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Resumo 
DELLA, o gene da revolução verde. Caracterização e análise de sua função no acúmulo de 

sacarose e na regulação fonte-dreno em cana-de-açúcar  

A regulação fonte-dreno para o balanço energético é vital para as plantas. Os mecanismos 

moleculares que atuam nessa regulação desenvolvimental devem estar conectados com os estímulos 

causados por estresses abióticos e bióticos ao longo do ciclo de vida das plantas, permitindo uma 

homeostase da produção de energia. Os hormônios vegetais desempenham um papel chave entre o 

desenvolvimento e os estresses ambientais. Por exemplo, a síntese do hormônio do crescimento 

giberelina é bloqueada sob estresse abióticos, permitindo as plantas regularem seu desenvolvimento 

até que retornem as condições ideais. Em cana-de-açúcar, o crescimento está estritamente relacionado 

com o acúmulo de açúcar nos entrenós e o aumento de biomassa para a produção de bioenergia. 

Todavia, a parada do crescimento é uma das primeiras respostas sob estresses abióticos em cana, 

afetando dessa forma sua produtividade. A proteína DELLA, por ser um mediador da ação hormonal 

na repressão do crescimento, é um interessante candidato no estudo da regulação do desenvolvimento 

e fonte-dreno em cana. Nesta tese, nós caracterizamos molecularmente o gene ScGAI que codifica a 

proteína DELLA de cana. ScGAI apresenta diferentes níveis de expressão nos tecidos foliar e ao longo 

dos entrenós. Em folha, a proteína ScGAI é conjugada com SUMO, um processo pós-traducional 

conhecido como SUMOlização, em uma maneira espaço-temporal no controle da elongação foliar. 

Plantas transgênicas de cana superexpressando o gene ScGAI (ScGAIOE) apresentaram um 

crescimento retardado, grande número de perfilhos e um déficit de energia. Por outro lado, plantas 

silenciadas para o gene ScGAI (HpScGAI) são mais altas com diâmetro preservado, apresentam 

maiores números de entrenós e precoce elongação, sem comprometimento no acúmulo de sacarose 

em comparação com as plantas do tipo selvagem. Assim como demonstrado para as proteínas DELLA 

em Arabidopsis, a proteína ScGAI também interagiu com as proteínas ScPIF3/ScPIF4 e os fatores de 

transcrição ScEIN3/ScEIL1 no controle do crescimento em cana-de-açúcar. Nossos dados 

demonstram que a proteína ScGAI atua como um elo entre o crescimento e a regulação de energia 

em cana-de-açúcar.                 

 

	

	



	

Abstract 
DELLA, the gene of the green revolution. Characterization and analysis of its function in the 

sucrose accumulation and source-sink regulation in sugarcane 

 

The source-sink regulation for the energy balance is vital for all plants. The molecular 

mechanisms that act in this developmental regulation must be connected to the abiotic and biotic 

stresses-related stimuli throughout the life cycle of plants, providing energy homeostasis. Plant 

hormones play a key role in the interaction between development and environmental stresses. For 

instance, the biosynthesis of the growth hormone gibberellin is blocked under abiotic stresses, 

allowing the plants adjust their development until optimum conditions. In sugarcane, the growth is 

strictly related to the sucrose accumulation in the internodes and the increase of biomass for bioenergy 

production. Besides, growth arrest is one of the first responses under abiotic stress, affecting cane and 

sugar yields. The DELLA gene, that mediates the hormonal arrest of development, is an interesting 

candidate in the study of the developmental process and source-sink in cane. In this thesis, we 

characterized the ScGAI gene that encodes a DELLA protein from sugarcane. ScGAI presents 

different expression levels in leaf tissue and along the stem. In leaf, ScGAI protein is conjugated to 

SUMO, a post-translational process known as SUMOylation, in a spatio-temporal manner to control 

leaf elongation. Transgenic sugarcane plants overexpressing the ScGAI gene (ScGAIOE) showed a 

retarded growth, a large number of tillers and an energy deficit. On the other hand, silenced plants 

for the ScGAI gene (HpScGAI) are higher with preserved diameter, increased number of internodes, 

earlier onset of the elongated internodes without compromised sucrose levels in comparison with 

wild-type plants. As demonstrated for DELLA proteins from Arabidopsis, the ScGAI protein also 

interacted with the ScPIF3/ScPIF4 proteins and the transcription factors ScEIN3/ScEIL1 for the 

controlling of growth in sugarcane. Our data demonstrated that ScGAI protein acts as a hub between 

growth and energy status in sugarcane. 
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1    Introduction 
The worldwide interest in renewable energy has increased the focus on biomass 

production of “energy canes” rather than sucrose yield alone. The physiological source and sink 

communication is important for both biomass production and sucrose accumulation in sugarcane. 

Environmental factors are the major drivers for sugarcane productivity, once they alter this source-

sink relationship. As internal signals, hormones have been known for a long time to mediate plant 

responses upon environmental stress. In sugarcane, there has been a relatively slow progress in the 

understanding at the functional and molecular levels of the source-sink communication. Thereby, the 

aim of our study was to understand the role played by ScGAI, a growth repressor of the gibberellin 

signaling, in the sugarcane development and consequently in the source-sink regulation. 

The thesis is organized in two chapters. Firstly, we present a literature review and then 

we present a chapter with a manuscript that will be submitted to a peer reviewed Journal. In this 

manuscript we describe the molecular characterization of the ScGAI gene and its physiological 

importance in the sugarcane development and physiology through its misexpression in transgenic 

plants.   
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2    Chapter 1 - Literature review 

2.1  The source-sink communication in sugarcane  

Sugarcane (Saccharum ssp. hybrids) is one of the most efficient crop in the conversion 

of solar energy into carbohydrates 1. As any C4 plant, photosynthesis and carbon assimilation occur 

in the leaf mesophyll chloroplasts and bundle sheath cells. Once the carbon is fixed and converted 

into sugar or sugar derivatives in these source cells, the main soluble disaccharide form, sucrose, is 

then distributed to sink cells through the phloem. In the stem, sucrose may take two different fates: 

consumption or storage. The sugarcane developmental stage and environmental stimulus will 

determine how carbon will be partitioned in the stem2,3.  

During the first stages in the sugarcane life cycle, environmental stimulus such as high 

temperature, water availability and nutrient-rich soil promote stem growth and elongation 4. At the 

whole-plant level, this rapid metabolism of sugar in the sink tissues (sink strength) demands a 

optimum sucrose supply from the source, helping to minimize sugar repression of photosynthesis in 

the leaves 5. In the last decades, a few studies on source-sink communication in sugarcane revealed 

this dominant influence of sink activity on source photosynthesis 6,7. On the other hand, any 

unfavorable environmental condition such as low temperature and mild water stress will restrain 

sugarcane growth. Recently, new insights were reported in the leaf growth regulation under drought 

stress. The abscisic acid (ABA) level increased while gibberellin decreased in the leaf upon severe 

water stress 8. In the last sugarcane developmental stage, such abiotic stresses induce a switch from 

growth phase to ripening 9, blocking the growth of the upper internodes and directing the sucrose 

accumulation toward the whole plant 2. However, the molecular mechanisms underpinning the 

ripening process in sugarcane remain completely unknown. 

2.2  DELLA, the central repressor of gibberellin (GA) signaling 

DELLA proteins are nuclear transcriptional regulators involved in the GA signaling in 

plants 10. Like all GRAS [named after its first three members: GA INSENSITIVE (GAI), 

REPRESSOR of ga1-3 (RGA), and SCARECROW (SCR)] proteins, DELLAs share a conserved C-

terminal GRAS domain composed by two leucine heptad repeats (LHRI and LHRII) and three 

conserved motifs, VHIID, PFYRE and SAW. Nevertheless, DELLAs contain a unique N-terminal 

DELLA domain (which give them their name) with two highly conserved motifs (DELLA and 

VHYNP), which distinguish them from the rest of the GRAS family members 11. This 
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DELLA/VHYNP motifs directly participate in the interaction with the GA receptor GID1 (for GA-

INSENSITIVE DWARF1) 12,13 (the mechanism of GA action will be described below). Mutations in 

these regions result in a GA-insensitive phenotype due to the inability of DELLAs to interact with 

GID1 even in the presence of GA 14. Additionally, DELLA/VHYNP possesses transactivation activity 
15. DELLAs act as a transcriptional coactivator through interaction with other transcription factors, 

whereas DELLAs do not contain a DNA-binding domain (DBD). Recently, DELLAs have been 

shown to interact to IDD (INDETERMINATE DOMAIN) and BOI (BOTRYTIS SUSCEPTIBLE1 

INTERACTOR) proteins to regulate the expression of other genes in GA signaling 16,17. Besides, 

DELLAs also interact with SWI3C and PICKLE proteins both involved in the chromatin remodeling 

in plants 18,19. 

Thereby, the major mechanism of DELLA-regulated gene expression is through their 

ability to interact with several regulatory proteins. The conserved LHR motif within the GRAS 

domain has been described to mediate the protein-protein interactions. For example, DELLA regulate 

the stem growth by interacting with PHYTOCHROME INTERACTING FACTORS (PIFs) 20,21 and 

BRASSINAZOLE RESISTANT1 (BZR1) 22, the floral transition and fruit patterning by respectively 

interacting with SQUAMOSA PROMOTER BINDING-LIKE (SPL)23 and ACATRAZ (ALC) 24, 

photoperiod by interacting to CONSTANS (CO) 25 and also contribute to plant defense by interacting 

with JASMONATE ZIM-DOMAIN (JAZ) proteins. Through these interactions, DELLAs may 

regulate the activation or repression of the downstream genes, sequestrating and impairing of the 

DNA-binding capacity of transcription factors. In addition, post-translational modifications have also 

been demonstrated to stabilize or to change the conformation structure of DELLA proteins, regulating 

these protein-protein interactions.  

2.3  Gibberellin hormone signaling pathway 

GAs are plant hormone essential for a diversity of the developmental processes in plants, 

including seed germination, stem and leaf elongation, sex determination, flowering, and senescence 
26. In total, more than 136 natural GAs have been identified in plants, fungi and bacteria so far; most 

of them either act as precursors for the bioactive GAs (GA1, GA3, GA4 and GA7) or are inactive 

catabolites 27. The GA biosynthesis pathway, therefore, presents many steps controlled by enzymes 

belonging to multigenic families. The members of two gene families encoding the GA20 oxidases 

and GA3 oxidases, which are involved in the last step in the synthesis of bioactive GAs, are control 

points in the pathway 28. Besides, the members of GA2 oxidase family are also tightly regulated to 



12 

	

modulate the deactivation of bioactive GAs, ensuring the GA homeostasis. The GA signal is 

perceived by the GA receptor GID1, which is a soluble protein, resembling to hormone-sensitive 

lipases, localized to both cytoplasm and nucleus 29. GA-binding GID1 enhances the interaction 

between GID1 and DELLA 30. The GID1-GA-DELLA protein complex formation triggers the 

polyubiquitination, predominantly ubiquitin chain with Lys-29 linkages, of DELLAs through the 

binding of the F-box sub-units SLY1 (for SLEEPY1 in Arabidopsis) and GID2 (for GA-

INSENSITIVE DWARF2 in rice) of the E3 ligase complex, targeting DELLA for destruction by the 

26S proteasome 31.  

Three alternative mechanisms for this DELLA destruction model have been recently 

described. Firstly, GA signal may be transduced without DELLA degradation. GA treatment in the 

sly1 and gid2 mutants resulted in some increase in stem elongation, indicating that they are not 

completely GA-insensitive 32. In addition, overexpression of GID1 receptor rescued these partial GA-

insensitive phenotypes of sly1 and gid2 mutants, without DELLA degradation. Thereby, GA and 

GID1 receptors can overcome DELLA repression in F-box mutants impaired to destroy DELLA 

proteins via 26S proteasome 32. Secondly, DELLA proteins may be regulated in a GA-independent 

manner 33. Different from rice that contains a single OsGID1 GA receptor gene 34, Arabidopsis 

contains three GID1a, GID1b, GID1c GA receptor genes 29. Interestingly, the GID1b receptor has 

the ability to interact with DELLA proteins even in the absence of GA. Despite the rice OsGID1 

protein shows higher identity to Arabidopsis GID1ac-type receptors, i.e. GA-dependent interaction 

with DELLA, a P99S single amino acid substitution close to the N-terminal lid domain, allowed 

OsGID1P99S to bind DELLA in the absence of GA, mimicking the Arabidopsis GID1b phenotype 35. 

This proline (Pro) amino acid in the “hinge” region likely pull the lid closed, preventing DELLA-

binding when GA is not present. In the Arabidopsis GID1b receptor, the Pro amino acid is replaced 

by His-91, while in GID1a the Pro-92 and GID1c the Pro-91 are conserved 36. GID1b homologues in 

Brassica and soybean also demonstrated GA-independent DELLA binding activity 36. Thirdly, 

DELLA proteins are regulated by post-translational modification (PTM) affecting their activity, such 

as: phosphorylation 37, O-GlcNAcylation 38, SUMOylation 39 and O-fucosylation40.  

Various proteins are ubiquitinated and targeted for destruction in response to 

phosphorylation 41. However, this is not the case for DELLA proteins. Rice SLR1 (rice DELLA) is 

phosphorylated in a GA-independent manner, and both phosphorylated and unphosphorylated forms 

of the SLR1 interacted to the F-box GID2 37. On the other hand, protein phosphatase inhibitors 

demonstrated to inhibit degradation of barley DELLA SLN1 and Arabidopsis AtRGA and AtRGL2 
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proteins 42,43. Recent studies on casein kinase I EIL1 (for EARLY FLOWERING1) in rice and TOPP4 

(for TYPE ONE PROTEIN PHOSPHATASE4) in Arabidopsis provided further evidence that 

phosphorylation positively regulates and dephosphorylation negatively regulate DELLA repression 

of GA signaling 44,45.   

Regarding glycosylation (O-GlcNAcylation) of DELLA proteins, the first clue came from 

the identification of two putative O-linked N-acetylglucosamine (O-GlcNac) transferase (OGT) in 

Arabidopsis, SPINDLY (SPY) and its paralog, SECRET AGENT (SEC).  SPY has been described 

as a GA signaling repressor, whereas the loss-of-function spy mutants partially rescue the dwarf 

phenotype of the GA-deficient ga1 mutant 46. Nevertheless, the levels of O-GlcNAcylated DELLA 

are not reduced by the loss-of-function spy mutant, whereas DELLA O-GlcNAcylation is abolished 

in a null sec mutant 38. This findings corroborated with previous studies demonstrating that, only 

SEC, but not SPY, has been demonstrated to display OGT enzyme activity 47. Although SEC and 

SPY have been reported to interact with DELLAs, further analysis demonstrated that DELLA is O-

GlcNAcylated only by SEC protein, causing an inhibition of DELLA function by the block of the 

binding of DELLA to four interactors (BZR1, JAZ1, PIF3 and PIF4) 38. Therefore, SEC acts a positive 

regulator of GA responses. Considering the fact that the levels of OGT’s donor substrate UDP-

GlcNac is positively correlated to nutrient status, the O-GlcNAcylation of DELLAs, therefore, 

coordinate the nutrient status with its growth and development in plants.   

The mystery of the role played by SPY on DELLA was recently revealed 40. DELLA was 

demonstrated to be mono O-fucosylated by SPY, an O-fucosyltransferase in Arabidopsis. O-

fucosylation by SPY may induce DELLA to adopt an open conformation, promoting the binding of 

DELLA with key interactors such as BZR1, PIF3 and PIF4. Nevertheless, SEC and SPY proteins 

were reported to compete each other in the PTM on DELLAs. As described above, O-GlcNAcylation 

by SEC blocked those interactions, likely due to a close conformation and less active adopt by 

DELLA 40.     

