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Resumo
Situações em que a variável resposta é contínua ou binária são bastante comuns em diversas
áreas do conhecimento. Apesar de existirem diversos modelos para essas situações, em
muitos casos, características como assimetria e caudas pesadas, não são contempladas
adequadamente. Além disso, conjuntos de respostas bivariadas, contendo uma variável
contínua e uma discreta, são comuns em muitos problemas reais, as quais também podem
apresentar assimetria e caudas pesadas. A abordagem mais comum, no caso bivariado,
é modelar cada variável separadamente, ignorando a potencial correlação entre elas, ou
decompor a distribuição conjunta na distribuição marginal para a variável binária e na
distribuição condicional para a variável contínua, dada a variável binária. A decomposição
na distribuição marginal da variável contínua e na distribuição condicional da variável
binária, dada a variável contínua, também é possível. Neste projeto desenvolvemos: uma
classe de modelos de regressão linear baseada nas distribuições de mistura de escala normal
assimétrica sob a parametrização centrada (MENAC), uma classe de modelos de regressão
para dados binários com função de ligação associada a alguma distribuição MENAC, e
uma classe de modelos de regressão misto para dados bivariados contínuo e binário, em que
tanto a resposta contínua, quanto a função de ligação para a resposta binária pertencem
a classe MENAC. Para introduzir a estrutura de dependência entre as duas variáveis
resposta, consideramos uma estrutura de efeitos aleatórios comuns, cujas distribuições
também pertencem a classe MENAC. Desenvolvemos procedimentos de estimação sob
o paradigma bayesiano, assim como ferramentas de diagnóstico, contemplando análise
residual e medidas de influência, bem como medidas de comparação de modelos. Realizamos
estudos de simulação, considerando diferentes cenários de interesse, com o intuito de avaliar
o desempenho das estimativas e das medidas de diagnóstico. As metodologias propostas
foram ilustradas tanto com dados provenientes de estudos de simulação, quanto com
conjuntos de dados reais.

Palavras-chave: Inferência bayesiana; distribuições de mistura de escala normal assi-
métrica; dados bivariados contínuos e binários; modelo de regressão linear; modelo de
regressão binário.



Abstract
Situations where the response variable is either continuous or binary are quite common
in several fields of knowledge. Although there are several models for these situations, in
many cases, characteristics such as asymmetry and heavy tails, are not properly treated.
In addition, bivariate responses, containing one continuous and one discrete variable,
are common in many real problems, which may also exhibit asymmetry and heavy tails.
The most common approach in the bivariate case is to model each variable separately,
ignoring the potential correlation between them, or to decompose the joint distribution
into the marginal distribution of the binary variable and the conditional distribution of
the continuous variable, given the binary variable. The decomposition into the marginal
distribution of the continuous variable and the conditional distribution of the binary
variable, given the continuous variable, it is also possible. In this project we developed: a
class of linear regression models based on the skew scale mixture of normal distributions
under the centered parameterization (SSMNC), a class of regression models for binary
data with link function associated with some SSMNC distribution, and a class of mixed
regression models for bivariate continuous and binary data, in which both the continuous
response and the link function for the binary response, belong to the SSMNC class. To
introduce the dependency structure between the two response variables, we consider
a common random effects structure, whose distributions also belong to the SSMNC
class. We developed estimation procedures under the Bayesian paradigm, also, diagnostic
tools, including residual analysis and influence measures, as well as model comparison
measures. We performed simulation studies, considering different scenarios of interest, in
order to evaluate the performance of estimates and diagnostic measures. The proposed
methodologies were illustrated with both data from simulation studies and with real data
sets.

Keywords: Bayesian inference; skew scale mixture of normal distributions; bivariate
continuous and binary data; linear regression model; binary regression model
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Introduction

Situations where the response variable is either continuous or binary are quite
common in several fields of knowledge, specially in social and health science. In general, in
these studies, multiple responses are collected in order to characterize or evaluate their
relationships with some covariates of interest. For example, to evaluate the efficacy of
an experimental treatment on vision for macular degeneration, a study was performed
in patients with age-related macular degeneration (see (GUYER et al., 1997)). For each
patient it was evaluated their patient’s visual acuity in the beginning and after one year of
study. This acuity is measured by counting how many letters of a standardized vision chart
are corrected read. These charts display line letters of decreasing size that the patient must
read from the top (large letters) to bottom (small letters). In this study, two outcomes
were obtained in order to evaluate the efficacy of the treatment: the binary outcome was
defined as the loss of at least three lines of vision at one year compared with their baseline
performance and the continuous outcome are defined as the difference between patient’s
visual acuity from one year and the beginning of the study.

The usual modeling strategy for this type of data is to perform separate
analysis for each response variable. As notes in (TEIXEIRA-PINTO; NORMAND, 2009)
this strategy is less efficient, since it ignores the extra information contained in the
correlation among the outcomes. In the bivariate context the analysis can be made using
the factorization method, discussed in (COX; WERMUTH, 1992), which consists to write
the likelihood function as the product of the marginal distribution of one of the outcomes
and the conditional distribution of second outcome given the first one. (FITZMAURICE;
LAIRD, 1995) and (CATALANO; RYAN, 1992) extend this approach to situations with
clustered data, in which the method proposed in (FITZMAURICE; LAIRD, 1995) is based
on the general location model of (OLKIN; TATE, 1961).

All models cited earlier are based on the normality assumption for the continuous
response and assume symmetrical link functions, with a normal type kurtosis, to the binary
outcome. However, some data sets may not satisfy these assumptions. As an alternative to
the normal distribution, (AZZALINI, 1985) introduced the skew-normal distribution. It has
attracted a lot of attention in the literature, due to its mathematical tractability and for
having the normal distribution as a special case, as noted in (GUPTA; NGUYEN; SANQUI,
2004). In these distributions the asymmetry is modeled by a single parameter. For this
reason, it is an alternative to normal distribution when the data presents non-symmetric
behavior, but the kurtosis is not so different from the normal one. However, as noted
by (ARELLANO-VALLE; AZZALINI, 2008), the skew normal distribution under the
direct parameterization, defined by the location parameter α ∈ R, scale parameter β ∈ R+
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and skewness parameter λ ∈ R, has some problems in terms of parameter estimation, at
least near λ = 0, since the log-likelihood presents a non-quadratic shape. Even under the
Bayesian paradigm, this fact can lead to some problems. (PEWSEY, 2000) addressed
various issues related to direct parameterization and explained why it should not be
used for estimation procedures. (AZZALINI, 1985) noticed that when λ = 0 the Fisher
Information is singular and (PEWSEY, 2000) linked this singularity to the parameter
redundancy of the parameterization for the normal case. The problems cited earlier are
solved by using the centered parameterization of the skew-normal distribution, defined
with the parameters: µ ∈ R, σ ∈ R+ and γ ∈ (−0.99527, .99527), that are, respectively,
the mean, variance and Person’s skewness coefficient of the skew normal distribution.

On the other hand, a very useful class of models, that can handle asymmetry and
heavy tails, is the scale mixtures of skew-normal distribution (SMSN) (see (FERREIRA;
BOLFARINE; LACHOS, 2011)), that is a extension of the scale mixture of normal
distributions, see (ANDREWS; MALLOWS, 1974). This class developed in (BRANCO;
DEY, 2001), includes the normal and skew normal distribution as special cases as well as
several asymmetric distributions, as the skew-t, skew slash, skew generalized t and skew
contaminated normal and their corresponding symmetric cases.

For binary data, the use of probit and logistic models are not adequate when
we have evidence that the probability of success increases at a different rate than decreases.
(CZADO; SANTNER, 1992) showed, through a simulation study, using a data generated
by a skewed link function, that the link misspecification can yield a substantial bias in
the estimates of the regression coefficients. Such problem is circumvented by the use of
asymmetric link functions, that can be obtained, for example, through the cumulative
distribution function of an asymmetric distribution.

Many skewed binary regressions have been proposed in the literature. (STUKEL,
1988), (CZADO; SANTNER, 1992), and (GUERRERO; JOHNSON, 1982) introduced
asymmetry replacing the linear predictor by a nonlinear function of the linear predictor
and a parameter that controls the asymmetry. Another approach is to replace the linear
predictor by a polynomial function, see for example (COLLETT, 2002). Finally, the third
option is to consider the cumulative distribution function of an asymmetric distribution.
The most popular example of this method is the complementary log-log link function,
that is constructed from the cdf of the Gumbel distribution. (CHEN; DEY; SHAO, 1999)
proposed an asymmetric probit link, considering a class of mixture of normal distributions.
(BAZáN; BOLFARINE; BRANCO, 2010) presented a unified approach for two skew probit
links. In (BAZáN; ROMEO; RODRIGUES, 2014), it was introduced two new asymmetric
links, one based on the cdf of the power-normal distribution and the other based on the cdf
(cumulative distribution function) of the reciprocal power-normal distribution. (NAGLER,
1994) introduced the asymmetrical link by using the Burr-10 distribution ((BURR, 1942)).
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In addition, since probit and logistic regression estimates are not robust in the
presence of outliers, (LIU, 2005) proposed a new binary model, named robit regression, in
which the normal distribution in probit regression is replaced by a Student-t distribution
with known or unknown degrees of freedom. Both logistic and probit models can be
approximated by the robit regression, as showed in (LIU, 2005). Instead using the Student-
t distribution, (KIM; CHEN; DEY, 2008) introduced a class of skewed generalized t-link
models, that accommodate heavy tail and asymmetric link functions.

Motivated by all these issues, we developed a univariate regression model for
the continuous response and a binary regression model using the skew scale mixture of
normal distribution under the centered parameterization. Also we proposed a bivariate
regression model that accommodates skewness and heavy tails for the continuous response
as well for the binary data in which the probability of success increases at a different rate
than decreases. The organization of the dissertation is as follows:

Chapter 2: We provide some background about the skew normal distribution and the
skew scale mixture of normal distributions. We discuss the problems arising from the
direct parameterization of the skew-normal distribution introduced in (AZZALINI,
1985). Then we introduce the skew scale mixture of normal distributions under the
centered parameterization and the linear regression model based on this distribution
class was developed, that accommodate asymmetry and heavy tails error distributions.
Bayesian inference was made, and we presented residual and influence analysis and
model comparisons techniques. The model was applied in simulated and real datasets.
For the simulation study we discussed about the quality of the estimates for ν and
γ and discussed about prior choice for these parameters.

Chapter 3: We developed a binary regression model for with heavy tail and asymmetrical
link functions that accommodate binary data in which the probability of success
increases at a different rate than decreases and are robust in the presence of outliers.
We developed a Bayesian estimation procedure and we described a simple way for
checking goodness of fit. We performed simulation studies in order the evaluate
the parameter recovery, residual and influence analysis and the effect of incorrect
specification of the link function. We discussed about the quality of the estimates for
ν and γ and discussed about prior choice for these parameters. Finally, we applied
the developed model to real data to illustrate the use of the model.

Chapter 4: We developed a regression model for bivariate continuous and binary re-
sponses assuming the possibility of heavy tails and asymmetry. We developed a
Bayesian estimation procedure and appropriate residuals based on latent variables.
The model was applied in simulated and real datasets.

Chapter 5: We present final remarks and further researches related to this dissertation.
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1 Linear regression model based on skew
scale mixture of normal distributions based
on the centered parameterization

1.1 Introduction
The normal distribution has been used for many years on diverse fields of

knowledge. Despite its simplicity and popularity, it is well known that several phenomena
cannot be appropriately modeled by this distribution, due the presence at least one of
the following characteristics: asymmetry, heavy tails and multi-modality. For example, as
noted by (ARELLANO-VALLE; GENTON; LOSCHI, 2009), the empirical distribution
of data sets often exhibits skewness and tails that are lighter or heavier than the normal
distribution.

The skew-normal distribution, proposed by (AZZALINI, 1985), has attracted a
lot of attention in the literature, due to its mathematical tractability and for having the
normal distribution as a special case, as noted in (GUPTA; NGUYEN; SANQUI, 2004).
For more details about the skew-normal distribution see (AZZALINI; CAPITANIO, 2013),
(GENTON, 2004). In this distributions the asymmetry is modeled by a single parameter.
For this reason, it is an alternative to normal distribution when the data set presents
non-symmetric behavior.

On the other hand, a very useful class of models that can handle asymmetry and
heavy tails is the Scale Mixtures of Skew-Normal distribution (SMSN) (see (FERREIRA;
BOLFARINE; LACHOS, 2011)), that is a extension of the scale mixture of normal
distributions, see (ANDREWS; MALLOWS, 1974). This class, as described in (FERREIRA;
BOLFARINE; LACHOS, 2011) includes the normal and skew normal distribution as special
cases as well as several asymmetric distributions, as the skew-t, skew-slash, skew generalized
t and skew contaminated normal and their corresponding symmetric cases.

In this work we introduce the scale mixture of skew-normal distributions
under the centered parameterization as an alternative to the parameterization given in
(FERREIRA; BOLFARINE; LACHOS, 2011), which circumvents some problems related
to the use of the skew normal distribution under direct parameterization, including its
respective extensions, as the SMSN family.
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1.2 Skew Scale Mixtures of Normal Distribution

1.2.1 Skew-Normal distribution

We say that Y has skew-normal distribution with location parameter α ∈ R,
scale parameter β ∈ R+ and skewness parameter λ ∈ R, denoted by Y ∼ SN(α, β2, λ) if
its probability density function (p.d.f) is

f(y|α, β, λ) = 2β−1φ

(
y − α
β

)
Φ
(
λ

(
y − α
β

))
I(−∞,∞)(y) (1.1)

where φ(.) and Φ(.) denote the standard normal density and distribution function, respec-
tively. It is straightforward to see that when λ = 0, the skew-normal reduces to normal
distribution. Using the results from (AZZALINI, 1985), (PEWSEY, 2000) and (AZZALINI,
2005), the mean, variance, Pearson’s index of skewness (γ1) and kurtosis (γ2) are given by,
respectively

E(Y ) = α + βbδ V ar(Y ) = β2(1− b2δ2)

γ1 = E((Y − E(Y ))3)
V ar(Y )3/2 = 4− π

2
(bδ)3

(1− b2δ2)3/2 γ2 = 2(π − 3) (bδ)4

(1− b2δ2)2

(1.2)

where b =
√

2
π

and δ = λ√
1 + λ2

.

As noted by (ARELLANO-VALLE; AZZALINI, 2008), the direct parameteriza-
tion of the skew-normal distribution has some problems in terms of parameter estimation,
at least near λ = 0, since the log-likelihood presents a non-quadratic shape. Even under
the Bayesian paradigm, this fact can lead to some problems. (PEWSEY, 2000) addressed
various issues related to direct parameterization and explained why it should not be
used for estimation procedures. (AZZALINI, 1985) noticed that when λ = 0 the Fisher
Information is singular and (PEWSEY, 2000) linked this singularity to the parameter
redundancy of the parameterization for the normal case. More details of these discussions
are found in (GENTON, 2004).

In order to show the behavior of the likelihood under the centered and direct
parameterization, we calculated the profiled log-likelihood as described in (SANTOS,
2012) and (AZZALINI; CAPITANIO, 2013). First, 200 samples were generated by the
skew normal distribution with α = 0, β = 1 and λ = 4, and twice the profiled relative
log-likelihood was calculated for both centered and direct parameterization. In Figure 1
it is possible to see that under the direct parameterization the log-likelihood exhibits a
non-quadratic shape. However, under the centered parameterization, the log-likelihood
presents a concave shape.

As illustrated in Figure 1, the problems cited earlier are solved by using the
centered parameterization of the skew-normal distribution. Indeed, (AZZALINI, 1985)
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Figure 1 – Twice profiled relative log-likelihood for λ in the direct parameterization (left
panel) and for γ in the centered parameterization (right panel)

proposed an alternative parameterization for Y ∼ SN(α, β2, λ), which is defined by

Y = µ+ σZ0 (1.3)

where Z0 = Z − µz
σz

with Z ∼ SN(0, 1, λ) and µz = bδ and σz =
√

1− b2δ2.

The alternative parameterization is then formed by the centered parameters
µ ∈ R, σ ∈ R+ and γ ∈ (−0.99527, .99527), whose explicit expression are

µ = E(Y ) = α + βµz σ2 = β2(1− µ2
z) γ = 4− π

2
(bδ)3

(1− b2δ2)3/2 (1.4)

where γ denotes the Person’s skewness coefficient. The centered parameterization of the
skew-normal distribution will be denoted by Y ∼ SNc(µ, σ2, γ), where µ and σ2 are the
mean and variance of Y, respectively.

Using the Jacobian transformation, the density of (1.3), after some algebra, is
given by

f(y|µ, σ2, γ) = 2ω−1φ(ω−1(y − ξ))Φ
(
λ

(
y − ξ
ω

))
(1.5)

where

s =
( 2

4− π

)1/3
ξ = µ− σγ1/3s

ω = σ
√

1 + s2γ2/3 λ = sγ1/3√
b2 + s2γ2/3(b2 − 1)

(1.6)

(HENZE, 1986) introduced a useful stochastic representation of the skew-normal,
which is given by

Y
d= α + β(δH +

√
1− δ2T ), (1.7)
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where d= means “distributed as” and H ∼ HN(0, 1)⊥T ∼ N(0, 1), where HN(.) denotes
the half-normal distribution. Therefore, using (1.7) and the skew-normal under the centered
parameterization as described in (1.3), we have that the stochastic representation of the
skew-normal under the centered parameterization Y ∼ SNc(µ, σ2, γ) is

Y
d= ξ + ω(δH +

√
1− δ2T ) (1.8)

where ξ and ω are defined in (1.6).

Figure 2 shows the density of the skew normal distribution under the centered
parameterization, with µ = 5 and σ2 = 4, for some values of γ. Negative and positive
asymmetry are observed, respectively, as γ assumes negative and positive values, whereas
the normal model is obtained when γ = 0.
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Figure 2 – Density of the skew normal distribution under the centered parameterization
for some values of γ

1.2.2 Scale Mixture of Skew-Normal Distribution under the centered parame-
terization

The scale mixtures of normal distributions (SMN) were first introduced by
(ANDREWS; MALLOWS, 1974) and it is often used to model symmetrical data ((FER-
REIRA; BOLFARINE; LACHOS, 2011)). A wide class of unimodal and symmetrical
distributions can be written as a scale mixture of normals, as Student-t, contaminated
normal, slash, among others ((WEST, 1987)). In (BRANCO; DEY, 2001) the authors
proposed a general class of multivariate skew-elliptical distribution that included the scale
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mixture of normal distributions as special case. (FERREIRA; BOLFARINE; LACHOS,
2011) introduced an easy representation of the scale mixture of skew-normal distribution
class and presented some of its probability and inferential properties, considering the EM
algorithm for parameter estimation.

Following (FERREIRA; BOLFARINE; LACHOS, 2011), a random variable Y
has a scale mixture of normal (SMN) distribution if it can be written as

Y
d= µ+ k(U)1/2Z, (1.9)

where k(.) is a strictly positive function and Z ∼ N(0, σ2) is independent of the scale
random variable U with cumulative distribution function (cdf) G(.|ν). Then, a random
variable Y follows a Scale Mixtures of Normal Distribution with mean µ ∈ R, scale σ ∈ R+

if its p.d.f can be written as

f(y|µ, σ2,ν) =
∫ ∞

0
φ(y|µ, k(u)σ2)dH(u|ν) (1.10)

As discussed in the previous section, the use of the direct parameterization of skew-normal
distribution can lead to some inferential problems. Then, since the scale mixture of the
skew-normal distribution is defined through the direct parameterization of the skew normal
distribution, we now define the scale mixtures of skew-normal distribution under the
centered parameterization.

Definition 1.2.1. A random variable Y follows a scale mixtures of skew normal dis-
tribution under the centered parameterization, if Y can be stochastically represented
by

Y
d= µ+ k(U)1/2Z, (1.11)

where Z ∼ SNc(0, σ2, γ) and U is a scale random variable with c.d.f G(.|ν).

We use the notation Y ∼ SMSNc(µ, σ2, γ, G,ν) for a random variable rep-
resented as in Definition 1.2.1. From Definition 1.2.1, it follows that E(Y ) = µ, since
E(Z) = 0 and V ar(Y ) = σ2E(k(U)). It also can be noted that when γ = 0 we get the
corresponding scale mixtures of normal distribution family, introduced by (ANDREWS;
MALLOWS, 1974), since when the skewness parameter is equal to zero, Z ∼ N(0, σ2).

From Definition 1.2.1, the hierarchical representation of Y is given by

Y |U = u ∼ SNc(µ, σ2k(u), γ)

U ∼ G(.|ν)
(1.12)

Using Henze’s representation of the skew-normal distribution under the centered pa-
rameterization as described in 1.8, we also have that Y can be hierarchical represented
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as

Y |U = u,H = h ∼ N(ξu + ωuδh, ω
2
u(1− δ2))

H ∼ HN(0, 1)

U ∼ G(.|ν)

(1.13)

where

s =
( 2

4− π

)1/3
ξu = µ− σ

√
k(u)γ1/3s

ωu = σ
√
k(u)

√
1 + s2γ2/3 λ = sγ1/3√

b2 + s2γ2/3(b2 − 1)
δ = λ√

1 + λ2

(1.14)

1.2.3 Examples of Scale Mixture of Skew-Normal Distribution under the
centered parameterization

In this section we will present some members of the SMSN family under the
centered parameterization. For this work, we will restrict this family considering k(u) = 1

u
.

Then, it follows that V ar(Y ) = σ2E(U−1). Before introducing some members of this
family, let us first define

d = (y − µ)
σω1

ω1 =
√

1 + s2γ
2
3 ξ1 = −γ1/3s

λ = sγ1/3√
b2 + s2γ2/3(b2 − 1)

s =
( 2

4− π

)1/3
b =

√
2
π

(1.15)

1.2.3.1 Skew-t distribution under the centered parameterization:

Considering U ∼ gamma(ν/2, ν/2), where

h(u|ν) =
ν
2
ν
2

Γ(ν2 )u
ν
2−1e−

ν
2uI(0,∞)(u)

we have the skew-t distribution under the centered parameterization, denoted by STc(µ, σ2, γ, ν),
that is

f(y|µ, σ2, γ, ν) =
2ν2

ν
2

σω1
√

2πΓ(ν2 )
e
−ξ2

1
2ω2

1

∫ ∞
0

u
ν+1

2 −1e
− 1

2

[
u(d2+ν)−2

√
ud

ξ1
ω1

]
Φ
(
λ

(
√
ud− ξ1

ω1

))
du,

(1.16)
where µ denotes the mean, γ the skewness parameter, ν the degree of freedom and σ2 is
related to the variance of Y through V ar(Y ) = σ2 ν

ν − 2 , since E(U−1) = ν

ν − 2 .

Figure 3a presents the density of the skew-t distribution for three values of ν
(ν = 3 is the dashed line, ν = 10, dotted line and ν = 30, dot-dashed line) and the skew
normal (solid line) for σ2 = 1, γ = −0.9 and µ = 0. As ν increases the skew-t approaches
to the skew normal distribution. For ν = 30 it is possible to see that the skew-t and skew
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Figure 3 – Probability density function of skew-t distribution under the centered parame-
terization (a) varying the values of ν, with γ = −0.9, σ2 = 1, µ = 0 and (b)
varying the parameter γ, with ν = 8, σ2 = 5, µ = 0.

normal curves almost overlap. In Figure 3b, the density of skew-t distribution is drawn for
γ = 0 (solid line), γ = 0.9 (dashed line) and γ = −0.9 (dotted line). It is possible to see
right/left asymmetry as γ assumes positive/negative values, respectively.

1.2.3.2 Skew-slash distribution under the centered parameterization:

If we consider U ∼ beta(ν, 1) then

f(y|µ, σ2, γ, ν) = 2ν
σω1
√

2π
e
−ξ2

1
2ω2

1

∫ 1

0
uν+ 1

2−1e
− 1

2

[
ud2−2

√
ud

ξ1
ω1

]
Φ
(
λ

(
√
ud− ξ1

ω1

))
du (1.17)

where µ is the mean, γ the skewness parameter, ν the degree of freedom and σ2 is
related to the variance of Y through V ar(Y ) = σ2 ν

ν − 1 . This distribution is denoted by
SSLc(µ, σ2, γ, ν).

Again, from Figures 4a and 4b it is possible to see a similar behavior as observed
in the skew-t distribution.
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Figure 4 – Probability density function of skew-slash distribution under the centered
parameterization (a) varying the values of ν, with γ = −0.9, σ2 = 1, µ = 0 and
(b) varying the parameter γ, with ν = 8, σ2 = 5, µ = 0.

1.2.3.3 Skew-contaminated normal distribution under the centered parameterization:

Considering U a discrete random variable assuming only two values, with the
following probability function

h(u|ν) = ν1I(u = ν2) + (1− ν1)I(u = 1)

and E(U−1) = ν1 + ν2(1− ν1)
ν2

. Then the respective density is given by

f(y|µ, σ2, γ, ν1, ν2) = 2

ν1

√
ν2

σω1
√

2π
e
− 1

2

(√
ν2d−

ξ1
ω1

)2

Φ
(
λ

(
√
ν2d−

ξ1

ω1

))

+(1− ν1) 1
σω1
√

2π
e
− 1

2

(
d− ξ1

ω1

)2

Φ
(
λ

(
d− ξ1

ω1

)) (1.18)

denoted by SCNc(µ, σ2, γ,ν), where µ is the mean, γ is the skewness parameter. According
to (GARAY; LACHOS; ABANTO-VALLE, 2011) the parameters ν1 and ν2 can be
interpreted as the proportion of outliers and a scale factor, respectively. For this distribution,
the variance of Y is equal to σ2ν1 + ν2(1− ν1)

ν2
. From Figure 5a it is possible to see that

as ν2 approaches 1 and/or ν1 approaches 0, the skew contaminated normal density tends
to the skew normal distribution.
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Figure 5 – Probability density function of skew contaminated normal distribution under
the centered parameterization (a) varying the values of ν1 and ν2, with σ2 = 1,
γ = −0.9 and µ = 0 and (b) varying the parameter γ, with σ2 = 5, µ = 0,
ν1 = .1 and ν2 = 0.1.

1.2.3.4 Skew generalized t distribution under the centered parameterization:

Skew generalized t distribution is obtained by considering U ∼ gamma(ν1/2, ν2/2)
as the scale random variable, where

h(u|ν) =
ν2
2
ν1
2

Γ(ν1
2 )u

ν1
2 −1e−

ν2
2 uI(0,∞)(u).

However, before provide further details, we will discuss about a model identification
problem. Without loss of generality, consider the case when γ = 0 and µ = 0, that is,
Z ∼ N(0, σ2). From the stochastic representation, we have that

f(y|µ, σ2, γ, ν1, ν2) =
∫ ∞

0
φ(y|0, σ

2

u
)h(u|ν)du

which leads, after some algebra, to

f(y|µ, σ2, γ, ν1, ν2) =
Γ(ν1+1

2 )√
ν2σ2πΓ(ν1

2 )

(
1 + y2

ν2σ2

) ν1+1
2

(1.19)

From equation (1.19) it is evident that different values of σ2 and ν2 can produce the same
value for the likelihood. Problems with identifiability can also be noted in skew generalized
t distribution under the centered parameterization. To illustrate this, consider the plot in
Figure 6. It is visible that the two curves overlap each other. So, to avoid this problem, we
will fix σ = 1. In this way, we will have the skew-t with σ2 = 1 and the skew normal with
σ2 = 1, as special cases of the skew generalized t distribution.
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Figure 6 – Probability density function of skew generalized t distribution under the cen-
tered parameterization for two parameter sets of ν2 and σ2.

The density of the skew generalized t distribution under the centered parame-
terization, denoted by

SGTc(µ, γ, ν1, ν2), is given by

f(y|µ, γ, ν1, ν2) =
2ν2

2
ν1
2

ω1
√

2πΓ(ν1
2 )
e

−ξ2
1

2ω2
1

∫ ∞
0

u
ν1+1

2 −1e
− 1

2

[
u

(
(y−µ)2

ω2
1

+ν2

)
−2
√
u(y−µ) ξ1

ω2
1

]
Φ
(
λ

(√
u

(y − µ)
ω1

− ξ1
ω1

))
du,

(1.20)

where µ is the mean, γ is the skewness parameter, and ν1 and ν2 control de
variance of Y, since V ar(Y ) = ν2

ν1 − 2 .

Figure 7 presents density of skew generalized t for three combinations of ν1 and
ν2 values. The solid line represents the density of the skew normal distribution, dashed line
for skew generalized t with ν1 = 30 and ν2 = 5, dotted line when ν1 = 30 and ν2 = 5, and
dot-dashed line when ν1 = 30 and ν2 = 30. We can see that the generalized t distribution
approaches to the skew normal only when both ν1 and ν2 tend to infinite, simultaneously.
In Figure 8, the density of skew generalized t distribution is drawn to γ = 0 (solid line),
γ = 0.9 (dashed line) and γ = −0.9 (dotted line).
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Figure 7 – Probability density function of skew generalized t distribution under the cen-
tered parameterization for some values of ν1 and ν2, σ2 = 1, µ = 0 and
γ = −0.9.
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Figure 8 – Probability density function of skew generalized t distribution under the cen-
tered parameterization for some values of γ, σ2 = 5, µ = 0, ν1 = 8 and
ν2 = 8.
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1.3 Profiled log-likelihood for SMSN class of distributions
By introducing the skew normal distribution, we pointed out some inferential

problems related to its direct parameterization. Since the Scale Mixture of Skew Nor-
mal distribution depends on the direct parameterization ((FERREIRA; BOLFARINE;
LACHOS, 2011)), this family may heritage the same problems and, then the respective
centered parameterization of this family can circumvents these problems. In this section,
our objective is to show that under the direct parameterization for the SMSN distributions,
log-likelihoods for λ presents problems around . In addition, we will show that under the
centered parameterization, this problem is no longer observed. Based on the results from
some simulation studies that the authors performed previously, we are also interest in
analyze the log-likelihood for ν, since depending on its behavior, the estimation procedure
can be a complicated task. As noted in (VILCA; AZEVEDO; BALAKRISHNAN, 2017),
for the sinh-contaminated normal distribution developed in this work, large posterior
standard deviation and large length of credibility intervals for ν1 and ν2 may be explained
by the ill-behavior of the profiled log-likelihoods for these parameters.

Consider a random sample y = (y1, y1, . . . , yn)t from the SMSN family under
the direct and centered parameterizations and θ = (µ, σ, λ,ν) the parameter vector. We
shall denote the log-likelihood under the centered parameterization by l(θ|y)CP . Under
direct parameterization we shall use the density functions as described in (FERREIRA;
BOLFARINE; LACHOS, 2011) and denote the respective log-likelihoods by l(θ|y)DP .
Log-likelihoods for the direct and centered parameterizations are presented in Appendix
A.

1.3.1 Profiled log-likelihood for parameter λ

Following the ideas of (CHAVES, 2015) and (SANTOS, 2012), the profiled
log-likelihood for λ is calculated by obtaining the maximum-likelihood estimator for the
parameters µ, σ2,ν, for a specif value of λ and then plugging these estimates in the
log-likelihood. for each λ defined in its parametric space we repeat the former steps.

We denote the profiled log-likelihood of the direct parameterization as lDP (µ̂(λ), ν̂(λ), λ)
for the skew generalized t distribution or lDP (µ̂(λ), σ̂2(λ), ν̂(λ), λ) for the others distri-
butions, where µ̂(λ), σ̂2(λ), ν̂(λ) stand for values of µ, σ2,ν that maximizes lDP for a
specif value of λ. To make interpretations easier, we have calculated the relative profiled
log-likelihood, as suggested by (ARELLANO-VALLE; AZZALINI, 2008) obtained by
subtracting lDP (µ̂(λ), σ̂2(λ), ν̂(λ), λ) of lDP (µ̂(λ), σ̂2(λ), ν̂(λ), λ̂).

Similarly to the direct parameterization, the relative profiled log-likelihood
under the centered parameterization is obtained by subtracting lCP (µ̂(γ), σ̂2(γ), ν̂(γ), γ)
of lCP (µ̂(γ), σ̂2(γ), ν̂(γ), γ̂).



Chapter 1. Linear regression model based on skew scale mixture of normal distributions based on the
centered parameterization 36

We generated a random sample of size 100 from a Scale Mixture of Normal
distribution under the centered parameterization with µ = 0, σ2 = 1, γ = 0.7 and ν = 4
for skew slash, ν1 = 0.4 and ν2 = 0.6 for the skew contaminated normal, ν = 5 for skew-t
and ν1 = 15 ν2 = 5 for the skew generalized-t
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Figure 9 – Profile twice the relative log-likelihood for γ in the centered parameterization
(left panel) and for λ in the direct parameterization (right panel) for the skew
contaminated model
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Figure 10 – Profile twice the relative log-likelihood for γ in the centered parameterization
(left panel) and for λ in the direct parameterization (right panel) for the skew
slash model
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Figure 11 – Profile twice the relative log-likelihood for γ in the centered parameterization
(left panel) and for λ in the direct parameterization (right panel) for the skew-t
model
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Figure 12 – Profile twice the relative log-likelihood for γ in the centered parameterization
(left panel) and for λ in the direct parameterization (right panel) for the skew
generalized t model

From Figures 9 - 12, it is possible to see that under the centered parameterization
twice the relative log-likelihood presents a concave behavior while in direct parameterization
the relative log-likelihood presents a non-quadratic shape around point zero. In figure 11,
for values of λ > 0 the function is almost linear. These figures illustrate that under the
centered parameterization we have better behavior of log-likelihood for the parameter γ
than for the parameter λ in direct parameterization.

1.3.2 Profiled log-likelihood for parameter ν

The profiled log-likelihood for parameter ν was calculated in the same way
as described previously. The only difference from the former procedure is that now we
replaced the maximum-likelihood estimator of parameters µ,σ2 and γ in the log-likelihood
function, calculated by fixing values of ν.
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Figure 13 – Profiled relative log-likelihood for ν for the: skew-t (a) and skew slash
(b)distributions.

From Figures 13 and 14, it is possible to observe that as ν increases, the
profiled relative log-likelihood tends to be a straight line. That is, for larger values of
ν, the estimates tends to range within such interval with almost the same probability.
Similar behavior can be noted for the skew generalized t and skew contaminated normal
distributions, as we can see from Figures 14a and 14b. As long as at least ν1 or ν2 increases,
flatter is the surface. Analysis of these figures indicates that the profiled log-likelihoods are
ill-behaved, which can result in large posterior standard deviations and large credibility
intervals for ν.
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Figure 14 – Profiled relative log-likelihood for ν1 and ν2 for the: skew generalized t (a)
and skew contaminated normal (b) distributions.
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1.4 Regression Model
Let X = (1,X1,X2, . . . ,Xp−1)t a p × n design matrix of fixed covariates,

Y = (Y1, . . . , Yn)t a n× 1 vector of response variables and β = (β0, β1, . . . , βp−1)t a p× 1
vector of regression coefficients. The regression model is given by

Yi = Xi
tβ + εi i = 1, . . . , n (1.21)

where εi are independent random variables identically distributed as a member of SMSN
family. In this work, we say that εi iid∼ SSLc(0, 1, γ, ν) or εi iid∼ STc(0, 1, γ, ν) or εi iid∼
SCNc(0, 1, γ, ν1, ν2) or εi iid∼ SGTc(0, 1, γ, ν1, ν2), where SSLc, STc, SCNc and SGTc de-
note, respectively, the skew slash, skew-t, skew contaminated and skew generalized t
distributions under the centered parameterization. From the Scale Mixture of Skew-Normal
distributions under the centered parameterization it follows that E(Yi) = µi = X t

iβ, where
Xi is the i-th row of matrix X. From the hierarchical representation described in (1.12),
we have that

Yi|Ui = ui ∼ SNc

(
X t

iβ,
σ2

ui
, γ

)
Ui ∼ G(.|ν)

We also can represent Y as

Yi|Ui = ui
d= X t

iβ + σ
√
ui

(
Vi − µv
σv

)

where Vi iid∼ SN(0, 1, λ), µv and σv are the mean and the variance of Vi, respectively. Using
Henze’s stochastic representation for Vi, then

Yi|Ui = ui
d= X t

iβ −
σ
√
ui

µv
σv

+ σ

σv
√
ui

(δH +
√

1− δ2Z) (1.22)

Since µv = δb and σv =
√

1− b2δ2 then (1.22) becomes

Yi|Ui = ui
d= X t

iβ −
σδb

√
ui
√

1− b2δ2
+ σδ
√
ui
√

1− b2δ2
Hi + σ

√
1− δ2

√
ui
√

1− b2δ2
Zi

X t
iβ + σδ

√
ui
√

1− b2δ2
(Hi − b) + σ

√
1− δ2

√
ui
√

1− b2δ2
Zi (1.23)

Setting ∆ = σδ√
1− b2δ2

and τ = σ2(1− δ2)
1− b2δ2 , we have an one by one transformation such

that it is possible to recover σ and δ through: δ = ∆√
τ + ∆2

and σ2 = τ + ∆2(1 − b2).
Then

Yi|Ui = ui
d= X t

iβ + ∆
√
ui

(hi − b) +
√
τ
√
ui
Zi (1.24)
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Using (1.24), the hierarchical representation of Y becomes

Yi|Ui = ui, Hi = hi ∼ N(X t
iβ + ∆

√
ui

(hi − b),
τ

ui
)

Hi ∼ HN(0, 1) (1.25)

Ui ∼ G(.|ν)

1.4.1 Bayesian Inference

To use the Bayesian paradigm, it is essential to obtain the joint posterior
distribution. However, since the necessary integrals are not easy to calculate, it is not
possible to obtain such distribution, analytically. However, it is possible to obtain numer-
ical approximation for the marginal posterior distributions of interest by using MCMC
algorithms, see (GEMAN; GEMAN, 1984) and (HASTINGS, 1970).

To obtain the posterior distribution we need to consider the complete likelihood

Lc(θ|y, u, h) ∝
n∏
i=1

φ
(
yi|µi, τu−1

i

)
f(hi)h(ui|ν)

∝
n∏
i=1

√
ui√
τ

exp
{
− ui2τ (yi − µi)2

}
exp

{
−h

2
i

2

}
h(ui|ν)

∝
∏n
i=1
√
ui

τn/2
exp

{
− 1

2τ

n∑
i=1

ui (yi − µi)2
}

exp
{
−
∑n
i=1 h

2
i

2

}
n∏
i=1

h(ui|ν)

where µi = X t
iβ + ∆

√
ui

(hi − b) and θ = (β,∆, τ,ν). Since we set σ2 = 1 for the skew

generalized t model, the MCMC algorithm will be slightly different from the other models.
For this model, we have θ = (β, δ,ν), therefore, ∆ and τ are functions of only ν. Then,
for this model, is preferable to sample directly from δ, instead of sampling for ∆ and τ .

We need to consider a prior distribution for θ. We will assume an indepen-
dence structure, that is π(θ) = π(β)π(∆)π(τ)π(ν) for the skew-t, skew slash and skew
contaminated normal models and π(θ) = π(β)π(δ)π(ν), for the skew generalized t model.
Furthermore, we will assume conditional conjugate prior distributions, as in (GELMAN,
2006), for β, τ−1, ∆ and δ ∈ U(−1, 1). On the other hand, for ν, the choice of the prior
distribution will depend on the model.

1.4.2 Full conditional distributions

In order to implement the MCMC algorithm, we have to simulate iteratively
from the full conditionals described bellow.

Denoting by θ−θi the parameter vector θ without the component θi, the full
conditional distributions are
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For β:

π(β|θ−β,y,u,h) ∝ exp
{
−1

2
(
βtΣ−1

∗ β − 2µt∗Σ−1
∗ β

)}
IRp(β)

which can be recognized as the kernel of p-variate normal distribution with variance Σ∗ =(∑n
i=1 uixix

t
i

τ
+ Σ−1

β

)−1

and mean µ∗ =
(

n∑
i=1

ui
τ

(
yi −

∆
√
ui

(hi − b)
)
xti + µtβΣ−1

β

)
Σ∗.

For hi:

f(θ, ui, hi|yi) ∝ exp
{
−1

2

(
∆2 + τ

τ

)[
h2
i − 2hi

(
∆2b+ ∆√ui(yi −X t

iβ)
∆2 + τ

)]}
I(0,∞)(hi)

which can be recognized as the kernel of a truncated normal distribution, so

hi|θ, ui, yi ∼ TN

(
∆2b+ ∆√ui(yi −X t

iβ)
∆2 + τ

,
τ

∆2 + τ

)
I(0,∞)

For ui:

• Skew slash:

f(θ, ui, hi|yi) ∝ u
ν+1/2−1
i exp

{
− ui2τ

[
(yi −X t

iβ)2 − 2 ∆
√
ui

(hi − b)(yi −X t
iβ)

]}
I(0,1)(ui)

• Skew-t:

f(θ, ui, hi|yi) ∝ u
ν+1

2 −1
i exp

{
−ui2

[
(yi −X t

iβ)2

τ
+ ν

]
+ ∆√ui

τ
(hi − b)(yi −X t

iβ)
}
I(0,∞)(ui)

• Skew generalized t:

f(θ, ui, hi|yi) ∝ u
ν1+1

2 −1
i exp

{
−ui2

[
(yi −X t

iβ)2

τ
+ ν2

]
+ ∆√ui

τ
(hi − b)(yi −X t

iβ)
}
I(0,∞)(ui)

• Skew-contaminated normal: the discrete conditional distribution of ui assumes ν2

with probability pi
pi + qi

and 1 with probability qi
pi + qi

where

pi = ν1
√
ν2 exp

{
− ν2

2τ

[
(yi −X t

iβ)2 − 2 ∆
√
ν2

(hi − b)(yi −X t
iβ)

]}

qi = (1− ν1) exp
{
− 1

2τ
[
(yi −X t

iβ)2 − 2∆(hi − b)(yi −X t
iβ)

]}
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For ν:

• Skew slash: Considering a gamma distribution left truncated at 1 as prior with mean
α1

α2
and variance α1

α2
2
, it follows that

π(ν|θ−ν ,y,u,h) ∝ νn+α1−1 exp
{
−ν(α2 −

n∑
i=1

ln(ui))
}
I(1,∞)(ν)

that is, ν|θ−ν ,y,u,h ∼ TG(n+ α1, α2 −
n∑
i=1

ln(ui))I(1,∞), where TG denotes the

Truncated Gamma distribution.

