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Resumo 

O objetivo do presente trabalho foi o estudo de catalisadores nanoestruturados 

aplicados à reação de reforma a vapor do glicerol (glycerol steam reforming, GSR). A reação 

de deslocamento gás-água (water-gas shift, WGS) também foi investigada por ser etapa 

fundamental no aumento da produção de hidrogênio por esta rota. Os sistemas são 

catalisadores suportados à base de platina e foram divididos em dois grupos, um contendo 

óxido de vanádio e o outro, óxido de cério. Os resultados do primeiro grupo evidenciaram o 

efeito benéfico da adição de vanádio na reação de WGS através da maior conversão de CO. 

Por outro lado, verificou-se que o aumento do teor de vanádio não impacta na atividade 

catalítica devido à formação de espécies poliméricas VOx na superfície do suporte que não 

estão em contato com a Pt. Ainda, a presença do vanádio não favoreceu o aumento da 

fração de hidrogênio na reação de GSR, pois promoveu a formação de subprodutos, o que 

resultou no consumo do H2 produzido.  

 O segundo grupo contém catalisadores à base de Pt/CeO2 suportados em sílica 

produzidos a partir de nanopartículas (NPs) de CeO2 de diferentes tamanhos médios (5 e 9 

nm) ou impregnação do precursor de Ce, visando avaliar tanto o efeito da presença da céria 

quanto o de tamanho/dispersão na atividade catalítica. Os resultados indicaram o aumento 

expressivo do desempenho nas reações de WGS e GSR na presença da céria, no entanto a 

comparação entre os catalisadores com os diferentes tamanhos de CeO2 não mostrou 

alterações de mesma magnitude. A céria se mostrou essencial na reação de GSR por 

facilitar o desbloqueio dos sítios mais ativos da Pt, liberando-os para interagir com o glicerol 

através da remoção do CO fortemente ligado como CO2. Utilizando a metodologia de 

excitação modulada acoplada à espectroscopia no infravermelho por reflectância difusa com 

transformada de Fourier (modulation-excitation diffuse reflectance infrared Fourier 

transformed spectroscopy, ME-DRIFTS) em condições reacionais, foi possível identificar a 

formação de espécies carboxilatos e formiatos como as espécies ativas formadas na 

superfície dos catalisadores de céria durante a reação de WGS, o que pode contribuir para o 

melhor entendimento do comportamento destes sistemas nas duas reações de interesse. 

Desta forma, a sistemática investigação destes sistemas nanoestruturados 

resultou na identificação de propriedades que determinam seus desempenhos, que devem 

ser levadas em consideração no desenvolvimento racional de catalisadores mais ativos, 

estáveis e seletivos. 

  



Abstract 

The present work had as the main goal the study of nanostructured catalysts 

applied to glycerol steam reforming (GSR) reaction. The water-gas shift (WGS) reaction was 

also investigated since it is a fundamental step to increase hydrogen production by this 

approach. The systems are Pt-based supported catalysts and they were divided in two 

groups, one containing vanadium oxide and the other, cerium dioxide. The results from the 

first group evidenced a beneficial effect of vanadium addition in WGS reaction, by increasing 

the CO conversion rates. On the other hand, it was noted that the increment in vanadium 

loading is not relevant due to the formation of polymeric VOx species on the support surface 

which are not in close contact with Pt. Moreover, the presence of vanadium did not enhance 

hydrogen production during GSR reaction since it promoted the formation of lateral products 

which resulted in the consumption of the produced H2. 

The second group has silica supported Pt/CeO2 based catalysts which were 

produced from CeO2 nanoparticles (NPs) with different mean sizes (5 and 9 nm) or by 

impregnation of Ce precursor, aiming to evaluate both the effect of ceria presence and its 

size/dispersion on catalytic activity. The results indicated an expressive increase in WGS and 

GSR performances due to the presence of ceria, however the comparison between the 

samples with different CeO2 sizes did not show variations with the same magnitude. Ceria 

demonstrated to be essential on GSR reaction by facilitating the cleaning of the most active 

Pt sites, releasing them to interact with glycerol through the removal of the strongly bound 

CO as CO2. By means of the modulation-excitation methodology coupled to diffuse 

reflectance infrared Fourier transformed spectroscopy (ME-DRIFTS) under reaction 

conditions, it was possible to identify the formation of carboxylate and formate species as the 

active intermediate species formed on ceria catalysts surface during WGS reaction, which 

may contribute to a deeper understanding of the behavior of these systems on both target 

reactions. 

Therefore, the systematic investigation of these nanostructured systems led to 

the recognition of key properties dictating their performance, which should be taken into 

account for the rational design of more active, stable and selective catalysts. 
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  Chapter 1
1.1 CONTEXTUALIZATION 

With the increasing energy consumption worldwide, the development and 

improvement of clean energy technologies are crucial to shift the economy away from relying 

on fossil fuels and to assure that power demand is fulfilled globally without elevating costs 

and waste production1. Although some renewable sources are already available 

(photovoltaics, wind, hydropower), their share in the global energy production is yet small 

(less than 20% in 2015) and the power produced from fossil fuels is undeniable cheaper. As 

the technology advances to improve renewable sources capacity and price, it also enables 

the discovery of new deposits and methods to extract fuels once not economically viable 

(shale and bituminous sands)2.  To drive the transition from a fossil fuel based economy to a 

feasible far-reaching renewable energy distribution, dramatic breakthroughs such as 

adopting strict policies for fossil fuels utilization and ambitious investments in research and 

development of renewable sources technologies are essential. 

The use of waste organic compounds as source to generate fuels and power is 

an interesting strategy to avoid the dependence on fossil fuels, besides reducing waste 

accumulation and storage (landfilling) issues. Biomass is considered a powerful feedstock for 

energy and value-added chemicals, since it is basically organic matter which can be derived 

from wood, agricultural crops, animal manure and human sewage, among other sources. 

One may even argue that biomass processing, when efficient, can be considered CO2 

neutral since plants can reutilize this gas through photosynthesis 3. Biomass transformations 

have been in the spotlight and there are several reported strategies to its conversion to 

transportation fuels, power/heat and chemicals1. However, there are drawbacks in its 

utilization since raw biomass is usually heterogeneous, has high moisture content and low 

calorific value, the latter can be enhanced by removing its oxygen as CO, CO2 and H2O. An 

important transportation fuel that can be derived from biomass transesterification is biodiesel, 

which has been replacing oil-derived diesel successfully in automotive engines 4; however, 

this process generates byproducts, with glycerol (1,2,3-propanetriol, C3H8O3) corresponding 

to about 10 %wt. of the production 5. Glycerol  is also produced in other biofuels synthesis 

routes, such as the ethanol from fermentation processes 6.  

Although glycerol is a raw material for the synthesis of several commodities and 

high-value chemicals 7, its high availability caused by the increased biodiesel production has 

overcome its industrial demand and its low price is now a drawback in biodiesel economy. 

Added to its inability to be used as fuel in oil and diesel engines, glycerol abundance has 

motivated its transformation into syngas (CO +H2) to be used in high-value chemicals and 
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fuel synthesis, as well as a source of hydrogen to produce electricity through fuel cell 

technologies 7–11. Hydrogen is mainly produced from fossil fuels processing, with methane as 

the main (and less expensive) source, thus producing greenhouse gases. Besides its 

necessity in the petroleum refining, production of ammonia, methanol and other chemicals, 

hydrogen is a promising high energy carrier and can be also used in transportation, although 

the technologies for such applications still needs to be improved 12–14. Such potential created 

the urge to develop competitive and cleaner ways to produce hydrogen, from abundant 

renewable and sustainable sources, as biomass derived compounds. 

The majority of processes concerning the conversion of biomass to hydrogen 

involves catalytic transformations and they occur by several routes and intermediate 

compounds. The catalytic conversion of glycerol to hydrogen-rich streams can be carried out 

through pyrolysis or reforming reactions, such as steam, aqueous phase and photo-

reforming reactions 6,15. Among them, glycerol steam reforming (GSR) reaction ((Equation 

1.1) is advantageous because it can boost hydrogen production from the decomposition 

reaction (Equation 1.2) without requiring high pressures.  

                                         
   (Equation 1.1) 

The global catalytic reaction involves at least two sequential reactions, first 

glycerol is converted to H2 and CO (Equation 1.2), followed by the water-gas shift reaction 

(WGS), in which the produced CO reacts with steam to form CO2 and additional H2 (Equation 

1.3). As a consequence, hydrogen production can be enhanced by favoring the WGS 

reaction step 6. 

                                 
   (Equation 1.2) 

                              
   (Equation 1.3) 

For application in fuel cells, such as the PEMFC (Proton Exchange Membrane 

Fuel Cell), it is in fact necessary to decrease the residual CO concentration from the H2 

stream to few ppms, to avoid deactivation of Pt-based catalysts present in the cell 14. 

Therefore, the reformate gas stream is typical flown through a WGS reactor, decreasing the 

CO levels down to about 0.5-1.0 % of CO. The CO concentration can be further decreased to 

50 ppm (or lower) by the preferential CO oxidation reaction (PROX-CO), (Equation 1.4), in 

which the parallel H2 oxidation ((Equation 1.5) has to be minimized. 

   
 

 
                          

   (Equation 1.4) 
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   (Equation 1.5) 

The success of the glycerol transformation to hydrogen through this route 

depends, as a consequence, on each step of the process. 

The concentration of glycerol on the crude byproduct from biodiesel production 

varies around 60-80 %wt. and its purification for further synthetic purposes is expensive 10,16. 

Its use for hydrogen production through catalytic reforming reaction is attractive, since it has 

been reported to occur within a range of glycerol concentrations17, and some other organic 

compounds in the mixture could also be reformed, depending on reaction conditions 18,19. 

However, it must be taken into consideration the nature of the catalysts and its interaction 

with such impurities to avoid its deactivation 7,20,21, which may decrease its commercial 

appeal. Nevertheless, the successful application of byproduct glycerol for energy purposes 

by hydrogen generation drastically relies on the understanding of the catalytic reforming 

processes, the role of catalytic systems and the key parameters to improve H2 selectivity. 

GSR reaction has been reported in several experimental conditions, mostly using 

Ni and Pt catalysts supported in oxides such as Al2O3, SiO2, ZrO2, TiO2, CeO2
22–27. For the 

low temperature WGS and PROX-CO reactions, the most promising catalysts are composed 

by Pt, Au, Pd, Ru, Rh and Cu 28–33 supported on reducible oxides such as CeO2, TiO2 and 

ZrO2/CeO2 
34–36. For WGS, PROX-CO and GSR reactions, both metal phase and support 

have a determinant role on the reaction mechanism, as well as the interface between them 

33,37–39.  

As the supported metallic phase, the efficiency of Pt is well known for both WGS 

and GSR reactions, and for the latter it showed less methane as by-product when compared 

to Ni over the same supports6. 

Regarding the metal oxide acting as support (or as promoter, when it is over 

another oxide as support) in catalysts for WGS and GSR reactions, reducible oxides are 

usually chosen by their properties that can enhance activity, such as oxygen mobility, strong 

interaction with metal phase, promotion of spillover of species between them and thermal 

stability of the catalysts 36.  

Thus, a successful GSR reaction catalyst to promote the maximization of CO-free 

H2 production must favor both glycerol decomposition and WGS reactions and avoid the 

formation of byproducts and deactivation. The catalyst composition and structure must be 

thoughtfully arranged to achieve the desired properties, therefore Pt supported in reducible 

oxides is a promising candidate since it could favor WGS step within GSR reaction, 

increasing H2 formation and reducing CO concentration in the outlet stream. 
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1.2 GOALS AND THESIS PRESENTATION 

The purpose of this project was the development of well-defined nanostructured 

catalysts to allow the investigation of specific properties dictating catalytic performance 

towards reactions for hydrogen production. A thoughtful catalyst design is required in order to 

favor beneficial characteristics while suppressing detrimental ones. Factors as the synthesis 

method (addition of the metallic phase), nature of support, size control of metallic phase 

and/or metal oxide particles and the creation of interfacial sites for bifunctional catalysts have 

a key role in enhancing the desired catalytic activity and stability. Exploring these well-

defined systems may assist in the investigation of the importance of a given isolated 

parameter, providing insights for a better comprehension of such systems. 

The bifunctional systems investigated herein were composed of Pt as the metallic 

phase, supported on a high surface area support (Al2O3 or SiO2) promoted with a reducible 

metal oxide (VOx or CeO2). These set of catalysts were characterized and explored for WGS 

and GSR reactions, aiming to identify structure-reactivity relations, such as NP size, 

coordination environment of the metal, the loading and nature of the promoter and the 

synthesis methods. Moreover, it was intended to gather insights about the nature of the 

active sites and the main reaction pathways involved in the catalytic reaction.  

The identification of such structure-activity relations are crucial to shed light on 

the rational design of more stable, selective and active catalytic systems. 

Overview 

In Chapter 1 the contextualization of hydrogen production from biomass for 

energy purposes assisted by bifunctional heterogeneous catalysts was presented as the 

motivation behind the study of Pt catalysts applied to WGS and GSR reactions.  

In Chapter 2, a more detailed discussion about the WGS and GSR reactions is 

provided, as well as a better description on the importance of the specific features 

investigated along the work, such as the coordination environment of the atoms within a 

nanoparticle and the promoting role of CeO2. 

Chapter 3 comprises an adapted version (more detailed) of the findings regarding 

VOx-Pt/Al2O3 catalysts, which were already published, as described therein. 

In Chapter 4 is discussed the work related to the Pt/CeO2/SiO2 system, including 

the preparation and characterization of the samples, as well as their catalytic evaluation. It 

also contains the presentation and discussion of the in situ investigations during WGS 

reaction performed by modulation-excitation spectroscopy. 

Finally, Chapter 5 presents a global conclusion of the work developed during the 

thesis, as well as perspectives to future works. The APPENDIX section contains a brief 
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description of published co-authored additional works which involved X-ray absorption 

spectroscopy. The technique was applied to the investigation of distinct catalytic systems, 

including in situ studies. The APPENDIX also holds the publication licenses for the works 

used herein. 

  Chapter 2
2.1 WGS REACTION 

WGS reaction became popular in the Haber process for ammonia synthesis, 

where most of the H2 was obtained by reforming of coal and coke. WGS reaction was then 

useful to promote the conversion of CO to CO2, which was removed more easily from the 

outlet stream than CO, and also generated additional H2. It is yet an important industrial step 

for reducing CO concentration on the hydrogen-rich outlet stream from catalytic reforming 

reactions, whether to use the H2 for chemical synthesis or as source for fuel cells. Especially 

for the latter application, where there is the need for adapting H2 production for portable 

devices, effort has been put to improve catalysts performance, durability, convenience and 

safety at low reaction temperatures 40. 

WGS reaction (Equation 1.3) is moderately exothermic and conversions are 

limited by equilibrium. Conversion levels have also demonstrated a dependence on water 

concentration, with higher H2O:CO (or H2O:CO+CO2) molar ratios increasing the temperature 

range in which the catalyst can be effective 40 and also elevating conversion levels at a given 

temperature 41. In the industrial application of hydrogen production by steam reforming 

reaction (of methane, for example), the reformate gas (coming out of the reforming reactor) is 

not only composed of CO and H2 (rich), but also have CO2, and the presence of WGS 

reaction products lower the equilibrium CO conversions 40,42. 

For the low temperature regime, in the context of portable applications, several 

systems have been investigated and key properties have been identified as determinant to 

render highly active and stable catalysts. Among supported catalysts, it has been discussed 

the importance of the nature of the metal phase, loading and dispersion over the catalyst 

surface. For the support, metal oxides once have been thought as mere substrates which 

would indirectly enhance catalyst performance by providing thermal stability to the metallic 

phase and favoring its high dispersion. Recently, it has been clearly evidenced that some 

supports have an active role in the WGS reaction mechanism, mostly demonstrated by the 

high activity of catalysts containing reducible oxides 35,40.  

For a deeper understanding of the key parameters determining catalyst activity, it 

is important to discuss the actual panorama concerning WGS reaction mechanism. It is 
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greatly discussed in literature that the pathways to convert CO and H2O to CO2 and H2 

depend strongly on reaction conditions (temperature, concentration of feed components), as 

well as catalyst composition 43,44. From an experimental point of view, it is generally 

described in literature that over bifunctional catalysts composed of a noble metal (Pt) 

supported in a non-reducible oxide (such as SiO2, Al2O3), WGS reaction would proceed by 

the “associative” mechanism, in which CO would adsorb on Pt while H2O would be activated 

on the support, preferably close to the metal, forming H and OH species. These species 

would react with adsorbed CO and then produce intermediates such as carboxylates (COO-), 

formates (HCOO-) and carbonates (CO3
2-), which would decompose to form CO2 and H2. The 

correct assignment of the sites in which the formation of these intermediates would occur 

and how it would happen (migration of OH species to the metal or of CO to the support, or 

yet to the interface) remains a challenge 43–46. Regarding the systems composed of a metal 

(Pt) supported over reducible oxides such as CeO2, TiO2, Co3O4, the “redox” mechanism is 

generally accepted. This route would involve the participation of oxygen from the support 

lattice 47–49 to oxidize the adsorbed CO, which would lead to the formation of an oxygen 

vacancy (reduction of the support). The vacancy in turn would be refilled with the adsorption 

and dissociation of a water molecule preferentially on these sites, therefore forming H2 and 

regenerating the support 45. Both reaction pathways over metal-reducible oxides catalysts are 

depicted in Scheme 2.1. It is important to note that both mechanisms may occur over these 

type of catalysts and the extent of their participation is also a matter of investigation 43,44,49, as 

well as the identification of the true active site (its oxidation state or even its site location, 

whether it is an specific lone metal site, a metal in interaction with support, or a metal within a 

perimeter around it) 29,49–55. 

Scheme 2.1: WGS reaction mechanism over metal-reducible oxide catalysts (adapted from 

56). In the classic associative type illustrated, the carbon intermediate is depicted as a 

carboxyl entity. 
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Recently, over metal-reducible oxides catalysts, it has been reported that the 

associative mechanism could occur by a redox generation step, in which the –OH groups 

consumed to form the intermediates (formate, carboxylate) would generate an oxygen 

vacancy to be restored by water dissociation. What distinguish this “associative mechanism 

with redox regeneration, or with OH group regeneration” from the true “redox” mechanism, is 

that the associative type occurs through intermediates such as formates and carboxylates, 

whereas the “redox” one does not. Concerning the “associative mechanism with redox 

regeneration” Kalamaras et al. 49 proposed the “associative formate with OH group 

regeneration” mechanism to occur on Pt/CeO2 catalysts at 300 °C, thus by the formate 

intermediate. On the other hand, theoretical studies have also improved the understanding of 

WGS reaction mechanisms, such as the one performed by Aranifard et al. 50. The authors 

studied the “associative carboxyl pathway with redox generation” by means of DFT and 

microkinetic modeling (227 °C), assigning carboxyl as the active intermediate. These two 

proposed mechanisms are illustrated in Scheme 2.2. 

Scheme 2.2: Proposed “associative mechanism with redox regeneration” through a) 

carboxylate and b) formate intermediate species over Pt/CeO2 catalysts for WGS reaction. 

Both are depicted with co-adsorbed CO on Pt (Adapted from 49,50,57). 

a) 
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b) 

 

Supported platinum catalysts have been extensively investigated for low-

temperature WGS due to their high activity and several experimental and theoretical works 

discussed about the key factors possibly involved on the reaction pathways. Concerning the 

Pt phase, the activity has been related to characteristics such as the particle size and 

coordination of the exposed Pt atoms (also related to their electronic properties), loading 

(which may actually dictate the size of crystalline domain) 28,50,51,55,58 and the effect the metal 

can exert on the support (metal-support interaction enabling charge and/or oxygen transfer) 

57,59,60.  

Regarding the support, WGS mechanism would be intrinsically dependent on the 

nature of the metal oxide, the surface properties (availability and reactivity of hydroxyl 

groups), oxygen vacancies amount and ease of formation, interaction with metallic phase 

(spillover of surface species to the metal and charge/oxygen transfer), which are often 

associated in literature to the surface area and crystalline domain size of support. Reducible 

oxides have demonstrated a direct participation in the increased activity observed for Pt 

catalysts for WGS reaction, since Pt (bulk) itself does not react with water at the usual 

reaction conditions 52,61. The presence of the non-stoichiometric oxide would assist the water 

activation step, which would occur in the oxygen vacancies or in their vicinity, and/or provide 
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surface OH groups, dictating the preferred reaction pathway (redox or associative) 31,45,61–65. 

The support may also influence in the electronic properties of the metallic phase, modulating 

the bond strength of reactants and products, which was also reported to occur with Pt when 

in close contact with highly oxophilic metals 55,60,63,66.  

In general, WGS activity is related to enabling optimized CO adsorption strength 

and the activation of water, as well as favoring the oxygen transfer from water to CO, 

whether through the oxide lattice or from a surface hydroxyl. In both cases, the interaction 

between metal and oxide is essential to favor the encounter of reactants and formation of 

intermediates and the interfacial metal-oxide sites are currently believed as the true active 

sites for WGS reaction 50, and the catalytic performance would be strongly dependent on the 

availability of such sites. 

For the design of Pt catalysts for WGS reaction, one promising reducible oxide is 

vanadium oxide, which presents a variety of oxidation states, high oxygen mobility and has 

been applied to catalyze oxidation reactions. These oxides were reported as effective 

promoters in several studies especially focused on the transformation of hydrocarbons to 

olefins, by dehydrogenation, or to COx and H2 through oxidation reactions 67–69. For instance, 

when VOx/Pt/Al2O3 catalysts were applied to propane total oxidation, it showed a higher 

catalytic activity compared to Pt/Al2O3 
70. Moreover, when a WGS stage was integrated to 

ethanol oxidation,  the V addition to the WGS Pt/CeO2 catalyst enhanced the activity 71. The 

effect of vanadium as promoter has demonstrated to be dependent on the nature of the 

support, as suggested by Vining et al. 72 for methanol oxidation reaction to produce 

formaldehyde. The comparison of catalysts composed of VOx grafted on SiO2 and over 

CeO2/SiO2 showed a remarkable increase in methanol conversion for the VOx/CeO2/SiO2 

catalyst. Furthermore, the promoting effect of vanadium seems to rely on the VOx species 

formed over the support surface; Kilos et al. 73 showed that when tridimensional structures 

were created, they affected the accessibility of ethanol to the active sites of VOx/Al2O3 

catalysts, thus decreasing the turnover rates for ethanol oxidative dehydrogenation to 

acetaldehyde. On the other hand, the presence of vanadium in CeO2 catalysts has increased 

the stability towards Cl poisoning when applied to the combustion of chlorobenzene 74. 

Thereby, the deposition of dispersed vanadium species over metal oxides can 

play an interesting role in WGS reaction, an increase in catalytic activity was observed when 

vanadium was added to ZrO2 and CeO2 supported Pt catalysts, assigned to the increased 

reducibility of the support 75,76. Such strategy could also be promising for glycerol 

decomposition on GSR reaction, since VOx species are active for selective dehydrogenation 

of alcohols and could assist H2 generation by enhancing WGS step.  

Another active support is cerium oxide, widely explored in catalytic systems 77,78 

due to its influence on dispersion, reduction/oxidation and thermal stability of the supported 
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metal phase, usually attributed to the strong metal-ceria interaction. Additionally, it is well 

established that CeO2 is not a mere support for the metallic phase 59,79, its characteristics 

such as the oxygen storage capacity, the availability of oxygen vacancies on the surface and 

in the bulk, the wide array of feasible mixed oxides 80 contribute to its exploitation as an 

active support on catalytic reactions. Recently, due to the promising catalytic activity 

exhibited by ceria, parameters as the loading, particle size, exposed crystal planes and 

charge transfer to the metal phase have been investigated 41,62,81–88; however, to tackle the 

key properties driving high catalytic activity is still a challenge. Additionally, the metal-ceria 

interaction has been on the spotlight and several works have demonstrated that such 

interface is determinant (if not the active site) on WGS reaction mechanism 39,43,49.  

