
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Mecânica

Edson Jansen Pedrosa de Miranda Junior

Dynamic Analysis of Phononic Crystals and
Elastic Metamaterials Using

Semi-Analytical and Numerical Approaches

Análise Dinâmica de Cristais Fonônicos e
Metamateriais Elásticos Utilizando

Abordagens Semi-Analíticas e Numéricas

CAMPINAS
2018



Edson Jansen Pedrosa de Miranda Junior

Dynamic Analysis of Phononic Crystals and
Elastic Metamaterials Using

Semi-Analytical and Numerical Approaches

Análise Dinâmica de Cristais Fonônicos e
Metamateriais Elásticos Utilizando

Abordagens Semi-Analíticas e Numéricas
Doctoral Thesis presented to the School of Mechan-
ical Engineering of the University of Campinas in
partial fulfillment of the requirements for the degree
of Doctor in Mechanical Engineering, in the Area of
Solid Mechanics and Mechanical Design.

Tese de Doutorado apresentada à Faculdade de En-
genharia Mecânica da Universidade Estadual de
Campinas como parte dos requisitos exigidos para
obtenção do título de Doutor em Engenharia Mecân-
ica, na Área de Mecânica dos Sólidos e Projeto
Mecânico.

Orientador: Prof. Dr. José Maria Campos dos Santos

ESTE EXEMPLAR CORRESPONDE À VERSÃO
FINAL DA TESE DEFENDIDA PELO ALUNO
EDSON JANSEN PEDROSA DE MIRANDA JU-
NIOR, E ORIENTADO PELO PROF. DR. JOSÉ
MARIA CAMPOS DOS SANTOS.

CAMPINAS
2018



Agência(s) de fomento e nº(s) de processo(s): FAPEMA, BM E BD-02591/15
ORCID:  https://orcid.org/0000-0003-1100-9169

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Luciana Pietrosanto Milla - CRB 8/8129

 

   
  MirOrientador: José Maria Campos dos Santos.
  MirTese (doutorado) – Universidade Estadual de Campinas, Faculdade de

Engenharia Mecânica.
 

    
  Mir1. Cristais fonônicos. 2. Metamateriais. 3. Vibração - Controle. 4. Ondas

elásticas - Propagação. 5. Diagramas de bandas. I. Santos, José Maria
Campos dos, 1953-. II. Universidade Estadual de Campinas. Faculdade de
Engenharia Mecânica. III. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Análise dinâmica de cristais fonônicos e metamateriais elásticos
utilizando abordagens semi-analíticas e numéricas
Palavras-chave em inglês:
Phononic crystals
Metamaterials
Vibration - Control
Elastic waves - Propagation
Band diagrams
Área de concentração: Mecânica dos Sólidos e Projeto Mecânico
Titulação: Doutor em Engenharia Mecânica
Banca examinadora:
José Maria Campos dos Santos [Orientador]
José Roberto de França Arruda
Vitor Rafael Coluci
Carlos De Marqui Junior
Leopoldo Pisanelli Rodrigues de Oliveira
Data de defesa: 01-03-2018
Programa de Pós-Graduação: Engenharia Mecânica

Powered by TCPDF (www.tcpdf.org)

    
  Miranda Junior, Edson Jansen Pedrosa de, 1988-  
 M672d MirDynamic analysis of phononic crystals and elastic metamaterials using semi-

analytical and numerical approaches / Edson Jansen Pedrosa de Miranda
Junior. – Campinas, SP : [s.n.], 2018.



UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ENGENHARIA MECÂNICA

COMISSÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

DEPARTAMENTO DE MECÂNICA COMPUTACIONAL

TESE DE DOUTORADO

Dynamic Analysis of Phononic Crystals and
Elastic Metamaterials Using

Semi-Analytical and Numerical Approaches

Análise Dinâmica de Cristais Fonônicos e
Metamateriais Elásticos Utilizando

Abordagens Semi-Analíticas e Numéricas
Autor: Edson Jansen Pedrosa de Miranda Junior

Orientador: José Maria Campos dos Santos

A Banca Examinadora composta pelos membros abaixo aprovou esta Tese:

Prof. Dr. José Maria Campos dos Santos, Presidente
DMC - Faculdade de Engenharia Mecânica - UNICAMP

Prof. Dr. José Roberto de França Arruda
DMC - Faculdade de Engenharia Mecânica - UNICAMP

Prof. Dr. Vitor Rafael Coluci
LaSCADo - Faculdade de Tecnologia - UNICAMP

Prof. Dr. Carlos De Marqui Junior
SAA - Escola de Engenharia de São Carlos - USP

Prof. Dr. Leopoldo Pisanelli Rodrigues de Oliveira
SEM - Escola de Engenharia de São Carlos - USP

A Ata da defesa com as respectivas assinaturas dos membros encontra-se no processo de vida
acadêmica do aluno.

Campinas, 01 de março de 2018.



Dedication

I dedicate this thesis to my saviour, Jesus Christ, and to my daughter Helena that will born in
2018.

Eu dedico essa tese ao meu salvador, Jesus Cristo, e à minha filha Helena que nascerá em
2018.



Acknowledgements

Firstly, I thank God for giving me the strength necessary to complete this thesis.

I would like to thank my wife and my family for the support, patience and motivation during
the last four years.

I wish to express my sincere thanks to my supervisor Prof. Dr. José Maria Campos dos Santos
for his support, discussions, challenges, motivation and patience during this research.

I am also thankful to Prof. Dr. José Roberto de França Arruda for his discussions and sugges-
tions about this research. His course of Introduction to Structural Acoustics helped so much in
this research.

I would like to thank the external members of the jury for coming to my defence and contribute
with their experienced advices to improve this thesis. I am also thankful to Prof. Dr. Carlos De
Marqui Junior, Prof. Dr. José Roberto de França Arruda, Prof. Dr. Leopoldo Pisanelli Rodrigues
de Oliveira and Prof. Dr. Vitor Rafael Coluci, members of the jury, for valuable discussions
during this thesis and for their suggestions.

I also thank the Faculty of Mechanical Engineering at UNICAMP, in special, the Department of
Computational Mechanics, for providing me the facilities necessary to the development of this
thesis.

I wish to express my sincere gratefulness to my friends and fellow labmates, in special, Ander-
son Ferreira, Edilson Dantas, Danilo Beli, Edgar Andres, Guilherme Paiva, Daniela Damasceno,
Lucas Cóser, Wendell Diniz, Helio Vitor, Luis Filipe, Rayston Werner, Helder Daiha, Fernando
Ortolano and Vinicius Dias. Our discussions, hours of hard work, and all the fun we have had
contributed to make things easier.

I am thankful to FAPEMA, through process numbers BM E BD-02591/15, APEC-04259/16,
and APEC-00155/17 for providing me the financial support necessary to the development of
this thesis.

I also thank Federal Institute of Maranhão – IFMA, for providing me the financial support
necessary to the development of this thesis.

Finally, I would like to thank all who in one way or another contributed to the completion of
this thesis.



The God of the Bible is also the God of
the genome. He can be worshipped in the
cathedral or in the laboratory. His
creation is majestic, awesome, intricate,
and beautiful.

Francis Collins

O Deus da Bíblia é também o Deus do
genoma. Ele pode ser adorado na
catedral ou no laboratório. Sua criação é
majestosa, incrível, complexa, e bonita.

Francis Collins



Resumo

Nesta tese, os métodos de expansão em ondas planas (PWE), expansão em ondas planas
melhorado (IPWE) e expansão em ondas planas estendido (EPWE) são utilizados para obter a
estrutura de banda de cristais fonônicos (PnCs) e de metamateriais elásticos (EMs) uni- (1D)
e bi-dimensionais (2D), isto é, estruturas artificiais projetadas para criarem bandas proibidas
de Bragg e/ou localmente ressonantes. Estas estruturas periódicas estão sendo aplicadas em
vários ramos da ciência e possuem diversas aplicações – controle passivo/ativo de vibração,
filtros/barreiras acústicas, metamateriais para captação de energia, guias de onda, dentre outras.
A principal aplicação considerada nesta tese é o controle passivo de vibração. Primeiro, as
formulações do PWE, IPWE e EPWE são apresentadas para alguns casos e vantagens e
limitações são discutidas. Os casos considerados são PnCs 1D de barra, cristais sônicos 2D
e EMs 1D de viga de Euler-Bernoulli. Posteriormente, alguns exemplos de propagação de
ondas mecânicas nestas estruturas periódicas são abordados através da análise da estrutura de
banda. Em seguida, algumas aplicações dos PnCs e EMs para controle passivo de vibração
são discutidas em artigos anexados. Inicialmente, a estrutura de banda e a resposta forçada
harmônica de um PnC simples de viga de Euler-Bernoulli são calculadas. Vários métodos
são aplicados e os resultados simulados podem localizar a posição e a largura das bandas
proibidas de Bragg próximas dos resultados experimentais. Posteriormente, é considerada
a formação de bandas proibidas de ondas de flexão em um PnC de placa com diferentes
inclusões em redes quadrada e triangular, considerando-se a teoria de Mindlin-Reissner. O
melhor desempenho é encontrado para a inclusão com seção transversal circular em uma rede
triangular. Em seguida, a estrutura de banda de ondas elásticas se propagando em PnCs com
nanoestruturas de carbono e em nanocristais fonônicos piezoelétricos com diferentes tipos de
rede e inclusão são calculadas. Bandas proibidas totais entre os modos XY e Z são observadas
para todos os tipos de inclusão. A piezoeletricidade influencia significativamente as bandas
proibidas para inclusão circular vazada em frequências mais baixas. Posteriormente, um PnC
magnético-elétrico-elástico 2D é considerado. Diferentes tipos de rede e de inclusão também
são considerados. A piezoeletricidade e o piezomagnetismo influenciam significativamente
as bandas proibidas. Finalmente, são considerados EMs 1D de viga de Euler-Bernoulli e 2D
de placa fina. A influência de ressonadores de um grau de liberdade e de múltiplos graus de
liberdade periodicamente conectados nas células unitárias do EM de viga de Euler-Bernoulli
e EM 2D de placa fina são investigadas. Diferentes configurações da distribuição dos resson-
adores são consideradas para investigar os mecanismos de formação das bandas proibidas, isto
é, ressonância local e espalhamento de Bragg.



Palavras-chave: Cristais fonônicos, Metamateriais elásticos, Bandas proibidas, Expansão em
ondas planas, Controle passivo de vibração.



Abstract

In this thesis, plane wave expansion (PWE), improved plane wave expansion (IPWE) and
extended plane wave expansion (EPWE) methods are used in order to obtain the band structure
of one- (1D) and two-dimensional (2D) phononic crystals (PnCs) and elastic metamaterials
(EMs), i.e., artificial structures designed to open up Bragg-type and/or locally resonant band
gaps. Such periodic structures are being applied in many branches of science, and have many
applications – passive/active vibration control, acoustic barriers/filters, metamaterials-based
enhanced energy harvesting, waveguides, among others. The main application considered
in this thesis is passive vibration control. First, PWE, IPWE and EPWE formulations are
presented for some cases and advantages and drawbacks are discussed. The cases regarded are
1D PnC rods, 2D sonic crystals and 1D EM Euler-Bernoulli beams. Afterwards, some examples
of mechanical wave propagation in these periodic structures are addressed by means of band
structure analysis. Next, some applications of PnCs and EMs for passive vibration control are
discussed in attached papers. Initially, the band structure and harmonic forced response of
a simple 1D PnC Euler-Bernoulli beam are carried out. Several approaches are applied and
the simulated results can localize the Bragg-type band gap position and width close to the
experimental results. Next, it is considered the formation of flexural wave band gaps in a PnC
plate with different inclusions in square and triangular lattices, considering Mindlin-Reissner
theory. The best performance is found for circular cross section inclusion in a triangular lattice.
Afterwards, the band structure of elastic waves propagating in carbon nanostructure PnCs
and nano-piezoelectric PnCs with different types of lattice and inclusion are calculated. Full
band gaps between XY and Z modes are observed for all types of inclusions. Piezoelectricity
influences significantly the band gaps for hollow circular inclusion in lower frequencies. After
that, a magnetoelectroelastic 2D PnC is considered. Different types of lattice and inclusion
are also addressed. Piezoelectricity and piezomagnetism influence significantly the band gaps.
Finally, 1D EM Euler-Bernoulli beams and 2D EM thin plates are regarded. The influence of
single degree of freedom and multiple degrees of freedom resonators periodically attached in
unit cells of the EM Euler-Bernoulli beam and 2D EM thin plate are investigated. Different
configurations of resonator distribution are carried out in order to investigate the band gap
formation mechanisms, i.e., local resonance and Bragg scattering.

Keywords: Phononic crystals, Elastic metamaterials, Band gaps, Plane wave expansion, Passive
vibration control.
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1 INTRODUCTION

1.1 Motivation

In the early 30’s, the band theory of conduction had been established by Alan Herries
Wilson (Wilson, 1931) and the concept of band gaps had been developed. He formulated a the-
ory explaining how energy bands of electrons can make a material as conductor, semiconductor
or insulator. Similarly to the electronic band gaps for semiconductors and insulators, in the late
80’s, Yablonovitch (1987) and John (1987) simultaneously started to study photonic band gaps
in photonic crystals. Photonic crystals can be defined as artificial composites consisting of peri-
odic distribution of dielectric scatterers embedded in a host medium with different dielectric
properties. Yablonovitch (1987) and John (1987) triggered the primary emphasis in periodic
systems due to the propagation properties of electromagnetic waves inside of photonic crystals.
They observed that photonic crystals exhibit ranges of frequencies related to the structure peri-
odicity where there are no electromagnetic propagating waves, i.e., photonic band gaps. There
are only electromagnetic evanescent waves in these ranges of frequencies.

After the advent of photonic crystals, phononic crystals (PnCs) were proposed (Sigalas
and Economou, 1992; Sigalas and Economou, 1993). For a brief review of phononic band struc-
tures, see the study of Kushwaha et al. (1994). PnCs are artificial periodic composites designed
to exhibit phononic band gaps. Similar to photonic crystals, there are no mechanical (elastic or
acoustic) propagating waves in phononic band gaps, only evanescent waves. These band gaps
are opened up by the periodically mismatch between the constituent materials. This mismatch
can be considered to arise either from difference of material properties or geometry (continuum-
scale theory), or from interatomic force constants and masses (atomic-scale theory). The acous-
tic version of a PnC is known as a sonic crystal (SnC). An important study about SnCs was
performed by Martínez-Sala and co-workers in 1995 (Martínez-Sala et al., 1995) and since
then the enthusiasm related to these periodic structures appears because of their applications in
several branches of science and technology (Liu et al., 2000a; Ho et al., 2003).

The physical origin of phononic and photonic band gaps can be understood at micro-scale
using the classical wave theory to describe the Bragg and Mie resonances based on the scattering
of mechanical and electromagnetic waves propagating within the crystal. In addition, for mod-
elling acousto-optical interactions at microscale and nanoscale, much effort has been devoted
in order to open simultaneous phononic and photonic band gaps. The materials which provide
simultaneous phononic and photonic band gaps are known as phoxonic crystals (Maldovan and
Thomas, 2006).

PnCs have many applications, such as vibration isolation technology (Jensen, 2003; Cas-
adei et al., 2012a), acoustic barriers/filters (Ho et al., 2003), noise suppression devices (Casadei
et al., 2012b), sound shields (Gorishnyy et al., 2005), surface acoustic devices (Benchabane
et al., 2006), acoustic diodes (Cheng et al., 2007), architectural design (Comerio, 2006), piezo-
electric PnCs (Qian et al., 2008), piezomagnetic PnCs (Robillard et al., 2009), magnetoelec-
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troelastic PnCs (Wang et al., 2008), PnCs with defects for waveguides or to constitute resonat-
ors or filters (Feng et al., 2015), among others. Figure 1.1 illustrates some examples of PnCs. In
this thesis, different applications of PnCs for passive vibration control are explored, i.e., flexural
wave band gaps in one-dimensional (1D) PnC Euler-Bernoulli beams with steel and polyethyl-
ene (Appendix A), flexural wave band gaps in Al2O3/epoxy thick plates (Appendix B), carbon
nanostructure and nano-piezoelectric PnCs for vibration management in GHz (Appendices C
and D), and full band gaps in magnetoelectroelastic PnCs (Appendix E).

(a) (b)

(c)
(d)

Figure 1.1: Examples of PnC applications: an scanning electron microscope (SEM) image
showing the PnC and aluminum nitride (AlN) transducers (Soliman et al., 2010) (𝑎), a spider
web woven by a garden spider Araneus diadematus and unit cells of a spider webstructured
labyrinthine acoustic metamaterials (Krushynska et al., 2017a) (𝑏), a sustainable SnC made of
resonating bamboo rods (array of Helmholtz resonators) (Lagarrigue et al., 2013) (𝑐), and cross
sections of three supercells of PnCs with linear defects (Li and Liu, 2017) (𝑑).

Besides the concepts of photonic, phononic and phoxonic crystals, another important class
of materials are the metamaterials. Metamaterials are engineered materials which exhibit unique
properties that are not commonly observed or physically inconceivable in nature. The first ef-
forts in order to develop these unusual materials had been mostly focussed on new electromag-
netic materials to control electromagnetic waves. The concept of metamaterial was proposed
from the study of Veselago (1968). He demonstrated theoretically that materials with simultan-
eous negative permittivity and permeability possess a negative refractive index under certain
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frequencies. Due to the technology limitation in synthesis and fabrication, this novel concept
remained to be an academic curiosity at that time (Li and Wang, 2016a). Recently, with the
possibility of designing this type of metamaterials (known as left-handed electromagnetic ma-
terials or electromagnetic metamaterials or locally resonant photonic crystals), for instance us-
ing three-dimensional (3D) printing, they were successfully developed to achieve effectively
negative permittivity and permeability (Smith et al., 2000; Shelby et al., 2001; Pendry, 2006).

Similar to the electromagnetic metamaterials, in recent years, mechanical (acoustic or
elastic) metamaterials (MMs), also known as locally resonant PnCs, were designed. MMs ex-
hibit negative effective mass and/or negative modulus. The main difference between PnCs and
MMs is associated with the band gap formation. In PnC investigation, band gap formation is
based on the Bragg scattering mechanism, whose frequency location is governed by Bragg’s
law, i.e., 𝑎 sin 𝜃 = �̃�(𝜆/2),(�̃� ∈ N>0), where 𝜃 is the incident angle, 𝑎 is the lattice parameter of
periodic system and 𝜆 is the wave length in host material. Bragg’s law implies that is difficult to
achieve a low-frequency Bragg-type band gap for small size PnCs. Difficulties to design PnCs
with low frequency band gaps for small sizes instigated researchers to explore other dissipative
mechanisms together with periodicity effect, such as local mechanical resonance in MMs. A
brief discussion about locally resonant and Bragg-type band gaps is provided in Annexe A.3.

The first design of such materials was developed by Liu et al. (2000a). They considered
embedding heavy spheres coated with soft silicon rubber in epoxy to obtain, experiment-
ally, negative mass at certain loading frequencies. The underlying mechanism related to these
metamaterials is the local mechanical resonance. These resonance-type band gaps were ob-
tained by Liu et al. (2000a) in a frequency range two orders of magnitude lower than that given
by the Bragg’s limit. Locally resonant band gaps arise on the vicinity of resonator natural fre-
quency and they do not depend on periodicity, while Bragg-type band gaps typically occur at
wave lengths of the order of unit cell size. Even though PnCs and MMs have different concepts,
as explained, some authors consider the MMs as an application of PnCs. Hence, MMs are also
known as locally resonant PnCs, as already mentioned.

MMs have been extensively applied in the last years, for instance, as harnessed shape
morphing (Cheng et al., 2014a), topological protection (Chen et al., 2014), instabilities and
non-linear response (Bertoldi et al., 2010), resonant circuit shunts (Zhou et al., 2015), sustain-
able metamaterials (Lagarrigue et al., 2013), piezoelectric metastructures (Sugino et al., 2017),
bio-inspired metamaterials (Krushynska et al., 2017a), metamaterials supporting edge waves
(Pal and Ruzzene, 2017), metamaterials-based enhanced energy harvesting (Chen et al., 2014),
thermal metamaterials (Davis and Hussein, 2014), granular crystals (nonlinear metamaterials)
(Chong et al., 2017), among others. Figure 1.2 shows some MM applications. In this thesis,
elastic metamaterial (EM) beams (Appendix F) and plates (Appendix G) with multiple periodic
arrays of multiple degrees of freedom (M-DOF) resonators are investigated for passive vibration
control.

In order to handle PnCs and EMs, many methods have been applied, such as finite element
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(a) (b)

(c) (d)

Figure 1.2: Examples of MM applications: edge waves in elastic metamaterial plates (Pal and
Ruzzene, 2017) (𝑎), a unit cell of a two-dimensional PnC with circuits of orthogonal lattice and
Wigner-Seitz unit cells for orthogonal, triangular and hexagonal lattices (Lian et al., 2016) (𝑏),
a metamaterial plate with pillars and a trampoline metamaterial composed of pillars and holes
(Bilal et al., 2017) (𝑐) and an EM plate with a periodic stubbed surface consisting of 10 x 10
silicone rubber stubs deposited on a thin aluminum plate (Oudich et al., 2011) (𝑑).

(FE) (Wen et al., 2009), spectral element (SE) (Wu et al., 2009), wave finite element (WFE)
(Nobrega et al., 2016), wave spectral element (WSE) (Nobrega et al., 2016), wave spectral
finite element (WSFE) (Nascimento, 2009), boundary element (BE) (Henríquez et al., 2017),
plane wave expansion (PWE) (Kushwaha et al., 1994), improved plane wave expansion (IPWE)
(Xie et al., 2017), extended plane wave expansion (EPWE) (Laude et al., 2009), hybrid finite
element-plane wave expansion (FE-PWE) (Mazzotti et al., 2017), finite-difference time-domain
method (FDTD) (Cao et al., 2004), wavelet-based (Yan et al., 2008), transfer matrix (TM) (Ni
et al., 2014), multi-scattering theory (MST) (Liu et al., 2000b) methods, among others.

All the methods mentioned have advantages and drawbacks (Li et al., 2016b). In this
thesis, the methods most used to calculate the band structure, also know as dispersion relation
or dispersion diagram, of PnCs and EMs are the PWE, IPWE and EPWE methods. However,
FE, SE, TM, WFE and WSE methods are also used for some cases (Appendices A and F), in
order to compare and to calculate the harmonic forced response of PnCs and EMs.

Since PnCs and MMs exhibit properties and functionalities that cannot be realized by
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conventional materials and with the advances of additive manufacturing and nanofabrication,
the design of new PnCs and MMs for passive vibration control is a current research topic and
its application seems to constitute an open research topic. Bertoldi et al. (2017) outlined future
challenges for the design, creation and conceptualization of advanced MMs.

1.2 Literature review

Wave propagation in periodic structures (Yablonovitch, 1987; Kushwaha et al., 1994;
Martínez-Sala et al., 1995) has received increasing attention in the last years. In this subsection,
some studies about PnCs, SnCs and MMs are addressed.

1.2.1 Phononic crystals

The first study about PnCs was carried out by Sigalas and Economou (1992). They re-
garded a PnC composed by periodic spheres embedded in a matrix, i.e., 3D periodicity. Bulk
wave propagation in an isotropic PnC solid was addressed and a phononic band gap was ob-
served theoretically for the first time using the PWE approach. Other initial investigations
(Sigalas and Economou, 1993; Kushwaha et al., 1993; Kushwaha et al., 1994) were also very
important in order to stablish basic concepts related to PnCs. One of first reviews about PnCs
was reported by Kushwaha (1996a). He focused on a briefly systematic survey of the histor-
ical development of the principles, tools and applications of band theory for electrons, photons,
phonons and vibrations giving some background for basic concepts of photonic and phononic
crystals.

After the PnC emergence in nineties, many researches have been developed. Djafari-
Rouhani et al. (2008) investigated the existence of absolute band gaps and localized modes
related to a guide in thin films of PnCs. Two different structures based on two-dimensional (2D)
PnCs were considered, namely a free standing plate and a plate deposited on a silicon substrate.
The 2D PnC was constituted by a square array of cylindrical holes drilled in an active piezo-
electric PZT5A matrix. They demonstrated the existence of an absolute band gap in the band
structure of the PnC plate and the possibility of guided modes inside a linear defect created by
removing one row of air holes.

Based on Mindlin’s piezoelectric plate theory and on the PWE, Hsu and Wu (2008) pro-
posed a formulation to study the frequency band gaps and dispersion relations of the lower-order
Lamb waves in 2D piezoelectric PnC plates. The method was applied to analyse PnC plates
composed by solid-solid and air-solid constituents with square and triangular lattices, respect-
ively. For solid/solid PnC plates, it was suggested that the filling material can be chosen with
larger mass density, proper stiffness, and weak anisotropic factor embedded in a soft matrix in
order to obtain wider complete band gaps of the lower-order Lamb waves. On the other hand,
for air/solid PnC plates, a background material itself with proper anisotropy and a high filling
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fraction of air may favour the opening of the complete Lamb wave gaps.
Wang et al. (2009) explored the elastic wave propagation in periodic cylinder magne-

toelectroelastic PnCs with Kagomé lattice. The band structure characteristics of magnetoelec-
troelastic rods embedded in polymer matrix and the reverse case were investigated taking the
electric, magnetic and mechanical coupling effects into account. The generalised eigenvalue
equation was derived to analyse the in-plane and out-of-plane modes, respectively. They ob-
served that the rule that high-density rods in low-density matrix is more easily to generate
wave band gaps for pure elastic solid/solid periodic structures is also valid for the magnetoelec-
troelastic composites. Furthermore, the band gap properties and widths can be affected by the
magnetoelectric effects.

Zhou et al. (2011) analysed theoretically the modulation of band gaps of in-plane elastic
waves by the out-of-plane wave number that is parallel to the piezoelectric material rod axis in
piezoelectric PnCs. The dependence of band gaps of in-plane elastic waves on the out-of-plane
wave number and the filling fraction was calculated with and without the piezoelectricity. The
in-plane band gaps can be opened (or closed) and the in-plane wave modes can be tuned by
controlling the propagation of out-of-plane elastic waves. The in-plane band gap in the low-
frequency range can be easily obtained by introducing an out-of-plane wave number, and was
almost independent of the piezoelectricity. However, the widths and starting frequencies of in-
plane band gaps in a relatively high-frequency range can be modulated by the filling fraction
and piezoelectricity. The authors highlighted that the piezoelectric PnC is very useful in the
design of ultrasonic transducers to avoid the invalid modes of in-plane elastic waves without
affecting the working modes corresponding to the out-of-plane wave number.

Feng and Liu (2012) studied experimentally and theoretically the mechanism for the shift
of the band gap in two kinds of finite PnCs, i.e., steel/epoxy and aluminium/epoxy with different
initial stresses. The experimental results and theoretical analysis simultaneously indicated that
the initial stress efficiently tune the location and width of band gap.

Escalante et al. (2013) investigated the dispersion of PnC waveguides formed by evan-
escent coupling of a chain of defect cavities and supporting slow-wave propagation. It was
considered a 2D PnC with square lattice of tungsten inclusions in a silicon matrix. The coupled-
resonator acoustic waveguide dispersion can be controlled by increasing the distance between
cavities, with the result of decreasing their coupling, and hence flattening the dispersion relation.

Huang et al. (2014) studied the band structures of shear horizontal waves in a periodic-
ally corrugated piezoelectric plate by using the supercell plane wave expansion method. The
periodically corrugated piezoelectric plates with different types of symmetry gave rise to dif-
ferent kinds of band gaps and the associated defect states. The increase of defect size lowers
the frequency of defect bands, and it can be used to tune the narrow-passband frequencies in
band gaps. Symmetry breaking was also introduced by reducing the lower corrugation depth of
the periodically corrugated piezoelectric plate. Results showed that symmetry breaking leads to
both the appearance and disappearance of new kinds of band gaps and the corresponding defect
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bands in these band gaps.
Feng et al. (2015) proposed a methodology for continuous tuning of confined line de-

fect modes in 2D PnCs with hexagonal lattice. Different from the general method, where line
defects are formed by removing several rows of cells from a perfect PnC, the line defect was
considered as a free vibrating plate, and separated from the surrounding phononic structure.
Thus, width of the line defect was adjusted. Resonant frequency of the confined defect mode
could be continuously modified, and precisely determined to keep it locating at the central part
of the phononic band gaps. It was also illustrated that different resonant modes (i.e., flexural
and extensional modes) have different relationships with the width of the line defect, and the
unwanted resonant mode could be excluded from the phononic band gaps by carefully selecting
the defect width. The simulation results indicated that each defect mode has an optimal width,
in which case quality factor of the defect mode is maximum.

Bayat and Gordaninejad (2015) presented the wave propagation in a tunable PnC with
square lattice consisting of a porous hyperelastic magnetorheological elastomer subjected to an
external magnetic field. They observed that finite deformations and magnetic induction influ-
ence PnC characteristics through altering the geometry and material properties of the unit cell.
They demonstrated that large deformations and magnetic induction could change the location
and width of band gaps.

Guo et al. (2016) studied the effects of functionally graded interlayers on dispersion rela-
tions of elastic waves in a 1D piezoelectric/piezomagnetic PnC. Based on the transfer matrices
of the piezoelectric slab, piezomagnetic slab and functionally graded interlayers, the total trans-
fer matrix of a single cell was obtained. Further, from Floquet-Bloch’s theorem, resultant dis-
persion equations of in-plane and anti-plane Bloch waves were obtained. Five kinds of profiles
of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab were
considered. It was shown that the functionally graded interlayers have evident influence on the
band structures and band gaps.

Sadat and Wang (2016) investigated colloidal nanocrystal superlattices as PnCs with 3D
periodicity. The nanoscale periodicity and acoustic contrast between the hard nanocrystal cores
and soft ligand matrix led to phononic band gaps with centre frequencies on the order of ∼102

GHz and band gap widths on the order of ∼10 GHz. Moreover, these characteristics can be
tuned by changing the nanocrystal core diameter, nanocrystal core elastic modulus, interparticle
distance, and ligand modulus. They underlined that colloidal nanocrystal superlattices are prom-
ising candidates for use in high frequency PnC applications that exert control over sound and
heat.

Schneider et al. (2016) reported an indirect hypersonic phononic band gap and an anom-
alous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experi-
ments under varying applied elastic strains. They showed the mechanical nonlinearity of the
silk structure generates a unique region of negative group velocity, that together with the global
(mechanical) anisotropy provides novel symmetry conditions for band gap formation.
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Chen et al. (2017) extended the bi-directional evolutionary structure optimization (BESO)
method to design PnCs for maximizing spatial decay of evanescent waves. The optimization
objective was to enlarge the minimum imaginary part of wave vectors at a specified frequency.
They considered bulk wave propagation (out-of-plane and in-plane waves) in isotropic PnCs
with 2D periodicity and square lattice. Numerical examples demonstrated that the optimization
algorithm proposed was effective for designing PnCs with maximum spatial decay of evanescent
waves. Various topological patterns of optimized PnCs were obtained.

Qian and Shi (2017) coupled the PWE and FE methods to calculate the band structures
of semi-infinite beam-like PnCs with infinite periodicity in 𝑧 direction and finiteness in 𝑥𝑦

plane. Explicit matrix formulations were developed for the calculation of band structures. First,
PWE/FE method was applied to calculate the band structures of the Pb/rubber beam-like PnCs
with circular and rectangular cross sections, respectively. Then, it was used to obtain the band
structures of steel/epoxy and steel/aluminium beam-like PnCs with the same geometric para-
meters. Last, the band structure of the three-component beam-like PnC was calculated by the
proposed method. Furthermore, all the results from the PWE/FE method were compared with
those calculated by FE, and the corresponding results were in good agreement.

For some brief reviews about PnCs, see for instance the studies of Pennec et al. (2010),
Li and Wang (2012) and Kushwaha (2016).

1.2.2 Sonic crystals

As mentioned before, SnCs are the acoustic version of PnCs. Laude (2015) defines SnCs
as artificial crystals for acoustic or pressure waves in fluids. In the literature, the terms PnC
and SnC are often used indifferently for all cases of artificial crystals, considering mechanical
waves. However, in this thesis, SnCs are associated with acoustic waves, whereas PnCs are re-
lated to elastic waves. Some common examples of SnCs are fluid inclusions in a fluid matrix
and solid inclusions in a fluid matrix. For the last case, it is not regarded the coupling among
elastic and acoustic waves, and some associated effects. It must be underlined that fluid inclu-
sions in a solid matrix is considered as a PnC. In Annexe A.2, it is discussed the equations that
describe acoustic and elastic waves in SnCs and PnCs, respectively.

Kushwaha et al. (1998) calculated extensive the band structures for cubic arrays of ri-
gid spheres and cubes in air. Full band gaps were obtained for the face-centred-cubic structure.
However, there was no band gap for the body-centered-cubic and simple-cubic structures. They
also proposed a tandem structure that allows the achievement of an ultrawideband filter for en-
vironmental or industrial noise in the desired frequency range. The authors mentioned that their
study was motivated by the experimental measurement of sound attenuation on the sculpture,
by Eusebio Sempere, exhibited at the Juan March Foundation in Madrid (Martínez-Sala et al.,
1995).
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Zhang et al. (2004) investigated defect modes created by introducing a bend-shaped lin-
ear defect in a 2D SnC consisting of water cylinders in mercury background. They used the
supercell plane wave approach. The bend-shaped linear defect was made up of water cylinders
with different size, and the size of the defect cylinders was shown to strongly influence the de-
fect modes existing in the frequency regime of the band gap. By analysing the pressure field of
defect modes, they found the waves are localized in the bend-shaped linear defect. It provided
a foundation in theory to design a bent waveguide in engineering application.

Martínez-Sala et al. (2006) demonstrated that it is possible to improve the sound attenu-
ation obtained from a mass of trees by arranging them in a periodic lattice. The outdoor experi-
mental results showed that the largest sound attenuation, within a certain range of frequencies,
was obtained for a range of frequencies associated with the array periodicity. These arrays of
trees worked like SnCs. Therefore, the authors suggested that these periodic arrays could be
used as green acoustic screens.

Qiu and Liu (2006) investigated numerically the radiation of a line acoustic source placed
inside a SnC of square lattice composed by steel inclusions in water. Their results showed that it
is possible to obtain a highly directional acoustic source with a large radiation enhancement, op-
erating at the band-edge frequency of the SnC. The angular distributions of the radiation power
and the radiation enhancement factor are strongly dependent on the position of the acoustic
source relative to the unit cell in which it is placed.

Romero-García et al. (2007) presented an interferometric method of characterizing dir-
ectly the refraction index of SnCs. They focused their research on SnCs constructed with a
periodic distribution of rigid cylinders in air. The interferometric method used was based on the
acoustical analog of an optical device called Fresnel’s biprism. Their numerical results were in
good agreement with the experimental results and allowed to estimate the refraction index for
very low frequencies. They concluded that this method offers certain advantages with respect
to the classical method used to obtain the refraction index in SnCs with airborne propagation,
that is the phase delay method.

Sánchez-Dehesa et al. (2011) studied noise barriers based on SnCs made of cylinders that
used recycled materials like absorbing component. The barriers consisted of only three rows of
perforated metal shells filled with rubber crumb. Measurements of reflectance and transmittance
by these barriers were reported. The attenuation properties resulted from a combination of sound
absorption by the rubber crumb and reflection by the periodic distribution of scatterers. They
concluded that the porous cylinders can be used as building blocks in order to design barriers
adapted to different noisy environments.