• Skew-t: For Skew-t, we have adopted a very useful hierarchical prior distribution
as noted in (CABRAL; LACHOS; MADRUGA, 2012), which consists in ν|λ ∼
exp(λ)I(ν)(2,∞) and λ ∼ U(ρ0, ρ1) where 0 < ρ0 < ρ1 are known. The exponential
distribution is left truncated at 2 to insure finite variance. Then

π(ν|θ−ν , λ,y,u,h) ∝
ν
2
nν
2

Γ(ν/2)n

(
n∏
i=1

ui

)ν/2−1

exp
{
−ν

(∑n
i=1 ui
2 + λ

)}
I(2,∞)(ν)

π(λ|θ,y,u,h) ∝ λ exp−λ(ν − 2)I(ρ0,ρ1)(λ)

that is, λ|θ,y,u,h ∼ TG(2, ν − 2)I(ρ0, ρ1).

• Skew generalized t: Assuming ν1|λ1 ∼ exp(λ1)I(ν1)(2,∞) and λ1 ∼ U(ρ0, ρ1) where
0 < ρ0 < ρ1 are known and ν2|λ2 ∼ exp(λ2) and λ2 ∼ U(ψ0, ψ1) where 0 < ψ0 < ψ1

are known, we have

π(ν1|θ−ν1 , λ1,y,u,h) ∝ ν2/2nν1/2

Γ(ν1/2)n

(
n∏
i=1

ui

)ν1/2−1

exp {−λ1(ν1 − 2)} I(2,∞)(ν1)

π(λ1|θ,y,u,h) ∝ λ1 exp {−λ1(ν1 − 2)} I(ρ0,ρ1)(λ1)

that is, λ1|θ,y,u,h ∼ TG(2, ν1 − 2)I(ρ0, ρ1).

Also, we have that

π(ν2|θ−ν2 , λ2,y,u,h) ∝ ν2/2nν1/2 exp
{
−ν2

(∑n
i=1 ui
2 + λ2

)}
I(0,∞)(ν2)

and

π(λ2|θ,y,u,h) ∝ λ2 exp{−λ2(ν2)}I(ψ0,ψ1)(λ2)

that is, ν2|θ−ν2 , λ2,y,u,h ∼ gamma(nν1

2 + 1,
∑n
i=1 ui
2 + λ2)

and λ2|θ,y,u,h ∼ TG(2, ν2 − 2)I(ξ0, ξ1)
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• Skew-contaminated normal: Observe that distribution of U can be written as

h(u|ν) = ν
1−u

1−ν2
1 (1− ν1)

u−ν2
1−ν2 I{ν2,1}(u)

Setting as prior distributions ν1 ∼ beta(α1, β1), ν2 ∼ beta(α2, β2), it follows that the
conditional distributions of ν1 and ν2 are

π(ν1|θ−ν1 ,y,u,h) ∝ ν

n−
∑n

i=1 ui
1−ν2

+α1−1
1 (1− ν1)

∑n

i=1 ui−nν2
1−ν2

+β1−1
I(0,1)(ν1)

which can be recognized as the kernel of a beta distribution. So,

ν1|θ−ν1 ,y,u,h ∼ beta

(
n−∑n

i=1 ui
1− ν2

+ α1,

∑n
i=1 ui − nν2

1− ν2
+ β1

)
And

π(ν2|θ−ν2 ,y,u,h) ∝ ν

n−
∑n

i=1 ui
1−ν2

1 (1− ν1)
∑n

i=1 ui−nν2
1−ν2 να2−1

2 (1− ν2)(β2−1)I(0,1)(ν2)

Finally, for the skew generalized t distribution the conditional distribution of δ
is

For δ:

π(δ|θ−δ,y,u,h) ∝
(√

1− b2δ2
√

1− δ2

)n
exp

{
− 1− b2δ2

2(1− δ2)

n∑
i=1

ui

(
yi −

(
X t

iβ + δ
√
ui
√

1− b2δ2
(hi − b)

))}

I(−1,1)(δ)

and for the other distributions:

For ∆:

π(∆|θ−∆,y,u,h) ∝ exp
{
−1

2

(
σ2

∆
∑n
i=1(hi − b)2 + τ

τσ2
∆

)[
∆2 − 2∆

σ2
∆
∑n
i=1(hi − b)

√
ui(yi −Xt

iβ) + µ∆τ

σ2
∆
∑n
i=1(hi − b)2 + τ

]}
IR(∆)

which can be recognized as the kernel of normal distribution with mean
σ2

∆
∑n
i=1(hi − b)

√
ui(yi −X t

iβ) + µ∆τ

σ2
∆
∑n
i=1(hi − b)2 + τ

and variance τσ2
∆

σ2
∆
∑n
i=1(hi − b)2 + τ

For τ−1:

π(τ−1|θ−τ−1 ,y,u,h) ∝ (τ−1)n/2+c−1 exp

−τ−1

d+
n∑
i=1

ui
2

(
yi −

(
X t

iβ + ∆
√
ui

(hi − b)
))2


 I(0,∞)(τ−1)

that can be recognized as the kernel of a gamma distribution. So, τ−1|θ−τ−1 ,y,u,h ∼

gamma
n/2 + c, d+

n∑
i=1

ui
2

(
yi −

(
X t

iβ + ∆
√
ui

(hi − b)
))2
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1.4.3 Model fit assessment and model comparison

1.4.4 Model comparison

In Bayesian inference, there are several methodologies to compare a set of
competing models for a given data set. According to (SPIEGELHALTER et al., 2002) under
the Bayesian context, the selection criteria are obtained through the parameters posterior
distribution. Moreover, when MCMC algorithms are used to approximate the posterior
distribution, such criteria can be easily calculated. In this work we will consider expected
the Akaike information criterion (EAIC), expected Bayesian information criterion (EBIC),
deviance information criterion (DIC) and log pseudo-marginal likelihood (LPML) criterion.
The LPML criterion is defined based on the conditional predictive ordinate (CPO), which is
based on the cross validation criterion. Let θ = (β, σ2, γ,ν) and D(θ) = −2l(θ|y), where
l(θ|y) is the log-likelihood given by equations (A.2), (A.4), (A.6) and (A.8), according to
the fitted model. Also, let θ(m), m = 1, . . . ,M a valid MCMC sample (after discharging the
burn-in and the spacing between the values), θ̄ the vector with the posterior expectation,

and D(θ) = (1/M)
M∑
m=1

D(θ(m)). According to (GARAY; LACHOS; ABANTO-VALLE,

2011), using the MCMC sample, the approximation for the CPOi for the i-th observation,
is defined as

ĈPOi =
{

1
M

M∑
m=1

1
L(θ(m)|yi)

}−1

(1.26)

A summary statistic of the CPO is the LPML criterion, which is defined as

LPML =
n∑
i=1

ln(ĈPOi)

For calculating DIC, EAIC and EBIC criteria, we need to define D(θ̄) = −2l(θ̄|y),
therefore EAIC = D(θ̄) + 2k and EBIC = D(θ̄) + klog(n) and DIC is defined as
DIC = D(θ̄) + 2pD where pD = D(θ)−D(θ̄). Smaller values of DIC, EAIC and EBIC
indicate the best model, occurring the opposite with the LPLM. More discussions about
these criteria can be found in (ANDO, 2007).

1.4.5 Influential observations

As noted in (CHO et al., 2009), influential observations in a data set can
have a strong impact in statistical inference and the related conclusions. Computation
of divergence measures between posterior distributions with and without a given subset
of the data is a useful way of quantifying influence, and the most popular Bayesian case
deletion influence diagnostics is based on the Kullback-Leibler divergence, which is a type
of q-divergence measure ((GARAY et al., 2015)). Let K(P, P(−i)) denote the KL divergence
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between two densities P and P(−i) for θ, which is defined as

K(P, P(−i)) =
∫
π(θ|y)log

(
π(θ|y)

π(θ|y(−i))

)
dθ (1.27)

where P denotes the posterior distribution of θ based on the full data y, and P(−i) denotes
the posterior distribution obtained from the data y without the i-th observation. The
K(P, P(−i)) measures the effect of deleting the i-th observation from the full data on the
joint posterior distribution of θ. From expression (1.27) it is possible to rewrite the KL
divergence as a posterior expectation, that is

K(P, P(−i)) = Eθ|y

(
log

(
π(θ|y)

π(θ|y(−i))

))
(1.28)

From (1.28), the computation of this measure can be approximated by using the MCMC
posterior samples. Also, (CHO et al., 2009) developed a simplified expressions for computing
the KL divergence, through the CPO statistic and the log-likelihood as

K(P, P(−i)) = −log(ĈPOi) + 1
M

M∑
m=1

l(θ(m)|yi) i = 1, . . . , n (1.29)

where ĈPOi is expressed as in (1.26). As usual, we need to establish a cut-off point, in
order to determine whether an observation is influent or not. As pointed by (CHO et al.,
2009), the calibration of KL divergence can be done by solving for pi the equation

K(P, P(−i)) = K(Ber(1/2), Ber(pi)) = −1
2 log(4pi(1− pi)) (1.30)

where Ber(pi) is the Bernoulli distribution with success probability pi. The equality
K(P, P(−i)) = K(Ber(1/2), Ber(pi)) we have that describing outcomes using π(θ|y) in-
stead of π(θ|y(−i)) is compatible with describing an unobserved event as having probability
pi when correct probability is .5 ((CHO et al., 2009)). Solving 1.30, the calibration of the
KL divergence is

pi = .5[1 +
√

1− exp{−2K(P, P(−i))}]

This equation implies that 0.5 ≤ pi ≤ 1. For pi much greater than .5 implies that the i-th
observation is influential. In this work we are going to consider a influential observation if
pi ≥ .8, as used in (CHAVES, 2015) and (GARAY et al., 2015). So, for KL divergence
measure greater than K(Ber(1/2), Ber(0.8)) ≈ .2231436, the observation is considered
influential.

1.4.6 Residual analysis

Residual analysis is an important tool for model fit assessment, including
detection of departing from model assumptions as well as the presence of outliers. For
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this section we consider a residual analysis based on Bayesian estimate for each unknown
parameter:

Ri = Yi −X t
i β̂

σ̂
, i = 1, . . . , n (1.31)

We expected that the residuals in equation (1.31) approximately follows, under the good fit
of the model, a STc(0, 1, γ, ν), SSLc(0, 1, γ, ν), SCNc(0, 1, γ, ν1, ν2) or SGTc(0, 1, γ, ν1, ν2)
distribution, according to the respective adopted distribution, with ν and γ equal to the
Bayesian estimates. For checking goodness of fit, we can build envelope plot, using the
above mentioned distributions to simulate the envelopes, For outliers detection, we can
graph the residual versus the index of the observations and the residuals against the fitted
values.

1.5 Simulation study
We performed simulation studies in order to evaluate the performance of

the model and the estimation method proposed in this work. All these models were
implemented in JAGS ((PLUMMER, 2003)) through the interface provided by the rjags
package ((PLUMMER, 2016)) available in R program ((R Development Core Team, 2008)).
The codes are available from the authors upon request.

1.5.1 Parameter recovery

We considered different scenarios based on the crossing of the levels of some
factors of interest. For the four SMSN distribution examples exposed in this work, we
simulate from samples of size n=50, 250, 500 and 1000, varying values of parameter ν and
R=50 replicas were made. A sample of the regression model were simulated considering

Yi = β0 + β1xi + εi i = 1, . . . , n

where β0 = 1, β1 = 2, εi belongs to the SMSN family with σ2 = 1 and γ ∈ {−0.9, 0, .9},
which allows the model to have strong negative, null and strong positive asymmetry,
respectively. Also, we set ν ∈ {3, 10, 30} for the skew-t and skew-slash distribution;
ν = (ν1, ν2) = (0.1, .1), (0.9, .9), (0.9, .1) and (0.5, .5) for the skew contaminated normal
distribution and ν = (ν1, ν2) = (15, 5), (5, 15) and (30, 30) for the skew generalized-t
distribution. These values for ν were chosen in order to have distributions with heavy
tails and tails close to the skew normal distribution. The covariates were simulated from
N(0,1) and centered in their respective means. To eliminate the effect of the initial values
and to avoid correlations problems, we run a MCMC chain of size 120,000 with a burn-in
of 20,000 and thin 100, so we retain a valid MCMC chain of size 1000. The values of the
Gelman-Rubin statistics and the analyses of traceplots, Geweke and autocorrelation plots
indicated that the MCMC algorithm converged and the autocorrelation were negligible.
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To compare the performance of the estimation methods we considered some
appropriate statistics. Let ϑ be an element of θ = (β, γ, σ2,ν) and ϑ̂r the respective
posterior estimate from the r-th replica. These statistics are: mean of the estimates

of parameter ϑ (Est) ¯̂
ϑ =

∑R
r=1 ϑ̂r
R

, variance of the estimates V arϑ =
∑R
r=1(ϑ̂r − ¯̂

ϑ)2

R− 1 ,

bias of the estimates ¯̂
ϑ− ϑ, relative bias |Biasϑ|

ϑ
, square root of the mean square error

RMSEϑ =
√
Bias2

ϑ + V arϑ, the length of the credibility interval and the Coverage Ratio
of the 95% credibility interval of parameter ϑ. To obtain it, we have calculated the numbers
of intervals which contain the true value of the parameter, and then divide it by the total
of replicas.

Posterior mean, median and mode were calculated for each parameter ϑ, in
each replica. For skew-t, skew slash and skew generalized t distributions, we considered
the posterior mean as punctual estimate for ν whereas for the skew contaminated normal
model we considered the mode, since it presented to be closer to the true values of ν1 and
ν2, when compared with the others.

We adopted weakly informative priors for all parameters, that is: ∆ ∼ N(0, 100),
τ ∼ gamma(0.01, .01), β0 ∼ N(0, 1000) and β1 ∼ N(0, 1000). For the skew-t model we
set ν ∼ exp(θ)T (2, ) and θ ∼ unif(0.02, .49); for the skew contaminated model we
used ν1 ∼ beta(1, 1) and ν2 ∼ beta(1, 1) and for the skew generalized t model we set
ν1 ∼ exp(θ1)T (2, ) and θ1 ∼ unif(0.02, .49) and ν2 ∼ exp(θ2) and θ2 ∼ unif(0.02, .49).

For the skew slash model, we performed prior sensitivity study, considering
several priors suggested in preview works, as well as others that we considered as possible
useful, which are ν ∼ gamma(1, .1), ν ∼ gamma(1.5, .05), ν ∼ gamma(θ,θ) and θ ∼
unif(0.002, .2), ν ∼ gamma(θ,θ) and θ ∼ unif(0.002, .05), ν ∼ gamma(θ,θ) and θ ∼
unif(0.02, .5), ν ∼ exp(θ) and θ ∼ unif(0.02, .5), ν ∼ gamma(1, .005), the independent
Jeffrey’s prior, and ν ∼ BSSNC(0.5, 10), ν ∼ BSSNC(1, 10), ν ∼ BSSNC(1, 20), as in
(CHAVES, 2015) and they correspond to the Birnbaum–Saunders Skew Normal distribution
under the centered parameterization. All these priors are truncated at (1,∞), in order to
have finite variance. The results revealed that for ν = 3, the estimates under all priors were
quite close to the true value. For ν = 10, depending on the prior choice, estimates were
either close to 10 or 30. The same was observed for ν = 30. So, we decided to implement
the skew model under two priors: ν ∼ gamma(1, .1), in which the estimates are centered
in 10, with relative small variance, and ν ∼ gamma(1.5, .05), which is centered around 30
with large variance, and give us estimates around 30. After the implementation we choose
the best model using the EAIC, EBIC and DIC criterion. In order to facilitate the reading
of the results, we present here only some of the simulated scenarios. The other tables are
arranged in Appendix B.

The results for the skew-t model are showed in Tables 1, and the remaining
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tables are presented in Appendix B. Under ν = 3, for all sample sizes, the estimates of all
parameters were very close to the true values, and the length of the credibility intervals
decreases as the sample size increases. For γ, from the simulations with γ = −0.9, 0 and .9,
only for n=50 the estimate were not so accurate. On the other hand, under ν = 10 and
ν = 30, the estimates for ν became more accurate as the sample size increased. Also, the
estimates for β, γ and σ2 were close to true values.

For the skew slash model, as mentioned before, we used the EAIC, EBIC
and DIC criteria to select between the adjust using the priors ν ∼ gamma(1, .1) and
ν ∼ gamma(1.5, .05) that we shall denoted by models 1 and 2, respectively. In general,
when ν = 10, model 1 was chosen almost all the time, occurring the opposite when ν = 30.
As can be seen from tables 2, 3 and the others arranged in Appendix B, only for sample
sizes higher than 500, we have more accurate estimates for parameter ν, when the true
value is either 10 or 30. For ν = 3, the estimates are close to the real value, for n > 250.
For all other parameters, the results were quite good, regardless the scenario. In general,
the variance, bias, relative bias, RMSE and the length of the credibility intervals become
smaller as the sample size increases.

For the skew contaminated normal distribution, in general, as the sample size
increases the estimates become less unbiased and more precise. We can notice that, for
some parameters (β0, β1, σ

2 and ν1), the credibility intervals do not contain the true values,
which can be explained by their short length, however, the true value is close to the upper
or lower bound. When the true values of ν1 and ν2 are .9 and .1, respectively, the estimates
of σ2 were not so good, specially for small sample sizes. However, as the sample size
increases, the estimate become closer to the real value. In order to confirm that, we ran
another scenario, with sample size of 2,000, whose results are shown in Table 4. In this
case, we can see that the estimate of σ2 is very close to the true value.

For the skew generalized t distribution, when the true values of ν = (ν1, ν2)
are (15,5) and (5,15), the estimates of all parameters become more precise, as the sample
size increases. Also the length of the credibility intervals decreases. When ν = (30, 30),
although the length of the credibility interval for ν1 and ν2 increased, the estimates became
more precise. Comparing all the results obtained in the simulations, it is observed that
the estimates, in general, are more accurate as the sample size increases. For small sample
sizes (< 250), estimates of β, σ2 and γ approach to the true values, while that for ν it is
close only when the true model has heavier tails than the skew normal model.
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Table 1 – Results of the simulation study for the skew-t model with ν = 3 and γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.1741 .0001 .1741 .1741 .1741 1.0000 .7704
β1 2.0000 1.9855 .0001 -0.0145 .0073 .0145 1.0000 .9597
γ -0.9000 -0.6873 .0004 .2127 .2363 .2127 1.0000 1.4047
σ2 1.0000 .9382 .0002 -0.0618 .0618 .0618 1.0000 1.3460
ν 3.0000 2.9472 .0017 -0.0528 .0176 .0528 1.0000 3.3977

250

β0 1.0000 1.0463 < .0001 .0463 .0463 .0463 1.0000 .3856
β1 2.0000 2.0490 < .0001 .0490 .0245 .0490 1.0000 .3060
γ -0.9000 -0.8340 .0003 .0660 .0733 .0660 1.0000 .7583
σ2 1.0000 1.3646 .0001 .3646 .3646 .3646 .8400 .8354
ν 3.0000 3.4223 .0008 .4223 .1408 .4223 1.0000 2.6695

500

β0 1.0000 .9407 < .0001 -0.0593 .0593 .0593 1.0000 .2373
β1 2.0000 2.0571 < .0001 .0571 .0286 .0571 1.0000 .1925
γ -0.9000 -0.8588 .0001 .0412 .0457 .0412 1.0000 .4304
σ2 1.0000 .9649 < .0001 -0.0351 .0351 .0351 1.0000 .4397
ν 3.0000 2.9570 .0004 -0.0430 .0143 .0430 1.0000 1.5980

1000

β0 1.0000 1.0240 < .0001 .0240 .0240 .0240 1.0000 .1671
β1 2.0000 2.0616 < .0001 .0616 .0308 .0616 .9800 .1377
γ -0.9000 -0.9531 < .0001 -0.0531 .0590 .0531 1.0000 .1311
σ2 1.0000 1.0448 < .0001 .0448 .0448 .0448 1.0000 .3402
ν 3.0000 3.2101 .0002 .2101 .0700 .2101 1.0000 1.2472

Table 2 – Results of the simulation study for the skew slash model with ν = 10 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0680 .0001 .0680 .0680 .0680 1.0000 .7648
β1 2.0000 2.1067 < .0001 .1067 .0533 .1067 1.0000 .5885
γ .9000 .9051 < .0001 .0051 .0057 .0051 1.0000 .3290
σ2 1.0000 1.5340 .0004 .5340 .5340 .5340 1.0000 1.7415
ν 10.0000 11.2042 .1552 1.2042 .1204 1.2141 1.0000 35.8608

250

β0 1.0000 1.0802 < .0001 .0802 .0802 .0802 1.0000 .2681
β1 2.0000 1.9643 < .0001 -0.0357 .0178 .0357 1.0000 .1810
γ .9000 .9417 < .0001 .0417 .0464 .0417 1.0000 .1377
σ2 1.0000 1.0737 .0002 .0737 .0737 .0737 1.0000 .5336
ν 10.0000 10.7952 6.3059 .7952 .0795 6.3559 1.0000 31.9375

500

β0 1.0000 1.0055 < .0001 .0055 .0055 .0055 1.0000 .1764
β1 2.0000 1.9622 < .0001 -0.0378 .0189 .0378 1.0000 .1234
γ .9000 .9200 < .0001 .0200 .0223 .0200 1.0000 .1390
σ2 1.0000 .8875 .0001 -0.1125 .1125 .1125 1.0000 .3980
ν 10.0000 9.5510 1.0960 -0.4490 .0449 1.1844 1.0000 29.8340

1000

β0 1.0000 1.0901 < .0001 .0901 .0901 .0901 .0000 .1321
β1 2.0000 1.9749 < .0001 -0.0251 .0126 .0251 1.0000 .0928
γ .9000 .9015 < .0001 .0015 .0017 .0015 1.0000 .1238
σ2 1.0000 1.0272 .0007 .0272 .0272 .0272 1.0000 .3589
ν 10.0000 12.0765 24.4792 2.0765 .2076 24.5671 1.0000 38.4406
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Table 3 – Results of the simulation study for the skew slash model with ν = 30 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .9926 < .0001 -0.0074 .0074 .0074 1.0000 .5396
β1 2.0000 1.7755 < .0001 -0.2245 .1123 .2245 .0000 .3893
γ .9000 .9102 .0001 .0102 .0113 .0102 1.0000 .8599
σ2 1.0000 .9363 .0001 -0.0637 .0637 .0637 1.0000 .8418
ν 30.0000 34.5909 .9577 4.5909 .1530 4.6897 1.0000 91.6302

250

β0 1.0000 .8902 < .0001 -0.1098 .1098 .1098 1.0000 .2406
β1 2.0000 2.0422 < .0001 .0422 .0211 .0422 1.0000 .1572
γ .9000 .9047 < .0001 .0047 .0052 .0047 1.0000 .1789
σ2 1.0000 .9085 .0007 -0.0915 .0915 .0915 1.0000 .4298
ν 30.0000 21.6728 86.1437 -8.3272 .2776 86.5453 1.0000 59.5103

500

β0 1.0000 1.0504 < .0001 .0504 .0504 .0504 1.0000 .1768
β1 2.0000 1.9264 < .0001 -0.0736 .0368 .0736 .0000 .1253
γ .9000 .8958 < .0001 -0.0042 .0047 .0042 1.0000 .1272
σ2 1.0000 1.0184 < .0001 .0184 .0184 .0184 1.0000 .3229
ν 30.0000 33.7918 8.1521 3.7918 .1264 8.9908 1.0000 89.6331

1000

β0 1.0000 .9752 < .0001 -0.0248 .0248 .0248 1.0000 .1223
β1 2.0000 1.9851 < .0001 -0.0149 .0074 .0149 1.0000 .0866
γ .9000 .8960 < .0001 -0.0040 .0045 .0040 1.0000 .0998
σ2 1.0000 .9503 .0002 -0.0497 .0497 .0497 1.0000 .2450
ν 30.0000 29.8191 58.0334 -0.1809 .0060 58.0337 1.0000 77.7648
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Table 4 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.9 and ν2 = 0.1

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 -0.0791 .0008 -1.0791 1.0791 1.0791 .0000 2.1279
β1 2.0000 1.3118 .0007 -0.6882 .3441 .6882 1.0000 2.2450
γ -0.9000 -0.9850 < .0001 -0.0850 .0944 .0850 1.0000 .3305
σ2 1.0000 11.7727 .0932 10.7727 10.7727 10.7731 .0000 17.1898
ν1 0.9000 .6451 .0002 -0.2549 .2833 .2549 1.0000 .9542
ν2 0.1000 .7579 .0001 .6579 6.5789 .6579 1.0000 .8119

250

β0 1.0000 1.2141 < .0001 .2141 .2141 .2141 1.0000 .6752
β1 2.0000 2.2152 < .0001 .2152 .1076 .2152 1.0000 .5672
γ -0.9000 -0.8087 < .0001 .0913 .1014 .0913 1.0000 .3758
σ2 1.0000 6.8983 .0383 5.8983 5.8983 5.8985 .2000 6.2386
ν1 0.9000 .2000 .0008 -0.7000 .7778 .7000 1.0000 .9471
ν2 0.1000 .5763 .0003 .4763 4.7632 .4763 1.0000 .7788

500

β0 1.0000 .9943 < .0001 -0.0057 .0057 .0057 1.0000 .5606
β1 2.0000 1.9129 < .0001 -0.0871 .0435 .0871 1.0000 .4449
γ -0.9000 -0.8681 < .0001 .0319 .0354 .0319 1.0000 .2347
σ2 1.0000 8.3673 .1441 7.3673 7.3673 7.3687 .1000 9.7310
ν1 0.9000 .8311 .0008 -0.0689 .0765 .0689 1.0000 .9263
ν2 0.1000 .5439 .0010 .4439 4.4389 .4439 1.0000 .8644

1000

β0 1.0000 1.2459 < .0001 .2459 .2459 .2459 .0000 .3412
β1 2.0000 2.0330 < .0001 .0330 .0165 .0330 1.0000 .2544
γ -0.9000 -0.8962 < .0001 .0038 .0043 .0038 1.0000 .1391
σ2 1.0000 2.2930 1.1360 1.2930 1.2930 1.7212 .9000 6.3600
ν1 0.9000 .8848 .0042 -0.0152 .0169 .0158 1.0000 .7238
ν2 0.1000 .2640 .0140 .1640 1.6402 .1646 1.0000 .7394

2000

β0 1.0000 1.0612 .0005 .0612 .0612 .0612 1.0000 .2423
β1 2.0000 1.9588 < .0001 -0.0412 .0206 .0412 1.0000 .1879
γ -0.9000 -0.8891 < .0001 .0109 .0122 .0109 1.0000 .0761
σ2 1.0000 1.1679 .4704 .1679 .1679 .4995 1.0000 1.7399
ν1 0.9000 .8552 .0020 -0.0448 .0497 .0448 .9800 .1611
ν2 0.1000 .1190 .0049 .0190 .1897 .0196 .9800 .1848



Chapter 1. Linear regression model based on skew scale mixture of normal distributions based on the
centered parameterization 52

Table 5 – Results of the simulation study for the skew generalized t model with ν1 = 15
and ν2 = 5

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0552 < .0001 .0552 .0552 .0552 1.0000 .3375
β1 2.0000 1.9662 < .0001 -0.0338 .0169 .0338 1.0000 .2808
γ .0000 -0.0989 .0001 -0.0989 Inf .0989 1.0000 1.1529
ν1 15.0000 13.2828 .5377 -1.7172 .1145 1.7994 1.0000 31.1524
ν2 5.0000 4.6102 .0821 -0.3898 .0780 .3983 1.0000 11.4945

250

β0 1.0000 .9788 < .0001 -0.0212 .0212 .0212 1.0000 .1521
β1 2.0000 1.9288 < .0001 -0.0712 .0356 .0712 .2200 .1372
γ .0000 -0.0372 < .0001 -0.0372 Inf .0372 1.0000 .6340
ν1 15.0000 13.0119 1.8672 -1.9881 .1325 2.7274 1.0000 26.2708
ν2 5.0000 4.4867 .2864 -0.5133 .1027 .5878 1.0000 10.2284

500

β0 1.0000 1.0208 < .0001 .0208 .0208 .0208 1.0000 .1058
β1 2.0000 1.9531 < .0001 -0.0469 .0235 .0469 .9800 .1029
γ .0000 -0.0023 < .0001 -0.0023 Inf .0023 1.0000 .4319
ν1 15.0000 14.2629 3.8366 -0.7371 .0491 3.9067 1.0000 26.8264
ν2 5.0000 4.7916 .5539 -0.2084 .0417 .5918 1.0000 10.3291

1000

β0 1.0000 .9912 < .0001 -0.0088 .0088 .0088 1.0000 .0712
β1 2.0000 1.9719 < .0001 -0.0281 .0141 .0281 1.0000 .0691
γ .0000 .0783 .0001 .0783 Inf .0783 1.0000 .4237
ν1 15.0000 15.9252 3.9802 .9252 .0617 4.0863 1.0000 23.7698
ν2 5.0000 5.0506 .5453 .0506 .0101 .5476 1.0000 8.9080

1.5.2 Model selection

To analyze the performance of the selection criteria presented in Section 1.4.3,
we have conducted a simulation study considering different scenarios based on the crossing
of the levels of some factors of interest. For the four SMSN distribution examples exposed
in this work, we simulate from samples of size n=50, 250, 500 and 1000. We set β = (1, 2),
σ2 = 1, γ = −0.9 and ν = 3 for the skew-t and skew slash model, ν = (0.1, .15) for the
skew contaminated model and ν = (3, 1) for the skew generalized t model. In this part,
our goal is to check if as long as sample size increases, the selection criteria are able to
select the correct model. We generated samples for each of the above distributions and
fitted for each sample all four models (SSLc, STc, SCNc and SGTc), then we calculated
the EBIC, EAIC, DIC and LPML criteria. The adopted priors were the same as described
previously in Section 1.5.1. The number of times that the skew slash model was selected is
the sum of times that the slash 1 model (SSL1) or slash 2 model (SSL2) was chosen by
the selection criteria.

In general, the true underlying model was selected in all almost of the replicas
by EBIC, EAIC, DIC and LPML criteria for all models, when the sample size is higher
than 500. For the skew-t model, when n=1,000, the percentual that the true model was
chosen was smaller than for n = 500. This was, probably, due to the fact that the estimates
of ν1 and ν2 were very close to each other and to ν = 3. Since we set σ2 = 1 for the
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skew-t model, in this case the skew-t model is a special case of the skew generalized t
model with ν1 = ν2 = 3. As shown in Table 60, all criteria, for the skew-t and skew
generalized t models, are practically the same, for n=1,000. For the skew slash model,
under n=1,000, the correct model was chosen in almost all replicas by EAIC, EBIC and
LPML criteria, although the DIC criterion has not chosen the model correctly. Finally, for
the skew generalized t model, the skew-t model was preferred than the correct model for
almost all sample sizes, except for n=1,000. This was, probably, due to the fact that the
estimates of ν1 and ν2 were not so accurate as for n=1,000.

Table 6 – Percentage of times that the correct model was selected, in a total of 50 replicas

criteria
model n EAIC EBIC DIC LPML

STc

50 100 98 14 14
250 0 0 0 2
500 100 100 100 100
1000 52 52 62 62

SSLc

50 0 0 26 0
250 2 2 34 0
500 100 100 98 80
1000 100 100 28 98

SCNc

50 0 0 8 84
250 0 0 8 0
500 100 100 100 100
1000 100 100 100 100

SGTc

50 0 0 0 0
250 0 0 0 0
500 0 0 0 0
1000 100 100 98 96

1.5.3 Residual analysis

In this section we analyzed the behavior of the residuals, presented in Section
1.4.6, under some conditions of interest. We have conducted a simulation study, considering
a sample size of 1000. We simulated data sets, for each regression model, considering
β0 = 1, β1, σ2 = 1 and γ = −0.9. Also, we considered: ν = 3 for skew-t and skew slash
distributions; ν = (3, 1) for skew generalized t and ν = (0.1, .15) for skew contaminated
normal distribution.

For each simulated data, we fitted the skew normal, skew-t, skew slash, skew
generalized t and skew contaminated normal models using the priors described in Section
1.5.1. We built suitable quantile-quantile plots for all models, where the confidence bands
were made considering the underlying distribution, with µ = 0 and σ2 = 1.
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Figure 15 – QQ plots using the data set generated by the skew contaminated normal
distribution and adjusting by: skew contaminated normal (a), skew normal
(b), skew slash 1 (c), skew slash 2 (d), skew-t (e) and skew generalized t (f)

For all simulated data, we can see from Figures 15 - 18 that when data exhibits
heavy tails, residuals obtained from the skew normal fit indicated that this model did not
fit well to the data, since the residuals lying outside the confidence bands. For all models,
when we adjusted the correct model to the data, there is no residual lying outside the
confidence bands, indicating that the model is well adjusted.

Comparing the adjust by another members of SMSN class, we noted that when
observations are generated by skew slash and skew contaminated normal distributions
and we adjusted with the skew generalized t, the fit using this distribution is not as good
as the rest. However, when the data is generated by the skew-t or the skew generalized
t model, the residuals obtained from the skew-t and skew generalized t models are well
adjusted.
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Figure 16 – QQ plots using the data set generated by the skew slash distribution and
adjusting by: skew slash 1 (a), skew normal (b), skew slash 2 (c), skew
contaminated normal (d), skew-t (e) and skew generalized t (f)
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Figure 17 – QQ plots using the data set generated by the skew-t distribution and adjusting
by: skew-t (a), skew normal (b), skew slash 1 (c), skew slash 2 (d), skew
contaminated normal (e) and skew generalized t (f)
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Figure 18 – QQ plots using the data set generated by the skew generalized t distribution
and adjusting by: skew generalized t (a), skew normal (b), skew slash 1 (c),
skew slash 2 (d), skew contaminated normal (e) and skew-t (f)
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1.5.4 Influence analysis

To analyze the behavior of the influence diagnostic analysis technique presented
in this work using the K-L divergence measure, We have conducted a simulation study,
considering a sample size of 1000. We simulated data sets, for each regression model,
considering β0 = 1, β1, σ2 = 1 and γ = −0.9. Also, we considered: ν = 3 for skew-t and
skew slash distributions; ν = (3, 1) for skew generalized t and ν = (0.1, .15) for skew
contaminated normal distribution.

For each simulated data, we fitted the skew normal, skew-t, skew slash, skew
generalized t and skew contaminated normal models using the priors described in Section
1.5.1. For each fitted model, plots with K-L divergence are made. As described in section
1.4.5, an influential observation is considered if pi ≥ .8, that is, if K(P, P(−i)) ≥ .2231436.

In all cases, we can see from figures 19 - 22 that the skew normal model indicates
possible influential observations that are no influential, for the other models, indicating
that our models accommodate, properly, all observations, differently from the normal
model. As we can see, there is one observation that is higher than all other in the skew-t
model, but is still smaller than the cut-off point. However, when the skew normal model is
adjusted, that same observation appears as influential. It can also be noted that when the
data are simulated from skew-t, skew slash and skew generalized t model and we fitted the
skew contaminated model, at least one observation is considered as potentially influential.
This does not happen when the data is simulated from the skew contaminated normal
distribution. This indicates that the skew contaminated model does not accommodate so
well the extreme observations, compared with the other models.



Chapter 1. Linear regression model based on skew scale mixture of normal distributions based on the
centered parameterization 59

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ST

index

K
L−

D
iv

er
ge

nc
e

(a)

0 200 400 600 800 1000

0
2

4
6

8

SN

index

K
L−

D
iv

er
ge

nc
e

(b)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SSL1

index

K
L−

D
iv

er
ge

nc
e

(c)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SSL2

index

K
L−

D
iv

er
ge

nc
e

(d)

0 200 400 600 800 1000

0
1

2
3

4

SCN

index

K
L−

D
iv

er
ge

nc
e

(e)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

STgen

index

K
L−

D
iv

er
ge

nc
e

(f)

Figure 19 – Index plots of K(P, P(i)) for the data set generated by the skew-t distribution
adjusting by: skew-t (a), skew normal (b), skew slash 1 (c), skew slash 2 (d),
skew contaminated normal (e) and skew generalized t (f)
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Figure 20 – Index plots of K(P, P(i)) for the data set generated by the skew slash distribu-
tion adjusting by: skew slash 1 (a), skew normal (b), skew slash 2 (a), skew-t
(d), skew contaminated normal (e) and skew generalized t (f)
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Figure 21 – Index plots of K(P, P(i)) for the data set generated by the skew contaminated
normal distribution adjusting by: skew-t (a), skew normal (b), skew slash 1
(c), skew slash 2 (d), skew-t (e) and skew generalized t (f)



Chapter 1. Linear regression model based on skew scale mixture of normal distributions based on the
centered parameterization 62

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

STgen

index

K
L−

D
iv

er
ge

nc
e

(a)

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

SN

index

K
L−

D
iv

er
ge

nc
e

(b)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SSL1

index

K
L−

D
iv

er
ge

nc
e

(c)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SSL2

index

K
L−

D
iv

er
ge

nc
e

(d)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SCN

index

K
L−

D
iv

er
ge

nc
e

(e)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ST

index

K
L−

D
iv

er
ge

nc
e

(f)

Figure 22 – Index plots of K(P, P(i)) for the data set generated by the skew generalized t
distribution adjusting by: skew-t (a), skew normal (b), skew slash 1 (c), skew
slash 2 (d), skew contaminated normal (e) and skew-t (f)
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1.6 Application
The application is made on Australian Athletes dataset described in (WEIS-

BERG, 2005). This data consist on sample of 202 elite athletes who were in training at
the Australian Institute of Sport. We consider the lean body mass (LBM) as our response
and the height in cm (Ht), weight in kg (Wt), and the sex (0 = male and 1 = female)
as our covariates for the regression model. We consider a regression model of the form
Yi = β0 +β1x1 +β2x2 +β3x3 +εi, for i = 1, 2, . . . , 202, where x1 = 0 if male and 1 if female,
x2 and x3 are, respectively, the covariates Ht and Wt centered in their respective mean.
We fitted six models, assuming that: ε iid∼ STc(0, σ2, γ, ν), or , ε iid∼ SCNc(0, σ2, γ, ν1, ν2),
or ε iid∼ SGTc(0, 1, γ, ν1, ν2), or ε iid∼ SNc(0, σ2, γ), or ε iid∼ SSLc(0, σ2, γ, ν) assuming the
prior for ν, ν ∼ gamma(1, .1)T (1,∞) and ε iid∼ SSLc(0, σ2, γ, ν) assuming the prior for ν,
ν ∼ gamma(1.5, .05)T (1,∞), that we denote, respectively, by ST, SCN, SGT, SN, SSL1
and SSL2. The values for the MCMC algorithm were the same used in the simulation study.
For the slash distribution, we fitted two models, with different priors for ν, as described in
Section 1.5.1. The priors for all other parameters were chosen according to the simulation
study available in Section 1.5.1. Table 7 presents the statistics for model comparison. The
skew t model (ST) was selected by EAIC, EBIC and LPML. The slash model using as
prior for ν, ν ∼ gamma(1.5, .05)T (1, ), was select by DIC criterion. For the SCN model,
it is not clear if the skew normal model is preferable to the skew contaminated model,
since the width of the credibility intervals are large. Analyzing the posterior distribution
of ν1, presented in Figure 23, we can noted that it is concentrated toward .2. For ν2, the
histogram shows it is unlikely ν2 is large. In fact, the probability of ν1 < 0.05 is .075
and ν2 > 0.9 is equal to .008, which indicates that skew contaminated normal model
is preferable to skew normal. For skew-t and skew slash (SSL1) models, the credibility
intervals do not include values of ν > 30. From the posterior distribution of ν1 for the skew
generalized t model, we have the indicative that this model is preferred to the skew normal
model. For the skew slash model (SSL2) we noted the credibility interval for ν indicated
that the skew normal model may be preferred to the skew slash model. In this way, we
have calculated from the posterior distributions of ν, the probability of ν > 30, which
was equal to .13. This indicate that the skew slash model is also preferable to the skew
normal model. From Figure 24, QQ plot with envelopes for all fitted models are shown. It
is possible to see that for skew slash, skew contaminated normal and skew normal models,
there are some points lying outside the confidence bands, which do not happen with skew-t
and skew generalized t models. The analysis of influential observations, presented in Figure
25, indicated that there are two influential observations for the skew-t model, three for
the skew slash, skew contaminated normal and skew normal models and only one for the
skew generalized t model. Under this criterion, we observe that both skew-t and skew
generalized t models outperform the others models. The residual analysis also indicated
that skew-t and skew generalized t models provide the best fit. Since the EAIC, EBIC



Chapter 1. Linear regression model based on skew scale mixture of normal distributions based on the
centered parameterization 64

and LPML criteria selected the skew-t as the best model, and the residual and influential
observations analyses indicated that the skew-t model fit the data very well, this model
was preferred to the others.

From Table 8, it is possible to see that all regression parameters are different
from zero. Also, the model indicated that the height and weight have a positive influence
in the lean body mass, and females presented lean body mass inferior to males.

Table 7 – AIS dataset: Statistics for model comparison

Model
criterion ST SSL1 SSL2 SCN SGT SN

EAIC 976.83 977.54 979.07 979.40 982.85 982.27
EBIC 999.99 1000.69 1002.23 1005.87 1006.00 1002.12
DIC 970.06 971.02 956.54 970.09 975.47 976.33

LPML -485.60 -486.49 -488.14 -486.90 -488.38 -489.94
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Figure 23 – Posterior distribution of ν1 (a) and ν2 (b) for the skew contaminated model
and posterior distributions of ν for the skew-t (c) and skew slash (SSL1) (d)
and skew slash (SSL2)(e) models and posterior distributions of ν1 for the skew
generalized t model (f).
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Table 8 – AIS dataset: Posterior parameter estimates for the skew-t, skew slash, skew
contaminated normal and skew generalized t models.

