
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Roberto Alejandro Hidalgo Castro

A Framework for Context-Aware
Approximate Computing

Um framework para computação aproximada
sensível ao contexto

CAMPINAS
2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296894795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Roberto Alejandro Hidalgo Castro

A Framework for Context-Aware
Approximate Computing

Um framework para computação aproximada
sensível ao contexto

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Lucas Francisco Wanner

Este exemplar corresponde à versão final da
Dissertação defendida por Roberto Alejandro
Hidalgo Castro e orientada pelo Prof. Dr.
Lucas Francisco Wanner.

CAMPINAS
2018

Agência(s) de fomento e nº(s) de processo(s): Não se aplica.

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Hidalgo Castro, Roberto Alejandro, 1992-
 H53f HidA framework for context-aware approximate computing / Roberto Alejandro

Hidalgo Castro. – Campinas, SP : [s.n.], 2018.

 HidOrientador: Lucas Francisco Wanner.
 HidDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Hid1. Computação consciente de energia. 2. Computação aproximada. 3.

Framework (Programa de computador). I. Wanner, Lucas Francisco, 1981-. II.
Universidade Estadual de Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Um framework para computação aproximada sensível ao contexto
Palavras-chave em inglês:
Energy-aware computing
Approximate computing
Framework (Computer program)
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Lucas Francisco Wanner [Orientador]
Rodolfo Jardim de Azevedo
Lucas Mello Schnorr
Data de defesa: 09-05-2018
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Roberto Alejandro Hidalgo Castro

A Framework for Context-Aware
Approximate Computing

Um framework para computação aproximada
sensível ao contexto

Banca Examinadora:

• Prof. Dr. Lucas Francisco Wanner
UNICAMP

• Prof. Dr. Rodolfo Jardim de Azevedo
UNICAMP

• Prof. Dr. Lucas Mello Schnorr
UFRGS

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 09 de maio de 2018

Agradecimentos

I would like to thank my advisor, Lucas Wanner for guiding and supporting me over
development of my thesis. For being an excellent researcher, mentor and instructor. Also,
I would especially like to thank my family for all the support and constant help that you
gave me during my work; in particular, I would like to thank a lot my father Alejandro, my
mother Olinda and my sister Maria. Finally, I would like to really thank to my girlfriend
Stacy for all the constant encouragement and support during this important step in my
life.

Abstract

Approximate computing can considerably improve energy efficiency in applications where
an approximate result is enough or by relaxing the need for fully precise operations.
However, approximate computing applications typically aren’t able to take advantage of
the computer context dynamically. By improving the computer’s access to context in real-
time, approximate applications can get information about the current computer power
consumption, take decisions according to previously fixed rules, and use this information
to produce a more suitable approximation for the current context.

We built a library that includes a series of functions with different implementations
wherein each implementation has a different precision result, and a system service that
monitors the computer context, including energy consumption, and according to this
context (using specified rules), changes the library implementations used by applications
in real-time. Applications using the library can therefore save energy when necessary,
without compromising quality of results.

We evaluate our context-aware approximate computing library with applications that
are suitable for approximations. For each of these applications, we measured the energy
consumption of the computer when they are run using the highest precision implementa-
tions of the library (that most energy intensive implementations). Knowing this value, we
were able to fix an goal energy consumption value (a percentage of the value previously
calculated), and using rules around this value, increase or decrease the precision of the
implementations used by an application.

Our results show that in our case studies we are able to trade-off at most of 4% degra-
dation in application quality for up to 62% savings in energy consumption. Furthermore,
we fix an energy consumption goal for each application, and the applications were able to
adapt at run-time to this goal very closely.

Resumo

Computação aproximada pode melhorar consideravelmente a eficiência energética em apli-
cações onde um resultado aproximado é suficiente. Neste trabalho, construímos bibliote-
cas de funções padrão que incluem uma série de funções com diferentes implementações,
onde cada implementação tem um resultado de precisão diferente. Desenvolvemos ainda
um serviço de sistema que monitora o contexto do computador, incluindo o consumo de
energia e, de acordo com esse contexto (usando regras especificadas), altera as implemen-
tações de biblioteca usadas pelos aplicativos em tempo real. Dessa forma, o aplicativo
produz resultados aproximados, mas aceitáveis, ao mesmo tempo que limita o consumo
de energia.

O sistema desenvolvido foi testado com aplicativos que são adequados para aproxi-
mações. Para cada uma das aplicações, medimos o consumo de energia do computador
quando elas são executadas usando as implementações de maior precisão da biblioteca
(as implementações mais consumidoras de energia). Conhecendo esse valor, conseguimos
fixar um valor de consumo de energia de meta (uma porcentagem do valor calculado an-
teriormente) e desenvolvemos regras em torno desse valor, aumentando ou diminuindo a
precisão das implementações usadas por um aplicativo.

Os resultados mostram que, em nossos estudos de caso, podemos limitar a degradação
máxima de 4% na qualidade de resultados das aplicações para obter até 62% de economia
no consumo de energia. Além disso, fixamos uma meta de consumo de energia para cada
aplicativo, e os aplicativos foram capazes de se adaptar em tempo de execução a essa
meta.

List of Figures

3.1 One argument function declaration . 22
3.2 Function helpers . 22
3.3 Function helpers for the cosine function . 23
3.4 Function wrappers of the sin function . 23
3.5 Macros expanded for the function wrappers of the sin function 24
3.6 Relative execution time per function . 25
3.7 System interaction with the target application 26
3.8 Signal handling function . 27

4.1 Bodytrack: Image precise output vs approximate output 30
4.2 Facesim: Precise results vs approximate results 31
4.3 Ferret: Precise results vs approximate results 32
4.4 Vips: Image precise output vs approximate output 33
4.5 FFT: Precise results vs approximate results 34
4.6 Basicmath: Precise results vs approximate results 35
4.7 Susan: Image precise output vs approximate output 36
4.8 Time savings for the applications . 37
4.9 Energy savings for the applications . 37
4.10 Quality Loss for the applications . 38
4.11 Power vs time - Basicmath . 40
4.12 Power vs time - FFT Application . 41
4.13 Power vs time - Bodytrack . 42
4.14 Power vs time - Bodytrack modified version 43
4.15 Power vs time - Susan . 44
4.16 Power vs time - Vips . 45

List of Tables

2.1 Approximate Computing Frameworks . 20
2.2 Context-Aware Computing Frameworks . 20

3.1 Functions currently supported by the library 24
3.2 Memory usage using the library . 25

4.1 Approximate Computing Applications . 36

Contents

1 Introduction 12

2 Related work 14
2.1 Approximate Computing . 14

2.1.1 Compiler Techniques . 14
2.1.2 Runtime Techniques . 15
2.1.3 Hardware Design Techniques . 16

2.2 Context-aware Computing . 17
2.2.1 Practical applications . 17
2.2.2 Application Support Frameworks 17

2.3 Summary . 19

3 System design and implementation 21
3.1 Broad Overview . 21
3.2 Variable quality library design . 21

3.2.1 Functions supported . 23
3.2.2 Memory Usage . 24

3.3 Dynamic Adaptation . 25
3.3.1 Signal Handling . 26
3.3.2 Automatic Adaptation . 26
3.3.3 Monitoring System . 27

4 Experiments 28
4.1 Experimental Setup . 28

4.1.1 VarEMU . 28
4.1.2 Parameters for power model . 28

4.2 Target Applications . 28
4.2.1 Bodytrack . 29
4.2.2 Facesim . 30
4.2.3 Ferret . 31
4.2.4 Vips . 32
4.2.5 FFT . 33
4.2.6 Basicmath . 34
4.2.7 Susan . 35

4.3 Sumary of results . 36
4.3.1 Quality and Energy . 36

4.4 Dynamic Adaptation . 39
4.4.1 Case study 1: Basicmath with 61% energy goal. 39
4.4.2 Case study 2: FFT with 40% energy goal and a threshold. 41

4.4.3 Case study 3: Bodytrack with 84% and 60% energy goal. 42
4.4.4 Case study 4: Susan with 92% energy goal. 43
4.4.5 Case study 5: Vips with 81% and 110% energy goal. 44

5 Conclusion 46

Bibliography 48

12

Chapter 1

Introduction

Approximate computing has emerged as a promising approach to the energy-efficient
implementation of digital systems. Approximate computing relies on the ability of many
systems to tolerate some loss of quality in the computed result. By relaxing the need
for fully precise operations or where an approximate result is sufficient, approximate
computing techniques allow considerably improved energy efficiency.