Romero-García et al. (2012) reported theoretically and experimentally inverse-designed
scattering acoustical elements, called quasi-ordered structures, showing their possibilities as
attenuation devices. Multiobjective evolutionary algorithms together with MST were used to
design a distribution of vacancies in a SnC in order to create a quasi-ordered structure with
predetermined properties. The authors highlighted that moulding the acoustic attenuation is one
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of the most important properties for the design of effective filters.
Castiñeira-Ibáñez et al. (2012) presented the design and the manufacturing processes,

as well as the acoustics standardization tests, of an acoustic barrier formed by a set of multi-
phenomena cylindrical scatterers. The multiple scattering of waves inside SnCs led to attenu-
ation bands related to the periodicity of the structure by means of Bragg scattering. In order to
design the acoustic barrier, they proposed two strategies, i.e., the arrangement of scatterers was
based on fractal geometries to maximize the Bragg scattering and multi-phenomena scatterers
with several noise control mechanisms, as resonances or absorption, were designed and used
to construct the periodic array. They asserted that the acoustic barrier designed provides a high
technological solution in the field of noise control.

Martins et al. (2013) used 2D SnCs as noise barriers to mitigate road traffic noise by
means of an approach based on a numerical technique called the method of fundamental solu-
tions. The method of fundamental solutions was used to evaluate the performance of SnCs
composed by circular inclusions, studying the effect of varying dimensions and spacing of the
crystal elements as well as their acoustic absorption in the sound attenuation provided by the
global structure. When comparing the effect of using a triangular or square lattice, the results
showed a trend for better performance, in terms of the calculated insertion loss, when structures
with a triangular lattice were used.

Morandi et al. (2016) carried out sound insulation and sound reflection measurements
conducted over SnC noise barriers according to the European standards EN 1793-2, EN 1793-5
and EN 1793-6. They performed free-field measurements over a real-sized sample in order to
window out all diffraction components and to verify the points of strength and weakness of the
application of standardised measurements to SnCs. Since the target frequency range for traffic
noise spectrum is centred at around 1000 Hz, as mentioned by them, a FE based parametric
investigation was performed to design unit cells capable of generating band gaps in the one-
third octave bands ranging from 800 Hz to 1250 Hz. Then, 3 × 3 m SnC noise barriers were
installed in the Laboratory of the University of Bologna and sound insulation and sound re-
flection measurements were performed for normal incidence. The standardised measurements
allowed a direct comparison between the performance of SnCs and common noise barriers.

1.2.3 Mechanical metamaterials

Lagarrigue et al. (2013) investigated experimentally and theoretically the acoustic trans-
mission coefficient of a MM made of hollow bamboo rods. The hollow bamboo rods were
drilled between each node to create an array of Helmholtz resonators. It was shown that the
presence of Helmholtz resonators leads to locally resonant band gaps in the low-frequency part
of the transmission coefficient.

Cheng and Shi (2014b) studied the attenuation zones of 2D periodic rubber concrete pan-
els. Both the Bragg-scattering periodic panels (PnCs) and the local-resonant periodic panels
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(EMs) were addressed. They found that complete attenuation zones in the low frequency region
can be obtained in the considered panels by proper design. Furthermore, the study of parameters
showed that non-symmetric periodic panels with directional attenuation zones are much suit-
able for engineering applications. This investigation also showed that vibration can be reduced
significantly by using a periodic structure with only three units.

Zhu et al. (2015) studied analytically and numerically plane wave propagation and re-
flection in semi-infinite EMs with doubly or triply negative material properties. The unique
negative refractions for the longitudinal and transverse waves were captured by the proposed
generalized Snell’s law. The effects of different angles of incidence were also investigated for
both double-negative and triple-negative transmitted media and some unusual wave propaga-
tion phenomena, such as complete wave mode conversion was numerically demonstrated. They
mentioned that this study can serve as the theoretical foundation for engineering and designing
general metamaterial-based elastic wave devices.

Xiao et al. (2014) reported theoretical examination and experimental demonstration of
EM plates consisting of a periodic array of beam-like resonators attached to a thin homogeneous
plate. They demonstrated that a low-frequency complete band gap for flexural plate waves can
be created in the proposed structure owing to the interaction between the localized resonant
modes of the beam-like resonators and the flexural wave modes of the host plate. They showed
that the location and width of the complete band gap can be dramatically tuned by changing
the properties of the beam-like resonators. They also performed experimental measurements of
a specimen fabricated by an array of double-stacked aluminium beam-like resonators attached
to a thin aluminium plate with 5 cm structure periodicity. The experimental results evidenced
a complete band gap extending from 465 Hz to 860 Hz, matching well with their theoretical
prediction.

Assouar et al. (2016) provided theoretical and numerical analyses of the behaviour of
an acoustic metamaterial plate considered in an air-borne sound environment in view of sound
mitigation application. They regarded two plate configurations, that is a spring-mass one and
a pillar system-based one. They observed that a high sound transmission loss up to 82 dB was
reached with a metamaterial plate with a thickness of 0.5 mm. Comparison between sound trans-
mission loss, band structure, displacement fields and effective mass density of the metamaterial
plate was performed in order to understand the different mechanisms involved.

Achaoui et al. (2016) investigated stop band properties of a theoretical cubic array of iron
spheres connected to a bulk of concrete via iron or rubber ligaments. Each sphere moved freely
within a surrounding air cavity, however, ligaments coupled it to the bulk and facilitated bending
and rotational motions. They found complete band gaps in the range [16, 21] Hz ([6, 11] Hz)
for 7.4 m (0.74 m) diameter iron spheres with a 10 m (1 m) centre-to-centre spacing, when
they were connected to concrete via steel (rubber) ligaments. They observed that only bending
modes were responsible for damping and rotational modes were totally overwritten by bending
modes. The authors highlighted that their results represented a preliminary step in the design of
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seismic shields placed around, or underneath, foundations of large civil infrastructures.
Claeys et al. (2016) performed the numerical design and experimental validation of acous-

tic insulation based on the concept of metamaterials: a hollow core periodic sandwich structure
with added local resonant structures. They studied a set of variations on the nominal design
in order to investigate the sensitivity to specific parameters in the metamaterial design and the
design robustness. The stop bands were numerically predicted through unit cell modelling after
which a full vibro-acoustic FE model was applied to predict the insertion loss of the demon-
strator. They concluded that the results of these analyses and the measurements indicate that
this metamaterial concept can be applied to combine light weight, compact volume and good
acoustic behaviour.

Yi et al. (2016) designed and analysed a piezo-lens to focus flexural waves in thin plates.
The piezoelectric patches were shunted with negative capacitance circuits. The effective refract-
ive indexes inside the piezo-lens were designed to fit a hyperbolic secant distribution by tuning
the negative capacitance values. Numerical results showed that the piezo-lens can focus flexural
waves by bending their trajectories, and was effective in a large frequency band. The piezo-lens
had the ability to focus flexural waves at different locations by tuning the shunting negative
capacitance values. They underlined that piezo-lens showed to be effective for flexural waves
generated by different types of sources.

Ai and Gao (2017) designed four metallic metamaterials with tailorable mechanical prop-
erties using bi-material star-shaped re-entrant planar lattice structures, which did not involve
pins, adhesive, welding or pressure-fit joints and can be fabricated through laser-based additive
manufacturing. Three length parameters, one angle parameter and three material combinations
were used in order to explore structure-property relations. It was found that the bi-material lat-
tice structures can be tailored to obtain 3D printable metallic metamaterials with positive, near-
zero or negative Poisson’s ratio and coefficient of thermal expansion together with an uncom-
promised Young’s modulus. They also showed that one of the four metamaterials can exhibit
both a negative Poisson’s ratio and a non-positive coefficient of thermal expansion simultan-
eously. They mentioned that these metallic metamaterials can find applications in structures or
devices such as antennas and precision instruments to reduce thermomechanical stresses and
extend service lives.

Two-dimensional metamaterials consisting of plates with resonant cylinders have been
shown to attenuate waves much larger than their characteristic unit cell size by opening sub-
wavelength band gaps. However the bandwidth of the band gap correlates strongly with the
resonator mass, which limits metamaterials functionality in mass sensitive applications (Bilal
et al., 2017). To overcome this limitation, Bilal et al. (2017) showed theoretically that trampo-
line phenomena broaden the width of the first partial band gap by up to a factor 4 of the linear
resonant band gap. They provided an experimental demonstration of the trampoline phenom-
ena in 3D-printed plates, consisting of pillars and holes, composed of a single material. They
showed numerically and experimentally that trampoline plates increase both partial and full
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band gaps widths, while reducing the base-plate’s mass by ≈ 30% in the studied configurations.
Pal and Ruzzene (2017) investigated EMs characterized by topologically non-trivial band

gaps supporting backscattering suppressed edge waves. These edge waves are topologically pro-
tected and are obtained by breaking inversion symmetry within the unit cell. This concept was
implemented on an EM plate featuring an array of resonators arranged according to a hexagonal
topology. The resulting continuous structures showed non-trivial band gaps supporting edge
waves at the interface between two media with different topological invariants.

Krushynska et al. (2017b) compared the wave dispersion for 2D and 3D metamaterials
with multilayered inclusions. Numerical study revealed that dual-resonant structures with cyl-
indrical inclusions possess only a single (compared to two in the 2D case) band gap for certain
height-to-width ratios. In contrast, they observed that the wave dispersion in metamaterials with
multiple spherical resonators can be accurately evaluated using a 2D approximation, enabling a
significant simplification of resource-consuming 3D models.

Li et al. (2017) numerically and experimentally demonstrated the low-frequency broad-
band elastic wave attenuation and vibration suppression by using an EM plate, which is con-
stituted of periodic double-sides stepped resonators deposited on a 2D phononic plate with
steel matrix. In contrast to the typical phononic plates consisting of periodic stepped resonat-
ors deposited on a homogeneous steel plate, the proposed EM can yield large band gap in the
low-frequency range, resulting in the low-frequency broadband elastic wave attenuation. They
observed that the formation mechanism of opening the low-frequency band gap is attributed to
the coupling between the local resonant Lamb modes of 2D phononic plate and the resonant
modes of the stepped resonators. The band gap can be significantly modulated by the material
and geometrical parameters.

Chang et al. (2018) discussed the wave propagation behaviour and attenuation mechanism
of the EM with locally resonant sub-structure. The dynamically equivalent properties, i.e., mass
and elastic property, of the single resonance system were derived and found to be frequency
dependent. Negative effective properties were found in the vicinity of the local resonance. They
examined whether the band gap always coincides with the frequency range of negative effective
properties. From this analysis, they observed that when the stop frequency, which is the highest
propagating frequency of the main structure, was lower than the local resonance of the sub-
structure, the band gap would not totally overlap with the frequency range of negative effective
properties. They also reported that the coupled Bragg-resonance band gap is much wider than
the narrow-banded local resonance and the corresponding effective material properties at band
gap could be either positive or negative.
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1.3 Objectives

The main objective of this thesis is to study 1D and 2D PnCs and EMs for passive vi-
bration control in different applications by means of PWE, IPWE and EPWE approaches. The
specific objectives of this thesis are listed in the following.

∙ Present the band structure of 1D PnC rods, 2D SnCs and 1D EM Euler-Bernoulli beams
by means of PWE, IPWE and EPWE.

∙ Analyse the Bragg-type band gap formation, band structure, harmonic forced response
and attenuation constant of a 1D PnC beam using the FE, SE, WFE, WSE, PWE and
IPWE methods.

∙ Study the flexural wave band gaps in a 2D PnC plate with different lattices and inclusions
considering Mindlin-Reissner theory.

∙ Evaluate the elastic band structure of a carbon nanostructure PnC and a nano-piezoelectric
PnC with different lattices and inclusions, considering wave propagation in the xy plane
and 2D periodicity.

∙ Compare the band structure of a nano-piezoelectric PnC, considering Z modes with and
without piezoelectricity.

∙ Investigate the band structure of a 2D magnetoelectroelastic PnC composed by BaTiO3-
CoFe2O4 inclusions in a polymeric matrix, considering wave propagation in the xy plane
in an inhomogeneous transversely isotropic elastic solid.

∙ Investigate the band structure of flexural waves propagating in an EM beam and its har-
monic forced response, considering periodic arrays of single degree of freedom (S-DOF)
and M-DOF resonators.

∙ Compare the elastic band structure obtained by means of PWE, EPWE, WFE and WSE
methods, considering an EM beam with periodic arrays of S-DOF and M-DOF resonators.

∙ Analyse the elastic band structure of flexural waves propagating in an EM thin plate with
multiple periodic arrays of attached M-DOF resonators, considering square and triangular
lattices.

1.4 Outline of the thesis

This thesis is organized as follows.
In Chapter 2, PWE, IPWE and EPWE approaches are formulated for simple cases, i.e.,

1D PnC rods, 2D SnCs and 1D EM Euler-Bernoulli beams. Some advantages and drawbacks
are also underlined.

In Chapter 3, simulated examples of mechanical wave propagation in 1D PnC rods, 2D
SnCs and 1D EM Euler-Bernoulli beams are carried out using PWE, IPWE and EPWE methods.

In Chapter 4, general conclusions regarding this thesis are drawn. Then, original contri-
butions of this study are highlighted in a list of the publications that resulted during the thesis
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progress.
In Annexe A, some basic concepts of 2D periodic systems, such as geometric properties,

wave propagation and band gaps are reported.
In Appendices A–G, attached papers are provided and some applications of PnCs and

EMs for passive vibration control are investigated.
In Appendix A, the band structure and the harmonic forced response of a 1D PnC Euler-

Bernoulli beam are investigated.
In Appendix B, it is studied flexural wave band gaps in a 2D PnC thick plate, composed

by an epoxy matrix reinforced by Al2O3 inclusions.
In Appendices C and D, it is discussed the influence of different inclusion cross sections

and different lattices on the band structures of 2D carbon nanostructure PnCs and 2D nano-
piezoelectric PnCs.

In Appendix E, the piezoelectricity and piezomagnetism are considered on the band struc-
ture of a 2D magnetoelectroelastic PnC.

In Appendix F, the harmonic forced response and the band structure of a 1D EM Euler-
Bernoulli beam with periodically attached spring-mass resonators are calculated.

In Appendix G, it is analysed the complex band structure of flexural waves propagating in
an 2D EM thin plate with multiple periodic arrays of M-DOF resonators in square and triangular
lattices.

In Appendix H, some implemented codes in MATLAB® are available.
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2 THEORETICAL MODELS

In this section, PWE, IPWE and EPWE approaches are presented for simple cases. First,
it is considered a 1D PnC rod composed by two materials. Next, it is regarded a 2D SnC with
square lattice, consisting of periodic circular solid inclusions in a fluid matrix. Finally, a 1D EM
Euler-Bernoulli beam with periodic array of resonators is addressed.

2.1 Plane wave expansion method

PWE is the most used method to calculate the band structure of periodic systems, such
as photonic crystals (El-Naggar, 2012), PnCs (Kushwaha et al., 1994; Sigalas and Economou,
1992; Laude et al., 2009), SnCs (Kushwaha and Halevi, 1994) and MMs (Xiao et al., 2012a;
Xiao et al., 2012b). PWE has also been applied to calculate the band structure of smart PnCs,
for instance, piezoelectric (Qian et al., 2008), piezomagnetic (Vasseur et al., 2011) and magne-
toelectroelastic (Wang et al., 2008) PnCs.

PWE uses the system periodicity and Floquet-Bloch’s theorem (Floquet, 1883; Bloch,
1928) to solve the wave equation, obtaining an eigenvalue problem 𝜔(k). This eigenvalue prob-
lem must be solved for each Bloch wave vector value into the first irreducible Brillouin zone
(FIBZ) (Brillouin, 1946). One of the main advantages of using PWE method is its facility of be-
ing implemented. PWE is regarded as a semi-analytical method, because Fourier series expan-
sion in reciprocal space must be truncated. This method has also some drawbacks, for instance,
when there is high geometry or material mismatch PWE presents slow convergence and IPWE
method must be used.

PWE formulation is presented in detail for 1D PnC Euler-Bernoulli beams (Appendix A),
2D PnC thick plates (Appendix B), 2D PnC solids (Appendix C), 2D piezoelectric PnC solids
(Appendix D) and 2D magnetoelectroelastic PnC solids (Appendix E). In this subsection, it is
considered just 1D PnC rods, 2D SnCs and 1D EM Euler-Bernoulli beams.

2.1.1 PWE formulation for 1D phononic crystal rods

From simple rod theory, the governing equation for longitudinal vibrations in a infinite
uniform rod system can be written as (Lee, 2009):

𝜕

𝜕𝑥

[︂
𝐸𝑆

𝜕�̂�1(𝑥,𝑡)

𝜕𝑥

]︂
= 𝜌𝑆

𝜕2�̂�1(𝑥,𝑡)

𝜕𝑡2
, (2.1)

where 𝐸 is the Young’s modulus, 𝑆 is the cross section area, �̂�1 is the longitudinal displacement
in time domain, 𝑥 is the spatial position and 𝑡 is the time.

Applying the temporal Fourier transform on Eq. (2.1), results:
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𝜕

𝜕𝑥

[︂
𝐸𝑆

𝜕𝑢1(𝑥,𝜔)

𝜕𝑥

]︂
+ 𝜔2𝜌𝑆𝑢1(𝑥,𝜔) = 0, (2.2)

where 𝜔 is the angular frequency and 𝑢1(𝑥,𝜔) is the longitudinal displacement in frequency
domain. Considering a 1D PnC rod consisting of periodic unit cells with different materials, one
may write 𝐸 = 𝐸(𝑥) and 𝜌 = 𝜌(𝑥). Note that 𝐸(𝑥) = 𝐸(𝑥 + 𝑎) and 𝜌(𝑥) = 𝜌(𝑥 + 𝑎), where
𝑎 is the lattice parameter, i.e., unit cell length. From now on, it is regarded 𝑢1(𝑥,𝜔) = 𝑢1(𝑥) for
simplification.

Hereafter, basic concepts of Solid State Physics are necessary, see Annexes A.1 and A.2.
Applying the Floquet-Bloch’s theorem and considering wave propagation on the 𝑥 axis (𝑘2,𝑘3 =

0), gives:

𝑢1(𝑥) = 𝑒𝑗𝑘𝑥𝑢1𝑘(𝑥), (2.3)

where 𝑘 = 𝑘1, 𝑘 ∈ R, is the Bloch wave vector, also known as wave number and has its value
within the FIBZ in reciprocal space,

[︀
0,𝜋

𝑎

]︀
, or within the FBZ,

[︀
−𝜋

𝑎
,𝜋
𝑎

]︀
, 𝑗 =

√
−1 and 𝑢1𝑘(𝑥) is

the Bloch wave amplitude. Note that 𝑢1𝑘(𝑥) = 𝑢1𝑘(𝑥 + 𝑎), 𝑢1(𝑥 + 𝑎) = 𝑢1(𝑥)𝑒𝑗𝑘𝑎, where 𝑒𝑗𝑘𝑎

is the Floquet-Bloch periodic boundary condition. Expanding Bloch wave amplitude as Fourier
series in reciprocal space, yields:

𝑢1(𝑥) = 𝑒𝑗𝑘𝑥
+∞∑︁

𝑚=−∞

𝑢1𝑚𝑒
𝑗𝑔𝑚𝑥 =

+∞∑︁

𝑚=−∞

𝑢1𝑚𝑒
𝑗(𝑘+𝑔𝑚)𝑥, (2.4)

where 𝑢1𝑚 = 𝑢1𝑘𝑚 , 𝑔𝑚 = 2𝜋𝑚
𝑎

is the reciprocal lattice vector and 𝑚 ∈ Z. Note that 𝑔𝑚 is
a constant, since it is considered 1D periodicity. Furthermore, material properties can also be
expanded as Fourier series in the reciprocal space as:

𝑃 (𝑥) =
+∞∑︁

�̄�=−∞

𝑃�̄�𝑒
𝑗𝑔�̄�𝑥, (2.5)

where 𝑃 (𝑥) is one of 𝛼(𝑥) = 𝜌(𝑥)𝑆, 𝛾(𝑥) = 𝐸(𝑥)𝑆 and 𝑔�̄� = 2𝜋�̄�
𝑎

, �̄� ∈ Z. It is used 𝑔�̄� and
�̄� to highlight the difference between the expansions of material properties and displacement.
Fourier series coefficients 𝑃�̄� in Eq. (2.5) can be calculated by:

𝑃�̄� =
1

𝑎

∫︁ 𝑎/2

−𝑎/2

𝑃 (𝑥)𝑒−𝑗𝑔�̄�𝑥𝑑𝑥. (2.6)

Substituting Eqs. (2.4) and (2.5) in Eq. (2.2), gives:

+∞∑︁

𝑚=−∞

+∞∑︁

�̄�=−∞

[︀
𝛾�̄�𝑢1𝑚(𝑘 + 𝑔𝑚)(𝑘 + 𝑔𝑚 + 𝑔�̄�) − 𝜔2𝛼�̄�𝑢1𝑚

]︀
𝑒𝑗(𝑘+𝑔𝑚+𝑔�̄�)𝑥 = 0. (2.7)



39

Making a variable change 𝑔�̃� = 𝑔�̄� + 𝑔𝑚, results:

+∞∑︁

𝑚=−∞

+∞∑︁

�̃�=−∞

[︀
𝛾�̃�−𝑚𝑢1𝑚(𝑘 + 𝑔𝑚)(𝑘 + 𝑔�̃�) − 𝜔2𝛼�̃�−𝑚𝑢1𝑚

]︀
𝑒𝑗(𝑘+𝑔�̃�)𝑥 = 0. (2.8)

Multiplying Eq. (2.8) by 𝑒−𝑗𝑔�̄�𝑥, integrating over the unit cell, one can write for all 𝑥:

+∞∑︁

𝑚=−∞

+∞∑︁

�̃�=−∞

[︀
𝛾�̃�−𝑚𝑢1𝑚(𝑘 + 𝑔𝑚)(𝑘 + 𝑔�̃�) − 𝜔2𝛼�̃�−𝑚𝑢1𝑚

]︀ 1

𝑎

∫︁ 𝑎/2

−𝑎/2

𝑒𝑗(𝑔�̃�−𝑔�̄�)𝑥𝑑𝑥 = 0. (2.9)

Remembering the definition of 𝛿�̃��̄�:

𝛿�̃��̄� =
1

𝑎

∫︁ 𝑎/2

−𝑎/2

𝑒𝑗(𝑔�̃�−𝑔�̄�)𝑥𝑑𝑥, (2.10)

Eq. (2.9) can be rewritten as:

+∞∑︁

𝑚=−∞

[︀
𝛾�̄�−𝑚𝑢1𝑚(𝑘 + 𝑔𝑚)(𝑘 + 𝑔�̄�) − 𝜔2𝛼�̄�−𝑚𝑢1𝑚

]︀
= 0. (2.11)

Equation (2.11) is an infinite system of equations, thus Fourier series must be truncated,
i.e., 𝑚, �̄� = [−𝑀, . . . ,𝑀 ], 𝑀 ∈ Z, and the total number of plane waves is 2𝑀 + 1. Then, Eq.
(2.11) can be rewritten as:

Aū1 = 𝜔2Bū1, (2.12)

where the coefficients of vector ū1 are 𝑢1𝑚 and the coefficients of matrices A and B are given
by:

𝐴𝑚�̄� = 𝛾�̄�−𝑚(𝑘 + 𝑔𝑚)(𝑘 + 𝑔�̄�), 𝐵𝑚�̄� = 𝛼�̄�−𝑚. (2.13)

Equation (2.12) represents a generalized eigenvalue problem of 𝜔2(𝑘) and should be
solved for each 𝑘 into the FIBZ or FBZ.

2.1.2 PWE formulation for 2D sonic crystals

The wave equation for an isotropic medium of infinite extension in absence of an external
force, regarding acoustic case (see Annexe A.2) and 2D problem (𝜕/𝜕𝑥3 = 0), can be written
as (Kushwaha and Halevi, 1996b):

𝑐−1
11

𝜕2𝑝(r,𝑡)

𝜕𝑡2
= ∇ ··· [𝜌−1∇𝑝(r,𝑡)], (2.14)

where 𝑐11 is the elastic constant, 𝑝 is the pressure in time domain and r = 𝑥e1 + 𝑦e2 is the 2D
spatial vector. Note that 𝑐11(r) = 𝑐11(r + r̄) and 𝜌(r) = 𝜌(r + r̄), where r̄ is the lattice vector
(see Annexe A.1).
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Applying the temporal Fourier transform on Eq. (2.14), gives:

∇ ··· [𝜌−1∇𝑝(r,𝜔)] + 𝜔2𝑐−1
11 𝑝(r,𝜔) = 0, (2.15)

where 𝑝 is the pressure in frequency domain.
Considering a SnC with periodic solid inclusions embedded in a fluid matrix, one can

write 𝑐11 = 𝜌𝑐2𝑙 = 𝑐11(r) and 𝜌 = 𝜌(r), where 𝑐𝑙 is the longitudinal speed of sound. It must
be highlighted that the Eq. (2.14) is valid only whether waves propagating through the SnC
can be regarded as purely longitudinal as long as coupling of shear elastic waves inside the
solid inclusions to acoustic waves in the fluid matrix can be completely ignored (Laude, 2015).
Equation (2.14) is more suitable neglecting inclusion shear rigidity, e.g., for a latex wall (𝑐𝑡 ≪
𝑐𝑙) (Kushwaha and Halevi, 1997), where 𝑐𝑡 is the transverse speed of sound in the inclusion,
or supposing infinite density in the case of metallic inclusions (Kushwaha et al., 1998). This
implies that sound does not penetrate the inclusion and acoustic wave propagation is confined
in the air (Kushwaha et al., 1998). We regard this assumption for the solid inclusions.

Applying the Floquet-Bloch’s theorem and considering wave propagation on the 𝑥𝑦 plane
(𝑘3 = 0), results in:

𝑝(r) = 𝑒𝑗k···r𝑝k(r), (2.16)

where 𝑝(r,𝜔) = 𝑝(r) for brevity, k = �̄�b1 + 𝑣b2, �̄�,𝑣 ∈ Q are symmetry points within the
FIBZ in reciprocal space, or k = 𝑘1e1 + 𝑘2e2, 𝑘1,𝑘2 ∈ R are the point coordinates within FIBZ
in Figure A.3 (f-j) for the reciprocal space. The basis vectors in reciprocal and real spaces,
b𝑖(𝑖 = 1,2) and a𝑖(𝑖 = 1,2), are defined in Annexe A.1. Hereafter, it is considered a SnC with
square lattice. Furthermore, note that 𝑝k(r) = 𝑝k(r + r̄) and 𝑝(r + r̄) = 𝑝(r)𝑒𝑗k···̄r, where 𝑒𝑗k···̄r

is the Floquet-Bloch periodic boundary condition.
Expanding Bloch wave amplitude 𝑝k(r) as Fourier series in reciprocal space, yields:

𝑝(r) = 𝑒𝑗k···r
+∞∑︁

𝑚=−∞

+∞∑︁

𝑛=−∞

𝑝𝑚,𝑛𝑒
𝑗g𝑚,𝑛···r =

+∞∑︁

𝑚=−∞

+∞∑︁

𝑛=−∞

𝑝𝑚,𝑛𝑒
𝑗(k+g𝑚,𝑛)···r, (2.17)

where 𝑝𝑚,𝑛 = 𝑝k𝑚,𝑛 , g𝑚,𝑛 = 2𝜋
𝑎

(𝑚e1+𝑛e2) is the reciprocal lattice vector for square lattice (see
Annexe A.1) and 𝑚,𝑛 ∈ Z. Furthermore, material properties can also be expanded as Fourier
series in the reciprocal space as:

𝑃 (r) =
+∞∑︁

�̄�=−∞

+∞∑︁

�̄�=−∞

𝑃�̄�,�̄�𝑒
𝑗g�̄�,�̄�···r, (2.18)

where 𝑃 (r) is one of 𝜌−1(r), 𝑐−1
11 (r) and g�̄�,�̄� = 2𝜋

𝑎
(�̄�e1 + �̄�e2), �̄�, �̄� ∈ Z. It is used g�̄�,�̄� and

�̄�,�̄� to highlight the difference between the expansions of material properties and pressure. The
Fourier series coefficients 𝑃�̄�,�̄� in Eq. (2.18) can be calculated by:
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𝑃�̄�,�̄� =
1

𝑆𝐶

∫︁ ∫︁
𝑃 (r)𝑒−𝑗g�̄�,�̄�···r𝑑2𝑟, (2.19)

where the integral is evaluated over the unit cell and 𝑆𝐶 = ||a1 × a2|| is the cross section area
of the unit cell. Substituting Eqs. (2.17) and (2.18) in Eq. (2.15), gives:

+∞∑︁

𝑚=−∞

+∞∑︁

𝑛=−∞

+∞∑︁

�̄�=−∞

+∞∑︁

�̄�=−∞

{𝜌−1
�̄�,�̄�𝑝𝑚,𝑛[(𝑘1 + 𝑔1𝑚)(𝑘1 + 𝑔1𝑚 + 𝑔1�̄�) + (𝑘2 + 𝑔2𝑛)(𝑘2 + 𝑔2𝑛

+𝑔2�̄�)] − 𝜔2𝑐−1
11�̄�,�̄�

𝑝𝑚,𝑛}𝑒𝑗(k+g𝑚,𝑛+g�̄�,�̄�)···r = 0. (2.20)

Making a variable change g�̃�,�̃� = g�̄�,�̄� + g𝑚,𝑛, results:

+∞∑︁

𝑚=−∞

+∞∑︁

𝑛=−∞

+∞∑︁

�̃�=−∞

+∞∑︁

�̃�=−∞

{𝜌−1
�̃�−𝑚,�̃�−𝑛𝑝𝑚,𝑛[(𝑘1 + 𝑔1𝑚)(𝑘1 + 𝑔1�̃�) + (𝑘2 + 𝑔2𝑛)(𝑘2 + 𝑔2�̃�)]

−𝜔2𝑐−1
11�̃�−𝑚,�̃�−𝑛

𝑝𝑚,𝑛}𝑒𝑗(k+g�̃�,�̃�)···r = 0. (2.21)

Multiplying Eq. (2.21) by 𝑒−𝑗g�̄�,�̄�···r, integrating over the unit cell, one can write for all r:

+∞∑︁

𝑚=−∞

+∞∑︁

𝑛=−∞

+∞∑︁

�̃�=−∞

+∞∑︁

�̃�=−∞

{𝜌−1
�̃�−𝑚,�̃�−𝑛𝑝𝑚,𝑛[(𝑘1 + 𝑔1𝑚)(𝑘1 + 𝑔1�̃�) + (𝑘2 + 𝑔2𝑛)(𝑘2 + 𝑔2�̃�)]

−𝜔2𝑐−1
11�̃�−𝑚,�̃�−𝑛

𝑝𝑚,𝑛}
1

𝑆𝐶

∫︁ ∫︁
𝑒𝑗(g�̃�,�̃�−g�̄�,�̄�)···r𝑑2𝑟 = 0. (2.22)

Remembering the definition of 𝛿g�̃�,�̃�g�̄�,�̄�:

𝛿g�̃�,�̃�g�̄�,�̄� =
1

𝑆𝐶

∫︁ ∫︁
𝑒𝑗(g�̃�,�̃�−g�̄�,�̄�)···r𝑑2𝑟, (2.23)

where the integral is evaluated over the unit cell, Eq. (2.22) can be rewritten as:

+∞∑︁

𝑚=−∞

+∞∑︁

𝑛=−∞

{𝜌−1
�̄�−𝑚,�̄�−𝑛𝑝𝑚,𝑛[(𝑘1 + 𝑔1𝑚)(𝑘1 + 𝑔1�̄�) + (𝑘2 + 𝑔2𝑛)(𝑘2 + 𝑔2�̄�)] − 𝜔2𝑐−1

11�̄�−𝑚,�̄�−𝑛
𝑝𝑚,𝑛}

= 0. (2.24)

Equation (2.24) is an infinite system of equations, thus Fourier series must be truncated,
i.e., 𝑚,𝑛,�̄�,�̄� = [−𝑀, . . . ,𝑀 ], 𝑀 ∈ Z, and the total number of plane waves is (2𝑀 + 1)2.
Then, Eq. (2.24) can be rewritten as:

Cp = 𝜔2Dp, (2.25)

where the coefficients of vector p are 𝑝𝑚,𝑛 and the coefficients of matrices C and D are given



42

by:

𝐶𝑚,�̄�,𝑛,�̄� = 𝜌−1
�̄�−𝑚,�̄�−𝑛[(𝑘1 + 𝑔1𝑚)(𝑘1 + 𝑔1�̄�) + (𝑘2 + 𝑔2𝑛)(𝑘2 + 𝑔2�̄�)], 𝐷𝑚,�̄�,𝑛,�̄� = 𝑐−1

11�̄�−𝑚,�̄�−𝑛
.

(2.26)
Equation (2.25) represents a generalized eigenvalue problem of 𝜔2(k) and should be

solved for each k into the FIBZ or FBZ.

2.1.3 PWE formulation for 1D elastic metamaterial Euler-Bernoulli beams

From Euler-Bernoulli beam theory, the governing equation for flexural vibrations of a
uniform beam system of an infinite extension can be written as:

𝐸𝐼
𝜕4�̂�3(𝑥,𝑡)

𝜕𝑥4
+ 𝜌𝑆

𝜕2�̂�3(𝑥,𝑡)

𝜕𝑡2
= 0, (2.27)

where 𝐼 is the second moment of area and �̂�3 is the beam transverse displacement in time do-
main. Applying the temporal Fourier transform to Eq. 2.27, and omitting frequency dependence
it produces:

𝐸𝐼
𝜕4𝑢3(𝑥)

𝜕𝑥4
− 𝜔2𝜌𝑆𝑢3(𝑥) = 0, (2.28)

where 𝑢3 is the beam transverse displacement in frequency domain.
Now, considering an infinite 1D EM Euler-Bernoulli beam with S-DOF resonators at-

tached in each unit cell (see Figure 1 in Appendix F), Eq. (2.28) can be rewritten as (Xiao et al.,
2012a):

𝐸𝐼
𝜕4𝑢3(𝑥)

𝜕𝑥4
− 𝜔2𝜌𝑆𝑢3(𝑥) =

𝑁∑︁

𝑖=1

+∞∑︁

𝑛=−∞

𝑞𝑖(𝑥𝑖 + 𝑛𝑎)𝛿[𝑥− (𝑥𝑖 + 𝑛𝑎)], (2.29)

𝑞𝑖(𝑥𝑖 + 𝑛𝑎) = −𝑘𝑖[𝑢3(𝑥𝑖 + 𝑛𝑎) − 𝑤𝑖(𝑥𝑖 + 𝑛𝑎)], (2.30)

−𝜔2𝑚𝑖𝑤𝑖(𝑥𝑖 + 𝑛𝑎) = −𝑞𝑖(𝑥𝑖 + 𝑛𝑎), (2.31)

where 𝑁 is the number of resonators in each unit cell, 𝑞𝑖(𝑥𝑖 + 𝑛𝑎) refers to the force applied to
the beam by the resonator spring located at 𝑥𝑖 + 𝑛𝑎, 𝛿 is Dirac delta function, 𝑘𝑖 is the stiffness
of the ith resonator, 𝑚𝑖 is the mass of the ith resonator, and 𝑤𝑖(𝑥𝑖 +𝑛𝑎) and 𝑢3(𝑥𝑖 +𝑛𝑎) are the
ith resonator and beam flexural displacements at 𝑥𝑖 + 𝑛𝑎.