Model parameter Est SD CI (95%)

ST

β0 68.7646 .3279 (68.1614, 69.4599)
β1 -7.9095 .5459 (-9.0050, -6.9025)
β2 .1007 .0322 (0.0384, .1619)
β3 .6680 .0257 (0.6210, .7176)
γ -0.7700 .2090 (-0.9861, -0.2589)
ν 6.5260 2.8705 (3.1711, 14.2663)
σ2 5.3632 .8981 (3.7166, 7.1824)

SSL1

β0 68.7350 .3652 (67.9851, 69.4309)
β1 -7.8757 .6090 (-8.9991,-6.6541)
β2 .0993 .0318 (0.0393, .1616)
β3 .6699 .0265 (0.6156, .7201)
γ -0.7237 .2197 (-0.9870, -0.2352)
ν 2.6267 1.6607 (1.2747, 7.2775)
σ2 4.4623 1.0251 (2.6407, 6.8239)

SSL2

β0 68.8016 .3512 (68.1157, 69.4860)
β1 -8.0060 .5888 (-9.0944,-6.7838)
β2 .0944 .0337 (0.0270, .1589)
β3 .6713 .0272 (0.6196, .7252)
γ -0.6137 .2282 (-0.9612, -0.0509)
ν 11.6930 19.9007 (1.3640, 76.5994)
σ2 5.2014 1.5549 (2.8939, 8.4160)

SCN

β0 68.9962 .3507 (68.1643, 69.5254)
β1 -8.1766 .5831 (-9.1280, -6.8339)
β2 .0990 .0335 (0.0263, .1554)
β3 .6635 .0278 (0.6190, .7291)
γ -0.6586 .1904 (-0.8891, -0.1038)
ν1 .1055 .2047 (0.0316, .8096)
ν2 .2452 .1567 (0.1124, .7496)
σ2 5.3521 1.3146 (2.3737, 7.7965)

SGT

β0 69.0891 .3227 (68.4256, 69.6798)
β1 -8.3022 .4987 (-9.2603, -7.2947)
β2 .0989 .0301 (0.0409, .1573)
β3 .6588 .0236 (0.6144, .7058)
γ -0.3742 .3413 (-0.9337, .0790)
ν1 5.3696 1.8766 (2.8445, 9.9040)
ν2 32.5412 17.3355 (10.7662, 77.0973)

SN

β0 68.9325 .3477 (68.2271, 69.5839)
β1 -8.2888 .5628 (-9.3732, -7.1902)
β2 .0754 .0320 (0.0158, .1380)
β3 .6829 .0263 (0.6312, .7353)
γ -0.4792 .1485 (-0.7316, -0.1725)
σ2 7.5311 .8356 (6.0504, 9.3382)
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Figure 24 – QQ plots with envelopes for the ais dataset using the models: skew-t (a), skew
contaminated normal (b), skew slash 1 (c), skew slash 2 (d), skew generalized
t (e) and skew normal (f).
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Figure 25 – Index plots of K(P, P(i)) for the ais dataset: skew-t (a), skew contaminated
normal (b), skew slash 1 (c), skew slash 2 (d), skew generalized t (e) and skew
normal (f) models.
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1.7 Conclusions
In this chapter we developed a scale mixture of skew-normal distribution under

the centered parameterization class of probability distributions as an alternative to the
parameterization used in (FERREIRA; BOLFARINE; LACHOS, 2011). It was decided to
use a new parameterization for this class for several reasons, among them, the simplicity
of parameter interpretation compared to the parameterization used in (FERREIRA;
BOLFARINE; LACHOS, 2011). Another motivation was the issues related to the estimation
process of parameter λ in the direct parameterization. We have showed, through profiled
log-likelihood, that the SMSN class under direct parameterization can heritage the problem
caused by the non quadratic likelihood shape of the direct parameterization.

A class of linear regression models based on the SMSN family under the centered
parameterization was introduced, and we developed the Bayesian estimation approach.
Also, we described model comparison criteria, and we developed analysis of influential
observations and residual analysis. Simulation studies were performed in order to evaluate
the parameter recovery under different scenarios. We concluded that for values of ν that
generate distributions with heavy tails the estimates are very accurate. On the other hand,
for values of ν close to the skew normal (or the symmetric) model, the estimates tend to
be biased and the credibility intervals to be large. However, as the sample size increases,
the estimates are improved. An application of the proposed model in a real dataset was
performed in order to show that heavy tails models (special cases of the developed class of
linear regression model) provide better fits than the skew normal linear regression.



69

2 Binary regression model with skew scale
mixture of normal link function based on
the centered parameterization

2.1 Introduction
Binary regression models are adequate to analyze data when the response

variable assumes only two values. In these models the expected probability of success of a
binary response is estimated based on one or more covariates through the specification
of link function, that linearizes the relationship between the success probability and the
covariates. As characterized in (CHEN; DEY; SHAO, 1999), the degree of asymmetry
of the link function can be measured by the rate at which the probability of a response
approaches 0 or 1. According to (CHEN; DEY; SHAO, 1999), a link function is symmetric
if the approximation rate at 0 is the same as the approximation rate at 1. The most
popular members of the binary regression models, the probit and logit, are examples of
symmetric link functions. In the same way, a link function is positively asymmetric if
the approximation rate at 1 is faster than the approximation rate at 0, and negatively
asymmetric, otherwise.

From this definition of (CHEN; DEY; SHAO, 1999), we can say that the use of
probit and logistic models are not adequate when we have evidence that the probability of
success increases at a different rate than decreases. (CZADO; SANTNER, 1992) showed,
through a simulation study, using a data generated by a skewed link function, that the link
misspecification can yield a substantial bias in the estimates of the regression coefficients.
Such problem is circumvented by the use of asymmetric link functions, that can be obtained,
for example, through the cumulative distribution function of asymmetric distributions.

Many skewed binary regressions have been proposed in the literature. (STUKEL,
1988), (CZADO; SANTNER, 1992), and (GUERRERO; JOHNSON, 1982) introduced
asymmetry replacing the linear predictor by a nonlinear function of the linear predictor
and a parameter that controls the asymmetry. Another approach is to replace the linear
predictor by a polynomial function, see for example (COLLETT, 2002). Finally, the third
option is to consider the cumulative distribution function of an asymmetric distribution.
The most popular example of this method is the complementary log-log link function,
that is constructed from the cdf of the Gumbel distribution. (CHEN; DEY; SHAO, 1999)
proposed an asymmetric probit link, considering a class of mixture of normal distributions.
(BAZáN; BOLFARINE; BRANCO, 2010) presented a unified approach for two skew probit



Chapter 2. Binary regression model with skew scale mixture of normal link function based on the
centered parameterization 70

links. In (BAZáN; ROMEO; RODRIGUES, 2014), it was introduced two new asymmetric
links, one based on the cdf of the power-normal distribution and another based on the cdf
of the reciprocal power-normal distribution. (NAGLER, 1994) introduced the asymmetrical
link by using the Burr-10 distribution ((BURR, 1942)).

Since probit and logistic regression estimates are not robust in the presence
of outliers, (LIU, 2005) proposed a new binary model, named robit regression, in which
the normal distribution in probit regression is replaced by a t-distribution with known
or unknown degrees of freedom. Both the logistic model and the probit model can be
approximated by the robit regression, as showed in (LIU, 2005). Instead using the t-
distribution, (KIM; CHEN; DEY, 2008) introduced a class of skewed generalized t-link
models, that accommodate heavy tail and asymmetric link functions.

In this work we developed a wide class of link functions for binary regression
models that accommodate asymmetrical and heavy tails link functions, and includes the
skewed generalized t-link, probit, skew probit, skew slash, skew contaminated normal, skew
cauchy and probit models, among other, as special cases. This class is constructed based
on the SMSN family under the centered parameterization introduced in Section 1.2.2.

2.2 Binary regression model
Let X = (1,X1,X2, . . . ,Xp−1)t be a p × n known design matrix of fixed

covariates, Y = (Y1, . . . , Yn)t be a n× 1 vector of dichotomous response variables, such
that yi = 1 with probability pi and yi = 0 with probability 1−pi, and β = (β0, β1, . . . , βp−1)t

be a p×1 vector of regression coefficients. The binary regression model additionally assumes
that

pi = F (ηi) = F (Xi
tβ), i = 1, . . . , n, (2.1)

where ηi = Xi
tβ, F (·) denotes the cumulative distribution function and F−1 is a link

function that linearizes the relationship between the success probability and the covariates.
In this work, we assume that

pi = F (Xi
tβ|γ,ν), i = 1, . . . , n, (2.2)

where F (·|γ,ν) is the cdf of the skew-t, skew slash, skew generalized t or the
skew contaminated normal distribution under the centered parametrization, as presented
in 1.2.3, γ is the skewness parameter and ν = ν is the degree of freedom for the skew-t
and skew slash distributions; for the skew contaminated normal distribution, ν = (ν1, ν2)
are, respectively, the proportion of outliers and scale factor, and for the skew generalized t
distribution, ν = (ν1, ν2) controls the tail and variance of the distribution.
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Figure 26 – Probability of success as a function of ηi for the skew normal distribution

The use of this distribution class in the binary regression model allows us a
great flexibility in the choice of the link function, since this class includes heavy tails,
symmetric and asymmetric distributions. From Figures 27 and 28 we can see the effect of
heavy tails on the cumulative distribution function by observing that the probability of
success grows slowly when compared to the normal skew cdf, as presented in Figure 26,
for small values of ν for the skew-t, skew slash distributions, as well for small values of ν1

in the skew generalized t distribution and when ν1 approaches to 1 and ν2 to 0, in the
skew contaminated normal distribution. Panel (c) of the Figures 27 and 28 shows the cdf
when these distributions approach to the skew normal case. From these figures, we can
also see that when δ = −0.9 (δ = .9) the probability pi approaches 1 (0) at a faster rate
than it approaches 0 (1). When δ = 0 the probability approaches 1 or 0 at the same rate.

These figures suggest that the use of heavy tails distribution is appropriate in
the cases where extreme values of the linear predictor are expected. Also, the use of the
asymmetric link is appropriate when we expected that the rate approaches 1 is different to
the rate approaches . In addition, heavy tails links help to control the rate of convergence
to 0 and 1, providing more flexibility in the modeling of the influence of the covariates in
the response variable.
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Figure 27 – Probability of success as a function of ηi for various ν for the skew-t distribution
with (a) ν = 1, (b) ν = 3 and (c) ν = 30, and for the skew slash distribution
with (d) ν = 1, (e) ν = 3 and (f) ν = 30.
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Figure 28 – Probability of success as a function of ηi for various ν for the skew contaminated
normal distribution with (a) ν = (.9, 0.1), (b) ν = (.1, 0.1) and (c) ν = (.1, 0.9),
and for the skew generalized t distribution with (d) ν = (5, 15), (e) ν = (15, 5)
and (f) ν = (30, 30).
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To perform Bayesian inference, an approach based on data augmentation, as
considered in (ALBERT; CHIB, 1993) and (BAZáN; BOLFARINE; BRANCO, 2010), will
be used. The main advantage of using this approach is the ability to introduce a hierarchi-
cal structure, which simplifies the Bayesian estimation process. Before introducing this
alternative representation for the binary model, we consider Zi ∼ SMSNc(0, 1,−γ,G,ν)
which implies that

Zi = Xi
tβ + Ui

−1/2εi i = 1, . . . , n, (2.3)

where εi iid∼ SNc(0, 1,−γ) and Ui iid∼ H(·|ν) and I(·) denotes the indicator function. From
the stochastic representation of the skew-normal presented in 1.7, the skew-normal under
the centered parametrization (εi) can be written as

εi = −∆(Hi − b) +
√
τTi i = 1, . . . , n, (2.4)

where λ = sγ1/3√
b2 + s2γ2/3(b2 − 1)

, δ = λ√
1 + λ2

, ∆ = δ√
1− b2δ2

, τ = 1− δ2

1− b2δ2 , b =
√

2
π
,

s =
( 2

4− π

)1/3
and Hi

iid∼ HN(0, 1)⊥Ti iid∼ N(0, 1).

Using 2.3 and 2.4 we have the following proposition:

Proposition 2.2.1. The binary model Yi ∼ Ber(pi) and pi = F (Xi
tβ|γ,ν) is equivalent

to consider

yi = I(Zi > 0) =

1 if Zi > 0

0 if Zi ≤ 0
i = 1, . . . , n, (2.5)

with

Zi = Xi
tβ + Ui

−1/2(∆(b−Hi) +
√
τεi)

εi ∼ N(0, 1) Hi ∼ HN(0, 1) Ui ∼ G(.|ν)
(2.6)

Following 2.5 and 2.6, the hierarchical formulation of the model is given as
follow:

Zi|Ui = ui, Hi = hi, yi ∼ N
(
Xi

tβ + ui
−1/2∆(b− hi),

τ

ui

)
I(zi, yi)

Hi ∼ HN(0, 1)

Ui ∼ G(.|ν),

(2.7)

where I(zi, yi) = I(zi > 0)I(y1 = 1) + I(zi ≤ 0)I(yi = 0).
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2.3 Bayesian Inference
To use the Bayesian paradigm, it is essential to obtain the joint posterior

distribution. However, since the necessary integrals are not easy to calculate, it is not
possible to obtain such distribution, analytically. However, it is possible to obtain numer-
ical approximation for the marginal posterior distributions of interest by using MCMC
algorithms, see (GEMAN; GEMAN, 1984) and (HASTINGS, 1970).

To obtain the posterior distribution we need first to consider the complete
likelihood

Lc(θ|y, z, u, h) ∝
n∏
i=1

φ
(
zi|µi, τu−1

i

)
I(zi, yi)f(hi)h(ui|ν)

∝
n∏
i=1

√
ui√
τ

exp
{
− ui2τ (zi − µi)2

}
I(zi, yi) exp

{
−h

2
i

2

}
h(ui|ν)

∝
∏n
i=1
√
ui

τn/2
exp

{
− 1

2τ

n∑
i=1

ui (zi − µi)2
}
I(zi, yi) exp

{
−
∑n
i=1 h

2
i

2

}
n∏
i=1

h(ui|ν),

where µi = X t
iβ+ ∆

√
ui

(b− hi) and θ = (β, γ,ν). We need to consider a prior distribution

for θ such that π(θ) = π(β)π(γ)π(ν). Furthermore, we will assume conditional conjugate
prior distributions, as in (GELMAN, 2006), for β. For γ, we assume the same prior used in
(AZEVEDO; BOLFARINE; ANDRADE, 2012), that is π(γ) ∝ (1+γ)αγ1−1(1−γ)αγ2−1I(γ ∈
Aγ), where Aγ = (−0.99527, 0.99527). For ν, the choice of the prior distribution will depend
on the model.

2.3.1 Full conditional distributions

In order to implement the MCMC algorithm, we have to simulate iteratively
from the full conditionals described bellow.

Denoting by θ−θi the parameter vector θ without the component θi, the full
conditional distributions are

For β:

π(β|θ−β,y, z,u,h) ∝ exp
{
−1

2
(
βtΣ−1

∗ β − 2µt∗Σ−1
∗ β

)}
IRp(β),

which can be recognized as the kernel of p-variate normal distribution with variance Σ∗ =(∑n
i=1 uixix

t
i

τ
+ Σ−1

β

)−1

and mean µ∗ =
(

n∑
i=1

ui
τ

(
zi −

∆
√
ui

(b− hi)
)
xti + µtβΣ−1

β

)
Σ∗.
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For zi:

f(zi|θ, yi, hi, ui) ∝ φ
(
zi|µi, τu−1

i

)
I(zi, yi).

Then,
zi|θ, ui, hi, yi = 1 ∼ TN

(
µi, τu

−1
i

)
I(0,∞)

zi|θ, ui, hi, yi = 0 ∼ TN
(
µi, τu

−1
i

)
I(−∞, 0)

For hi:

f(hi|θ, yi, zi, ui) ∝ exp
{
−1

2

(
∆2 + τ

τ

)[
h2
i − 2hi

(
∆2b−∆√ui(zi −X t

iβ)
∆2 + τ

)]}
I(0,∞)(hi),

which can be recognized as the kernel of a truncated normal distribution, so

hi|θ, ui, yi ∼ TN

(
∆2b−∆√ui(zi −X t

iβ)
∆2 + τ

,
τ

∆2 + τ

)
I(0,∞).

For ui:

• Skew slash:

f(ui|θ, yi, hi, zi) ∝ u
ν+1/2−1
i exp

{
− ui2τ

[
(zi −X t

iβ)2 − 2 ∆
√
ui

(b− hi)(zi −X t
iβ)

]}
I(0,1)(ui).

• Skew-t:

f(ui|θ, yi, hi, zi) ∝ u
ν+1

2 −1
i exp

{
−ui2

[
(zi −X t

iβ)2

τ
+ ν

]
+ ∆√ui

τ
(b− hi)(zi −X t

iβ)
}

×I(0,∞)(ui).

• Skew generalized t:

f(ui|θ, yi, hi, zi) ∝ u
ν1+1

2 −1
i exp

{
−ui2

[
(zi −X t

iβ)2

τ
+ ν2

]
+ ∆√ui

τ
(b− hi)(zi −X t

iβ)
}

×I(0,∞)(ui).

• Skew-contaminated normal: the discrete conditional distribution of ui assumes ν2

with probability pi
pi + qi

and 1 with probability qi
pi + qi

where

pi = ν1
√
ν2 exp

{
− ν2

2τ

[
(zi −X t

iβ)2 − 2 ∆
√
ν2

(b− hi)(zi −X t
iβ)

]}

qi = (1− ν1) exp
{
− 1

2τ
[
(zi −X t

iβ)2 − 2∆(b− hi)(zi −X t
iβ)

]}
.
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For ν:

• Skew slash: Considering a gamma distribution as prior, with mean α1

α2
and variance

α1

α2
2
, it follows that

π(ν|θ−ν ,y,u,h) ∝ νn+α1−1 exp
{
−ν(α2 −

n∑
i=1

ln(ui))
}
I(0,∞)(ν),

that is, ν|θ−ν ,y,u,h ∼ gamma(n+ α1, α2 −
n∑
i=1

ln(ui)).

• Skew-t: We have adopted a very useful hierarchical prior distribution as noted in
(CABRAL; LACHOS; MADRUGA, 2012), which consists on ν|λ ∼ exp(λ) and
λ ∼ U(ρ0, ρ1) where 0 < ρ0 < ρ1 are known. Then

π(ν|θ−ν , λ,y,u,h) ∝
ν
2
nν
2

Γ(ν/2)n

(
n∏
i=1

ui

)ν/2−1

exp
{
−ν

(∑n
i=1 ui
2 + λ

)}
I(0,∞)(ν)

π(λ|θ,y,u,h) ∝ λ exp−λ(ν)I(ρ0,ρ1)(λ),

that is, λ|θ,y,u,h ∼ TG(2, ν)I(ρ0, ρ1).

• Skew generalized t: Assuming ν1|λ1 ∼ exp(λ1) and λ1 ∼ U(ρ0, ρ1) where 0 < ρ0 < ρ1

are known and ν2|λ2 ∼ exp(λ2) and λ2 ∼ U(ψ0, ψ1) where 0 < ψ0 < ψ1 are known,
we have

π(ν1|θ−ν1 , λ1,y,u,h) ∝ ν2/2nν1/2

Γ(ν1/2)n

(
n∏
i=1

ui

)ν1/2−1

exp {−λ1(ν1 − 2)} I(0,∞)(ν1)

π(λ1|θ,y,u,h) ∝ λ1 exp {−λ1(ν1)} I(ρ0,ρ1)(λ1),

that is, λ1|θ,y,u,h ∼ TG(2, ν1)I(ρ0, ρ1).

Also, we have that

π(ν2|θ−ν2 , λ2,y,u,h) ∝ ν2/2nν1/2 exp
{
−ν2

(∑n
i=1 ui
2 + λ2

)}
I(0,∞)(ν2)

and

π(λ2|θ,y,u,h) ∝ λ2 exp{−λ2(ν2)}I(ψ0,ψ1)(λ2),

that is, ν2|θ−ν2 , λ2,y,u,h ∼ gamma(nν1

2 + 1,
∑n
i=1 ui
2 + λ2)

and λ2|θ,y,u,h ∼ TG(2, ν2)I(ξ0, ξ1)
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• Skew-contaminated normal: Observe that the distribution of U can be written as

h(u|ν) = ν
1−u

1−ν2
1 (1− ν1)

u−ν2
1−ν2 I{ν2,1}(u).

Setting as prior distributions ν1 ∼ beta(α1, β1), ν2 ∼ beta(α2, β2), it follows that the
conditional distributions of ν1 and ν2 are

π(ν1|θ−ν1 ,y,u,h) ∝ ν

n−
∑n

i=1 ui
1−ν2

+α1−1
1 (1− ν1)

∑n

i=1 ui−nν2
1−ν2

+β1−1
I(0,1)(ν1),

which can be recognized as the kernel of a beta distribution. So,

ν1|θ−ν1 ,y,u,h ∼ beta

(
n−∑n

i=1 ui
1− ν2

+ α1,

∑n
i=1 ui − nν2

1− ν2
+ β1

)
and

π(ν2|θ−ν2 ,y,u,h) ∝ ν

n−
∑n

i=1 ui
1−ν2

1 (1− ν1)
∑n

i=1 ui−nν2
1−ν2 να2−1

2 (1− ν2)(β2−1)I(0,1)(ν2).

For γ:

π(γ|θ−γ,y,u, z,h) ∝ τ−n/2 exp

− 1
2τ

n∑
i=1

ui

(
zi −X t

iβ −
∆
√
ui

(b− hi)
)2
 (1 + γ)αγ1−1(1− γ)αγ2−1

I(γ ∈ Aγ).

2.3.2 Residual analysis

For the binary regression models, the ordinary residual can be defined as Yi− p̂i,
where p̂i is the i-th fitted observation, based on an appropriate estimate of β (related
to a consistent estimator). We can also define other types of residual, as the Pearson,
deviance, among others ((MCCULLAGH; NELDER, 1989)). However, due to the discrete
nature of the binary response variable, these residuals have unknown distribution, which
can affect the interpretation and outlying detection. (ALBERT; CHIB, 1995) proposed a
continuous Bayesian residual based on latent variable. Let (β(m), γ(m),ν(m)), m = 1, . . . ,M
a valid MCMC sample, another possibility is considered the residual r(m)

i = Yi − p(m)
i

where p(m)
i = F (X t

iβ
(m)|γ(m),ν(m)). In the Bayesian context, this residual has continuous

distribution, with support on the interval (Yi − 1, Yi) ((FARIAS; BRANCO, 2012)). Then,
an observation will be outlying for yi = 0 if the posterior distribution of ri is concentrated
towards -1. On the other hand, for yi = 1, the observation will be outlying if the distribution
of ri is concentrated towards 1.

Similarly to the latent Bayesian residual for the skew probit regression developed
in (FARIAS; BRANCO, 2012), we can define the latent residual for the binary regression
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model with link function based on the SMSN family under the centered parameterization
from the stochastic representation given in 2.2.1. From that, we can define the residual

εi = Zi −X t
iβ − U

−1/2
i ∆(b−Hi)√
τ

, (2.8)

where Zi, Ui and Hi are the latent variables. It follows that, conditioned in β, γ, the
residual 2.8 is normally distributed a priori. A way to check outliers is to analyze the
posterior distribution of the residual given in 2.8.

For model checking, we can use the Deviance residual, defined as

di = sign(yi − p̂i)
√
−2 (yilog(p̂i) + (1− yi)log(1− p̂i)). (2.9)

A way to check lack of fit is to build envelope plot for the deviance residuals, under a
Bayesian perspective. The considered methodology for constructing the simulated envelopes
is described in Appendix E.

2.4 Simulation study
We performed simulation studies in order to evaluate the performance of the

model, estimation method and behavior of the residuals and influence diagnostic analysis
proposed in this work. All these models were implemented in JAGS ((PLUMMER, 2003))
through the interface provided by the rjags package ((PLUMMER, 2016)) available in R
program ((R Development Core Team, 2008)). The codes are available from the authors
upon request.

We adopted weakly informative priors for all parameters, that is: β0 ∼ N(0, 1000)
and β1 ∼ N(0, 1000). For the γb, γc and γw we used the prior described in Section 2.3
with αγ1 = αγ2 = 0.5. For the skew-t model we set ν ∼ exp(θ) and θ ∼ unif(.05, 0.5); for
the skew slash model we adopt ν ∼ gamma(1, 0.05); for the skew contaminated model
we used ν1 ∼ beta(1, 1) and ν2 ∼ beta(1, 1) and for the skew generalized t model we set
ν1 ∼ gamma(1, 0.05) and ν2 ∼ exp(θ2) and θ2 ∼ unif(0.05, 0.5). All these priors for ν
were chosen based on previous sensitivity study done by the authors, taking into account
different values of hyperparameters. The results presented here, using the selected priors,
were those that presented more accurate estimates among the tested values.

To eliminate the effect of the initial values and to avoid correlations problems,
we run a MCMC chain of size 600,000 with a burn-in of 100,000 and a thin of 1,000,
retaining a valid MCMC chain of size 500. The values of the Gelman-Rubin statistics and
the analyses of traceplots, Geweke and autocorrelation plots indicated that the MCMC
algorithm converged and the autocorrelations were negligible, with such spacement.
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2.4.1 Simulation study I

The objective of this simulation study is to measure the impact of the sample
size on the parameter recovery. We considered different scenarios based on the crossing
of the levels of some factors of interest. For the four regression models explored in this
work, we simulate from samples of size n=50, 250, 500 and 1000, varying the value of ν,
considering a single replica. That is, we generated replicas from

Yi = I(Zi > 0)

Zi = β0 + β1xi + εi i = 1, . . . , n

where β0 = 1, β1 = 2, εi belongs to the SMSN family with σ2 = 1 and γ ∈ {−0.9, 0, 0.9},
which allows the model to have strong negative, null and strong positive asymmetry,
respectively. Also, we set ν ∈ {3, 10, 50} for the skew-t and skew-slash distribution;
ν = (ν1, ν2) = (.1, 0.1), (.1, 0.9), and (.9, 0.1) for the skew contaminated normal distribution
and ν = (ν1, ν2) = (15, 5), (5, 15) and (50, 50) for the skew generalized-t distribution. These
values for ν were chosen in order to have distributions with heavy tails and tails close to
the skew normal distribution. The covariate was simulated from N(0,1) and centered in its
respective mean.

Based on small studies performed by the author about the choice of prior
distribution for γ we noted that γ estimates tend to have credibility intervals that cover
practically all parameter space, and the estimates can be very dependent on the prior
choice. In the work of (AZEVEDO; BOLFARINE; ANDRADE, 2012) this problem is
discussed in the Item Response Model context. Also based in some previous studies, we
decided use the beta modified prior described in (AZEVEDO; BOLFARINE; ANDRADE,
2012). The authors intend to carry out a more detailed study on the accuracy of the
estimates and propose alternatives to improve them.

The results for the skew-t and skew slash models are showed in Tables 9 and
10, and the remaining tables are presented in Appendix F. From these two tables we can
notice that when the true value of ν is small, the estimates are accurate, but the skew-t
model presents better results than the skew slash model, when we compare the standard
deviations obtained from these two models. When ν = 10, for both models, we observe
overestimation of this parameter, since the estimates tend to be around 20. The opposite
occurs when ν = 50, however, for this scenario the estimates are close to 30, which indicate
that the skew-t model approaches to the skew-normal model. The parameter vector β
were adequately estimated, for sample sizes greater than 50. Comparing the results for γ,
we noted that the estimates were accurate only for large sample sizes.

For the skew generalized t model, we see that estimates of ν1 tend to be around
5 and of ν2 around 15, even though the respective true do not correspond to these values.
The same occurs for the skew contaminated normal model, where the estimates of ν1 are
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close to .6 and ν2 to .2. For this model we can see that the respective credibility intervals
cover almost all the parameter space of ν1 and ν2. It was also observed that the estimates
of β were not as accurate as for the skew-t and skew slash models, as can be seen in Table
11 and 12.

Table 9 – Results of the simulation study for the skew-t model with ν = 3.
Sample size

50 250 500 1000
Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 .396 .431 (-0.376;1.273) .939 .208 (.567;1.361) .99 .202 (.637;1.377) .925 .132 (.66;1.169)
γ = 0 .265 .343 (-0.319; .967) 1.1 .265 (.685;1.644) 1.097 .217 (.678;1.491) .841 .131 (.603;1.089)
γ = .9 1.457 .701 (.462;2.921) .975 .245 (.549;1.439) 1.122 .224 (.747;1.581) .874 .137 (.611;1.142)

β1

γ = −0.9 3.112 1.402 (1.02;5.757) 1.949 .447 (1.232;2.932) 2.107 .38 (1.419;2.871) 2.033 .249 (1.537;2.493)
γ = 0 2.183 .848 (.904;3.898) 2.027 .489 (1.265;2.963) 2.108 .349 (1.481;2.751) 1.798 .241 (1.361;2.249)
γ = .9 2.475 1.222 (.648;5.014) 1.91 .377 (1.288;2.722) 2.093 .365 (1.506;2.863) 1.764 .241 (1.321;2.214)

γ
γ = −0.9 .895 .57 (-0.788; .995) -0.896 .467 (-0.995; .523) .681 .449 (-0.53; .994) -0.525 .456 (-0.995; .52)

γ = 0 .891 .518 (-0.692; .995) -0.718 .559 (-0.995; .868) .89 .442 (-0.383; .995) .397 .363 (-0.293; .992)
γ = .9 .835 .591 (-0.87; .995) .923 .448 (-0.408; .995) .949 .257 (.214; .995) .936 .228 (.273; .995)

ν
γ = −0.9 16.096 18.039 (2.001;51.907) 12.831 14.404 (2.001;44.905) 9.782 16.197 (2.003;39.819) 3.262 2.202 (2.002;5.942)

γ = 0 18.282 17.935 (2.007;54.049) 11.033 14.523 (2.001;38.94) 6.692 10.681 (2;22.238) 4.694 4.745 (2;13.186)
γ = .9 14.769 16.9 (2.01;51.577) 14.812 17.32 (2.024;50.557) 7.038 8.373 (2.001;23.623) 5.087 5.147 (2.002;15.37)

Table 10 – Results of the simulation study for the skew slash model with ν = 3.
Sample size

50 250 500 1000
Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 1.15 .483 (.225;2.126) .78 .118 (.575;1.019) .885 .134 (.649;1.11) .977 .141 (.729;1.239)
γ = 0 1.04 .424 (.306;1.973) .722 .172 (.404;1.068) .892 .195 (.577;1.292) .842 .136 (.627;1.157)
γ = .9 .762 .346 (.07;1.392) .723 .163 (.398;1.03) .884 .16 (.591;1.193) 1.021 .188 (.66;1.358)

β1

γ = −0.9 2.363 .698 (.962;3.691) 1.494 .251 (1.039;1.95) 1.999 .301 (1.517;2.578) 1.957 .289 (1.515;2.559)
γ = 0 1.913 .659 (.793;3.074) 1.459 .319 (.937;2.113) 1.953 .396 (1.365;2.808) 1.724 .251 (1.374;2.309)
γ = .9 1.565 .509 (.766;2.594) 1.521 .285 (1.033;2.115) 1.813 .253 (1.399;2.289) 2.098 .337 (1.44;2.707)

γ
γ = −0.9 -0.85 .689 (-0.973; .995) -0.953 .289 (-0.995;-0.174) -0.71 .258 (-0.963;-0.078) -0.939 .216 (-0.995;-0.289)

γ = 0 -0.85 .606 (-0.995; .872) -0.345 .477 (-0.995; .573) .411 .373 (-0.354; .994) .198 .263 (-0.348; .66)
γ = .9 -0.797 .623 (-0.995; .948) .144 .491 (-0.675; .99) .96 .189 (.413; .995) .962 .139 (.566; .995)

ν
γ = −0.9 20.14 20.677 (1.061;58.042) 21.011 20.703 (1.084;60.079) 18.746 17.714 (1.003;56.469) 9.888 12.958 (1.084;38.736)

γ = 0 18.659 19.151 (1.017;56.187) 14.18 17.255 (1.003;50.321) 12.878 17.559 (1.005;47.746) 16.331 17.369 (1.006;53.824)
γ = .9 18.268 19.3 (1.03;59.027) 18.028 18.797 (1.013;57.341) 18.396 18.226 (1.028;54.084) 3.382 5.531 (1.002;12.884)

Table 11 – Results of the simulation study for the skew generalized t model with ν1 = 50
and ν2 = 50.

Sample size
50 250 500 1000

Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 1.749 1.302 (.146;4.466) 1.101 1.01 (.216;3.651) 2.507 1.218 (.817;4.835) .907 .193 (.626;1.28)
γ = 0 2.291 1.834 (.476;6.458) 1.43 .934 (.382;3.755) 1.023 .754 (.3;2.674) 1.734 .871 (.448;3.347)
γ = .9 1.037 .864 (.101;3.138) 1.04 .815 (.316;2.98) 2.994 1.507 (1.114;6.037) 1.9 .721 (.58;2.861)

β1

γ = −0.9 4.478 3.271 (.325;11.516) 1.993 1.784 (.461;6.053) 5.293 2.571 (1.81;10.189) 1.809 .383 (1.347;2.566)
γ = 0 3.339 2.61 (.358;9.616) 3.508 2.302 (.934;9.343) 2.052 1.477 (.625;5.055) 3.453 1.74 (.872;6.402)
γ = .9 3.207 2.495 (.483;7.938) 1.925 1.441 (.659;5.709) 5.775 2.891 (2.243;12.042) 3.904 1.452 (1.292;5.632)

γ
γ = −0.9 -0.826 .564 (-0.994; .891) -0.79 .658 (-0.993; .968) -0.814 .423 (-0.99; .368) -0.95 .12 (-0.995;-0.62)

γ = 0 .75 .68 (-0.995; .961) -0.776 .459 (-0.991; .589) -0.765 .405 (-0.991; .273) .019 .36 (-0.669; .761)
γ = .9 .8 .664 (-0.955; .99) .937 .366 (-0.115; .995) .932 .254 (.245; .994) .96 .118 (.626; .994)

ν1

γ = −0.9 11.717 16.805 (2.009;48.632) 20.418 20.04 (2.216;69.431) 9.01 6.205 (2.425;23.158) 21.759 12.645 (5.581;48.166)
γ = 0 10.492 10.513 (2.117;34.257) 8.668 5.607 (2.213;19.746) 10.224 6.531 (2.277;23.762) 6.623 4.218 (2.11;15.142)
γ = .9 9.688 8.932 (2.02;28.709) 10.06 7.111 (2.016;23.682) 3.969 1.653 (2.022;7.307) 11.96 11.964 (2.026;39.17)

ν2

γ = −0.9 11.712 13.983 (.512;38.801) 11.669 12.653 (.569;40.609) 23.707 16.876 (3.332;58.383) 15.558 9.096 (3.703;33.353)
γ = 0 15.872 18.956 (.758;52.191) 14.336 15.906 (.884;42.401) 7.971 9.54 (.456;24.662) 14.801 16.218 (1.464;48.792)
γ = .9 12.098 13.309 (.888;38.128) 9.264 11.506 (.797;31.168) 16.883 16.325 (1.436;48.65) 24.352 13.434 (6.35;50.644)
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Table 12 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.1 and ν2 = 0.1.

Sample size
50 250 500 1000

Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 1.249 1.108 (-0.36;3.719) 1.772 1.393 (.499;5.09) 1.334 .608 (.548;2.344) 1.524 .77 (.792;3.198)
γ = 0 3.483 2.472 (.684;8.886) 1.568 1.185 (.393;4.07) 2.322 .897 (.819;4.09) 1.866 1.217 (.61;4.558)
γ = .9 1.176 1.368 (-0.45;4.137) 3.361 1.689 (.698;6.36) 2.699 1.614 (.86;6.296) 1.637 .9 (.762;3.578)

β1

γ = −0.9 3.888 2.596 (1.172;9.27) 3.791 3.045 (1.107;11.537) 3.12 1.536 (1.296;5.445) 3.039 1.539 (1.622;6.302)
γ = 0 5.96 4.036 (1.249;14.453) 3.321 2.227 (1.361;8.547) 4.521 1.811 (1.722;8.527) 4.056 2.637 (1.374;9.938)
γ = .9 3.712 3.165 (.342;10.575) 7.011 3.306 (1.741;12.809) 5.06 2.931 (1.673;11.515) 2.793 1.519 (1.36;6.271)

γ
γ = −0.9 .866 .606 (-0.83; .995) -0.624 .485 (-0.993; .615) -0.534 .556 (-0.995; .869) .327 .384 (-0.692; .823)

γ = 0 .854 .581 (-0.821; .995) .834 .483 (-0.583; .994) .246 .579 (-0.995; .893) .597 .341 (-0.236; .987)
γ = .9 .876 .515 (-0.629; .995) .886 .621 (-0.825; .995) .94 .261 (.235; .995) .879 .199 (.319; .989)

ν1

γ = −0.9 .6 .27 (.078; .975) .525 .275 (.05; .959) .334 .187 (.033; .704) .472 .259 (.05; .94)
γ = 0 .565 .263 (.115; .999) .45 .258 (.068; .957) .436 .157 (.161; .742) .587 .25 (.117; .962)
γ = .9 .582 .266 (.11; .996) .588 .212 (.245; .996) .649 .239 (.192; .997) .567 .289 (.099; .999)

ν2

γ = −0.9 .311 .289 (.002; .911) .224 .232 (.004; .77) .08 .077 (.003; .191) .255 .189 (.018; .662)
γ = 0 .229 .256 (.003; .82) .152 .165 (.003; .517) .06 .052 (.009; .152) .191 .202 (.013; .7)
γ = .9 .238 .27 (.001; .845) .107 .157 (.003; .478) .197 .192 (.012; .612) .316 .225 (.009; .812)

2.4.2 Simulation study II

In this study we assess the parameter recovery of our model and estimation
method, in terms of bias, variance, relative bias and mean square error, when the data are
generated by symmetric, asymmetric or heavy-tailed distributions. We simulated three
data sets from the model

Yi = I(Zi > 0) (2.10)

Zi = β0 + β1xi + εi i = 1, . . . , n (2.11)

where εi ∼ STc(0, 1,−γ, ν) (Scenario 1), εi ∼ SNc(0, 1,−γ) (Scenario 2), εi ∼ N(0, 1)
(Scenario 3), β = (1, 2), ν = 3, γ = 0.9, the covariate xi was simulated from a N(0, 1)
distribution and centered in its respective mean. We considered a sample size of n=500,
R=10 replicas were made. For each scenario, the three models (skew-t, skew normal and
normal binary models) were fitted and the statistics: mean of the estimate of parameter
(Est), standard deviation of the estimates (SD), bias of the estimates (Bias), square root
of the mean square error (RMSE), as described in section 1.5.1 were calculated.

Table 13 contains the simulation results for all fitted models for each scenario.
From the Table 13, we observe that when the data are generated from a skew link function
and the probit regression is fitted, the bias, relative bias and RMSE are greater than for
those adjusted with skew and/or heavy tails. Comparing the results of the probit model in
the Scenarios 1 and 2, it is possible to observe that the bias of the regression parameters is
greater when the data is generated using a heavy tail link function. The results from the
skew-t and skew normal models for all scenarios produce estimates close to the real value.
Finally, the estimates of the parameter ν is close to the real value when we simulated
from the skew-t model. However, for the second scenario, the parameter value tends to be
underestimated, but in the third scenario the estimate of ν indicate that the skew-t model
approaches to the normal model, as discussed in section 1.2.3, where it was showed that
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skew-t with ν = 30 and skew normal curves almost overlap (3a).

Table 13 – Study of parameter recovery of the skew-t, skew normal and normal binary
models from different scenarios.

Scenario
1 2 3

Fitted Model Statistic β0 = 1 β1 = 2 γ = 0.9 ν = 3 β0 = 1 β1 = 2 γ = 0.9 ν =∞ β0 = 1 β1 = 2 γ = 0 ν =∞

ST

Est 1.104 2.066 .945 4.385 1.153 2.053 .978 14.425 1.057 2.080 .035 26.126
SD .009 .018 .027 .810 .009 .013 .008 1.074 .006 .013 .073 .889
Bias .104 .066 .045 1.385 .153 .053 .078 - .057 .080 .035 -
Rel Bias .104 .033 .050 .462 .153 .026 .087 - .057 .040 .993 -
RMSE .105 .068 .053 1.604 .153 .054 .079 - .057 .081 .081 -

SN

Est 1.086 1.965 .979 - 1.085 1.963 .979 - .998 1.965 .048 -
SD .005 .011 .006 - .004 .009 .008 - .005 .008 .054 -
Bias .086 -0.035 .079 - .085 -0.037 .079 - -0.002 -0.035 .048 -
Rel Bias .086 .017 .088 - .085 .018 .087 - .002 .018 - -
RMSE .087 .036 .079 - .085 .038 .079 - .005 .036 .072 -

N

Est .813 1.452 - - 1.010 1.731 - - 1.001 1.983 - -
SD .002 .003 - - .002 .006 - - .004 .005 - -
Bias -0.187 -0.548 - - .010 -0.269 - - .001 -0.017 - -
Rel Bias .187 .274 - - .010 .134 - - .001 .008 - -
RMSE .187 .548 - - .010 .269 - - .004 .017 - -

2.4.3 Residual analysis

In this section we analyzed the behavior of the residuals, presented in Section
2.3.2, under some conditions of interest. We have conducted a simulation study, considering
a sample size of 1000. We simulated data sets, for each binary regression model, considering
β0 = 1, β1 = 2, and γ = −0.9. Also, we considered: ν = 3 for skew-t and skew slash
distributions; ν = (1, 2) for skew generalized t and ν = (0.1, 0.15) for skew contaminated
normal distribution.

For each simulated data, we fitted the skew normal, skew-t, skew slash, skew
generalized t and skew contaminated normal models using the priors described in Section
2.4. We built suitable quantile-quantile plots for all models, where the confidence bands
were made considering the methodology described in Section 2.3.2.

For all simulated data, we can see from Figures 29 - 32 that when data exhibits
heavy tails, residuals obtained from the skew normal fit indicated that this model did not
fit well to the data, since the residuals lying outside the confidence bands. In general, when
we adjusted the correct model to the data, there is no residual lying outside the confidence
bands, indicating that the model is well adjusted. For the skew generalized t model (Figure
32a) we observe some points lying outside the band. This may have happened due to the
estimation problems observed in Section 2.4.1.