Despite all the efforts, several aspects of ceria role on the reaction pathways still 

remain unclear. An example is the variation of the electronic and structural properties of 

CeO2 nanoparticles (NPs) with different size, in the range of a few tens of nanometers. It has 

been reported the difference between CeO2 NPs with 3 and 120 nm in catalytic activity 81, 

however the size effect of CeO2 NPs within 20 nm with narrow size distribution has not been 

experimentally reported until now. Additionally, CeO2 NPs with different size may present 

distinct properties that would have an impact on WGS reaction. It was reported by Huang 

and Beck 62 that the reactivity of ceria surface OH groups, determinant in such reaction 

despite the major mechanism, is dependent on the size of CeO2 clusters. The theoretical 

data showed that very small clusters could be active even without the presence of a 

supported metal phase. It has also been demonstrated that Pt-CeO2 interaction can be 

modulated according to CeO2 size, which in turn can change the reactivity of active sites. 

Vayssilov et al. 87 when comparing two CeO2 clusters (one with 21 Ce atoms and the other 

with 40) interacting with Pt NPs, discovered that the energy to form an oxygen vacancy on 

ceria is reduced for the smaller CeO2 cluster. Thus, the size of CeO2 NPs is an important 

factor to be investigated, being intimately related to the catalytic performance by modulating 

the strength and geometry of reactants adsorption, ease of product desorption, oxygen 

transport through the structure and reactivity of surface -OH groups, interaction with metallic 

NPs and their thermal stability. In this sense, the investigation of catalysts composed of 

dispersed CeO2 NPs with different mean sizes (within 20 nm regime) and its effect on 

reactions as WGS and GSR can contribute to better understand the determinant properties 

of ceria for rational development of catalysts with optimized performance. Since Pt/CeO2 

catalysts have demonstrated high activity on WGS reaction 41,45,61,89,90 and also offer 

challenging aspects to be investigated, this is a promising system to be explored for H2 

generation. 

Once WGS catalytic systems were briefly described, a more specific discussion 

about the metallic phase is depicted. Currently, the majority of works studying Pt catalysts for 



30 
 

WGS reaction essentially attempt to correlate reaction rates to properties as the Pt loading, 

particle size, metal dispersion and oxidation state. However, if one wants to identify true 

active sites, for example, such parameters must be carefully thought since they are 

interconnected. For instance, as in the case of increasing Pt loading, depending on the 

support, there would be the formation of larger Pt crystalline domains provided the interaction 

with the support is not stronger than Pt-Pt interaction, thus the metal dispersion over the 

surface will decrease with larger particles. Despite the increase in metal content, there will 

not be a corresponding creation of additional exposed metallic sites, since their amount is 

lower for larger nanoparticles.  

A more fundamental outcome of the variations in metal loading and particle size 

(and thus in metal dispersion) is the availability of exposed metal sites, the ones accessible 

to interact with the oxide and reactant molecules. At a given metal content, with smaller 

metallic domains the fraction of exposed atoms on the surface of the particle is higher, 

meaning more metal atoms can act as active sites, as shown in Scheme 2.3. The shape of 

the particle also affects the number of exposed atoms on the surface. Within a particle, the 

exposed atoms have different coordination, at edges and corners each atom is coordinated 

with less equal atoms than at terrace sites, and the proportion of such low-coordination sites 

decreases with the increase in particle size (Scheme 2.4). Herein, it will be adopted the 

denomination of highly under-coordinated sites (HC, coordination lower than 6 atoms), 

under-coordinated (UC, coordination of 6-7) and well-coordinated (WC, coordination of 8-9 

atoms) 91.  

Scheme 2.3: Geometric models of the fraction of well-coordinated (WC) and 

undercoordinated (UC) sites as a function of particle diameter for cuboctahedron, 

icosohedron and cube nanoparticle shapes (reprinted with permission from Kale et al. 91). 
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Scheme 2.4: Illustration of distinct Pt sites within a NP for model cuboctahedral (Pt55) as well 

as polyhedra NPs of different sizes: Pt116, Pt201, Pt432, Pt901 and Pt1214 (Reprinted with 

permission from Lentz et al. 92) 

 

The experimental distinction between metallic sites within a particle is a 

challenging task and the difficulty drastically elevates in the analysis of real samples with 

common heterogeneity in particle size and shape. Nonetheless, the participation of these 

low-coordination metal sites (HC and UC) have been suggested for WGS reaction by few 

works, being more active towards water activation and in close contact with the active 

support, and their cooperation seems to rely on reaction conditions 50,90,93. For example, 

Petallidou et al. 90 investigated a 0.5 %wt. Pt/Ce0.5La0.5O2-δ catalyst during WGS reaction by 

isotopic transient Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) 

and suggested that HC and UC Pt sites are involved in the formation of active reaction 

intermediates, whereas WC Pt sites do not participate in the formation of carbon 

intermediates. The same trend was also proposed by Aranifard et al. 50 in the study of 

Pt/CeO2 catalyst mentioned earlier. The authors suggested that HC Pt sites would strongly 

bind CO and these co-adsorbed CO would increase the CO reactivity over the others HC Pt 

atoms in close contact with ceria (Scheme 2.5). These interfacial centers would participate in 

the reaction mechanism, whereas the co-adsorbed CO on the adjacent Pt sites would merely 

assist in the reactivity of interfacial centers.  

In the same trend, Stamatakis et al 93. investigated Pt surfaces using DFT and 

kinetic Monte Carlo simulation and demonstrated that all terraces and step Pt sites would 

contribute to the reaction mechanism, however, at high H2O:CO ratios, the activity of Pt step 

sites would be higher than terrace sites.  

Recently, it has been demonstrated that despite achieving the fine tuning of 

metal and support properties to increase WGS reaction rates, such improvement is only 

possible if the odds of creating new interfacial sites are also higher 41,82. In works involving 

catalysts with varied loading of metal or metal oxide as promoter, to address the change in 

reaction rates to a specific catalyst property is a challenging puzzle, and the global result 
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may be only a product of the increase in probability of creating additional interfacial sites with 

higher loadings. 

Scheme 2.5: Illustration of Pt/CeO2 interfacial sites with adsorbed CO on HC sites (reprinted 

with permission from Aranifard et al. 50). Cream, red, and navy balls represent Ce, O, and Pt 

atoms, respectively, while white and gray balls represent H and C atoms. In the notation, the 

interfacial oxygens (Oint) are those top layer oxygen atoms that are nearest neighbors to the 

Pt cluster, while surface oxygens (Os) are all other top layer oxygen atoms. The highlighted 

areas correspond to the initial active site (*Pt–Oint), where the empty Pt site corresponds to a 

Pt–Pt bridge site. 

 

Another important issue about the activity of Pt catalysts for WGS reaction is their 

deactivation with time on stream, a drawback for industrial applications. The main cause of 

such phenomena is CO-poisoning of the metallic phase or coke formation. The latter is often 

less common in the presence of reducible oxides. CO poisoning would be provoked in 

catalysts in which Pt binds CO strongly, hindering its desorption as CO2, often observed in 

cases where the oxygen transfer from support is not possible or have low rate 57,60,66. CO 

poisoning is also reported to occur more often in low-coordination Pt sites, especially without 

direct interaction with the metal oxide support 50,93. For both coke and CO poisoning, the 

presence of reducible oxides interacting closely with Pt greatly diminishes deactivation. 

However, depending on the support, another cause for catalyst deactivation during WGS 

reaction is related to the stability of the carbon intermediates formed over the surface 

(especially carbonates), thus blocking the active sites. Such species have been reported to 

be very stable over some Pt supported catalysts, especially containing oxides with basic-

nature surface, as CeO2 
28,65,89,94,95. Despite such drawback on ceria catalysts, their high 

activity towards WGS reaction still motivates its application and studies are being conducted 

to minimize such effects, such as tuning the support properties by alkali-doping 40.  
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A valuable tool which can contribute to the comprehension of the catalytic 

pathways during WGS reaction, as well as probing catalyst surface properties is DRIFTS 

carried in situ (under reaction conditions), which allows the observation of surface reaction 

intermediates derived from the interaction of CO and H2O molecules with Pt and ceria. 

Coupling DRIFTS with Modulation Excitation Spectroscopy (MES) and the Phase Sensitive 

Detection (PSD) it is possible to distinguish the active reaction intermediates species from 

the spectators and enhance significantly the signal to noise ratio of the spectra 96–98. 

2.2 GSR REACTION 

As GSR reaction is another main topic of this work, a literature overview focused 

on the studied systems will be described. 

Glycerol steam reforming is an endothermic reaction and it is usually reported at 

temperatures ranging from 400 to 800 °C; the production of H2 is increased at higher 

temperatures and water to glycerol molar ratios 17. The high concentration of water (water to 

glycerol molar ratios from 4 to 15) shifts the equilibrium towards reactants consumption and 

also assists the removal of coke from the catalyst surface by coke gasification15,99. The 

maximization of H2 generation and the suppression of byproducts formation strongly rely on 

the catalyst properties and reaction conditions, and the ability to promote selective bond 

scission (C-C, C-H and O-H instead of C-O) is also important to avoid catalyst deactivation. 

Thus, to favor glycerol decomposition and WGS reaction, metal-supported catalysts are 

usually employed to favor C-C bond scission (metal) and WGS step (by the oxide support for 

water activation).  

The most explored metals in such bifunctional systems are Pt and Ni, whereas 

Ru, Rh, Co, Ir and the bimetallics Pt-Ni, Co-Ni, Ni-Sn, Pt-Re, Pt-Ru, Pt-Os were also 

reported in literature19,22,24–27,100–110. Glycerol decomposition on Pt and Ni is believed to occur 

by a series of dehydrogenation and decarbonylation steps, as shown in Scheme 2.6. 

Scheme 2.6: Reaction pathways for glycerol decomposition over metal surfaces (Adapted 

from 6).  
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The resulting CO would then be oxidized to CO2 by steam, forming additional H2 

through WGS reaction (Equation 1.3). The presence of CO and H2 on stream could also favor 

the formation of methane, by methanation or Fischer-Tropsch reactions: 

                                   
    (Equation 2.1) 

                                     
   (Equation 2.2) 

While both Ni and Pt can act in C-C cleavage, Ni is less expensive and would 

activate water more effectively than Pt due to the formation of Ni(OH)2 and NiOOH species. 

However, Ni has also a higher activity towards C-O bond scission, usually leading to high 

amounts of methane and coke6,23,102,111. Thus, the use of Pt catalysts on appropriate supports 

often leads to less coke and byproducts, and the water activation drawback can be overcome 

by adding a metal oxide support to interact with Pt.  

The nature of support on catalyst performance has been reported as determinant 

to improve thermal stability (reduce sintering of the metal phase), to favor WGS step through 

water activation and to reduce the formation of byproducts and coke deposition (avoiding 

catalyst deactivation). The interaction with an active support as CeO2 could also modify the 

electronic properties of Pt and as a consequence its reactivity towards glycerol and the 

carbon intermediates formed on the surface, compared to the bare metal. Once glycerol is 

decomposed, the oxide may promote a weaker binding of the product CO on interface Pt 

sites, increasing its reactivity and also facilitate its removal as CO2 by WGS step, therefore 

improving Pt resistance to CO poisoning. Such behavior, as the weaker Pt-CO bond and 

promotion of WGS reaction during aqueous phase reforming of glycerol was reported by Liu 

et al.112, when an oxophilic element (Mo) was added to Pt catalysts.  

Besides the high metallic dispersion provided by supports presenting strong 

metal-support interaction, the intrinsic property of metal oxide as support or even promoter is 

the surface nature, regarding its acid-base properties and degree of hydroxylation 113. It has 

been extensively reported in literature the effect of different supports on glycerol conversion, 

H2 selectivity and catalyst stability towards deactivation (whether by metal sintering or coke 

formation) 22,24,26,27,100–103,107, however, not many studies analyzed in depth the intrinsic 

properties of the metal oxide that led to distinct reaction pathways in this reaction. 

The interaction of glycerol with metal oxides with distinct properties was reported 

by Copeland et al.113 by DRIFTS experiments. It was shown that the polyol molecule 

interacted more strongly with oxides whose surfaces presented strong Lewis acid sites 

(CeO2, Al2O3, ZrO2, TiO2) by forming a multidentated alkoxyde by terminal hydroxyls, even in 

the presence of water. With an oxide with more basic nature, MgO, glycerol would only 
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weakly interact with the surface through hydrogen-bonding. Accordingly, the importance of 

Lewis acid sites has been demonstrated by the analysis of byproducts formed by lateral 

reactions during GSR reaction. 

For instance, alumina (in different structures, alpha, gamma) is widely used as 

support in reforming catalysts due to high surface area, mechanical, thermal and chemical 

stability. Yet, its acidic nature often leads to carbon deposition from lateral byproducts formed 

under GSR conditions. For this reaction, in an attempt to reduce coke formation in a NiSn 

bimetallic catalyst, Bobadilla et al.103 tuned the support acidity by adding 10 and 30% wt of 

MgO to γ-Al2O3. The authors observed that the addition of MgO reduced the amount of acid 

Lewis sites and suppressed the formation of liquid byproducts. With 10 %wt of MgO, the 

formation of coke was the smallest, and conversion of glycerol to gas products and H2 

production were the highest, possibly due to the formation of well dispersed Ni from Ni-

MgAl2O4 formation. Without MgO, NiAl2O4 was formed, hindering active Ni sites and 

producing coke, whereas 30% wt of MgO led to sintering of Ni particles and catalyst 

deactivation.  

Rossetti et al. 24 tested Ni catalysts prepared by impregnation on ZrO2, TiO2 and 

SiO2 for GSR reaction. Again, the formation of Ni over supports with very distinct properties 

led to a difficult evaluation of the acid-base nature of the surface. The variations on catalytic 

performance on GSR reaction (all catalysts showed carbon deposition and deactivation) 

were mostly attributed to the strength of metal-support interaction, which led to different 

formation of Ni domains.   

Pompeo et al. 100 prepared Pt catalysts over SiO2, ZrO2, Al2O3 and CeO2/ZrO2 for 

GSR reaction, with Pt domains ranging from 2 to 4 nm. The acid-base properties of the 

surfaces were determined and SiO2 showed a neutral characteristic, while the others were 

acidic in nature. Catalyst deactivation and formation of byproducts derived from lateral 

reactions (dehydration, hydrogenolysis and condensation) were identified for all samples 

except Pt/SiO2. 

Also for GSR reaction, Kim et al.102 impregnated Ni over SiC, Al2O3 and CeO2 

supports and demonstrated the stable and high (90%) glycerol conversion to gas products 

(H2 and CO, no WGS activity), as well as no byproducts over Ni/SiC catalyst. For Pt/Al2O3 

and Pt/CeO2 samples it was observed the occurrence of lateral reactions (glycerol 

dehydration and condensation over acidic and basic sites, respectively). These samples, 

although presenting higher WGS activity, suffered from deactivation due to coke formation. 

Sad et al. 101 studied Pt catalysts over SiO2, Al2O3, TiO2 and MgO for GSR 

reaction. The samples were prepared from Pt impregnation, and the metallic dispersion was 

similar for all samples (from 35 to 45%) except Pt/MgO (11%). Surface acidity measurements 

showed higher acidic nature for Pt/Al2O3 and Pt/TiO2, which in turn exhibited low conversion 
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of glycerol to gas products (10 and 20%, respectively) and high formation of byproducts. 

Although TiO2 is known for its redox properties which can promote WGS reaction, Pt/TiO2 

catalyst did not show high H2 selectivity due to the occurrence of parallel reactions and 

catalyst deactivation. The complex chain of reactions that can take place during GSR 

reaction, depending on the catalyst nature, can be exemplified as illustrated in Scheme 2.7. 

Scheme 2.7:Glycerol reaction chain (reprinted with permission from 101). 

 

One of the parallel reactions that often occur over acid supports during GSR 

reaction is glycerol dehydration. Foo et al. 114 investigated this step experimentally and 

theoretically over niobium oxide surface, which possesses both Lewis and Brønsted acid 

sites. By blocking selectively one of them (Brønsted ones) with Na+ ions the authors could 

elucidate the role of each type of site. It was found that glycerol would chemisorb on the 

oxide through a primary hydroxyl with a Lewis acid site, then subsequently both Lewis and 

Brønsted sites could promote dehydration on the coordinated hydroxyl group, leading to the 

formation of hydroxyacetone. The dehydration of glycerol over the secondary hydroxyl would 

occur preferentially on Brønsted sites, forming 1,3-propenediol, which is further dehydrated 

to acrolein. The authors also demonstrated that when more than one monolayer of glycerol 

was present over the surface, aromatic compounds could be formed, possibly by 

condensation reactions. The illustration of the dehydration process of glycerol can be found 

in Scheme 2.8.  
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Scheme 2.8: Glycerol dehydration reaction over Lewis and Brønsted acid sites (LAS and 

BAS, respectively, reprinted with permission from 114). 

 

Therefore, a great effort has been destined to understand the role of support on 

GSR reaction, and to tackle this effect independently, focusing on the intrinsic nature of the 

metal oxide is yet challenging. The aforementioned works provided insights of how to 

increase glycerol conversion to gas products and reduce the formation of byproducts (using 

supports with neutral surface characteristics as SiO2, SiC), however H2 selectivity was not 

maximized since the these supports do not promote WGS reaction. When supports known to 

promote WGS reaction were employed, lateral reactions occurred and catalyst deactivation 

was observed. About the latter, it was often associated with both formation of carbon 

deposits from byproducts decomposition, as well as the sintering of the active metallic phase. 

The metal-support interaction was mostly responsible for the stability of the metal phase. The 

literature thus showed that there must be a compromise between H2 maximization by 

promoting WGS reaction and avoiding catalyst deactivation. 

Besides the design of catalysts, the performance observed during GSR reaction 

is extremely dependent on the conditions the tests are performed. For instance, the H2 yield 

is increased through glycerol decomposition at higher temperatures (above 500 °C), however 

WGS reaction is disfavored. Glycerol concentration on the solution feed (water to glycerol 

ratio) and feed flow rate are also crucial, as well as the catalyst to glycerol weight ratios. In 

literature, catalytic tests are run with glycerol concentration varying from crude glycerol from 

biodiesel byproduct (60 to 80% wt) to 10% wt in water, with feed flow rates ranging from  
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0.08 to 1 mL min-1, while catalyst mass varies from to 0.035 to 1g 26,100–102,115.  Thus, the 

comparison of catalytic performance even for systems with relatable components is difficult. 

2.2.1  Distinct Pt sites on GSR 

As discussed earlier, several works showed the dispersion of metallic phase as 

an important parameter to promote catalyst stability, but evaluation of an independent factor 

is not straightforward with varying support nature, metal loading and catalyst preparation 

method. 

As illustrated in Scheme 2.6, glycerol decomposition reaction on monofunctional 

Pt catalysts were described as occurring through dehydrogenation and decarbonylation 

steps, first C-H bonds would be cleaved before C-C scission, with few or barely none C-O 

bond breaking, resulting in H2 and CO when WGS reaction is not promoted. 

Rezende et al.116 suggested that the lower carbon deposition observed on a 

sample was due to the smaller Pt NP size (with 3 nm, observed by TEM after GSR tests), the 

catalysts with higher amounts of carbon showed sintered particles. The authors suggested 

the highly dispersed Pt NPs were essential to the in situ decomposition (burn off, cleaning) of 

carbon deposits on the metal sites. 

Zamzuri et al.27 impregnated Ni over various support, with distinct surface areas, 

and Ni/Al2O3 catalyst showed the highest glycerol conversion and H2 selectivity, compared to 

La2O3, ZrO2, SiO2 and MgO. The tests were performed using 300 mg of catalyst, from 600 to 

700 °C and water to glycerol ratio of 9, 1 mL min-1 solution feed. Under such reaction 

conditions the acidity of alumina support seems to play a minor role, being suppressed by 

the high Ni dispersion (4 nm, XRD) over the surface when compared to the other oxides (15-

30 nm). Besides being another suggestion of the effect of dispersed metal sites on catalyst 

activity, this work is an example that catalyst performance and the effect of each property is 

deeply intertwined with reaction conditions. 

The size of Pt NPs has been suggested as an important parameter on catalysts 

for glycerol transformation reactions. Cifti et al.117 studied the aqueous reforming of glycerol 

over Pt catalysts with varied sizes and Re loadings. They found out the monometallic catalyst 

with 2 nm Pt NPs showed higher H2 production rates and WGS activity; the authors attributed 

this better performance to the increased fraction of step-edges Pt sites on the catalyst, which 

in turn would present lower activation barrier for water activation and C-C cleavage. The 

samples containing Pt NPs smaller than 2 nm would not present higher activity due to the 

decreased fraction of step-edge sites118. The effect of Pt domain size was also proposed by 

Pompeo et al.100, who suggested that Pt face sites (WC sites) would be the responsible to 

cleave C-C bonds, since the catalyst with larger Pt crystalline domain exhibited higher 

glycerol conversions. However, the work did not discuss about the size distribution of such Pt 
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particles, which probably exhibited a broad size distribution and thus several HC and UC 

sites. Later, another work was published containing authors in common119, which claimed 

that smaller Pt NPs (1-2 nm, obtained by Pt precursor impregnation over the supports) on a 

modified SiO2-Carbon support would boosts C-C cleavage and also avoid the formation of 

coke precursors and their deposition.   

Additionally, a DFT study conducted by Tereshchuk et al.120 on glycerol 

adsorption over a defected Pt6/Pt(100) surface showed that the polyol would bind 

preferentially on the low-coordinated Pt atoms (lower energy configuration), compared to 

terrace Pt sites; however, it points out that the other higher energy isomers can be formed on 

high temperature conditions (as during the GSR reaction).  

Analogously, the decomposition of ethylene glycol (simplest biomass-derived 

polyol) on terraced and stepped Pt surfaces, namely Pt(111) and Pt(211), respectively was 

studied by Gu et al.121, and it was demonstrated by DFT that the products would mostly be 

CO and H2 for both surfaces and the first steps of decomposition would be the 

dehydrogenation reactions, with stronger binding energies for intermediates from C-H bond 

cleavage than from C-O. Dehydrogenations would have lower barriers than the breaking of 

C-C and C-O bonds, and the transition state energy related to C-C cleavage would be 

lowered with further ethylene glycol dehydrogenation steps, while for C-O the energy would 

decrease and then increase. On Pt(211), the reaction intermediates would bind strongly, 

resulting in lower effective activation barriers on the stepped surface. Therefore, the stepped 

surface would exhibit a more effective CO poisoning, however, if WGS reaction can take 

place, this effect could be mitigated and thus the stepped surface would show increased 

activity. Recently, Mahmoodinia et al.122 suggested the same preference on bond scissions 

for ethylene glycol, and also demonstrated that the cleavage reactions would occur more 

favorably on a Pt13 clusters than on a Pt surface. Interestingly, the same preference towards 

dehydrogenation of glycerol before C-C and C-O bond cleavage was identified by Liu and 

Greeley123  for Pt(111) surface. 

A method to quantify the relative proportion of distinct types of sites on Pt NPs 

regarding their coordination was reported by Kale et al. 91. The authors estimated the fraction 

of WC and UC sites from the relative areas of the bands attributed to CO linearly bound to Pt 

sites on the DRIFTS spectra during CO adsorption experiments. Hence they correlated the 

fraction of WC and UC sites with geometric models considering different shapes and sizes of 

Pt NPs. The estimated size and shape of Pt NPs obtained by TEM measurements fairly 

agreed with the ones obtained by this analysis. 
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2.2.2  CeO2 role on GSR 

Despite most of the works described so far showed a poor activity of CeO2 

catalysts towards GSR reaction due to byproducts formation, it is still a very promising 

promoter if the adequate tuning of its properties can be achieved. As Copeland et al. 113 

demonstrated, CeO2 itself can interact with the polyol (Ce cations would interact with glycerol 

terminal OH groups) and although it has not been evidenced that such interaction could 

promote the scission of C-C, C-H or C-O bonds, it may facilitate such steps to be performed 

by Pt at the interface.  

With the lack of information regarding glycerol-ceria interaction, studies with 

ethylene glycol again can be useful to understand this interplay. Chen et al.124 studied the 

adsorption of ethylene glycol (OHCH2CH2OH) over fully oxidized CeO2(111) and reduced 

CeOx(111). It was shown that the molecule interacts through the two hydroxyl groups forming 

ethylenedioxy and surface hydroxyls on both ceria surfaces. TPD experiments up to 800 K 

showed that over CeO2(111) the C-C bond would break, forming formate intermediates which 

would later become CO, CO2, H2 and H2O. The cleavage of C-O bonds could also occur, 

forming acetaldehyde, ethylene and acetylene. Over CeOx(111), dehydration would be 

favored with ethylenedioxy mostly converted to acetaldehyde, ethylene and acetylene (also 

with H2 and O2). These dehydration products would occur since C-O bond cleavage would be 

favored instead of the C-C one due to the competition for oxygen between the reduced 

surface and the adsorbed molecules. At 400 °C (623 K), all the dehydration products were 

formed, (even for CeO2(111), however in small amounts, together with H2).  

