
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Juan Sebastián Beleño Díaz

WorkflowHunt: a hybrid search mechanism for
scientific workflow repositories

WorkflowHunt: um mecanismo de busca híbrida para
repositórios de workflows científicos

CAMPINAS
2018

Juan Sebastián Beleño Díaz

WorkflowHunt: a hybrid search mechanism for scientific workflow
repositories

WorkflowHunt: um mecanismo de busca híbrida para
repositórios de workflows científicos

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientadora: Profa. Dra. Claudia Maria Bauzer Medeiros

Este exemplar corresponde à versão final da
Dissertação defendida por Juan Sebastián
Beleño Díaz e orientada pela Profa. Dra.
Claudia Maria Bauzer Medeiros.

CAMPINAS
2018

Agência(s) de fomento e nº(s) de processo(s): CAPES
ORCID: https://orcid.org/0000-0001-8252-742

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Beleño Díaz, Juan Sebastián, 1992-
 B411w BelWorkflowHunt : a hybrid search mechanism for scientific workflow

repositories / Juan Sebastián Beleño Díaz. – Campinas, SP : [s.n.], 2018.

 BelOrientador: Claudia Maria Bauzer Medeiros.
 BelDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Bel1. Fluxo de trabalho - Processamento de dados. 2. Sistemas de

recuperação da informação. 3. Ontologias (Recuperação da informação). I.
Medeiros, Claudia Maria Bauzer, 1954-. II. Universidade Estadual de
Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: WorkflowHunt : um mecanismo de busca híbrida para repositórios
de workflows científicos
Palavras-chave em inglês:
Workflow - Data processing
Information storage and retrieval systems
Ontologies (Information retrieval)
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Claudia Maria Bauzer Medeiros [Orientador]
Benilton de Sa Carvalho
Julio Cesar Dos Reis
Data de defesa: 03-05-2018
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Juan Sebastián Beleño Díaz

WorkflowHunt: a hybrid search mechanism for scientific workflow
repositories

WorkflowHunt: um mecanismo de busca híbrida para
repositórios de workflows científicos

Banca Examinadora:

• Profa. Dra. Claudia Bauzer Medeiros
Instituto de Computação - UNICAMP

• Prof. Dr. Julio Cesar dos Reis
Instituto de Computação - UNICAMP

• Prof. Dr. Benilton de Sa Carvalho
Instituto de Matemática, Estatística e Computação Científica - UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 03 de maio de 2018

Acknowledgements

I would like to thank my advisor, professor Claudia Bauzer Medeiros for her support in
the development of my path in academia.

I would like to thank my family for all the support that they have provided to me.
I would like to thank members of LIS (including professors André and Julio) for helping

me to enjoy my time in Brazil. I will always remember the parties that ended up producing
GIFs.

I would like to thank professor Cid Carvalho de Souza. Although my grade in the
subject of Computational Complexity was just a C, I learned a lot in his classes.

I would like to thank people at my job in Evoluservices for teaching me good practices
in software development and sharing good moments in Happy Hours.

This research was partially supported by Brazilian financing agencies CNPq, CAPES
(07/2016 - 1629106) and FAPESP CCES (2013/08293-7).

Resumo

Os experimentos científicos e os conjuntos de dados gerados a partir deles estão crescendo
em tamanho e complexidade. Os cientistas estão enfrentando dificuldades para compar-
tilhar esses recursos e permitir a reprodutibilidade do experimento. Algumas iniciativas
surgiram para tentar resolver esse problema. Uma delas envolve o uso de workflows cientí-
ficos para representar a execução de experimentos científicos. Existe um número crescente
de workflows que são potencialmente relevantes para mais de um domínio científico. Criar
um workflow leva tempo e recursos e sua reutilização ajuda aos cientistas a criar novos
workflows de forma mais rápida e confiável. No entanto, é difícil encontrar workflows ade-
quados para reutilização. Geralmente, os repositórios de workflows possuem mecanismos
de busca com muitas limitações, o que afeta negativamente a descoberta de workflows
relevantes para um cientista ou seu time. Esta dissertação apresenta WorkflowHunt, uma
arquitetura híbrida para busca e descoberta de workflows em repositórios genéricos, com-
binando busca baseada em palavras-chave e busca semântica para encontrar workflows
relevantes usando diferentes métodos de busca. Ao contrário da maioria das pesquisas
correlatas, nossa proposta e sua implementação são genéricas. Nosso sistema de indexa-
ção e anotação é automático e independe de domínio ou ontologia específica. A arquitetura
foi validada por meio de um protótipo que usa workflows e metadados reais do myEx-
periment, um dos maiores repositórios de workflows científicos. Nosso sistema também
compara seus resultados com o mecanismo de busca do myExperiment para analisar em
que casos um sistema supera o outro.

Abstract

Scientific experiments and the datasets generated from them are growing in size and com-
plexity. Scientists are facing difficulties to share those resources in a way that allows
reproducibility of the experiment. Some initiatives have emerged to try to solve this
problem. One of them involves the use of scientific workflows to represent and enact
the execution of scientific experiments. There is an increasing number of workflows that
are potentially relevant for more than one scientific domain. Creating a workflow takes
time and resources, and their reuse helps scientists to build new workflows faster and in
a more reliable way. However, it is hard to find workflows suitable for reuse for an ex-
periment. Usually, workflow repositories have search mechanisms with many limitations,
which affects negatively the discovery of relevant workflows. This dissertation presents
WorkflowHunt, a hybrid architecture for workflow search and discovery for generic repos-
itories, which combines keyword and semantic search to find relevant workflows using
different search methods. Unlike most related work, our proposal and its implementation
are generic. Our indexing and annotation mechanism are automatic and not restricted to
a specific domain or ontology. We validated our architecture creating a prototype that
uses real workflows and metadata from myExperiment, one of the largest online scientific
workflow repositories. Our system also compares its results with myExperiment’s search
engine to analyze in which cases one retrieval system outperforms the other.

List of Figures

2.1 Graph-based representation of a ontology. 14
2.2 Hierarchical representation of a ontology. 15
2.3 Workflow structure and components. 18
2.4 Query “chromosomes”. 23
2.5 Query “chromosome”. 23

3.1 WorkflowHunt Architecture. 28
3.2 Example of Keyword Index. 35
3.3 Example of Hybrid Text. 36
3.4 Example of Hybrid Index. 37

4.1 Database Schema for the Prototype. 40
4.2 Home Page of WorkflowHunt. 42
4.3 Keyword search results. 43
4.4 Hybrid search results. 43
4.5 Workflow metadata in myExperiment. 44
4.6 Semantic annotations for a workflow in WorkflowHunt. 45
4.7 Draft of a Venn diagram comparing different search approaches for the

query “q”. 46
4.8 Venn diagram comparing different search approaches for the query “chro-

mosomes”. 47
4.9 Venn diagram comparing different search approaches for the query “ecology”. 48
4.10 Venn diagram comparing different search approaches for the query “path-

way simulation”. 49

List of Tables

2.1 Related work comparison . 25

Contents

1 Introduction 12

2 Related Work and Basic Concepts 14
2.1 Ontologies . 14
2.2 Semantic Annotations . 16
2.3 Workflows . 17
2.4 Workflow Repositories . 18

2.4.1 MyExperiment . 19
2.4.2 CrowdLabs . 20
2.4.3 Galaxy . 20
2.4.4 CloudFlows . 21
2.4.5 PBase . 21
2.4.6 OPMW Workflow Repository . 22

2.5 Workflow Retrieval . 22
2.5.1 Keyword-based Search . 22
2.5.2 Structure-based Search . 24
2.5.3 Semantic-based Search . 24

2.6 Final Remarks . 25

3 Architecture of WorkflowHunt 27
3.1 Architecture . 27
3.2 Persistence Layer . 28
3.3 Pre-processing Layer . 29

3.3.1 Semantic Annotations . 29
3.3.2 Indices . 33

3.4 Search Layer . 38
3.5 Final Remarks . 38

4 Implementation Aspects 39
4.1 Implementing the Persistence Layer . 39
4.2 Implementing the Preprocessing Layer . 39
4.3 Implementing the Search Layer . 41
4.4 User Interface . 42
4.5 Case Study . 44
4.6 Final Remarks . 49

5 Conclusions and Future Work 51
5.1 Conclusions . 51
5.2 Future Work . 52

Bibliography 54

12

Chapter 1

Introduction

There is a reproducibility crisis in science [37]. The complexity of handling datasets is
growing exponentially and there is a lack of tools to allow reproducibility and communi-
cation of data analysis. Some efforts are aimed at solving these problems, e.g., The Open
Science Movement [24]. One particular approach involves the use of scientific workflows.

A scientific workflow is a step-by-step description of a scientific process for achieving
a scientific objective using elements as inputs, outputs, and tasks [30]. Usually, scientists
publish and share workflows with their peers in academia and industry via workflow
repositories. These repositories contain workflows and metadata associated with them.

There is an increasing number of scientific workflows that are potentially relevant
to one or more scientific domains [2]. The access to those workflows is usually open
to anyone interested in their reuse, re-purpose, or experiment replication. Given such
availability of workflows, how to find and choose the one(s) more suitable for reuse by a
given experiment?

The problem handled in this work is the search and discovery of relevant workflows
according to a scientist’s needs. This problem is important because creating new workflows
can be expensive in terms of time and resources. Reuse of relevant workflows helps
researchers to build new workflows in a faster and more reliable way.

There are mainly three approaches for search in scientific workflow repositories: keyword-
based search, structure-based search, and semantic-based search [2, 40, 39, 6]. Keyword-
based search uses the workflow metadata to return workflows associated with the exact
words used by scientists in their queries. Structure-based search uses the workflow topol-
ogy to find workflows with similar structure. Finally, semantic-based search uses semantic
annotations to find workflows where annotations are similar in meaning to the scientist’s
query. Ideally, search mechanisms should combine these approaches, but they are seldom
supported due to the technical challenges of balancing advantages and disadvantages of
different search approaches.

For example, keyword-based search is easy to use because interfaces and functionality
are similar to modern search engines like Google. Nevertheless, this is a limited approach
because of the heterogeneity in the terms that are used to refer to the same scientific con-
cept. This causes problems when a scientist wants to search for scientific workflows related
to a scientific concept, but s/he knows just a subset of the terminology used to refer to
that concept and gets partially relevant results. Structure-based search is computationally

13

complex, and hard to perform with heterogeneous sources. While semantic-based search
presents more advantages, it often requires knowing languages with complex syntax like
SPARQL, a graph query language [27].