Comparing the adjust by another members of SMSN class, we noted that when
observations are generated by skew contaminated normal distributions and we adjusted all
other heavy tail link function model, the fit using these distributions are not as good as the
skew contaminated normal model. For the data generated using the skew-t distribution,
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Figure 29 – QQ plots using the data set generated by the skew contaminated normal
distribution and adjusting by: skew contaminated normal (a), skew normal
(b), skew slash (c), skew-t (d) and skew generalized t (e)

the skew contaminated normal model did not fit well the data. When observations were
generated using the skew generalized t model, all models are well adjusted.
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Figure 30 – QQ plots using the data set generated by the skew slash distribution and
adjusting by: skew slash (a), skew normal (b), skew contaminated normal (c),
skew-t (d) and skew generalized t (e)
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Figure 31 – QQ plots using the data set generated by the skew-t distribution and adjusting
by: skew-t (a), skew normal (b), skew slash (c), skew contaminated normal
(d) and skew generalized t (e)
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Figure 32 – QQ plots using the data set generated by the skew generalized t distribution
and adjusting by: skew generalized t (a), skew normal (b), skew slash (c),skew
contaminated normal (d) and skew-t (e)
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2.4.4 Influence analysis

To analyze the behavior of the influence diagnostic analysis technique presented
in this work using the K-L divergence measure, We have conducted a simulation study,
considering a sample size of 1000. We simulated data sets, for each regression model,
considering β0 = 1, β1, σ2 = 1 and γ = −0.9. Also, we considered: ν = 3 for skew-t and
skew slash distributions; ν = (1, 2) for skew generalized t and ν = (0.1, 0.15) for skew
contaminated normal distribution.

For each simulated data, we fitted the skew-normal, skew-t, skew slash, skew
generalized t and skew contaminated normal models using the priors described in Section
2.4. For each fitted model, plots with K-L divergence are made. As described in section
1.4.5, an influential observation is considered if pi ≥ .8, that is, if K(P, P(−i)) ≥ .2231436.

In general, we can see from figures 33 - 36 that the skew normal model indicates
possible influential observations that are no influential for the other models, indicating that
the models considering heavy tails distributions accommodate properly all observations,
differently from the skew-normal model. As we can see, the observations that are higher
than all others in the skew slash, skew generalized t and skew contaminated normal
models, but are still smaller than the cut-off point appear as influential in the skew normal
model. For the case when we simulated from the skew-t model, the observations from the
skew-normal model are close to the cut-off line (Figure 33b). However, for the skew-t model
these points are distant to the cut-off line (Figure 33a). It can also be noted that when the
data are simulated from skew-t, skew slash and skew generalized t model and we fitted the
skew contaminated model, at least one observation is considered as potentially influential.
This does not happen when the data is simulated from the skew contaminated normal
distribution. This indicates that the skew contaminated model does not accommodate so
well the extreme observations, compared with the other models.



Chapter 2. Binary regression model with skew scale mixture of normal link function based on the
centered parameterization 89

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

STN

index

K
L−

D
iv

er
ge

nc
e

(a)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SN

index

K
L−

D
iv

er
ge

nc
e

(b)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SSL

index

K
L−

D
iv

er
ge

nc
e

(c)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SCN

index

K
L−

D
iv

er
ge

nc
e

(d)

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

STNGEN

index

K
L−

D
iv

er
ge

nc
e

(e)

Figure 33 – Index plots of K(P, P(i)) for the data set generated by the skew-t distribution
adjusting by: skew-t (a), skew normal (b), skew slash (c), skew contaminated
normal (d) and skew generalized t (e)
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Figure 34 – Index plots of K(P, P(i)) for the data set generated by the skew slash distribu-
tion adjusting by: skew slash (a), skew normal (b), skew contaminated normal
(c), skew-t (d) and skew generalized t (e)
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Figure 35 – Index plots of K(P, P(i)) for the data set generated by the skew contaminated
normal distribution adjusting by: skew contaminated normal (a), skew normal
(b), skew slash (c), skew-t (d) and skew generalized t (e)
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Figure 36 – Index plots of K(P, P(i)) for the data set generated by the skew generalized t
distribution adjusting by: skew generalized t (a), skew normal (b), skew slash
(c), skew contaminated normal (d) and skew-t (e)
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2.5 Application

2.5.1 Body Fat Data

We analyze, using the developed models and the probit one, the Body Fat Data
collected by (JOHNSON, 1996). This data consist on a sample of 252 body measurements
and body fat percentage collected from men who were diagnosed as being normal and
abnormal in body fat. The objective of this example is to show that this class of models can
provide better fits than the usual binary models. We follow (KIM, 2002) and considered
as the binary response Yi the body fat status, considered a status of normal in body fat if
Yi = 0 and abnormal if Yi = 1. A normal status of body fat is considered when the man
has less than 15% percentage of body fat and abnormal otherwise. We fitted the model

Yi = I(Zi > 0)

Zi = β0 + β1x1i + β2x2i + β3x3i + εi i = 1, . . . , 252

where x1 is the age, x2 is the weight (kg) and x3 is the height (cm), centered in their
respective mean. We fitted six models, assuming that: ε iid∼ STc(0, 1,−γ, ν), or , ε iid∼
SSLc(0, 1,−γ, ν), or ε iid∼ SCNc(0, 1,−γ, ν1, ν2), or ε iid∼ SGTc(0, 1,−γ, ν1, ν2), or ε iid∼
SNc(0, 1,−γ), or ε iid∼ N(0, 1), that we denote, respectively, by ST, SSL, SCN, SGT, SN
and N. The parameters for the MCMC algorithm and the adopted prior distributions were
the same used in the simulation study described in 2.4.1.

Similarly to Section 1.4.4, the model comparison criteria was calculated used
the likelihood

L(β, γ,ν|y) =
n∏
i=1

(F (Xi
tβ|γ,ν))yi(1− F (Xi

tβ|γ,ν))1−yi . (2.12)

Table 14 presents the statistics for model comparison. The skew contaminated
normal model (SCN) was selected by DIC and LPML and the skew normal model was
select by EAIC and EBIC criteria. From this table we can noted that the skew-t, skew
slash, skew contaminated normal and skew normal models outperform the normal model.
Since the skew normal model was selected by EAIC and EBIC criteria, we analyzed the
posterior distributions of ν1 and ν2 from the skew contaminated normal model. From
Figure 38, both posterior distributions indicated that the skew contaminated normal and
skew model are not equivalent.

In Table 15 we have the estimates of all fitted models. For all models, weight
and age have positive influence on the probability of present abnormal body fat while
height has a negative influence. We can also note the large credibility intervals for γ in
all asymmetric link models. In this way, the posterior distribution of γ is presented in
Figure 37 for each fitted model. As we can see, the posterior distributions indicate that
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Figure 37 – Posterior distribution of γ for the: skew contaminated normal (a), skew normal
(b), skew slash (c), skew-t (d) and skew generalized t (e) models.

the rate that probability goes to 1 is higher than it goes to 0, since γ is concentrated
towards negative values. In this way, we conclude that asymmetrical link function is more
appropriate for the Body Fat data.

The analysis of influential observations, presented in Figure 40, indicated that
there are two influential observations for the skew-normal and skew slash models, only
one for the skew contaminated normal model and for the skew-t and skew generalized t
there is no influential observation. However, for the probit model, several observations
are influential, indicating that this model is not adequate. From Figure 39, QQ plot with
envelopes for all fitted models are shown. It is possible to see that for all models there
are some points lying outside the confidence bands, possibly caused by the influential
observations. Considering the selection criteria, posterior distribution of ν1 and ν2 for the
skew contaminated normal model, residual and influence analysis, the skew contaminated
normal model provides the best fit among all other models.
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Table 14 – Body fat dataset: Statistics of model comparison

Model
criterion ST SSL SCN SGT SN N

EAIC 219.82 219.77 220.64 220.80 217.29 2722.31
EBIC 241.00 240.95 245.34 241.98 234.94 2736.43
DIC 211.52 211.15 204.99 212.45 211.01 5224.97

LPML -106.28 -106.60 -105.83 -106.77 -106.31 -1357.15

Table 15 – Body fat dataset: Bayesian estimates for the skew-t, skew slash, skew con-
taminated normal, skew generalized t and skew normal models.

Model
ST SSL

Est SD %95 HPD Est SD %95 HPD
β0 .973 .203 [.651; 1.41] 1.006 .307 [.649; 1.771]
β1 .025 .01 [.004; .042] .025 .013 [.003; .05]
β2 .061 .014 [.038; .093] .063 .021 [.036; .105]
β3 -0.25 .084 [-0.431; -0.108] -0.253 .109 [-0.466; -0.083]
γ -0.317 .516 [-0.995; .658] -0.334 .484 [-0.995; .617]
ν 19.254 19.448 [1.031; 57.703] 17.89 21.862 [.539; 61.855]

SCN SGT
Est SD %95 HPD Est SD %95 HPD

β0 2.645 1.034 [.854; 4.418] 2.238 .859 [.627; 3.834]
β1 .067 .038 [.009; .139] .059 .034 [.01; .126]
β2 .16 .059 [.051; .251] .142 .054 [.041; .243]
β3 -0.641 .246 [-0.998; -0.187] -0.575 .232 [-1.035; -0.19]
γ -0.513 .467 [-0.995; .469] -0.296 .546 [-0.995; .783]
ν1 .73 .189 [.368; 1] 5.376 5.417 [1.236; 14.747]
ν2 .139 .174 [.013; .553] 21.998 18.655 [1.211; 57.993]

SN N
Est SD %95 HPD Est SD %95 HPD

β0 .845 .12 [.619; 1.097] .886 .179 [.629; 1.183]
β1 .022 .008 [.007; .04] .022 .012 [.004; .039]
β2 .053 .008 [.038; .068] .056 .01 [.044; .072]
β3 -0.211 .052 [-0.309; -0.116] -0.229 .056 [-0.342; -0.134]
γ -0.371 .428 [-0.995; .41] - - -
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Figure 38 – Posterior distribution of ν1 (a) and ν2 (b) for the skew contaminated normal
model.
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Figure 39 – QQ plots with envelopes for the Body Fat data using the link functions: skew-t
(a), skew slash (b), skew contaminated normal (c), skew generalized t (d),
skew normal (e) and normal (f).
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Figure 40 – Index plots of K(P, P(i)) for the Body Fat data using the link functions: skew-t
(a), skew slash (b), skew contaminated normal (c), skew generalized t (d),
skew normal (e) and normal (f).
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2.5.2 Beetle Mortality data

We analyze, using the developed models and the probit one, the well-known
Beetle Mortality data. This data contains the numbers of beetles killed after 5 hour
exposure to carbon disulphide at N = 8 different concentrations. (CZADO, 1994) and
(BAZáN; BOLFARINE; BRANCO, 2010) concluded that a asymmetric link is more
appropriate and improves the fit comparing with logit and probit models. The objective of
this example is to show that this class of models can provide better fits than the usual
binary models.

We fitted six models, considering the fixed covariate as the logarithm of the con-
centration of carbon disulphide and we assumed that the following distributions for the link
function: STc(0, 1,−γ, ν), SSLc(0, 1,−γ, ν), SCNc(0, 1,−γ, ν1, ν2), SGTc(0, 1,−γ, ν1, ν2),
SNc(0, 1,−γ), N(0, 1), that we denote, respectively, by ST, SSL, SCN, SGT, SN and N.
The parameters for the MCMC algorithm and the adopted prior distributions were the
same used in the simulation study described in 2.4.1.

Table 16 presents the statistics for model comparison. The skew-normal model
(SN) was selected by all criteria. In Table 17 we have the estimates of all fitted models and
from Figure 41 we can see the estimated link function for each fitted model, compared with
the skew-normal and normal models. From these figures, we can see that an asymmetric
link model provides better fits than the probit model. The residual analysis for the Beetle
Mortality data, available in Figure 42 shows that, with exception of the probit model, all
fitted models are well adjusted to the data. From the influence analysis in Figure 43, we
noted that the proportion of death beetles for the log concentration of carbon disulphide
equal to 1.8113 appears to the an influent observation.

Table 16 – Beetle Mortality data: Statistics of model comparison

Model
criterion ST SSL SCN SGT SN N

EAIC 376.13 376.57 377.81 375.99 373.85 661.16
EBIC b 392.84 393.28 398.69 392.69 386.38 669.51

DIC 369.97 371.76 370.38 370.30 369.75 942.95
LPML -185.37 -185.97 -185.31 -185.33 −185.26 -328.58
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Figure 41 – Fitted probabilities of beetle’s death considering the skew normal, normal and
the following link functions: skew-t (a), skew slash (b), skew contaminated
normal (c), skew generalized t (d).
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Table 17 – Beetle Mortality data: Bayesian estimates for the skew-t, skew slash, skew
contaminated normal, skew generalized t and skew normal models.

Model
ST SSL

Est SD %95 HPD Est SD %95 HPD
β0 -35.746 3.786 [-42.623; -29.163] -33.938 4.224 [-42.004; -24.342]
β1 20.191 2.125 [16.512; 23.992] 19.179 2.358 [13.909; 23.749]
γ -0.735 .236 [-0.995; -0.281] -0.702 .198 [-0.991; -0.306]
ν 20.45 17.264 [1.924; 55.766] 21.342 20.97 [1.581; 66.351]

SCN SGT
Est SD %95 HPD Est SD %95 HPD

β0 -38.104 5.275 [-47.378; -27.209] -14.153 2.695 [-18.852; -8.695]
β1 21.532 2.974 [15.447; 26.792] 7.998 1.522 [4.907; 10.639]
γ -0.747 .188 [-0.995; -0.356] -0.745 .204 [-0.995; -0.349]
ν1 .49 .266 [.001; .924] 21.618 13.033 [2.91; 47.468]
ν2 .571 .23 [.222; .996] 3.88 2.759 [.253; 9.195]

SN N
Est SD %95 HPD Est SD %95 HPD

β0 -32.316 2.799 [-37.795; -27.244] -34.565 3.074 [-40.87; -29.488]
β1 18.257 1.562 [15.445; 21.346] 19.519 1.731 [16.662; 23.077]
γ -0.672 .204 [-0.98; -0.287] - - -
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Figure 42 – QQ plots with envelopes for the Beetle Mortality data using the link functions:
skew-t (a), skew slash (b), skew contaminated normal (c), skew generalized t
(d), skew normal (e) and normal (f).
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Figure 43 – Index plots of K(P, P(i)) for the Beetle Mortality data using the link functions:
skew-t (a), skew slash (b), skew contaminated normal (c), skew generalized t
(d), skew normal (e) and normal (f).



Chapter 2. Binary regression model with skew scale mixture of normal link function based on the
centered parameterization 103

2.6 Conclusions
In this chapter we proposed a new class of link functions based on the SMSN

class under the centered parameterization. This class of link functions include symmetrical,
asymmetrical and robust link functions. We performed Bayesian estimation using latent
variables to described the binary model. Some methods of residual analysis for binary
data was discussed, and simulation studies were performed, evaluating parameter recovery,
residual and influence analysis. The first simulation study showed some problems in the
accuracy of the estimates of ν for the binary model, specially for the skew contaminated
normal and skew generalized t models. However for the skew-t and skew slash models,
when true value of ν indicated heavy tails the parameter was appropriate recovered. Also,
we noted as sample size increases, the estimates of all parameter tend to be closer to real
values. In the second study, we simulated data using normal, skew-normal and skew-t
link functions and we fitted the skew-t, skew-normal and normal models. For this study
we observed that when data were simulated using an asymmetric and/or heavy tail link
functions and the probit model was fitted, the estimates of β were biased. For the residual
and influence analysis studies, when the data was simulated using a heavy tail distribution
and the skew normal model is fitted, the residuals tend to lying outside the confidence
bands and we observe some observations as influentials.

As in the linear model, an application was made in a study on the body fat
percentage that indicated the skew and heavy tail link was preferred to the usual probit
model. For the Beetle Mortality data we conclude that the specification of an asymmetric
link provide better fit than the usual probit model.
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3 Bivariate regression models for continuous-
binary response based on the skew scale
mixture of normal distribution class under
the centered parameterization

3.1 Introduction
Situations where the response variable is either continuous or binary are quite

common in several fields of knowledge, specially in social and health science. In general, in
these studies, multiple responses are collected in order to characterize or evaluate their
relationships with some covariates of interest. For example, to evaluate the efficacy of
an experimental treatment on vision for macular degeneration, a study was performed
in patients with age-related macular degeneration (see (GUYER et al., 1997)). For each
patient it was evaluated their patient’s visual acuity in the beginning and after one year of
study. This acuity is measured by counting how many letters of a standardized vision chart
are corrected read. These charts display line letters of decreasing size that the patient must
read from the top (large letters) to bottom (small letters). In this study, two outcomes
were obtained in order to evaluate the efficacy of the treatment: the binary outcome was
defined as the loss of at least three lines of vision at one year compared with their baseline
performance and the continuous outcome are defined as the difference between patient’s
visual acuity from one year and the beginning of the study.

The usual modeling strategy for this type of data is to perform separate analysis
for each response variable. As noted by (TEIXEIRA-PINTO; NORMAND, 2009) this
strategy is less efficient, since it ignores the extra information contained in the correlation
among the outcomes. In the bivariate context, the most common approach is to model
each variable separately, ignoring the potential correlation between them, or using the
factorization methods as discussed in (COX; WERMUTH, 1992), which consists to write
the likelihood as the product of the marginal distribution of one of the outcomes and the
conditional distribution of second outcome given the first one. (FITZMAURICE; LAIRD,
1995) and (CATALANO; RYAN, 1992) extend this approach to situations with clustered
data, in which the method proposed in (FITZMAURICE; LAIRD, 1995) is based on the
general location model of (OLKIN; TATE, 1961).

Another approach to deal with bivariate outcomes is presented in (SAMMEL;
RYAN; LEGLER, 1997), where both outcomes shared a random effect that induces the
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correlation between them, and conditionally to this random effect, the two outcomes are
independent. (DUNSON, 2000) also used the latent variable modeling, but the covariates
are not included in the model through the latent variable, as proposed in (SAMMEL;
RYAN; LEGLER, 1997). (TEIXEIRA-PINTO; NORMAND, 2009), on the other hand,
review the different approaches to deal with binary and continuous outcomes and proposed
a new method, also based on the latent variable, which circumvents the identifiability
problem present in Dunson’s approach.

Recently, some authors developed models for bivariate discrete and continuous
outcomes by using copulas. From this method the joint distribution is constructed by
specifying marginal regression models for the outcomes and combining them via a copula.
Recent references include (LEON; WU, 2011), (CHEN; HANSON, 2017) and (ZILKO;
KUROWICKA, 2016).

All models cited earlier are based on the normality assumption for the continuous
response and symmetrical link functions to the binary outcome. However, some data sets
may not satisfy these assumptions. Motivated by these characteristics, (TEIMOURIAN et
al., 2015) has developed a model considering an ordinal and a skewed continuous responses
using the factorization method ((COX; WERMUTH, 1992)). For the ordinal response, the
logit link function was considered. However, the model of (TEIMOURIAN et al., 2015)
cannot handle with the possibility of asymmetrical link functions. All these models do
not include the cases where the probability of success of the binary response increases
at a different rate than decreases and continuous response with heavy tails. Then, we
developed a regression model for bivariate continuous and binary responses using latent
variable for incorporate the correlation between the responses, assuming the possibility of
heavy tails and asymmetry for both continuous response and link function.

3.2 Model formulation
Consider a study with two responses of interest, in which one is continuous

and the other is binary. To define the regression model consider (Yi, Ti)
′ , i = 1, . . . , n,

where Yi is the continuous response and Ti ∈ {0, 1} the binary variable. Let Xc =
(1,Xc1,Xc2, . . . ,Xc(p−1))t a p × n design matrix of fixed covariates associated with the
binary response and βc = (βc0, βc1, . . . , βc(p−1))t a p × 1 vector of regression coefficients
associated to the continuous variable,Xb = (1,Xb1,Xb2, . . . ,Xb(p−1))t a p×n design matrix
of fixed covariates associated with the binary response and βb = (βb0, βb1, . . . , βb(p−1))t a
p× 1 vector of regression coefficients associated to the binary variable. Let Wi a latent
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variable, so the bivariate regression model assumes that

P (Ti = 1) = pi

pi = F (ηi +Wi) = F (X t
biβb +Wi), i = 1, . . . , n

Yi = X t
ciβc +Wi + εi i = 1, . . . , n

(3.1)

where F (·|γb,νb) is the cdf of a member of the SMSN class of distribution under the
centered parameterization, as presented in Section 1.2.2, εi iid∼ SMSNc(0, σ2

c , γc, G,νc) and
Wi

iid∼ SMSNc(0, σ2
w, γw, G,νw).

The latent variable Wi induces the correlation and it is assumed that, condi-
tioned to this variable, the two outcomes are independent. Using the formulation given in
3.1, and after some algebra, the correlation between the binary and continuous variable
can be expressed as

Cor(Ti, Yi) = E(WiF (ηi +Wi))√
V ar(Ti)

√
σ2
c + σ2

w

V ar(Ti) = E(F (ηi +Wi)(1− F (ηi +Wi)) + V ar(F (ηi +Wi))
(3.2)

This correlation has not a closed form, but it possible to obtain approximations
through simulations. The two responses have lower correlations when σ2

w approaches to
0. On the other hand, as σ2

w increases the correlation between the continuous and binary
response also increases.

Following the ideas presented in Sections 1.4 and 2.2, the model can be stochas-
tically represented as

Yi
d= X t

ciβc +Wi + Uci
−1/2(∆c(Hci − b) +√τcVci)

Ti = I(Zi > 0) =

1 if Zi > 0

0 if Zi ≤ 0

Zi
d= X t

biβb +Wi + Ubi
−1/2(∆b(b−Hbi) +√τbVbi)

Wi
d= Uwi

−1/2(∆w(Hwi − b) +√τwVwi)

Vci ∼ N(0, 1) Hci ∼ HN(0, 1) Uci ∼ G(.|ν)

Vbi ∼ N(0, 1) Hbi ∼ HN(0, 1) Ubi ∼ G(.|ν)

Vwi ∼ N(0, 1) Hwi ∼ HN(0, 1) Uwi ∼ G(.|ν) i = 1, . . . , n

(3.3)

where λj =
sγ

1/3
j√

b2 + s2γ
2/3
j (b2 − 1)

, δj = λj√
1 + λ2

j

for j=c,b or w, ∆j = σjδj√
1− b2δ2

j

and

τj =
σ2
j (1− δ2

j )
1− b2δ2

j

for j=c or w and ∆b = δb√
1− b2δ2

b

, τb = 1− δ2
b

1− b2δ2
b

, b =
√

2
π
, s =

( 2
4− π

)1/3
.
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3.3 Bayesian Inference
To use the Bayesian paradigm, it is essential to obtain the joint posterior

distribution. However, since the necessary integrals are not easy to calculate, it is not
possible to obtain such distribution, analytically. However, it is possible to obtain numer-
ical approximation for the marginal posterior distributions of interest by using MCMC
algorithms, see (GEMAN; GEMAN, 1984) and (HASTINGS, 1970).

To obtain the posterior distribution we need to consider the complete likelihood,
that is,

Lc(θ|y, t,uc,ub,uw,hc,hb,hw) ∝
n∏
i=1

φ
(
yi|µci + wi +Dci, τcu

−1
ci

)
f(hci)h(uci|νc)

× φ
(
zi|µbi +Dbi, τbu

−1
bi

)
I(zi, ti)f(hbi)h(ubi|νb)

× φ
(
wi|Dwi, τbu

−1
wi

)
f(hwi)h(uwi|νw),

where µci = X t
ciβc and Dci = ∆c√

uci
(hci − b), µbi = X t

biβb and Dbi = ∆b√
ubi

(b − hbi) and

θ = (βc,∆c, τc,νc, γb, δb,νb,∆w, τw,νw). Since we set σ2 = 1 for the skew generalized t
model, the MCMC algorithm will be slightly different from the other models. For this
model, we have θ = (βc, δc,νc,βb, γb,νb, δw,νw), therefore, ∆j and τj, for j = c, w are
functions of only νj.

We need to consider a prior distribution for θ. We will assume an independence
structure and conditional conjugate prior distributions for βj, τ−1

j , ∆j, j = c, w, and
δc ∈ U(−1, 1). For γb, we adopted the prior described in (AZEVEDO; BOLFARINE;
ANDRADE, 2012), that is π(γb) ∝ (1 + γb)αγ1−1(1 − γb)αγ2−1I(γb ∈ Aγb), where Aγb =
(−0.99527, 0.99527) On the other hand, for νj, j = c, b or w, the choice of the prior
distribution will depend on the model.

3.3.1 Full conditional distributions

In order to implement the MCMC algorithm, we have to simulate iteratively
from the full conditionals described bellow.

Denoting by θ−θi the parameter vector θ without the component θi, the full
conditional distributions are

For βc:

π(βc|θ−βc ,y,w,uc,hc) ∝ exp
{
−1

2
(
βtcΣ−1

∗ βc − 2µt∗Σ−1
∗ βc

)}
IRp(βc)
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which can be recognized as the kernel of p-variate normal distribution with vari-

ance Σ∗ =
(∑n

i=1 ucixix
t
i

τc
+ Σ−1

β

)−1

and mean µ∗ =
(

n∑
i=1

uci
τc

(yi − wi −Dci)X t
ci + µtβΣ−1

β

)
Σ∗.

For βb:

π(βb|θ−βb , t, z,w,ub,hb) ∝ exp
{
−1

2
(
βtbΣ−1

∗ βb − 2µt∗Σ−1
∗ βb

)}
IRp(βb)

which can be recognized as the kernel of p-variate normal distribution with variance Σ∗ =(∑n
i=1 ubixbix

t
bi

τb
+ Σ−1

β

)−1

and mean µ∗ =
(

n∑
i=1

ubi
τb

(
zi − wi −

∆b√
ubi

(b− hi)
)
xti + µtβΣ−1

β

)
Σ∗.

For zi:

f(zi|θ, ti, hbi, ubi, wi) ∝ φ
(
zi|µbi + wi +Dbi, τu

−1
bi

)
I(zi, ti)

Then,
zi|θ, ubi, hbi, wi, ti = 1 ∼ TN

(
µbi + wi +Dbi, τu

−1
bi

)
I(0,∞)

zi|θ, ubi, hbi, wi, ti = 0 ∼ TN
(
µbi + wi +Dbi, τu

−1
bi

)
I(−∞, 0)

For hci:

f(θ, uci, hci|yi) ∝ exp
{
−1

2

(
∆2
c + τc
τc

)[
h2
ci − 2hci

(
∆2
cb+ ∆c

√
uci(yi − µci − wi)

∆2
c + τc

)]}
I(0,∞)(hci)

which can be recognized as the kernel of a truncated normal distribution, so

hci|θ, uci, yi ∼ TN

(
∆2
cb+ ∆c

√
uci(yi − µci − wi)

∆2
c + τc

,
τc

∆2
c + τc

)
I(0,∞)

For hbi:

f(θ, ubi, hbi|yi) ∝ exp
{
−1

2

(
∆2
b + τb
τc

)[
h2
bi − 2hbi

(
∆2
bb−∆b

√
ubi(zi − µbi − wi)

∆2
b + τb

)]}
I(0,∞)(hbi)

which can be recognized as the kernel of a truncated normal distribution, so

hbi|θ, ubi, zi ∼ TN

(
∆2
bb−∆b

√
ubi(zi − µbi − wi)

∆2
b + τb

,
τb

∆2
b + τb

)
I(0,∞)
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For hwi:

f(θ, uwi, hwi|wi) ∝ exp
{
−1

2

(
∆2
w + τw
τw

)[
h2
wi − 2hwi

(
∆w

∆2
w + τw

)
(wi + ∆wb)

]}
I(0,∞)(hwi)

which can be recognized as the kernel of a truncated normal distribution, so

hbi|θ, ubi, wi ∼ TN

((
∆w

∆2
w + τw

)
(wi + ∆wb),

τw
∆2
w + τw

)
I(0,∞)

For uci:

• Skew slash:

f(θ, uci, hci|yi) ∝ u
νc+1/2−1
ci exp

{
−uci2τc

[
(yi − µci − wi)2 − 2 ∆c√

uci
(hci − b)(yi − µci − wi)

]}
× I(0,1)(uci)

• Skew-t:

f(θ, uci, hci|yi) ∝ u
νc+1

2 −1
ci exp

{
−uci2

[
(yi − µci − wi)2

τc
+ νc

]
+

∆c
√
uci

τc
(hci − b)(yi − µci − wi)

}
× I(0,∞)(uci)

• Skew generalized t:

f(θ, uci, hci|yi) ∝ u
νc1+1

2 −1
ci exp

{
−uci2

[
(yi − µci − wi)2

τc
+ νc2

]
+

∆c
√
uci

τc
(hci − b)(yi − µci − wi)

}
× I(0,∞)(uci)

• Skew-contaminated normal: the discrete conditional distribution of uci assumes νc2
with probability pi

pi + qi
and 1 with probability qi

pi + qi
where

pi = νc1
√
νc2 exp

{
−νc22τc

[
(yi − µci − wi)2 − 2 ∆c√

νc2
(hci − b)(yi − µci − wi)

]}

qi = (1− νc1) exp
{
− 1

2τc

[
(yi − µci − wi)2 − 2∆c(hci − b)(yi − µci − wi)

]}

For ubi:

• Skew slash:

f(θ, ubi, hbi|zi) ∝ u
νb+1/2−1
bi exp

{
−ubi2τb

[
(zi − µbi − wi)2 − 2 ∆b√

ubi
(b− hbi)(zi − µbi − wi)

]}
× I(0,1)(ubi)
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• Skew-t:

f(θ, ubi, hbi|zi) ∝ u
νb+1

2 −1
bi exp

{
−ubi2

[
(zi − µbi − wi)2

τb
+ νb

]
+

∆b
√
ubi

τb
(b− hbi)(zi − µbi − wi)

}
× I(0,∞)(ubi)

• Skew generalized t:

f(θ, ubi, hbi|zi) ∝ u
νb1+1

2 −1
bi exp

{
−ubi2

[
(zi − µbi − wi)2

τb
+ νb2

]
+

∆b
√
ubi

τb
(b− hbi)(zi − µbi − wi)

}
× I(0,∞)(ubi)

• Skew-contaminated normal: the discrete conditional distribution of ubi assumes νb2
with probability pi

pi + qi
and 1 with probability qi

pi + qi
where

pi = νb1
√
νb2 exp

{
−νb22τb

[
(zi − µbi − wi)2 − 2 ∆b√

νb2
(b− hbi)(zi − µbi − wi)

]}

qi = (1− νb1) exp
{
− 1

2τb

[
(zi − µbi − wi)2 − 2∆b(b− hbi)(zi − µbi − wi)

]}

For uwi:

• Skew slash:

f(θ, uwi, hwi|wi) ∝ u
νw+1/2−1
wi exp

{
−uwi2τw

[
w2
i − 2∆wwi√

uwi
(hwi − b)

]}
I(0,1)(uwi)

• Skew-t:

f(θ, uwi, hwi|wi) ∝ u
νw+1

2 −1
wi exp

{
−uwi2

[
w2
i

τw
+ νw

]
+ ∆wwi

√
uwi

τw
(hwi − b)

}
I(0,∞)(uwi)

• Skew generalized t:

f(θ, uwi, hwi|wi) ∝ u
νb1+1

2 −1
wi exp

{
−uwi2

[
w2
i

τw
+ νb2

]
+ ∆wwi

√
uwi

τw
(hwi − b)

}
I(0,∞)(uwi)

• Skew-contaminated normal: the discrete conditional distribution of uwi assumes νb2
with probability pi

pi + qi
and 1 with probability qi

pi + qi
where

pi = νb1
√
νb2 exp

{
− νb22τw

[
w2
i − 2∆wwi√

νb2
(hwi − b)

]}

qi = (1− νb1) exp
{
− 1

2τw

[
w2
i − 2∆wwi(hwi − b)

]}

For γb:

π(γb|θ−γb ,y,ub, z,hb) ∝ τ
−n/2
b exp

{
− 1

2τb

n∑
i=1

ubi (zi − µbi −Dbi)2
}

(1 + γb)αγ1−1(1− γb)αγ2−1

× I(γb ∈ Aγb)
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For ∆c:

π(∆c|θ−∆c ,y,uc,hc) ∝ exp
{
−1

2

(
σ2

∆c

∑n
i=1(hci − b)2 + τc
τcσ2

∆c

) [
∆2
c − 2∆cm∆c

]}
IR(∆c)

where m∆c = σ2
∆c

∑n
i=1(hci − b)

√
uci(yi − µci − wi) + µ∆cτc

σ2
∆c

∑n
i=1(hci − b)2 + τc

. So,

∆c|θ−∆c ,y,uc,hc ∼ N

(
m∆c ,

τcσ
2
∆c

σ2
∆c

∑n
i=1(hci − b)2 + τc

)

For τ−1
c :

π(τ−1
c |θ−τ−1

c
,y,uc,hc) ∝ (τ−1

c )n/2+c−1 exp
{
−τ−1

c

{
d+

n∑
i=1

uci
2

(
yi −

(
wi + µci + ∆c√

uci
(hci − b)

))2
}}

×I(0,∞)(τ−1
c )

that can be recognized as the kernel of a gamma distribution. So, τ−1
c |θ−τ−1

c
,y,uc,hc ∼

gamma
n/2 + c, d+

n∑
i=1

uci
2

(
yi −

(
µci + wi + ∆c√

uci
(hci − b)

))2


For ∆w:

π(∆w|θ−∆w ,w,uw,hw) ∝ exp
{
−1

2

(
σ2

∆w

∑n
i=1(hwi − b)2 + τw
τwσ2

∆w

) [
∆2
w − 2∆wm∆w

]}
IR(∆w)

where m∆w = σ2
∆w

∑n
i=1(hwi − b)

√
uwiwi + µ∆wτw

σ2
∆w

∑n
i=1(hwi − b)2 + τw

. So,

∆w|θ−∆w ,y,uw,hw ∼ N

(
m∆w ,

τwσ
2
∆w

σ2
∆w

∑n
i=1(hwi − b)2 + τw

)

For τ−1
w :

π(τ−1
w |θ−τ−1

w
,w,uw,hw) ∝ (τ−1

w )n/2+c−1 exp

−τ−1
w

d+
n∑
i=1

uwi
2

(
wi −

∆w√
uwi

(hwi − b)
)2



×I(0,∞)(τ−1
w )

that can be recognized as the kernel of a gamma distribution. So,

τ−1
w |θ−τ−1

w
,y,uw,hw ∼ gamma

n/2 + c, d+
n∑
i=1

uwi
2

(
wi −

∆w√
uwi

(hwi − b)
)2




Chapter 3. Bivariate regression models for continuous-binary response based on the skew scale mixture of
normal distribution class under the centered parameterization 112

For νj, j = c or w:

• Skew slash: Considering a gamma distribution left truncated at 1 as prior with mean
α1

α2
and variance α1

α2
2
, it follows that

π(νj|θ−νj ,y,uj,hj) ∝ νn+α1−1
j exp

{
−νj(α2 −

n∑
i=1

ln(uji))
}
I(1,∞)(νj)

that is, νj|θ−νj ,y,uj,hj ∼ TG(n+ α1, α2 −
n∑
i=1

ln(uji))I(1,∞), where TG denotes

the Truncated Gamma distribution.

• Skew-t: For Skew-t, we have adopted a very useful hierarchical prior distribution
as noted in (CABRAL; LACHOS; MADRUGA, 2012), which consists in νj|λ ∼
exp(λ)I(νj)(2,∞) and λ ∼ U(ρ0, ρ1) where 0 < ρ0 < ρ1 are known. The exponential
distribution is left truncated at 2 to insure finite variance. Then

π(νj|θ−νj , λ,y,uj,hj) ∝
νj
2

nνj
2

Γ(νj/2)n

(
n∏
i=1

uji

)νj/2−1

exp
{
−νj

(∑n
i=1 uji

2 + λ

)}
I(2,∞)(νj)

π(λ|θ,y,uj,hj) ∝ λ exp−λ(νj − 2)I(ρ0,ρ1)(λ)

that is, λ|θ,y,uj,hj ∼ TG(2, νj − 2)I(ρ0, ρ1).

• Skew generalized t: Assuming νj1|λ1 ∼ exp(λ1)I(νj1)(2,∞) and λ1 ∼ U(ρ0, ρ1) where
0 < ρ0 < ρ1 are known and νj2|λ2 ∼ exp(λ2) and λ2 ∼ U(ψ0, ψ1) where 0 < ψ0 < ψ1

are known, we have

π(νj1|θ−νj1 , λ1,y,uj,hj) ∝
νj2/2nνj1/2

Γ(νj1/2)n

(
n∏
i=1

uji

)νj1/2−1

exp {−λ1(νj1 − 2)} I(2,∞)(νj1)

π(λ1|θ,y,uj,hj) ∝ λ1 exp {−λ1(νj1 − 2)} I(ρ0,ρ1)(λ1)

that is, λ1|θ,y,uj,hj ∼ TG(2, νj1 − 2)I(ρ0, ρ1).

Also, we have that

π(νj2|θ−νj2 , λ2,y,uj,hj) ∝ νj2/2nνj1/2 exp
{
−νj2

(∑n
i=1 uji

2 + λ2

)}
I(0,∞)(νj2)

and

π(λ2|θ,y,uj,hj) ∝ λ2 exp{−λ2(νj2)}I(ψ0,ψ1)(λ2)

that is, νj2|θ−νj2 , λ2,y,uj,hj ∼ gamma(nνj12 + 1,
∑n
i=1 uji

2 + λ2)

and λ2|θ,y,uj,hj ∼ TG(2, νj2 − 2)I(ξ0, ξ1)
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• Skew-contaminated normal: Observe that distribution of U can be written as

h(u|νj) = ν
1−u

1−νj2
j1 (1− νj1)

u−νj2
1−νj2 I{νj2,1}(u)

Setting as prior distributions νj1 ∼ beta(α1, β1), νj2 ∼ beta(α2, β2), it follows that
the conditional distributions of νj1 and νj2 are

π(νj1|θ−νj1 ,y,uj,hj) ∝ ν

n−
∑n

i=1 uji
1−νj2

+α1−1
j1 (1− νj1)

∑n

i=1 uji−nνj2
1−νj2

+β1−1
I(0,1)(νj1)

which can be recognized as the kernel of a beta distribution. So,

νj1|θ−νj1 ,y,uj,hj ∼ beta

(
n−∑n

i=1 uji
1− νj2

+ α1,

∑n
i=1 uji − nνj2

1− νj2
+ β1

)
And

π(νj2|θ−νj2 ,y,uj,hj) ∝ ν

n−
∑n

i=1 uji
1−νj2

j1 (1− νj1)
∑n

i=1 uji−nνj2
1−νj2 να2−1

j2 (1− νj2)(β2−1)I(0,1)(νj2)

For νb:

• Skew slash: Considering a gamma distribution as prior with mean α1

α2
and variance

α1

α2
2
, it follows that

π(νb|θ−νb ,y,ub,hb) ∝ νn+α1−1
b exp

{
−νb(α2 −

n∑
i=1

ln(ubi))
}
I(0,∞)(νb)

that is, νb|θ−νb ,y,ub,hb ∼ gamma(n+ α1, α2 −
n∑
i=1

ln(ubi)).

• Skew-t: For Skew-t, we have adopted a very useful hierarchical prior distribution as
noted in (CABRAL; LACHOS; MADRUGA, 2012), which consists in νb|λ ∼ exp(λ)
and λ ∼ U(ρ0, ρ1) where 0 < ρ0 < ρ1 are known. Then

π(νb|θ−νb , λ,y,ub,hb) ∝
νb
2

nνb
2

Γ(νb/2)n

(
n∏
i=1

ubi

)νb/2−1

exp
{
−νb

(∑n
i=1 ubi

2 + λ

)}
I(0,∞)(νb)

π(λ|θ,y,ub,hb) ∝ λ exp{−λνb}I(ρ0,ρ1)(λ)

that is, λ|θ,y,ub,hb ∼ TG(2, νb)I(ρ0, ρ1).

• Skew generalized t: Assuming νb1|λ1 ∼ exp(λ1) and λ1 ∼ U(ρ0, ρ1) where 0 < ρ0 < ρ1

are known and νb2|λ2 ∼ exp(λ2) and λ2 ∼ U(ψ0, ψ1) where 0 < ψ0 < ψ1 are known,
we have

π(νb1|θ−νb1 , λ1,y,ub,hb) ∝
νb2/2nνb1/2
Γ(νb1/2)n

(
n∏
i=1

ubi

)νb1/2−1

exp {−λ1(νb1 − 2)} I(0,∞)(νb1)



Chapter 3. Bivariate regression models for continuous-binary response based on the skew scale mixture of
normal distribution class under the centered parameterization 114

π(λ1|θ,y,ub,hb) ∝ λ1 exp {−λ1(νb1)} I(ρ0,ρ1)(λ1)

that is, λ1|θ,y,ub,hb ∼ TG(2, νb1)I(ρ0, ρ1).

