Kripke’s mental experiments consider cases in which
a person partially ignores the correction criteria for the use of non-logical vocabulary, they
suggest analogous cases in which a person partially ignores the correction criteria for the use
of quantifiers. Secondly, I argue that some improvement of Loar’s, Stalnaker’s and Jackson’s
accounts generates an adequate analysis of those analogous cases. More specifically, as an im-
provement of these accounts, I suggest that the partial knowledge of truth-conditions associated
with our semantic competence in the use of quantifiers reduces itself to a partial knowledge of
the possible domains of the quantifiers occurring in a given sentence.

In chapter 3, I show that we can formalize this general idea on the semantics of quanti-
fiers in urn semantics. In recent literature there is a renewed interest in urn semantics (for a
nice example, see French (2015)), but a comprehensive presentation of its formal properties
and most basic theorems is still missing. So, in chapter 3 I define urn semantics and intro-
duce some of its most important properties. Rantala (1979) originally introduced urn semantics
in game-theoretic terms. In fact it is still an open question whether this semantics accepts a
Tarskian characterization. Loosely speaking, by a Tarskian semantic framework I mean any
framework of semantics that describes the concepts of satisfaction and, consequently, truth in
truth-functional terms. In chapter 3 I affirmatively solve this question by providing a Tarskian
framework for urn semantics. The Tarskian characterization of urn semantics is an important
achievement since it enables us to present easier proofs of already known meta-theorems as
well as to prove some new results.

As Rantala soon recognized, urn semantics can be defined in two different ways, that is, it

9In fact, there is in recent literature some interesting proposals on the topic which focus on classical proposi-
tional logic. For a nice entry in this direction, see D’Agostino and Floridi (2009). The eventual comparison of the
present work with such proposals is a topic of further research.
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can be defined in terms of either perfect or imperfect urn semantics.10 Based on the Tarskian
framework for urn semantics that is offered in this thesis, I precisely define these systems and
show some common properties of them. Thus, I show that urn semantics, in both of its versions,
determines decidable systems of logic. Further, I prove that these semantics accept quite liberal
characterization theorems. By a characterization theorem for a logical system I mean any result
that states necessary and sufficient conditions for some formula to be a theorem of the given
logic (This terminology is suggested by Shoenfield (1967, p. 41)). These characterization the-
orems show that both systems of urn semantics yield easily reachable satisfiability conditions;
consequently, they satisfy formulas that are unsatisfiable in classical logic. This is a crucial
result for this thesis’ central argument: since TSI measures semantic information by counting
how many models a formula has, such characterization theorems have the consequence that
some validities of classical logic do not have null information when TSI is formalized in urn
semantics.

The proof of these characterization theorems depends on some auxiliary results. In par-
ticular, it depends on the fact that urn semantics validates a weaker version of the so-called
Fraisse-Hintikka theorem (HODGES, 1997, pp. 84-85). I also prove that this auxiliary result
holds. Note that this is an important result on its own for the present investigation since the
Fraı̈ssé-Hintikka theorem plays a decisive role in the formalization of TSI an in the proof of
more advanced results about urn semantics.

Chapter 4 considers question C. This chapter is divided in two parts. In the first part of the
chapter, after a general outline of the main aspects of a formal characterization of TSI, I present
this theory with urn semantics as its semantic background and I prove that, in this context, SoD
does not hold. Further, in the second part of the chapter, I draw some comparison between the
present formalization of TSI and some related alternative solutions of the problem, in particular
I compare my proposal with suggestions by Hintikka (1970a, 1970b) and Jago (2009, 2013).

Whilst chapters 2-4 present the thesis’ central core, the remainder chapters show more ad-
vanced results on the subject. As I have said in the beginning of this introduction, TSI’s main
goal is to measure the amount of minimum semantic information carried by a given sentence.
Since TSI does this by counting the number of models of a sentence, in chapter 5 I consider the
question of how many models (up to isomorphism) a given first order theory has in this seman-
tics. The classic counterpart of this question is associated with important problems of classic
model theory: for instance, in classic model theory it is interesting to examine whether and at
what conditions a theory is categorical, that is, has only one model up to isomorphism.

Olin (1978) started to investigate this questions and obtained remarkable results on perfect
urn semantics. Now, Olin’s results rely on particular properties of this system that are not satis-
fied in imperfect urn semantics. My interest here is to consider what happens with categoricity
in imperfect urn semantics. In this sense, I present some results on categoricity in finite models

10As it will be more clear in the rest of this work, this terminology is influenced by Rantala’s game-theoretic
approach on the subject.
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for imperfect urn semantics. Further, I prove that imperfect urn semantics validates compact-

ness and Löwenheim-Skolem theorems.
In chapter 6 I change the focus from classical to non-classical logics and start to investigate

what happens with a similar reassessment of TSI when the original semantic background is not
classical logic but some system of the family of logics of formal inconsistency (hereafter LFIs)
(CARNIELLI; CONIGLIO; MARCOS, 2007). LFIs are paraconsistent logics that relativize
the classical principle of explosion only for consistent formulas. That is, in these systems a
contradiction φ ∧ ¬φ implies anything else if and only if φ is a consistent formula. In LFIs
not every formula is assumed to be consistent. In effect, the assumption of consistency of φ
is made explicit by the assumption of ◦φ, in which “◦” is a primitive logical symbol denoting
consistency. In sum, LFIs are logics whose technical framework enables us to talk about the
consistency and inconsistency of formulas within object-language itself, and in doing so they
provide a way of restricting the validity of the classical principle of explosion.

The results on TSI and LFIs that I obtain here have a still very initial character: I show here
that QmbC, a minimal first order system of LFIs, validates a weaker version of Fraı̈ssé-Hintikka
theorem. In recent literature there is an increasing interest in LFIs as a promising source of new
approaches to traditional problems in philosophical logic. Now, with the present work I hope
to achieve (in further studies) two new applications of TSI. First, since TSI associates semantic
information with consistency, given LFIs’ internalization of consistency, I hope to achieve a
further internalization of informativeness in this non-standard context. Secondly, since TSI
stratifies informativeness in terms of a degree of consistency, an internalization of TSI in the
context of LFIs may provide a way for defining a class of finer ◦-operators, characterizing the
consistency of stricter sets of formulas. In this sense, the results obtained in chapter 6 are the
initial steps in this research project.

By proposing a defense of TSI I follow here a conservative approach to the problem of
semantic information. This approach to the subject is in clearly opposition to the mainstream
strategy in recent literature. So, we can restate, now in a stronger version, the question with
which I have started this introduction: why should we bother with re-establishing TSI anyway?
This is a tough question that greatly escapes the scope of this thesis. A proper answer to it
depends, first, on a comprehensive review of the so many different strategies of solution of
the problem of semantic information (a task that I do not pursue here: for a nice work in this
direction, see Bremer (2003)), and, secondly, on a detailed comparison between these strategies
and my own. However, at least I offer a negative and a positive remark as a partial answer.

As a negative remark on the problem we should note that, on the contrary to the most part
of the recent work on the subject (for an influent example, see Floridi (2004, 2005)) the present
thesis is not committed with the claim that only true sentences carry non-null information.
Let us call this claim the veridicality principle. As Fetzer (2004, pp. 224-225) argues, the
veridicality principle seems to be untenable in face of simple counter-examples, which call
for the definition of a notion akin to minimum semantic information, the object of TSI. So,
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whether TSI is an adequate theory of information is a question to be analyzed in the context
of investigation of the notion of minimum semantic information, in disregard of theories that
embrace the veridicality principle. As a positive remark on the problem, we should note that
TSI coheres with strong insights on the nature of semantic information. More specifically, since
in TSI the amount of information of a sentence is in inverse proportion to the number of models
of it, TSI is compatible with the intuition that semantic information is directly proportional to
the preciseness of propositional content (ADRIAANS, 2013, sec. 3). Hence, the preservation
of TSI is in large part the preservation of such insights as well.

In the development of this work, I explore some general set-theoretical terminology and
notation, just as we can find it in a classical textbook such as Suppes (1960). In particular, I
denote the concatenation of ordered sequences by means of the symbol “a”. In order to simplify
exposition, I use some metatheoretical notation such as “⇔” for “if and only if”. Further, I avoid
using quotation marks, generally appealing to context for distinguishing use and mention.

Some parts of this work have already been published (in co-authorship) elsewhere. In par-
ticular, chapter 6 is based on a paper authored by me and prof. Walter A. Carnielli that has been
accepted for publication in IGPL’s special issue “Recovery Operators and Logics of Formal
Consistency & Inconsistencies”.
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Part I

Some results on the logic and philosophy
of semantic information
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Chapter 2

An account of the epistemological
conditions of the semantic competence in
the use of quantifiers

2.1 Introduction

In chapter 1, in opposition to a naı̈ve view on TSI, I argued that the minimum semantic
information of a sentence is associated with some partial knowledge of its truth-conditions.
Informally speaking, this thesis’ general motive is the following: when an ordinary speaker
understands a sentence, this individual does not grasp a full characterization of the set of situ-
ations in which it is true; rather, she grasps just a partial description of this set. Therefore, a
full development of this thesis demands a preliminary account of what kind of thing this partial
knowledge of truth-conditions is. My central concern in this chapter is to provide a proper an-
swer to this question focusing particularly on an analysis of our semantic competence in the use
of quantifiers.

As I anticipated in thesis’ introduction, my strategy here is the following. In section 2.2,
based on a revision of the literature on semantic externalism, we analyze classical mental ex-
periments such as Putnam’s Twin Earth argument (PUTNAM, 1973) and Kripke’s puzzle about
belief (KRIPKE, 1979). These mental experiments indicate that often semantic competence is
associated with a partial knowledge of truth-conditions. Now, although these mental experi-
ments consider particularly the semantics of non-logical vocabulary, based on them, I suggest
two analogous cases focused on the semantics of quantifiers. In section 2.3, I revise some
classical accounts of Putnam’s and Kripke’s mental experiments. First, I analyze the concept
of realization-conditions proposed by Loar (1996); secondly, I examine some further develop-
ments of this concept suggested by Stalnaker (1990) and Jackson (2004) from the perspective of
2-dimensional semantics. Finally, in section 2.4, I argue that, with some improvements, these
2-dimensional accounts offer an adequate account of the epistemological conditions of our use



20

of quantifiers.

2.2 Mental experiments on semantic externalism

Putnam’s and Kripke’s mental experiments on semantic externalism display some evidence
that semantic competence does not demand full knowledge of truth-conditions. Let us consider
Putnam’s Twin Earth argument first. Basically speaking, this mental experiment aims to show
that language speakers’ mental and physiological properties are irrelevant for the determination
of the semantic contents of natural kinds (linguistic expressions like “water”, “gold” etc.). We
can formulate this mental experiment as follows.

Consider an identical copy of Earth, let me call it Twin Earth, with the exception that “wa-
ter” in Twin Earth denotes a compound other than H2O, let me call it XYZ. Further, consider
an Earthling and her “twin” in Twin Earth. Putnam observes that, even though both individuals
share the same life history and are physiologically and psychologically indiscernibles, when
they understand the sentence “water quenches thirst,” they understand distinct propositional
contents: in Earth, the truth-conditions of “water quenches thirst” is the class of models that
satisfy the fact that H2O quenches thirst, whereas in Twin Earth its set of truth-conditions is the
class of models that satisfy the fact that XYZ quenches thirst. Then, Putnam asks us to consider
an extraordinary situation in which those individuals interchange worlds. Since this contextual
exchange is unrecognizable for them, they preserve in their new contexts the linguistic com-
petence in using the sentence “water quenches thirst” but they do not know that the sentence’s
relevant truth-conditions have changed. Now, this happens because already in the original con-
text they did not fully know what the sentence’s truth-conditions actually were. Hence, Putnam
concludes, the linguistic competence of an ordinary speaker is relatively independent of her
knowledge of truth-conditions.

Of course, this does not mean that semantic competence is fully independent of some knowl-
edge of truth-conditions. In this sense, Putnam (1973, p. 706) suggests the so-called hypothesis
of division of linguistic labor according to which every linguistic community is divided in, on
one hand, a group of experts holding the correction criteria for the use of language and, on
the other hand, a group of laymen which, despite the fact that they do not master that correc-
tion criteria, use language thanks to a cooperative relation with the former group. So, even
from an externalist perspective on semantics, semantic competence can be seen to rely on some
knowledge of truth-conditions possessed by (some) language speakers.

In what follows, by transparent belief ascriptions I mean ascriptions of the form “S believes
that φ”, in which φ is any sentence and S is an ordinary language speaker. Further, by opaque

belief ascriptions I mean ascriptions of the form “S believes ‘φ’”, in which ‘φ’ is the name of the
sentence φ. The fundamental difference between transparent and opaque belief ascriptions is
that the occurrence of φ in transparent ascriptions can be substituted by any equivalent sentence
preserving the ascription’s truth-value.
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By its turn, in Kripke’s puzzle we are asked to consider Pierre, a french person who does not
know that the French word “Londres” and the English word “London” name the same city. Now,
since Londres is London, the transparent ascriptions “Pierre believes that London is pretty” and
“Pierre believes that Londres is pretty” are equivalent. However, given that, by assumption,
Pierre does not know that “London” and “Londres” are both names for the same city, the opaque
ascriptions “Pierre believes ‘Londres is pretty’” and “Pierre believes ‘London is pretty’ ” are
not equivalent: in fact, Pierre behaves differently with respect to each one of these beliefs, that
is, Pierre attributes distinct inferential roles to each one of them. Moreover, we could conceive
of cases in which just one of the opaque ascriptions is true. Now, this difference between
transparent and opaque belief ascriptions shows that Pierre has just a partial knowledge of the
truth-conditions of “London is pretty” and “Londres is pretty”.

Putnam’s and Kripke’s mental experiments accept a great number of variations (see Loar
(1996) for a comprehensive list of these variations). By their turn, the following examples
present new variations focused on the semantics of quantifiers. The formulation of these ex-
amples involves the consideration of some logical results whose technical details are ommited
(for more technical details, see Shoenfield (1967) and Boolos, Burgess and Jeffrey (2002). The
following example 2.1 is a variation of Twin Earth’s scenario.

Example 2.1 Consider two worlds (for simplicity, Earth and Twin Earth) and a commuter be-

tween them (in what follows, let us call him Paul).1 Consider that (by an eccentricity) Paul’s

knowledge of arithmetic was obtained in terms of a first order formalization of Peano’s arith-
metic. In this sense, Paul’s arithmetic knowledge is limited to the first order theorems of Peano’s

arithmetic, nothing else. Further, let us consider that Paul ignores any metatheoretic results

about first order logic, that is, he has practice in working with some deductive system for first

order logic but has never studied any of its metatheoretical properties.

Assume that earthian mathematicians, differently from their twin earthian counterparts,

accept the validity of the ω-rule, that is, they accept that ∀xφ ⇔ φ(0), . . . , φ(n), . . ., for any

arithmetic sentence φ. Consequently, it is arguably the case that universal arithmetic sentences

have different truth-conditions in Earth and Twin Earth.

Now, consider the following statement of the axiom of successor: “for any x, there is a
successor of x.” Since this is a universal arithmetic sentence, it has different truth-conditions in

Earth and Twin Earth. However, given the assumed limitation of Paul’s arithmetic knowledge,

he ignores such differences of truth-conditions. On the other hand, in either context, Paul has

some partial knowledge of the truth-conditions of the axiom of successor, namely, he at least

knows that if the considered axiom is true, then, every number n whose existence is proved from

Peano’s axioms (that is, every natural number n) has successor.

Note the analogy between example 2.1 and Putnam’s mental experiment: in Putnam’s case,
an individual is unable to differentiate between two readings of “water quenches thirst”. Anal-

1In honor of Paul Benacerraf, who proposed a similar mental experiment in Benacerraf (1965).
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ogously, Paul is unable to distinguish between two readings of the axiom of successor. Now,
someone could object that this analogy is untenable given the specificities of a priori knowl-
edge. The objection would go more or less like this. Differently from a posteriori knowledge, a
priori knowledge is independent of any particular configuration of the external world. There is
no fact about the world that can change the truth-value of an arithmetic sentence. Consequently,
it makes no sense to suppose that the truth-conditions of a mathematical or logical sentence are
sensitive to contextual changes.

This objection relies on the idea that a priori knowledge is an environmentally independent

kind of knowledge (Cf. HAWTHORNE, 2007, pp. 201–ff.). Despite the apparently plausibility
of this idea, there are serious problems with it. A particularly important problem is that the
environmentally independent account disregards the social nature of a priori knowledge (Ibid.,
pp. 206–207).2 There are facts about our mathematical community that determine the truth-
conditions of arithmetic sentences. (Societal) things being otherwise, those truth-conditions
would be different as well. In this sense, insofar as the earthian mathematicians accept the
validity of the ω-rule, then their epistemic state fixes the truth-conditions of universal arithmetic
statements in a certain way.

Kripke’s puzzle about belief suggests the following analogous example.

Example 2.2 Consider Alonzo3 is a person who, as any beginner logic student, knows the

basics of recursive functions and Turing machines. On the other hand, in general, Alonzo

ignores metatheoretical questions such as to whether Church’s thesis is correct or as to whether

recursivity is equivalent to Turing-computability. In this sense assume that, in particular, Alonzo

believes “for any computable function f , there is a Turing machine F that is equivalent to f”

but he does not believe “for any computable function f , there is a recursive function g that is

equivalent to it”. Let us denote these sentences as φ1 and φ2, respectively. Of course, these

sentences have the same truth-conditions. So, Alonzo’s epistemic situation does not exclude as

logically impossible epistemically possible scenarios in which some computable function f is

Turing-computable but there is not a recursive function g equivalent to it.

Again, observe the parallel between example 2.2 and Kripke’s puzzle. In Kripke’s, Pierre
wrongly differentiates the equivalent sentences “London is pretty” and “Londres is pretty”.
Analogously, in example 2.2, Alonzo wrongly distinguishes the sentences φ1 and ψ2. In the
former case, Pierre’s epistemic situation can be redirected to different and independent partial
characterizations of their truth-conditions. Analogously, in example 2.2 Alonzo has some igno-
rance about the domains of the quantifiers occurring in φ1 and φ2. In the rest of this chapter we
give a precise account of what is happening in these examples.

2Note that this is not an exclusive feature of a priori knowledge: a posteriori knowledge depends on social facts
as well (Cf. BURGE, 1979).

3In honor of Alonzo Church: the equivalence between Turing machines and recursive functions is an important
evidence in support of Church’s thesis.
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2.3 Some classical accounts of Putnam’s and Kripke’s sce-
narios

Any examination of examples 2.1 and 2.2 needs to begin by the consideration of some
classical analyses of Putnam’s and Kripke’s mental experiments. In this section I consider
the account by Loar (1996) and, next, consider some further developments of Loar’s ideas by
Stalnaker (1990) and Jackson (2004).

The central claim in Loar (1996) is that transparent and opaque belief ascriptions have dif-
ferent identity criteria. In order to show this, first, Loar explores variations of the Twin Earth
argument (similar to example 2.1) in which, for two non-equivalent sentences φ and ψ and
for an individual S, although the opaque ascriptions “S believes ‘φ’ ” and “S believes ‘ψ’ ”
are equivalent, their corresponding transparent ascriptions are not equivalent. That is, such
examples show that (i) a difference between transparent belief ascriptions does not imply a

difference between their corresponding opaque ascriptions. Secondly, based on variations of
Kripke’s puzzle (similar to example 2.2), Loar builds examples showing that, for two equivalent
sentences φ and ψ, even though the transparent ascriptions “S believes that φ” and “S believes
that ψ” are equivalent, the corresponding opaque ascriptions are not. So, such examples show
that (ii) identity between transparent belief ascriptions does not imply identity between the cor-

responding opaque ascriptions.

According to Loar’s diagnosis, the difference between transparent and opaque belief as-
criptions can be reduced to a difference of content: whilst transparent belief ascriptions are
associated with the truth-conditions of believed sentences, opaque ascriptions have to do with
an epistemologically nuanced perspective on such truth-conditions. For instance, considering a
variation of Twin Earth argument:

Similarly, we may imagine a commuter between Earth and Twin Earth who is bi-
worldly in his language without knowing of the systematic referential differences
between English and Twin English. He would assert “water quenches thirst.” Again
it seems that two belief ascriptions are in order, but that they should be seen as
merely different extrinsic descriptions of what is, as regards psychological expla-
nation, the commuter’s one way of conceiving things (Ibid., p. 187, our italics).

However, Loar’s diagnosis faces at least two problems (Ibid., pp. 187–ff.). First, the reader
could ask what is the content of opaque belief ascriptions in contrast with the content of trans-
parent ascriptions. A transparent belief ascription “S believes that φ” says that an individual
S believes in a sentence with definite truth-conditions φ. How can we describe the content of
“S believes ‘φ’ ” and, at the same time, differentiate it from its corresponding transparent as-
cription? Secondly, we must be careful to ensure that any answer to this question preserves the
intentionality of belief attitudes. By saying that belief attitudes have an intentional character I
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mean the fact that someone’s belief in a sentence φ can be evaluated as either a correct or incor-
rect belief. The intentionality of a belief in φ seems to be associated with the truth-conditions
of φ. Thus, a characterization of opaque belief ascriptions that disregards truth-conditions runs
the risk of not contemplating the intentionality of belief attitudes.

According to Loar, the content of opaque belief ascriptions is associated with what he calls
their realization-conditions. Loar loosely describes the realization-conditions of a sentence
φ as the set of possible worlds that make φ true in case that someone’s conceptions of the
propositional content of φ “are or were not misconceptions” (Ibid., p. 188). In order to clarify
this idea, Loar appeals to a comparison with indexical sentences:

Suppose I find a diary with the entry “Hot and sunny today; phoned Maria to invite
her to the beach.” Now, the date has been torn off the page. Still I appear to under-
stand the diarist’s explanation of his/her phoning Maria, despite not knowing the
truth-conditions (in one sense) of the thought expressed by “hot and sunny today.”
Is there not, however, a sense in which I do know the truth-conditions? Suppose on
Tuesday one thinks, “it is hot and sunny today” and on Friday one thinks, “it is hot
and sunny today.” They have the same truth-conditions in the sense of conditions
of truth in abstraction from context. Call them context-indeterminate, by contrast
with the context-determinate truth-conditions [...] To put this together with the for-
mer point, we may say this: if psychological explanation involves intentionality,
the context-indeterminate realization-conditions are all the intentionality required
(Ibid., p. 188).

In the passage above, Loar brings to the fore the property of indexical sentences of having
different truth-conditions in different contexts of use. Kaplan (1989) proposed a particularly
important account of this property in terms of a 2-dimensional semantics. Exploring a sim-
ilar approach, Stalnaker (1990) suggested that the notion of realization-conditions accepts a
2-dimensional formalization.

Kaplan’s analysis of indexicals provides a prototypical example of 2-dimensional approach
to semantics. Kaplan acknowledges that the meaning of indexicals is the product of two com-
plementing factors, namely, the character and the content of the indexical. The content of an
expression is its semantic content: so, for example, the content of a name like “Kaplan” is the
person named Kaplan, the content of “water” is the substance water etc. The character of an
expression, by its turn, is a function mapping from contexts of use of a given expression to
its possible contents. For instance, the character of the expression “I” determines that used by
me “I” means the author of this work, used by Kaplan it means Kaplan etc. Derivatively, the
character of a sentence depends on the character of its component expressions, and the content
of a sentence in a certain context depends on the contents of its component expressions in the
same context. For instance, the content of “I am in Earth” in the present context is the fact of
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the author of this work being in Earth right now.4

Kaplan’s treatment of indexical expressions is an important influence for more general 2-
dimensional semantics such as Stalnaker’s 2-dimensional account of assertions. The locus clas-

sicus of his proposal is Stalnaker (1978). In this paper, Stalnaker develops the idea that the
truth-conditions of any sentence depends always on its context of assertion. Therefore, for
Stalnaker, as in Kaplan’s analysis of indexicals – but now considering all types of sentences –
contexts of assertion play a double semantic role: first, they attribute propositional contents to
sentences; secondly, they assess propositional contents as true or false.

Stalnaker’s 2-dimensional semantics faces the following problem: how is conversation even
possible between people who are in contexts of linguistic use that attribute different proposi-
tional contents to one and the same sentence? In order to introduce Stalnaker’s answer to this
problem, consider an expansion of Putnam’s Twin Earth argument such that, in addition to Earth
and Twin Earth, there is also a pair of doppelgängers of Earth and Twin Earth to be denoted
as We and Wt, respectively. In We, just as in Earth, “water” means H2O but, different from
Earth, “water quenches thirst” is a false sentence. By its turn, in Wt “water” means XYZ and,
again, “water quenches thirst” is false. Following closely Stalnaker’s own way of presenting
such ideas, the matrix below summarizes the different readings of “water quenches thirst” in
Earth, Twin Earth, We and Wt as well as the different ways that those worlds evaluate as true or
false each one of these interpretations.

Earth Twin Earth We Wt

Earth T F F F

Twin Earth F T F F

We T F F F

Wt F T F F

Matrix 2.1

In Matrix 2.1, each horizontal line denotes the interpretation of “water quenches thirst” in
one of the considered worlds. In this sense, the first horizontal line shows that “water quenches
thirst” in Earth means that H2O quenches thirst. Further, each vertical line of the matrix repre-
sents the different evaluations of the different interpretations of “ water quenches thirst”. In this
sense, the second row of the first vertical line of the matrix shows that “water quenches thirst”
in its Twin Earthian reading is false in Earth.

For Stalnaker (1978, pp. 153–ff.), one of the basic purposes of a conversational act is to
minimize uncertainty of the speakers’ set of assumptions about the differents ways reality can
be. Since an individual S in Earth and her doppelgänger SS in Twin Earth understand different
things by “water quenches thirst”, S’s assertion of this sentence in a conversation with SS is

4Kaplan (1989) formalizes such very general ideas on the semantics of indexical terms and sentences in terms
of a specific modal logic whose technical details we skip in this presentation. We adopt the same methodology in
the proceeding discussion about Stalnaker’s contribution to the debate.
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unable to minimize uncertainty by preserving just the cases in which H2O quenches thirst.
However, S’s assertion can at least force a weaker minimization by excluding cases in which
“water quenches thirst” in either its Earthian or in its Twin Earthian interpretation is false. So, if
we consider that Earth, Twin Earth, We and Wt form S’s and SS’s set of assumptions about the
different ways reality can be, S’s assertion minimizes the uncertainty of this set by excludingWe

and Wt (Ibid., pp. 155–ff.). Consequently, in a conversation between S and SS, the assertion
of “water quenches thirst” communicates a propositional content whose truth-conditions are
represented by the diagonal line of the Matrix 2.1. Due to this property of the matrix, Stalnaker
calls this propositional content as the diagonal proposition of the considered sentence (Ibid.,
p. 149). In more general terms, assume that S1, . . . ,Sn are speakers, {W1, . . . ,Wm} is their
set of pressupositions of the ways in which reality can be and, for every 1 ≤ i ≤ m, σ(Wi) is
the propositional content of φ in Wi: if any Sj asserts a sentence φ, by this he communicates
something whose truth-value in Wi is equal to the truth-value of σ(Wi) in Wi.

Stalnaker (1990, pp. 133–ff.) argues that the notion of diagonal proposition precisely
captures the concept of realization-conditions.5 However, as Stalnaker himself acknowledges,
the notion of diagonal proposition does not seem to provide a partial description of the truth-
conditions of a sentence.6 A partial knowledge of the truth-conditions of a sentence φ should
point to something common to all of its different readings in different linguistic contexts. How-
ever, we can build cases in which it is at least doubtful whether the diagonal proposition of a
sentence is describing any common aspect of its different truth-conditions in different contexts
of interpretation. For instance, we can conceive of alternative generalizations of Twin Earth ar-
gument with additional worlds in which “water quenches thirst” means radically different things
such as “what time does the next bus leaves for the zoo?” (Ibid., pp. 135–136). Although it
is doubtful whether there is anything in common between so different interpretations of “water
quenches thirst”, it is still possible to define the diagonal proposition of this sentence in this
new situation. So, it seems that Stalnaker’s notion of diagonal proposition falls short from char-
acterizing the partial knowledge of truth-conditions associated with the act of understanding a
given sentence.

However, note that among 2-dimensional semanticists there is a plurality of points of view
on what is captured by diagonal propositions. Hence, Stalnaker’s claim on the subject is far from

5Note that Loar himself expresses reserve about reconstructions of his idea in terms of Kaplanian characters.
In this sense, Loar (1996, p. 191, fn. 13) rejects a comparison of his work with Fodor’s account of opaque
belief ascriptions (FODOR, 1987). Despite the question of whether such 2-dimensional semantics are legitimate
reconstructions of Loar’s ideas, I claim in the following that they suggest a nice formal characterization of the
epistemological ground of our semantic competence.

6In fact, from a strongly externalist point of view, Stalnaker (1990, p. 132) argues that the act of understanding
a sentence is not associated with any such perspectival grasping of truth-conditions. On the other hand, Stalnaker
(1990, pp. 138–141) argues that the concept of diagonal proposition contemplates the philosophical motivations
behind Loar’s work. In this sense, Stalnaker claims that Putnam’s and Kripke’s cases advance a puzzle about belief
ascription, but do not provide enough evidence for drawing an essential difference between two kinds of belief
ascriptions. In his opinion, the diagonal proposition of “water quenches thirst” represents the different contents
that a belief in it might have, but does not represent any context-invariant partial description of its truth-conditions.
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being canonical. Against Stalnaker, philosophers like Jackson (2004) and Chalmers (2004)
sustain that the diagonal proposition of a given sentence expresses a partial knowledge of its
truth-conditions ascribable to anyone who understands the sentence. In what follows, let us
consider with more attention Jackson’s ideas on the subject.

Jackson (2004, p. 275) claims that the diagonal proposition7 of a sentence like “water
quenches thirst” formalizes a very limited characterization of its truth-conditions, something
that, roughly speaking, could be stated as watery stuff quenches thirst. By “watery stuff” we
should understand a phenomenical property that, like a Kaplanian character, indirectly fixes
the denotation of “water” in every possible context of use, something that Jackson (2004, p.
270) calls a representational property. Now, the extension of the property watery stuff varies
between contexts of use. Consequently, the truth-conditions of “water quenches thirst” vary as
well from context to context. However, in any situation of linguistic performance, by using the
expression “water” someone is referring to something that at least satisfies the property of being
watery stuff. Hence, the partial knowledge of truth-conditions associated with our semantic
competence consists in the mastering of some identificatory properties that, nevertheless, do not
exhaust the correction criteria for the use of language. Note that, in this way, Jackson blocks
anomalous variations of Twin Earth argument with additional worlds attributing completely
arbitrary interpretations to “water quenches thirst”.

The success of Jackson’s proposal depends on the precise specification of adequate represen-
tational properties. This requirement imposes a huge onus of proof on Jackson’s philosophical
theory. In fact, the existence of representational properties does not seem plausible. Schroeter
and Bigelow (2009) nicely describes this apparent implausibility:

When considering what would count as water if the actual world were like Putnam’s
Twin Earth, you may have an immediate and straightforward conviction about the
correct answer: XYZ. This immediacy seems an indication that you’re relying on an
implicit criterion for identifying the reference of ‘water’ [...] however, this impres-
sion is due entirely to a poverty of examples [...] Twin Earth is specifically designed
to vindicate all of your current beliefs about water except for one. [...] Things are
different, however, when you start to consider contexts that diverge more sharply
from your current assumptions about your actual environment. What should you
say about the reference of ‘water’ if it turns out that you’ve been interacting with a
number of different chemical substances in different contexts? Could ‘water’ turn
out to be ambiguous? Or could it refer to a disjunctive kind? What if there hadn’t
been any coherent chemical kind here at all? Could water have turned out to be an
ecological kind? Or perhaps a culinary kind? How can you adjudicate among these
many possible different interpretations? (Ibid., pp. 95–96)

7In fact, Jackson refers more specifically to the similar notion of A-intension. The comparison between such
concepts is an important subject of investigation (see Jackson (2004, p. 276, fn. 5)), but this does not need to
concern us here.
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Of course, this is not a fatal criticism: maybe we can still find good reason for believing in
the existence of representational properties and perhaps we might hope to provide reasonable
identification criteria for such kind of properties. However, Schroeter and Bigelow’s criticism
correctly shows how difficult such an enterprise promises to be.

To sum up, I started this section presenting Loar’s account of Putnam’s and Kripke’s mental
experiments. Then, we saw that Loar’s concept of realization-conditions suggests a promising
description of the partial knowledge of truth-conditions associated with our semantic compe-
tence by Putnam’s and Kripke’s scenarios. However, since “realization-conditions” is a rather
obscure concept, I considered Stalnaker’s formalization of this notion in terms of diagonal
proposition. Stalnaker’s account has an important limitation, namely, the diagonal proposi-
tion of a sentence does not seem to capture any partial description of its truth-conditions. In
order to solve this problem, we need to impose further constraints on the construction of di-
agonal propositions. Following this strategy, Jackson associates the diagonal proposition of a
sentence with the grasping of representational properties. Jackson’s solution is very interesting
but, since there are good reasons for doubting that representational properties exist, the eventual
success of his solution depends on the availability of further evidence that there are representa-
tional properties. In next section, focusing particularly on examples 2.1 and 2.2, we claim that
there is a particular kind of representational properties that plays a role in our use of quantified
formulas.

2.4 Representational properties and the use of quantifiers

Although Jackson’s philosophical theory faces serious (and, perhaps, insurmountable) prob-
lems, his idea that semantic competence depends on the grasping of representational properties
seems to be useful in the analysis of particular cases. In this section we claim that the episte-
mological conditions of our semantic competence in the use of quantifiers can be reduced to the
mastering of the use of some representational properties.

According to Jackson, when someone understands the sentence “water quenches thirst”, this
person accesses the state of affairs that there is something that is watery stuff and it quenches
thirst. Maybe this person is unable to completely identify which substance actually forms the
extension of “watery stuff” (whether it is H2O or XYZ), but she knows at least that it satisfies
the identificatory property of being watery stuff. Analogously, considering example 2.1, it is
possible to argue that when Paul understands the axiom of successor he accesses the state of
affairs that there is some domain that includes the natural numbers and in which it holds that
every number has successor. By the conditions of the mental experiment, we know that Paul is
unable to completely identify the domain of the quantifiers occurring in the axiom of successor,
but he knows at least that this domain contains the natural numbers. Therefore, in analogy with
Jackson’s claim, it is possible to argue that the epistemological conditions of our semantic com-
petence in the use of quantifiers can be redirected to the mastering of representational properties
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such as “including natural numbers”, properties that fix some domain of quantification in every
context of use.

So, my central claim here is that our semantic competence in using quantifiers is mediated by
some representational properties that we will call quantificational properties. Quantificational
properties identify, within a context of use, what are the domains of the quantifiers occurring in a
given formula. Since these properties always characterize some feature that is shared by differ-
ent domains of quantification, they generate an adequate representation of the partial knowledge
of truth-conditions associated with our semantic competence in the use of quantifiers.

Now, a quantificational property such as “including natural numbers” describes some part of
the extension of a quantificational domain: it says that, whatever the real domain of a quantifier
is, at least it includes a set of elements of a certain kind. We can formalize quantificational
properties by using some non-standard semantics whose technical framework enables us to
relativize quantifiers for specific parts of a given model. The parts of the model that play the
role of quantificational domains represent the known parts of the domain and these are exactly
the parts that characterize the relevant quantificational properties. The entire domain of the
model (that, in classical logic, is the full domain of all quantifiers) represents the real domain
of any quantifier. Any semantics that nicely formalizes such relativization of quantifiers must
fulfill at least two general requirements: first, it must draw a precise distinction between the
real domains of the quantifiers occurring in a given sentence and the parts of these domains that
characterize the relevant quantificational properties; secondly, it must be sensitive to the fact
that someone’s knowledge about the domain of different quantifiers is possibly variable.