Thus, since it was reported by Copeland et al.113 that glycerol would interact with 

ceria by the terminal OH groups (as ethylene glycol would do), analogously for our ceria 

catalyst under GSR reaction it is possible that C-C, C-H and C-O bond scission could occur, 

regardless of the ceria reduction degree. 

Concerning CeO2 loading, high amounts of CeO2 and even bulk CeO2 have 

shown to favor the deactivation of the catalyst due to the formation of byproducts. Iriondo et 

al.25 have shown that at 500 °C, higher loadings of CeO2 added on Ni/Al2O3 catalyst (8-17% 

wt) decreased glycerol conversion due to the formation of byproducts. The optimal tested 

loading was 5 % wt at a given feed flow rate and glycerol solution concentration. The 

conversion decreased with increasing ceria loading, since at 500 °C the byproducts would 

not be reformed further, blocking the active sites and hindering C-C cleavage. When the 

temperature was increased to 600 °C, such intermediates could then be mostly transformed 

to H2 and CO2, especially for the catalyst without ceria. 

Doukkali et al.125, however, found out that the addition of 10 % wt of CeO2 over 

Pt/Al2O3 (2.5% wt Pt) catalyst decreased the formation of byproducts at 400, 450 and 500 °C, 

because ceria would cover part of the highly acidic alumina surface. Accordingly, in a study 
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conducted by Montini et al.22, ceria was added to Pt/Al2O3 catalyst and the results were the 

increase of H2 fraction at lower temperatures, higher stability and WGS enhancement 

compared to bare Pt/Al2O3. 

Therefore, Pt/CeO2 catalysts have demonstrated high activity on WGS reaction 

41,45,61,89,90 and thus is a promising system to be explored for H2 generation through GSR 

reaction. It has been demonstrated that the oxide on GSR catalyst has a fundamental role on 

the activity, influencing not only the glycerol conversion to gas products but also the H2 

selectivity and the variety of lateral reactions. The complexity of the glycerol molecule results 

in a gamma of byproducts, which are dependent on the reaction conditions (temperature, 

pressure, glycerol concentration, gas flow) and the catalysts composition17,100.  

For Pt-based catalysts for GSR reaction, silica has shown the best H2 selectivity 

and smaller methane formation among the tested supported catalysts due to its decreased 

acidity, but it does not promote WGS reaction 100. Tailoring support properties by adding 

CeO2 to high surface area supports can be a promising strategy to enhance H2 selectivity 

and catalyst stability. 

Therefore, in the present work groups of Pt-based catalysts were investigated:  

one containing vanadium oxide and the other, ceria. Within the first group the influence of 

vanadium oxide at different loadings on the VOx species formed on the catalyst surface were 

evaluated on GSR reactions. For the second group the catalytic activity was evaluated in 

terms of the nature of both Pt metallic phase and ceria. 
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  Chapter 3
VOx-Pt/Al2O3 SYSTEM 

3.1 OVERVIEW 

This chapter is an adaptation of the work published in the paper “VOx-Pt/Al2O3 

catalysts for hydrogen production”, Tathiana M. Kokumai, Daniel A. Cantane, Guilherme T. 

Melo, Luigi B. Paulucci, Daniela Zanchet (Catal. Tod., 289, 2017, 249–257). The copyright 

clearance can be found in PUBLICATION LICENSES section. 

Herein we detail the synthesis, characterization and catalytic performance of 

bifunctional VOx-Pt/Al2O3 catalysts applied to WGS and GSR reaction and the correlation of 

catalyst properties with catalytic activity and H2 selectivity. 

3.2 ABSTRACT 

Platinum supported catalysts are promising systems to a wide range of catalytic 

reactions involved in the hydrogen production chain. The performance of these catalysts can 

be enhanced by designing properly their nature, composition and structure. In this context, 

the addition of a second metal oxide on a catalyst composed of a well dispersed Pt phase 

over a high surface area support may be a powerful strategy. In this work we impregnated 

VOx species over Pt/Al2O3 and evaluated the catalysts performance for water-gas shift 

(WGS) and glycerol steam reforming (GSR) reactions. The catalysts characterization showed 

that VOx species formed over the Pt/Al2O3 surface were not deeply affected by the loading in 

the range of 0.5-2.0 V atoms per nm2 and were reduced at mild temperatures. In situ 

measurements during catalysts activation and WGS reaction showed that VOx species 

presented mixed valence (V3+/V4+) while Pt was in metallic state. The addition of vanadium 

increased Pt/Al2O3 WGS activity; however, the improvement did not linearly correlate with the 

loading. Under GSR, the results indicated that the WGS step was favored by the presence of 

vanadium but the selectivity to H2 decreased, which could be attributed to the parallel 

reactions enhanced by the acidic nature of the VOx sites. 

Keywords: Platinum catalysts; vanadium oxides; water-gas shift reaction; glycerol 

steam reforming 
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3.3 GRAPHICAL ABSTRACT 

 

3.4 MATERIALS AND METHODS 

3.4.1  CATALYST PREPARATION 

The chemicals were used as received, without any pre-treatment. The support γ-

Al2O3 was synthetized by the sol-gel method previously described 126. Briefly, aluminium tri-

sec buthylate (Merck, 97%) was stirred with ethanol and water at 80 °C for 1 h, then a certain 

amount of 0.1 mol L-1 HNO3 solution was added and the system was kept under reflux for 14 

h. The formed gel was dried at 110 °C overnight and calcined under synthetic air flow at 500 

°C, 4h.   

The Pt/Al2O3 catalyst (nominal 1% wt) was synthetized by wet impregnation. One 

gram of the γ-Al2O3 support was added to an ethanolic solution containing 0.025 g of 

H2PtCl6.H2O (Umicore, 40% Pt basis) and the dispersion was stirred in a rotary evaporator 

for 4 h. The ethanol was evaporated in vacuum; the solid was dried at 110 °C overnight and 

then calcined again under synthetic air flow at 500 °C, 4 h. The catalyst was labeled PtAl.  

The VOx-Pt/Al2O3 catalysts were prepared by wet impregnation of PtAl by adding 

41, 82 and 163 mg of NH4VO3 (Aldrich, >99%) dissolved in 80 ml of deionized water, to result 

in three catalysts with different loadings of vanadium (1.8, 2.5 and 6.6 V % wt / gcat, 

respectively). After stirring and solvent evaporation, the solids were dried and calcined as 

before. The final catalysts were labeled 05VPtAl, 1VPtAl and 2VPtAl, and generally 

addressed as xVPtAl. For comparison, a 1VAl sample was prepared in similar way without 

adding the Pt precursor. 

3.4.2  CHARACTERIZATION 

Powder X-ray diffraction (XRD) was measured in a Shimadzu XRD7000 

equipped with Cu target (Kα=1.5406 Å), operating at 40 kV and 30 mA. Vanadium and 

platinum loadings were obtained by X-ray fluorescence (XRF) in a Shimadzu XRF1800. The 

surface area of the PtAl catalyst was obtained by the Brunauer–Emmet–Teller (BET) method 



44 
 

in a Quantachrome Nova 4200 by N2 adsorption at – 196 °C, after pre-treatment at 150 °C by 

24 h. 

Temperature programmed reduction (H2-TPR) was conducted in a Micromeritics 

AutoChem 2920 equipped with a U-tube reactor.  Thirty mg of catalyst were treated under N2 

flow for 30 min at 200 °C, cooled to room temperature and heated to 1000 °C, at 10 °C min-1 

under 30 mL min-1 of 10% H2/He. The H2 consumption was quantified by a thermal 

conductivity detector (TCD) detector and a calibration curve. The signal obtained for the bare 

alumina support was subtracted prior the analysis. 

In situ X-ray absorption fine structure (XAFS) spectra at V K-edge (5465 eV) and 

Pt L3-edge (11564 eV) were obtained at XAFS2 beamline at the Brazilian Synchrotron Light 

Laboratory (LNLS), Campinas, Brazil. The samples packed in pellets were mounted in a 

home-made furnace connected to a gas flow system, working in transmission mode. Catalyst 

activation was conducted under 2.5% H2/He flow, 100 mL min-1 and the WGS reaction was 

conducted using CO:H2O vol. ratio of 1:3 and total flow of 100 mL min-1. To help the 

identification of the intermediate V species, bulk V2O5 reduction was conducted and the X ray 

absorption near edge structure (XANES) data was analyzed by the methodology described 

by Wong et al. 127. Briefly, the spectra obtained at selected temperatures were compared to V 

references compounds. After attributing the selected spectra to a known vanadium oxide 

phase (V2O5, V4O7, V2O4, V2O3 and VO), the identification of V species in the xVPtAl 

catalysts was done. XANES and EXAFS data analysis were performed with Athena and 

Artemis codes within Demeter package following the standard procedures for alignment, 

normalization and background removal 128. The value of passive electron reduction factor 

(S0
2) was obtained from fitting Pt standard and the value was fixed in the analysis of the 

samples. The structural parameters: average coordination numbers (CNPt-Pt and CNPt-O 

corresponding to Pt-Pt and Pt-O scattering, respectively), interatomic distance (R) and 

Debye-Waller factor (σ2) were obtained from the fittings; the reported Fourier transform of 

the EXAFS spectra and best fits are not phase corrected. The theoretical model for the 

Pt
0
 reference was built based on the bulk Pt fcc structure.  

Pt metallic dispersion was estimated the structural data obtained by EXAFS 

analysis using the following expressions 
129
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]      (Equation  3.1) 

where: 

CNPt-Pt = average coordination number for the first coordination shell found experimentally;  

r = interatomic distance for the first coordination shell found experimentally (RPt-Pt);  

R = nanoparticle radius;  
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Nbulk = 12 for fcc Pt  

Since the NP diameter (D) is twice its radius (2R), it is possible to calculate Pt 

dispersion using the experimental value found for D. The dispersion corresponds to the 

percentage of Pt atoms at the surface in relation to the total number of atoms in the volume 

of a NP (n). This amount is the ratio between the NP volume and the Pt atom volume 

(considering that the atom diameter is twice the Pt metallic ratio and equal to 1.38 Å): 𝑛= 

𝐷3/𝑑3.  

The surface area of a spherical NP is 4πD2. One atom at the surface contributes 

with πD2 from this surface area which corresponds to the area projected at the surface. 

Hence, the number of atoms at the surface (N) is  = 4𝐷2/𝑑2. Thus, the dispersion (Di) is 

given as 𝐷𝑖=( /𝑛)∗100. It is important to note that the Pt metallic dispersion (Di) estimative is 

obtained without taking Pt-O contributions that are considered to be on the surface. 

Diffuse reflectance spectroscopy in the ultraviolet-visible range (UV-Vis DRS) 

was performed using an Agilent Cary 5000 UV-Vis- NIR spectrophotometer. The catalyst 

was finely ground and the absorbance was measured in the 200-800 nm range at ambient 

conditions. All spectra were obtained with hydrated samples and the reference compound 

was BaSO4. The Kubelka-Munk function, F(R∞), was obtained from the absorbance. 

3.4.3  CATALYTIC TESTS 

WGS reaction tests were performed in a fixed bed quartz reactor (i.d. 9 mm) 

operating at atmospheric pressure illustrated in Scheme 3.1. The catalyst (75 mg) was 

diluted in 125 mg of ground quartz and reduced in situ at 500 °C, 10 °C min-1 for 1 h in 35 mL 

min-1 of H2. The catalyst was cooled to 250 °C and the WGS reaction was performed with 1:3 

CO:H2O (v/v) feed ratio and total (wet) flow of 115 mL min-1, 4.3% v/v CO. The CO 

conversion (%) was followed by gas chromatography in an Agilent CG 7890 equipped with a 

TCD detector, at temperatures of 250, 300, 350, 400 and 450 °C, with 5 measurements 

(about 8 min each) at the different temperatures. The CO conversion was obtained by 

Equation 3.2: 

              ( )   
       ∗    

              
⁄  Equation 3.2 

The specific reaction rate (r) was estimated by Equation 3.3: 

     ∗               ( ) ∗      ∗    ∗   ∗  ⁄  Equation 3.3 
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Where FCO = CO molar flow (mol s-1); MM = Pt molecular mass (g mol-1); mcat = 

catalyst mass (g); tm = metal loading (%) and D = metal dispersion (%, estimated by EXAFS 

data).  

Scheme 3.1: Illustration of the catalytic unit for GSR reaction run. In parenthesis are the 

adaptations for WGS reaction. 

 

GSR reaction tests were performed in the catalytic unit depicted in Scheme 3.1. 

The catalyst (100 mg) was diluted in 400 mg of ground quartz and reduced in situ at 500 °C, 

10 °C min-1 for 1 h in 35 mL min-1 of H2. The reaction was performed at 400 °C for 2h. A 

glycerol aqueous solution (3.3 mol L-1) was fed into the reactor by a Cole Parmer 74900 

syringe pump (at a rate of 1.9 mL h-1) and vaporized before reaching the catalyst bed, using 

He as carrier gas (30 mL min-1). The total liquid fraction was collected in a condenser flask 

and the gaseous products H2, CO, CO2 and CH4 were analyzed by an Agilent GC7890A gas 

chromatograph, using a TCD and He as carrier gas. Glycerol total conversion was obtained 

by detection of unreacted glycerol in the liquid fraction in an Agilent GC7890A using a Flame 

Ionization Detector (FID). The liquid components were identified by an Agilent GC7890A 

using a mass spectrometer detector quadrupole 5978C inert XL NSD Agilent. 
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3.5 RESULTS AND DISCUSSION 

3.5.1  CHARACTERIZATION 

The diffraction profiles of the catalysts and the bare -Al2O3 support are shown in Figure 3.1 

The diffraction pattern of PtAl catalyst is similar to the -Al2O3 support and the absence of 

peaks corresponding to crystalline phases of Pt and/or PtO2 indicates that the metallic phase 

is well dispersed over the alumina surface. For the xVPtAl catalysts, an increase in the 

diffracted intensity can be seen below 2 ~30o. In fact, for the V2O5 standard, the three main 

peaks are found at 2 equal to 20.28°, 26.15° and 31.01° and correspond to the (001), (110) 

and (031) reflections of the α-phase, respectively (PDF 041-146). Therefore, the observed 

slight increase in the intensity of the signal at this 2 region for the xVPtAl catalysts suggests 

the absence of a highly ordered V2O5 phase. Table 3.1 shows the Pt and V wt % obtained by 

XRF. Considering these values and the specific surface area obtained for the PtAl catalyst 

(BET 300 m2/g), it was possible to estimate the vanadium surface coverage (V atoms per 

nm2) for each catalyst (Table 3.1). At these loadings, below 2 V nm-2
, the formation of V2O5 

nanoparticles, not detected by XRD, was not indeed expected 130–133. For example, Carrero 

et al. 134 found that V2O5 nanoparticles were formed when using ammonium metavanadate 

as precursor for coverages of 6.1 V nm-2 and greater, which is about three times higher than 

the maximum V loading of our samples. For other precursors the threshold was even higher 

(V loading necessary to form a monolayer over alumina is about 8 V nm-2). Similar results 

were found by Wu et al. 131 that detected that crystalline V2O5 becomes the dominant species 

only at much higher coverage, i.e., 14.2 V nm-2, although it started to be formed at coverages 

of 4.4 V nm-2. The absence of crystalline V2O5  domains in our samples indicated by XRD 

were also confirmed by visible Raman spectroscopy that did not show the characteristic 

intense band around 994 cm-1 of the crystalline V2O5 phase 69,75,131,134 (not shown). 
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Figure 3.1: Diffraction profiles of xVPtAl catalyst and -Al2O3 support; V2O5 standard (PDF 

041-146) is shown for comparison. 
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Table 3.1: Chemical composition obtained by XRF and V surface coverage (V atoms/ nm2). 

Sample Pt (% wt.) V (%wt.) V (nm-2) 

PtAl 0.55 - - 

05VPtAl 0.43 1.18 0.5 

1VPtAl 0.44 2.51 1.0 

2VPtAl 0.49 4.79 1.9 

One of the interesting and challenging aspects of vanadium is that it presents a 

variety of oxidation states and oxide structures. When dealing with vanadium oxides 

dispersed on alumina, it has been shown that the main species depend on the V loading. At 

low loadings, these species can be monomeric, having V-O bonds with the support, and 

polymeric, with bridging V-O-V bonds, as depicted in Figure 3.2. It is also important to 

consider the existence of hydroxyl species due to hydrated conditions 132.  

 

Figure 3.2: Illustration of V structures as a function of V loading over alumina surface. The S 

symbol stands for the alumina support.  

Nevertheless, the loading range that dictates the prevalence of one or another 

structure and which one would render the support a higher reducibility depend on several 

factors, such as the vanadium precursor 134 and the oxide support. For instance, according to 

Nguyen-Thanh et al. 
75

 the predominant species over ZrO2 at low V loadings (up to 2.8 V nm-

2) are monomeric VOx (having at least one V-O-Zr bond with the support). At higher loadings, 

the amount of these isolated species increases to the limit in which the formation of 

polymeric VOx and a monolayer are favored; which possess more V-O-V bridging bonds, 

therefore interacting less with the support. The authors then correlated the high 

concentration of monomeric units to the increase in the support reducibility, which in turn was 

attributed as the main factor to the enhanced catalytic activity observed for WGS reaction in 

Pt-VOx/ZrO2 catalysts. In contrast, Wu et al. 130,131 investigated the surface of Al2O3 after 

impregnation with vanadium and suggested that the presence of dispersed polymeric units 

rendered facilitated reducibility in comparison with the monomeric ones. This observation 

was in agreement with the work by Ballarini et al. 133 in samples containing about 2 % wt of 

V2O5 impregnated over γ-Al2O3 (0.7 V nm-2), which reported the reduction of isolated VOx 

species at higher temperatures. Samples with higher V loadings (7 and 10 % wt) presented 



49 
 

predominance of polymeric species and bulk vanadium oxide that reduced at lower 

temperatures.  

To compare the samples concerning the geometric and electronic structure of 

vanadium over xVPtAl catalysts, XANES spectra of the fresh samples (as-prepared) were 

collected at V K- and Pt L3-edges and are shown in Figure 3.3a and b, respectively.  

Figure 3.3a shows that at room temperature all xVPtAl catalysts, in average, are 

composed by similar species in respect to their electronic and geometric nature. It is also 

evident that the dominant species are not similar to bulk V2O5, although the presence of the 

pronounced pre-edge peak around 5470 eV is consistent with a similar local environmental, 

with V5+ species in a non-centrosymmetric coordination with oxygen atoms 127. The XANES 

data is in accordance to the works by Tanaka et al. 135 and Ruitenbeek et al. 136, who 

identified V species impregnated over alumina as VO4 units having V5+ ions in distorted 

tetrahedral coordination, as illustrated in Figure 3.2. These results are also in agreement with 

the absence of V2O5 crystalline phase on the surface of the catalysts. In the case of Pt, the 

XANES spectra for all catalyst (Figure 3.3b) indicate the presence of oxidized Pt species; 

however, the spectra do not match the PtO2 standard indicating the formation of a highly 

dispersed PtOx phase. 
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Figure 3.3: XANES spectra of the fresh samples at a) V K-edge and b) Pt L3-edge. Bulk 

V2O5, Pt0 and PtO2 are shown as references.  

To gain more insights about the evolution of VOx species as a function of V 

loading, the samples were analyzed by UV-Vis DRS and the profiles are shown in Figure 3.4. 

It is worth to point out that the 1VPtAl and 2VPtAl samples may have sufficient V to present 

polymeric VOx species, following the work of Nguyen-Thanh et al. 75 and  Ballarini et al. 133. 
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Figure 3.4: UV-VIS DRS spectra of the fresh samples. 

According to several authors 131,137,138, the absorption bands of the UV-Vis DRS 

spectra around 240 nm can be assigned to monomeric species of vanadium, while the bands 

at higher wavelengths (near 300-400 nm) would be  related to polymeric VOx. Crystalline 

V2O5 would present a broad absorption extending to longer wavelengths (> 450 nm). A more 

quantitative analysis based on the linear relationship between the energy edge determined 

by UV-Vis DRS and the number of V-O-V bonds found in polymeric species  was proposed 
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139. In our xVPtAl catalysts, the absorption bands are broad and due to the presence of Pt a 

quantitative evaluation is difficult. Nevertheless, it seems a consensus that the bands at 

longer wavelengths can be attributed to polymeric entities (once V2O5 NPs are excluded) and 

as a consequence, Figure 3.4 indicates that the amount of polymeric species seems to 

increase as a function of the loading (especially by observing the shift to higher wavelengths 

from 05VPtAl to 2VPtAl and the raise in the bands around 330 and 400 nm). These results 

are in accordance with previous works on bare alumina up to the monolayer coverage 

131,139,140. 

So far, the fresh catalysts were characterized and they are composed of 

dispersed PtOx and monomeric and polymeric VOx species over the surface, with the latter 

probably increasing with V loading. Nevertheless, prior the reaction the catalysts were 

activated under H2 up to 500 °C for 1 h and Figure 3.5 shows the modification of the catalyst 

during TPR-H2. The reduction profiles provide information about the reducibility of species as 

well as indirect information about the interaction between the components of the catalysts (V-

Pt). 
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Figure 3.5: TPR-H2 profiles of xVPtAl samples. The inset shows the TPR-H2 profile of bulk 

V2O5. 

Due to the small Pt loading (0.5% wt), the H2 consumption corresponding to PtOx 

reduction could not be detected in the PtAl catalyst, in agreement with the work by Garcia et 

al. 137. On the other hand, clear H2 consumption is observed for 1VPtAl and 2VPtAl catalysts 

and the 1VAl support (prepared in a similar way to 1VPtAl but without Pt), indicating that the 

reduction of the VOx species could be detected. The inset in Figure 3.5 shows the reduction 

profile of bulk V2O5, which exhibits a broad peak centered at about 670 °C 131. No H2 

consumption at higher temperatures was found for all catalysts, which further corroborates 
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the absence of a crystalline V2O5 phase. Comparing to the 1VAl support, the H2 consumption 

peak shifts the center to about 500 °C, indicating that VOx species dispersed on the alumina 

surface are reduced more easily than bulk V2O5, in accordance with the literature 131,133,140. 

Comparing the 1VAl support and 1VPtAl catalyst, it is clear that the presence of Pt shifts 

further the reduction towards lower temperatures (around 300 °C). This effect has been 

associated to H2 spillover promoted by Pt over VOx species 137,141, suggesting some degree 

of Pt-V interaction. By comparing 1VPtAl with 05VPtAl and 2VPtAl catalysts, the H2 

consumption is in line with the V loading increase. The similar reduction profiles of 1VPtAl 

and 2VPtAl suggest the predominance of similar VOx species, in agreement with the DRS 

UV-Vis and V K-edge XANES data. Therefore, the TPR-H2 profiles indicate that the 

interaction with alumina and the presence of Pt facilitates the reducibility of the VOx species 

independently of the vanadium content, as also observed by Zheng et al. 142. This property 

has been pointed out as an important factor in catalytic processes such as propane total 

oxidation 137 and WGS reaction 40. The support reducibility can induce the formation of active 

OH species and/or promote their mobility over the catalyst surface 75, which are important 

steps in the WGS and steam reforming mechanisms 6,40.  

As an attempt to clarify the catalysts changes during the reduction process, in 

situ XANES experiments at Pt L3- and V K-edges were performed. In the case of Pt, the 

results show the evolution of PtOx species to metallic Pt, as evidenced in Figure 3.6. The 

analysis of the EXAFS data are shown in Table 3.2 and indicates that xVPtAl samples 

undergo a decrease in Pt dispersion compared to PtAl, which was possibly caused by the 

additional calcination performed after vanadium impregnation.  
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Figure 3.6: In situ XANES spectra at Pt L3-edge of the catalysts after TPR-H2. The Pt 

standard is shown for comparison. 
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Table 3.2: Structural parameters obtained from the EXAFS analysis at Pt L3-edge of catalysts 

after the reduction, at room temperature. 