Also, we have that

π(νb2|θ−νb2 , λ2,y,ub,hb) ∝ νb2/2nνb1/2 exp
{
−νb2

(∑n
i=1 ubi

2 + λ2

)}
I(0,∞)(νb2)

and

π(λ2|θ,y,ub,hb) ∝ λ2 exp{−λ2(νb2)}I(ψ0,ψ1)(λ2)

that is, νb2|θ−νb2 , λ2,y,ub,hb ∼ gamma(nνb12 + 1,
∑n
i=1 ubi

2 + λ2)

and λ2|θ,y,ub,hb ∼ TG(2, νb2 − 2)I(ξ0, ξ1)

• Skew-contaminated normal: Observe that distribution of U can be written as

h(u|νb) = ν
1−u

1−νb2
b1 (1− νb1)

u−νb2
1−νb2 I{νb2,1}(u)

Setting as prior distributions νb1 ∼ beta(α1, β1), νb2 ∼ beta(α2, β2), it follows that
the conditional distributions of νb1 and νb2 are

π(νb1|θ−νb1 ,y,ub,hb) ∝ ν

n−
∑n

i=1 ubi
1−νb2

+α1−1
b1 (1− νb1)

∑n

i=1 ubi−nνb2
1−νb2

+β1−1
I(0,1)(νb1)

which can be recognized as the kernel of a beta distribution. So,

νb1|θ−νb1 ,y,ub,hb ∼ beta

(
n−∑n

i=1 ubi
1− νb2

+ α1,

∑n
i=1 ubi − nνb2

1− νb2
+ β1

)
And

π(νb2|θ−νb2 ,y,ub,hb) ∝ ν

n−
∑n

i=1 ubi
1−νb2

b1 (1− νb1)
∑n

i=1 ubi−nνb2
1−νb2 να2−1

b2 (1− νb2)(β2−1)I(0,1)(νb2)

Finally, for the skew generalized t distribution the conditional distributions of
δc and δw are

For δc:

π(δc|θ−δc ,y,uc,hc) ∝
(√

1− b2δ2
c√

1− δ2
c

)n
exp

{
− 1− b2δ2

c

2(1− δ2
c )

n∑
i=1

uci

(
yi −

(
wi + µci + δc

√
uci
√

1− b2δ2
c

(hci − b)
))}

I(−1,1)(δc)

For δw:

π(δw|θ−δw ,y,uw,hw) ∝

√

1− b2δ2
w√

1− δ2
w

n exp

− 1− b2δ2
w

2(1− δ2
w)

n∑
i=1

uwi

wi − δw
√
uwi

√
1− b2δ2

w

(hwi − b)


I(−1,1)(δw)
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3.3.2 Residual analysis

Using the stochastic representation of the bivariate model given in Section 3.3,
we can define the residual for the continuous variable as

εi = Yi −X t
ciβ̂c − Ŵi√
σ̂2
c

(3.4)

For the binary response, we can use the Deviance residual, defined as

di = sign(Ti − p̂i)
√
−2 (Tilog(p̂i) + (1− Ti)log(1− p̂i)). (3.5)

where p(m)
i = F (X t

i β̂b + Ŵi|γ̂b, ν̂), β̂c, β̂b, σ̂2
c , γ̂c, γ̂b, ν̂c and ν̂b are the Bayesian estimates

and Ŵi is the Bayesian estimate of the latent variable. We expected that the residuals
in equation (3.4), a priori, approximately follows a Normal, SN, ST, SSL, SCN or SGT
distribution, according to the respective adopted distribution, with νc,νb and γc, γc equal
to the Bayesian estimates.

For checking the goodness of fit, we can build envelope plots, using the above
mentioned distributions to simulate the envelopes for the continuous response. For the
binary response, the envelopes for the deviance residuals described in Section 2.3.2 are
built as described in Appendix E.

3.4 Simulation study
We performed simulation studies in order to evaluate the performance of

the model and the estimation method proposed in this work. All these models were
implemented in JAGS ((PLUMMER, 2003)) through the interface provided by the rjags
package ((PLUMMER, 2016)) available in R program ((R Development Core Team, 2008)).
The codes are available from the authors upon request. We adopted weakly informative
priors for all parameters, that is: βb0 ∼ N(0, 1000) and βb1 ∼ N(0, 1000), βc0 ∼ N(0, 1000)
and βc1 ∼ N(0, 1000). For the γb, γc and γw we used the priors described in Section 3.3
with αγ1 = αγ2 = 0.5. To eliminate the effect of the initial values and to avoid correlations
problems, we run a MCMC chain of size 600,000 with a burn-in of 100,000 and thin 1000,
so we retain a valid MCMC chain of size 500. The values of the Gelman-Rubin statistics
and the analyses of traceplots, Geweke and autocorrelation plots indicated that the MCMC
algorithm converged and the autocorrelation were negligible.

3.4.1 Simulation study I

The objective of this simulation study is to analyze the quality of the estimates,
in terms of bias and variance, when the two responses are correlated and the marginal and
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bivariate model are fitted. We considered two scenarios, varying the correlation magnitude
between the two responses. Therefore, we simulate two data sets from the model

Ti = I(Zi > 0) (3.6)

Zi = βb0 + βb1xi + wi + εi i = 1, . . . , n (3.7)

Yi = βc0 + βc1xi + wi + εi i = 1, . . . , n (3.8)

(3.9)

where εi ∼ SNc(0, 1,−γb), εi ∼ SNc(0, 1, γc) and wi ∼ SNc(0, 1, γw) (Scenario 1), εi ∼
SNc(0, 1,−γb), εi ∼ SNc(0, 1, γc) and wi ∼ SNc(0, 10, γw) (Scenario 2) , β = (1, 2)t, γb =
γc = γw = 0.9 and the covariate xi was simulated from a N(0, 1) distribution and centered
in their respective mean. For Scenario 1, the correlation between the continuous and binary
response is around .4 and for the second scenario, this correlation is approximately equal
to .8.

We considered a sample size of n=500 and R=10 replicas were made. For each
scenario, the bivariate model (considering the latent variable wi) and the marginal model
(without the wi variable) were fitted and the mean of the estimate of parameter (Est),
standard deviation of the estimates (SD), bias of the estimates (Bias), square root of the
mean square error (RMSE), as described in section 1.5.1 were calculated.

Table 18 contains the simulation results for the bivariate and marginal models.
We observe that for the bivariate model, all parameter are well recovered, with small
standard deviations, bias, relative bias and RMSE. On the other hand, for the marginal
model, the estimates of βb0 and βb1 had larger standard deviations compared with the
bivariate model, and the γb estimate was not accurate. For σ2

c the estimates presented
higher bias than for the bivariate model. For the Scenario 2, presented in Table 19, the
βb0, βb1, γb and σ2

c estimates presented even worse results than what was observed in the
first scenario.

Table 18 – Results of the simulation study: Scenario 1.

Bivariate Model Marginal Model
Par Real Est. SD BIAS RBIAS RMSE CR Est. SD BIAS RBIAS RMSE CR
βb0 1.000 .946 .008 -0.054 .054 .054 1.000 .915 2.025 -0.085 .085 2.026 1.000
βb1 2.000 1.849 .008 -0.151 .075 .151 1.000 2.745 11.412 .745 .373 11.436 1.000
βc0 1.000 1.010 .002 .010 .010 .010 1.000 .956 .003 -0.044 .044 .044 1.000
βc1 2.000 1.989 .002 -0.011 .006 .011 1.000 1.945 .002 -0.055 .028 .055 1.000
γb .900 .923 .023 .023 .025 .032 1.000 .003 .123 -0.897 .997 .905 1.000
γc .900 .858 .007 -0.042 .047 .043 1.000 .520 .003 -0.380 .423 .380 .000
γw .900 .884 .006 -0.016 .017 .017 1.000 - - - - -
σ2
c 1.000 1.056 .008 .056 .056 .057 1.000 1.859 .004 .859 .859 .859 .000

σ2
w 1.000 .873 .010 -0.127 .127 .128 1.000 - - - - -
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Table 19 – Results of the simulation study: Scenario 2.

Bivariate Model Marginal Model
Par Real Est. SD BIAS RBIAS RMSE CR Est. SD BIAS RBIAS RMSE CR
βb0 1.000 0.845 .008 -0.155 .155 .155 1.000 .192 2.047 -0.808 .808 2.200 1.000
βb1 2.000 2.143 .008 .143 .071 .143 1.000 -0.040 11.620 -2.040 1.020 11.798 1.000
βc0 1.000 .968 .006 -0.032 .032 .033 1.000 1.066 .006 .066 .066 .067 1.000
βc1 2.000 1.880 .003 -0.120 .060 .120 1.000 2.118 .002 .118 .059 .118 1.000
γb .900 .799 .080 -0.101 .112 .129 1.000 .009 .099 -0.891 .990 .896 1.000
γc .900 .607 .061 -0.293 .326 .299 1.000 .849 .002 -0.051 .057 .051 1.000
γw .900 .862 .003 -0.038 .042 .038 1.000 - - - - -
σ2
c 1.000 .789 .011 -0.211 .211 .211 1.000 11.243 .027 10.243 10.243 10.243 .000

σ2
w 10.000 9.820 .016 -0.180 .018 .180 1.000 - - - - -

3.4.2 Simulation study II

The objective of this simulation study is to analyze the quality of the estimates
for different sample sizes. We considered different scenarios based on some factors of
interest. We generated data with samples of size n=50, 250, 500 and 1000, varying the
values of γb, γc and γw, considering only one data set, from the following model

Ti = I(Zi > 0)

Zi = βb0 + βb1xi + wi + εi i = 1, . . . , n

Yi = βc0 + βc1xi + wi + εi i = 1, . . . , n

(3.10)

where εi ∼ SNc(0, 1,−γb), εi ∼ SNc(0, 1, γc) and wi ∼ SNc(0, 1, γw), β = (1, 2), γb ∈
{−0.9, 0, 0.9}, γc ∈ {−0.9, 0, 0.9}, γw ∈ {−0.9, 0, 0.9} and the covariate xi was simulated
from a N(0, 1) distribution and centered in their respective mean.

Tables 20, 21 and 22 contain the simulation results for scenarios considering
γb = γc = γw = 0, γb = γc = γw = 0.9 and γb = γc = γw = −0.9, respectively. The results
from the other scenarios (other combinations of γb, γc and γw) are presented in Appendix
G. It is possible to note that the estimates of βb, βc, σ2

c and σ2
w are accurate across

all scenarios and sample sizes. As the sample size increases, the width of the credibility
intervals become smaller. For the parameters γb, γc, γw, the estimates are accurate for large
samples sizes. However, when γj = 0 j=b,c or w, the estimates present large credibility
intervals.

Table 20 – Results of the simulation study under γc = 0, γw = 0 and γb = 0.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .970 .411 [.169; 1.786] .959 .157 [.685; 1.305] .977 .133 [.723; 1.222] .960 .083 [.806; 1.133]
βb1 2.000 1.915 .543 [1.050; 3.132] 1.767 .196 [1.355; 2.129] 1.997 .184 [1.647; 2.344] 1.879 .117 [1.639; 2.097]
βc0 1.000 1.182 .223 [.723; 1.611] 1.050 .085 [.892; 1.220] 1.003 .074 [.866; 1.149] 1.015 .044 [.937; 1.107]
βc1 2.000 1.788 .206 [.427; 2.226] 2.046 .084 [1.906; 2.221] 1.966 .068 [1.841; 2.105] 1.962 .042 [1.875; 2.035]
γb .000 .087 .668 [-0.970; .995] -0.328 .539 [-0.994; .717] .532 .372 [-0.200; .994] .318 .425 [-0.545; .993]
γc .000 .180 .630 [-0.932; .991] -0.171 .442 [-0.981; .644] .322 .319 [-0.069; .984] -0.357 .363 [-0.984; .113]
γw .000 -0.221 .599 [-0.992; .921] -0.280 .388 [-0.969; .235] .561 .365 [-0.014; .990] .265 .246 [-0.102; .720]
σ2
c 1.000 .874 .514 [.018; 1.772] .897 .225 [.449; 1.326] 1.359 .192 [1.000; 1.745] .873 .114 [.656; 1.080]

σ2
w 1.000 1.411 .608 [.303; 2.446] 1.054 .234 [.623; 1.483] 1.023 .207 [.638; 1.431] 1.174 .131 [.951; 1.462]
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Table 21 – Results of the simulation study under γc = 0.9, γw = 0.9 and γb = 0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.600 .451 [.710; 2.507] .992 .172 [.644; 1.325] .898 .120 [.685; 1.143] .969 .092 [.803; 1.163]
βb1 2.000 1.460 .531 [.566; 2.530] 2.213 .275 [1.645; 2.684] 1.864 .158 [1.552; 2.163] 1.951 .120 [1.720; 2.178]
βc0 1.000 1.130 .228 [.717; 1.568] .786 .086 [.613; .957] 1.026 .062 [.901; 1.144] .997 .043 [.919; 1.082]
βc1 2.000 1.865 .188 [1.508; 2.221] 2.122 .076 [1.971; 2.254] 2.036 .044 [1.950; 2.129] 1.987 .036 [1.911; 2.053]
γb .900 .038 .684 [-0.963; .994] .742 .306 [.041; .995] .201 .542 [-0.761; .994] .822 .173 [.466; .995]
γc .900 .034 .535 [-0.904; .979] .353 .466 [-0.614; .982] .916 .078 [.754; .992] .842 .110 [.632; .991]
γw .900 .546 .433 [-0.159; .992] .814 .198 [.389; .993] .894 .111 [.665; .991] .782 .162 [.483; .990]
σ2
c 1.000 .322 .341 [.005; .990] .719 .216 [.367; 1.210] 1.214 .167 [.889; 1.517] 1.056 .110 [.812; 1.264]

σ2
w 1.000 2.381 .680 [1.157; 3.942] 1.110 .248 [.624; 1.578] .875 .162 [.568; 1.203] .836 .112 [.638; 1.074]

Table 22 – Results of the simulation study under γc = −0.9, γw = −0.9 and γb = −0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.579 .444 [.789; 2.452] 1.271 .169 [.765; 1.392] 1.058 .115 [.718; 1.139] .988 .080 [.821; 1.135]
βb1 2.000 2.789 .826 [1.411; 4.527] 1.932 .244 [1.518; 2.451] 2.031 .181 [1.520; 2.170] 2.132 .128 [1.889; 2.359]
βc0 1.000 .798 .223 [.372; 1.226] 1.238 .077 [1.089; 1.389] .972 .061 [.865; 1.101] 1.013 .042 [.931; 1.086]
βc1 2.000 2.002 .202 [1.546; 2.342] 1.907 .065 [1.795; 2.043] 1.940 .046 [1.850; 2.026] 1.980 .034 [1.913; 2.045]
γb -0.900 .005 .661 [-0.956; .995] -0.747 .515 [-0.594; .995] -0.497 .445 [-0.994; .763] -0.832 .173 [-0.995; -0.460]
γc -0.900 -0.214 .622 [-0.990; .903] -0.872 .203 [-0.991; -0.404] -0.949 .045 [-0.993; -0.871] -0.816 .122 [-0.984; -0.582]
γw -0.900 .069 .660 [-0.948; .993] -0.781 .165 [-0.991; -0.532] -0.899 .099 [-0.989; -0.705] -0.881 .100 [-0.989; -0.659]
σ2
c 1.000 .678 .435 [.038; 1.506] .734 .177 [.389; 1.044] 1.086 .173 [.817; 1.467] .878 .098 [.693; 1.069]

σ2
w 1.000 1.748 .648 [.639; 2.981] .865 .193 [.500; 1.224] .910 .173 [.547; 1.097] .957 .108 [.726; 1.147]

3.5 Application
We analyze the dataset presented in (GAŁECKI; BURZYKOWSKI, 2013).

The data consist on sample of 227 patients age-related macular degeneration (see (GUYER
et al., 1997)). The objective was to evaluate the efficacy of an experimental treatment
(interferon-α) with a corresponding placebo. For each patient it was evaluated his/her
visual acuity in the beginning and after one year of study. This acuity is measured by
counting how many letters of a standardized vision chart are corrected read. These charts
display line letters of decreasing size that the patient must read from the top (large letters)
to bottom (small letters). In this study, two outcomes were obtained in order to evaluate
the efficacy of the treatment: the binary outcome Ti was defined as the loss at least three
lines of vision at one year compared with their baseline performance and the continuous
outcome Yi are defined as the difference between patient’s visual acuity from one year
and the beginning of the study. The covariate considered in the analysis was the indicator
variable Xi = 1 if the patient had received the treatment, or Xi = 0, if it was administrated
the placebo.

We consider a regression model of the form Yi = βc0 + βc1x1i + wi + εi, for
i = 1, 2, . . . , 227, where wi is the random effect. We also assume a latent variable Zi =
βb0 + βb1x1i + wi + εi, for i = 1, 2, . . . , 227, such that Ti = I(Zi > 0), where Ti = 1 if the
patient have lost loss at least three lines of vision at one year compared with their baseline
performance.
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We fitted eight models, assuming that: ε iid∼ SNc(0, σ2
c , γc), or ε

iid∼ N(0, σ2
c ),

ε
iid∼ SNc(0, 1,−γb), or ε iid∼ N(0, 1), wi iid∼ SNc(0, σ2

w, γw), or wi iid∼ N(0, σ2
w). The summary

of the results can be found in Table 23.

Table 23 – Distributions for εi, εi and wi, respectively, for the vision dataset.

Model Distribution
M1 SNc(0, σ2

c , γc) SNc(0, 1,−γb) SNc(0, σ2
w, γw)

M2 SNc(0, σ2
c , γc) SNc(0, 1,−γb) N(0, σ2

w)
M3 SNc(0, σ2

c , γc) N(0, 1) SNc(0, σ2
w, γw)

M4 N(0, σ2
c ) SNc(0, 1,−γb) SNc(0, σ2

w, γw)
M5 SNc(0, σ2

c , γc) N(0, 1) N(0, σ2
w)

M6 N(0, σ2
c ) SNc(0, 1,−γb) N(0, σ2

w)
M7 N(0, σ2

c ) N(0, 1) SNc(0, σ2
w, γw)

M8 N(0, σ2
c ) N(0, 1) N(0, σ2

w)

The values for the MCMC algorithm were the same used in the simulation
study available in Section 3.4.

Similarly to Section 1.4.4, the model comparison criteria was calculated used
the likelihood

L(βb, γb,νb,βc, γc,νc|y) =
n∏
i=1

∫ ∞
−∞

(F (X t
biβb + wi|γb,νb))ti(1− F (X t

biβb + wi|γb,νb))1−ti

×f(yi|X t
ciβc + wi, σ

2
c , γc, G,νc)f(wi|0, σ2

w, γw, G,νw)dwi

Table 24 presents the statistics for model comparison. The model M3, that is,
considering γc ∼ SNc(0, σ2

c , γc), γb ∼ N(0, 1) and γw ∼ SNc(0, σ2
w, γw) was selected by all

criteria. Another model, with the same distributions, but not considering the correlation
between the response was fitted and they were compared. For the marginal model the
EAIC, EBIC, DIC and LPML criteria were, respectively, 1289.38, 1313.35, 1282.61 and
-643.71. Therefore, we can conclude that the bivariate model outperforms the marginal
model.

From Table 25, we can see the estimates for the bivariate and marginal model.
Comparing the estimates of βb for the bivariate and marginal model we noted that the
estimates do not present many differences between them 25. From the bivariate model we
can conclude that the treatment has almost no effect in the probability of loss at least
three lines of vision but has a positive effect on the patient’s acuity.

3.6 Conclusions
In this chapter, we developed a bivariate model for continuous and binary

responses, using the SMSN class under the centered parameterization. We performed
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Table 24 – Vision dataset: Statistics for model comparison

Model
criterion M1 M2 M3 M4 M5 M6 M7 M8

EAIC 706.81 1883.50 695.27 728.89 1706.74 1776.18 797.67 2184.85
EBIC 737.63 1907.47 726.10 759.72 1730.71 1800.15 828.49 2208.82
DIC 694.41 2153.29 660.48 825.85 1766.64 1983.98 726.77 2257.07

LPML -386.38 -2759.97 -376.17 -402.22 -1234.15 -2728.56 -438.81 -1676.89

Table 25 – Vision dataset: Posterior parameter estimates for the selected bivariate model
and the marginal model.

Model
Bivariate Marginal

Est SD %95 HPD Est SD %95 HPD
βb0 -2.063 .779 [-3.519; -0.728] -0.71 .129 [-0.959; -0.461]
βb1 .271 .5 [-0.732; 1.229] .106 .183 [-0.25; .449]
βc0 2.446 1.048 [0.333; 4.326] 2.463 1.028 [0.537; 4.462]
βc1 3.787 1.422 [1.225; 6.724] 3.801 1.438 [1.039; 6.605]
γc .519 .113 [0.302; .742] .472 .096 [0.276; .638]
γw -0.167 .792 [-0.995; .989] - - -
σ2
c 128.894 13.89 [101.176; 154.289] 133.459 14.027 [105.457; 158.981]

σ2
w 7.906 5.072 [0.545; 17.726] - - -

Bayesian estimation and the method was applied in a real dataset. The simulation study
performed in this chapter indicated that considering the bivariate model when the two
outcomes are correlated can improve substantially the accuracy of the estimates. In
addition, simulation studies indicated that the models considering asymmetry and/or
heavy tails when the data have these characteristics present more accurate results than
those models with the assumption of normality of the data.
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4 Conclusion

In this work we developed a scale mixture of skew-normal distribution under
the centered parameterization class of probability distributions as an alternative to the
parameterization used in (FERREIRA; BOLFARINE; LACHOS, 2011). It was decided to
use a new parameterization for this class for several reasons, among them, the simplicity
of parameter interpretation compared to the parameterization used in (FERREIRA;
BOLFARINE; LACHOS, 2011). Another motivation was the issues related to the estimation
process of parameter λ in the direct parameterization. We have showed, through profiled
log-likelihood, that the SMSN class under direct parameterization can heritage the problem
caused by the non quadratic likelihood shape of the direct parameterization.

A class of linear regression models based on the SMSN family under the centered
parameterization was introduced, and we developed the Bayesian estimation approach.
Also, we described model comparison criteria, and we developed analysis of influential
observations and residual analysis. Simulation studies were performed in order to evaluate
the parameter recovery under different scenarios. We concluded that for values of ν that
generate distributions with heavy tails the estimates are very accurate. On the other hand,
for values of ν close to the skew normal (or the symmetric) model, the estimates tend to
be biased and the credibility intervals to be large. However, as the sample size increases,
the estimates are improved. An application of the proposed model in a real dataset was
performed in order to show that heavy tails models (special cases of the developed class of
linear regression model) provide better fits than the skew normal linear regression.

In the context of binary regression, we proposed a new class of link functions
based on the SMSN class under the centered parameterization. This class of link functions
include symmetrical, asymmetrical and robust link functions. We performed Bayesian
estimation using latent variables to described the binary model. Some methods of residual
analysis for binary data was discussed, and simulation studies were performed, evaluating
parameter recovery, residual and influence analysis. The first simulation study showed
some problems in the accuracy of the estimates of ν for the binary model, specially for the
skew contaminated normal and skew generalized t models. However for the skew-t and skew
slash models, when true value of ν indicated heavy tails the parameter was appropriate
recovered. Also, we noted as sample size increases, the estimates of all parameter tend to
be closer to real values. In the second study, we simulated data using normal, skew-normal
and skew-t link functions and we fitted the skew-t, skew-normal and normal models. For
this study we observed that when data were simulated using an asymmetric and/or heavy
tail link functions and the probit model was fitted, the estimates of β were biased. For the
residual and influence analysis studies, when the data was simulated using a heavy tail
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distribution and the skew normal model is fitted, the residuals tend to lying outside the
confidence bands and we observe some observations as influentials. As in the linear model,
an application was made in a study on the body fat percentage that indicated the skew
and heavy tail link was preferred to the usual probit model. For the Beetle Mortality data
we conclude that the specification of an asymmetric link provide better fit than the usual
probit model.

Finally, we developed a bivariate model for continuous and binary responses,
using the SMSN class under the centered parameterization. We performed Bayesian
estimation and the method was applied in a real dataset. The simulation study performed
in this chapter indicated that considering the bivariate model when the two outcomes are
correlated can improve substantially the accuracy of the estimates. In addition, simulation
studies indicated that the models considering asymmetry and/or heavy tails when the
data have these characteristics present more accurate results than those models with the
assumption of normality of the data.

As discussed in this work, the estimation of the parameter ν for the SMSN class
is a complicated task and more study should be performed. For future works, we intend to
improve these estimates considering appropriate prior distributions. According to some
tests performed by the authors, the use of Jeffreys’ prior and the direct implementation of
the Bayesian algorithm can produce better estimates, since the usual MCMC programs
as WinBUGS, OpenBUGS, JAGS, do not allow to consider some kind of priors. Also,
we intend to perform residual and influence analysis for the bivariate model. It may also
be interesting to extend this model for the longitudinal case, as well for the multivariate
regression model, considering multiple continuous and categorical responses.
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APPENDIX A – Log-likelihoods for SMSN
family under the direct and centered

parametrization for section 1.3

Consider a random sample Y = (Y1, Y1, . . . , Yn)t from the SMSN family
under direct and centered parameterization and the respective observed values y =
(y1, y1, . . . , yn)t. We shall denote the log-likelihood under the centered parametrization by
l(θ|y)CP . Under direct parameterization we shall use the density functions as described in
(FERREIRA; BOLFARINE; LACHOS, 2011) and denote the respective log-likelihoods by
l(θ|y)DP . Let θ = (µ, σ, λ,ν), then, the respective functions are:

A.1 Skew-t distribution:

l(θ|y)DP = nln(2)− n
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where di = (yi − µ)2

ω2
1σ

2

A.2 Skew-slash distribution:

l(θ|y)DP = nln(2)− nln(ν)
n∑
i=1

ln
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Φ
(
λ
yi − µ
σ

)) n∑
i=1

ln
(∫ 1
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i φ(yi|µ, σ2/ui)dui
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(A.3)
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A.3 Skew-contaminated normal distribution:
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A.4 Skew generalized t distribution:
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where δi = (yi − µ)2
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where di = (yi − µ)2

ω2
1
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APPENDIX B – Results of the simulations
study: parameter recovery for section 1.5.1

Here we presented the tables with the results for the simulation study in Section
1.5.1 containing the scenarios not presented in this section.

B.1 Skew-t
Table 26 – Results of the simulation study for the skew-t model with ν = 3 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.1989 .0001 .1989 .1989 .1989 1.0000 .9045
β1 2.0000 2.4244 .0002 .4244 .2122 .4244 1.0000 1.2438
γ .0000 .6855 .0005 .6855 - .6855 1.0000 1.3258
σ2 1.0000 1.9017 .0006 .9017 .9017 .9017 .9200 2.2816
ν 3.0000 11.1746 .6529 8.1746 2.7249 8.2007 1.0000 43.2765

250

β0 1.0000 .9927 .0001 -0.0073 .0073 .0073 1.0000 .3980
β1 2.0000 2.1147 .0000 .1147 .0574 .1147 1.0000 .2830
γ .0000 -0.1937 .0013 -0.1937 - .1938 1.0000 1.2958
σ2 1.0000 .9713 .0000 -0.0287 .0287 .0287 1.0000 .6195
ν 3.0000 2.7525 .0005 -0.2475 .0825 .2475 1.0000 1.9546

500

β0 1.0000 .9783 .0001 -0.0217 .0217 .0217 1.0000 .2638
β1 2.0000 2.1271 .0000 .1271 .0636 .1271 .0000 .1960
γ .0000 .2167 .0021 .2167 - .2167 1.0000 .9638
σ2 1.0000 .9395 .0000 -0.0605 .0605 .0605 1.0000 .4224
ν 3.0000 2.8869 .0005 -0.1131 .0377 .1131 1.0000 1.5700

1000

β0 1.0000 1.1134 .0000 .1134 .1134 .1134 .0000 .1823
β1 2.0000 2.0789 .0000 .0789 .0395 .0789 .5800 .1605
γ .0000 .0829 .0001 .0829 - .0829 1.0000 .5268
σ2 1.0000 1.1551 .0000 .1551 .1551 .1551 1.0000 .3662
ν 3.0000 3.5113 .0002 .5113 .1704 .5113 1.0000 1.6394
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Table 27 – Results of the simulation study for the skew-t model with ν = 3 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .8729 .0000 -0.1271 .1271 .1271 1.0000 .6854
β1 2.0000 2.0386 .0000 .0386 .0193 .0386 1.0000 .5787
γ .9000 .5893 .0007 -0.3107 .3452 .3107 1.0000 1.5500
σ2 1.0000 .8835 .0002 -0.1165 .1165 .1165 1.0000 1.2310
ν 3.0000 5.0219 .3255 2.0219 .6740 2.0480 1.0000 12.3533

250

β0 1.0000 .9390 .0000 -0.0610 .0610 .0610 1.0000 .3708
β1 2.0000 2.0527 .0000 .0527 .0263 .0527 1.0000 .2828
γ .9000 .7117 .0005 -0.1883 .2092 .1883 1.0000 1.0066
σ2 1.0000 .9624 .0000 -0.0376 .0376 .0376 1.0000 .5687
ν 3.0000 2.6250 .0002 -0.3750 .1250 .3750 1.0000 1.4837

500

β0 1.0000 .8876 .0000 -0.1124 .1124 .1124 .5800 .2302
β1 2.0000 1.8935 .0000 -0.1065 .0532 .1065 .0400 .1956
γ .9000 .8008 .0003 -0.0992 .1103 .0992 1.0000 .5600
σ2 1.0000 .8368 .0000 -0.1632 .1632 .1632 1.0000 .3815
ν 3.0000 3.0511 .0007 .0511 .0170 .0511 1.0000 1.8051

1000

β0 1.0000 1.0332 .0000 .0332 .0332 .0332 1.0000 .1672
β1 2.0000 1.9943 .0000 -0.0057 .0028 .0057 1.0000 .1291
γ .9000 .8931 .0001 -0.0069 .0076 .0069 1.0000 .3058
σ2 1.0000 .9188 .0000 -0.0812 .0812 .0812 1.0000 .3014
ν 3.0000 2.7554 .0001 -0.2446 .0815 .2446 1.0000 1.0133

Table 28 – Results from the simulation using the skew-t distribution with ν = 10 and
γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0790 .0001 .0790 .0790 .0790 1.0000 .6424
β1 2.0000 2.0140 < .0001 .0140 .0070 .0140 1.0000 .4660
γ -0.9000 -0.9078 < .0001 -0.0078 .0087 .0078 1.0000 .3910
σ2 1.0000 1.0124 .0001 .0124 .0124 .0124 1.0000 1.1266
ν 10.0000 15.2063 .6516 5.2063 .5206 5.2469 1.0000 56.3893

250

β0 1.0000 .9673 < .0001 -0.0327 .0327 .0327 1.0000 .2755
β1 2.0000 1.9188 < .0001 -0.0812 .0406 .0812 1.0000 .1932
γ -0.9000 -0.9320 < .0001 -0.0320 .0355 .0320 1.0000 .1860
σ2 1.0000 1.0908 < .0001 .0908 .0908 .0908 1.0000 .5211
ν 10.0000 18.2538 .9761 8.2538 .8254 8.3113 1.0000 51.5009

500

β0 1.0000 1.0257 < .0001 .0257 .0257 .0257 1.0000 .1852
β1 2.0000 2.0335 < .0001 .0335 .0168 .0335 1.0000 .1449
γ -0.9000 -0.9299 < .0001 -0.0299 .0332 .0299 1.0000 .1950
σ2 1.0000 .9048 < .0001 -0.0952 .0952 .0952 1.0000 .3326
ν 10.0000 10.2599 .0756 .2599 .0260 .2706 1.0000 13.1968

1000

β0 1.0000 .9874 < .0001 -0.0126 .0126 .0126 1.0000 .1414
β1 2.0000 1.9862 < .0001 -0.0138 .0069 .0138 1.0000 .1161
γ -0.9000 -0.9068 .0001 -0.0068 .0075 .0068 1.0000 .1936
σ2 1.0000 1.1018 < .0001 .1018 .1018 .1018 1.0000 .2980
ν 10.0000 13.3918 .4368 3.3918 .3392 3.4198 1.0000 22.5519
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Table 29 – Results of the simulation study for the skew-t model with ν = 10 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .8560 .0001 -0.1440 .1440 .1440 1.0000 .7409
β1 2.0000 1.9019 .0000 -0.0981 .0490 .0981 1.0000 .5369
γ .0000 -0.3710 .0034 -0.3710 - .3710 1.0000 1.6774
σ2 1.0000 1.2724 .0002 .2724 .2724 .2724 1.0000 1.4413
ν 10.0000 10.2194 .4003 .2194 .0219 .4565 1.0000 41.7672

250

β0 1.0000 1.0065 .0000 .0065 .0065 .0065 1.0000 .2657
β1 2.0000 2.0333 .0000 .0333 .0166 .0333 1.0000 .2712
γ .0000 .1646 .0002 .1646 - .1646 1.0000 .7589
σ2 1.0000 .9967 .0000 -0.0033 .0033 .0033 1.0000 .4578
ν 10.0000 22.6835 2.5129 12.6835 1.2683 12.9300 1.0000 74.1976

500

β0 1.0000 .9783 .0000 -0.0217 .0217 .0217 1.0000 .2025
β1 2.0000 2.0090 .0000 .0090 .0045 .0090 1.0000 .2014
γ .0000 -0.0300 .0000 -0.0300 - .0300 1.0000 .5118
σ2 1.0000 1.0818 .0000 .0818 .0818 .0818 1.0000 .3887
ν 10.0000 9.9178 .0376 -0.0822 .0082 .0904 1.0000 13.8089

1000

β0 1.0000 .9921 .0000 -0.0079 .0079 .0079 1.0000 .1313
β1 2.0000 1.9664 .0000 -0.0336 .0168 .0336 1.0000 .1314
γ .0000 .0047 .0000 .0047 - .0047 1.0000 .3119
σ2 1.0000 .9467 .0000 -0.0533 .0533 .0533 1.0000 .2642
ν 10.0000 10.7789 .0385 .7789 .0779 .7799 1.0000 13.6974

Table 30 – Results of the simulation study for the skew-t model with ν = 10 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .9259 .0000 -0.0741 .0741 .0741 1.0000 .6528
β1 2.0000 1.8678 .0000 -0.1322 .0661 .1322 1.0000 .4510
γ .9000 .7637 .0002 -0.1363 .1515 .1363 1.0000 1.0649
σ2 1.0000 .9772 .0001 -0.0228 .0228 .0228 1.0000 1.1601
ν 10.0000 8.0417 .1557 -1.9583 .1958 1.9644 1.0000 22.3129

250

β0 1.0000 .9586 .0000 -0.0414 .0414 .0414 1.0000 .2702
β1 2.0000 1.9494 .0000 -0.0506 .0253 .0506 1.0000 .1915
γ .9000 .9225 .0000 .0225 .0250 .0225 1.0000 .2258
σ2 1.0000 1.0524 .0000 .0524 .0524 .0524 1.0000 .4979
ν 10.0000 16.5037 .6028 6.5037 .6504 6.5316 1.0000 41.6902

500

β0 1.0000 .9834 .0000 -0.0166 .0166 .0166 1.0000 .2032
β1 2.0000 2.0249 .0000 .0249 .0124 .0249 1.0000 .1576
γ .9000 .9465 .0000 .0465 .0517 .0465 1.0000 .1467
σ2 1.0000 1.0027 .0000 .0027 .0027 .0027 1.0000 .4016
ν 10.0000 8.0917 .0117 -1.9083 .1908 1.9084 1.0000 8.5673

1000

β0 1.0000 1.0405 .0000 .0405 .0405 .0405 1.0000 .1436
β1 2.0000 1.9981 .0000 -0.0019 .0010 .0019 1.0000 .1070
γ .9000 .9531 .0000 .0531 .0590 .0531 1.0000 .1188
σ2 1.0000 1.0597 .0000 .0597 .0597 .0597 1.0000 .2781
ν 10.0000 8.8144 .0099 -1.1856 .1186 1.1856 1.0000 6.5708
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Table 31 – Results from the simulation using the skew-t distribution with ν = 30 and
γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.1529 < .0001 .1529 .1529 .1529 1.0000 .5598
β1 2.0000 1.9910 < .0001 -0.0090 .0045 .0090 1.0000 .4742
γ -0.9000 -0.9040 < .0001 -0.0040 .0045 .0040 1.0000 .4027
σ2 1.0000 .8132 .0001 -0.1868 .1868 .1868 1.0000 .8820
ν 30.0000 18.5535 1.2958 -11.4465 .3815 11.5196 1.0000 72.9905

250

β0 1.0000 1.1014 < .0001 .1014 .1014 .1014 1.0000 .2515
β1 2.0000 1.9180 < .0001 -0.0820 .0410 .0820 1.0000 .1813
γ -0.9000 -0.9296 < .0001 -0.0296 .0329 .0296 1.0000 .1982
σ2 1.0000 .8723 < .0001 -0.1277 .1277 .1277 1.0000 .4380
ν 30.0000 16.7695 .8023 -13.2305 .4410 13.2548 1.0000 45.2547

500

β0 1.0000 1.0478 < .0001 .0478 .0478 .0478 1.0000 .1749
β1 2.0000 2.0074 < .0001 .0074 .0037 .0074 1.0000 .1320
γ -0.9000 -0.9457 < .0001 -0.0457 .0508 .0457 1.0000 .1336
σ2 1.0000 .9220 < .0001 -0.0780 .0780 .0780 1.0000 .3025
ν 30.0000 25.6242 2.0447 -4.3758 .1459 4.8300 1.0000 61.5862

1000

β0 1.0000 1.0298 < .0001 .0298 .0298 .0298 1.0000 .1279
β1 2.0000 2.0036 < .0001 .0036 .0018 .0036 1.0000 .0954
γ -0.9000 -0.9149 < .0001 -0.0149 .0166 .0149 1.0000 .1498
σ2 1.0000 1.0089 < .0001 .0089 .0089 .0089 1.0000 .2355
ν 30.0000 33.7322 6.5150 3.7322 .1244 7.5082 1.0000 88.1083

Table 32 – Results of the simulation study for the skew-t model with ν = 30 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0260 .0000 .0260 .0260 .0260 1.0000 .6585
β1 2.0000 1.8874 .0000 -0.1126 .0563 .1126 1.0000 .5486
γ .0000 -0.1762 .0016 -0.1762 - .1762 1.0000 1.7687
σ2 1.0000 .9783 .0001 -0.0217 .0217 .0217 1.0000 1.1245
ν 30.0000 10.5808 .4118 -19.4192 .6473 19.4235 1.0000 43.0512

250

β0 1.0000 1.0229 .0000 .0229 .0229 .0229 1.0000 .2459
β1 2.0000 1.9831 .0000 -0.0169 .0084 .0169 1.0000 .2425
γ .0000 .0101 .0001 .0101 - .0101 1.0000 .6273
σ2 1.0000 .8583 .0000 -0.1417 .1417 .1417 1.0000 .3947
ν 30.0000 24.6001 3.0313 -5.3999 .1800 6.1926 1.0000 82.3760

500

β0 1.0000 1.0058 .0000 .0058 .0058 .0058 1.0000 .1709
β1 2.0000 2.0134 .0000 .0134 .0067 .0134 1.0000 .1748
γ .0000 .0170 .0000 .0170 - .0170 1.0000 .3795
σ2 1.0000 .8905 .0000 -0.1095 .1095 .1095 1.0000 .2671
ν 30.0000 39.1675 6.9819 9.1675 .3056 11.5235 1.0000 112.8711

1000

β0 1.0000 1.0028 .0000 .0028 .0028 .0028 1.0000 .1252
β1 2.0000 2.0476 .0000 .0476 .0238 .0476 1.0000 .1263
γ .0000 .0423 .0000 .0423 - .0423 1.0000 .2903
σ2 1.0000 .9371 .0000 -0.0629 .0629 .0629 1.0000 .2292
ν 30.0000 32.0601 5.8104 2.0601 .0687 6.1648 1.0000 86.8478
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Table 33 – Results of the simulation study for the skew-t model with ν = 30 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .8035 .0000 -0.1965 .1965 .1965 1.0000 .5305
β1 2.0000 1.9553 .0000 -0.0447 .0224 .0447 1.0000 .6065
γ .9000 .7692 .0001 -0.1308 .1454 .1308 1.0000 .9964
σ2 1.0000 .7515 .0000 -0.2485 .2485 .2485 1.0000 .7929
ν 30.0000 17.2585 .4922 -12.7415 .4247 12.7510 1.0000 68.2674

250

β0 1.0000 .9967 .0000 -0.0033 .0033 .0033 1.0000 .2733
β1 2.0000 2.0525 .0000 .0525 .0262 .0525 1.0000 .2086
γ .9000 .9558 .0000 .0558 .0620 .0558 1.0000 .1237
σ2 1.0000 1.0819 .0001 .0819 .0819 .0819 1.0000 .5175
ν 30.0000 22.6925 .6410 -7.3075 .2436 7.3356 1.0000 58.6967

500

β0 1.0000 .9754 .0000 -0.0246 .0246 .0246 1.0000 .1719
β1 2.0000 2.0793 .0000 .0793 .0397 .0793 .0000 .1430
γ .9000 .8428 .0000 -0.0572 .0636 .0572 1.0000 .2812
σ2 1.0000 .8935 .0000 -0.1065 .1065 .1065 1.0000 .2895
ν 30.0000 37.7354 6.9979 7.7354 .2578 10.4310 1.0000 109.3543

1000

β0 1.0000 1.0465 .0000 .0465 .0465 .0465 1.0000 .1269
β1 2.0000 2.0487 .0000 .0487 .0243 .0487 .9000 .1031
γ .9000 .8514 .0000 -0.0486 .0540 .0486 1.0000 .2054
σ2 1.0000 .9754 .0000 -0.0246 .0246 .0246 1.0000 .2344
ν 30.0000 33.6360 9.4285 3.6360 .1212 10.1053 1.0000 88.7431

B.2 Skew slash
Table 34 – Results of the simulation study for the skew slash model with ν = 3 and

γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0439 .0001 .0439 .0439 .0439 1.0000 .8320
β1 2.0000 1.8084 .0001 -0.1916 .0958 .1916 1.0000 .7521
γ -0.9000 -0.8254 .0002 .0746 .0829 .0746 1.0000 .8898
σ2 1.0000 1.3463 .0033 .3463 .3463 .3463 1.0000 2.0684
ν 3.0000 9.2591 5.9205 6.2591 2.0864 8.6156 1.0000 34.7947

250

β0 1.0000 1.1148 < .0001 .1148 .1148 .1148 1.0000 .3009
β1 2.0000 1.9995 < .0001 -0.0005 .0002 .0005 1.0000 .2437
γ -0.9000 -0.7799 .0002 .1201 .1334 .1201 1.0000 .5042
σ2 1.0000 .8453 .0005 -0.1547 .1547 .1547 1.0000 .6864
ν 3.0000 2.7430 .6948 -0.2570 .0857 .7408 1.0000 8.9155