This work presents the design and implementation of WorkflowHunt: a retrieval system
for scientific workflow repositories, which uses keyword-based search and a hybrid-based
search (keyword and semantic search) to find relevant results in scientific workflow repos-
itories. This work was validated with data from myExperiment [11], which is one of the
largest scientific workflow repositories at the moment. Moreover, EDAM and CHEMINF
ontologies were used to create semantic annotations that works as inputs for the hybrid
search. EDAM is an ontology of bioinformatics information, including operations, types
of data, topics, and formats [25]. CHEMINF is an ontology for chemical information,
including terms, and algorithms used in chemistry [22].

The main contributions of our work are:

• A study comparing different scientific workflow repositories and their retrieval sys-
tems;

• The design of an architecture for workflow retrieval combining keyword and semantic
search;

• The implementation of a prototype for WorkflowHunt;

• A case study with detailed comparison of the retrieval capabilities of WorkflowHunt
and myExperiment search mechanism

From this work, we published a paper, parts of which are reproduced in this text:

• J. S. B. Diaz and C. B. Medeiros, "WorkflowHunt: Combining Keyword and Se-
mantic Search in Scientific Workflow Repositories," 2017 IEEE 13th International
Conference on e-Science (e-Science), Auckland, 2017, pp. 138-147. doi: 10.1109/e-
Science.2017.26 [12]

The rest of this work is organized as follows: Chapter 2 presents the theoretical foun-
dations and related work; Chapter 3 presents the architecture of WorkflowHunt; Chapter
4 presents details about the implementation and a case study. Finally, Chapter 5 presents
the conclusions and future work.

14

Chapter 2

Related Work and Basic Concepts

This chapter shows general concepts needed to understand semantic retrieval systems for
workflow repositories such as ontologies (Section 2.1), semantic annotations (Section 2.2),
and workflows (Section 2.3) . Sections 2.4 and 2.5 describe some retrieval systems for
scientific workflow repositories.

2.1 Ontologies

An ontology is “an explicit specification of a conceptualization" [21], where a conceptual-
ization is an abstract perspective about something (e.g., objects, concepts, and relation-
ships). An explicit specification means the definition of a formalism to map the abstract
meaning of the conceptualization into something concrete. Ontologies are expressed and
stored in many ways, always associated with some sort of mechanism to allow inferences.

Figures 2.1 and 2.2 respectively show a graph-based and a hierarchical representation of
a small subset of the EDAM ontology. EDAM is an ontology of bioinformatics information,
including operations, types of data, topics, and formats [25]. These figures were generated
via Ontology Lookup Service [8], a service that allows querying, browsing, and navigating
over a database that integrates several biomedical ontologies and related vocabulary.

1http://www.ebi.ac.uk/ols/ontologies/edam/terms/graph?iri=http://edamontology.org/
topic_0654

Figure 2.1: Graph-based representation of a subset of the EDAM Ontology1.

http://www.ebi.ac.uk/ols/ontologies/edam/terms/graph?iri=http://edamontology.org/topic_0654
http://www.ebi.ac.uk/ols/ontologies/edam/terms/graph?iri=http://edamontology.org/topic_0654

15

Figure 2.2: Hierarchical representation of a subset of the EDAM Ontology2.

Classes are key components in an ontology. An ontology class represents an object,
concept or category that belongs to a domain [10]. Usually, classes are connected through
relationships defined in the ontology. For example, in Figure 2.1, square boxes represent
classes and arrows represent relationships. The kind of relationship between two classes is
described by the orientation of the arrow and a label. Although the hierarchical represen-
tation seems easier for navigating among ontology classes, it does not show relationship
labels, which is a big barrier to fully understand an ontology. Hence, we decided to focus
on the graph-based representation, which allows us to introduce two concepts:

• Superclasses: allow representing high-level concepts [43]. Given a class C, S is
a superclass of C if and only if there exist an “is-a” relationship from C to S –
e.g., Nucleic acids (http://edamontology.org/topic_0077) is a superclass of DNA
(http://edamontology.org/topic_0654) in the EDAM ontology (see Figure 2.1);

• Subclasses: allow refining concepts [43]. Given a class C, K is a subclass of C
if and only if there exist a relationship “is-a” from K to C – e.g., DNA mutation
(http://edamontology.org/topic_2533) is a subclass of DNA (http://edamontology.org/topic_0654)
in the EDAM ontology (see Figure 2.1);

Ontology classes have properties to model their characteristics. Properties can be
attributes or relationships among different classes [10]. Listing 2.1 shows the ontol-
ogy class DNA http://edamontology.org/topic_0654 in OWL format, which has proper-
ties that represent attributes (e.g., rdfs:label, oboInOwl:hasExactSynonym, created_in, or
rdfs:comment). The class DNA also has properties that represent relationships (rdfs:subClassOf
and oboInOwl:inSubset).

2http://www.ebi.ac.uk/ols/ontologies/edam/terms?iri=http://edamontology.org/topic_
0654

http://www.ebi.ac.uk/ols/ontologies/edam/terms?iri=http://edamontology.org/topic_0654
http://www.ebi.ac.uk/ols/ontologies/edam/terms?iri=http://edamontology.org/topic_0654

16

Listing 2.1: Ontology class DNA3in OWL format.

Classes may have properties that represent terms semantically related to the class
such as synonyms, also homonyms, hypernyms, hyponyms, meronyms, and holonyms. Two
terms are synonyms if they are different and denote the same resource. Two terms are
homonyms if they are the same and denote two different resources. Consider two different
terms x and y, then according to Mangold [32]:

• x is a hypernym of y if x represents a resource that is a more general than the
resource represented by y. If x is a hypernym of y, then y is a hyponym of x.

• x is a meronym of y if x represents a resource that is part of the resource represented
by y. If x is a meronym of y, then y is a holonym of x.

EDAM 4 provides three properties to represent synonyms (oboInOwl:hasExactSynonym),
hypernyms (oboInOwl:hasBroadSynonym), and hyponyms (oboInOwl:hasNarrowSynonym).
Listing 2.1 shows that according to EDAM, DNA Analysis is a synonym of DNA; more-
over, hyponyms of DNA are Ancient DNA and Chromosomes.

An ontology term is the value of an attribute that represents a label, synonym,
hypernym, hyponym, meronym, or holonym of an ontology class [26].

2.2 Semantic Annotations

For Macario et al. [31], semantic annotations are annotations that use ontologies to elim-
inate ambiguities and promote a unified understanding of concepts, where an annotation
is a particular kind of data that describe other data.

Oren et al. [36] give a more formal definition: a semantic annotation is a tuple
< s, p, o, c >, where s is the subject of annotation, o is the object of annotation, p

is the predicate (the relationship between s and o), and c is the context (provenance
information) [36]. Consider the annotation of a workflow from myExperiment [17] –
one of the largest scientific workflow repositories at the moment – using EDAM. Then,

3http://edamontology.org/topic_0654
4https://github.com/edamontology/edammap/wiki

http://edamontology.org/topic_0654
https://github.com/edamontology/edammap/wiki

17

<http://edamontology.org/topic_0654, occurs-in, http://www.myexperiment.org/workflows/3905,
{date : 2017− 07− 16}> is an example of a semantic annotation, where s is a class of
EDAM, p is the relationship occurs− in, o is a workflow, and c contains the date in which
the annotation was collected.

There are research efforts to improve the annotation process using semantics – e.g.,
the Ontology Biomedical Annotator [26]. This is a semantic annotator service available
on the web, which extracts ontology classes from free text, for biomedicine.

While many efforts try to design generic solutions for annotations, there are specific
efforts to improve the annotation process of workflows. Garcia-Jimenez and Wilkinson [14]
proposed a methodology to semantically annotate workflows with biomedical ontologies.
This methodology was validated using data from myExperiment [17]. Such methodology
comprises four steps:

1. Filtering relevant workflows: They used EDAM to create a dictionary of relevant
terms in the domain of bioinformatics. They performed some modification to delete
general terms and added some other relevant terms;

2. Cleaning irrelevant services: In the context of bioinformatics, they considered a
service to be irrelevant when a workflow element that performs data transformations
not associated with biological by meaningful analyses – e.g., merging, formating, or
parsing;

3. Retrieving service descriptions: They collected the description of each work-
flow task, when available. However, just a low percentage of workflow tasks had a
description;

4. Entity extraction from descriptions to create semantic annotations: They
used the Open Biomedical Annotator [26] and thirteen biomedical ontologies to
extract semantic annotations from workflow descriptions.

2.3 Workflows

A workflow is a step-by-step description of a process for achieving an objective, normally
expressed in terms of inputs, outputs, and tasks [30]. Workflow tasks mainly refer to
computational simulations and data analyses [2]. Although workflows are widely used in
science and business [41], our work just considers scientific workflows.

Workflows are often represented as Directed Acyclic Graphs (DAG). Figure 2.3 presents
a DAG representation of a workflow with title “Get similar phenotypes for a disease and
a gene”, which was extracted from myExperiment repository. Workflow inputs are at the
top of the figure, surrounded by a dashed box. Workflow outputs appear at the bottom
of the figure, again surrounded by a dashed box. Other boxes represent workflow tasks
(also known as activities). Finally, arrows represent the data flow.

Usually, scientific workflows are executed in Scientific Workflow Management Systems
(SWMS) via a user-friendly interface. Most of the SWMS such as Kepler [29], Taverna

5https://www.myexperiment.org/workflows/4796.html

https://www.myexperiment.org/workflows/4796.html

18

Figure 2.3: Workflow structure and components5.

[42], VisTrails [5], and Wings [16] have functionalities as scheduling, logging, process
control, provenance management, recovery mechanisms and parallelization of workflow
execution [7].

An important issue is the capture of provenance. Provenance is a kind of metadata
that explains how a data product was generated – e.g., origin, context, derivation, owner-
ship, or history of some artifact. Provenance information allows transparency and helps
to generate reproducible experiments.

2.4 Workflow Repositories

Workflow repositories emerged as a part of the solution for the reproducibility problem
of experiments since they allow scientists to publish and share their workflows. Other
scientists can download such workflows to reuse, re-purpose, or reproduce an experiment.

Usually, workflow authors upload their creations to repositories through a process that
includes filling a form with some metadata that describe the workflow. Such metadata is
often used for search and discovery of relevant workflows.

Assumption 2.4.1. For the purpose of our work, we assume that each metadata field is
a tuple of type (label, value), where the label is the name of the metadata field and value
can be text, number, a list of text or a list of numbers.

19

Listing 2.2 shows the metadata in JSON format of the workflow presented in Figure
2.3. Fields id, version, views, and downloads have a number as value. Fields repository,
url, author, title, description, image, and license have a text as value. Fields tags, inputs,
tasks, and outputs have a list of texts as value. Finally, there are no fields with a list of
number as value.