Recent evidence in Arabidopsis has reported another process of GA-independent 

signaling through an increase in DELLA repression due to SUMO (Small Ubiquitin-like Modifier) 

modification of DELLA 39. SUMO is a short peptide (12 kDa) and like ubiquitination, its covalent 

conjugation on target proteins is facilitated by sequential activity of three enzymes (E1, E2 and E3). 

SUMOylation is a reversible and highly dynamic process, which is regulated by SUMO-conjugating 

and SUMO-deconjugating enzymes 48. SUMOylation of DELLA was found within the DELLA 

domain at a conserved lysine residue. Interestingly, GID1 receptor was shown to bind to SUMOylated 
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DELLA in the absence of GA via a SUMO-interacting motif (SIM). This GID1-SUMOylated 

DELLA interaction reduces the amount of GID1 available for GA-dependent interaction with non-

SUMOylated DELLA, leading to decreased DELLA degradation via ubiquitination/proteasome 39,49.        
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3     Chapter 2 - DELLA coordinates Growth and Energy Status in Sugarcane Plants 
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3.1  Abstract  

 

Sugarcane contributes to more than seventy percent of sugar production worldwide. 

Sugar accumulates in sugarcane culm and hence stalk biomass and sugar content are the major yield 

determining factors. Despite extensive breeding, yield plateaued for decades in most countries. We 

hypothesize that identifying and manipulating the genetic elements controlling source-sink regulation 

and hence plant growth may allow to break the yield barrier in this crop. Here we show that ScGAI, 

a homolog of the Arabidopsis growth repressor DELLA, is the key molecular switch of a sugar-

hormone cross-regulation network that determines growth in sugarcane. ScGAI levels are inversely 

correlated with metabolic status and carbon availability in transgenic ScGAI-misexpressing sugarcane 

plants. In particular, silencing of ScGAI triggered faster growth and development in transgenic 

sugarcane plants without reducing sugar level. An improvement of plant growth without a penalty in 

carbohydrate accumulation will certainly have a positive impact on the production of food and 

biofuel.  
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3.2  Introduction 

Plant growth and development are ultimately dependent on carbon allocation, which is 

controlled by source-sink regulation. It is now evident that soluble sugars, such as hexoses and 

sucrose, not only function as metabolic resources but they also act as signal molecules involved in 

the regulation of carbon supply and demand, thereby, modulating plant development. To add further 

complexity in this phenomenon, several recent studies have demonstrated the cross-talk occurring 

between sugar signaling, phytohormones, light, and biotic and abiotic stress-related stimuli in the 

source-sink context 50.  

Sugarcane (Saccharum ssp. hybrids) accumulates sucrose to high concentrations in the 

culm. This distinctive feature combined with the modular development of culm characterized by 

inter-connected source-sink compartments, i.e. phytomers [nodes, axillary buds and internodes (sink) 

with a leaf (source) attached to nodes] of different maturity, provides excellent experimental system 

to study source-sink regulation in the context of carbon allocation, plant growth and carbohydrate 

accumulation 51. Commercially, sugar yield is a combined outcome of cane yield and sugar content. 

In the past few decades, much of the yield gain in sugarcane variety improvement has been achieved 

from improved cane yield rather than increased sucrose content 52. Indeed, there is now clear evidence 

of yield plateau in most of the sugarcane growing countries despite significant breeding and 

management efforts. This led us to hypothesize that breaking the sugarcane yield barriers require a 

deeper understanding of major regulators of growth, development and source-sink regulation. Despite 

the extensive physiological studies on sugar accumulation and source-sink regulation in sugarcane in 

the last few decades 5,7,53,54, the mechanistic and molecular understanding of carbon supply-demand 

balance in this crop remains poorly understood.  

Gibberellins (GAs) are plant growth hormones involved in diverse aspects of plant growth 

and development. Once the bioactive GA is present in the cell, its receptor GA-INSENSITIVE 

DWARF1 (GID1) recognizes and binds to it, undergoing a conformational change that allows the 

GA-GID1 complex to bind to the N-terminal of DELLA proteins, triggering the recruitment of the 

components of the ubiquitin machinery 10. Thus, GA responses are triggered by the rapid degradation 

of DELLA proteins, which function as repressors in the GA signaling pathway, and serve as a central 

hub for the integration of growth, other hormones and environmental cues 55,56. Additionally, 

considerable progress has recently been made in dissecting the cross-talk between GA and sugar 

signaling, demonstrating that sucrose stabilizes the DELLA protein in Arabidopsis 57. We therefore 
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directed our attention to study the DELLA protein in sugarcane as a potential master regulator of 

growth and development. As a central integrator of many different signals, we also theorized a major 

role for DELLA in the source-sink regulation in sugarcane.      

Here, we report the identification and the role of the ScGAI protein, the growth repressor 

DELLA in sugarcane. Interestingly, ScGAI was found SUMOylated in a spatio-temporal manner 

suggesting a role in the control of leaf growth. However, this post-translational regulatory mechanism 

does not seem to occur in the stem, where ScGAI represses internode elongation in a GA-dependent 

manner. ScGAI-overexpressing transgenic sugarcane exhibited a stunted growth, shorter internodes 

and impaired energy metabolism. In contrast, ScGAI-silenced plants were taller, with rapid internode 

elongation, increased internode number, and greater carbon allocation to the stem. The present study 

clearly shows that ScGAI acts as an integrative hub for growth and energy metabolism, modulating 

carbon supply and demand to optimize sugarcane growth. Our results thus reveals new molecular 

insights into the source-sink relationship in sugarcane. Based on these findings, ScGAI is a promising 

candidate for new initiatives on renewable energy that target both sucrose content and lignocellulosic 

components of biomass in sugarcane.       

 

3.3  Methods 

Plant Material. All sugarcane plants were grown in the glasshouse individually in pots (diameter, 

20 cm) containing a 3:1 (v/v) soil and pertile (Chillagoe Perlite, Mareeba, Qld, Australia). The plants 

were fertilized monthly with Osmocote granules (Scotts Australia Pty Ltd, Baulkam Hills, NSW, 

Australia) and watered for 30 seconds every 2 hours between 06:00 h and 18.00 h daily. 

Molecular cloning and bioinformatics analyses. Through the Sugarcane EST Database (SUCEST) 

(http://sucest-fun.org/wsapp/), the cDNA clones of ScPIF4, ScPIF5 and ScEIL1 were obtained and 

their coding sequences amplified using specific primers (see table 5). The coding sequences from 

ScGAI, ScPIF3 and ScEIN3 were amplified through specific primers (see table 5) using genomic 

DNA from the sugarcane commercial variety SP80-3280. Protein sequences from sorghum SbD8 

(Sb01g010660), maize ZmD8 (Q9ST48) and ZmD9 (Q06F07), pea CRY (B2BA71) and LA 

(B2BA72), tomato LeGAI (Q7Y1B6), grape VvGAI (Q8S4W7), barley SLN1 (Q8W127), wheat 

Rht-1 (Q9ST59), rice SLR1 (Q7G7J6) and Arabidopsis AtRGL1 (Q9C8Y3), AtRGL2 (Q8GXW1), 
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AtRGL3 (Q9LF53), AtGAI (Q9LQT8) and  AtRGA (Q9SLH3) were aligned using ClustalX program 
58 and the phylogenetic tree was constructed using the Neighbor-joining method 59 available on 

MEGA6 60 with bootstrap analysis of 1000 replicates. Estimates of evolutionary divergence among 

DELLA sequences were conducted using Poisson correction model 61. Evolutionary analyses were 

conducted in MEGA6. Predicted tertiary structure of DELLA domain from sugarcane were 

performed in SWISS MODEL program 62. The x-ray crystal structure of Arabidopsis AtGAIn-

AtGID1A/GA3 complex (PDB entry 2zsh.1.b) were used as a model. 
	

Yeast two hybrid (YTH) assays. The coding sequences of the ScGAI and gaiΔdella (201-625) were 

digested from pGEMTEasy vectors and cloned into pGBKT7 vectors, while the coding sequences of 

the ScPIF3, ScPIF4, ScPIF5, ScEIN3, Scein3(233-552) and ScEIL1 were also digested from 

pGEMTEasy and cloned into pGADT7vectors. The yeast strain Y2HGOLD was transformed 

following the Matchmaker Gold Yeast Two-Hybrid System user’s manual protocol (Clontech, 

TAKARA BIO INC., Japan).  

 

Biomolecular Fluorescence Complementation (BIFC). Leaves from 3 to 4 week-old Col-0 

Arabidopsis were used for protoplast isolation and subsequent DNA transfection. For generation of 

N-terminal YFP-tagged constructions, the coding region of the ScGAI, ScPIF3, ScPIF4, ScEIN3 and 

ScEIL1 were amplified using specific primers (table 5) and subcloned into pGEMTEasy, and 

subsequent cloned into pUC_SPYNE vector. The same procedure was used for C-terminal YFP-

tagged constructs using the pUC_SPYCE vector. As a negative control, the N-terminal truncated 

ScGAI was cloned in the vectors above. The plasmids were co-transfected into freshly prepared 

Arabidopsis leaf mesophyll protoplasts 63. The images were obtained from the camera AxioCam 

MRM Observer Z1 Zeiss AX10 microscope (Zeiss, Germany). 

 

Subcellular localization. For subcellular localization, the ScGAI, ScPIF3, ScPIF4, ScEIN3, ScEIL1 

and gai∆Nterminal coding regions were cloned in frame with VENUS protein into pART7 vector 64. 

Arabidopsis protoplasts were isolated and used for transient expression. The construction 

pART7:VENUS was used as a positive control for transient expression. Each constructions were co-

transformed with the vector pART7:AtPARP3:mCherry, a positive nuclear control 65. The images 

were obtained from the camera AxioCam MRM Observer Z1 Zeiss AX10 microscope (Zeiss, 

Germany). 
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Agro-infiltration in tobacco leaves. The ScGAI:VENUS fusion protein was transiently expressed 

in tobacco leaves of Nicotiana benthamiana 66. Agrobacterium strain GV3101 was transformed with 

the binary vector pGREENII:ScGAI:VENUS and after 72 hours foliar discs (1 cm2) were excised and 

analyzed in the Zeiss AX10 microscope (Zeiss, Germany).  

 

Transgenic Arabidopsis plants. For transformation of Arabidopsis ecotype Ler-0, the binary vector 

pGREENII0179 harboring the resistance hyg gene in the T-DNA region was used for overexpressing 

the ScGAI:VENUS coding region. The pGREENII:ScGAI:VENUS and pGREENII vectors were 

transformed into agrobacterium GV3101 strain by electroporation. The helper plasmid pSOUP was 

co-transformed with each vector, since it provides the replicase gene (RepA) for the replication of 

pGREEN vector. Floral dip protocol was carried out as previously described 67. Arabidopsis T1 seeds 

obtained after transformation were plated onto MS medium supplemented with 20 mg/L of 

hygromycin for selection. 
	

Recombinant protein expression in Escherichia coli strain. Full-length ScGAI was cloned into 

pET21a(+) vector (Novagen, Madison, USA) using specific primers (table 5). The His-tagged ScGAI 

protein was expressed in E.coli BL21 (DE3) strain after 4 hour induction with 1mM IPTG at 37°C. 

Bacterial cells were harvested and the protein extraction performed 68. The samples were stored at -

80°C. Both the total cell extract (soluble and insoluble fractions) were analyzed by SDS-PAGE and 

western blotting.   
	

Western blotting. Total protein was extracted according to the phenol protocol as previously 

described 69. All protein samples were quantified by Bradford reagent (BioRad, USA). Equal amounts 

of total protein were separated in NuPAGE Novex 4%-12% gradient Bis-Tris gel. Proteins were 

transferred onto PVDF membranes and probed with polyclonal antibody raised (1:1000 dilution) 

against the N-terminal of sugarcane DELLA (Anti-ScGAI). Secondary HRP-conjugated anti-rabbit 

IgG was used at a dilution of 1:1000. Immunoblotted bands were visualized by the SuperSignal West 

Pico Chemiluminescent substrate (PIERCE). PVDF membranes were stained by Commassie Blue 

(CB). 

 



21 

	

Immunoprecipitation (IP) assay. Total crude proteins were extracted from sugarcane leaf +1. Each 

300 µg of protein extracts were incubated with 3 µg of anti-SUMO1 polyclonal antibody (abcam; 

ab5316) bound to anti-Rabbit IgG-coated magnetic beads (Dynabeads M-280 Sheep anti-Rabbit IgG; 

Invitrogen) for 1 h at room temperature. Subsequent washing steps were performed with PBS solution 

and the target antigen was eluted with NuPAGE LDS sample buffer. Immunoprecipitated SUMO-

ScGAI proteins were detected by immunoblot analysis using anti-ScGAI (GenScript). As negative 

control, SUMO1-coupled dynabeads were incubated onto protein extraction buffer.      
	

Transgenic sugarcane plants. Young unfurled 3-4 innermost leaves covering the shoot apex from a 

sugarcane commercial variety (Saccharum officinarum L. var. Q208A) were collected under sterile 

condition and used as target tissue for transformation. The rolled leaves were sliced into 1-1.5 mm 

thick transverse sections and cultured on callus induction medium (MS medium supplemented with 

1mg/L 2,4-D – synthetic auxin – and pH adjusted to 5.7 using KOH before autoclaving). After two 

weeks, the explants were placed on an osmotic medium (MS medium supplemented with 3.6% 

sorbitol and mannitol and pH adjusted to 5.7 using KOH before autoclaving) for 3 hours and the 

transgenes were introduced by biolistics (BioRad PDS-1000/He). For this procedure, gold particles 

were coated with a molar 1:1 mixture of plasmids pUbi:FLAG:ScGAI or pUbi:hpGAIi and pUKN 

(geneticin gene selection). Spermidine and calcium chloride (CaCl2) were used to precipitate DNA 

onto the gold particles. After the particle bombardment, explants were placed onto callus induction 

medium for two weeks and then were cut into small pieces and placed onto selection medium 

containing 50mg/L geneticin. These plates were maintained for three weeks in the dark and replaced 

onto new fresh selection medium for three more weeks to regenerate plants. All regenerated plants 

were maintained on geneticin selection medium.  

	

PCR Genotyping. Genomic DNA from leaves were extracted as previously described 70. PCR 

genotyping was performed using different set of primers (see table 5) following the protocol from 

GoTaq Green Master Mix (Promega, USA).    
	

Total RNA extraction. Tissue samples were separately collected and immediately frozen in nitrogen 

liquid. Samples were ground in mini-bead beater Precellys 24 (Bertin Technologies) and high-quality 
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total RNAs were isolated and purified according to the protocol from Spectrum Plant total RNA kit 

(Sigma-Aldrich).     

	

cDNA synthesis and qPCR assay. For cDNA synthesis, total RNA was treated with RQ1 RNase-

Free DNase (Promega, USA) at 37°C for 30 minutes to remove genomic DNA contamination. After 

that, full-length cDNAs were synthetized according to the protocol from Improm-II reverse 

transcriptase enzyme (Promega, USA). PCR was performed to detect genomic DNA contamination 

before qPCR. Reagents were mixed and each reaction contained 5 µL of SensiMix SYBR Low-ROX 

(Bioline, Australia), 0.2 µL (200 nM) of gene- specific forward and reverse primer and 1.6 µL water. 