500

β0 1.0000 1.0723 < .0001 .0723 .0723 .0723 1.0000 .2168
β1 2.0000 2.0028 < .0001 .0028 .0014 .0028 1.0000 .1403
γ -0.9000 -0.9523 < .0001 -0.0523 .0581 .0523 1.0000 .1104
σ2 1.0000 .9421 < .0001 -0.0579 .0579 .0579 1.0000 .4211
ν 3.0000 2.5603 .0011 -0.4397 .1466 .4397 1.0000 1.8669

1000

β0 1.0000 1.0405 < .0001 .0405 .0405 .0405 1.0000 .1493
β1 2.0000 2.0367 < .0001 .0367 .0184 .0367 1.0000 .1156
γ -0.9000 -0.9120 < .0001 -0.0120 .0133 .0120 1.0000 .1437
σ2 1.0000 1.0203 < .0001 .0203 .0203 .0203 1.0000 .3368
ν 3.0000 3.1046 .0025 .1046 .0349 .1046 1.0000 2.3084



APPENDIX B. Results of the simulations study: parameter recovery for section 1.5.1 138

Table 35 – Results of the simulation study for the skew slash model with ν = 3 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.1448 .0000 .1448 .1448 .1448 1.0000 .7575
β1 2.0000 1.8906 .0000 -0.1094 .0547 .1094 1.0000 .6604
γ .0000 .1645 .0007 .1645 - .1645 1.0000 1.5081
σ2 1.0000 1.0611 .0010 .0611 .0611 .0611 1.0000 1.8622
ν 3.0000 4.9887 .3055 1.9887 .6629 2.0120 1.0000 24.8208

250

β0 1.0000 1.0014 .0000 .0014 .0014 .0014 1.0000 .3287
β1 2.0000 1.9107 .0000 -0.0893 .0446 .0893 1.0000 .2842
γ .0000 .2826 .0001 .2826 - .2826 1.0000 .8198
σ2 1.0000 .8388 .0002 -0.1612 .1612 .1612 1.0000 .8051
ν 3.0000 2.0149 .0213 -0.9851 .3284 .9853 1.0000 3.5538

500

β0 1.0000 1.0590 .0000 .0590 .0590 .0590 1.0000 .2264
β1 2.0000 1.9911 .0000 -0.0089 .0044 .0089 1.0000 .2277
γ .0000 .1618 .0001 .1618 - .1618 1.0000 .5037
σ2 1.0000 1.0624 .0003 .0624 .0624 .0624 1.0000 .6736
ν 3.0000 3.1657 .2894 .1657 .0552 .3335 1.0000 7.4000

1000

β0 1.0000 1.0095 .0000 .0095 .0095 .0095 1.0000 .1521
β1 2.0000 2.0961 .0000 .0961 .0481 .0961 .0000 .1515
γ .0000 -0.0523 .0000 -0.0523 - .0523 1.0000 .3238
σ2 1.0000 .9741 .0000 -0.0259 .0259 .0259 1.0000 .3803
ν 3.0000 2.7235 .0012 -0.2765 .0922 .2765 1.0000 2.1902

Table 36 – Results of the simulation study for the skew slash model with ν = 3 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .9277 .0001 -0.0723 .0723 .0723 1.0000 .8280
β1 2.0000 2.0441 .0000 .0441 .0220 .0441 1.0000 .6772
γ .9000 .9088 .0000 .0088 .0098 .0088 1.0000 .3381
σ2 1.0000 1.5583 .0010 .5583 .5583 .5583 1.0000 2.0341
ν 3.0000 8.9112 .2351 5.9112 1.9704 5.9159 1.0000 32.2555

250

β0 1.0000 .8935 .0000 -0.1065 .1065 .1065 1.0000 .2949
β1 2.0000 2.0203 .0000 .0203 .0102 .0203 1.0000 .2573
γ .9000 .8717 .0000 -0.0283 .0315 .0283 1.0000 .3570
σ2 1.0000 .8480 .0001 -0.1520 .1520 .1520 1.0000 .5837
ν 3.0000 2.5599 .0075 -0.4401 .1467 .4401 1.0000 3.1564

500

β0 1.0000 .9419 .0000 -0.0581 .0581 .0581 1.0000 .2252
β1 2.0000 1.9697 .0000 -0.0303 .0152 .0303 1.0000 .1729
γ .9000 .9214 .0000 .0214 .0238 .0214 1.0000 .1727
σ2 1.0000 1.0295 .0001 .0295 .0295 .0295 1.0000 .4801
ν 3.0000 2.7052 .0019 -0.2948 .0983 .2948 1.0000 2.2723

1000

β0 1.0000 1.0035 .0000 .0035 .0035 .0035 1.0000 .1493
β1 2.0000 1.9805 .0000 -0.0195 .0098 .0195 1.0000 .1118
γ .9000 .9459 .0000 .0459 .0510 .0459 1.0000 .1158
σ2 1.0000 .9762 .0000 -0.0238 .0238 .0238 1.0000 .2942
ν 3.0000 2.7582 .0015 -0.2418 .0806 .2418 1.0000 1.5129
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Table 37 – Results of the simulation study for the skew slash model with ν = 10 and
γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .9123 .0001 -0.0877 .0877 .0877 1.0000 .6881
β1 2.0000 2.0093 .0001 .0093 .0047 .0093 1.0000 .5946
γ -0.9000 -0.8936 < .0001 .0064 .0071 .0064 1.0000 .4013
σ2 1.0000 1.3414 .0062 .3414 .3414 .3415 1.0000 1.4490
ν 10.0000 21.0701 92.3600 11.0701 1.1070 93.0210 1.0000 64.0377

250

β0 1.0000 1.0590 < .0001 .0590 .0590 .0590 1.0000 .2560
β1 2.0000 2.0443 < .0001 .0443 .0221 .0443 1.0000 .1912
γ -0.9000 -0.8975 < .0001 .0025 .0027 .0025 1.0000 .2169
σ2 1.0000 .9249 .0003 -0.0751 .0751 .0751 1.0000 .5545
ν 10.0000 17.2884 8.8470 7.2884 .7288 11.4625 1.0000 71.6213

500

β0 1.0000 .9387 < .0001 -0.0613 .0613 .0613 1.0000 .1932
β1 2.0000 2.1000 < .0001 .1000 .0500 .1000 .0000 .1466
γ -0.9000 -0.9117 < .0001 -0.0117 .0130 .0117 1.0000 .1529
σ2 1.0000 1.1416 .0001 .1416 .1416 .1416 1.0000 .4077
ν 10.0000 14.1689 1.4274 4.1689 .4169 4.4065 1.0000 36.7813

1000

β0 1.0000 1.0361 < .0001 .0361 .0361 .0361 1.0000 .1272
β1 2.0000 1.9814 < .0001 -0.0186 .0093 .0186 1.0000 .0925
γ -0.9000 -0.9286 < .0001 -0.0286 .0318 .0286 1.0000 .0839
σ2 1.0000 1.0012 .0001 .0012 .0012 .0012 1.0000 .2694
ν 10.0000 15.5633 1.8383 5.5633 .5563 5.8592 1.0000 37.9126

Table 38 – Results of the simulation study for the skew slash model with ν = 10 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.1015 .0000 .1015 .1015 .1015 1.0000 .6024
β1 2.0000 1.8659 .0000 -0.1341 .0671 .1341 1.0000 .5597
γ .0000 -0.5325 .0003 -0.5325 - .5325 1.0000 1.0413
σ2 1.0000 1.0672 .0015 .0672 .0672 .0673 1.0000 1.0497
ν 10.0000 26.3217 60.0651 16.3217 1.6322 62.2432 1.0000 78.0328

250

β0 1.0000 .9604 .0000 -0.0396 .0396 .0396 1.0000 .2679
β1 2.0000 2.0538 .0000 .0538 .0269 .0538 1.0000 .2547
γ .0000 .0222 .0000 .0222 - .0222 1.0000 .5565
σ2 1.0000 .9726 .0007 -0.0274 .0274 .0274 1.0000 .6773
ν 10.0000 10.4813 10.8731 .4813 .0481 10.8837 1.0000 35.4027

500

β0 1.0000 .9689 .0000 -0.0311 .0311 .0311 1.0000 .1781
β1 2.0000 1.9971 .0000 -0.0029 .0014 .0029 1.0000 .1874
γ .0000 .0366 .0000 .0366 - .0366 1.0000 .3700
σ2 1.0000 .9037 .0008 -0.0963 .0963 .0963 1.0000 .4403
ν 10.0000 13.0671 26.5254 3.0671 .3067 26.7021 1.0000 38.7059

1000

β0 1.0000 .9356 .0000 -0.0644 .0644 .0644 .4400 .1279
β1 2.0000 1.9714 .0000 -0.0286 .0143 .0286 1.0000 .1277
γ .0000 -0.0887 .0000 -0.0887 - .0887 1.0000 .3187
σ2 1.0000 .8709 .0003 -0.1291 .1291 .1291 1.0000 .3830
ν 10.0000 8.6755 4.7479 -1.3245 .1325 4.9291 1.0000 27.7433
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Table 39 – Results of the simulation study for the skew slash model with ν = 30 and
γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .9245 .0001 -0.0755 .0755 .0755 1.0000 .6557
β1 2.0000 2.0049 < .0001 .0049 .0024 .0049 1.0000 .5195
γ -0.9000 -0.8997 < .0001 .0003 .0003 .0003 1.0000 .3616
σ2 1.0000 1.2703 .0025 .2703 .2703 .2703 1.0000 1.2697
ν 30.0000 28.2564 45.2256 -1.7436 .0581 45.2592 1.0000 81.5774

250

β0 1.0000 1.0634 < .0001 .0634 .0634 .0634 1.0000 .2475
β1 2.0000 2.0114 < .0001 .0114 .0057 .0114 1.0000 .1549
γ -0.9000 -0.9016 < .0001 -0.0016 .0017 .0016 1.0000 .2064
σ2 1.0000 .8984 .0002 -0.1016 .1016 .1016 1.0000 .4995
ν 30.0000 20.6677 10.3197 -9.3323 .3111 13.9136 1.0000 79.8411

500

β0 1.0000 .9353 < .0001 -0.0647 .0647 .0647 1.0000 .1808
β1 2.0000 1.9867 < .0001 -0.0133 .0067 .0133 1.0000 .1461
γ -0.9000 -0.8235 < .0001 .0765 .0850 .0765 1.0000 .2070
σ2 1.0000 1.0509 .0001 .0509 .0509 .0509 1.0000 .3309
ν 30.0000 34.5914 17.9223 4.5914 .1530 18.5011 1.0000 88.6817

1000

β0 1.0000 1.0415 < .0001 .0415 .0415 .0415 1.0000 .1226
β1 2.0000 2.0036 < .0001 .0036 .0018 .0036 1.0000 .0815
γ -0.9000 -0.9152 < .0001 -0.0152 .0169 .0152 1.0000 .0876
σ2 1.0000 .9616 .0002 -0.0384 .0384 .0384 1.0000 .2564
ν 30.0000 29.2336 44.2209 -0.7664 .0255 44.2275 1.0000 80.7713

Table 40 – Results of the simulation study for the skew slash model with ν = 30 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0321 .0000 .0321 .0321 .0321 1.0000 .5771
β1 2.0000 1.8565 .0000 -0.1435 .0718 .1435 1.0000 .5817
γ .0000 -0.4025 .0014 -0.4025 - .4025 1.0000 1.1384
σ2 1.0000 .9263 .0027 -0.0737 .0737 .0738 1.0000 .9845
ν 30.0000 18.8326 89.9383 -11.1674 .3722 90.6290 1.0000 58.8714

250

β0 1.0000 .9318 .0000 -0.0682 .0682 .0682 1.0000 .2619
β1 2.0000 1.9970 .0000 -0.0030 .0015 .0030 1.0000 .2489
γ .0000 .0376 .0000 .0376 - .0376 1.0000 .5281
σ2 1.0000 .9582 .0017 -0.0418 .0418 .0418 1.0000 .6035
ν 30.0000 14.4251 51.0512 -15.5749 .5192 53.3742 .9800 45.2735

500

β0 1.0000 .9679 .0000 -0.0321 .0321 .0321 1.0000 .1679
β1 2.0000 1.9610 .0000 -0.0390 .0195 .0390 1.0000 .1662
γ .0000 -0.0091 .0000 -0.0091 - .0091 1.0000 .3444
σ2 1.0000 .8663 .0002 -0.1337 .1337 .1337 .6200 .2795
ν 30.0000 30.4408 34.8418 .4408 .0147 34.8446 1.0000 83.2606

1000

β0 1.0000 1.0042 .0000 .0042 .0042 .0042 1.0000 .1204
β1 2.0000 2.0220 .0000 .0220 .0110 .0220 1.0000 .1206
γ .0000 -0.0419 .0000 -0.0419 - .0419 1.0000 .2583
σ2 1.0000 .9121 .0003 -0.0879 .0879 .0879 .9600 .2276
ν 30.0000 29.6673 55.8715 -0.3327 .0111 55.8725 1.0000 77.0663



APPENDIX B. Results of the simulations study: parameter recovery for section 1.5.1 141

B.3 Skew contaminated normal
Table 41 – Results of the simulation study for the skew contaminated normal model with

ν1 = 0.1 and ν2 = 0.1 and γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .6754 .0001 -0.3246 .3246 .3246 1.0000 .8966
β1 2.0000 1.7904 < .0001 -0.2096 .1048 .2096 1.0000 .8457
γ -0.9000 -0.9273 .0001 -0.0273 .0303 .0273 1.0000 1.0978
σ2 1.0000 1.5814 .0002 .5814 .5814 .5814 1.0000 2.2181
ν1 0.1000 .0835 .0001 -0.0165 .1655 .0165 1.0000 .8557
ν2 0.1000 .1558 < .0001 .0558 .5584 .0558 1.0000 .8468

250

β0 1.0000 1.2977 .0008 .2977 .2977 .2977 1.0000 .5265
β1 2.0000 2.0616 < .0001 .0616 .0308 .0616 1.0000 .2253
γ -0.9000 -0.3045 .0089 .5955 .6617 .5956 .5400 1.6285
σ2 1.0000 .2740 .0027 -0.7260 .7260 .7260 .9200 .8807
ν1 0.1000 .4150 .0012 .3150 3.1497 .3150 .1200 .5786
ν2 0.1000 .0925 < .0001 -0.0075 .0750 .0075 .1200 .1480

500

β0 1.0000 .9943 < .0001 -0.0057 .0057 .0057 1.0000 .2243
β1 2.0000 1.9407 < .0001 -0.0593 .0297 .0593 1.0000 .1543
γ -0.9000 -0.8794 < .0001 .0206 .0229 .0206 1.0000 .2193
σ2 1.0000 1.0612 .0001 .0612 .0612 .0612 1.0000 .4275
ν1 0.1000 .1470 < .0001 .0470 .4702 .0470 .4000 .1136
ν2 0.1000 .0999 < .0001 -0.0001 .0006 .0001 .4000 .0613

1000

β0 1.0000 1.1147 < .0001 .1147 .1147 .1147 .0000 .1294
β1 2.0000 2.0145 < .0001 .0145 .0072 .0145 1.0000 .0917
γ -0.9000 -0.8809 < .0001 .0191 .0212 .0191 1.0000 .1371
σ2 1.0000 .8180 .0001 -0.1820 .1820 .1820 .0000 .2017
ν1 0.1000 .1403 < .0001 .0403 .4030 .0403 .0000 .0714
ν2 0.1000 .0908 < .0001 -0.0092 .0919 .0092 1.0000 .0402
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Table 42 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.1 and ν2 = 0.1 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0037 .0000 .0037 .0037 .0037 1.0000 .6766
β1 2.0000 2.0048 .0001 .0048 .0024 .0048 1.0000 .7115
γ .0000 .0095 .0006 .0095 - .0096 1.0000 1.4488
σ2 1.0000 .8866 .0001 -0.1134 .1134 .1134 1.0000 1.2433
ν1 0.1000 .0662 .0000 -0.0338 .3383 .0338 1.0000 .3516
ν2 0.1000 .0269 .0000 -0.0731 .7305 .0731 1.0000 .2002

250

β0 1.0000 1.1387 .0000 .1387 .1387 .1387 .9800 .3193
β1 2.0000 1.9476 .0000 -0.0524 .0262 .0524 1.0000 .2771
γ .0000 .3497 .0001 .3497 - .3497 1.0000 .7335
σ2 1.0000 .9644 .0000 -0.0356 .0356 .0356 1.0000 .8105
ν1 0.1000 .1365 .0000 .0365 .3649 .0365 1.0000 .3643
ν2 0.1000 .1308 .0000 .0308 .3077 .0308 1.0000 .1814

500

β0 1.0000 1.0257 .0000 .0257 .0257 .0257 1.0000 .2054
β1 2.0000 1.9513 .0000 -0.0487 .0243 .0487 1.0000 .1983
γ .0000 -0.0018 .0000 -0.0018 - .0018 1.0000 .4847
σ2 1.0000 1.0829 .0000 .0829 .0829 .0829 1.0000 .3743
ν1 0.1000 .0796 .0000 -0.0204 .2044 .0204 1.0000 .1069
ν2 0.1000 .0829 .0000 -0.0171 .1707 .0171 1.0000 .0972

1000

β0 1.0000 1.0231 .0000 .0231 .0231 .0231 1.0000 .1391
β1 2.0000 2.0520 .0000 .0520 .0260 .0520 1.0000 .1377
γ .0000 -0.0009 .0000 -0.0009 - .0009 1.0000 .3483
σ2 1.0000 .9734 .0000 -0.0266 .0266 .0266 1.0000 .2599
ν1 0.1000 .0911 .0000 -0.0089 .0890 .0089 1.0000 .0942
ν2 0.1000 .0969 .0000 -0.0031 .0310 .0031 1.0000 .0777
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Table 43 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.1 and ν2 = 0.1 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.3744 .0001 .3744 .3744 .3744 1.0000 .9890
β1 2.0000 2.1473 .0001 .1473 .0736 .1473 1.0000 .8513
γ .9000 .9356 .0002 .0356 .0395 .0356 1.0000 1.0150
σ2 1.0000 1.2991 .0006 .2991 .2991 .2991 1.0000 2.5353
ν1 0.1000 .1790 .0000 .0790 .7896 .0790 1.0000 .6967
ν2 0.1000 .1419 .0000 .0419 .4191 .0419 1.0000 .6689

250

β0 1.0000 .9637 .0000 -0.0363 .0363 .0363 1.0000 .3101
β1 2.0000 1.9397 .0000 -0.0603 .0301 .0603 1.0000 .2443
γ .9000 .7686 .0001 -0.1314 .1460 .1314 .6600 .7772
σ2 1.0000 .8350 .0000 -0.1650 .1650 .1650 1.0000 .5994
ν1 0.1000 .1547 .0000 .0547 .5471 .0547 1.0000 .3168
ν2 0.1000 .1276 .0000 .0276 .2761 .0276 1.0000 .1519

500

β0 1.0000 1.0199 .0001 .0199 .0199 .0199 1.0000 .2150
β1 2.0000 1.9875 .0000 -0.0125 .0062 .0125 1.0000 .1384
γ .9000 .8978 .0000 -0.0022 .0024 .0022 1.0000 .1614
σ2 1.0000 1.0439 .0006 .0439 .0439 .0439 1.0000 .3913
ν1 0.1000 .1151 .0000 .0151 .1507 .0151 1.0000 .1004
ν2 0.1000 .1030 .0000 .0030 .0299 .0030 1.0000 .0646

1000

β0 1.0000 .9145 .0000 -0.0855 .0855 .0855 .0000 .1285
β1 2.0000 2.0247 .0000 .0247 .0124 .0247 1.0000 .0854
γ .9000 .8800 .0000 -0.0200 .0222 .0200 1.0000 .1134
σ2 1.0000 .8441 .0002 -0.1559 .1559 .1559 .0000 .2002
ν1 0.1000 .1105 .0000 .0105 .1047 .0105 1.0000 .0640
ν2 0.1000 .0888 .0000 -0.0112 .1118 .0112 1.0000 .0437
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Table 44 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.9 and ν2 = 0.9 and γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .6669 < .0001 -0.3331 .3331 .3331 .0000 .7176
β1 2.0000 1.7910 < .0001 -0.2090 .1045 .2090 1.0000 .6975
γ -0.9000 -0.9742 < .0001 -0.0742 .0824 .0742 1.0000 .2703
σ2 1.0000 1.3736 .0003 .3736 .3736 .3736 1.0000 1.7478
ν1 0.9000 .2428 .0002 -0.6572 .7303 .6572 1.0000 .9577
ν2 0.9000 .8727 < .0001 -0.0273 .0304 .0273 1.0000 .7533

250

β0 1.0000 1.0762 < .0001 .0762 .0762 .0762 1.0000 .2318
β1 2.0000 2.0707 < .0001 .0707 .0353 .0707 1.0000 .1827
γ -0.9000 -0.8920 < .0001 .0080 .0089 .0080 1.0000 .2810
σ2 1.0000 .7957 < .0001 -0.2043 .2043 .2043 .9000 .5465
ν1 0.9000 .1063 .0003 -0.7937 .8819 .7937 .9500 .9231
ν2 0.9000 .4681 < .0001 -0.4319 .4799 .4319 .9500 .7231

500

β0 1.0000 1.0005 < .0001 .0005 .0005 .0005 1.0000 .1926
β1 2.0000 1.9703 < .0001 -0.0297 .0148 .0297 1.0000 .1408
γ -0.9000 -0.9072 < .0001 -0.0072 .0080 .0072 1.0000 .1578
σ2 1.0000 1.1531 .0003 .1531 .1531 .1531 1.0000 .8555
ν1 0.9000 .5389 .0006 -0.3611 .4013 .3611 1.0000 .9536
ν2 0.9000 .7519 .0001 -0.1481 .1646 .1481 1.0000 .6386

1000

β0 1.0000 1.0850 < .0001 .0850 .0850 .0850 .0000 .1217
β1 2.0000 2.0100 < .0001 .0100 .0050 .0100 1.0000 .0822
γ -0.9000 -0.9088 < .0001 -0.0088 .0097 .0088 1.0000 .1050
σ2 1.0000 .9474 .0001 -0.0526 .0526 .0526 1.0000 .5891
ν1 0.9000 .5877 .0006 -0.3123 .3470 .3123 1.0000 .9570
ν2 0.9000 .8478 .0001 -0.0522 .0580 .0522 1.0000 .5746
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Table 45 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.9 and ν2 = 0.9 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0664 .0000 .0664 .0664 .0664 1.0000 .6519
β1 2.0000 2.0216 .0000 .0216 .0108 .0216 1.0000 .7067
γ .0000 .7486 .0003 .7486 - .7486 1.0000 1.3275
σ2 1.0000 .8440 .0003 -0.1560 .1560 .1560 1.0000 1.5488
ν1 0.9000 .4090 .0001 -0.4910 .5455 .4910 1.0000 .9231
ν2 0.9000 .2164 .0001 -0.6836 .7595 .6836 1.0000 .8970

250

β0 1.0000 1.1036 .0000 .1036 .1036 .1036 1.0000 .2535
β1 2.0000 1.9461 .0000 -0.0539 .0270 .0539 1.0000 .2405
γ .0000 .0042 .0000 .0042 - .0042 1.0000 .5751
σ2 1.0000 .8965 .0002 -0.1035 .1035 .1035 1.0000 .9426
ν1 0.9000 .6219 .0002 -0.2781 .3089 .2781 1.0000 .9286
ν2 0.9000 .4104 .0001 -0.4896 .5440 .4896 1.0000 .8107

500

β0 1.0000 1.0259 .0000 .0259 .0259 .0259 1.0000 .1862
β1 2.0000 1.9692 .0000 -0.0308 .0154 .0308 1.0000 .1855
γ .0000 -0.0001 .0000 -0.0001 - .0001 1.0000 .3513
σ2 1.0000 1.0628 .0001 .0628 .0628 .0628 1.0000 .7767
ν1 0.9000 .4784 .0008 -0.4216 .4685 .4216 1.0000 .9705
ν2 0.9000 .8906 .0001 -0.0094 .0104 .0094 1.0000 .6792

1000

β0 1.0000 1.0206 .0000 .0206 .0206 .0206 1.0000 .1290
β1 2.0000 2.0590 .0000 .0590 .0295 .0590 1.0000 .1282
γ .0000 -0.0036 .0000 -0.0036 - .0036 1.0000 .2912
σ2 1.0000 1.0101 .0008 .0101 .0101 .0101 1.0000 .8675
ν1 0.9000 .8402 .0021 -0.0598 .0664 .0598 1.0000 .9536
ν2 0.9000 .8313 .0003 -0.0687 .0763 .0687 1.0000 .7721
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Table 46 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.9 and ν2 = 0.9 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.3533 .0001 .3533 .3533 .3533 .0000 .7273
β1 2.0000 2.1314 .0000 .1314 .0657 .1314 1.0000 .6661
γ .9000 .9587 .0000 .0587 .0652 .0587 1.0000 .4924
σ2 1.0000 1.3316 .0004 .3316 .3316 .3316 1.0000 1.8164
ν1 0.9000 .1430 .0001 -0.7570 .8411 .7570 1.0000 .9543
ν2 0.9000 .7594 .0000 -0.1406 .1562 .1406 1.0000 .7777

250

β0 1.0000 .9681 .0000 -0.0319 .0319 .0319 1.0000 .2443
β1 2.0000 1.9736 .0000 -0.0264 .0132 .0264 1.0000 .2094
γ .9000 .8438 .0000 -0.0562 .0624 .0562 1.0000 .3459
σ2 1.0000 .8982 .0002 -0.1018 .1018 .1018 1.0000 .8382
ν1 0.9000 .7960 .0004 -0.1040 .1156 .1040 1.0000 .9603
ν2 0.9000 .8712 .0002 -0.0288 .0320 .0288 1.0000 .7405

500

β0 1.0000 1.0192 .0000 .0192 .0192 .0192 1.0000 .1855
β1 2.0000 2.0123 .0000 .0123 .0061 .0123 1.0000 .1301
γ .9000 .9277 .0000 .0277 .0308 .0277 1.0000 .1320
σ2 1.0000 1.0692 .0004 .0692 .0692 .0692 1.0000 .7915
ν1 0.9000 .7296 .0008 -0.1704 .1893 .1704 1.0000 .9547
ν2 0.9000 .7533 .0002 -0.1467 .1630 .1467 1.0000 .6264

1000

β0 1.0000 .9745 .0000 -0.0255 .0255 .0255 1.0000 .1270
β1 2.0000 2.0494 .0000 .0494 .0247 .0494 .0200 .0879
γ .9000 .9010 .0000 .0010 .0011 .0010 1.0000 .1190
σ2 1.0000 1.0295 .0009 .0295 .0295 .0295 1.0000 .7288
ν1 0.9000 .8098 .0020 -0.0902 .1002 .0902 1.0000 .9585
ν2 0.9000 .9086 .0005 .0086 .0096 .0086 1.0000 .6458
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Table 47 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.9 and ν2 = 0.1 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.1867 .0007 .1867 .1867 .1867 1.0000 1.8168
β1 2.0000 2.0642 .0007 .0642 .0321 .0642 1.0000 1.9578
γ .0000 .7977 .0015 .7977 - .7977 1.0000 1.6262
σ2 1.0000 3.0416 .0617 2.0416 2.0416 2.0425 1.0000 11.6915
ν1 0.9000 .4659 .0002 -0.4341 .4823 .4341 .9400 .8696
ν2 0.1000 .1194 .0003 .0194 .1938 .0194 .9400 .8894

250

β0 1.0000 1.3618 .0001 .3618 .3618 .3618 .4800 .7448
β1 2.0000 1.8299 .0000 -0.1701 .0850 .1701 1.0000 .6965
γ .0000 .0069 .0000 .0069 - .0069 1.0000 .6287
σ2 1.0000 5.3739 .0249 4.3739 4.3739 4.3740 .3000 8.3560
ν1 0.9000 .6502 .0003 -0.2498 .2776 .2498 1.0000 .8800
ν2 0.1000 .3005 .0001 .2005 2.0051 .2005 1.0000 .8362

500

β0 1.0000 1.0863 .0000 .0863 .0863 .0863 1.0000 .5312
β1 2.0000 1.9209 .0000 -0.0791 .0395 .0791 1.0000 .5303
γ .0000 .0002 .0000 .0002 - .0002 1.0000 .3552
σ2 1.0000 8.6196 .0627 7.6196 7.6196 7.6198 .1800 8.1966
ν1 0.9000 .7376 .0010 -0.1624 .1804 .1624 1.0000 .9600
ν2 0.1000 .8244 .0004 .7244 7.2440 .7244 1.0000 .8199

1000

β0 1.0000 1.0394 .0000 .0394 .0394 .0394 1.0000 .3592
β1 2.0000 2.1576 .0000 .1576 .0788 .1576 1.0000 .3588
γ .0000 -0.0094 .0000 -0.0094 - .0094 1.0000 .3481
σ2 1.0000 1.7595 .0251 .7595 .7595 .7599 1.0000 6.1449
ν1 0.9000 .8188 .0002 -0.0812 .0902 .0812 1.0000 .5172
ν2 0.1000 .1729 .0002 .0729 .7290 .0729 1.0000 .5540

2000

β0 1.0000 .9685 .0000 -0.0315 .0315 .0315 1.0000 .2429
β1 2.0000 1.9441 .0000 -0.0559 .0279 .0559 1.0000 .2530
γ .0000 -0.0016 .0000 -0.0016 - .0016 1.0000 .1998
σ2 1.0000 .7270 .0039 -0.2730 .2730 .2731 1.0000 2.1762
ν1 0.9000 .8909 .0000 -0.0091 .0101 .0091 1.0000 .1474
ν2 0.1000 .0753 .0000 -0.0247 .2465 .0247 1.0000 .2143
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Table 48 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.9 and ν2 = 0.1 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 2.1699 .0008 1.1699 1.1699 1.1699 .0000 2.1216
β1 2.0000 2.2053 .0006 .2053 .1027 .2053 1.0000 2.0829
γ .9000 .9685 .0001 .0685 .0761 .0685 1.0000 .5598
σ2 1.0000 10.9945 .0618 9.9945 9.9945 9.9947 .0200 16.2746
ν1 0.9000 .2879 .0002 -0.6121 .6801 .6121 1.0000 .9439
ν2 0.1000 .5436 .0002 .4436 4.4362 .4436 1.0000 .8098

250

β0 1.0000 .9491 .0004 -0.0509 .0509 .0509 1.0000 .7275
β1 2.0000 1.9157 .0003 -0.0843 .0422 .0843 1.0000 .6204
γ .9000 .8877 .0004 -0.0123 .0137 .0123 1.0000 .4164
σ2 1.0000 3.4500 .4036 2.4500 2.4500 2.4831 1.0000 8.6779
ν1 0.9000 .8098 .0015 -0.0902 .1002 .0902 1.0000 .9266
ν2 0.1000 .3182 .0042 .2182 2.1816 .2182 1.0000 .9273

500

β0 1.0000 1.0487 .0000 .0487 .0487 .0487 1.0000 .5453
β1 2.0000 2.0389 .0000 .0389 .0195 .0389 1.0000 .4162
γ .9000 .9308 .0000 .0308 .0343 .0308 1.0000 .1819
σ2 1.0000 7.8386 .0946 6.8386 6.8386 6.8393 .0400 8.0300
ν1 0.9000 .7193 .0008 -0.1807 .2008 .1807 1.0000 .9244
ν2 0.1000 .4507 .0008 .3507 3.5072 .3507 1.0000 .7665

1000

β0 1.0000 .9724 .0005 -0.0276 .0276 .0276 1.0000 .3712
β1 2.0000 2.0397 .0001 .0397 .0198 .0397 1.0000 .2800
γ .9000 .9217 .0001 .0217 .0241 .0217 1.0000 .1023
σ2 1.0000 2.3584 4.6594 1.3584 1.3584 4.8533 .9000 6.5336
ν1 0.9000 .8796 .0144 -0.0204 .0227 .0250 1.0000 .6377
ν2 0.1000 .1919 .0448 .0919 .9186 .1022 1.0000 .6783

2000

β0 1.0000 .8996 .0001 -0.1004 .1004 .1004 .9800 .2484
β1 2.0000 1.9523 .0000 -0.0477 .0239 .0477 1.0000 .1804
γ .9000 .9077 .0000 .0077 .0085 .0077 1.0000 .0739
σ2 1.0000 1.0710 .0551 .0710 .0710 .0899 .9600 1.7487
ν1 0.9000 .8767 .0001 -0.0233 .0259 .0233 1.0000 .1317
ν2 0.1000 .1105 .0006 .0105 .1049 .0105 1.0000 .1788
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Table 49 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.5 and ν2 = 0.5 and γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .6574 < .0001 -0.3426 .3426 .3426 .3500 .7810
β1 2.0000 1.8361 < .0001 -0.1639 .0820 .1639 1.0000 .8651
γ -0.9000 -0.9689 < .0001 -0.0689 .0766 .0689 1.0000 .3630
σ2 1.0000 1.6157 .0003 .6157 .6157 .6157 1.0000 2.1047
ν1 0.5000 .2320 .0001 -0.2680 .5360 .2680 1.0000 .9556
ν2 0.5000 .8333 < .0001 .3333 .6667 .3333 1.0000 .7531

250

β0 1.0000 1.0884 < .0001 .0884 .0884 .0884 1.0000 .2745
β1 2.0000 2.0791 < .0001 .0791 .0396 .0791 1.0000 .2423
γ -0.9000 -0.7803 < .0001 .1197 .1330 .1197 1.0000 .3886
σ2 1.0000 1.0130 .0003 .0130 .0130 .0130 1.0000 .9753
ν1 0.5000 .4365 .0003 -0.0635 .1270 .0635 1.0000 .9163
ν2 0.5000 .4158 .0001 -0.0842 .1685 .0842 1.0000 .7268

500

β0 1.0000 .9854 < .0001 -0.0146 .0146 .0146 1.0000 .2259
β1 2.0000 1.9484 < .0001 -0.0516 .0258 .0516 1.0000 .1781
γ -0.9000 -0.8490 < .0001 .0510 .0566 .0510 1.0000 .2200
σ2 1.0000 1.4242 .0004 .4242 .4242 .4242 1.0000 1.1116
ν1 0.5000 .2531 .0003 -0.2469 .4939 .2469 1.0000 .9335
ν2 0.5000 .5313 .0001 .0313 .0627 .0313 1.0000 .6721

1000

β0 1.0000 1.0935 < .0001 .0935 .0935 .0935 0.0000 .1431
β1 2.0000 2.0311 < .0001 .0311 .0155 .0311 1.0000 .1068
γ -0.9000 -0.8415 < .0001 .0585 .0650 .0585 1.0000 .1754
σ2 1.0000 1.2042 .0007 .2042 .2042 .2042 1.0000 .7889
ν1 0.5000 .4272 .0008 -0.0728 .1456 .0728 1.0000 .9339
ν2 0.5000 .5932 .0003 .0932 .1865 .0932 1.0000 .6001
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Table 50 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.5 and ν2 = 0.5 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0666 .0000 .0666 .0666 .0666 1.0000 .7541
β1 2.0000 2.0383 .0000 .0383 .0192 .0383 1.0000 .8111
γ .0000 .0299 .0003 .0299 - .0299 1.0000 1.4477
σ2 1.0000 .7446 .0003 -0.2554 .2554 .2554 1.0000 1.9662
ν1 0.5000 .2714 .0001 -0.2286 .4572 .2286 1.0000 .8584
ν2 0.5000 .1614 .0001 -0.3386 .6772 .3386 1.0000 .8756

250

β0 1.0000 1.1428 .0000 .1428 .1428 .1428 .7600 .3000
β1 2.0000 1.9426 .0000 -0.0574 .0287 .0574 1.0000 .2712
γ .0000 .3346 .0001 .3346 - .3346 1.0000 .6863
σ2 1.0000 .6068 .0007 -0.3932 .3932 .3932 1.0000 1.3681
ν1 0.5000 .7253 .0002 .2253 .4505 .2253 1.0000 .9025
ν2 0.5000 .2435 .0002 -0.2565 .5130 .2565 1.0000 .8607

500

β0 1.0000 1.0166 .0000 .0166 .0166 .0166 1.0000 .2160
β1 2.0000 1.9607 .0000 -0.0393 .0197 .0393 1.0000 .2141
γ .0000 -0.0003 .0000 -0.0003 - .0003 1.0000 .3600
σ2 1.0000 1.4013 .0004 .4013 .4013 .4013 1.0000 1.1050
ν1 0.5000 .4316 .0005 -0.0684 .1368 .0684 1.0000 .9619
ν2 0.5000 .8144 .0001 .3144 .6287 .3144 1.0000 .7144

1000

β0 1.0000 1.0265 .0000 .0265 .0265 .0265 1.0000 .1489
β1 2.0000 2.0719 .0000 .0719 .0359 .0719 .7000 .1485
γ .0000 -0.0007 .0000 -0.0007 - .0007 1.0000 .2763
σ2 1.0000 .5312 .0018 -0.4688 .4688 .4688 1.0000 1.2221
ν1 0.5000 .7970 .0009 .2970 .5940 .2970 1.0000 .8393
ν2 0.5000 .3133 .0004 -0.1867 .3735 .1867 1.0000 .7940
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Table 51 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.5 and ν2 = 0.5 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.3644 .0000 .3644 .3644 .3644 .2800 .8170
β1 2.0000 2.1895 .0000 .1895 .0948 .1895 1.0000 .8717
γ .9000 .9207 .0001 .0207 .0230 .0207 1.0000 .9849
σ2 1.0000 1.6647 .0006 .6647 .6647 .6647 1.0000 2.3233
ν1 0.5000 .1422 .0002 -0.3578 .7156 .3578 1.0000 .9528
ν2 0.5000 .6411 .0001 .1411 .2822 .1411 1.0000 .7972

250

β0 1.0000 .9797 .0000 -0.0203 .0203 .0203 1.0000 .2860
β1 2.0000 1.9492 .0000 -0.0508 .0254 .0508 1.0000 .2409
γ .9000 .8021 .0001 -0.0979 .1087 .0979 1.0000 .3961
σ2 1.0000 1.1503 .0008 .1503 .1503 .1503 1.0000 1.2062
ν1 0.5000 .6530 .0004 .1530 .3060 .1530 1.0000 .9372
ν2 0.5000 .3590 .0003 -0.1410 .2820 .1410 1.0000 .8093

500

β0 1.0000 1.0265 .0000 .0265 .0265 .0265 1.0000 .2144
β1 2.0000 2.0265 .0000 .0265 .0132 .0265 1.0000 .1643
γ .9000 .8762 .0000 -0.0238 .0265 .0238 1.0000 .1862
σ2 1.0000 1.4059 .0013 .4059 .4059 .4059 1.0000 1.1250
ν1 0.5000 .7262 .0012 .2262 .4524 .2262 1.0000 .9465
ν2 0.5000 .6675 .0003 .1675 .3349 .1675 1.0000 .6873

1000

β0 1.0000 1.0650 .0000 .0650 .0650 .0650 1.0000 .1557
β1 2.0000 1.9866 .0000 -0.0134 .0067 .0134 1.0000 .1172
γ .9000 .8278 .0000 -0.0722 .0803 .0722 1.0000 .1995
σ2 1.0000 1.3148 .0009 .3148 .3148 .3148 1.0000 1.0044
ν1 0.5000 .5478 .0011 .0478 .0957 .0478 1.0000 .9176
ν2 0.5000 .4966 .0002 -0.0034 .0067 .0034 1.0000 .6305

B.4 Skew generalized t
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Table 52 – Results of the simulation study for the skew generalized t model with ν1 = 15
and ν2 = 5 and γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.0702 < .0001 .0702 .0702 .0702 1.0000 .3291
β1 2.0000 2.0199 < .0001 .0199 .0100 .0199 1.0000 .3001
γ -0.9000 -0.7604 .0039 .1396 .1551 .1397 1.0000 .8963
ν1 15.0000 12.3660 3.7611 -2.6340 .1756 4.5917 1.0000 32.8329
ν2 5.0000 5.6363 1.2700 .6363 .1273 1.4205 1.0000 17.7954

250

β0 1.0000 1.0628 < .0001 .0628 .0628 .0628 1.0000 .1496
β1 2.0000 2.0161 < .0001 .0161 .0081 .0161 1.0000 .1195
γ -0.9000 -0.8865 < .0001 .0135 .0150 .0135 1.0000 .2981
ν1 15.0000 11.6896 .2553 -3.3104 .2207 3.3203 1.0000 21.2921
ν2 5.0000 5.3889 .0697 .3889 .0778 .3951 1.0000 11.1118

500

β0 1.0000 1.0234 < .0001 .0234 .0234 .0234 1.0000 .1011
β1 2.0000 1.9857 < .0001 -0.0143 .0072 .0143 1.0000 .0836
γ -0.9000 -0.9116 < .0001 -0.0116 .0129 .0116 1.0000 .1855
ν1 15.0000 15.7367 2.4037 .7367 .0491 2.5140 1.0000 24.4569
ν2 5.0000 7.2585 .6079 2.2585 .4517 2.3389 1.0000 12.4724

1000

β0 1.0000 .9933 < .0001 -0.0067 .0067 .0067 1.0000 .0783
β1 2.0000 1.9977 < .0001 -0.0023 .0011 .0023 1.0000 .0642
γ -0.9000 -0.9375 < .0001 -0.0375 .0417 .0375 1.0000 .1302
ν1 15.0000 11.6692 .1879 -3.3308 .2221 3.3361 1.0000 12.3566
ν2 5.0000 6.1734 .0640 1.1734 .2347 1.1752 1.0000 7.3765

Table 53 – Results of the simulation study for the skew generalized t model with ν1 = 15
and ν2 = 5 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .9426 .0000 -0.0574 .0574 .0574 1.0000 .3463
β1 2.0000 2.0217 .0000 .0217 .0109 .0217 1.0000 .2678
γ .9000 .3832 .0003 -0.5168 .5742 .5168 1.0000 1.1461
ν1 15.0000 10.8288 .2093 -4.1712 .2781 4.1764 1.0000 23.0118
ν2 5.0000 4.4050 .0450 -0.5950 .1190 .5967 1.0000 10.3769