While precision is important for some operations, many applications are fundamentally
approximate. Perfect answers are not necessary or even impossible in some domains
such as machine learning, speech recognition, computer vision, graphics and physical
simulation. In many situations systems waste time, energy, and complexity to provide
uniformly precise operation for applications that do not require it. However, This is not
a permission for computers to abandon predictability in favor of errors. Abstractions are
needed that incorporate approximate operation orderly, these abstractions should lead to
treat accuracy as a resource and trading it for resources such as time, space, or energy.

In this work, we apply approximate computing to applications for reducing their qual-
ity while obtaining reduced energy consumption. We develop a library with functions
that can be used in other applications but we include many implementations of the same
function, each of these implementations has certain level of quality and certain level of
precision. So, the objective is that a certain application uses these implementations and
trades between them, sacrificing some quality but reducing the energy consumption of the
application. Our library contains only math function but the idea can be applied to any
kind of functions. We made this library to be included in any application as automatically
as possible through code parsing, but giving also the opportunity that the user chooses
which functions wants to use. We have evaluated this library with applications, getting
in most cases good results, up to 62% saving in energy consumption for at most 4 %
degradation in application quality.

In addition to this library, we have built a monitoring system that constantly measures
the energy consumption of the computer while the application that uses the library is
running. This system has a energy goal, and depending whether the computer energy
consumption is lower or higher that this value, it sends signals to the application to
reduce or increase the precision of the functions used in the library. When the energy is
lower than the goal, it means that we can increase the energy consumption, so we are
able to have more precision in our functions and a signal is sent to increase the precision

13

(increase the quality). Similarly, if the energy is higher than the goal, we should decrease
our energy consumption and to manage that we should decrease the precision (decrease
the quality). Using this method, we have evaluated this work with many applications, and
verified that the energy consumption of the computer when the applications are running
oscillates around the energy goal value. This energy goal value is calculated using the
highest value of the energy consumption for a period of time, which is when the application
is running using the best quality (the highest possible precision). So, the energy goal is
percentage of the highest energy consumption for a period of time and system monitoring
measures the energy for the same period of time and compares with it. This percentage
can be specified by the user.

This document is organized as follows. In the second chapter, we will make a review of
the related works for our work, describing works that were made in the field of approximate
computing and context-aware computing. Then in the third chapter, we will describe the
system design of the developed library and how this library was implemented together
with the monitoring system. applications. In fourth chapter, we will talk about the
experiments that were made to evaluate our work. We talk about the experimental setup
together with the applications that were evaluated for this work in conjunction with the
modifications made. Also, we will present the results that were obtained for the all these
applications using this library. And in the last chapter, we will give the conclusions of
this work.

14

Chapter 2

Related work

We have explore related works in two main topics: approximate computing and context-
aware computing. In this chapter, we will discuss works that made a contribution in these
two topics and are related to our work.

2.1 Approximate Computing

There has been an increased interest in the field of approximate computing. Many of the
following works have been using different approaches according to the system in discussion.
Some of them focus on a language or compiler level, others use the operating system to
make energy trade-off and another works build special hardware architectures.

2.1.1 Compiler Techniques

There is a series of works that use compiler techniques to make the approximation. Some
of them focus in creating a special programming language that exploits language con-
structs and features. EnerJ [21] uses type qualifiers to tell which data can be subject
to approximate computation. By making use of these types, approximate variables can
be assigned to low-power operations, low-power storage and energy efficient algorithms
provided by the user can be used with these types of data. EnerJ was tested with many
applications showing its effectiveness, with significant potential energy savings (10%–50%)
and very little lost of accuracy.

PetaBricks [2] is a parallel language and compiler, based in having many implementa-
tions of multiple algorithms to solve a certain problem. In this language uses algorithmic
choice including different automatic parallelization techniques, data distributions, algo-
rithmic parameters, transformations, and blocking. When choosing between methods,
the compiler is able to tune a program so it gets optimal efficiency for a desired level of
accuracy.

Finally, we have Neural Acceleration for General-Purpose Approximate Programs [7],
that uses a learning approach to accelerate approximate programs using an algorithm
transformation called the Parrot transformation, these algorithm selects and trains a
neural network to mimic a region of imperative code. Since neural networks produce ap-
proximate results, the neural acceleration makes use of a programming model that allows

15

programmers to identify code regions suitable for approximation that can produce impre-
cise but acceptable results. Approximate code regions are faster and more energy efficient
than executing the original code. The results show that NPU acceleration provides a
speedup of 2.3 and energy savings of 3.0 on average with quality loss of at most 9.6%.

2.1.2 Runtime Techniques

Approximate computing with a programming language may also rely on runtime level
mechanism. Green [3] for instance, is a system that enables the approximation expensive
functions and loops and operates in two phases. The first phase is the calibration phase
that builds a model of the quality of service loss produced by the approximation. This
model is used later in the second phase, the operational phase, to make approximation
decisions based on constraints specified by the user. This phase also includes an adaptation
function that monitors the runtime behavior and changes the approximation decisions.
The effectiveness of Green was evaluated implementing a system and language extensions
using the Phoenix compiler framework. The experiments touch domains such as graphics,
machine learning and signal processing, and show significant improvements in performance
and energy consumption.

X-Ware [20] is a computing framework which components used by a certain application
can take different characteristics and forms across its lifetime with the goal of adjusting to
dynamic requirements. X-Ware explores dynamic choice of implementations for certain
system components, having different trade-offs between quality and resource usage; and
the change in non-functional characteristics of these components, like speed and energy
consumption, due to process and environmental variations.

Eon [24] is a runtime system and programming language for supporting the develop-
ment of perpetual systems and allows programmers compose programs from components
written in C. Eon is an energy-aware programming language, that annotates paths through
the program with different energy states. Eon dynamically adapts these states according
to predicted energy levels, choosing the flow of execution and adjusting it, maximizing
the quality of service under energy constraints.

JouleGuard [12] is a runtime control system that manages approximate applications
with system resource usage to provide control guarantees of energy consumption, while
maximizing accuracy. JouleGuard was implemented and tested it on three different plat-
forms (mobile, tablet, and server) with eight different approximate applications created
from two different frameworks. JouleGuard provides near optimal accuracy, adapts to
phases in application workload, and provides better outcomes than application approx-
imation alone. Another advantages is that JouleGuard is general with respect to the
applications and systems that it manages, which makes it suitable for a good amount of
approximate computing frameworks.

In [23], is proposed a method for moving selection of processing platform in contin-
uous run-time choice. The idea is to detect illegally parked vehicles in urban scenes.
For each detector power, time, and accuracy information is measure constantly, so an
anomaly measure is assigned based on its trajectory and location compared with learned
movement patterns. The scenes with high behavioral anomalies are processed with faster

16

but more power-consumption implementations, but routine periods are processed with
power-optimized and less accurate slower versions.

ViRUS [27] is an application runtime support system that swaps between blocks of
code of equivalent functionality but with different quality with the goal of energy efficiency.
In ViRUS, the operating system adapts quality according to certain energy-aware policies
making use of techniques for algorithmic choice in runtime, adapting with minimal inter-
vention and exposing quality information, that can be configured by the developers. The
application of ViRUS using polymorphic math library showed upwards of 4% degradation
in application quality for a band of upwards of 50% savings in energy. ViRUS is tested for
applications such us the Whetstone benchmark, and Blackscholes and Swaptions from the
Parsec suite [4], for which library functions represent a significant fraction of application
energy and time cost. In this work, we extend the idea of ViRUS to handle context-aware
energy trade-offs, and explore it with several approximate applications. Unlike ViRUS,
our framework presents a simplified adaptation mechanism with energy goal and is able
to run with minimal user intervention. Also, our experiments present a much larger set
of apps.

2.1.3 Hardware Design Techniques

Another set of implementations in approximate computing relies on hardware systems
that can decrease the application’s execution time, as well as save power. Because our
work focuses solely on software-level approximations, we will not cover this class of work
here.

Various modern processors have large last level caches that consume a good amount
of energy. Many identical or similar data values might be cached across different blocks
simultaneously in multi-megabyte last level caches which wastes cache capacity. Dop-
pelanger [15] tries to reduce this redundancy effectively, it exploits the fact that a large
fraction of cache values exhibit approximate similarity, in other words, values across cache
blocks are not identical but are similar. Doppelganger designed a cache: the Doppelganger
cache that associates the tags of multiple similar blocks with a single data array to reduce
the amount of data stored. The cache achieve reductions of 1.55x in LLC area, 2.55x in
dynamic energy and 1.41x leakage energy without harming performance.