Sample NPt-Pt RPt-Pt (Å) σ2
Pt-Pt  (Å

2) Pt Dispersion (%) 

PtAl 8.5 2.75 0.007 79.9 

05VPtAl 9.8 2.75 0.007 48.5 

1VPtAl 9.7 2.75 0.008 50.6 

2VPtAl 9.9 2.75 0.007 47.3 

In the case of V K-edge, the analysis is more complex. Wong et al. 127 analyzed 

the main oxide phases and several other compounds with known structure and coordination. 

Among the most important vanadium oxide structures are V2O5, V2O4, V4O7, V2O3 and VO; 

their V oxidation states varies from +5 to +2 and their coordination evolves from distorted 

square pyramid (V2O5) to distorted octahedral and finally to regular octahedral (VO). For a 

better comparison of the samples, the authors took the zero of energy with respect to the first 

maxima of the first derivative of V reference foil spectra (at 5465.0 eV) and the position of all 

peaks was then given respective to this energy. To support the analysis of the catalysts, we 

first performed the in situ reduction of bulk V2O5 and followed the changes of V K-edge 

spectra. In this way, the position of the features of the selected spectra measured here was 

compared to the data published by Wong et al. 127 and the intermediate vanadium oxides 

formed on the catalysts during reduction was assigned. Figure 3.7a presents the results for 

bulk V2O5 under TPR-H2. The intense pre-edge peak at 5.0 eV in V2O5 spectra (spectrum 

taken at room temperature) is characteristic of a non-symmetric local coordination, as in the 

distorted square pyramid, and correspond to the dipole-forbidden 1s3d transition that 

becomes partially allowed due to the mixing of 3d-4p metal orbitals and overlap from V 3d 

orbitals with O 2p 127. When the structure evolves from V2O5 to VO (regular octahedral) the 

symmetry increases and therefore the pre-edge peak decreases. The decrease in the V 

oxidation state from +5 to +2 also shifts the absorption edge to lower energies. Therefore, by 

heating under H2 the V K-edge XANES spectra evolves (Figure 3.7a), with a progressive 

decrease in the pre-edge peak intensity and energy and a rise of the white line intensity. The 

corresponding assignments of the intermediate vanadium oxides are shown in Figure 7b. 

Accordingly, at 512 °C the structure of V2O4 is formed, with V4+ in distorted octahedral 

coordination. At 602 °C the V4O7 phase can be identified, with V3+ and V4+ ions in distorted 

octahedral coordination. Finally, at 650 °C the spectra is similar to the one attributed to V2O3. 

Comparing to conventional TPR-H2 (inset, Figure 3.5) for bulk V2O5, the H2 consumption up 

to 650 °C can be associated to the reduction of V2O5 to V2O3, which is probably reduced 

further to VO up to 800 °C. 
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Figure 3.7: a) In situ XANES at V K-edge spectra for bulk V2O5 during TPR-H2; b) 

identification of V oxide phases formed during TPR-H2 and the corresponding temperatures. 

After the successful assignment of the intermediary vanadium oxides formed 

during bulk V2O5 reduction, xVPtAl catalysts were also investigated by in situ XANES at V K-

edge. The corresponding spectra obtained at selected temperatures are shown in Figure 3.8. 
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Figure 3.8: Selected XANES spectra of xVPtAl catalysts obtained at V K-edge during TPR-

H2 a) room temperature, b) 300 °C, c) 400 °C and d) 500 °C. The inset in (d) shows the 

spectra corresponding to the V4O7 and V2O3 phases (see Figure 3.7b) for comparison. 

Comparing the samples under reduction, above 400 °C all three catalyst have 

similar profiles that did not change at 500 °C.  The main reduction of vanadium species up to 

400 °C was in accordance with conventional TPR-H2 results (Figure 3.5), which showed no 

H2 consumption above this temperature for xVPtAl samples. The similarities of the spectra at 

500 oC for the three catalysts and V4O7 and V2O3 bulk phases suggest the presence of V3+ 

and V4+ ions coordinated in a more centrosymmetric configuration, consistent with distorted 

VO6 species. The small discrepancies with the bulk phases are likely originated by the 

dispersed nature of the species in the catalysts 127,136. The presence of mixed valence (V3+ 

and V4+) species after reduction in H2 was also found by Wu et al. 130 on VOx/Al2O3 samples. 

Therefore the results  suggest that all three xVPtAl samples after reduction, including 

05VPtAl, present mixed valence (V3+ and V4+) VOx species on the surface that would be the 

species available for the reaction after catalysts activation. 

3.5.2  WGS REACTION 

Figure 3.9 shows the performance of the catalysts for the WGS reaction and 

became evident that the presence of VOx species significantly increases the CO conversion 
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in comparison with PtAl catalyst, especially above 300 °C. Table 3.3 shows the specific rate 

obtained at 250 and 300 °C. Interestingly, a clear correlation with V loading was not found.  
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Table 3.3: Specific rate calculated 

at 250 and 300 °C. 

 

 
Specific rate, r (s-1) 

Sample 250 °C 300 °C 

PtAl 0.001 0.002 

05VPtAl 0.005 0.011 

1VPtAl 0.005 0.012 

2VPtAl 0.006 0.015 
 

Figure 3.9: CO conversion (%) for VPtAl catalysts as a function of temperature.  

The fivefold increase in the specific rate at both temperatures for xVPtAl 

catalysts compared to PtAl evidences the promoting effect of vanadium; however, the results 

suggests that the enhancement was not significantly affected by the V loading.  Based on the 

previous results, the nature of VOx species over the surface of the catalysts may be very 

similar in spite of the increased V content. 

To understand the nature of V and Pt species under WGS reaction conditions, in 

situ XANES at V-K and Pt-L3 edges were measured. The results for 1VPtAl catalysts are 

shown in Figure 3.10; the other ones (not shown) have similar profiles. The behavior of Pt 

and V species were not altered under WGS conditions, while Pt was in metallic form as after 

the reduction step, the vanadium remained in mixed V3+/V4+ oxidation state in a distorted 

octahedral coordination. 
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Figure 3.10: In situ XANES of 1VPtAl at (a) Pt L3-edge and (b) of V K-edge. Spectra 

corresponding to fresh catalyst (at 25 °C); after activation and under H2 at 500 °C; under 

WGS reaction at 200 °C and 450 °C. Pt0, PtO2 and V2O5 references are shown for 

comparison. 

The increase in the CO conversion of the xVPtAl samples when compared to the 

unpromoted PtAl catalyst can be thought considering the important role of the support in the 

WGS reaction mechanism. The addition of other oxides in Pt-based catalysts can modify the 

catalytic activity in several ways, such as by improving the dispersion and stabilization of the 

metal phase over the surface of the support, changing the reducibility of the support, altering 

the electronic state of metal phase, by creation of new active sites at the metal-support 

interface, among others 41,69,143. Accordingly, the results presented in this work indicate that 

the enhanced catalytic activity observed for V promoted catalysts may be associated to the 

increase in the reducibility of the support and/or the creation of more active interface sites. 
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The presence of polymeric VOx could lead to the formation of a higher amount of OH species 

on the catalyst surface, compared to PtAl, and these species would react to produce the 

intermediates as formate 141. It has been proposed that the polymeric moieties could also 

increase the mobility of these OH species through the support, favoring the reaction 75. It is 

interesting to note, however, that the lack of correlation with V content, suggests that the 

further addition of V in 1VPtAl and 2VPtAl creates additional VOx species that do not 

significantly participate in the reaction. This behavior is different from the one found for model 

Pt/Al2O3 catalysts promoted with cerium, where a correlation with CeO2 loading was found 41 

suggesting that an increase in the promoter content increases the probability of forming 

metal-oxide interfacial sites. In the case of vanadium, however, the interaction with alumina 

and the tendency to form polymeric  species spread on its surface 144 might frustrate the 

odds to form new Pt-VOx interfacial sites with increasing loading. It is interesting to note that 

in the 2VPtAl there are 30 times more V atoms than Pt ones. The importance of interfacial 

sites has been demonstrated in other systems. For example, Sener et al. 63, applying 

controlled surface reactions to produce Pt/Mo bimetallic catalysts, reported that the turnover 

frequency for WGS reaction exhibited a linear correlation with the amount of MoOx species 

in close contact with Pt metallic sites. The authors then suggested that the interfacial Pt-Mo 

sites would be the active ones for the reaction, and the MoOx promoter would have the role 

to stabilize water and/or OH groups, thus increasing their coverages, facilitating the reaction.  

DFT has also helped to highlight the important role played by the Pt-metal oxide interfacial 

sites, revealing a complex framework depending on the system 57. In this sense, for the 

xVPtAl catalysts the interfacial Pt-VOx sites may be the responsible for the 5-fold 

enhancement of the activity for WGS reaction compared to the PtAl catalyst. 

3.5.3  GSR REACTION 

Considering the positive impact of vanadium in the WGS reaction, the VOx-

Pt/Al2O3 catalysts were tested for the GSR reaction and it was expected a maximization of H2 

production through the WGS step. Figure 3.11 shows the gaseous products distribution 

(CO2, H2, CH4 and CO) obtained under GSR reaction.   
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Figure 3.11: Distribution of gaseous products CO2, H2, CH4 and CO as a function of time on 

stream during GSR reaction at 400 °C for xVPtAl samples. 

The results showed that for all samples the major gaseous products were CO 

and H2, followed by CO2 and a small fraction of CH4. The product distribution was consistent 

with glycerol decomposition reaction (Eq. 2); however, the presence of CO2 indicated that 

WGS reaction (Eq. 3) was also occurring. The CO2 fraction was higher for the xVPtAl 

catalysts and increased with the V loading, in agreement with the presence of VOx species 

favoring the WGS reaction. However, an opposite behavior for H2 was found; the xVPtAl 

catalysts showed lower H2 fraction compared to PtAl and there was a slight decrease in H2 

production for higher vanadium loading. This suggests that the H2 produced by WGS reaction 

may have been consumed by parallel reactions. According to Pompeo et al. 23, Pt-Al2O3 

catalysts in GSR reaction favor the dehydration pathway of glycerol molecule, due to the acid 

nature of alumina, forming CH4 and CO2, by the following overall reaction:  

                       (Equation  3.4) 

The authors reported that this reaction would proceed alongside the 

decomposition reaction (Equation 1.2), leading to the additional formation of CO and H2. 

Taking this reaction into account and the formation of the small amount of CH4, it is 
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suggested that this step may occur as a minor route. Moreover, the higher fraction of CH4 

and the reduced amount of H2 for xVPtAl and vanadium content suggest that parallel 

reactions are enhanced by the vanadium presence.  

The total liquid fraction of the products, collected at the end of the reactions, 

indicated no residual glycerol within the range of the calibration curve (up to 95%), showing 

that the reaction conditions led to total conversion of glycerol. The major products detected in 

the liquid fraction for all catalysts were ethanol, 2-propenal (acroleyn), 1-hydroxy-2-

propanone, propanal and phenol, which strongly evidences the presence of glycerol 

dehydration reactions in acid sites of the support (Al2O3 and VOx/Al2O3) 
23,103. In fact, it has 

been reported the increase in support acidity with the addition of VOx species over Al2O3 

within monolayer coverage regime 140. Furthermore, the lower selectivity for H2 observed for 

xVPtAl catalysts are consistent with the reported activity of vanadium catalysts for the 

dehydration reactions of acetaldehyde and glycerol 132,145, that would be promoted by the 

acid sites of VOx, therefore leading to the formation of the aforementioned byproducts.  

In summary, although the V promoted catalysts exhibited higher CO conversions 

in WGS reaction when compared to PtAl sample, under GSR the presence of vanadium 

seems to favor the formation of byproducts, decreasing the fraction of H2, likely due to the 

acidic nature of VOx species. 

3.6 CONCLUSIONS 

Vanadium oxides are interesting and challenging structures to apply in catalysis 

and their addition on Pt/Al2O3 catalysts illustrated the powerful tuning of the catalysts 

properties, as observed by their performance on WGS reaction. The promoted samples 

showed a five-fold increase in the WGS activity when compared to PtAl, therefore 

demonstrating the success of this approach. However, the increase of V content did not 

clearly impact in the WGS activity, which might be related to the formation of polymeric VOx 

species interacting with alumina surface instead of new interfacial Pt-VOx sites that would 

favor the reaction. The in situ characterization of the catalysts showed that metallic Pt and 

V3+/V4+ species are present during WGS reaction regardless of V loading. When applied to 

GSR reaction, the presence of VOx species favored the WGS step; however, the H2 fraction 

did not increased as expected, probably due to its consumption in parallel reactions and/or 

due to the acidic nature of VOx species over the surface that would lead to the formation of 

byproducts. Therefore, the overall result for both reactions reinforces necessity of finding the 

right tuning of several aspects to optimize the catalyst activity and selectivity. In this sense, a 

new set of catalysts was designed to simultaneously present higher activity and selectivity for 

both reactions and allow the study of crucial parameters dictating the catalytic performance.  
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  Chapter 4
Pt/CeO2/SiO2 SYSTEM 

4.1 OVERVIEW 

In light of the findings about the activity of VOx-Pt/Al2O3 catalysts towards GSR 

reaction, it was clear a new set of catalytic materials needed to be developed to optimize the 

properties of the support and metal oxide promoter to decrease the formation of byproducts 

and enhance the selectivity for H2 production. Moreover, the preparation of materials 

focusing on synthesis methods that allow the tuning of metallic sites may help the 

understanding of how GSR reaction proceeds and what can be done to improve catalysts 

performance. It this sense, Pt/CeO2/SiO2 materials were developed applying different 

approaches so it was possible to evaluate key properties relevant to glycerol conversion and 

H2 selectivity. 

This chapter starts with the synthesis of Pt/CeO2/SiO2 catalysts, which comprises 

a set of catalysts having the Pt metallic phase obtained by distinct methods and another set 

having samples differing in the preparation of CeO2 phase. The characterization section 

compares the main properties of the catalysts, followed by a section concerning the WGS 

activity evaluation, including in situ experiments performed by ME-DRIFTS for selected 

samples. After, the catalytic results for GSR reaction for Pt/CeO2/SiO2 systems are 

discussed, and the final remarks regarding this chapter is presented in the last section.  

4.2 MATERIALS AND METHODS 

4.2.1  CATALYST PREPARATION 

4.2.1.1 SYNTHESIS OF CeO2 NPs (5 and 9 nm) 

CeO2 NPs with mean size of 5 nm were synthesized as described by Lee et al.146. 

The precursor Ce(NO3)3.6H2O (1 mmol) was added to a round-bottom flask containing 5.0 

mL of 1-octadecene under stirring. Oleylamine (3 mmol) was added and the system was 

purged with vacuum and N2 for 3 times and left under stirring in N2 atmosphere. The mixture 

was heated following the protocol: 80 °C, 10 °C min-1, soak time of 30 min; 260 °C, 10 °C 

min-1 and soak time of 2 h. The mixture was quickly cooled (with a stream of compressed air 

outside the flask) up to 60 °C, precipitated with a 1:1 (v/v) acetone:methanol (25 mL) solution 

and centrifuged at 4500 rpm for 30 min to remove the excess of ligands and 1-octadecene. 

The precipitation/washing was repeated for 5 times. Finally the NPs were redispersed in 
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hexane. Scheme 4.1 shows an illustration of the synthesis procedure for 5 and 9 nm CeO2 

NPs. 

The synthesis of CeO2 NPs of 9 nm was also performed following the work of Lee 

et al.146. Briefly, in a round-bottom flask containing 12.7 mL of 1-octadecene, the precursor 

Ce(NO3)3.6H2O (10 mmol) was added, followed by oleylamine (30 mmol), under stirring and 

N2 flow. Subsequently, distilled water was added (4 mmol) and the mixture was heated at 80 

°C, 10 °C min-1 and 30 min soak time. The temperature was raised to 260 °C, 10 °C min-1 

and held for 2 h. The mixture was quickly cooled, and then the NPs were precipitated, 

washed and stocked in hexane. 

Scheme 4.1: Synthesis of Colloidal CeO2 NPs. 

 

4.2.1.2 SYNTHESIS OF CeO2/SiO2 SUPPORTS  

The synthesis of CeO2/SiO2 supports containing 5 and 9 nm CeO2 NPs was 

performed by the impregnation of silica with colloidal ceria NPs with nominal loading of 12 % 

(w/w). For that, 0.5 g of silica was suspended in 30 mL of toluene under stirring for each size 

of CeO2 NPs. The corresponding volume of the initial dispersion of CeO2 NPs were diluted in 

20 mL of toluene and added to the silica suspension. The mixture was kept under stirring for 

19 h, centrifuged at 4500 rpm for 10 min and the solvent was removed in a rotating 

evaporator. The solid was dried overnight in an oven at 70 °C, calcined at 450 °C, 5°C min-1, 

for 1 h under flow of synthetic air (80 mL min-1). The samples were labeled CeO2_5 (silica 

with 5 nm CeO2 NPs) and CeO2_9 (silica with 9 nm CeO2 NPs) and their preparation is 

illustrated in Scheme 4.2. 
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Scheme 4.2: Preparation of CeO2 supports with 5 and 9 nm CeO2 NPs.  

 

A second set of CeO2/SiO2 supports with varying CeO2 loadings was prepared by 

impregnation and decomposition of a Ce3+ precursor salt, aiming nominal loadings of 6, 12 

and 20% w/w of CeO2 on silica.  For each support, 1.0 g of silica was suspended in 65 mL of 

ethanol under stirring, while the corresponding weight of Ce(NO3)3.6H2O was dissolved in 30 

mL of ethanol. The Ce3+ solution was then added to the silica suspension and the mixture 

was kept under stirring for 1h. The solvent was removed in a rotating evaporator and the 

solids were dried overnight in an oven at 70 °C. The powders were calcined at 450 °C, 5 °C 

min-1 for 1h under flow of synthetic air (80 mL min-1).  The resulting supports were then used 

for the preparation of NP_Pt catalysts (described on Item 4.2.1.5). They were labeled 

i6CeO2, i12CeO2 and i20CeO2, where the prefix “i” stands for the method of CeO2 

preparation (impregnation of Ce precursor) and the number refers to the nominal CeO2 

loading (6, 12 or 20% w/w). 

4.2.1.3 PREPARATION OF iPt CATALYSTS BY Pt(acac)2 IMPREGNATION 

A set of samples was prepared by wet impregnation of Pt precursor salt over two 

supports (bare silica and CeO2_5) followed by calcination. Silica Aerosil® 380 from Evonik 

was used for being commercially available and having high surface area (350-410 m2 g-1, as 

reported by the manufacturer), without any pre-treatment. 

The Pt impregnation was performed on the two supports to result in 2% (w/w) of 

Pt. The precursor platinum acetylacetonate (II), Pt(acac)2 (0.05 mmol), was dissolved in 4 mL 

of acetone, while 0.49 g of the support was dispersed in 25 mL of acetone in another flask, 

both kept under stirring for 30 min. The Pt solution was added to the support and the mixture 

was kept under stirring overnight. The solvent was removed in a rotating evaporator and the 

resulting solids were dried in an oven at 60 °C for 2 h and calcined at 400 °C, 10 °C min-1 for 

4 h. The final catalysts were denominated iPt/SiO2 and iPt/CeO2_5. The prefix “i” indicates 

the method used for Pt addition.  

4.2.1.4 SYNTHESIS OF COLLOIDAL Pt NANOPARTICLES 

Colloidal Pt NPs were obtained according to the procedure described in literature 

147, as depicted in Scheme 4.3. The precursor Pt(acac)2 (0.2 mmol) was added under stirring 
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to a round-bottom flask containing trioctylamine (22.9 mmol) and then oleylamine (2.0 mmol) 

and oleic acid (8.0 mmol) were added. The mixture was kept under vacuum at room 

temperature for 5 min. Trioctylphosphine (0.1 mmol) was injected and the mixture was 

heated to 120 °C, 15°C min-1, for 30 min. The atmosphere was changed to N2 and the flask 

was quickly heated to 250 °C (40 °C min-1) and held for 30 min. After cooling to room 

temperature, the NPs were precipitated with a mixture of 15 mL of isopropanol and 20 mL of 

methanol and centrifuged at 6500 rpm for 3 min, the procedure repeated twice. The NPs 

were collected and dispersed in hexane.  

Scheme 4.3: Synthesis of colloidal Pt NPs. 

 

4.2.1.5 PREPARATION OF NP_Pt CATALYSTS BY Pt  NPs DEPOSITION 

In this group of samples the Pt metallic phase was added by the deposition of the 

previously synthetized colloidal Pt NPs (item 4.2.1.4) over the supports (bare silica, CeO2_5 

and CeO2_9).  For the deposition of the colloidal Pt NPs, the procedure is the same as the 

deposition of CeO2 NPs, aiming for a Pt loading of 2% w/w and was performed 

simultaneously for the three supports (bare silica, CeO2_5 and CeO2_9), followed by the 

same calcination step to remove organic ligands. The resulting samples were named 

NP_Pt/SiO2, NP_Pt/CeO2_5 and NP_Pt/CeO2_9, and generally denominated as NP_Pt 

catalysts. 

The deposition of Pt NPs on the supports with CeO2 at varied loadings obtained 

by impregnation (i6CeO2, i12CeO2 and i20CeO2) followed the same procedure, resulting in 

the samples NP_Pt/i6CeO2, NP_Pt/i12CeO2 and NP_Pt/i20CeO2. Scheme 4.4 shows the 

how iPt and NP_Pt catalysts were obtained. 
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Scheme 4.4: Preparation of iPt and NP_Pt catalysts (with CeO2 NPs and varying CeO2 

loading from Ce3+ impregnation). 

 

4.2.2 CHARACTERIZATION 

All samples were characterized by X-ray diffraction (XRD) on a Shimadzu 

XRD7000 equipped with Cu target (Kα = 1.5406 Å) and a crystal analyzer, operating at 40 kV 

and 30 mA. For the colloidal NPs the dispersion on hexane was deposited on a Si substrate 

to reduce the background signal from the glass sample holder. Cerium loadings were 

obtained by X-ray fluorescence (XRF) in a Shimadzu XRF1800, both techniques available at 

IQ-UNICAMP. Pt loadings were determined by Inductively Coupled Plasma Optical Emission 

Spectroscopy (ICP-OES) using an iCAP 6000 Thermo Scientific spectrometer at Italian 

Institute of Technology (IIT). The powder catalysts were digested in HCl/HNO3 3/1 (v/v) for 

1h at 250 °C, followed by dilution with deionized water (14 mS), and filtered using a PTFE 

filter (45 µm) before each measurement. For each sample the procedure was repeated three 

times.  

The colloidal NPs were analyzed by transmission electron microscopy (TEM) on 

a TEM-MSC JEOL 2100 200 kV at Brazilian Nanotechnology National Laboratory at Brazilian 

Center for Research in Energy and Materials (LNNano-CNPEM) The TEM images for 
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powder samples were obtained by a JEOL JEM-1400 Plus 120 kV. The experiments 

performed at LNNano were done in collaboration with Dr. Luelc Souza da Costa. 

The catalysts iPt/SiO2, iPt/CeO2_5 and NP_Pt/CeO2_5 were analyzed by X-ray 

absorption spectroscopy (XAS) at XAFS2 beamline at Brazilian Synchrotron Light Laboratory 

(LNLS-CNPEM). The measurements were taken in transmission mode, with ionization 

chamber detectors and a Si (111) monochromator. The powder samples were diluted with 

boron nitride and pressed into pellets, which were used for the acquisition of XANES (X-ray 

absorption near edge structure) spectra collected at room temperature at Pt-L3 edge (11564 

eV). The spectra of Pt foil and PtO2 references were also acquired for comparison. The 

samples were also reduced in situ under 10% H2/He (100 mL.min-1) up to 400 °C for 1h and 

after cooling to room temperature, EXAFS spectra were acquired at Pt-L3 edge. All 

procedures for data reduction and analysis were performed as described in section 3.4.2. 

4.2.3  CATALYTIC TESTS 

WGS reaction was conducted in the catalytic unit previously pictured in Scheme 

3.1, section 3.4.3 and the reaction conditions are also similar, except that the amount of 

catalyst was changed to 25 mg of catalyst and 75 mg of diluent. The reduction was 

conducted at 400 °C for 1h. Two types of tests were conducted in this chapter, in one the 

catalytic evaluation was performed at different temperatures (250, 300 and 350 °C), while in 

the other the catalysts were tested at 400 °C only, at the same temperature and time on 

stream of the GSR reaction. 