Applying the Floquet-Bloch’s theorem and considering wave propagation on the 𝑥 axis
(𝑘2,𝑘3 = 0), gives:

𝑢3(𝑥) = 𝑒𝑗𝑘𝑥𝑢3𝑘(𝑥). (2.32)
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Expanding Bloch wave amplitude 𝑢3𝑘(𝑥) as Fourier series in reciprocal space, yields:

𝑢3(𝑥) = 𝑒𝑗𝑘𝑥
+∞∑︁

�̄�=−∞

𝑢3�̄�𝑒
𝑗𝑔�̄�𝑥 =

+∞∑︁

�̄�=−∞

𝑢3�̄�𝑒
𝑗(𝑘+𝑔�̄�)𝑥, (2.33)

where 𝑢3�̄� = 𝑢3𝑘�̄� .
Similarly, applying Floquet-Bloch’s theorem and expanding in Fourier series in reciprocal

space the variable 𝑢3(𝑥𝑖), results:

𝑢3(𝑥𝑖) = 𝑒𝑗𝑘𝑥𝑖

+∞∑︁

�̃�=−∞

𝑢3�̃�𝑒
𝑗𝑔�̃�𝑥𝑖 =

+∞∑︁

�̃�=−∞

𝑢3�̃�𝑒
𝑗(𝑘+𝑔�̃�)𝑥𝑖 . (2.34)

Likewise, applying Floquet-Bloch’s theorem to 𝑢3(𝑥𝑖 + 𝑛𝑎), gives:

𝑢3(𝑥𝑖 + 𝑛𝑎) = 𝑒𝑗𝑘(𝑥𝑖+𝑛𝑎)𝑢3𝑘(𝑥𝑖 + 𝑛𝑎) = 𝑒𝑗𝑘𝑛𝑎𝑒𝑗𝑘𝑥𝑖𝑢3𝑘(𝑥𝑖 + 𝑛𝑎) = 𝑒𝑗𝑘𝑛𝑎𝑒𝑗𝑘𝑥𝑖𝑢3𝑘(𝑥𝑖)

= 𝑒𝑗𝑘𝑛𝑎𝑢3(𝑥𝑖). (2.35)

Equation 2.35 can be obtained directly from Floquet-Bloch periodic boundary condition.
Similarly, for 𝑤𝑖(𝑥𝑖 + 𝑛𝑎), yields:

𝑤𝑖(𝑥𝑖 + 𝑛𝑎) = 𝑒𝑗𝑘𝑛𝑎𝑤𝑖(𝑥𝑖). (2.36)

Then, substituting Eq. (2.30) in Eq. (2.29), produces:

𝐸𝐼
𝜕4𝑢3(𝑥)

𝜕𝑥4
− 𝜔2𝜌𝑆𝑢3(𝑥) = −

𝑁∑︁

𝑖=1

+∞∑︁

𝑛=−∞

𝑘𝑖[𝑢3(𝑥𝑖 + 𝑛𝑎) − 𝑤𝑖(𝑥𝑖 + 𝑛𝑎)]𝛿[𝑥− (𝑥𝑖 + 𝑛𝑎)].

(2.37)

Next, substituting Eqs. (2.35) and (2.36) in Eq. (2.37), one can obtain:

𝐸𝐼
𝜕4𝑢3(𝑥)

𝜕𝑥4
− 𝜔2𝜌𝑆𝑢3(𝑥) = −

𝑁∑︁

𝑖=1

𝑘𝑖[𝑢3(𝑥𝑖) − 𝑤𝑖(𝑥𝑖)]
+∞∑︁

𝑛=−∞

𝑒𝑖𝑘𝑛𝑎𝛿[𝑥− (𝑥𝑖 + 𝑛𝑎)]. (2.38)

The infinite sum in Eq. (2.38)
∑︀+∞

𝑛=−∞ 𝑒𝑖𝑘𝑛𝑎𝛿[𝑥− (𝑥𝑖 +𝑛𝑎)] is a periodic function, which
can be expanded as Fourier series in reciprocal space as:

+∞∑︁

𝑛=−∞

𝑒𝑗𝑘𝑛𝑎𝛿[𝑥− (𝑥𝑖 + 𝑛𝑎)] =
+∞∑︁

�̄�=−∞

𝛿�̄�𝑒
𝑗𝑔�̄�𝑥 =

1

𝑎
𝑒𝑗𝑘(𝑥−𝑥𝑖)

+∞∑︁

�̄�=−∞

𝑒−𝑗𝑔�̄�𝑥𝑖𝑒𝑗𝑔�̄�𝑥, (2.39)

where 1
𝑎
𝑒−𝑗𝑔�̄�𝑥𝑖𝑒𝑗𝑘(𝑥−𝑥𝑖) are the Fourier series coefficients.

Inserting Eq. (2.39) and Eqs. (2.33)-(2.34) in Eq. (2.38), multiplying by 𝑎 and hereafter
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𝑤𝑖(𝑥𝑖) = 𝑤𝑖 for brevity, one can obtain:

+∞∑︁

�̄�=−∞

[𝐸𝐼𝑎(𝑘 + 𝑔�̄�)4 − 𝜔2𝜌𝑆𝑎]𝑒𝑗(𝑘+𝑔�̄�)𝑥𝑢3�̄� = −
𝑁∑︁

𝑖=1

+∞∑︁

�̄�=−∞

𝑘𝑖𝑒
𝑗(𝑘+𝑔�̄�)𝑥𝑒−𝑗(𝑘+𝑔�̄�)𝑥𝑖

+∞∑︁

�̃�=−∞

𝑢3�̃�𝑒
𝑗(𝑘+𝑔�̃�)𝑥𝑖 +

𝑁∑︁

𝑖=1

+∞∑︁

�̄�=−∞

𝑘𝑖𝑒
𝑗(𝑘+𝑔�̄�)𝑥𝑒−𝑗(𝑘+𝑔�̄�)𝑥𝑖𝑤𝑖. (2.40)

Multiplying Eq. (2.40) by 𝑒−𝑗𝑔𝑚𝑥 and integrating over the unit cell, results for all 𝑥:

+∞∑︁

�̄�=−∞

[𝐸𝐼𝑎(𝑘 + 𝑔�̄�)4 − 𝜔2𝜌𝑆𝑎]𝑢3�̄�
1

𝑎

∫︁ 𝑎/2

−𝑎/2

𝑒𝑗(𝑔�̄�−𝑔𝑚)𝑥𝑑𝑥 = −
𝑁∑︁

𝑖=1

+∞∑︁

�̄�=−∞

𝑘𝑖𝑒
−𝑗(𝑘+𝑔�̄�)𝑥𝑖

+∞∑︁

�̃�=−∞

𝑢3�̃�𝑒
𝑗(𝑘+𝑔�̃�)𝑥𝑖

1

𝑎

∫︁ 𝑎/2

−𝑎/2

𝑒𝑗(𝑔�̄�−𝑔𝑚)𝑥𝑑𝑥+
𝑁∑︁

𝑖=1

+∞∑︁

�̄�=−∞

𝑘𝑖𝑒
−𝑗(𝑘+𝑔�̄�)𝑥𝑖𝑤𝑖

1

𝑎

∫︁ 𝑎/2

−𝑎/2

𝑒𝑗(𝑔�̄�−𝑔𝑚)𝑥𝑑𝑥,

(2.41)

and remembering the definition of 𝛿�̄�𝑚 in Eq. (2.10), Eq. (2.41) can be simplified:

𝐸𝐼𝑎(𝑘 + 𝑔𝑚)4𝑢3𝑚 +
𝑁∑︁

𝑖=1

𝑘𝑖𝑒
−𝑗(𝑘+𝑔𝑚)𝑥𝑖

+∞∑︁

�̃�=−∞

𝑢3�̃�𝑒
𝑗(𝑘+𝑔�̃�)𝑥𝑖 −

𝑁∑︁

𝑖=1

𝑘𝑖𝑒
−𝑗(𝑘+𝑔𝑚)𝑥𝑖𝑤𝑖

−𝜔2𝜌𝑆𝑎𝑢3𝑚 = 0. (2.42)

An observation is that the terms 𝑒−𝑗(𝑘+𝑔𝑚)𝑥𝑖 and 𝑒𝑗(𝑘+𝑔�̃�)𝑥𝑖 in Eq. 2.42 can be written just
as 𝑒−𝑗𝑔𝑚𝑥𝑖 and 𝑒𝑗𝑔�̃�𝑥𝑖 . In addition, substituting Eq. (2.31) in Eq. (2.30), gives:

𝜔2𝑚𝑖𝑤𝑖(𝑥𝑖 + 𝑛𝑎) = −𝑘𝑖[𝑢3(𝑥𝑖 + 𝑛𝑎) − 𝑤𝑖(𝑥𝑖 + 𝑛𝑎)], (2.43)

and inserting Eqs. (2.35),(2.36) and (2.34) in Eq. (2.43), provides:

− 𝑘𝑖

+∞∑︁

�̃�=−∞

𝑢3�̃�𝑒
𝑗(𝑘+𝑔�̃�)𝑥𝑖 + 𝑘𝑖𝑤𝑖 − 𝜔2𝑚𝑖𝑤𝑖 = 0. (2.44)

Equations (2.42) and (2.44) are an infinite system of equations, thus Fourier series must
be truncated, i.e., 𝑚, �̃� = [−𝑀, . . . ,𝑀 ]. Then, Eqs. (2.42) and (2.44) can be rewritten as:

Kũ = 𝜔2Mũ, (2.45)

where the vector ũ is [ū3 w]T, and coefficients of vectors ū3 and w are 𝑢3𝑚 and 𝑤𝑖, respectively.
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Moreover, the coefficients of matrices K and M are given by:

𝐾𝑚,�̃�,𝑖 = 𝐸𝐼𝑎(𝑘 + 𝑔𝑚)4 +
𝑁∑︁

𝑖=1

𝑘𝑖𝑒
−𝑗(𝑘+𝑔𝑚)𝑥𝑖

+∞∑︁

�̃�=−∞

𝑒𝑗(𝑘+𝑔�̃�)𝑥𝑖 − 𝑘𝑖

+∞∑︁

�̃�=−∞

𝑒𝑗(𝑘+𝑔�̃�)𝑥𝑖

−
𝑁∑︁

𝑖=1

𝑘𝑖𝑒
−𝑗(𝑘+𝑔𝑚)𝑥𝑖 + 𝑘𝑖, (2.46)

𝑀𝑚,�̃�,𝑖 = 𝜌𝑆𝑎+𝑚𝑖. (2.47)

Similar to Eq. (2.12), Eq. (2.45) represents a generalized eigenvalue problem of 𝜔2(𝑘)

and should be solved for each 𝑘 into the FIBZ or FBZ.

2.2 Improved plane wave expansion method

IPWE approach has the advantage of presenting higher Fourier series convergence than
the traditional PWE and it is useful when there is high geometry or material mismatch (Cao
et al., 2004b). Thus, IPWE approach is very important when locally resonant PnCs or MMs
are considered. Li (1996) proposed the first study of IPWE method for photonic crystals. After
that, Cao et al. (2004b) extended IPWE in order to handle PnCs. In this subsection it is just
highlighted the main differences between PWE and IPWE formulations.

For instance considering the 1D PnC of Subsection 2.1.1, Eq. (2.11) truncated is rewritten
as:

𝑀∑︁

𝑚=−𝑀

[︀
𝛾�̄�−𝑚𝑢1𝑚(𝑘 + 𝑔𝑚)(𝑘 + 𝑔�̄�) − 𝜔2𝛼�̄�−𝑚𝑢1𝑚

]︀
= 0. (2.48)

In Eq. 2.48, it is explicit the Laurent’s rule (Cao et al., 2004b) in the product of 𝛾�̄�−𝑚𝑢1𝑚

and 𝛼�̄�−𝑚𝑢1𝑚 . However, in order to regard IPWE approach, instead of Laurent’s rule, an inverse
rule must be applied, and Eq. (2.48) must rewritten as:

𝑀∑︁

𝑚=−𝑀

{︃[︂
1

𝛾

]︂−1

�̄�−𝑚

𝑢1𝑚(𝑘 + 𝑔𝑚)(𝑘 + 𝑔�̄�) − 𝜔2𝛼�̄�−𝑚𝑢1𝑚

}︃
= 0, (2.49)

where [1/𝛾] denotes the Toeplitz matrix of a function 1/𝛾 with (�̄�,𝑚)th element being 1/𝛾�̄�−𝑚,
and -1 denotes the inverse matrix. The detailed mathematical contents of the above theory are
not given in this investigation, and for mathematical demonstrations, one can see Li (1996)
and Cao et al. (2004b) studies. Another interesting investigation using IPWE approach was
addressed by Yao et al. (2009). They studied flexural wave propagation in a 2D PnC thin plate
with a point defect.

Then, Eq. (2.49) can be written as:

Āū1 = 𝜔2Bū1, (2.50)
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where the coefficients of matrix Ā are given by:

𝐴𝑚�̄� =

[︂
1

𝛾

]︂−1

�̄�−𝑚

(𝑘 + 𝑔𝑚)(𝑘 + 𝑔�̄�). (2.51)

In Appendix A, a comparison between PWE and IPWE is provided for a 1D PnC Euler-
Bernoulli beam.

2.3 Extended plane wave expansion method

Propagating waves inside a periodic system are a set of solutions of wave equations satis-
fying the translational symmetry. They are characterized by the transmission bands in PWE and
IPWE methods. However, finite periodic structures or periodic structures with defects, where
the translational symmetry is broken, can support the evanescent modes characterized by a com-
plex Bloch wave vector (García, 2010). Evanescent waves can propagate within the periodic
structure, however with an attenuation distance determined by the value of Bloch wave vector
imaginary part. Hence, the energy of these waves are spatially concentrated in the vicinity of
the structure excitation source.

From EPWE, also known as k(𝜔) method, it is possible to obtain the complex values of
Bloch wave vector. This is the striking issue of using EPWE method, i.e., evanescent modes
are obtained naturally and they are not ignored as well as on PWE and IPWE. PWE and IPWE
methods consider only the propagating modes, that is to say when Bloch wave vector is only
real. Furthermore, Bloch wave vector is not restricted to the FIBZ considering EPWE method
(Laude et al., 2009). Hsue and Freeman (2005) proved that the evanescent modes obtained by
EPWE obey Floquet-Bloch’s theorem.

In this subsection, it is presented the EPWE formulation for the 2D SnC and 1D EM
Euler-Bernoulli beam reported in Subsections 2.1.2 and 2.1.3.

2.3.1 EPWE formulation for 2D sonic crystals

The starting point is rewrite Eq. (2.25) as (Romero-García et al., 2011; Laude et al., 2009):

C̄p = 𝜔2Dp, (2.52)

where the coefficients of matrix C̄ are given by:

𝐶𝑚,�̄�,𝑛,�̄� = Γ1𝑚𝑛𝜌
−1
�̄�−𝑚,�̄�−𝑛Γ1𝑚𝑛 + Γ2𝑚𝑛𝜌

−1
�̄�−𝑚,�̄�−𝑛Γ2𝑚𝑛 , (2.53)

with
Γ1𝑚𝑛 = 𝛿𝑚𝑛(𝑘1 + 𝑔1𝑚), Γ2𝑚𝑛 = 𝛿𝑚𝑛(𝑘2 + 𝑔2𝑛). (2.54)
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Next, the following vector must be defined:

𝜑𝜑𝜑𝑖 = PΓΓΓ𝑖p, (2.55)

where 𝑖 = 1,2, the coefficients of matrix ΓΓΓ𝑖 are described in Eq. (2.54) and the coefficients of P
are 𝜌−1

�̄�−𝑚,�̄�−𝑛. Thus, Eq. (2.52) can be rewritten as an equation system:

𝜑𝜑𝜑𝑖 = PΓΓΓ𝑖p, (2.56)
2∑︁

𝑖=1

ΓΓΓ𝑖𝜑𝜑𝜑𝑖 = 𝜔2Dp. (2.57)

In order to obtain an eigenvalue problem of k(𝜔), one can write k = 𝑘𝜎𝜎𝜎, where 𝜎𝜎𝜎 is a unit
vector which indicates the incidence direction and 𝑘 = ‖k‖. Then, matrices ΓΓΓ1, ΓΓΓ2 are rewritten
as:

ΓΓΓ1 = G1 + 𝑘𝜎1I, ΓΓΓ2 = G2 + 𝑘𝜎2I, (2.58)

where 𝜎𝑖 (𝑖 = 1,2) are the components of 𝜎𝜎𝜎 on 𝑥 and 𝑦 directions, I is the identity matrix and
the coefficients of matrices G1 and G2 are given by 𝛿𝑚𝑛𝑔1𝑚 and 𝛿𝑚𝑛𝑔2𝑛 . Finally, after some
mathematical manipulations (Romero-García et al., 2011), Eq. (2.52) can be rewritten as:

[︃
𝜔2D−∑︀2

𝑖=1G𝑖PG𝑖 0

−∑︀2
𝑖=1PG𝑖 I

]︃{︃
p

𝜑𝜑𝜑

}︃
= 𝑘

[︃ ∑︀2
𝑖=1 G𝑖P𝜎𝑖I I∑︀2
𝑖=1P𝜎𝑖I 0

]︃{︃
p

𝜑𝜑𝜑

}︃
, (2.59)

where 𝜑𝜑𝜑 =
∑︀2

𝑖=1 𝜎𝑖I𝜑𝜑𝜑𝑖.
Eq. (2.59) represents a generalized eigenvalue problem of k(𝜔). It is must be highlighted,

even though it is usually not mentioned in studies which use EPWE approach, that is necessary
to apply a criterion for tracking the frequency evolution of wave modes when EPWE method is
used, since wave modes are computed at several discrete frequencies. Then, it is necessary to
associate, among all modes defined at a given frequency (𝜔 + ∆𝜔), the one which matches a
given mode defined at the previous frequency (𝜔).

In this thesis, the modal assurance criterion (MAC) is used to estimate the correlation
among wave shapes. This criterion is based on the hermitian scalar product and it is useful for
very low frequencies (Mencik, 2010). Given a wave mode 𝑙 defined at an specific frequency 𝜔
and for a sufficiently small ∆𝜔, the wave mode 𝑙 defined at frequency 𝜔 + ∆𝜔 results in:

⃒⃒
⃒⃒
⃒⃒
⃒⃒ 𝜓𝜓𝜓H

𝑙 (𝜔)

||𝜓𝜓𝜓𝑙(𝜔)||H
𝜓𝜓𝜓𝑙(𝜔 + ∆𝜔)

||𝜓𝜓𝜓𝑙(𝜔 + ∆𝜔)||H

⃒⃒
⃒⃒
⃒⃒
⃒⃒ = 𝑚𝑎𝑥𝑠

{︂⃒⃒
⃒⃒
⃒⃒
⃒⃒ 𝜓𝜓𝜓H

𝑙 (𝜔)

||𝜓𝜓𝜓𝑙(𝜔)||H
𝜓𝜓𝜓𝑠(𝜔 + ∆𝜔)

||𝜓𝜓𝜓𝑠(𝜔 + ∆𝜔)||H

⃒⃒
⃒⃒
⃒⃒
⃒⃒
}︂
, (2.60)

where ‖𝜓𝜓𝜓𝑙‖H =
√︀
𝜓𝜓𝜓H

𝑙 𝜓𝜓𝜓𝑙 denotes the hermitian norm of the eigenvectors 𝜓𝜓𝜓𝑙 of the eigenvalue
problem k(𝜔). The indexes 𝑙,𝑠 ∈ N>0 are associated with the size of the eigenvector and (···)H

indicates the conjugate transpose.
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2.3.2 EPWE formulation for 1D elastic metamaterial Euler-Bernoulli beams

Since there are no external forces acting on the resonator masses, one can write:

𝑞𝑖(𝑥𝑖 + 𝑛𝑎) = −𝐷𝑖𝑢3(𝑥𝑖 + 𝑛𝑎), (2.61)

where 𝐷𝑖 is the dynamic stiffness of the 𝑖th resonator given by:

𝐷𝑖 =
−𝜔2𝑚𝑖

1 − 𝜔2/𝜔2
𝑖

, (2.62)

and 𝜔𝑖 = 2𝜋𝑓𝑖 =
√︁
𝑘𝑖/𝑚𝑖 is the natural angular frequency of the 𝑖th resonator. Then, Equation

(2.29) can be rewritten as:

𝐸𝐼
𝜕4𝑢3(𝑥)

𝜕𝑥4
− 𝜔2𝜌𝑆𝑢3(𝑥) +

𝑁∑︁

𝑖=1

+∞∑︁

𝑛=−∞

𝐷𝑖𝑢3(𝑥𝑖 + 𝑛𝑎)𝛿[𝑥− (𝑥𝑖 + 𝑛𝑎)] = 0. (2.63)

Inserting Eqs. (2.33)-(2.35) in Eq. (2.63), gives:

+∞∑︁

�̄�=−∞

[𝐸𝐼(𝑘 + 𝑔�̄�)4 − 𝜔2𝜌𝑆]𝑒𝑗(𝑘+𝑔�̄�)𝑥𝑢3�̄� +
𝑁∑︁

𝑖=1

+∞∑︁

�̃�=−∞

𝐷𝑖𝑒
𝑗(𝑘+𝑔�̃�)𝑥𝑖𝑢3�̃�

+∞∑︁

𝑛=−∞

𝑒𝑘𝑛𝑎𝛿[𝑥− (𝑥𝑖

+𝑛𝑎)] = 0. (2.64)

Substituting Eq. (2.39) in Eq. (2.64) and multiplying by 𝑎, one can obtain:

+∞∑︁

�̄�=−∞

[𝐸𝐼𝑎(𝑘 + 𝑔�̄�)4 − 𝜔2𝜌𝑆𝑎]𝑒𝑗(𝑘+𝑔�̄�)𝑥𝑢3�̄� +
𝑁∑︁

𝑖=1

+∞∑︁

�̃�=−∞

+∞∑︁

�̄�=−∞

𝐷𝑖𝑒
−𝑗(𝑘+𝑔�̄�)𝑥𝑖𝑒𝑗(𝑘+𝑔�̃�)𝑥𝑖

𝑒𝑗(𝑘+𝑔�̄�)𝑥𝑢3�̃� = 0. (2.65)

Multiplying Eq. (2.65) by 𝑒−𝑔𝑚𝑥 and integrating over the unit cell, it can be rewritten for
all 𝑥 (i.e., including 𝑥𝑖):

+∞∑︁

�̄�=−∞

[𝐸𝐼𝑎(𝑘 + 𝑔�̄�)4 − 𝜔2𝜌𝑆𝑎]𝑢3�̄�
1

𝑎

∫︁ 𝑎/2

−𝑎/2

𝑒𝑗(𝑔�̄�−𝑔𝑚)𝑥𝑑𝑥+
𝑁∑︁

𝑖=1

+∞∑︁

�̃�=−∞

+∞∑︁

�̄�=−∞

𝐷𝑖𝑒
−𝑗𝑔�̄�𝑥𝑖𝑒𝑗𝑔�̃�𝑥𝑖𝑢3�̃�

1

𝑎

∫︁ 𝑎/2

−𝑎/2

𝑒𝑗(𝑔�̄�−𝑔𝑚)𝑥𝑑𝑥 = 0, (2.66)

and using the definition of Eq. (2.10) for 𝛿�̄�𝑚, Eq. (2.66) can be rewritten as:

[𝐸𝐼𝑎(𝑘 + 𝑔𝑚)4 − 𝜔2𝜌𝑆𝑎]𝑢3𝑚 +
𝑁∑︁

𝑖=1

+∞∑︁

�̃�=−∞

𝐷𝑖𝑒
−𝑗𝑔𝑚𝑥𝑖𝑒𝑗𝑔�̃�𝑥𝑖𝑢3�̃� = 0. (2.67)
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The terms (𝑘 + 𝑔𝑚)4 can be expanded as:

(︂
𝑘 +

2𝜋𝑚

𝑎

)︂4

=
1

𝑎4
[(𝑘𝑎)4 + 8𝑚𝜋(𝑘𝑎)3 + 24(𝑚𝜋)2(𝑘𝑎)2 + 32(𝑚𝜋)3(𝑘𝑎) + 16(𝑚𝜋)4]. (2.68)

Inserting Eq. (2.68) in Eq. (2.67), multiplying by 𝑎3/𝐸𝐼 , results:

[︂
𝑘4 + 8𝑚𝜋𝑘3 + 24(𝑚𝜋)2𝑘2 + 32(𝑚𝜋)3𝑘 + 16(𝑚𝜋)4 − 𝜔2𝜌𝑆𝑎4

𝐸𝐼

]︂
𝑢3𝑚 +

𝑁∑︁

𝑖=1

+∞∑︁

�̃�=−∞

𝐷𝑖𝑎
3

𝐸𝐼

𝑒−𝑗𝑔𝑚𝑥𝑖𝑒𝑗𝑔�̃�𝑥𝑖𝑢3�̃� = 0, (2.69)

where 𝑘 = 𝑘𝑎.
After truncating Eq. (2.69), i.e., 𝑚, �̃� = [−𝑀, . . . ,𝑀 ], it can be rewritten as:

[︁
𝑘4I + 𝑘3X3 + 𝑘2X2 + 𝑘X1 + X0

]︁
u3 = 0, (2.70)

where the coefficients of vector u3 are 𝑢3𝑚 and coefficients of matrices X𝑖 (𝑖 = 0, . . . ,3) are
given by:

𝑋3𝑚�̃�
= 𝛿𝑚�̃�8𝑚𝜋, 𝑋2𝑚�̃�

= 𝛿𝑚�̃�24(𝑚𝜋)2, 𝑋1𝑚�̃�
= 𝛿𝑚�̃�32(𝑚𝜋)3, (2.71)

𝑋0𝑚�̃�
= 𝛿𝑚�̃�

[︂
16(𝑚𝜋)4 − 𝜔2𝜌𝑆𝑎4

𝐸𝐼

]︂
+

𝑁∑︁

𝑖=1

+∞∑︁

�̃�=−∞

𝐷𝑖𝑎
3

𝐸𝐼
𝑒−𝑗𝑔𝑚𝑥𝑖𝑒𝑗𝑔�̃�𝑥𝑖 . (2.72)

Finally, Eq. (2.70) can be rewritten as:

⎡
⎢⎢⎢⎢⎣

−X3 −X2 −X1 −X0

I 0 0 0

0 I 0 0

0 0 I 0

⎤
⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑘3u3

𝑘2u3

𝑘u3

u3

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 𝑘

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑘3u3

𝑘2u3

𝑘u3

u3

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (2.73)

Equation (2.73) represents a generalized eigenvalue problem of 𝑘(𝜔). MAC is also used
to estimate the correlation among wave shapes, as discussed in Subsection 2.3.1.
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3 ELASTIC WAVE PROPAGATION IN PHONONIC CRYSTALS,
SONIC CRYSTALS AND ELASTIC METAMATERIALS

In this chapter, simulated examples of band structures of PnCs, SnCs and EMs are repor-
ted. This chapter is divided into three parts. In first part, Subsection 3.0.1, it is investigated the
band structure of longitudinal waves propagating in a 1D PnC rod. PWE and IPWE compar-
ison are performed. In second part, Subsection 3.0.2, it is analysed the complex band structure
of bulk waves propagating in a 2D SnC with circular inclusions and square lattice. PWE and
IPWE comparison is also carried out. In Subsection 3.0.3, it is studied the band structure of flex-
ural waves propagating in a 1D EM Euler-Bernoulli beam with a periodic array of resonators.
PWE and EPWE approaches are used in order to obtain the complex band structure.

Furthermore, detailed studies of elastic wave propagation in PnCs and EMs are discussed
in Appendices A-G. In these appendices, the following cases are considered: flexural wave
propagation in 1D PnC Euler-Bernoulli beams (A), flexural wave band gaps in 2D PnC thick
plates (B), bulk wave propagation in 2D PnC solids (C), bulk wave propagation in 2D PnC solids
with piezoelectricity (D), bulk wave propagation in 2D PnC solids with piezoelectricity and
piezomagnetism (E), flexural waves in 1D EM Euler-Bernoulli beams (F) and flexural waves in
2D EM thin plates (G).

3.0.1 1D Phononic crystal rod

An infinite 1D PnC rod composed by two materials, i.e., aluminium and epoxy, is con-
sidered. This PnC is illustrated in Figure 3.1, where blue and white colours represent epoxy and
aluminium, respectively.

Figure 3.1: Schematic representation of the 1D PnC rod with unit cells of aluminium (white)
and epoxy (blue) (a). PnC rod unit cell is illustrated in (b).

The length of aluminium in the middle of unit cell is 𝑎𝐴 = 0.05 m and the length of epoxy
parts are 𝑎𝐵 = 0.01 m, where subscripts 𝐴 and 𝐵 are associated with aluminium and epoxy,
thus unit cell length 𝑎 = 𝑎𝐴 + 2𝑎𝐵 = 0.07 m. PnC rod geometry and material properties are
shown in Table 3.1.

Figure 3.2 illustrates the band structure, i.e., real part of reduced Bloch wave vector versus
frequency, calculated following the formulation in Subsection 2.1.1 (see also Fourier series
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Table 3.1: PnC rod geometry and material properties.

Geometry/Property Value
Unit-cell length (𝑎) 0.07 m
Square cross section area (𝑆 = 𝑏× ℎ) 0.01 × 0.01 m2

Young’s modulus (𝐸𝐴,𝐸𝐵) 77.6 × 109 N/m2, 4.35 × 109 N/m2

Mass density (𝜌𝐴,𝜌𝐵) 2730 kg/m3, 1180 kg/m3

coefficients in Appendix A), using 𝑀 = 10 harmonic terms in Fourier series expansion. By
choosing 𝑀 = 10 implies that 𝑚 = �̄� = [−10, . . . ,10], which means 2𝑀 + 1 = 21 plane
waves. The first bands and first Bragg-type band gaps are illustrated in Figure 3.2 (𝑏) by blue
shaded regions.

(a) (b)

Figure 3.2: Band structure of the 1D PnC rod calculated by PWE approach, considering 21
plane waves (𝑎). The first branches of the band structure and Bragg-type band gaps in blue
shaded regions (𝑏).

Whether the PnC rod is composed only by aluminium or by epoxy, i.e., a homogeneous
rod, thus there is no Bragg scattering and band gaps are not opened up, as shown in Figure 3.3.
In this figure, 21 plane waves are considered for Fourier series expansion. In Figures 3.2 and
3.3, it must be highlighted that the reduced Bloch wave vector does not have values higher than
-1 and 1, since in PWE approach Bloch wave vector has only values within FBZ.

Figure 3.4 compares the band structure of the PnC rod considering PWE and IPWE ap-
proaches for 21 plane waves. It can be observed that PWE does not match with IPWE only for
higher bands. IPWE results were obtained from the formulation reported in Subsection 2.2.

In order to analyse 𝛾(𝑥) (see Eq. 2.5) convergence, Figure 3.5 (𝑎) shows 𝛾(𝑥) calculated
by PWE for 3 (𝑀 = 1), 21 (𝑀 = 10) and 201 (𝑀 = 100) plane waves. In Figure 3.5, it can
be seen that 𝛾(𝑥) converges to a square wave when the number of plane waves is increased.
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(a) (b)

Figure 3.3: Band structure of a homogeneous rod composed by aluminium (𝑎) and epoxy (𝑏).

Figure 3.4: Band structure comparison of the PnC rod using PWE (blue points) and IPWE (red
circles) approaches.

However, Gibbs phenomenon does not disappear even though more plane waves are added to
the sum, as expected. In order to have some information about Fourier coefficients, it is shown
in Figure 3.6 the Fourier series coefficients (𝛾𝑚) for 3 (𝑎), 21 (𝑏) and 201 (𝑐) plane waves.

In addition, in Appendix A, it is investigated other effects, such as the influence of steel
percentage variation within the unit cell of a 1D PnC Euler-Bernoulli beam, the influence of
unit cell length and an experiment is proposed.
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Figure 3.5: Convergence comparison of 𝛾(𝑥) for the 1D PnC rod regarding 3, 21 and 201 plane
waves.

3.0.2 2D Sonic crystal

A 2D SnC with square lattice (see for instance Figure 1 (a) and (c) in Appendix B) com-
posed by steel circular inclusions in air is addressed. The 2D SnC geometry and material prop-
erties are described in Table 3.2.

Table 3.2: 2D SnC geometry and material properties.

Geometry/Property Value
Unit-cell length (𝑎) 0.022 m
Filling fraction (𝑓 ) 0.274
Mass density (𝜌𝐴,𝜌𝐵) 7800 kg/m3, 1.2 kg/m3

Elastic constant (𝑐11𝐴 ,𝑐11𝐵 ) 290.4 × 109 N/m2, 1.41 × 105 N/m2

The filling fraction (see Annexe A.1) in Table 3.2 is defined as the cross section area ratio
of inclusion and unit cell, i.e., 𝑓 = 𝜋𝑟2/𝑎2, where 𝑟 is inclusion radius. Initially, for PWE and
IPWE approaches, the integers 𝑚,�̄�,𝑛,�̄� are limited to the interval [−10,10], i.e., 441 plane
waves.

Figure 3.7 illustrates the band structure of the 2D SnC calculated by PWE approach (see
the formulation in Subsection 2.1.2). Partial Bragg-type band gaps are opened up and they can
be identified by blue shaded region along Γ𝑋 direction. The types of band gaps are discussed
in Annexe A.3.

Whether the SnC is composed just by steel, thus band gaps are not opened up, as presented
in Figure 3.8.
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(a) (b)

(c)

Figure 3.6: Fourier series coefficients for the 1D PnC rod regarding 3 (𝑎), 21 (𝑏) and 201 (𝑐)
plane waves.

A comparison between PWE and IPWE approaches, considering 441 plane waves, is
shown in Figure 3.9. From Figure 3.9, it can be seen that there is a mismatch between PWE and
IPWE approaches even though for lower branches.

In order to calculate the SnC complex band structure, EPWE (see formulation in Sub-
section 2.3.1) is used. To reduce computational time, the integers 𝑚,�̄�,𝑛,�̄� are limited to the
interval [−1,1], i.e., 9 plane waves and 𝑎 = 22 m, since the main purpose is to compare PWE
and EPWE results and to validate EPWE approach.

Figure 3.10 shows the complex band structure of the 2D SnC calculated using both (𝑎)
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Figure 3.7: Band structure of the 2D SnC with steel circular inclusions in a square lattice.

Figure 3.8: Band structure of a SnC with a square lattice composed just by steel.

PWE (red asterisks) and (𝑎− 𝑏) EPWE (black points) approaches.
From Figure 3.10, it can be seen that Bragg-type band gaps are opened up in low frequen-

cies, since a high unit cell length, 𝑎 = 22 m, is regarded. Furthermore, the real reduced Bloch
wave vectors calculated by these approaches match well. However, PWE can only identify
propagating modes (ℑ{k} = 0). Unlike PWE, EPWE method also identifies other complex
modes in Figure 3.10, which are evanescent modes (ℑ{k} ≠ 0) with ℜ{k} ≠ 0. The evanes-
cent modes can propagate within the SnC, however, with an attenuation distance determined by
the value of Bloch wave vector imaginary part, as already mentioned. In addition, real part of
Bloch wave vector calculated by PWE is restricted to the FIBZ. Imaginary part of Bloch wave
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Figure 3.9: Band structure comparison of the 2D SnC with circular steel inclusions in a square
lattice performed by PWE (blue asterisks) and IPWE (red circles) approaches.

Figure 3.10: Complex band structure of the 2D SnC with steel circular inclusions in a square
lattice performed by (𝑎) PWE (red asterisks) and (𝑎− 𝑏) EPWE (black points) approaches.

vector is displayed up to 2 (larger values exist). In Figure 3.10, for a specific frequency, the
difference between evanescent modes higher to 1 (ℑ{k𝑎/2𝜋} ≥ 1) lies in their symmetry with
respect to the unit cell centre (Laude et al., 2009).

It can also be observed in Figure 3.10 that each frequency inside the band gap (for instance
𝑓 = 10 Hz) is characterized by some values of ℑ{k𝑎/2𝜋}, which correspond to the harmonics
of the multi-exponential decay of the evanescent modes (Romero-García et al., 2010). Romero-
García et al. (2010) showed that only the first value of the ℑ{k𝑎/2𝜋} contributes to the decay
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of the mode, thus higher harmonics can be neglected and it can be approximated in the same
way as an exponential-like decay. The spatial decay inside the band gap is multi-exponential
and dominated by the minimum imaginary part of wave vectors (Chen et al., 2017).