Gottscho et al. [8], proposed a fault-tolerant cache architecture that utilizes insights
gained from a SOI test chip, this architecture contains static and dynamic variants of
power/capacity scaling. The mechanism combines multi-level voltage scaling with power
gating of blocks that become faulty at each voltage level. The results showed that the
average energy saved by the static variant is 55%, while the dynamic variant saves an
average of 69% of energy with respect to caches at 1V.

Finally, DRUM [9], which is a multiplier with an unbiased error distribution that
produces lower computational errors in real applications. This is achieved because errors
cancel each other out rather than accumulate, as the multiplier is used repeatedly in
the computation. The approximate multiplier also enables designers to parameterize it
depending on their accuracy and power targets. The work shows power savings of up to
58% when the design is used in applications.

17

2.2 Context-aware Computing

A system can be called context-aware if it uses context to provide relevant information
or services to the user, where relevancy depends on the user’s task. In this section, we
present applications that use context-aware computing and frameworks that support the
context-awareness for other applications.

2.2.1 Practical applications

Context-aware computing include applications in mobile and pervasive applications. One
of the most common contexts is user geolocation. For example, we have the Active
Badge Location System [28], a system for the location of people in an office environment.
The system operates as follows: the staff members use badges that transmit signals to a
centralized service giving information about their location. Also, Mobile phones represent
useful agents for their owners by detecting and reporting situations that are of interest.
An application can be found in PeopleTones [11]. PeopleTones is an application for mobile
phones, that contains an algorithm for detecting proximity and techniques for reducing
sensor noise and power consumption.

Another application that can fit in user’s overall activities is the Digital Family Por-
trait system [17] that introduces the concept of a digital portrait that gives qualitative
visualizations of a family member’s daily life. So for example, member families are able
to check up on other member families without having to explicitly bother them. In the
Community Bar system [25], researchers implemented an awareness tool that periodi-
cally took screen-shots of the user’s display, so that user’s co-workers could know what
documents their teammates were working on, and provided a common frame of refer-
ence. Madhavapeddy et al. [14], propose audio networking, sound hardware like speakers
and microphones for wireless networking. This work demonstrates that context-aware
applications can be based on existing hardware using audio networking techniques.

In computer science, authors in [1] formulate an energy-aware real-time task scheduling
for DVS-enabled multiprocessor systems as a combinatorial optimization problem. A
genetic algorithm is proposed in conjunction with a stochastic evolution algorithm to
schedule real-time tasks. A simulation study has been done using real benchmark data
to evaluate the performance of the Hybrid Genetic Algorithm in terms of solution quality
and efficiency.

In medicine, Tung-Hung Lu at al., [12] has proposed a motion-sensing based manage-
ment system for smart context awareness rehabilitation health-care by the integration of
physiological sensing and feedback coaching. The system does not only provide aspects
like the exercise coaching instruction or the balance stability analysis, but also simulta-
neously shows the user image, exercise skeleton streaming, center of pressure, center of
gravity and physiological information.

2.2.2 Application Support Frameworks

Several systems focus in supporting the development of context-aware applications. It’s
important to make the distinction between different kinds of software support for building

18

context-aware applications. In general, software support for applications can be classified
as libraries, frameworks or toolkits. A library is a generalized set of related algorithms.
Examples include code for manipulating strings and for performing complex mathematical
calculations. Libraries focus exclusively on code reuse. On the other hand, frameworks
concentrate more on design reuse by providing a basic structure for a certain class of ap-
plications. Frameworks shoulder the central responsibilities in an application but provide
ways to customize the framework for specific needs. Toolkits build on frameworks by also
offering a large number of reusable components for common functionality.

Schilit presented a system architecture that supported context-aware mobile comput-
ing [22]. Schilit’s work was focused on making context-aware computing applications
possible to build. Schilit’s architecture supported the gathering of context about devices
and users with three main components in the system: device agents that maintain status
and capabilities of devices; user agents that maintain user preferences; and, active maps
that maintain the location information of devices and users.

Then, Stick-e notes system, a general framework for supporting people that is not
a programmer in building context-aware applications [19]. This work focuses on how
to support application designers in actually using the context to perform context-aware
behaviors. It provides a general mechanism for indicating what context an application
designer wants to use and provides simple semantics for writing rules, that specify what
actions to take when a particular combination of context is realized. A group of notes
or rules are collected together to form a stick-e document. A context-aware application
consists of the document and the stick-e note architecture.

Another framework is CoolTown [5], an infrastructure that supports context-aware
applications by representing real world objects, like people, places and devices, with a web
page. Each web page dynamically updates itself when it gathers new information about
the entity that it represents. This infrastructure supports applications that display context
and services to end users. For example, as a user moves throughout an environment, they
will see a list of available services for this environment and can execute one of the services.

CALAIS [18], the Context And Location Aware Information Service, is another archi-
tecture that was designed to support context-aware applications. This work was performed
to solve two problems: the arranged nature of sensor use and the lack of a accurate loca-
tion information management system. An abstraction was developed to hide the details of
sensors from context-aware applications. However, similar to Schilit’s architecture, there
was very little support to aid developers in adding new sensors to the architecture.

Some applications tried to apply context-aware computing in runtime. CAreDroid [6]
is a framework that is designed to disconnect the application logic from the complex
adaptation decisions in Android context-aware applications with the same idea as ViRUS,
using methods that are sensitive to certain contexts along with the permissible operating
ranges under those contexts. The results show that the applications using CAreDroid
have at least half lines of code fewer and are 10 times more efficient in execution time.

PowerDial [10] is a system that aids dynamically to adapt the application behavior to
execute successfully in response of power fluctuations. PowerDial transforms static con-
figuration parameters from the application into dynamic knobs that can be manipulated
to trade-off dynamically the accuracy of the results for reductions in the computational

19

resources. As a result, the application obtains performance improvements and power sav-
ings. Experimental results show that PowerDial is able to allow applications to execute
dynamically in response of power variations, reducing also the required machines, power
consumption and capital costs.

Context-aware computing is a promising approach for exploiting the characteristics of
mobile computing like mobility, communication and portability. For example, by com-
bining machine learning and context-aware computing, it is possible to provide services
based on the users’ usage patterns on the mobile device combined with the context where
the user and the mobile interacts. CAMF [26] has designed a Context-Aware Machine
learning Framework for Android platform. The framework was demonstrated trough the
implementation of an application that monitors applications on an Android device along
with its environmental context. The goal of this monitoring to dynamically launch An-
droid applications when then context is appropriate.

In software engineering, there is a concept called context-aware personal agent (CPA)
that adapts to the changing contexts of its user. Platys [16] is a software engineering
framework that was developed to support the development and execution of CPAs. The
modelling of a CPA in the framework is done through cognitive steps to simply the devel-
opment, and delegates the concerns of context transmission from the users and acquisition
from sensors to a middleware. By this way, Platys improves the reusability and experience
when the user employs CPAs.

Compared to related work, our context monitoring strategy will focus on parameters
for energy management such us power consumption.

2.3 Summary

Table 2.1 shows a classification of the selected Approximate Computing Frameworks. Each
framework is classified according to the type of adaptation. We have basically three types:
adaptations where the approximation is done at compile level, at runtime level and at
hardware level. About the techniques, there is a good variety depending how the approx-
imation is handled with the application. The Programming Language Technique consists
in developing a programming language that enables to include approximate implemen-
tations inside an application efficiently. The Multiple Code Path Technique consists in
using multiple path of approximate implementations to be used in the application, these
path can be chosen by compilation parameters. The Functional Adaptation Technique
consists in replacing the current function implementations of the application by approxi-
mate implementations of the same functions. The Dynamic Choice Technique consists of
changing the implementations of functions inside the application dynamically depending
of certain rules and the context.