An epMotion M5073 liquid handler (Eppendorf) was used to aliquot the reagents mix and 3 µL of 5 

ng/µL cDNA into MicroAmp® Fast Optical 384-Well Reaction Plates (Life technologies, Australia). 

The thermal profile was 95°C for 10 min, 40 cycles of 95°C for 15 s and 60°C for 50 s, followed by 

a dissociation step of 95°C for 2 min, 60°C for 15 s. No template controls (NTC) were used to check 

for contamination and primer dimers. All qPCR data generated was analysed using the DataAssist™ 

Software (Life technologies, Australia). For each cDNA sample, an average gene amplification level 

was calculated from triplicate PCR reactions (technical replicates). This average expression for each 

gene was normalised against the average expression level of a reference gene (ADF, Actin 

depolymerizing factor), to account for template variations between samples. Then each expression 

level was compared to a reference sample according to 2-ΔΔCq method 71. 

 

Gibberellin (GA3) and paclobutrazol (PAC) treatments. Sugarcane seedlings from tissue culture 

were transplanted into separate sterilized containers with 100 ml of 1x Murashige and Skoog (MS) 

medium, adjusted to pH 5.8 with or without 50 µM GA3 (Phytotechnology laboratories, USA) or 5 

µM PAC (Phytotechnology laboratories, USA). GA3 and PAC stock solutions were filter-sterilized 

before adding to MS medium. Plants were incubated in growth room at 24°C with a 16/8 h light/dark 

cycle for 23 days. The solutions were sterilized by filtration.      
	

Histological analysis. Transverse cross-sections of leaves and stem were observed in bright-field 

microscopy Olympus BX50 (Leica, Germany). Hand-cut sections were stained in 0.05% Toluidine 

blue for 30 seconds or stained for lignin with phloroglucinol in 1M HCL for 0.5 minutes. Photographs 

were taken with Olympus DP70 (Olympus America Inc., USA) Camera.  
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Sugarcane leaf starch assays. Leaf disks (1 cm diameter) were collected from 4-month-old wild-

type and transgenic sugarcane and depigmented with ethanol to remove chlorophylls. After rinsing 

with distilled water, the samples were stained with 1% Lugol’s IKI solution at RT for 5 minutes and 

rinsed again with distilled water. Images were captured with a Sony DSC-HX200V digital camera. 

Enzymatic starch assay was performed as previously described 72. Student’s two-tailed t-test was 

performed to compare two groups. 
	

Photosynthesis. Photosynthetic parameters were measured unsing intact sugarcane leaf +1 of 5 

month-old plants with LI-COR Biosciences model  LI-6400 (USA). The chamber light (PAR) level 

was set to 2000 µmol photons m-2s-1 and reference CO2 to 400 µmol mol-1. 
	

Hormone analysis. Internode samples were ground, lyophilized and sent to Proteomics & 

Metabolomics Facility at the Center for Biotechnology/ University of Nebraska - Lincoln for 

gibberellin hormone analysis. Data analysis for GA1, GA3 and GA4 were performed using liquid 

chromatography combined with mass apectrometry LC-MS/MS. 

	

Illumina sequencing. Total RNA from leaf, apical shoot and 5th and 9th internodes tissues from 6-

month-old sugarcane plants were extracted according to the protocol from Spectrum Plant total RNA 

kit (Sigma-Aldrich). Samples were treated with RQ1 RNase-Free DNase (Promega, USA) according 

to manufacturer’s protocol. For each tissues, we used three independent lines, each containing the 

pooled RNA from four biological replicates. One microgram of each RNA sample was used to 

produce libraries which were sequenced using Illumina HiSeq 2500 by Fasteris Life Science Co. 

(Geneva, Switzerland). The reads were mapped on Sorghum bicolor reference genome available in 

the Illumina iGenomes 

(http://support.illumina.com/sequencing/sequencing_software/igenome.html). The list of DEGs were 

identified using an FDR q-value cutoff of 1e-5.   

 

Metabolite profile analysis.  Five mg of grounded and lyophilized tissues from leaf, apical shoot 

and 5th and 9th internodes from four biological replicates plants (6 month-old) were extracted using 
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MTBE: methanol:water 3:1:1 (v/v/v). The 100 µl of the organic phase was dried and derivatized. 

Then 1 µl of the derivatized samples were analyzed using a Combi-PAL autosampler (Agilent 

Technologies GmbH, Waldbronn, Germany) coupled to an Agilent 7890 gas chromatograph 

connected to a Leco Pegasus 2 time-of-flight mass spectrometer (LECO, St. Joseph, MI, USA). 

Chromatograms were exported from Leco ChromaTOF software (version 3.25) to R software. Peak 

detection, retention time alignment, and library matching were performed using Target Search R-

package 73. Metabolites were quantified by the peak intensity of a selective mass. Metabolites 

intensities were normalized by dividing the fresh-weight, followed by the sum of total ion count and 

global outlier replacement. Principal component analysis was performed using pcaMethods 

bioconductor package 74. The significance of metabolites was tested by comparing all genotypes in a 

given tissue by Tukey-test.  

3.4  Results 

3.4.1   ScGAI encodes a DELLA protein.  

Using the SUCEST project database (http://www.sucest-fun.org/), we have identified and 

cloned the ScGAI gene in sugarcane. The ScGAI gene presents an open reading frame (ORF) of 1878 

bp and encodes a protein with 625 amino acid residues. The ScGAI-deduced amino-acid sequence 

contains all conserved regions of DELLA proteins, including the N-terminal DELLA regulatory 

domain that contains the DELLA, TVHYNP, and poly S/T/V motifs and a C-terminal GRAS domain 

which comprises the leucine heptad repeats (LHI and LHII) that flank the VHIID motif, and the 

PFYRE and SAW motifs (Fig. 1a). However, curiously, ScGAI exhibited an L-to-M39 point mutation 

(DEMLA) within the DELLA motif, which is also conserved in the SbD8 protein from sorghum. 

Likewise, the Arabidopsis DELLA protein AtRGL3 also shows an L-to-F36 point mutation in this 

region, which does not prevent its interaction with AtGID1s receptors 29. Although the hydrophobic 

DELLA and TVHYNP motifs are important for interacting with GA receptors and effecting GA-

sensitive DELLA degradation 12, a recent study confirmed that the DELL amino acid residues are not 

required for this interaction 13. The predicted tertiary structure of the DELLA domain from ScGAI 

showed highly molecular spatial similarity to the solved domain structure of the AtGAI protein from 

Arabidopsis (Fig. 1b). Nevertheless, it is worth to note the presence of a Glycine-rich region 

(G67xGGxGG73) encompassing amino acids within the loop 2-3 in ScGAI protein. The sequence 

GxGG seems to be specific for monocot DELLA proteins (Fig. 1b). Glycine-rich loops or P-loops 
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are known to function as ATP-binding pocket 75, but further experiments are needed to elucidate their 

function in monocot DELLA proteins. Phylogenetic analysis revealed that ScGAI is highly 

homologous to SbD8 and ZmD8 proteins in sorghum and maize, respectively. The evolutionary 

divergence of DELLA proteins in monocot plants is clearly lower in comparison with that in proteins 

from dicotyledonous plants (Fig. 1c). This result reflects the fact that only one copy of DELLA gene 

is found in the majority of monocot species.  

DELLA proteins are widely known as nuclear transcriptional regulators. Therefore, we 

investigated the subcellular localization of ScGAI by transient expression of VENUS-tagged ScGAI 

in Arabidopsis mesophyll protoplasts and tobacco leaf epidermal cells. ScGAI was predominantly 

localized in the nucleus (Fig. 1d-e), corroborating the presence of a putative SV40-like sequence 

(K182RMK185) before the poly S/T/V region and one well-defined bipartite NLS sequence 

(R281KVAAYFGEALARR294) localized in the LH domain. 
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Fig. 1. ScGAI encodes the nuclear DELLA protein in sugarcane.  
(a) Above, schematic drawing of ScGAI protein showing all the conserved domain along the 
sequence; Below, protein alignment of DELLA domain highlighting the identical amino acids among 
the sequences. DELLA and TVHYNP amino acids are underlined. (b) Cartoon (above) and surface 
(below) representation of the predicted tertiary structure of DELLA domain from ScGAI. The 
electrostatic surface is represented by regions negatively charged (in red), positively charged (in 
blue), polar (in dark grey) and hydrophobic (in light grey). The overlap between predicted and native 
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structure has a RMSD (root-mean-square deviation) value of 0.091. (c) Phylogenetic relationship and 
evolutionary divergence of DELLA family in Arabidopsis, tomato, pea, grape, barley, wheat, rice, 
maize, sorghum and sugarcane. The red branch and the dashed square in the evolutionary divergence 
correlation matrix table underline the conserved DELLA family in monocotyledonous plants. (d) and 
(e) Subcellular localization of ScGAI expressed in Arabidopsis mesophyll protoplast and tobacco leaf 
epidermal cells, respectively. The construct AtPARP3:mCHERRY (mCHERRY) was used as nuclear 
control. DIC means differential interference contrast. YFP means yellow fluorescent protein. Bars = 
20 µm.     

 

Then, we asked whether ScGAI is indeed a functional protein involved in GA signaling. 

As shown in Fig. 2d, overexpression of  ScGAI in Arabidopsis repressed GA responses, such as rosette 

diameter and stamen development, phenotypes also observed in the dominant GA-insensitive 

Arabidopsis gai-1 mutant, that lacks a segment of 17 amino acids within the DELLA domain 76. 

Collectively, these results demonstrated that ScGAI acts as bona-fide DELLA protein. 
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Fig. 2. ScGAI:VENUS fusion protein represses the GA-responses in transgenic Arabidopsis.  
(a) Above, schematic representation of the pGREENII(179):ScGAI:VENUS fusion construct. LB and 
RB: left and right borders on the T-DNA, respectively; P35S: 35S promoter; T35S: 35S terminator; 
OCS3’: octopine synthase terminator; Hyg: hygromycin resistance gene. Below, ScGAI transgene 
integration in transgenic plants using specific primers as indicated with an arrow in the diagram. (b) 
RT-PCR analysis of 35S:ScGAI:VENUS expression in transgenic plants. The β-actin gene was used 
as a loading control. WT: wild type; NT: non-template. (c) Above, immunoblot analysis of 
ScGAI:VENUS fusion protein from T2 generation . WT: wild type; CB: Commassie blue-stained 
membrane as loading control. Below, nuclear fluorescent signal of ScGAI:VENUS fusion protein in 
root tip (Rt) and stomata (St) visualized by confocal laser microscopy. Bars = 50 µm. (d) Two-week-
old ScGAI:VENUS transgenic Arabidopsis showing a dwarf phenotype in comparison with wild-
type (Ler-0) and gibberellin-insensitive (gai-1) mutant, and floral buds with short stamen filaments 
in gai-1 and ScGAI:VENUS plants. 
 

3.4.2   ScGAI was most expressed in the shoot apex whereas GA3 content was highest in the 

mature part of the culm. 

 

In sugarcane, ScGAI showed the highest expression level in the shoot apical meristem 

(SAM) (Fig. 3a) corroborating with the expression pattern of DELLA genes in the SAM of 

Arabidopsis, tomato and rice 77–79. Moreover, western-blot analysis showed that the ScGAI protein is 

not only highly abundant in the SAM, but that it is also present in elongating internodes of the 

sugarcane stem (Fig. 3b). Previous studies have demonstrated that high cytokinin (CK) and low GA 
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levels are required for normal SAM function in plants 80,81. Also, we demonstrated that bioactive GAs 

are low at the apical shoot and increase along the stem (Supplementary Fig. S1). However, it is worth 

to note that among the bioactive GA1, GA4 and GA3, only GA3 was detected in higher concentration 

in the mature internodes. GA3 is formed from GA20 using the intermediate GA5, which is present in 

several monocotyledons 82. It is therefore possible that sucrose upregulates ScGA20ox (GA20 

oxidase; GA synthesis) expression level and consequently the GA production in the mature internodes 
83 (Supplementary Fig. S1). Another possible reason for this high level of GA in the basal internodes 

may be its role as an important regulator of lignification 84, a process more pronounced with stem 

maturity in sugarcane. Further studies are needed to elucidate the synthesis, transport and action of 

GAs in sugarcane.   
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Fig. 3. ScGAI is SUMOylated in sugarcane leaves.  
(a) Expression profile of native ScGAI in different tissues of 10-months-old sugarcane; Bar plots 
show means ±SEM (n=3, P < 0.05; one way ANOVA followed by Bonferroni multiple comparisons 
post-test). (b) Immunoblotting of ScGAI protein in sugarcane tissues. (c) Sequence alignment of the 
noncanonical SUMOylation motif in DELLA proteins. Asterisk represents the conserved 
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SUMOylation site lysine residue. (d) Sequence alignment of GID1 from rice, wheat, maize, sorghum, 
Arabidopsis and sugarcane displaying the SUMO-interacting motif (SIM). Light gray depicts the 
conserved amino acids among the sequences. (e) Expression profile analysis of ScSIZ1, ScSUMO1 
and ScOTS1 transcripts in leaf +1, 5th and 9th internodes. FPKM means fragment per kilobase of exon 
per million fragments mapped. Bar shows means ±SEM (n=3, P< 0.05; One way ANOVA followed 
by Bonferroni multiple comparisons post-test). (f) Immunoprecipitation using anti-SUMO1 
antibodies in crude extract of leaf +1. (g) The leaf numbering system proposed by Kuijper 85. The 
first fully-expanded leaf with visible dewlap (indicated by an arrow) and photosynthetically active 
was considered as leaf +1. (h) Close-up view of the juvenile leaf -2. (i) Immunoblotting of the ScGAI 
protein in different sections of juvenile (L0, L-1 and L-2) and fully-expanded (L+1) leaves of Q208 
(one-month-old). The arrow indicates the non-SUMOylated ScGAI protein. Equal amount of protein 
samples (10 µg) was loaded. CB, Commassie blue-stained membrane as loading control. T: tip; M: 
middle; B: base; MB: midrib base.  
 

3.4.3   ScGAI is a regulatory component of spatio-temporal leaf growth in sugarcane, and its 

action is modulated by SUMOylation. 

ScGAI was present in leaf +1, the youngest fully expanded leaf, with an approximate 

molecular weight (MW) of 98 kDa (Fig. 3b), which is higher than the predicted MW of 66 kDa found 

in the stem tissues and also in His-tagged ScGAI expressed in Escherichia coli (Supplementary Fig. 

S2). The DELLA protein has recently been reported to have a larger size than its theoretical MW 

probably due to post-translational modification by small ubiquitin-like modifier (SUMO) protein. 

SUMOylation modulates DELLA protein abundance despite unchanged DELLA transcript levels 39. 

SUMO interacts with DELLA proteins through a covalent binding in the N-terminal DELLA domain. 

SUMOylated DELLA interacts with the GA receptor GID1 through the SUMO-interacting motif 

(SIM) in a GA-independent manner 39. This SUMO-SIM interaction sequestrates GID1, blocking its 

access to the DELLA domain, and consequently, preventing the GA-triggered DELLA degradation. 