Listing 2.2: Workflow metadata for the workflow on Figure 2.36.

There are many scientific workflow repositories referring to different scientific domains,
SWMS, and retrieval methods. There follow examples of some workflow repositories.

2.4.1 MyExperiment

This is a collaborative platform to publish and share scientific workflows [11]. Most users
of this platform are scientists in the life sciences; however, other communities (e.g., chem-
istry, social statistics, and music information retrieval) are expanding their participation

6https://www.myexperiment.org/workflows/4796.html

https://www.myexperiment.org/workflows/4796.html

20

in myExperiment. It stores workflows, metadata, data inputs, provenance information,
versions, among other assets [11]. Moreover, it supports workflows from different SWMS
such as Taverna, RapidMiner, Galaxy, KNIME, Kepler, among others.

MyExperiment allows keyword-based search and filtering by some workflow metadata
such as title, description, tags, user, license, etc. It also provides structure-based search
for workflow discovery using workflows that share the same services as similarity measure.

The myExperiment project hosts 392 scientific groups, 10,501 registered users and
more than 2,800 scientific workflows in its database (as of May, 2017). It has been used
in several research projects [39, 40, 14].

2.4.2 CrowdLabs

CrowdLabs is a system that allows sharing datasets, computational pipelines (a.k.a. work-
flows), and provenance information of scientific experiments [34]. This system is based
on social websites and it aims to offer a rich collaborative environment for scientists via a
set of tools and scalable infrastructure. Although CrowdLabs can be integrated with any
SWMS that runs in server mode with an open API, it works mainly with VisTrails [34]. It
uses VishMashup, which is a VisTrails extension to allow user interaction with workflows
using a web-based solution. Hence, this system provides workflow creation, modification,
and execution without installing aditional software. The provenance information derived
from workflows together with the results are easily shared on wikis and LaTeX via some
plugins provided by the system.

The CrowdLabs architecture handles two types of resources: data analysis and visual-
ization resources (workflows, visualizations, packages, and datasets) and social resources
(profiles, projects, groups, and blogs). Moreover, this system provides a public RESTful
HTTP API to access to such resources [34], which ease the integration of new functional-
ities by third-party developers.

Clowdlabs [34] by default shows all the workflows in the repository. It also provides
keyword-based search and some filters to improve the precision of query results, where
users can order such results by title, date, and rating.

2.4.3 Galaxy

Galaxy is a platform for performing computational analyses of genomic data via workflows,
providing open, transparent, and reproducible results in genomic science [18]. Galaxy has
four main components: workspace, workflows, data libraries, and user repositories. A
workspace is where the user develops and deploy workflows; although Galaxy workspace
is mainly a web platform, users can use the Galaxy application to set up local servers.
Workflows presents the user list of workflow. Users can import theirs datasets (user
repositories) or use dataset available in the platform (data libraries).

Galaxy also tracks the provenance information of each workflow and metadata col-
lected via user annotations – e.g., title, description, and tags. Galaxy provides three ways
for reproducibility and transparecy: a model for sharing items (datasets and workflows),
a platform to display datasets and execute workflows, and wiki pages to communicate

21

details about scientific experiments [18].
This platform provides keyword-based search, filtering the public repository by title,

author, tag, and annotations to find items (datasets and workflows) of interest [18].

2.4.4 CloudFlows

Clowdflows is a web-based platform for creation, execution, and sharing of data mining
workflows [28]. This platform provides a user interface that allows creating and editing
workflows, using drag, drop, and connect operation over workflow components.

There exist a set of predefined workflow components, mostly created using Orange 7

and Weka8. Both are tools to interact with machine learning algorithms but Orange focus
more in visualization and Weka in data mining tasks. Clowdflows users can also create
custom workflow components as web services that should be stored on third-party servers
[28].

Clowdflows provides remote execution and visualization, which implies that users do
not require additional software to manipulate workflows [28]. Moreover, it allows sharing
of workflows.

This platform does not provide mechanisms for workflow search but it allows workflow
discovery by listing all the workflows in the platform for reuse, re-purpose, and experiment
reproducibility [28].

2.4.5 PBase

PBase is a scientific workflow repository that also stores provenance information using
ProvONE [9], which is a standard for modeling, representing, and sharing provenance
information. This standard records provenance information of the workflow and its com-
ponents. It is intrinsically graph oriented due to the DAG (Direct Acyclic Graph) repre-
sentation of workflow components[9].

PBase uses Neo4j – a NoSQL graph database – to store ProvOne information [9].
Moreover, it uses Cypher – Neo4j’s declarative graph query language – for queries. Neo4j
and Cypher are a powerful combination for provenance information of workflows because
it allows four types of queries [9]:

• Lineage queries, which deal with the derivation of data products – e.g., “what are
the datasets involved in the generation of this plot?" ;

• Execution analysis queries – e.g., “find the processes in a workflow that were not
completed" ;

• Search queries – e.g., “find all the workflows that used a bilinear regrid module" ;

• Statistical queries – e.g., “list the most used modules across all workflows" ;

However, Cypher is a complex query language for most scientists, a big barrier for its
use.

7https://orange.biolab.si/
8http://www.cs.waikato.ac.nz/ml/weka/

https://orange.biolab.si/
http://www.cs.waikato.ac.nz/ml/weka/

22

2.4.6 OPMW Workflow Repository

The OPMW Workflow Repository [15] uses Linked Data principles [4] to enable direct
access to workflows, workflow components and datasets identified with a unique URI
and using RDF to represent them. Each resource is annotated with OPMW, a model
to semantically annotate workflows derived from the Open Provenance Model (OPM)
[35] but it includes terms for abstract workflows. Abstract workflows describe workflow
components in a human readable way to make workflow more understandable; therefore,
more reusable.

Workflows are accessible using semantic-based search via a SPARQL Endpoint [15].
Hence, other applications can use these workflows and link them using Linked Data.
Nevertheless, this retrieval mechanism is hard to grasp for people who do not know about
SPARQL and OPMW. For this reason, there is a module that allows keyword-based
search on workflows, authors, and resources. The search mechanism looks for exact match,
providing an auto-complete functionality.

This repository stores exclusively workflows implemented in Wings, a scientific work-
flow management system [15].

2.5 Workflow Retrieval

The retrieval process for workflow repositories can be performed via a wide range of
methods; some of these methods are keyword-based search, structure-based search (also
known as topology-based search), and semantic-based search.

2.5.1 Keyword-based Search

Keyword-based retrieval systems use the terms in a free text query to match with terms
in a subset of metadata for each workflow in the repository.

Keyword-based methods are widely implemented on scientific workflow repositories –
e.g., myExperiment [17].

These methods have good precision, retrieving relevant workflows that match the
scientist’s query. The downside is that in some cases it has a low recall because some
relevant results are hidden. Scientists may use different words to refer to the same concepts
and annotate a workflow according to distinct criteria. Hence, in such case, these methods
just return a subset of all the relevant results for the user’s query. For example, in Figures
2.4 and 2.5, we can see different results when we use different queries that are semantically
related.

Figure 2.4 shows a search in myExperiment using the query “chromosomes”; myExper-
iment’s retrieval system returns one result because the string “chromosomes” is contained
in the value of metadata field description of the workflow with title Analyze any DNA
sequence for site enrichment9.

Figure 2.5 shows a search in myExperiment using the query “chromosome”, which
is semantically similar to “chromosomes”. MyExperiment’s retrieval system returns 84

9https://www.myexperiment.org/workflows/3905.html

https://www.myexperiment.org/workflows/3905.html

23

results and none of them correspond to the one obtained with the query “chromosomes”.
Shao et al. present WISE [38], a workflow search engine that returns concise results on

repositories of workflow hierarchies using keyword-based search. The hierarchy considers
that each workflow task can be a workflow by itself recursively[38]. This search engine
uses the metadata of components and subcomponents of each workflow and results must
contain at least one match of each term in the query. Although it is possible to show
a fine-grained graph with components and subcomponents of workflows given as results,
this search engine shows the smallest graph that contains the query terms. Hence, it
shows the workflow and presents a workflow component in detail (as another graph inside
a box) when its subcomponents have metadata that match with terms in the query[38].

Figure 2.4: Keyword-based search on myExperiment using the query “chromosomes”.

Figure 2.5: Keyword-based search on myExperiment using the query “chromosome”.

24

2.5.2 Structure-based Search

Structure-based retrieval systems use the workflow structure to look for workflows with
topology similar to an input workflow. There are three components in the DAG represen-
tation: the inputs, the outputs, and the processes. Data links represent the flow of data
from one component to the next [40]. The elements are used individually or collectively
to perform the search.

The work in [40] presents a hybrid architecture for a retrieval system using keyword
and structure search. Most of the work was focused on the structure-based search. This
work uses a topological sort of the DAG representation of workflows. Thus, the order
of execution of components is important when a workflow is compared with others. A
normalization of the similarity scores is performed to take into account the size of each
workflow. Finally, workflows are ranked by the normalized scores. This work uses the
metadata (e.g., label, URL, and type) of each component to calculate similarity scores of
workflow components.

This search method is a good choice for workflow discovery. Nevertheless, it needs
a workflow or a subset of the workflow components as input to return relevant results.
Usually, it requires expensive preprocessing of workflows in a repository. Finally, topology
alone is not a good choice in searching and has to be accompanied by, e.g., keyword-based
search.

2.5.3 Semantic-based Search

Semantic-based retrieval systems use ontologies to match queries against the semantic
annotations in the workflow repositories. This method provides the higher recall and
precision among the search methods [27]. Nevertheless, it often needs languages with
complex syntax (like SPARQL), which represents a barrier to the user [27].

Listing 2.3: Example of query in SPARQL [15].

Usually, repositories that support semantic-based search using SPARQL offer an al-
ternative retrieval method to ease the search process for users. For example, OPMW

25

Table 2.1: Related work comparison.

Retrieval Approach Multiple
Solution Keyword Semantics Structure Repositories SWMS

myExperiment [11] YES NO YES NO ALL
CrowdLabs [34] YES NO NO NO Vistrails
Galaxy [18] YES NO NO NO Galaxy

ClowdFlows [28] NO NO NO NO ClowdFlows
PBase [9] YES NO YES NO ALL

OPMW [15] YES YES NO NO Wings
Wise [38] YES NO NO YES ALL

Starlinger, 2016 [40] YES NO YES YES ALL
Bergmann, 2014 [2] NO YES YES YES Wings
WorkflowHunt [12] YES YES NO YES ALL

Workflow Repository [15] offers keyword-based and semantic-based search. Listing 2.3
shows an example of a query using SPARQL in this repository.