Also, for each of framework the technique applied to make the approximation is pre-
sented. Table 2.2 presents a brief description of the context-aware computing frameworks.
As we can see context-aware frameworks can cover many study fields and can be applied
to many problems. Some of these works have obtained progress in energy saving by cost
of quality as well; Virus [27] managed to get saving in energy by 40% for the application

20

Table 2.1: Approximate Computing Frameworks
Paper Type of adaptation Techniques

EnerJ [21] Compiler Programming Language and Data Types
Petabricks [2] Compiler Programming Language and Multiple Code Path
NPU [7] Compiler Functional Adaption
Green [3] Runtime Multiple Code Path and Parameters
ViRUS [27] Runtime Functional Adaption
X-Ware [20] Runtime, Hardware Dynamic Choice
Eon [24] Runtime, Compiler Multiple Code Path
JouleGuard [12] Runtime Multiple Code Path
Doppelanger [15] Hardware Memorization
Gottscho et al. [8] Hardware Memory Capacity Scaling
Drum [9] Hardware Approximate Multiplier

Table 2.2: Context-Aware Computing Frameworks
Paper Description

PowerDial [10] Transforms static configuration parameters into dynamic knobs
CAreDroid [6] Decouple the application logic from the complex adaptation decisions
Stick-e [19] Support application designers in actually using the context
Platys [16] Framework that supports the development and execution of CPAs
CALAIS [18] Context and location aware information service
CAMF [26] Context-aware machine learning framework for android platform

Blackscholes and 50% for the application Swaptions just for a cost of at most 4% degra-
dation in quality; Green [3] obtained an energy improvement of 28% by the lost of quality
of less than 1% in the application Blackscholes.

Our work fit into the categories of compile time and run time adaptation. Our ap-
proximate computing technique is similar to ViRUS [27] and CAreDroid [6], we develop
a functional adaptation technique through multiple code paths, but our focus is on auto-
mated generation of approximate applications and dynamic control monitoring for variable
cost and quality objectives.

21

Chapter 3

System design and implementation

In this section, we propose an application support system for applications that can handle
approximate results with the benefit of receiving savings in energy consumption. In this
chapter, we explain how this system has been designed and implemented.

3.1 Broad Overview

Our application support system allows applications to dynamically trade function imple-
mentations inside the application and with this trading increasing or decreasing the quality
of the results but with the advantage of decreasing or increasing the energy consumption
of the application when is being run at the operating system. To allow this change in the
function implementations of the target application, our system has a library that has been
built containing many implementations of the same function. When possible, this library
is linked automatically to the application and the system is able to check the performance
of the application at runtime, measure the current energy consumption and depending
on this, to trigger instructions to change the function implementations. The goal of this
changing is to increase or decrease the energy consumption of the whole application but
at the cost of the least lost of quality as possible. In the following parts, we explain
how this library is built and linked to the application and how the system controls the
performance of the application and alters the quality at runtime.

3.2 Variable quality library design

This library was built with in C language, using C tools like macros to allow a multiple
declaration of functions and to change implementations of the functions dynamically. It
is important to point that the C Macros were used to implement the library but won’t be
used directly by the user. As we said, certain function has multiple implementations and
to distinguish between each of them, we are using levels. With this library, we should be
able to change these levels inside the applications (each level represents a certain grade of
quality reduction with purpose of decreasing the energy consumption). To easily change
the level of a function, we are using helpers to get/set the quality level. This library
will be linked at compilation time to the target application. The code in the figure 3.1

22

shows how functions with one argument are declared in the library, functions with two
arguments are declared in a similar way.

1 #de f i n e F_ONE(name , l e v e l , ret type , argtype , f) \
2 r e t type __var__ ##name ##l e v e l (argtype arg) { re turn f (arg) ; }
3

4 #de f i n e F_HELPERS(name) \
5 void v_ ##name ## _set_qlevel (i n t l v l) ; \
6 i n t v_ ##name ## _get_qlevel (void) ; \
7 i n t v_ ##name ## _avl_qlevel (void) ;
8

9 #de f i n e F_DECLARATIONS_ONE(name , rettype , argtype) \
10 extern re t type (∗v_##name) (argtype arg) ; \
11 F_HELPERS(name)

Figure 3.1: One argument function declaration

Given a set of multiple implementations f1, f2, f3, f4 of the same function, our objective
is to present a wrapper function v_f to the applications. We do this by declaring the
function v_f as a function pointer and then dynamically assigning the pointer of the
address of one of the function implementations (lets say f3 for example, 3 is the level of
the function) . Now, the function pointer f is lined to one of the implementations. So, if
the function pointer is assigned to f3, when the application calls to v_f , it is translated
to the implementation f3. This process is done by calling to the macro F_ONE. Beside
this macro, all the declarations needed to use the assigned function are done in the
F_DECLARATIONS_ONE. Inside this macro, the macro F_HELPERS sets the
functions to handle level currently assigned (in our example is 3). In the next image 3.2,
we can see the macro F_HELPERS expanded and what each function inside does.
_set_qlevel sets the level of the function, changing also the implementation at the line
10. So, each time we want to change the level of the function, we can also call directly
to the this function. _get_qlevel returns the currently function level and _avl_qlevel

returns the maximum level permitted for the function.

1 void v_ ##name ## _set_qlevel (i n t l v l) \
2 { \
3 i f (l v l < 1) { \
4 l v l = 1 ; \
5 } ; \
6 i f (l v l > max_level) { \
7 l v l = max_level ; \
8 } ; \
9 __v_ ##name ## _curr_level = l v l ; \

10 v_ ##name =__v_##name [l v l] ; \
11 } \
12 i n t v_ ##name ## _get_qlevel (void) { re turn __v_ ##name ## _curr_level ; } \
13 i n t v_ ##name ## _avl_qlevel (void) { re turn max_level ; }

Figure 3.2: Function helpers

And in the next image 3.3, we can see how this macro looks for the cosine function.
So, every function in the library has all these functions adapted for each of them.

23

1 void v_cos _set_qlevel (i n t l v l) \
2 { \
3 i f (l v l < 0) { \
4 l v l = 0 ; \
5 } ; \
6 i f (l v l > max_level) { \
7 l v l = max_level ; \
8 } ; \
9 __v_cos_curr_level = l v l ; \

10 v_cos =__v_cos [l v l] ; \
11 } \
12 i n t v_cos_get_qlevel (void) { re turn __v_cos_curr_level ; } \
13 i n t v_cos_avl_qlevel (void) { re turn max_level ; }

Figure 3.3: Function helpers for the cosine function

3.2.1 Functions supported

This library will support C math functions but it is not restricted to this kind of functions,
the library can also be applied for other functions that are suitable to approximation.
These functions contain four basic implementations in the library. These implementations
are divided in four main versions for each function: double, float, approximate and faster
approximate. We use levels to easily refer to each of these implementations. The following
code 3.4 shows how the four implementations of the sin function are assigned to the
wrapper function v_sin using the previously mentioned macro F_ONE. The numbers
for each function represent the quality level, the higher the level is the higher the quality
is. As these wrappers call directly to each of the functions depending on which level we
are, using these wrappers don’t represent any overhead.

1 double (∗ v_sin) (double arg) ;
2

3 F_ONE(s in , 4 , double , double , s i n)
4 F_ONE(s in , 3 , double , double , s i n f)
5 F_ONE(s in , 2 , double , double , f a s t s i n)
6 F_ONE(s in , 1 , double , double , f a s t e r s i n)
7

8 double (∗__v_sin []) (double arg) = {__var__sin4 , __var__sin3 , __var__sin2 ,
__var__sin1 } ;

Figure 3.4: Function wrappers of the sin function

The macro F_ONE defines the function implementation for each level. We can see
this more clearly by expanding these macros in the next code 3.5.