Interestingly, ScGAI contains a conserved SUMOylation motif within the DELLA domain, and the 

GA receptor ScGID1 also harbours the SIM motif 49 (Fig. 3c-d). Moreover, expression profile 

analysis of the E3 SUMO ligase ScSIZ1 and ScSUMO1 genes involved in the covalent SUMO-

conjugation process showed significantly higher level of expression in leaf +1 in comparison with 

internodes in sugarcane. On the other hand, the expression level of the SUMO protease OVERLY 

TOLERANT TO SALT1 ScOTS1 gene, which mediates the deconjugation of SUMO, was drastically 

reduced in the leaf +1 (Fig. 3e). To confirm the sumoylation of ScGAI, we immunoprecipitated 

protein lysates using anti-SUMO1 antibodies, confirming that, the high MW band is indeed the 

SUMOylated ScGAI (Fig. 3f). In order to obtain more insights into the SUMOylation of ScGAI in 
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leaves, we analyzed different sections (tip, middle and base) of juvenile (0, -1 and -2) and fully-

expanded (+1) leaves. ScGAI was SUMOylated in the mature tissues of the juvenile and fully-

expanded leaves, but surprisingly, the SUMOylated ScGAI was gradually reduced in the middle and 

base sections of young developing leaves, where cell elongation and division occur 86 (Fig. 3i). In 

addition, we also observed the 66 kDa band (non-SUMOylated ScGAI) in the middle and base 

sections of the youngest leaf -2. Taken together, the results indicate that SUMOylation is a regulatory 

component for the ScGAI protein to control the leaf growth in a spatio-temporal manner in sugarcane. 

3.4.4   ScGAI-misexpression alters sugarcane morphology.  

To elucidate the role of ScGAI in sugarcane, we genetically manipulated ScGAI gene 

expression by overexpression (ScGAIOE) and hairpin-mediated silencing (HpScGAI) 

(Supplementary Fig. S3). ScGAIOE lines displayed a high ScGAI transgene expression level, while 

HpScGAI lines showed a reduced expression level of the ScGAI gene (Supplementary Fig. S4). As 

shown in Fig. 4a-b, the ScGAI-misexpressing lines displayed a range of alterations. 
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Fig. 4. ScGAI-misexpressing sugarcane lines. 
(a) The extreme phenotype of ScGAIOE and HpScGAI lines showing the stunted and taller stems, 
respectively, with earlier onset of elongated internodes (in HpScGAI) in comparison to wild-type 
(WT) plants. Arrows indicate the first visible dewlap. (b) Height of sugarcane plants. Bar shows 
means ±SEM (n=3). The lines U1 and U3 in red color represent WT plants. 
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The most extreme phenotypes could be clearly distinguished from wild-type (WT) plants, 

showing a shorter stature with high tillering capacity in ScGAIOE, and a taller stature with early 

onset of visible nodes and internodes in HpScGAI plants (Fig. 5b-c). In addition, silenced plants also 

showed an unaltered stem diameter throughout development (Supplementary Fig. S5). On the other 

hand, we could not observe a great difference in the length of fully-expanded leaf +1 among the 

juvenile plants (Fig 5d). As discussed above, SUMOylation seems to coordinate sugarcane leaf 

development through appropriate spatio-temporal ScGAI stabilization. As shown in Fig.5a, 

SUMOylated ScGAI protein levels were unaltered in leaf tissues among the ScGAI-misexpressing 

lines.  

To assess whether changes in the morphology were accompanied by changes in the 

cellular anatomy, we made cross-sections of the leaves and stem of transgenic and WT plants 

(Supplementary Fig. S6). We did not observe any anatomical differences in the leaves. However, as 

expected, we could see a juvenile stem with a set of young rolled leaves in WT and ScGAIOE plants, 

and conversely, a ground tissue composed of storage parenchyma cells and vascular bundles in the 

HpScGAI stem, reinforcing the developmental acceleration in those plants. In agreement with this 

fast development rate, lignification of the basal internodes in these silenced plants was evident from 

reddish-brown coloration after phloroglucinol-HCl staining (Supplementary Fig. S6). In summary, 

our results demonstrated that misexpression of ScGAI affects stem growth, tiller numbers, and 

internode elongation in sugarcane. 
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Fig. 5. ScGAI regulates tillering, stem growth, and represses internode elongation in 
sugarcane plants.  

(a) Above, FLAG:ScGAI and endogenous ScGAI expression levels in transgenic lines; Below, 
immunoblot using a sugarcane anti-DELLA (Anti-ScGAI) antibody. Each lane was loaded with 20 
µg of total protein from leaf+1, apical shoot (shoot) and 5th internode (5th int) tissues of wild-type, 
FR10 and HR1 lines of 6-month-old; CB, Comassie blue. (b) 3-month-old plants. Height, internode 
number and elongation and tiller number; Bar shows means ±SEM (n=8, P< 0.05; One way ANOVA 
followed by Bonferroni multiple comparisons post-test). (c) Zoomed-in detailed view of 3-months-
old plants; Internode numbers counted from soil to top; arrows indicate the first visible dewlap. (d) 
Leaf +1 blade length and length/width ratio in 2-months-old plants. Sugarcane leaves +1 of 2-month-
old plants. Scale bar = 5 cm.  
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3.4.5   ScGAI-misexpressing lines are hypersensitive to GA and paclobutrazol (PAC) 

treatments.  

To get further insight into the role of the GA/ScGAI regulation in sugarcane, we treated 

transgenic seedlings with exogenous GA3 or PAC, an inhibitor of GA biosynthesis (Supplementary 

Fig. S7). Upon PAC treatment, WT plants produced a very short and thick stem. In this respect, 

HpScGAI plants were slightly less sensitive to PAC, evidencing the lack of the DELLA repressor. 

On the other hand, ScGAIOE seedlings showed a stronger response to PAC. Strikingly, all PAC-

treated seedlings presented an increased root growth, though to a lesser degree in ScGAIOE. As 

expected, GA3 treatment rescued the short phenotype of ScGAIOE plants, and HpScGAI plants were 

hypersensitive to GA3, showing a slender phenotype, with two-fold longer plants than GA3-treated 

WT (Supplementary Fig. S7). These results further demonstrated that the GA-induced degradation of 

DELLA modulates growth and internode elongation of sugarcane, and that it decreases the root-to-

shoot ratio in this plant.  

3.4.6   ScGAI misexpression alters gene expression profiles.  

The phenotypes of ScGAI-misexpressing lines suggest that ScGAI protein acts as a 

regulator of the sugarcane development. In order to get a better understanding of this regulation, we 

used RNA sequencing (RNA-seq) to identify differentially expressed genes (DEGs) in leaves and 

internodes of ScGAIOE and HpScGAI plants. Overall, 345 DEGs showed a statistically significant 

difference between the lines FR10 (ScGAIOE; dwarf line) and HR1 (HpScGAI; tallest line) 

(Supplementary Fig. S8 and Supplementary Tables S1-S4). In both plants, the highest number of 

DEGs was found in the stem, mainly in the 9th internode. Among the DEGs related to growth, three 

ERF (Ethylene-responsive element binding factor) genes were expressed at high levels in HpScGAI 

tissues. Two ERF subfamily groups (VII and VIII-B-1a) are known to promote internode elongation 

in rice and Arabidopsis 87,88. For instance, the ScERF9 transcript is the closest relative to the AtERF11 

gene (Supplementary Fig. S9), that was recently found to be involved in GA signaling and internode 

elongation in Arabidopsis 88. Besides, Brz-insensitive-long hypocotyls 4 (BIL4), a positive regulator 

of plant cell elongation via brassinosteroid signaling, 89 had higher expression in HpScGAI plants, 

indicating the cross-talk with other growth-related hormones. Regarding sugar signaling and energy 

status, the overexpression of ScGAI in ScGAIOE activated several genes related to sucrose transporter 

and energy-saving responses, such as the Snf1-related kinase 1 (SnRK1) regulatory subunit  KINβ1, 
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two key regulators of the starvation response such as the basic region-leucine zipper transcription 

factor 63 (bZIP63) and dark-inducible 6 (DIN6), as well as the trehalose-6-phosphate synthase genes 

TPS9 and TPS11 which are involved in trehalose biosynthesis. All these genes form a network 

regulating metabolism under stress conditions in order to preserve energy 90 (Table 1). Therefore, the 

transcriptomic data corroborate the proposition that ScGAI regulates a transcriptional network 

governing growth, energy status, and stress responses in sugarcane. 

  

3.4.7   Metabolite profiling.  

In order to investigate the carbon homeostasis in the transgenic plants, we analyzed the 

metabolome profile in leaves and internodes. This study revealed significant changes in the levels of 

sugars and amino acids in ScGAIOE leaves, while there were only minor changes in HpScGAI 

compared to WT leaves (Fig. 6). In agreement with this, the rate of photosynthesis was significant 

reduced in the dwarf line (Supplementary Fig. S10), evidencing the low sucrose level in ScGAIOE 

leaves. However, surprisingly, malate also accumulated to high levels, as observed in PAC-treated 

Arabidopsis 91, suggesting an alternative carbon sink for photosynthates other than sugars in response 

to the low sink demand in ScGAIOE sugarcane (Fig. 6). Thus, we then asked whether the diurnal 

rhythm of starch accumulation was also altered in these plants. At dusk, leaves of ScGAIOE plants 

contained much less starch than HpScGAI and WT plants (Supplementary Fig. S11). Further 

Table 1. Sugar signaling and transporter-related genes upregulated in the ScGAI0E plants. 

TIssues Annotation ScGAIOE 
(FPKM) 

HpScGAI 
(FPKM) 

Fold 
change 

(Log2) 
q-values 

Leaf+1 
STP13 - Sugar transporter family protein  43.3993 7.30469 -2.57078 0.032348 

Glucose transmembrane transporter - Polyol 
transporter 5-like 18.154 1.98172 -3.19546 0.032348 

Apical 
Shoot 

SUC3 - Sucrose transporter 40.2308 10.813 -1.89553 0.0264797 

ASN1 - Asparagine synthetase – (DIN6) 108.814 32.1247 -1.76011 0.0264797 

TPS9 - Trehalose-6-phosphatase synthase 9 15.7126 3.433 -2.19438 0.0264797 

5th 
internode 

TPS11 – Trehalose-6-phosphatase synthase 11 76.4698 20.5569 -1.89527 0.022577 

TPS9 - Trehalose-6-phosphatase synthase 9 42.6613 3.28255 -3.70004 0.022577 

BZIP63- Basic leucine zipper 63 54.0344 9.3616 -2.52905 0.022577 

KINβ1 - SNF1-related protein kinase regulatory 
subunit beta-1 226.435 38.5695 -2.55356 0.022577 

9th 
internode 

SWEET7 - Bidirectional sugar transporter 212.628 50.4851 -2.0744 0.037292 

TPS9 - Trehalose-6-phosphatase synthase 9 31.7242 5.11352 -2.63319 0.045876 
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enzymatic assay confirmed that starch accumulation was dramatically reduced in ScGAIOE, 

corroborating with our findings based on RNA-seq data analyses, which suggests that ScGAIOE 

plants are source-limited. At the sink level, we observed a high accumulation of amino acids in 5th 

and 9th immature internodes, which can be interpreted as the result of a nitrogen surplus due to limited 

growth and photosynthesis (Fig. 6). On the other hand, the investment of carbon into storage 

molecules and prenylpropanoid synthesis was markedly more evident in HpScGAI lines: metabolites 

such as sucrose, trehalose, galactinol, myo-inositol, and 4-caffeoylquinate showed higher levels in 

both internodes (Fig 6). Myo-inositol has been described as a central carbon-metabolite used to form 

the structural basis of signaling lipids, cell wall precursors, and raffinose family oligosaccharides 

(RFOs) 92. Recently, galactinol and raffinose have been proposed as C sink and storage in plants 93. 

Therefore, our results from metabolome and transcriptome analysis clearly support the hypothesis 

that changes in growth and primary metabolism are interlinked by ScGAI in sugarcane. 
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Fig. 6. Carbon balance are severely altered in transgenic plants.   
Metabolite-based clustering of leaves and 5th and 9th internodes in ScGAIOE (FR10 line) and 
HpScGAI (HR1 line) compared to WT. The intensities are color-coded. Red color represents high 
and blue color low intensities.  
 

3.4.8   ScGAI interacts with ScPIF3/PIF4 and ScEIN3/ScEIL1 proteins.  

Our next question was how the ScGAI protein acts in the control of sugarcane growth. It 

is known that DELLA restrains growth through its interactions with PHYTOCHROME-

INTERACTING FACTORS (PIF) proteins 21. Recently, DELLA and PIF proteins have been 

proposed as candidates for connecting sucrose status to hormones and environmental signals in plants 
94. We asked whether ScGAI protein interactions are also a conserved mechanism in sugarcane. We 

identified and cloned three sugarcane PIF protein-encoding genes (ScPIF3, ScPIF4, ScPIF5; 

Supplementary Fig. S12) and checked their interaction with ScGAI (Fig. 7). Similar to Arabidopsis, 
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we observed that ScGAI physically interacts with ScPIF3 and ScPIF4, but not with ScPIF5 (Fig. 7c-

e), demonstrating that the DELLA-interacting proteins seem conserved between monocot and dicot 

plants. To further explore this interaction network and get more insight into the mechanism of early 

internode onset in HpScGAI plants, we identified and cloned two key transcription factors of ethylene 

signaling, ScEIN3 and ScEIL1 (Supplementary Fig. S13), homologs of proteins known to modulate 

the expression of ERF proteins in Arabidopsis 95. Interestingly, ScGAI interacted with both ScEIN3 

and ScEIL1 (Fig. 7d-f). Taken together, the results suggest that ScGAI acts by inhibiting other 

transcription factors through both interaction/sequestration and degradation, as observed for 

Arabidopsis 20, indicating that these interactions underpin the mechanistic basis for integrating 

growth, internode elongation, and the balance between carbon supply and demand in sugarcane 

plants.  

 

 

 

 



41 

	

 

Fig. 7. ScGAI interacts with ScPIF3/4 and ScEIN3/EIL1 in sugarcane.   

(a) Structure of the sugarcane DELLA ScGAI and its truncated versions used in the screening. Protein 
schematic comparison between AtEIN3 and ScEIN3 sequences and the protein truncation 
ScEIN3(233-522) used in the yeast two hybrid assay. (b) Auto-activation activity of the different bait 
constructs in yeast cells. Full-length DELLA was capable of activating the transcription of reporter 
genes in the absence of prey proteins and also be toxic upon expression in yeast cells. (c and d) Co-
transformations with different combinations were performed. On SD-Leu-Trp medium, diploid yeast 
cells were confirmed. On SD-Leu-Trp-Ade-His medium, only positive yeast cells for protein-protein 
interaction grew. BD, binding domain; AD, activation domain; pGBD and pGAD, empty vectors; 
Positive controls: 53-BD encodes murine p53 and T-AD encodes the SV40 large T-antigen. Negative 
Control, Lam-BD encodes lamin. (e and f) BIFC assay was performed in Arabidopsis protoplasts. 
YFPN and C N-terminal and C-terminal yellow fluorescent protein, respectively. (g) Subcellular 
localization of the truncated protein namely rgaΔNterminal:VENUS used as negative control in the 
BIFC assay. AtPARP3:mCHERRY was used as nuclear control. Bars = 20 µm. 
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3.5  Discussion 

3.5.1   The GA signaling in sugarcane 

 

Here we shed light on the role of the GA signaling in the sugarcane development through 

the molecular characterization of the ScGAI protein. Sugarcane seems to have a putative single-copy 

of the ScGAI gene, as described in other monocot such as rice and barley. Nevertheless, it is 

noteworthy that the modern cultivated sugarcane are interspecific hybrids compost by 80-90% of 

chromosomes derived from Saccharum officinarum (2n=8x=80) and 10-20% derived from 

Saccharum spontaneum (2n=5x -16x=40-128) 96. In the hexaploid wheat, which contains three A, B 

and D genomes, a single-copy of the DELLA gene (Rht-1; for Reduced height-1) is present per 

genome 97. Thereby, further studies on genetic and comparative mapping are needed to elucidate the 

number of ScGAI haplotypes in the hybrid genome of the sugarcane.  