Urn semantics (a non-standard semantics for first order languages originally proposed by
Rantala (1979)) fulfills both requirements and promises to offer a nice formalization of a theory
of quantificational properties. Roughly speaking, urn semantics preserves the classical, model-
theoretic definition of structure but slightly changes the definition of satisfaction. In particular,
it modifies the semantic behavior of quantifiers. Fixed any given structureM, instead of taking
it, as in classical logic, as the domain of all quantifiers, in urn semantics parts ofM are desig-
nated as domains of quantification. The actual domain of a given quantifier varies depending
on its position in a given sentence.

For a generic example, consider any formula Q1x1 . . . Qnxn ψ such that each symbol Qi is
either ∃ or ∀ and ψ is a quantifier-free formula. In urn semantics, the quantificational domain
of each Qi is a part Pi ofM: note that there are no general constraints on how Pi needs to be
metatheoretically defined. Qi quantifies on Pi because the quantifier occupies the i-th position
in the nesting of quantifiers Q1x1 . . . Qnxn, i.e., if Pi is different from Pj , then Qi and Qj

quantify in distinct parts of the model. This possibility of varying the domains of quantifiers
occurring in different positions of a nesting of quantifiers satisfies the second requirement stated
above. In next chapter, I introduce a precise account of this semantic system.

For more interesting examples, let me consider example 2.1 again: urn semantics formal-
izes the quantificational property of “including natural numbers” by relativizing the quantifiers
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occurring in the axiom of sucessor to the subset of natural numbers in any model of Peano’s
arithmetic. Moreover, it is possible to give an account of example 2.2 based on urn semantics
in the following way. From a descriptivist point of view, Jackson (1998) argues that Pierre in
Kripke’s puzzle associates some representational property with “London” that he is not dis-
posed to attribute to “Londres.” Analogously, it is possible to formalize Alonzo’s epistemic
situation in urn semantics by considering a relativization of the existential quantifiers occurring
in φ1 and φ2 that collects a Turing machine for every computable function f but does not collect
any recursive function for some computable function f .

At this point it is possible to see, in broad strokes, how this semantic account describes the
ampliative character of logical knowledge. In this sense, consider the following very simple
example of logical truth ¬(∀x∃y(P (x) ∧ ¬P (y))), in which P is an arbitrary unary predicate.
A person who does not recognize the validity of this formula does not see that the domain of
∃y, whatever it is, provides a counter-example to the formula ∀x∃y(P (x) ∧ ¬P (y)). Based
on urn semantics, we can say that this person does not know that, whatever the domain of ∀x
is, it includes the counter-example provided by ∃y. Note that an adequate formalization of
this situation of ignorance of the validity of ¬(∀x∃y(P (x) ∧ ¬P (y))) can be achieved by just
relativizing the quantifier ∀x for a part of a given model that excludes any counter-example that
can be provided by ∃y.

The remarks above point to the existence of quantificational properties, kinds of representa-
tional properties that determine the epistemological conditions of our semantic competence in
the use of quantifiers. Now, we should ask about a minimum description of the essential aspects
of quantificational properties. How can we minimally describe the quantificational properties
on which our semantics competence relies? In each linguistic context, which elements of a
given model necessarily compose the parts referred by quantificational properties? This ques-
tion does not accept any easy answer. In fact, we should decide between at least the following
two general kinds of answer here.

Let us consider a sentence of the form ∀xφ. On one hand, in parallel to the presently
suggested analysis of example 2.1, maybe we should say that the quantificational property that
enables us to read this sentence determines that, for any model that satisfies ∀xφ, the domain
of the model includes at least one element for each closed term of the considered language. In
this sense, by understanding ∀xφ we know at least that, for it to be true, φx[t] should be true as
well, for any closed term t of the language.

On the other hand, perhaps this is too permissible. In this case, we could try a more parsi-
monious approach according to which quantificational properties refer just to generic elements.
Fine (1985) proposed a well-known theory of generic objects in order to deal with the seman-
tics of quantifiers: according to Fine, when we read ∀xφwe understand that the relevant generic
object satisfies φ. In very general terms, a generic object is an object whose properties are all
and just the ones that are satisfied by every element of any given structure (let us call such prop-
erties as generic properties). Of course, the availability of a concrete list of generic properties
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depends on the considered range of structures Ibid., p. 16: for present concerns, I would like to
say that at least all logical properties are generic. Fine’s theory of generic objects faces several
ontological as well as logical difficulties and proposes some ingenious solutions to each one of
these challenges. Consequently, it promises to be a strong philosophical ground for a descrip-
tion of the essential aspects of quantificational properties. Now, an adequate examination of
these issues is a theme for further studies.
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Chapter 3

New semantic foundations for TSI

3.1 Introduction

Before starting this chapter, let me give a brief summary of what I have done so far. My
central goal in this thesis is to show that if we replace TSI’s semantic framework by some
deviant, better-suited semantic system, we can adequately formalize TSI without SoD. I have
claimed that this more adequate semantic framework can be obtained by exploring the basic idea
that our semantic competence is accompanied by some partial knowledge of the truth-conditions
of sentences.

In the previous chapter, based on an analysis of classical works on semantic externalism, I
suggested a general account of the epistemological conditions of our semantic competence in
the use of quantifiers. Briefly speaking, I argued that in general our semantic competence in the
use of these expressions is associated with a partial knowledge of the extensions of quantifica-
tional domains.

Further, I anticipated that the non-standard system of urn semantics (RANTALA, 1979)
adequately formalizes this general account. Urn semantics diverges from classical logic partic-
ularly in its definition of the semantics of quantifiers, i.e., urn semantics relativizes quantifiers
for parts of a given model in function of their positions in a considered formula. In the rest
of this chapter I provide a detailed characterization of this non-classical semantics, by showing
its main concepts as well as by proving some of its most fundamental meta-theorems. In this
sense, this exposition introduces the formal conditions for a subsequent reestablishment of TSI
without SoD.

This chapter is planned in the following way. I start section 3.2 by presenting Rantala’s
original way of defining urn semantics. As we will see, Rantala introduced this semantic system
following a game-theoretic approach of the subject and, for a lot of time, it was an open question
whether it was possible to design a Tarskian framework for urn semantics. In subsection 3.2.1 I
solve this question by presenting a Tarskian framework equivalent to Rantala’s game-theoretic
system. Further, in subsection 3.2.2 I note that the literature on the subject distinguishes at least
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two different systems of urn semantics that I call, by suggestion of Rantala’s game-theoretic
approach, perfect and imperfect urn semantics, respectively. Consequently, in this subsection I
also formally differentiate these systems of urn semantics.

In his seminal work, Rantala proved the decidability of the system (Ibid., pp. 468–469). Fur-
ther, Rantala showed that some classically unsatisfiable formulas are satisfiable in urn semantics
(Ibid., pp. 470–472). In section 3.3 my main goal is to present Rantala’s decidability theorem
and to generalize his theorem on satisfiability in urn semantics as a characterization theorem for
the system. These theorems are fundamental results on urn semantics: in particular, the latter
one consists in a very important property on which this thesis relies. Now, the proof of this the-
orem appeals to a version of the Fraı̈ssé-Hintikka theorem, a well-known model-theoretic result
on the existence of Hintikka-normal forms. This result is also obtained in this section. Note
that, in the context of this work, the Fraı̈ssé-Hintikka theorem plays a central role both in the
obtainment of additional properties of urn semantics as well as in the precise characterization
of TSI. So, the obtainment of this theorem is crucial for this thesis’ main argument. Finally, I
conclude the chapter with some general remarks on its most important results.

First, let me introduce some terminology. Urn semantics preserves the standard concept of
structure: in fact urn semantics is defined only by changing the classical notion of satisfaction,
particularly concerning the satisfiability of quantified formulas. Let me denote structures by the
letters M,N ,M′,N ′ etc. If M is a structure for a first order language L, sometimes I say
thatM is an L-structure. In general I consider here full first order languages, that is, languages
equipped with predicates (including identity), functions and constants. I always assume that the
signature of L is {∧,∨,¬,∀,∃}.

Terms and formulas of L are defined in the usual way. By closed terms and sentences
I mean terms and formulas without free-variables, respectively. In the following exposition,
sometimes I need to consider the complexity of terms occurring in a given formula. The function
complexity of terms cp respects the following clauses:

• If t is either a constant or a variable, then cp(t) = 0;

• If t is f(s1, . . . , sn), in which f is an n-ary function, then cp(t) = max{cp(s1), . . . ,
cp(sn)}+ 1.

Particularly for the presentation of the Fraı̈ssé-Hintikka theorem for urn semantics, I need
to consider unnested formulas (terminology by Hodges (1997, p. 51)), that is, formulas whose
terms have complexity at most 1.

The interpretation of any symbol α ∈ L in a given structureM is denoted by αM. For any
first order language L+ ⊇ L and for any L-structureM, let me say that an L+-structureM+ is
an L+-expansion ofM, in symbolsM+ ⊇ M, if both structures share the same domain and,
for any symbol α ∈ L, αM = αM

+ . In this case, I also say thatM is an L-restriction ofM+.
I make use of some further notation for denoting complex formulas. For a finite set of

formulas Ψ = {ψ1, . . . , ψn}, let
∧

Ψ denote
∧

1≤i≤n
ψi and

∨
Ψ denote

∨
1≤i≤n

ψi. Moreover, let
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¬Ψ = {¬ψ : ψ ∈ Ψ} and ∃xΨ = {∃xψ : ψ ∈ Ψ}. I say that a term t occurs free in a formula
φ if all variables occurring in t are free in φ. If t does not occur free in φ, I say that t is bounded

in φ. By φt1[t2] I denote the formula generated by substitution of all free-occurrences of a term
t1 in φ by a term t2. I say that a term t1 is substitution-free for a term t2 in φ if and only if there
is no subformula ψ of φ in which t2 is bounded and t1 occurs free.

In classical logic, the satisfaction of a formula of the form ∃xφ in a structure M can be
characterized, for convenience, as the satisfaction of the formula φx[a], in which a is a constant
denoting the element a inM. The same can be done for universal quantifiers. From this point
of view, the satisfaction of formulas of a given language L is first defined for sentences of
an expansion of L with new constants, one for each element of M, and, subsequently, this
definition of satisfaction is easily generalized for open formulas of L. Hereafter, for the sake of
simplicity, I follow the same methodological orientation.

When examining Fraı̈ssé-Hintikka theorem I also need to consider the quantifier rank of a
formula φ, in symbols qr(φ). The function qr is defined in the following way:

• For every atomic formula φ, qr(φ) = 0;

• If φ is ¬ψ, then qr(φ) = qr(ψ);

• If φ is either ψ ∧ γ or ψ ∨ γ, then qr(φ) = max {qr(ψ), qr(γ)};

• If φ is either ∀xψ or ∃xψ, then qr(φ) = qr(ψ) + 1.

3.2 Urn semantics

3.2.1 Rantala’s game semantics and its Tarskian reconstruction

Informally speaking, the general idea behind the definition of urn semantics is to design
a way of relativizing quantifiers for parts of a given model in function of their positions in a
formula. In this sense, this semantics provides a procedure for building cases in which, given
a nesting of quantifiers occurring in a formula, different quantifiers could elect witnesses in
different parts of a model. Now, in order to design such a procedure, first of all we need to
define the notion of eligibility that plays a role in this informal description.

Definition 3.1 Let M be a non-empty set. B = {Bm : m < ω} is an eligibility set of M if and

only if it is an infinitely countable collection of non-empty parts of M.

For every n < ω, a set of eligible n-tuples Mn ⊆ Mn+1 is such that:

• M0 = B0;

• Mn+1 = {〈a0, . . . , an, b〉 : 〈a0, . . . , an〉 ∈Mn and b ∈ Bn+1}.

Let M =
⋃
n<ω

Mn. M is the set of eligible sequences of M over B.
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In the following, when B is an eligibility set of M and M is the domain of a modelM, I say
that B is an eligibility set ofM as well. I adopt the same terminology with respect to sets of
eligible sequences. Further, I call a pair 〈M,B〉 a urn structure, and I denote it asMB. When
M is an L-structure, for some first order language L, I also say thatMB is an L-urn structure.

As I have mentioned before, Rantala defines urn semantics from a game-theoretic perspec-
tive. This means that, in Rantala’s work, urn semantics is presented in terms of a game se-

mantics. Roughly speaking, a game semantics for a given logic is a finitary two-player game
such that the winning conditions of one of the players in the game characterizes the notion of
satisfaction defining the logic.1 The next definition introduces Rantala’s game-theoretic urn
semantics.

In what follows, for players A and E, for some fixed formula φ and some urn structureMB,
by a round in a urn game semantics for φ andMB I mean a quartet 〈α1, α2, α3, α4〉 such that
α1 and α2 are either A or E, α3 is some subformula of φ and α4 is either ∅ or some eligible
sequence ofM over B. Such a notation means that, in the considered round, α1 demanded α2

to hold the subformula α3 under condition α4. Moreover, by a match of a urn game semantics
for φ andMB I mean some finite, well-ordered sequence of rounds.

For abbreviation I denote the i-th round of a match p in a urn game semantics as p(i). For
any 0 < j ≤ 4, by p(i)j I mean the j-th coordinate of p(i). Further, by p(i)1 and p(i)2 I refer to
the player that is not p(i)1 or p(i)2, respectively: for instance, if p(i)1 is A, then p(i)1 is E. The
notation works in the same way in the case of p(i)2.

Definition 3.2 Let L be a first order language, A and E be players, and let φ be a formula of

L. Further, letM be some classic L-structure and B be an eligibility set ofM. A urn game
semantics for φ and MB, in symbols G(φ,MB), is a set of matches recursively defined as

follows:

1. For any match p ∈ G(φ,MB), p(0) = 〈E,E, φ, ∅〉, that is, at the start of any match of

G(φ,MB), E holds φ;

Now, assume that, for some i < ω, the rounds p(0), . . . , p(i) have been already defined:

1’ Assume that the subformula φ′ held in p(i) is atomic. If this formula is classically satisfied

inM, then player p(i)2 wins the game. Otherwise, p(i)2 loses it.

2’ If the formula p(i)3 isψ∧γ, p(i+1) is either 〈p(i)2, p(i)2, ψ, p(i)4〉 or 〈p(i)2, p(i)2, γ, p(i)4〉;

3’ If the formula p(i)3 isψ∨γ, p(i+1) is either 〈p(i)2, p(i)2, ψ, p(i)4〉 or 〈p(i)2, p(i)2, γ, p(i)4〉;

4’ If the formula p(i)3 is ¬ψ, p(i+1) is 〈p(i)2, p(i)2, ψ, p(i)4〉;

5’ If the formula p(i)3 is ∀xψ, p(i+1) is 〈p(i)2, p(i)2, ψx[a], p(i)4 a (a)〉, for some a ∈ Bj ,

in which j is the length of p(i)4;
1For a primer on game semantics for classical logic, see Väänänen (2011, pp. 93–97).
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6’ If the formula p(i)3 is ∃xψ, p(i+1) is 〈p(i)2, p(i)2, ψx[a], p(i)4 a (a)〉, for some a ∈ Bj ,

in which j is the length of p(i)4.

Based on Definition 3.2, it is possible to define the satisfiability of a formula φ in a urn struc-
tureMB in terms of the existence of a winning strategy for player E in the game G(φ,MB).
The current literature presents some attempt of offering a Tarskian reconstruction of this se-
mantics (an important proposal in this direction is Cresswell (1982)). Since it is still an open
question whether there is in fact such a Tarskian framework for urn semantics,2 I introduce in
the following such a system and prove its equivalence with Rantala’s game-theoretic semantics.

The main challenge in developing a Tarskian system of urn semantics is the non-compositionality
that quantifiers have in this logic: informally speaking, when searching for a “witness” for a
formula of the form ∃xψ in a urn structureMB, generally we need to consider a sequence of
“witnesses” that were previously picked up. Although such “witnesses” do not need to occur
in ∃xψ, still they determine the interpretation of this formula. It is possible to emulate the
non-compositionality of quantifiers exploring the following strategy. First, we define a relative

notion of satisfaction that emulates the eligibility conditions for the interpretation of quantifiers.
Secondly, we define an absolute notion of satisfaction characterizing the truth-conditions of a
formula in terms of the relative satisfaction of its subformulas.

Definition 3.3 Let L be a first order language andMB be an L-urn structure. Let S = {a :

a ∈ M} be a set of new constants, L+ = L ∪ S and ForL+ be the set of sentences of L+. A

function of relative urn satisfaction e : ForL+ × ω → 2 is such that, for every n < ω:

• For every atomic formula φ, then e(φ, n) = 1⇔M classically satisfies φ;

• If φ is ¬ψ, then e(φ, n) = 1⇔ e(ψ, n) = 0;

• If φ is ψ ∧ γ, then e(φ, n) = 1⇔ e(ψ, n) = e(γ, n) = 1;

• If φ is ψ ∨ γ, then e(φ, n) = 1⇔ either e(ψ, n) = 1 or e(γ, n) = 1;

• If φ is ∀xψ, then e(φ, n) = 1⇔ e(ψx[a], n+ 1) = 1, for every a ∈ Bn;

• If φ is ∃xψ, then e(φ, n) = 1⇔ e(ψx[a], n+ 1) = 1, for some a ∈ Bn.

Moreover, a function of absolute urn satisfaction u : ForL+ → 2 is such that u(φ) =

e(φ, 0), for every φ ∈ ForL+ .

Theorem 3.4 Let L, MB and L+ be as above. Let φ be a formula of L+ and let u be the

function of absolute urn satisfaction defined byMB. The following are equivalent:
2Although Cresswell (1982) is an important attempt of solving this problem, the results obtained in his paper

are not fully successful. More recently, French (2015) correctly defined a Tarskian framework for urn semantics
but, in this work, he did not prove the equivalence of this system with Rantala’s proposal. Moreover, French’s
work ignores that there are two different systems of urn semantics (what I called in the beginning of this chapter
perfect and imperfect urn semantics).
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1. u(φ) = 1;

2. Player E has a winning strategy in urn game semantics G(φ,MB).

Proof. (1 ⇒ 2) Assuming u(φ) = 1, we recursively define a winning strategy σ for E in
G(φ,MB) as follows. Assume that, for some i < ω, the strategy σ has already been defined
for rounds p(0), . . . , p(i). Suppose that p(i)4 has length j. The following directives define σ in
round p(i+ 1):

• Assume A holds a formula of the form ψ ∧ γ in p(i). If e(ψ, j) = 0, then E demands A
to hold ψ in p(i+ 1); otherwise, E demands A to hold γ in p(i+ 1);

• Assume E holds a formula of the form ψ ∨ γ in p(i). If e(ψ, j) = 1, then E demands
herself to hold ψ in p(i+ 1); otherwise, E demands herself to hold γ in p(i+ 1);

• Assume A holds a formula of the form ∀xψ in p(i). If there is some a ∈ Bj such that
e(ψx[a], j + 1) = 0, then E demands A to hold ψx[a]; otherwise, E demands A to hold
ψx[b], for some arbitrary b in Bj;

• Assume E holds a formula of the form ∃xψ in p(i). If there is some a ∈ Bj such that
e(ψx[a], j + 1) = 1, then E demands herself to hold ψx[a]; otherwise, E demands herself
to hold ψx[b], for some b in Bj;

By induction on the indexes of the rounds of any match p in which E follows the strategy
σ, the reader may verify that, for any subformula φ′ of φ held at some round p(i), E holds φ′ in
p(i) if and only if e(φ′, j) = 1, in which j is the length of p(i)4. So, σ is a winning strategy for
E.

(2⇒ 1) Assuming u(φ) = 0, we recursively define a winning strategy σ′ for A in G(φ,MB)

considering a set of directives dual to the ones defining σ. Therefore, by a similar argument it
is possible to prove that, in any match in which A follows σ′, for any subformula φ′ of φ that is
held at some round p(i), E holds φ′ in p(i) if and only if e(φ′, j) = 0, in which j is the length of
p(i)4. So, σ′ is a winning strategy for A.

3.2.2 Perfect and imperfect urn semantics

Note that in order to define urn semantics I did not make extensive use of the concept of
eligible sequence (Definition 3.1). Instead, I appealed directly to the notion of eligibility set.
As Rantala (1979, pp. 464–465) observes, this is connected with a game-theoretic property
of urn semantics, namely, urn game semantics is a game of imperfect information in the sense
that, in general, when considering the relative urn satisfaction of a formula ∃xφ in a given urn
structure, we do not need to know the “witnesses” that were previously picked up, we only need
to know how many “witnesses” were picked up so far.
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It is possible to define a special version of urn semantics that characterizes a game of perfect
information. Let me call this system as perfect urn semantics (or, for simplicity, just p-urn se-
mantics). In contrast, I call the previously defined standard system of urn semantics as imperfect
urn semantics (or, for simplicity, just i-urn semantics).

Essentially, p-urn semantics impose some additional constraints on the definition of a set of
eligible sequences: whilst in i-urn semantics, for a fixed urn structureMB, an eligible sequence
〈a0, . . . , ai〉 of M over B can be extended with any element of Bi+1, in p-urn semantics we
can refine this process. In this sense, in p-urn semantics it is possible to build cases in which
two eligible sequences of M over B are extendable by different sets of elements of M. In
what follows, let me make more precise how this refinement of the concept of eligibility can be
formally achieved.

Definition 3.5 Let M be a non-empty set. For every n < ω, a set of perfectly eligible (for

simplicity, just p-eligible) n-tuples M̂n ⊆ Mn+1 is such that:

• M̂0 is some part C0 of M;

Now, assume that | M̂n |= κ and let Cn+1 be a collection of non-empty subsets Cn+1,λ of M,

for each ordinal λ < κ:

• M̂n+1,λ = {α a (b) : α is the λ-th sequence in M̂n and b ∈ Cn+1,λ};

• M̂n+1 =
⋃
λ<κ

M̂n+1,λ.

Let C = {Cn : n < ω}. M̂ =
⋃
n<ω

M̂n is the set of p-eligible sequences of M over C.

Generalizing the terminology introduced above, let me say that the set C above is a p-

eligibility set of M and, when M is the domain ofM, I say that C is a p-eligibility set ofM
as well. Also, I call M̂ the set of p-eligible sequences ofM over C when M is the domain of
this structure. Further, I say that the pair 〈M,C〉 is a p-urn structure and I denote it as M̂C.
WhenM is an L-structure, M̂C is an L-p-urn structure. In order to avoid confusion, I also use
the corresponding terminology i-eligibility set, i-eligible sequence and (L-)i-urn structure when
dealing with i-urn semantics.

The next definition game-theoretically characterizes p-urn semantics.

Definition 3.6 Let L be a first order language, A and E be players, and let φ be a formula of

L. Let M̂C be an L-p-urn structure and let M̂ be the set of p-eligible sequences ofM over C.

A p-urn game semantics for φ and M̂C, in symbols F(φ,M̂C) is a set of matches recursively

defined as follows:

1. For any match p ∈ F(φ,M̂C), p(0) = 〈E,E, φ, ∅〉;

Now, assume that for some i < ω, the rounds p(0), . . . , p(i) have been already defined:
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1” F(φ,M̂C) satisfies clauses 1’–4’ of definition 3.2.

2” If the formula p(i)3 is ∀xψ, then p(i+1) is the quartet

〈p(i)2, p(i)2, ψx[a], p(i)4 a (a)〉, for a such that: if p(i)4 = ∅, then a ∈ C0; otherwise,

there are ordinals j and λ such that p(i)4 is the λ-th sequence in M̂j−1 and a ∈ Cj,λ;

3” If the formula p(i)3 is ∃xψ, then p(i+1) is the quartet

〈p(i)2, p(i)2, ψx[a], p(i)4 a (a)〉, for a such that: if p(i)4 = ∅, then a ∈ C0; otherwise,

there are ordinals j and λ such that p(i)4 is the λ-th element in M̂j−1 and a ∈ Cj,λ.

Again, relying on some variation of what was done above, it is possible to develop a Tarskian
counterpart of p-urn game semantics.

Definition 3.7 Let L be a first order language and M̂C be an L-p-urn structure. Let S = {a :

a ∈ M} be a set of new constants, L+ = L ∪ S and ForL+ be the set of sentences of L+. Let

M̂ be the set of p-eligible sequences ofM over C and κ = max {| M̂i |: i < ω}. A function

of relative p-urn satisfaction ê : ForL+ × ω × κ → 2 is such that, for every n < ω and every

ordinal λ < κ:

• For every atomic formula φ, then ê(φ, n, λ) = 1⇔M classically satisfies φ;

• If φ is ¬ψ, then ê(φ, n, λ) = 1⇔ ê(ψ, n, λ) = 0;

• If φ is ψ ∧ γ, then ê(φ, n, λ) = 1⇔ ê(ψ, n, λ) = ê(γ, n, λ) = 1;

• If φ is ψ ∨ γ, then ê(φ, n, λ) = 1⇔ either ê(ψ, n, λ) = 1 or ê(γ, n, λ) = 1;

• Assuming φ is ∀xψ, consider the following cases:

– If n = 0, then ê(φ, n, λ) = 1 ⇔ ê(ψx[a], n + 1, ρ) = 1, for every a ∈ C0, in which

ρ is the index of a in C0;

– If n 6= 0 and λ <| M̂n−1 |, then ê(φ, n, λ) = 1⇔
ê(ψx[a], n+ 1, ρ) = 1, for every a ∈ Cn,λ, in which ρ is the index of β a (a) in M̂n,

for β the λ-th element of M̂n−1;

– If n 6= 0 and λ ≥| M̂n−1 |, then ê(φ, n, λ) = 1⇔
ê(ψx[a], n + 1, ρ) = 1, for every a ∈ Cn,ξ, in which ξ is the index of the maximum

element β of M̂n−1 and ρ is the index of β a (a) in M̂n;

• Assuming φ is ∃xψ, consider the following cases:

– If n = 0, then ê(φ, n, λ) = 1 ⇔ ê(ψx[a], n + 1, ρ) = 1, for some a ∈ C0, in which

ρ is the index of a in C0;



40

– If n 6= 0 and λ <| M̂n−1 |, then ê(φ, n, λ) = 1⇔
ê(ψx[a], n+ 1, ρ) = 1, for some a ∈ Cn,λ, in which ρ is the index of β a (a) in M̂n,

for β the λ-th element of M̂n−1;

– If n 6= 0 and λ ≥| M̂n−1 |, then ê(φ, n, λ) = 1⇔
ê(ψx[a], n + 1, ρ) = 1, for some a ∈ Cn,ξ, in which ξ is the index of the maximum

element β of M̂n−1 and ρ is the index of β a (a) in M̂n.

Moreover, a function of absolute p-urn satisfaction û : ForL+ → 2 is such that û(φ) =

ê(φ, 0, 0), for every φ ∈ ForL+ .

Theorem 3.8 Let L, M̂C, M̂ and L+ be as above. Let φ be a formula of L+ and let û be the

function of absolute p-urn satisfaction defined by M̂C. The following are equivalent:

1. û(φ) = 1;

2. Player E has a winning strategy in p-urn game semantics F(φ,M̂C).

Proof. (1 ⇒ 2) As in the proof of Theorem 3.4, assuming û(φ) = 1, it is possible to define a
winning strategy σ̂ for E in F(φ,MC).

Suppose that for some i < ω, σ̂ has been already defined for rounds p(0), . . . , p(i). Assume
that p(i)4 is the λ-th element of M̂j−1 (if j = 0, p(i)4 is ∅). The following directives define σ̂
for round p(i+ 1):

• The directives of σ̂ for the case of conjunction and disjunction are the same as the ones
defining strategy σ in the proof of Theorem 3.4.

• If A holds a formula of the form ∀xψ in p(i), then consider two possible cases:

– Assuming j = 0, if there is some a ∈ C0 such that
ê(ψx[a], j + 1, ρ) = 0, in which ρ is the index of a in C0, then E demands A to hold
ψx[a]; otherwise, E demands A to hold ψx[b], for some arbitrary b in C0;

– Assuming j 6= 0, if there is some a ∈ Cj,λ such that
ê(ψx[a], j+1, ρ) = 0, in which ρ is the index of p(i)4 a (a) in M̂j , then E demands
A to hold ψx[a]; otherwise, E demands A to hold ψx[b], for some arbitrary b in Cj,λ;

• If E holds a formula of the form ∃xψ in p(i), then consider two cases:

– Assuming j = 0, if there is some a ∈ C0 such that
ê(ψx[a], j + 1, ρ) = 1, in which ρ is the index of a in C0, then E demands herself to
hold ψx[a]; otherwise, E demands herself to hold ψx[b], for some arbitrary b in C0;

– Assuming j 6= 0, if there is some a ∈ Cj,λ such that
ê(ψx[a], j+1, ρ) = 1, in which ρ is the index of p(i)4 a (a) in M̂j , then E demands
herself to hold ψx[a]; otherwise, E demands herself to hold ψx[b], for some arbitrary
b in Cj,λ.
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By induction on the rounds of any match p ∈ F(φ,M̂C) in which E followed the strategy σ̂
the reader might verify that, for any subformula φ′ of φ held at some round p(i), E holds φ′ in
p(i) if and only if ê(φ′, j, λ) = 1, in which p(i)4 is the λ-th element of M̂j−1. Therefore, σ̂ is a
winning strategy for E in F(φ,M̂C).

(2⇒ 1) In the other direction, assuming û(φ) = 0, it is possible to define a winning strategy
σ̂′ for A in F(φ,M̂C) by considering a dual of σ̂, as in the proof of Theorem 3.4. Again, based
on an argument by induction it is easy to verify that, for any match p of F(φ,M̂C) in which A
has followed σ̂′, for any subformula φ′ of φ that is held at some round p(i), E holds φ′ in p(i) if
and only if ê(φ′, j, λ) = 0, in which p(i)4 is the λ-th element of M̂j−1.

Notation 3.9 In the rest of this work, for a formula φ and an i-urn structureMB with a function

of relative urn satisfaction e, for any n < ω, I denote e(φ, n) = 1 by the symbolsMB |=n φ.

Sometimes, when MB |=0 φ, I simplify the notation by writing MB |= φ. Moreover, when

considering a p-urn structure M̂C with a function of relative p-urn satisfaction ê, I denote

ê(φ, n, λ) = 1 by the symbols M̂C |=n,λ φ and when n = 0, I also simplify the notation by

writing M̂C |= φ.

Although perfect and imperfect urn semantics define quite different game-theoretic systems
of semantics, it is important to note that the class of i-urn structures is properly included in
the class of p-urn structures. In fact, since any classical structure M can be seen as an i-urn
structure MB whose set of i-eligible sequences is just the set of sequences of M itself, the
following chain of inclusions between classical, i- and p-urn structures holds:

Classical structures ⊂ i-urn structures ⊂ p-urn structures.

However, this does not mean that differences between these semantics may be overlooked: in
subsequent chapters, looking for more advanced model-theoretic results on urn semantics, I
show that i- and p-urn semantics generate in fact quite different formalizations of TSI.

3.3 Some fundamental results on urn semantics

Since this thesis’ main motivation is to apply logic in the development of a theory of se-
mantic information, we should ask ourselves which one of the above introduced systems of urn
semantics better captures the informativeness of sentences and, in particular, the informative-
ness of logical truths. I still do not have enough data to analyze this question here, but at this
point I can at least advance some initial thoughts on the subject.

First of all, in contrast with classical logic, imperfect as well as perfect urn semantics de-
scribe decidable logical systems, that is, in these non-standard semantics, for any formula φ,
there is an effective procedure for determining whether φ is or is not a validity of the system.
Hence, independently of which one of these systems better captures semantic information, we
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know from the start that urn semantics characterizes an effectively computable notion of infor-
mation. In the framework of urn semantics it is possible to effectively compute the minimum
semantic information carried by a given sentence, something that cannot be done in classical
TSI.

Secondly, there are characterization theorems showing that satisfiability in perfect or im-
perfect urn semantics is much more permissible than in classical logic. This theorem is very
important for this work: in particular, it means that a lot of logical truths of classical logic have
non-maximum classes of models in urn semantics and, by TSI, carry non-null amount of infor-
mation. Hence, despite whether i-urn semantics is in fact a better system than p-urn semantics
or vice versa, we know for sure that both systems provide a formalization of TSI without SoD.

The decidability of urn semantics and a partial result about characterization theorems for
these systems were originally obtained by Rantala (1979). Note that Rantala’s proofs of these
results are heavily grounded in his game-theoretic approach of the subject. In this section, based
on the previously introduced Tarskian framework for urn semantics, I systematize Rantala’s
proof of the decidability of urn semantics. Moreover, I generalize Rantala’s theorem on sat-
isfiability in urn semantics in terms of full-blooded characterization theorems for p- and i-urn
semantics. Especially for the proof of the characterization theorems, I need to rely on a version
of the Fraı̈ssé-Hintikka theorem for urn semantics, a result that I also present in this section.

3.3.1 Decidability of the system

In the rest of this subsection, I focus exclusively on p-urn semantics since the present results
are easily generalizable for i-urn semantics. First, I stipulate some notation and terminology.
Let me say that a formula φ is p-equivalent to some formula ψ if and only if, for any p-urn
structure M̂C, M̂C |=n,λ φ ⇔ M̂C |=n,λ ψ, for every n < ω and for every ordinal λ. I
denote p-equivalence by the symbol ≡p. Further, I say that φ is p-equisatisfiable with ψ if and
only if the existence of some p-urn structure M̂C such that M̂C |=n,λ φ mutually implies the
existence of some p-urn structure N̂C′ such that N̂C′ |=n,ρ ψ. I denote p-equisatisfiability by the
symbol ≈p. The concepts of i-equivalence and i-equisatisfiability are analogously defined and
are symbolized by ≡i and ≈i, respectively.

The next lemmas are necessary for proving the decidability of p-urn semantics.

Lemma 3.10 Let φ and ψ be formulas, and let it be that the variables x1 and x2 are not free in

ψ and φ, respectively. The following holds:

1. ∀xφ ≡p ¬∃x¬φ;

2. ∃xφ ≡p ¬∀x¬φ;

3. ∃x(φ ∨ ψ) ≡p (∃xφ ∨ ∃xψ);

4. ∀x(φ ∧ ψ) ≡p (∀xφ ∧ ∀xψ);
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5. ∃x1φ ∧ ∃x2ψ ≈p ∃x1∃x2(φ ∧ ψ);

6. ∀x1φ ∨ ∀x2ψ ≈p ∀x1∀x2(φ ∨ ψ);

7. ∃x0 . . . ∃xmφ ≈p ∀x0 . . . ∀xmφ;

8. ∃xφ ∧ ∀xψ ≈p ∃x(φ ∧ ψ);

Proof. 1. M̂C |=n,λ ∀xφ ⇔ M̂C |=n+1,ρ φx[a], for every a ∈ Cn,λ. This holds if and only if
there is no a ∈ Cn,λ such that M̂C |=n+1,ρ ¬φx[a]. So, M̂C |=n,λ ¬∃x¬φ. The proof of 2 is
very similar to this one.

3. M̂C |=n,λ ∃x(φ∨ψ)⇔ either M̂C |=n+1,ρ φx[a] or M̂C |=n+1,ρ ψx[a], for some a ∈ Cn,λ.
This holds if and only if either M̂C |=n,λ ∃xφ or M̂C |=n,λ ∃xψ. So, M̂C |=n,λ ∃xφ ∨ ∃xψ.
The proof of 4 works analogously.

5. M̂C |=n,λ ∃x1φ ∧ ∃x2ψ ⇔ M̂C |=n+1,ρ φx1[a] and M̂C |=n+1,ρ′ ψx2[b], for some
a, b ∈ Cn,λ. This holds if and only if M̂C′ |=n,λ ∃x1∃x2(φ ∧ ψ), for a p-eligibility set C′ ofM
such that, for every i ≤ n, C′i = Ci and, for every j > n, C′j = Cj−1. The proof of 6 works in
the same way.

7. Assume M̂C |=n,λ ∃x0 . . . ∃xmφ. Let α be the λ-th element in M̂n−1. So, there are
a0 ∈ Cn,λ0 , . . . , am ∈ Cn+m,λm such that M̂C |=n+m+1,ρ φx0 . . . xm[a0 . . . am], in which, for
every 0 ≤ i ≤ m, α a (a0, . . . , ai) is the λi-th element in M̂n+i. Consider a variation C′ of C
such that C′n+i,λi = {ai}. Therefore, M̂C′ |=n,λ ∀x0 . . . ∀xmφ. Item 8 follows from 7.