In Appendices B and C, other effects that influence Bragg-type band gap formation on 2D
PnCs are investigated, e.g., the influence of filling fraction, inclusion geometry, type of lattice
and piezoelectricity.

3.0.3 1D Elastic metamaterial Euler-Bernoulli beam

An infinite 1D EM Euler-Bernoulli beam with an attached single periodic array of S-DOF
resonator is regarded (Figure 3.11).

Figure 3.11: Infinite EM beam with an attached single periodic array of S-DOF resonator.

EM beam geometry and material properties are shown in Table 3.3.

Table 3.3: EM beam geometry and material properties.

Geometry/Property Value
Unit-cell length (𝑎) 0.1 m
Cross section area (𝑆 = 𝑏× ℎ) 0.02 × 0.002 m2

Young’s modulus (𝐸) 70 × 109 Pa
Mass density (𝜌) 2700 kg/m3

Structural damping (𝜂) 0.01
Second moment of area (𝐼) 1.3333 × 10−11 m4

S-DOF resonator parameters are: 𝜂1 = 0.05, 𝑥1 = 0.05 m, 𝑓1 = 200 Hz and 𝑚1 =

𝛾1𝜌𝑆𝑎 = 0.0054 kg, where 𝛾1 = 0.5 is the ratio of resonator mass to the beam unit cell mass.
Resonator stiffness is obtained by 𝑘1 = 𝑚1(2𝜋𝑓1)

2(1+𝑗𝜂1). Parameters and material properties
are chosen the same as Xiao et al. (2012a).

Figure 3.12 illustrates the elastic band structure calculated by PWE-Euler-Bernoulli for-
mulation (see Subsection 2.1.3) using 𝑀 = 1 harmonic terms in Fourier series expansion (3
plane waves).
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(a) (b)

Figure 3.12: Elastic band structure of the EM Euler-Bernoulli beam using 3 plane waves (𝑎).
The first bands of the EM beam band structure, showing the locally resonant and Bragg-type
band gaps in blue shaded regions (𝑏).

From Figure 3.12, it can be identified both the locally resonant band gap around the res-
onator natural frequency (200 Hz), and the Bragg-type band gap around 460 Hz. From Bragg’s
law, 𝑎 = 𝑛(𝜆/2) ∴ 𝑘𝑎 = 𝑛𝜋, 𝑛 ∈ Z, and considering low frequency bands, where Euler-
Bernoulli beam theory is valid, Bloch wave vector can be assumed as 𝑘 =

√
2𝜋𝑓 4

√︀
𝜌𝑆/𝐸𝐼

(Lee, 2009). Thus the first Bragg frequency can be obtained as:

𝑓𝐵1 =
1

2𝜋
(
𝑛𝜋

𝑎
)2

√︃
𝐸𝐼

𝜌𝑆
≈ 461.8 Hz. (3.1)

Figure 3.13 shows the complex band structure of the EM beam calculated by EPWE using
3 plane waves. All Bloch wave vector solutions are presented in Figure 3.13. The black lines in
Figure 3.13 (𝑎) indicate the limits of FBZ normalized.

All the curves in Figure 3.13 (𝑏) are the imaginary values of Bloch wave vector, however,
only some components are the most accurate. The most accurate imaginary components are that
associated with the real components (Fig. 3.13 (𝑎)) that intersect one of the FBZ limits. These
components are shown in Figure 3.14. From Figure 3.14, it can be seen that the most accurate
components of the Bloch wave vector arise on pairs of negative and positive Bloch wave vector
values.

In order to compare PWE and EPWE results, it is presented the real components of Bloch
wave vector calculated by PWE (blue points) and EPWE (red circles) approaches in Figure 3.15
for 3 plane waves.

Moreover, in Appendices F and G, it is investigated the elastic band structure of flex-
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(a) (b)

Figure 3.13: Complex band structure of the EM Euler-Bernoulli beam using 3 plane waves
calculated by EPWE: (𝑎) real and (𝑏) imaginary parts of Bloch wave vector.

(a) (b)

Figure 3.14: The most accurate components of the Bloch wave vector calculated by EPWE with
𝑀 = 1: (𝑎) real and (𝑏) imaginary parts.

ural waves in 1D EM Euler-Bernoulli beams and 2D EM thin plates considering other effects
that influence band gap formation, such as band gap coupling between Bragg-type and locally
resonant band gaps, type of lattice, among others.
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(a)

Figure 3.15: Comparison of Bloch wave vector real part calculated by PWE (blue points) and
EPWE (red circles) approaches with 𝑀 = 1.
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4 GENERAL CONCLUSIONS

PnCs and EMs have been extensively applied in the last years for passive vibration control.
They can open up ranges of frequency where there are only evanescent waves, i.e., band gaps.
These band gaps can be classified into locally resonant and Bragg-type. In this thesis, it is
investigated different applications of PnCs and EMs for passive vibration control.

The semi-analytical approaches proposed are based on PWE, IPWE and EPWE. Some
advantages and drawbacks of these approaches are highlighted. Simulated examples are carried
out in order to obtain the band structure of 1D PnC rods, 2D SnCs and 1D EM Euler-Bernoulli
beams using these methods.

Next, in the attached articles, it was considered first a simple 1D PnC Euler-Bernoulli
beam composed of steel and epoxy. The polyethylene and steel percentages into the unit cell
is an important variable and its influence in the unit cell attenuation constant is complex and
depends on the unit cell length. It was shown some ranges of frequency, regarding fixed unit
cell lengths, with no unit cell attenuation, independently of the polyethylene and steel quantities.
It is also shown regions that presented higher attenuation. The analytical and numerical results
presented a good agreement with the experimental ones and they localized the band gap position
and width close to the experimental.

After that, flexural wave band gaps in an epoxy PnC plate reinforced by Al2O3 inclusions
were investigated regarding Mindlin-Reissner theory. Complete band gaps were observed for all
types of inclusion and the best performance was found for rotated square and circular inclusions,
considering square and triangular lattices, respectively.

The band structure of elastic waves propagating in carbon nanostructure PnCs with
square, rectangular, triangular, honeycomb and Kagomé lattices was also studied. Full band
gaps between XY and Z modes were observed for all types of carbon nanostructures. The best
performance was for circular carbon nanostructures in a triangular lattice with high band gap
width in a broad range of filling fraction. This result suggests that carbon nanostructure PnCs
may be feasible for elastic vibration management in GHz.

Afterwards, nano-piezoelectric and magnetoelectroelastic PnCs were analysed. Broad full
band gaps were obtained for the piezoelectric PnC and triangular lattice with circular inclusion
presented the broadest full band gap, considering a fixed filling fraction of 0.335. Piezoelectric
effect is significant on band gaps for all lattices and inclusions. For the magnetoelectroelastic
PnC, the broadest full band gap was found for hollow inclusion in a triangular lattice, regarding
the filling fraction of 0.45.

It was also studied the elastic wave propagation in 1D and 2D EMs. A 1D EM Euler-
Bernoulli beam and a 2D EM thin plate, both with multiple periodic attached M-DOF resonat-
ors, are regarded. Different resonator configurations are discussed. The 1D EM Euler-Bernoulli
beam with five arrays of S-DOF resonators presented a broad band gap created by the coup-
ling between locally resonant and Bragg-type band gaps. For the 1D EM Euler-Bernoulli beam
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with five arrays of 2-DOF resonators, two broad band gaps were opened up from the coupling
between locally resonant band gaps. It was also observed that 2D EM thin plates with S-DOF
resonators provide higher attenuation for the last locally resonant and for Bragg-type band gaps
than 2D EM thin plates with M-DOF resonators. Furthermore, the attenuation related to the
Bragg-type band gaps was higher for square lattice than triangular lattice.

Finally, the different applications of the periodic systems considered in this thesis, i.e.,
smart PnCs, nano-PnCs, 1D PnC beam and EMs with periodic attached resonators, provide
interesting results for passive vibration control in different ranges of frequency.

4.1 Future work

In the following, topics which appear as future prospects for continuation of the research
developed in this thesis are listed.

∙ Improve the performance of the semi-analytical approaches proposed in this thesis by
means of using parallel programming and code optimization.

∙ Consider the quantum effects for the band structure calculation of nanophononic crystals.
∙ Fabricate nanophononic crystals with advance techniques, for instance, electron beam

lithography.
∙ Study the variability related to the physical parameters of PnCs and EMs manufactured

in a 3D printer.
∙ Formulate new PWE and EPWE approaches associated with optimization techniques in

order to identify the best inclusion geometry that opens up broader band gaps.
∙ Propose new PWE and EPWE formulations for PnCs and MMs including other effects,

such as temperature and viscoelasticity.
∙ Extend the formulation of PWE and EPWE for EMs with shunting circuits.
∙ Investigate other complex materials, for instance, photonic crystals, phoxonic crystals,

thermal metamaterials, quasi-periodic structures, nonlinear metamaterials, granular crys-
tals, bio-inspired PnCs, magnonic crystals, magnetostrictive PnCs, plasmonic metamater-
ials, among others.

∙ Use PWE and EPWE methods associated with the supercell technique to include line
defects in PnCs for waveguides and by confining standing waves in the defects. It could
also be used to constitute resonators and filters. These could be interesting for local sound
enhancement and energy harvesting.

∙ Explore new recent concepts originally from electronics which have inspired some applic-
ations in photonics and phononics, such as interface modes, also known as edge modes,
on periodic acoustic systems.



63

4.2 List of publications

∙ Articles in indexed journals:
∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Elastic wave band gaps in a two-

dimensional magnetoelectroelastic phononic crystal. Revista Interdisciplinar de
Pesquisa em Engenharia, v. 2, 13-26, 2016.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Evanescent Bloch waves and complex
band structure in magnetoelectroelastic phononic crystals. Mechanical Systems and Sig-
nal Processing (accepted), 2017.

∘ MIRANDA, E.J.P., Jr.; NOBREGA, E.D.; FERREIRA, A.H.R.; DOS SANTOS, J.M.C.
Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff-
Love theory. Mechanical Systems and Signal Processing (under review), 2017.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Flexural wave band gaps in a multi-
resonator elastic metamaterial Timoshenko beam. Wave Motion (under review), 2017.

∘ MIRANDA, E.J.P., Jr.; RODRIGUES, S.F.; DOS SANTOS, J.M.C. Band structure in a
sustainable sonic crystal. Materials Science Forum (under review), 2017.

∘ MIRANDA, E.J.P., Jr.; ANGELIN, A.F.; RODRIGUES, S.F.; GACHET-BARBOSA,
L.A.; DOS SANTOS, J.M.C. Influence of spheroid and fiber-like waste-tire rubbers on
the sound absorption coefficient of rubberized mortars. Materials Science Forum (under
review), 2017.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Flexural wave band gaps in phononic crys-
tal Euler-Bernoulli beams. Materials Research Ibero-American Journal of Materials
(in press), 2017. http://dx.doi.org/10.1590/1980-5373-mr-2016-0877.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Complete band gaps in nano-piezoelectric
phononic crystals. Materials Research Ibero-American Journal of Materials, v.
20(suppl. 1), 15-38, 2017.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Band structure in carbon nanostruc-
ture phononic crystals. Materials Research Ibero-American Journal of Materials (in
press), 2017. http://dx.doi.org/10.1590/1980-5373-mr-2016-0898.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Phononic band gaps in Al2O3/epoxy
composite. Materials Science Forum, v. 912, 112-117, 2018.

∙ Book Chapters:
∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Flexural wave band gaps in a 1D phononic

crystal beam. ABCM Series on Mechanical Sciences and Engineering: Selected Pa-
pers of the XVII International Symposium on Dynamic Problems of Mechanics (ac-
cepted), 2017.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Elastic wave band gaps in a steel-
concrete elastic metamaterial. Trends in Engineering Mechanics Special Publications



64

(TEMSP) (under review), 2017.

∙ Full Papers and Abstracts in Conference Proceedings:
∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Flexural wave band gaps in metamaterial

elastic beam. In Proceedings of the 23rd ABCM International Congress of Mechan-
ical Engineering (COBEM), pp. 1-8. Rio de Janeiro, Brazil, December 6-11 2015.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Flexural wave band gaps in Al2O3/epoxy
composite rectangular plate using Mindlin theory. In Proceedings of the Brazilian Con-
ference on Composite Materials (BCCM-3), pp. 138. Gramado, Brazil, August 28-31
2016.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Flexural wave band gaps in elastic
metamaterial thin plate. In Proceedings of the IX Congresso Nacional de Engenharia
Mecânica (CONEM), pp. 1-10. Fortaleza, Brazil, August 21-25 2016.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Flexural wave band gaps in an elastic
metamaterial beam with periodically attached spring-mass resonators. In Proceedings of
the International Conference Noise and Vibration Engineering (ISMA), pp. 2099-
2113. Leuven, Belgium, September 19-21 2016.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Phononic band gaps in Al2O3/epoxy com-
posite. In Proceedings of the 60° Congresso Brasileiro de Cerâmica (CBC), pp. 1507.
Águas de Lindóia, Brazil, May 15-18 2016.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Band structures in carbon nanostructure
phononic crystals. In Proceedings of the 22° Congresso Brasileiro de Engenharia e
Ciência dos Materiais (CBECiMat), pp. 4520. Natal, Brazil, November 06-10 2016.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Flexural wave band gaps in phononic
crystal Euler-Bernoulli beam using wave spectral element method. In Proceedings of the
22° Congresso Brasileiro de Engenharia e Ciência dos Materiais (CBECiMat), pp.
4413. Natal, Brazil, November 06-10 2016.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Flexural wave band gaps in a 1D phononic
crystal beam. In Proceedings of the XVII International Symposium on Dynamic
Problems of Mechanics (DINAME), pp. 1-10. São Sebastião, Brazil, March 5-10 2017.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Bandas proibidas de ondas elásticas em
cristais fonôninos sustentáveis. In Proceedings of the XXVII Encontro da Sociedade
Brasileira de Acústica (SOBRAC), pp. 1238-1247. Brasília, Brazil, May 28-31 2017.

∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C.; RODRIGUES, S.F. Band structure in a
sustainable sonic crystal. In Proceedings of the 61° Congresso Brasileiro de Cerâmica
(CBC), pp. 1826. Gramado, Brazil, June 04-07 2017.

∘ MIRANDA, E.J.P., Jr.; ANGELIN, A.F.; RODRIGUES, S.F.; GACHET-BARBOSA,
L.A.; DOS SANTOS, J.M.C. Influence of spheroid and fiber-like waste-tire rubbers on
the sound absorption coefficient of rubberized mortars. In Proceedings of the 61° Con-



65

gresso Brasileiro de Cerâmica (CBC), pp. 1659. Gramado, Brazil, June 04-07 2017.
∘ MIRANDA, E.J.P., Jr.; DOS SANTOS, J.M.C. Complete band gaps in two-dimensional

magnetoelectroelastic phononic crystals. In International Conference on Structural
Engineering Dynamics (ICEDyn), pp. 1-17. Ericeira, Portugal, July 3-5 2017.

∘ MIRANDA, E.J.P., Jr.; Ferreira, A.H.R.; DOS SANTOS, J.M.C. Flexural wave band
gaps in a multi-resonator elastic metamaterial thin plate. In International Conference
on Structural Engineering Dynamics (ICEDyn), pp. 1-13. Ericeira, Portugal, July 3-5
2017.

∘ FERREIRA, A.H.R.; DOS SANTOS, J.M.C.; MIRANDA, E.J.P., Jr.; Ramos, R. Semi-
analytical formulation for sound transmission loss analysis through a thick plate with
periodically attached spring-mass resonators. In International Conference on Struc-
tural Engineering Dynamics (ICEDyn), pp. 1-13. Ericeira, Portugal, July 3-5 2017.



66

References

ACHAOUI, Y.; LAUDE, V.; BENCHABANE, S. and KHELIF, A. Local resonances in
phononic crystals and in random arrangements of pillars on a surface. Journal of Applied
Physics, v. 114, 104503–104506, 2013.

ACHAOUI, Y.; UNGUREANU, B.; ENOCH, S. and BRÛLÉ, S. Seismic waves damping with
arrays of inertial resonators. Extreme Mechanics Letters, v. 8, 30–37, 2016.

AI, L. and GAO, X.L. Metamaterials with negative Poisson’s ratio and non-positive thermal
expansion. Composite Structures, v. 162, 70–84, 2017.

ARMENISE, M.; CAMPANELLA, C.; CIMINELLI, C.; DELL’OLIO, F. and PASSARO, V.
Phononic and photonic band gap structures: modelling and applications. Physics Procedia,
v. 3, 357–364, 2010.

ASSOUAR, B.; OUDICH, M. and ZHOU, X. Acoustic metamaterials for sound mitigation.
Comptes Rendus Physique, v. 17, 524–532, 2016.

BARNELL, E.G. One and two-dimensional propagation of waves in periodic heterogen-
eous media: Transient effects and band-gap tuning. 2014. PhD (Thesis). University of
Manchester, School of Mathematics.

BAYAT, A. and GORDANINEJAD, F. Band-gap of a soft magnetorheological phononic crystal.
Journal of Vibration and Acoustics, v. 137, 011011–011018, 2015.

BENCHABANE, S.; KHELIF, A.; ROBERT, L.; RAUCH, J.; PASTUREAUD, T. and LAUDE,
V. Elastic band gaps for surface modes in an ultrasonic lithium niobate phononic crystal. Pro-
ceedings of SPIE Photonics Europe, v. 133, 618216–618228, 2006.

BERTOLDI, K.; REIS, P.; WILLSHAW, S. and MULLIN, T. Negative Poisson’s ratio behavior
induced by an elastic instability. Advanced Materials, v. 22, 361–366, 2010.

BERTOLDI, K.; VITELLI, V.; CHRISTENSEN, J. and VAN HECKE, M. Flexible mechanical
metamaterials. Nature Reviews, v. 2, 17066–17076, 2017.



67

BILAL, O.; FOEHR, A. and DARAIO, C. Observation of trampoline phenomena in 3D-printed
metamaterial plates. Extreme Mechanics Letters, v. 15, 103–107, 2017.

BLOCH, F. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik,
v. 52, 555–600, 1928.

BRILLOUIN, L. Wave propagation in periodic structures. Dover Publications, 1946.

CAO, Y.; HOU, Z. and LIU, Y. Finite difference time domain method for band-structure calcu-
lations of two-dimensional phononic crystals. Solid State Communications, v. 132, 539–543,
2004a.

CAO, Y.; HOU, Z. and LIU, Y. Convergence problem of plane-wave expansion method for
phononic crystals. Physics Letters A, v. 327, 247–253, 2004b.

CASADEI, F.; BECK, B.; CUNEFARE, K. and RUZZENE, M. Vibration control of plates
through hybrid configurations of periodic piezoeletric shunts. Journal of Intelligent Material
Systems and Structures, v. 23, 1169–1177, 2012a.

CASADEI, F.; DOZIO, L.; RUZZENE, M. and CUNEFARE, K. Periodic shunts arrays for the
control of noise radiation in an enclosure. Journal of Sound and Vibration, v. 329, 3632–3646,
2012b.

CASTIÑEIRA-IBÁÑEZ, S.; RUBIO, C.; ROMERO-GARCÍA, V.; SÁNCHEZ-PÉREZ, J. and
GARCÍA-RAFFI, L. Design, manufacture and characterization of an acoustic barrier made
of multi-phenomena cylindrical scatterers arranged in a fractal-based geometry. Archives of
Acoustics, v. 37, 455–462, 2012.

CHANG, I.L.; LIANG, Z.X.; KAO, H.W.; CHANG, S.H. and YANG, C.H. The wave attenu-
ation mechanism of the periodic local resonant metamaterial. Journal of Sound and Vibration,
v. 412, 349–359, 2018.

CHEN, B.; LIU, B.; EVANS, A.; PAULOSE, J.; COHEN, I.; VITELLI, V. and SANTAN-
GELO, C. Topological mechanics of origami and kirigami. Physical Review Letters, v. 116,
135501–135505, 2016.



68

CHEN, Y.; HUANG, X.; SUN, G.; YAN, X. and LI, G. Maximizing spatial decay of evanescent
waves in phononic crystals by topology optimization. Computers and Structures, v. 182,
430–447, 2017.

CHEN, Z.; GUO, B.; YANG, Y. and CHENG, C. Metamaterials-based enhanced energy har-
vesting: A review. Physica B, v. 438, 1–8, 2014.

CHENG, L.; DEEPAKSHYAM, K.; GORAN, K.; HONGYU, Y. and HANQING, J. Origami
based mechanical metamaterials. Scientific Reports, v. 4, 5979–5985, 2014a.

CHENG, W.; SAINIDOU, R.; BURGARDT, P.; STEFANOU, N.; KIYANOVA, A.; EFRE-
MOV, M.; FYTAS, G. and NEALEY, P. Elastic properties and glass transition of supported
polymer thin films. Macromolecules, v. 40, 7283–7290, 2007.

CHENG, Z. and SHI, Z. Vibration attenuation properties of periodic rubber concrete panels.
Construction and Building Materials, v. 50, 257–265, 2014b.

CHONG, C.; PORTER, M.; KEVREKIDIS, P. and DARAIO, C. Nonlinear coherent structures
in granular crystals. Journal of Physics: Condensed Matter, v. 29, 413002–413025, 2017.

CLAEYS, C.; DECKERS, E.; PLUYMERS, B. and DESMET, W. A lightweight vibro-acoustic
metamaterial demonstrator: Numerical and experimental investigation. Mechanical Systems
and Signal Processing, v. 70-71, 853–880, 2016.

COMERIO, M. Can buildings be made earthquake-safe? Science, v. 312, 204–206, 2006.

DAVIS, B. and HUSSEIN, M. Nanophononic metamaterial: Thermal conductivity reduction by
local resonance. Physical Review Letters, v. 112, 055505–055509, 2014.

DJAFARI-ROUHANI, B.; VASSEUR, J.; HLADKY-HENNION, A.; DEYMIER, P.; DUVAL,
F.; DUBUS, B. and PENNEC, Y. Absolute band gaps and waveguiding in free standing and
supported phononic crystal slabs. Photonics and Nanostructures - Fundamentals and Ap-
plications, v. 6, 32–37, 2008.

EL-NAGGAR, S. Dependency of the photonic band gaps in two-dimensional metallic photonic
crystals on the shapes and orientations of rods. Optical Engineering, v. 51, 068001–068008,



69

2012.

ESCALANTE, J.; MARTÍNEZ, A. and LAUDE, V. Dispersion relation of coupled-resonator
acoustic waveguides formed by defect cavities in a phononic crystal. Journal of Physics D:
Applied Physics, v. 46, 475301–475307, 2013.

FENG, D.; XU, D.; XIONG, B. and WANG, Y. Continuous tuning of line defect modes in
silicon two-dimensional phononic crystal. Journal of Physics D: Applied Physics, v. 48,
225102–225108, 2015.

FENG, R. and LIU, K. Tuning the band-gap of phononic crystals with an initial stress. Physica
B, v. 407, 2032–2036, 2012.

FLOQUET, G. Sur les équations différentielles linéaires à coefficients périodiques. Annales
de l’École Normale Supérieure, v. 12, 47–88, 1883.

GARCÍA, V.R. On the control of propagating acoustic waves in sonic crystals: analytical,
numerical and optimization techniques. 2010. PhD (Thesis). Universidad Politécnica de
Valencia.

GORISHNYY, T.; ULLAL, C.; MALDOVAN, M.; FYTAS, G. and THOMAS, E. Hypersonic
phononic crystals. Physical Review Letters, v. 94, 115501–115504, 2005.

GRAFF, K. Wave motion in elastic solids. Dover, 1975.

GUO, X.; WEI, P. and LI, L. Dispersion relations of elastic waves in one-dimensional piezoelec-
tric/piezomagnetic phononic crystal with functionally graded interlayers. Ultrasonics, v. 70,
158–171, 2016.

HENRÍQUEZ, V.; ANDERSEN, P. and JENSEN, J. A numerical model of an acoustic metama-
terial using the boundary element method including viscous and thermal losses. Journal of
Computational Acoustics, v. 25, 1750006–1750016, 2017.

HO, K.; CHENG, C.; YANG, Z.; ZHANG, X. and SHENG, P. Broadband locally resonant
sonic shields. Applied Physics Letters, v. 83, 5566–5568, 2003.



70

HSU, J.C. and WU, T.T. Calculations of Lamb wave band gaps and dispersions for piezo-
electric phononic plates using Mindlin’s theory-based plane wave expansion method. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v. 55, 431–441, 2008.

HSUE, Y. and FREEMAN, A. Extended plane-wave expansion method in three-dimensional
anisotropic photonic crystals. Physical Review B, v. 72, 195118–195127, 2005.

HUANG, Y.; ZHANG, C. and CHEN, W. Elastic wave band structures and defect states in a
periodically corrugated piezoelectric plate. Journal of Applied Mechanics, v. 81, 081005–
081010, 2014.

JENSEN, J. Phononic band gaps and vibrations in one- and two-dimensional mass-spring struc-
tures. Journal of Sound and Vibration, v. 266, 1053–1078, 2003.

JOHN, S. Strong localization of photons in certain disordered dielectric superlattices. Physical
Review Letters, v. 58, 2486–2489, 1987.

KITTEL, C. Introduction to solid state physics. Wiley, 2004.

KRUSHYNSKA, A.; BOSIA, F.; MINIACI, M. and PUGNO, N. Theory of acoustic band struc-
ture of periodic elastic composites. New Journal of Physics, v. 19, 105001–105012, 2017a.

KRUSHYNSKA, A.; MINIACI, M.; KOUZNETSOVA, V. and GEERS, M. Multilayered inclu-
sions in locally resonant metamaterials: two-dimensional versus three-dimensional modeling.
Journal of Vibration and Acoustics, v. 139, 024501–024504, 2017b.

KUSHWAHA, M. Classical band structure of periodic elastic composites. International
Journal of Modern Physics B, v. 10, 977–1094, 1996a.

KUSHWAHA, M. The phononic crystals: An unending quest for tailoring acoustics. Modern
Physics Letters B, v. 30, 1630004–1630025, 2016.

KUSHWAHA, M.; DJAFARI-ROUHANI, B.; DOBRZYNSKI, L. and VASSEUR, J. Sonic
stop-bands for cubic arrays of rigid inclusions in air. The European Physical Journal B, v. 3,
155–161, 1998.



71

KUSHWAHA, M. and HALEVI, P. Giant acoustic stop bands in two-dimensional periodic
arrays of liquid cylinders. Applied Physics Letters, v. 69, 31–33, 1996b.

KUSHWAHA, M. and HALEVI, P. Stop bands for cubic arrays of spherical balloons. Journal
of the Acoustical Society of America, v. 101, 619–622, 1997.

KUSHWAHA, M.; HALEVI, P.; DOBRZYNSKI, L. and DJAFARI-ROUHANI, B. Acoustic
band structure of periodic elastic composites. Physical Review Letters, v. 71, 2022–2025,
1993.

KUSHWAHA, M.; HALEVI, P. and MARTÍNEZ, G. Theory of acoustic band structure of
periodic elastic composites. Physical Review B, v. 49, 2313–2322, 1994.

LAGARRIGUE, C.; GROBY, J. and TOURNAT, V. Sustainable sonic crystal made of resonat-
ing bamboo rods. Journal of the Acoustical Society of America, v. 133, 247–254, 2013.

LAUDE, V. Phononic crystals: Artificial crystals for sonic, acoustic, and elastic waves. De
Gruyter, 2015.

LAUDE, V.; ACHAOUI, Y.; BENCHABANE, S. and KHELIF, A. Evanescent Bloch waves and
the complex band structure of phononic crystals. Physical Review B, v. 80, 092301–092304,
2009.

LEE, U. Spectral element method in structural dynamics. Wiley, 2009.

LI, F. and WANG, Y. Elastic wave propagation and localization in band gap materials: A review.
Science China Physics, Mechanics & Astronomy, v. 55, 1734–1746, 2012.

LI, F.; WANG, Y. and ZHANG, C. Boundary element method for calculation of elastic wave
transmission in two-dimensional phononic crystals. Science China Physics, Mechanics &
Astronomy, v. 59, 664602–664611, 2016b.

LI, L. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the
Optical Society of America A, v. 13, 1870–1876, 1996.



72

LI, X. and LIU, Z. Bending and branching of acoustic waves in two-dimensional phononic
crystals with linear defects. Physics Letters A, v. 338, 413–419, 2005.

LI, Y.; ZHU, L. and CHEN, T. Plate-type elastic metamaterials for low-frequency broadband
elastic wave attenuation. Ultrasonics, v. 73, 34–42, 2017.

LI, Z. and WANG, X. On the dynamic behaviour of a two-dimensional elastic metamaterial
system. International Journal of Solids and Structures, v. 78-79, 174–181, 2016a.

LIAN, Z.; JIANG, S.; HU, H.; DAI, L.; CHEN, X. and JIANG, W. An enhanced plane wave ex-
pansion method to solve piezoelectric phononic crystal with resonant shunting circuits. Shock
and Vibration, v. 2016, 4015363–4015374, 2016.

LIU, Z.; CHAN, C.; SHENG, P.; GOERTZEN, A. and PAGE, J. Elastic wave scattering by
periodic structures of spherical objects: Theory and experiment. Physical Review B, v. 62,
2446–2457, 2000b.

LIU, Z.; ZHANG, X.; MAO, Y.; ZHU, Y.; YANG, Z.; CHAN, C. and SHENG, P. Locally
resonant sonic materials. Science, v. 289, 1734–1736, 2000a.

MALDOVAN, M. and THOMAS, E. Simultaneous localization of photons and phonons in
two-dimensional periodic structures. Applied Physics Letters, v. 88, 250917–250919, 2006.

MARTINS, M.; GODINHO, L. and PICADO-SANTOS, L. Numerical evaluation of sound
attenuation provided by periodic structures. Archives of Acoustics, v. 38, 503–516, 2013.

MARTÍNEZ-SALA, R.; RUBIO, C.; GARCÍA-RAFFI, L.; SÁNCHEZ-PÉREZ, J.;
SÁNCHEZ-PÉREZ, E. and LLINARES, J. Control of noise by trees arranged like sonic
crystals. Journal of Sound and Vibration, v. 291, 100–106, 2006.

MARTÍNEZ-SALA, R.; SANCHO, J.; SÁNCHEZ, J.; GÓMEZ, V. and LLINARES, J. Sound
attenuation by sculpture. Nature, v. 378, 241, 1995.

MAZZOTTI, M.; MINIACI, M. and BARTOLI, I. Band structure analysis of leaky Bloch waves
in 2D phononic crystal plates. Ultrasonics, v. 74, 140–143, 2017.



73

MENCIK, J.M. On the low- and mid-frequency forced response of elastic structures using wave
finite elements with one-dimensional propagation. Computers and Structures, v. 88, 674–689,
2010.

MORANDI, F.; MINIACI, M.; MARZANI, A.; BARBARESI, L. and GARAI, M. Standard-
ised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection
properties. Applied Acoustics, v. 114, 294–306, 2016.

NASCIMENTO, R.F. Propagação de ondas utilizando modelos de elementos finitos em
guias de onda estruturais. 2009. PhD (Thesis). Universidade Estadual de Campinas, Fac-
uldade de Engenharia Mecânica.

NI, Z.Q.; ZHANG, Y.; JIANG, L.H. and HAN, L. Bending vibration band structure of phononic
crystal beam by modified transfer matrix method. International Journal of Modern Physics
B, v. 28, 1450093–1450106, 2014.

NOBREGA, E.; GAUTIER, F.; PELAT, A. and DOS SANTOS, J.M.C. Vibration band gaps for
elastic metamaterial rods using wave finite element method. Mechanical Systems and Signal
Processing, v. 79, 192–202, 2016.

OUDICH, M.; SENESI, M.; ASSOUAR, M.; RUZZENE, M.; SUN, J.H.; VICENT, B.; HOU,
Z. and WU, T.T. Experimental evidence of locally resonant sonic band gap in two-dimensional
phononic stubbed plates. Physical Review B, v. 84, 165136–165141, 2011.

PAL, R. and RUZZENE, M. Edge waves in plates with resonators: an elastic analogue of the
quantum valley Hall effect. New Journal of Physics, v. 19, 025001–025017, 2017.

PENDRY, J. Negative refraction makes a perfect lens. Physical Review Letters, v. 85, 3966–
3969, 2000.

PENNEC, Y.; VASSEUR, J.; DJAFARI-ROUHANI, B.; DOBRZYńSKI, L. and DEYMIER,
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We investigate theoretically and experimentally the forced response of flexural waves propagating 
in a 1D phononic crystal (PC) Euler-Bernoulli beam, composed by steel and polyethylene, and its 
band structure. The finite element, spectral element, wave finite element, wave spectral element, 
conventional and improved plane wave expansion methods are applied. We demonstrate that the 
vibration attenuation of the unit cell can be improved choosing correctly the polyethylene and steel 
quantities and we suggest the best percentages of these materials, considering different unit cell lengths. 
An experiment with a 1D PC beam is proposed and the numerical results can localize the band gap 
position and width close to the experimental results. A small Bragg-type band gap with low attenuation 
is observed between 405 Hz - 720 Hz. The 1D PC beam with unit cells of steel and polyethylene 
presents potential application for vibration control.

Keywords: 1D phononic crystal, Euler-Bernoulli beam, flexural vibration, band gaps, vibration 
control.
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1. Introduction
Artificial periodic composites known as phononic 

crystals (PCs), consisting of a periodic array of scatterers 
embedded in a host medium, have been quite studied1-14. They 
have received renewed attention because they exhibit band 
gaps where there are only mechanical (elastic or acoustic) 
evanescent waves. There are no mechanical propagating 
waves in the band gaps. This ability of creating phononic 
band gaps is similar to the electronic and photonic band 
gaps in semiconductors and photonic crystals, respectively.

The physical origin of phononic and photonic band gaps 
can be understood at micro-scale using the classical wave 
theory to describe the Bragg and Mie resonances based on 
the scattering of mechanical and electromagnetic waves 
propagating within the crystal15.

PCs have many applications, such as vibration isolation 
technology16-20, acoustic barriers/filters21-23, noise suppression 
devices24,25, surface acoustic devices26, architectural design27, 
sound shields28, acoustic diodes29 and elastic/acoustic 
metamaterials19,20,23,25,30-32 (EM/AM), also known as locally 
resonant phononic crystals (LRPC).

LRPCs, differently from the traditional PCs which create 
the Bragg-type band gaps, present the locally resonant 
(LR) band gaps. These LR band gaps can be obtained in a 
frequency range of orders of magnitude lower than that given 
by the Bragg limit. LR band gaps arise in the vicinity of the 
natural frequency of the local resonators while Bragg-type 

band gaps typically occur at wavelengths of the order of 
the unit cell size. The concept of an EM or LRPC generally 
involves the inclusion of local resonators, and the periodicity 
is advantageous (creates the Bragg-type band gaps), but it 
is not necessary in an EM31,32.

Most of the studies concerning PCs focused on investigation 
of bulk mechanical waves1,2,7-10,12 and its results have shown 
that the band gaps may appear because of the contrast 
between the physical properties, for instance elastic modulus 
and density of the inclusions and matrix. Other important 
properties that influence the band gap width are the inclusion 
geometry, filling fraction and PC lattice. The band gaps may 
also be affected by the physical nature of PC, which can be: 
solid/solid9,10,12, fluid/fluid33 and mixed solid/fluid34 PCs.