The work in [2] uses a hybrid approach between structure-based search and semantic-
based search applied to workflows in the field of case-based reasoning (CBR). This is a
method to solve problems using past experiences with similar problems. In this work,
workflows are semantically annotated using ontologies. Such annotations are used to
extract the semantics of each workflow component and this information is used to compute
semantic similarity measures. This work uses the distance between ontology classes in the
hierarchical representation of an ontology to extract semantic similarity measures from
semantic annotations of workflows. Local similarity measures in each workflow element
are aggregated to create a global similarity measure. Finally, this work was validated
on a workflow repository using Wings (a workflow management system) and CAKE (a
process-oriented system for CBR).

2.6 Final Remarks

This chapter presented general definitions of ontologies, workflows, and semantic anno-
tations. Furthermore, this chapter described related work about retrieval mechanisms in
scientific workflow repositories.

Table 2.1 presents fundamental characteristics of the reviewed research on retrieval
mechanisms for scientific workflow repositories. We summarize architectures and papers
in this chapter, considering the following criteria:

• Retrieval approach, which can be keyword, semantics, or structure;

26

• Multiple Repositories, which explains if the retrieval system looks for workflows in
multiple repositories;

• SWMS (Scientific Workflow Management System), indicating the system(s) sup-
ported by the retrieval system.

In the next chapter, we will present the architecture of our retrieval system, Work-
flowHunt.

27

Chapter 3

Architecture of WorkflowHunt

This chapter describes the architecture of WorkflowHunt, a hybrid retrieval system that
combines keyword and semantic search for scientific workflow repositories. Section 3.1
presents a high-level explanation about the proposed architecture. Sections 3.3, 3.2, and
3.4 detail the main layers and algorithms that make up the architecture.

3.1 Architecture

WorkflowHunt aims to retrieve from arbitrary workflow repositories, the workflows that
are relevant for users as long as the repositories provide the appropriate workflow metadata
and all are available on the web (e.g., via URL). This helps to promote workflow reuse
and re-purpose across different scientific fields. Our architecture focuses on improving
the workflow interoperability among different scientific domains by offering semantic and
keyword search for scientific workflow repositories.

Figure 3.1 shows the WorkflowHunt architecture, which comprises three main layers:
Persistence, Pre-processing, and Search. The Persistence Layer is composed by four
repositories: Local Workflow Repository, Metadata Repository, Ontology Repository, and
Repository of Semantic Annotations. This layer also includes the keyword index and
hybrid index (a combination among semantic and keyword indices). The Pre-processing
Layer prepares the data for search, which is performed by the Search Layer. The latter
provides all the services needed to find workflows using keyword and semantic search.
These services can be accessed through the Web Interface by users (scientists who are
looking for workflows of interest). Finally, solid arrows represent the data flow in the
system and dashed arrows represent data connections among elements.

WorkflowHunt prepares the data offline using the Pre-processing Layer for subsequent
processing. The preparation process starts when the Metadata Collector extracts meta-
data from external (1a) and local (2a) workflow repositories. External workflow data
requires a Web Crawler; scientists can also take advantage of workflows created by their
own research team, stored in the Local Workflow Repository. Extracted metadata is
stored in the Metadata Repository (3a). The Semantic Annotator semantically annotates
the metadata using the Dictionary of Ontology Terms, which maps ontology terms to on-
tology classes in the Ontology Repository (4a). These semantic annotations are stored in

28

the Repository of Semantic Annotations (5a). The Index Generator then creates indices
for metadata (keyword index) and a combination of keywords and semantic annotations
(hybrid index) (6a-7a). We use an inverted index for keyword-based search and a modi-
fied version of the same index data structure for semantic search (see Subsection 3.3.2).
Both indices refer to the data in Metadata Repository. Once repositories are created and
indices are constructed, the system is ready to handle queries using keyword and semantic
search. Each new workflow processed needs to go through this process. If new ontolo-
gies are added, the Dictionary of Ontology Terms is updated and steps (4a) onwards are
executed.

Figure 3.1: WorkflowHunt Architecture.

A usual retrieval scenario starts when a user poses a query through the Web Interface
(1b). This interface redirects the query to the Search Engine and the Log Manager
(2b). The Log Manager stores the query for performance management. The Search
Engine executes the query using keyword or semantic indices (3b), depending on the
user preferences. These indices are linked to the workflow metadata in the Metadata
Repository. The result is a list of metadata with links pointing at relevant workflows,
presented to the user at the interface (4b-5b).

3.2 Persistence Layer

The Persistence Layer comprises four repositories:

29

Local Workflow Repository: It is a private repository of the scientist’s team, which
stores abstract and executable workflows. Such workflows can be created using different
Scientific Workflow Management Systems (SMWS).

Metadata Repository: It contains the metadata collected from Local and External
workflow repositories. Such metadata includes a link to the actual workflows. Local
repositories store workflow metadata directly in this repository. Metadata from external
repositories are collected using a Web Crawler.

Ontology Repository: It contains all the ontology classes, ontology terms, and their
relationships for different ontologies of different domains.

Repository of Semantic Annotations: It stores semantic annotations extracted
from the data in the Metadata Repository, using the Dictionary of ontology Terms to link
with ontology classes in the Ontology Repository. These annotations are important to
create the hybrid index (see 3.3.2).

3.3 Pre-processing Layer

The Pre-processing Layer prepares data to be used by the Search Layer (Keyword and
Hybrid indices, and Metadata Repository). The Web Crawler collects workflow metadata
from external repositories. Usually, external workflow repositories provide the metadata
of their workflows via various formats — e.g., HTML, RDF, JSON, XML, etc. Thus, this
module may require customizations if a new repository is integrated with WorkflowHunt
because it transforms these formats to a normalized format (see Assumption 2.4.1). The
Metadata Collector receives metadata from the Local Scientific Workflow Repository or
the Web Crawler and stores it in the Metadata Repository. Subsections 3.3.1 and 3.3.2
detail functionalities of Semantic Annotator and Index Generator respectively.

3.3.1 Semantic Annotations

The Dictionary of Ontology Terms associates ontology terms with ontology classes in
the Ontology Repository. Algorithm 1 presents the BUILD_DICTIONARY algorithm
to create this dictionary. The algorithm takes as input a list of ontologies (including
ontology terms, ontology classes, and relationships) and the dictionary is created as result.
It iterates over the ontology terms of each ontology class in the repository to associate
them with the classes (lines 3 - 9). Ontology terms are the keys and ontology classes
are the values. Some ontology terms can be derived from external sources (not included
in the ontologies) – e.g., synonyms in WordNet[13]. Finally, the result is stored in the
Dictionary of Ontology Terms (line 10).

The Semantic Annotator creates semantic annotations by linking the workflow meta-
data in the Metadata Repository with the ontology classes in the Dictionary of Ontology
Terms. The Semantic annotator uses the SEMANTIC_ANNOTATION algorithm (see
Algorithm 2), which is inspired by the Open Biomedical Annotator [26].

Our algorithm receives as input the metadata of workflows to be annotated, a dictio-
nary of ontology terms, and a list of options for semantic expansion. It stores the resulting

30

Algorithm 1 Algorithm to build Dictionary of Ontology Terms
Require: O is a list of Ontologies

1: function BUILD_DICTIONARY(O)
2: D ← ∅
3: for each ontology ∈ O do
4: for each class ∈ ontology do
5: for each term ∈ class do
6: D[term]← class
7: end for
8: end for
9: end for
10: store(D)
11: end function

semantic annotations in the Repository of Semantic Annotations. We create semantic an-
notations associating many ontology classes with a workflow through the occurs − in

relationship. C represents the context or provenance information such as creation date
of the annotation. Recall that a semantic annotation, here, is the tuple < s, p, o, c >,
where s is the subject of annotation, o is the object of annotation, p is the predicate (the
relationship between s and o), and c is the context (provenance information) [36] (see line
7 of Algorithm 3).

The algorithm iterates over the list of workflow metadata and extracts the text that
belongs to each metadata field (line 5). This text and the workflow URI (line 6) are used
as input for the TEXT_ANNOTATION algorithm (see Algorithm 3), which identifies
the ontology classes that are in the text and creates semantic annotations (lines 7 - 8).
Finally, the semantic annotations are stored in the Repository of Semantic Annotations
(line 11).

Algorithm 2 Semantic Annotation Algorithm
Require: W is the metadata of workflows to be annotated, D is a dictionary of ontology

terms, and Opt is a list of options for semantic expansion

1: function SEMANTIC_ANNOTATION(W,D,Opt)
2: SA← ∅
3: for each metadata ∈ W do
4: for each field ∈ getF ields(metadata) do
5: text← getV alue(field)
6: workflowURI ← getWorkflowURI(metadata)
7: semanticAnnotations← TEXT_ANNOTATION(text, workflowURI,D,Opt)
8: SA.add(semanticAnnotations)
9: end for
10: end for
11: store(SA)
12: end function

In more detail, the TEXT_ANNOTATION algorithm (see Algorithm 3) receives as

31

Algorithm 3 Semantic Annotations from Free Text Algorithm
Require: T is free text, which is the value of a metadata field of a workflow,

WorkflowURI is the URI of such workflow, D is a dictionary of ontology terms,
and Opt is a list of options for semantic expansion

1: function TEXT_ANNOTATION(T,WorkflowURI,D,Opt)
2: SA← ∅
3: D ← sortByLength(D)
4: for each pair(term, class) ∈ D do
5: if term ⊆ T then
6: classURI ← getURI(class)
7: semanticAnnotation← (classURI, “occurs− in”,WorkflowURI,C)
8: SA.add(semanticAnnotation)
9: expandedAnnotations← SEM_EXPANSION(semanticAnnotation,Opt)
10: SA.add(expandedAnnotations)
11: termLength← getLength(term)
12: w ← createWildcard(WHITE_SPACE, termLength)
13: T ← replace(T, term,w)
14: end if
15: end for
16: return SA
17: end function

input a text, a workflow URI, a dictionary of ontology terms, and a list of options for
semantic expansion. Its output is a list of semantic annotations with the ontology classes
detected in the input text and their corresponding semantically expanded annotations
according to the input options. The algorithm starts by sorting the dictionary of ontology
terms by the length of the ontology terms in descending order (line 3). We give priority
to larger strings because they probably have more semantic content than shorter strings.
Moreover, we should avoid overlapping semantic annotations in the text as suggested
in [1]. For example, consider the string “a nucleic acid sequence” that belongs to some
metadata value of a workflow. If our system annotates that string with the ontology term
“nucleic acid sequence”1, then it should not create an annotation with the ontology term
“sequence”2 on the same string because this causes an overlap. Overlap can be avoided
by replacing reoccurring terms by, e.g., blanks. A given substring cannot be annotated
by more than one ontology term, thus avoiding overlapping (lines 4 - 15). Finally, the
algorithm returns semantic annotations with the corresponding semantic expansion (line
16).