Nevertheless, given the importance of the ScGAI in the sugarcane development and in 

the integration of several pathways, its expression must be precisely regulated to provide the GA 

homeostasis. For instance, we demonstrated the highest ScGAI expression level in the SAM, which 

reinforces the low GA levels required for the proper meristem development 81. On the other hand, the 

lowest ScGAI expression level could be observed in the basal internodes, where GA3 showed the 

highest level in the sugarcane tissues. Such results provides some new clues for elucidating the action 

and transport of GA in sugarcane.    

ScGAI regulates leaf and stem elongation in sugarcane  

Leaf growth may be divided into temporal and spatial organization. In sugarcane, 

considering the developmental timing, the leaf+1 is considered fully-expanded and most 

photosynthetically active. This leaf may be easily identified through the most recently visible dewlap 

between leaf blade and leaf sheath in sugarcane (Fig. 3g). The upper whorl of leaves are still 

elongating and growing, being the spindle leaf (i.e., leaf -2) the youngest one with its tip just visible 

(Fig. 3h). Spatially, in monocot leaves, the linear organization is comprised by dividing cells at the 

base, followed by expanding cells and finally mature cells at the tip. Recently, the role of bioactive 

GAs in the spatial control of leaf growth has been clarified 98. A local and very narrow peak of GA 

is present at the transition (i.e., at the base) between the division and expansion zones of maize leaves. 

In our study, surprisingly, we found evidence supporting that SUMOylation plays a role in leaf 
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growth through stabilization of the ScGAI protein. This strongly supports the idea that GA targets 

SUMOylated ScGAI for destruction in the immature tissues of younger leaves in the upper whorl, 

whereas DELLAs have been described to restrain both cell division and expansion rate in Arabidopsis 

leaf growth 99. Therefore, we propose that SUMO-mediated ScGAI stabilization represses growth of 

the mature leaf tissue, and in contrast, increased non-SUMOylated ScGAI results in a decreased 

repression in elongating and dividing leaf tissue (Fig. 8).  

SUMOylation also plays a central role in environmental responses such as drought and 

salt stress. In rice and Arabidopsis plants, OTS SUMO proteases are rapidly degraded upon salt stress, 

leading to an increase in the SUMO conjugation of target proteins 100,101. Previous work has shown 

that drought stress slows leaf elongation in sugarcane, which reduces photosynthetic area and total 

plant photosynthesis 51. In addition, recently, GA biosynthesis was demonstrated to be downregulated 

in sugarcane leaf under drought stress 8. Therefore, the fact that SUMO binds to ScGAI, leads us to 

speculate that, as in Arabidopsis and rice, OTS protease degradation may contribute to 

hyperSUMOylation and stabilization of ScGAI in the elongating and dividing sections of younger 

sugarcane leaves upon abiotic stresses, acting then as a rapid growth retardation mechanism. Our 

study is the first step in elucidating the function of ScGAI in the leaf growth. Future work should be 

directed toward the determination of whether ScGAI-dependent growth control is a GA-independent 

mechanism in the elongating and dividing sections of younger leaves upon drought stress.  

In stem growth, the SUMOylation process does not seem to be involved in the regulation 

of the ScGAI protein. ScGAI showed a molecular weight of the 66 kDa in the upper internodes (Fig. 

3b). Besides, the highest levels of the ScOTS1 expression along the stem (Fig. 3e), suggest an 

attenuation and repression of SUMO conjugation of target proteins. Nevertheless, we do not discard 

the possibility that SUMO-conjugated ScGAI may restrain growth in the stem, as a rapid mechanism, 

under abiotic stresses. Further studies will be needed to address this question.  

In sugarcane, growth inhibitors or ripeners based on hormones such as Moddus, an 

inhibitor of GA biosynthesis, or Ethephon an ethylene-releasing compound, are commonly used on 

the field in order to restrain stem growth and in turn to enhance sucrose content closer to harvest. In 

a recent work, we demonstrated that Ethephon-treated sugarcane showed a stunted stem and an 

upregulated ScGAI expression level in the upper internodes 102. Corroborating with this observation, 

the present results using ScGAI-misexpressing sugarcane confirmed that ScGAI regulates stem 

growth and represses internode elongation (Fig. 5). We observed that while stem elongation was 
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inhibited, tillering was promoted by GA signaling repression in sugarcane (Fig. 5b). Conversely, the 

silencing of ScGAI gene resulted in a constitutively active GA response and an earlier onset of 

internode elongation. Therefore, our above-mentioned results provide compelling evidence that 

ScGAI regulates leaf and stem growth in sugarcane. 

ScGAI is a central hub for integration of growth and energy metabolism in sugarcane  

We modified the source-sink relationship through the modulation of ScGAI expression in 

sugarcane. Our results demonstrate that ScGAI coordinates the interaction between energy 

metabolism and GA–mediated control of growth in sugarcane. ScGAI upregulated several marker 

genes for energy deprivation in dwarf plants (table 1). Among them, SnRK1 is widely known as the 

central integrator of low energy signaling in plants 90. Corroborating with our observation, recently, 

the SnRK1/DELLA interaction has emerged from interactome studies in Arabidopsis, which 

demonstrated that the DOMAIN OF UNKNOWN FUNCTION (DUF) 581-2 proteins may mediate 

the cross-talk of both proteins 103. Such results could explain how plants communicate to modulate 

growth with appropriate channeling of energy resources and nutrients in plants. 

Starch and sucrose were reduced in ScGAIOE leaves. Conversely, glucose and malate 

were found at high levels in leaves, indicating that these alterations are likely due to the sink limitation 

in ScGAIOE. Sugars have been shown to act as signaling molecules to regulate sugarcane 

photosynthesis 7. In line with these results, photosynthetic rates were reduced in those plants, 

corroborating with previous studies showing that sink demand regulates photosynthesis through a 

feedback mechanism mediated by hexose accumulation in the leaves 5,54. However, on the other hand, 

it is interesting to note that the photosynthetic rate in HpScGAI plants did not show a significant 

difference in comparison with WT plants. This indicates that other limiting factors besides increased 

sink strength may be regulating photosynthesis in sugarcane. Further detailed carbon acquisition 

studies will be needed to understand the photosynthetic plasticity in sugarcane.  

In the stem, immature internodes partition carbon into protein and fiber, while mature 

ones partition mainly into sucrose for storage 51. In our study, ScGAIOE plants showed a higher level 

of amino acids and metabolites associated with the tricarboxylic acid (TCA) cycle in the internodes. 

These results are comparable to studies on Arabidopsis plants, where an increase in the levels of 

amino acids was also observed under PAC treatment 91.  On the other hand, silenced plants presented 

a higher level of trehalose, myo-inositol, galactinol and sucrose in those internodes. Corroborating 

with our observation, a previous study of the sugarcane metabolome during stem development 
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demonstrated that metabolites such as trehalose and raffinose showed a positive correlation with 

sucrose accumulation along the stem 104.  

From all the results presented here, it is clear that the ScGAI/GA regulon integrates 

growth and carbon availability in sugarcane. To add another piece to the puzzle of growth-sugar-

hormone cross-talk in sugarcane, we also showed that ScGAI interacted directly with the ScPIF3 and 

ScPIF4 proteins (Fig. 7). GA and PIFs are essential to promote growth under carbon availability at 

night in plants 105, with substantiates the fact that sugarcane stem elongation occurs primarily at night 
106. Furthermore, in Arabidopsis, sucrose was shown to upregulate the transcript levels of PIF1, 3, 4, 

5 in the darkness only in the presence of GA 83. Based on observations, we may infer that ScGAI 

interacts with ScPIFs, leading to their sequestration and destabilization, and consequently impairing 

their DNA-binding capacity in targeting growth-related genes during the night. On the other hand, 

via EIN3 ethylene promotes stem elongation in light-grown plants by increasing PIF3 expression 107. 

Similar to Arabidopsis 108, the interaction with ScGAI likely destabilizes ScEIN3/ScEIL1 proteins 

suggesting that ScGAI is likely a regulation point between gibberellin and ethylene cross-talk to 

modulate growth in sugarcane. All these observations support the phenotypes observed in ScGAI-

misexpressing plants. Collectively, we have shown that ScGAI by acting as an integrator of sugar-

hormone cross-talk plays a central regulatory role in sugarcane growth, development and sugar 

metabolism (Fig 8). 
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Fig. 8. ScGAI coordinates growth and energy status in sugarcane plants. 

(a) Schematic illustration of the sugarcane leaf growth. Spatially, the growth occurs unidirectionally 
from the base to the tip, and it decreases with time, being the leaf +1 the youngest fully-expanded and 
photosynthetically active. ScGAI is SUMOylated in a spatio-temporal manner. (b) In stem, the 
modulation of the ScGAI expression level allows sugarcane to control growth, internode elongation 
and tillering. Dashed lines indicate the protein-protein interactions. (c) GA/ScGAI regulon promotes 
carbon supply-demand balance in sugarcane. Fluctuation of energy status is a part of plants` adaptive 
response in order to reach energy homeostasis to plant growth and survival. For this, plants coordinate 
hormone-dependent growth responses to manage growth under varying nutrient supply and 
environmental stresses. In sugarcane, GA and ScGAI (DELLA) integrate energy status and growth 
in the source-sink.  
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4    Concluding remarks 
In this study, we demonstrated that ScGAI is involved in the control of leaf and internode 

elongation in sugarcane. Thereby, the ScGAI gene expression regulation is an important factor for the 

sink strength and, therefore, in the involvement of the source-sink communication. This conclusion 

may be observed in the ScGAI-misexpressing sugarcane, in which the overexpression of ScGAI 

(decreasing sink) caused an energy deficit and the upregulation of various starvation-related genes in 

those plants. On the other hand, silenced plants (increasing sink capacity and assimilate demand) 

showed a balance source supply at a whole-plant level. Therefore, we provided important insights 

into the source-sink and hormone cross-talk in sugarcane.    
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Fig. S1. GA hormone is highly synthetized in the basal internodes in sugarcane.  

(a) Expression profile of the native ScGA20 oxidase gene in different tissues of 10-months-old 
sugarcane; Bar plots show means ±SEM (n=5, P < 0.05; one way ANOVA followed by Bonferroni 
multiple comparisons post-test). (b) GA3 hormone level in sugarcane tissues. Neither GA1 nor GA4 
were detected in the analyzed samples. Each samples correspond to a pool from five biological 
replicates. 
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Fig. S2. Expression of His-tagged ScGAI protein conferring its molecular weight of 66 kDa in 
Escherichia coli. 
Expression of recombinant ScGAI protein was induced in E. coli. Total protein was extracted and 
assessed by immunoblotting using the (a) anti-ScGAI (1:1000 dilution) and (b) the anti-His (1:1000 
dilution) antibodies; lane 1 and 3, non-induced extracts, and lane 2 and 4, induced extracts. Lane 5, 
Molecular weight marker; Recombinant proteins are indicated with arrows. 
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Fig. S3. Transgene constructs and PCR genotyping for identification of putative transgenic 
lines. 
(a) Overexpression cassette pUbi:FLAG:ScGAI and the positive transgenic lines identified with the 
expected PCR band. (b) Hairpin-mediated silencing cassette pUbi:hpGAIi and the positive lines 
confirmed by the expected PCR band. M: 100 bp ladder (Promega); NT: non-template; WT: 
untransformed wild-type plant; CT+: positive control (vectors); Numbers and letters correspond to 
the putative transformed lines; The set of primers used is shown as arrows in each construct diagram.   
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Fig. S4.  ScGAI gene expression in the ScGAIOE and HpScGAI transgenic sugarcane lines. 
(a) Expression level of the FLAG:ScGAI transgene. (b) Expression level of endogenous ScGAI in 
wild-type (WT) and hairpin-mediated DELLA silencing lines. Data represent the mean ±SEM; n =3 
independent biological replicates. 
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Fig. S5. Gross phenotype of ScGAIOE and HpScGAI transgenic sugarcane plants. 
One-month-old in (a) and close-up in (b, c and d) showing the earliest formation of internodes in 
HpGAI lines; (e) Two-month-old (f) and (g) Three-month-old showing the high tiller numbers. 
Arrows indicate the first visible dewlap; (h) 11th internode length and diameter measurement of six-
month-old plants. Bar plots show means ±SEM (n=4, P< 0.05; One way ANOVA followed by 
Bonferroni multiple comparisons post-test). U1, U3 and U4: untransformed plants; FR10, FRC and 
FR11: ScGAIOE plants; HRA, HR1 and HR37: HpScGAI plants. 
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Fig. S6. Leaf and stem histology of wild type (WT), ScGAIOE and HpScGAI transgenic 
sugarcane plants. 
(A) Two-month-old plants. Close-up view displaying the stunted growth in SCGAI and the presence 
of internodes in HpGAI plants. Arrows indicate the first visible dewlap. (B) Cross section of leaves 
in bright-field light (a,b and c), and stained with toluidine blue (T.blue; d, e and f) or phloroglucinol-
HCl (Phloro-HCl;  g, h and i). Large (lge), small (sml) and intermediate (int) vascular bundle, scl – 
sclerenchyma, bu – buliform cells, bs – bundle sheath, m- mesophyll cell. (C) Cross-section of the 
leaf roll from WT in bright-field in a and c, and from ScGAIOE (FR10 line) in bright-field in b and 
d. (D) Cross-section of the stem from HpScGAI plants (HR1 line) in bright-field light in a, d and g, 
toluidine blue (T.blue) stained in b, e and h, and phloroglucinol-HCl (Phloro-HCl) stained in c, f and 
i.. When we stained the HpGAI stem with phloroglucinol-HCl, the reddish-brown color in lignified 
tissues increased in internodes more mature close to the soil. Parenchyma cells (p), vascular bundles 
(vb), metaxylem (mx), protoxylem (px), metaphloem (mp), sclerenchyma (s), epidermis (e), 
hypodermis (hy).  
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Fig. S7. Transgenic sugarcane plants showed stronger responses to gibberellin (GA3) and 
paclobutrazol (PAC) than wild type (WT) plants. 
(a) Morphology of sugarcane plants after 23 days of treatment with GA3 (50µM) and PAC (5 µM). 
Arrows indicate the nodes. Scale bars = 5 cm. (b) Close-up view of PAC-treated seedlings. Scale bars 
= 5 cm. (c) Dry root weight of WT, ScGAIOE and HpScGAI plants. (d) Close-up view of GA3-
treated transgenic plants. Arrows indicate the nodes; Scale bars = 5 cm. (e) Height of WT, ScGAIOE 
and HpScGAI transgenic lines. Error bars indicate the SEM of the mean. (n=4). One way ANOVA 
was used and Dunnett’s multiple comparison applied (p value < 0.05).  
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Fig. S8. Transcriptional responses of ScGAIOE and HpScGAI plants. 
Venn diagram showing the differentially expression genes (DEGs) (number in parentheses) (a) in 
ScGAIOE and (b) in HpScGAI tissues. 
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Fig. S9. ScERF9 belongs to ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a 
of AP2/ERF transcript factors.  
(a) Protein alignment of sorghum and sugarcane ERF9 with four Arabidopsis ERF proteins of the 
group VIII-B1-a. Similar sequences are colored in gray shadow boxes highlighting the AP2/ERF and 
EAR conserved domains. (b) Phylogenetic analysis shows that ScERF9 clustered together with 
SbERF9 and AtERF11 proteins. The bootstrap percentages indicate the reliability of the cluster.     
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Fig. S10. Photosynthesis in the ScGAIOE and HpScGAI transgenic sugarcane.  
(a) Height, (b) Photosynthesis rate (A), (c) Stomatal conductance (gs) and (d) Intercellular [CO2], 
(ci). Parameters were measured in 5-months-old plants. Bar plots show means ±SEM (n=7, P< 0.05; 
One way ANOVA followed by Bonferroni multiple comparisons post-test).  
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Fig. S11. ScGAIOE shows impaired starch accumulation during the day. 
Starch turnover was evaluated in diurnal cycle by (a) Lugol’s iodine solution in leaf+1 discs (n=3, 
independent biological replicates), and confirmed by (b) enzymatic starch assay (n=5, independent 
biological replicates; P<0.05 via paired Student’s two-tailed t-test; ns = not significant). 
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Fig. S12. Phytochrome-Interacting Factors (PIFs) 3 and 4 are nuclear basic helix-loop-helix 
(bHLH) proteins in sugarcane. 
(a) Schematic representation of PIF proteins showing their conserved domains along the sequence; 
APB and APA-motifs mediate the binding to phyB Pfr and phyA Pfr, respectively. (b) Phylogenetic 
tree of PIF proteins. (c) Subcellular localization of ScPIF:VENUS fusion proteins in Arabidopsis 
mesophyll protoplast. The construct AtPARP3:mCHERRY (mCHERRY) was used as nuclear control. 
DIC: Differential Interference Contrast; YFP: Yellow Fluorescent protein. Bars = 20 µM 
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Fig. S13. ScEIN3 and ScEIL1, the master transcription factors of ethylene signaling.  
(a) Schematic representation of ScEIN3/EIL1 proteins showing their conserved domains along the 
sequences. (b) Phylogenetic tree of ScEIN3/EIL1 proteins. (c) Subcellular localization of 
ScEIN3/EIL1 proteins in Arabidopsis mesophyll protoplast. The construct AtPARP3:mCHERRY 
(mCHERRY) was used as nuclear control. DIC means Differential Interference Contrast. YFP means 
Yellow Fluorescent protein. Bars = 20 µM 