The double approximation is the double precision approximation in the results of the
function and it is the one that represents the highest quality implementation. The float
approximation is similar to the double approximation but reduces the precision inside all
the operations of the function to a float precision. The fast approximation contains a
specific algorithm inside the implementation of each function and this algorithm reduces
the precision of the result considerably. And finally the faster approximation, similarly
to the previous approximation contains a specific algorithm in the implementation but

24

1 double (∗ v_sin) (double arg) ;
2

3 double __var__sin4 (double arg) { re turn s i n (arg) ; }
4 double __var__sin3 (double arg) { re turn s i n f (arg) ; }
5 double __var__sin2 (double arg) { re turn f a s t s i n (arg) ; }
6 double __var__sin1 (double arg) { re turn f a s t e r s i n (arg) ; }
7

8 double (∗__v_sin []) (double arg) = {__var__sin4 , __var__sin3 , __var__sin2 ,
__var__sin1 } ;

Figure 3.5: Macros expanded for the function wrappers of the sin function

Table 3.1: Functions currently supported by the library
Function Description Implementation Level Time consumption (Cycles) Code Memory Size (bytes)

v_sin(x) Sine function of x

sin 4 772342 6008
sinf 3 751460 6008
fastsin 2 430260 808
fastersin 1 393920 728

v_cos(x) Cosine function of x

cos 4 505600 5992
cosf 3 454980 5992
fastcos 2 442120 1112
fastercos 1 387970 712

v_tan(x) Tangent function of x

tan 4 558370 6040
tanf 3 480180 6040
fasttan 2 415140 856
fastertan 1 384270 856

v_exp(x) Exponential function of x

exp 4 479470 27024
expf 3 459430 15800
fastexp 2 433810 1240
fasterexp 1 403000 1016

v_log(x) Logarithm function of x

log 4 610820 15832
logf 3 438740 15832
fastlog 2 413570 1240
fasterlog 1 379490 648

v_pow(x) x raised to the power of y

pow 4 488520 38416
powf 3 436330 18040
fastpow 2 419540 1368
fasterpow 1 391400 1032

reducing the precision of the results even more compared with the previous approximation.
Table 3.1 shows the total time consumption and the code memory size of each of the

function implementations that are in the library. The time for each function was measure
in cycle in an arm architecture using VarEMU [13]. We can see that for each function,
when the implementation has a lower level (lower level of quality) it decreases the time
consumption and decreases also the code memory size usage in general. Also, we can see
clearly that for each of the functions there is a considerable difference between the first
two implementations and the last two, the implementations with special algorithms, both
in time consumption and in code memory.

Figure 3.6 shows how the execution time per function is reduced in percentage with
respect to the normal execution (the highest quality execution).

3.2.2 Memory Usage

When the presented library linked to a certain target application is being used and a cer-
tain level of approximation in the function implementations is assigned, the code memory

25

Figure 3.6: Relative execution time per function

sin cos tan exp log pow
0

20

40

60

80

100

120

55.7

87.4

74.3

90.5

67.7

85.9

50.9

76.7

68.8

84.1

62.2

80.1

%
fast approximation faster approximation

Table 3.2: Memory usage using the library
Application Code Size (in bytes)

Base Application 400044
Original Application 447188
Heavy Application 452996

size of the source code of the original application changes. Generally, this represents an
increase in the source code memory usage. In the table 3.2, we present how expensive is
this increase in the memory in general for any application that uses this library in bytes.

In the table, base application represents just a generic application without including
any of the function from the library, our original application represents an application
that use all the functions inside the library but in their original form and our heavy
application represents an application that uses all the function in the library in all their
four implementations several times. So, we can clearly see that there is a difference in code
size between the base application and the original application when including the library;
on the other hand, the difference in code size between the heavy application and original
application is not too big compared to the previous difference. As a conclusion, we can say
that including the library in the application represents a considerable higher cost when
using the function implementations in their two basic forms, the implementations just ind
double and float precision, than when using the two approximate implementations.

3.3 Dynamic Adaptation

Now we need a way to modify dynamically this library implementations depending on the
situation we are. To achieve this, we need a way to say this to the main program and we
need something that manages this changes. In the following parts, we explain how this

26

dynamic adaptation is done.

Figure 3.7: System interaction with the target application

3.3.1 Signal Handling

To be able to swap between the function implementations of the library, we use Signal
Handling along with the function helpers _set_qlevel and _get_qlevel that are available
for each of the library functions. With these functions, we can define our own policies
depending on what we want. We will show an example of how a policy can be made.
We can have two basic type of signals depending on how we want to modify the function
implementations. In one will increase the quality of the current implementations and in
the other one will decrease it (if we are not able to decrease or increase, it will just stay
the same). The code 3.8 shows a function that deals with this signal handling, emitting
the signal SIGUSR1 to decrease the function level and emitting the signal SIGUSR2 to
increase it.

In the image, we can see how to use the functions _set_qlevel and _get_qlevel to
increase the level of all the functions at the same time, we can create more specific rules
and changing just some of them depending of our policy.

3.3.2 Automatic Adaptation

Our work provides a script to replace automatically all the functions that can be suitable
for an approximation inside the target application. These function will be shown along

27

1 void s ig_handler (i n t s i gno) {
2

3 i f (s i gno == SIGUSR1) {
4 p r i n t f (" r e c e i v ed s i g n a l dec r ea s e l e v e l \n") ;
5 v_pow_set_qlevel (v_pow_get_qlevel () − 1) ;
6 v_exp_set_qlevel (v_exp_get_qlevel () − 1) ;
7 v_log_set_qlevel (v_log_get_qlevel () − 1) ;
8 v_cos_set_qlevel (v_cos_get_qlevel () − 1) ;
9 v_sin_set_qlevel (v_sin_get_qlevel () − 1) ;

10 }
11

12 i f (s i gno == SIGUSR2) {
13 p r i n t f (" r e c e i v ed s i g n a l i n c r e a s e l e v e l \n") ;
14 v_pow_set_qlevel (v_pow_get_qlevel () + 1) ;
15 v_exp_set_qlevel (v_exp_get_qlevel () + 1) ;
16 v_log_set_qlevel (v_log_get_qlevel () + 1) ;
17 v_cos_set_qlevel (v_cos_get_qlevel () + 1) ;
18 v_sin_set_qlevel (v_sin_get_qlevel () + 1) ;
19 }
20 }

Figure 3.8: Signal handling function

with their frequency in the application, so that the user can decided to avoid replacing
any of them. This script was developed using the tools: Grep and Sed.

3.3.3 Monitoring System

Besides the target application and the library implemented, we have another program that
monitors the performance of the application and depending on this, it triggers signals to
the application to reduce or increase the quality output, and with this reduce or increase
the energy consumption. The monitoring system has an energy goal percentage based on
the energy consumption at the highest quality (the default quality of the application).
This energy at the highest quality was previously calculated by the monitoring system
running the application at the highest quality several times and obtaining the average
energy consumption. This system measures the energy consumption and depending on
difference between the current energy consumption and the energy consumption goal, it
sends signals to the application to change the library function implementations that are
used by the application at the moment, changing also the performance of the program.
We are working with the signals: SIGUSR1 and SIGUSR2. This step is done periodically
by the monitoring system, trying to reach the energy goal at each iteration. This system
uses energy counters to estimate the energy consumption.

The Figure 3.3 presents a global review of how the dynamic adaption is done. The
shared library is linked by the target application through the signature matching and
at run-time when the application is running there is a constant quality measure by the
context monitoring application changing the quality of the target application if its needed.

28

Chapter 4

Experiments

In this chapter, we talk about the methodology that we use for the evaluation of the
developed library in the target applications and the results obtained in this work.

4.1 Experimental Setup

In this section, we talk about the environment and parameters for our cases studies that
were used to evaluate our proposed system.

4.1.1 VarEMU

VarEMU [13] is framework that is useful for the evaluation of variability-aware software
techniques. This framework allows us to emulate variations in power consumption and
to adapt to these variations in software in an ARM architecture. Also, users can create
virtual machines that feature static and dynamic variations in power consumption through
the use of parameters in a power model, this parameters can also be changed dynamically.
So, with this framework we are able to quantify and to evaluate the effects of variations on
each of our target applications. The virtual machine created trough VareEMU interacts
with it through memory mapped registers and VarEMU allows us to measure the energy
and execution time by creating a checkpoint for all VarEMU registers.

4.1.2 Parameters for power model

VarEMU supports configurable models for static and dynamic power. For this work
we used the default model which is fitted to a Cortex M class ARM chip [13]. In our
experiments, we report energy consumption and execution time savings relative to the
standard app with no modifications. Energy is given in Joules and execution time in
cycles. These numbers are normalized in our experiments.

4.2 Target Applications

In this work, we will modify certain applications, transforming an application into an-
other one that trades the accuracy of the computation in return for reductions in the

29

computational resources. These reductions will translate directly into a reduction in time
execution and energy consumption. The applications chosen for our work were selected
because all of them present a heavy usage of math functions which is crucial for us, and
some of them were also used in the evaluation of other similar works.

4.2.1 Bodytrack

This application is an Intel workload whose goal is tracking a human body with many
cameras through an image sequence. This application does an annealed filter for tracking,
using the foreground silhouette and edges of the images as features.

Changes

This computer vision application works with an annealed particle filter which uses repet-
itively sinusoidal functions. Also, this application contains a good amount of logarithm
and exponential functions. We trade all these functions with implementations that saves
us computer consumption for a reduced quality.