The SEM_EXPANSION algorithm (see Algorithm 4) expands an initial semantic an-
notation using the super/sub class structure of the ontologies. It receives as input a
semantic annotation and a list of options for semantic expansion and returns a list of
semantic annotations expanded from the original one. Options are generalization (lines
3-6), specialization (lines 7-10), and semantic distance expansion (lines 11-14). General-

1http://edamontology.org/data_2977
2http://edamontology.org/data_2044

http://edamontology.org/data_2977
http://edamontology.org/data_2044

32

Algorithm 4 Semantic Expansion Algorithm
Require: sa is a semantic annotation and Opt is a list of options for semantic expansion

1: function SEM_EXPANSION(sa,Opt)
2: SE ← ∅
3: if Opt.hasSemanticGeneralization() then
4: generalizedAnnotations← generalization(sa,Opt.gSize, C)
5: SE.add(generalizedAnnotations)
6: end if
7: if Opt.hasSemanticSpecialization then
8: specializedAnnotations← specialization(sa,Opt.sSize, C)
9: SE.add(specializedAnnotations)
10: end if
11: if Opt.hasSemanticDistanceExpansion then
12: semDistanceAnnotations← semanticDistanceExpansion(sa,Opt.sdSize, C)
13: SE.add(semDistanceAnnotations)
14: end if
15: return SE
16: end function

ization (resp. specialization) creates new semantic annotations with the same structure of
the initial semantic annotation but replacing the ontology class associated with its super-
classes (resp. subclasses) in the ontology. The parameter gSize represents the number of
superclasses that will be included in the semantic expansion (resp. sSize for number of
subclasses). Semantic distance expansion creates new semantic annotations with the same
structure of the initial semantic annotation but replacing the ontology class associated
with its neighbors in the ontology. The parameter sdSize represents the number of edges
that separate the original ontology class from the ontology classes that will be included
in the expansion.

For example, in the case of generalization, consider the string “...gene ids for that chro-
mosome” that belongs to the description metadata of a workflow with title
“chicken_ensembl_gene_id”3. Our system detects the ontology term “chromosome” that
belongs to the ontology class DNA4 and creates a semantic annotation
(http : //edamontology.org/topic_0654, “occurs− in”,

http : //www.myexperiment.org/workflows/902, {date : “2017− 05− 04”}). Next, the
system finds that Nucleic acids5 is the superclass of DNA6 and creates another semantic
annotation (http : //edamontology.org/topic_0077, “occurs− in”,

http : //www.myexperiment.org/workflows/902, {date : “2017 − 05 − 04”}), which is
result of replacing the ontology class in the initial semantic annotation by one of its
superclasses in the ontology (in this case, the immediate superclass).

3http://www.myexperiment.org/workflows/902
4http://edamontology.org/topic_0654
5http://edamontology.org/topic_0077
6http://edamontology.org/topic_0654

http://www.myexperiment.org/workflows/902
http://edamontology.org/topic_0654
http://edamontology.org/topic_0077
http://edamontology.org/topic_0654

33

3.3.2 Indices

Indices are used as data structures to provide distinct kinds of access to workflows. We
provide two indices – keyword and hybrid.

The general algorithm is the following:

1. Traverse metadata text

2. Extract tokens from text

(a) Extract keywords to build keyword index (normalized K-token)

(b) Extract hybrid expressions to build hybrid index (normalized H-token)

3. Create and store indices, eliminating duplicate tokens

(a) Construct K-index structure

(b) Construct H-index structure

As will be seen, the keyword index contains keywords found in textual metadata. A
K-index entry is expressed as <normalized K-token, list of workflow ids>, where
the list indicates the ids of workflows associated with that keyword, which has been
normalized. Normalization is the process of standardizing tokens so that tokens with
superficial differences in the character sequences are grouped together to represent the
same token [33]. In this project, normalization is done by the Index Generator, which
converts the workflow metadata to lowercase, removes the stop words (common words
that have little value to match relevant results), and applies a stemming algorithm on the
metadata. Stemming is the process of reducing the many (inflectional and derivationally
related) forms of a word to a common base form by chopping off the ends of words [33].

A H-index entry can be of two types:

1. <normalized K-token, list of workflow ids> or

2. <normalized H-token, list of workflow ids>

The normalized H-token contains a text representation of an ontology class using with
the format <ontology>:<class identifier>, which is obtained using ontology terms
(i.e., a semantic reference). When no such semantic reference exists, the hybrid index will
contain a normalized K-token. This is why this is called a hybrid index.

Algorithm 5 shows the algorithm used for indexing (BUILD_INDICES Algorithm).
Lines 4 through 16 extract tokens (K-tokens and H-tokens) from metadata fields, normal-
ize them into lists, which are used to build or update a keyword index (line 18) and a
hybrid index (line 20). Moreover, tokenization and normalization differ for keyword and
hybrid indices.

In more detail, lines 8 and 9 extracts atomic keywords (K-tokens) to build the keyword
index. Figure 3.2 shows how the keyword index is created. Two workflows are used
in the figure: Transcribe a DNA sequence into an RNA sequence7 and Add "chr" to

7http://www.myexperiment.org/workflows/12.html

http://www.myexperiment.org/workflows/12.html

34

Algorithm 5 Indexing Algorithm
Require: W is a list of metadata grouped by workflow in the Metadata Repository

1: function BUILD_INDICES(W)
2: normalizedKtokens← ∅
3: normalizedHtokens← ∅
4: for each workflow ∈ W do
5: for each metadata_field ∈ workflow do
6: text← getV alue(metadata_field)
7: . get a set of keywords (K-tokens) from text and normalize the set
8: Ktokens← tokenize(text)
9: normalizedKtokens← normalizedKtokens ∪ normalize(Ktokens)
10: . get a set of hybrid expressions (H-tokens) from text and normalize the

set
11: sem_annotations← getSemanticAnnotations(workflow)
12: hybridText← replaceOntologyTermsByOntologyClasses(text, sem_annotations)
13: Htoken← tokenize(hybridText)
14: normalizedHtokens← normalizedHtokens ∪ normalize(Htokens)
15: end for
16: end for
17: . Create or update K-Index using a list of normalized K-tokens
18: SAV E_K_INDEX(normalizedKtokens)
19: . Create or update H-Index using a list of normalized H-tokens
20: SAV E_H_INDEX(normalizedHtokens)
21: end function

35

the first column of a 6 column BED file8. This example takes into account just one
metadata field (description). The tokens in each document are tagged by their workflow
identifier (Figure 3.2 - left). Next, the tokens are normalized and converted to indexing
terms (Figure 3.2 - middle). In this case, the stop words a, an, at, in, into, is, it, of,
that, the, this, will, and your were removed. Tokens were converted to lowercase and
sorted alphabetically. Instances of the same indexing term are grouped by term and
then by workflow identifier. Consequently, each indexing term has a list of workflow
identifiers (Figure 3.2 - right). Usually, inverted indexes store summary information like
the document frequency of each indexing term [33]. This information is used to rank
results and improve query time efficiency. Each list of workflow identifiers can store
other information like the term frequency – the frequency of each term in each workflow
metadata value – or the position(s) of the term in each workflow metadata value.

Figure 3.2: Example of Keyword Index.

Similarly, lines 11-14 extract hybrid expressions (H-tokens) from hybrid text to build
the hybrid index. This index merits a more detailed explanation. A hybrid expression can
be an atomic keyword or a reference to an ontology class. Ontology classes are identified
using ontology terms associated with them, and ontology terms can contain more than
one keyword. Hence, to avoid mistakes in the tokenization they need to be mapped to a
format with an atomic form to be considered as tokens.

8http://www.myexperiment.org/workflows/4226.html

http://www.myexperiment.org/workflows/4226.html

36

Figure 3.3 shows how the text is converted to hybrid text. A hybrid text is a text
that combines atomic keywords with ontology classes (in atomic form) identified in the
text. Two workflows are used in the figure: Transciption (DNA into RNA)9 and Add
"chr" to the first column of a 6 column BED file10. This example considers just one
metadata field: description (Figure 3.3 - top). Ontology terms, in green, are detected
using the semantic annotations (Figure 3.3 - middle), which are linked to ontologies in
the Ontology Repository. In this case, we are using the EDAM ontology. Such terms
are converted to a string with the form <ontology>:<class identifier> (Figure 3.3
- bottom). Note that the ontology terms chromosome and DNA use the same ontology
class identifier because both terms belong to the same ontology class (see Listing 2.1).

Figure 3.3: Example of Hybrid Text.

Figure 3.4 shows how the hybrid index is created. We use the same workflows that we
used in Figure 3.3. This example takes into account just one metadata field (description).
After the transformation of text into hybrid text (see Figure 3.3), the tokens in each
document are tagged by their workflow identifier (Figure 3.4 - left). In this case, strings
with the form <ontology>:<class identifier> and keywords are taken as a token.
Next, the tokens are normalized and converted to indexing terms (Figure 3.4 - middle).
In this case, the stop words a, at, in, into, is, it, of, that, the, this, to, will, and your were
removed. Tokens were converted to lowercase (with exception of tokens with the form
<ontology>:<class identifier>) and sorted alphabetically. Instances of the same
indexing term are grouped by term and then by workflow identifier. Consequently, each
indexing term has a list of workflow identifiers (Figure 3.4 - right).

9http://www.myexperiment.org/workflows/1086.html
10http://www.myexperiment.org/workflows/4226.html

http://www.myexperiment.org/workflows/1086.html
http://www.myexperiment.org/workflows/4226.html

37

Figure 3.4: Example of Hybrid Index.

38

3.4 Search Layer

Keyword search uses a four-step approach:

1. Tokenize the text in the query,

2. Get the list of workflows for each token in the Keyword Index that match with the
tokens in the query,

3. Find the workflows that belong to the intersection of such lists,

4. Show results

Hybrid search uses the same approach. Nonetheless, in Step 1, ontology terms in
the query are identified and replaced by strings with the form <ontology>:<class
identifier>.

Although in Step 3 the system should retrieve all the workflows relevant to our query,
it is useful to retrieve workflows that are in the interception of a percentage of the lists
obtained in Step 2. In other words, when we write a query that has many words, it is
useful to get workflows with metadata that match a high percentage of the tokens derived
from the query, because they probably are relevant to our query.