 
  



61 

	

Table S1. Composite list of DEGs in leaves between ScGAIOE and HpScGAI. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb01g007360	 Gibberellic acid -
stimulated Arabidopsis (GASA8) gene 3.63978 0 inf 0.018663 

Sb01g029310	 Expansin B2 – (EXPB2) 1.82334 0 inf 0.018663 

Sb01g036580	 Euonymus lectin S3 - EULS3 125.358 12.1324 -3.36912 0.018663 

Sb01g042690	 Sugar transporter family protein – (STP13) 43.3993 7.30469 -2.57078 0.032348 

Sb01g043720	 Glycosyl hydrolase family 10 protein 0.990486 0 inf 0.018663 

Sb01g044580	 Alcohol dehydrogenase GroES-like  68.0263 11.0143 -2.62672 0.04479 

Sb01g007590	 UDP-glucuronosyl/UDP-glucosyltransferase 0 3.645 inf 0.032348 

Sb01g010660	 DELLA 39.7408 4.80204 -3.0489 0.018663 

Sb01g020150	 KAT2 – 3- Ketoacyl-Coa thiolase 2  252.081 23.083 -3.44899 0.018663 

Sb01g033820	 Transducin/WD40 repeat-like superfamily protein 57.6083 7.64138 -2.91437 0.018663 

Sb01g042270	 Cytochrome P450 74A – (CYP74A) 360.304 52.1615 -2.78816 0.032348 

-	 NI 3.43827 0 inf 0.018663 

Sb10g029300	 Thylakoid lumenal 16.5 kDa protein 23.6458 123.636 2.38644 0.04479 

Sb10g028360	 GDSL-like Lipase/Acylhydrolase 15.4885 82.5155 2.41347 0.04479 

Sb02g037570	 Glucose transmembrane transporter - Polyol 
transporter 5-like  18.154 1.98172 -3.19546 0.032348 

Sb02g037650	 Scarecrow-like 5 216.577 18.8808 -3.51989 0.018663 

Sb02g003010	 Early-responsive to dehydration – (ERD4) 182.848 5.04105 -5.18078 0.018663 

Sb02g007870	 Metal transporter Nramp6 – (NRAMP1) 1.79574 0 inf 0.018663 

Sb02g010810	 Aquaporin-like – (PIP2B) 0 2.58132 inf 0.018663 

Sb02g026360	 Galactosyltransferase 33.9953 2.60119 -3.70809 0.018663 

Sb02g031550	 Copper amine oxidase 0 2.81452 inf 0.018663 

Sb02g036750	 Polygalacturonase inhibitor 1 – (PGIP2) 2.29455 0 inf 0.018663 

-	 NI 0 51.842 inf 0.018663 

Sb03g000850	 Putative bark storage protein 104.951 17.2066 -2.60868 0.018663 

Sb03g029790	 CTP synthase – (emb2742) 40.2019 5.45801 -2.88082 0.018663 

Sb03g007380	 Mannose-6-phosphate isomerase – (PMI1) 9.95695 56.4115 2.50221 0.018663 

Sb03g023990	 Early-responsive to dehydration – (ERD) 76.1976 11.114 -2.77737 0.018663 

Sb03g030330	 MYB family transcription factor – (RL6) 0 46.0747 inf 0.018663 

Sb03g040490	 C2H2 zinc finger protein – (WIP4) 0.803423 0 inf 0.018663 

Sb03g042450	 Lipoxygenase – (LOX1) 318.627 28.708 -3.47234 0.018663 

Sb03g044980	 Glutathione S-transferase – (GSTF13) 109.402 21.297 -2.36092 0.018663 

Sb03g046090	 BHLH039 3.72414 0 inf 0.018663 

Sb04g000620	 Vacuolar invertase 2 – (VAC-INV 2) 83.5824 14.485 -2.52864 0.032348 

“NI” means no identified; “inf” indicates no ratio. 
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Table S1. Continuation. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb04g000830	 HPL1 (Hydroperoxide Lyase 1) (CYP74B2) 36.3315 3.85201 -3.23754 0.018663 

Sb04g021410	 Early-responsive to dehydration – (ERD1) 92.2606 14.9928 -2.62145 0.018663 

Sb04g024090	 NPF8.3. NRT1/ PTR family 8.3 - Peptide 
transporter (PTR2) 118.224 13.927 -3.08557 0.018663 

Sb04g024440	 Glycerophosphoryl diester phosphodiesterase – 
(GPDL2) 27.8855 3.19227 -3.12686 0.018663 

Sb04g033350	 Cytochrome b5-like Heme/Steroid binding domain -
CB5-E 8.58836 0 inf 0.018663 

Sb04g025550	 APK1 - Serine-threonine/tyrosine-protein kinase 246.684 28.4504 -3.11615 0.018663 

Sb04g026690	 Uncharacterized protein 4.67203 0 inf 0.018663 

Sb04g031040	 Jumonji transcription factor/ zinc finger (C5HC2 
type) 23.0275 1.20107 -4.26097 0.018663 

-	 NI 0 20.0573 inf 0.018663 

-	 NI 48.5983 319.451 2.71662 0.018663 

Sb05g003860	 LTP1 – Lipid transfer protein 1 4.46598 0 inf 0.018663 

-	 NI 0 4.64044 inf 0.018663 

-	 NI 0 3.87019 inf 0.018663 

Sb06g021790	 Wall-associated receptor kinase-like 20 precursor-  
(CRCK3) 74.8249 14.0611 -2.41181 0.04479 

Sb06g028200	 Protease inhibitor/seed storage/LTP family 243.106 34.7061 -2.80832 0.018663 

Sb06g000660	 Heat shock protein – (HSP90.1) 9.17577 60.5537 2.72231 0.018663 

Sb06g003280	 HIPP27 - Heavy metal associated isoprenylated 
plant protein 27 112.18 8.56149 -3.71181 0.018663 

Sb06g022460	 Beta-glucosidase 45 – (BGLU45) 15.1642 77.432 2.35226 0.032348 

Sb06g027770	 ACA8 (auto-inhibited CA2+ -ATPASE. isoform 8) 19.1969 2.89684 -2.72832 0.04479 

Sb06g032460	 PAO4. Polyamine Oxidase 4 64.6633 10.8507 -2.57516 0.018663 

Sb07g004700	 Chalcone synthase – (CHS) transparent testa 4. 
TT4 0 2.47114 inf 0.018663 

Sb07g005130	 Terpene synthase – (TPS21) 183.727 21.3089 -3.10804 0.018663 

Sb07g021950	 Receptor-like protein kinase precursor – (PEPR1) 46.2865 3.24164 -3.83579 0.018663 

Sb07g024030	 Oxidoreductase. 2OG-Fe(II) oxygenase family 
protein 1.12088 0 inf 0.018663 

Sb08g023140	 AAA-ATPASE 1 36.0458 3.73987 -3.26877 0.032348 

Sb08g023150	 AAA-ATPASE 1 46.4186 5.42508 -3.09699 0.018663 

-	 NI 0 15.3463 inf 0.018663 

Sb09g001020	 PR (pathogenesis-related) -PR-6 proteinase 
inhibitor family 2615.37 278.046 -3.23362 0.018663 

Sb09g001050	 PR (pathogenesis-related) -PR-6 proteinase 
inhibitor family 1802.67 189.723 -3.24817 0.018663 

Sb09g003060	 Proteolipid membrane potential modulator – 
(RCI2A) 499.02 47.4797 -3.39371 0.018663 

Sb09g005800	 Histidine-containing phosphotransfer protein 4 – 
(AHP4) 0 5.34066 inf 0.018663 

-	 NI 0 80.8544 inf 0.032348 

“NI” means no identified; “inf” indicates no ratio. 
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Table S2. Composite list of DEGs in Apical shoot between ScGAIOE and HpScGAI. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb01g016810	 DYL1 (Dormancy-associated protein-like 1) 109.977 33.15 -1.73013 0.0264797 

Sb01g028256	 Tetratricopeptide repeat 10. TPR10 0 3.05063 inf 0.0264797 

Sb01g029610	 LTPL144 - Protease inhibitor/seed storage/LTP 
family protein precursor 4.14948 0 #NOME? 0.0477927 

Sb01g036310	 HAD superfamily phosphatase 135.969 26.6852 -2.34917 0.0264797 

Sb01g045720	 sucrose transporter. SUC3 40.2308 10.813 -1.89553 0.0264797 

Sb01g008350	 transmembrane BAX inhibitor motif-containing 
protein BIL4 43.0404 194.978 2.17955 0.0264797 

Sb01g014460	 VRN1 –Reduced vernalization response 1 2.80241 0 #NOME? 0.0264797 

-	 NI 0 18.0663 inf 0.0477927 

-	 NI 0 4.02684 inf 0.0477927 

Sb10g003890	 GDSL-like lipase/acylhydrolase 143.286 42.2648 -1.76137 0.0264797 

Sb10g012970	 Peptidyl-prolyl cis-trans isomerase FKBP65 – 
ROF2   50.2692 1091.04 4.43988 0.0264797 

Sb10g019360	 AQP1 –Delta tonoplast integral protein 89.4797 6.54048 -3.77409 0.0264797 

Sb10g026090	 Chloride transporter A – CLC-A 16.1588 3.30871 -2.28798 0.0264797 

Sb02g027900	 Photosystem I subunit G - PSAG 250.123 91.8949 -1.44458 0.0264797 

Sb02g032040	 Chlorophyll A-B binding protein  LHB1B2.LHCB1.5 134.08 47.9085 -1.48474 0.0264797 

Sb02g035600	 Beta-amylase 1 – RAM1 66.8796 223.019 1.73753 0.0264797 

Sb02g043260	 Euonymus lectin S3 - EULS3 148.289 43.8698 -1.75711 0.0264797 

Sb03g005280	 FLA11 - Fasciclin-like arabinogalactan proteins  242.591 86.7392 -1.48377 0.0264797 

Sb03g006880	 HSP18.2 – Heat shock 134.315 397.858 1.56663 0.0264797 

Sb03g041190	 NPF5.10 – Peptide transporter (PTR2) 50.1346 15.1805 -1.72359 0.0264797 

Sb03g006870	 HSP18.2 – Heat shock 227.072 789.49 1.79777 0.0264797 

Sb03g042330	 MLP423- Pathogenesis-related Bet v I family 
protein  3.32405 0 #NOME? 0.0264797 

Sb04g008670	 MYB-like HTH transcriptional regulator  1.44684 0 #NOME? 0.0264797 

Sb04g009670	 BAG6 (BCL-2-associated athanogene 6) 6.80622 27.3091 2.00446 0.0264797 

Sb04g009690	 BAG5 (BCL-2-associated athanogene 5) 129.521 406.876 1.65141 0.0264797 

Sb04g001130	 CAT1 - Catalase isozyme A 57.9455 14.5686 -1.99184 0.0477927 

Sb04g026430	 RNA-binding (RRM/RBD/RNP motifs) family 
protein 57.6438 183.417 1.66989 0.0264797 

Sb04g027330	 HSP20-like - Heat shock 96.6096 669.184 2.79217 0.0264797 

Sb05g000440	 ASN1 - Asparagine synthetase – (DIN6) 108.814 32.1247 -1.76011 0.0264797 

Sb05g004100	 ASR1 - Abscisic stress-ripening 1 288.25 60.0521 -2.26303 0.0264797 

Sb06g024780	 LTPL120 - Protease inhibitor/seed storage/LTP 
family protein 0 8.15305 inf 0.0264797 

Sb06g024790	 LTPL120 - Protease inhibitor/seed storage/LTP 
family protein 10.1617 485.377 5.57789 0.0264797 

Sb06g032310	 Leucine-rich repeat (LRR) family protein 84.8772 27.8199 -1.60926 0.0264797 

“NI” means no identified; “inf” indicates no ratio. 
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Table S2. Continuation. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb06g033030	 PORA - Protochlorophyllide reductase A  329.404 100.367 -1.71457 0.0264797 

Sb06g000660	 HSP83 - Heat shock protein 24.7329 521.226 4.39741 0.0264797 

Sb07g020270	 TPS9 - Trehalose-6-phosphatase synthase 9 15.7126 3.433 -2.19438 0.0264797 

Sb09g023060	 PDC1 – Pyruvate decarboxylase 1 7.68714 39.1058 2.34686 0.0264797 

Sb09g019930	 PPDK -  Pyruvate orthophosphate dikinase  6.44379 25.8605 2.00477 0.0264797 

Sb09g022260	 Putative uncharacterized protein  58.5064 8.82706 -2.72859 0.0264797 

Sb09g025900	 HSP101 - Heat shock protein 87.2806 457.537 2.39016 0.0264797 

Sb09g029500	 Pectin lyase-like superfamily protein 26.2983 111.757 2.08733 0.0264797 

“NI” means no identified; “inf” indicates no ratio. 
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Table S3. Composite list of DEGs in internode 5th between ScGAIOE and HpScGAI. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb01g009080 GRF1-interacting factor 1 0 1.76847 inf 0.035812 

Sb01g020430 Glycine-rich protein DOT1 110.538 449.668 2.02431 0.022577 

Sb01g036020 CBL-interacting serine/threonine-protein kinase 10 
– CIPK10 67.7524 15.3461 -2.1424 0.022577 