Some studies have concentrated on 1D PCs11,35-48 and 
all of them considered solid/solid PC. Among them, some 
researches focused on flexural vibration in beams11,35,36,40,41,43,45-47, 
longitudinal vibration in rods39,48 and wave propagation in 
one direction in a 1D solid (considering one-dimensional 
periodicity)37,38,42,44. Almost all of them used the traditional 
analytical (spectral element - SE49), semi-analytical (plane 
wave expansion - PWE1,2) and/or numerical (finite element 
- FE50, transfer matrix - TM51) methods to obtain the forced 
response and/or the band structure.

Only few researchers used methods developed recently46,48. 
Junyi et al.46 developed an inverse method to calculate the 
band structure of one dimensional periodic structures based 
on Bloch wave boundary conditions and wave superposition, 
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Abstract: In this investigation, we study the formation of flexural wave band gaps in an epoxy 

composite rectangular plate reinforced by Al2O3 inclusions using Mindlin theory. We consider four 

types of inclusion cross sections: circular, hollow circular, square and rotated square with a 45° angle 

of rotation with respect to the x, y axes. The influence of the inclusion geometry and the type of lattice 

– square and hexagonal, of the phononic crystal plate on the band structure are analyzed. The study is 

performed by using the plane wave expansion (PWE) method to predict the band structure. The 

complete band gaps are observed for all types of cross section inclusion and the best performance is 

found for rotated square cross section inclusion, considering square lattice, and for circular cross 

section inclusion, considering hexagonal lattice. We suggest that the Al2O3/epoxy composite 

rectangular plate could be feasible for vibration control. 

 

Keywords: Composite rectangular plate, flexural wave band gaps, Mindlin theory, plane wave 

expansion method, vibration control. 

 

1. INTRODUCTION 

Artificial periodic composites known as phononic crystals (PCs), consisting of a periodic array of 

scatterers embedded in a host medium, have been quite studied in the last decades [1–2]. They have 

received renewed attention because PCs exhibit complete band gaps where mechanical (elastic or 

acoustic) wave propagation is forbidden. The physical origins of phononic and photonic band gaps can 

be understood at micro-scale using the classical wave theory to describe the Bragg and Mie 

resonances, respectively, based on the scattering of mechanical and electromagnetic waves 

propagating within the crystal [3]. 

Most of the studies concerning PCs focused on investigation of bulk mechanical waves [4–7]. 

However, recently, some researchers are interested in elastic wave propagating in a finite thickness 

plate. Most of studies focused on thin plate considering the classical plate theory [8–12], i.e. 

Kirchhoff-Love plate theory [13–14]. There are only a few studies tacking into account higher theories 

[15–17], such as Mindlin plate theory [18]. PCs can be applied in many engineering applications, such 

as vibrationless environment for high-precision mechanical systems, acoustic barriers, noise 

suppression devices, design of transducers and other devices, perfect acoustic mirrors, filters, and high 

efficiency waveguides. 

Theoretical models of two-dimensional PCs [7,19–20] based on the plane wave expansion (PWE) 

method have shown that the width and the localization of the elastic or acoustic band gaps depends on 

the composition, the filling fraction, the geometry of the inclusion and the PC lattice. However, only 

few studies investigated these variables in a PC plate [9–10]. The Al2O3/Epoxy PC have already been 
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studied [10–11]. However, this system was investigated considering transverse vibration in a thin 

plate. Here we considered the transverse vibration in an inhomogeneous isotropic elastic thick plate. 

The main purpose of this study is to investigate the elastic band structure of Al2O3/Epoxy composite 

rectangular plate using Mindlin theory, considering transverse vibration in a square and hexagonal 

lattices and different types of inclusion geometry cross section: circular, hollow circular, square and 

rotated square with a 45° angle of rotation with respect to the x, y axes. 

 

2. THE MODEL 

Figure 1 (a) and (b) sketch the cross section of the Al2O3/epoxy composite rectangular plate taking 

in to account square and hexagonal lattices (most widely used for PCs), respectively, with arbitrary 

inclusion geometry. Note that the type of lattice influences on the band structure of the composite 

rectangular plate. Figure 1 (c) and (d) represent the irreducible Brillouin zone (IBZ) (1/8 of the first 

Brillouin zone, in shaded region) for square and hexagonal lattices, respectively. In this study, we 

consider four types of inclusion as mentioned before: circular, hollow circular, square and rotated 

square with a 45° angle of rotation with respect to the x, y axes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A transverse cross section of the binary composite system: an array of inclusions (Al2O3) 

periodically distributed in a matrix (epoxy) for square (a) and hexagonal (b) lattices. The IBZ (in 

shaded region) for square (c) and hexagonal (d) lattices. 

 

From Mindlin theory [18], considering the isotropic case, the plate equations of motion are: 
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−𝛼 (Ψ𝑥 +
𝜕𝑤

𝜕𝑥
) +

𝜕

𝜕𝑥
(𝐷

𝜕Ψ𝑥
𝜕𝑥

+ 𝛽
𝜕Ψ𝑦

𝜕𝑦
) +

𝜕

𝜕𝑦
(𝛾
𝜕Ψ𝑦

𝜕𝑥
+ 𝛾

𝜕Ψ𝑥
𝜕𝑦

) = 𝛿
𝜕2Ψ𝑥
𝜕𝑡2

,                  (1a) 

−𝛼 (Ψ𝑦 +
𝜕𝑤

𝜕𝑦
) +

𝜕

𝜕𝑥
(𝛾
𝜕Ψ𝑦

𝜕𝑥
+ 𝛾

𝜕Ψ𝑥
𝜕𝑦

) +
𝜕

𝜕𝑦
(𝐷

𝜕Ψ𝑦

𝜕𝑦
+ 𝛽

𝜕Ψ𝑥
𝜕𝑥

) = 𝛿
𝜕2Ψ𝑦

𝜕𝑡2
,                  (1b) 

𝜕

𝜕𝑥
[𝛼 (Ψ𝑥 +

𝜕𝑤

𝜕𝑥
)] +

𝜕

𝜕𝑦
[𝛼 (Ψ𝑦 +

𝜕𝑤

𝜕𝑦
)] = 𝜏

𝜕2𝑤

𝜕𝑡2
,                                     (1c) 

where 𝛼 = 𝛼(𝐫) = 𝜅2𝜇ℎ, 𝐫 = 𝑥𝐞1 + 𝑦𝐞2 is the two-dimensional spatial vector, 𝐞i (𝑖 = 1,2) are the 

basis vectors in the real space, 𝜅2 =
𝜋2

12
 is a constant, 𝜇 is the shear modulus, ℎ is the plate thickness, 

Ψ𝑥=Ψ𝑥(𝐫, 𝑡) is the local rotation on the 𝑥 direction, 𝐷 = 𝐷(𝐫) =
𝐸ℎ3

12(1−𝜈2)
, 𝐸 is the Young’s modulus, 

𝜈 is the Poisson’s ratio, 𝛽 = 𝛽(𝐫) = 𝐷𝜈, Ψ𝑦=Ψ𝑦(𝐫, 𝑡) is the local rotation on the 𝑦 direction, 𝛾 =
𝐷(1−𝜈)

2
, 𝛿 = 𝛿(𝐫) =

𝜌ℎ3

12
, 𝜌 is the density, 𝜏 = 𝜏(𝐫) = 𝜌ℎ and 𝑤=𝑤(𝐫, 𝑡) is the displacement on 𝑧 

direction. 

In order to eliminate the factor time in Eq. (1), we imposed a harmonic time dependence on the 

displacement and rotations, thus 𝑤(𝐫, 𝑡) = 𝑤(𝐫)𝑒𝑖𝜔𝑡, Ψ𝑥(𝐫, 𝑡) = Ψ𝑥(𝐫)𝑒
𝑖𝜔𝑡 and Ψ𝑦(𝐫, 𝑡) =

Ψ𝑦(𝐫)𝑒
𝑖𝜔𝑡, where 𝜔 is the angular frequency. Applying the Floquet-Bloch’s theorem [21–22] and 

expanding 𝑤, Ψ𝑥 and Ψ𝑦 as a Fourier series, one may write: 

𝑇(𝐫) = 𝑒𝑖𝐊.𝐱 ∑ 𝑇(𝐆)

+∞

𝐆=−∞

𝑒𝑖𝐆.𝐱 = ∑ 𝑇(𝐆)

+∞

𝐆=−∞

𝑒𝑖(𝐊+𝐆).𝐱,                       (2) 

where 𝐊 = 𝑢𝐛1 + 𝑣𝐛2 is the Bloch wave vector, 𝑢, 𝑣 ∈  ℚ are the symmetry points within the IBZ in 

reciprocal space, or one may write 𝐊 = 𝑘𝑥𝐞1 + 𝑘𝑦𝐞2, 𝑘𝑥  , 𝑘𝑦  ∈  ℝ are the point coordinates within 

the IBZ in Figure 1 (c) and (d) for the real space, 𝐛i (𝑖 = 1,2) are the basis vectors in the reciprocal 

space defined as 𝐚i ∙ 𝐛i = 2𝜋𝛿𝑖𝑗 , 𝐛1 = 2𝜋
𝐚2×𝐚3

𝐚1∙(𝐚2×𝐚3)
, 𝐛2 = 2𝜋

𝐚3×𝐚1

𝐚2∙(𝐚3×𝐚1)
, 𝐚i  (𝑖 = 1,2) are the 

components of the lattice vector 𝐑 = (�̅�𝐚1 + �̅�𝐚2), �̅�, �̅�  ∈  ℤ. For a square lattice 𝐚i = 𝑎𝐞i (𝑖 =

1,2), for hexagonal lattice 𝐚1 = 𝑎𝐞1, 𝐚2 =
𝑎

2
𝐞1 +

𝑎√3

2
𝐞2, 𝑎 is the lattice parameter, 𝑇(𝐫) can be 𝑤(𝐫), 

Ψ𝑥(𝐫) or Ψ𝑦(𝐫). For square lattice, the reciprocal lattice vector is defined as 𝐆 =
2𝜋

𝑎
(𝑚𝐞1 + 𝑛𝐞2) and 

for hexagonal lattice 𝐆 =
2𝜋

𝑎
[𝑚𝐞1 +

(−𝑚+2𝑛)

√3
𝐞2], 𝑚, 𝑛 ∈  ℤ. 

Furthermore, one may write: 

𝐻(𝐫) = ∑ 𝐻(𝐆′′)

+∞

𝐆′′=−∞

𝑒𝑖𝐆
′′.𝐱,                                                   (3) 

where 𝐻 is one of the 𝛼, 𝐷, 𝛽, 𝛾, 𝛿, 𝜏, and 𝐆′′ has the same expressions of 𝐆 with 𝑚′′, 𝑛′′  ∈  ℤ. 

Substituting Eqs. (2) and (3) in Eq. (1), one may write for all 𝐫 and for each 𝐆′: 

∑([

𝑄11 𝑄12 𝑄13
𝑄21 𝑄22 𝑄23
𝑄31 𝑄32 𝑄33

] − 𝜔2 [

𝛿(𝐆′ − 𝐆) 0 0
0 𝛿(𝐆′ −𝐆) 0
0 0 𝜏(𝐆′ − 𝐆)

]){

Ψ𝑥(𝐆)

Ψ𝑦(𝐆)

𝑤(𝐆)

}

𝐆

= 𝟎,           (4) 

where 

𝑄11 = 𝛼(𝐆
′ − 𝐆) + 𝐷(𝐆′ −𝐆)(𝐊𝑥 + 𝐆𝑥)(𝐊𝑥 + 𝐆𝑥

′ ) + 𝛾(𝐆′ − 𝐆)(𝐊𝑦 + 𝐆𝑦)(𝐊𝑦 + 𝐆𝑦
′ ), 
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𝑄12 = 𝛽(𝐆
′ − 𝐆)(𝐊𝑦 +𝐆𝑦)(𝐊𝑥 +𝐆𝑥

′ ) + 𝛾(𝐆′ − 𝐆)(𝐊𝑥 + 𝐆𝑥)(𝐊𝑦 + 𝐆𝑦
′ ), 

𝑄13 = 𝑖𝛼(𝐆
′ − 𝐆)(𝐊𝑥 + 𝐆𝑥), 

𝑄21 = 𝛾(𝐆
′ − 𝐆)(𝐊𝑦 + 𝐆𝑦)(𝐊𝑥 + 𝐆𝑥

′ ) + 𝛽(𝐆′ − 𝐆)(𝐊𝑥 + 𝐆𝑥)(𝐊𝑦 + 𝐆𝑦
′ ), 

𝑄22 = 𝛼(𝐆
′ − 𝐆) + 𝛾(𝐆′ − 𝐆)(𝐊𝑥 + 𝐆𝑥)(𝐊𝑥 +𝐆𝑥

′ ) + 𝐷(𝐆′ − 𝐆)(𝐊𝑦 + 𝐆𝑦)(𝐊𝑦 + 𝐆𝑦
′ ), 

𝑄23 = 𝑖𝛼(𝐆
′ − 𝐆)(𝐊𝑦 + 𝐆𝑦), 

𝑄31 = −𝑖𝛼(𝐆
′ − 𝐆)(𝐊𝑥 + 𝐆𝑥

′ ), 

𝑄32 = −𝑖𝛼(𝐆
′ − 𝐆)(𝐊𝑦 + 𝐆𝑦

′ ), 

𝑄33 = 𝛼(𝐆
′ − 𝐆)(𝐊𝑥 + 𝐆𝑥)(𝐊𝑥 + 𝐆𝑥

′ ) + 𝛼(𝐆′ − 𝐆)(𝐊𝑦 + 𝐆𝑦)(𝐊𝑦 + 𝐆𝑦
′ ),                   (5) 

with 𝐆′ = 𝐆′′ + 𝐆, and 𝐆′ has the same expressions of 𝐆 with 𝑚′, 𝑛′  ∈  ℤ. The Fourier coefficients 

are: 

𝐻(𝐆) = {
𝑓𝐻A + (1 − 𝑓)𝐻B for 𝐆 = 𝟎 

(𝐻A −𝐻B)𝐹(𝐆) for 𝐆 ≠ 𝟎  
.                                                     (6) 

The indexes A and B are related to the inclusion (Al2O3) and matrix (epoxy), respectively, and 𝑓 is 

the filling fraction of each type of inclusion, i.e. circular section of radius r, square section of width 2l, 

rotated square section of width 2l with a 45° angle of rotation with respect to x and y axes and a 

hollow circular section with external radius R and internal radius r, R > r. The hollow cylinder has an 

internal radius r of epoxy and a thickness R – r of Al2O3. The filling fraction 𝑓 for square lattice is: 

𝑓 =

{
 
 

 
 𝜋𝑟2 𝑎2  for circular section,   0 ≤ 𝑓⁄ ≤ 𝜋 4⁄

4𝑙2 𝑎2 for square section,   0 ≤ 𝑓 ≤ 1⁄

4𝑙2 𝑎2 for square rotated section,   0 ≤ 𝑓 ≤ 1/2⁄  

𝜋(𝑅2 − 𝑟2) 𝑎2⁄  for  hollow section, 0 ≤ 𝑓 ≤ 𝜋 4⁄  

,                           (7) 

and for hexagonal lattice: 

𝑓 =

{
 
 

 
 2𝜋𝑟2 √3𝑎2⁄  for circular section,   0 ≤ 𝑓 ≤ 𝜋/2√3

8𝑙2 √3𝑎2⁄  for square section,   0 ≤ 𝑓 ≤ 2/√3

8𝑙2 √3𝑎2⁄  for square rotated section, 0 ≤ 𝑓 ≤ 1/√3 

2𝜋(𝑅2 − 𝑟2) √3𝑎2⁄  for hollow section, 0 ≤ 𝑓 ≤ 𝜋/2√3

.                          (8) 

The structure function 𝐹(𝐆) is defined as: 

𝐹(𝐆) =
1

𝑆
∬𝑒−𝑖𝐆∙𝐫 𝑑𝑟2,                                                        (9) 

with S denoting the area of the unit cell and the integral being performed over the cross section of the 

Al2O3 inclusion. The structure functions of the inclusions cited above are: 

𝐹(𝐆) =

{
 
 

 
 

2𝑓𝐽1(𝐺𝑟) 𝐺𝑟⁄  for circular section

𝑓(sin(𝐺𝑥𝑟)/𝐺𝑥𝑟)(sin(𝐺𝑦𝑟)/𝐺𝑦𝑟) for square section

𝑓 (
sin[(𝑙 √2⁄ )(𝐺𝑥 + 𝐺𝑦)]

(𝑙 √2⁄ )(𝐺𝑥 + 𝐺𝑦)
)(
sin[(𝑙 √2⁄ )(−𝐺𝑥 + 𝐺𝑦)]

(𝑙 √2⁄ )(−𝐺𝑥 + 𝐺𝑦)
)  for square rotated section

2𝑓[𝐽1(𝐺𝑅) − (𝑟 𝑅⁄ )𝐽1(𝐺𝑅)]/(𝐺𝑅) for hollow section

.  (10) 

 

Equation 4 represents a generalized eigenvalue problem of 𝜔2(𝐊) and should be solved for each 𝐊 

into the IBZ for square, Fig. 1 (c), and hexagonal lattices, Fig. 1 (d). 
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3. RESULTS AND DISCUSSION 

Epoxy and Al2O3 are polycrystalline materials, and may be treated as isotropic on macroscopic 

scale. The physical parameters of Al2O3 (material A) and epoxy (material B) were obtained from Yao 

et al. [10], 𝜌A =  3970 kg m3⁄ , 𝐸A = 402.7 GPa, 𝜈A = 0.23, 𝜌B =  1142 kg m3⁄ , 𝐸B = 4.35 GPa and 

𝜈B = 0.378. 

We calculated the band structure (the first ten bands) considering a fixed filling fraction (0.283), 

thickness (ℎ = 𝑎) and lattice parameter (0.022 m) for the four inclusions considering square and 

hexagonal lattices. It should be noted that the classical plate theory applicable only for thin plate and 

long wavelengths is restricted for 𝑘ℎ ≪ 1, ℎ 𝑎⁄ ≪ 1 [10]. In the course of the numerical calculations, 

the integers 𝑚, 𝑛, 𝑚′, 𝑛′ were limited to the interval [−8, 8] for all results, i.e. 289 plane waves. This 

resulted in a very good convergence. 

The Fig. 2 (a-d) compares the band structures of a square lattice illustrated in Fig. 1 (a) and (c) 

considering flexural vibration and Mindlin plate theory, i.e. Eq. 4, for the four types of inclusions. We 

plot the band structure in the three principal symmetry directions of the IBZ (Figure 1 (c)). The plots 

are given in terms of frequency in Hz versus the reduced Bloch wave vector 𝐤 = 𝐊𝑎/2𝜋. 

In Fig. 2 (a), one complete band gap was found around 130 kHz for circular cross section. The 

relation between the parameters 𝑅 and 𝑟 for hollow circular cross section was fixed in 𝑟 = 0.2𝑅 and 

we do not investigate the influence of the thickness 𝑅 − 𝑟 of Al2O3 in the band structure. Figure 2 (b) 

does not present any complete band gap. One can observe that the bands in Fig. 2 (b) occur in higher 

frequencies compared to circular cross section in Fig. 2 (a). Figure 2 (c) shows two narrow complete 

band gaps for square cross section inclusion, however, when these inclusions are rotated 45° with 

respect to x and y axes, two broader gaps are created in higher frequencies as illustrated in Figure 2 

(d). The square rotated cross section inclusion presented the best performance (broader band gaps) 

compared to the other inclusions for square lattice. 

Figure 3 shows the band structure for the hexagonal lattice. Considering circular cross section 

inclusion, Fig. 3 (a), the complete band gap is broader than the band gap of the same inclusion in a 

square lattice, Fig. 2 (a). For the hollow circular cross section inclusion, Fig. 3 (b) presents a complete 

band gap narrower than the band gap in circular cross section, Fig. 3 (a), in higher frequencies. The 

behavior of the band structure in a hexagonal lattice for rotated square cross section inclusions have 

not been improved comparing to square cross section inclusion. In Fig. 3 (c), only one broad complete 

band gap was observed. While for a square lattice two narrow forbidden bands were achieved, as 

illustrated in Fig. 2 (c). Furthermore, for a hexagonal lattice, the band structures of the circular, square 

and rotated square cross section inclusion present a similar behavior, just one complete band gap near 

130 kHz. In a general way, considering the conditions specified above, the hexagonal lattice presents 

broader complete band gaps than square lattice. The circular cross section inclusion presents the best 

performance compared to the other inclusions for hexagonal lattice. 

 

4. CONCLUSIONS 

We obtain relatively broad complete band gaps where the propagation of elastic waves is 

forbidden. In the case of hexagonal array of Al2O3 inclusions embedded in an epoxy background, the 

band structures of circular, square and rotated square with a 45° angle of rotation with respect to the x, 

y axes present approximately a similar behavior and the complete band gap arise in almost the same 

ranges of frequency. The hollow circular cross section inclusion does not present a complete band gap 

for 𝑟 = 0.2𝑅, considering a square lattice. Unlike hexagonal lattice, for the square lattice, different 

behaviors of the band structure have been obtained for all inclusions. The best performance is found 

for rotated square cross section inclusion in a square lattice and circular cross section inclusion in a 
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hexagonal lattice. We consider square and hexagonal arrays of inclusions perfectly embedded in an 

elastic background. This means that we neglected the effects due to decohesion of the fibres from the 

epoxy matrix and to roughness at the interface between the Al2O3 inclusions and the matrix. These 

defects could modify the elastic wave propagation in composite materials, altering the band structure 

of them. The phononic band gaps in Al2O3/epoxy composite plate enlarge the potential applications for 

vibration management. 

 

 

 

Figure 2: Elastic band structure of Al2O3 inclusions in an epoxy matrix for a square lattice. The 

following types of inclusions are considered: (a) circular, (b) hollow circular, (c) square and (d) 

rotated square with a 45° angle of rotation with respect to the x, y axes. 

 

(a) (b) 

(c) (d) 
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Figure 3: Elastic band structure of Al2O3 inclusions in an epoxy matrix for a hexagonal lattice. The 

following types of inclusions are considered: (a) circular, (b) hollow circular, (c) square and (d) 

rotated square with a 45° angle of rotation with respect to the x, y axes. 
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We investigate the band structure of elastic waves propagating in carbon nanostructure phononic 
crystals with square, rectangular, triangular, honeycomb and Kagomé lattices. We also study the influence 
of carbon nanostructure cross section geometry - circular, hollow circular, square and rotated square 
with a 45° angle of rotation with respect to the x and y axes. Plane wave expansion method is used to 
solve the governing equations of motion of a isotropic solid  based on classical elasticity theory, ignoring 
nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. 
Complete band gaps between XY and Z modes are observed for all types of nanostructures. The best 
performance is for nanophononic crystal with circular carbon nanostructures in a triangular lattice 
with high band gap width in a broad range of filling fraction. We suggest that carbon nanostructure 
phononic crystals are feasible for elastic vibration management in GHz.

Keywords: carbon nanostructure phononic crystal, band structure, plane wave expansion method, 
complete band gaps, vibration control
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1. Introduction

Recently, artificial periodic composites known as 
phononic crystals (PCs) have been quite studied1-14. They are 
created by arranging periodically two or more materials with 
different vibrational properties. Elastic/acoustic mismatch 
between the constituent materials can be considered to arise 
either from difference of material properties/geometric 
parameters (e.g., density, elastic modulus, cross-sectional 
area) - continuum-scale theory, or from interatomic force 
constants and masses - atomic-scale theory.

PCs have received renewed attention because they exhibit 
band gaps where there are only mechanical (elastic or acoustic) 
evanescent waves and no mechanical propagating waves. 
Novel physical properties of PCs arise from the possibility 
of creating phononic band gaps and negative refraction 
(phonon branches with negative group velocity)4. Phononic 
band gaps are similar to electronic and photonic band gaps 
in semiconductors and photonic crystals15,16, respectively.

The physical origin of phononic and photonic band gaps can 
be understood at micro-scale using the classical wave theory 
to describe Bragg and Mie resonances, respectively, based 
on the scattering of mechanical and electromagnetic waves 
propagating within the crystal17. PCs have many applications, 
such as vibration isolation technology18-22, acoustic barriers/
filters23-25, noise suppression devices26,27, surface acoustic 
devices28, architectural design29, sound shields30, acoustic 
diodes31, elastic/acoustic metamaterials21,22,25,27,32 (EM/AM), 

also known as locally resonant phononic crystals (LRPC), 
and thermal metamaterials33-39 (TM), also known as phononic 
thermocrystals or locally resonant phononic thermocrystals.

Phononic thermocrystals can reduce the thermal conductivity 
in a nanostructured semiconducting material without affecting 
other important factors, especially electrical conductivity.

LRPCs, differently from traditional PCs which create 
Bragg-type band gaps, present locally resonant (LR) band 
gaps. LR band gaps can be obtained in a frequency range of 
orders of magnitude lower than that given by Bragg limit. LR 
band gaps arise in the vicinity of the local resonator natural 
frequency while Bragg-type band gaps typically occur at 
wavelengths of the order of unit cell size. The concept of 
EM or LRPC generally involves local resonators, and the 
periodicity is advantageous (creates Bragg-type band gaps), 
but it is not necessary in an EM33,34.

Researchers have been studied PCs on µm10,17,40,41 - mm 
scales, with frequency band gaps ranging from GHz and kHz 
to MHz, respectively. However, they present poor electronic 
and optical applications. More recently, with the advance of 
nanomaterial fabrication, nanophononic crystals have been 
studied and it is possible to control wave propagation in a 
frequency range from hypersonic3-6,42-51 to thermal33-39. Only 
few studies have focused on carbon microstructure10 and 
carbon nanostructure PCs in a hypersonic frequency range 
for elastic wave propagation control. Anjos & Arantes10 
studied the influence of carbon microtubes in an epoxy 
matrix achieving band gaps ranging from GHz scale. These 
researchers10 only studied hollow circular cross section 
geometry in a square lattice.
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We study the band structure of elastic waves propagating in a nano-piezoelectric phononic crystal 
consisting of a polymeric matrix reinforced by BaTiO3 inclusions in square, rectangular, triangular, 
honeycomb and Kagomé lattices. We also investigate the influence of inclusion cross section geometry - 
circular, hollow circular, square and rotated square with a 45º angle of rotation with respect to x 
and y axes. Plane wave expansion method is used to solve the governing equations of motion of a 
piezoelectric solid based on classical elasticity theory, ignoring nanoscopic size effects, considering 
two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY 
and Z modes are observed for all inclusions and the best performance is for circular inclusion in a 
triangular lattice. Piezoelectricity influences significantly the band gaps for hollow circular inclusion 
in lower frequencies. We suggest that nano-piezoelectric phononic crystals are feasible for elastic 
vibration management in GHz.

Keywords: nano-piezoelectric phononic crystal, band structure, plane wave expansion method, 
complete band gaps, vibration control.
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1. Introduction

Phononic crystals (PCs) are artificial periodic composites 
designed to exhibit phononic band gaps and they have been 
quite studied1-14. There are no mechanical (elastic or acoustic) 
propagating waves in phononic band gaps, only evanescent 
waves. These band gaps are created by the periodically 
mismatch between the constituent materials. This mismatch 
can be considered to arise either from difference of material 
properties or geometry (continuum-scale theory), or from 
interatomic force constants and masses (atomic-scale theory).

The ability of creating phononic band gaps is similar 
to the electronic and photonic band gaps in semiconductors 
and photonic crystals15-16, respectively. The physical origin 
of phononic and photonic band gaps can be understood at 
micro-scale using the classical wave theory to describe 
the Bragg and Mie resonances, respectively, based on 
the scattering of mechanical and electromagnetic waves 
propagating within the crystal17.

PCs have many applications, such as vibration isolation 
technology18-22, acoustic barriers/filters23-25, noise suppression 
devices26-27, surface acoustic devices28, architectural design29, 
sound shields30, acoustic diodes31, elastic metamaterials21-22,25,27,32 
and thermal metamaterials33-39. 

There are also smart PCs that have been studied, such as 
piezoelectric40-54, piezomagnetic55-58 and magnetoelectroelastic14,59-63 
PCs. Among these intelligent PCs, piezoelectric PCs are 
sensitive to elastic and electric field. Even though the band 

structure behavior of piezoelectric PCs have been already 
investigated, to our knowledge only few studies46-49,51 
focused on the influence of inclusion geometry and lattice 
on band gap formation. Wang and co-workers46 considered 
a piezoelectric PC with square lattice and different inclusion 
geometries (regular triangle, square, hexagon, circle and 
oval). They found that the largest complete band gap is 
obtained by selecting the inclusion with the same symmetry 
of lattice for the first band gap. Hsu et al.47 studied the band 
structure of a piezoelectric PC with square and triangular 
lattices using Mindlin-Reissner plate theory and considering 
only circular inclusion. Qian and co-workers48 studied the 
band structure of piezoelectric PCs with square lattice and 
circular and square inclusions. They revealed the existence of 
several very large complete band gaps in PZT rods reinforced 
polythene composite. Zhou et al.49 investigated the band 
structure of piezoelectric PCs consisting of rectangular 
inclusion in an epoxy substrate. They considered a PC 
with square and triangular lattices. Wang and co-workers51 
considered a piezoelectric PC with circular inclusions and 
square and rectangular lattices. They verified that the largest 
band gap width is not always obtained for a square lattice. 
In some cases, rectangular lattice can produce broader gaps. 
In this context, we extend the studies about piezoelectric 
PCs40-54 considering the influence of different inclusion 
geometries - circular, hollow circular, square and rotated 
square with 45º angle of rotation with respect to the x and y 
axes, and different lattices - square, rectangular, triangular, 
honeycomb and Kagomé on the band structure.
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ABSTRACT
During the last decades many researches have been interested in the field of wave propagation in periodic com-
posite systems known as phononic crystals. Phononic crystals are designed to have exotic behaviour and this
concept has been first conceived for photonic crystals. They consist of a periodic array of scatterers embedded in a
host medium. Due to its periodicity, mechanical waves are forbidden to propagate (band gaps) in some frequency
ranges. We investigate the band structure of elastic waves propagating in a magnetoelectroelastic phononic crystal,
consisting of a polymeric matrix reinforced by BaTiO3-CoFe2O4 inclusions in a square, rectangular, triangular,
honeycomb and Kagomé lattices. We also study the influence of inclusion geometry - circular, hollow circular,
square and rotated square. The plane wave expansion method is used to solve the constitutive equations of a mag-
netoelectroelastic material considering wave propagation on the xy plane. The complete band gaps between the XY
and Z modes are observed to all types of inclusion in all lattices. The best performance for square and rectangular
lattices is found for rotated square inclusion. For triangular lattice, the circular, square and rotated square inclu-
sios present, approximately, the same behaviour and the best performance for honeycomb and Kagomé lattices is
found for circular and hollow circular inclusions, respectively. The best performance for the magnetoelectroelastic
phononic crystal studied is for hollow circular inclusion in a triangular lattice with a band gap width of 20.55 kHz.

KEYWORDS: magnetoelectroelastic phononic crystal, complete band gaps, vibration control, plane wave expan-
sion method.

1. INTRODUCTION

Recently, artificial periodic composites known as phononic crystals (PCs) have been quite studied [1, 2, 3, 4, 5,
6, 7, 8, 9]. They are composed by a periodic arrangement of two or more materials with different properties. The
mismatch between the constituent materials may arise either from difference of material properties and/or geometry
(density, elastic modulus, cross-sectional area) - continuum-scale theory, or of interatomic force constants and
masses - atomic-scale theory.
PCs have received renewed attention because they exhibit band gaps where mechanical (elastic or acoustic) wave
propagation is forbidden. The novel physical properties of the PCs arise from the possibility of creating band gaps
and negative refraction (phonon branches with negative group velocity) [10]. The ability of creating phononic
band gaps is similar to the creation of electronic and photonic band gaps in semiconductors and photonic crystals
[11, 12], respectively.
The physical origin of phononic and photonic band gaps can be understood at micro-scale from the classical wave
theory to describe the Bragg and Mie resonances, respectively, based on the scattering of mechanical and elec-
tromagnetic waves propagating within the crystal [13]. PCs have many applications, such as vibration isolation
technology [14, 15, 16, 17, 18], acoustic barriers/filters [19, 20, 21], noise suppression devices [22, 23], surface
acoustic devices [24], architectural design [25], sound shields [26], acoustic diodes [27], elastic/acoustic metama-
terials [17, 18, 21, 23, 28], also known as locally resonant phononic crystals, and thermal metamaterials [29, 30],
also known as phononic thermocrystals or locally resonant phononic thermocrystals.

89

APPENDIX E – Full Paper in Conference Proceedings



There are also smart PCs that have been studied, for instance, piezoelectric [31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
51, 52, 43, 44, 45] and piezomagnetic [46, 47, 48, 49]. However, few studies focused on magnetoelectroelastic
phononic crystals (MPCs) [50, 51, 52, 53, 54].
The main purpose of this study is to investigate the elastic band structure, also known as dispersion diagram, of
a MPC composed by BaTiO3-CoFe2O4 inclusions in a polymeric matrix. It is considered wave propagation on
the xy plane (longitudinal-transverse vibration, XY mode, and transverse vibration, Z mode) in an inhomogeneous
transversely isotropic elastic solid. The MPC has two-dimensional periodicity and different inclusion geometries
- circular, hollow circular, square and rotated square with a 45◦ angle of rotation with respect to the x and y axes
in a square, rectangular, triangular, honeycomb and Kagomé lattices. The semi-analytical plane wave expansion
[1, 2] (PWE) method is used to obtain the elastic band structure. Complete band gaps between XY and Z modes
are observed to all types of inclusions in all lattices.

2. MAGNETOELECTROELASTIC PHONONIC CRYSTAL MODELLING

This section presents the PWE formulation for a MPC. PWE, also known as ω(k), is one of the most used methods
to calculate the elastic band structure of PCs and it has been applied in MPCs [50, 51, 52]. In structural dynamics,
PWE method can be comparable to the space-harmonics approach, when uniform beams and plates with periodic
supports or stiffeners are usually considered [55, 56, 57].
We also consider a two-dimensional periodicity, i.e. 2D MPC, transversely isotropic elastic solid and wave prop-
agation in the xy plane. Figure 1 (a-j) sketches the cross section of the BaTiO3-CoFe2O4/polymer MPC taking
into account square, rectangular, triangular, honeycomb and Kagomé lattices, respectively, with an arbitrary inclu-
sion geometry. Figure 1 (f-j) represents the irreducible Brillouin zone [58] (IBZ), in shaded region, for the square,
rectangular, triangular, honeycomb and Kagomé lattices, respectively.

Figure 1 – Transverse cross section of the MPC: an array of BaTiO3-CoFe2O4 inclusions periodically distributed in a polymeric
matrix for (a) square, (b) rectangular, (c) triangular, (d) honeycomb and (e) Kagomé lattices. The irreducible Brillouin zone
(IBZ), shaded region, for (f) square, (g) rectangular, (h) triangular, (i) honeycomb and (j) Kagomé lattices.

There are three variations of hexagonal lattice: triangular, honeycomb (or graphite) and Kagomé lattices [59]. We
consider four types of inclusion: circular, hollow circular, square and rotated square with a 45◦ angle of rotation
with respect to the x, y axes.
The IBZ points in Figure 1 (f-j) are ΓΓΓ (0,0), X (π/a,0) and M (π/a,π/a) for square lattice, ΓΓΓ (0,0), X (π/a1,0),
M (π/a1,π/a2) and K (0,π/a2), with a1 > a2, for rectangular lattice, ΓΓΓ (0,0), X (4π/3a,0) and M (π/a,π/

√
3a)

for triangular lattice, ΓΓΓ (0,0), X (4π/3
√

3a,0) and M (π/
√

3a,π/3a) for honeycomb lattice, and ΓΓΓ (0,0), X
(2π/3a,0) and M (π/2a,π/2

√
3a) for Kagomé lattice.