In an ideal world, a full semantic search (using just semantic annotations) would be
better than our approach using hybrid search (with a hybrid index). Nonetheless, on-
tologies evolve, losing and gaining ontology classes along time. Coverage of classes in
most ontologies is incomplete because always there are missing elements in ontologies
[23]. Moreover, there is a meaning loss when natural language is translated to seman-
tic annotations because languages are semantically more expressive than ontologies [3].
Thus, we decided to combine keywords and semantic annotations to create a Hybrid Index
because it expands the search options.

3.5 Final Remarks

In this chapter, we presented the WorkflowHunt architecture, including some details about
semantic annotations, indexing, and search. In Chapter 4, we will present implementation
aspects of WorkflowHunt. This architecture is generic and does not depend on specific
technological solution.

39

Chapter 4

Implementation Aspects

In this chapter, we present details about the implementation of a WorkflowHunt prototype
available at http://www.workflowhunt.com. This chapter explains the implementation
of the Persistence Layer (Section 4.1), the Preprocessing Layer (Section 4.2), and the
Search Layer (Section 4.3), the interface of the prototype (Section 4.4), and a case study
(Section 4.5).

4.1 Implementing the Persistence Layer

Most repositories we implemented use MySQL as underlying DBMS. Figure 4.1 shows the
repositories’ schema. Tables ontology and ontology_class belong to the Ontology Repos-
itory. Table ontology_term stores the Dictionary of Ontology Terms, which is associated
with ontology classes in the Ontology Repository. Tables tag, tag_wf, and workflow be-
long to the Metadata Repository. The semantic_annotation belong to the Repository
of Semantic Annotations, which stores the workflow identifier, the metadata type of the
field (e.g., title, description, or tag), the ontology class detected in the metadata, and the
annotation type – e.g., direct annotation or semantic expansion (generalization, special-
ization, or distance expansion). Additionally, the system stores the distance between the
original ontology class detected and the ontology class used in the annotation. Distance
equals zero for direct annotations.

MyExperiment1 is the External Scientific Workflow Repository. The prototype still
does not use a Local Scientific Workflow Repository. Finally, we used ElasticSearch to
create and store our keyword and hybrid indices. ElasticSearch [20] is a project based on
Lucene and provides distributed and scalable search using inverted indexes, and full-text
search or term-based search. The indices link to the information in the workflow table.

4.2 Implementing the Preprocessing Layer

Modules in the Preprocessing Layer were implemented using PHP and framework CodeIgniter.
MyExperiment provides an API2 to collect the workflow metadata (title, description, tags,

1https://www.myexperiment.org/
2http://wiki.myexperiment.org/index.php/Developer:API

http://www.workflowhunt.com
https://www.myexperiment.org/

40

Figure 4.1: Database Schema for the Prototype.

etc.) from its repository in XML format. Listing 4.1 shows an example of metadata in
XML for a workflow with title chicken_ensembl_gene_id. The Web Crawler collects such
information and the Metadata Collector transforms the raw metadata to store a subset
of the available metadata (id, title, description, tags, and SWMS) in the table workflow
(see Figure 4.1). Furthermore, tags are stored in the tag table and they are linked to the
workflow table via the tag_wf table. For instance, XML field type in Listing 4.1 will be
stored in field swms of the table workflow. In total, we collected 15,054 metadata fields
(title, description, SWMS and tags) that belong to 2,873 workflows.

Listing 4.1: Workflow Metadata in XML Format.

We used EDAM and CHEMINF ontologies to semantically annotate myExperiment

41

workflow metadata. EDAM is an ontology for bioinformatics information, including op-
erations, types of data, topics, and formats [25]. CHEMINF is an ontology for chemical
information, including terms, and algorithms used in chemistry [22]. Those ontologies con-
tain 3,045 ontology classes linked to a dictionary of 5,057 ontology terms. The ontology
classes and terms (see Figure 4.1) were collected using the Ontology Lookup Service [8].
This service allows querying, browsing, and navigating over a database that integrates sev-
eral biomedical ontologies and related vocabulary. We used WordNet [13] as an additional
source of synonyms to complement the ontology terms collected via Ontology Lookup Ser-
vice. Ontology classes are associated to one ontology and include the Internationalized
Resource Identifier (IRI) and the IRI of its superclass for eventual generalization of seman-
tic annotations (our prototype only supports one level generalization among the
semantic expansion options). Ontology terms are stored in the table ontology_term
and are associated with one ontology class. Such terms include a text, the term type (e.g.,
synonym, or labels), and the source (e.g., Ontology Lookup Service, or WordNet).

The Semantic Annotator uses the SEMANTIC_ANNOTATION algorithm (see Algo-
rithm 2), which takes input data from ontology_term, workflow, tag_wf, and tag tables
to populate the semantic_annotation table. The semantic_annotation table stores the
ontology classes detected in workflow metadata. It also stores the metadata type of the
field (e.g., title, description, or tag), the annotation type – e.g., direct annotation or
semantic expansion (generalization, specialization, or distance expansion). For each an-
notation generated by semantic expansion, the system stores the distance between the
original ontology class detected and the ontology class used in the annotation. Distance
equals 1 for one level generalization (semantic annotations using the first superclass of the
ontology class in a direct annotation). Distance equals zero for direct annotations. After
the annotation process, we got 27,697 semantic annotations (51.5% by direct annotation
and 48.5% by semantic expansion - one level generalization).

The Index Generator uses the BUILD_INDICES algorithm (see Algorithm 5), which
takes input data from semantic_annotation, workflow, tag_wf, and tag tables to create
the Keyword and Hybrid indices. Such inverted indices are created using ElasticSearch.
The Keyword Index maps keywords to workflow identifiers, while the Hybrid Index maps
keywords and ontology classes to workflow identifiers. The keywords belong to metadata
of a workflow and the ontology classes are the ones stored in the semantic_annotation
table, which are associated with a workflow. Finally, workflows identifiers link to the
workflow metadata associated with them.

4.3 Implementing the Search Layer

Modules in this layer were implemented using PHP (with CodeIgniter Framework) and
ElasticSearch. The user’s query at the user interface (see Figure 4.2) is intercepted by
the Log Manager. This information is used in the case study (see Section 4.5) to identify
some cases where one search approach outperforms others. Users choose between keyword
and hybrid search. The Search Engine takes the query and splits it in tokens – words
when the user chooses keyword search and hybrid tokens when the user chooses hybrid

42

search. Then, the Search Engine performs a search on the appropriate index according to
user’s choice (keyword or hybrid) and returns a list of metadata grouped by workflow.

Given a user’s query string, we try to match it with at least 75% of the tokens extracted,
considering they will return results relevant to the query. For instance, if the query string
contains “A B C D" each of which is a token, then our results will be the set of workflows
that satisfy at the same time at least 3 of these tokens.

4.4 User Interface

The user interface is inspired by modern search engines like Google, Bing, and Duck-
DuckGo because it provides a soft transition to hybrid search (semantic and keyword
search). Figure 4.2 shows the home page of the WorkflowHunt prototype. The user poses
the query (a string) at the input box; the search is triggered by clicking the search button
or by pressing enter on the keyboard.

Figure 4.2: Home Page of WorkflowHunt.

Figures 4.3 and 4.4 show results for the query chromosomes using keyword search (see
Figure 4.3) and hybrid search (see Figure 4.4). The user chooses which kind of search
s/he wants to perform by selecting the tab Keyword for keyword search or tab Semantics
for hybrid search. The output shows the number of results retrieved and a link with
label Compare Results – see Case Study (Section 4.5). Results are paginated and each
page contains 10 results at most. Each result comprises four metadata fields: title, URL,
description and Scientific Workflow Management System (SWMS). Link READ MORE
displays the semantic annotations for the corresponding result (see Figure 4.6). Users
can access a workflow using the URL in the results and download the workflow from
myExperiment (see Figure 4.5).

43

Figure 4.3: Keyword search results.

Figure 4.4: Hybrid search results (partial view).

44

Figure 4.5: Workflow metadata in myExperiment.

Figure 4.6 shows the semantic annotation page for a workflow with title
chicken_ensembl_gene_id, which is the first result for the query chromosomes when
the user selects hybrid search (see Figure 4.4). This page presents four metadata fields:
title, URL, description, and tags. The system performs semantic annotations on the title,
description, and tags using the EDAM and CHEMINF ontologies. When the prototype
detects an ontology term that belongs to one of the ontologies in the workflow metadata,
the ontology term is highlighted and colored according to the ontology color. The ta-
ble at the bottom of Figure 4.6 shows the ontology classes associated with the workflow
metadata. The table has four headers: ontology class, ontology terms, ontology, and
annotation type. Ontology terms are used to find exact string matches in the workflow
metadata. Ontology classes are used to create the semantic annotation. Finally, the
Annotation Type column shows if the semantic annotation is a direct annotation or a
semantic expansion (generalization, specialization, or semantic distance expansion) of a
semantic annotation.

4.5 Case Study

We compared WorkflowHunt (keyword search and hybrid search) with the retrieval system
provided by myExperiment to analyze the cases for which it is convenient to use each
system. We show three Venn diagrams (see Figures 4.8, 4.9, and 4.10) comparing different
search approaches for different queries. Although three examples may seem insufficient,
the diagrams illustrate the gist of our findings. A comparison table for more queries is
available in the GitHub of the project 3.

3https://github.com/jbeleno/workflowhunt

https://github.com/jbeleno/workflowhunt

45

Figure 4.6: Semantic annotations for a workflow in WorkflowHunt.

Figures 4.8, 4.9, and 4.10 show the Venn diagrams for the queries “chromosomes”,
“ecology”, and “pathway simulation” respectively. We chose Venn diagrams instead of
tables because they are better to analyze different cases where a system outperforms
others.

Let q be a scientist’s query, and A, B, and C sets of workflows defined as follows:
A = set of workflows retrieved using the keyword search provided by myExperiment

given the query q. This set is represented by a red circle in the Venn diagrams.
B = set of workflows retrieved using the keyword search provided by WorkflowHunt

given the query q. This set is represented by a green circle in the Venn diagrams.
C = set of workflows retrieved using the semantic search provided by WorkflowHunt

given the query q. This set is represented by a purple circle in the Venn diagrams.
Figure 4.7 presents a draft of a Venn diagram using the sets and query defined earlier.