Sb01g043630 Dwarf 14 - D14 131.511 28.1199 -2.22552 0.022577 

Sb01g047020 Calmodulin-binding receptor-like cytoplasmic 
kinase 2 –CRCK2 29.0656 5.49055 -2.40429 0.035812 

Sb01g047160 RZFP34/CHYR1 113.677 27.805 -2.03152 0.035812 

- NI 0 4.80613 inf 0.022577 

- NI 517.286 2730.2 2.39997 0.022577 

Sb10g012970 Peptidyl-prolyl cis-trans isomerase FKBP65 – 
ROF2 42.3328 999.134 4.56083 0.022577 

Sb10g023670 EIN3-binding F-box protein 1 – EBF1 132.585 30.6841 -2.11135 0.022577 

Sb10g026090 Chloride channel protein CLC-a 37.4577 3.88015 -3.27108 0.022577 

Sb02g033240 xyloglucan endotransglucosylase/hydrolase protein 
32 – XTH32 30.1725 107.884 1.83818 0.035812 

Sb02g003010 Early-responsive to dehydration 4 - ERD4 90.6823 20.9488 -2.11396 0.022577 

Sb02g031550 Copper amine oxidase family protein 0 4.77988 inf 0.022577 

- NI 0 53.1402 inf 0.022577 

Sb03g042860 AKS2- ABA-responsive kinase substrate 2 73.8751 13.9807 -2.40166 0.022577 

Sb03g002020 NA+/CA2+ Exchanger 268.712 75.106 -1.83906 0.035812 

Sb03g039530 Laccase-17 – LAC17 31.3293 3.59022 -3.12537 0.022577 

Sb04g009670 BAG family molecular chaperone regulator 6 – 
BAG6 8.12306 31.1694 1.94004 0.035812 

Sb04g017450 Inositol-tetrakisphosphate 1-kinase 1 – ITPK1 0 1.75114 inf 0.035812 

Sb04g024090 Protein NRT1/ PTR FAMILY 6.4 –NPF6.4 45.4655 4.44484 -3.35457 0.022577 

Sb04g035560 TPS11 – Trehalose-6-phosphatase synthase 11 76.4698 20.5569 -1.89527 0.022577 

Sb04g021590 Copper transport protein- CCH 23.4383 170.208 2.86036 0.022577 

Sb04g027330 heat shock protein- HSP23.5 52.6493 545.481 3.37304 0.022577 

- NI 0 21.772 inf 0.022577 

- NI 0 32.9927 inf 0.022577 

Sb05g007030 heat shock protein –HSP22 0 5.28697 inf 0.022577 

Sb05g008440 carboxylesterase 17 –CXE17 3.2307 0 #NOME? 0.022577 

- NI 0 5.99304 inf 0.022577 

- NI 0 5.65168 inf 0.022577 

- NI 0 4.18415 inf 0.035812 

Sb06g001410 Pectate lyase 15 17.9248 83.0608 2.21221 0.022577 

Sb06g002500 Hypothetical protein 117.531 1082.81 3.20367 0.022577 

“NI” means no identified; “inf” indicates no ratio. 
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Table S3. Continuation 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb06g021870 Leucine-rich repeat (LRR) family protein 11.792 52.4498 2.15313 0.022577 

Sb06g024770 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S 
albumin superfamily protein –LTPL121 0 175.476 inf 0.022577 

Sb06g024780 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S 
albumin superfamily protein –LTPL120 0 16.2181 inf 0.022577 

Sb06g025890 Ethylene-responsive transcription factor ERF025 (DREB 
A-4) 7.01096 0 inf 0.022577 

Sb06g028200 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S 
albumin superfamily protein 90.7623 463.277 2.35171 0.022577 

Sb06g000660 Heat shock protein 90-1 – HSP90.1 32.6025 393.163 3.59207 0.022577 

- NI 35.2548 274.777 2.96237 0.022577 

- NI 450.491 3722.99 3.04689 0.022577 

- NI 224.836 1937.85 3.10751 0.022577 

- NI 215.998 1309.36 2.59977 0.035812 

- NI 144.461 1120.93 2.95594 0.022577 

- NI 0 107.561 inf 0.022577 

Sb07g020270 TPS9 - Trehalose-6-phosphatase synthase 9 42.6613 3.28255 -3.70004 0.022577 

Sb08g000980 Peroxidase 52- PRX52 127.791 11.9137 -3.42309 0.035812 

Sb08g002740 CBL-interacting serine/threonine-protein kinase 2 – CIPK2 95.0556 26.1821 -1.86019 0.035812 

Sb08g020600 BZIP63- Basic leucine zipper 63 54.0344 9.3616 -2.52905 0.022577 

Sb08g021580 APG1 – Albino or pale green mutant 1  47.5267 6.52539 -2.8646 0.022577 

Sb09g023060 Pyruvate decarboxylase 1 –PDC1 1.95158 28.5127 3.86889 0.035812 

Sb09g029610 ADPGLC-PPASE large subunit - APL2 44.3375 158.499 1.83788 0.022577 

Sb09g018080 Transducin/WD-40 repeat-containing protein 10.8563 40.7806 1.90935 0.022577 

Sb09g022260 Unknown protein 428 43.4989 -3.29856 0.022577 

Sb09g024060 KINβ1 - SNF1-related protein kinase regulatory subunit 
beta-1  226.435 38.5695 -2.55356 0.022577 

Sb09g024230 CYS6 - Cysteine proteinase inhibitor 6 63.9594 240.365 1.91 0.022577 

Sb09g029500 PG2 - Polygalacturonase 7.38358 47.9777 2.69997 0.022577 

- NI 0 76.565 inf 0.022577 

“NI” means no identified; “inf” indicates no ratio. 
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Table S4. Composite list of DEGs in internode 9th between ScGAIOE and HpScGAI. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb01g000580 GA20ox2 - Gibberellin 20 oxidase 2 1.48898 0 inf 0.009611 

Sb01g004295 SMT1 – Sterol methyltransferase 1  61.391 0 inf 0.023238 

Sb01g007170 ZAT6 - Zinc finger protein 4.21876 75.7109 4.16561 0.023238 

Sb01g007340 PP2C clade D5 – ADP5 30.8246 241.756 2.9714 0.009611 

Sb01g013190 
SPX (SYG1/Pho81/XPR1) domain-containing 
protein / zinc finger (C3HC4-type RING finger) 
protein-related 

5.91843 0 inf 0.009611 

Sb01g014350 Cytochrome P450. family 87. subfamily A. 
polypeptide 2 – CYP87A2 12.3886 57.9573 2.22598 0.033482 

Sb01g020430 Unknown protein 129.822 16.4984 -2.97613 0.009611 

Sb01g020570 PHT1.4 -Inorganic phosphate transporter 1-4  16.15 82.9606 2.36089 0.023238 

Sb01g021130 GDSL esterase/lipase EXL3 3.00806 0 inf 0.009611 

Sb01g027285 PSBC - Photosystem II reaction center protein C 0 15.7927 inf 0.033482 

Sb01g027810 Early-responsive to dehydration – (ERD4) 38.451 8.18857 -2.23134 0.033482 

Sb01g029330 EXPβ2 - Expansin-β2 3.53089 0 inf 0.017156 

Sb01g032610 Terpene synthase –TPS21 15.0758 114.789 2.92867 0.009611 

Sb01g035970 Putative uncharacterized protein 2.17049 0 inf 0.037292 

Sb01g043030 BGLU40 - Beta-glucosidase 40  1.65775 0 inf 0.017156 

Sb01g001160 CYP71B23 - Cytochrome P450 1.13987 0 inf 0.023238 

Sb01g003270 C2H2-type zinc finger family protein 0 8.10497 inf 0.009611 

Sb01g003280 C2H2-type zinc finger family protein 0 8.15342 inf 0.009611 

Sb01g003710 ATAF2 – NAC domain protein 12.1639 161.214 3.7283 0.009611 

Sb01g004320 Cupredoxin superfamily protein 3.59622 0 inf 0.009611 

Sb01g004740 AAA-ATPASE 1 25.9359 194.583 2.90736 0.009611 

Sb01g005900 Syntaxin-121 11.6421 84.0838 2.85247 0.009611 

Sb01g007220 Putative uncharacterized protein 0 83.1714 inf 0.009611 

Sb01g008350 BIL4 - BRZ-Insensitive-long hypocotyls 4 29.4707 285.007 3.27364 0.009611 

Sb01g010050 Uncharacterized protein 33.4779 220.235 2.71776 0.009611 

Sb01g013270 YAB1 - Axial regulator YABBY 1 5.88927 0 inf 0.045876 

Sb01g014120 SHY2/IAA3 - Auxin-responsive protein  1.9053 0 inf 0.037292 

Sb01g015070 Terpenoid cyclases 0.980916 0 inf 0.037292 

Sb01g018360 ABCG11 - ABC transporter G family member 11 1.18957 0 inf 0.017156 

Sb01g036020 CBL-interacting serine/threonine-protein kinase 10 
– CIPK10 53.221 10.0121 -2.41025 0.029034 

Sb01g037090 GOLS1 - Galactinol synthase 1 14.5121 85.3798 2.55664 0.009611 

Sb01g037850 COBL7 - COBRA-like protein 7 5.25721 50.5362 3.26495 0.009611 

Sb01g038410 AP2C1 - PP2C clade B 18.8677 500.749 4.7301 0.009611 

“inf” indicates no ratio. 
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Table S4. Continuation. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb01g039530 HSP70 - Heat shock protein 74.932 394.979 2.39812 0.009611 

Sb01g041310 Glycosyl hydrolase family 10 1.31809 0 inf 0.009611 

Sb01g043460 Uncharacterized protein 57.5594 228.242 1.98744 0.029034 

- NI 29.0104 161.221 2.4744 0.009611 

Sb10g000980 CSLD3 - Cellulose synthase-like protein D3 13.2009 76.3735 2.53243 0.009611 

Sb10g001620 CBF3 - Dehydration-responsive element-binding 
protein 1A 0 1.86575 inf 0.041518 

Sb10g003340 GDSL esterase/lipase 1.00144 0 inf 0.045876 

Sb10g003890 GDSL esterase/lipase  265.057 47.8687 -2.46915 0.009611 

Sb10g012970 Peptidyl-prolyl cis-trans isomerase FKBP65 – 
ROF2 23.5841 706.669 4.90515 0.009611 

Sb10g023970 Uncharacterized protein 86.9415 10.8877 -2.99735 0.009611 

Sb10g025210 LTPL129 - Protease inhibitor/seed storage/LTP 
family protein 1.70765 0 inf 0.009611 

Sb10g027000 Patellin-4 1.42238 0 inf 0.009611 

Sb10g000660 Pectate lyase-like superfamily protein 83.7454 16.5356 -2.34043 0.009611 

Sb10g002070 ADC2 - Arginine decarboxylase 2 8.75275 46.4398 2.40755 0.029034 

Sb10g004240 UDGT71C5 - UDP-glycosyltransferase 71C5 1.09525 0 inf 0.037292 

Sb10g006630 Putative uncharacterized  6.03264 73.3782 3.60449 0.009611 

Sb10g008130 FTSH6 - ATP-dependent zinc metalloprotease  5.40909 33.3836 2.62568 0.029034 

Sb10g012220 BGLU17 - Beta-glucosidase 17 50.3167 4.58139 -3.45718 0.017156 

- NI 35.7038 0 inf 0.009611 

Sb02g009340 Putative lipid-transfer protein DIR1 0 32.7424 inf 0.023238 

Sb02g022290 WRKY53 3.48877 80.0604 4.5203 0.009611 

Sb02g028240 SAP5 – Stress associated protein 5 23.4327 126.628 2.434 0.009611 

Sb02g033240 xyloglucan endotransglucosylase/hydrolase protein 
32 – XTH32 5.67153 0 inf 0.009611 

Sb02g035460 O-Glycosyl hydrolases family 17 protein 2.16182 0 inf 0.009611 

Sb02g001740 Uncharacterized protein 1.2766 0 inf 0.017156 

Sb02g004390 ELIP1 - Early light-induced protein 1. chloroplastic 0 6.35111 inf 0.009611 

Sb02g004670 SHY2/IAA3 - Auxin-responsive protein 20.1516 248.64 3.62509 0.009611 

Sb02g005780 GALT6 – O-galactosyltransferase 3.79149 29.0339 2.9369 0.033482 

Sb02g009600 CRSP – CO2-response secreted protease 49.9568 3.84074 -3.70122 0.009611 

Sb02g023660 Glycosyl hydrolase family 81 protein 5.3742 38.8393 2.85339 0.009611 

Sb02g023910 SAP12 – Stress associated protein 12 0 7.34847 inf 0.009611 

Sb02g031550 Copper amine oxidase family protein 0 6.2105 inf 0.009611 

Sb02g035930 B-120 -G-type lectin S-receptor-like 
serine/threonine-protein kinase  0 1.01966 inf 0.009611 

“NI” means no identified; “inf” indicates no ratio. 
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Table S4. Continuation. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb02g036605 Unknown protein 0 7.34847 inf 0.009611 

Sb02g037350 OSM34 -Osmotin-like protein 1.52028 0 inf 0.033482 

Sb02g042280 GDSL esterase/lipase  2.92582 0 inf 0.009611 

Sb02g043060 Putative uncharacterized protein 2.41391 116.664 5.59484 0.009611 

- NI 0 68.2309 inf 0.023238 

Sb03g003000 Unknown protein 7.38097 43.0973 2.54571 0.037292 

Sb03g003530 HSP17.6II - Heat shock  18.5509 136.753 2.88201 0.009611 

Sb03g006880 HSP18.2 - Heat shock 149.763 1297.54 3.11503 0.009611 

Sb03g013210 Peroxidase superfamily protein 1.44158 0 inf 0.037292 

Sb03g026050 Unknown protein 2.10569 56.9051 4.75619 0.017156 

Sb03g029790 EMB2742 – Embryo defective 2742 19.6885 1.34664 -3.86992 0.023238 

Sb03g030340 MAN7 - Mannan endo-1.4-beta-mannosidase 7 1.94234 0 inf 0.009611 

Sb03g037080 ERF9 - Ethylene-responsive transcription factor 9 23.8588 173.638 2.86349 0.009611 

Sb03g038290 EXPA8 – Expansin A8 9.11544 0 inf 0.009611 

Sb03g038880 2-oxoglutarate (2OG) and Fe(II)-dependent 
oxygenase superfamily protein 1.81198 0 inf 0.009611 

Sb03g041100 CP22 Photosystem II subunit S 16.5613 131.253 2.98646 0.009611 

Sb03g003310 Unknown protein 3.70572 186.675 5.65463 0.009611 

Sb03g006870 HSP18.2 - Heat shock 254.858 1830.2 2.84424 0.009611 

Sb03g020184 GRP1 – Glycine-rich RNA binding protein 1 5.2335 44.5266 3.08882 0.017156 

Sb03g025730 Calmodulin-binding family protein 1.92449 62.3619 5.01812 0.029034 

Sb03g029520 AKT1 – K+ transporter 1.90883 18.1015 3.24535 0.023238 

Sb03g032140 MAPKKK17 - Mitogen-activated protein kinase 
kinase kinase 17 0 3.77935 inf 0.009611 

Sb03g034090 OXS3 – Oxidative stress 3 57.4861 298.396 2.37594 0.009611 

Sb03g039330 Pathogenesis-related thaumatin superfamily 
protein 1.73687 0 inf 0.041518 

Sb03g040300 HSPRO1 - Nematode resistance protein-like  4.23374 88.2553 4.38168 0.017156 

Sb03g040950 ASFT- Aliphatic suberin feruloyl-transferase 2.04455 0 inf 0.009611 

Sb03g043430 Unknown protein 321.263 1793.6 2.48103 0.009611 

Sb03g045000 Calcium-dependent lipid-binding (CaLB domain) 
family protein 3.19283 57.1091 4.16081 0.041518 

- NI 0 50.8151 inf 0.041518 

- NI 0 16.6245 inf 0.009611 

Sb04g002950 SRF1 - Strubbelig-receptor family 1 0.949692 0 inf 0.033482 

Sb04g005520 WRKY40 7.67975 66.5328 3.11493 0.009611 

Sb04g008670 Myb-like HTH transcriptional regulator-like protein 1.26062 0 inf 0.017156 

“NI” means no identified; “inf” indicates no ratio. 
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Table S4. Continuation. 
 