2.1. PWE Formulation
The constitutive equations of a magnetoelectroelastic material are [60]:

σi j = ci jkluk,l− eli jEl−qli jHl , (1)
Di = eikluk,l + εilEl +λilHl , (2)
Bi = qikluk,l +λilEl +ΓilHl , (3)
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where i, j,k, l = 1,2,3, σi j is the elastic stress tensor, Di is the electric displacement vector, Bi is the magnetic
induction vector, ui is the elastic displacement vector, φ is the electric potential, ϕ is the magnetic potential, eli j is
the piezoelectric tensor, qli j is the piezomagnetic tensor, εil is the dielectric tensor, Γil is the magnetic permeability
tensor, λil is the electromagnetic tensor and ci jkl is the elastic stiffness tensor. The standard tensor notation is used
with Latin indices running from 1 to 3. They obey Einstein’s summation convention when repeated.
We restrict the treatment to linear media, thus the elastic strain tensor εkl is simplified:

εkl =
1
2
(uk,l +ul,k). (4)

Besides, based on the quasi-static approximation, there are no electromagnetic sources and the curls are zero, thus
the electric and magnetic fields are taken as gradients of scalar potentials and one can write Eqs. (5) and (6):

El =−φ,l , (5)
Hl =−ϕ,l , (6)

where El and Hl are the electric and magnetic field vectors, respectively.
The differential equations of motion in the absence of body forces are given by:

σi j,i = ρ ü j, (7)
Di,i = 0, (8)
Bi,i = 0, (9)

where ρ is the mass density and dot denotes differentiation with respect to time. Substituting Eqs. (1-3) in Eqs.
(7-9), applying the simplifications of Eqs. (4-6), considering a transversely isotropic elastic solid, with a z axis
normal to the plane of isotropy, and a two-dimensional problem, ∂/∂x3 = 0, results:

ρ ü1 = (c11u1,1 + c12u2,2),1 +[c66(u1,2 +u2,1)],2, (10)
ρ ü2 = (c12u1,1 + c11u2,2),2 +[c66(u1,2 +u2,1)],1, (11)

ρ ü3 = (c44u3,1 + e15φ,1 +q15ϕ,1),1 +(c44u3,2 + e15φ,2 +q15ϕ,2),2, (12)

0φ̈ = (e15u3,1− ε11φ,1−λ11ϕ,1),1 +(e15u3,2− ε11φ,2−λ11ϕ,2),2, (13)
0ϕ̈ = (q15u3,1−λ11φ,1−Γ11ϕ,1),1 +(q15u3,2−λ11φ,2−Γ11ϕ,2),2, (14)

where c66 =
1
2 (c11− c12).

We apply the temporal Fourier transform to Eqs. (10-14) and omitting frequency dependence, gives:

−ω2ρu1 = (c11u1,1 + c12u2,2),1 +[c66(u1,2 +u2,1)],2, (15)

−ω2ρu2 = (c12u1,1 + c11u2,2),2 +[c66(u1,2 +u2,1)],1, (16)

−ω2ρu3 = (c44u3,1 + e15φ,1 +q15ϕ,1),1 +(c44u3,2 + e15φ,2 +q15ϕ,2),2, (17)

−ω20φ = (e15u3,1− ε11φ,1−λ11ϕ,1),1 +(e15u3,2− ε11φ,2−λ11ϕ,2),2, (18)

−ω20ϕ = (q15u3,1−λ11φ,1−Γ11ϕ,1),1 +(q15u3,2−λ11φ,2−Γ11ϕ,2),2, (19)

where ω is the angular frequency.
In order to consider a MPC, one can note that c11 = c11(r), c12 = c12(r), c66 = c66(r), c44 = c44(r), e15 = e15(r),
q15 = q15(r), ε11 = ε11(r), λ11 = λ11(r), Γ11 = Γ11(r), ρ = ρ(r), ui = ui(r, t), φ = φ(r, t) and ϕ = ϕ(r, t), because
we consider two different materials - BaTiO3-CoFe2O4 (inclusion) and a polymer (matrix). For two-dimensional
periodicity (the system has translational symmetry in z direction and the material parameters depend only on the x
and y coordinates), thus r = xe1 +ye2 (x,y ∈R) is the two-dimensional spatial vector and ei (i = 1,2) are the basis
vectors in the real space. Besides, each one of the parameters c11(r), c12(r), c66(r), c44(r), e15(r), q15(r), ε11(r),
λ11(r), Γ11(r), ρ(r) is represented in Eq. (20) by P(r) and has a position dependence expressed by [63]:

P(r) = PB +
NC

∑
j=1

+∞

∑
r̄=−∞

(PA−PB)H(α j−||r− ū j− r̄||), (20)

where r̄ = pa1 + qa2 (p,q ∈ Z) is the lattice vector, ai (i = 1,2) are its vectorial components (also known as
primitive vectors), ū j is the position vector of the j-th inclusion, the indexes A and B are related to the inclusion
(BaTiO3-CoFe2O4) and matrix (polymer), respectively, NC is the number of inclusions into the unit cell, H(x) is
the Heaviside function defined as H(x) = 1, if x≥ 0 and H(x) = 0, if x < 0 and α j is a parameter associated with
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the j-th inclusion. This parameter can be the inclusion radius, r̃ (for circular cross section), the inclusion width, 2l
(for square and rotated square cross sections) and the inclusion radius thickness, R̃− r̃ (for hollow circular cross
section), with R̃ > r̃. Note that the hollow circular inclusion has a internal radius, r̃, of polymer and a thickness,
R̃− r̃, of BaTiO3-CoFe2O4.
The primitive vectors are given by square lattice ai = aei (i = 1,2), rectangular, a1 = a1e1, a2 = a2e2, triangular
lattice, a1 = ae1, a2 =

a
2 e1 +

a
√

3
2 e2, honeycomb lattice, a1 =

a
√

3
2 e1 +

3a
2 e2, a2 =− a

√
3

2 e1 +
3a
2 e2 and Kagomé lat-

tice, a1 = ae1 +a
√

3e2, a2 =−ae1 +a
√

3e2. The lattice parameter for square, triangular, honeycomb and Kagomé
lattices is denoted by a whereas a1 and a2 are the lattice parameters for rectangular lattice. It is important to high-
light that the square, rectangular and triangular lattices have one inclusion into the unit cell (NC = 1), whereas
honeycomb and Kagomé have two (NC = 2) and three (NC = 3) inclusions, respectively.
Due to the system periodicity, one can invoke the Floquet-Bloch’s theorem [61, 62]:

T (r) = eik···rTk(r), (21)

where T (r) can be ui(r), φ(r) or ϕ(r), Tk(r) is the Bloch wave amplitude, it can be uik(r), φk(r) or ϕk(r), and k =
k1e1 +k2e2 is the Bloch wave vector, also known as wavenumber, and it is restricted to the IBZ, where (k1,k2 ∈R)
are the points coordinates within the IBZ in Figure 1 (f-j) for the reciprocal space. Note that Tk(r) = Tk(r+ r̄),
T (r+ r̄) = T (r)eik···r̄, where the exponential eik···r̄ is called Bloch periodic boundary condition.
Expanding uik(r), φk(r) or ϕk(r) as Fourier series on the reciprocal space and considering wave propagation in the
xy plane (k3 = 0), we can rewrite Eq. (21):

T (r) = eik···r
+∞

∑
g=−∞

Tk(g)eig···r =
+∞

∑
g=−∞

Tk(g)ei(k+g)···r, (22)

where g is the reciprocal lattice vector and it is calculated for square lattice, g = 2π
a (me1 + ne2), for rectangular

lattice, g = 2π( m
a1

e1 +
n
a2

e2), for triangular lattice, g = 2π
a [me1 +

(−m+2n)√
3

e2], for honeycomb lattice, g = 2π
a
√

3
[(m−

n)e1 +
(m+n)√

3
e2], and for Kagomé lattice, g = π

a [(m−n)e1 +
(m+n)√

3
e2], with m, n ∈ Z.

We can also expand the materials properties in Fourier series in the reciprocal space as:

P(r) =
+∞

∑
ḡ=−∞

P(ḡ)eiḡ···r, (23)

where ḡ has the same expressions of g for each lattice, with m̄, n̄ ∈ Z. We use ḡ instead of using g to highlight the
difference between the Fourier series expansions of material properties and the displacements and potentials.
The Fourier series coefficients, P(ḡ), are defined as:

P(ḡ) =
1

SC

∫ ∫
P(r)e−iḡ···rd2r, (24)

where SC = ||a1×a2|| is the cross section area of the unit cell.
Substituting Eq. (20) in Eq. (24) and calculating the integral, we can rewrite Eq. (24) as:

P(ḡ) = P̄δḡ0 +(PA−PB)(1−δḡ0)
NC

∑
j=1

F(ḡ)e−iḡ···ū j , (25)

where δḡ0 is the Kronecker delta, it is defined as δḡ0 = 1 if ḡ = 0 and δḡ0 = 0 if ḡ 6= 0, P̄ = f̄ PA+(1− f̄ )PB, f̄ = SA
SC

is the filling fraction, SA is the cross section area of the inclusion and F(ḡ) is the structure function associated with
each geometry (circular, hollow circular, square and rotated square), and it is defined as:

F(ḡ) =
1

SC

∫ ∫
e−iḡ···rd2r. (26)

The structure function, F(ḡ), calculated by Eq. (26) for circular, hollow circular, square and square circular inclu-
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sions are:

F(ḡ) = 2 f̄
J1(ḡr̃)

ḡr̃
, (27a)

F(ḡ) = f̄
sin(ḡ1r̃)

ḡ1r̃
sin(ḡ2r̃)

ḡ2r̃
, (27b)

F(ḡ) = f̄
sin [(l/

√
2)(ḡ1 + ḡ2)]

(l/
√

2)(ḡ1 + ḡ2)

sin [(l/
√

2)(−ḡ1 + ḡ2)]

(l/
√

2)(−ḡ1 + ḡ2)
, (27c)

F(ḡ) = 2 f̄
[J1(ḡR̃)− (r̃/R̃)J1(ḡR̃)]

ḡR̃
, (27d)

respectively, where ḡ = ||ḡ||, ḡ1,2 = ||ḡ1,2||.
The Fourier series coefficients, Eq. (25), can be rewritten for a square, rectangular and triangular lattices (NC = 1)
with the inclusion localized at ū1 = 0:

P(ḡ) = P̄δḡ0 +(PA−PB)(1−δḡ0)F(ḡ). (28)

For honeycomb lattice (NC = 2), we can rewrite Eq. (25) as:

P(ḡ) = P̄δḡ0 +(PA−PB)(1−δḡ0)2cos(ḡ ··· ū1)F(ḡ), (29)

where ū1 =−ū2 =
a
2 e2. We chose these vectors similar to Gao et al. [64].

For Kagomé lattice (NC = 3), we can rewrite Eq. (25) as:

P(ḡ) = P̄δḡ0 +(PA−PB)(1−δḡ0)
3

∑
j=1

F(ḡ)e−iḡ···ū j , (30)

where ū1 =− a
2 e1−

√
3a
6 e2, ū2 =

a
2 e1−

√
3a
6 e2 and ū3 =

√
3a
3 e1.

The expression ∑3
j=1 F(ḡ)e−iḡ···ū j can be split in its real and imaginary components as:

3

∑
j=1

F(ḡ)e−iḡ···ū j = ℜ[
3

∑
j=1

F(ḡ)e−iḡ···ū j ]+ iℑ[
3

∑
j=1

F(ḡ)e−iḡ···ū j ], (31)

where the real and imaginary components are:

ℜ[
3

∑
j=1

F(ḡ)e−iḡ···ū j ] = [2cos(ḡ1ū11)cos(ḡ2ū12)+ cos(2ḡ2ū12)]F(ḡ), (32)

ℑ[
3

∑
j=1

F(ḡ)e−iḡ···ū j ] = [−2cos(ḡ1ū11)sin(ḡ2ū12)+ sin(2ḡ2ū12)]F(ḡ). (33)

where ū j1,2 = ||ū j1,2 ||, with j = 1,2.
Substituting Eqs. (22-23) in Eqs. (15-19), with g̃ = ḡ+g, we may write:

+∞

∑
g=−∞

+∞

∑
g̃=−∞

{−ω2ρ(g̃−g)u1k(g)+ c11(g̃−g)u1k(g)(k+g)1(k+ g̃)1 + c12(g̃−g)u2k(g)(k+g)2(k+ g̃)1

+c66(g̃−g)[u1k(g)(k+g)2 +u2k(g)(k+g)1](k+ g̃)2}ei(k+g̃)···r = 0, (34)
+∞

∑
g=−∞

+∞

∑
g̃=−∞

{−ω2ρ(g̃−g)u2k(g)+ c12(g̃−g)u1k(g)(k+g)1(k+ g̃)2 + c11(g̃−g)u2k(g)(k+g)2(k+ g̃)2

+c66(g̃−g)[u1k(g)(k+g)2 +u2k(g)(k+g)1](k+ g̃)1}ei(k+g̃)···r = 0, (35)
+∞

∑
g=−∞

+∞

∑
g̃=−∞

{−ω2ρ(g̃−g)u3k(g)+ c44(g̃−g)u3k(g)(k+g)1(k+ g̃)1 + e15(g̃−g)φk(g)(k+g)1(k+ g̃)1

+q15(g̃−g)ϕk(g)(k+g)1(k+ g̃)1 + c44(g̃−g)u3k(g)(k+g)2(k+ g̃)2 + e15(g̃−g)φk(g)(k+g)2(k+ g̃)2

+q15(g̃−g)ϕk(g)(k+g)2(k+ g̃)2}ei(k+g̃)···r = 0, (36)
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+∞

∑
g=−∞

+∞

∑
g̃=−∞

{−ω20φk(g)+ e15(g̃−g)u3k(g)(k+g)1(k+ g̃)1− ε11(g̃−g)φk(g)(k+g)1(k+ g̃)1

−λ11(g̃−g)ϕk(g)(k+g)1(k+ g̃)1 + e15(g̃−g)u3k(g)(k+g)2(k+ g̃)2− ε11(g̃−g)φk(g)(k+g)2(k+ g̃)2

−λ11(g̃−g)ϕk(g)(k+g)2(k+ g̃)2}ei(k+g̃)···r = 0, (37)
+∞

∑
g=−∞

+∞

∑
g̃=−∞

{−ω20ϕk(g)+q15(g̃−g)u3k(g)(k+g)1(k+ g̃)1−λ11(g̃−g)φk(g)(k+g)1(k+ g̃)1

−Γ11(g̃−g)ϕk(g)(k+g)1(k+ g̃)1 +q15(g̃−g)u3k(g)(k+g)2(k+ g̃)2−λ11(g̃−g)φk(g)(k+g)2(k+ g̃)2

−Γ11(g̃−g)ϕk(g)(k+g)2(k+ g̃)2}ei(k+g̃)···r = 0. (38)

Multiplying Eqs. (34-38) by e−iḡ···r and integrating over the unit cell, gives:

+∞

∑
g=−∞

{−ω2ρ(ḡ−g)u1k(g)+ c11(ḡ−g)u1k(g)(k+g)1(k+ ḡ)1 + c12(ḡ−g)u2k(g)(k+g)2(k+ ḡ)1

+c66(ḡ−g)[u1k(g)(k+g)2 +u2k(g)(k+g)1](k+ ḡ)2}= 0, (39)
+∞

∑
g=−∞

{−ω2ρ(ḡ−g)u2k(g)+ c12(ḡ−g)u1k(g)(k+g)1(k+ ḡ)2 + c11(ḡ−g)u2k(g)(k+g)2(k+ ḡ)2

+c66(ḡ−g)[u1k(g)(k+g)2 +u2k(g)(k+g)1](k+ ḡ)1}= 0, (40)
+∞

∑
g=−∞

{−ω2ρ(ḡ−g)u3k(g)+ c44(ḡ−g)u3k(g)(k+g)1(k+ ḡ)1 + e15(ḡ−g)φk(g)(k+g)1(k+ ḡ)1

+q15(ḡ−g)ϕk(g)(k+g)1(k+ ḡ)1 + c44(ḡ−g)u3k(g)(k+g)2(k+ ḡ)2 + e15(ḡ−g)φk(g)(k+g)2(k+ ḡ)2

+q15(ḡ−g)ϕk(g)(k+g)2(k+ ḡ)2}= 0, (41)
+∞

∑
g=−∞

{−ω20φk(g)+ e15(ḡ−g)u3k(g)(k+g)1(k+ ḡ)1− ε11(ḡ−g)φk(g)(k+g)1(k+ ḡ)1

−λ11(ḡ−g)ϕk(g)(k+g)1(k+ ḡ)1 + e15(ḡ−g)u3k(g)(k+g)2(k+ ḡ)2− ε11(ḡ−g)φk(g)(k+g)2(k+ ḡ)2

−λ11(ḡ−g)ϕk(g)(k+g)2(k+ ḡ)2}= 0, (42)
+∞

∑
g=−∞

{−ω20ϕk(g)+q15(ḡ−g)u3k(g)(k+g)1(k+ ḡ)1−λ11(ḡ−g)φk(g)(k+g)1(k+ ḡ)1

−Γ11(ḡ−g)ϕk(g)(k+g)1(k+ ḡ)1 +q15(ḡ−g)u3k(g)(k+g)2(k+ ḡ)2−λ11(ḡ−g)φk(g)(k+g)2(k+ ḡ)2

−Γ11(ḡ−g)ϕk(g)(k+g)2(k+ ḡ)2}= 0. (43)

Eqs. (39-43) are an infinite system of equations, thus the Fourier series needs to be truncated. Choosing m = m̄ =
n = n̄ = [−M, . . . ,M], the total number of plane waves is (2M+1)2. Therefore, Eqs. (39-43) can be expressed in a
matrix form as:

(K−ω2M)q = 0, (44)

where

K =




K11 K12 0 0 0
K21 K22 0 0 0

0 0 K33 K34 K35
0 0 K43 K44 K45
0 0 K53 K54 K55




. (45)

94



The sub-matrices in Eq. (45) are given by:

K11 = C11(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)1 +C66(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)2, (46)

K12 = C12(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)1 +C66(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)2, (47)

K21 = C12(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)2 +C66(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)1, (48)

K22 = C11(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)2 +C66(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)1, (49)

K33 = C44(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)1 +C44(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)2, (50)

K34 = E15(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)1 +E15(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)2, (51)

K35 = Q15(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)1 +Q15(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)2, (52)

K44 =−F11(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)1−F11(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)2, (53)

K45 =−ΛΛΛ11(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)1−ΛΛΛ11(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)2, (54)

K55 =−ΓΓΓ11(ḡ−g)◦ (K̄+G)1 ◦ (K̄+ Ḡ)1−ΓΓΓ11(ḡ−g)◦ (K̄+G)2 ◦ (K̄+ Ḡ)2, (55)

where ◦ represents the Hadamard product, and for i, j = 3,4,5,

Ki j = K ji. (56)

The matrices C11(ḡ−g), C12(ḡ−g), C44(ḡ−g), C66(ḡ−g), E15(ḡ−g), Q15(ḡ−g), F11(ḡ−g), ΛΛΛ11(ḡ−g), ΓΓΓ11(ḡ−g)
are the matrix form of the Fourier series coefficients, c11(ḡ−g), c12(ḡ−g), c44(ḡ−g), c66(ḡ−g), e15(ḡ−g),
q15(ḡ−g), ε11(ḡ−g), λ11(ḡ−g), Γ11(ḡ−g), respectively, and can be defined by Eq. (25) in a matrix form:

P(ḡ−g) = P̄I+(PA +PB)(J− I)◦
NC

∑
j=1

F(ḡ−g)e−i(ḡ−g)···ū j , (57)

where I is the identity matrix, J is the unit matrix (all elements consisting of 1), and the matrix form of the structure
function, F(ḡ−g), is given by:

F(ḡ−g) =




F [ḡ(−M)−g(−M)] F [ḡ(−M+1)−g(−M)] . . . F [ḡ(M)−g(M)]
F [ḡ(−M)−g(−M+1)] F [ḡ(−M+1)−g(−M+1)] . . . F [ḡ(M)−g(M+1)]

...
...

. . .
...

F [ḡ(−M)−g(M)] F [ḡ(−M+1)−g(M)] . . . F [ḡ(M)−g(M)]


 , (58)

where F(ḡ−g) is defined in Eqs. (27a-27d) for each inclusion geometry.
The matrices K̄, G and Ḡ in Eqs. (46-55) are given by:

K̄i = kiJ, (59)

and

Ḡi =





1
1
...
1




⊗





ḡi(−M)
ḡi(−M+1)

...
ḡi(M)





=




ḡi(−M) ḡi(−M+1) . . . ḡi(M)
ḡi(−M) ḡi(−M+1) . . . ḡi(M)

...
...

. . .
...

ḡi(−M) ḡi(−M+1) . . . ḡi(M)]


 , (60)

with i = 1,2, ⊗ is tensor product, also known as dyadic or outer product, and Gi = ḠT
i .

The matrix M is expressed by:

K =




ρρρ(ḡ−g) 0 0 0 0
0 ρρρ(ḡ−g) 0 0 0
0 0 ρρρ(ḡ−g) 0 0
0 0 0 0 0
0 0 0 0 0




. (61)

where ρρρ(ḡ−g) is defined by Eq. (57).
The vector q in Eq. (44) is given by:

q =





u1k(g)
u2k(g)
u3k(g)
φφφ k(g)
ϕϕϕk(g)





, (62)
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where the vectors uik(g), φφφ k(g), ϕϕϕk(g) can be represented by Tk(g) as:

Tk(g) =
{

Tk[g(−M)] Tk[g(−M+1)] . . . Tk[g(M)]
}
. (63)

The Eq. (44) represents a generalized eigenvalue problem of ω(k). This equation must be solved for each Bloch
wave vector into the IBZ (Fig. 1 (f-j)). For each value of the Bloch wave vector, 5(2M + 1)2 eigenvalues are
obtained.

3. SIMULATED EXAMPLES

The physical parameters of BaTiO3-CoFe2O4 (A) and the polymer (B) are listened in Table 1.

Table 1 – Physical parameters of BaTiO3-CoFe2O4 (A) and polymer (B) [51].

Geometry/Property Value
Unit-cell length (a) 0.022 m
Filling fraction ( f̄ ) 0.45
Mass density (ρA, ρB) 5.73 kg/m3, 1.15 kg/m3

Elastic constant (c11A , c11B ) 166 × 109 N/m2, 7.8 × 109 N/m2

Elastic constant (c12A , c12B ) 77 × 109 N/m2, 4.7 × 109 N/m2

Elastic constant (c44A , c44B ) 43 × 109 N/m2, 4.6 × 109 N/m2

Elastic constant (c66A , c66B ) 44.5 × 109 N/m2, 1.55 × 109 N/m2

Piezoelectric coefficient (e15A , e15B ) 11.6 C/m2, 0 C/m2

Dielectric coefficient (ε11A , ε11B ) 11.2 × 10−9 C2/Nm2, 0.0398 × 10−9 C2/Nm2

Piezomagnetic coefficient (q15A , q15B ) 550 N/Am, 0 N/Am
Magnetic permeability (Γ11A , Γ11B ) 5 Ns2/C2, 5 Ns2/C2

Electromagnetic constant (λ11A , λ11B ) 0.005 × 10−9 Ns/VC, 0 Ns/VC

We calculate the elastic band structure considering a fixed filling fraction, 0.45, for the four inclusion cross section
geometries (circular, hollow circular, square and rotated square with a 45◦ angle of rotation with respect to the x, y
axes) in a square, rectangular, triangular, honeycomb and Kagomé lattices. In the course of numerical calculations,
we choose 441 plane waves for the Fourier series expansion (M = 10), which resulted in a good convergence.
We restrict the band structure plots until a maximum frequency of 150 kHz and to the IBZ illustrated in Fig. 1 ( f -
j). The plots are given in terms of frequency in Hz versus the reduced Bloch wave vector k̄ = ka/2π . The reduced

Bloch wave vector for rectangular lattice is calculated by a =
√
(a2

1 +a2
2). Furthermore, the relation between the

parameters R̃ and r̃ for hollow inclusion is fixed in r̃ = 0.2R̃ and we do not investigate the influence of the BaTiO3-
CoFe2O4 thickness, R̃− r̃, on the band structure.
Fig. 2 (a-d) illustrates the band structure of a MPC with square lattice for the four types of inclusion, considering
the XY (red) and Z (blue) modes. Note from Eqs. (10-14) that only the Z mode contains the piezoelectric and
piezomagnetic effects. There are two complete band gaps for circular inclusion, Fig. 2 (a). For hollow circular
inclusion, Fig. 2 (b), only one complete band gap is observed and the first bands occur in higher frequencies
compared to the other inclusions.
Figure 2 (c) shows two complete band gaps for square inclusion. When these square inclusions are rotated 45◦

with respect to x and y axes, three complete band gaps are created, instead of two, as illustrated in Figure 2 (d).
The band structure for rotated square inclusion presents more complete band gaps than the other inclusions and the
broadest band gap with a 16.15 kHz of bandwidth.
The band structure for a rectangular lattice is illustrated in Fig. 3. The band structure behaviour for circular and
hollow circular inclusions in a rectangular lattice is similar to square lattice. For all inclusions, the complete band
gaps for rectangular lattice are narrower than square lattice. Besides, the number of band gaps for square and
rotated square inclusions, Figs. 3 (c-d), respectively, in a rectangular lattice is lower than in a square lattice, Figs. 2
a, c and d. The broadest complete band gap in a rectangular lattice is for rotated square inclusion, similar to square
lattice, and the bandwidth is 11.360 kHz.
Figure 4 shows the band structures for triangular lattice. For square and rotated square inclusions, Figure 4 (c-d),
respectively, we observe a complete wide band gap in, approximately, the same range of frequency, i.e. 61.04 kHz
- 42.98 kHz. The broadest band gap is observed for the hollow circular inclusion with a complete band gap width
of 20.55 kHz. Comparing the band structures of triangular lattice to the square and rectangular lattices, we observe
that the triangular lattice present broader complete band gaps for all inclusions.
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(a) (b)

(c) (d)
Figure 2 – Elastic band structures of XY (red) and Z (blue) modes of the magnetoelectroelastic phononic crystal for square
lattice, considering (a) circular, (b) hollow circular, (c) square and (d) rotated square inclusions.

Figure 5 illustrates the band structures for honeycomb lattice. Two complete band gaps are opened up for all
inclusions. The broadest band gap is observed for the circular inclusion with a bandwidth of 13.320 kHz.
In Fig. 6, it can be observed the band structures for Kagomé lattice. The square and rotated square inclusions,
Figure 6 (c-d), respectively, present a complete band gap at the same frequency range and the hollow inclusion
presents the broadest band gap with 11.97 kHz of bandwidth, similar to triangular lattice.
The best performance of the MPC depends on the number of complete band gaps and its bandwidth. The triangular
lattice presents the broadest complete band gaps for all inclusions and the hollow circular inclusion band gap is
broader than the others. Furthermore, the square and Kagomé lattices have more complete band gaps than other
lattices.
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(a) (b)

(c) (d)
Figure 3 – Elastic band structures of XY (red) and Z (blue) modes of the magnetoelectroelastic phononic crystal for rectangular
lattice, considering (a) circular, (b) hollow circular, (c) square and (d) rotated square inclusions.
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(a) (b)

(c) (d)
Figure 4 – Elastic band structures of XY (red) and Z (blue) modes of the magnetoelectroelastic phononic crystal for triangular
lattice, considering (a) circular, (b) hollow circular, (c) square and (d) rotated square inclusions.
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(a) (b)

(c) (d)
Figure 5 – Elastic band structures of XY (red) and Z (blue) modes of the magnetoelectroelastic phononic crystal for honeycomb
lattice, considering (a) circular, (b) hollow circular, (c) square and (d) rotated square inclusions.
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(a) (b)

(c) (d)
Figure 6 – Elastic band structures of XY (red) and Z (blue) modes of the magnetoelectroelastic phononic crystal for Kagomé
lattice, considering (a) circular, (b) hollow circular, (c) square and (d) rotated square inclusions.
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4. CONCLUSION

We obtain broad complete band gaps between XY and Z modes, where the elastic wave propagation is forbidden,
for a MPC. The elastic band structure is investigated for BaTiO3-CoFe2O4 inclusions embedded in an polymeric
matrix for a fixed filling fraction, 0.45.
The broadest complete band gap for square lattice is found to the rotated square inclusion with 16.15 kHz of
bandwidth. This inclusion geometry is also the best one for rectangular lattice. The broadest band gap for triangular
and Kagomé lattices is observed for hollow circular inclusion with a complete band gap width of 20.55 kHz and
11.97 kHz, respectively. The best performance for honeycomb lattice is found for circular inclusion with 13.320 Hz
of band gap width. The triangular lattice presents broader complete band gaps than other lattices for all inclusions
and the square and Kagomé lattices have more complete band gaps.
In a general way, the best performance observed for the MPC studied is found for hollow inclusions in a triangular
lattice. Finally, we consider square, rectangular, triangular, honeycomb and Kagomé arrays of BaTiO3-CoFe2O4
perfectly embedded in an elastic background. This means that we neglect the effects due to decohesion of the
BaTiO3-CoFe2O4BaTiO3-CoFe2O4 from the polymer matrix and to roughness at the interface between the in-
clusions and matrix. These defects can modify the elastic wave propagation in composite materials, altering the
band structure of them. The complete elastic band gaps in a MPC enlarge the potential applications for vibration
management with smart structures.
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Abstract 
In this study, we investigate theoretically the band structure of elastic waves propagating in an elastic 

metamaterial (EM) beam and its forced response. The influence of periodic arrays of single degree of 

freedom (SDOF) and multiple degrees of freedom (MDOF) force-only resonators attached in the unit cell 

of the EM beam was studied. The study is performed by using seven approaches, the transfer-matrix (TM) 

method, the finite element (FE) method, the spectral element (SE) method, the wave finite element (WFE) 

method, the wave spectral element (WSE) method, the plane wave expansion (PWE) method and the 

extended plane wave expansion (EPWE) method. Taking into account five arrays of SDOF force-only 

resonators, it is observed the coupling between locally resonant (LR) and Bragg-type gaps at frequencies 

around the first Bragg frequency. Furthermore, the configuration of multiple arrays of MDOF attached 

force-only resonators enlarges the application potentials of EMs for vibration management. 

1 Introduction 

In recent years, artificial periodic composite materials known as phononic crystals (PCs), consisting of a 

periodic array of scatterers embedded in a host medium, have been quite studied [1–8]. They have been 

investigated because PCs exhibit complete band gaps within which mechanical (elastic or acoustic) wave 

propagation is forbidden. The physical origins of phononic band gaps can be understood at micro-scale 

using the classical wave theory to describe the Bragg and Mie resonance based scattering of mechanical 

waves propagating within the crystal [9]. Most of the studies concerning PCs focused on investigation of 

bulk mechanical waves [1–2,7–9], i.e. mechanical wave propagation in solids, such as inhomogeneous 

isotropic elastic medium. 

The band gaps created by the Bragg scattering mechanism, also called Bragg reflection mechanism, are 

known as Bragg-type gaps, whose frequency location is governed by the Bragg condition 𝑎 = 𝑛′′(𝜆 2⁄ ),
(𝑛′′ = 1,2,3,… ), where 𝑎 is the lattice constant of the periodic system and 𝜆 is the wavelength of waves in 

the host material. The Bragg condition implies that it is difficult to achieve a low frequency Bragg-type 

gap in PCs with small size. 

Recently, in contrast, Liu et al. [10] proposed a type of locally resonant (LR) PC, also known as elastic 

metamaterial (EM), containing an array of localized resonant structures. This resonance-type band gaps 

were obtained in a frequency range two orders of magnitude lower than that given by the Bragg limit. LR 

gaps arise in the vicinity of the natural frequency of the local resonators while Bragg-type gaps typically 

occur at wavelengths of the order of the unit cell size. 

PCs and EMs can be applied in many situations. One can consider engineering applications, such as 

vibrationless environment for high-precision mechanical systems, acoustic barriers, noise suppression 

devices, design of transducers and other devices. There are various types of elastic structures being 

investigated containing an array of local resonators, such as rods [11], beams [12–17] and plates [18]. 
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The main purpose of this paper is to investigate the band structure of elastic waves propagating in an EM 

beam and its forced response, considering periodic arrays of single degree of freedom (SDOF) and 

multiple degrees of freedom (MDOF) force-only resonators. Another important purpose is to compare the 

elastic band structure obtained by the plane wave expansion (PWE), extended plane wave expansion 

(EPWE), wave finite element (WFE) and wave spectral element (WSE) methods, and the forced response 

obtained by the transfer-matrix (TM), finite element (FE), spectral element (SE), WFE and WSE methods. 

2 Model and Methods 

Figure 1 sketches an EM beam with multiple periodic arrays of attached local force-only resonators 

considering MDOF. In Fig. 1, there are 𝑁 MDOF force-only resonators attached in each unit cell with a 

lattice constant of 𝑎. Each resonator has a spring constant 𝑘𝑗
(𝑖)

 and a mass 𝑚𝑗
(𝑖)

 into the unit cell, where 

𝑗 = 1,2,3,… ,𝑁 is the index related to the jth resonator and 𝑖 = 1,2,3,… ,𝑁′ is the index related to the 

DOFs of the jth resonator.  

 

 

 

 

 

 

 

 

Figure 1: EM beam with multiple arrays of attached MDOF force-only resonators. 

Here we expanded the analysis of Xiao et al. [11] for 𝑁 MDOF force-only resonators. The equation of 

motion of the jth resonator can be written as: 

([
𝑘𝑗
(1)

𝐤𝑗𝑙𝑟
𝐤𝑗𝑟𝑙

𝐤𝑗𝑟𝑟
] − 𝜔2 [

𝑚𝑗
(0)

𝟎

𝟎 𝐦𝑗𝑟𝑟

]) {
𝑢𝑗
(0)

𝐮𝑗𝑟
} = {

𝐹𝑗
(0)

𝐅𝑗𝑟
}   or  (𝐊𝑗 −𝜔

2𝐌𝑗)𝐮𝑗 = 𝐅𝑗,                          (1) 

where 𝐃𝑗 = 𝐊𝑗 −𝜔
2𝐌𝑗, the indexes 𝑙 and 𝑟 represent left and right sides of the jth resonator, 𝑚𝑗

(0)
, 𝑢𝑗

(0)
 

and 𝐹𝑗
(0)

 are the mass, the displacement and the force, respectively, at the attachment point between the jth 

resonator and the beam unit cell. The stiffness and the mass matrices and the vectors of displacements and 

forces are: 

𝐤𝑗𝑟𝑙 = 𝐤𝑗
𝑇

𝑙𝑟
=

[
 
 
 
 −𝑘𝑗

(1)

0
0
⋮

0 ]
 
 
 
 

, 𝐤𝑗𝑟𝑟 =

[
 
 
 
 
 
 
 𝑘𝑗
(1)
+ 𝑘𝑗

(2)
−𝑘𝑗

(2)
0 … 0

−𝑘𝑗
(2)

𝑘𝑗
(2)
+ 𝑘𝑗

(3)
−𝑘𝑗

(3)
… ⋮

0 −𝑘𝑗
(3)

⋱ ⋮ 0

⋮ ⋮ … 𝑘𝑗
(𝑁′−1)

+ 𝑘𝑗
(𝑁′)

−𝑘𝑗
(𝑁′)

0 0 … −𝑘𝑗
(𝑁′)

𝑘𝑗
(𝑁′)

]
 
 
 
 
 
 
 

, 

. . . 

. . . . . . . . . 

𝑎  

. . . . . . . . . . . . 

𝑦  

𝑥1  
𝑥2  

𝑥𝑁  

𝑘1
(1)

  

𝑚1
(1)

  

𝑚1
(𝑁′)

  

𝑘1
(𝑁′)

  

𝑘𝑁
(1)

  

𝑚𝑁
(1)

  

𝑘𝑁
(𝑁′)

  

. . . 