For the GSR catalytic runs, the amount of catalyst was varied to have similar Pt 

amounts or exposed Pt sites for comparison. The catalyst weight ranged from 12-25 mg. The 

diluent weight was kept at 75 mg. Before the reaction the samples were reduced under 35 

mL.min-1 of H2 at 400 °C, 1h. Glycerol solution (glycerol:H2O molar ratio of 1:13, 

concentration of 30 % w/w glycerol, 3.27 mol.L-1) was fed to the reactor at a flow rate of 1.9 

mL.h-1, (1.04 mmol.min-1) with 40 mL.min-1 of He as carrier gas. The reaction was conducted 

at 400 °C for 2h. It was noted the assessment of the catalytic activity could be improved 

(compared to the ones in Chapter 3) to ease the comparison of reaction rates with data from 

literature, thus some reaction parameters and measurements were modified for this catalyst 

set. 

The total flow of gaseous products in the outlet of the reactor was measured by a 

calibrated rotameter to allow the estimate of glycerol conversion to gas products, which was 

obtained by carbon basis, using the molar flow ratio of detected gaseous carbon products 

and the inlet carbon flow on glycerol feed.  
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Glycerol conversion to gas 

products (%) 
 
(               ) ∗    

 ∗           
 

(Equation 4.1) 

Where fCO2, fCO and fCH4 are the molar flows of gaseous carbon products CO2, 

CO and CH4 (mol.min-1), respectively and fgly,inlet is the glycerol feed. The amount of C2 and 

C3 gas products (such as ethene and acetone) was negligible. 

The conversion rate of glycerol to gas products (glycerol molecules converted by 

minute) was obtained by multiplying the glycerol feed flow rate by the conversion to gas 

products every 8 min. Each rate value was divided by the amount of exposed Pt sites 

available on the catalyst bed and thus the glycerol conversion rate per exposed Pt site per 

minute (Gly_Rate) was obtained.  

4.2.4  IN-SITU ME-DRIFTS 

DRIFTS spectra were acquired by a Vertex 70 infrared spectrometer (Bruker 

Optics) equipped with a DRIFT cell (Praying Mantis, Harrick) and a liquid nitrogen cooled 

MCT detector. Two gas flow mixtures could be alternatively allowed inside the DRIFT cell 

through a gas supply system equipped with mass flow controllers (Bronkhorst) and a two 

position valve actuator (VICI-Valco). This valve allowed a quick and periodic switch between 

the two gas mixtures with a desired frequency. Gas exiting the cell was analyzed online 

through a mass spectrometer (Omnistar, Pfeiffer). Spectra were reported in absorbance 

units. Prior to the experiments, the catalyst was reduced in situ at 400 °C for 1 h under H2 

flow (25 ml min-1) and cooled to the reaction temperature. A background spectrum was 

collected in He at each temperature before the catalyst exposure to analysis gas.  

For CO adsorption experiments, the catalyst was exposed for 10 min to a flow of 

1%CO/He, 80 mL min-1 and the spectra were collected at room temperature every 10 

seconds for the first 2 min (which already showed saturation of Pt surface), then every 30 s 

for the following 5 min. For CO desorption the flow was switched to He (80 mL min-1) with a 

10°C min-1 heating rate to 400 °C, while the spectra were collected at the same conditions. 

After 1h at 400 °C under He, when necessary the flow was changed to H2, 25 mL min-1 and 

spectra were acquired to observe the desorption of CO from Pt surface. 

Modulation excitation spectroscopy (MES) experiments during WGS reaction 

were carried out through the periodic stimulation of the catalytic system by alternating the 

gas feed concentration at a given frequency. After in situ reduction, at each desired 

temperature (250 and 300 °C), the catalyst was exposed alternately to a flow of 1 mL min-1 

CO and 3 mL min-1 of H2O (balance He; total flow 103 ml min-1) and pure He. A second 

experiment was performed similarly for selected samples, however modulating the feed gas 
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as CO+H2O/CO with CO in the same concentration and total flows in both streams. Scheme 

4.5 illustrates the experiment and shows that the periodic stimulation (in this case the 

alternating gas flows) generates a periodic response of the probed species, captured by 

spectra acquisition. During a modulation period, which comprises one cycle with the two 

alternating gas atmospheres, CO+H2O/He (period T = 300 s, frequency, ω = 3.3 mHz), 60 

consecutive spectra were collected at resolution of 4 cm-1. Thus, two sets of spectra 

containing 30 spectra each were acquired for each gas flow in one cycle. Each spectrum is a 

snapshot of the catalyst surface at a given time in one cycle (for example, at tx and ty 

seconds). To increase the signal to noise ratio, the full cycle was repeated twenty–two times; 

only the last twelve were averaged to take into account the time required for the system to 

reach a quasi-steady state condition (stabilization time). The resulting averaged spectra, 

each at a given time (tx, ty, in time domain), was processed into phase-resolved spectra 

using phase-sensitive detection (PSD).  

The PSD procedure allows the observation of IR active species signals with 

enhanced signal-to-noise ratio with respect to the time-resolved spectra and filters out all 

contributions of signals not responding with the same frequency as that of the stimulation (in 

this case, the variation of the gas feed). The averaged time-resolved spectra collected, which 

would be response A(t) obtained by MES, was mathematically processed using Matlab® 

software to extract the kinetic information, i.e., phase domain spectra, by means of the PSD 

method according to the following equation: 

  (  
   )  

 

 
∫  ( )   (      

   )  
 

 

 (Equation 4.2) 

where T is the length of one period, ω is the modulation frequency, k is the 

demodulation index, φ is the demodulation phase angle for kω demodulation, and A(t) and Ak 

are the active species response in time- and phase-domain, respectively 96–98,148–150.  

Since the stimulation is a periodic function, the frequency of a full modulation 

cycle is related to a 360 ° phase angle (which corresponds to a 0 ° phase delay). Analysis of 

the phase angle (0°–360°), i.e., time-delay of reaction intermediates, provides kinetic 

information of chemical species involved in the surface processes. For example, an 

intermediate species responding to the modulation in the gas feed with a 350 ° phase 

responds quickly, with almost the same phase of the stimulation, thus meaning this 

intermediate is involved in the reaction pathway 96,151. The intensity of the signals in the 

phase domain spectra are related to the magnitude of the change caused by the 

perturbations in the concentration of the feed gas.  
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Scheme 4.5: Illustration of a MES experiment showing the periodic stimulation (modulation) 

of a system and the corresponding response of active species (Adapted from 96).  

 

4.3 RESULTS AND DISCUSSION 

4.3.1  CHARACTERIZATION 

Figure 4.1a shows the XRD for the as-synthetized colloidal 5 nm CeO2 NPs and 

the final iPt/CeO2_5 and iPt/SiO2 catalysts. The size estimated for the crystalline CeO2 

domain is 5 nm, based on the Scherrer equation using CeO2 (220) reflection (since (111) and 

(200) reflections may have contribution from the Si sample-holder). Figure 4.1b shows the 

TEM image of iPt/CeO2_5 and the counting of CeO2 NPs revealed a similar average size of 

5.4 ± 0.5 nm, suggesting the CeO2 NPs would be monocrystalline entities. TEM image also 

illustrates the dispersion of CeO2 and Pt NPs over silica surface. It can be seen that the 

impregnation of the Pt salt generates small Pt NPs, smaller than the 5 nm CeO2 NPs (see 

arrows in Figure 4.1.b).  
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Figure 4.1: a) XRD of colloidal CeO2 NPs compared to the final catalysts iPt/CeO2_5 and 

iPt/SiO2. The dashed line indicates the position of (111) reflection of Pt fcc structure. b) TEM 

image of iPt/CeO2_5 catalyst. The blue arrows indicate CeO2 NPs and the red arrows 

indicate Pt NPs. 

The XRD in Figure 4.1a indicates the CeO2 crystalline domain did not increase 

significantly after the successive thermal treatments for catalyst preparation. The slight 

increase of the signal around 2θ = 40 ° in iPt/SiO2 suggests that Pt metallic phase formed on 

bare silica may have a larger crystalline domain. This observation goes in line with the 

already know ability of ceria support in stabilizing the metallic phase over the surface 152,153. 

Table 4.1 indicates that Ce and Pt loadings were close to the nominal ones (2 % wt.) for 

iPt/CeO2_5, while for iPt/SiO2 the Pt loading was inferior, reinforcing the stronger interaction 

of the Pt salt precursor with ceria.  

Table 4.1: CeO2 and Pt loading obtained by XRF. 

Sample % wt. CeO2 % at. Ce % wt. Pt % at. Pt 

iPt/SiO2 
  

1.1 0.1 

iPt/CeO2_5 11.8 1.5 1.7 0.2 

 

Pt 

CeO2 
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Figure 4.2: a) XANES spectra at Pt-L3 edge for Pt0 and PtO2 references and the fresh 

catalysts iPt/CeO2_5 and iPt/SiO2 b) Fourier transform of EXAFS signal for the catalysts 

iPt/SiO2 and iPt/CeO2_5 after reduction (100 mL/min, 5%H2/He, 400 °C, 1h) and the best 

fits for the first Pt coordination shell. Vertical dashed lines indicate the fitting range (1.3-3.3 

Å) and signals before 1.3 Å mainly arise from data noise.  

Figure 4.2a shows XANES spectra at Pt-L3 edge for as-synthetized iPt/SiO2 and 

iPt/CeO2_5, where it can be seen that the Pt species are more oxidized in iPt/CeO2_5. This 

is in agreement with the stronger interaction of Pt with CeO2 NPs 41, corroborating the lower 

Pt loading and the more crystalline nature of the metallic phase observed for iPt/SiO2.  

These two catalysts were reduced in situ and EXAFS measurements at Pt-L3 

edge were performed under room temperature to observe possible structural differences 

among the samples and to estimate Pt metallic dispersion. Figure 4.2b shows the Fourier 

transforms of the EXAFS signals for the references and reduced catalysts, as well as the 

best fits for the first coordination shell of Pt in the samples. The comparison with Pt0 and PtO2 

references help visualizing the regions for Pt-O and Pt-Pt contributions. Qualitatively, EXAFS 

data shows the presence of small Pt domains in both samples (low magnitude of Pt-Pt first 

nearest neighbors, especially compared to Pt0 signal) and that iPt/SiO2 is structurally quite 

similar with the Pt0, while iPt/CeO2_5 exhibits a distinct profile. The structural parameters 

obtained by the best models are found in Table 4.2 for the reduced catalysts, as well as for 

the Pt0 reference. 
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Table 4.2: Structural parameters obtained by EXAFS analysis at Pt-L3 edge for the 

reduced iPt catalysts. 

Sample Pt LIII edge 

  Scattering CN R (Å) σ2 (Å2) R-factor 

Pt0 reference Pt-Pt 12a 2.769 (0.003) 0.005 (0.001) 0.007 

iPt/SiO2, reduced 
Pt-O 0.8 (0.1) 1.964 (0.012) 

0.006 (0.001) 0.005 
Pt-Pt 7.6 (0.4) 2.755 (0.003) 

iPt/CeO2_5, reduced 

Pt-O 0.7 (0.3) 1.856 (0.046) 0.007 (0.001) 

0.035 Pt-Pt 6.9 (1.4) 2.732 (0.012) 0.007 (0.001) 

Pt-OL 3.0 (1.6) 3.163 (0.051) 0.007 (0.001) 
a fixed, according to fcc structure of bulk Pt. 

CN: average coordination number of a given type of scattering (for example, CNPt-Pt is the 

average number of Pt neighbors an Pt atom experiences in its first coordination shell) 

Pt-OL stands for a long Pt-O bond, longer than the one found for Pt first nearest neighbors. 

For each parameter in the columns there is a correspondent type of scattering, giving the 

parameters CNPt-Pt and RPt-Pt, RPt-O, for example. 

The quantitative analysis confirms that the CNPt-Pt  are similar to both samples and 

smaller than Pt0 reference. It also shows that both samples present a very small CNPt-O 

contribution, mostly due to Pt interaction with supports (SiO2 and/or CeO2). For iPt/CeO2_5 

an additional long Pt-O contribution is found (Pt-OL) and although the error in CNPt-OL is 

significant, it suggests the existence of a distinct environment for the ceria sample. A long Pt-

O bond was already observed in other Pt/CeO2
41 and other systems and associated to 

neighbor atoms that do not constitute a chemical bond; it has still to be better understood.     

Hence, the impregnation of Pt precursor on these different supports might 

generate Pt species with distinguished properties, creating an additional variable that may 

turn the observation of CeO2 size effects more difficult. To allow the study of the impact of 

CeO2 NPs with 5 and 9 nm, a set of catalysts was prepared by the impregnation of pre-

formed Pt NPs. Table 4.3 shows Pt and Ce loading determined by ICP and XRF for 

NP_Pt/SiO2, NP_Pt/CeO2_5 and NP_Pt/CeO2_9, evidencing similar Pt loading for all the 

samples. In the case of Ce, the NP_Pt/CeO2_5 sample presents a CeO2 loading 9% lower 

than the nominal value (12 %wt.), while for NP_Pt/CeO2_9 the amount is 30 % lower.  
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Table 4.3: Pt and CeO2 loading for NP_Pt catalysts. 

 
% wt. 

Sample Pt CeO2 

NP_Pt/SiO2 2.0 - 

NP_Pt/CeO2_5 2.2 11.0 

NP_Pt/CeO2_9 2.1 8.5 

In Figure 4.3a, a representative TEM image of the as-synthetized Pt NPs 

obtained by colloidal method is shown, with mean size of (2.0 ± 0.3) nm. The small size of Pt 

NPs is reflected on the XRD (Figure 4.3b) by the broadening of (111) and (200) reflections of 

Pt fcc structure.  
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Figure 4.3: a) TEM image of colloidal Pt NPs. XRD patterns of b) Pt NPs and NP_Pt/SiO2, c) 

5 nm CeO2 NPs and NP_Pt/CeO2_5 and d) 9 nm CeO2 NPs and NP_Pt/CeO2_9. 

Figure 4.3b-d shows the XRD of catalysts prepared with the Pt NPs. In the case 

of NP_Pt/SiO2, the signal from the amorphous silica is observed from 2θ = 30 ° and it is also 

not possible to detect reflections from Pt domains. In the case of NP_Pt/CeO2_5 and 
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NP_Pt/CeO2_9, by comparing with the CeO2 NPs patterns, it can be noted the presence of 

Pt (111) reflection for both catalysts, nevertheless for NP_Pt samples the size estimate for Pt 

domain is not possible since the reflections are very broad and weak. The comparison of the 

patterns from catalysts and colloidal CeO2 NPs indicate no significant changes took place on 

CeO2 NPs during the preparation steps.  

Figure 4.4 shows TEM images of the final catalysts containing Pt NPs. The 

counting of NPs showed that after deposition on the support and calcination steps the Pt NPs 

suffered a slight increase in mean size for NP_Pt/SiO2, (2.6 ± 0.7) nm, and for 

NP_Pt/CeO2_9, (2.5 ± 0.6)  nm. In the case of NP_Pt/CeO2_5 catalyst it was not possible to 

obtain a reliable estimate because the distinction between CeO2 and Pt phases is not 

straightforward due to the similarities in size and contrast. Nevertheless, it can be assumed 

that Pt NPs in all samples have the same mean size on account of the comparable values 

found for NP_Pt/SiO2 and NP_Pt/CeO2_9. 

 

Figure 4.4: TEM image of final catalysts a) NP_Pt/SiO2, b) NP_Pt/CeO2_5 and c) 

NP_Pt/CeO2_9. The red arrows indicate Pt domains while blue arrows show CeO2 NPs. 

The similar nature of Pt NPs over the different supports was reinforced by CO 

adsorption experiment results (Figure 4.5a). The normalized spectra for the three catalysts 

illustrate one main asymmetric band with approximately same widths and maxima around 

2070 cm-1. The band at this wavenumber is often associated with CO linearly bound to WC 

Pt atoms (8-9 Pt neighbors). The similarity of these bands, within the resolution, indicates 

that CO molecule is bound to Pt sites which are identical regarding their coordination 

environment in all samples. In other words, intrinsic Pt NPs properties, such as size, Pt 

coordination number, as well as electronic properties remain constant in this set of catalysts.  

   
  a)        b)    c) 

Pt 

CeO2 
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Figure 4.5: DRIFTS spectra of the NP_Pt catalysts a) after exposure to CO flow for 10 min, 

b) after desorption under He flow at 400 °C for 1h and after 1 min under H2 flow at 400 °C.   

Figure 4.5b shows that after CO desorption under He flow at 400 °C for 1h, a 

band at 2050 cm-1 is still clearly observed, despite the high variation in the signal background 

due to the high temperature of the DRIFTS cell. This signal at such low wavenumber is 

usually attributed to CO bound to HC Pt sites 90,91,154,155, and the fact that CO could not be 

desorbed totally from these Pt sites even at 400 °C illustrates the strong interaction between 

them. These Pt entities would have a higher electronic density that WC or UC ones, 

weakening the C-O bond, thus making its vibration appear at lower wavenumbers. The 

surface of Pt NPs could only be cleaned from CO by flowing H2, which quickly replaced CO 

molecules as observed in Figure 4.5b.   

To understand the differences between iPt and NP_Pt catalysts, a comparison of 

the XANES and EXAFS spectra at Pt-L3 edge is shown in Figure 4.6.  From the XANES data 

in Figure 4.6a the results evidence that the samples containing equivalent ceria NPs but 

differing in the Pt formation (iPt/CeO2_5 and NP_Pt/CeO2_5) do not show similar Pt species 

after reduction. While in the NP_Pt/CeO2_5 platinum is more reduced, close to the profile of 

metallic Pt reference, in the case of iPt/CeO2_5 the Pt species are more oxidized.  
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Figure 4.6: a) XANES spectra and b) Fourier transform of EXAFS oscillations for the catalyst 

NP_Pt/CeO2_5 after reduction (100 mL/min, 5%H2/He, 400 °C, 1h) and the best fits for the 

first coordination shell. The results for Pt0 reference, iPt/SiO2 and iPt/CeO2_5 are presented 

for comparison. Vertical dashed lines indicate the fitting range (1.3-3.3 Å) for all samples.  

The analysis of the EXAFS signal (Figure 4.6b) shows that NP_Pt/CeO2_5 also 

has a Pt-Pt contribution smaller than the bulk. The quantitative analysis for this sample 

(representative for all NP_Pt samples), is presented in Table 4.4. It shows that CNPt-Pt is 

larger for the NP_Pt samples compared to iPt samples. Also, it is observed that NP_Pt 

sample does not have a Pt-O contribution at short bond distances as iPt samples, only a 

similar small Pt-OL contribution as seen in iPt/CeO2_5, which can be an indicative of a 

different structural feature derived from the Pt-CeO2 interaction as discussed before.  

Table 4.4: Structural parameters of Pt domains for NP_Pt/CeO2_5 obtained by EXAFS 

analysis at Pt-L3 edge. 

Sample Pt LIII edge 

  Scattering CN R (Å) σ2 (Å2) R-factor 

Pt0 reference Pt-Pt 12a 2.769 (0.003) 0.005 (0.001) 0.007 

NP_Pt/CeO2_5 

reduced 

Pt-Pt 8.9 (0.6) 2.743 (0.004) 0.007 (0.001) 
0.007 

Pt-OL 1.6 (0.6) 3.205 (0.028) 0.007 (0.001) 
a fixed, according to fcc structure of bulk Pt. 

Pt-OL stands for a long Pt-O bond, longer than the one found for Pt first nearest neighbors. 

The dispersion values (Di) could be estimated by EXAFS structural data in Table 

4.2 and Table 4.4 as explained in section 3.5.1. Thus, for iPt/SiO2, iPt/CeO2_5 and 

NP_Pt/CeO2_5 Pt dispersion values are 96, 100 and 69 %, respectively. The higher Pt 
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dispersion indicates that iPt samples have more exposed Pt sites over the catalyst surface, 

hence an increased probability of creating active sites (interfacial sites) than NP_Pt samples 

in a given amount of catalyst. 

Accordingly, the DRIFTS spectra collected for iPt/SiO2, iPt/CeO2_5, 

NP_Pt/CeO2_5 and NP_Pt/SiO2 (Figure 4.7) at 250 °C under CO+H2O flow illustrates the 

dissimilarity of iPt and NP_Pt samples regarding the proportion of Pt sites with different 

coordination. Despite the presence or absence of CeO2, the broader bands observed for iPt 

samples indicate a higher fraction of UC and HC Pt sites than for NP_Pt samples, result that 

agrees well with the higher Pt dispersion for iPt samples by EXAFS analysis. As seen in 

Scheme 2.4, the proportion of such sites is related to NP size, thus larger Pt NPs as in 

NP_Pt samples, (~ 2 nm) would present a smaller fraction of HC and UC sites than the iPt 

samples (Pt domain barely detectable by XRD), which are probably composed of smaller 

particles and also may present a less homogeneous size distribution. It is also observed in 

Figure 4.7c that the distribution of Pt sites on iPt samples are very similar (the inset shows 

how the bands are well superposed when they are shifted in the x axis). There is only a slight 

difference in the band position that is within the resolution of the measurement. These results 

contrast to the XANES data (Figure 4.6) that showed that the Pt is more electron deficient in 

the iPt/CeO2_5 compared to iPt/SiO2, even after reduction. This might be related to the use 

of dilute hydrogen (5%H2/He) in the XAFS experiments, which may not be enough to fully 

reduce the catalysts. 
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Figure 4.7: DRIFTS spectra of catalysts after exposure to CO+H2O flow at 250 °C for a) 

iPt/SiO2 and NP_Pt/SiO2, b) iPt/CeO2_5 and NP_Pt/CeO2_5 and c) iPt/SiO2 and 

iPt/CeO2_5, inset shows the aligned bands on X axis to compare band areas. 

Finally, a set of samples obtained from the deposition of the same batch of Pt 

NPs over the supports containing different CeO2 loading (formed by Ce3+ impregnation) was 

prepared to keep Pt species as similar as possible in all samples. Such approach would 

allow a better evaluation of the effect of CeO2 dispersion over the surface and the size 

distribution homogeneity of CeO2 domains on catalytic properties and activity. Figure 4.8a 

illustrates the XRD profiles of the samples, showing mostly the principal reflections of CeO2 

fluorite structure, suggesting the formation of more crystalline ceria domains with loading 

increase, whereas Figure 4.8b shows the similarity of Pt species in NP_Pt samples. 

The similarity in Pt species over NP_Pt catalysts in Figure 4.8b is observed by 

the band corresponding to CO linearly bound to Pt which shows equivalent shape and whose 

center only shifted within experimental error among the samples. Therefore, it can be 

assumed that Pt species over NP_Pt samples are equivalent. Table 4.5 summarizes the 

properties for iPt and NP_Pt samples.  
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Figure 4.8: a) XRD of samples with varying ceria content and b) Normalized DRIFTS spectra 

showing similar Pt-CO absorption bands for NP_Pt catalysts during CO+H2O gas feed at 250 

°C. 

Table 4.5: Pt and CeO2 loading, Pt dispersion and CeO2 crystalline domain size for the 

samples. 

Sample 
Loading    (% wt.) Pt dispersion 

(%)a 

CeO2 domain 

(nm)b Pt CeO2 

iPt/SiO2 1.1  96 - 

iPt/CeO2_5 1.7 11.8 100 5 

NP_Pt/SiO2 2.0  69 - 

NP_Pt/CeO2_5 2.2 11.0 69 5 

NP_Pt/i6CeO2 2.1 6.1 69 3 

NP_Pt/i12CeO2 2.2 9.1 69 4 

NP_Pt/i20CeO2 2.2 16.7 69 5 
a: Obtained by EXAFS measurements on Pt-L3 edge (section 4.2.2, Table 4.2 and Table 4.4). 

b: Obtained by XRD using Scherrer’s equation. 