The numbers inside the Venn diagrams represent the cardinality (number of elements) of
each subset. t is the number of elements that belong to A and do not belong to B or
C. u is the number of elements in the intersection between A and B that do not belong
to C. v is the number of elements that belong to B and do not belong A or C. w is the
number of elements in the intersection between A and C that do not belong to B. x is the
number of elements in the intersection among A, B, and C. y is the number of elements
in the intersection of B and C that do not belong to A. z is the number of elements that
belong to C and do not belong to A or B.

From the cardinality of these subsets, we can calculate the cardinality of each set. The
cardinality of A is the sum of t, u, w, and x (|A| = t + u + w + x). The cardinality of
B is the sum of u, v, x, and y (|B| = u + v + x + y). The cardinality of C is the sum of
w, x, y, and z (|C| = w + x + y + z).

More importantly for our case study, we can calculate the number of elements that
belong to one set and do not belong to a specific set. The number of elements that belong
to A and do not belong to B is the sum of t and w (|A - B| = t + w). The number of

46

Figure 4.7: Draft of a Venn diagram comparing different search approaches for the query
“q”.

elements that belong to A and do not belong to C is the sum of t and u (|A - C| = t +
u). The number of elements that belong to B and do not belong to A is the sum of v and
y (|B - A| = v + y). The number of elements that belong to B and do not belong to C
is the sum of u and v (|B - C| = u + v). The number of elements that belong to C and
do not belong to A is the sum of y and z (|C - A| = y + z). The number of elements
that belong to C and do not belong to B is the sum of w and z (|C - B| = w + z).

The search comparisons allow us to analyze six cases:
Case 1. (A− B) 6= ∅: This case occurs when, given a query, myExperiment returns

workflows that keyword search in WorkflowHunt does not (see Figures 4.9 and 4.10). The
main reason is that myExperiment indexes more metadata than WorkflowHunt4. For
example, consider the query in Figure 4.9: “ecology”, which produces 5 workflows that
belong to (A−B). After an analysis, we found that in most of them like the “Age specific
analysis”5 workflow contained the string “... Journal of Ecology” in the descriptions of
some workflow inputs. At the moment, the prototype of WorkflowHunt just indexes title,
description, and tags.

Case 2. (B − C) 6= ∅: This case occurs when a keyword search in WorkflowHunt
returns workflows that the hybrid search in WorkflowHunt does not (see Figures 4.9 and
4.10). The main reason is that the hybrid search in WorkflowHunt replaces substrings
in the query that are detected as ontology classes. Such substrings can have more than
one word, which means that a hybrid search query can have fewer tokens than a keyword
search in WorkflowHunt. Moreover, keyword search in WorkflowHunt does not consider

4https://goo.gl/STIQWR
5http://www.myexperiment.org/workflows/3286.html

47

Figure 4.8: Venn diagram comparing different search approaches for the query “chromo-
somes”.

the position of the words in the query, and semantic search in WorkflowHunt does. For
example, consider the query “pathway simulation”, which produces 140 workflows that
belong to (B − C). We found that there are no semantic annotations in WorkflowHunt
associated to “pathway simulation” (ontology class EDAM:operation_3562). Neverthe-
less, keyword search in WorkflowHunt returned 140 workflows because the metadata of
those workflows contains the words “pathway” and “simulation”, but such words could
appear in different order, in different metadata fields of the same workflow or could be
separated by several words.

For the query “ecology”, the result that belongs to (B−C) exists because the Seman-
tic Annotator has problems to identify ontology terms in the workflow metadata when
they are near punctuation marks. The workflow6 that belong to (B − C) contains the
text “...under the subject of Ecology.” in the description field. That point after the
word “Ecology” hindered the semantic annotation process of the ontology class “Ecology”
(EDAM:topic_0610), which hides that workflow from results when results come from the
hybrid search.

Case 3. (A− C) 6= ∅: This case occurs when a keyword search in myExperiment re-
turns workflows that the hybrid search in WorkflowHunt does not. This case summarizes
the reasons given in Case 1 and 2: myExperiment indexes more metadata fields, hybrid
search in WorkflowHunt uses fewer tokens than keyword search, errors in semantic anno-
tations affects hybrid search and keyword search in myExperiment has lax rules about the
position of the words given in the query to match against the workflow metadata. This

6http://www.myexperiment.org/workflows/2464.html

http://www.myexperiment.org/workflows/2464.html

48

Figure 4.9: Venn diagram comparing different search approaches for the query “ecology”.

case occurs with the queries “pathway simulation” (Figure 4.10) and “ecology” (Figure
4.9).

Case 4. (B − A) 6= ∅: This case occurs when a keyword search in WorkflowHunt
returns workflows that the keyword search in myExperiment does not. The main reason is
that WorkflowHunt has a lower threshold in the number of words that should be matched
against the workflow metadata than the myExperiment keyword search. This case occurs
with the query “pathway simulation” (Figure 4.10), where 123 workflows belong to (B−A).
For example, the workflow “Rank Phenotype Terms”7 is in the set because it has the word
“pathway” in the workflow metadata. However, it does not have the word “simulation” in
the metadata.

Case 5. (C − A) 6= ∅: This case occurs when a hybrid search in WorkflowHunt
returns workflows that the keyword search in myExperiment does not. The main reason
is that hybrid search in WorkflowHunt allows finding concepts with similar meaning and
not just keywords. Therefore, the results are semantically similar to what is searched.
For example, consider the query “chromosomes” (Figure 4.8), where keyword search in
myExperiment returns 1 workflow. The string “chromosomes” represents the ontology
class EDAM:topic_0654 that is linked to many ontology terms: “DNA”, “Ancient DNA”,
“DNA analysis”, “Chromosomes”, “deoxyribonucleic acid”, “desoxyribonucleic acid”, and
“chromosome”. Hence, hybrid search in WorkflowHunt finds workflows that match with
those ontology terms in the workflow metadata, returning 77 workflows.

Case 6. (C−B) 6= ∅: This case occurs when a hybrid search in WorkflowHunt returns
workflows that the keyword search in WorkflowHunt does not. The reason and example

7http://www.myexperiment.org/workflows/854.html

http://www.myexperiment.org/workflows/854.html

49

Figure 4.10: Venn diagram comparing different search approaches for the query “pathway
simulation”.

are the same than the presented in Case 5.
The cases where the difference between sets is empty ((A − B) = ∅, (A − C) = ∅,

(B − C) = ∅, (C − B) = ∅, (C − A) = ∅, and (B − A) = ∅) are not interesting because
the systems return the same set of workflows for a query.

The conclusions given about set A are based on reverse engineering applied in myEx-
periment and a study of the source code of that website8.

4.6 Final Remarks

In this chapter, we detailed implementation aspects of WorkflowHunt. Moreover, we pre-
sented a case study that shows where one search approach outperforms others, comparing
myExperiment search engine and WorkflowHunt prototype. However, there is no data
about precision and recall of the prototype. For more details about the WorkflowHunt
prototype please visit https://github.com/jbeleno/workflowhunt, which contains a
GitHub repository with the code of the prototype and some instructions for setup.

Summing up, the main differences found between our solution and the keyword search
provided by myExperiment are:

• WorkflowHunt indexes fewer metadata fields than myExperiment;

• WorkflowHunt has a static minimum threshold for the number of tokens matched
8https://github.com/myExperiment/myExperiment

https://github.com/jbeleno/workflowhunt

50

with workflow metadata to classify a workflow as relevant given a query, while
myExperiment seems to have a flexible threshold;

• WorkflowHunt expands the search using ontology terms associated with the ontology
classes detected in the query, while myExperiment uses just the keywords in the
query;

• Missing semantic annotations in workflow metadata hidden relevant results in Work-
flowHunt, while myExperiment does not have such problem because it uses keyword
search;

• myExperiment considers a workflow relevant if the keywords in the query appear in
the workflow metadata in any order when some keywords in the query are detected
as ontology class in WorkflowHunt, they should appear in the same order as they
appear in the query.

Chapter 5 presents contributions and future work.

51

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Workflow reuse helps accelerate the design of scientific experiments. However, workflow
repositories do not provide enough search tools and help scientists find relevant work-
flows. This work is a step towards this direction. It presented the design architecture
and implementation of WorkflowHunt, a retrieval system that combines semantic and
keyword search in scientific workflow repositories. It aims to contribute helping scientists
in workflow reuse, re-purpose, and experiment replication by facilitating the discovery of
workflows relevant to scientists’ experiments. Our work is a step towards helping scientists
find and select the most appropriate workflows for reuse by a given experiment.

We created a prototype1 to validate our proposal using data from myExperiment, [11],
one of the largest scientific workflow repositories at the moment. We also used EDAM and
CHEMINF ontologies to create semantic annotations, which serve as inputs for the hybrid
search. EDAM is an ontology of bioinformatics information, including operations, types
of data, topics, and formats [25]. CHEMINF is an ontology for chemical information, in-
cluding terms, and algorithms used in chemistry [22]. WorkflowHunt combines semantic
and keyword search. It is extensible, and can accept more ontologies from the Ontology
Lookup Service. This service allows querying, browsing, and navigating over a database
that integrates several biomedical ontologies and related vocabulary [8]. Moreover, in-
cluding new workflow metadata from other repositories would require few modifications
in the source code.

The main contributions of our work are:

• A study comparing different scientific workflow repositories and their retrieval sys-
tems;

• The design of a generic architecture for workflow retrieval combining keyword and
semantic search;

• The implementation of a prototype for WorkflowHunt, which can run on any repos-
itory that export workflow metadata, for arbitrary workflows and ontologies;

1http://www.workflowhunt.com

http://www.workflowhunt.com

52

• A case study that shows cases where our system outperforms myExperiment and
vice versa

Our proposal and its implementation are generic and not restricted to a specific domain
or ontology. Moreover, the construction of our indices and the annotations are automatics.
This is an advantage over related work, which is either restricted to specific workflow
platform or application domains and/or depends on manual annotations.

5.2 Future Work

There are many possible extension to our work:

• Semantic Annotation Enhancement: Our algorithm to extract semantic an-
notations from text uses an exact string comparison with labels and synonyms in
the ontologies of the Ontology Repository. This is a simple approach that can be
improved using more advanced NLP techniques. One problem that needs to be
solved is to identify which ontologies should be used to annotate a workflow given
that there are many workflows from many scientific domains.

• Structure-based Search: This is the only search approach that was not consid-
ered in our retrieval system. Usually, this approach takes much time to compute
structure similarities, so it is necessary to balance precision and usability.

• Suitability Study: Our case study presents cases to justify why one system out-
performs others in terms of number of workflows. Nonetheless, we did not perform
a study about suitability in terms of precision and recall. This is because the task of
measuring such metrics is complex when the number of workflows is high. Moreover,
this requires scientists that use workflow in their research from different scientific
domains and with time to evaluate different retrieval systems.