Lemma 3.11 Suppose y is substitution-free for a variable x in a formula φ. Then, Qyφ ≡p
Qxψy[x], in which Q is either ∀ or ∃.

Proof. Consider some p-urn structure M̂C such that M̂C |=n,λ ∃yφ (in the case of ∀yφ, assume
M̂C 6|=n,λ ∀yφ). Then, M̂C |=n+1,ρ φy[a], for some a ∈ Cn,λ. So, M̂C |=n,λ ∃xφa[x].

Based on these lemmas we can finally prove the decidability of urn semantics.

Theorem 3.12 Let φ be a formula. The following are equivalent:

1. φ is unsatisfiable in p-urn semantics;

2. For some formula ψ that is the existential closure of a contradiction of classical proposi-

tional logic, φ ≈p ψ;

Proof. (1 ⇒ 2) Assuming 1, by induction on the quantifier rank of φ we verify that 2 holds as
well. First, considering qr(φ) = 0, 2 holds by classical logic, since urn semantics only changes
the satisfiability conditions of quantified formulas.

Now, consider qr(φ) = q + 1. We need to consider a set of possible cases:
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• Case a: φ is ∃xψ. By 1, ψ is unsatisfiable and, by inductive hypothesis, there is ψ′ that is
the existential closure of a contradiction of classical propositional logic and ψ ≈p ψ′. So,
φ ≈p ∃xψ′;

• Case b: φ is ∀xψ. Given that, by item 7 of Lemma 3.10, φ ≈p ∃xψ, case b reduces itself
to case a;

• Case c: φ is ¬∀xψ. By item 1 of Lemma 3.10, φ ≡p ∃x¬φ. Then, case c reduces itself
to case a. By a similar argument based on item 2 of Lemma 3.10, the case in which φ is
¬∃xψ reduces itself to case b;

• Case d: φ is ∃x1ψ ∨ ∃x2γ. By Lemma 3.11, for some variable x that does occur neither
in ψ nor in γ, φ ≡p ∃xψ ∨ ∃xγ. By item 3 of Lemma 3.10, φ ≡p ∃x(ψ ∨ γ), therefore
case d reduces itself to case a. By a similar argument based on item 4 of Lemma 3.10, the
case in which φ is ∀x1ψ ∧ ∀x2γ reduces itself to case b;

• Case e: φ is ∃x1ψ ∧ ∃x2γ. By Lemma 3.11, for some variable that does not occur neither
in ψ not in γ, φ ≡p ∃x1ψ ∧ ∃xγ. By item 5 of Lemma 3.10, φ ≈p ∃x1∃x(ψ ∧ γ), so case
e reduces itself to case a. By a similar argument based on item 6 of Lemma 3.10, the case
in which φ is ∀x1ψ ∨ ∀x2γ reduces itself to case b;

• Case f: φ is ∃x1ψ ∧ ∀x2γ. By Lemma 3.11, for some variable x that occurs neither in ψ
nor in γ, φ ≡p ∃xψ ∧ ∀xγ. By item 8 of Lemma 3.10, φ ≈p ∃x(ψ ∧ γ). Hence, case f
reduces itself to case a.

(2⇒ 1) Assuming the negation of 1, again by induction on the quantifier rank of φwe prove
that 2 is also not the case. The proof of this direction works analogously. Therefore, I skip it for
space reasons.

Corollary 3.13 p- and i-urn semantics characterize decidable systems of logic.

Proof. The decidability of p-urn semantics follows immediately from Theorem 3.12. Now, the
proof of this theorem does not depend on any specific property of p-urn semantics and can be
easily generalized for i-urn semantics. Hence, Theorem 3.12 holds as well for this system.

3.3.2 Fraı̈ssé-Hintikka theorem in urn semantics

Note that Theorem 3.12 does not imply that only truths of classical propositional logic are
logically valid in urn semantics. It means just that all logical truths of urn semantics are, in

urn semantics, equisatisfiable with truths of classical propositional logic. However, we still
might ask which are the logical truths of urn semantics. In this subsection I start to answer this
question by introducing a version of the Fraı̈ssé-Hintikka theorem for urn semantics.



45

Given that every i-urn structure is also a p-urn structure, I can conveniently maintain the
focus here mainly on p-urn semantics. A further generalization of the present results for i-urn
semantics is subsequently achieved. Preliminarily, let me define the notions of game-normal

formula (terminology by Hodges (1997, p. 85)) and Hintikka-normal form. For a language L,
let ΦL(x1, . . . , xn) be the set of unnested atomic formulas of Lwith variables within x1, . . . , xn.

Definition 3.14 Let L be a finite first order language. For every n,m < ω, a formula

θ(m,x1, . . . , xn) of L is a game-normal formula if and only if the following holds:

• If m = 0, θ(m,x1, . . . , xn) is
∧

Σ ∧
∧
¬(ΦL(x1, . . . , xn)− Σ), for some Σ ⊆

ΦL(x1, . . . , xn);

Now, assume that m > 0 and the set Θ(m − 1, x1, . . . , xn, ym) of game-normal formulas of L
with quantifier rank m− 1 and free-variables x1, . . . , xn, ym has already been defined:

• θ(m,x1, . . . , xn) is (
∧
∃ymΓ) ∧ (∀ym

∨
Γ), for some Σ ⊆ Θ(m− 1, x1, . . . , xn, ym).

For any m,n < ω, by Θ(m,x1, . . . , xn) I denote the set of game-normal formulas of
L with quantifier rank m and free-variables x1, . . . , xn.

Definition 3.15 Let L be a finite first order language. I say that a formula φ of L is a Hintikka-
normal form (for simplicity, just H-normal form) if and only if φ is

∨
Γ, for some m,n < ω and

for some Γ ⊆ Θ(m,x1, . . . , xn).

In classical model theory, game-normal formulas are quite relevant since they define back

and forth equivalence classes. Informally speaking, two structures are said to be back and forth
equivalent if it is possible both to construct isomorphisms between finite parts of them and
to finitely extend such isomorphisms ω-times. Let me precisely define these concepts in the
context of urn semantics and prove the definability of back and forth equivalence by game-
normal formulas.

Definition 3.16 Let L be a first order language, and letM andN be L-structures. An injective

function σ :M→N is an embedding if and only if the following holds:

• For any constant c ∈ L, σ(cM) is cN ;

• For any n-ary function f ∈ L, σ(fM(a1 . . . an)) is fN (σ(a1) . . . σ(an));

• For any n-ary predicate R ∈ L, σ(RM) = {〈σ(a1), . . . , σ(an)〉 : 〈a1, . . . , an〉 ∈ RM} ⊆
RN ;

In case the domain ofM is included in the domain of N ,M is said to be a substructure of N ,

in symbols,M⊆ N . If σ is bijective, usually we say that there is an isomorphism betweenM
and N , in symbolsM∼= N .
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In the next definition, for a given p-urn structure M̂C, for a fixed subset D ⊆ C and for a
substructureM∗ ⊆ M, let a restriction M̂d(M∗,D) of the set M̂ of p-eligible sequences of
M over C be as follows:

• M̂d(M∗,D)0 = {a ∈ C0 ∩M∗ : C0 ∈ D};

• M̂d(M∗,D)n+1 = {α a (a) : a ∈ Cn+1,λ ∩M∗, α is the λ-th element in
M̂n, α ∈ M̂d(M∗,D)n and Cn+1,λ ∈ D};

• M̂d(M∗,D) =
⋃
n<ω

M̂d(M∗,D)n.

The next definition characterizes isomorphism between parts of p-urn structures.

Definition 3.17 Let L be a first order language and let M̂C and N̂C′ be L-p-urn structures.

Let M̂ and N̂ be the sets of p-eligible sequences ofM over C and of N over C′, respectively.

Consider substructuresM∗ ⊆ M, N ∗ ⊆ N , subsets D ⊆ C, D′ ⊆ C′ and, for a set of new

predicates P = {Pn : n < ω, Pn is n-ary}, L+ = L ∪ P . There is an isomorphism between

〈M∗,D〉 and 〈N ∗,D′〉, in symbols 〈M∗,D〉 ∼= 〈N ∗,D′〉, if and only if the following holds:

• There are L+-expansionsM+ ⊃ M∗ and N+ ⊃ N ∗ such that, for every n < ω, PM
+

n

is M̂d(M∗,D)n, and PN
+

n is N̂d(N ∗,D′)n;

• M+ ∼= N+.

The next definition characterizes back and forth equivalence between p-urn structures. In
what follows, for any structure M, by {a0, . . . , an}M I denote the substructure of M with
domain {a0, . . . , an}.

Definition 3.18 Let L be a first order language, M̂C and N̂C′ be L-p-urn structures. Let M̂

and N̂ be the sets of p-eligible sequences ofM over C and ofN over C′, respectively. M̂C and

N̂C′ are back and forth equivalent, in symbols M̂C ' N̂C′ , if and only if there is a poset H of

isomorphisms between countable parts of M̂C and N̂C′ such that the following holds:

• The first element σ0 ∈ H is ∅;

Now, assume that, for some n < ω, there are substructures {a0, . . . , an}M and {b0, . . . , bn}N
such that a0 ∈ C0, b0 ∈ C′0 and, for any 0 < i ≤ n, ai ∈ Ci,λi and bi ∈ C′i,ρi , in which λi
and ρi are the indexes of 〈a0, . . . , ai−1〉 and 〈b0, . . . , bi−1〉 in M̂i−1 and N̂i−1, respectively. Let

D = {C0} ∪ {Ci+1,λi+1
: i < n}, D′ = {C′0} ∪ {C′i+1,ρi+1

: i < n} and consider that λ′ and

ρ′ are the indexes of 〈a0, . . . , an〉 ∈ M̂n and 〈b0, . . . , bn〉 ∈ N̂n, respectively. Further, consider

there is an isormorphism σn : 〈{a0, . . . , an}M,D〉 → 〈{b0, . . . , bn}N ,D′〉, σn ∈ H:

• For any a ∈ Cn+1,λ′ , there is b ∈ C′n+1,ρ′ such that there is isomorphism

σn+1 : 〈{a0, . . . , an, a}M,D ∪ {Cn+1,λ′}〉 → 〈{b0, . . . , bn, b}N ,D′ ∪ {Cn+1,ρ′}〉,
for which σn ⊆ σn+1 ∈ H;
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• For any b ∈ C′n+1,ρ′ , there is a ∈ Cn+1,λ′ such that there is isomorphism

σn+1 : 〈{a0, . . . , an, a}M,D ∪ {Cn+1,λ′}〉 → 〈{b0, . . . , bn, b}N ,D′ ∪ {Cn+1,ρ′}〉,
for which σn ⊆ σn+1 ∈ H;

• H is the smallest poset satisfying clauses 1–3 above.

M̂C and N̂C′ are k-back and forth equivalent, in symbols M̂C 'k N̂C′ , if and only if the condi-

tion above holds for at least every n < k.

Lemma 3.19 Let L be a finite first order language and M̂C be an L-p-urn structure. For every

m,n, k < ω, for any elements a1, . . . , an ofM and for any ordinal λ, there is only one game-

normal formula θ ∈ Θ(m,x1, . . . , xn) such that M̂C |=k,λ θx1 . . . xn[a1 . . . an].

Proof. Proceed by induction on m < ω. Consider m = 0 and fix some k, n < ω, ele-
ments a1, . . . , an of M as well as some ordinal λ. The relevant θ is the game-normal for-
mula

∧
Σ ∧

∧
¬(ΦL(x1, . . . , xn) − Σ), in which Σ = {φ ∈ ΦL(x1, . . . , xn) : M̂C |=k,λ

φx1 . . . xn[a1 . . . an]}.
In the inductive step, assume that for some m < ω the property was already obtained. Let

Γ = {θ ∈ Θ(m,x1, . . . , xn, y) : M̂C |=k+1,ρ θx1 . . . xny[a1 . . . an b], for some element b ∈
Ck,λ}. Since L is finite, Γ is finite as well. Therefore,(

∧
∃yΓ) ∧ (∀y

∨
Γ) is our desired game-

normal formula.

Theorem 3.20 Let L be a finite first order language, M̂C and N̂C′ be L-p-urn structures. Let

M̂ and N̂ be the sets of p-eligible sequences ofM over C and of N over C′, respectively. For

every k < ω, the following are equivalent:

1. M̂C 'k N̂C′;

2. For every m ≤ k, there is θ ∈ Θ(m, ∅) that is satisfied both in M̂C as well as in N̂C′ .

Proof. (1⇒ 2) Assume 1. Item 2 is a particular case of the following more general result:

(∗) For any m and n such that m+ n ≤ k, for any θ ∈ Θ(m,x0, . . . , xn−1), for any ordinal
λ <| M̂n−1 | and for 〈a0, . . . , an−1〉 the λ-th sequence in M̂n−1,

M̂C |=n,λ θx0 . . . xn−1[a0 . . . an−1]⇔ N̂C′ |=n,λ′ θx0 . . . xn−1[σn(a0) . . . σn(an−1)],

in which σn is in the poset of isomorphisms H defining M̂C 'k N̂C′ , {a0, . . . , an−1}M defines
σn’s domain and 〈σn(a0), . . . , σn(an−1)〉 is the λ′-th sequence in N̂n−1.

The proof of (∗) follows by an induction on m. First, let m = 0. By 1, for any p-eligible
sequence 〈a0, . . . , an−1〉 of M̂n−1, there is σn ∈ H such that {a0, . . . , an−1}M defines σn’s
domain. By isomorphism, it is the case that M̂C |=n,λ φx0 . . . xn−1[a0 . . . an−1], for every φ in
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the set Σ = {φ ∈ ΦL(x0, . . . , xn−1) ∪ ¬ΦL(x0, . . . , xn−1) : N̂C′ |=n,λ′ φx0 . . . xn−1[σn(a0) . . .

σn(an−1)]}. Therefore, the game-normal formula
∧

Σ is satisfied both by M̂C and N̂C′ .
For the inductive step, assume the property holds for some m < k. For any n such that

m + n < k, consider an arbitrary game-normal formula θ ∈ Θ(m + 1, x0, . . . , xn−1). Giving
the general syntactic form of θ, there are two possible cases:

• ∃-case: M̂C |=n,λ ∃yθ′x0 . . . xn−1[a0 . . . an−1], for some θ′ ∈ Θ(m,x0, . . . , xn−1, y). So,
M̂C |=n+1,ρ θ

′x0 . . . xn−1y[a0 . . . an−1 a], for some a ∈ Cn,λ. By inductive hypothesis
and 1, there is σn+1 ∈ H whose domain is defined by {a0, . . . , an−1, a}M. Then, since
σn+1(a) ∈ C′n,λ′ , it is the case that N̂C′ |=n,λ′ ∃yθ′x0 . . . xn−1[σn+1(a0) . . . σn+1(an−1)].

• ∀-case: M̂C 6|=n,λ ∀y
∨

Γx0 . . . xn−1[a0 . . . an−1], for some Γ ⊂ Θ(m,x0, . . . , xn−1, y0).
This holds if and only if M̂C 6|=n+1,ρ θ

′x0 . . . xn−1y[a0 . . . an−1 a], for some a ∈ Cn,λ and
for every θ′ ∈ Γ. By inductive hypothesis and 1, there is σn+1 ∈ H whose domain is
defined by {a0, . . . , an−1, a}M. Then, since σn+1(a) ∈ C′n,λ′ , it is the case that N̂C′ 6|=n,λ

∀y
∨

Γx0 . . . xn−1[σn+1(a0) . . . σn+1(an−1)].

This completes the proof of (∗), 2 being a subcase of it.
(2 ⇒ 1) Assuming 2, by recursion on m < k, define a poset H that characterizes k-back

and forth equivalence between the considered p-urn structures.
For some m < k, suppose a poset H characterizing M̂C 'm N̂C′ was already defined. Let

〈a0, . . . , am−1〉 ∈ M̂m−1 such that, for every 0 ≤ i < m, λi is the index of 〈a0, . . . , ai〉 ∈
M̂i. Consider D = {C0} ∪ {Ci,λi−1

: 0 < i < m} and fix some σm ∈ H with domain
〈{a0, . . . , am−1}M,D〉. Consider 〈σm(a0), . . . , σm(am−1)〉 is the ρ-th sequence in N̂m−1. I will
show that for any a ∈ Cm,λm−1 , there is some b ∈ C′m,ρ such that there is an isomorphism
σ∗ ⊃ σm−1 with domain 〈{a0, . . . , am−1, a}M,D ∪ {Cm,λm−1}〉 and such that σ∗(a) = b.

Let ξ be the index of 〈a0, . . . , am−1, a〉 in M̂m and let θ ∈ Θ(k−m−1, x0, . . . , xm−1, y) such
that M̂C |=m+1,ξ θx0 . . . xm−1y[a0 . . . am−1 a]. So, M̂C |=m,λm−1 ∃yθx0 . . . xm−1[a0 . . . am−1].
By 2 and inductive hypothesis, N̂C′ |=m,ρ ∃yθx0 . . . xm−1[σm(a0) . . . σm(am−1)]. Let b ∈
C′m,ρm−1

be such that, N̂C′ |=m,ξ′ θx0 . . . xm−1y[σm(a0) . . . σm(am−1) b], in which ξ′ is the index
of 〈σm(a0), . . . , σm(am−1) b〉 in N̂m. Consider an extension σ∗ ⊃ σm such that σ∗(a) = b. I
will prove that σ∗ is our intended isomorphism.

For any closed term t ∈ L, tM = a⇔ t = y occurs in θ ⇔ tN = b.
For any n-ary relationR ∈ L, for every α ∈ {a0, . . . , am−1, a}n and x̄ ∈ {x0, . . . , xm−1, y}n,

α ∈ RM ⇔ R(x̄) occurs in θ ⇔ σm(α) ∈ RN . Finally, the case of functions can be reduced to
the case of relations. So, σ∗ is isomorphism.

Note that, given the already mentioned inclusions of the classes of classical and i-urn struc-
tures in the class of p-urn structures, Lemma 3.19 and Theorem 3.20 are conservative gener-
alizations of similar results for classical logic and i-urn semantics. Based on these results it is
possible to present a version of the Fraı̈ssé-Hintikka theorem for urn semantics.
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Theorem 3.21 Let φ be an unnested formula of a finite first order language L with quantifier

rank k and free-variables x1, . . . , xn. Then, for every q ≥ k, there is a H-normal form ψ with

quantifier rank q and free-variables x1 . . . , xn such that φ ≡p ψ and φ ≡i ψ.

Proof. The theorem follows by induction on φ. Consider φ is an atomic formula. Fix some q ≥ 0

and Γ = {θ ∈ Θ(q, x1, . . . , xn) : M̂C |= θ∧φx1 . . . xn[a1 . . . an], for some elements a1, . . . , an
ofM}. By Lemma 3.19 and the satisfiability of φ, Γ is not empty. Further, by the finiteness of
L, Γ is a finite set. I will prove that the H-normal form

∨
Γ is equivalent to φ.

First, assume M̂C |= φ. By Lemma 3.19, there is some θ ∈ Θ(q, x1, . . . , xn) such that
M̂C |= θ, and, by definition of Γ, θ is in this set. So, M̂C |=

∨
Γ. Moreover, for the proof of

necessity, suppose that M̂C 6|= φ and fix some θ ∈ Γ. Suppose that M̂C |= θ. By Theorem 3.20,
M̂C |= φ, what contradicts our original assumption. So, M̂C 6|=

∨
Γ. Therefore, φ is equivalent

to
∨

Γ.
For the inductive step, fix some q ≥ k. Assume φ is ψ ∧ γ. By inductive hypothesis,

there are H-normal forms
∨

Ψ and
∨

Γ of ψ and γ, respectively, q = max{qr(
∨

Ψ), qr(
∨

Γ)}.
Hence,

∨
(Ψ ∩ Γ) is the H-normal form of φ. Similarly, it is easy to verify that

∨
(Ψ ∪ Γ) and∨

(Θ(q, x1, . . . , xn)− Γ) are the H-normal forms of ψ ∨ γ and ¬ψ, respectively.
Now, assume φ is ∃yψ. By inductive hypothesis, ψ has a H-normal form

∨
Γ, in which

Γ ⊆ Θ(q − 1, x1, . . . , xn, y). Then, ∃yψ is equivalent to
∨
∃yΓ. Consider ∆ = P(Γ) (i.e.,

∆ is the power set of Γ), and let ∆1, . . . ,∆m be all its elements. For every 0 < i ≤ m, the
formula

∧
∃y∆i ∧ ∀y

∨
∆i is a game-normal formula in Θ(q, x1, . . . , xn). Further,

∨
∃yΓ ≡p∨

0<i≤m
(
∧
∃y∆i ∧ ∀y

∨
∆i). So, this formula is the H-normal form of φ. The case in which φ is

∀xψ can be reduced to the previously considered ones by exploring the fact that ∀xψ ≡p ¬∃xψ.
This is enough for proving that there is a relevant H-normal form ψ such that φ ≡p ψ. Given

that every i-urn structure is also a p-urn structure, it follows that φ ≡i ψ.

Now I generalize Theorem 3.21 by showing that every (unnested or not) formula is p-
equisatisfiable with a H-normal form. In order to simplify the notation, let Hnf (φ) denote the
set of H-normal forms of an unnested formula φ. Hnf (φ) can be defined as follows:

• If φ is atomic formula of L with free-variables x1, . . . , xn, then Hnf (φ) is the set of for-
mulas of the form

∨
Γq such that, for every q ≥ 0, Γq = {θ ∈ Θ(q, x1, . . . , xn) :

for some p-urn structure M̂C and for some elements a1, . . . , an ofM,

M̂C |= θ ∧ φx1 . . . xn[a1 . . . an]};

• If φ is ψ ∧ γ, then Hnf (φ)={
∨

(Ψq ∩ Γq) :
∨

Ψq ∈ Hnf(ψ) and
∨

Γq ∈ Hnf(γ), qr(φ) ≤
qr(

∨
Ψq) = qr(

∨
Γq) = q};

• If φ is ψ ∨ γ, then Hnf (φ)={
∨

(Ψq ∪ Γq) :
∨

Ψq ∈ Hnf(ψ) and
∨

Γq ∈ Hnf(γ), qr(φ) ≤
qr(

∨
Ψq) = qr(

∨
Γq) = q};

• If φ is ¬ψ, then Hnf (φ)={
∨

(Θ(q, x1, . . . , xn)− Γ) : qr(φ) ≤ q,
∨

Γ ∈ Hnf(ψ)};
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• If φ is ∃yψ, then Hnf (φ)={
∨

0<i≤m
(
∧
∃y∆i,q ∧ ∀y

∨
∆i,q) : qr(φ) ≤ q,

{∆1,q, . . . ,∆m,q} = P(Γ), for Γ ⊆ Θ(q − 1, x1, . . . , xn, y) such that
∨

Γ ∈ Hnf(ψ)}.

Further, consider any formula φ and let t1, . . . , tm be the terms occurring in φ that do not
occur as arguments of any other term occurring in the same formula (in what follows, for sim-
plicity, I call such kind of terms as maximal terms of a formula). Let † be the following mapping
generator of unnested formulas:

• If t1, . . . , tm have complexity at most 1 (that is, if φ is an unnested formula), then φ† is φ;

• Assume t′1, . . . , t
′
o are all terms in {t1, . . . , tm} such that, for every 0 < i ≤ o, t′i is

fi(si,1 . . . si,ki) and si,1, . . . , si,ki are not variables. Suppose that the mapping † was
already defined for any formula whose maximal terms have complexity at most q =

max{cp(si,l) :: 0 < i ≤ o, 0 < l ≤ ki}. Let {s′1, . . . , s′j} = {si,l : 0 < i ≤ o, 0 <

l ≤ ki}. Consider a list φ0, . . . , φj of formulas generated from φ in the following way:
suppose that, in step k, a formula φk was constructed from φ. Let ψ be the greatest sub-
formula of φk in which s′k+1 occurs free. So, let φk+1 be the formula generated from φk

by replacing the subformula ψ by ∃zk+1(ψ zk+1[s
′
k+1] ∧ (zk+1 = s′k+1)), for some vari-

able zk+1 that does not occur in φk. Note that, in this way, all terms occurring in φj have
complexity at most q. Then φ† is φ†j .

In classical logic, a formula φ is always equivalent to some unnested formula γ. The next
proposition shows that, in urn semantics, φ and γ are at least equisatisfiable.

Proposition 3.22 Let L be a first order language and φ be a formula of L. Then, there is some

unnested formula γ such that φ ≈p γ and φ ≈i γ.

Proof. In what follows, I focus particularly on i-urn semantics: given that every i-urn structure
is also a p- one, the obtained result is immediately generalizable for p-urn semantics as well. By
Theorem 3.12, there is an existential closure of a satisfiable formula of classical propositional
logic, let it be ψ, such that φ ≈i ψ. Without loss of generality, it is convenient to consider that
ψ is of the form ∃x1 . . . ∃xnψ′ such that ψ′ is quantifier-free formula.

I will prove that ψ ≈i ψ† by repetition of the following procedure. Let t1, . . . , tm be all
the maximal terms of ψ. Assume t′1, . . . , t

′
o are all terms in {t1, . . . , tm} such that, for every

0 < i ≤ o, t′i is fi(si,1 . . . si,ki) and si,1, . . . , si,ki are not variables. Let {s′1, . . . , s′j} = {si,l :

0 < i ≤ o, 0 < l ≤ ki}.
Assume there is an i-urn structureMB such thatMB |=n ψ. Let B′ be a variation of B

such that, for every i < n, B′i = Bi and, for every n ≤ l < n + j, B′l = {s′l−n+1}. Consider
a formula ψj generated from ψ exactly as in the second clause of the characterization of †

above. Then,MB′ |=n ψj . Now, by repeating this procedure a finite number of times, ψ† and a
variation B′′ of B such thatMB′′ |=n ψ

† are generated. Therefore ψ ≈i ψ† and, consequently,
φ ≈i ψ†. Since ψ† is an unnested formula, it is the desired formula γ.
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Corollary 3.23 For every formula φ of a finite first order language L, there is an unnested

formula γ such that, for every ψ ∈ Hnf(γ), φ ≈p ψ and φ ≈i ψ.

Based on the above result, for any formula φ, let Hnf ∗(φ) be the set of H-normal forms
Hnf(γ), for an unnested formula γ that is equivalent with φ in urn semantics. Corollary 3.23
shows two divergences between classical logic and urn semantics. First, note that it is strictly
weaker than a similar consequence of classical Fraı̈ssé-Hintikka theorem: in classical logic, ev-
ery formula is equivalent to a bunch of H-normal forms. Furthermore, observe that, in the proof
of proposition 3.22, the desired formula γ is obtained by exploring relations of equisatisfiability
that do not hold in classical logic. Consequently, this state of affairs means that an arbitrary
formula φ has different sets of H-normal forms in classical logic and in urn semantics.

3.3.3 A characterization theorem

Corollary 3.23 enables to formulate a characterization theorem for urn semantics, a result
that shows which truths of classical logic are preserved in urn semantics.

Definition 3.24 For a finite first order language L and for anym,n < ω, θ ∈ Θ(m,x1, . . . , xn)

is a perfectly-consistent-game-normal formula (hereafter I say simply that θ is a pc-game-

normal formula) if and only if the following holds:

• For any term t of L occurring in θ, (t = t) occurs in θ;

• For every r < ω, for any terms t1, . . . , tr and t′1, . . . , t
′
r with complexity at most 1, vari-

ables within x1, . . . , xn and such that (ti = t′i) occurs in θ, for every 0 < i ≤ r and for

every atomic formula φ with variables within y1, . . . , yr, φy1, . . . , yr[t1, . . . , tr] occurs in

θ if and only if φy1, . . . , yr[t′1, . . . , t
′
r] occurs in θ;

• For every atomic formula φ of L with variables within x1, . . . , xn, φ occurs in θ if and

only if ¬φ does not occur in θ.

Moreover, I say that a formula ψ is a pc-H-normal form if and only if ψ is a H-normal form and

every game-normal formula occurring in ψ is a pc-game-normal formula.

In this subsection I prove that the satisfiability of a formula in p-urn semantics is based
on the existence of pc-H-normal forms. Later, I generalize this result for i-urn semantics by
considering a similar set of formulas. My strategy is to construct canonical models for pc-H-
normal forms. In classical logic, it is possible to build canonical models of consistent sets of
formulas by extending them to Hintikka sets (HODGES, 1997, pp. 40–42). Similarly, given a
relevant H-normal form ψ I define something akin to a Hintikka set for which surely there is a
p-urn structure.

Let a subformula-chain be a sequence of formulas 〈φ0, . . . , φn〉 of a first order language L
such that φ0 is any formula and, for any 0 ≤ i < n, φi+1 is one of the following alternatives:
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• If φi is ¬¬ψ, then φi+1 is ψ;

• If φi is either ψ ∧ γ or ψ ∨ γ, then φi+1 is either ψ or γ;

• If φi is either ¬(ψ ∧ γ) or ¬(ψ ∨ γ), then φi+1 is either ¬ψ or ¬γ;

• If φi is either ∃xψ or ∀xψ, then φi+1 is ψx[t], for some term t of L;

• If φi is either ¬∃xψ or ¬∀xψ, then φi+1 is ¬ψx[t], for some term t of L.

Let an identity-chain be a sequence 〈φ0, . . . , φm+1〉 such that, for terms t1, . . . , tm, t′1, . . . , t
′
m,

φ0 is an atomic formula ψy1, . . . , ym[t1, . . . , tm], for any 0 < i ≤ m φi is ti = t′i and φm+1 is
ψy1, . . . , ym[t′1, . . . , t

′
m].

Let me say that a sequence of terms 〈t1, . . . , tm〉 is a sequence of witnesses of a subformula-
chain T if and only if there are formulas φk1 , . . . , φkm in T such that, for every 0 < i ≤ m and
for some formula ψi of L, φki is either ∃xψi or ∀xψi and φki+1 is ψix[ti]. By the quantifier rank

of a subformula-chain T , in symbols QR(T ), I mean the total number of quantified formulas
that T has. Finally, for every subformula-chain T whose last element is either ∀xψ or ¬∃xψ, for
some formula ψ, let the existential dual ed(T ) of T be a subformula-chain that diverges from T

exactly in the fact that either ∃xψ or ∃x¬ψ is its last element, respectively. T and ed(T ) share
the same sequence of witnesses and same quantifier rank.

Definition 3.25 Let L be a first order language. Consider a list of sets ∆n, for every n < ω,

such that the following holds:

1. For every term t of L, (t = t) ∈ ∆0;

2. For every atomic formula φ of L with free-variables y1, . . . , ym, if there are terms t1, . . . ,

tm, t
′
1, . . . , t

′
m of L such that, for every 0 < i ≤ m, (ti = t′i) ∈ ∆0, then φy1 . . . ym[t1 . . .

tm] ∈ ∆0 ⇔ φy1 . . . ym[t′1 . . . t
′
m] ∈ ∆0;

3. For every atomic formula φ of L, either φ 6∈ ∆0 or ¬φ 6∈ ∆0;

4. If ¬¬φ ∈ ∆0, then φ ∈ ∆0;

5. If φ ∧ ψ ∈ ∆0, then φ, ψ ∈ ∆0; if ¬(φ ∧ ψ) ∈ ∆0, then either ¬φ or ¬ψ are in ∆0;

6. If φ ∨ ψ ∈ ∆0, then either φ or ψ are in ∆0; if ¬(φ ∨ ψ) ∈ ∆0, then ¬φ,¬ψ ∈ ∆0;

7. For every φ ∈ ∆0, for every subformula-chain T in the set of subformulas of φ such that,

for some formula ψ, its last element is either ∀xψ or ¬∃xψ, there is a formula φ′ ∈ ∆0

such that ed(T ) is a subformula-chain in the set of subformulas of φ′.

Now, assume ∆0, . . . ,∆n have already been defined. Then, ∆n+1 is the smallest set satisfying

the following clauses:
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1’ For every atomic formula φ ofL with free-variables y1, . . . , ym, if there are terms t1, . . . , tm,

t′1, . . . , t
′
m of L such that, for every 0 < i ≤ m, (ti = t′i) ∈

⋃
j≤n+1

∆j , then φy1 . . . ym[t1 . . .

tm] ∈ ∆n+1 ⇔ φy1 . . . ym[t′1 . . . t
′
m] ∈ ∆n+1;

2’ For every formula φ of L that is either atomic or the negation of an atomic formula, if

φ ∈ ∆n, then φ ∈ ∆n+1;

3’ ∆n+1 satisfies clauses 3–7 above;

4’ Suppose ∃xφ ∈ ∆n and, for some ordinal λ ≤ max {ℵ0, | L |}, {Ti : i < λ} is the set of

all subformula-chains in
⋃
j≤n

∆j such that ∃xφ is the last element in Ti and QR(Ti) = n+ 1.

Then, for every i < λ, there is a term tφ,i of L such that φx[tφ,i] ∈ ∆n+1;

5’ Suppose ¬∃xφ ∈ ∆n. For every formula ψ of L such that ∃xψ ∈ ∆n and, for some ordinal

λ ≤ max {ℵ0, | L |}, {Ti : i < λ} is the set of all subformula-chains in
⋃
j≤n

∆j such that

∃xψ is the last element in Ti andQR(Ti) = n+1, if there is some Ti with the same sequence

of witnesses as that of some subformula-chain T in
⋃
j≤n

∆j that has ¬∃xφ as its last element,

then ¬φx[tψ,i] ∈ ∆n+1, for a term tψ,i defined as in clause 4’ above;

6’ Suppose ∀xφ ∈ ∆n. For every formula ψ of L such that ∃xψ ∈ ∆n and, for some ordinal

λ ≤ max {ℵ0, | L |}, {Ti : i < λ} is the set of all subformula-chains in
⋃
j≤n

∆j such that

∃xψ is the last element in Ti andQR(Ti) = n+1, if there is some Ti with the same sequence

of witnesses as that of some subformula-chain T in
⋃
j≤n

∆j that has ∀xφ as its last element,

then φx[tψ,i] ∈ ∆n+1, for a term tψ,i defined as in clause 4’ above;

7’ Suppose ¬∀xφ ∈ ∆n and, for some ordinal λ ≤ max {ℵ0, | L |}, {Ti : i < λ} is the set of

all subformula-chains in
⋃
j≤n

∆j such that ¬∀xφ is the last element in Ti andQR(Ti) = n+1.

Then, for every i < λ, there is a term tφ,i of L such that ¬φx[tφ,i] ∈ ∆n+1.

We say that ∆ =
⋃
n<ω

∆n is a perfect-Hintikka set (hereafter, just p-H set) of formulas of L.

Lemma 3.26 Let ∆ be a p-H set of sentences of a first order language L. Then, there is a

p-urn structure M̂C such that, for every n < ω, for every φ ∈ ∆n and for some ordinal

λ < max {ℵ0, | L |}, M̂C |=n,λ φ.

Proof. Fixed ∆, I will define a canonical p-urn structure for it. Let M be the set of closed terms
of L and let Π(M) = {JtK : t ∈ M} be a partition such that, for any terms t, s ∈ M, s ∈ JtK
if and only if t = s ∈ ∆. Π(M) is the domain of our urn structure. Let M be the following
interpretation function:

• For any constant c ∈ L, cM is JcK;
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• For any n-ary function f ∈ L, fM : Π(M)n → Π(M) is such that fM(Jt1K . . . JtnK) = JsK
if and only if f(t1 . . . tn) = s ∈ ∆;

• For any n-ary relation R ∈ L, RM = {〈Jt1K, . . . , JtnK〉 : R(t1 . . . tn) ∈ ∆}.

LetM = 〈Π(M), M〉. An adequate p-eligibility set C and a set of p-eligible sequences M̂
forM can be defined as follows:

• C0 = M̂0 = {JtK : for some formula φ of L,∃xφ ∈ ∆0 and φx[t] ∈ ∆1};

Assume that, for some n < ω, C0, . . . ,Cn and M̂0, . . . , M̂n have been defined. Let α be the λ-th
sequence in M̂n, for some ordinal λ <| M̂n |. For every formula φ of L such that ∃xφ ∈ ∆n,
for some ordinal ρ ≤ max {ℵ0, | L |}, let {T (φ)i : i < ρ} be the set of all subformula-chains
in

⋃
j≤n

∆j such that ∃xφ is the last element in T (φ)i and QR(T (φ)i) = n + 1. By definition of

p-H set, there is a set of terms {tφ,i : i < ρ} such that φx[tφ,i] ∈ ∆n+1.