In agreement with XRD results, TEM images for NP_Pt samples with varying 

CeO2 loading are shown in Figure 4.9. Although the distinction between Pt and CeO2 

domains was not possible, it is noted that for NP_Pt/i6CeO2 and NP_Pt/i12CeO2 there are 

no large CeO2 domains (since Pt NPs are the same in all samples), with NPs well dispersed 

over silica. On the other hand, for NP_Pt/i20CeO2 the presence of larger domains and/or 

NPs aggregates are evidenced, possibly of CeO2 due to the increased loading.  
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a) b) c) 

Figure 4.9: TEM of samples with varying ceria content a) NP_Pt/i6CeO2, b) NP_Pt/i12CeO2 

and c) NP_Pt/i20CeO2. 

In summary, the analysis of this three set of samples showed that iPt catalysts 

have higher Pt metallic dispersion compared to NP_Pt catalysts. Also, in the former group Pt 

domains present an increased fraction of HC and UC Pt sites than the ones in NP_Pt 

samples. Among iPt catalysts, the presence of ceria led to the formation of more oxidized Pt 

species before reduction with a slight distinct structure when compared to bare silica support. 

The DRIFTS data indicates, however, that after reduction the Pt species are similar. For the 

NP_Pt group, Pt species present similar proportion of HC and UC sites and oxidation state 

and can be regarded as the same in all NP_Pt catalysts. Concerning NP_Pt samples with 

varying CeO2 loading, ceria crystalline domains present a slight increase in mean size with 

loading increment. It is suggested that CeO2 NPs present a lower degree of dispersion over 

silica surface and/or broad size distribution at the highest ceria loading (NP_Pt/i20CeO2).  

4.3.2  WGS REACTION 

4.3.2.1 CATALYTIC TESTS 

Starting the discussion with the comparison of iPt catalysts, the catalytic activity 

for WGS reaction at different temperatures for these samples is exhibited in terms of CO 

conversion in Figure 4.10a. It evidences the promoting effect of ceria, as expected, leading to 

an increased activity (by up to 35-fold, 300 °C) for iPt/CeO2_5 when compared to iPt/SiO2 

sample.  
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Figure 4.10: a) CO conversion (%) of the iPt/CeO2 catalysts at different temperatures for 

WGS reaction, normalized by the mass of catalyst, mcat. Conditions: CO:H2O v/v ratio of 1:3, 

total flow 115 mL/min, 4.3 % CO. b) average CO conversion of the catalysts during WGS 

reaction under GSR reaction conditions, 400 °C, normalized by the mass of catalyst, mcat. 

Conditions: CO:H2O v/v ratio of 1:3, total flow 115 mL/min, 4.3 % CO, 2 h on stream.  

To verify the impact of WGS activity under GSR conditions, the samples were 

tested for WGS at 400 °C for 2h using the similar amount of catalyst, temperature and time 

on stream of GSR reaction (section 4.3.3). As shown in Figure 4.10b, the CO conversion 

levels are consistent to the ones observed in Figure 4.10a and thus it is expected that the 

samples containing ceria have a significant and similar role in converting CO to CO2 and 

steam to H2 during the GSR reaction. 

Concerning the NP_Pt catalysts,  the catalytic activity observed for WGS reaction 

at 400 °C is shown in Figure 4.11a. As in the case of the iPt catalyst, NP_Pt/SiO2 catalyst 

shows very low activity compared to NP_Pt/CeO2_5.  NP_Pt/CeO2_5 also presents higher 

CO conversion than NP_Pt/CeO2_9. 
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Figure 4.11: WGS activity of NP_Pt catalysts at GSR conditions, 400 °C normalized by the 

mass of catalyst, mcat, together with the corrected conversion for the NP_Pt/CeO2_9 sample 

with respect to the ceria loading and probability of formation of Pt-Ce sites. Conditions: CO: 

H2O v/v ratio of 1:3, total flow 115 mL/min, 4.3 % CO, 2 h on stream. 

To understand the difference in activity of  NP_Pt/CeO2_5 and NP_Pt/CeO2_9 

two main factors have to be evaluated: the amount of interfacial Pt-Ce sites, which are 

believed to be the active ones for the reaction 41,49,50 , and differences in reactive due to Pt 

and/or CeO2 size effects.  The creation of interfacial Pt-Ce sites depends on the probability of 

contact between both phases, which is related to the exposed areas of CeO2 and Pt. Since 

Pt NPs have the same size in these two samples, the probability of creating interfacial sites 

rely on Pt loading and CeO2 NPs loading and size.  

To evaluate if the lower CeO2 loading (30% lower) and larger particle size of 

NP_Pt/CeO2_9 led to the decreased activity compared to NP_Pt/CeO2_5, an attempt to 

normalize the CO conversion taking into account the CeO2 exposed area was performed. 

Table 4.6 shows the available areas of CeO2 and Pt per gram of catalyst for both samples, 

calculated based on loading, determined by XRF, and particle size, estimated by XRD for 

CeO2 (crystalline domain) and by TEM, in the case of Pt NPs.   

Table 4.6: Available areas of CeO2 and Pt per gram of catalyst, as well as the percentage of 

Pt that could interact with CeO2.   

Sample 
CeO2 exposed 

area (m2/g) 

Pt available 

area (m2/g) 

Probability of Pt to 

interact with CeO2 (%) 

NP_Pt/CeO2_5 9.4 9.3 100 

NP_Pt/CeO2_9 4.1 8.7 47 
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In the case of CeO2, to determine the amount of particles per gram of catalyst, it 

was considered the loading and that in one CeO2 unit cell (fluorite structure) there are 4 Ce 

atoms (stoichiometric composition). Assuming a spherical CeO2 NP, the total surface area of 

ceria was calculated (Scheme 4.6). The fraction which is available over the surface of silica 

corresponds to half of this value, assuming that the half of the particle is exposed. This rough 

estimate suggests that NP_Pt/CeO2_5 has about twice the CeO2 exposed area than 

NP_Pt/CeO2_9. 

Regarding Pt NPs, since the same batch was used and the loading was similar, 

the exposed area was also similar (Table 4.6). The latter was calculated based on the 

projected area of a spherical Pt NP (area of the base of a half sphere) which would be 

available to interact with the CeO2. As consequence, when we deposit the Pt NP in the 

CeO2_5 or CeO2_9 supports, the probability that the Pt NPs interact with the CeO2 NPs will 

mostly be determined by the CeO2 exposed area, which is twice for the NP_Pt/CeO2_5 

catalyst, reflecting directly in the number of Pt-Ce interfacial sites. Scheme 4.6 shows the 

model applied to estimate the exposed area of NPs over NP_Pt/CeO2_5 and 

NP_Pt/CeO2_9. 

Scheme 4.6: Illustration of the model used to estimate the exposed area of CeO2 and Pt over 

the catalysts. 

 

 

Thus, if the probability difference (100-47=53%) is applied to the CO conversion 

found for NP_Pt/CeO2_9, the catalytic activity reaches the level exhibited for 

NP_Pt/CeO2_5, as illustrated in Figure 4.11 (red bar). This observation (although involving 

rough approximations) suggests that the difference in catalytic activity between these 

samples may be related to the probability of creating Pt-Ce interfacial sites, and not to an 

intrinsic size effect of CeO2 NPs. 

The creation of Pt-Ce interfacial sites with Ce loading was investigated by 

Buitrago et al.82, by comparing Pt catalysts with different CeO2 amounts supported on 

activated carbon. The authors attributed the higher activity of the sample with the highest 

ceria loading (40% wt) to the increased probability of creating Pt/CeO2 interfacial sites. The 
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enhanced WGS activity with incremental Ce loading was also demonstrated by Meira et al.41, 

and the creation of new interfacial sites was suggested as the main reason for the 

improvement. Nonetheless, it is important to mention that the samples studied in the two 

aforementioned works were obtained without any size control of CeO2 domain, by 

impregnation of the Ce precursor salt, and the variation in ceria loading would certainly 

create CeO2 domains with distinct properties, such as the size. In that case, varying the size 

and the amount of supported CeO2 with the loading, the magnitude of exposed CeO2 area 

would depend on a compromise among them. Additionally, the increment in Pt-Ce interfacial 

sites would also depend of the Pt loading; however no attempt to correlate such parameters 

with the creation of new interface sites was demonstrated.  

Although size effects could be expected in our samples, as described in Chapter 

2, the difference in the performance of both catalysts were small and can be taken into 

account considering possible differences in the creation of Pt-Ce interfacial sites. 

To get further insights about the role of Pt and CeO2 size effects as well as the 

Pt-Ce interface, a larger set of samples were evaluated in WGS as a function of temperature. 

Table 4.7 summarizes the characteristics of the catalysts tested for WGS reaction. Figure 

4.12a shows the CO conversion per mcat follow the order: iPt/CeO2_5 > NP_Pt/CeO2_5 > 

NP_Pt/i6CeO2 > iPt/SiO2 ~ NP_Pt/SiO2 (at 350 °C). Although iPt/CeO2_5 has the highest 

CO conversion levels among the tested samples, it also has more Pt and Ce exposed sites 

(about 3x, Table 4.7). Indeed, it can be observed in Figure 4.12b that the activity per each Pt 

active site) (given by the CO2 rate as the amount of CO2 molecules produced per exposed Pt 

site per min) follows a different order: NP_Pt/CeO2_5 > iPt/CeO2_5 > NP_Pt/i6CeO2 > 

iPt/SiO2 ~ NP_Pt/SiO2 (at 350 °C), where the NP_Pt/CeO2_5, is the most active one. 

Table 4.7: Samples tested in WGS at different temperatures. The amount of Ce and Pt sites 

corresponds to the total number based on the mass used in the catalytic test.  

Sample 

Loading (% 

w/w) 

Mass of 

catalyst 

(mg) 

CeO2 (x10-6 

mol) 

Pt sites 

(x1017)a 

Exposed Ce 

atoms (x1018) 
Pt CeO2 

iPt/SiO2 1.1  75   23.9  

iPt/CeO2_5 1.7 11.8 75 52.1 39.0 10.0 

NP_Pt/SiO2 2.0  25  10.6  

NP_Pt/CeO2_5 2.2 11.0 25 16.5 12.3 3.3 

NP_Pt/CeO2_9 2.1 8.5 25    

NP_Pt/i6CeO2 2.1 6.1 25 9.1 11.7 3.2 
a: Obtained using Pt dispersion estimated by EXAFS.  
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Figure 4.12: WGS activity at different temperatures:  a) CO conversion (%) per mcat and b) 

corresponding CO2 rate per Pt exposed site. Conditions: CO:H2O v/v ratio of 1:3, total flow 

115 mL/min, 4.3 % CO.  

Interestingly, when we calculate the rate of CO2 production per exposed Ce atom 

or per total Ce amount (Figure 4.13), we can see that trend in the first case is similar to the  

CO2 rate per Pt site, indicating that the exposed Ce factor is more related to the activity than 

the CeO2 total amount (mol). The rates per exposed Ce atoms indicates that even with 3 

times less Pt sites the activity of NP_Pt/i6CeO2 is very similar to iPt/CeO2_5, and eventually 

overcomes it at 400 °C. The results suggest that part of the exposed Pt sites on iPt/CeO2_5 

is not contributing to the activity. One possibility is that only a portion of the Pt sites (mostly 

HC Pt sites, even from single atoms) are interacting strongly to the ceria, being the real 

active sites, whereas the majority of Pt atoms would not be involved in the reaction, with 

similar behavior of Pt over bare silica 55,156,157. Another possibility is that some HC Pt sites not 

in close contact with ceria could be strongly poisoned by CO, decreasing the number of 

available active sites. It can also be observed in Figure 4.12b for NP_Pt/CeO2_5 and 

NP_Pt/i6CeO2 (which have similar Pt and CeO2 exposed sites) that the CO2 rate is higher 

for the former. This could be a reflection of the effectiveness of the interface Pt/Ce formed on 

each sample, but with the data so far to propose an explanation is not straightforward. 
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Figure 4.13: CO2 rates normalized by CeO2 content (by mol and by exposed Ce atoms). 

To rationalize these results, we have to take into account what are the most likely 

active sites in the WGS reaction. Therefore, a detailed analysis for selected samples was 

performed by ME-DRIFTS coupled with PSD, as explained in section 4.2.4.  

4.3.2.2 IN SITU ME-DRIFTS 

To better understand the relation of parameters such as the presence and the 

size of CeO2 with catalytic activity towards WGS reaction, in situ ME-DRIFTS coupled with 

PSD method was performed for selected catalysts. The reaction was conducted at 250 and 

300 °C and the spectra acquired in time domain (Figure 4.14) under the modulation of 

reactants (CO+H2O/He) was transformed to phase domain spectra (Figure 4.15) by the PSD 

methodology. The spectra were divided in three wavenumber regions for clarity, high (HWR), 

middle (MWR) and low (LWR) wavenumber regions. In time domain spectra, it is possible to 

observe all the bands associated to the intermediate species formed on the surface during 

reaction (CO+H2O stream) and also the ones remaining during pure He flow. On the other 

hand, the phase domain spectra only shows the bands related to intermediates that are 

responding to the modulation of gases (true active ones), whereas the bands associated to 

spectator species remaining on the catalyst surface vanish. Therefore, it is possible to 

distinguish true active intermediates from the spectator species, which do not contribute to 

the reaction pathways, obtaining insights about the reaction mechanism. Additionally, kinetic 

information can also be provided by phase domain spectra, through the phase angles of the 

maximum signal corresponding to an active intermediate. Each intermediate will respond to 

the periodic stimulation (gas changes) with a given phase angle (from 0 to 360 °) and will 
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then present a phase delay in relation to the corresponding stimulation frequency. The 

species showing high phase angles, for example, 350 °, respond fast to the stimulation, with 

a phase delay of only 10 °, while species with low phase angles, 160 °, respond more slowly, 

with a delay of 200 ° in relation to the modulation frequency 96,98,151,158. 
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Figure 4.14: Time domain spectra during reactants modulation (CO+H2O/He) cycle at 300 

°C, shown in three wavenumber regions, 3000-2100 cm-1 (HWR), 2200-1950 cm-1 (MWR) 

and 2000-1400 cm-1 (LWR) for: a-c) NP_Pt/CeO2_5, d-f) NP_Pt/CeO2_9 and g-i) 

NP_Pt/SiO2. 
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Figure 4.15: Phase domain spectra during reactants modulation (CO+H2O/He) cycle at 300 

°C with the corresponding phase angles for each intermediate for: a-c) NP_Pt/CeO2_5, d-f) 

NP_Pt/CeO2_9 and g-i) NP_Pt/SiO2. 

We will start the description of all surface species identified from time domain 

spectra shown in Figure 4.14; later, from the phase domain spectra (Figure 4.15), the 

distinction between true active and spectator species will be provided; and lastly, the kinetic 

information about the reaction pathway will be discussed. Observing Figure 4.14 it is clear 

that to retrieve information about how the active species are evolving from the time domain 

spectra is not straightforward. All averaged spectra collected over time during the modulation 

of reactants are shown, i. e., 30 spectra acquired under reaction feed (CO+H2O) and 30 

under He. On the HWR, (Figure 4.14a, d, g), the bands corresponding to vibrations of gas 

phase CO2 (2400-2300 cm-1), as well as formate bands (C-H stretching, 3000-2850 cm-1) and 

gas phase CO (2170 cm-1) appear. The presence of OH groups (from water and support) 

causes an intense variation in the background in this region. The MWR (Figure 4.14c, f, i) 

exhibits the CO stretching band from a bridged Pt-CO-Pt species, as well as  bands assigned 

to OCO stretching, related to other possible WGS reaction intermediates such as 

carboxylates (COO-), formates (HCOO-) and carbonates (CO3
2-) 148,158,159 . The latter region 

(Figure 4.14g-i), the HWR mainly shows the bands corresponding to formate species (2900 

cm-1) and free CO. The formate is also observed in the LWR (1590 cm-1), while the band for 
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CO linearly bound to Pt is observed in the MWR, 2070 cm-1. These would be species formed 

on the catalyst surface during reaction, however, there is barely no evolution of CO2-related 

bands between 2200-2400 cm-1. Additionally, the linear Pt-CO species changes only slightly 

with the modulation of the reactants, showing a shift in the maxima of the band to lower 

wavenumber with the switch from CO+H2O to He flow. Under CO+H2O gas stream, the CO 

coverage of Pt surface increases fast and remains high (reaching the saturation of Pt surface 

at this temperature). When the atmosphere is changed to He, there is a stepwise decrease in 

intensity and shift of the center of the band to lower wavenumbers due to decrease in the CO 

coverage on Pt. This sharp band centered at higher wavenumbers due to high CO coverage 

can be related to two effects: one static and one dynamic. The static effect can be 

understood considering the Pt metallic phase as a source of electrons. With the increase of 

adsorbed CO molecules on the metal, it becomes poorer in electrons and then diminishes 

the back donation to a single CO molecule, thus causing the strengthening of CO bond. The 

dynamic effect concerns with the coupling between molecular dipoles, the intensity of low 

wavenumber vibrations can be transferred to high wavenumbers ones on account of the 

coupling of CO vibrators160. Thus, the observed shift in the band corresponding to linearly 

bound Pt-CO in time domain spectra (Figure 4.14h) towards lower wavenumbers is in 

agreement with the decrease in CO coverage on Pt surface due to desorption under He flow 

and/or to conversion to CO2. Taking into account the very low catalytic activity of NP_Pt/SiO2 

sample, the desorption is the most important contribution.  

Figure 4.14a-f shows the spectra for the ceria catalysts, which have very similar 

behavior. It is observed the appearance of CO2 bands (2200-2400 cm-1) and more intense 

formate bands between 2800-3000 cm-1, along with the one at 1590 cm-1. The presence of 

the bands related to bridged Pt-CO-Pt species (1950 cm-1) and the shoulders corresponding 

to carboxylate and carbonate species (1660 and 1500 cm-1, respectively) are also more 

evident. Moreover, the change in the band corresponding to linear Pt-CO species with the 

modulation (MWR) is more expressive compared to the NP_Pt/SiO2 catalyst, exceeding the 

effect of the decrease in CO coverage. Since the CO adsorption is similar in the three 

samples (Figure 4.8b) these results show that such entities are more easily desorbed and/or 

converted from Pt surface on ceria samples with He flow. All these observations are in 

agreement with the higher activity of NP_Pt/CeO2 samples.  

Despite the information gathered from time domain spectra in Figure 4.14, it does 

not allow the distinction between active and spectator intermediate species among the 

species present on the catalyst surface (formate, carboxylate, carbonates, linear CO bound 

to Pt, as well as bridged Pt-CO-Pt species). For that, it is important to analyze the phase 

domain spectra in Figure 4.15. Starting with NP_Pt/SiO2, Figure 4.15g-i, the only evident 

signals are the ones arising from CO in the gas phase, as well as the linear Pt-CO species. 
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The latter arises from CO coverage changes with the signal shape (with a node in 2070 cm-1) 

reflecting the shift of the band to lower wavenumbers. Additionally, the small bands 

corresponding to formate species identified on time domain spectra have vanished, 

indicating that they did not respond to the modulation of the gases. This lack of response in 

phase domain spectra can arise from the following possibilities: a) the formates were formed 

on the surface by CO+H2O flow, but were not decomposed to form products CO2 and H2 

(thus being spectator entities) or b) they actually responded to the modulation of reactants 

and led to products (being true active intermediates), however their transformation was fast 

enough to be missed, i. e., the lifetime of such intermediates would be shorter than the time 

resolution of the measurement. Since it is widely accepted that WGS reaction on Pt/SiO2 

catalysts occurs by the associative mechanism (due to the limited ability of Pt to activate 

water molecule), it would be expected to identify formate or carboxylate as active 

intermediate species, responding to the modulation of reactants in Figure 4.15i 53. Thus, the 

participation of the formates on the reaction over NP_Pt/SiO2 cannot be ruled out, especially 

taking into account the very low activity at 300 °C shown by this sample, and thus the 

observation of active intermediate species could be within the detection limit. 

Analyzing the phase spectra for ceria samples (Figure 4.15a-f), it is observed a 

similar behavior again. Also, the variation of the signals related to linear Pt-CO species with 

the modulation is significantly larger, indicating that despite the changes arising from CO 

coverage differences, linear Pt-CO entities are key active intermediates for WGS reaction. 

For both samples, the signals corresponding to formate (low and high wavenumber regions), 

carboxylate (shoulder near 1660 cm-1) and bridged Pt-CO-Pt entities can also be identified as 

active intermediates for the catalysts containing ceria. The broad band related to carbonates 

(observed on time domain around 1500 cm-1, Figure 4.14c,f) vanishes in phase domain, 

confirming that this entity is a spectator species, in accordance with literature discussed in 

Chapter 2. For the bands related to gas phase CO2 on the high wavenumber region, the 

background signal seems to be deeply affected by the water in the feed and the surface OH 

of the support, thus to compare CO2 evolution among the samples by the intensity of the 

bands is not possible. This is also the reason why the identification of formate species is 

easier in the low wavenumber region.  

Concerning the kinetic information that can be extracted from phase domain 

spectra in Figure 4.15, it is observed that changing the gas flows results in a fast response 

(330 °, almost the same frequency as the modulation, 360 °) of the gas product CO2, CO 

linearly bound to WC Pt sites and formates (for ceria samples). The signal associated to gas-

phase CO also respond fast (330 °), since its concentration is being modulated. For CO 

bound to UC/HC Pt sites and bridged Pt-CO-Pt the responses are slower (160 °). Given the 

observations for NP_Pt/SiO2 sample, such phase angle values for Pt-CO bands can be a 
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result of both the massive CO coverage variations on the surface and the kinetics of 

desorption of species over distinct sites. The high phase angle of the band associated to CO 

on WC Pt sites is consistent with the fast desorption of species bound to these sites and the 

fast shift of the band center to lower wavenumbers with the He flow. This shift due to the 

reduced CO coverage can be caused by the fast decrease of CO coupling magnitude (more 

expressive in NP terraces) and by the increase in Pt electronic density on CO bound to WC 

Pt sites. In turn, the smaller phase angle for the bands at lower wavenumbers is consistent 

with the slower response of the bands associated to CO bound to UC/HC Pt sites, since they 

are less affected by CO coverage effects. Such behavior occurs either because CO is more 

strongly bound on these sites, thus its desorption and/or conversion are slow, and because 

CO coupling effect on such sites is not expressive. Regarding the phase angles for CO2 and 

formate species, they all respond fast to the gas flow changes (330 °), being involved in the 

reaction under such conditions. Indeed, the large variation in CO coverage between the two 

gas streams ended up masking the phase angles related to the behavior of intermediate 

species. 

To obtain more information, especially for the linear Pt-CO region which strongly 

responds to CO coverage variations, we repeated the experiment for the samples 

NP_Pt/CeO2_5 and NP_Pt/SiO2, this time cycling CO+H2O/CO gas flows.  It was possible to 

avoid the shift in the linear Pt-CO band by keeping the CO flow and modulated periodically 

the water concentration. The aim was to observe the changes on Pt-CO bands under WGS 

reaction to evaluate whether UC/HC Pt sites have a different participation depending on the 

support (bare silica or silica with CeO2 NPs). Figure 4.16 compares the time and phase 

domain MWR spectra acquired during WGS reaction for NP_Pt/SiO2 and NP_Pt/CeO2_5 

samples. 
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Figure 4.16: Comparison of time domain spectra at Pt-CO wavenumber region for 

NP_Pt/SiO2 (left)  and NP_Pt/CeO2_5 (right) during CO+H2O (a,b) and CO (c,d) modulation 

flows at 250 °C and the corresponding phase domain spectra (e,f). g) The same phase 

domain spectra for NP_Pt/SiO2 (e) at a smaller scale on y axis to better visualize the 

absence of response of Co bound toHC Pt sites.  