250

β0 1.0000 .9690 .0000 -0.0310 .0310 .0310 1.0000 .1467
β1 2.0000 1.9733 .0000 -0.0267 .0134 .0267 1.0000 .1018
γ .9000 .9405 .0000 .0405 .0450 .0405 1.0000 .1603
ν1 15.0000 20.1713 12.3478 5.1713 .3448 13.3870 1.0000 43.6633
ν2 5.0000 10.2310 3.5553 5.2310 1.0462 6.3248 1.0000 24.1319

500

β0 1.0000 1.0123 .0000 .0123 .0123 .0123 1.0000 .1058
β1 2.0000 1.9945 .0000 -0.0055 .0027 .0055 1.0000 .0945
γ .9000 .8249 .0000 -0.0751 .0834 .0751 1.0000 .3141
ν1 15.0000 14.0663 1.7582 -0.9337 .0622 1.9907 1.0000 25.2807
ν2 5.0000 6.7107 .4678 1.7107 .3421 1.7735 1.0000 13.0913

1000

β0 1.0000 1.0255 .0000 .0255 .0255 .0255 1.0000 .0811
β1 2.0000 1.9834 .0000 -0.0166 .0083 .0166 1.0000 .0624
γ .9000 .9676 .0000 .0676 .0751 .0676 .0400 .0785
ν1 15.0000 12.9975 .3901 -2.0025 .1335 2.0401 1.0000 14.8208
ν2 5.0000 7.3505 .1595 2.3505 .4701 2.3559 1.0000 9.5126
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Table 54 – Results of the simulation study for the skew generalized t model with ν1 = 5
and ν2 = 15 and γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.4877 .0001 .4877 .4877 .4877 1.0000 1.1344
β1 2.0000 2.2021 < .0001 .2021 .1010 .2021 1.0000 1.1828
γ -0.9000 -0.2562 .0001 .6438 .7153 .6438 1.0000 1.1821
ν1 5.0000 4.3446 .0211 -0.6554 .1311 .6557 1.0000 8.7688
ν2 15.0000 14.3651 .5067 -0.6349 .0423 .8123 1.0000 47.3544

250

β0 1.0000 1.1469 < .0001 .1469 .1469 .1469 1.0000 .5454
β1 2.0000 2.0418 < .0001 .0418 .0209 .0418 1.0000 .4103
γ -0.9000 -0.8788 < .0001 .0212 .0235 .0212 1.0000 .3753
ν1 5.0000 5.0572 .0035 .0572 .0114 .0573 1.0000 5.7130
ν2 15.0000 24.7713 .1813 9.7713 .6514 9.7730 1.0000 39.0705

500

β0 1.0000 .9996 < .0001 -0.0004 .0004 .0004 1.0000 .3976
β1 2.0000 1.9729 < .0001 -0.0271 .0136 .0271 1.0000 .3269
γ -0.9000 -0.7920 .0001 .1080 .1200 .1080 1.0000 .4388
ν1 5.0000 4.3893 .0017 -0.6107 .1221 .6107 1.0000 3.4331
ν2 15.0000 19.6827 .0871 4.6827 .3122 4.6835 1.0000 22.0990

1000

β0 1.0000 1.0978 < .0001 .0978 .0978 .0978 1.0000 .2756
β1 2.0000 1.8977 < .0001 -0.1023 .0511 .1023 1.0000 .2247
γ -0.9000 -0.8696 < .0001 .0304 .0338 .0304 1.0000 .2417
ν1 5.0000 4.5483 .0012 -0.4517 .0903 .4517 1.0000 2.5821
ν2 15.0000 21.1129 .0404 6.1129 .4075 6.1130 1.0000 16.3782

Table 55 – Results of the simulation study for the skew generalized t model with ν1 = 5
and ν2 = 15 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .7419 .0001 -0.2581 .2581 .2581 1.0000 1.1925
β1 2.0000 1.9481 .0001 -0.0519 .0260 .0519 1.0000 1.3693
γ .0000 .0007 .0000 .0007 - .0007 1.0000 .8963
ν1 5.0000 4.5297 .0256 -0.4703 .0941 .4710 1.0000 9.6611
ν2 15.0000 16.8329 .7727 1.8329 .1222 1.9891 1.0000 51.8011

250

β0 1.0000 .9022 .0000 -0.0978 .0978 .0978 1.0000 .4789
β1 2.0000 2.0080 .0000 .0080 .0040 .0080 1.0000 .4685
γ .0000 .0190 .0000 .0190 - .0190 1.0000 .6603
ν1 5.0000 4.0998 .0024 -0.9002 .1800 .9002 1.0000 4.5467
ν2 15.0000 11.4073 .0440 -3.5927 .2395 3.5930 1.0000 18.9437

500

β0 1.0000 .8728 .0000 -0.1272 .1272 .1272 1.0000 .3387
β1 2.0000 1.9146 .0000 -0.0854 .0427 .0854 1.0000 .3353
γ .0000 .0128 .0000 .0128 - .0128 1.0000 .4844
ν1 5.0000 5.4850 .0113 .4850 .0970 .4851 1.0000 5.5162
ν2 15.0000 16.3160 .1897 1.3160 .0877 1.3296 1.0000 22.4285

1000

β0 1.0000 1.0983 .0000 .0983 .0983 .0983 1.0000 .2735
β1 2.0000 1.8829 .0000 -0.1171 .0586 .1171 .5400 .2345
γ .0000 .2922 .0007 .2922 - .2922 1.0000 .6480
ν1 5.0000 5.4216 .0072 .4216 .0843 .4217 1.0000 3.7159
ν2 15.0000 19.1846 .3341 4.1846 .2790 4.1979 1.0000 20.3300
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Table 56 – Results of the simulation study for the skew generalized t model with ν1 = 5
and ν2 = 15 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .4429 .0001 -0.5571 .5571 .5571 .9800 1.1772
β1 2.0000 1.7195 .0001 -0.2805 .1402 .2805 1.0000 1.2659
γ .9000 .1873 .0002 -0.7127 .7919 .7127 1.0000 1.1694
ν1 5.0000 5.2312 .0428 .2312 .0462 .2352 1.0000 11.3928
ν2 15.0000 19.0628 1.1988 4.0628 .2709 4.2360 1.0000 58.9464

250

β0 1.0000 .8250 .0001 -0.1750 .1750 .1750 1.0000 .5611
β1 2.0000 1.9118 .0000 -0.0882 .0441 .0882 1.0000 .4623
γ .9000 .7831 .0006 -0.1169 .1298 .1169 1.0000 .6010
ν1 5.0000 6.0773 .0342 1.0773 .2155 1.0778 1.0000 8.9527
ν2 15.0000 30.8466 1.4614 15.8466 1.0564 15.9139 1.0000 59.1671

500

β0 1.0000 .9549 .0000 -0.0451 .0451 .0451 1.0000 .3836
β1 2.0000 2.0017 .0000 .0017 .0008 .0017 1.0000 .3253
γ .9000 .8870 .0000 -0.0130 .0144 .0130 1.0000 .2885
ν1 5.0000 5.0246 .0046 .0246 .0049 .0250 1.0000 3.9972
ν2 15.0000 24.3771 .1915 9.3771 .6251 9.3791 1.0000 26.5736

1000

β0 1.0000 .9545 .0000 -0.0455 .0455 .0455 1.0000 .2697
β1 2.0000 2.0440 .0000 .0440 .0220 .0440 1.0000 .2205
γ .9000 .8916 .0000 -0.0084 .0094 .0084 1.0000 .2193
ν1 5.0000 5.4574 .0054 .4574 .0915 .4574 1.0000 3.4592
ν2 15.0000 26.5296 .1629 11.5296 .7686 11.5307 1.0000 21.4267

Table 57 – Results of the simulation study for the skew generalized t model with ν1 = 30
and ν2 = 30 and γ = −0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 1.2513 < .0001 .2513 .2513 .2513 .9500 .5399
β1 2.0000 1.9577 < .0001 -0.0423 .0212 .0423 1.0000 .5630
γ -0.9000 -0.5381 .0026 .3619 .4021 .3619 1.0000 1.0892
ν1 30.0000 7.6424 .1972 -22.3576 .7453 22.3584 .1000 19.0875
ν2 30.0000 7.3182 .3618 -22.6818 .7561 22.6847 .1000 23.1226

250

β0 1.0000 1.1208 < .0001 .1208 .1208 .1208 .7000 .2454
β1 2.0000 1.9148 < .0001 -0.0852 .0426 .0852 .8500 .1875
γ -0.9000 -0.9326 < .0001 -0.0326 .0362 .0326 1.0000 .1944
ν1 30.0000 12.3288 .5415 -17.6712 .5890 17.6795 .4000 26.3319
ν2 30.0000 15.8351 1.1933 -14.1649 .4722 14.2150 .4000 38.2236

500

β0 1.0000 1.0588 < .0001 .0588 .0588 .0588 1.0000 .1701
β1 2.0000 2.0089 < .0001 .0089 .0044 .0089 1.0000 .1333
γ -0.9000 -0.9620 < .0001 -0.0620 .0689 .0620 .8000 .0987
ν1 30.0000 17.9127 1.1854 -12.0873 .4029 12.1453 .7500 26.0248
ν2 30.0000 24.7469 2.6667 -5.2531 .1751 5.8912 .7500 40.3640

1000

β0 1.0000 1.0344 < .0001 .0344 .0344 .0344 1.0000 .1276
β1 2.0000 2.0050 < .0001 .0050 .0025 .0050 1.0000 .0970
γ -0.9000 -0.9456 < .0001 -0.0456 .0507 .0456 1.0000 .1008
ν1 30.0000 23.0520 7.8809 -6.9480 .2316 10.5063 1.0000 34.4769
ν2 30.0000 35.1296 20.1995 5.1296 .1710 20.8406 1.0000 56.0644
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Table 58 – Results of the simulation study for the skew generalized t model with ν1 = 30
and ν2 = 30 and γ = 0

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .8380 .0000 -0.1620 .1620 .1620 1.0000 .6343
β1 2.0000 2.0105 .0000 .0105 .0052 .0105 1.0000 .7601
γ .0000 .0153 .0000 .0153 - .0153 1.0000 1.0411
ν1 30.0000 5.9724 .0638 -24.0276 .8009 24.0277 .0000 13.5852
ν2 30.0000 6.5047 .1222 -23.4953 .7832 23.4956 .0000 18.7696

250

β0 1.0000 .9514 .0000 -0.0486 .0486 .0486 1.0000 .2611
β1 2.0000 1.9845 .0000 -0.0155 .0077 .0155 1.0000 .2494
γ .0000 .0182 .0000 .0182 - .0182 1.0000 .5839
ν1 30.0000 7.9691 .2029 -22.0309 .7344 22.0319 .0200 14.3909
ν2 30.0000 7.7007 .2911 -22.2993 .7433 22.3012 .0200 17.3357

500

β0 1.0000 1.0426 .0000 .0426 .0426 .0426 1.0000 .1744
β1 2.0000 2.0820 .0000 .0820 .0410 .0820 .9800 .1884
γ .0000 -0.0117 .0000 -0.0117 - .0117 1.0000 .3726
ν1 30.0000 21.3851 16.7628 -8.6149 .2872 18.8470 1.0000 42.8951
ν2 30.0000 20.1523 17.3432 -9.8477 .3283 19.9441 1.0000 43.6459

1000

β0 1.0000 .9803 .0000 -0.0197 .0197 .0197 1.0000 .1273
β1 2.0000 2.0269 .0000 .0269 .0134 .0269 1.0000 .1244
γ .0000 .1189 .0001 .1189 - .1189 1.0000 .4548
ν1 30.0000 30.0794 41.4154 .0794 .0026 41.4155 1.0000 50.3727
ν2 30.0000 32.5994 57.0358 2.5994 .0866 57.0950 1.0000 58.8200

Table 59 – Results of the simulation study for the skew generalized t model with ν1 = 30
and ν2 = 30 and γ = 0.9

n Parameter Real Est Var Bias Rel Bias RMSE CR length CI

50

β0 1.0000 .6969 .0000 -0.3031 .3031 .3031 .1200 .5713
β1 2.0000 2.0877 .0000 .0877 .0438 .0877 1.0000 .6632
γ .9000 .2253 .0003 -0.6747 .7497 .6747 1.0000 1.1824
ν1 30.0000 7.6380 .6413 -22.3620 .7454 22.3712 .0200 19.3999
ν2 30.0000 7.3938 .6959 -22.6062 .7535 22.6169 .0200 22.5823

250

β0 1.0000 .8599 .0000 -0.1401 .1401 .1401 .0400 .2493
β1 2.0000 2.0666 .0000 .0666 .0333 .0666 1.0000 .1958
γ .9000 .8833 .0000 -0.0167 .0186 .0167 1.0000 .3176
ν1 30.0000 10.2269 .6962 -19.7731 .6591 19.7853 .1200 19.8956
ν2 30.0000 12.5730 1.4558 -17.4270 .5809 17.4877 .1200 28.7830

500

β0 1.0000 .9144 .0000 -0.0856 .0856 .0856 .9000 .1778
β1 2.0000 1.9606 .0000 -0.0394 .0197 .0394 1.0000 .1482
γ .9000 .9295 .0000 .0295 .0328 .0295 1.0000 .1664
ν1 30.0000 15.6277 12.6373 -14.3723 .4791 19.1381 .6600 30.4127
ν2 30.0000 21.7712 28.1327 -8.2288 .2743 29.3114 .6600 46.1574

1000

β0 1.0000 .9899 .0000 -0.0101 .0101 .0101 1.0000 .1259
β1 2.0000 2.0065 .0000 .0065 .0032 .0065 1.0000 .0954
γ .9000 .9450 .0000 .0450 .0500 .0450 .7800 .0936
ν1 30.0000 29.1444 22.4531 -0.8556 .0285 22.4694 1.0000 45.3264
ν2 30.0000 45.1337 58.2821 15.1337 .5045 60.2149 1.0000 73.5480
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APPENDIX C – Average of the values of
the model selection criteria of Section 1.5.2

Table 60 – Average of the values of the model selection criteria, for the skew-t model

Model
n criterion SCN SSL1 SSL2 ST SGT

50

EAIC 191.53 191.99 192.28 191.48 193.61
EBIC 203.00 201.55 201.84 201.04 203.17
DIC 184.06 185.28 185.33 185.06 186.48

LPML -93.01 -93.47 -93.71 -93.24 -93.96

250

EAIC 1158.73 936.71 936.81 937.56 946.51
EBIC 1179.86 954.32 954.42 955.16 964.12
DIC 1151.17 930.67 930.80 931.79 942.22

LPML -466.31 -465.67 -465.75 -466.00 -471.43

500

EAIC 1747.36 1738.86 1738.89 1737.36 1757.06
EBIC 1772.64 1759.93 1759.96 1758.43 1778.14
DIC 1741.32 1733.61 1733.64 1731.74 1750.98

LPML -871.30 -866.76 -866.78 -865.89 -875.39

1000

EAIC 3559.98 3523.82 3523.90 3515.58 3515.58
EBIC 3589.43 3548.36 3548.44 3540.12 3540.11
DIC 3553.91 3518.43 3518.56 3509.86 3509.89

LPML -1781.08 -1759.19 -1759.26 -1754.88 -1754.90

Table 61 – Average of the values of the model selection criteria, for the skew slash model

Model
n criterion SCN SSL1 SSL2 ST SGT

50

EAIC 191.34 174.83 175.33 173.61 176.50
EBIC 202.81 184.39 184.89 183.17 186.06
DIC 185.91 167.08 168.10 166.81 169.48

LPML -84.81 -84.77 -84.90 -83.99 -85.40

250

EAIC 799.51 797.60 798.17 797.01 815.84
EBIC 820.64 815.21 815.78 814.61 833.44
DIC 793.59 792.53 789.11 791.32 809.06

LPML -396.50 -396.25 -396.85 -395.56 -404.47

500

EAIC 1572.75 1570.14 1570.74 1571.33 1610.50
EBIC 1598.04 1591.21 1591.82 1592.40 1631.57
DIC 1565.26 1562.87 1563.35 1566.03 1604.15

LPML -783.31 -782.84 -783.15 -783.08 -801.38

1000

EAIC 3003.31 3002.54 3002.83 3005.38 3109.88
EBIC 3032.76 3027.08 3027.37 3029.92 3134.42
DIC 2996.96 2997.33 2995.06 2999.58 3101.30

LPML -1499.10 -1498.81 -1499.08 -1499.98 -1550.92
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Table 62 – Average of the values of the model selection criteria, for the skew contaminated
model

Model
n criterion SCN SSL1 SSL2 ST SGT

50

EAIC 183.66 182.13 183.74 182.33 188.01
EBIC 195.13 191.69 193.30 191.89 197.57
DIC 176.35 174.71 177.55 175.70 181.41

LPML -87.76 -88.53 -89.73 -87.96 -90.73

250

EAIC 782.63 781.07 781.86 781.39 791.48
EBIC 803.76 798.67 799.46 799.00 809.08
DIC 776.26 774.85 769.53 775.99 788.54

LPML -389.11 -387.95 -388.81 -387.87 -393.27

500

EAIC 1659.63 1666.98 1667.05 1667.37 1693.08
EBIC 1684.92 1688.05 1688.12 1688.45 1714.16
DIC 1653.64 1661.72 1661.81 1661.71 1686.29

LPML -827.00 -830.77 -830.83 -830.82 -842.99

1000

EAIC 3069.47 3080.84 3080.80 3084.65 3163.52
EBIC 3098.91 3105.38 3105.34 3109.19 3188.06
DIC 3063.24 3075.30 3075.22 3078.65 3155.23

LPML -1531.44 -1537.50 -1537.47 -1539.25 -1577.89

Table 63 – Average of the values of the model selection criteria, for the skew generalized t
model

Model
n criterion SCN SSL1 SSL2 ST SGT

50

EAIC 147.47 147.04 135.84 146.69 147.78
EBIC 158.94 156.60 145.40 156.25 157.34
DIC 141.21 140.99 126.19 140.73 141.45

LPML -70.93 -71.08 -63.13 -70.87 -71.44

250

EAIC 668.30 667.53 667.72 668.15 678.68
EBIC 689.43 685.14 685.32 685.75 696.29
DIC 661.96 661.78 662.04 662.54 674.84

LPML -331.38 -331.03 -331.17 -331.32 -337.61

500

EAIC 1290.39 1293.93 1293.94 1299.32 1319.59
EBIC 1315.68 1315.00 1315.01 1320.40 1340.66
DIC 1284.09 1288.94 1288.95 1294.14 1318.09

LPML -642.28 -644.49 -644.50 -647.28 -658.72

1000

EAIC 2560.07 2549.88 2589.64 2549.73 2546.39
EBIC 2589.52 2574.41 2614.18 2574.27 2570.93
DIC 2554.39 2544.79 2589.28 2544.49 2540.81

LPML -1278.62 -1272.59 -1295.38 -1272.62 -1270.75
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APPENDIX D – Proof of the preposition
2.2.1

Proof of the preposition 2.2.1 presented in section 2.2

Proof. Consider Wi ∼ SMSNc(0, 1, γ, G,ν). From the stochastic representation of the
skew-normal we have that

Wi = U
−1/2
i (∆(Hi − b) +

√
τTi) i = 1, . . . , n

then,

Wi|Hi, Ui ∼ N(u−1/2
i ∆(hi − b), u−1

i τ)

Hi ∼ HN(0, 1)

Ui ∼ G(.|ν)

(D.1)

Therefore, considering Ti ∼ N(0, 1), ηi = Xi
tβ and denoting the cdf of Hi as F (hi), then

pi =
∫ ∫

P

Ti ≤ ηi − u−1/2
i ∆(hi − b)
u
−1/2
i

√
τ

|Hi, Ui

 dG(ui|ν)dF (hi)

=
∫ ∫

P

Ti > −ηi + u
−1/2
i ∆(hi − b)
u
−1/2
i

√
τ

|Hi, Ui

 dG(ui|ν)dF (hi)

=
∫ ∫

P
(
u
−1/2
i

√
τTi + ηi − u−1/2

i ∆(hi − b) > 0|Hi, Ui
)
dG(ui|ν)dF (hi)

=
∫ ∫

P (Zi > 0|Hi, Ui) dG(ui|ν)dF (hi)

= P (Zi > 0),

(D.2)

where Zi ∼ SMSNc(ηi, 1,−γ,G,ν). Therefore, we found that considering yi = I(Zi > 0)
with Zi = Xi

tβ + Ui
−1/2(∆(b − Hi) +

√
τTi is equivalent to the binary model Yi ∼

bernoulli(pi) with pi = F (Xi
tβ|γ,ν).
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APPENDIX E – Construction of the
simulated envelopes

The envelopes are constructed (for the deviance residuals) in the following way:

1. From the results of fitting the binary response with link function based on the SMSN
class, a sample of size n is generated considering appropriate estimates (e.g., posterior
expectation) for the parameters.

2. We fit the model used to generate the sample in (1) in this dataset, generating a
valid MCMC sample of size m to the model parameters.

3. For i = 1, . . . , n and j = 1, . . . ,m we calculate the deviance residual (d∗ij) using the
j-th values of the valid MCMC sample for β,γ and ν.

4. From the previous step, we will have a matrix with the residuals
d∗11 d∗12 · · · d∗1m

d∗21 d∗22 · · · d∗2m
... ... . . . ...
d∗n1 d∗n2 d∗nm


5. From each sample, we sort the residuals into ascending order, that we shall denote

by (d∗(i)j) the i-th order residual.

d∗(1)1 d∗(1)2 · · · d∗(1)m

d∗(2)1 d∗(2)2 · · · d∗(2)m
... ... . . . ...

d∗(n)1 d∗(n)2 d∗(n)m



6. Then, we calculate the limits d∗(i)L =
d∗(i)(2) + d∗(i)(3)

2 and d∗(i)U =
d∗(i)(m−2) + d∗(i)(m−1)

2 ,
where d∗(i)(r) is the r-th order statistic for the i-th line. We also consider the reference

line d∗(i) = 1
m

m∑
j=1

d∗(i)j, for i = 1, 2, . . . , n.
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APPENDIX F – Results of the simulations
study: parameter recovery for section 2.4.1

We present the results related to the Section 2.4.1 not presented in the main
document.

Table 64 – Results of the simulation study for the skew-t model with ν = 10.
50 250 500 1000

Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 1.459 .76 [0.272;2.911] 1.04 .17 [0.746;1.38] .981 .152 [0.716;1.285] 1.027 .08 [0.877;1.184]
γ = 0 .782 .357 [0.128;1.427] .954 .211 [0.592;1.391] .917 .148 [0.663;1.211] 1.042 .138 [0.797;1.302]
γ = .9 .578 .343 [-0.088;1.23] 1.32 .317 [0.803;2.012] 1.08 .217 [0.717;1.538] .93 .132 [0.718;1.226]

β1

γ = −0.9 3.271 1.452 [1.015;5.949] 1.96 .371 [1.333;2.683] 1.949 .303 [1.473;2.586] 1.806 .162 [1.509;2.14]
γ = 0 1.929 .725 [0.836;3.421] 2.184 .456 [1.417;3.193] 2.059 .296 [1.592;2.672] 2.207 .291 [1.76;2.846]
γ = .9 2.068 .593 [1.029;3.239] 2.432 .57 [1.524;3.61] 2.055 .329 [1.553;2.786] 1.95 .219 [1.611;2.461]

γ
γ = −0.9 .868 .582 [-0.862;0.995] -0.946 .244 [-0.995;-0.259] -0.936 .2 [-0.995;-0.37] -0.976 .082 [-0.995;-0.739]

γ = 0 .803 .627 [-0.995;0.937] -0.849 .472 [-0.995;0.484] .107 .442 [-0.678;0.989] -0.054 .368 [-0.946;0.493]
γ = .9 .87 .653 [-0.94;0.995] .003 .519 [-0.995;0.753] .969 .157 [0.547;0.995] .975 .115 [0.644;0.995]

ν
γ = −0.9 18.503 19.679 [2.003;57.66] 19.883 18.559 [2.036;57.776] 16.213 18.016 [2.075;51.191] 21.364 16.022 [2.871;49.007]

γ = 0 15.456 16.474 [2.009;51.824] 16.973 18.725 [2.013;49.602] 16.803 16.749 [2.107;53.724] 13.585 15.06 [2.013;42.553]
γ = .9 21.427 19.925 [2.043;62.099] 14.507 17.319 [2.006;46.514] 17.057 18.171 [2.003;51.503] 18.623 16.708 [2.145;51.55]

Table 65 – Results of the simulation study for the skew-t model with ν = 50.
50 250 500 1000

Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 1.461 .472 [0.701;2.525] 1.224 .199 [0.826;1.608] 1.149 .133 [0.898;1.402] 1.046 .081 [0.891;1.204]
γ = 0 1.419 .637 [0.411;2.773] 1.49 .312 [0.966;2.161] 1.036 .124 [0.828;1.307] 1.07 .096 [0.885;1.251]
γ = .9 1.82 .832 [0.599;3.423] 1.314 .245 [0.863;1.797] 1.121 .154 [0.848;1.439] 1.058 .123 [0.83;1.31]

β1

γ = −0.9 2.157 .693 [1.014;3.596] 2.607 .402 [1.872;3.374] 2.273 .261 [1.823;2.831] 2.083 .18 [1.709;2.407]
γ = 0 3.019 1.093 [1.273;5.346] 3.092 .545 [2.125;4.122] 2.057 .228 [1.601;2.476] 2.257 .181 [1.938;2.614]
γ = .9 4.61 2.049 [1.618;8.616] 2.406 .382 [1.751;3.197] 2.109 .213 [1.721;2.548] 2.228 .196 [1.871;2.599]

γ
γ = −0.9 -0.851 .649 [-0.995;0.948] -0.891 .585 [-0.995;0.819] -0.9 .354 [-0.995;0.137] -0.97 .117 [-0.995;-0.629]

γ = 0 .857 .636 [-0.911;0.995] .905 .404 [-0.275;0.995] -0.074 .476 [-0.993;0.744] .044 .344 [-0.797;0.516]
γ = .9 -0.871 .643 [-0.995;0.91] .884 .477 [-0.501;0.995] .968 .184 [0.429;0.995] .975 .128 [0.607;0.995]

ν
γ = −0.9 21.334 19.534 [2.006;62.143] 27.961 21.746 [2.65;69.919] 26.16 19.555 [2.952;66.408] 27.988 19.734 [3.8;67.138]

γ = 0 19.312 19.843 [2.013;60.652] 22.107 19.559 [2.024;62.295] 26.125 20.647 [2.635;67.37] 30.316 21.405 [4.238;71.885]
γ = .9 20.136 20.446 [2.013;59.708] 21.829 19.391 [2.016;61.454] 25.125 20.635 [2.268;63.723] 23.637 18.864 [3.15;61.944]

Table 66 – Results of the simulation study for the skew slash model with ν = 10.
50 250 500 1000

Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 1.087 .509 [0.346;2.099] .84 .131 [0.586;1.099] .941 .134 [0.721;1.214] .975 .079 [0.843;1.135]
γ = 0 1.615 .649 [0.523;2.994] .81 .143 [0.565;1.077] .895 .158 [0.625;1.201] 1.038 .165 [0.807;1.419]
γ = .9 1.653 .618 [0.574;2.937] .828 .228 [0.435;1.301] .912 .137 [0.651;1.18] .946 .114 [0.753;1.193]

β1

γ = −0.9 2.219 .773 [0.857;3.679] 1.567 .265 [1.067;2.037] 2.192 .31 [1.59;2.721] 1.965 .16 [1.663;2.28]
γ = 0 2.925 .999 [1.312;5.055] 1.614 .298 [1.061;2.18] 2.092 .304 [1.62;2.707] 2.075 .324 [1.693;2.864]
γ = .9 2.712 .875 [1.181;4.512] 1.975 .488 [1.258;3.07] 2.014 .218 [1.618;2.413] 1.977 .197 [1.653;2.384]

γ
γ = −0.9 .774 .595 [-0.895;0.995] -0.942 .273 [-0.995;-0.15] -0.901 .257 [-0.995;-0.154] -0.963 .119 [-0.995;-0.629]

γ = 0 -0.868 .692 [-0.995;0.968] -0.858 .355 [-0.995;0.132] .705 .284 [0.045;0.994] -0.06 .274 [-0.563;0.483]
γ = .9 .862 .704 [-0.976;0.992] .515 .426 [-0.473;0.993] .975 .128 [0.622;0.995] .966 .11 [0.664;0.995]

ν
γ = −0.9 18.649 18.897 [1.01;57.742] 21.338 19.08 [1.007;61.975] 20.356 18.757 [1.011;58.968] 24.594 20.499 [1.5;64.689]

γ = 0 20.026 19.687 [1.004;61.925] 20.146 19.939 [1.015;61.305] 18.054 16.955 [1.043;54.554] 15.365 15.435 [1.038;48.75]
γ = .9 19.052 18.315 [1.006;60.774] 12.571 15.349 [1.002;44.78] 21.171 18.923 [1.132;57.577] 17.942 16.822 [1.352;52.029]
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Table 67 – Results of the simulation study for the skew slash model with ν = 50.
50 250 500 1000

Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 1.974 .968 [0.546;3.828] 1.214 .199 [0.838;1.573] 1.188 .136 [0.954;1.473] 1.053 .097 [0.868;1.241]
γ = 0 1.043 .406 [0.331;1.814] 1.076 .235 [0.7;1.598] 1.119 .203 [0.754;1.506] 1.081 .109 [0.88;1.297]
γ = .9 2.645 1.279 [0.986;5.197] 1.321 .321 [0.782;1.971] .993 .147 [0.708;1.271] 1.088 .106 [0.886;1.287]

β1

γ = −0.9 4.456 1.995 [1.782;8.181] 2.387 .407 [1.681;3.17] 2.663 .311 [2.099;3.253] 2.12 .207 [1.764;2.502]
γ = 0 2.452 .779 [1.181;3.834] 2.481 .487 [1.704;3.519] 2.274 .365 [1.77;3.147] 2.274 .22 [1.908;2.77]
γ = .9 4.044 1.846 [1.71;7.65] 2.317 .473 [1.626;3.299] 2.106 .228 [1.726;2.569] 2.258 .172 [1.933;2.575]

γ
γ = −0.9 -0.837 .628 [-0.995;0.922] -0.921 .249 [-0.995;-0.21] -0.939 .249 [-0.995;-0.229] -0.94 .139 [-0.995;-0.571]

γ = 0 -0.848 .601 [-0.995;0.868] -0.315 .43 [-0.969;0.583] .737 .288 [0.063;0.993] -0.192 .297 [-0.716;0.406]
γ = .9 .829 .621 [-0.932;0.995] .907 .327 [-0.016;0.995] .964 .161 [0.534;0.995] .959 .159 [0.5;0.995]

ν
γ = −0.9 17.553 19.273 [1.009;54.037] 20.305 21.095 [1.109;62.478] 22.875 21.128 [1.816;65.203] 19.926 18.295 [1.667;55.529]

γ = 0 18.92 19.105 [1;57.34] 18.672 19.015 [1.015;57.292] 17.591 19.289 [1.032;51.412] 23.711 20.239 [1.503;67.321]
γ = .9 17.761 20.433 [1.004;57.001] 18.277 19.319 [1.01;57.119] 19.064 17.368 [1.302;54.553] 22.458 18.662 [1.828;56.333]

Table 68 – Results of the simulation study for the skew generalized t model with ν1 = 5
and ν2 = 15.

50 250 500 1000
Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 .738 .83 [-0.107;2.354] 1.342 .643 [0.391;2.765] 1.172 .803 [0.311;2.758] .167 .046 [0.106;0.264]
γ = 0 1.395 1.029 [0.191;3.445] .664 .452 [0.11;1.606] .832 .424 [0.236;1.667] .967 .448 [0.359;1.745]
γ = .9 1.722 1.268 [0.158;3.87] 1.212 .557 [0.287;2.273] 1.232 .49 [0.402;2.125] .995 .711 [0.251;2.533]

β1

γ = −0.9 2.04 1.851 [0.177;5.007] 2.092 1.002 [0.607;3.863] 2.221 1.52 [0.534;5.408] .332 .086 [0.22;0.517]
γ = 0 1.955 1.537 [0.361;5.153] 1.832 .99 [0.512;3.69] 1.508 .763 [0.535;2.911] 1.655 .762 [0.638;3.168]
γ = .9 1.992 1.429 [0.362;4.505] 2.032 .904 [0.474;3.701] 2.967 1.168 [0.856;4.779] 1.69 1.143 [0.438;4.163]

γ
γ = −0.9 -0.597 .638 [-0.947;0.989] -0.853 .578 [-0.995;0.751] -0.402 .438 [-0.992;0.433] -0.638 .251 [-0.992;-0.158]

γ = 0 .789 .668 [-0.957;0.99] .811 .595 [-0.955;0.995] -0.758 .542 [-0.994;0.792] -0.609 .272 [-0.995;-0.074]
γ = .9 .866 .695 [-0.974;0.995] .849 .562 [-0.72;0.994] .882 .375 [-0.146;0.995] .887 .418 [-0.305;0.993]

ν1

γ = −0.9 10.55 12.746 [2.002;39.722] 4.124 2.553 [2.003;9.845] 6.245 3.979 [2.019;13.897] 10.43 6.667 [2.383;25.299]
γ = 0 8.326 9.851 [2.01;24.707] 4.739 3.15 [2.002;11.469] 7.023 5.156 [2.024;16.659] 4.532 2.668 [2.009;12.132]
γ = .9 9.014 6.968 [2.081;24.288] 5.312 3.317 [2.023;12.27] 3.218 1.651 [2.029;6.238] 9.137 6.517 [2.131;21.944]

ν2

γ = −0.9 14.986 17.07 [0.369;50.12] 17.762 16.187 [1.714;50.932] 12.883 15.704 [0.495;53.266] 1.032 .734 [0.203;2.417]
γ = 0 16.653 14.607 [0.974;48.638] 11.27 10.744 [0.708;31.321] 13.037 13.561 [0.714;36.443] 10.914 9.809 [1.309;31.425]
γ = .9 14.144 14.144 [0.685;45.736] 17.864 16.819 [1.999;48.058] 15.2 12.497 [0.686;42.56] 15.361 14.412 [0.665;52.763]

Table 69 – Results of the simulation study for the skew generalized t model with ν1 = 15
and ν2 = 5.

50 250 500 1000
Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 2.218 1.603 [0.327;5.8] 1.806 .881 [0.632;3.642] 3.4 1.347 [1.433;6.455] 1.139 .648 [0.473;2.692]
γ = 0 2.844 1.515 [0.609;5.628] 1.529 .751 [0.287;2.89] 2.465 .974 [0.944;4.496] 3.573 1.052 [1.939;5.664]
γ = .9 3.07 1.652 [0.864;6.584] 2.257 1.148 [0.538;4.586] 2.292 .705 [0.963;3.582] 2.192 .781 [1.056;3.646]

β1

γ = −0.9 6.15 4.025 [0.626;14.212] 3.45 1.601 [1.332;6.574] 6.66 2.651 [2.667;12.364] 2.361 1.354 [0.932;5.596]
γ = 0 7.756 3.788 [2.246;15.09] 2.908 1.422 [0.655;5.444] 4.694 1.821 [1.749;8.17] 7.162 2.015 [3.817;10.969]
γ = .9 7.257 3.803 [1.892;14.288] 4.186 2.093 [1.113;8.734] 4.5 1.356 [2.046;6.868] 4.529 1.598 [2.204;7.446]

γ
γ = −0.9 .812 .691 [-0.953;0.994] -0.684 .541 [-0.994;0.846] -0.836 .565 [-0.991;0.841] -0.455 .303 [-0.759;0.299]

γ = 0 .827 .679 [-0.944;0.995] .875 .415 [-0.385;0.993] .296 .446 [-0.606;0.989] -0.025 .412 [-0.753;0.809]
γ = .9 .778 .671 [-0.973;0.995] .926 .291 [0.076;0.994] .945 .21 [0.279;0.995] .925 .194 [0.417;0.994]

ν1

γ = −0.9 13.455 13.771 [2.137;41.195] 13.326 9.45 [2.385;32.589] 8.047 6.478 [2.653;16.97] 23.721 14.526 [2.93;52.123]
γ = 0 10.378 10.993 [2.025;33.371] 15.17 9.846 [2.399;36.349] 8.428 5.127 [2.3;17.531] 6.1 3.392 [2.192;14.154]
γ = .9 8.807 7.222 [2.025;24.184] 11.768 9.519 [2.163;31.956] 12.5 7.591 [3.147;28.531] 6.226 3.885 [2.043;15.017]

ν2

γ = −0.9 9.738 10.011 [0.42;27.038] 10.724 11.802 [0.643;30.807] 24.23 24.093 [3.268;74.64] 7.454 5.173 [0.546;17.708]
γ = 0 12.738 13.26 [0.552;41.335] 12.723 11.164 [0.645;36.229] 10.611 9.426 [0.98;28.234] 17.357 13.282 [2.269;37.765]
γ = .9 16.005 16.694 [0.551;51.512] 13.219 11.183 [0.742;34.556] 15.716 13.422 [0.828;41.353] 8.961 11.235 [0.882;35.335]
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Table 70 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.1 and ν2 = 0.9.

50 250 500 1000
Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 2.527 2.214 [0.34;7.227] 1.622 .953 [0.496;3.646] 2.823 1.57 [0.858;5.989] .994 .206 [0.773;1.33]
γ = 0 2.793 2.306 [0.516;8.057] 2.006 1.43 [0.35;4.915] 1.318 .376 [0.744;2.056] 2.467 1.636 [0.808;5.776]
γ = .9 2.981 2.193 [-0.075;7.062] 3.398 1.904 [0.649;6.94] 1.29 .667 [0.562;2.753] 1.623 .764 [0.927;2.848]

β1

γ = −0.9 4.249 3.68 [0.755;13.274] 5.304 3.291 [1.561;12.134] 5.864 3.183 [1.711;12.109] 1.872 .403 [1.427;2.472]
γ = 0 4.12 3.47 [0.641;11.945] 4.456 3.045 [1.113;10.545] 2.842 .908 [1.586;4.813] 4.76 3.084 [1.585;10.826]
γ = .9 6.727 4.456 [0.914;15.429] 6.568 3.773 [1.367;13.306] 3.122 1.719 [1.281;6.822] 2.976 1.34 [1.801;5.255]

γ
γ = −0.9 .857 .602 [-0.859;0.994] -0.613 .511 [-0.994;0.737] -0.524 .383 [-0.925;0.43] -0.945 .193 [-0.995;-0.394]

γ = 0 -0.907 .477 [-0.995;0.609] .732 .621 [-0.995;0.938] -0.659 .609 [-0.878;0.995] .447 .322 [-0.337;0.872]
γ = .9 .883 .585 [-0.891;0.995] .692 .594 [-0.928;0.99] .144 .504 [-0.993;0.753] .884 .316 [0.015;0.995]

ν1

γ = −0.9 .605 .267 [0.12;0.996] .522 .235 [0.13;0.976] .549 .203 [0.079;0.892] .211 .237 [0.005;0.751]
γ = 0 .581 .268 [0.122;1] .656 .234 [0.165;0.997] .228 .137 [0.041;0.509] .611 .252 [0.116;1]
γ = .9 .509 .24 [0.107;0.956] .495 .199 [0.086;0.856] .465 .246 [0.081;0.932] .313 .177 [0.07;0.701]

ν2

γ = −0.9 .266 .278 [0.002;0.868] .19 .212 [0.005;0.695] .146 .18 [0.007;0.608] .267 .19 [0.004;0.713]
γ = 0 .23 .273 [0.001;0.831] .261 .28 [0.008;0.851] .048 .046 [0.002;0.13] .211 .219 [0.009;0.727]
γ = .9 .131 .223 [0.001;0.729] .098 .169 [0.003;0.525] .166 .174 [0.003;0.569] .12 .069 [0.011;0.245]

Table 71 – Results of the simulation study for the skew contaminated normal model with
ν1 = 0.9 and ν2 = 0.1.

50 250 500 1000
Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD

β0

γ = −0.9 -1.659 1.424 [-4.6;0.148] 1.074 1.101 [0.059;3.569] .925 .943 [0.152;3.301] .661 .613 [0.177;2.121]
γ = 0 1.228 1.442 [-0.244;4.398] .33 .472 [-0.133;1.438] .882 .8 [0.106;2.725] 1.16 .829 [0.252;3.043]
γ = .9 .915 1.542 [-0.584;4.426] .941 .914 [0.054;2.849] 1.463 .99 [0.37;3.705] .984 .979 [0.285;3.446]

β1

γ = −0.9 4.734 3.279 [0.629;11.228] 1.949 1.844 [0.467;6.332] 1.531 1.484 [0.505;5.106] 1.376 1.234 [0.557;4.544]
γ = 0 2.375 2.301 [0.372;7.867] 1.563 1.529 [0.494;4.911] 1.637 1.377 [0.454;4.497] 2.395 1.561 [0.7;5.532]
γ = .9 .263 1.032 [-1.863;2.603] 1.535 1.352 [0.346;4.378] 2.184 1.6 [0.545;5.77] 1.55 1.493 [0.531;5.473]

γ
γ = −0.9 -0.826 .61 [-0.994;0.916] .799 .627 [-0.92;0.995] -0.86 .535 [-0.995;0.731] -0.883 .301 [-0.994;-0.063]

γ = 0 -0.817 .687 [-0.968;0.995] -0.807 .566 [-0.995;0.807] -0.858 .615 [-0.994;0.9] .13 .499 [-0.982;0.703]
γ = .9 .824 .678 [-0.995;0.972] -0.856 .665 [-0.995;0.961] .84 .617 [-0.911;0.995] .859 .522 [-0.631;0.995]

ν1

γ = −0.9 .593 .24 [0.189;0.999] .653 .275 [0.093;0.998] .629 .303 [0.087;0.996] .635 .313 [0.078;1]
γ = 0 .67 .272 [0.127;0.999] .619 .286 [0.082;1] .676 .287 [0.086;0.998] .722 .204 [0.274;0.991]
γ = .9 .655 .272 [0.111;1] .64 .297 [0.074;0.996] .634 .219 [0.28;0.995] .646 .3 [0.083;0.999]

ν2

γ = −0.9 .199 .253 [0.001;0.813] .297 .288 [0.003;0.885] .418 .301 [0.007;0.947] .446 .293 [0.008;0.955]
γ = 0 .336 .291 [0.002;0.899] .365 .276 [0.003;0.869] .335 .287 [0.006;0.881] .176 .207 [0.006;0.638]
γ = .9 .294 .289 [0.001;0.864] .314 .291 [0.005;0.895] .157 .221 [0.005;0.752] .403 .306 [0.006;0.951]



163

APPENDIX G – Results of the simulations
study: parameter recovery for section 3.4.2

Here we presented the tables with the results for the simulation study in Section
3.4.2 containing the scenarios not presented in this section.