• If there is some formula ∃xφ ∈ ∆n such that some T (φ)i has α as its sequence of wit-
nesses, then Cn+1,λ = {Jtφ,iK : α is the sequence of witnesses of T (φ)i}. Otherwise, for
an arbitrary t ∈ M, let Cn+1,λ = {JtK}. Based on this, Cn+1 and M̂n+1 are straightfor-
wardly defined.

Let C =
⋃
n<ω

Cn and M̂ =
⋃
m<ω

M̂m. Finally, I will prove the following claim:

(∗∗) For every n < ω, for any formula φ of L with free-variables x1, . . . , xm and for any
closed terms t1, . . . , tm of L, the following holds:

• If φx1 . . . xm[t1 . . . tm] ∈ ∆n, then M̂C |=n,λ φx1 . . . xm[Jt1K . . . JtmK], for every λ <
| M̂n−1 | such that, for some subformula-chain T in

⋃
j≤n

∆j such that φx1 . . . xm[t1 . . . tm]

is its last element andQR(T ) ≤ n+1, the sequence of witnesses of T is the λ-th sequence
in M̂n−1;

• If ¬φx1 . . . xm[t1 . . . tm] ∈ ∆n, then M̂C 6|=n,λ φx1 . . . xm[Jt1K . . . JtmK], for every λ <
| M̂n−1 | such that, for some subformula-chain T in

⋃
j≤n

∆j with ¬φx1 . . . xm[t1 . . . tm] as

its last element and QR(T ) ≤ n+ 1, the sequence of witnesses of T is the λ-th sequence
in M̂n−1.

The proof of this claim follows by induction on φ. If φ is atomic and φ ∈ ∆n, it follows by
definition ofM. If ¬φ ∈ ∆n, by definition of p-H set, φ 6∈ ∆ and, again, the property follows
by definition ofM.

Consider φ is ψ ∧ γ and assume φ ∈ ∆n. Fix some λ <| M̂n−1 | such that, for some
subformula-chain T in

⋃
j≤n

∆j with φ as its last element and QR(T ) ≤ n + 1, the sequence

of witnesses of T is the λ-th sequence α ∈ M̂n−1. By definition of p-H set, ψ, γ ∈ ∆n and
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these formulas are the last elements in subformula-chains T ′ and T ′′ in
⋃
j≤n

∆j whose sequence

of witnesses is α. So, by inductive hypothesis, M̂C |=n,λ ψ ∧ γ. On the other hand, assume
¬φ ∈ ∆n. Fix some T and α such as above. By definition of p-H set, either ¬ψ ∈ ∆n with some
subformula-chain T ′ in

⋃
j≤n

∆j such that ¬ψ is its last element and α is its sequence of witnesses,

or ¬γ ∈ ∆n with some subformula-chain T ′′ in
⋃
j≤n

∆j such that ¬γ is its last element and α is

its sequence of witnesses. Without loss of generality, consider the first case only. By inductive
hypothesis, M̂C 6|=n,λ ψ. Therefore, M̂C 6|=n,λ φ. By a dual reasoning, it is possible to see that
the property holds for the case in which φ is ψ ∨ γ. For convenience, I omit the proof of this
case here.

Consider that φ is ¬ψ and assume φ ∈ ∆n. By inductive hypothesis, M̂C 6|=n,λ ψ. So,
M̂C |=n,λ φ. On the other hand, if ¬φ ∈ ∆n, by definition of p-H set, ψ ∈ ∆n. By inductive
hypothesis, M̂C |=n,λ ψ. So, M̂C 6|=n,λ φ.

Assume φ is ∃xψ and φ ∈ ∆n. As above, fix some relevant T (ψ)i and α. By definition of
p-H set, ψx[tψ,i] ∈ ∆n+1. By inductive hypothesis, M̂C |=n+1,ρ ψx[tψ,i] in which ρ is the index
of α a Jtψ,iK ∈ M̂n. By definition of C, Jtψ,iK is in Cλ,n. So, M̂C |=n,λ ∃xψ.

Finally, assume ¬∃xψ ∈ ∆n and fix some relevant T and α as before. By definition of p-H
set, for every ∃xγ ∈ ∆n such that some T (γ)i has α as its sequence of witnesses, ¬ψx[tγ,i] ∈
∆n+1. By inductive hypothesis, M̂C 6|=n+1,ρ ψx[tγ,i] in which ρ is the index of α a Jtγ,iK ∈ M̂n.
By definition of C, every such Jtγ,iK is in Cλ,n, and, by clause 7 in definition of p-H set, there is
such a term Jtγ,iK. So, M̂C 6|=n,λ ∃xψ. By a dual reasoning, the property also holds in case φ is
∀xψ.

The next lemma shows that from any pc-H-normal form it is possible to generate a p-H set.
In what follows, for any terms sn, . . . , s0, let Θ(m, sn, . . . , s0) = {θ yn . . . y0[sn . . . s0] : θ ∈
Θ(m, yn, . . . , y0)}, and let ΦL(sn, . . . , s0) = {θyn . . . y0[sn . . . s0] : θ ∈ ΦL(yn, . . . , y0)}.

Lemma 3.27 For a finite first order language L, let θ ∈ Θ(m, ∅) be a pc-H-normal form. Then,

there is a p-H set ∆ such that θ ∈ ∆0.

Proof. By definition, θ is of the form (
∧
∃ymΓ) ∧ (∀ym

∨
Γ), for some Γ ⊆ Θ(m − 1, ym).

Let ∆0 = {θ} ∪ ∃ymΓ ∪ {∀ym
∨

Γ, ∃ym
∨

Γ} ∪ {t = t : t is closed term of L}. ∆0 satisfies
clauses 1 and 5 of p-H set by definition, and since ∆0 has neither atomic formulas nor negations
of atomic formulas besides trivial identities, it vacuously satisfies clauses 2–3 as well. For a
similar reason, ∆0 satisfies clauses 4 and 6. Further, given the syntactic structure of game-
normal formulas, ∆0 satisfies clause 7. So, ∆0 is adequately defined.

Assume now that ∆0, . . . ,∆n have already been defined. By the syntactic structure of θ, for
some r < ω, for every formula φ of the form ∀xψ or ∃xψ that is in ∆n, φ ∈

⋃
l<r

(∃ym−nΓl

∪ {∀ym−n
∨

Γl, ∃ym−n
∨

Γl}), for some Γl ⊆ Θ(m − n − 1, sm, . . . , sm−n+1, ym−n), for
some terms sm, . . . , sm−n+1 of L. Furthermore, note that, for every φ, ψ ∈ (∃ym−nΓl ∪
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{∀ym−n
∨

Γl, ∃ym−n
∨

Γl}), for any subformula-chains T and T ′ in
⋃
j≤n

∆n that have φ and

ψ as last elements, respectively, and such that QR(T ) = QR(T ′) = n + 1, T and T ′ share the
sequence of witnesses 〈sm, . . . , sm−n+1〉.

For every l < r and for kl =| Γl |, consider new terms tl,1, . . . , tl,kl of L and let Σl =

{θiym−n[tl,i] : 0 < i ≤ kl, θi ∈ Γl}. Consider two cases:

• For every 0 < i ≤ kl, if 0 < m − n, then θiym−n[tl,i] is of the form (
∧
∃ym−n−1Λi) ∧

(∀ym−n−1
∨

Λi), for some Λi ⊆ Θ(m−n−2, sm, . . . , sm−n+1, tl,i). In this case, consider
Σl,i = ∃ym−n−1Λi ∪ {∀ym−n−1

∨
Λi, ∃ym−n−1

∨
Λi};

• Otherwise, θi is of the form
∧

Λ′i ∧
∧
¬(ΦL(sm, . . . , sm−n+1, tl,i) − Λ′i), for some Λ′i ⊆

ΦL(sm, . . . , sm−n+1, tl,i). In this case, consider Σl,i = Λ′i ∪¬(ΦL(sm, . . . , sm−n+1, tl,i)−
Λ′i).

In either case, let ∆n+1 =
⋃
l<r

(Σl∪
⋃

0<i≤kl
({
∨

Γl ym−n[tl,i]}∪Σl,i))∪{t = t : t is closed term

of L}. I will show that ∆n+1 satisfies clauses 1’–7’ in definition of p-H set.
First of all, since ∆n+1 only inherits trivial identities, which are all the atomic formulas in

∆n, ∆n+1 satisfies clause 2’ of the definition.
Given the syntactic structure of game-normal formulas, ∆n+1 vacuously satisfies clause 4 of

the definition. For every l < r and for every 0 < i ≤ kl,
∨

Γl ym−n[tl,i] are the only disjunctions
in ∆n and θiym−n[tl,i] are in ∆n+1, for some θiym−n[tl,i] ∈ Σl. So, ∆n+1 satisfies clause 6 as
well. Further, given that θ is a pc-H-normal form, ∆n+1 satisfies clause 3 of definition. So,
∆n+1 satisfies clause 3’.

Again, based on the assumption that θ is a pc-H-normal form, we verify that ∆n+1 satisfies
clause 1’. In the definition of ∆n+1 new constants were added for every existential formula
of ∆n, so ∆n+1 satisfies 4’. Further, based on the syntactic structure of game-normal formu-
las, ∆n+1 vacuously satisfies 5’ and 7’. Finally, for every l < r and for every 0 < i ≤ kl,
∀ym−n

∨
Γl are the only universal formulas in ∆n and

∨
Γl ym−n[tl,i] ∈ ∆n+1, for every such

term tl,i. By construction of ∆0, . . . ,∆n+1, these are the only terms that need to be considered.
So, ∆n+1 satisfies clause 6’. Hence, ∆n+1 is well-defined.

Based on this lemma, we can finally prove the satisfiability of pc-H-normal forms in p-urn
semantics.

Theorem 3.28 Let φ be a sentence of a finite first order language L. φ is satisfiable in p-urn

semantics if and only if, for some
∨

Γ ∈ Hnf ∗(φ) and for some θ ∈ Γ, θ is pc-H-normal form.

Proof. The proof of sufficiency follows immediately from Lemma 3.26, Theorem 3.27 and
Corollary 3.23. For the proof of necessity, consider that for some

∨
Γ ∈ Hnf ∗(φ), for every

θ ∈ Γ, θ is not pc-H-normal form. In this case, for some game-normal formula θ′ occurring as
subformula of θ, either (t 6= t) occurs in θ′ or γ and ¬γ occur in θ′, for some atomic formula
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γ whose variables are free in θ′. So, given the syntactic structure of game-normal formulas, for
any p-urn game semantics F(ψ,M̂C), it is possible to define a winning strategy for player A in
which A demands E either to hold t 6= t, or to hold γ, if M̂C 6|= γ, or ¬γ, if M̂C |= γ.

Note that Theorem 3.28 characterizes a decision method for satisfiability in p-urn semantics.
So, given the undecidability of classical logic, there are classically unsatisfiable formulas φ
such that, for some pc-H-normal form

∨
Γ ∈ Hnf ∗(φ), there is a pc-H-normal form θ ∈ Γ.

Moreover, Theorem 3.28 guarantees that p-urn semantics has a property of satisfiability in finite

models.

Corollary 3.29 Let L be a finite first order language and φ be a formula of L that is satisfiable

in p-urn semantics. So, φ is satisfied by a finite p-urn structure.

Proof. Given that φ is satisfiable in p-urn semantics, by Theorem 3.28, for some
∨

Γ ∈ Hnf ∗(φ)

and for some θ ∈ Γ, θ is pc-H-normal form. Since in the proof of Lemma 3.27 the construction
of a p-H set from a given pc-H-normal form only needs to consider a finite number of terms, as
a particular case of Lemma 3.26 we can construct a finite canonical model M̂C of θ. Now, for
the unnested formula γ such that Hnf ∗(φ) = Hnf(γ), by Theorem 3.21,

∨
Γ ≡p γ. Therefore,

M̂C |= γ. By the contructive proofs of Theorem 3.12 and proposition 3.22, for a variation C′ of
C, M̂C′ |= φ. Therefore, φ is satisfiable in finite p-urn structures.

3.3.4 Generalizing for i-urn semantics

In this subsection I show how it is possible to generalize the above results for i-urn se-
mantics. In order to do this, instead of considering pc-game-normal formulas, I consider the
stronger notion of ic-game-normal formula. In what follows I precisely define this set of game-
normal formulas, but, first of all, I need to introduce some additional concepts about their
syntactic structures. For any θ ∈ Θ(m,x1, . . . , xn), for 0 < kr < . . . < k1 ≤ m and for
{yq1 , . . . , yqs} = {y1, . . . , ym} − {yk1 , . . . , ykr}, let θ (yk1 , . . . , ykr) be as follow:

• If θ is
∧

Σ ∧
∧
¬(ΦL(x1, . . . , xn, y1, . . . , ym) − Σ), then, for Σ′ = {φ : φ ∈ Σ ∩

ΦL(x1, . . . , xn, yq1 , . . . , yqs)}, θ (yk1 , . . . , ykr) is the formula∧
Σ′ ∧

∧
¬(ΦL(x1, . . . , xn, yq1 , . . . , yqs)− Σ′);

• Assume that, for some 0 < i < r, θ (yk1 , . . . , yki) has already been defined. The formula
θ (yk1 , . . . , yki+1

) is defined by substituting all of its subformulas θ′ ∈ Θ(0, x1, . . . , xn,

yq1 , . . . , yqs , yki+1
, . . . , ykr) by θ′ (yki+1

).

Informally speaking, θ (yk1 , . . . , ykr) preserves all the propositional content of θ except as
regards its discourse about yk1 , . . . , ykr . Moreover, let me say that a game-normal formula
θ ∈ Θ(m,x1, . . . , xn) has enough copies of game-normal formulas if the following holds:
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• For any θ′, θ′′ ∈ Θ(m − 1, x1, . . . , xn, ym) such that θ′ and θ′′ are different subformulas
of θ, for every θ∗ ∈ Θ(m − 2, x1, . . . , xn, ym, ym−1) subformula of θ′, there is θ∗∗ ∈
Θ(m− 2, x1, . . . , xn, ym, ym−1) subformula of θ′′ such that θ∗ (ym) is θ∗∗ (ym) (I say that
θ∗∗ is a copy of θ∗ in θ′′);

• For any 2 < i < m, consider any θ′, θ′′ ∈ Θ(i − 1, x1, . . . , xn, ym, . . . , yi) such that θ′

and θ′′ are different subformulas of θ. Consider two cases:

– For some i ≤ j < m, θ′ and θ′′ are subformulas of some θ+ ∈ Θ(j, x1, . . . , xn, ym,

. . . , yj+1) (without loss of generality, consider θ+ with minimum quantifier rank).
For every θ∗ ∈ Θ(i − 2, x1, . . . , xn, ym, yi−1) that is subformula of θ′, there is
θ∗∗ ∈ Θ(i − 2, x1, . . . , xn, ym, yi−1) subformula of θ′′ such that θ∗ (yk1 , . . . , ykr)

is θ∗∗ (yk1 , . . . , ykr), for all i ≤ k1 < . . . < kr ≤ j such that, for every 0 < l ≤ r,
the subformulas θ++, θ+++ ∈ Θ(kl − 1, x1, . . . , xn, ym, . . . , ykl) of θ+ which are
superformulas of θ∗ and θ∗∗, respectively, are not copies between themselves.

– If there is no such j, for every θ∗ ∈ Θ(i − 2, x1, . . . , xn, ym, yi−1) subformula
of θ′, there is θ∗∗ ∈ Θ(i − 2, x1, . . . , xn, ym, yi−1) subformula of θ′′ such that
θ∗ (yk1 , . . . , ykr) is θ∗∗ (yk1 , . . . , ykr), for all i ≤ k1 < . . . < kr ≤ m such that, for
every 0 < l ≤ r, the subformulas θ++, θ+++ ∈ Θ(kl − 1, x1, . . . , xn, ym, . . . , ykl)

of θ+ which are superformulas of θ∗ and θ∗∗, respectively, are not copies between
themselves.

Definition 3.30 θ ∈ Θ(m,x1, . . . , xn) is an imperfectly-consistent-game-normal formula (here-

after, I say simply that θ is an ic-game-normal formula) if and only if the following holds:

• θ is pc-H-normal form;

• θ has enough copies of its game-normal formulas;

My strategy here is the same as before, i.e., I prove that every ic-game-normal formula
can be extended to something similar to Hintikka sets: more precisely, I show that given an
ic-game-normal formula it is possible to generate from it an i-H set.

Definition 3.31 Let L be a first order language. Consider a list of sets ∇n, for every n < ω,

such that the following holds:

1. ∇0 satisfies clauses 1–7 of Definition 3.25.

Assume ∇0, . . . ,∇n have already been defined. Then, ∇n+1 is the smallest set satisfying the

following clauses:

1’ ∇n+1 satisfies clauses 1’–4’ and 7’ of Definition 3.25;
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2’ Suppose ∀xφ ∈ ∇n. For every formula ψ of L such that ∃xψ ∈ ∇n and, for some ordinal

λ ≤ max {ℵ0, | L |}, {Ti : i < λ} is the set of all subformula-chains in
⋃
j≤n
∇j such that

∃xψ is the last element in Ti and QR(Ti) = n + 1, φx[tψ,i] ∈ ∇n+1, for a term tψ,i defined

as in clause 4’ of Definition 3.25;

3’ Suppose ¬∃xφ ∈ ∇n. For every formula ψ of L such that ∃xψ ∈ ∇n and, for some ordinal

λ ≤ max {ℵ0, | L |}, {Ti : i < λ} is the set of all subformula-chains in
⋃
j≤n
∇j such that

∃xψ is the last element in Ti and QR(Ti) = n+ 1, ¬φx[tψ,i] ∈ ∇n+1, for a term tψ,i defined

as in clause 4’ of Definition 3.25.

∇ =
⋃
n<ω

∇n is an imperfect-Hintikka set (hereafter, just i-H set) of formulas of L.

Lemma 3.32 Let ∇ be an i-H set of sentences of a first order language L. Then, there is an

i-urn structureMB such that, for every n < ω, for every φ ∈ ∇n,MB |=n φ.

Proof. The result is obtained by construction of a canonical i-urn structure for∇ just like in the
proof of Theorem 3.28, with the difference that in this case I need to consider less constraints
for characterizing i-eligibility than it was necessary there.

Lemma 3.33 For a finite first order language L, let θ∗ ∈ Θ(m, ∅) be an ic-game-normal for-

mula. Then, there is an i-H set∇ such that θ∗ ∈ ∇0.

Proof. I will define∇ by recursion on n < ω. ∇0 is defined just like ∆0 in the proof of Lemma
3.27.

Assume now that∇0, . . . ,∇n have already been defined. Consider, for anym−n < i ≤ m,
finite sets of terms Ni = {si,1, . . . , si,ni

}, and consider the finite set of sequences of witnesses
N = {〈sm, lm , . . . , sm−n+1, lm−n+1〉 : for every m− n < i ≤ m, 0 < li ≤ ni}, n∗ =| N |. For
any 0 < l ≤ n∗, let αl be the l-th sequence in N .

Assume that, by construction, for every 0 < l ≤ n∗, for some Γl ⊆ Θ(m−n−1, x1, . . . , xn,

αl, ym−n), the set
⋃

0<l≤n∗
(∃ym−nΓl ∪ {∀ym−n

∨
Γl, ∃ym−n

∨
Γl}) contains all formulas of the

form ∃xψ or ∀xψ which are in∇n. Note that, for all formulas φ ∈ ∃ym−nΓl ∪ {∀ym−n
∨

Γl,

∃ym−n
∨

Γl}, for any subformula-chain T in
⋃
j≤n
∇n such that QR(T ) = n+ 1 and which have

φ as its last element, αl is the sequence of witnesses of T .
For every 0 < l ≤ n∗ and for | Γl |= kl, consider new terms tl,1, . . . , tl,kl of L and let

Σl = {θi ym−n[tl,i] : 0 < i ≤ kl, θi ∈ Γl}. Furthermore, consider Σ′l = {θ ym−n[tl,i] : 0 < i ≤
kl, θ ∈ Γj, for some 0 < j ≤ n∗ different from l such that θ αj[ym, . . . , ym−n+1] is a copy of
θi αl[ym, . . . , ym−n+1]}. Given that θ∗ is an ic-game-normal formula, for every 0 < j 6= l ≤ n∗

and for every 0 < i ≤ kl there is a corresponding θ: in fact, I will force Σ′l to have only one
such θ to each j, l and i.

Fix an arbitrary 0 < i ≤ kl. Let θ1, . . . θq be all formulas in Σl ∪Σ′l of the form θ ym−n[tl,i].
Now, consider two cases:
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• If 0 < m − n, then, for every 0 < h ≤ q, θh is of the form (
∧
∃ym−n−1Λh) ∧

(∀ym−n−1
∨

Λh), for some Λh ⊆ Θ(m−n−2, αh′ , tl,i, ym−n−1) and h′ such that θh ∈ Γh′ .
In this case, consider that Σl,i is

⋃
0<h≤q

(∃ym−n−1Λh ∪ {∀ym−n−1
∨

Λh, ∃ym−n−1
∨

Λh});

• Otherwise, θh is of the form
∧

Λ′h ∧
∧
¬(ΦL(αh′ , tl,i)−Λ′h), for some Λ′h ⊆ ΦL(αh′ , tl,i)

and h′ such that θh tl,i[ym−n] ∈ Γh′ . In this case, consider that Σl,i =
⋃

0<h≤q
(Λ′h ∪

¬(ΦL(αh′ , tl,i)− Λ′h)).

Let Σ′l,i = {
∨

Γh′ ym−n[tl,i] : θh tl,i[ym−n] ∈ Γh′ , 0 < h ≤ q}. Finally, let ∇n+1 =⋃
0<l≤n∗

(Σl ∪ Σ′l ∪
⋃

0<i≤kl
(Σl,i ∪ Σ′l,i)) ∪ {t = t : t is closed term of L}.

Now, I will show that∇n+1 is well-defined. Given the similarities between∇n+1 and ∆n+1,
clauses 1, 4–7, 4’, 5’ and 7’ of Definition 3.25 are satisfied as well by ∇n+1. It is possible
to immediately verify also that, for every 0 < j 6= l ≤ n∗, for any 0 < i ≤ kl and for
∀ym−n

∨
Γj ∈ ∇n, θ ym−n[tl,i] ∈ ∇n+1. So,∇n+1 satisfies clause 2’ of Definition 3.31. Finally,

since θ∗ is a pc-H-normal form, if there is some atomic formula φ such that φ and ¬φ are in
∇n+1, then these formulas say conflicting things about some terms s1, . . . , sn not occurring in
θ∗. However, this contradicts the fact that θ∗ is an ic-game-normal formula jointly with the fact
that s1, . . . , sn were introduced by means of the copies of game-normal formulas occurring in
θ∗. So,∇n+1 satisfies clause 1’ of Definition 3.31 and, therefore, is well-defined.

Based on these lemmas, a generalized version of the previously obtained characterization
theorem (Theorem 3.28) holds for i-urn semantics.

Theorem 3.34 Let φ be a sentence of a finite first order language L. φ is satisfiable in i-urn

semantics if and only if, for some
∨

Γ ∈ Hnf ∗(φ) and for some θ ∈ Γ, θ is an ic-game-normal

formula.

Just as in the case of p-urn semantics, Theorem 3.34 describes a decision procedure for
satisfiability in i-urn semantics. Furthermore, the following corollary shows that, like p-urn
semantics, i-urn semantics also satisfies a property of finite satisfiability.

Corollary 3.35 Let L be a finite first order language and φ be a formula of L that is satisfiable

in i-urn semantics. Then, φ is satisfied by some finite i-urn structure.

3.4 Conclusion

In this chapter, I presented some fundamental results on urn semantics. First, I showed
that, in addition to Rantala’s original game-theoretic approach to the subject, it is possible to
define Tarskian semantic frameworks for urn semantics. Further, I showed that there are two
independent systems of urn semantics, what I called p- and i-urn semantics. Then, a precise
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description of these systems enabled the obtainment of some fundamental metatheorems on
urn semantics. First, we have seen that p- and i-urn semantics determine decidable systems of
logic. Secondly, we have proved interesting characterization theorems for them. In order to
prove these results, I relied on the validity of a weaker version of the Fraı̈ssé-Hintikka theorem
according to which every formula is equisatisfiable with a bunch of Hintikka-normal forms in
urn semantics. The proof of this auxiliary result was also presented in this chapter. In addition to
the intrinsic interest of these results for the development of the model theory of urn semantics,
they are also crucially important for a characterization of TSI. In the next chapter, I turn the
focus once again to TSI: in this sense, I formalize this theory based on the framework of urn
semantics and show that, in this metatheoretic context, SoD does not hold.
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Chapter 4

A formalization of TSI in urn semantics

4.1 Introduction

In this chapter, based on the framework of urn semantics introduced in chapter 3, I finally
reestablish TSI and show that, through the lenses of urn semantics, TSI does not imply SoD.
This work is divided into two parts: in the first part, I present an outline of the main aspects
of a formal characterization of TSI and show that, in urn semantics, SoD does not hold. In
the second part, I compare this proposal of reestablishment of TSI with similar solutions in the
literature. In particular, I compare the present result with proposals by Hintikka (1970a, 1970b)
and Jago (2007, 2009, 2013). In this way, I argue that my proposal is immune to some problems
faced by these alternative solutions. Moreover, I claim that this reestablishment of TSI nicely
deals with some objections raised by Jago against theories of semantic information based on
urn semantics.

4.2 Formalizing TSI in urn semantics

4.2.1 General outline of the theory

What is semantic information? Any examination of this question depends on answering the
following more fundamental one: what is information (of any kind)? As I already mentioned in
the introduction of this thesis, there is no straightforward answer to this question: information is
a polysemic expression that means different things in different contexts of use and it is still not
so clear whether such multiplicity of meanings is reducible to a common ground. An important
attempt of providing such common core of multiple notions of information is the idea that
information, of whatever kind, is meaningful and well-formed data (this thesis is called the
general definition of information by Floridi (2016, sec. 1.2), hereafter GDI).

Let me make this more clear by way of an example: consider again Loar’s case in which
someone opens a diary and finds the entry “Hot and sunny today; phoned Maria to invite her
to the beach.” By reading this sentence, the person in question receives some information.
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According to GDI this sentence is informative because the set of linguistic expressions com-
posing it is data, the underlying syntax of the sentence characterizes the well-formedness of the
data and the sentence is meaningful. Note that the propositional content itself of a sentence
is also information because the meanings of all the symbols composing the sentence are data,
the semantic relations connecting these meanings is the well-formedness of these data and the
propositional content is the proper meaning of the sentence. Furthermore, in similar terms, the
partial representation of the meaning of a sentence associated with our semantic competence is
also information (for simplicity, hereafter let us call this variety of the information of a sentence
as epistemically nuanced semantic information). There is no incoherence in this fact: a struc-
tured object such as a sentence may simultaneously carry different varieties of information.1

This remark shows that there is no rivalry between Bar-Hillel and Carnap’s theory of seman-
tic information and my revision of TSI. These two versions of TSI aim to characterize different
levels of semantic information. Bar-Hillel and Carnap’s TSI arguably captures the informa-
tiveness associated with the propositional content of sentences. On the other hand, my revised
version of TSI aims to capture the epistemically nuanced semantic information of sentences.
Similarly it is possible to verify that SoD is not an immediate problem for TSI. SoD is a prob-
lem for TSI if this theory aims to characterize the epistemically nuanced semantic information
of sentences, but arguably it is not a problem for supporters of TSI who want to give an account
of the information associated with the propositional content of sentences.

Although GDI provides a very reasonable description of basic features shared by any notion
of information, against this theory it is sometimes argued that some of its primitive notions are
unclear, in particular the notion of data. What is data? In very general terms, datum is just the
apparent fact of a lack of uniformity within some context. Floridi (Ibid., sec. 1.3) calls this
very general definition as the diaphoric definition of data (hereafter DDD). For a more vivid
example, consider the ringing of a telephone bell: according to DDD, the ringing is a datum
simply because it cuts the silence.

DDD is a very general definition of datum. In fact, DDD is designed to satisfy at least
four neutrality conditions, namely, DDD is supposed to be neutral with respect to taxonomy,
typology, ontology and geneticity. DDD is taxonomically neutral since it characterizes datum
relationally, that is, in terms of a relation of difference within a context, without specifying what
is the relevant kind of difference in each case. DDD is typologically neutral since it does not
suggest any substantial catalog of different kinds of data. DDD is ontologically neutral since it
demands data representation (Ibid., sec. 1.6) without specifying what kind of representation is
required in each case.2 Finally, DDD is genetically neutral since it characterizes data as entities
whose nature is independent of their access by any informee. In this sense, whether the ringing
of a telephone bell is datum is independent of whether someone can hear it.

1Of course, I do not intend this list to be an exhaustive selection of the different varieties of information carried
by a sentence.

2The literature on DDD generally identify representation with physical implementation (Ibid., sec. 1.6). I
disregard this issue here since my claim is independent of such discussions.
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However, perhaps the reader might be unsatisfied with this formalist account and might ask
for a more substantial characterization of information based on GDI+DDD. Now, as I see this
issue, the fact that this is a formalist account is not so much an objection to its validity but
simply the recognition that it does not answer all questions about the concept of information (in
particular, it does not solve any substantial questions on the nature of information). In fact, I
believe that all these open questions are more convincingly addressed through a concrete, case
by case investigation. In this sense, instead of continuing with this generalist agenda on the
nature of information, it seems more fruitful to focus specifically on the notion of semantic
information in order to further articulate GDI+DDD in more substantial terms.

So, let me go back to the question of what is semantic information. A fundamental insight on
the nature of information is the idea that it varies in function of the degree of precision of a given
message (Cf. ADRIAANS, 2013, sec. 3). For instance, the sentence “water quenches thirst and
is good for your health” is more informative than “water quenches thirst.” This fundamental
idea is formalized in terms of probability in the pioneer work by Shannon and Weaver (1949):
the greater the informativeness of some data, the less probable it is.

Bar-Hillel and Carnap’s theory of semantic information preserves this fundamental insight
about the concept of information as well as its formalization in terms of probability as Shannon
and Weaver propose. This is a nice move since, as Popper has classically shown (Cf. CURD;
COVER, 1998, pp. 3–10), the semantic information of a sentence varies in function of its
potential falsifiability, a quality that is inversely linked to its degree of probability.3

The standard axiomatization of probability is due to Kolmogorov (1950). This system is
characterized by Hájek (2012, sec. 1) as follows:

Definition 4.1 Let Ω be a set and ∆ a set of parts of Ω that has Ω as an element. Further,

consider that ∆ is closed for complementation and union. Let P : ∆ → [0, 1] be a function

such that:

• P (Γ) ≥ 0, for all Γ ∈ ∆;

• P (Ω) = 1;

• P (Γ ∪ Σ) = P (Γ) + P (Σ), for any mutually exclusive sets Γ,Σ ∈ ∆.

P is a probability function and (Ω,∆, P ) a probability space.

What is the idea behind Kolmogorov’s formalism? Although, similarly to the case of “infor-
mation,” there is no univocal interpretation of the notion of probability, Bar-Hillel and Carnap
(1952, 1953) proposed a semantic account of this notion particularly relevant for the develop-
ment of TSI. According to Bar-Hillel and Carnap’s interpretation, for a finite language L, Ω

3This is independent of whether Popper’s falsificationism provides a good demarcation criterion between sci-
ence and pseudo-science. Despite this question Popper is right in claiming that the greater the informativeness of
a theory, the greater is its potential to exclude cases.
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in the definition above is the class of all the different classical L-structures. In this sense, for
a formula φ of L, the probability of φ being the case is P (Γ), in which Γ is the subset of Ω

composed by all the different L-models of φ. In other words, the probability of a sentence is
determined by measuring how many different models it has.4

Moreover, similarly to Shannon and Weaver’s theory of information, in TSI the information
of a sentence φ, I(φ), is defined as the inverse of the probability P of φ (in Carnap’s sense) by
the equation I(φ) = 1 − P (φ). Hence, TSI formalizes the idea that the semantic information
carried by a sentence is the collection of the different models in which the given sentence is
false.5

Note that, if we want to measure, by means of TSI, the amount of information carried by a
sentence, then we need to count how many different models it has. So, the precise construction
of TSI depends on a preliminary account of the criteria of qualitative difference (and identity)
between models that is particularly relevant here. Two objects a and b are qualitatively the same
if, for every relevant property Q, a is Q if and only if b is Q. In this sense, it is necessary
to investigate which are the properties Q characterizing the qualitative identity (difference) be-
tween models that is relevant for TSI. This is a technical issue, therefore I postpone it to the
next subsection.

Besides this particularly important issue on identity criteria for models, the reader could
also ask whether the semantic notion of probability is in any sense useful for characterizing the
epistemically nuanced semantic information. If we want to describe the information associated
with the propositional content of a sentence, it surely makes a lot of sense to consider the
different scenarios in which the given sentence is true, its degree of falsifiability etc. Does the
same happen with the epistemically nuanced semantic information?

In my opinion, the consideration of probability in the formalization of the epistemically nu-
anced semantic information is in fact meaningful. The partial representation of truth-conditions
associated with our semantic competence presents different scenarios that satisfy a given sen-
tence. The only difference here is that this partial representation is imperfect and, consequently,
defeasible. The difference mentioned in the introduction of this thesis between ontological and
epistemological modalities is of help here. The partial representation of truth-conditions asso-
ciated with our semantic competence describes possible scenarios that satisfy a given sentence.
However, some of these scenarios are epistemically but not ontologically possible.

TSI’s probabilistic conception (this terminology is suggested by Floridi (2016, sec. 4)) of
(epistemically nuanced) semantic information satisfies and further explores GDI+DDD. Note
in particular that it satisfies the genetic neutrality condition, since, even in the case of the epis-

4This is not exactly Bar-Hillel and Carnap’s own way of presenting their ideas on probability: as I present next,
they follow a more syntactic approach on the subject. Despite such differences, my presentation is equivalent to
their approach. Bar-Hillel and Carnap (1952, p. 14) call this notion of probability as absolute logical probability.

5In fact Bar-Hillel and Carnap (1952) describe two different formal concepts of semantic information. The
authors argue that there is no unique concept that captures all aspects of the notion of semantic information. In
this thesis I consider only the definition of semantic information of a sentence in terms of the complementary of
its probability.
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temically nuanced semantic information, the class of different models of a sentence can be
objectively presented, as I have done so far in the framework of urn semantics.

Now, even though TSI is based on strong insights, in principle this theory is not the only
possible way of describing the (epistemically nuanced) semantic information. Alternatives to
TSI might be motivated by at least two general kinds of criticism to that theory. First, one
could object the semantic presuppositions behind TSI. Secondly, it is possible to object to the
conception of information itself underlying this theory.

An important example of the first way of criticism is the inferential approach to semantic
information that describes the semantic information of a sentence in terms of the space of in-
ferences in which it might play a role (Ibid., sec. 4). This approach to the subject is motivated
by an inferentialist conception of semantics that radically diverges from the model-theoretic
approach that is favoured here (the evaluative comparison of these approaches is a theme that
completely escapes the scope of this work).

The latter kind of criticism is championed by Floridi (2004, 2005) who argues that GDI
generates an excessively weak conception of semantic information that recognizes misinforma-
tion as a kind of information. Floridi famously claims that semantic information satisfies the
veridicality principle according to which only true content is in fact information. As I antici-
pated in the introduction of this thesis, there are strong reasons for recognizing misinformation
as a kind of information (Cf. FETZER, 2004) and, consequently, for blocking the principle of
truthfulness.

4.2.2 Technical aspects

In the previous subsection I showed that TSI’s measurement of information depends on
counting how many different models a given sentence has. So, in order to precisely define this
theory, first I provide a relevant criteria of qualitative identity for structures.