𝑚𝑁
(𝑁′)

  

. . . . . . 

. . . . . . . . . 
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𝐦𝑗𝑟𝑟
=

[
 
 
 
 
 
 𝑚𝑗

(1)
0 0 … 0

0 𝑚𝑗
(2)

0 … 0

0 0 ⋱ ⋮ ⋮

⋮ ⋮ … 𝑚𝑗
(𝑁′−1)

0

0 0 … 0 𝑚𝑗
(𝑁′)

]
 
 
 
 
 
 

, 𝐮𝑗𝑟
=

{
  
 

  
 𝑢𝑗

(1)

𝑢𝑗
(2)

⋮

𝑢𝑗
(𝑁′−1)

𝑢𝑗
(𝑁′)

}
  
 

  
 

, 𝐅𝑗𝑟
=

{
  
 

  
 𝐹𝑗

(1)

𝐹𝑗
(2)

⋮

𝐹𝑗
(𝑁′−1)

𝐹𝑗
(𝑁′)

}
  
 

  
 

,              (2) 

By considering that there are no external forces acting on the masses of the jth resonator so that 𝐅𝑗𝑟 = 𝟎 

and the resonator displacement vector 𝐮𝑗𝑟 can be condensed. Therefore, Eq. (1) can be rewritten as 

𝐹𝑗
(0)
= 𝐷𝑗

(0)
𝑢𝑗
(0)

, where 𝐷𝑗
(0)

 is the dynamic stiffness of the jth resonator at the attachment point, which 

can be expressed as: 

𝐷𝑗
(0)
= (𝑘𝑗

(1)
−𝜔2𝑚𝑗

(0)
) − 𝐤𝑗𝑙𝑟 (𝐤𝑗𝑟𝑟 −𝜔

2𝐦𝑗𝑟𝑟
)𝐤𝑗𝑟𝑙 .                                           (3) 

2.1 SE and FE methods 

The global dynamic stiffness matrix for a finite Euler-Bernoulli (EB) beam is given by 𝐃𝑏𝑒𝑎𝑚𝑓𝑒 =

𝐊𝑏𝑒𝑎𝑚𝑓𝑒 −𝜔
2𝐌𝑏𝑒𝑎𝑚𝑓𝑒, where 𝐊𝑏𝑒𝑎𝑚𝑓𝑒 and 𝐌𝑏𝑒𝑎𝑚𝑓𝑒 are obtained from FE EB beam model. In this 

investigation, we calculated the dynamic stiffness matrix from using two methods, that is, one analytical, 

SE method and the other numerical, FE method. The dynamic stiffness matrix of the EB beam element 

modeled by SE method [19] is: 

𝐃𝑏𝑒𝑎𝑚𝑠𝑒
𝑒 =

𝐸𝐼

𝐿𝑠𝑒
3 [

𝑘11 𝑘12 𝑘13 𝑘14
𝑘21 𝑘22 𝑘23 𝑘24
𝑘31 𝑘32 𝑘33 𝑘34
𝑘41 𝑘42 𝑘43 𝑘44

] ,                                                        (4) 

where 

𝑘11 =
(𝐾𝐿𝑠𝑒)

3

∆
(𝑧11𝑧22 − 𝑖𝑧12𝑧21), 

 𝑘12 =
(𝐾𝐿𝑠𝑒)

2𝐿𝑠𝑒
2∆

(1 + 𝑖)(𝑧12
2 − 𝑧11

2), 𝑘13 =
(𝐾𝐿𝑠𝑒)

3

∆
(𝑖𝑧12𝑧22 − 𝑧11𝑧21), 

𝑘14 =
(𝐾𝐿𝑠𝑒)

2𝐿𝑠𝑒
∆

(𝑖 − 1)𝑧11𝑧12, 𝑘22 =
𝐾𝐿𝑠𝑒

3

∆
(𝑖𝑧11𝑧22 − 𝑧12𝑧21), 𝑘24 =

𝐾𝐿𝑠𝑒
3

∆
(𝑧12𝑧22 − 𝑖𝑧11𝑧21), 

𝑘𝑖𝑗 = 𝑘𝑗𝑖,  𝑘23 = −𝑘14,  𝑘33 = 𝑘11,  𝑘34 = −𝑘12,  𝑘44 = 𝑘22, 

𝑧11 = (1 − 𝑒
−𝑖𝐾𝐿𝑠𝑒𝑒𝐾𝐿𝑠𝑒), 𝑧12 = 𝑒

−𝑖𝐾𝐿𝑠𝑒 − 𝑒𝐾𝐿𝑠𝑒 , 𝑧21 = 𝑒
−𝑖𝐾𝐿𝑠𝑒 + 𝑒𝐾𝐿𝑠𝑒 , 𝑧22 = (1 + 𝑒

−𝑖𝐾𝐿𝑠𝑒𝑒𝐾𝐿𝑠𝑒), 

∆=
𝑧11
2 + 𝑧12

2

1 + 𝑖
, 𝑘 = (

𝜔2𝜌𝑆

𝐸𝐼
)

1
4

,                                                            (5) 

where 𝐾 is the Bloch wave vector, also known as wavenumber, 𝐸 is the Young’s modulus, 𝜌 is the 

density, 𝐼 is the second moment of area, 𝐿𝑠𝑒 is the length of the spectral element, 𝑖 = √−1 and 𝑆 is the 

cross-sectional area of the beam. If the geometry of the beam is uniform, the global dynamic stiffness 

matrix of the EB beam element modeled by SE method is 𝐃𝑏𝑒𝑎𝑚𝑠𝑒 = 𝐃𝑏𝑒𝑎𝑚𝑠𝑒
𝑒 . However, we discretized 

each unit cell in 𝑗 + 1 spectral elements, because we need 𝑗 nodes in each unit cell for the 𝑗 resonators. 

Thus, the global dynamic stiffness matrix can be obtained by the assembly of the dynamic stiffness 

matrices of the EB beam elements modeled by SE method. 

The dynamic stiffness matrix can also be obtained by the FE method, 𝐃𝑏𝑒𝑎𝑚𝑓𝑒
𝑒 = 𝐊𝑏𝑒𝑎𝑚𝑓𝑒

𝑒 −

𝜔2𝐌𝑏𝑒𝑎𝑚𝑓𝑒
𝑒 , where [19]: 
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𝐊𝑏𝑒𝑎𝑚𝑓𝑒
𝑒 =

𝐸𝐼

𝐿𝑓𝑒
3

[
 
 
 
 
12 6𝐿𝑓𝑒 −12 6𝐿𝑓𝑒

6𝐿𝑓𝑒 4𝐿𝑓𝑒
2 −6𝐿𝑓𝑒 2𝐿𝑓𝑒

2

−12 −6𝐿𝑓𝑒 12 −6𝐿𝑓𝑒

6𝐿𝑓𝑒 2𝐿𝑓𝑒
2 −6𝐿𝑓𝑒 4𝐿𝑓𝑒

2
]
 
 
 
 

,  

𝐌𝑏𝑒𝑎𝑚𝑓𝑒
𝑒 =

𝜌𝑆𝐿𝑓𝑒

420

[
 
 
 
 
156 22𝐿𝑓𝑒 54 −13𝐿𝑓𝑒

22𝐿𝑓𝑒 4𝐿𝑓𝑒
2 13𝐿𝑓𝑒 −3𝐿𝑓𝑒

2

54 13𝐿𝑓𝑒 156 −22𝐿𝑓𝑒

−13𝐿𝑓𝑒 −3𝐿𝑓𝑒
2 −22𝐿𝑓𝑒 4𝐿𝑓𝑒

2
]
 
 
 
 

,   (6) 

where 𝐿𝑓𝑒 is the length of the finite element. The global dynamic stiffness matrix is given by 𝐃𝑏𝑒𝑎𝑚𝑓𝑒 =

𝐊𝑏𝑒𝑎𝑚𝑓𝑒 −𝜔
2𝐌𝑏𝑒𝑎𝑚𝑓𝑒, where 𝐊𝑏𝑒𝑎𝑚𝑓𝑒 and 𝐌𝑏𝑒𝑎𝑚𝑓𝑒 are the global stiffness and the global mass 

matrices, respectively. They are obtained by the assembly of the stiffness and mass matrixes of the EB 

beam elements modeled by FE method. It is important to highlight that the dynamic stiffness of the all jth 

resonators, should be coupled in the correct DOFs of the 𝐃𝑏𝑒𝑎𝑚𝑓𝑒 and 𝐃𝑏𝑒𝑎𝑚𝑠𝑒. The total number of the 

resonators along the beam is 𝑛′𝑁, where 𝑛′ is the number of unit cells. 

2.2 WSE and WFE methods 

Considering a finite EB beam divided into a finite number of unit cells (the unit cells are meshed with an 

equal number of nodes on their left- and right-hand edges), see Fig. 1, one can obtain a dynamic stiffness 

of the unit cell, �̃�𝑐𝑒𝑙𝑙,obtained from the FE, �̃�𝑐𝑒𝑙𝑙𝑓𝑒, or SE, �̃�𝑐𝑒𝑙𝑙𝑠𝑒, model. The �̃�𝑐𝑒𝑙𝑙 can be portioned and 

the dynamic equation of motion can be written as: 

[

�̃�𝑖𝑖 �̃�𝑖𝑙 �̃�𝑖𝑟
�̃�𝑙𝑖 �̃�𝑙𝑙 �̃�𝑙𝑟
�̃�𝑟𝑖 �̃�𝑟𝑙 �̃�𝑟𝑟

] {

𝐮𝑖
𝐮𝑙
𝐮𝑟
} = {

𝟎
𝐅𝑙
𝐅𝑟

} ,                                                             (7) 

where 𝑖 represents the interior DOFs of the unit cell, 𝑙 and 𝑟 represent the left and right boundaries of the 

unit cell, respectively. The interior DOFs can be eliminated using the first row of Eq. (7) [20], which 

results in: 

𝐮𝑖 = �̃�𝑖𝑖
−1(�̃�𝑖𝑙𝐮𝑙 + �̃�𝑖𝑟𝐮𝑟).                                                                (8) 

Inserting Eq. (8) into Eq. (7) leads to: 

[
𝐃𝑙𝑙 𝐃𝑙𝑟
𝐃𝑟𝑙 𝐃𝑟𝑟

] {
𝐮𝑙
𝐮𝑟
} = {

𝐅𝑙
𝐅𝑟
} ∴ 𝐃𝑐𝑒𝑙𝑙𝐮𝑐𝑒𝑙𝑙 = 𝐅𝑐𝑒𝑙𝑙 ,                                              (9) 

where 𝐃𝑙𝑙 = �̃�𝑙𝑙 − �̃�𝑙𝑖�̃�𝑖𝑖
−1�̃�𝑖𝑙 , 𝐃𝑟𝑙 = �̃�𝑟𝑙 − �̃�𝑟𝑖�̃�𝑖𝑖

−1�̃�𝑖𝑙 , 𝐃𝑙𝑟 = �̃�𝑙𝑟 − �̃�𝑙𝑖�̃�𝑖𝑖
−1�̃�𝑖𝑟,  𝐃𝑟𝑟 = �̃�𝑟𝑟 −

�̃�𝑟𝑖�̃�𝑖𝑖
−1�̃�𝑖𝑟. 

Equation (9), which relates the forces and the displacements on the two sides of the unit cell, is the starting 

point for the WFE [20] and WSE analysis. Note that 𝐃𝑐𝑒𝑙𝑙 can be obtained by FE method, 𝐃𝑐𝑒𝑙𝑙𝑓𝑒, or by 

SE method, 𝐃𝑐𝑒𝑙𝑙𝑠𝑒. Thus, this is the difference between the WFE and WSE methods. Similar as section 

2.1, it is important to highlight that the dynamic stiffness of the all jth resonators, 𝑁, on the unit cell 

should be coupled in the correct DOFs of the �̃�𝑐𝑒𝑙𝑙𝑓𝑒 and �̃�𝑐𝑒𝑙𝑙𝑠𝑒. Here, it is not possible to couple in the 

correct DOFS of the 𝐃𝑐𝑒𝑙𝑙𝑓𝑒 and 𝐃𝑐𝑒𝑙𝑙𝑠𝑒, i.e. after the condensation, because the resonators are not on the 

left and/or right side of the unit cell as usual. Thus, the coupling is done before the condensation. 

One can reformulate Eq. (9) in terms of state vectors as: 

{
𝐮𝑟
−𝐅𝑟

} = [
−𝐃𝑙𝑟

−1𝐃𝑙𝑙 −𝐃𝑙𝑟
−1

𝐃𝑟𝑙 − 𝐃𝑟𝑟𝐃𝑙𝑟
−1𝐃𝑙𝑙 −𝐃𝑟𝑟𝐃𝑙𝑟

−1] {
𝐮𝑙
𝐅𝑙
} ∴ 𝐪𝑟 = 𝐓𝐪𝑙 ,                             (10) 
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where 𝐓 is a symplectic [21] matrix and it is known as transfer matrix, 𝐪𝑟 is the right state vector and 𝐪𝑙 is 

the left state vector. The continuity of displacements and equilibrium forces at the boundary between cells 

𝑚 and 𝑚+ 1, yields, 

𝐮𝑙
(𝑚+1)

= 𝐮𝑟
(𝑚)
, 

𝐅𝑙
(𝑚+1)

= −𝐅𝑟
(𝑚)
.                                                                        (11) 

Substituting Eq. (11) in Eq. (10), one can write: 

𝐪𝑙
(𝑚+1)

= 𝐓𝐪𝑙
(𝑚)
.                                                                        (12) 

Invoking Floquet-Bloch’s theorem [22–23], say: 

𝐪𝑙
(𝑚+1)

= 𝑒  𝜇𝐪𝑙
(𝑚)
,                                                                      (13) 

where 𝜇 = −𝑖𝐾𝑎 is the attenuation constant. Substituting Eq. (13) in Eq. (12) leads to: 

𝐓𝐪𝑙 = 𝑒
 𝜇𝐪𝑙.                                                                             (14) 

As pointed out by Zhong and Williams [21], direct calculation of the eigenvalue problem in Eq. (14) can 

lead to numerical ill-conditioning. According to Mencik [24], this ill-conditioning can be explained by the 

Bauer-Fike theorem [25], which says that the problem is that the eigenvector of 𝐓 can be ill-conditioned. 

This can be explained as it is partitioned into displacement and force components, thus the values can be 

largely disparate. To solve this issue, Zhong and Williams [21] proposed a homogeneous generalized 

eigenvalue problem of the following form: 

𝐪𝑙 = [
𝐈𝑛 𝟎
−𝐃𝑙𝑙 −𝐃𝑙𝑟

] {
𝐮𝑙
𝐮𝑟
} ∴ 𝐪𝑙 = 𝐋𝐰, 

𝐪𝑟 = [
𝟎 𝐈𝑛
𝐃𝑟𝑙 𝐃𝑟𝑟

] {
𝐮𝑙
𝐮𝑟
} ∴ 𝐪𝑟 = 𝐍𝐰,                                                        (15) 

where 𝐈𝑛 is the n-dimensional unit matrix (identity matrix) and from Eq. (10), one can note that 𝐓 = 𝐍𝐋−1. 

Rewriting Eq. (14): 

𝐓𝐪𝑙 = 𝑒
 𝜇𝐪𝑙 ∴  𝐪𝑟 = 𝑒

 𝜇𝐪𝑙   ∴ 𝑒
 𝜇𝐋𝐰 = 𝐍𝐰.                                             (16) 

The solutions of Eq. (16) are denoted as {(𝑒  𝜇𝑗 , 𝐰𝑗)}𝑗, where {𝑒  𝜇𝑗}𝑗 are the eigenvalues and {𝐰𝑗}𝑗 are the 

eigenvectors associated with a given mode 𝑗. One can notice that each eigenvector of (14) can be obtained 

by 𝐪𝑙𝑗 = 𝐋𝐰𝑗. It can also be shown that {(𝑒−𝜇𝑗 , (𝐉𝐋𝐰)𝑗)}𝑗 are also eigenvalues of Eq. (16) and left 

eigenvectors, respectively, because one can rewrite Eq. (16) as 𝑒  𝜇𝐍T(𝐉𝐋𝐰) = 𝐋T(𝐉𝐋𝐰) ∴ (𝐉𝐋𝐰)T(𝐍 −
𝑒−𝜇𝐋) = 0 [21]. 

Therefore, the 2𝑛 eigenvalues of the Eq. (16), when ordered appropriately, can be subdivided into two 

groups. The first corresponds to the waves travelling to the right, 𝑒𝜇𝑗 𝑗 = 1,2,… , 𝑛 with |𝑒𝜇𝑗| < 1 and the 

second corresponds to the waves travelling to the left, 𝑒−𝜇𝑗 𝑗 = 1,2,… , 𝑛 with |𝑒−𝜇𝑗| > 1. Note that to 

consider these hypotheses the substructure needs to be damped. If the substructure does not have damping, 

|𝑒±𝜇𝑗| = 1 . 

For the eigenvalues {𝑒  𝜇𝑗}𝑗 and {𝑒 −𝜇𝑗}𝑗 one can obtain the associated eigenvectors {𝐪𝑙𝑗}𝑗
 and {𝐪𝑙

∗
𝑗
}
𝑗
, 

respectively. Each eigenvector can be split into displacement and force components as 𝐪𝑙𝑗 = {
𝐮𝑙𝑗
𝐅𝑙𝑗
} and 

𝐪𝑙
∗
𝑗
= {

𝐮𝑙
∗
𝑗

𝐅𝑙
∗
𝑗

}. An important relation between the components of each eigenvector is 𝐮𝑙
∗
𝑗
= 𝕽𝐮𝑙𝑗 and 

𝐅𝑙
∗
𝑗
= −𝕽𝐅𝑙𝑗 [24], where 𝕽 is the diagonal symmetry transformation matrix. Tracking the frequency 

evolution of each wave mode is a crucial step of the WFE and WSE methods, for more details see Mencik 

[24]. 

To predict the harmonic response of a structure composed of 𝑛′ unit cells, one can write: 
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𝐪𝑙
(1)
=∑𝐪𝑙𝑗𝐐𝑗

(1)

𝑛

𝑗=1

+∑𝐪𝑙
∗
𝑗

𝑛

𝑗=1

𝑒−𝑛
′𝜇𝑗𝐐𝑗

∗
(𝑛′)

, 

𝐪𝑟
(𝑛′)

=∑𝐪𝑙𝑗𝑒
−𝑛′𝜇𝑗𝐐𝑗

(1)

𝑛

𝑗=1

+∑𝐪𝑙
∗
𝑗

𝑛

𝑗=1

𝐐𝑗
∗(𝑛

′)
,                                                  (17) 

where 𝐪𝑙
(1)

 is the state vector of the first node of the structure, 𝐪𝑟
(𝑛′)

 is the state vector of the last node of 

the structure and 𝐐 is the vector form of the modal amplitude. Equation (17) and the calculation of the 

modal amplitudes are discussed in [24]. 

2.3 TM method 

The TM method is not new and it has it has its predecessors in the tabular methods which were 

successfully applied at a time when no automatic computer operated [26]. This method has been 

extensively used to solve periodic structures dynamics problems [12–13]. In this study, we do not apply the 

Floquet-Bloch’s theorem [22–23] in TM method to obtain the band structure as other studies [12–13]. 

The transfer matrix relates the state vector of displacements and forces at a node with forces and 

displacement at a neighboring node, as represented by Eq. (12). Furthermore, the assembling to obtain the 

global matrix is done by propagating the transfer matrixes from the first unit cell to the last, 𝑛′th, unit cell. 

Thus, one can write: 

𝐓𝐺 = 𝐓
(𝑛′)…𝐓(2)𝐓(1) = 𝐓𝑛

′
,                                                              (18) 

where 𝐓(𝑘), 𝑘 = 1,2,…𝑛′, is the transfer matrix of the 𝑘th unit cell of the structure, 𝐓 = 𝐓(1) = ⋯ = 𝐓(𝑛
′) 

and 𝐓𝐺 is the global transfer matrix of the structure. The 𝐓(𝑘) matrix has internal elements as expressed in 

Eq. (10) and they can be obtained by 𝐃𝑐𝑒𝑙𝑙𝑓𝑒 or 𝐃𝑐𝑒𝑙𝑙𝑠𝑒. In this study, we calculated 𝐓 from 𝐃𝑐𝑒𝑙𝑙𝑠𝑒. One 

can note that 𝐃𝑐𝑒𝑙𝑙𝑠𝑒 already has the information of the resonators because, as explained before, the 

dynamic stiffness of the all jth resonators, 𝑁, attached in the unit cell should be coupled in the correct 

DOFs of the �̃�𝑐𝑒𝑙𝑙𝑠𝑒. 

Note that the global transfer matrix relates: 

𝐪𝑟
(𝑛′)

= 𝐓𝐺𝐪𝑙
(1)
.                                                                            (19) 

Applying the boundary conditions, in this paper free-free beam, and considering no force and no moment 

applied in the right side of the beam, i.e. 𝐅𝑟
(𝑛′)

= 𝟎, Eq. (19) can be written as: 

[
−𝐓𝐺

−1
𝑙𝑟
𝐓𝐺𝑙𝑙 𝐓𝐺

−1
𝑙𝑟

−𝐓𝐺
−1
𝑟𝑟
𝐓𝐺𝑟𝑙 𝟎

] {
𝐪𝑙
(1)

𝐪𝑟
(𝑛′)

} = 𝐅𝑙
(1)
{
𝟏
𝟏
} ,                                                 (20) 

where 𝐓𝐺𝑙𝑙, 𝐓𝐺𝑙𝑟, 𝐓𝐺𝑟𝑙, 𝐓𝐺𝑟𝑟 are submatrices of 𝐓𝐺 and 𝐅𝑙
(1)

 is the vector of force and moment of the first 

node of the structure. One problem related to the TM method is the numerical difficulties [26]. 

2.4 PWE and EPWE methods 

The PWE and EPWE methods, also known as 𝜔(𝑘) and 𝑘(𝜔), are analytical methods to predict the band 

structure. The advantage of using the EPWE method is because the evanescent modes are obtained 

naturally and these modes are not ignored as well as by the PWE method. Hsue et al. [27] proved that the 

evanescent modes obtained by EPWE obey the Floquet-Bloch’s theorem [22–23]. 

These methods applied to EM EB beam, considering 𝑁 SDOF force-only resonators attached in each unit 

cell, was developed by Xiao et al. [14]. For details of the mathematical formulation, see Xiao et al. [14]. 
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We expanded the analysis of Xiao et al. [14] considering 𝑁 MDOF force-only resonators attached in each 

unit cell. 

3 Results and Discussion 

3.1 Multiple arrays of SDOF force-only resonators 

The aluminum beam parameters and material properties are summarized in Table 1. 

Geometry/Property Value 

Unit cell length (𝑎) 0.1 m 

Beam length (for WSE, WFE, FE, SE and TM 

methods) (𝐿) 
0.5 m 

Beam length (PWE and EPWE methods) (𝐿) ∞ 

Number of unit cells (for WSE, WFE, FE, SE and 

TM methods) (𝑛′) 
5 

Cross section area (𝑆) 4 x 10
-4

 m
2 

Young’s modulus (𝐸) 7 x 10
10

 Pa 

Mass density (𝜌) 2700 kg/m
3 

Loss factor of the beam (𝜂𝑏) 0.01 

Poisson’s ratio (𝜐) 0.33 

Second moment of area (𝐼) 1.3333 x 10
-11

 m
4 

Table 1: Beam geometric parameters and material properties. 

We consider an EM beam with five arrays of SDOF force-only resonators in the unit cell. The parameters 

of the resonators are: {𝜂𝑗
(1)
} = {0.05,0.05,… ,0.05}, {𝑥𝑗

(1)
} = 𝑎 𝑥 {1, 2, … , 5}/6 m, 

{𝛾𝑗
(1)
} = 0.5 𝑥 {1.4, 1.2, 1, 0.8, 0.6}/5, 𝑚𝑗

(1)
= 𝛾𝑗

(1)
𝜌𝐴𝑎, {𝑓𝑗

(1)
} = {160, 180, 200, 475, 500} Hz and 

𝑘𝑗
(1)
= 𝑚𝑗

(1)
(𝜔𝑗

(1)
)
2
, 𝑗 = 1, 2… , 5, where 𝜂𝑗

(1)
 is the loss factor of the jth resonator, 𝑥𝑗

(1)
 is the position 

of the jth resonator, 𝛾𝑗
(1)

 is the jth resonator mass ratio to the mass of the beam in each unit cell, the sum of 

all 𝛾𝑗
(1)

 is equal to 0.5 and 𝑓𝑗
(1)

 is the resonance frequency of the jth resonator. 

 

(a) (b) 
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Figure 2: Displacement (a) and rotation (b) of the left side of the EM beam in frequency domain, 

displacement (c) and rotation (d) of the right side of the EM beam in frequency domain and the ill-

conditioning (e) of the matrixes of the Eq. (19) and Eq. (20), called of matrix 1 and matrix 2, respectively. 

The forced response of the EM beam was analyzed considering a free-free boundary condition and an 

excitation force as a cosine-shaped pulse only on the left side of the beam. Figure 2 (a-d) presents the 

displacement and the rotation of the left side and right side of beam in frequency domain. The ill-

conditioning of TM method [26] can be observed in Fig. 2 (e) after 1345 Hz.  

The ill-conditioning of the matrices in Eq. (19) and Eq. (20) increases with frequency. This ill-

conditioning exists for the beam case mainly because of the evanescence waves and considering free-free 

boundary condition. Thus, we do not present the results of the TM method for the right side of the beam 

and for the rest of the results. One can observe from Fig. 2 (a-d) that WFE and FE do not converge with 

WSE and SE for higher frequencies. The convergence can be achieved increasing the number of finite 

elements of the unit cell. 

In this investigation, we considered six finite and spectral elements per each unit cell, i.e. seven nodes per 

unit cell. Thus, the five arrays of SDOF force-only resonators are attached into the internal five nodes of 

the unit cell. 

The displacement (a-c) and rotation (b-d) of the left side and right side of the beam in frequency domain 

are also illustrated in Figure (3) in a small range of frequency to see the LR band gaps and the Bragg-type 

band gap. The first Bragg frequency can be calculated using the Bragg condition 𝑎 = 𝑛′′(𝜆/2) or 𝐾𝐵𝑎 =

𝑛′′𝜋, with 𝑛′′ = 1 and for EB beam theory 𝐾𝐵 = √2𝜋𝑓√𝜌𝐴 𝐸𝐼⁄4
:  

𝑓𝐵1 =
1

2𝜋
(
𝜋

𝑎
)
2

√
𝐸𝐼

𝜌𝑆
≅ 461.77 Hz                                                            (21) 

(e) 

(c) (d) 
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Figure 3: Displacement (a) and rotation (b) of the left side of the EM beam in frequency domain and 

displacement (c) and rotation (d) of the right side of the EM beam in frequency domain. 

Figure (3) illustrates that WFE and WSE do not converge exactly with FE and SE on the resonant 

frequencies. Furthermore, the LR gaps and the Bragg-type gap are also observed. They can be better 

analyzed in the transmittance graphic and the attenuation performance is better analyzed in the elastic 

band structure of the beam. 

Figure (4) and Fig. (5) show the displacement receptance and the rotation receptance of the beam, and the 

displacement transmittance and the rotation transmittance of the beam, respectively. 

 

(a) (b) 

(c) 
(d) 

(a) (b) 
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Figure 4: Displacement (a) and rotation (b) receptance of the left side of the EM beam and displacement 

(c) and rotation (d) receptance of the right side of the EM beam. 

 

 

Figure 5: Displacement (a) transmittance and rotation (b) transmittance of the EM beam. 

From Fig. 5 (a-b) it is possible to see the LR gaps on the resonant frequencies of {160, 180, 200} Hz and it 

is also possible to see the coupling between the LR gaps on the resonant frequencies of {475, 500} and the 

Bragg-type gap, 461.77 Hz. The coupling between LR gaps and Bragg-type gap happens because the 

existence of resonators tuned near to the first Bragg frequency. 

The coupling between the Bragg scattering mechanism and the LR mechanism is benefited by widening 

the gap [28]. The mathematics related to the band gap coupling can be found in Xiao et al. [29]. 

Figure 6 illustrates the elastic band structure using the WFE, WSE, PWE and EPWE. Figure 6 (a) shows 

the real part of the reduced Bloch wave vectors, 𝐾𝑎 𝜋⁄ , using WFE, WSE and PWE methods and Figure 6 

(b) shows the imaginary part of the reduced Bloch wave vectors using WFE, WSE and EPWE methods.  

It is important to highlight that only the smaller imaginary part of the Bloch wave vectors, whose real part 

– 𝑅𝑒[𝐾(𝜔)] – lies inside the first Brillouin zone [30], i.e. [−𝜋 𝑎⁄ , 𝜋 𝑎⁄ ], was considered using the EPWE 

method because it is the most accurate [31–33]. In addition, in PWE and EPWE calculations, we 

considered three plane waves in the Fourier series expansion and only the first eight bands are considered 

to plot the elastic band structure. In Figure 6, we only show the irreducible Brillouin zone (IBZ), [0, 𝜋 𝑎⁄ ]. 

(c) (d) 

(a) (b) 

LR gaps Cloupled gap LR gaps 

Cloupled gap 
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Figure 6: Elastic band structure of the EM beam with five arrays of SDOF force-only resonators. The real 

part of Bloch wave vectors (a) and the imaginary part of the Bloch wave vectors calculated (b). 

From Fig. 6 (a-b) it is possible to see the LR gaps on the resonant frequencies of {160, 180, 200} Hz and 

the coupling between the LR gaps on the resonant frequencies of {475, 500} and the Bragg-type gap, 

461.77 Hz, as discussed before. It is also possible to obtain the real part of the Bloch wave vector from the 

EPWE method as illustrated in Figure 7. 

 

Figure 7: Elastic band structure of the EM beam with five arrays of SDOF force-only resonators. The real 

part of the Bloch wave vectors calculated. 

From Figure 7, one can observe that the real part of the Bloch wave vectors estimated by the EPWE 

method increases with frequency even after the first Bragg frequency, thus one can compare WFE, WSE, 

PWE and EPWE methods in Figure 7 until the first Bragg frequency. In addition, the EPWE method is 

almost always used to estimate the imaginary part of the Bloch wave vectors. 

3.2 Multiples arrays of MDOF force-only resonators 

For multiple arrays of MDOF force-only resonators, we consider in each unit cell five arrays of 2DOF 

force-only resonators. The parameters of the resonators are: {𝜂𝑗
(1)
} = {𝜂𝑗

(2)
} = {0.05,0.05,… ,0.05}, 

{𝑥𝑗
(1)
} = {𝑥𝑗

(2)
} = 𝑎 𝑥 {1, 2, … , 5}/6 m, {𝛾𝑗

(1)
} = 0.5 𝑥 {1.4, 1.2, 1, 0.8, 0.6}/5, 

{𝛾𝑗
(2)
} = 0.5 𝑥 {1, 1, 1, 1, 1}/5, 𝑚𝑗

(1)
= 𝛾𝑗

(1)
𝜌𝐴𝑎, 𝑚𝑗

(2)
= 𝛾𝑗

(2)
𝜌𝐴𝑎, {𝑓𝑎𝑗

(1)
} = {160, 275, 475,500,600} Hz, 

{𝑓𝑎𝑗
(2)
} = {70, 135, 185,200,320} Hz, 𝑘𝑗

(1) = 𝑚𝑗
(1) (𝜔𝑎𝑗

(1))
2
, 𝑘𝑗
(2) = 𝑚𝑗

(1) (𝜔𝑎𝑗
(2))

2
, 𝑗 = 1, 2… , 5, where 

𝜂𝑗
(𝑖)

 is the loss factor of the jth resonator associated with the ith DOF, 𝑥𝑗
(𝑖)

 is the position of the jth 

(a) (b) 

LR gaps 
Cloupled gap 

LR gaps 

Cloupled gap 
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resonator associated with the ith DOF, 𝛾𝑗
(𝑖)

 is the jth resonator mass ratio to the mass of the beam in each 

unit cell associated with the ith DOF, the sum of all 𝛾𝑗
(𝑖)

 is equal to 0.5 and 𝑓𝑎𝑗
(𝑖)

 are the frequencies used to 

calculate the resonator spring constant 𝑘𝑗
(𝑖)

 associated with the ith DOF. Note that to calculate the resonant 

frequencies of a 2DOF force-only resonator, one can write: 

(𝜔𝑗
(1,2))

2
=
𝑘𝑗
(1)
𝑚𝑗
(2)
+ 𝑘𝑗

(2)
𝑚𝑗
(1)
+ 𝑘𝑗

(2)
𝑚𝑗
(2)

2𝑚𝑗
(1)
𝑚𝑗
(2)

∓
√(𝑘𝑗

(1)
𝑚𝑗
(2)
+ 𝑘𝑗

(2)
𝑚𝑗
(1)
+ 𝑘𝑗

(2)
𝑚𝑗
(2)
)
2
− 4𝑘𝑗

(1)
𝑘𝑗
(2)
𝑚𝑗
(1)
𝑚𝑗
(2)

2𝑚𝑗
(1)𝑚𝑗

(2)
,                                        (22) 

where the resonant frequencies in Hz of the 2DOF jth resonator are 𝑓𝑗
(1,2)

= √(𝜔𝑗
(1,2)

)
2
2𝜋⁄ . Applying 

Eq. (22), the resonant frequencies of the five arrays of 2DOF force-only resonators are approximately 

{𝑓𝑗
(1,2)

} = {64.9, 120.9, 170.8, 172.7, 180.4, 254.9, 307.5, 515, 554.8, 754.2} Hz.  

Figure (8) shows the displacement transmittance and the rotation transmittance of the EM beam, 

respectively. 

 

Figure 8: Displacement (a) transmittance and rotation (b) transmittance of the EM beam. 

From Fig. 8, one can see the expected LR gaps, the first coupled gap formed by the coupling between 

three LR gaps, i.e. {170.8, 172.7, 180.4} Hz, the Bragg-type gap and the second coupled gap formed by 

the coupling between two LR gaps, i.e. {515, 554.8} Hz. 

Figure 9 (a) shows the real part of the reduced Bloch wave vectors using WFE, WSE and PWE methods 

and Figure 9 (b) shows the imaginary part of the reduced Bloch wave vectors using WFE, WSE and 

EPWE methods. From Fig. 9 it is possible to see the same behavior as discussed in Fig. 8. 

 

Cloupled gap 

Cloupled gap 

Cloupled gap 

Cloupled gap 

Bragg-type gap Bragg-type gap 
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Figure 9: Elastic band structure of the EM beam with five arrays of 2DOF force-only resonators. The real 

part of Bloch wave vectors (a) and the imaginary part of the Bloch wave vectors calculated (b). 

4 Conclusions 

We have obtained the elastic band structure and the forced response for an EM EB beam with periodic 

five arrays of SDOF and MDOF LR force-only resonators. We used the WFE, FE, WSE, SE, TM, PWE 

and EPWE methods, however, the TM method diverges for higher frequencies because of the evanescence 

waves and the free-free boundary condition.  

The EM beam with five arrays of SDOF force-only resonators presented a wide gap created by the 

coupling between the LR gaps and the Bragg-type gap. For the EM beam with five arrays of 2DOF force-

only resonators, we create two wide gaps from the coupling between LR gaps. 