Quality

This application has as an output an image that we are using to measure the quality of
the program. We do a root-mean-square deviation over each of the pixels of the image to
measure the quality.

Related results

This application has been approximated by PowerDial [10] obtaining a Speedup 0,99 by
a loss of quality of 0.839% and also was approximated by JouleGuard [12], obtaining a
Speedup 7.38 by a loss of quality of 14.4%. PowerDial identified two parameters (number
of annealing layers and number of particles) that were manipulated dynamically for the
trade-off and JouleGuard uses Powerdial approximation implementation coordinated with
resource usage.

Results

This application has been approximated in the current work and obtained a 16.22% in
energy saving and 16.41% in time savings for a quality cost of 1.86% in the metric NRMSE
(normalized root mean square error) using the fast approximation (medium quality). On
the other side, we obtained 17.71% in energy saving and 17.54% in time saving for a
quality cost of 2.14% in the metric NRMSE using the faster approximation, which give us
a sightly better result but with a higher quality loss. Figure 4.7 shows the precise image
output compared with the approximate image output and we can see that the quality loss
is so small that is practically imperceptible.

30

Figure 4.1: Bodytrack: Image precise output vs approximate output

4.2.2 Facesim

This Intel application computes a realistic animation of a modeled face, taking the mod-
eled face with a set of muscle activations and then simulating the physics of the face. The
main goal of this application is to create a realistic result.

Changes

This application uses a Newton-Raphson method and a conjugate gradient algorithm to
solve the nonlinear and linear system of equations respectively. So, it contains a good
amount of math functions like exponentials. We were able to trade these implementations
to reduce the consumption but with a lower quality.

Quality

The program writes the final state of the face mesh to several files, we are using those
states to measure the quality. We calculate the quality doing a root-mean-square deviation
between the real states and the ones obtained by the approximate run.

Results

This application has been approximated in the current work and didn’t obtained basically
any energy saving and time saving for a quality cost of zero in the metric NRMSE using the
fast approximation (medium quality). Using the faster approximation, we didn’t obtained
any energy saving and time saving as well for a cost of zero in the metric NRMSE, which
shows us that Facesim does not have a heavy used of math functions in the core parts
of the application. Figure 4.2 shows how the output values from Susan change when the
faster approximation implementation is applied, but in this case we can see that there
isn’t practically any difference in the values.

31

Figure 4.2: Facesim: Precise results vs approximate results

0 20 40 60 80 100
0

20

40

60

80

100

120

Precise Values

A
pp

ro
xi
m
at
e
V
al
ue
s

Precise output
Faster implementation output

4.2.3 Ferret

This application is a configured version of the Ferret toolkit adapted for image similarity
search. The main stages of this application are query image segmentation, feature extrac-
tion, indexing and ranking. And the main goal is, given a data set and a query image,
getting the final set of images that are most similar to the query image.

Changes

As image segmentation and feature extraction are key parts of the applications, there is
a good amount of logarithm, exponential and sinusoidal functions that we are modifying
as a similar way as the previous applications.

Quality

The programs has as output the measure of similarity of the most similar images for each
image query, so this measure will be our measure of quality for the application.

Related results

Ferret has been optimized by JouleGuard [12], obtaining a Speedup 1.24 by a loss of
quality of 18.2% trough Loop Perforation in coordination with a system resource usage.

Results

This application has been approximated obtaining a 11.15% in energy saving and 17.62%
in time savings for a cost of 1.46% in the metric NRMSE using the fast approximation
(medium quality). Furthermore, we got 15.21% in energy saving and 21.22% in time
saving for a cost of 2.73% in the metric NRMSE using the faster approximation, which
give us a good amount of time and energy saving for a small additional loss of quality,
also there is a clear difference in savings between these two approximations which is
another advantage. Figure 4.3 shows the precise output values from Ferret compared to

32

the approximate output values when the faster approximation implementation is applied.
In the graphic, we can see clearly an slightly difference in the values shown in the graphic.
We only chose some of them to represent the whole output.

Figure 4.3: Ferret: Precise results vs approximate results

1 1.25 1.5 1.75 2
1

1.25

1.5

1.75

2

Precise Values

A
pp

ro
xi
m
at
e
V
al
ue
s

Precise output
Faster implementation output

4.2.4 Vips

The benchmark is based on the the VASARI Image Processing System and includes
fundamental image operations such as an affine transformation and a convolution.

Changes

In this application, trigonometric functions are used very often. So, we are changing those
implementations as well as other functions like logarithm and exponentials in a similar
way as the other applications.

Quality

The programs writes an output image that we are using to measure the quality. We
compare each of the pixel of the image obtained by the approximate run with the precise
image using a root-mean-square deviation.

Results

This application has been approximated obtaining a 12.10% in energy saving and 12.04%
in time savings for a cost of 0.84% in the metric NRMSE using the fast approximation
(medium quality). Also, we got 18.23% in energy saving and 18.02% in time saving for a
cost of 1.96% in the metric NRMSE using the faster approximation. We obtained here a
good amount of savings for a small loss of quality in the first approximation, and a better
saving for the second one but with a higher but not to big loss in quality. Figure 4.4
shows the precise image output of Vips compared to the approximate image output.

33

Figure 4.4: Vips: Image precise output vs approximate output

4.2.5 FFT

This benchmark’s function is to perform the very known Fast Fourier Transform as well
as the inverse transform on an specific data. The data is an array generated randomly by
the same application.

Changes

As this is a Fast Fourier Transform implementation, it presents a heavy use of sin and cos
functions inside. which is suitable for our work. We replace these functions to evaluate
how good the computer consumption improves.

Quality

The output of this application is an array of data that we are using to measure the quality
using a root-mean-square deviation calculation.

Results

This application has been approximated obtaining a 61.81% in energy saving and 61.60%
in time savings for a cost of 2.54% in the metric NRMSE using the fast approximation
(medium quality). Also, we got 62.90% in energy saving and 62.51% in time saving for a
cost of 3.61% in the metric NRMSE using the faster approximation. We obtained here a
good amount of savings for a small loss of quality in the first approximation, and a better
saving for the second one but with a higher loss in quality. Figure ?? shows some of the
output values of the FFT application, we can see a slightly difference between the values
in graphic, which is also because of the output range of values is big in this graphic.

34

Figure 4.5: FFT: Precise results vs approximate results

−0.5 0 0.5 1

·105

−0.5

0

0.5

1

·105

Precise Values

A
pp

ro
xi
m
at
e
V
al
ue
s

Precise output
Faster implementation output

4.2.6 Basicmath

The goal of this application is to perform mathematical calculations that usually don’t
have dedicated hardware support in embedded processors. Some examples of these cal-
culations are the cubic function solving, integer square root and angle conversions from
degrees.

Changes

Inside all the mathematical calculations that this application does, there is a heavy amount
of math functions. Using the library we developed, we replace these functions and evaluate
how much the computer consumption is saved.

Quality

The output of this application is a set of numbers and we use these numbers to evaluate
the application calculating the difference using a root-mean-square deviation.

Results

This application has been approximated obtaining a 38.83% in energy saving and 38.72%
in time savings for a cost of 0.12% in the metric NRMSE using the fast approximation
(medium quality). Also, we got 42.83% in energy saving and 41.72% in time saving for
a cost of 0.23% in the metric NRMSE using the faster approximation. We obtained
here a good amount of savings for a small loss of quality in the first approximation,
and a better saving for the second one but with a higher but still really small loss in
quality. Figure 4.6 shows how the output values from Basicmath varies when the faster
approximation implementation of the library is applied, the difference in this graphic are
clear.

35

Figure 4.6: Basicmath: Precise results vs approximate results

−10 −5 0 5
−10

−5

0

5

Precise Values

A
pp

ro
xi
m
at
e
V
al
ue
s

Precise output
Faster implementation output

4.2.7 Susan

This image recognition application has the function of recognizing corners and edges in
Magnetic Resonance Images of the brain. Susan also allows smoothing the image and
making adjustments for threshold and brightness.

Changes

Inside this application, there is a heavy use of math functions, specially sinusoidal func-
tions. Our system supports these kind of functions so we were able to replace these
implementations.

Quality

The output of Susan is a data image array, we are using those values to measure the
quality in the same way as the previous applications using a root-mean-square deviation.