Analyzing the data obtained by modulating the presence/absence of water 

(CO+H2O/CO cycle) it can be inferred that CO coverage is kept constant, thus it is possible 

to observe the variations rising only from the reaction of CO bound to different Pt sites with 

steam. Although the changes are much less pronounced, it is clearly observed in the phase 
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domain spectra for NP_Pt/CeO2_5 (Figure 4.16f) the presence of three components, 

whereas for NP_Pt/SiO2 (Figure 4.16e) only two are well-defined. For NP_Pt/CeO2_5, these 

three components are consistent with the CO bound to Pt sites with different coordination 

(WC, UC and HC Pt sites, 2080, 2060 and 2042 cm-1, respectively), whereas for 

NP_Pt/SiO2, the signal corresponding to HC sites is not well-defined. It is also observed that 

CO bound to low coordination Pt sites (UC and HC) responds faster to the modulation, with a 

phase angle of 330 °, while WC Pt sites have an intense and more delayed response (phase 

angle of 160 °). This suggests that CO bound to all Pt sites (WC, UC and HC) have a key 

role on the reaction mechanism for ceria catalysts (WC and UC for NP_Pt/SiO2), but UC and 

HC would have faster kinetics than WC, with the CO being readily reactive in the presence of 

steam. Interestingly, since the Pt NPs are the same in both samples (Figure 4.8b), such HC 

Pt sites responding for the ceria sample may evidence a direct effect of the interface Pt-CeO2 

on the WGS reaction mechanism. As observed in theoretical studies 50 and in Scheme 2.5, 

HC Pt sites would be the ones available to both interaction with ceria (corners) and exposure 

to reactants (CO and H2O), and only part of them would be in close contact with ceria. The 

participation of HC Pt sites on NP_Pt/CeO2_5 would represent both the enhanced Pt activity 

caused by the interaction with ceria, as well as the clean-up of such Pt sites from CO 

poisoning, which is again a feature promoted by the interfacial sites. 

 Therefore, for both samples the phase angles related to CO bound to the 

different Pt sites shows that UC ones (and HC for  NP_Pt/CeO2_5) respond faster to the 

modulation of water, being kinetically more important than WC sites, which present a delayed 

response. For NP_Pt/CeO2_5, the CO bound to HC Pt sites also shows a fast response 

(330°). The correlation of the phase angles found for the CO bound to distinct Pt sites with 

the values observed for CO2 produced during modulation can be helpful to associate the 

intermediate involved in product formation and also to probe true active sites during reaction. 

The spectra showing the wavenumber region of gas phase CO2 and CO during CO+H2O/CO 

modulation at 250 °C are shown in Figure 4.17.  
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Figure 4.17: Comparison of time domain spectra at high wavenumber region for NP_Pt/SiO2 

(left)  and NP_Pt/CeO2_5 (right) during CO+H2O (a,b) and CO (c,d) modulation flows at 250 

°C and the corresponding phase domain spectra (e,f). 

In the case of NP_Pt/SiO2 (Figure 4.17e), CO2 exhibits a 160 ° phase, similar to 

CO bound to WC Pt sites indicating that it is mainly produced on them. In contrast, for 

NP_Pt/CeO2_5 (Figure 4.17f), a 320 ° phase angle is observed for the CO2 signal, similar to 

CO bound to UC and HC Pt sites, indicating a major participation of CO bound to these low-

coordination Pt sites with CO2 formation. Additionally, since CO bound to HC Pt sites only 

responds with the modulation on NP_Pt/CeO2_5, it is evidenced their exclusive role on WGS 

mechanism over the ceria catalyst. Therefore, during WGS reaction over ceria catalysts at 

250 °C, CO2 is mainly formed by a faster path involving CO bound to UC and HC Pt sites, 

whereas a slower path involves WC Pt sites. For NP_Pt/SiO2, the reaction pathway mainly 

occurs by a slow route through CO bound to WC sites, while it is possible that UC sites are 

involved in a faster and minor route. Again, it is difficult to make a similar association with 

formate bands at high wavenumber region due to the irregular background. The information 

of formate and carboxylate species can be found in Figure 4.18. 
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Figure 4.18: Comparison of time domain spectra at low wavenumber region for NP_Pt/SiO2 

(left)  and NP_Pt/CeO2_5 (right) during CO+H2O (a,b) and CO (c,d) modulation flows at 250 

°C and the corresponding phase domain spectra (e,f). 

The LWR of the spectra acquired under CO+H2O/CO cycle at 250 °C (Figure 

4.18) shows additional overlapping bands from vibrations of carbon intermediates 

(carboxylate, formate and carbonate) formed on the catalysts surface. Time domain spectra 

show an intense band for NP_Pt/CeO2_5, whereas for NP_Pt/SiO2 only broad and less 

intense signals are evident. For both samples, the band related to bridge Pt-CO-Pt entities is 

also observed. On the other hand, phase domain spectra for NP_Pt/CeO2_5 clearly shows 

that only carboxylate and formate intermediates are responding to the modulation of 

reactants, while for NP_Pt/SiO2 no response is detected.  

Also, the residual bands observed in time domain spectra for ceria samples 

indicate that not all carboxylates/formates and CO adsorbed on Pt participate on the reaction 

rates, remaining bound to the catalyst surface, in agreement with results reported by 

Kalamaras et al. 49 and proposed by Aranifard et al.50.  

The analysis of phase angles values for NP_Pt/CeO2_5 indicates that 

carboxylate (1620 cm-1) has the same phase delay of the CO bound to UC and HC Pt sites 

(330 °), while the formate band (1580 cm-1) has the delayed response similar to the ones on 



96 
 

WC Pt sites (160 °). The results shows that while carboxylate and CO bound to UC and HC 

Pt sites are the active intermediates from the faster path of WGS mechanism, CO bound to 

WC Pt sites and formate species are also active intermediates but through a reaction route 

with slower kinetics. Therefore, the results show parallel pathways with different kinetics 

under these conditions. Nevertheless, it is not possible to identify whether the formation of 

such intermediates occurs by the classic “associative” or the “associative mechanism with 

redox regeneration” pathways, due to the inability to probe the response of oxygen 

vacancies. Additionally, for the same reason, it was not possible to infer about the 

contribution of the pure “redox” mechanism in our experiments. In this sense, theoretical 

studies can shed a light on this matter, and interestingly, Aranifard et al. 50,56 have 

demonstrated that the “associative carboxyl pathway with redox regeneration” would present 

higher reaction rates and lower activation barriers than the “associative carboxyl pathway” 

over Pt/CeO2 catalyst. The authors also predicted higher energy barriers for the redox 

regeneration pathway involving formate, in comparison to the carboxyl one, which is in line 

with the carboxylate path being the faster route in our findings. Even more interesting, they 

suggested that the “associative carboxyl pathway with redox regeneration” and the redox 

mechanism could take place simultaneously, however the former would have a dominant 

contribution. Thus, it can be suggested that in our ceria samples, besides the true “redox” 

mechanism, the redox regeneration could be taking place instead of the classical associative 

pathway, with the route involving the carboxylate as the faster path. Accordingly, Kalamaras 

et al.49 also suggested that for Pt/CeO2 catalyst the participation of formate would occur by 

the redox regeneration pathway. 

Regarding the contribution of carboxylate and formate pathways, Meunier et al.43 

based on SSITKA studies performed on a 2 wt % Pt/CeO2 catalyst prepared by a 

homogeneous precipitation of Pt(II) in urea method, reported that at 160 °C formate was 

practically an inactive entity, while it became a true reaction intermediate at 220 °C. The 

authors stated that over quite a narrow temperature range, the kinetic importance of a 

surface species can be dramatically different, and therefore caution is required when 

attempting to generalize the reaction mechanism based on data using different reaction 

temperatures or feed compositions, or even differently prepared and pretreated catalysts 

having the same nominal composition (e.g., distinct calcination and reduction conditions). 

Thus, formate species were reported to switch from being active intermediates at 220 °C to 

inactive species at 160 °C over the Pt/CeO2 under the given reaction conditions. Kalamaras 

et al. 49 also suggested that formate species would be active intermediates on WGS reaction 

conducted over Pt/CeO2 catalysts, however quantitative measurements evidenced that the 

route involving formate would have a minor role in the activity, which was dominated by the 

redox pathway. The authors also suggested that the formation of CO2 by the redox 
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mechanism would be faster than the associative (formate) path and that not all adsorbed CO 

and formate entities would participate in the overall WGS reaction rate. Hence, the dominant 

reaction pathway over Pt/CeO2 catalysts may be strongly dependent on reaction conditions, 

as well as the role of carboxylate and formate species on the activity. Still, the dominant 

route between “associative carboxyl pathway with redox regeneration” and the pure redox 

mechanism which would dictate the catalytic activity in our catalysts still has to be 

determined.  

About the literature for WGS reaction over Pt/CeO2 catalysts using ME-DRIFTS 

coupled with PSD methodology, it has been reported only once by  Vecchietti et al. 159, which 

identified the participation of similar active intermediates, linear Pt-CO species, formates and 

carboxylates during reaction. Interestingly, it is the only experimental work to demonstrate 

the participation of carboxylates on WGS reaction by a transient DRIFTS, since such signal 

is commonly overlapped with formate and carbonate bands in DRIFTS spectra, and the 

distinction was only possible by the PSD approach. The aforementioned work was focused in 

evaluating the role of oxygen vacancies on the WGS reaction mechanism, by investigating 

two Pt catalysts supported on pure CeO2 and gallium-doped ceria (Ce80Ga20  9.3 % wt of Ga). 

The authors proposed that during ME-DRIFTS, the band associated to Ce3+ forbidden 

electronic transition (2F5/2 → 
2F7/2 at 2130 cm−1, which is also the region of gas phase CO) did 

not respond to the modulation of reactants (CO+H2O/He) and thus the oxygen vacancies 

were not participating in the WGS reaction mechanism at 250 °C. They concluded that the 

enhanced reducibility of the doped support was not correlated with catalytic activity, 

especially in the water activation step which would involve oxygen vacancies. Additionally, 

the authors did not describe the behavior of the distinct Pt sites over the ceria catalysts 

during modulation and did not take particular attention to the effect of CO coverage on Pt, 

since the experiment modulated CO+H2O and He gas slows. Hence, although the active 

intermediate species could be identified at the given reaction conditions, the aforementioned 

work lacks information on the role of distinct Pt sites and on the kinetics of WGS reaction. In 

comparison with our work, our samples did not evidence the Ce3+ band, which could be 

caused by masking such signal by the gas phase CO band, or due to a decreased 

reducibility of the surface ceria on the NPs over our catalysts, in comparison with theirs. 

However, the authors also identified the carboxylate and formate as active intermediates but 

both had fast responses (330 °) and they did not relate this phase delay with CO2 formation. 

Since the phase angles obtained in our work were different for carboxylates and formates, 

this is strong evidence that the reaction pathways may be deeply dependent on the catalyst 

nature, since both studies involved Pt/CeO2-based systems, and also on reaction conditions. 

The fact that NP_Pt samples have similar distribution and nature of Pt sites and 

that HC Pt sites do not participate on the WGS reaction for NP_Pt/SiO2 sample, whereas 
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they do for NP_Pt/CeO2_5, reinforces the argument that CO is tightly bound to these sites 

and remain adsorbed. However, in the latter these CO can participate on the reaction due to 

the interface with ceria, which enables its oxidation to CO2 by the oxygen transfer, whether 

by a redox or associative (with or without redox regeneration) pathways. Thus, poisoning of 

HC Pt sites may be very effective on NP_Pt/SiO2  since such oxygen transfer is not favored 

over silica. 

Although ME-DRIFTS proved to be an interesting approach to gain insights about 

the routes which involve the formation of intermediates as formates and carboxylates and the 

role of the distinct Pt sites in the reaction, the pure redox path, which is described in literature 

to be the dominant one in Pt/CeO2 samples, is not straightforwardly detected by such 

methodology since it does not lead to the formation of intermediates such as formates and 

carboxylates. 

Finally, regarding the distinct activity of iPt/CeO2_5 and NP_Pt/CeO2_5 on WGS 

reaction (Figure 4.12) and remembering that both contain the same CeO2 NPs at similar 

loadings but differ on Pt dispersion, ME-DRIFTS experiments can be valuable to better 

understand their reactivity. Figure 4.19 shows the time domain spectra at linear Pt-CO region 

for the final spectra under each flow (CO+H2O and He) at 250 °C for both samples.  
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Figure 4.19: DRIFTS spectra showing the last spectra for each gas flow, illustrating the 

different stability of CO bound to Pt sites for iPt/CeO2_5 and NP_Pt/CeO2_5 at 250 °C. 

Although the changes in Pt-CO region is dominated by the CO coverage 

differences, it is possible to observe that He desorption after CO+H2O cycle lead to more 

changes on Pt-CO band for NP_Pt/CeO2_5 than for iPt/CeO2_5. In the latter, under 

CO+H2O flow the CO species are more strongly bound to Pt and do not desorb under He 

flow at 250 °C, leaving a broader and more intense residual band. This observation is in line 
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with the possibility that over iPt/CeO2_5 some Pt sites (probably HC Pt sites) remain inactive 

during reaction since they are blocked by strong CO adsorption, as proposed in section 

4.3.2.1. Ceria would be able to clean such sites provided the oxygen transport to CO was 

efficient, however if a significant blocking by carbonate species is taking place, the strongly 

bound CO removal as CO2 would not be possible. Indeed, time domain spectra at LWR 

shown in Figure 4.20 suggests that there is an increased proportion of carbonate (1500 cm-1) 

than formate species (1590 cm-1) for iPt/CeO2_5 sample, whereas the opposite occurs for 

NP_Pt/CeO2_5. Since carbonate is not an active intermediate, its signal does not appear in 

the phase domain spectra (lower right panels). The explanation for the higher amount of 

carbonates can only be explained by a hypothetical distinct Pt-CeO2 interaction arising from 

the different formation of Pt phase on the catalysts. It appears that there might be a 

compromise between favoring the creation of interfacial sites and increasing the amount and 

stability of spectators on the catalyst surface. 
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Figure 4.20: Spectra acquired during reactants modulation (CO+H2O/He) cycle at 250 °C in 

the 2000-1400 cm-1 wavenumber region. a) and c) represent time and phase domain spectra, 

respectively, for NP_Pt/CeO2_5 and analogously for iPt/CeO2_5, b) and d). 

Thus, these results help to explain the trend in WGS activity observed in Figure 

4.12, where NP_Pt/CeO2_5 showed an increased CO2 rate per Pt exposed site than 
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iPt/CeO2_5. It is verified that in iPt/CeO2_5 a higher fraction of Pt sites remain bound to 

reaction intermediates. 

4.3.2.3 WGS - MAIN CONCLUSIONS 

By investigating the iPt and NP_Pt catalysts for WGS reaction, it was 

demonstrated that the Pt phase has a key role in the catalytic activity. More specifically, the 

proportion of HC, UC and WC Pt sites is determinant, since HC and UC sites were identified 

as the most active ones. It was also highlighted that such sites can strongly bind 

intermediates and decrease conversion rates and that an effective Pt-CeO2 interface is 

crucial to promote the release of active sites. 

Regarding the size effect of 5 and 9 nm CeO2 NPs, no impact on catalytic activity 

was evidenced under the tested reaction conditions. The comparison of NP_Pt samples 

having different CeO2 domains (NP_Pt/CeO2_5 and NP_Pt/i6CeO2) also did not evidence a 

trend in catalytic activity with CeO2 size. Both the formation of CeO2 with controlled NPs with 

distinct mean size or the presence of a wide size distribution were suggested to be 

determinant mostly on favoring the creation of interfacial Pt-CeO2 sites. 

In situ ME-DRIFTS studies evidenced that in fact Pt/CeO2 interfacial sites are the 

most active ones under WGS reaction. It was also demonstrated that over ceria samples the 

CO2 formation proceeds with the participation of formate (slow pathway) and carboxylate 

(faster pathway), with WC Pt sites associated with the former while HC and UC sites are 

involved in the latter pathway. It is known that the redox pathway is also taking place, 

however it was not possible to follow this route. 

4.3.3  GSR REACTION 

Based on the WGS findings presented in the previous section, now we evaluate 

the impact of the Pt phase and CeO2 size distribution in GSR reaction. Figure 4.21 shows the 

results for the iPt/SiO2 and iPt/CeO2_5 during GSR reaction. The analysis of the 

condensate after reaction showed no liquid byproducts were present. Concerning the 

gaseous products distribution exhibited in Figure 4.21a, iPt/CeO2_5 produces significantly 

lower CO and higher CO2 and H2 fractions when compared to iPt/SiO2 sample, corroborating 

the role of ceria on enhancing the WGS reaction step. The WGS activity predicted for ceria 

catalyst in Figure 4.10b is satisfactory achieved during GSR reactions (expected fractions of 

H2 and CO of about 70% and lower than 10%, respectively), as observed in Figure 4.21a.  
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Figure 4.21: a) Distribution of gaseous products and b) glycerol conversion rates per 

exposed Pt site during GSR reaction at 400 °C for iPt/SiO2 and iPt/CeO2_5 samples. 

Figure 4.21b shows glycerol conversion rate to gas products as a function of time 

(calculated by (Equation 4.1 for both iPt catalysts). The iPt/CeO2_5 catalyst presents 

Gly_rate_max (the maximum value of glycerol conversion rate during 2 h on stream) and 

Gly_rate_30 (glycerol conversion rate at 30 min of reaction, before deactivation) about 15% 

and 22% higher than for iPt/SiO2, respectively. Since the amount of Pt sites loaded for both 

catalytic reactions are similar and the glycerol feed is kept constant, it is possible to attribute 

the increased conversion of glycerol on iPt/CeO2_5 to the presence of CeO2. Despite the 

possibility of C-O bond breaking due to the presence of ceria as discussed in section 2.2.2, 

no liquid byproducts were detected on the liquid fraction collected after reaction for 

iPt/CeO2_5. Table 4.8 summarizes the properties of the tested samples, as well as the 

representative values for their performance. 

Table 4.8: Catalysts properties and performance obtained for GSR reaction runs.  

Sample 

Catalyst 

weight 

(g) 

WHSV 

(h-1)a 

Amount 

CeO2  (x10-6 

mol) 

Exposed 

Pt sites 

(x1017)b 

Gly_Rate (min-1) 

Max 
At 30 

min 

iPt/SiO2 0.025 22.8 - 8.2 75 70 

iPt/CeO2_5 0.016 35.6 10.9 8.2 86 86 

NP_Pt/SiO2 0.014 40.7 - 5.8 64 21 

NP_Pt/CeO2_5 0.012 47.5 7.9 5.8 92 85 

NP_Pt/i6CeO2 0.013 43.8 4.6 5.8 81 72 

NP_Pt/i12CeO2 0.013 43.8 6.6 5.8 92 92 

NP_Pt/i20CeO2 0.013 43.8 12.1 5.8 83 78 

NP_Pt/i6CeO2b 0.026 21.9 9.1 11.7 55 35 
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a: WHSV: weight hourly space velocity, calculated as the ratio between glycerol weight feed 

rate (0.57 g.h-1) and the mass of catalyst. 

b: Calculated using Pt dispersion derived from EXAFS.  

Regarding the deactivation with time on stream (after the maximum rate is 

reached), the similar profiles for both samples indicate that some site blocking may be taking 

place mainly on Pt sites. Since no liquid byproducts are detected in the condensate of these 

two samples, the deactivation by the deposition of heavier lateral byproducts is less 

plausible. According to literature, as described in section 2.2.1, coke formation on Pt/SiO2 

catalysts during GSR reaction is not usual, thus the deactivation is likely due to poisoning of 

Pt sites by the produced CO, especially given the neutral nature of SiO2 
6,100,101. The high 

fraction of CO on iPt/SiO2 (about 60%, Figure 4.21a) could provoke the blocking of HC and 

UC Pt sites. For iPt/CeO2_5 sample, H2 fraction is more than twice the CO fraction, but it 

does not rule out the possibility of CO binding strongly to Pt sites. The strong adsorption of 

CO on HC Pt sites at 400 °C was observed in section 4.3.1 (Figure 4.5 and Figure 4.7). 

Nevertheless, in the case of iPt/CeO2_5, such Pt poisoning may also be taking place; 

however, it remains slightly more active than iPt/SiO2, which can be related to the ability of 

ceria to release Pt-bound CO as CO2. Another indicative of the blocking of active sites 

instead of structural modifications of active sites under reaction is that the distribution of 

products shown in Figure 4.21a is quite stable for both catalysts. 

The highest fraction of H2 for iPt/CeO2_5 sample can be a result of both higher 

production by the decomposition reaction (Equation 1.3) and/or increased WGS rates. The 

latter is further illustrated by the comparison of the molar fraction of gas products (Figure 

4.21a), which shows the higher proportion of H2 and CO2 over the ceria sample. Regarding 

WGS reaction step, although its participation cannot be quantitatively determined, it is clear 

this step was taking place solely on ceria catalyst. The absence of expressive drops in CO2 

fractions over time on stream (Figure 4.21a) suggests that WGS step is stable during GSR 

reaction. 

Therefore, the presence of CeO2 on iPt/CeO2_5 catalyst for GSR reaction was 

beneficial, increasing the glycerol conversion rates to gas products, H2 formation and 

promoting the WGS reaction step. The characterization findings in section 4.3.1 showed that 

these two samples have high metal dispersion and similar fraction of WC, UC and HC Pt 

sites, with iPt/CeO2_5 exhibiting more oxidized Pt sites. Since the glycerol conversion rates 

are only slightly higher for the ceria sample, the presence of the latter do not seem to have a 

direct effect on glycerol decomposition, as discussed in section 2.2.2, it is mostly involved in 

WGS reaction step. Despite the efforts, with this two catalysts it was not possible to 

determine which is the main factor driving the deactivation process and catalytic activity.   
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To better understand the role of CeO2 for GSR reaction and whether distinct Pt 

sites have an impact on the reaction, a larger set of catalyst was evaluated. Figure 4.22 

shows of glycerol conversion for iPt/SiO2 and NP_Pt/SiO2 catalysts (mass of catalysts 

determined to have similar amounts of exposed Pt sites for both catalysts, ~1017 Pt atoms, 

estimated by the Pt dispersion obtained for both samples by EXAFS on Pt-L3 edge). The 

significant difference in activity as a function time observed in Figure 4.22 suggests that the 

nature of Pt sites, probably concerning the proportion of HC, UC and WC Pt sites determines 

the activity. Indeed, the uneven proportion of such Pt sites could be observed in Figure 4.7, 

clearly showing a higher relative proportion of HC and UC Pt sites for iPt/SiO2 when 

compared to NP_Pt/SiO2. 
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Figure 4.22: Glycerol conversion to gas products for iPt/SiO2 and NP_Pt/SiO2 with 

comparable amount of exposed Pt sites. 

It was discussed in Chapter 2 that HC and UC Pt sites would be more reactive 

than WC ones regarding the C-C and/or C-H bond breaking, and since iPt/SiO2 has a higher 

proportion of them, the conversion of glycerol would then be increased compared to 

NP_Pt/SiO2. Such low coordination Pt sites strongly attach CO, and thus would compete for 

glycerol and the product CO. The same is expected to occur on NP_Pt/SiO2, however with 

its lower proportion of HC and UC sites the effect of blocking some of them with CO would 

have a greater impact, consistent with the rapid decrease in conversion observed in Figure 

4.22. Therefore, despite the diverse GSR reaction conditions on literature, our catalytic 

results from the samples supported on bare silica are in agreement with theoretical and 

experimental descriptions, in which low coordination Pt sites are deeply involved on the 

promotion of glycerol decomposition steps.  

Figure 4.23 also exhibits the glycerol conversion to gas phase obtained for the 

sample NP_Pt/i6CeO2 (using a catalyst weight to achieve comparable amounts of exposed 
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Pt sites as iPt/SiO2). Regardless the absolute values of glycerol conversion, NP_Pt/i6CeO2 

reaches the level of the iPt/SiO2, while remaining less active than iPt/CeO2_5 (fixing the 

same number of Pt exposed sites). It is important to note that under these conditions, 

NP_Pt/i6CeO2 and iPt/CeO2_5 also possess similar amounts of CeO2 (mol) on the catalyst 

beds. The beneficial effect of CeO2 on glycerol conversion may prevail over the negative 

impact of the reduced proportion of the HC and UC Pt sites over NP_Pt/i6CeO2 compared to 

iPt catalyst. Therefore, the low coordination Pt sites and CeO2 were identified as determinant 

to favor the glycerol conversion to gas products, and the latter could also promote the WGS 

step during GSR reaction.  
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Figure 4.23: Glycerol conversion to gas products for iPt and NP_Pt catalysts with varying 

amount of exposed Pt sites. NP_Pt/i6CeO2b has a higher weight for this test (Table 4.8). 