Working particularly in the context of classical propositional logic, in order to measure the
probability of a sentence φ, instead of looking directly to its class of models, Bar-Hillel and
Carnap (1952 , sec. 4) consider the disjunctive normal form of φ. For a finite propositional lan-
guage L (that is, for a finite language whose non-logical signature is a set of 0-ary predicates),
a formula ψ of L is said to be in disjunctive normal form if and only if ψ is

∨
Γ, for some set Γ

of game-normal formulas with quantifier rank 0 (see Definition 3.14 above). It is well-known
that in classic propositional logic, every formula φ is equivalent to a disjunctive normal form∨

Γ (Cf. SHOENFIELD, 1967, p. 40). Based on this, Carnap defines the probability of φ as the
sum of the probabilities of all game-normal formulas in Γ.

Bar-Hillel and Carnap follow a syntactic approach. However, from a semantic point of view
note that, in classic propositional logic, each γ ∈ Γ defines a class of isomorphic models of
φ. Consequently, Γ defines a partition by isomorphism of the class of models of φ. So, Bar-
Hillel and Carnap’s TSI measures probability (and information) of φ by counting how many
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non-isomorphic models it has.
Is isomorphism a relevant criterion of identity for the construction of TSI when we go first

order? First, there is a “pragmatic” reason why isomorphism is not a good criterion of identity
in this context of investigation. In first order logic, due to upward Löwenheim-Skolem theo-
rem, there are formulas whose classes of non-isomorphic models are proper classes. So, the
measurement of the probability of such a formula based on the counting of its non-isomorphic
models attributes maximum information to it, a quite undesirable result.

Secondly, there are at least two more conceptual reasons for rejecting isomorphism as a good
criterion of identity between structures. Continuing in a model-theoretic perspective, Hodges
(1997, pp. 73–74) rejects isomorphism as a relevant criterion of identity based on its non-
absoluteness. In Hodges’ words:

[. . .] the existence of an isomorphism can depend on some subtle questions about
the surrounding universe of sets. We can sharpen this second point with the help of
some set theory. If M is a transitive model of set theory containing vector spaces A
and B of dimensions ω and ω1 over the same countable field, then A and B are not
isomorphic in M , but they are isomorphic in an extension of M got by ‘collapsing’
the cardinal ω1 down to ω (Ibid., pp. 73–74).

In this passage, Hodges calls attention to the well-known fact that the theory of vector
spaces is κ-categorical (that is, all models of this theory with cardinality κ are isomorphic
between themselves) if and only if κ is an uncountable cardinal (Ibid., p. 42). In order to see
why the non-absoluteness of categoricity is problematic in the present context of investigation,
note that, motivated by the “pragmatic” reason mentioned above, someone could propose to
define the probability of a sentence in terms of the number of its non-isomorphic models with
cardinality at most κ, for some infinite cardinal κ. The problem with this approach is that the
resulting measure of probability (and, consequently, of information) can vary depending on
whether κ is countable or not.6

Moreover, the search for some relevant criteria of qualitative identity between structures is
a central issue of structuralism in philosophy of Mathematics. Resnik (1981, p. 535) in par-
ticular advanced an interesting argument against the idea that isomorphism is such a criterion.
According to Resnik, isomorphism wrongly distinguishes structures that are treated as the same

in standard mathematical practice. For instance, although the structure of the natural numbers
with successor function s, in symbols (N, s), is not isomorphic with the structure of the natu-
rals with the “less than” relation, in symbols (N, <), mathematicians widely agree that these
structures are identical.

6In classical logic, given Morley’s well-known categoricity theorem (MARKER, 2006, pp. 207–ff.) these are
the only cases that I need to consider. Even though it is true that, in classical logic, there are first order theories that
have 2κ non-isomorphic models with cardinality κ, for every uncountable κ (Ibid., pp. 189–ff.), this is not relevant
in the present context of investigation given that TSI provides a measure of semantic information that is blind for
differences between infinite cardinals. Whether Morley’s theorem holds in urn semantics is an open question and
a very advanced issue that fully escapes the scope of this work.



68

Hodges introduced his above mentioned remark on the non-absoluteness of isomorphism in
a context of exposition of basic results on back and forth equivalence. In fact, unlike isomor-
phism, back and forth consists in an absolute equivalence relation between structures. Further-
more, in the context of finite first order languages, the class of back and forth non-equivalent
models of any formula is a finite class. So, back and forth equivalence is immune to the “prag-
matic” argument advanced above. Note also that the Hintikka normal forms (see Definition
3.15 above), the syntactic counterpart of back and forth equivalence, are the first order gener-
alization of disjunctive normal forms. Therefore, the focus on back and forth equivalence is a
natural path for the first order formalization of TSI.7

Now I start to present, more technically, the formal apparatus of TSI. In what follows, unless
I explicitly say otherwise, my presentation of TSI is neutral about whether the underlying logic
is either classical logic or urn semantics. Let L be a finite first order language and consider φ
a formula of L. For any k < ω, let Γ(k, φ) be the set of formulas of L such that

∨
Γ(k, φ) ∈

Hnf ∗(φ) and qr(
∨

Γ(k, φ)) = k.8 Remember that Θ(k, x1, . . . , xn) is the set of game-normal
formulas of L with quantifier rank k and free-variables x1, . . . , xn. Let Θc(k, x1, . . . , xn) be its
subset of consistent formulas.9

Consider a list of functions (Pk : k < ω) such that Pk : P(Θc(k, x1, . . . , xn)) → [0, 1], for
every k < ω, and the triple (Θc(k, x1, . . . , xn),P(Θc(k, x1, . . . , xn)), Pk) is a probability space

as in Definition 4.1 above. Pk satisfies two additional clauses:

A. First, Pk(Γ) = 0 if and only if Γ is empty set;

B. Secondly, for any θ ∈ Θc(k, x1, . . . , xn), for every q > k, Pk({θ}) = Pq(Γ(q, θ)).

Let ForL(k) be the set of formulas of L with variables within x1 . . . , xn such that there
is some ψ ∈ Hnf ∗(φ) with quantifier rank k. Each Pk can be extended to a function of k-

probability P ′k : ForL(k) → [0, 1] such that, for any φ ∈ ForL(k), P ′k(φ) = Pk(Γ(k, φ) ∩
Θc(k, x1, . . . , xn)).

Based on this notion of probability, it is possible to define a measure of semantic informa-
tion.

Definition 4.2 Consider a list of functions (Ik : k < ω) such that, for every k < ω, Ik :

ForL(k) → [0, 1] and, for every φ ∈ ForL(k), Ik(φ) = 1 − P ′k(φ). Ik is a k-information
function.

7Resnik (1981, pp. 535–536) proposes a different criterion of equivalence between structures based on bi-
interpretability conditions. However, the model theoretic aspects of such criterion are not so clear and it does not
present itself clearly as a way of generalizing Bar-Hillel and Carnap’s TSI. Anyway, the relationship between back
and forth equivalence and Resnik’s criterion of structural equivalence is a promising topic of future research.

8Note that Γ(k, φ) denotes possibly different sets of formulas in classical logic and urn semantics, as I showed
in the previous chapter.

9As in the previous footnote, in general Θc(k, x1, . . . , xn) denotes different subsets in classical logic, p- and
i-urn semantics.



69

Given that Pk is a measure, then it is easy to verify that Ik is a measure as well. TSI is
the theory according to which the amount of information carried by a formula φ ∈ ForL(k) is
Ik(φ), for any k < ω. The notion of k-information satisfies two basic theorems. First, every for-
mula that is unsatisfiable in the underlying logic carries maximum information. In dual terms,
every formula valid in the underlying logic carries null information. Secondly, the measure of
semantic information remains stable through ranks.

Theorem 4.3 Let φ ∈ ForL(k). Then Ik(φ) = 1 if and only if φ is unsatisfiable in the underly-

ing logic. Further, Ik(φ) = 0 if and only if φ is valid in the underlying logic.

Proof. If φ is unsatisfiable, then Γ(k, φ) ∩ Θc(k, x1, . . . , xn) = ∅. So, by definition P ′k and
requirement A, P ′k(φ) = Pk(Γ(k, φ) ∩ Θc(k, x1, . . . , xn)) = 0. Hence, Ik(φ) = 1 − 0 =

1. For the second part of the theorem, observe that if φ is valid in the underlying logic,
then Γ(k, φ) ∩ Θc(k, x1, . . . , xn) = Θc(k, x1, . . . , xn). By definition of probability space,
Pk(Θ

c(k, x1, . . . , xn)) = 1. So, Ik(φ) = 1− 1 = 0

Theorem 4.4 Let φ be as in Theorem 4.3. For any q > r ≥ k, P ′q(φ) = P ′r(φ).

Proof. Let θ1, . . . , θm be all the consistent formulas in Γ(r, φ). By definition, P ′r(φ) = Pr({θ1})
+ . . . + Pr({θm}). By requirement B, for every 0 < i ≤ m, Pr(θi) = Pq(Γ(q, θi)). Now,⋃
0<i≤m

Γ(q, θi) collects all the consistent game-normal formulas in Γ(q, φ). So, P ′q(φ) =

Pq(
⋃

0<i≤m
Γ(q, θi)) = P ′r(φ).

Theorem 4.4 shows that Ik describes an absolute notion of semantic information. In order
to determine what is the semantic information of a given formula in ForL(k), it is enough to
consider one Iq, q ≥ k. Theorem 4.3 is not equivalent to BCP and SoD. BCP means that every
contradiction of classical logic carries maximum information. However, as I showed in chapter
3, there are contradictions of classical logic that are satisfied in urn semantics. Similarly, SoD
means that validities of classical logic carry null information. On the other hand, I also showed
in chapter 3 that some validities of classical logic have counter-models in urn semantics.

Now, there is at least one important difference between the behaviors of TSI in classical
logic and in urn semantics. Given the undecidability of classical logic, in general Θc(k, x1, . . . , xn)

is not a recursively enumerable set. Therefore, P ′k(φ) and, consequently, Ik(φ) are generally
not computable. Hence, in the framework of classical logic, TSI does not provide an effec-
tively computable notion of semantic information. Based on this observation, Hintikka (1970b)
suggested an alternative notion known as surface semantic information that is effectively com-
putable and blocks SoD (in next section I compare Hintikka’s proposal with mine).

On the other hand, urn semantics is a decidable system of logic (Corollary 3.13). So,
Θc(k, x1, . . . , xn) denotes a recursive set in urn semantics. Therefore, P ′k(φ) and Ik(φ) are
computable and TSI characterizes an effectively notion of semantic information in urn seman-
tics.
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Finally, I prove that urn semantics formalizes TSI without SoD.

Corollary 4.5 (Failure of SoD in urn semantics) Urn semantics does not satisfy SoD, that is,

there is some validity of classical logic φ in ForL(k) such that Ik(φ) > 0.

Proof. By Theorems 3.28 and 3.34, there is some classically unsatisfiable formula ψ inForL(k)

that is satisfiable in urn semantics. So, Γ(k, ψ) ∩ Θc(k, x1, . . . , xn) 6= ∅ and, by require-
ment A, Pk(Γ(k, ψ) ∩ Θc(k, x1, . . . , xn)) > 0. Note that Γ(k,¬ψ) ∩ Θc(k, x1, . . . , xn) =

Θc(k, x1, . . . , xn)−(Γ(k, ψ)∩Θc(k, x1, . . . , xn)). So, P ′k(¬ψ) = 1−Pk((Γ(k, ψ)∩Θc(k, x1, . . . ,

xn))) < 1. Hence, Ik(¬ψ) = 1− P ′k(¬ψ) > 0. ¬ψ is our desired φ.

4.3 A comparison with similar approaches

4.3.1 Hintikka’s depth and surface information

In this section I compare the presently suggested reestablishment of TSI with similar pro-
posals in the literature. First, I compare this work with the theory of semantic information by
Hintikka (1970a, 1970b).

Hintikka’s work has several points of contact with this thesis. First, Hintikka (1970b, p.
264) accepts the probabilistic conception of information favoured by TSI: in the same steps
of Bar-Hillel and Carnap, Hintikka equates semantic information with degree of uncertainty.
Furthermore, Hintikka supports the formal characterization of the semantic information of a
formula in terms of the complementary of its probability. Secondly, Hintikka (Ibid., pp. 288–
289) is a pioneer in acknowledging that SoD is problematic and must be rejected by a sound
theory of semantic information. Finally, Hintikka characterizes the probability of a formula φ
in terms of the number of adequate game-normal formulas in Γ(k, φ).

The fundamental difference between my proposal and Hintikka’s can be redirected to the
following question: what is the relevant notion of adequacy that plays a role in the characteriza-
tion of the probability of a formula? As I showed in the previous section, TSI characterizes the
probability of φ in terms of the number of consistent formulas in Γ(k, φ). Hintikka’s proposal,
on the other hand, is not so simple.

I mentioned previously that Θc(k, x1, . . . , xn) does not denote a recursively enumerable set
in classical logic. However, by completeness of classical logic (Cf. SHOENFIELD, 1967, pp.
43–48), the complementary of Θc(k, x1, . . . , xn) is semi-decidable. Hintikka (1965b) showed
that the following is a semi-decision procedure for determining the extension of Θ(k, x1, . . . , xn)−
Θc(k, x1, . . . , xn). In what follows, for a formula φ with free-variables x and y, let the inverse

of φ over x and y be the formula generated from φ by interchanging the occurrences of x and y
in it (for instance, if φ is an atomic formula P (x, y), its inverse over x and y is P (y, x)).

Definition 4.6 Let θ be a game-normal formula with quantifier rank k and free-variables x1, . . . , xn.

θ is trivially inconsistent if and only if one of the following conditions holds:



71

• For some game-normal formula γ ∈ Θ(k − 2, x1, . . . xn, yk, yk−1) occurring in θ, the

inverse of γ over yk and yk−1 does not occur in θ;

• For two game-normal formulas θ1 and θ2 occurring in θ with quantifier rank k − 1, for

any game-normal formula γ ∈ Θ(k − 2, x1, . . . xn, yk, yk−1) occurring in θ1, the inverse

of γ over yk and yk−1 does not occur in θ2;

• For any game-normal formula γ ∈ Θ(k − 1, x1, . . . xn, yk) occurring in θ, it is not valid

that θ → γ yk[xi], for some 0 < i ≤ n.

It is easy to verify that every trivially inconsistent game-normal formula is in fact incon-
sistent in classical logic. Hintikka (Ibid.) also proved that, for every inconsistent game-normal
formula θ with quantifier rank k < ω, there is some q ≥ k such that all game-normal formulas in
Γ(q, θ) are trivially inconsistent. Hence, as a semi-decision procedure for determining whether
some formula θ is in Θ(k, x1, . . . , xn)−Θc(k, x1, . . . , xn), we simply need to consider whether
there is some H-normal form

∨
Γ(q, θ) composed only by trivially inconsistent game-normal

formulas. For simplicity, let me call this procedure Hintikka’s expansion method.
Let Θti(k, x1, . . . , xn) be the subset of trivially inconsistent formulas in Θ(k, x1, . . . , xn)

and let Θti(k, x1, . . . , xn) = Θ(k, x1, . . . , xn) − Θti(k, x1, . . . , xn). Clearly, Θti(k, x1, . . . , xn)

is recursive and, by Hintikka’s expansion method, is included (properly, when k < 1) in
Θ(k, x1, . . . , xn)−Θc(k, x1, . . . , xn).

Now, Hintikka defines two different notions of semantic information. On one hand, Hintikka
(1970b, pp. 274–275) defines the notion of depth information that is exactly the concept of k-
information (Definition 4.2). On the other hand, Hintikka (Ibid., pp. 276–281) defines the
notion of surface information based on an alternative notion of probability that he calls pre-

logical probability.
Hintikka’s functions of pre-logical probability Qk are closely similar to functions Pk with

two differences: first, whilst functions Pk are defined on parts of Θc(k, x1, . . . , xn), the func-
tions Qk are defined on parts of Θti(k, x1, . . . , xn); secondly, whilst functions Pk satisfy re-
quirement B, functions Qk replace this requirement by the following one:

B’. For any θ ∈ Θti(k, x1, . . . , xn), for every q > k,Qk({θ}) = Qq(Γ(q, θ)∩Θti(q, x1, . . . , xn)),
if Γ(q, θ) ∩Θti(q, x1, . . . , xn) 6= ∅.

Based on the concept of pre-logical probability, similarly to what I have done above, it
is possible to define a probability function Q′k on ForL(k) such that Q′k(φ) = Qk(Γ(k, φ) ∩
Θti(k, x1, . . . , xn)). Finally, the surface information of φ in rank k (or simply, the k-surface
information of φ) is defined as Jk(φ) = 1−Q′k(φ).

There are important differences between depth and surface information. First, SoD fails for
surface information, that is, there are logical truths φ such that, for some k < ω, Jk(φ) > 0. The
reason behind this failure of SoD is that, for some logical truth φ, Γ(k, φ) 6⊇ Θti(k, x1, . . . , xn).
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Further, surface information is not a stable measure of semantic information since, for some
contradiction φ such that Γ(k, φ) has non-trivially inconsistent game-normal formulas, for some
q > k, Jk(φ) < Jq(φ) (Ibid., pp. 279–281). In fact, depth information can be seen as the
limit of variability of surface information through ranks (Ibid., pp. 283–284). For instance,
based on Hintikka’s expansion method it is possible to verify that the surface information of a
contradiction φ gradually increases when we go upwards in the hierarchy of ranks. In the limit,
the surface of information of φ collapses with its depth information.

Does surface information provide a good strategy for the reestablishment of TSI? In princi-
ple, there are reasons to think it does. First, considering that non-trivial inconsistencies have an
appearance of consistency, surface information could be seen as representing the initial epis-
temic situation of an ordinary cognitive agent towards the status of logical truths and contradic-
tions (Ibid., pp. 291–292). Further, Hintikka (Ibid., p. 142) claims that his expansion method
nicely describes the concrete process of discovery of the status of logical truths and contra-
dictions by real cognitive agents. In this sense, surface information supposedly formalizes the
process of accessing the actual information (i.e., depth information) carried by formulas. Note
that, according to Hintikka (1965a), his expansion method gives flesh and blood for a precise
conception of synthetic a priori knowledge. Hence, if this expansion method is in fact a good
formalization of the real process of discovery of the status of logical truths, it offers a strong
account of logical knowledge as synthetic a priori.

However, Hintikka’s proposal faces important challenges. First, Sequoiah-Grayson (2008,
pp. 88–ff.) objects that surface information still satisfies a restricted version of SoD for monadic
and propositional logic: surely there are really informative logical truths in both fragments
of classical logic, but Hintikka’s surface information is completely blind for anyone of these
cases. This is not a strong criticism against Hintikka’s proposal (in fact, this is an instance of a
fallacious reasoning strategy whose use is unfortunately very common in current philosophical
discussion) but, since it may also be seen as a challenge for my proposal (Cf. JAGO, 2007, pp.
331–338), in the following I advance a proper reply to it.

Generally speaking, philosophical investigation of any kind is always motivated by a set of
problems, questions or simply curious phenomena that present themselves to us pre-philosophi-
cally. For a simple example, the whole contemporary debate on the nature and definition of
“knowledge” is motivated by the pre-philosophical acknowledgement that we are living crea-
tures who have the capability of producing and communicating knowledge. This state of affairs
seems curious to us and, because of this, we start to reflect on what knowledge is. In fact, one of
the central dangers for any philosophical enterprise is exactly its alienation from its motivating
pre-philosophical questions and phenomena (Cf. HANSSON, 2000, pp. 168–ff.).

Now, the philosophical investigation on the ampliative character of logical knowledge is
motivated by the pre-philosophical observation that sometimes we ampliate our knowledge by
discovering that some sentence expresses a logical truth. For simplicity, let me call this observa-
tion as the experience of the ampliativeness of logic. Can we say that all the different situations
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in which we have experienced the ampliativeness of logic are all instances of the same kind
of phenomenon? Given our poverty of empirical evidence, we cannot be so sure: maybe there
are different types of ways in which logical knowledge can be ampliative. In this sense, per-
haps the case of knowledge of propositional logic is drastically different from its corresponding
quantificational case.

Therefore, the above stated Sequoiah-Grayson’s criticism against Hintikka’s proposal is not
adequate. Hintikka’s proposal needs to be evaluated by what it proposes itself to do, namely,
to give an account of the ampliative character of the knowledge of logical truths whose valid-
ity depends on the semantics of quantifiers. At this point of the philosophical enterprise, we
cannot say whether the ampliativeness of logic is an univocal phenomenon or rather a web of
different but interconnected facts. Perhaps there is only one way in which logical knowledge
can be ampliative. However, in face of the poverty of empirical evidence, it is conceptually
more parsimonious to assume the exactly opposite hypothesis that there are varieties of logical
knowledge.

Besides that, Sequoiah-Grayson offers a stronger criticism against Hintikka’s proposal:

[...] it is arguable that Hintikka understands his disproof method [i.e., Hintikka’s ex-
pansion method] as an auxiliary process that allows us to identify and measure the
informativeness of deductive inferences and logical truths irrespectively of the ac-
tual proof procedure used in their derivation. The complexity of Hintikka’s disproof
method apparently brings with it the exposure of the deep structure of deductions.
[...] However, Hintikka is not necessarily in a good position simply because of this.
In fact, what good reasons do we have for believing that measures of surface infor-
mation do capture some of the informativeness of deductive inferences and logical
truths? (Ibid., pp. 87-88)

What are the reasons for thinking that the non-trivially inconsistent game-normal formulas
in Γ(k, φ) jointly describe the initial epistemic scenario of a cognitive agent who simply under-
stands the propositional content of φ? Further, what are the reasons for thinking that Hintikka’s
expansion method adequately formalizes the mechanism underlying ordinary cognitive agent’s
process of discovery of the status of logical truths and contradictions? Hintikka does not ad-
vance any reason in support of these claims, on the contrary to what I have done in the first
chapter of this thesis in order to support my proposal.10

4.3.2 Jago’s account of semantic information

More recently, Jago (2009, 2013) proposed an account of semantic information and the am-
pliative character of logical knowledge that is conceptually very similar to the one proposed in

10However, Hintikka’s insight that an adequate account of semantic information should be associated with a
nice characterization of rational agents’ epistemic dynamics should not be overlooked. Even though we might
have some reservation with respect to Hintikka’s theory of semantic information, the theoretic goals of Hintikka’s
work on epistemology of logic still do not have a good resolution in the literature’s state-of-art.



74

this thesis. In the spirit of what is done here, one of Jago’s central premises is that the semantic
information of a sentence φ must be conceived in terms of the multiplicity of possibilities that
are excluded by the truth of φ (JAGO, 2013, pp. 317–319). Now, in classical logic, this funda-
mental idea immediately implies SoD: given that logical truths do not exclude any possibility,
then logical truths convey null information.

In order to solve this problem, Jago explores the same strategy followed in this thesis: he
enriches the semantic framework that he is working with with a class of epistemically possible
worlds. These worlds represent a class of apparent possibilities which are excluded as ontolog-
ically impossible by the validity of a logical truth.

What kinds of ontologically impossible worlds are epistemically possible? Jago’s answer to
this question relies on the following framework. Jago (Ibid., pp. 327–330) considers a modal
frameF = 〈W,R, V +, V −〉 in whichW is a set of worlds,R is an accessibility relation, V +(w)

and V −(w) are the sets of formulas verified and falsified in the world w, respectively. Consid-
ering a generic multi-conclusion sequent calculus, each w ∈ W represents a valid sequent
V +(w) ` V −(w). Informally speaking, w is a prima facie considerable world not excluded by
the initial epistemic situation of a cognitive agent who does not know that V +(w) ` V −(w) is
valid.

Jago defines R as a set of pairs and triples such that 〈w, u〉 ∈ R if and only if

V +(u) ` V −(u)

V +(w) ` V −(w)

is a valid transformation, and 〈w, u, t〉 ∈ R if and only if

V +(u) ` V −(u) V +(t) ` V −(t)

V +(w) ` V −(w)

is a valid transformation.
Further, Jago considers rooted, directed and acyclical graphs in F such that, for any w, u in

the domain of the graph, 〈w, u〉 is an edge of the graph if and only if there is a subset X ⊂ W

such that 〈w,X〉 ∈ R, u ∈ X and any x ∈ X if and only if 〈w, x〉 is an edge of the graph. In
other words, each such graph with root w represents a possible proof of V +(w) ` V −(w). For
simplicity, Jago (Ibid., p. 329) calls such graphs as point-graphs.

Now, Jago defines the class of epistemically possible worlds in the following terms: for a
previously fixed f < ω, a worldw is epistemically possible if and only if the smaller point-graph
in F with root w has size greater than f . That is, in the characterization of the initial epistemic
situation of an ordinary cognitive agent, Jago considers as epistemically possible only those
worlds whose characteristic sequent calculus has a minimum degree of proof complexity.

What is the value of f in this definition of epistemically possible world? In this point, there
is a fundamental difference between Jago’s work and mine: Jago thinks that it is not possible
to fix a priori the value of f , because it changes from context to context. More precisely, Jago
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(Ibid., pp. 329–ff.) prefers to say that the notion of “epistemically possible” is vague.
Even though there is surely a difficulty in differentiating epistemically possible worlds from

mere impossibilities, Jago’s claim is untenable: as I argued in the first chapter of this thesis,
an ordinary cognitive agent, in her initial epistemic situation, has some partial knowledge of
truth-conditions associated with her semantic competence. Now, since two individuals who un-
derstand a given sentence access the same propositional content, the minimum knowledge of
truth-conditions associated with their semantic competence needs to be the same. So, this thesis
advances a claim that drastically diverges from Jago’s work: I believe that the presently sug-
gested account of the knowledge of truth-conditions connected with our semantic competence
and the formalization of this account based on urn semantics provide a discrete definition of
epistemically possible world.

On the other hand, Jago criticizes the identification of epistemically possible worlds with
urn structures:

There are, however, several serious problems with using urn models in this way
[i.e., for characterizing epistemically possible worlds]. [. . .] In using these models,
Hintikka works with a notion of an agent’s logical competence, measured in terms
of quantifier depth d. The rough idea is that greater competence correlates with the
ability to reason correctly with sentences involving higher numbers of embedded
quantifiers. But quantifier depth does not seem to be a very good measure of [. . .]
logical competence [. . .] Suppose Anna completes a (correct) proof, in which no
sentence has a quantifier depth greater than d, of a mathematical statement A. If she
completed the proof through skill and not random luck, her achievement reflects her
competence, and so we must assign her a competence of at least d. Then, no d′ -
invariant model was ever an epistemic possibility for Anna, for any d′ ≤ d. But
since A appears in the proof, it must have a quantifier depth no greater than d,
and so is true in all d-invariant models. Consequently, in a Hintikka-style model
of knowledge, Anna is modelled as having known A all along; and in a model of
content, her proof is modelled as being contentless and uninformative. This is just
what we want to avoid (Ibid., pp. 324–325).

Jago’s criticism confuses two different moments of epistemic competence. On one hand,
given the completeness of first order logic, of course any cognitive agent has the potential of
having full epistemic competence in discovering the validity of any given logical truth. How-
ever, the full knowledge of the truth-conditions of a logical truth is not available from the start.
In general, the process of discovering the validity of logical truths involves great complexity.
So, in the initial moment in which someone merely understands a sentence expressing a log-
ical truth, this person does not know completely the truth-conditions of the sentence. This
initial epistemic scenario is what is nicely formalized through urn semantics, not the final one
in which the cognitive agent in question already knows that the considered sentence is a logical
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truth. However, the former scenario is exactly what needs to be described in order to give an ac-
count of the ampliative character of logical knowledge and the semantic information of logical
truths.

Finally, it is possible to point out a further problematic feature of Jago’s proposal. The
predicate “does not have proofs with complexity smaller than f” is not partially recursive.
Therefore, the notion of probability playing a role in Jago’s proposal and, consequently, its
derivative notion of semantic information are not computable. This is not necessarily a bad
feature of Jago’s proposal, however note that some alternative proposals (including mine) do
not present this feature.

4.4 Conclusion

In this chapter I presented a reassessment of TSI based on urn semantics. I showed that,
based on this framework, TSI is a stable measure of semantic information that does not imply
SoD. Furthermore, I considered two similar proposals on the subject by Jago (2009, 2013) and
by Hintikka (1970a, 1970b).

Despite the similarities between these works, contrary to my proposal, Jago’s and Hintikka’s
face some important challenges: first, Jago and Hintikka propose non-effectively computable
notions of information. This is in fact a minor problem of these theories. The biggest problem
of Hintikka’s proposal is the lack of evidence of its soundness. By its turn, the most pressing
difficulty of Jago’s proposal is the fact that his account conceives the notion of epistemically
possible world as a vague concept. Finally, I also presented that Jago has some concerns against
the use of urn semantics as a framework for reestablishing TSI, and en passant I replied to these
objections.

This exposition ends the main part of this thesis. In the second part I consider some more
advanced results on urn semantics and semantic information. In the next chapter I consider
some questions about categoricity in urn semantics. In the present context of investigation,
this is a relevant research agenda since, in the first order case, TSI measures the information
of a sentence by counting how many non-equivalent models it has, and the relevant notion of
equivalence here (i.e., back and forth equivalence) is conceptually dependent on the notion of
isomorphism.
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Part II

More advanced studies
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Chapter 5

Measuring semantic information:
categoricity in urn semantics

5.1 Introduction

In what follows, for a first order language L, by a theory T of L (an L-theory) I mean any
set of sentences (i.e., closed formulas) of L. I showed in the last chapter that TSI measures
the semantic information of a formula by counting how many non-equivalent models it has.
The notion of equivalence that is relevant here is back and forth equivalence, a notion that is
conceptually dependent on the notion of isomorphism. So, in order to understand the range of
variability of information of sentences it is necessary to consider the following question first:
for a first order language L and for an L-theory T , how many models T has up to isomorphism
in urn semantics?

Olin (1978) presented a seminal investigation on this question with interesting results. How-
ever, he focused on p-urn semantics without considering its i- counterpart. In this chapter I
expand the scope of Olin’s research for i-urn semantics. Preliminarily let me introduce some
further terminology. Following common usage, I say that two (urn) structures are elementary

equivalent if and only if they agree in all sentences. I denote elementary equivalence by the
symbol “≡”. Moreover, I generalize the model-theoretic notion of categoricity for urn seman-
tics in the following way.

Definition 5.1 Let T be an L-theory. In p-urn semantics, T is categorical if and only if any two

L-p-urn models M̂C and N̂C′ of T are isomorphic. T is κ-categorical if and only if any two

L-p-urn models M̂C and N̂C′ of T of cardinality κ are isomorphic.

Sometimes in the following I consider the stronger notion of strict categoricity as well as
the auxiliary concept of full eligibility.

Definition 5.2 Let M̂C be an L-p-urn structure and M̂ be the set of p-eligible sequences ofM
over C. M̂C is fully eligible if and only if for any element a ofM, a occurs in some ā ∈ M̂.
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Definition 5.3 Let T be an L-theory. In p-urn semantics, T is strictly categorical if and only

if any two fully eligible L-p-urn models M̂C and N̂C′ of T are isomorphic. T is strictly κ-
categorical if and only if any two fully eligible L-p-urn models M̂C and N̂C′ of T of cardinality

κ are isomorphic.

Usually I say of a p-urn structure M̂C that it is (strictly) (κ-)categorical in order to mean that
its theory (i.e., the set of sentences that are satisfied by M̂C) has the relevant property. Given
the inclusion of i-urn structures in the class of p- ones, Definitions 5.1–5.3 are immediately
generalizable to i-urn semantics.

Olin’s work considers the conditions for (strict) (κ-)categoricity in urn semantics. It is easy
to see that in urn semantics there are neither finite categorical nor infinite κ-categorical models,
in clear opposition to classical logic. For proving that there are no finite categorical models in
urn semantics, consider any finite p-urn structure M̂C: for any structureN that extendsM with
a new non-eligible element a, N̂C is elementary equivalent to M̂C but non-isomorphic to it. By
a similar argument, we show that any infinite p-urn structure M̂C is extendable to an elementary
equivalent but non-isomorphic N̂C with same cardinality. Note that these results hold also in
i-urn semantics given the inclusion of its class of structures in the class of p-urn structures.

However, there are also some non-trivial questions about categoricity in urn semantics. In
particular, strict categoricity presents itself as a particularly complex subject matter. Olin (1978)
obtained some important results on this topic, focusing attention on p-urn semantics. Whether
there are finite or infinite strict categorical models in i-urn semantics is still an open issue. In
this chapter I consider this problem in particular.

This chapter is organized as follows: in section 5.2, I present three major results by Olin
(1978) on strict (κ-)categoricity in p-urn semantics. In subsection 5.3.1, changing the focus to i-
urn semantics I investigate whether there are infinite strictly categorical i-urn structures. Finally,
in subsection 5.3.2, I present some initial results on finite categoricity in i-urn semantics.

5.2 Olin’s results on p-urn semantics

Olin (1978) presented limitative results about categoricity and p-urn semantics. First, Olin
showed that there are no finite strictly categorical p-urn structures. Secondly, he showed that,
given any infinite, non-fully eligible p-urn structure M̂C, there is a fully eligible, elementary
equivalent but non-isomorphic N̂C′ of same cardinality. Finally, Olin showed that infinite strict
κ-categoricity holds under special conditions in p-urn semantics. In what follows, I present an
overview of Olin’s results.1

1Olin (1978, pp. 339–ff.) also obtained some results on finite κ-categoricity in p-urn semantics: Olin showed
that fully eligible p-urn structures of cardinality 2 are 2-categorical and also proved that, particularly for monadic
languages, this result is generalizable for any cardinality κ < ω. Olin left as an open question whether it is possible
to achieve a similar result on the behavior of finite κ-categoricity in p-urn semantics for all first order languages.
These questions as well as their corresponding analogs in i-urn semantics are quite interesting, I did not consider
them here for methodological reasons only.
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Olin’s proofs of these results essentially rely on what we might call isomorphic sequences.
I precisely define this concept below. For a p-urn structure M̂C and for any p-eligible sequence
ā ofM over C, let me say that an element b ofM is an i-th eligible extension of ā over C if and
only if b is the i-th element in some p-eligible sequence b̄ ofM over C whose initial segment is
ā. I call I(ā,C) = {c ∈M : c is i-th eligible extension of the p-eligible sequence ā ofM over
C, for some i < ω} the set of eligible extensions of ā over C.

Definition 5.4 Let M̂C be an L-p-urn structure, ā and b̄ be two p-eligible sequences of M
over C with length n. A bijection ι : I(ā,C) → I(b̄,C) is isomorphism between the eligible

extensions of ā and b̄ if and only if the following holds:

• ι(ai) = bi, for any 0 < i ≤ n;

• For any sequence c̄ of I(a,C) such that ā is its initial segment, c̄ is p-eligible sequence of

M over C if and only if ι(c̄) is it as well;

• For any atomic formula P (x1, . . . , xm) and for any sequence c̄ of I(a,C) with length m,

M̂C |= P (c̄)⇔ M̂C |= P (ι(c̄)).

If ι is a bijection between the eligible extensions of p-eligible sequences ā and b̄, for any
p-eligible sequence c̄ that extends ā, ι(c̄) is the isomorphic copy of c̄. Accordingly, I(ā,C) and
I(b̄,C) are isomorphic copies of each other.

Theorem 5.5 There are no finite, strictly categorical p-urn structures.

Proof. Consider an arbitrary p-urn structure M̂C and let M̂ be the set of p-eligible sequences
ofM over C. Consider also that the domain M ofM has cardinality n < ω and M̂C is fully
eligible. Let a ∈ C0.

For an arbitrary natural number m > n and for each 0 < i ≤ m, consider non-empty sets
B(i) with same cardinality as I(a,C) and such that [

⋃
0<i≤m

B(i) ] ∩M = B(i) ∩ B(j) = ∅, for

each 0 < j ≤ m different from i. Further, consider bijections ιi : I(a,C)→ B(i).
Let N = M ∪ [

⋃
0<i≤m

B(i) ] and N̂ ⊃ M̂ be a set of p-eligible sequences of N such that a

sequence b̄ is in N̂ − M̂ if and only if b̄ ∈ N −M and, for some 0 < i ≤ m, b̄ = ιi(ā), for
some ā ∈ M̂ with a in its first position.