Results

This application has been approximated obtaining a 7.47% in energy saving and 6.82%
in time savings for a cost of 0.15% in the metric NRMSE using the fast approximation
(medium quality). Also, we got 9.82% in energy saving and 9.47% in time saving for a
cost of 0.35% in the metric NRMSE using the faster approximation. We obtained here a
good amount of savings for a small loss of quality in the first approximation, and a better
saving for the second one but with a higher but still not too big loss in quality. So the
reductions weren’t too big but the quality loss were really small. Figure ?? shows the
precise output values compared with the approximate output values and we can see that
the difference is imperceptible to the eye. This output image in particular is the result of
an image smoothing.

36

Figure 4.7: Susan: Image precise output vs approximate output

4.3 Sumary of results

In the following table 4.1, we show the results of using library function implementations
for each of the target applications, making a trade-off between energy consumption and
application quality. We got a reduction in energy consumption and time execution by the
cost of some amount of quality:

4.3.1 Quality and Energy

Table 4.1: Approximate Computing Applications
Applications Versions

Medium quality Low quality
time energy quality time energy quality

(% savings) (% savings) (% loss) (% savings) (% savings) (% loss)
Bodytrack 16.41 16.22 1.86 17.54 17.71 2.14
Facesim 0.00 0.00 0.00 0.00 0.00 0.00
Ferret 17.62 11.15 1.46 21.22 15.21 2.73
Vips 12.04 12.10 0.84 18.02 18.23 1.96
FFT 61.60 61.81 2.54 62.51 62.90 3.61

Basicmatch 38.72 38.83 0.12 41.72 42.83 0.23
Susan 7.47 6.82 0.15 9.47 9.82 0.35

We use the metric NRMSE (normalized root mean square error) to analyze the output
quality of each of the applications.
For most of the applications, there is a good percentage of saving in execution time as well
as in energy consumption. We got a over 15% in five of the applications we evaluated,
without losing more than 4% of their quality output (using NRMSE). In Susan where we
got low time savings and energy savings, the quality loss was very low as well, so at least
we got some amount of saving for a very low lost in quality. In particular in the case of
Facesim, seems that the use of math functions that the system supports does not have
too much impact in the whole application performance.

37

BodytrackFacesim Ferret Vips FFT Basicmath Susan
0

20

40

60

16.4

0

17.62

12.04

61.6

38.72

7.47

17.5

0

21.22
18.02

62.5

41.72

9.47

%

Medium Quality Low Quality

Figure 4.8: Time savings for the applications

BodytrackFacesim Ferret Vips FFT Basicmatch Susan
0

20

40

60

16.2

0

11.15 12.1

61.8

38.83

6.82

17.7

0

15.21
18.2

62.9

42.83

9.82

%

Medium Quality Low Quality

Figure 4.9: Energy savings for the applications

38

BodytrackFacesim Ferret Vips Swaptions FFT Basicmatch
0

1

2

3

4

5

1.86

0

1.46

0.84

1.49

2.54

0.12

2.14

0

2.73

1.96

3.49 3.61

0.23

%

Medium Quality Low Quality

Figure 4.10: Quality Loss for the applications

39

4.4 Dynamic Adaptation

Besides the evaluation for each application individually. We also evaluate how the mon-
itoring system works with the applications. This monitoring system starts with a power
goal and it sends signals to the application, so it decreases its quality output (which can
be see the be graphics as levels) and this causes a lower power consumption, getting closer
to the power goal or increases its quality output to cause a higher power consumption.
In the experiments, the monitoring system measures the energy every 10 seconds, this
is a parameter that can be changed easily by the user. The power consumption show in
the following graphics is an accumulative power consumption over the time and we are
showing a graphic for each of the evaluated application shown in the table 4.1. Also,
for our evaluations of the applications together with the monitoring system, we didn’t
take into account the impact of running the monitoring system in the results because this
impact is minimal as the monitoring system is a small application compared to the target
applications.

4.4.1 Case study 1: Basicmath with 61% energy goal.

In the Figure 4.11 about the Basicmath Application, we can see how the power goal
start decreasing at the beginning (starting at 100%, the default power consumption) and
the quality start decreasing as well (starting at level 4, the highest and default quality).
Once the accumulative power consumption has decrease enough that now is below the
power goal (61%) the logic inside the monitoring system will start increasing the power
consumption value. This will lead to a point where the accumulative power consumption is
again over the power goal, which will cause that the power consumption starts decreasing
again, generating an oscillate and repetitive behavior over the time the application is
running. We can see in the graphic that this behavior also belongs to the quality levels, it
decreases until the power consumption gets below the power goal, then it starts oscillating
in the same way as the accumulative power consumption.

40

Figure 4.11: Power vs time - Basicmath

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Time (seconds)

P
ow

er
(n
or
m
al
iz
ed
)

Power goal 0.61 (61%)

0

1

2

3

4

5

Q
ua

lit
y
le
ve
l

Levels of quality

41

4.4.2 Case study 2: FFT with 40% energy goal and a threshold.

In this other graphic 4.12, we are evaluating the behavior of the FFT application using
the monitoring system as well. We did a small change in the monitoring system logic.
Now when the power consumption is near the power goal, there is a threshold around the
power goal. For this case, we fixed a 5% threshold around the power goal. The behavior
is similar to the previous application but in this case we can see that oscillation when
power consumption is near the power goal is different. The quality oscillates but in a
slower way, it stays at quality level 1 for 4 iterations and something similar happens when
it gets over the power goal again.

Figure 4.12: Power vs time - FFT Application

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Time (seconds)

P
ow

er
(n
or
m
al
iz
ed
)

Power goal 0.4 (40%)

0

1

2

3

4

5

Q
ua

lit
y
le
ve
l

Levels of quality

42

4.4.3 Case study 3: Bodytrack with 84% and 60% energy goal.

This other application called Bodytrack has a similar behavior as the first application
as shown in the figure 4.13. The power consumption starts oscillating at each iteration
when it reaches the power goal. To evaluate the behavior of the application in a different
situation we changed the power goal to a value that is even below the lowest power
consumption of the application. This is one of the limit scenarios where the power goal
is too low that is unreachable for the application. We can see in the second Bodytrack
graphic 4.14 that power consumption tries to get closer and closer to the power goal but
it never reaches it and just converges to another value, that in our example is close to
0.79. We can see also that the level of quality stays at level 1 once it reaches this value.

Figure 4.13: Power vs time - Bodytrack

0 20 40 60 80 100 120 140
0.4

0.6

0.8

1

Time (seconds)

P
ow

er
(n
or
m
al
iz
ed
)

Power goal 0.84 (84%)

0

1

2

3

4

5

Q
ua

lit
y
le
ve
l

Levels of quality

43

Figure 4.14: Power vs time - Bodytrack modified version

0 20 40 60 80 100 120 140
0.4

0.6

0.8

1

Time (seconds)

P
ow

er
(n
or
m
al
iz
ed
)

Power goal 0.6 (60%)

0

1

2

3

4

5

Q
ua

lit
y
le
ve
l

Levels of quality

4.4.4 Case study 4: Susan with 92% energy goal.

In this other application shown in the figure 4.15 we can see the same oscillate behavior
once it reaches the power goal. This application did not get too much reduction in the
power consumption, so we can see all the power consumption values are pretty close to
each other.

44

Figure 4.15: Power vs time - Susan

0 20 40 60 80 100 120 140
0.4

0.6

0.8

1

Time (seconds)

P
ow

er
(n
or
m
al
iz
ed
)

Power goal 0.92 (92%)

0

1

2

3

4

5

Q
ua

lit
y
le
ve
l

Levels of quality

4.4.5 Case study 5: Vips with 81% and 110% energy goal.

This last application Vips has a similar behavior as the previous application as we can see
in the figure . So, we will see how it behaves when the power consumption goal is too high
for the application. This is the second limit scenario where the power goal is too high to
be reached for the application. As we can see in the second graphic, the application starts
at the highest quality and highest power consumption so when it tries to reach higher
values, the power consumption and quality level just stays at the same value because it
can not increase anymore.