Table 72 – Results of the simulation study under γc = 0.9, γw = 0 and γb = 0.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.133 .429 [ .392; 1.994] .822 .131 [ .558; 1.059] .945 .113 [ .705; 1.156] .940 .081 [ .786; 1.100]
βb1 2.000 2.277 .574 [1.208; 3.337] 1.599 .193 [1.220; 1.975] 1.962 .173 [1.628; 2.319] 1.820 .128 [1.533; 2.044]
βc0 1.000 1.399 .233 [ .971; 1.873] 1.129 .083 [ .980; 1.299] .980 .065 [ .865; 1.117] 1.022 .046 [ .934; 1.111]
βc1 2.000 1.977 .229 [1.564; 2.483] 2.109 .076 [1.953; 2.249] 1.994 .061 [1.887; 2.113] 2.044 .039 [1.959; 2.114]
γb .000 .022 .658 [-0.961; .995] -0.718 .313 [-0.995; -0.067] -0.340 .463 [-0.995; .504] .043 .515 [-0.995; .830]
γc .900 .171 .641 [-0.934; .990] .840 .186 [ .465; .993] .854 .170 [ .512; .992] .850 .127 [ .590; .988]
γw .000 -0.461 .532 [-0.994; .658] -0.801 .213 [-0.988; -0.330] .104 .272 [-0.446; .701] .115 .193 [-0.238; .502]
σ2
c 1.000 1.088 .550 [ .177; 2.231] 1.065 .160 [ .764; 1.367] 1.145 .176 [ .825; 1.511] 1.106 .119 [ .893; 1.339]

σ2
w 1.000 1.432 .583 [ .431; 2.636] .649 .135 [ .399; .937] 1.044 .181 [ .704; 1.386] .991 .120 [ .773; 1.207]

Table 73 – Results of the simulation study under γc = −0.9, γw = 0 and γb = 0.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .997 .436 [ .156; 1.797] .965 .158 [ .668; 1.285] .961 .115 [ .730; 1.174] .926 .075 [ .774; 1.063]
βb1 2.000 2.265 .613 [1.178; 3.449] 1.781 .194 [1.386; 2.148] 1.943 .184 [1.544; 2.275] 1.773 .127 [1.549; 2.042]
βc0 1.000 .734 .245 [ .284; 1.181] 1.031 .095 [ .849; 1.204] .988 .065 [ .870; 1.116] .996 .043 [ .920; 1.091]
βc1 2.000 1.835 .225 [1.439; 2.267] 2.009 .085 [1.823; 2.166] 2.014 .068 [1.891; 2.148] 1.972 .039 [1.891; 2.039]
γb .000 .397 .589 [-0.870; .994] -0.255 .625 [-0.995; .854] -0.131 .562 [-0.994; .858] -0.342 .415 [-0.995; .414]
γc -0.900 -0.070 .657 [-0.990; .963] -0.885 .145 [-0.993; -0.623] -0.411 .305 [-0.942; .012] -0.909 .086 [-0.991; -0.715]
γw .000 -0.408 .551 [-0.993; .762] .024 .314 [-0.703; .615] .203 .342 [-0.225; .968] .299 .189 [-0.037; .659]
σ2
c 1.000 1.245 .731 [ .016; 2.704] 1.198 .249 [ .751; 1.691] 1.173 .170 [ .806; 1.470] .920 .097 [ .743; 1.121]

σ2
w 1.000 1.550 .767 [ .169; 3.016] 1.114 .232 [ .684; 1.561] .911 .178 [ .555; 1.248] 1.039 .096 [ .864; 1.231]

Table 74 – Results of the simulation study under γc = 0, γw = 0.9 and γb = 0.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .921 .407 [ .133; 1.669] .917 .168 [ .604; 1.257] .871 .114 [ .635; 1.091] 1.005 .083 [ .845; 1.154]
βb1 2.000 1.947 .503 [1.060; 2.926] 2.192 .254 [1.725; 2.650] 2.053 .187 [1.698; 2.406] 2.012 .125 [1.771; 2.252]
βc0 1.000 1.259 .208 [ .882; 1.666] .988 .092 [ .802; 1.150] 1.035 .063 [ .911; 1.161] .996 .043 [ .917; 1.077]
βc1 2.000 1.903 .190 [1.541; 2.275] 2.075 .080 [1.917; 2.234] 1.933 .063 [1.810; 2.048] 1.898 .040 [1.822; 1.981]
γb .000 -0.098 .658 [-0.993; .960] -0.386 .574 [-0.995; .852] .332 .468 [-0.565; .995] .162 .413 [-0.523; .985]
γc .000 .378 .611 [-0.847; .993] .212 .420 [-0.502; .970] .207 .238 [-0.106; .743] -0.071 .158 [-0.408; .268]
γw .900 .646 .490 [-0.521; .994] .175 .392 [-0.509; .965] .859 .195 [ .445; .992] .863 .117 [ .621; .991]
σ2
c 1.000 .769 .614 [ .012; 1.940] 1.021 .247 [ .542; 1.476] 1.192 .205 [ .813; 1.566] 1.035 .108 [ .836; 1.236]

σ2
w 1.000 1.370 .691 [ .149; 2.596] 1.076 .258 [ .574; 1.562] .911 .207 [ .520; 1.302] 1.037 .120 [ .816; 1.279]
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Table 75 – Results of the simulation study under γc = 0, γw = −0.9 and γb = 0.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.221 .440 [ .335; 1.983] .956 .133 [ .699; 1.212] .982 .129 [ .722; 1.215] .943 .083 [ .778; 1.106]
βb1 2.000 2.211 .634 [1.131; 3.549] 1.644 .225 [1.245; 2.129] 2.034 .189 [1.652; 2.394] 1.931 .128 [1.708; 2.212]
βc0 1.000 1.016 .224 [ .605; 1.445] .944 .081 [ .796; 1.107] 1.021 .066 [ .890; 1.145] 1.026 .042 [ .945; 1.111]
βc1 2.000 1.803 .216 [1.312; 2.179] 1.929 .073 [1.799; 2.072] 2.006 .067 [1.874; 2.132] 1.974 .037 [1.907; 2.053]
γb .000 .355 .605 [-0.841; .994] -0.568 .391 [-0.995; .278] .433 .464 [-0.464; .994] -0.312 .436 [-0.994; .440]
γc .000 -0.571 .533 [-0.993; .782] -0.507 .276 [-0.926; .015] -0.000 .235 [-0.505; .532] .107 .173 [-0.129; .519]
γw -0.900 -0.443 .584 [-0.993; .881] -0.543 .450 [-0.990; .379] -0.659 .323 [-0.989; .001] -0.838 .154 [-0.990; -0.531]
σ2
c 1.000 1.507 .765 [ .232; 2.910] 1.323 .216 [ .886; 1.731] 1.198 .176 [ .884; 1.542] .901 .101 [ .689; 1.090]

σ2
w 1.000 .988 .644 [ .053; 2.215] .367 .163 [ .085; .717] .967 .183 [ .609; 1.305] .961 .111 [ .732; 1.164]

Table 76 – Results of the simulation study under γc = 0, γw = 0 and γb = 0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .961 .392 [ .224; 1.764] .951 .152 [ .657; 1.230] .968 .126 [ .717; 1.199] .970 .083 [ .813; 1.138]
βb1 2.000 1.978 .566 [ .931; 3.013] 1.747 .211 [1.353; 2.182] 1.995 .181 [1.645; 2.359] 1.864 .120 [1.637; 2.091]
βc0 1.000 1.178 .211 [ .793; 1.579] 1.049 .086 [ .874; 1.204] 1.002 .067 [ .885; 1.145] 1.017 .047 [ .937; 1.118]
βc1 2.000 1.796 .207 [1.438; 2.288] 2.047 .080 [1.881; 2.203] 1.968 .067 [1.841; 2.104] 1.958 .041 [1.868; 2.032]
γb .900 .137 .644 [-0.924; .994] -0.487 .462 [-0.995; .398] .526 .412 [-0.361; .995] -0.023 .503 [-0.848; .959]
γc .000 .143 .634 [-0.933; .991] -0.152 .406 [-0.977; .560] .312 .294 [-0.049; .915] -0.276 .330 [-0.951; .149]
γw .000 -0.187 .597 [-0.993; .923] -0.310 .400 [-0.989; .260] .521 .376 [-0.020; .984] .239 .240 [-0.092; .782]
σ2
c 1.000 .867 .515 [ .012; 1.842] .936 .222 [ .575; 1.404] 1.364 .196 [1.008; 1.772] .886 .118 [ .647; 1.109]

σ2
w 1.000 1.377 .570 [ .291; 2.454] 1.013 .222 [ .557; 1.418] 1.000 .201 [ .632; 1.403] 1.156 .126 [ .934; 1.425]

Table 77 – Results of the simulation study under γc = 0, γw = 0 and γb = −0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .973 .392 [ .213; 1.739] .951 .144 [ .657; 1.230] .982 .127 [ .750; 1.225] .970 .081 [ .824; 1.125]
βb1 2.000 1.934 .542 [ .823; 2.861] 1.746 .205 [1.353; 2.182] 2.000 .189 [1.626; 2.331] 1.882 .122 [1.602; 2.074]
βc0 1.000 1.185 .211 [ .782; 1.602] 1.044 .089 [ .874; 1.204] 1.004 .071 [ .859; 1.128] 1.015 .043 [ .934; 1.096]
βc1 2.000 1.808 .202 [1.415; 2.216] 2.043 .080 [1.881; 2.203] 1.967 .064 [1.837; 2.090] 1.963 .039 [1.892; 2.046]
γb -0.900 .161 .665 [-0.952; .994] -0.452 .511 [-0.995; .398] .351 .537 [-0.696; .993] .193 .482 [-0.724; .994]
γc .000 .210 .609 [-0.904; .987] -0.106 .462 [-0.977; .560] .330 .309 [-0.075; .938] -0.348 .365 [-0.974; .085]
γw .000 -0.246 .587 [-0.991; .919] -0.374 .397 [-0.989; .260] .532 .372 [-0.037; .989] .266 .242 [-0.105; .715]
σ2
c 1.000 .893 .490 [ .017; 1.845] .918 .220 [ .575; 1.404] 1.367 .201 [1.010; 1.776] .874 .116 [ .655; 1.115]

σ2
w 1.000 1.369 .600 [ .237; 2.561] 1.034 .232 [ .557; 1.418] 1.004 .201 [ .624; 1.403] 1.181 .135 [ .935; 1.445]

Table 78 – Results of the simulation study under γc = 0, γw = 0.9 and γb = 0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 2.158 .648 [ .983; 3.443] .658 .126 [ .415; .906] 1.040 .126 [ .796; 1.289] .998 .081 [ .849; 1.152]
βb1 2.000 4.098 1.058 [2.038; 6.049] 1.562 .209 [1.193; 2.009] 2.107 .185 [1.750; 2.472] 2.038 .129 [1.772; 2.268]
βc0 1.000 .900 .226 [ .463; 1.337] 1.044 .090 [ .874; 1.212] 1.000 .060 [ .892; 1.112] .994 .045 [ .904; 1.080]
βc1 2.000 2.078 .227 [1.679; 2.569] 1.980 .089 [1.802; 2.143] 2.047 .060 [1.933; 2.169] 2.053 .042 [1.977; 2.140]
γb .900 -0.190 .659 [-0.995; .949] -0.583 .441 [-0.995; .439] .575 .350 [-0.128; .995] .143 .431 [-0.501; .987]
γc .000 .034 .602 [-0.986; .941] .822 .180 [ .433; .992] -0.278 .324 [-0.939; .103] -0.340 .267 [-0.856; .044]
γw .900 -0.226 .542 [-0.991; .959] .232 .472 [-0.626; .985] .836 .176 [ .476; .991] .849 .139 [ .561; .990]
σ2
c 1.000 .530 .462 [ .003; 1.487] 1.365 .238 [ .901; 1.809] .945 .138 [ .690; 1.214] .905 .108 [ .682; 1.097]

σ2
w 1.000 1.990 .646 [ .751; 3.240] .685 .196 [ .320; 1.077] .836 .143 [ .562; 1.105] 1.134 .125 [ .903; 1.377]
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Table 79 – Results of the simulation study under γc = 0, γw = 0.9 and γb = −0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .952 .455 [ .155; 1.880] .796 .147 [ .510; 1.070] 1.040 .136 [ .796; 1.289] 1.011 .085 [ .850; 1.186]
βb1 2.000 2.465 .597 [1.332; 3.663] 1.746 .211 [1.303; 2.121] 2.107 .193 [1.750; 2.472] 1.940 .129 [1.690; 2.190]
βc0 1.000 1.150 .205 [ .732; 1.545] .996 .092 [ .820; 1.176] 1.000 .065 [ .892; 1.112] 1.005 .045 [ .916; 1.086]
βc1 2.000 1.995 .166 [1.652; 2.308] 2.038 .079 [1.891; 2.199] 2.047 .060 [1.933; 2.169] 1.998 .045 [1.918; 2.089]
γb -0.900 -0.044 .696 [-0.995; .957] .330 .601 [-0.900; .995] .575 .296 [-0.128; .995] -0.307 .511 [-0.995; .760]
γc .000 .100 .569 [-0.881; .983] .188 .593 [-0.918; .989] -0.278 .226 [-0.939; .103] -0.110 .169 [-0.475; .167]
γw .900 .092 .477 [-0.991; .906] .491 .356 [-0.040; .989] .836 .152 [ .476; .991] .847 .135 [ .565; .991]
σ2
c 1.000 .301 .284 [ .007; .895] .745 .228 [ .304; 1.194] .945 .172 [ .690; 1.214] 1.031 .111 [ .813; 1.250]

σ2
w 1.000 1.666 .494 [ .782; 2.641] 1.409 .260 [ .901; 1.898] .836 .181 [ .562; 1.105] 1.073 .123 [ .820; 1.300]

Table 80 – Results of the simulation study under γc = 0, γw = −0.9 and γb = 0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 2.032 .661 [ .825; 3.321] 1.382 .147 [1.027; 1.834] .851 .136 [ .644; 1.073] .944 .087 [ .783; 1.123]
βb1 2.000 3.649 .967 [1.828; 5.553] 2.186 .211 [1.719; 2.699] 1.919 .193 [1.586; 2.231] 1.965 .126 [1.730; 2.234]
βc0 1.000 1.183 .241 [ .745; 1.684] 1.023 .092 [ .862; 1.183] 1.048 .065 [ .913; 1.161] 1.024 .044 [ .940; 1.110]
βc1 2.000 1.844 .216 [1.431; 2.281] 2.075 .079 [1.897; 2.238] 1.968 .060 [1.853; 2.093] 2.050 .043 [1.967; 2.136]
γb .900 -0.058 .673 [-0.995; .953] .649 .601 [-0.068; .995] -0.136 .296 [-0.995; .664] .363 .473 [-0.535; .995]
γc .000 -0.154 .642 [-0.991; .935] .329 .593 [-0.360; .978] .286 .226 [-0.143; .814] -0.020 .124 [-0.282; .286]
γw -0.900 -0.710 .368 [-0.994; .007] -0.800 .356 [-0.992; -0.332] -0.830 .152 [-0.993; -0.437] -0.868 .126 [-0.993; -0.606]
σ2
c 1.000 .784 .629 [ .021; 2.106] .752 .228 [ .390; 1.092] 1.112 .172 [ .845; 1.412] .950 .097 [ .754; 1.135]

σ2
w 1.000 2.165 .789 [ .595; 3.629] 1.073 .260 [ .621; 1.476] 1.004 .181 [ .694; 1.310] .983 .112 [ .770; 1.209]

Table 81 – Results of the simulation study under γc = 0, γw = −0.9 and γb = −0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.372 .452 [ .480; 2.256] .798 .163 [ .482; 1.100] 1.118 .128 [ .644; 1.073] 1.120 .090 [ .950; 1.297]
βb1 2.000 1.959 .510 [ .960; 2.985] 1.622 .175 [1.278; 1.961] 1.984 .189 [1.586; 2.231] 2.068 .113 [1.868; 2.311]
βc0 1.000 .870 .231 [ .430; 1.298] .946 .093 [ .765; 1.116] 1.099 .065 [ .913; 1.161] 1.008 .044 [ .929; 1.108]
βc1 2.000 2.024 .226 [1.611; 2.471] 1.954 .080 [1.796; 2.107] 2.071 .059 [1.853; 2.093] 2.021 .040 [1.948; 2.101]
γb -0.900 -0.089 .675 [-0.995; .968] .444 .530 [-0.747; .995] .300 .484 [-0.995; .664] .845 .169 [ .507; .995]
γc .000 .132 .634 [-0.939; .990] .632 .350 [-0.003; .992] .113 .243 [-0.143; .814] .043 .182 [-0.335; .483]
γw -0.900 -0.787 .290 [-0.993; -0.033] -0.861 .157 [-0.993; -0.520] -0.818 .202 [-0.993; -0.437] -0.810 .145 [-0.987; -0.539]
σ2
c 1.000 .771 .405 [ .094; 1.545] .772 .173 [ .457; 1.151] 1.082 .156 [ .845; 1.412] .807 .107 [ .592; 1.006]

σ2
w 1.000 1.841 .627 [ .715; 3.013] 1.319 .228 [ .891; 1.754] .957 .173 [ .694; 1.310] 1.241 .131 [ .968; 1.483]

Table 82 – Results of the simulation study under γc = 0.9, γw = 0 and γb = 0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .803 .357 [ .480; 2.256] 1.017 .169 [ .666; 1.306] 1.108 .140 [ .853; 1.402] .975 .087 [ .807; 1.128]
βb1 2.000 2.341 .580 [ .960; 2.985] 1.944 .266 [1.463; 2.507] 2.220 .178 [1.889; 2.569] 1.777 .114 [1.586; 2.015]
βc0 1.000 .775 .202 [ .430; 1.298] .966 .094 [ .784; 1.152] 1.087 .070 [ .952; 1.215] 1.019 .046 [ .931; 1.113]
βc1 2.000 2.262 .192 [1.611; 2.471] 2.052 .084 [1.900; 2.226] 1.987 .056 [1.878; 2.086] 2.050 .041 [1.964; 2.119]
γb .900 .473 .549 [-0.995; .968] -0.054 .620 [-0.994; .935] .737 .283 [ .157; .995] .786 .211 [ .369; .995]
γc .900 .366 .594 [-0.939; .990] .797 .243 [ .218; .990] .709 .252 [ .107; .991] .835 .129 [ .591; .992]
γw .000 .348 .613 [-0.993; -0.033] -0.146 .416 [-0.955; .566] -0.059 .287 [-0.737; .524] .081 .186 [-0.259; .491]
σ2
c 1.000 1.056 .513 [ .094; 1.545] 1.158 .256 [ .684; 1.656] 1.257 .204 [ .853; 1.665] 1.201 .121 [ .920; 1.401]

σ2
w 1.000 .882 .495 [ .715; 3.013] .767 .227 [ .306; 1.176] 1.045 .197 [ .693; 1.411] .909 .117 [ .675; 1.125]
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Table 83 – Results of the simulation study under γc = 0.9, γw = 0 and γb = −0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.485 .423 [ .674; 2.274] 1.262 .175 [ .933; 1.601] 1.183 .127 [ .853; 1.402] 1.065 .081 [ .894; 1.205]
βb1 2.000 2.000 .621 [ .878; 3.231] 1.774 .224 [1.361; 2.220] 2.181 .202 [1.889; 2.569] 2.136 .124 [1.897; 2.388]
βc0 1.000 1.632 .233 [1.147; 2.051] .895 .092 [ .727; 1.081] 1.091 .067 [ .952; 1.215] 1.022 .045 [ .926; 1.103]
βc1 2.000 1.907 .210 [1.508; 2.320] 2.021 .089 [1.861; 2.204] 1.994 .059 [1.878; 2.086] 2.025 .041 [1.949; 2.105]
γb -0.900 .124 .652 [-0.968; .992] .069 .611 [-0.930; .994] -0.695 .313 [ .157; .995] -0.701 .346 [-0.995; .101]
γc .900 .277 .630 [-0.916; .993] .459 .363 [-0.030; .984] .797 .186 [ .107; .991] .928 .069 [ .789; .991]
γw .000 .154 .639 [-0.958; .992] .292 .502 [-0.687; .986] -0.333 .355 [-0.737; .524] .073 .148 [-0.158; .436]
σ2
c 1.000 1.028 .551 [ .050; 1.997] 1.348 .268 [ .848; 1.863] 1.439 .186 [ .853; 1.665] 1.073 .118 [ .843; 1.290]

σ2
w 1.000 1.471 .616 [ .378; 2.712] .798 .257 [ .354; 1.322] .895 .175 [ .693; 1.411] 1.027 .111 [ .835; 1.258]

Table 84 – Results of the simulation study under γc = 0.9, γw = 0 and γb = 0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .849 .348 [ .095; 1.449] 1.075 .183 [ .757; 1.478] 1.063 .132 [ .799; 1.309] .962 .086 [ .813; 1.147]
βb1 2.000 2.364 .599 [1.265; 3.592] 2.205 .261 [1.693; 2.685] 2.163 .180 [1.806; 2.484] 1.756 .112 [1.536; 1.963]
βc0 1.000 1.127 .197 [ .777; 1.531] 1.067 .082 [ .908; 1.225] .988 .064 [ .872; 1.119] 1.000 .047 [ .919; 1.102]
βc1 2.000 2.295 .197 [1.905; 2.698] 1.982 .086 [1.801; 2.138] 1.894 .053 [1.789; 1.989] 1.978 .041 [1.898; 2.053]
γb .900 .560 .467 [-0.460; .995] .600 .409 [-0.295; .994] .617 .381 [-0.205; .995] .788 .215 [ .321; .995]
γc -0.900 -0.227 .605 [-0.992; .931] -0.662 .329 [-0.989; .005] -0.911 .097 [-0.993; -0.707] -0.888 .101 [-0.991; -0.671]
γw .000 -0.131 .619 [-0.990; .924] -0.032 .370 [-0.691; .964] -0.050 .225 [-0.554; .362] .414 .217 [-0.004; .821]
σ2
c 1.000 1.087 .481 [ .218; 2.140] .865 .217 [ .454; 1.282] 1.059 .161 [ .744; 1.368] 1.007 .101 [ .842; 1.245]

σ2
w 1.000 .792 .447 [ .022; 1.626] .997 .210 [ .577; 1.424] .980 .151 [ .684; 1.247] .957 .102 [ .754; 1.149]

Table 85 – Results of the simulation study under γc = −0.9, γw = 0 and γb = −0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.511 .421 [ .735; 2.351] 1.351 .172 [1.013; 1.668] 1.156 .119 [ .799; 1.309] 1.010 .079 [ .869; 1.182]
βb1 2.000 2.097 .685 [ .857; 3.431] 1.966 .244 [1.529; 2.453] 2.148 .188 [1.806; 2.484] 2.051 .125 [1.847; 2.338]
βc0 1.000 1.221 .236 [ .759; 1.653] 1.159 .084 [1.009; 1.322] .998 .065 [ .872; 1.119] 1.002 .046 [ .916; 1.091]
βc1 2.000 2.201 .200 [1.795; 2.563] 1.891 .083 [1.730; 2.037] 1.914 .055 [1.789; 1.989] 1.955 .039 [1.878; 2.025]
γb -0.900 .080 .705 [-0.966; .995] -0.413 .565 [-0.995; .796] -0.561 .403 [-0.205; .995] -0.675 .309 [-0.995; -0.088]
γc -0.900 -0.536 .465 [-0.992; .294] -0.604 .413 [-0.990; .150] -0.797 .214 [-0.993; -0.707] -0.749 .200 [-0.990; -0.393]
γw .000 .578 .488 [-0.475; .993] -0.013 .366 [-0.942; .662] -0.152 .279 [-0.554; .362] .212 .194 [-0.079; .616]
σ2
c 1.000 1.376 .563 [ .391; 2.505] .753 .184 [ .389; 1.106] 1.096 .174 [ .744; 1.368] .996 .107 [ .802; 1.211]

σ2
w 1.000 1.153 .565 [ .231; 2.308] .895 .193 [ .531; 1.273] .966 .168 [ .684; 1.247] .968 .106 [ .766; 1.173]

Table 86 – Results of the simulation study under γc = 0.9, γw = 0.9 and γb = 0.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .835 .373 [ .209; 1.671] 1.351 .167 [ .643; 1.275] .834 .123 [ .600; 1.085] .949 .079 [ .794; 1.113]
βb1 2.000 2.196 .551 [1.243; 3.208] 1.966 .261 [1.772; 2.787] 1.995 .172 [1.641; 2.308] 1.961 .125 [1.736; 2.205]
βc0 1.000 1.446 .233 [1.006; 1.924] 1.159 .090 [ .909; 1.243] 1.010 .061 [ .886; 1.123] .996 .046 [ .918; 1.080]
βc1 2.000 2.054 .228 [1.633; 2.522] 1.891 .069 [1.987; 2.254] 1.992 .055 [1.879; 2.101] 1.982 .039 [1.900; 2.054]
γb .000 .014 .636 [-0.962; .992] -0.413 .357 [-0.995; .032] -0.096 .561 [-0.990; .894] .422 .309 [-0.214; .995]
γc .900 .461 .559 [-0.775; .994] -0.604 .132 [ .663; .992] .877 .103 [ .670; .990] .848 .200 [ .637; .992]
γw .900 .137 .667 [-0.953; .993] -0.013 .102 [ .766; .992] .814 .200 [ .415; .991] .756 .194 [ .463; .983]
σ2
c 1.000 1.806 .712 [ .647; 3.338] .753 .231 [ .360; 1.253] 1.113 .209 [ .649; 1.467] 1.067 .107 [ .854; 1.254]

σ2
w 1.000 .953 .593 [ .018; 2.160] .895 .279 [ .632; 1.662] .874 .200 [ .521; 1.281] .822 .106 [ .620; 1.042]
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Table 87 – Results of the simulation study under γc = 0.9, γw = −0.9 and γb = 0.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.443 .451 [ .209; 1.671] 1.000 .145 [ .643; 1.275] 1.004 .123 [ .790; 1.248] .951 .081 [ .797; 1.108]
βb1 2.000 2.506 .674 [1.243; 3.208] 1.718 .229 [1.772; 2.787] 2.126 .184 [1.795; 2.501] 1.959 .117 [1.729; 2.169]
βc0 1.000 1.324 .235 [1.006; 1.924] 1.034 .081 [ .909; 1.243] .995 .063 [ .871; 1.128] 1.025 .046 [ .938; 1.111]
βc1 2.000 1.975 .228 [1.633; 2.522] 2.020 .077 [1.987; 2.254] 1.991 .060 [1.874; 2.110] 2.077 .039 [2.006; 2.148]
γb .000 .336 .610 [-0.962; .992] -0.696 .273 [-0.995; .032] .609 .388 [-0.222; .995] -0.104 .474 [-0.936; .691]
γc .900 .275 .663 [-0.775; .994] .057 .205 [ .663; .992] -0.130 .402 [-0.960; .574] .936 .062 [ .820; .993]
γw -0.900 -0.198 .618 [-0.953; .993] -0.576 .408 [ .766; .992] .281 .336 [-0.208; .946] -0.848 .153 [-0.989; -0.508]
σ2
c 1.000 1.095 .590 [ .647; 3.338] 1.282 .205 [ .360; 1.253] .817 .155 [ .552; 1.134] 1.082 .105 [ .872; 1.290]

σ2
w 1.000 1.498 .595 [ .018; 2.160] .482 .173 [ .632; 1.662] 1.048 .164 [ .750; 1.368] 1.021 .100 [ .845; 1.238]

Table 88 – Results of the simulation study under γc = −0.9, γw = 0.9 and γb = 0.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.443 .451 [ .209; 1.671] 1.000 .145 [ .643; 1.275] 1.004 .123 [ .790; 1.248] .951 .081 [ .797; 1.108]
βb1 2.000 2.506 .674 [1.243; 3.208] 1.718 .229 [1.772; 2.787] 2.126 .184 [1.795; 2.501] 1.959 .117 [1.729; 2.169]
βc0 1.000 1.324 .235 [1.006; 1.924] 1.034 .081 [ .909; 1.243] .995 .063 [ .871; 1.128] 1.025 .046 [ .938; 1.111]
βc1 2.000 1.975 .228 [1.633; 2.522] 2.020 .077 [1.987; 2.254] 1.991 .060 [1.874; 2.110] 2.077 .039 [2.006; 2.148]
γb .000 .336 .610 [-0.962; .992] -0.696 .273 [-0.995; .032] .609 .388 [-0.222; .995] -0.104 .474 [-0.936; .691]
γc -0.900 .275 .663 [-0.775; .994] .057 .205 [ .663; .992] -0.130 .402 [-0.960; .574] .936 .062 [ .820; .993]
γw .900 -0.198 .618 [-0.953; .993] -0.576 .408 [ .766; .992] .281 .336 [-0.208; .946] -0.848 .153 [-0.989; -0.508]
σ2
c 1.000 1.095 .590 [ .647; 3.338] 1.282 .205 [ .360; 1.253] .817 .155 [ .552; 1.134] 1.082 .105 [ .872; 1.290]

σ2
w 1.000 1.498 .595 [ .018; 2.160] .482 .173 [ .632; 1.662] 1.048 .164 [ .750; 1.368] 1.021 .100 [ .845; 1.238]

Table 89 – Results of the simulation study under γc = −0.9, γw = −0.9 and γb = 0.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.331 .431 [ .563; 2.181] .973 .140 [ .721; 1.251] .932 .119 [ .707; 1.164] .934 .078 [ .798; 1.101]
βb1 2.000 2.513 .663 [1.448; 3.899] 1.700 .218 [1.248; 2.109] 1.900 .184 [1.553; 2.257] 1.928 .122 [1.680; 2.140]
βc0 1.000 .608 .223 [ .222; 1.089] .932 .091 [ .746; 1.094] .995 .061 [ .861; 1.098] 1.012 .042 [ .928; 1.089]
βc1 2.000 1.825 .216 [1.399; 2.225] 1.922 .075 [1.794; 2.092] 2.016 .051 [1.921; 2.119] 1.986 .036 [1.917; 2.057]
γb .000 .081 .680 [-0.976; .993] -0.501 .411 [-0.995; .318] -0.241 .507 [-0.990; .742] -0.325 .375 [-0.985; .397]
γc -0.900 -0.646 .458 [-0.992; .465] -0.913 .079 [-0.992; -0.754] -0.839 .116 [-0.991; -0.625] -0.837 .132 [-0.989; -0.563]
γw -0.900 -0.614 .475 [-0.993; .455] -0.504 .455 [-0.984; .311] -0.819 .177 [-0.989; -0.455] -0.870 .099 [-0.991; -0.675]
σ2
c 1.000 1.444 .709 [ .230; 2.872] 1.593 .219 [1.224; 2.057] 1.283 .167 [ .930; 1.603] .865 .100 [ .694; 1.074]

σ2
w 1.000 1.142 .661 [ .065; 2.405] .397 .146 [ .130; .683] .728 .150 [ .487; 1.084] .980 .104 [ .772; 1.167]

Table 90 – Results of the simulation study under γc = 0.9, γw = 0.9 and γb = −0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.323 .385 [ .576; 2.019] 1.221 .174 [ .828; 1.516] .910 .111 [ .701; 1.130] .854 .071 [ .723; 1.000]
βb1 2.000 2.075 .585 [ .989; 3.282] 2.053 .259 [1.559; 2.530] 2.077 .182 [1.776; 2.468] 1.915 .127 [1.692; 2.174]
βc0 1.000 1.541 .201 [1.187; 1.936] .779 .083 [ .619; .951] 1.026 .065 [ .886; 1.146] .997 .045 [ .907; 1.076]
βc1 2.000 2.016 .212 [1.619; 2.416] 2.080 .077 [1.935; 2.247] 2.034 .048 [1.944; 2.132] 1.989 .038 [1.915; 2.065]
γb -0.900 .079 .676 [-0.963; .995] -0.253 .582 [-0.995; .834] -0.622 .300 [-0.994; -0.016] -0.659 .344 [-0.995; .136]
γc .900 .411 .602 [-0.925; .993] .730 .289 [ .010; .991] .882 .099 [ .680; .992] .803 .120 [ .590; .990]
γw .900 .280 .622 [-0.894; .992] .519 .420 [-0.147; .984] .865 .151 [ .573; .991] .814 .142 [ .539; .980]
σ2
c 1.000 1.369 .567 [ .367; 2.502] .931 .244 [ .503; 1.419] 1.394 .197 [1.006; 1.796] 1.017 .107 [ .821; 1.227]

σ2
w 1.000 .982 .596 [ .051; 2.159] .885 .240 [ .481; 1.386] .687 .170 [ .350; 1.007] .872 .110 [ .669; 1.090]
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Table 91 – Results of the simulation study under γc = 0.9, γw = −0.9 and γb = 0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .731 .319 [ .084; 1.327] 1.015 .167 [ .700; 1.355] 1.033 .126 [ .769; 1.255] .891 .082 [ .726; 1.051]
βb1 2.000 1.383 .343 [ .736; 2.004] 1.884 .230 [1.417; 2.285] 1.966 .160 [1.676; 2.268] 1.945 .108 [1.755; 2.158]
βc0 1.000 .816 .207 [ .397; 1.192] .971 .084 [ .787; 1.120] 1.076 .069 [ .948; 1.203] 1.027 .045 [ .946; 1.119]
βc1 2.000 1.952 .196 [1.610; 2.328] 2.100 .087 [1.936; 2.266] 2.036 .060 [1.915; 2.145] 2.095 .040 [2.014; 2.175]
γb .900 -0.225 .608 [-0.995; .899] .348 .589 [-0.791; .995] .489 .454 [-0.472; .995] .840 .178 [ .432; .995]
γc .900 .049 .644 [-0.939; .986] .726 .312 [-0.002; .990] .757 .240 [ .273; .991] .933 .067 [ .786; .992]
γw -0.900 .105 .544 [-0.905; .993] -0.531 .367 [-0.984; .048] -0.682 .286 [-0.989; -0.051] -0.837 .161 [-0.992; -0.509]
σ2
c 1.000 .559 .410 [ .007; 1.369] .921 .202 [ .508; 1.320] 1.265 .180 [ .888; 1.588] 1.108 .099 [ .905; 1.284]

σ2
w 1.000 1.666 .582 [ .540; 2.839] .836 .198 [ .433; 1.212] 1.028 .171 [ .727; 1.381] .992 .096 [ .817; 1.187]

Table 92 – Results of the simulation study under γc = −0.9, γw = 0.9 and γb = 0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.468 .456 [ .715; 2.443] .945 .168 [ .700; 1.355] .931 .116 [ .719; 1.176] 1.029 .082 [ .870; 1.188]
βb1 2.000 1.886 .555 [ .835; 2.966] 2.158 .277 [1.417; 2.285] 1.963 .165 [1.650; 2.314] 2.047 .108 [1.784; 2.273]
βc0 1.000 .993 .203 [ .580; 1.399] 1.046 .077 [ .787; 1.120] .933 .068 [ .792; 1.058] .982 .045 [ .885; 1.062]
βc1 2.000 1.916 .205 [1.531; 2.324] 1.933 .082 [1.936; 2.266] 1.965 .055 [1.868; 2.075] 1.905 .040 [1.826; 1.980]
γb .900 .493 .529 [-0.751; .995] .662 .366 [-0.791; .995] .270 .493 [-0.589; .995] .761 .178 [ .353; .995]
γc -0.900 -0.423 .505 [-0.991; .524] -0.271 .385 [-0.002; .990] -0.844 .176 [-0.991; -0.501] -0.912 .067 [-0.992; -0.758]
γw .900 .048 .614 [-0.941; .987] .311 .489 [-0.984; .048] .764 .232 [ .254; .991] .867 .161 [ .635; .990]
σ2
c 1.000 1.077 .483 [ .082; 1.968] .879 .202 [ .508; 1.320] 1.080 .144 [ .814; 1.363] 1.046 .099 [ .867; 1.236]

σ2
w 1.000 .864 .483 [ .039; 1.790] .661 .192 [ .433; 1.212] 1.075 .156 [ .805; 1.401] 1.087 .096 [ .890; 1.266]

Table 93 – Results of the simulation study under γc = 0.9, γw = −0.9 and γb = −0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.339 .423 [ .611; 2.254] 1.222 .165 [ .919; 1.534] 1.159 .129 [ .923; 1.411] 1.037 .082 [ .884; 1.206]
βb1 2.000 2.277 .681 [1.136; 3.753] 1.824 .228 [1.375; 2.262] 2.177 .188 [1.826; 2.533] 2.215 .132 [1.949; 2.442]
βc0 1.000 1.183 .227 [ .764; 1.647] .971 .083 [ .824; 1.146] 1.084 .063 [ .963; 1.200] 1.032 .045 [ .930; 1.108]
βc1 2.000 1.719 .190 [1.347; 2.060] 2.080 .083 [1.931; 2.256] 2.040 .059 [1.935; 2.158] 2.050 .040 [1.981; 2.137]
γb -0.900 -0.182 .666 [-0.995; .959] -0.505 .510 [-0.995; .574; -0.151 .572 [-0.993; .915] -0.788 .189 [-0.995; -0.405]
γc .900 .058 .602 [-0.942; .981] .440 .430 [-0.219; .989] .794 .224 [ .297; .993] .887 .103 [ .670; .992]
γw -0.900 .105 .509 [-0.992; .927] -0.263 .392 [-0.970; .303] -0.584 .296 [-0.978; .000] -0.636 .283 [-0.986; -0.110]
σ2
c 1.000 .445 .383 [ .009; 1.263] .884 .218 [ .486; 1.302] 1.136 .164 [ .827; 1.437] .970 .119 [ .741; 1.195]

σ2
w 1.000 1.917 .574 [ .931; 3.082] .881 .224 [ .456; 1.304] 1.158 .175 [ .806; 1.479] 1.122 .123 [ .903; 1.370]

Table 94 – Results of the simulation study under γc = −0.9, γw = 0.9 and γb = −0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 1.339 .423 [ .611; 2.254] 1.222 .165 [ .919; 1.534] 1.159 .129 [ .923; 1.411] 1.037 .082 [ .884; 1.206]
βb1 2.000 2.277 .681 [1.136; 3.753] 1.824 .228 [1.375; 2.262] 2.177 .188 [1.826; 2.533] 2.215 .132 [1.949; 2.442]
βc0 1.000 1.183 .227 [ .764; 1.647] .971 .083 [ .824; 1.146] 1.084 .063 [ .963; 1.200] 1.032 .045 [ .930; 1.108]
βc1 2.000 1.719 .190 [1.347; 2.060] 2.080 .083 [1.931; 2.256] 2.040 .059 [1.935; 2.158] 2.050 .040 [1.981; 2.137]
γb -0.900 -0.182 .666 [-0.995; .959] -0.505 .510 [-0.995; .574] -0.151 .572 [-0.993; .915] -0.788 .189 [-0.995; -0.405]
γc -0.900 .058 .602 [-0.942; .981] .440 .430 [-0.219; .989] .794 .224 [ .297; .993] .887 .103 [ .670; .992]
γw .900 .105 .509 [-0.992; .927] -0.263 .392 [-0.970; .303] -0.584 .296 [-0.978; .000] -0.636 .283 [-0.986; -0.110]
σ2
c 1.000 .445 .383 [ .009; 1.263] .884 .218 [ .486; 1.302] 1.136 .164 [ .827; 1.437] .970 .119 [ .741; 1.195]

σ2
w 1.000 1.917 .574 [ .931; 3.082] .881 .224 [ .456; 1.304] 1.158 .175 [ .806; 1.479] 1.122 .123 [ .903; 1.370]
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Table 95 – Results of the simulation study under γc = −0.9, γw = −0.9 and γb = 0.9.

50 250 500 1000
Par Real Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD Est SD 95% HPD
βb0 1.000 .514 .269 [-0.049; .987] 1.048 .169 [ .765; 1.392] .957 .112 [ .718; 1.139] .900 .083 [ .737; 1.063]
βb1 2.000 1.294 .353 [ .566; 1.945] 2.033 .244 [1.518; 2.451] 1.822 .172 [1.520; 2.170] 1.930 .109 [1.735; 2.152]
βc0 1.000 .658 .235 [ .202; 1.099] 1.236 .077 [1.089; 1.389] .975 .061 [ .865; 1.101] 1.014 .045 [ .933; 1.105]
βc1 2.000 1.900 .183 [1.544; 2.247] 1.918 .065 [1.795; 2.043] 1.940 .046 [1.850; 2.026] 1.989 .035 [1.920; 2.052]
γb .900 .298 .603 [-0.904; .995] .439 .515 [-0.594; .995] -0.328 .502 [-0.994; .763] .636 .244 [ .176; .994]
γc -0.900 -0.832 .273 [-0.994; -0.126] -0.832 .203 [-0.991; -0.404] -0.952 .038 [-0.993; -0.871] -0.809 .125 [-0.987; -0.553]
γw -0.900 -0.145 .629 [-0.987; .935] -0.856 .165 [-0.991; -0.532] -0.899 .094 [-0.989; -0.705] -0.885 .094 [-0.991; -0.706]
σ2
c 1.000 2.235 .678 [1.150; 3.791] .739 .177 [ .389; 1.044] 1.178 .163 [ .817; 1.467] .826 .096 [ .603; .997]

σ2
w 1.000 .540 .404 [ .020; 1.315] .857 .193 [ .500; 1.224] .817 .149 [ .547; 1.097] 1.017 .110 [ .814; 1.237]
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