Additionally, the deactivation profile for NP_Pt/i6CeO2 in Figure 4.23 is similar to 

iPt samples. Since this catalyst has a smaller fraction of HC Pt sites, a strong decrease in 

conversion would be expected to occur as seen for NP_Pt/SiO2 in Figure 4.22. In this case, 

as CO poisoning being the most probable reason for deactivation, the higher stability shown 

by NP_Pt/i6CeO2 may stem from the ability of CeO2 to promote the CO removal as CO2, 

reducing CO poisoning of low coordination Pt sites and resulting in conversion levels 

comparable to iPt samples. It could also reflect a change in reactivity of Pt sites due to the 

interface with ceria that we could not detect in the characterization step. Nevertheless, the 

presence of ceria in NP_Pt/i6CeO2 seems to compensate the lower amount of HC Pt sites 

on the NP_Pt sample. 

Having the role of Pt sites coordination already discussed, we focus now in the 

impact of the CeO2 phase (particle size and dispersion) in GRS. The glycerol conversion 

profiles for all NP_Pt samples are presented in Figure 4.24. 
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Figure 4.24: Glycerol conversion to gas phase for NP_Pt catalysts during GSR reaction. 

All the samples in Figure 4.24 were tested having the same amount of exposed 

Pt sites and it is possible to observe a trend in glycerol conversion to gas products with CeO2 

loading among catalysts with Pt NPs. The sample with no CeO2 has the smallest initial 

conversion, as well as the faster deactivation, remaining active for about 60 min on stream. 

With the addition of ceria, NP_Pt/i6CeO2 (lowest CeO2 loading), the conversion is 

significantly higher up to 60 min, but it fully deactivates 10 min later. As the CeO2 loading 

increases, the full deactivation is delayed (occurring around 100 minutes) and the conversion 

levels rise, with the samples NP_Pt/CeO2_5 and NP_Pt/i20CeO2 exhibiting similar profiles. 

As shown in Table 4.9, these catalysts have 7.9 and 12.1 x 10-6 mol of CeO2 respectively, 

and despite this small difference and the distinguished CeO2 formation method (CeO2 NPs or 

Ce3+ impregnation) almost no effect is noticed on conversion values. In turn, the sample 

NP_Pt/i12CeO2 is slightly more active and resistant to deactivation. As observed in the 

characterization section (4.3.1), CeO2 domains formed by Ce3+ impregnation may exhibit a 

broad size distribution, having smaller and larger NPs over silica surface. As discussed in 

section 2.2.2, it has been reported in literature that high amounts of CeO2 and even bulk 

CeO2 led to the deactivation of the catalyst due to the formation of byproducts; however, our 

data shows that there must be an optimal Pt:Ce ratio, within a given WHSV and glycerol 

concentration solution, which enables glycerol conversion for NP_Pt catalysts. It was not 

possible to evaluate whether liquid byproducts were present on the condensate collected 

during reaction for all NP_Pt samples, hence to determine if the deactivation is caused by the 

formation of lateral products is not possible. 

It is important to add that the optimal Pt:Ce ratio (which is the best compromise 

between activity and deactivation) may change with reaction conditions (mass of catalyst, 
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temperature, glycerol concentration and feed flow). Therefore, the promoting role of CeO2 

depends strongly on the reaction conditions and catalyst nature. 

To verify if the trend in activity can be related to the amount of exposed Ce 

atoms, the estimate for each catalyst was performed (as in section 4.3.2) and the values are 

shown in Table 4.9. While Figure 4.25a exhibits the glycerol conversion rates per exposed Pt 

site, Figure 4.25b shows the rates normalized by the exposed Ce atoms.  
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Figure 4.25: Glycerol conversion rate for NP_Pt catalysts during GSR reaction normalized by 

a) exposed Pt sites and b) Ce exposed atoms. 

Although the amount of exposed Ce sites are similar among NP_Pt/CeO2_5, 

NP_Pt/i6CeO2 and NP_Pt/i12CeO2 samples, the conversion rate normalized by Ce atoms 

is still higher for the ones with intermediate CeO2 loading. It can be observed how the rate 

decreases for the sample with the highest amount of exposed Ce atoms. The better 

performance displayed by NP_Pt/i12CeO2 may stem from the optimal Pt:Ce ratio or also 

from a broad size distribution of CeO2 NPs. Regardless the amount of Ce exposed, the 

probability of creating interfacial Pt/CeO2 sites for NP_Pt samples may be the factor dictating 

the activity. 

Table 4.9: Properties of NP_Pt catalysts and their performance on GSR reaction. 

Sample 

CeO2 

amount 

(x10-6 mol) 

Number 

of Pt 

sites 

(x1017) 

CeO2 size 

domain 

(nm)a 

Exposed 

Ce atoms 

(x1018)b 

Max Glycerol  

rate by Ce 

(min-1)c 

NP_Pt/CeO2_5 7.9 5.8 4.9 1.6 34 

NP_Pt/i6CeO2 4.6 5.8 2.8 1.6 29 

NP_Pt/i12CeO2 6.6 5.8 4.2 1.5 35 

NP_Pt/i20CeO2 12.1 5.8 5.3 2.2 22 
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a: CeO2 size domain was estimated by XRD measurements using Scherrer’s equation. 

b: Estimated considering that one CeO2 unit cell (fluorite structure, lattice parameter of 0.541 

nm and volume of 0.158 nm3) has 4 Ce atoms. 

c: Maximum glycerol conversion rate during time on stream. 

Looking in detail the distribution of products of NP_Pt catalysts with varying CeO2 

loading (Figure 4.26), up to the deactivation time (60 minutes for NP_Pt/i6CeO2 and 100 

minutes for the other CeO2 samples) H2 fractions are similar, indicating the role of WGS step 

during GSR reaction is insensitive to the CeO2 loading.  
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Figure 4.26: Distribution of gas products during GSR reaction for the samples with different 

CeO2 loading. a) NP_Pt/i6CeO2, b) NP_Pt/i12CeO2, c) NP_Pt/i20CeO2 catalysts. 

Comparing the samples NP_Pt/CeO2_5 and NP_Pt/i12CeO2 in Figure 4.27, the 

equivalent CeO2 loadings (12% wt) and distinct CeO2 nature (formed by pre-formed CeO2 

NPs or by Ce3+ impregnation, having mean sizes of 4.2 and 4.9 nm, respectively), also 

resulted in comparable glycerol conversions and distribution of products. Thus, the results 

suggest the reaction is indifferent to the nature of CeO2 domains within the explored 

conditions with the same Pt:Ce ratio. 
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Figure 4.27: a) Glycerol conversion rates for NP_Pt/CeO2_5 and NP_Pt/i12CeO2. 

Distribution of gaseous products during GSR reaction for b) NP_Pt/CeO2_5 and c) 

NP_Pt/i12CeO2. 

The evaluation of Pt catalysts composed of pre-synthetized Pt NPs in common 

for all different supports allowed the observation of the effect of CeO2 loading, which is a 

compromise between the improvement in GSR and WGS reactions (even overcoming the 

lack of low coordination Pt sites) and the negative role of high amounts of CeO2 (low Pt:Ce 

ratios) which can lead to byproducts formation.  

The study of Pt catalysts for GSR reaction showed the importance of low 

coordination Pt atoms, possibly acting as the active sites for glycerol activation, and the 

promoting role of CeO2, whether as enhancing the activation of glycerol, reducing CO 

poisoning and favoring WGS reaction. The presence of ceria was crucial to render NP_Pt 

catalysts active, mostly because low coordination Pt atoms are not the dominant sites. 

Additionally, the Pt:Ce ratio has a great impact on glycerol conversion to gas products, 

requiring an optimal valuet so the reaction outcome is a balance between glycerol and CO 

conversions and deactivation caused by formed byproducts. On the other hand, WGS 

reaction step occurring during GSR reaction demonstrated to be indifferent to CeO2 loading, 

size and nature, showing equivalent reactivity in all evaluated conditions.  

Rossetti et al.24 observed that supports with many OH groups and without the 

predominance of Lewis acid sites (as SiO2)  showed higher amounts of coke deposited on 

the catalysts after GSR reaction, however the deactivation did not follow the same trend in 

coke deposition. The authors then proposed that the formation of coke on the support was 

not directly related to catalyst deactivation, as long as the exposed metallic sites (Ni) were 
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still active, not undergoing deactivation for some other reason. Analogously, the same could 

be true for the NP_Pt samples, in the case of formation of lateral products in ceria surface, it 

should not lead to deactivation of glycerol decomposition provided the Pt sites were still 

available. However, under reaction conditions the active Pt sites for glycerol decomposition 

seem to be blocked by CO, thus WGS step should take place to remove CO by forming CO2, 

thus rendering Pt sites available again. In the case glycerol interaction over ceria caused the 

formation of coke or other byproducts on its surface, WGS step could not be promoted, 

leading to deactivation of the catalyst towards both WGS and glycerol decomposition 

reactions. This proposition is consistent with the case that NP_Pt/CeO2 samples deactivate 

to the same extent as NP_Pt/SiO2 (Figure 4.24), which has only a small fraction of HC and 

UC Pt sites available and no cleaning promoted by WGS step. 

The studies of both set of Pt catalysts regarding their performance for GSR 

reaction provided valuable insights about the thoughtful design of systems to favor higher 

glycerol conversion, H2 selectivity and stability. More importantly, using diversified synthesis 

methods and characterizations, it was possible to distinguish key factors driving high-activity 

catalysts, not only the chemical composition of support, but potential active sites and their 

essential interaction with promoters.  

4.4 GENERAL CONCLUSIONS 

This chapter regarding Pt/CeO2 and Pt/SiO2 catalysts demonstrated the 

importance of several properties affecting the catalytic activity for WGS and GSR reaction. 

Varying the preparation of Pt catalysts evidenced the distinct reactivity of Pt sites having 

different atomic coordination for both explored catalytic reactions. Among WC, UC and HC Pt 

sites within a NP, the latter are more reactive towards glycerol decomposition; however, they 

are more susceptible towards poisoning for strongly binding CO. When WGS reaction is 

taking place, such CO poisoning is minimized at the interface with ceria through the reaction 

to form CO2, and the success of this step relies on the degree of carbonate formation over 

ceria, which may block the interface and decrease reaction rates.  

The expected promoting role of ceria in WGS reaction was evidenced and the 

increase in reaction rates mostly relies on the odds to create interfacial Pt/CeO2 sites, 

whether by increasing CeO2 loading or decreasing Pt and/or CeO2 particle size. In situ 

measurements showed the exclusive participation of the interfacial Pt/CeO2 (HC Pt) sites on 

the WGS reaction pathway and also pointed out that such sites are the ones related to the 

faster reaction pathway to produce CO2. Additionally, it was possible to identify that the 

reaction mechanism occurs by the carboxylate intermediate through a faster route involving 

HC and UC Pt sites, while the slower path relates formate intermediates to WC Pt sites.  
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Concerning GSR reaction, the HC Pt sites were identified as the most active 

towards glycerol decomposition, which could also take place without ceria. However, the 

clean-up of such Pt sites is essential to assure that the catalyst remain active, thus WGS 

step is determinant not only to increase H2 selectivity but also to prevent catalyst 

deactivation. Thus, the promoting effect of CeO2 for GSR reaction mostly affects the release 

of CO from such HC Pt sites by WGS reaction. Also, the presence of ceria proved to be 

beneficial on C-C bond breaking and to promote increased CO2 and H2 fractions, however its 

promoting effect is limited to a strict loading range, up to that strong catalyst deactivation is 

observed. It is suggested that there is a compromise between enhancing WGS reaction step 

and favoring byproducts formation over CeO2 that dictates the promoting ceria composition. 

Hence, increasing H2 fraction on the reaction products turns out to be an intricate equation.  

Moreover, it was observed the strong dependence of reaction pathways and catalyst 

performance over different reaction conditions; 

Hence, for both reactions investigated in this chapter, the importance of Pt/CeO2 

interfacial sites was highlighted, and catalyst development must take into account the 

optimization of their reactivity and amount. 

In situ ME-DRIFTS experiments can be finely designed to probe a particular 

metal site and it can provide valuable information regarding reaction pathways occurring at 

the surface, being essential to better understand catalytic processes that will facilitate the 

design of more efficient systems. On the other hand, uniquely investigating true active sites 

is still a challenge, as well as to quantitatively determine the dominant reaction pathways 

taking place under a specific reaction condition.  

This chapter evidenced the extreme importance of developing well-designed and 

size controlled catalysts to evaluate the effect of specific and isolated parameters on catalytic 

performance, such as distinct metal sites, metal and promoter loading, NP size. Hence, a 

strong effort is still needed to improve synthesis protocols in order to achieve such controlled 

systems. Moreover, it is relevant to stress the importance of combining the rich information 

provided by theoretical studies to assist in the assembly of conjectures, especially the 

aspects we are not able to get hold of experimentally. 
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  Chapter 5
FINAL REMARKS AND PERSPECTIVES 

The present work has demonstrated the importance of a thoughtful catalyst 

design to enable the independent evaluation of specific parameters that may be crucial to 

catalytic performance. Such investigation is essential to better understand the system 

behavior and thus tune catalytic properties, aiming the development of more efficient 

catalysts. Factors as the synthesis method (addition of Pt phase), nature of support and 

metal oxide promoters, size control of metal and oxide NPs and the creation of interfacial 

sites for bifunctional catalysts have a key role in enhancing the desired catalytic activity and 

H2 selectivity and also allow a deeper comprehension of such systems. It was also 

demonstrated the importance of isolating overlapping parameters to evaluate the impact of 

one given factor (as the distinct reactivity of Pt sites and the size of CeO2 NPs). 

More specifically, the bifunctional systems explored herein were composed of Pt 

as the metallic phase, supported on a high surface area metal oxide (Al2O3 or SiO2) and were 

also promoted with a reducible metal oxide (VOx or CeO2). The characterization of these 

systems provided the correlation of their catalytic activity for GSR and WGS reactions to 

intrinsic properties of metal, support, promoter and metal/metal oxide interface. Related to 

the metallic phase, it was shown that the nature and relative fraction of the exposed atoms 

within a nanoparticle, regarding their coordination environment and interaction with the 

promoter, were important factors determining the catalytic activity. Concerning the support, 

its nature, specifically the acid-base characteristic of the surface, also proved to be essential 

to favor H2 production. In its turn, the promoter nature is also pivotal to the catalytic 

performance, as well as its proximity with the metallic phase, whereas factors as its size and 

loading are seemingly influencing on the probability of creating additional active interfacial 

sites. In both vanadium and ceria systems, the catalytic activity, selectivity towards H2 and 

stability was utterly dependent on the increased creation of interface metal-reducible oxide 

interface and its efficiency in promoting the transfer of species between them. Moreover, it 

was evidenced that by tuning catalyst properties (as varying the loading of promoter or 

metallic dispersion) results in a complex interplay between increasing catalytic activity, H2 

selectivity and maintaining stability with time on stream.  

Therefore, new highly active, selective and stable catalysts can be designed by 

effectively creating large quantities of active interfacial sites. This can be achieved through 

maximizing the amount of highly under-coordinated metal sites spread on the support 

surface, at the same time optimizing the interaction of such sites with the promoter (reducible 
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oxide), to facilitate the transfer of species (oxygen, hydrogen, hydroxyl groups) among them, 

thus avoiding the formation of strongly attached and site-blocking species.  

It is also important to highlight the importance of studying model reaction as WGS 

and GSR, which were not conducted with realistic feed compositions (with H2 and CO2 

presented in the industrial reformate gas or with crude glycerol from biodiesel production, 

respectively), but still provides rich insights that can be extrapolated to real conditions to 

improve catalytic performance. 

Noteworthy, the in situ studies have proved to be an essential approach to probe 

structural and electronic evolution of the catalysts during reaction (by a bulk technique as 

XAFS), or to follow reaction intermediates and metal sites on the catalyst surface (by 

DRIFTS). Additionally, ME-DRIFTS experiments coupled to PSD methodology showed to be 

a valuable tool to distinguish active intermediates from spectators and to provide kinetic 

information about the simultaneous reaction pathways taking place during the catalytic 

reaction, as well as to demonstrate the exclusive participation of a given metal active site on 

the reaction. On the other hand, there is plenty of room for the development of more 

powerful, sensitive and surface site-specific approaches to probe true active sites and 

quantitatively determine the contribution of concomitant reaction pathways. This could be 

achieved, for example, by associating modulation-excitation methodology to several time-

resolved techniques performed simultaneously under reaction conditions. Ideally it would be 

interesting that an element-specific spectroscopy (such as XAFS, to probe the element in the 

active site) would be applied with infrared spectroscopy (to probe molecular vibrations, as 

DRIFTS). It is also important that the techniques allow the measurements to be acquired with 

speeds in the same order of magnitude as the evolution of active sites and reaction 

intermediates, and that the data has good signal quality. If the modulation of reactants were 

performed using isotopes, for example, we could observe the participation of lattice oxygen  

during WGS reaction, thus the importance of the redox mechanism. Some techniques are 

already being associated for in situ experiments, such as XRD and XAFS, or XAFS and 

DRIFTS, however many results end up limited by time resolution issues or masked by the 

signal of non-active species or sites. Once the catalyst synthesis is advanced enough to 

promote the selective deposition of the element of interest, creating several single active 

sites over the surface, probing only these specific sites can be possible.  
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APPENDIX 
ADDITIONAL WORK 

 

5.1 The crucial role of the support in the transformations of bimetallic 

nanoparticles and catalytic performance 

This chapter contains a brief description of the work entitled “The crucial role of 

the support in the transformations of bimetallic nanoparticles and catalytic performance”, 

published by Priscila Destro, Tathiana M. Kokumai, Alice Scarpellini, Lea Pasquale, Liberato 

Manna, Massimo Colombo, Daniela Zanchet, reprinted with permission from ACS Catalysis, 

Copyright 2017. The copyright clearance can be found in PUBLICATION LICENSES 

(pg.131). 

Reference: ACS Catal. 2018, 8, 1031−1037. 

My contribution to this work was mainly in the measurement, analysis and 

interpretation of synchrotron-based experiments, with a special focus on XAS data 

comprehension. I also contributed to the manuscript writing and discussion of results.  

5.1.1  Abstract 

The combination of two or more metals, forming alloys, core-shells or other 

complex hetero metallic nanostructures has substantially spanned the available options to 

finely tune electronic and structural properties, opening a myriad of opportunities that has yet 

to be fully explored in different fields. In Catalysis, the rational exploitation and design of 

bimetallic and trimetallic catalysts has just started. Several major aspects such as stability, 

phase-segregation and alloy-dealloy mechanisms have yet to be deeply understood and 

correlated with intrinsic factors such as nanoparticle size, composition, structure and with 

extrinsic factors, or external agents, such as temperature, reaction gases and support. Here, 

by combining model catalysts based on AuCu nanoparticles supported on silica or alumina 

with in situ characterization techniques under redox pretreatments and CO oxidation 

reaction, we demonstrate the crucial role of the support with regards to determining the 

stable active phase of bimetallic supported catalysts. This strategy, associated to theoretical 

studies, could lead to the rational design of unique active sites. 
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5.1.2  Graphical Abstract 

 

5.2 Dumbbell-like Au0.5Cu0.5@Fe3O4 Nanocrystals: Synthesis, Characterization, and 

Catalytic Activity in CO Oxidation 

This chapter contains a brief description of the work entitled “Dumbbell-like 

Au0.5Cu0.5@Fe3O4 Nanocrystals: Synthesis, Characterization, and Catalytic Activity in CO 

Oxidation” published by Sharif Najafishirtari, Tathiana Midori Kokumai, Sergio Marras, 

Priscila Destro, Mirko Prato, Alice Scarpellini, Rosaria Brescia, Aidin Lak, Teresa Pellegrino, 

Daniela Zanchet, Liberato Manna and Massimo Colombo, reprinted with permission from 

ACS Applied Materials and Interfaces, Copyright 2016. The copyright clearance can be 

found in PUBLICATION LICENSES (pg. 132). 

Reference: ACS Appl. Mater. Interfaces 2016, 8, 28624−28632. 

My contribution to this work was in the measurement, analysis and interpretation 

of XAS data. I also contributed to the manuscript writing and discussion of results.  

5.2.1  Abstract 

We report the colloidal synthesis of dumbbell-like Au0.5Cu0.5@Fe3O4 nanocrystals 

(AuCu@FeOx NCs) and the study of their properties in the CO oxidation reaction. To this 

aim, the as-prepared NCs were deposited on γ-alumina and pre-treated in an oxidizing 

environment to remove the organic ligands. A comparison of these NCs with bulk Fe3O4-

supported AuCu NCs showed that the nanosized support was far more effective in 

preventing the sintering of the metal domains, leading thus to a superior catalytic activity. 
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Nanosizing of the support could be thus an effective, general strategy to improve the thermal 

stability of metallic NCs. On the other hand, the support size did not affect the chemical 

transformations experienced by the AuCu NCs during the activation step. Independently from 

support size, we observed indeed the segregation of Cu from the alloy phase under oxidative 

conditions, as well as the possible incorporation of the Cu atoms into the iron oxide domain. 

5.2.2  Graphical Abstract 

 

5.3 Alloying Tungsten Carbide Nanoparticles with Tantalum: Impact on 

Electrochemical Oxidation Resistance and Hydrogen Evolution Activity 

This chapter contains a brief description of the work entitled “Alloying Tungsten 

Carbide Nanoparticles with Tantalum: Impact on Electrochemical Oxidation Resistance and 

Hydrogen Evolution Activity” published by Sean T. Hunt, Tathiana Midori Kokumai, Daniela 

Zanchet, and  uriy Román-Leshkov, reprinted with permission from ACS Journal of Physical 

Chemistry C, Copyright 2015. The copyright clearance can be found in PUBLICATION 

LICENSES (pg. 133). 

Reference: J. Phys. Chem. C 2015, 119, 13691−13699 

My contribution to this work was in the measurement, analysis and interpretation 

of XAS data. I also contributed to the manuscript writing and discussion of results.  

5.3.1  Abstract 

Metal-terminated bimetallic carbide nanoparticles (NPs) of tungsten and tantalum 

are synthesized in a monodisperse particle size distribution of 2−3 nm. The bimetallic 

particles feature enhanced electrocatalytic behavior with respect to the monometallic 

composition. X-ray absorption near-edge structure (XANES) and extended X-ray absorption 

fine structure (EXAFS) measurements indicate that the Ta0.3W0.7C NPs consist of a well-

mixed random alloy featuring a compressed lattice that favorably impacts stability and 

catalytic activity. Electrochemical testing shows that the incorporation of 30% tantalum into 

the tungsten carbide lattice increases the electrochemical oxidation resistance of the NPs. 

The onset of surface passivation in 0.5 M H2SO4 shifted from +0.2 V vs RHE to +0.45 V vs 

RHE, and the maximum surface oxidation current shifted from +0.4 to +0.75 V vs RHE. The 

2.0 2.1 2.2 2.3 2.4 2.5 2.6

0.100

1.000

 AuCu@FeOx/Alumina

 Au@FeOx/Alumina

 AuCu/Magnetite

 

 

R
a
te

 (
m

m
o

l 
C

O
/s

/g
A

u
)

1000/T (1/K)

20 nm10 nm

Al2O3
AuCu

Fe3O4



129 
 

activity toward hydrogen evolution (HER) of the carbon-supported Ta0.3W0.7C NPs is 

preserved relative to the activity of unmodified carbon-supported WC NPs. The increase in 

electrochemical oxidation resistance is attributed to the presence of surface Ta moieties as 

determined by X-ray photoelectron spectroscopy (XPS) while the preservation of the HER 

activity is attributed to the observed lattice compression. 

5.3.2  Graphical Abstract 
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VOx-Pt/Al2O3 catalysts for hydrogen production 
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The crucial role of the support in the transformations of bimetallic 

nanoparticles and catalytic performance 

 

  



132 
 

Dumbbell-like Au0.5Cu0.5@Fe3O4 Nanocrystals: Synthesis, Characterization, and 

Catalytic Activity in CO Oxidation 

 

 

  



133 
 

Alloying Tungsten Carbide Nanoparticles with Tantalum: Impact on 

Electrochemical Oxidation Resistance and Hydrogen Evolution Activity 
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On the importance of metal-oxide interface sites for the water-gas shift reation 

over Pt/CeO2 catalysts 
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Utilizing Quantitative in Situ FTIR Spectroscopy To Identify Well- Coordinated Pt 

Atoms as the Active Site for CO Oxidation on Al2O3‑Supported Pt Catalysts 
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DRIFTS study of CO adsorption on Pt nanoparticles supported by DFT 

calculations 
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Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia 
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Steam reforming of glycerol: Hydrogen production optimization 

 