45

Figure 4.16: Power vs time - Vips

0 20 40 60 80 100 120 140
0.4

0.6

0.8

1

Time (seconds)

P
ow

er
(n
or
m
al
iz
ed
)

Power goal 0.81 (81%)

0

1

2

3

4

5

Q
ua

lit
y
le
ve
l

Levels of quality

0 20 40 60 80 100 120 140
0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

P
ow

er
(n
or
m
al
iz
ed
)

Power vs time - Vips modified

Power goal 1.1 (110%)

0

1

2

3

4

5

Q
ua

lit
y
le
ve
l

Levels of quality

46

Chapter 5

Conclusion

We develop a application support system that includes a library that contains a series
of application optimizations having each of these optimization different quality of results
and energy consumption. Besides this library, we also present a script that allows an easy
incorporation of this library to any application with a minimal user intervention. Our
library contains common math functions that are quite used in applications in the field
of image processing, signal processing, machine learning, artificial intelligences, scientific
computing along with other computer science fields of study. We do a function replace-
ment in polymorphic versions of the standard C math library function in Linux. The
application case studies using this library shows that we can trade off a marginal effect
on output quality from 0.23% to 3.61% degradation (an average of 2.36%) in application
quality for savings from 9.82% to 62.9% (an average of 27.78%) in energy consumption
and time execution.

Our work also presents a monitoring system that measures current energy consump-
tion of the system in previously fixed intervals of time. After each of this intervals, the
monitoring system can send signals to the target application sending an order of increas-
ing or decreasing the quality of certain function implementations that are in the library
and at the same time decreasing or increasing the energy consumption of these imple-
mentations respectively, which will cause to decrease or increase the energy consumption
of the whole target application. This kind of interaction will allow us to build policies
around each of these function implementations and generic performance system values
like energy consumption, in this work we are working with energy but the logic and ap-
proximate implementations can be worked along with other parameters like for example
CPU usage. In our experiments, our goal is fixed in an energy consumption value and
our policies guide the system energy consumption to this value decreasing or increasing
the quality of the target application depending on how the current energy consumption of
the system is. In our results, we did different case of studies, each them having different
scenarios and in all of them the results were satisfactory and in all the cases we were able
to reach the energy goal as much as possible by the cost of the quality of the application
that we could sacrifice.

Our application support system strengths are that it can reduce considerably the
energy consumption of heavy oriented math function applications as our results show.
Another advantage is that user intervention for using this system is minimal, it only

47

requires a few changes in the compilation settings of the target application. And the last
advantage is that the function implementations of the library can be changed dynamically
with the use of signals, which allows us to build policies around a performance goal for
the application. Our limitations are on applications which do not use math functions
inside them or applications where math functions are not presented in the most energy
consumption part of the application.

48

Bibliography

[1] Fawzi Albalooshi Amjad Mahmood, Salman A. Khan and Noor Awwad. Energy-
aware real-time task scheduling in multiprocessor systems using a hybrid genetic
algorithm. 2017.

[2] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-
man, and Saman Amarasinghe. Petabricks: A language and compiler for algorithmic
choice. SIGPLAN Not., 44(6):38–49, June 2009.

[3] Woongki Baek and Trishul M. Chilimbi. Green: A framework for supporting energy-
conscious programming using controlled approximation. SIGPLAN Not., 45(6):198–
209, June 2010.

[4] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton, NJ,
USA, 2011. AAI3445564.

[5] Caswell D. and P. Debaty. Creating web representations for places. Proceedings of
the 2nd International Symposium on Handheld and Ubiquitous Computing (HUC2K),
2000.

[6] Salma Elmalaki, Lucas Wanner, and Mani Srivastava. Caredroid: Adaptation frame-
work for android context-aware applications. In Proceedings of the 21st Annual In-
ternational Conference on Mobile Computing and Networking, MobiCom ’15, pages
386–399, New York, NY, USA, 2015. ACM.

[7] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural accelera-
tion for general-purpose approximate programs. In Proceedings of the 2012 45th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO-45, pages
449–460, Washington, DC, USA, 2012. IEEE Computer Society.

[8] Mark Gottscho, Abbas BanaiyanMofrad, Nikil Dutt, Alex Nicolau, and Puneet
Gupta. Power / capacity scaling: Energy savings with simple fault-tolerant caches.
In Proceedings of the 51st Annual Design Automation Conference, DAC ’14, pages
100:1–100:6, New York, NY, USA, 2014. ACM.

[9] Soheil Hashemi, R. Iris Bahar, and Sherief Reda. Drum: A dynamic range un-
biased multiplier for approximate applications. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’15, pages 418–425,
Piscataway, NJ, USA, 2015. IEEE Press.

49

[10] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agar-
wal, and Martin Rinard. Dynamic knobs for responsive power-aware computing.
SIGPLAN Not., 46(3):199–212, March 2011.

[11] Kevin A. Li, Timothy Y. Sohn, Steven Huang, andWilliam G. Griswold. Peopletones:
A system for the detection and notification of buddy proximity on mobile phones. In
In Proc. 6th Int’l. Conf. on Mobile Systems (MobiSys), 2008.

[12] Tung-Hung Lu, Hsing-Chen Lin, Rong-Rong Chen, and Ya-Ling Chen. Motion-
sensing based management system for smart context-awareness rehabilitation health-
care. Advances in Internet of Things, 3(2A), 2013.

[13] Liangzhen Lai Puneet Gupta Lucas Wanner, Salma Elmalaki and year = 2013
note = AAI3445564 Mani Srivastava, title = VarEMU: An Emulation Testbed for
Variability-Aware Software. PhD thesis.

[14] Anil Madhavapeddy, David Scott, and Richard Sharp. Context-aware computing
with sound. In In Proceedings Of The 5th International Conference On Ubiquitous
Computing, pages 315–332, 2003.

[15] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie Enright Jerger.
Doppelganger: A cache for approximate computing. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, MICRO-48, pages 50–61, New York, NY,
USA, 2015. ACM.

[16] Pradeep K. Murukannaiah, Ricard Fogues, and Munindar P. Singh. Platys: A frame-
work for supporting context-aware personal agents. In Proceedings of the 2014 In-
ternational Conference on Autonomous Agents and Multi-agent Systems, AAMAS
’14, pages 1689–1690, Richland, SC, 2014. International Foundation for Autonomous
Agents and Multiagent Systems.

[17] Elizabeth D. Mynatt, Jim Rowan, Sarah Craighill, and Annie Jacobs. Digital family
portraits: Supporting peace of mind for extended family members. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’01, pages
333–340, New York, NY, USA, 2001. ACM.

[18] G. J. Nelson. Context-aware and location systems. PhD thesis, University of Cam-
bridge, Cambridge, U.K, 1998.

[19] Jason Pascoe. The stick-e note architecture: Extending the interface beyond the user.
In Proceedings of the 2Nd International Conference on Intelligent User Interfaces, IUI
’97, pages 261–264, New York, NY, USA, 1997. ACM.

[20] J. G. Reis, A. A. Frohlich, and L. F. Wanner. X-ware: mutant computing substrates.
In 2015 International Symposium on Rapid System Prototyping (RSP), pages 25–31,
Oct 2015.

50

[21] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general low-
power computation. SIGPLAN Not., 46(6):164–174, June 2011.

[22] William Noah Schilit. A System Architecture for Context-aware Mobile Computing.
PhD thesis, New York, NY, USA, 1995. UMI Order No. GAX95-33659.

[23] Hardik Sharma, William Wahby, Thomas Sarvey, Muhannad S Bakir, and Hadi
Esmailzadeh. Video anomaly detection in real time on a power-aware heterogeneous
platform. 2016.

[24] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D.
Corner, and Emery D. Berger. Eon: A language and runtime system for perpetual
systems. In Proceedings of the 5th International Conference on Embedded Networked
Sensor Systems, SenSys ’07, pages 161–174, New York, NY, USA, 2007. ACM.

[25] Kimberly Tee, Saul Greenberg, and Carl Gutwin. Providing artifact awareness to
a distributed group through screen sharing. In Proceedings of the 2006 20th An-
niversary Conference on Computer Supported Cooperative Work, CSCW ’06, pages
99–108, New York, NY, USA, 2006. ACM.

[26] Alf Inge Wang, Qadeer Khan Ahmad, and Key Words. Camf - context-aware machine
learning framework for android. In In Proceedings of SEA ’10. Marina Del Rey.
ACTA Press, 2010.

[27] Lucas Wanner and Mani Srivastava. Virus: Virtual function replacement under
stress. In Proceedings of the 6th USENIX Conference on Power-Aware Computing
and Systems, HotPower’14, pages 2–2, Berkeley, CA, USA, 2014. USENIX Associa-
tion.

[28] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The active badge
location system. ACM Trans. Inf. Syst., 10(1):91–102, January 1992.