Consider the extension N ⊃ M with domain N such that, for every n < ω and for every
n-ary predicate P of L:

• For each 0 < i ≤ m, for any b̄ ∈ B(i)n,M (classically) satisfies P (ι−1i (b̄)) if and only if
N (classically) satisfies P (b̄);

• For any b̄ ∈ Nn − [
⋃

0<i≤m
B(i)n], N (classically) satisfies P (b̄).
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So, for each 0 < i ≤ m, ιi is isomorphism between the eligible extensions of a and ιi(a).
Let C′ be the p-eligibility set of N that generates N̂. Now, I will prove that M̂C ≡ N̂C′ .
In fact, we only need to consider whether the new p-eligible sequences of N̂C′ change the
satisfaction of quantified formulas. In this sense, note that the mappings ιi describe a back and
forth equivalence between M̂C and N̂C′ . Therefore, given Theorems 3.20 and 3.21, these p-urn
structures are elementary equivalent. However, they are not isomorphic, since the cardinality of
N is greater than the cardinality of M .

As a general remark on Olin’s strategy, let me note that this proof works by fixing an eligible
element a of the given urn structure and extending this model with isomorphic copies of the set
of eligible extensions of a. This extension preserves the full eligibility of the original model.
Moreover, given that it only adds isomorphic copies, by back and forth equivalence we verify
that the extended model is elementary equivalent to the originally given one. However, we
can guarantee this elementary equivalence only because p-urn semantics enables us to reject as
ineligible any sequence that mixes elements of the original model with newly added ones. This
is not possible in i-urn semantics. Therefore, it is an interesting question to ask whether it is
possible to preserve Theorem 5.5 in i-urn semantics (in subsection 5.3.2 I present some partial
results on this issue).

Olin’s proof of the next theorem follows a similar strategy.

Theorem 5.6 Let M̂C be a non-fully eligible L-p-urn structure of cardinality κ ≥ ℵ0. Then,

there is some L-p-urn structure M̂′
C′ of same cardinality that is elementary equivalent to M̂C

but non-isomorphic to it. In particular, M̂′
C′ is fully eligible.

Proof. Let C∗ be the set of elements occurring in p-eligible sequences ofM over C. Consider
the following two cases:

• First, assume that the cardinality of C∗ is κ. In this case, it is enough to consider the
substructure N ⊂M with C∗ as its domain. Note that N̂C ≡ M̂C but N̂C 6∼= M̂C;

• Secondly, assume that the cardinality of C∗ is less than κ. Consider again a substructure
N as above. As in the proof of Theorem 5.5, for a fixed a ∈ C0, generate an extension
M′ ⊃ N of cardinality κ by adding κ isomorphic copies of the set of eligible extensions
of a. Let C′ be the extension of C with such isomorphic copies. M̂′

C′ ≡ M̂C but, since
M̂′

C′ is fully eligible, then M̂′
C′ 6∼= M̂C.

Theorem 5.6 depends on the fact that M̂C is not fully eligible. The next theorem shows that,
under special conditions, there are infinite, strictly κ-categorical p-urn structures.

Theorem 5.7 Let M̂C be a fully eligibleL-p-urn structure of cardinality κ ≥ ℵ0. The following

are equivalent:
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1. M̂C is strictly κ-categorical;

2. The following holds: i) L is a monadic language, ii) for any two elements a, b ∈ C0,

I(a,C) is isomorphic with I(b,C) and iii) for any a ∈ C0, I(a,C) = {a}.

The proof of this theorem uses the following lemmas.

Lemma 5.8 For κ ≥ ℵ0, let M̂C be a fully eligible and strictly κ-categorical L-p-urn structure.

Then, for any element a ∈ C0, the cardinality of the set Iso(a) = {c ∈ C0 : there is an isomor-

phism between the eligible extensions of c and a} is κ. Further, for any two elements a, b ∈ C0,

there is an isomorphism between their eligible extensions.

Proof. Let M be the domain of M. For the first part of the lemma, assume that, for some
a ∈ C0, the cardinality of Iso(a) is less than κ. Then, by adding κ isomorphic copies of I(a,C)

it is possible to generate extensions N ⊃ M and C′ ⊃ C of cardinality κ such that M̂C ≡ N̂C′

but M̂C 6∼= N̂C′ , as in the proofs of Theorems 5.5 and 5.6.
For the second part, assume that there are a, b ∈ C0 such that there is no isomorphism in

their eligible extensions. By the first part of the lemma, Iso(a) and Iso(b) have both cardinality
κ. Then, consider the substructureN ⊂Mwith domainN = (M−

⋃
{I(c,C) : c ∈ Iso(b)})∪

I(b,C). Given that Iso(a) ⊂ N , then N has cardinality κ. Consider that C′ is the subset of C
obtained by eliminating

⋃
{I(c,C) : c ∈ Iso(b)}. As in the proof of Theorem 5.5, it is possible

to show that M̂C is back and forth equivalent to N̂C′ and, consequently, M̂C ≡ N̂C′ . However,
since Iso(b) is smaller in N than inM, then M̂C 6∼= N̂C′ .

Lemma 5.9 Let M̂C be a fully eligible and strictly κ-categorical L-p-urn structure, for some

κ ≥ ℵ0. Then, for any two elements a, b ∈ C0 of M, I(a,C) ∩ I(b,C) = ∅. Further, L is

monadic language.

Proof. Let M be the domain of M. For the first part of the lemma, suppose that there are
elements a, b ∈ C0 such that I(a,C)∩ I(b,C) 6= ∅. So, consider a variation C′ of C generated by
replacing each c ∈ I(a,C)∩ I(b,C) by two different elements ca and cb. Add all such elements
ca and cb to I(a,C′) and I(b,C′), respectively. Now, let N be the set generated from M after
such replacements.

Consider the variation N of M such that, for any n-ary predicate P ∈ L and for any
sequence of elements a′1, . . . , a

′
n of N , N satisfies P (a′1 . . . a

′
n) if and only if M satisfies

P (a1 . . . an), in which, for any 0 < i ≤ n, if a′i is in M , a′i = ai; otherwise, ai is some
c ∈ I(a,C) ∩ I(b,C) and a′i is either ca or cb.
N̂C′ has cardinality κ as well. Since there are isomorphisms ι : I(a,C) → I(a,C′) and

ι′ : I(b,C) → I(b,C′), there is a back and forth equivalence between M̂C and N̂C′ . Hence,
M̂C ≡ N̂C′ . However, M̂C 6∼= N̂C′ , what contradicts the strict κ-categoricity of M̂C.

For the second part, assume that L is not monadic. So, fix a n-ary predicate P , for some
n ≥ 2. Consider the following two cases:
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• First, assume that there are a1, . . . , an ∈ C0 such that ai 6= aj for each 0 < i < j ≤ n

andM satisfies P (a1 . . . an) (we know that there are such number of elements in C0 by
lemma 5.8). So, consider a variantN ofM with same domain and same set of p-eligible
sequences such that, for every atomic formula ψ different from P (x1 . . . xn) and for any
sequence c̄, N satisfies ψ x̄[c̄] if and only ifM satisfies it as well, but N does not satisfy
P (b1 . . . bn), for every sequence of elements b1, . . . , bn of C0 such that bi 6= bj for each
0 < i < j ≤ n. By the first part of the lemma, the sets of eligible extensions of any two
elements in C0 are exclusively disjoint. So, there is a back and forth equivalence between
M̂C and N̂C. Consequently, M̂C ≡ N̂C but clearly M̂C 6∼= N̂C;

• Secondly, assume that for every sequence of elements a1 . . . an ∈ C0, such that ai 6= aj

for each 0 < i < j ≤ n, M does not satisfy P (a1 . . . an). So, it is enough to consider
a variant N of M such that N satisfies P (b1 . . . bn), for some sequence of elements
b1, . . . , bn ∈ C0 such that bi 6= bj for each 0 < i < j ≤ n.

Lemma 5.10 Let M̂C be a fully eligible and strictly κ-categorical L-p-urn structure, for some

κ ≥ ℵ0. Then, for every element a ∈ C0, I(a,C) has cardinality less than κ. In particular,

I(a,C) = {a}.

Proof. For the first part of the lemma, suppose that there is some a ∈ C0 such that I(a,C)

has cardinality κ. By lemma 5.8, for every b ∈ C0, there is isomorphism between I(a,C)

and I(b,C). So, consider the substructure N ⊂ M such that the domain of N is I(a,C) and
consider C′ is the subset of C involving only the elements in I(a,C). The cardinality of N is κ
and M̂C ≡ N̂C′ . However, M̂C 6∼= N̂C′ .

For the second part, assume that, for some a ∈ C0, there is b ∈ I(a,C) such that a 6=
b. So, there is a p-eligible sequence ā a (b) of M over C. Now, given that, by the first
part of the lemma, the cardinality of I(a,C) is less than κ, there is an extension N ⊃ M of
cardinality κ such that N ’s domain is M ∪ Iso(ā a (b)), in which the set Iso(ā a (b)) = {c :

there is isomorphism between the eligible extensions of ā a (c) and ā a (b)} has cardinality
κ. Consider C′ is the extension of C based on Iso(ā a (b)). N̂C′ is elementary equivalent to
M̂C. However, I(a,C′) has cardinality κ. So, M̂C 6∼= N̂C′ .

Finally, it is possible to prove Theorem 5.7.

Proof of Theorem 5.7. (1⇒ 2) This direction of the theorem is a consequence of Lemmas
5.8–5.10.

(2⇒ 1) Assume that L and M̂C satisfy conditions i)–iii). Consider a fully eligible L-p-urn
structure N̂C′ of cardinality κ and such that M̂C ≡ N̂C′ . Let M and N be the domains ofM
and N , respectively.
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Fix an arbitrary bijection ι : M → N . Suppose that ι is not isomorphism. Then, since L
is monadic, for some a ∈ M , for some atomic formula P (x), M satisfies P (a) but N does
not satisfy P (ι(a)). Given that N̂C′ is fully eligible, ι(a) occurs in the i-th position of some
p-eligible sequence of N over C′. Therefore, N̂C′ |= ∃x0 . . . ∃xi−1∃x¬P (x). By elementary
equivalence, M̂C |= ∃x0 . . . ∃xi−1∃x¬P (x). By conditions ii) and iii), M̂C |=i+1,λ ¬P (a).
Hence,M does not satisfy P (a), what is a contradiction.

Theorem 5.7 shows how difficult it is to inhibit p-urn semantics’ powerful tool for generating
non-isomorphic extensions by the addition of isomorphic copies: only some special monadic
structures are strictly κ-categorical. Now, this powerful tool is not available in i-urn semantics.
Thus, in what follows I examine whether Olin’s results can be preserved in i-urn semantics.

5.3 Categoricity in i-urn semantics

5.3.1 Infinite strict categoricity: compactness and Lö-
wenheim-Skolem theorems for i-urn semantics

I turn the focus now to i-urn semantics and consider whether there are strict categoricity in
this semantics. First, I show that, as a strengthening of the classical case, there are no infinite
strictly categorical i-urn structures. Then, in next subsection, I show some results about finite
categoricity in this semantics.

The comparison with classical logic offers some methodological advice here. In classi-
cal logic, Löwenheim-Skolem theorems block categoricity in the infinite case: first, upward

Löwenheim-Skolem says that for any infinite model there is greater, elementary equivalent
models. Moreover, downward Löwenheim-Skolem says that for any non-enumerable model
there are also smaller, elementary equivalent ones. In this sense, it is interesting to consider
whether these theorems hold in i-urn semantics.

Upward Löwenheim-Skolem relies on compactness theorem, a fundamental property of
classical logic. So it is necessary to consider whether compactness holds in i-urn semantics. I
start this subsection by considering this issue. In classical logic, compactness theorem can be
obtained by exploring Henkin’s strategy of extending finitely satisfiable theories to maximal,
finitely satisfiable ones that have witness property (Cf. MARKER, 2006, pp. 35–40). In what
follows, I explore a similar strategy. However, this will not work straightforwardly because
i-urn semantics relativizes the notion of satisfaction with respect to eligibility sets. Fortunately,
it is possible to improve Henkin’s strategy in order to obtain compactness theorem for i-urn
semantics. In this sense, let me define some basic terminology.

Definition 5.11 AnL-theory T is maximal if and only if, for every sentence φ ofL, either φ ∈ T
or ¬φ ∈ T.
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Definition 5.12 Let {Ln : n < ω} be a set of languages such that Ln+1 = Ln ∪ Cn for sets

of new constants Cn = {cm,ψ : m < ω, ∃xψ is Ln-sentence and x is free in ψ}. For a set of

theories T = {Tn : n < ω, Tn is Ln-theory},
⋃
T has witness property if and only if the

following holds:

• T0 is an L0-theory;

• Tn+1 is Ln+1-theory collecting

– formulas ¬∃xψ ∨ ∀yψ x[cm,ψ] of Ln+1, for every cm,ψ ∈ Cn and for some variable

y not occurring in ψ,

– and formulas ¬∀xψ ∨ ∀yψ x[cm,γ] of Ln+1, for all cm,γ ∈ Cn and for some variable

y not occurring in ψ.

Let C =
⋃
n<ω

Cn. For every cm,ψ ∈ C, ¬∃xψ∨ ∀yψ x[cm,ψ] is called am-witness axiom. Further,

¬∀xψ ∨ ∀yψ x[cm,γ] is called a universal m-witness axiom.

For any m < ω, let me say that a formula φ is m-satisfiable if and only if for some i-urn
structureMB,MB |=m φ. Further, I say that T is m-satisfiable if and only if there isMB such
that, for every sentence φ ∈ T ,MB |=m φ.

Definition 5.13 For any L-theory T and for any m < ω, T is finitely m-satisfiable if and only

if, for any finite part S ⊆ T , S is m-satisfiable. If a theory T is finitely 0-satisfiable, I simply

say that T is finitely satisfiable.

The next lemma presents a generalized version of Lindenbaum’s construction of maximal
and finitely satisfiable theories (Cf. MARKER, 2006, p. 38).

Lemma 5.14 For some m < ω, let T be a finitely m-satisfiable L-theory. Then, there is a

maximal finitely m-satisfiable L-theory T ′ ⊇ T .

Proof. Consider an enumeration (φn : n < ω) of all formulas of L. Let T ′ be as follows:

• Let T0 = T

• Let Tn+1 = Tn ∪ {φn}, if this theory is finitely m-satisfiable; otherwise, Tn+1 = Tn ∪
{¬φn};

• T ′ =
⋃
n<ω

Tn.

Clearly, T ′ is maximal and includes T . Fix some finite S ⊂ T ′. S ⊆ Tn, for some n < ω.
Since Tn is finitely m-satisfiable, S is m-satisfiable. Therefore, T ′ is finitely m-satisfiable.

The following lemma shows an interesting construction of extensions of theories with wit-
ness property.
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Lemma 5.15 Let T be some finitely satisfiable L-theory. There is an extension L′ ⊃ L and an

L′-theory T ′ ⊃ T for which the following holds:

• T ′ has witness property;

• For any n,m < ω and any finite parts S ⊂ T , S ′ = {¬∃xψ ∨ ∀yψ x[cki,ψ] : i ≤
n}∪{¬∀xψ∨∀yψ x[ckj ,γ] : j ≤ m} ⊂ T ′−T , there is an i-urn modelMB of S such that

MB |=ki−1 ¬∃xψ∨ ∀yψ x[cki,ψ], for every i ≤ n, andMB |=kj−1 ¬∀xψ∨∀yψ x[ckj ,γ],

for every j ≤ m.

Proof. Generate L′ and T ′ recursively as in Definition 5.12, considering L = L0 and T = T0.
For the second part of the lemma, fix any finite parts S, S ′ of T and T ′ − T , respectively. By
hypothesis of the lemma, there is an i-urn modelMB |=

∧
S. Fix any (¬∃xψ∨ ∀yψ x[cki,ψ]) ∈

S ′. Then, consider two cases:

• If MB |=ki−1 ∃xψ, then, for some a ∈ Bki , MB |=ki ψ x[a]. So, consider an L′-
expansion N ofM such that a = cNki,ψ;

• IfMB 6|=ki−1 ∃xψ, then NB |=ki−1 ¬∃xψ ∨ ∀yψ x[cki,ψ], for any L′-expansion N of
M.

Now, fix any (¬∀xψ ∨ ∀yψ x[ckj ,γ]) ∈ S ′. Consider again two cases:

• If MB |=kj−1 ∀xψ, then, for every a ∈ Bkj , MB |=kj ψ x[a]. So, consider an L′-
expansion N ofM such that for some such a, a = cNkj ,γ;

• IfMB 6|=kj−1 ∀xψ, then NB |=kj−1 ¬∀xψ ∨ ∀yψ x[ckj ,γ], for any L′-expansion N of
M.

Based on Lemmas 5.14 and 5.15, it is possible to prove the compactness theorem for i-urn
semantics.

Theorem 5.16 (Compactness) For any L-theory T , T is finitely satisfiable if and only it is

0-satisfiable.

Proof. By lemma 5.15, there are L′ ⊃ L and an L′-theory T ′ ⊃ T with witness property and
such that for any n,m < ω and any finite parts S ⊂ T , S ′ = {¬∃xψ ∨ ∀yψ x[cki,ψ] : i ≤
n} ∪ {¬∀xψ ∨ ∀yψ x[ckj ,γ] : j ≤ m} ⊂ T ′ − T , there is an i-urn modelMB of S such that
MB |=ki−1 ¬∃xψ ∨ ∀yψ x[cki,ψ], for every i ≤ n, andMB |=kj−1 ¬∀xψ ∨ ∀yψ x[ckj ,γ], for
every j ≤ m.

For each 0 < m < ω, let Um be the set of (universal) m-witness axioms in T ′. Now,
we simultaneously build, for each m < ω, a maximal, finitely m-satisfiable theory T (m) as
follows. For every m < ω, consider an enumeration (φn,m : n < ω). These enumerations
generate the following matrix:
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0: φ0,0 φ1,0 φ2,0 . . . φn,0 . . .

1: φ0,1 φ1,1 φ2,1 . . . φn,1 . . .

2: φ0,2 φ1,2 φ2,2 . . . φn,2 . . .

. . . . . .

m: φ0,m φ1,m φ2,m . . . φn,m . . .

. . . . . .

Matrix 5.1

Let T (0)0 = T ∪ U1 and, for every 0 < m < ω, T (m)0 = Um+1. Let g be the function that
formalizes the Cantorian enumeration of Matrix 5.1 and consider g′(m, s) = r such that T (m)r

is the last step in the recursive definition of T (m) before g(s).
For some s < ω, let φn,m = g(s). T (m)n+1 is defined by the following clause:

• T (m)n+1 = T (m)n ∪ {φn,m}, if, for any p < ω, for any k0 < . . . < kp < ω and
any finite parts S0 ⊂ T (k0)g′(k0,s), . . . , Sp ⊂ T (kp)g′(kp,s) there is an i-urn model MB

such that MB |=ki

∧
Si, for every i ≤ p, and MB |=m φn,m; otherwise, T (m)n+1 =

T (m)n ∪ {¬φn,m}.

For every m < ω, let T (m) =
⋃
n<ω

T (m)n. The following facts hold about such sets:

i) By Lemma 5.14, every T (m) is maximal and finitely m-satisfiable;

ii) Further, for every p < ω, for any k0 < . . . < kp < ω and any finite parts S0 ⊂
T (k0), . . . , Sp ⊂ T (kp), there is an i-urn model MB such that MB |=ki

∧
Si, for ev-

ery i ≤ p;

Let T+ =
⋃
m<ω

T (m). Now, I will build a canonical modelMB such that, for every m <

ω, MB |=m T (m). Let C be the set of constants in L′. So, the partition Π(C) = {[c] :

for any d ∈ C, d ∈ [c] if and only if (d = c) ∈ T+} will be the domain of the model. For
any n-ary predicate P and function f in L′, consider that PM = {〈[c1], . . . , [cn]〉 ∈ Π(C)n :

P (c1, . . . , cn) ∈ T+} and f([c1], . . . , [cn])M = [d] if and only if (f(c1, . . . , cn) = d) ∈ T+. For
every constant c ∈ C and any m < ω, let [c] ∈ Bm if and only if c ∈ [cm,ψ], for some cm,ψ ∈ C.
This is enough in order to characterizeM and its eligibility set B.

Finally, I will prove by induction that, for any formula φ ofL′ with free-variables x1, . . . , xn,
MB |=m φ x1 . . . xn[[c1] . . . [cn]] ⇔ φ x1 . . . xn[c1 . . . cn] ∈ T (m). If φ is atomic formula, the
property follows immediately from the definition ofM.

If φ is ψ ∧ γ, then MB |=m φ if and only if MB |=m ψ and MB |=m γ. By inductive
hypothesis, that holds if and only if ψ, γ ∈ T (m). By maximality and finite m-satisfiability,
that is the case if and only if ψ ∧ γ ∈ T (m).

If φ is ψ ∨ γ, then MB |=m φ if and only if either MB |=m ψ or MB |=m γ. Without
loss of generality, assume that MB |=m ψ. So, by inductive hypothesis, that holds if and
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only if ψ ∈ T (m). By maximality and finite m-satisfiability, that is the case if and only if
ψ ∨ γ ∈ T (m).

If φ is ¬ψ, thenMB |=m ¬ψ if and only ifMB 6|=m ψ. By inductive hypothesis, that holds
if and only if ψ 6∈ T (m). By maximality and finite m-satisfiability, that is the case if and only
if ¬ψ ∈ T (m).

Finally, assume φ is ∃xψ. For the proof of sufficiency, assume that ∃xψ ∈ T (m). By
the fact ii) above and witness property, ψ x[cm,ψ] ∈ T (m + 1). By inductive hypothesis,
MB |=m+1 ψ x[[cm,ψ]]. ThenMB |=m ∃xψ, since [cm,ψ] ∈ Bm.

For the proof of necessity, assume thatMB |=m ∃xψ. Then, MB |=m+1 ψ x[[cm,γ]], for
some [cm,γ] ∈ Bm. By inductive hypothesis, ψ x[cm,γ] ∈ T (m+1). By ii) and witness property,
∀x¬ψ 6∈ T (m). By maximality and finite m-satisfiability, ∃xψ ∈ T (m). The case in which φ
is ∀xψ is a dual of the existential case. Hence, this is enough for proving the claim and, as a
particular case of it,MB |= T .

In the proof of compactness theorem for i-urn semantics, witness constants cm,ψ play a
double role by denoting instances of existential sentences and by characterizing eligibility in
the canonical model as well. Based on this it is also possible to prove the following corollary
about the construction of fully eligible canonical models for finitely satisfiable theories.

Corollary 5.17 Let T be a finitely satisfiable L-theory such that, for every constant c ∈ L,

∀x0 . . . ∀xi−1∃x(x = c) ∈ T , for some i < ω. Then, there is a fully eligible L-i-urn structure

MB such thatMB |= T .

Just as in classical logic, upward Löwenheim-Skolem for i-urn semantics is a corollary of
compactness theorem.

Corollary 5.18 (Upward Löwenheim-Skolem) LetMB be an L-i-urn structure with infinite

cardinality κ. For any cardinality λ ≥ κ, there is an L-i-urn structureNB′ of cardinality λ such

thatM≡ N .

Proof. Let T = {φ : φ is L-sentence andMB |= φ} and, for a set C = {ci : i < λ} of new
constants, let S = {ci 6= cj : i < j < λ}. Let L′ = L ∪ C and fix finite parts T ′ ⊂ T and
S ′ = {c1, . . . , cn} ⊂ S, for some arbitrary n < ω. ConsiderM′

B is an L′-expansion ofMB

such that cM′1 6= cM
′

2 6= . . . 6= cM
′

n . M′
B |=

∧
T ′ ∧

∧
S ′. By compactness, there is an L′-i-urn

structure N ′B′ |= T ∪ S. Consider NB′ is the L-reduct of N ′B′ . NB′ is elementary equivalent to
MB and has cardinality λ.

Further, based on Corollary 5.17 it is possible to prove a stronger version of upward Löwen-
heim-Skolem in which the generated bigger model is fully eligible.

Corollary 5.19 LetMB be an L-i-urn structure with infinite cardinality κ. Moreover, consider

that, for any constant c in L, for some i < ω,MB |= ∀x0 . . . ∀xi−1∃x(x = c). Then, for any
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cardinality λ ≥ κ, there is a fully eligible L-i-urn structure NB′ of cardinality λ such that

MB ≡ NB′ .

Proof. Consider T , C, L′ and S such as in the proof of Corollary 5.18 above. Let U =

{∀x0 . . . ∀xi−1∃x(x = c) : c ∈ C, for some i < ω}. T ∪ S ∪ U is finitely satisfiable. Therefore,
by compactness, there is an L′-i-urn structureN ′B′ of cardinality λ such thatN ′B′ |= T ∪S ∪U .
So, the L-reduct NB′ of N ′B′ is elementary equivalent toMB and, by Corollary 5.17, it is fully
eligible.

Hence, there are no infinite, strictly categorical urn structures in i-urn semantics. In classical
logic, upward Löwenheim-Skolem implies a stronger result according to which every infinite
model is elementary embedded in models of any greater cardinality. In the following, I prove a
similar result for i-urn semantics.

First, based on Definition 3.16, for i-urn structuresMB andNB′ , let me say that there is an
embedding fromMB into NB′ , in symbolsMB ⊆ NB′ , if and only ifM ⊆ N and, for every
m < ω, Bm ⊆ B′m. IfMB ⊆ NB′ , for any atomic formula φ with free-variables x1, . . . , xn,
MB |=m φ x1 . . . xn[a1 . . . an] ⇔ NB′ |=m φ x1 . . . xn[h(a1) . . . h(an)], in which h is the
mapping that characterizes the embedding. The following concept of elementary embedding
extends this agreement to all formulas.

Definition 5.20 LetMB andNB′ be L-i-urn structures.MB is elementary embedded inNB′ ,

in symbolsMB � NB′ , if and only if there is an injective function h from the domain ofM to

the domain of N such that:

• For anym,n < ω, for everyL-formula φ with free-variables x1, . . . , xn, for any sequence

ā = 〈a1, . . . , an〉 ofM,MB |=m φ x1 . . . xn[ā]⇔ NB′ |=m φ x1 . . . xn[h(a1) . . . h(an)];

• For any m < ω and for every element a ofM, a ∈ Bm ⇔ h(a) ∈ B′m.

WheneverMB � NB′ , NB′ is said to be an elementary extension ofMB.

For anL-i-urn structureMB of cardinality κ, for a set of new constantsD(MB) = {di : i <

κ}, for L+ = L ∪ D(MB), consider an L+-expansionM+
B ofMB such that (·)M+

� D(MB)

is a bijection onto the domain ofM. For everym < ω, them-elementary diagram ofMB is the
L+-theoryDiagel(MB)m = {φ x1 . . . xn[d1 . . . dn] : φ is L-formula with free-variables x1, . . .
xn, d1, . . . , dn ∈ D(MB) andM+

B |=m φ x1 . . . xn[d1 . . . dn]}.

Lemma 5.21 Let MB and NB′ be L-i-urn structures. In i-urn semantics, the following are

equivalent:

1. MB � NB′;

2. For some L+-expansion N+
B′ of NB′ and for every m < ω, N+

B′ |=m Diagel(MB)m.
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Proof. (1⇒ 2) Fix any formula φ x1 . . . xn[d1 . . . dn] ∈ Diagel(MB)m and considerM+
B in the

definition of Diagel(MB)m. Let h be the mapping that definesMB � NB′ . Let N+
B′ be such

that, for any d ∈ D(MB), dN+
= h(dM

+
). Therefore, by 1, N+

B′ |=m φ x1 . . . xn[d1 . . . dn].

(2 ⇒ 1) Based on 2, construct a mapping h characterizing elementary embedding. For
any element a of M, let da ∈ D(MB) be such that a = dM

+

a . For any element a of M,
consider h(a) = dN

+

a . Now, for any elements a1, . . . , an ofM,MB |=m φ x1 . . . xn[a1 . . . an]

if and only if M+
B |=m φ x1 . . . xn[da1 . . . dan ]. By 2, that is the case if and only if N+

B′ |=m

φ x1 . . . xn[da1 . . . dan ]⇔ NB′ |=m φ x1 . . . xn[h(a1) . . . h(an)].

Corollary 5.22 LetMB be an L-i-urn structure with infinite cardinality κ. For any cardinality

λ ≥ κ, there is an L-i-urn structure NB′ of cardinality λ such thatMB � NB′ .

Proof. Consider C,L′ and S such as in the proof of Corollary 5.18 above. Note thatDiagel(MB)0

∪ S is finitely satisfiable. So, by compactness, there is an L′-i-urn structure N ′B′ of cardinality
λ such that N ′B′ |= Diagel(MB)0 ∪ S. Further, it is possible to build N ′B′ such that, for any
m < ω, N ′B′ |= Diagel(MB)m. By Lemma 5.21,MB � NB′ , in which NB′ is the L-reduct
of N ′B′ .

Finally, I show that downward Löwenheim-Skolem holds as well in i-urn semantics. The
classical proof of this theorem is naturally generalizable for this non-standard semantics. In
order to prove this result, first I need to recover the Tarski-Vaught test of elementary embedding
in the context of i-urn semantics.

Lemma 5.23 (Tarski-Vaught test) Let MB and NB′ be L-i-urn structures, MB ⊆ NB′ . In

i-urn semantics, the following are equivalent:

1. MB � NB′;

2. For any formula φ of L with free-variables x1, . . . , xn, y and for all elements a1, . . . , an
ofM, if NB′ |=m+1 φ x1 . . . xn, y[a1 . . . an, b], for some b ∈ B′m, then there is c ∈ Bm

such that NB′ |=m+1 φ x1 . . . xn, y[a1 . . . an, c].

Proof. (1 ⇒ 2) Assume that NB′ |=m+1 φ x1 . . . xn, y[a1 . . . an, b], for some b ∈ B′m. Then,
NB′ |=m ∃yφ x1 . . . xn[a1 . . . an]. By 1, MB |=m ∃yφ x1 . . . xn[a1 . . . an] and, consequently,
MB |=m+1 φ x1 . . . xn, y[a1 . . . an, c], for some c ∈ Bm. By 1 again, NB′ |=m+1 φ x1 . . . xn, y

[a1 . . . an, c].

(2 ⇒ 1) Assuming 2, 1 is obtained by induction on φ. The atomic case and the cases in
which φ is either ¬ψ, ψ ∧ γ or ψ ∨ γ depend onMB ⊆ NB′ .

If φ is ∃xψ, then MB |=m ∃xψ ⇒ NB′ |=m ∃xψ, by inductive hypothesis. Further,
NB′ |=m ∃xψ ⇒MB |=m ∃xψ, by 2.

The case in which φ is ∀xψ is a dual: NB′ |=m ∀xψ ⇒ MB |=m ∀xψ, by inductive
hypothesis. Further,MB |=m ∀xψ ⇒ NB′ |=m ∀xψ, by 2.
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Definition 5.24 Let T be a set of formulas of L. T has Skolem functions if and only if, for any

formula φ of L with free-variables x1, . . . , xn, y, there is an n-ary function fφ ∈ L such that

(¬∃yφ ∨ ∀zφ y[fφ(x̄)]) ∈ T , for some variable z that does not occur in φ.

Theorem 5.25 LetMB be anL-i-urn structure with infinite cardinality κ. Then, for any infinite

cardinal λ ≤ κ, there is an L-i-urn structure NB′ of cardinality λ and such that NB′ �MB.

Proof. First, recursively define an extension L′ ⊃ L as follows:

• L0 = L;

• Li+1 = Li ∪ {fm,φ : m < ω, fm,φ is a n-ary Skolem function, φ is Li-formula with free-
variables x1, . . . , xn, y, for some n < ω};

• L′ =
⋃
i<ω

Li.

For each m < ω, let T (m) = {φ : φ is L-formula andMB |=m φ}. Secondly, define sets
of L′-formulas T (m)′ ⊃ T (m) that have Skolem functions in the following way:

• T (m)0 = T (m);

• For x̄ = 〈x1, . . . , xn〉, let T (m)i+1 = T (m)i∪{(¬∃yφ∨∀zφ y[fm,φ(x̄)]) : φ is Li-formula
with free-variables x1, . . . , xn, y, for some variable z that does not occur in φ};

• T (m)′ =
⋃
i<ω

T (m)i.

ConsiderM′
B is an L′-expansion ofMB such that, for every Skolem function fm,φ and for

any elements a1, . . . , an ofM, if, for some b ∈ Bm,M′
B |=m+1 φ x1 . . . xny[a1 . . . an, b], then

(fm,φ(a1, . . . , an))M
′

= b; otherwise, (fm,φ(a1, . . . , an))M
′ is any c ∈ Bm. Clearly, for any

m < ω,M′
B |=m T (m)′.

Consider any set of elements X such that X ∩B0 6= ∅. Define by recursion an extension
X ′ ⊇ X as follows:

• Let X0 = X;

• Let Xi+1 = Xi ∪ {fm,φ(a1, . . . , an)M
′
: m,n < ω, a1, . . . , an ∈ Xi};

• X ′ =
⋃
i<ω

Xi.

For any m < ω, let B′m = Bm ∩ X ′. Let B′ be the collection of such sets B′m. Let
NB′ ⊆ MB be the substructure generated by X ′. Based on Lemma 5.23, I will prove that
NB′ �MB.

Fix some L-formula φ with free-variables x1, . . . , xn, y and elements a1, . . . , an of N . As-
sume that, for some b ∈ Bm,MB |=m+1 φ x1 . . . xn, y[a1 . . . an, b]. So, b = fm,φ(a1, . . . , an)M

′

and, therefore, b ∈ X ′ ∩B′m. Hence, by Lemma 5.23, NB′ �MB.

As a final remark, note that ifMB is fully eligible, downward Löwenheim-Skolem always
produce fully eligible elementary substructures, on the contrary to the upward case.
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5.3.2 Finite categoricity in i-urn semantics

Theorem 5.5 above shows that there is not finite strict categoricity in p-urn semantics. In
this sense, p-urn semantics radically diverges from classical logic since all classical finite struc-
tures are categorical. I show in this section that, in a certain sense, i-urn semantics offers an
intermediate scenario between these logical systems.

As in the previous subsection, the comparison with classical logic is again quite fruitful.
In classical logic, finite categoricity follows from the fact that the sentence “there are exactly n
elements”, for some n < ω, is first order expressible. I explore here a similar strategy in order to
obtain some initial result about finite categoricity in i-urn semantics: I show that, under special
conditions, a class of finite i-urn structures which agree in all unnested sentences have sets of
eligible sequences of same cardinality. In the rest of this section, I always assume that L is a
finite language. Furthermore, I explore once again the set of notions employed in subsections
3.3.2–3.3.4 and sometimes I rely on the framework of urn game semantics (Definition 3.2).

The following theorem shows that, for any n,m < ω, the satisfaction of the property “there
are at least n elements occurring in the m-th position of some eligible sequence” by i-urn
structures is associated with some syntactic properties of the game-normal sentences that they
verify.

Theorem 5.26 LetMB be an L-i-urn structure and assume that, for some m < ω, the cardi-

nality of Bm is greater or equal than n. Let θ ∈ Θ(m+1, ∅) be the game-normal sentence such

thatMB |= θ. In i-urn semantics, the following are equivalent:

1. For some θ′ ∈ Θ(1, ym+1, . . . , y2) subformula of θ, θ′ has r existential subformulas, for

some r ≥ n;

2. For everyNB′ that agrees withMB in all unnested sentences, B′m has cardinality greater

or equal than n.

Proof. (1⇒ 2) Fix some NB′ that agrees withMB in all unnested sentences. Then, NB′ |= θ.
So, based on the syntactic structure of θ we know that, for an eligible sequence 〈am+1, . . . , a2〉
of N over B′, NB′ |=m θ′ ym+1 . . . y2[am+1 . . . a2].

θ′ is of the form ∃yθ′′1 ∧ . . . ∧ ∃yθ′′r ∧ ∀y
∨

0<j≤r
θ′′j . Given that any two game normal formulas

with same quantifier rank and same set of free-variables are jointly inconsistent (Lemma 3.19),
there are at least b1, . . . , br ∈ B′m such that NB′ |=m+1 θ′′j ym+1 . . . y1[am+1 . . . a2, bj], for
0 < j ≤ r.