• Using instances of ontology classes: A instance, in the context of ontologies,
represents an element in the domain attached to a specific concept (ontology class)
[19]. Usually, ontologies do not contain instances, but they can be derived from spe-
cialized sources in each domain. Such instances can be used to have more elements
to extract semantic annotation from text, resulting in a better performance of the
hybrid search.

• Implementation with n levels of semantic expansion: Our prototype uses
just one level generalization and a relational database. This implementation works
well, but it can grow just a few degrees of semantic expansion (specialization, gen-
eralization and distance expansion) before becoming unusable because of large re-
sponse times for queries. A solution to this problem would be the implementation
of WorkflowHunt architecture using graph databases or databases specialized in
ontologies and semantic annotations.

53

• Ranking results for hybrid search: We do not consider ranking at the moment
of retrieving results in the hybrid search. This task should consider many aspects
like the ratio between the tokens in the query and the workflow metadata, the
correlation among different metadata fields, the importance of each metadata field,
etc.

• Ontology evolution: as ontologies evolve, the annotations need to be refreshed.
This is an open problem and depends on users asking the system to periodically
re-annotate using the new ontology version. In our present implementation, this
requires previously deleting annotations.

54

Bibliography

[1] Hannah Bast, Björn Buchhold, Elmar Haussmann, et al. Semantic search on text and
knowledge bases. Foundations and Trends R© in Information Retrieval, 10(2-3):119–
271, 2016.

[2] Ralph Bergmann and Yolanda Gil. Similarity assessment and efficient retrieval of
semantic workflows. Information Systems, 40:115–127, 2014.

[3] Kent D Bimson, Richard D Hull, and Daniel Nieten. The lexical bridge: A method-
ology for bridging the semantic gaps between a natural language and an ontology. In
Semantic Web, pages 137–151. Springer, 2016.

[4] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.
Semantic services, interoperability and web applications: emerging concepts, pages
205–227, 2009.

[5] Steven P Callahan, Juliana Freire, Emanuele Santos, Carlos E Scheidegger, Cláudio T
Silva, and Huy T Vo. Vistrails: visualization meets data management. In Proceedings
of the 2006 ACM SIGMOD international conference on Management of data, pages
745–747. ACM, 2006.

[6] Lucas AMC Carvalho, Khalid Belhajjame, and Claudia Bauzer Medeiros. Converting
scripts into reproducible workflow research objects. In e-Science (e-Science), 2016
IEEE 12th International Conference on, pages 71–80. IEEE, 2016.

[7] Sarah Cohen-Boulakia and Ulf Leser. Search, adapt, and reuse: the future of scientific
workflows. ACM SIGMOD Record, 40(2):6–16, 2011.

[8] Richard G Côté, Philip Jones, Rolf Apweiler, and Henning Hermjakob. The ontology
lookup service, a lightweight cross-platform tool for controlled vocabulary queries.
BMC bioinformatics, 7(1):97, 2006.

[9] Víctor Cuevas-Vicenttín, Parisa Kianmajd, Bertram Ludäscher, Paolo Missier, Fer-
nando Chirigati, Yaxing Wei, David Koop, and Saumen Dey. The pbase scientific
workflow provenance repository. International Journal of Digital Curation, 9(2):28–
38, 2014.

[10] Jaudete Daltio. Aonde: um serviço web de ontologias para interoperabilidade em
sistemas de biodiversidade. Master’s thesis, Instituto de Computação - Unicamp,
2007. Supervisor Claudia Bauzer Medeiros.

55

[11] David De Roure, Carole Goble, and Robert Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future Generation
Computer Systems, 25(5):561–567, 2009.

[12] J. S. B. Diaz and C. B. Medeiros. Workflowhunt: Combining keyword and semantic
search in scientific workflow repositories. In 2017 IEEE 13th International Conference
on e-Science (e-Science), pages 138–147, Oct 2017.

[13] Christiane Fellbaum. WordNet. Wiley Online Library, 1998.

[14] Beatriz García-Jiménez and Mark D Wilkinson. Automatic annotation of bioinfor-
matics workflows with biomedical ontologies. In International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation, pages 464–478.
Springer, 2014.

[15] Daniel Garijo and Yolanda Gil. Towards open publication of reusable scientific work-
flows: Abstractions, standards and linked data. Internal Project Report, 2012.

[16] Yolanda Gil, Varun Ratnakar, Jihie Kim, Pedro Gonzalez-Calero, Paul Groth, Joshua
Moody, and Ewa Deelman. Wings: Intelligent workflow-based design of computa-
tional experiments. IEEE Intelligent Systems, 26(1):62–72, 2011.

[17] Carole A Goble, Jiten Bhagat, Sergejs Aleksejevs, Don Cruickshank, Danius
Michaelides, David Newman, Mark Borkum, Sean Bechhofer, Marco Roos, Peter
Li, et al. myexperiment: a repository and social network for the sharing of bioinfor-
matics workflows. Nucleic acids research, 38(suppl 2):W677–W682, 2010.

[18] Jeremy Goecks, Anton Nekrutenko, and James Taylor. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational re-
search in the life sciences. Genome biology, 11(8):R86, 2010.

[19] Asunción Gómez-Pérez and Oscar Corcho. Ontology languages for the semantic web.
IEEE Intelligent systems, 17(1):54–60, 2002.

[20] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide. " O’Reilly
Media, Inc.", 2015.

[21] Thomas R Gruber et al. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199–220, 1993.

[22] Janna Hastings, Leonid Chepelev, Egon Willighagen, Nico Adams, Christoph Stein-
beck, and Michel Dumontier. The chemical information ontology: provenance
and disambiguation for chemical data on the biological semantic web. PloS one,
6(10):e25513, 2011.

[23] Martin Hepp. Possible ontologies: How reality constrains the development of relevant
ontologies. IEEE Internet Computing, 11(1), 2007.

56

[24] Tony Hey and Mike C Payne. Open science decoded. Nature Physics, 11(5):367–369,
2015.

[25] Jon Ison, Matúš Kalaš, Inge Jonassen, Dan Bolser, Mahmut Uludag, Hamish
McWilliam, James Malone, Rodrigo Lopez, Steve Pettifer, and Peter Rice. Edam:
an ontology of bioinformatics operations, types of data and identifiers, topics and
formats. Bioinformatics, 29(10):1325–1332, 2013.

[26] Clement Jonquet, Nigam Shah, and Mark Musen. The open biomedical annotator.
In AMIA summit on translational bioinformatics, pages 56–60, 2009.

[27] Soner Kara, Özgür Alan, Orkunt Sabuncu, Samet Akpınar, Nihan K Cicekli, and
Ferda N Alpaslan. An ontology-based retrieval system using semantic indexing. In-
formation Systems, 37(4):294–305, 2012.

[28] Janez Kranjc, Vid Podpečan, and Nada Lavrač. Clowdflows: a cloud based scien-
tific workflow platform. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 816–819. Springer, 2012.

[29] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. Scientific workflow man-
agement and the kepler system. Concurrency and Computation: Practice and Expe-
rience, 18(10):1039–1065, 2006.

[30] Bertram Ludäscher, Shawn Bowers, and Timothy McPhillips. Scientific workflows.
Encyclopedia of Database Systems, pages 2507–2511, 2009.

[31] Carla Geovana N Macário, Sidney Roberto de Sousa, and Claudia Bauzer Medeiros.
Annotating geospatial data based on its semantics. In Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems, pages 81–90. ACM, 2009.

[32] Christoph Mangold. A survey and classification of semantic search approaches. In-
ternational Journal of Metadata, Semantics and Ontologies, 2(1):23–34, 2007.

[33] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction
to information retrieval, volume 1. Cambridge university press Cambridge, 2008.

[34] Phillip Mates, Emanuele Santos, Juliana Freire, and Cláudio T Silva. Crowdlabs:
Social analysis and visualization for the sciences. In International Conference on
Scientific and Statistical Database Management, pages 555–564. Springer, 2011.

[35] Luc Moreau, Juliana Freire, Joe Futrelle, Robert E McGrath, Jim Myers, and Patrick
Paulson. The open provenance model: An overview. In International Provenance
and Annotation Workshop, pages 323–326. Springer, 2008.

[36] Eyal Oren, Knud Möller, Simon Scerri, Siegfried Handschuh, and Michael Sintek.
What are semantic annotations. Relatório técnico. DERI Galway, 9:62, 2006.

57

[37] Roger Peng. The reproducibility crisis in science: A statistical counterattack. Sig-
nificance, 12(3):30–32, 2015.

[38] Qihong Shao, Peng Sun, and Yi Chen. Wise: A workflow information search engine.
In Data Engineering, 2009. ICDE’09. IEEE 25th International Conference on, pages
1491–1494. Ieee, 2009.

[39] Johannes Starlinger, Bryan Brancotte, Sarah Cohen-Boulakia, and Ulf Leser. Similar-
ity search for scientific workflows. Proceedings of the VLDB Endowment, 7(12):1143–
1154, 2014.

[40] Johannes Starlinger, Sarah Cohen-Boulakia, Sanjeev Khanna, Susan B Davidson, and
Ulf Leser. Effective and efficient similarity search in scientific workflow repositories.
Future Generation Computer Systems, 56:584–594, 2016.

[41] J. Wainer, M. Weske, G. Vossen, and C. B. Medeiros. Scientific workflow systems.
In Proc. NSF Workshop on Workflow and Process Automation: State-of-the-art and
Future Directions, Athens, GA, 1996.

[42] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David With-
ers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher,
et al. The taverna workflow suite: designing and executing workflows of web services
on the desktop, web or in the cloud. Nucleic acids research, 41(W1):W557–W561,
2013.

[43] Liyang Yu. A developer’s guide to the semantic Web. Springer Science & Business
Media, 2011.

	Introduction
	Related Work and Basic Concepts
	Ontologies
	Semantic Annotations
	Workflows
	Workflow Repositories
	MyExperiment
	CrowdLabs
	Galaxy
	CloudFlows
	PBase
	OPMW Workflow Repository

	Workflow Retrieval
	Keyword-based Search
	Structure-based Search
	Semantic-based Search

	Final Remarks

	Architecture of WorkflowHunt
	Architecture
	Persistence Layer
	Pre-processing Layer
	Semantic Annotations
	Indices

	Search Layer
	Final Remarks

	Implementation Aspects
	Implementing the Persistence Layer
	Implementing the Preprocessing Layer
	Implementing the Search Layer
	User Interface
	Case Study
	Final Remarks

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