GenID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb04g009690 UGT84B2 - UDP-glucosyl transferase 84B2 272.006 1080.61 1.99014 0.045876 

Sb04g026560 PAL1 - Phenylalanine ammonia-lyase 1 2.70701 32.8481 3.60104 0.033482 

Sb04g028460 GATL9 - Galacturonosyltransferase-like 9 7.07327 117.151 4.04985 0.009611 

Sb04g028490 Actin-binding FH2 (formin homology 2) family 
protein 5.46972 47.7885 3.12713 0.033482 

Sb04g028830 SGNH hydrolase-type esterase superfamily protein 5.40017 0 inf 0.009611 

Sb04g030080 GALS1 – Galactan synthase 1 29.9729 162.196 2.43601 0.029034 

Sb04g032250 ERD10 – Early responsive to dehydration 10 43.0117 201.862 2.23057 0.023238 

Sb04g032820 EXPβ4 - Expansin-β4 1.83753 0 inf 0.009611 

Sb04g035630 GAE1 - UDP-glucuronate 4-epimerase 1 6.30856 50.7312 3.00749 0.009611 

Sb04g035810 BRS1 - BRI1 suppressor 1 2.83118 0 inf 0.009611 

Sb04g007190 KCS11 - 3-ketoacyl-CoA synthase 11 4.05567 41.0833 3.34054 0.009611 

Sb04g007230 UGT73C6 - UDP-glycosyltransferase 73C6 1.03048 0 inf 0.041518 

Sb04g008110 Leucine-rich repeat receptor-like protein kinase 36.2994 3.48495 -3.38073 0.009611 

Sb04g015420 SWEET7 - Bidirectional sugar transporter 212.628 50.4851 -2.0744 0.037292 

Sb04g027330 HSP20 - Heat shock protein 21.7175 429.757 4.30659 0.009611 

Sb04g029960 XCP1 - Xylem cysteine proteinase 1 14.063 0 inf 0.009611 

Sb04g032830 EXPβ4 - Expansin-β4 9.63691 0 inf 0.009611 

Sb04g033150 DALL1 - Phospholipase A1-Ibeta2 5.62398 65.7296 3.54688 0.009611 

Sb04g036920 PPPDE putative thiol peptidase family protein 39.4882 297.702 2.91438 0.009611 

- NI 0 28.1379 inf 0.009611 

Sb05g002640 Ankyrin repeat-containing protein 3.95258 82.5697 4.38475 0.009611 

Sb05g017960 HSD1 - 11-beta-hydroxysteroid dehydrogenase 1B 2.19215 0 inf 0.009611 

Sb05g019180 TPS21 - Terpene synthase  0 4.2059 inf 0.009611 

Sb05g022580 Subtilisin-like protease 2.5171 0 inf 0.009611 

Sb05g022620 Subtilisin-like protease 90.7985 9.38795 -3.27379 0.009611 

- NI 0 6.62481 inf 0.009611 

- NI 0 12.8641 inf 0.009611 

- NI 0 20.9474 inf 0.029034 

Sb06g001970 APX3- Ascorbate peroxidase 3 0 8.9377 inf 0.009611 

Sb06g002500 Unknown protein 373.849 0 inf 0.009611 

Sb06g024110 Homeodomain-like superfamily protein 16.6101 175.367 3.40025 0.009611 

Sb06g025870 MATE efflux family protein 4.61271 41.5433 3.17093 0.029034 

Sb06g028090 ERF7 - Ethylene-responsive transcription factor 7 6.68328 101.31 3.92208 0.009611 

“NI” means no identified; “inf” indicates no ratio. 
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Table S4. Continuation. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb06g033520 CCR4-associated factor 1B 6.62306 120.969 4.191 0.009611 

Sb06g000660 HSP90.1 - Heat shock 19.1757 356.74 4.21752 0.009611 

Sb06g015940 XTH25 - Xyloglucan 
endotransglucosylase/hydrolase protein 25 15.8663 106.42 2.74573 0.009611 

Sb06g022880 GA2OX8 - Gibberellin 2-beta-dioxygenase 8 0 2.33684 inf 0.017156 

Sb06g025170 CYP86A4 - Cytochrome P450 86A4 1.06864 0 inf 0.023238 

Sb06g026160 ACS6 - 1-aminocyclopropane-1-carboxylate 
synthase 6 2.62987 46.1604 4.13359 0.009611 

Sb06g031300 Peroxidase superfamily protein 1.4164 0 inf 0.017156 

Sb06g033570 NDR1/HIN1-LIKE 2 59.3943 275.639 2.21438 0.023238 

- NI 164.003 0 inf 0.037292 

- NI 64.7768 0 inf 0.009611 

- NI 1037.36 0 inf 0.009611 

- NI 532.815 0 inf 0.009611 

- NI 173.809 0 inf 0.009611 

- NI 325.53 0 inf 0.009611 

- NI 421.92 0 inf 0.009611 

- NI 18.1711 0 inf 0.037292 

Sb07g000510 CYP71B34 - Cytochrome P450 71B34 1.92836 0 inf 0.017156 

Sb07g023030 ERF109 - Ethylene-responsive transcription 
factor109  0 5.07173 inf 0.023238 

Sb07g001090 Core-2/I-branching beta-1.6-N-
acetylglucosaminyltransferase family protein 18.7012 231.186 3.62785 0.009611 

Sb07g009580 Eukaryotic aspartyl protease family protein 0.835311 0 inf 0.045876 

Sb07g020270 TPS9 - Trehalose-6-phosphatase synthase 9 31.7242 5.11352 -2.63319 0.045876 

Sb07g023210 PLP2 - Patatin-like protein 2 0 0.903477 inf 0.041518 

Sb07g023340 UCP5 - Mitochondrial uncoupling protein 5 32.0565 198.451 2.6301 0.009611 

Sb08g004980 AAP3 - Amino acid permease 3 6.62457 49.2703 2.89482 0.017156 

Sb08g005680 HXXXD-type acyl-transferase family protein 1.39852 0 inf 0.037292 

Sb08g015237 CRK10 - Cysteine-rich receptor-like protein kinase 
10 1.52622 0 inf 0.033482 

Sb08g004960 AAP3 - Amino acid permease 3 9.06995 79.2295 3.12687 0.009611 

Sb08g021800 LATE FLOWERING 6.28197 0 inf 0.009611 

Sb08g022450 OSM34 – Osmotin 34 1.56038 0 inf 0.041518 

- NI 0 26.0123 inf 0.009611 

- NI 0 16.652 inf 0.041518 

Sb09g002390 TZF9 – Tandem Zinc finger protein 9 19.2684 164.072 3.09002 0.009611 

Sb09g003230 Phosphoglycerate mutase family protein 41.2426 197.18 2.25731 0.033482 

“NI” means no identified; “inf” indicates no ratio. 
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Table S4. Continuation. 
 

GeneID Annotation ScGAIOE HpScGAI Fold change 
(Log2) q-values 

Sb09g006030 PFK3 - Phosphofructokinase 3 0 7.30325 inf 0.009611 

Sb09g015900 WRKY33 5.95004 64.2507 3.43274 0.009611 

Sb09g017190 Glycine-rich protein family 8.96748 0 inf 0.009611 

Sb09g023380 ARM repeat superfamily protein 1.51129 75.3009 5.63881 0.009611 

Sb09g025090 Protein of unknown function (DUF567) 0 2.78348 inf 0.033482 

Sb09g026830 WRKY51 5.3416 49.6088 3.21525 0.009611 

Sb09g000270 CYP722A1 - Cytochrome P450. family 722. 
subfamily A. polypeptide 1 33.9448 5.2331 -2.69745 0.045876 

Sb09g003060 RCI2A - Rare-cold-inducible 2a 99.5521 501.7 2.3333 0.037292 

Sb09g005340 Unknown protein 0 16.4329 inf 0.009611 

Sb09g019930 PPDK - Pyruvate orthophosphate dikinase 1 29.8375 129.252 2.11498 0.023238 

Sb09g022260 Unknown protein 765.238 75.2771 -3.34562 0.009611 

Sb09g027360 PMEAMT - Phosphomethylethanolamine N-
methyltransferase 98.5499 6.18125 -3.99488 0.009611 

Sb09g029130 CTP synthase 56.7059 14.5123 -1.96622 0.037292 

Sb09g029575 RL6 - Protein RADIALIS-like 6 24.0965 0 inf 0.033482 

Sb09g029860 LEA27 – Late embryogenesis abundant 27  85.0088 516.241 2.60236 0.009611 

- NI 0 62.1164 inf 0.029034 

“NI” means no identified; “inf” indicates no ratio. 
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Table S5. Primers used in this study. 
 

Primer Sequences Used for 

   

ScUbi-1_fw 5’-CCGGTCCTTTAAACCAACTCAGT-3’ 
cDNA 

ScUbi-1_rev 5’-CCCTCTGGTGTACCTCCATTTG-3’ 

ScGAI_fw 5’-CATATGAAGCGCGAGTACCAAGACGC-3’ 
Cloning and YTH 

ScGAI_rev 5’-CTGCAGCCCCACCCCTCGATCAC-3’ 

ScPIF3_fw 5’- CATATGTCCGACGGCAACGAGT -3’ 
Cloning and YTH 

ScPIF3_rev 5’-CTCGAGGCTGACTGTTTTTATGTTTCAGCT-3’ 

ScPIF4_fw 5’- CATATGGACGGCAATGCGAG-3’ 
Cloning and YTH 

ScPIF4_rev 5’-GAGCTCTTACGAGATTTTCCTCATTCTAAAC-3’ 

ScPIF5_fw 5’-CGCCCCATATGAACCAG-3’ 
Cloning and YTH 

ScPIF5_rev 5’- GGATCCATCAACCTAACACCATCATATCA-3’ 

ScGAI_fw 5’-TCTAGAATGAAGCGCGAGTACCAAGACGC-3’ 
BIFC 

ScGAI_rev 5’-CCCGGGCCCACCCCTCGACGGAGC-3’ 

ScGAI_trunc_fw 5’-TCTAGAATGCGCAAGGTCGCCGCCTACTT-3’ 
BIFC 

ScPIF3_fw 5’- TCTAGAATGTCCGACGGCAACGAGT -3’ 

ScPIF3_rev 5’-GTCGACTGTTTCAGCTTCATTTCTTCC-3’ 
BIFC 

ScPIF4_fw 5’- TCTAGAATGGACGGCAATGCGAG-3’ 

ScPIF4_rev 5’-GTCGACAACTCCAAAAGTAGGTGG-3’ BIFC 

oxScGAI_fw 
5’-
GATATCGTAAACCATGGACTACAAGGACGACGATGACAAAATGAAGC
GCGAGTACCAAGACGC-3’ ScGAI overexpressing 

oxScGAI_rev 5’-GGGGTACCCCCCACCCCTCGATCAC-3’ 

asScGAI_fw 5’-CGGGATCCGGATGACGACGAGGAAGAGGAA-3’ 
ScGAI silencing 

asScGAI_rev 5’-GGCCAGATATCGAGGAGATGGACGAGATGCT-3’ 

sScGAI_fw 5’-CGACGCGTCGAGGAGATGGACGAGATGCT-3’ 
ScGAI silencing 

sScGAI_rev 5’-GGGGTACCCCGGATGACGACGAGGAAGAGGAA-3’ 

IntronII_fw 5’-GGCCAGATATCATGCGGTAACTGATCTGAATT-3’ 
ScGAI silencing 

IntronII_rev 5’-CGACGCGTCACCTGCAGAGTGTGTAGATAA-3’ 

ScEIN3_fw 5’-AAAATCTAGAATGATGGGAGGCGGGCTGATGA-3’ 
Cloning and BIFC 

ScEIN3_rev 5’-AAAACCCGGGGTAGAACCAATTGGTCCCGTCGT-3’ 

ScEIL1_fw 5’-AAAATCTAGATACCTCTACGCTCGGCGTGATG-3’ 
Cloning and BIFC 

ScEIL1_rev 5’-AAAACCCGGGATTCTGCCGCAGGTAGAACCAATT-3’ 

ScEIN3_fw 5’-AAAACATATGATGGGAGGCGGGCTGATGA -3’ 
YTH 

ScEIN3_rev 5’-AAAACTCGAGTCAGTAGAACCAATTGGTCCCGT -3’ 

ScEIL1_fw 5’-AAAACATATGATGGGAGGAAGAGGGGC -3’ 
YTH 

ScEIL1_rev 5’-AAAAGAATTCTCAGTAGAACCAATTGGCGTTGGAT -3’ 
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Table S5. Continuation. 
 

Primer Sequences Used for 

ScEIN3_tr_fw 5’-CATATGATGCAGCACTGTGACCCCCCACAG -3’ 
YTH 

ScEIN3_tr_rev 5’-GAATTCTCACTGGGGCATGGCATTAGGCCTCTC -3’ 

ScGAI_SAW_fw 5’-GCTGGCACTCTTCAACG-3’ 
Arabidopsis screening 

VENUS_rev 5’- CCAGCTCGACCAGGATG-3’ 

βactin2_fw 5’-TTCTCTCCTTGTACGCC -3’ 
Arabidopsis screening 

βactin2_rev 5’- AACGATTCCTGGACCTGCCTCATC-3’ 

ScPIF3_fw 5’- GAATTCATGTCCGACGGCAACGAGT -3’ Subcellular 
localization ScPIF3_rev 5’-AAGCTTTGTTTCAGCTTCATTTCTTCC-3’ 

ScPIF4_fw 5’- AAGCTTATGGACGGCAATGCGAG-3’ Subcellular 
localization ScPIF4_rev 5’-AAGCTTAACTCCAAAAGTAGGTGG-3’ 

ScGA20ox_fw 5’-GCTTCTTCCAGGTGGTCAAC-3’ 
qPCR 

ScGA20ox_rev 5’-CGTGAAGAAGGCGTCCAT-3’ 

ScGA2ox_fw             5’-GAGGCCGTCAGGTTCTTC-3’ 
qPCR 

ScGA2ox_rev 5’-GCGAGGAGGAGGTACTCG-3’ 

Ubi1_intron_fw 5’-TTGTCGATGCTCACCCTGTTGTTTG-3’ 

Genotype screening ScGAI_rev 5’-GGGAGATCGAAGTAGCCAGC-3’ 

ScGAI_fw 5’- CACCGTGCACTACAATCCCT-3’ 

qUTR_della_fw 5’-CACCTCCGCTTCAAGGTC-3’ 
qPCR 

qUTR_della_rev 5’-CTTGGTACTCGCGCTTCAT-3’ 

qDELLA_fw 5’-CCAAGGACAAGATGATGGTG-3’ 
qPCR 

qDELLA_rev 5’-GACGAACGCACCTTGTACC-3’ 
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