(2 ⇒ 1) Assume 1 is not the case. It is possible to generate an L-i-urn structure NB′ that
agrees withMB in all unnested sentences such that B′m has cardinality smaller than n in the
following way.

Consider the set Λ = {θk is game-normal sentence : k < ω, qr(θk) = k + 1,MB |= θk}.
For any k < q < ω, θk is equivalent to θq(yk+2, . . . , yq+1). So, by Theorem 3.34, it is possible
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to construct a “canonical” model NB′ satisfying Λ. By the negation of condition 1, any game-
normal formula occurring in θm has less than n existential subformulas. Therefore, we need to
consider only less than n “witnesses” in the definition of B′m. The situation does not change
when we consider the remainder sentences in {θk : k < ω}, given the equivalence between
θm and θq(ym+2, . . . , yq+1), for any m < q < ω. By Theorem 3.21, NB′ andMB agree in all
unnested sentences.

Theorem 5.26 shows how it is possible to enforce in i-urn semantics the minimum finite
cardinality of the elements of an eligibility set. In turn, the following results show that in i-
urn semantics it is also possible to enforce the satisfaction of the property “there are exactly n

elements occurring in the m-th position of some eligible sequence” by finite i-urn structures.
First, let me define a notion of indiscernibility for i-urn semantics. As I have done in section

5.2, for any eligible sequence ā of a structureM over B, I consider below the set I(ā,B) of
eligible extensions of ā over B.

Definition 5.27 LetMB be an L-i-urn structure, M be the set of eligible sequences ofM over

B and b̄ = 〈b0, . . . , bm−1〉 ∈ M. A set A is m-indiscernible over b̄ if and only if the following

holds:

• A ∩Bm 6= ∅;

• For all elements a, b ∈ A and for every q > m, a ∈ Bq ⇔ b ∈ Bq;

• For every a ∈ A ∩Bm, for all n < r < ω, for all eligible sequences d̄ = 〈d0, . . . , dr〉 ∈
I(b̄ a (a),B), for any segment 〈c0, . . . , cn〉 of d̄ and for every n-ary predicate P ∈ L,M
satisfies P (c0 . . . cn) if and only if it satisfies P (b̄′), for any sequence b̄′ generated from

〈c0, . . . , cn〉 by some permutation of A.

If, for every ā ∈ Mm−1, A is m-indiscernible over ā, then I say simply that A is m-

indiscernible.

In i-urn semantics, agreement in all unnested sentences does not necessarily preserve m-
indiscernibility. In order to see this consider the following simple example.

Example 5.28 LetMB andNB′ be L-i-urn structures with domains {b1, . . . , b6} and {c1, . . . ,
c6}, respectively. Assume that B0 = {b1, b2, b3}, B1 = {b4} and Bm = {b4, b5, b6}, for every

m > 1. Analogously, let B′0 = {c1, c2, c3}, B′1 = {c4} and B′m = {c4, c5, c6}, for every

m > 1. Further, let L = {P}, for a binary predicate P . These urn structures satisfy the

following formulas:

• For i = 1, 2 or 3,M satisfies P (bi b4) P (bi b5), butM satisfies ¬P (bi b6) as well. So,

{b4, b5} is m-indiscernible.
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• On the other hand, N satisfies P (bi b4), P (b1 b5), P (b2 b6), P (b3 b6), but it safisfies as

well ¬P (b2 b5), ¬P (b3 b5), ¬P (b1 b6). So, there is not m-indiscernibility inNB′ but there

is an m-indiscernible set over each element in B′0.

However, it is possible to prove a slightly weaker result.

Lemma 5.29 Assume thatMB andNB′ are finite L-i-urn structures that agree in all unnested

sentences, and M and N are sets of eligible sequences of M over B and of N over B′, re-

spectively. For some m < ω, let Bm be an m-indiscernible set such that, for every q < m,

Bm ∩Bq = ∅ and, for some r > m, Bm ⊆ Br. Then, for any r > m such that Bm ⊆ Br, for

every eligible sequence b̄ ∈ Nm−1, for every a ∈ B′m and for each eligible sequence b̄′ ∈ Nr−1

that extends b̄ a (a), there is an element a′ ∈ B′r such that {a, a′} is r-indiscernible over b̄′.

Proof. Assume that, for some r > m such that Bm ⊆ Br, for some b̄ ∈ Nm−1, for some
a ∈ B′m, for some eligible sequence b̄′ ∈ Nr−1 that extends b̄ a (a), there is no element
a′ ∈ B′r such that {a, a′} is r-indiscernible over b̄′.

So, consider the set Λ = {θk ∈ Θ(k + 1, x0, . . . , xr−1) : k < ω,NB′ |=r θk x0 . . . xr−1[b̄
′]}.

Given thatMB and NB′ agree in all unnested sentences,MB is finite and, for any k < q < ω,
θk is equivalent to θq(yk+2, . . . , yq+1), then there is some eligible sequence c̄′ ∈ Br−1 such that
MB |=r θk x0 . . . xr−1[c̄

′], for every k < ω.
Consider the initial segment c̄ a (d) ∈ Mm of c̄′. By the m-indiscernibility of Bm, there

is some d′ ∈ Br that is m-indiscernible from d over c̄. So, consider the set Λ′ = {σk ∈
Θ(k + 1, x0, . . . , xr) : k < ω,MB |=r+1 σk x0 . . . xr[c̄

′ a (d′)]}. SinceMB and NB′ agree
in Λ, NB′ is finite and, for any k < q < ω, σk is equivalent to σq(yk+2, . . . , yq+1), then there is
some a′ ∈ B′r such that NB′ |=r+1 σk x0 . . . xr[b̄

′ a (a′)], for every k < ω. Therefore, {a, a′}
is r-indiscernible over b̄′, what contradicts the original assumption.

The following theorem presents sufficient and necessary conditions for the satisfaction of
the property “there is only 1 element occurring in the m-th position of eligible sequences” by
finite i-urn structures. In what follows, for an eligibility set B, let R(Bm) = {Br : r >

m,Bm ⊆ Br}.

Theorem 5.30 LetMB be a finite L-i-urn structure such that Bm = {a}. Let M be the set of

eligible sequences ofM over B. In i-urn semantics, the following are equivalent:

1. At least one of the following facts is the case:

i) For some n < m, Bm ⊆ Bn;

ii) For some Br ∈ R(Bm), for some eligible sequence b̄ ∈Mm−1 and for some eligible

sequence b̄′ ∈ Mr−1 that extends b̄ a (a) there is no element a′ ∈ Br such that

{a, a′} is r-indiscernible over b̄′;
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2. For every finite L-i-urn structure NB′ that agrees with MB in all unnested sentences,

B′m is a singleton.

Proof. (1⇒ 2) Assume 1 and consider the following cases:

• Assume that fact i) is the case. Then, just consider thatMB |= ∀x0 . . . ∀xn−1∃xn∀xn+1 . . .

∀xm (xn = xm);

• On the other hand, assume that ii) is the case. Suppose that there is a finite L-i-urn
structureNB′ that agrees withMB in all unnested sentences and such that the cardinality
of B′m is greater than 1. Then, B′m is m-indiscernible, otherwise NB′ and MB would
disagree in some game-normal sentence, contradicting their agreement in all unnested
sentences. Therefore, by Lemma 5.29, for any B′r ∈ R(B′m), for every eligible sequence
b̄ ∈ Mm−1 and for each eligible sequence b̄′ ∈ Mr−1 that extends b̄ a (a), there is an
element a′ ∈ Br such that {a, a′} is r-indiscernible over b̄′. However, this contradicts
condition ii).

(2⇒ 1) Assume 2 and suppose that 1 is not the case. Then, it is the case that:

i’) For every n < m, Bn ∩Bm = ∅;

ii’) For every Br ∈ R(Bm), for every eligible sequence b̄ ∈ Mm−1 and for every eligible
sequence b̄′ ∈Mr−1 that extends b̄ a (a) there is some element a′ ∈ Br such that {a, a′}
is r-indiscernible over b̄′.

Adding some new element c to the domain ofM, it is possible to define extensionsN ⊃M
and B′ ⊃ B such that:

• For every n < ω, if a ∈ Bn, then B′n = Bn ∪ {c}; otherwise, B′n = Bn;

• For any sequence 〈a1, . . . , an〉 of N in which c occurs, for any n-ary predicate P ∈ L,
N satisfies P (a1 . . . an) if and only if N satisfies P (ā′), in which ā′ is the sequence
generated from 〈a1, . . . , an〉 by permutation of a with c in it.

SinceMB is finite,NB′ is it as well. Moreover, {a, c} is m-indiscernible. For each m < ω,
consider the game-normal sentence θm ∈ Θ(m + 1, ∅) such that NB′ |= θm. Using urn game
semantics, I will show that NB′ and MB agree in all such sentences and consequently, by
Theorem 3.21, agree in all unnested sentences.

Fix any k ≥ m. By Theorem 3.4, player E has winning strategy δ in G(θk,NB′). I will
show that player E has winning strategy in G(θk,MB) as well. Let p be a match induced by δ
in G(θk,NB′). Consider the following three cases:

• First, if c is never considered in p, then p is a winning match for E in G(θk,MB) as well;
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• Secondly, assume that c is considered in p but a is not. Then, let p′ be the variation
of p such that all uses of c in p are substituted by uses of a. Given that {a, c} is m-
indiscernible, p′ is a winning match for E in G(θk,MB);

• Finally, assume that both a and c are considered in p and let d̄ be the whole eligible
sequence that is considered in p. By i’) and ii’), there is a′ such that, for the first r-th
position in which c was elected in p, {a, a′} is r-indiscernible over d̄′, in which d̄′ is the
initial segment with length r of the eligible sequence generated from d̄ by substituting c
by a′ in it. Let p′ be the variation of p in which all uses of c in p are substituted by uses of
a′. The match p′ is a winning for E in G(θk,MB).

So,NB′ andMB agree in all unnested sentences but B′m is not a singleton, what contradicts
2.

Finally, I consider the more challenging question of whether it is possible to enforce the
satisfaction of the property “there is exactly n elements occurring in the m-th position of some
eligible sequence” by finite i-urn structures, for n > 1. As the reader may see, the following
propositions represent partial results on this difficult issue which demand further generalization.

Proposition 5.31 LetMB be a finiteL-i-urn structure and, for somem < ω, Bm = {a1, . . . , an}.
Let the game-normal sentence θ ∈ Θ(m + 1, ∅) be such that MB |= θ and, for some θ∗ ∈
Θ(1, y1, . . . , ym) subformula of θ, consider that θ∗ has n existential subformulas. Then, the

item 1 below implies item 2:

1. There are k1 < . . . < kn < m such that ai ∈ Bki;

2. For every finite L-i-urn structureNB′ that agrees withMB in all unnested sentences, the

cardinality of B′m is n.

Proof. By Theorem 5.26, for every such NB′ , the cardinality of B′m is at least n. Suppose that
there is one such model such that the cardinality of B′m is greater than n. So, note that

MB |= Qx0 . . . Qxm−1[∀xm
∨

0<i≤n

xm = xki ],

in which, for every j < m, if j = ki for some 0 < i ≤ n, then Qxj is ∃xj; otherwise, Qxj
is ∀xj . However, NB′ does not satisfy this sentence, what contradicts the agreement between
these models in all unnested sentences.

In what follows, for any i-eligibility set B and m < ω, let R(a,m) = {Br : m < r, a ∈
Br}.

Notation 5.32 LetMB be an i-urn structure such that Bm = {a1, . . . , an}, and let M the set

of eligible sequences ofM over B. In what follows, I will make use of the following notions:
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• For some 0 < i ≤ n and for any Br ∈ R(ai,m), if there is some d ∈ Br such that, for

some eligible sequence b̄ ∈ Mr−1, {ai, d} is r-indiscernible over b̄, then I denote d as

d(i, b̄). Moreover, let D(ai) be the set of such elements;

• For some b̄ ∈ Mm−1, I say that D(ai) includes a chain of indiscernibles starting in b̄
if and only if there are d(i, b̄0), . . . , d(i, b̄q) such that b̄0 extends b̄ a (ai) and, for every

0 < j ≤ q, b̄j extends b̄j−1 a (d(i, b̄j−1)).

Proposition 5.33 LetMB, θ and θ∗ be as in Proposition 5.31 above and let M be the set of

eligible sequences ofM over B. Then, the item 1 below implies item 2:

1. For some eligible sequence b̄ ∈ Mm−1, for every 0 < i ≤ n, the greatest chain of

indiscernibles in D(ai) that start in b̄ is smaller then the cardinality of R(ai,m);

2. For every finite L-i-urn structureNB′ that agrees withMB in all unnested sentences, the

cardinality of B′m is n.

Proof.

By Theorem 5.26, for every suchNB′ , the cardinality of B′m is at least n. As in the proof of
Proposition 5.31, suppose that there is one such model such that the cardinality of B′m is greater
than n. Let N be the set of eligible sequences of N over B′. So, the following fact holds:

(∗) For every eligible sequence c̄ ∈ Nm−1, there are a, a′ ∈ B′m such that {a, a′} is m-
indiscernible over c̄.

Consider Λ = {θk ∈ Θ(k + 1, x0, . . . , xm−1) : k < ω,MB |=m θk x0 . . . xm−1[b̄]}. given
that MB and NB′ agree in all unnested sentences, NB′ is finite and, for any k < q < ω,
θk is equivalent to θq(yk+2, . . . , yq+1), then there is an eligible sequence c̄ ∈ Nm−1 such that
NB′ |=m θk x0 . . . xm−1[c̄], for every k < ω.

Now, based on fact (∗), consider elements a, a′ ∈ B′m which are m-indiscernible over c̄.
Consider Λ′ = {θ′k ∈ Θ(k + 1, x0, . . . , xm) : k < ω,NB′ |=m+1 θ

′
k x0 . . . xm[c̄ a (a)]}. Again,

given thatMB and NB′ agree in Λ,MB is finite and, for any k < q < ω, θ′k is equivalent to
θ′q(yk+2, . . . , yq+1), then there is some ai ∈ Bm such thatMB |=m+1 θ

′
k x0 . . . xm[b̄ a (ai)].

Let d(i, b̄0), . . . , d(i, b̄q) be the greatest chain of indiscernibles in D(ai) that start in b̄ and
let r > m be such that b̄q ∈Mr−1. Since the cardinality of R(ai,m) is greater than q + 1, there
is some s > r such that Bs ∈ R(ai,m). So, consider some eligible sequence b̄′ ∈ Ms−1 that
extends b̄q a (d(i, b̄q)). Further, consider Λ′′ = {θ′′k ∈ Θ(k + 1, x0, . . . , xs−1) : k < ω,MB |=s

θ′′k x0 . . . xs−1[b̄
′]}. Given thatMB andNB′ agree in Λ′,NB′ is finite and, for any k < q < ω, θ′′k

is equivalent to θ′′q (yk+2, . . . , yq+1), then there is some eligible sequence c̄′ ∈ Ns−1 that extends
c̄ a (a) such that NB′ |=s θ

′′
k x0 . . . xs−1[c̄

′].
Consider Λ+ = {θ+k ∈ Θ(k + 1, x0, . . . , xs : k < ω,NB′ |=s+1 θ

+
k x0 . . . xs[c̄

′ a (a′)]}.
Given thatMB and NB′ agree in Λ′′,MB is finite and, for any k < q < ω, θ+k is equivalent to
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θ+q (yk+2, . . . , yq+1), then there is some d ∈ Br such thatMB |=s+1 θ
+
k x0 . . . xs[b̄

′ a (d)]. But
then {ai, d} is s-indiscernible over b̄′, what contradicts the fact that d(i, b̄0), . . . , d(i, b̄q) is the
greatest chain of indiscernibles in D(ai) that start in b̄.

Propositions 5.31–5.33 give sufficient conditions for the satisfaction of “there are exactly
n (for n > 1) elements occurring in the m-th position of some eligible sequence” by finite
i-urn structures. It is still an open question whether it is possible to give a complete set of
sufficient and necessary conditions for the satisfaction of this property. In fact, I conjecture
that we can obtain such a set by adding one more condition comparing the behaviors of all
elements a, b ∈ Bm with respect to I(c̄,B) and I(d̄,B), for different eligible sequences c̄, d̄ ∈
Mm−1. However, the obtainment of such a set of sufficient and necessary conditions for the
satisfaction of that property depends on a more thorough study of back and forth equivalence
and definability in i-urn semantics.

Anyway, based on the results obtained in this subsection, it is already possible to present an
interesting conclusion about finite categoricity in i-urn semantics.

Corollary 5.34 For some fully eligible finite L-i-urn structure MB, for any fully eligible fi-

nite L-i-urn structure NB′ , if MB and NB′ agree in all unnested sentences, then there is an

isomorphism betweenMB and NB′ .

Note that this does not mean that there are strictly categorical finite i-urn structures. Infor-
mally speaking, corollary 5.34 considers a somewhat weaker notion of being strictly categorical
with respect to finite i-urn structures. In other words, i-urn semantics represents a weakening
of classical logic’s already weak capacity to measure the cardinality of sets. In classical logic,
the cardinality of finite sets is first order expressible: in this sense, a classical structure M
has cardinality n (for n < ω) if and only ifM satisfies the sentence ∃x1 . . . ∃xn[

∧
0<i<j≤n

xi 6=

xj ∧ ∀y
∨

0<i≤n
y = xi]. On the other hand, in i-urn semantics cardinality n is not first order

expressible tout court. In fact, the results obtained in this section show that in i-urn semantics
cardinality n is first order expressible only with respect to the subclass of finite i-urn structures.

Interestingly, note that in classical logic back and forth equivalence cannot enforce generical
finiteness, that is, the property “there is a finite number of elements” is not first order express-
ible in classical logic. In turn, in i-urn semantics, as a weakening of classical logic, even the
property “there are exactly n elements” is not first order expressible (that is, it is expressible
only with respect to finite models). So, in a sense, this fact radicalizes the situation in classical
logic: classical logic cannot distinguish infinity from generic finiteness; in turn, under normal

conditions, i-urn semantics cannot distinguish infinity from finite cardinality.
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5.4 Conclusion

In this chapter I presented some results on categoricity in urn semantics, further exploring
some initial results by Olin (1978) on the subject. In this seminal paper, Olin showed that,
contrary to classical logic, in p-urn semantics there are no strictly categorical finite models
and for any infinite non-fully eligible model it is always possible to identify an elementary
equivalent, non-isomorphic one, what represents some failure of κ-categoricity. Moreover, Olin
proved that strict κ-categoricity can only be obtained for very special kinds of p-urn structures.
In sum, Olin’s theorems show that, in p-urn semantics, satisfiable theories have in general a
great number of models.

However, in my presentation of Olin’s results, I have noted that his proof strategies rely on
the possibility of adding isomorphic copies of eligible sequences to an originally given model.
This is not possible in i-urn semantics, what immediately raises the question of whether it is
possible to obtain Olin’s results in this system. In this sense, I examined here whether some of
the most fundamental theorems on categoricity in classical logic hold in i-urn semantics.

Thus, first, I proved that compactness and strong versions of Löwenheim-Skolem theorems
hold in i-urn semantics. These results show that in i-urn semantics, there are not strictly cate-
gorical infinite models, what, consequently, shows that i-urn semantics inherits classical logic’s
blindness for differences between infinite cardinals. Secondly, I showed that, in i-urn seman-
tics, under special conditions it is possible to enforce finite models to have a certain cardinality
n < ω, a result that I have informally labeled as “finite strict categoricity with respect to finite
models.” These results on finite categoricity give just a partial picture of the issue and need to
be generalized in future work.

Finally, based on the presents results on categoricity in i-urn semantics, I would like to
make a general comment on the formalization of TSI in urn semantics. In chapter 3, I have
anticipated that, given the important differences between p- and i-urn semantics, one could
propose the following question: which urn semantics offers the best formalization of TSI? I
will consider this question in more detail in thesis’ conclusion but I can already anticipate that,
in my opinion, p-urn semantics offers the best general framework for the formalization of TSI.
The reason for that is simple: p-urn semantics provides a more fine-grained description of the
class of urn structures and offers more flexible conditions for the satisfiability of formulas that
are not satisfiable in classical logic. Now, as I will argue in the conclusion of this thesis, I think
that both systems of urn semantics present excessively liberal accounts of epistemically possible
models and in this sense should be, in future research, constrained in order to generate more
precise descriptions of the epistemic conditions of semantic competence and, consequently,
semantic information. However, not necessarily the adequate constraints needed here will reject
only p-urn structures, that is, there is the possibility that, in an improved framework obtained by
applying contraints in urn semantics, some of the structures that in fact characterize epistemic
possibility are p-urn structures. I will argue with more detail in this direction in the final chapter
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of this thesis, but this general remark already anticipates my opinion on this issue.
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Chapter 6

Internalizing semantic information:
preliminary studies on Logics of formal
inconsistency and TSI

6.1 Introduction

Throughout this thesis I proposed a revision of the traditional theory of semantic information
in order to give an account of the real informativeness of logical truths. Of course, the work that
was actually developed here has an obvious limitation of scope: by logical truths and validities
I always meant classical logical truths and validities. Thus, one could propose the following
question: (∗) what would happen with TSI if the logic that characterizes our reasoning and
discursive practice was not classical logic but some other non-classical system? This is the
question that I would like to explore in this chapter.

Question (∗) is too complex. In fact, it can be analyzed at least in terms of the following
simpler ones:

A. Given a non-classical system of logic L, does L provide the technical resources for the
formalization of TSI (Fraı̈ssé-Hintikka theorem, existence of Hintikka normal forms etc.)?

B. Is it possible to generate a urn semantics based on L? Moreover, in case it is possible, does
this urn semantics have all the good properties required for the rejection of SoD?

In this chapter I would like to start the study of (∗) by considering question A for a particular
system of LFIs known in the literature as QmbC. In the introduction of this thesis I already
presented a general description of LFIs (and QmbC, in particular) as interesting systems of
paraconsistent logic that control explosion by attributing consistency and inconsistency to first
order formulas in first order language itself. QmbC is a very minimal system of such logics.
In this sense, I would like to see whether QmbC validates the Fraı̈ssé-Hintikka theorem, has
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Hintikka-normal forms and so on. As I have said above, any result on this issue represents a
first step in the formalization of TSI in LFIs.

The study of the relation between LFIs and TSI finds justification both in a general and in
a particular motivation. As a more general motivation, this investigation is part of a research
agenda on the semantics of non-classical logical vocabulary. In order to provide an account of
the meanings of a particular set of non-classical logical connectives, it is necessary to give an
account of the informativeness of sentences generated by such vocabulary.

Moreover, in particular, this study is driven by the idea of exploring LFIs’ “internalization”
of consistency in order to further internalize information. Roughly speaking, TSI formalizes
information in terms of “degree of consistency”, that is, the amount of information carried by a
formula varies with respect to the numbers of models it has in a fixed semantic system. Now,
given LFIs’ internalization of consistency, based on it we can hope to achieve a subsequent
internalization of information. The search for internalizations of metatheoretic notions is a
widespread topic of research that shades new light on traditional fundamental notions. For a
good example in this direction, consider the results obtained by the internalization of “proof”
based on provability logics (Cf. VERBRUGGE, 2017). Now, since the amount of information
of formulas varies in terms of degrees of consistency, we can hope to achieve a way of defining
finer-grained operators “◦” that verify the consistency of some formulas based on the amount
of information that they carry.

There are also some further motivations for considering whether Fraı̈ssé-Hintikka theorem
holds in QmbC which are independent from informational issues. In recent literature, it is possi-
ble to find an increasing interest in LFIs as a promising source of new approaches to traditional
problems in philosophical logic. Such philosophical agenda on LFIs requires a previous eluci-
dation of the semantic counterpart of these systems. However, we still do not have a complete
understanding of their semantic aspects, either in a philosophical or in a purely logical sense.

From a philosophical perspective, there are important questions about the meaning of “◦”
(Cf. BARRIO, 2017). Moreover, from a model-theoretic perspective, we still do not have an
adequate understanding of the semantic relations holding between LFIs and classical logic. In
particular, given that any LFI is generated by imposing constraints on the validity of the classi-
cal principle of explosion, one could ask which classical model-theoretic properties are satisfied
by these logics. Following this purely logical agenda on the semantics of LFIs, Carnielli et al.
(2014) started the study of model theory for the minimal system QmbC. In this paper, they
define a Tarskian semantics for QmbC and prove completeness, compactness and Löwenheim-
Skolem theorems for it. Such results suggest the agenda of searching for more advanced clas-
sical model-theoretic properties which could be at least partially preserved in QmbC. Further-
more, note that it would be especially relevant to find theorems which could be only partially
preserved in QmbC.

Fraı̈ssé-Hintikka theorem is a very fruitful theorem of classical model theory. So, the es-
tablishment of this theorem in QmbC can suggest that a variety of classical semantic proper-
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ties are also preserved in this logic. Furthermore, note that Fraı̈ssé-Hintikka theorem relies
heavily on the truth-functionality of classical logic (in what follows, I treat the expressions
“truth-functionality” and “compositionality” as synonyms): in classical logic, the determina-
tion of the truth-values of all atomic formulas of a given language is a sufficient condition for
determining the truth-values of all formulas of the language. This is not the case in QmbC
as well as in various other LFIs. Such systems are essentially non-compositional in the sense
that, in their contexts, there are formulas whose truth-values are partially independent from the
truth-values of the atomic formulas occurring in them. So, it is not trivial to ask whether Fraı̈ssé-
Hintikka theorem can even be partially preserved in QmbC, what makes the obtainment of this
theorem in the context of LFIs an even more valuable achievement. In fact, as I show next,
non-compositionality is a fundamental reason of divergence between classical Fraı̈ssé-Hintikka
theorem and the weaker version of this theorem that I prove here for QmbC.

This chapter is organized in the following way. In section 2 I present a brief overview of the
basic results introduced by Carnielli et al. (2014) about model theory for LFIs. Then, in section
3, I present the version of Fraı̈ssé-Hintikka theorem for QmbC. In the conclusion, I compare the
classical and non-classical versions of Fraı̈ssé-Hintikka theorem with each other, considering
whether it is possible to generate a strengthening of the latter in LFI-extensions of QmbC.

6.2 Model theory for QmbC

In this section I present an overview of the basic model theory for QmbC. To begin, let me
introduce a few basic notions. Let a QmbC language be a language whose logical signature is
{∨,∧,→,¬, ◦,∃,∀}. By L I understand a relational QmbC language. Consequently, L only
has variables as terms. Further, consider that L has no identity relation either.1 The set of
formulas of L is recursively defined in the usual way.

Whereas classical Fraı̈ssé-Hintikka theorem states a property relating back and forth equiv-
alence and common satisfaction of formulas with a fixed maximum quantifier rank, the weaker
version of Fraı̈ssé-Hintikka theorem that holds in QmbC concentrates on the following slight
variation of the notion of “quantifier rank”. Let q̂r denote the function ¬◦-free quantifier rank

such that q̂r(φ) is the length of the greatest nesting of quantifiers occurring in a formula φwhich
are neither in the scope of “¬” nor of “◦”. The function q̂r works in the following way:

• If φ is either atomic formula, ¬ψ or ◦ψ, then q̂r(φ) = 0;

• If φ is ψ ∗ γ, such that “∗” is either “∧”, “∨” or “→”, then q̂r(φ) = max{q̂r(ψ), q̂r(γ)};

• If φ is either ∀xψ or ∃xψ, then q̂r(φ) = q̂r(ψ) + 1;

1I focus here on relational languages without identity in order to concentrate on a simpler case first. In the
conclusion I consider whether the present result can be generalized for “full” QmbC languages.
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In the following, sometimes I need to consider the complexity of formulas. In this sense, the
function that computes the complexity of terms introduced in section 3.1 is naturally extended
for formulas in the following way:

• If φ is atomic formula, then cp(φ) = 0;

• cp(¬ψ) = cp(◦ψ) = cp(∀xψ) = cp(∃xψ) = cp(ψ) + 1;

• cp(
∧

Ψ) = cp(
∨

Ψ) =
∑

0<i≤n
cp(ψi), for Ψ = {ψ1, . . . , ψn}.

The following is an axiomatization of QmbC.

Axiomatic system for QmbC

S1. φ→ (ψ → φ);

S2. (φ→ ψ)→ ((φ→ (ψ → γ))→ (φ→ γ));

S3. φ→ (ψ → (φ ∧ ψ))

S4. a. (φ ∧ ψ)→ φ;

b. (φ ∧ ψ)→ γ;

S5. a. φ→ (φ ∨ ψ);

b. ψ → (φ ∨ ψ);

S6. (φ→ γ)→ ((ψ → γ)→ ((φ ∨ ψ)→ γ));

S7. φ ∨ (φ→ ψ);

S8. φ ∨ ¬φ

S9. ◦φ→ (φ→ (¬φ→ ψ));

S10. φt[x]→ ∃xφ, t is substitution-free for x in φ;

S11. ∀xφ→ φx[t], t is substitution-free for x in φ;

Inference rules:

R1. Modus ponens;

R2. φ→ ψ \φ→ ∀xψ, x does not occur free in φ;

R3. φ→ ψ \∃xφ→ ψ, x does not occur free in ψ.

Definition 6.1 For a sequence of formulas 〈φ1, . . . , φn〉 of L, I say that {φ1, . . . , φn−1} deduces
φn, in symbols {φ1, . . . , φn−1} ` φn, if and only if the following holds:
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• φ0 is an instance of axiom scheme Sj, for some j = 1, . . . , 11;

• For every 0 < m ≤ n, either φm is an instance of axiom scheme Sj, for some j =

1, . . . , 11, or φm is obtained from application of inference rule R1 to φk and φq, for some

k < q < m, or φm is obtained from application of inference rule Rj′ to φk, for some

j′ = 2, 3 and for some k < m.

For any set of formulas Γ ∪ {φ}, Γ ` φ means that there is a finite set Γ′ ⊆ Γ such that Γ′ ` φ.

Axiom schemes S1-S8 plus modus ponens describe minimal positive classical logic, the
fragment of classical logic that contains its positive theorems only. The expansion of this sys-
tem with axiom S9 generates the propositional fragment of QmbC (denoted in the literature as
mbC (CARNIELLI et al., 2014, p. 3)). This axiomatic system for QmbC has some important
properties. First, it is a Tarskian deductive system, that is, the above axioms and rules formalize
a reflexive, monotonic and transitive deducibility relation “`” (Ibid., pp. 18–19). Further, it
validates the deduction theorem (Ibid., p. 7).

An important difference between QmbC and classical logic is the fact that replacement

property fails for QmbC (CARNIELLI; CONIGLIO; MARCOS, 2007, p. 26). The failure of
this property means that in QmbC, in general, it is not possible to replace equivalent subformulas
occurring in the scope of the operators “¬” or “◦”. This failure is also inherited by stronger LFIs
and can be seen as an essential feature of this family of systems. The failure of replacement
property in QmbC and other LFIs is a consequence of the non-compositional character of these
systems that I mentioned above. As I show in the following, given the failure of replacement
property in QmbC, it is necessary to include an additional clause to the definition of satisfaction
for QmbC in order to guarantee the validity of the substitution lemma for this system.

Finally, based on this axiomatics, it is possible to define a strong negation “∼” as follows:
for a fixed formula ψ, for any formula φ, ∼ φ is defined as φ → (◦ψ ∧ ψ ∧ ¬ψ). Defined in
this way, the connective “∼” interprets classical negation in QmbC (CARNIELLI et al., 2014,
p. 5). The existence of a strong negation “∼” is important for the achievement of this chapter’s
main result, because with “∼” it is possible to prove interdefinability of “∀” and “∃” in QmbC,
that is, it is possible to prove that `∼ ∀xφ→ ∃x ∼ φ and `∼ ∀x ∼ φ→ ∃xφ (Ibid., pp. 8–9).

Now, the notions of L-structure and QmbC-satisfiability can be defined in the following
way (Ibid., pp. 10–11).

Definition 6.2 (QmbC-structure) An L-structure M is a pair 〈M, (·)M〉, in which M 6= ∅
and (·)M is an interpretation function such that, for any n-ary predicate symbol P , PM is some

part of Mn.

Given an L-structureM, for any L-formula φ with free-variables x̄ = x1, . . . , xn and for
ā = 〈a1, . . . , an〉 ∈ Mn, I denote that 〈a1, . . . , an〉 satisfies φ in M by the usual notation
M |= φ x̄[ā].
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Definition 6.3 (QmbC-satisfiability) For any L-structure M, for any n < ω, for every for-

mula φ with free-variables x̄ = x1, . . . , xn, for any ā ∈ Mn, the satisfaction of φ by ā inM is

characterized by the following set of clauses:

• If φ is atomic formula P (x̄), thenM |= φ x̄[ā]⇔ ā ∈ PM;

• If φ is ψ ∧ γ, thenM |= φ x̄[ā] ⇔M |= ψ ȳ[b̄] andM |= γ z̄[c̄], such that ȳ and z̄ are

the (possibly empty) lists of variables within x̄ that occur in ψ and γ, respectively, and b̄

and c̄ are the corresponding segments of ā;

• If φ is ψ ∨ γ, thenM |= φ x̄[ā] ⇔ eitherM |= ψ ȳ[b̄] orM |= γ z̄[c̄], in which ȳ, z̄, b̄

and c̄ should be understood as above;

• If φ is ψ → γ, thenM |= φ x̄[ā]⇔ eitherM 6|= ψ ȳ[b̄] orM |= γ z̄[c̄], in which ȳ, z̄, b̄

and c̄ should be understood as above;

• If φ is ∃yψ, thenM |= φ x̄[ā]⇔M |= ψ x̄ y[ā a (b)], for some element b ofM;

• If φ is ∀yψ, thenM |= φ x̄[ā]⇔M |= ψ x̄ y[ā a (b)], for every element b ofM;

• If φ is ¬ψ, thenM 6|= φ x̄[ā]⇒M |= ψ x̄[ā];

• If φ is ◦ψ, thenM |= φ x̄[ā]⇒ eitherM 6|= ¬ψ x̄[ā] orM 6|= ψ x̄[ā].

• For any 0 < i ≤ n, for any variable y such that xi is substitution-free for y in φ, if

M |= φ x̄[ā]⇔M |= φ x1 . . . xi[y] xi+1 . . . xn[ā], then:

– M |= ¬φ x̄[ā]⇔M |= ¬φ x1 . . . xi[y] xi+1 . . . xn[ā], and

– M |= ◦φ x̄[ā]⇔M |= ◦φ x1 . . . xi[y] xi+1 . . . xn[ā].

The last clause in Definition 6.3 forces the preservation of truth-values by substitution of
terms with same interpretation. Consequently, it supports a substitution lemma for QmbC (Ibid.,
pp. 13–15). In fact, that clause is a necessary condition of the lemma given the already men-
tioned failure of replacement property in QmbC.

Definitions 6.2 and 6.3 provide a Tarskian semantics for QmbC. Note that, by this semantics,
“¬” is in fact a paraconsistent negation since, for some formulas φ, it is possible to devise an
L-structureM such thatM |= φ,M |= ¬φ but, by the semantics of “◦”,M 6|= ◦φ. So,M has
a non-trivial theory.2 With this semantics it is possible also to define semantic consequence in
standard terms.

2Of course the reader could ask a more fundamental question: is “¬” really a negation? This question is a
special case of Slater’s challenge to paraconsistency (SLATER, 1995). This is not the proper context for addressing
this important question. However, note that, for any negation “∗”, “∗” is a paraconsistent negation if and only if
there are cases in which, for some formula φ, it is possible to assume φ and ∗φ without explosion. So, assuming
that the connective “¬” of QmbC is a negation, given that there are QmbC-structures that, for some formula φ,
verify φ and ¬φ without trivialization, “¬” passes the test of paraconsistency.
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Definition 6.4 A set Γ of formulas of L semantically implies a formula φ, in symbols Γ |= φ, if

and only if, for any L-structureM, either there is some ψ ∈ Γ such thatM 6|= ψ orM |= φ.

Hence, QmbC validates the following result: Γ |= φ if and only if Γ∪{∼ φ} is unsatisfiable.
Carnielli et al. (2014) proved that QmbC is a sound and complete system of logic.

Theorem 6.5 (Soundness and completeness for QmbC) Let Γ ∪ {φ} be a set of formulas of

L. Then, Γ ` φ⇔ Γ |= φ.

Proof. (Ibid., pp. 15–22).

Compactness and downward Löwenheim-Skolem for QmbC are corollaries of Theorem 6.5
(Ibid., p. 23).

Corollary 6.6 (Compactness for QmbC) Let Γ ∪ {φ} be a set of formulas of L. Γ |= φ if and

only if, for some finite set of formulas Γ∗ ⊆ Γ, Γ∗ |= φ.

Proof. Assume Γ |= φ. By completeness of QmbC, Γ ` φ. Since deduction in QmbC is finitary,
there is a finite Γ∗ ⊆ Γ, Γ∗ ` φ. By soundness of QmbC, Γ∗ |= φ.

Considering a variation of Henkin’s classic strategy, the proof of completeness of QmbC
in Carnielli et al. (2014) builds a “canonical” model for a given non-trivial theory. Now, the
existence of such “canonical” models guarantees downward Löwenheim-Skolem for QmbC.

Corollary 6.7 (Downward Löwenheim-Skolem for QmbC) Let Γ be a non-trivial set of for-

mulas of L. There is an L-structureM that satisfies Γ and the cardinality ofM is equal to the

cardinality of L.

Proof. (Ibid., p. 23).

The proof of upward Löwenheim-Skolem for QmbC in Carnielli et al. (2014, pp. 23–24)
works by extending a previously given model with copies of its elements. Here, I explore a
more standard strategy based on compactness.

Corollary 6.8 (Upward Löwenheim-Skolem for QmbC) LetM be anL-structure of the same

cardinality of L (let it be δ), and let Γ be a set of formulas of L such thatM |= Γ. Then, for

every cardinal κ ≥ δ, there is an L-structure N of cardinality κ such that N |= Γ.

Proof. Let Th(M) be the theory ofM and consider a set C = {ci : i < κ} of new constants.
Let L′ = L ∪ C and consider an L′-theory ∆ = {ci 6= cj : i 6= j, ci, cj ∈ C}. Consider a
finite part ∆′ of ∆ and assume that c1, . . . , cn are all the constants occurring in ∆′. LetM′ be
the L′-expansion ofM such that, for every 0 < i < j ≤ n, cM′i 6= cM

′
j . So, M′ |= ∆′. By

compactness, there is an L′-structure N ′ that satisfies Th(M) ∪ ∆. Consider the L-reduct of
N ′, let it be N . So, N satisfies Γ and is of cardinality κ.

The next definition characterizes embedding and elementary embedding for QmbC.
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Definition 6.9 LetM and N be L-structures.

• M is embedded in N if and only if there is an injection h :M→N such that, for every

formula φ of L with free-variables x̄ = x1, . . . , xn and such that q̂r(φ) = 0, for every

sequence ā = 〈a1, . . . , an〉 ofM,M |= φ x̄[ā]⇔ N |= φ x̄[h(a1) . . . h(an)];

• M is elementary embedded in N if and only if there is an injection h : M → N such

that, for every formula φ of L with free-variables x̄ = x1, . . . , xn, for every sequence

ā = 〈a1, . . . , an〉 ofM,M |= φ x̄[ā]⇔ N |= φ x̄[h(a1) . . . h(an)];

If the domain ofM is some part of the domain of N andM is (elementary) embedded in N ,

thenM is called a (elementary) substructure of N and N is called an (elementary) extension
ofM, in symbolsM⊆ N (M� N , respectively).

Analogous to what I have done in subsection 5.3.1, for any L-structureM of cardinality κ,
for a set of new constants D(M) = {di : i < κ}, for L+ = L ∪ D(M), for an L+-expansion
M+ ofM such that (·)M+

� D(M) is a bijection onto the domain ofM, let the elementary dia-
gram ofM be the theory Diagel(M) = {φ x1 . . . xn[d1 . . . dn] : φ is L-formula with free-vari-
ables x1, . . . , xn, d1, . . . , dn ∈ D(M) andM+ |= φ x1 . . . xn[d1 . . . dn]}. It is also possible to
prove a diagram lemma in QmbC.

Lemma 6.10 LetM and N be L-structures. The following are equivalent:

1. M� N ;

2. For some L+-expansion N+ of N , N+ |= Diagel(M).

Proof. (1 ⇒ 2) Let h be the mapping that defines M � N and consider N+ such that, for
any d ∈ D(M), dN+

= h(dM
+

). So, by 1, N+ |= φ x1 . . . xn[d1 . . . dn], for any sentence
φ x1 . . . xn[d1 . . . dn] ∈ Diagel(M).

(2 ⇒ 1) For every d ∈ D(M), denote d as da, for the element a ofM such that dM+
= a.

Let h be a mapping fromM intoN such that, for any element a ofM, h(a) = dN
+

a . So, for any
sequence 〈a1, . . . , an〉 ofM,M |= φ x1 . . . xn[a1 . . . an] ⇔M+ |= φ x1 . . . xn[da1 . . . dan ] ⇔
(By 2) N+ |= φ x1 . . . xn[da1 . . . dan ]⇔ N |= φ x1 . . . xn[h(a1) . . . h(an)].

Corollary 6.11 LetM be an L-structure of the same cardinality of L (let it be δ). Then, for

every cardinal κ ≥ δ, there is an L-structure N of cardinality κ such thatM� N .

Proof. Let ∆ be a theory such as in the proof of Corollary 6.8. Note that, for every finite part
∆′ of Diagel(M) ∪∆, there is an L+-expansion ofM that satisfies ∆′. So, by compactness,
there is an L+-structure N+ of cardinality κ such that N+ |= Diagel(M). By Lemma 6.10,
for the L-reduct N of N+,M� N .
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6.3 Fraı̈ssé-Hintikka theorem for QmbC

6.3.1 Preliminary notions

Based on these model-theoretic results for QmbC, now I state and prove a weaker version of
Fraı̈ssé-Hintikka theorem for QmbC. First, let me introduce some important auxiliary concepts.
Below I define isomorphism in the context of QmbC.

Definition 6.12 (Isomorphism in QmbC) LetM andN be L-structures with domainsM and

N , respectively.M is isomorphic withN , in symbolsM∼= N , if and only if there is a bijection

h : M → N such that, for any n < ω and any sequence ā = 〈a1, . . . , an〉 in Mn, the following

holds:

• For any atomic formula φ of L with free-variables x̄ = x1, . . . , xn,M |= φ x̄[ā]⇔ N |=
φ x̄[h(a1) . . . h(an)];

• For any formula φ of L with free-variables x̄,

– M |= ¬φ x̄[ā]⇔ N |= ¬φ x̄[h(a1) . . . h(an)];

– M |= ◦φ x̄[ā]⇔ N |= ◦φ x̄[h(a1) . . . h(an)].

Given the failure of replacement property in QmbC, the last clause in the definition above
is required in order to validate isomorphism property, i.e., the fact that isomorphism implies
elementary equivalence (terminology by Ebbinghaus (1985, p. 28)).

Theorem 6.13 (Isomorphism property) Let M and N be L-structures. Then M ∼= N ⇒
M ≡ N .

Proof. Proof by induction on formulas. For atomic formulas as well as for the cases of “◦” and
“¬” it follows from definition of isomorphism.

Finally, based on Definition 6.12 it is possible to define a variation of back and forth equiv-
alence for QmbC – let me call it back and forth equivalence in elementary extensions.

Definition 6.14 (Back and forth equivalence in elementary extensions) LetM andN beL-

structures.M andN are back and forth equivalent in elementary extensions, in symbolsM�
N , if and only if there is a poset H of isomorphisms between substructures of elementary

extensions ofM and N such that the following holds:

• The first element h0 ∈ H is isomorphism between empty substructures ofM and N ;

• Secondly, assume that, for some i < ω, there are elementary extensionsMi andNi ofM
and N , respectively, such that, for some finite structuresM′

i ⊆ Mi and N ′i ⊆ Ni, there

is an isomorphism hi ∈ H such that hi :M′
i → N ′i . The following holds:
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– For any element a ofMi, there is some elementary extension Ni+1 of Ni such that,

for some element b of Ni+1, there is an isomorphism hi+1 ∈ H such that hi+1 :

M′
i ∪ {a} → N ′i ∪ {b}, hi ⊆ hi+1;

– For any element b of Ni, there is some elementary extension Mi+1 of Mi such

that, for some element a of Mi+1, there is an isomorphism hi+1 ∈ H such that

hi+1 :M′
i ∪ {a} → N ′i ∪ {b}, hi ⊆ hi+1.

M and N are k-back and forth equivalent in elementary extensions (in symbolsM �k N ) if

and only if the condition above holds at least for i < k.

In usual terminology, a formula of the form Q1x1 . . . Qnxnψ in which, for every 0 < i ≤ n,
“Qi” is either “∀” or “∃” and ψ is a quantifier-free formula is called a prenex normal form. In
classical logic there is a series of prenex operations (terminology by Shoenfield (1967, p. 37))
which together characterize a procedure for generating, from any given formula φ, a prenex
normal form that is equivalent to φ. Let me call such a procedure a prenexification of formulas.
Now, a further consequence of the non-compositionality of QmbC is that, in this system, there
is no procedure of prenexification.

Theorem 6.15 For some formula φ of L, there is no formula γ that is equivalent to ◦φ and is

a prenex normal form. Furthermore, there is no formula γ that is equivalent to ¬φ and is a

prenex normal form.

Proof. I will show that, particularly in the case that φ is ∀xP (x), for a monadic predicate “P ”
of L, there is no prenexification either of ◦φ or ¬φ.

Consider in particular the case of “¬” (The case of “◦” works in an analogous way). Assume
that there is some prenex normal form γ that is equivalent to ¬∀xP (x). Since P (x) is the only
considered atomic formula, for some 0 < m < ω, γ is of the form Q1y1 . . . Qmymψ in which
ψ is a quantifier-free formula whose atomic subformulas are P (y1), . . . , P (ym) and, for any
0 < i ≤ m, “Qi” is either “∀” or “∃”.

Consider an L-structureM such thatM |= P (a), for every element a ofM. ThenM |=
∀xP (x). Consider two cases:

a) M |= Q1y1 . . . Qmymψ. In this case, stipulate thatM 6|= ¬∀xP (x).

b) M 6|= Q1y1 . . . Qmymψ. In this case, let it be thatM |= ¬∀xP (x).

Both cases are possible given that M |= ∀xP (x) and, by the non-compositionality of
QmbC, the evaluation of ¬∀xP (x) is independent of the evaluations of ψ and ∀xP (x). Cases
a) and b) contradict the fact that γ and ¬φ are equivalent formulas. Hence, ¬φ does not accept
prenexification.

Corollary 6.16 QmbC does not have prenexification.
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Let me say that a formula ψ is a ¬◦-free formula if and only if any quantifier occurring in
it is either in the scope of “¬” or “◦”. Further, I say that a formula φ is a quasi-prenex normal
form if φ is of the form Q1x1 . . . Qnxnψ in which any “Qi” is either “∀” or “∃” and ψ is ¬◦-free
formula. Even though QmbC does not have a prenexification procedure, it has what we can
call a quasi-prenexification procedure, i.e., a procedure of taking any formula φ and generating
from it an equivalent one in quasi-prenex normal form. The fact that QmbC has only quasi-
prenexification is directly linked with the fact that only a weaker version of Fraı̈ssé-Hintikka
theorem holds in QmbC.

Lemma 6.17 For every formula φ of L, there is a formula φ† that is equivalent to φ and is in

quasi-prenex normal form.

Proof. Let φ, ψ and γ be formulas of L. Further, consider the following mapping (·)† from the
set of formulas of L into itself:

• If φ is either atomic formula, ¬ψ or ◦ψ, then φ† is φ;

• Assuming that “Q” is either “∃” or “∀”, (Qxφ)† is Qx(φ)†;

• Assuming that “Q” and “K” are either “∃” or “∀”, “Q” is different from “K” and “+” is
either “∨” or “∧”, then the following holds:

– If φ is Qxγ, in which x does not occur free in ψ, and q̂r(φ) ≥ q̂r(ψ), then:

∗ (φ+ ψ)† is Qx((γ + ψ)†);

∗ (ψ + φ)† is Qx((ψ + γ)†);

∗ (φ→ ψ)† is Kx((γ → ψ)†);

∗ (ψ → γ)† is Qx((ψ → γ)†);

– If q̂r(φ) = q̂r(ψ) = 0, then

∗ (φ+ ψ)† is (φ† + ψ†);

∗ (φ→ ψ)† is (φ† → ψ†).

Clearly, φ† is a quasi-prenex normal form. I will prove by induction on the¬◦-free quantifier
rank of φ that φ† is equivalent to φ. Given that φ† is φ when φ is either an atomic formula,
¬ψ or ◦ψ, I only need to consider the inductive cases, that is, the cases in which φ is either
a conjunction, a disjunction or an implication. In these cases, induction works exactly as in
classical logic.

As a final preliminary point, the following lemma on the cardinality of sets of formulas of a
given maximum complexity is required for proving this chapter’s main theorem.

Lemma 6.18 Consider that L is a finite language. For i < ω, let ∆i be such that ∆i = {φ :

free-variables of φ are within x̄ = x1, . . . , xm and cp(φ) ≤ i}. Then, ∆i is a finite set.
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Proof. I prove this lemma by induction on i < ω. ∆0 is the set of atomic formulas with
variables within x̄. This is a finite set, since L is a finite language.

Now assume ∆i has cardinality n, for some n < ω. Consider that Λ¬◦ is the set of formulas
of L such that φ ∈ Λ¬◦ if and only if φ is #ψ, in which “#” is either “¬” or “◦” and ψ ∈ ∆i.
So, the cardinality of Λ¬◦ is n. Moreover, consider that Λ∨∧ is the set of formulas of L such
that φ ∈ Λ∨∧ if and only if φ is ψ + γ, in which “+” is either “∧” or “∨” and ψ, γ ∈ ∆i.
Consequently, the cardinality of Λ∨∧ is 2× n2. Finally, consider that Λ∀∃ is the set of formulas
of L such that φ ∈ Λ∀∃ if and only if φ is Qxψ, in which “Q” is either “∀” or “∃”, x is either xj ,
for some 0 < j ≤ m, or a new variable, and ψ ∈ ∆i. So, the cardinality of Λ∀∃ is≤ (m+1)×n.

Let ∆i+1 = ∆i∪Λ¬◦∪Λ∨∧∪Λ∀∃. ∆i+1 is a finite set and, for any φ in ∆i+1, the complexity
of φ is at most i+ 1.

6.3.2 Main result

Based on the results obtained in subsection 6.3.1, it is possible to prove the main result of
this chapter.

Theorem 6.19 Let L be a finite language, and let M and N be L-structures. Then, for any

k < ω, the following are equivalent:

1. M�k N ;

2. For any sentence φ of L such that q̂r(φ) ≤ k,M |= φ⇔ N |= φ.

Proof. (1⇒ 2) Assume 1. The result is a consequence of the following claim:

(∗) Let H be the set of isomorphisms defining M �k N . For any m,n < ω such that
m + n ≤ k, for any elementary extensionsMm � M and Nm � N , for every hm ∈ H with
domain {a1, . . . , am}, for some sequence ā = 〈a1, . . . , am〉 ofMm, and whose image is some
finite substructure of Nm, and for every quasi-prenex normal form φ of L whose free-variables
are within x̄ = x1, . . . , xm and q̂r(φ) = n,Mm |= φ x̄[ā]⇔ Nm |= φ x̄[hm(a1) . . . hm(am)].

In order to prove this claim, fix someMm, Nm and hm such as in its condition. Claim (∗)
follows by induction on n.

First, assume that n = 0. By definition of isomorphism, for every φ such that q̂r(φ) = n =

0,Mm |= φ x̄[ā]⇔ Nm |= φ x̄[hm(a1) . . . hm(am)].
Now assume n > 0. So, φ is of the form Q1y1 . . . Qnynψ such that, for every 0 < i ≤ n,

“Qi” is either “∀” or “∃”. Consider the following two cases:

a) Assume “Q1y1” is “∃y1” andMm |= φ x̄[ā]. Then,Mm |= Q2y2 . . . Qnynψ x̄y1[ā a (b)],
for some element b ofMm. SinceM�k N , there is someNm+1 � Nm and an isomorphism
hm+1 ∈ H with domain {a1, . . . , am, b} and whose image is some finite substructure of
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Nm+1, hm ⊆ hm+1. By inductive hypothesis, Nm+1 |= Q2y2 . . . Qnynψ x̄y1[hm+1(a1) . . .

hm+1(am) hm+1(b)]. By elementary embedding, Nm |= φ x̄[hm(a1) . . . hm(am)]. Proof in
the other direction works in exactly the same way.

b) Assume “Q1y1” is “∀y1”. Exploring the definability of “∀” in terms of “∼” and “∃”, assume
Mm |= ∃y1 ∼ Q2y2 . . . Qnynψ x̄[ā]. Using the quasi-prenex normal form of the formula
∃y1 ∼ Q2y2 . . . Qnynψ, the rest follows exactly as in case a). I omit the details for space
reason.

This completes the proof of (∗), condition 2 being a subcase of it.

(2 ⇒ 1) Assume 2. The proof goes by induction on i ≤ k. First, assume i = 0. By 2,M
and N agree in all ¬◦-free sentences. So, ∅ is isomorphism between (empty) substructures of
M and N . Hence,M�0 N .

For the inductive case, assume that, for elementary extensionsMi �M andNi � N , there
is a sequence ā = 〈a1, . . . , ai〉 ofMi such that there is an isomorphism hi ∈ H with domain
{a1, . . . , ai} and whose image is some finite substructure of Ni.

In order to obtain the result, it is necessary to consider the following tasks:

• For any element c of Mi, for some elementary extension Ni+1 � Ni, look for some
element d of Ni+1 such that there is an isomorphism hi+1 ∈ H , hi+1 = hi ∪ {〈c, d〉};

• For any element d ofNi, for some elementary extensionMi+1 �Mi, look for an element
c ofMi+1 such that there is an isomorphism hi+1 ∈ H , hi+1 = hi ∪ {〈c, d〉}.

Without loss of generality, let me consider here the former task. Fix some element c of
Mi. Now consider the chain (∆r : r < ω) of sets of formulas of L such that ∆r = {φ :

for n + i < k, φ is quasi-prenex normal form Q1y1 . . . Qnynψ with free-variables within x̄ =

x1, . . . , xi and z, cp(ψ) ≤ r,Mi |= φ x̄z[ā a (c)]}. Note that, for any r < q < ω, ∆r ⊂ ∆q.
Fix some ∆r. By Lemma 6.18, ∆r is a finite set. Then,

∧
∆r is a well formed formula with

q̂r(
∧

∆r) = k − i − 1. By definition, Mi |=
∧

∆r x̄z[ā a (c)]. By Lemma 6.17, there is a
quasi-prenex normal form Qz1 . . . Qzk−i−1

∧
Σr that is equivalent to the formula

∧
∆r. Then,

Mi |= Qz1 . . . Qzk−i−1
∧

Σr x̄z[ā a (c)]. So,Mi |= ∃zQz1 . . . Qzk−i−1
∧

Σr x̄[ā].
Since q̂r(∃zQz1 . . . Qzk−i−1

∧
Σr)+ i = k, by the claim (∗) demonstrated in the first part of

this proof, Ni |= ∃zQz1 . . . Qzk−i−1
∧

Σr x̄[hi(a1) . . . hi(ai)], for any r < ω. So,
⋃

(∆r : r <

ω) is finitely satisfied byNi. By Corollary 6.11, there is some elementary extensionNi+1 � Ni
such that, for some element d of Ni+1, Ni+1 |= Qz1 . . . Qzk−i−1

∧
Σr x̄z[hi(a1) . . . hi(ai) d],

for every r < ω.
Define hi+1 = hi∪{〈c, d〉}. I will prove that hi+1 is an isomorphism. First, note that, for any

atomic formula φ with free-variables within x1, . . . , xi, z, if φ ∈ ∆0, thenMi |= φ x̄z[ā a (c)]

and Ni+1 |= φ x̄z[hi+1(a1) . . . hi+1(ai) d]; otherwise, Mi 6|= φ x̄z[ā a (c)] and Ni+1 6|=
φ x̄z[hi+1(a1) . . . hi+1(ai) d]. So, hi+1 preserves satisfaction of atomic formulas.
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Secondly, note that, for any formula of the form ¬ψ with free-variables within x1, . . . , xi, z,
if φ ∈ ∆cp(ψ)+1, then Mi |= φ x̄z[ā a (c)] and Ni+1 |= φ x̄, z[hi+1(a1) . . . hi+1(ai) d];
otherwise,Mi 6|= φ x̄z[ā a (c)] and Ni+1 6|= φ x̄z[hi+1(a1) . . . hi+1(ai) d]. So, hi+1 preserves
satisfaction of all formulas of the form ¬ψ. Hence, by a similar argument involving formulas
of the form ◦ψ, it is possible to conclude that hi+1 is an isomorphism.

6.4 Conclusion

I would like to conclude with a comparison between the classical Fraı̈ssé-Hintikka theorem
and Theorem 6.19. First, let me remark some parallels between these results. Although the
lack of prenexification puts a limit to a full recovery of Fraı̈ssé-Hintikka theorem in QmbC, the
non-compositionality of this system draws an analogy between the pairs of concepts quantifier-
free formula/ ¬◦-free formula, prenex normal form/ quasi-prenex normal form and quantifier
rank/ ¬◦-free quantifier rank. Moreover, even though, contrary to classical logic, in QmbC the
agreement in sentences of ¬◦-free quantifier rank ≤ k does not enable the construction of k-
back and forth equivalence, at least in this system it is possible to construct k-back and forth
equivalence in elementary extensions. In this sense, there is a structural similarity between
classical Fraı̈ssé-Hintikka theorem and Theorem 6.19.

Further, as in the classical case, it is easy to extend Theorem 6.19 to “full” QmbC lan-
guages, that is, QmbC languages with identity, functions and constants (in fact, the basic model
theory for QmbC presented in section 6.2 holds for “full” languages). As I have shown in chap-
ter 3, when considering “full” languages, Fraı̈ssé-Hintikka theorem considers in particular the
unnested formulas of the language. Now, this can be done as well in QmbC since this system
also enables the translation of any formula into an unnested variant. Consequently, this logic
has all the tools required for generalizing Theorem 6.19 for richer languages.

Despite these similarities, Theorem 6.19 states a result that diverges in many aspects from
its classical counterpart as well. As I showed in chapter 3, the Fraı̈ssé-Hintikka theorem implies
the existence of Hintikka normal forms. On the other hand, apparently Theorem 6.19 does not
imply an analogous result. Informally speaking, the game-normal formulas of quantifier rank k
composing a Hintikka normal form characterize k-back and forth equivalence by determining,
for any sequence of elements ā of length k of a given model, in which ways ā can behave with
respect to the finite set of atomic formulas of a finite language.

So, for example, for a finite monadic language L, the set of atomic formulas of L with x
as free-variable is Φ = {P (x) : P is a predicate of L} and any game-normal formula θ of L
of quantifier rank 1 is ∃x[

∧
Ψ ∧

∧
¬(Φ − Ψ)], for some Ψ ⊆ Φ. In turn, in QmbC, given

the non-compositionality of the system, an analogous notion of game-normal formula should
also explicitly determine the satisfiability of formulas of the form ¬ψ or ◦ψ. However, this
enlarged set of formulas is infinite, a situation that is incompatible with the finitary character of
the formulas of the language.
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This divergence between classical Fraı̈ssé-Hintikka theorem and Theorem 6.19 reflects a
huge difference between classical logic and QmbC. First, based on game-normal formulas it
is possible to define a monotonic basis for first order logic, i.e., it is possible to build chains
(θk : k < ω) of game-normal sentences such that the quantifier rank of θk is k, for any k < q <

ω, θq → θk is a validity of classical logic and
⋃

(θk : k < ω) is a complete first order theory
(RANTALA, 1987, pp. 60–62). Thus, the lack of game-normal formulas for QmbC means that
there are not such monotonic bases in this system. Secondly, based on the syntactic properties
of game-normal forms it is possible to describe a deductive system for classical logic. Now, the
lack of game-normal formulas for QmbC means also that there is no such deductive system for
this logic. Therefore, it is not possible to characterize the semi-decidability of QmbC based on
Theorem 6.19, contrary to what can be done in classical logic.

Of course, the lack of a strong version of Fraı̈ssé-Hintikka theorem for QmbC means that
QmbC’s logical framework does not provide enough resources for the formalization of TSI. So,
the main result obtained in this chapter on the internalization of semantic information by LFIs
is negative: in minimal systems of LFIs such as QmbC it is not possible to formalize TSI.

However, QmbC is just a minimal system of LFI. So, perhaps it is reasonable to expect that
stronger LFIs validate stronger versions of the Fraı̈ssé-Hintikka theorem. Thus, one could raise
the following question: Are there LFI-extensions of QmbC that validate stronger versions of
the Fraı̈ssé-Hintikka theorem? This is a difficult issue for two reasons. First, given that the
limitation of Theorem 6.19 is associated with the non-compositionality of QmbC, a property
that stronger LFIs inherit, maybe a theorem as strong as classical Fraı̈ssé-Hintikka theorem
itself cannot be obtained in LFI-extensions. On the other hand, possibly QmbC’s procedure of
quasi-prenexification can be improved in stronger LFIs (for instance, the system LFI1 seems
to provide an improvement of that procedure). In this sense, perhaps it is reasonable to expect
that LFI-extensions provide upgrades of Theorem 6.19, even if a result as strong as classical
Fraı̈ssé-Hintikka theorem cannot be obtained.
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Chapter 7

Conclusion

I would like to finish this thesis with some aporetic remarks. These remarks do not under-
mine the results presented in this thesis. Rather, they advance a critical analysis of how this
thesis changes the landscape of the debate on semantic information. This analysis will offer,
then, a first evaluation of what I have obtained so far and of the work that still needs to be done
on the subject.

In this thesis I have proposed to examine the following problem: how much semantic infor-
mation does a sentence carry? In particular, I have tried to provide an answer to this problem
that is not committed to SoD, the idea that logical truths are non-informative. Traditionally, in
order to block SoD, philosophers have rejected TSI as an erroneous theory of semantic informa-
tion. Now, my present analysis of this topic is motivated by the claim that TSI in fact provides a
good measure of semantic information and SoD can be blocked by a better account of the nature
of this concept. In this sense, I claimed here that ordinary speakers have a partial knowledge of
truth-conditions associated with their semantic competence and this epistemic situation modu-
lates the semantic information that they grasp from contentful sentences. Further, I argued that
the epistemic situation of ordinary speakers is formally captured by urn semantics, a semantic
system that provides a formalization of TSI without SoD.

The search for a theory of semantic information without SoD is included in a wider discus-
sion on the ampliative character of logical knowledge: given that we can learn something that
we did not know before by discovering that a certain sentence expresses a logical truth, SoD
cannot be right. In this sense, an adequate analysis of semantic information provides also a
good analysis of the ampliative character of logical knowledge.

The problem of the ampliative character of logical knowledge is best known in the literature
as the problem of logical omniscience, a classical consequence of standard systems of epistemic

logic. Epistemic logic is the branch of logic that studies the formal aspects of our use of ex-
pressions of the kind “S knows that ...” in discourse and reasoning. The standard approach to
epistemic logic conceives “S knows that ...” as a modal operator Ks similar to necessity (FA-
GIN et al., 2004, pp. 18–ff.). Further, note that standard systems of epistemic logic are normal

modal systems, that is, these systems have K as an axiom (Ks(φ→ ψ)→ (Ksφ→ Ksψ)) and
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accept necessitation (` φ \ ` Ksφ) as a logical rule. Logical omniscience is the thesis that,
generally speaking, rational agents know all logical facts, that is, know all logical truths and all
the logically valid patterns of inference. More formally stated: if S knows φ and ψ is a logical
consequence of φ, then S knows ψ (HENDRICKS; SYMONS, 2015, sec. 1).

Now, logical omniscience is implausible: real rational agents ignore an infinite amount of
logical facts (e.g., although the reader may know Peano’s axioms, he certainly does not know
all arithmetic theorems). Of course, there is certainly a minimum amount of logical facts that
are known by any rational agent. However, what is the criterion that distinguishes obvious from
non-obvious logical facts? Note that this question is the epistemological counterpart of the
question of what logical truths (and what not) have in fact null information.1

Fagin et al. (2004, ch. 9) and Halpern and Pucella (2011) classify at least four general
strategies of solution to the problem of logical omniscience: i) first, it is possible to block logical
omniscience by rejecting the modal definition of Ks as a necessity operator; ii) secondly, we
can solve the problem by revising the underlying semantic notion of truth; iii) thirdly, we can
solve the problem by adding some extra clauses (e.g., awareness) to the modal definition of Ks;
iv) finally, we can enrich the considered modal frames with epistemically possible worlds.

Perhaps there is no univocal answer to the problem of logical omniscience,2 but strategies
of type iv) provide nice solutions since they preserve the standard modal definition of Ks and
offer a simple explanation of the falsity of logical omniscience: rational agents fail to know
some logical facts because they usually assume that some logically impossible worlds are in
fact possible. Considering in particular the correlative problem of semantic information, in this
thesis I subscribed a solution of type iv). However, this kind of solution faces a big challenge:
how can we determine which logically impossible worlds are epistemically possible?3

Type iv) solutions based on urn semantic were originally suggested by Rantala (1979) and
Hintikka (1979).4 This thesis adds some further reasons for claiming that urn semantics pro-
vides an adequate way of resolution of the problems of semantic information and logical om-
niscience. Now, this work represents just a first (although quite relevant) step in this research
agenda. In this sense, it is important to recognize that, as a framework of solution of those
problems, urn semantics suffers both of a completeness and a soundness flaw.

First, urn semantics is an unsound framework of resolution of the problems of semantic
information and logical omniscience because there are some non-obvious logical facts (i.e.,
logical facts that can be ignored by some rational agents) that are considered obvious by urn

1In chapter 2, when examining ordinary speakers’ partial knowledge of truth-conditions, I considered also a
dual version of the logical omniscience problem: whilst example 2.2 presents a case in which a reasoner does not
know that some sentence is a logical consequence of another one, example 2.1 presents a (dual) case in which a rea-
soner does not know that some sentences are compatible. This dual version of the problem of logical omniscience
is in general unrecognized in the literature of the area.

2This is exactly the diagnosis by Halpern and Pucella (2011).
3Note that this question is independent of the metaphysical problem about the nature of impossible worlds.
4Later, Rantala (1982) radicalized these ideas by suggesting that every impossible world is epistemically pos-

sible.
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semantics. In particular, urn semantics recognizes as obvious logical facts all the validities of
classical propositional logic. With respect to semantic information, this unsoundness means
that there are really informative logical truths (in particular, some validities of propositional
logic) which are considered uninformative by TSI based on urn semantics. Therefore, even
though there are good reasons for thinking that urn semantics is an interesting first step in the
resolution of the problems of semantic information and logical omniscience, this framework
must be generalized in order to obtain a more correct solution of these problems.

Moreover, urn semantics is an incomplete framework of resolution of the problems of se-
mantic information and logical omniscience because it says that some obvious logical facts are
non-obvious. In this sense, for instance, urn semantics says that the validity ∀x∃y(x = y) is
non-obvious. However, it is pretty obvious that this sentence expresses a validity! With respect
to semantic information, this completeness flaw means that there are some non-informative log-
ical truths (in particular, some validities of first order logic) which are seen as really informative
by TSI based on urn semantics. Hence, despite the interesting solution of the problems of logi-
cal omniscience and semantic information suggested by urn semantics, this semantic framework
must be restricted in order to obtain a more complete solution of these problems.

So, on one hand, given the above mentioned incompleteness of urn semantics, this semantic
system needs to be restricted, but, on the other hand, given the above mentioned unsoundness
of urn semantics, this system needs to be generalized. Can we do both things at the same time?
This is the problem that we need to fix if we are convinced that urn semantics provides a nice
type iv) solution of the problems of logical omniscience and semantic information.

The recent literature on type iv) solutions abandon the use of urn semantics in the definition
of epistemically possible worlds. Rather, these proposals explore a bounded rationality account

of epistemic possibility. Important examples of this approach include D’Agostino (2010), Arte-
mov and Kuznets (2009) and Jago (2006, 2009, 2013). In what follows I consider Jago’s work
in particular. The technical framework of his ideas varies in important ways between his works.
For convenience, in what follows I focus on Jago (2013), whose ideas were already presented
in subsection 4.3.2 of this thesis.

In subsection 4.3.2 I showed that, in Jago’s account, an impossible world w is epistemically
possible if and only if its characteristic sequent w+ ` w− has great proof complexity. The idea
is that, if the smallest proof ofw+ ` w− is big enough, then it is hard to prove the validity of this
sequent and, consequently, it is reasonable to suppose that a rational agent could not know that
it is valid. So, Jago’s proposal explores the general insight that epistemic possibility must be
defined with respect to hard provability, that is, a logical impossibility is epistemically possible
if and only if the proof of its impossibility is so difficult that it usually exhausts rational agents’
computational capacities.

Jago’s account suffers from some drawbacks. First, Bjerring (2013) proved that if we as-
sume that worlds have maximal theories, then, for every impossible world w, w+ ` w− has
minimum proof complexity, a quite undesirable result. Now, although Bjerring’s result imposes
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an important challenge to the bounded rationality account of epistemic possibility, it also im-
mediately suggests the consideration of partial worlds (i.e., worlds with non-maximal theories)
as a way of solution. Epistemically possible partial worlds could then be defined as verifying
only hardly provable logical facts (see Jago (2014) for a proposed revision of his previews work
using partial worlds).

Secondly, one could ask what is the demarcation criterion between easily and hardly prov-
able logical facts. In other words: how big must the smallest proof of w+ ` w− be in order
for this sequent to be considered hardly provable? As I showed before, in Jago’s opinion, the
notion of hard provability is a vague concept. Consequently, Jago understands that the concept
of epistemic possibility is vague. Against this claim, it is enough to consider the objections that
I presented in subsection 4.3.2.

Finally, I also mentioned already that the definite description “the smallest proof of w+ `
w−” is not always computable. So, Jago’s concept of epistemic possibility is not computable as
well. This is arguably a problem since it implies that we cannot effectively say which logical
impossibilities are excluded by ordinary reasoners’ epistemic situation and which are not. Note
on the other hand that a characterization of epistemic possibility based on urn semantics such
as the one proposed in this thesis does not suffer from any of these problems.

Now, it seems to me that the appeal to concepts such as great proof-complexity, hard prov-
ability etc. in order to explain epistemic possibility is a wrong move in this debate: the use
of these concepts makes the corresponding solution to the problems of semantic information
and logical omniscience depend on the particular cognitive capabilities of groups of individ-
uals. Hence, this strategy of solution faces the risk of psychologism. On the other hand, the
notion of obvious logical fact seems to have a normative status that is generally unrecognized
in such studies: obvious logical facts characterize the minimum standards of logical knowledge
that must be met by individuals in order for them to have the status of rational agents. In this
sense, an obvious logical fact φ is not just knowledge shared by all rational agents, but also any
rational agent, insofar as she is supposedly interacting with other rational agents, has the right
to ascribe to any other rational agent the knowledge of φ.

In this sense, this thesis explored an alternative account of epistemic possibility – what
could be called a linguistic account of epistemic possibility. Obvious logical facts characterize
the partial knowledge of truth-conditions associated with the semantic competence of ordinary
speakers. This account is not psychologistic: in fact, it is possible for individuals to ignore some
obvious logical facts. However, an individual who ignores some obvious logical fact is not a
competent user of the language (a normative status).

So, the work done here advances a first step in the direction of a linguistic account of epis-
temic possibility, an account that suggests an interesting type iv) solution to the problems of
logical omniscience and semantic information without the difficulties associated with rival pro-
posals. There is still a lot of work to do in the continuation of this research as I showed above.
The question of the epistemology of logic is surely not an easy problem! However, I hope that
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the work developed here offers at least a small contribution in the examination of this difficult
issue.
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