The possibility of the coupling between LR gaps and Bragg-type gap with SDOF and MDOF force-only 

resonators enlarges the potential applications for vibration control. 
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ABSTRACT
During the last few decades many researches have been interested in the field of wave propagation in periodic
composite systems known as phononic crystals. Recently, a new type of phononic crystal was proposed, namely
locally resonant phononic crystal, also known as elastic metamaterial. The main difference between phononic
crystals and elastic metamaterials is that the latter present locally resonant band gaps arising in the vicinity of local
resonators natural frequencies while Bragg-type band gaps typically occur at wavelengths of the order of the unit
cell size. We investigate theoretically the band structure of flexural waves propagating in an elastic metamaterial
thin plate. The classical theory of thin plate, Kirchhoff-Love theory, is considered. We study the influence of
periodic arrays of multiple degrees of freedom local resonators in square and triangular lattices. The plane wave
expansion and the extended plane wave expansion methods, also known as ω(k) and k(ω), respectively, are used
to solve the governing equation of motion for a thin plate. The locally resonant band gaps for square and triangular
lattices present almost the same attenuation for all examples analysed. However, the square lattice presents broader
Bragg-type band gaps with higher attenuation than triangular lattice. An elastic metamaterial plate with attached
double periodic arrays of S-DOF resonators and with attached single periodic array of 2-DOF resonator tuned
at the same frequencies, 102 hz and 283 Hz, presents different attenuation performance for locally resonant and
Bragg-type band gaps. We find the coupling between locally resonant band gaps for resonators tuned at 70 Hz
and 102 Hz. The application of a multi-resonator elastic metamaterial thin plate enlarges its potential for vibration
control.

KEYWORDS: elastic metamaterial thin plate, flexural wave band gaps, multiple degrees of freedom, vibration
control.

1. INTRODUCTION

Over the last decades, artificial composites known as phononic crystals (PCs), consisting of a periodic array of
scatterers (inclusions) embedded in a host medium (matrix), have been quite studied [1, 2, 3, 4, 5, 6, 7, 8, 9]. They
have received renewed attention because they exhibit band gaps where the mechanical (elastic or acoustic) wave
propagation is forbidden. The physical origin of phononic and photonic band gaps can be understood at micro-scale
using the classical wave theory to describe the Bragg and Mie resonances, respectively, based on the scattering of
mechanical and electromagnetic waves propagating within the crystal [10].
In PC investigation, the band gap formation is based on the Bragg scattering mechanism, whose frequency location
is governed by the Bragg law a = n(λ/2),(n = 1,2, . . .) where a is the lattice parameter of periodic system, and
λ is the wavelength in host material. Bragg law implies that it is difficult to achieve a low-frequency Bragg-type
band gap for small size PCs. Difficulties to create PCs with low frequency band gaps for small sizes instigated
researchers to explore others dissipative mechanisms together with periodicity effect. In 2000, Liu and co-workers
[11] proposed a locally resonant PC, also known as elastic metamaterial (EM), containing an array of localized
resonant structures. This resonance-type band gaps were obtained in a frequency range two orders of magnitude
lower than that given by the Bragg limit. Locally resonant band gaps arise on the vicinity of local resonator natural
frequency while Bragg-type band gaps typically occur at wavelengths of the order of unit cell size.
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EM have been proposed as acoustic barriers [12, 13], vibration isolators [14] and noise suppression devices [15,
16] with emphasis on low frequency applications. There are various types of elastic structures being investigated
containing an array of local resonators, such as rods [17, 18, 19], beams [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32], plates [33, 34, 35, 36, 37, 38, 39] and shells [40]. These local resonators can be modelled by spring-mass
resonators of S-DOF [17, 20, 21, 23, 24, 25, 28, 29, 33, 34, 35, 36, 38, 40] or M-DOF [18, 19, 22, 26, 27, 30, 31,
32, 37, 41, 42].
The main purpose of this paper is to investigate the elastic band structure, also known as dispersion diagram,
of flexural waves propagating in an EM thin plate with multiple periodic arrays of attached multiple degrees of
freedom (M-DOF) resonators, considering square and triangular lattices. Kirchhoff-Love plate theory [43, 44] is
applied for thin plate modelling. The plane wave expansion (PWE) [1, 2] and extended plane wave expansion
(EPWE) [45, 46, 47, 48, 49, 50, 51] methods, also known as ω(k) and k(ω), respectively, are used to predict the
complex band structure of the EM thin plate.

1.1. Elastic Metamaterial Thin Plate Modelling
PWE and EPWE are semi-analytical methods used to predict the band structure of PCs and EMs. The advantage
of using the EPWE method is because the evanescent modes are obtained naturally and these modes are not
ignored as well as the PWE method. In contrast to the PWE method, which assumes that k is real (k is the Bloch
wave vector, also known as wavenumber, and k = ||k||), EPWE method is not restricted from the start to the first
Brillouin [52] zone [48]. Hsue and co-workers [47] proved that the evanescent modes obtained by EPWE obey the
Floquet-Bloch’s theorem [53, 54]. Xiao and co-workers [35] developed the PWE and EPWE formulations applied
to EM thin plate with multiple periodic arrays of attached S-DOF local resonators. We expanded the formulation
of Xiao et al. [35] for an EM thin plate with multiple periodic arrays of attached M-DOF resonators. However, this
formulation will be published by the authors in due course. For details of PWE and EPWE formulations applied to
an EM thin plate with S-DOF resonators, see Xiao et al. [35].
Figure 1 shows an infinite plate with multiple periodic arrays of attached S-DOF spring-mass local resonators for
square (a) and triangular (b) lattices, and its irreducible Brillouin zone (in shaded region) (c), (d), respectively.
The IBZ points in Figure 1 (c-d) are Γ (0,0), X (π/a,0) and M (π/a,π/a) for square lattice and Γ (0,0), X
(4π/3a,0) and M (π/a,π/

√
3a) for triangular lattice. Triangular lattice is a type of hexagonal lattice. There are

three variations of hexagonal lattice: triangular, honeycomb (or graphite) and Kagomé lattices [57].
In order to deal with an EM thin plate, an appropriate conditions for the validity of thin plate theory can be assumed
h < λ/6 [55] or kh� 1, h/a� 1 [56], where λ = 2π/k and h is the plate thickness.

1.2. Simulated Examples
To verify the PWE and EPWE methods formulated with Kirchhoff-Love plate theory and to demonstrate its capac-
ity of calculating the complex band structure of an infinity EM thin plate with attached periodic array of M-DOF
local resonators, simulated examples are performed in this section. It is important to highlight that we apply a
criterion for tracking the frequency evolution of wave modes when EPWE method is used. We choose the model
assurance criterion (MAC) for estimating the correlation among wave shapes. This criterion is based on the hermi-
tian scalar product and it is useful for very low frequencies [58]. For all PWE and EPWE calculations from now
on, 81 plane waves are used in the Fourier series expansion. This resulted in a good convergence.
The EM plate geometry and material properties are shown in Table 1. They are chosen to be the same as used by
Xiao et al. [35] for the simplest case (EM thin plate with attached single periodic array of S-DOF local resonator),
in order to facilitate comparisons. The local resonators are localized on the middle of unit cell for all simulated

Table 1 – Metamaterial plate geometry and material properties.

Geometry/Property Value
Lattice parameter (a) 0.1 m
Unit cell area for square lattice (S = a2) 0.01 m2

Unit cell area for triangular lattice (S = a2
√

3/2) 0.0087 m2

Thickness (h) 0.002 m
Young’s modulus (E) 70 × 109 Pa
Mass density (ρ) 2700 kg/m3

Structural damping (η) 0.01
Poisson’s ratio (ν) 0.3

examples. The influence of resonator position will be discussed in a further publication. Each resonator has stiffness
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(a) (b)

(c) (d)
Figure 1 – Infinite elastic metamaterial plate with multiple periodic arrays of attached S-DOF resonators for (a) square and (b)
triangular lattices. The irreducible Brillouin zone (in shaded region) for (c) square and (d) triangular (d) lattices.

k(i)j and a mass m(i)
j , where j = 1,2, . . . ,N is the index related to the j-th resonator and i = 1,2, . . . , N̄ is the index

related to the i-th DOF in the j-th resonator.

1.2.1. Metamaterial plate with attached single periodic array of S-DOF resonator
The S-DOF local resonator has a natural frequency f (1)1 = 300 Hz, mass m(1)

1 = γ(1)1 ρSa, where γ(1)1 = 0.5 is the
ratio of resonator mass to the plate unit cell mass. The resonator stiffness is calculated by k(1)1 = m(1)

1 (2π f (1)1 )2(1+
iη(1)

1 ), where η(1)
1 = 0.05 is the resonator damping, also known as loss factor.

Figure 2 (a-b) shows the real band structure of the EM thin plate for square (a) and triangular lattices (b) calculated
by PWE method. This band structure for square lattice agrees with the results of Xiao and co-workers [35]. We
plot the real band structure in the three principal symmetry directions of the IBZ. The plots are given in terms of
frequency in Hz versus the real part of the reduced Bloch wave vector defined as ka/2π . One complete band gap is
found around the resonant frequency of 300 Hz for both lattices. This band gap is known as locally resonant band
gap.
The Bragg-type gap is predicted by Bragg’s law along different directions, a = n(λ/2cosφ), with n∈Z. For a thin
plate, the first Bragg frequency, n = 1, is given by:

fB1 =
1

2π

(
π

acosφ

)2
√

D
ρh

=
1

2π

{
π

acos[arctan(k2/k1)]

}2
√

D
ρh

, (1)

where k1 and k2 are the Bloch wave vector components on the x and y directions, respectively, and D= Eh3/12(1−
ν2) is the plate bending stiffness.
The first Bragg frequency for square lattice, along ΓX direction (φ = 0◦), calculated by Eq. (1) is 484 Hz and it
can be observed in Fig. 2 (a). This Bragg-type band gap creates a directional band gap along ΓX direction. Along
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(a) (b)

Figure 2 – Real band structure of EM thin plate for (a) square and (b) triangular lattices with f (1)1 = 300 Hz.

MΓ direction (φ = 45◦) in Fig. 2 (a), the first Bragg frequency is 968 Hz. However, along XM direction we have
a variation of φ , thus fB1 varies. For triangular lattice, the first Bragg frequency along MΓ direction (φ = 30◦) is
645.4 Hz and a directional band gap is opened up, as illustrated in Fig. 2 (b).
Fig. 3 compares the real band structure of square and triangular lattices. We observe that the triangular lattice
presents a broader complete band gap than square lattice. The bandwidth for triangular lattice is 89.4 Hz while the
bandwidth for square lattice is 84.3 Hz.

Figure 3 – Comparison of real band structures of EM thin plate for square (S) and triangular (T) lattices with f (1)1 = 300 Hz.

Figure 4 (a-b) illustrates the imaginary band structure for the square and for triangular lattices, respectively, calcu-
lated by EPWE method, considering f (1)1 = 300 Hz. The attenuation is related to the imaginary part of the Bloch
wave vector by µ =Im{k}a.
In Figure 4 (a-b), we consider only the smallest positive imaginary part of the reduced Bloch wave vector (lowest
component whose real part of the reduced Bloch wave vector lies inside and around the IBZ is the most accurate),
since it represents the least rapidly decaying wave (evanescent Bloch wave [49, 50, 51]) that carries energy the
farthest [35]. The imaginary band structure for the square lattice in Figure (a) agrees with Xiao and co-workers
[35] results. From Figure 4 (a-b), it can be seen the locally resonant and the Bragg-type band gaps for square and
triangular lattices in different directions. These results complement the real band structure for the square and for
triangular lattices illustrated in Figure 3 (a-b).
Figure 5 compares the attenuation performance of square and triangular lattices. The attenuation related to the
triangular lattice is little higher than square lattice. However, the attenuation of the Bragg-type band gap is higher
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(a) (b)

Figure 4 – Imaginary elastic band structures of EM thin plate for (a) square and (b) triangular lattices with f (1)1 = 300 Hz.

for square lattice. The locally resonant band gap for triangular lattice do not vary with φ , differently from square
lattice.

Figure 5 – Comparison of imaginary band structures of EM thin plate for square (φS) and triangular (φT ) lattices with f (1)1 = 300
Hz.

1.2.2. Metamaterial plate with attached multiple periodic arrays of S-DOF resonators
The S-DOF local resonators parameters are f (1)j = {283,102} Hz, γ(1)j = {0.6,0.4}, m(1)

j = γ(1)j ρSa, η(1)
j = 0.05

and k(1)j = m(1)
j (2π f (1)j )2(1+ iη(1)

j ), where j = 1,2. The sum of all resonator mass ratio to the mass is equal to 0.5,
the same of EM plate with attached single periodic array of S-DOF resonator.
Figure 6 (a-b) shows the real band structure of the EM thin plate with attached double periodic arrays of S-DOF
resonators for square (a) and triangular (b) lattices. It can be seen the locally resonant band gaps on the natural
frequencies (283 Hz and 102 Hz). The resonator with natural frequency 283 Hz opened up the broadest complete
band gap for both lattices. The band gap related to the natural frequency 283 Hz is broader for square lattice than
triangular lattice, differently from EM plate with attached single periodic array of S-DOF resonator (see Figure 3).
Figure 7 (a-b) illustrates the imaginary band structure for the square (a) and for triangular (b) lattices, respectively,
considering f (1)j = {283,102} Hz. It can be seen the attenuation performance of the two locally resonant and the
Bragg-type band gaps for square and triangular lattices in different directions. The highest attenuation is related to
the resonator with 283 Hz for both lattices.
Figure 8 compares the attenuation performance of square and triangular lattices. The square and triangular lattices
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(a) (b)
Figure 6 – Real band structure of EM thin plate with attached double periodic arrays of S-DOF resonators for (a) square and
(b) triangular lattices with f (1)j = {283,102} Hz.

(a) (b)
Figure 7 – Imaginary band structures of EM thin plate with attached double periodic arrays of S-DOF resonators for (a) square
and (b) triangular lattices with f (1)j = {283,102} Hz.

present almost the same attenuation performance on the locally resonant band gaps and the attenuation related to
the Bragg-type band gap is higher for square lattice.
One can note that the locally resonant and Bragg-type band gaps of EM plate with attached single periodic array
of S-DOF resonator presents higher attenuation and are broader than the band gaps of EM plate with attached
multiple periodic arrays of S-DOF resonators.

1.2.3. Metamaterial plate with attached single periodic array of M-DOF resonator
We consider an EM plate with attached single periodic array of 2-DOF resonator. The 2-DOF resonator parameters
are γ(i)1 = {0.5,0.5}, m(i)

1 = γ(i)1 ρSa, k(1)1 = m(1)
1 (2π × 160)2(1+ iη(1)

1 ), k(2)1 = m(2)
1 (2π × 180)2(1+ iη(2)

1 ) and
η(i)

1 = {0.05,0.05}, where i = 1,2. The resonator frequencies are calculated by:

ω(i)2

1 =
(k(1)1 m(2)

1 + k(2)1 m(1)
1 + k(2)1 m(2)

1 )∓
√

(k(1)1 m(2)
1 + k(2)1 m(1)

1 + k(2)1 m(2)
1 )2−4k(1)1 k(2)1 m(1)

1 m(2)
1

2m(1)
1 m(2)

1

, (2)
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Figure 8 – Comparison of imaginary elastic band structures of EM thin plate with attached double periodic arrays of S-DOF
resonators for square (φS) and triangular (φT ) lattices with f (1)j = {283,102} Hz.

where ω(i)
1 = 2π f (i)1 , which results f (i)1 = {102,283} Hz. We choose the same natural frequencies of the EM plate

with attached double periodic arrays of S-DOF resonators in order to compare.
Figure 9 (a-b) shows the real band structure of the EM thin plate with attached single periodic array of 2-DOF
resonator for square (a) and triangular (b) lattices. The locally resonant band gap related to f (2)1 = 283 Hz is

(a) (b)
Figure 9 – Real band structure of EM thin plate with attached single periodic array of 2-DOF resonator for (a) square and (b)
triangular lattices with f (i)1 = {102,283} Hz.

broader than the band gap related to f (1)1 = 102 Hz. Besides, the locally resonant band gap related to f (2)1 = 283
Hz is broader for triangular lattice than square lattice, differently from the behaviour in Figure 6.
Figure 10 (a-b) illustrates the imaginary band structure for the square and for triangular lattices, respectively.
One can see that the higher attenuation is associated with the first natural frequency, 102 Hz, differently from the
behaviour illustrated in Figure 7.
Figure 11 compares the attenuation performance of square and triangular lattices. The square and triangular lattices
present almost the same attenuation performance on the locally resonant band gaps.
Figure 12 shows the imaginary band structure of an EM thin plate comparing two cases analysed: (I) with attached
double periodic arrays of 1-DOF resonators (φ 1DOF) and (II) with attached single periodic array of 2-DOF resonator
(φ 2DOF). Both cases consider f (1)j = {283,102} Hz and f (i)1 = {102,283} Hz. We can observe that the case (II)
presents the highest attenuation on 102 Hz for both lattices. The case (I) presents higher attenuation than case (II)
on 283 Hz, however, this attenuation is still lower than the attenuation on 102 Hz for case (I). The attenuation of
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(a) (b)
Figure 10 – Imaginary band structures of EM thin plate with attached single periodic array of 2-DOF resonator for (a) square
and (b) triangular lattices with f (i)1 = {102,283} Hz.

Figure 11 – Comparison of imaginary band structures of EM thin plate with attached single periodic array of 2-DOF resonator
for square (φS) and triangular (φT ) lattices with f (i)1 = {102,283} Hz.

the Bragg-type band gaps is little higher for case (I) than case (II).

1.2.4. Metamaterial plate with attached multiple periodic arrays of M-DOF resonators
We consider an EM plate with attached double periodic arrays of 2-DOF resonators. The 2-DOF resonators param-
eters are γ(i)j = {0.5,0.5,0.5,0.5}, m(i)

j = γ(i)j ρSa, k(1)1 = m(1)
1 (2π×160)2(1+ iη(1)

1 ), k(2)1 = m(2)
1 (2π×180)2(1+

iη(2)
1 ), k(1)2 = m(1)

2 (2π × 100)2(1+ iη(1)
2 ), k(2)2 = m(2)

2 (2π × 300)2(1+ iη(2)
2 ) and η(i)

j = {0.05,0.05,0.05,0.05}.
The resonator frequencies are calculated by Eq. (1), which give f (1)1 = 102 Hz, f (2)1 = 283 Hz, f (1)2 = 70 Hz and
f (2)2 = 430.5 Hz.
Figure 13 (a-b) illustrates the real band structure of the EM thin plate with attached double periodic arrays of
2-DOF resonators for square (a) and triangular lattices (b). We observe four locally resonant band gaps associated
with each natural frequency.
Figure 14 (a-b) illustrates the imaginary band structure for the square and for triangular lattices, respectively. One
can see that the highest attenuation is associated with the first natural frequencies, 70 Hz and 102 Hz, similar to
the behaviour illustrated in Figure 10. Besides, the locally resonant band gaps on 70 Hz and 102 Hz start coupling.
The band gap associated with 430.5 Hz have almost no attenuation.
Figure 15 compares the attenuation performance of square and triangular lattices. The square and triangular lattices
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(a) (b)
Figure 12 – Comparison of imaginary band structures of EM thin plate with attached double periodic arrays of 1-DOF res-
onators (φ 1DOF) and with attached single periodic array of 2-DOF resonator (φ 2DOF) for (a) square and (b) triangular lattices,
considering f (1)j = {283,102} Hz and f (i)1 = {102,283} Hz.

(a) (b)
Figure 13 – Real band structure of EM thin plate with attached double periodic arrays of 2-DOF resonators for (a) square and
(b) triangular lattices with f (i)1 = {102,283} Hz and f (i)2 = {70,430.5} Hz.

present almost the same attenuation performance on the locally resonant band gaps.

2. CONCLUSION

We obtain the complex band structure for a multi-resonator EM thin plate with periodic arrays of MDOF resonators,
considering square and triangular lattices. We consider four cases: (1) EM plate with attached single periodic array
of S-DOF resonator, (2) EM plate with attached double periodic arrays of S-DOF resonators, (3) EM plate with
attached single periodic array of 2-DOF resonator and (4) EM plate with attached double periodic arrays of 2-DOF
resonators. The PWE and EPWE methods are used to find the real and imaginary band structures, respectively.
The locally resonant band gaps present almost the same attenuation for both lattices. However, the square lattice
present broader Bragg-type band gaps with higher attenuation than triangular lattice for all cases. We compare
cases (2) and (3), considering resonators tuned at the same frequencies 102 Hz and 283 Hz. An inverse behaviour
is observed. In this comparison, the highest locally resonant band gap attenuation is observed for case (3) on 102
Hz. The case (4) presents almost no attenuation on 430.5 Hz and a coupled band gap between 70 Hz and 102 Hz
is opened up.
The formation of locally resonant and the Bragg-type band gaps in a multi-resonator EM thin plate enlarges the

129



(a) (b)
Figure 14 – Imaginary band structures of EM thin plate with attached double periodic arrays of 2-DOF resonators for (a) square
and (b) triangular lattices with f (i)1 = {102,283} Hz and f (i)2 = {70,430.5} Hz.

Figure 15 – Comparison of imaginary band structures of EM thin plate with attached double periodic arrays of 2-DOF resonators
for square (φS) and triangular (φT ) lattices with f (i)1 = {102,283} Hz and f (i)2 = {70,430.5} Hz.

engineering applications for vibration management.
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APPENDIX H – Implemented Codes

H.1 MATLAB® codes

H.1.1 PWE code for 1D phononic crystal rods

1

2 c l c ; c l e a r a l l ; c l o s e a l l ;
3

4 im= s q r t (−1) ;
5 nmax =10;
6 n e i g =2*nmax +1; % Number o f

E i g e n v a l u e s t o keep
7 n1=(−nmax : nmax ) ; % Number o f p l a n e

waves = l e n g t h ( n1 ) ;
8

9 Ba = . 0 1 ; % Base f o r m a t e r i a l A
10 Bb=Ba ; % Base f o r m a t e r i a l B
11 Ha = . 0 1 ; % H e i gh t f o r m a t e r i a l

A
12 Hb = . 0 1 ;
13 La = . 0 5 ; % Length f o r m a t e r i a l

A
14 Lb = . 0 2 ;
15 Lc=La+Lb ; % Uni t c e l l l e n g t h
16 f =La / Lc ; % F i l l i n g f r a c t i o n
17 r hoa =2730; % D e n s i t y o f m a t e r i a l

A
18 rhob =1180;
19 Sa=Ba*Ha ; % Cross s e c t i o n a r e a

o f m a t e r i a l A
20 Sb=Bb*Hb ;
21 a l f a a = rhoa *Sa ;
22 a l f a b = rhob *Sb ;
23 Ea = 7 7 . 6 * 1 0 ^ 9 ;
24 Eb = 4 . 3 5 * 1 0 ^ 9 ;
25 gammaa=Ea*Sa ;
26 gammab=Eb*Sb ;
27

28 [ nx , nxp ]= meshgr id ( n1 , n1 ) ;
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29 k r o _ d e l _ g g p =eye ( l e n g t h ( n1 ) ) ;
30 G_Gp=(2* p i / Lc ) * ( nx−nxp ) ; % R e c i p r o c a l l a t t i c e

v e c t o r
31 fG_Gp= f . * s i n c ( ( nx−nxp ) * f ) ; % S t r u c t u r e f u n c t i o n
32

33 a l f am = a l f a a * f + a l f a b *(1− f ) ;
34 d e l a l f a = a l f a a −a l f a b ;
35 a l f am c = a l fam . * k r o _ d e l _ g g p + d e l a l f a .*(1− k r o _ d e l _ g g p ) . * fG_Gp ;

% F o u r i e r c o e f f i c i e n t
36

37 gammam=gammaa* f +gammab*(1− f ) ;
38 delgamma=gammaa−gammab ;
39 gammamc=gammam . * k r o _ d e l _ g g p +delgamma .*(1− k r o _ d e l _ g g p ) . * fG_Gp ;

% F o u r i e r c o e f f i c i e n t
40

41 i =1 ;
42 f o r kx=−p i / Lc : 2 * p i / Lc / 3 0 : p i / Lc

% F i r s t B r i l l o u i n Zone
43 Gx=2* p i / Lc* d i a g ( n1 ) ;
44 M=( kx* eye ( l e n g t h ( n1 ) ) +Gx ) *gammamc *( kx* eye ( l e n g t h ( n1 ) ) +Gx ) ;
45 N= a l f a mc ;
46 omega= e i g (M,N) ;
47 omega= s o r t ( ( omega ) ) ;
48 f r e q s ( : , i ) = s q r t ( r e a l ( omega ( 1 : n e i g ) ) ) . * Lc . / 2 . / p i ;
49 i = i +1 ;
50 end
51

52 f i g u r e
53 f o r i d x =1: n e i g % i d x =1: n e i g
54 p l o t ((− p i / Lc : 2 * p i / Lc / 3 0 : p i / Lc ) *Lc / pi , r e a l ( f r e q s ( idx , : ) ) * 1 /

Lc , ’ .− ’ )
55 ho ld on
56 end
57 x l a b e l ( ’ \ Re ( ka / \ p i ) ’ , ’ F o n t S i z e ’ , 2 2 , ’ FontWeight ’ , ’ bo ld ’ )
58 y l a b e l ( ’ F requency ( Hz ) ’ , ’ F o n t S i z e ’ , 2 2 , ’ FontWeight ’ , ’ bo ld ’ )
59 s e t ( gca , ’ F o n t S i z e ’ , 2 4 , ’ FontWeight ’ , ’ bo ld ’ )
60 g r i d on
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H.1.2 PWE code for a 2D sonic crystal with circular inclusions and square lat-
tice

1

2 c l c ; c l e a r a l l ; c l o s e a l l ;
3

4 num_Eigenva ls =15;
5 nmax =10;
6 n1=(−nmax : nmax ) ;
7 n2=(− f l o o r ( ( 2 * nmax +1) ^ 2 / 2 ) : f l o o r ( ( 2 * nmax +1) ^ 2 / 2 ) ) ;
8

9 l a t _ a = . 0 2 2 ; % L a t t i c e
p a r a m e t e r

10 f = 0 . 2 7 4 ; % F i l l i n g
f r a c t i o n

11 ro = s q r t ( f / p i * l a t _ a ^2 ) ; %
I n c l u s i o n r a d i u s , c o n s i d e r i n g s q u a r e l a t t i c e

12

13 pa =7800; % D e n s i t y
o f i n c l u s i o n

14 pb = 1 . 2 ; % D e n s i t y
o f m a t r i x

15 c l a =6100; %
L o n g i t u d i n a l speed of sound i n i n c l u s i o n

16 c l b =343;
17 c11a= c l a ^2* pa ; % E l a s t i c

c o n s t a n t o f i n c l u s i o n
18 c11b= c l b ^2* pb ;
19

20 d e l p =( pa ^−1)−(pb^−1) ;
21 pm=( pa ^−1)* f +( pb^−1)*(1− f ) ;
22 d e l c 1 1 =( c11a ^−1)−(c11b ^−1) ;
23 c11m =( c11a ^−1)* f +( c11b ^−1)*(1− f ) ;
24

25 n x _ a r r = repmat ( n1 , 1 , 2 * nmax +1) ;
26 n y _ a r r = round ( n2 / ( 2 * nmax +1) ) ;
27 [ nx , nxp ]= meshgr id ( nx_a r r , n x _ a r r ) ;
28 [ ny , nyp ]= meshgr id ( ny_a r r , n y _ a r r ) ;
29 f i l l = ones ( 1 , l e n g t h ( n x _ a r r ) ) ;
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30 f i l l t = d i a g ( f i l l ) ;
31

32 Gx=2* p i / l a t _ a *nx ;
33 Gxp=2* p i / l a t _ a *nxp ;
34 Gy=2* p i / l a t _ a *ny ;
35 Gyp=2* p i / l a t _ a *nyp ;
36 G_Gp= s q r t (4* p i * f * ( ( nx−nxp ) . ^ 2 + ( ny−nyp ) . ^ 2 ) ) + f i l l t ;
37 fG_Gp=2* f * b e s s e l j ( 1 , G_Gp) . / G_Gp ; %

S t r u c t u r e f u n c t i o n f o r c i r c u l a r i n c l u s i o n i n a s q u a r e
l a t t i c e

38

39 k r o _ d e l _ g g p =( nxp==nx ) & ( nyp==ny ) ;
40 pmc=pm. * k r o _ d e l _ g g p + d e l p .*(1− k r o _ d e l _ g g p ) . * fG_Gp ; %

F o u r i e r c o e f f i c i e n t
41 c11mc=c11m . * k r o _ d e l _ g g p + d e l c 1 1 .*(1− k r o _ d e l _ g g p ) . * fG_Gp ; %

F o u r i e r c o e f f i c i e n t
42

43 f o r ky ind =1:3
44 o n o f f =1 ;
45 f o r kx = . 0 5 : 2 * p i / l a t _ a / 2 0 : p i / l a t _ a
46 i f ky ind ==1
47 k x t =kx ;
48 kx= p i / l a t _ a −kx ;
49 ky=kx ;
50 e l s e i f ky ind ==2
51 k x t =kx ;
52 ky =0;
53 e l s e i f ky ind ==3
54 k x t =kx ;
55 ky=kx ;
56 kx= p i / l a t _ a ;
57 end
58 Q=pmc . * ( ( ( kx+Gx ) ) . * ( ( kx+Gxp ) ) ) +pmc . * ( ( ( ky+Gy ) ) . * ( (

ky+Gyp ) ) ) ;
59 R=c11mc ;
60 A=R \Q;
61 [ a , b ]= e i g (A) ;
62 g= f i n d ( b ~=0) ;
63 e i g s =( s o r t ( b ( g ) ) ) ;
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64 e i g s ( 1 : num_Eigenva ls ) ;
65 k= repmat ( kxt , 1 , num_Eigenva ls ) * l a t _ a / ( 2 * p i ) ;
66 min ( b ( g ) ) ;
67 i f o n o f f ==1
68 omega =[ r e a l ( s q r t ( e i g s ( 1 : num_Eigenva ls ) ) ) ’ ] / ( 2 *

p i ) ;
69 k a r r =[ k ] ;
70 i f ky ind ==1
71 o m e g a f u l l =[ r e a l ( s q r t ( e i g s ( 1 : num_Eigenva ls ) )

) ’ ] / ( 2 * p i ) ;
72 k a r r f u l l =[ k ] ;
73 end
74 o n o f f =0 ;
75 e l s e
76 omega =[ omega , r e a l ( s q r t ( e i g s ( 1 : num_Eigenva ls ) ) )

’ * 1 / ( 2 * p i ) ] ;
77 k a r r =[ k a r r , k ] ;
78 o m e g a f u l l = c a t ( 1 , omega fu l l , . . .
79 r e a l ( s q r t ( e i g s ( 1 : num_Eigenva ls ) ) ) ’ * 1 / ( 2 * p i )

) ;
80 k a r r f u l l = c a t ( 1 , k a r r f u l l , k ) ;
81 end
82 end
83 i f ky ind ==1
84 myfig= f i g u r e ;
85 ymax=max ( omega ) ;
86 s u b p l o t ( 1 , 3 , 1 )
87 b1= p l o t ( k a r r , omega , ’ * ’ ) ;
88 ax1=gca ;
89 po= g e t ( gca , ’ p o s i t i o n ’ ) ;
90 s e t ( gca , ’YLim ’ , [ 0 , ymax ] ) ;
91 s e t ( gca , ’XLim ’ , [ 0 , . 5 ] ) ;
92 s e t ( gca , ’ F o n t S i z e ’ , 2 2 , ’ FontWeight ’ , ’ bo ld ’ )
93 s e t ( gca , ’ n e x t p l o t ’ , ’ add ’ ) ;
94 l e f t _ s i d e =po ( 1 ) ;
95 s e t ( gca , ’ x t i c k ’ , [ ] ) ;
96 wid th =po ( 3 ) ;
97 r i g h t _ s i d e = l e f t _ s i d e + wid th ;
98 s e t ( gca , ’ x t i c k l a b e l ’ , { } ) ;
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99 y l a b e l ( ’ F requency ( Hz ) ’ , ’ F o n t S i z e ’ , 2 4 , ’ FontWeight ’ ,
’ bo ld ’ ) ;

100 e l s e i f ky ind ==2
101 s u b p l o t ( 1 , 3 , 2 )
102 b2= p l o t ( k a r r , omega , ’ * ’ ) ;
103 po= g e t ( gca , ’ p o s i t i o n ’ ) ;
104 po ( 1 ) = r i g h t _ s i d e ;
105 ax2=gca ;
106 s e t ( gca , ’ n e x t p l o t ’ , ’ add ’ ) ;
107 s e t ( gca , ’ p o s i t i o n ’ , po ) ;
108 s e t ( gca , ’YLim ’ , [ 0 , ymax ] ) ;
109 s e t ( gca , ’XLim ’ , [ 0 , . 5 ] ) ;
110 s e t ( gca , ’ x t i c k ’ , [ ] ) ;
111 s e t ( gca , ’ x t i c k l a b e l ’ , { } ) ;
112 s e t ( gca , ’ y t i c k l a b e l ’ , { } ) ;
113 l e f t _ s i d e =po ( 1 ) ;
114 wid th =po ( 3 ) ;
115 r i g h t _ s i d e = l e f t _ s i d e + wid th ;
116 s e t ( gca , ’ x t i c k l a b e l ’ , { } ) ;
117 e l s e i f ky ind ==3
118 s u b p l o t ( 1 , 3 , 3 )
119 b3= p l o t ( k a r r , omega , ’ * ’ ) ;
120 po= g e t ( gca , ’ p o s i t i o n ’ ) ;
121 po ( 1 ) = r i g h t _ s i d e ;
122 ax3=gca ;
123 s e t ( gca , ’ n e x t p l o t ’ , ’ add ’ ) ;
124 s e t ( gca , ’ p o s i t i o n ’ , po ) ;
125 s e t ( gca , ’ x t i c k ’ , [ ] ) ;
126 s e t ( gca , ’ x t i c k l a b e l ’ , { } ) ;
127 s e t ( gca , ’ y t i c k l a b e l ’ , { } ) ;
128 s e t ( gca , ’YLim ’ , [ 0 , ymax ] ) ;
129 s e t ( gca , ’XLim ’ , [ 0 , . 5 ] ) ;
130 l e f t _ s i d e =po ( 1 ) ;
131 wid th =po ( 3 ) ;
132 r i g h t _ s i d e = l e f t _ s i d e + wid th ;
133 s e t ( gca , ’ x t i c k l a b e l ’ , { } ) ;
134 t e x t (−1 ,− .035*ymax , ’M’ , ’ F o n t S i z e ’ , 2 2 , ’ FontWeight ’ , ’

bo ld ’ ) ;
135 t e x t ( − .52 , − .035* ymax , ’ \ Gamma ’ , ’ F o n t S i z e ’ , 2 2 , ’
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FontWeight ’ , ’ bo ld ’ ) ;
136 t e x t ( −0.02 , − .035* ymax , ’X’ , ’ F o n t S i z e ’ , 2 2 , ’ FontWeight

’ , ’ bo ld ’ ) ;
137 t e x t ( . 43 , − . 035* ymax , ’M’ , ’ F o n t S i z e ’ , 2 2 , ’ FontWeight ’ ,

’ bo ld ’ ) ;
138 end
139 end
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ANNEXE A – Periodic Systems

In this annexe, it is presented a brief review of basic fundamentals of 2D periodicity
(A.1), wave propagation in periodic systems (A.2) and band gap formation mechanisms (A.3).
A special attention is given for 2D periodic structures, since they are the subject of this thesis
herewith 1D periodic structures, and their theory is more general than for 1D.

A.1 Geometric properties

The idea of periodic systems or crystal structures is associated with lattice and basis con-
cepts. The crystal structure illustrated in Figure A.1 is formed by adding a basis to every lattice
point (Kittel, 2004).

Figure A.1: An example of a crystal structure with its basis and lattice points of the lattice.

A particular lattice r̄ in R𝑛 is defined in such a way that the periodic system is equally
observed from any point of the lattice, that is the system is invariant under translations and,
sometimes, under rotations. From group theory, it has been proved that there is a unique 1D
periodic system, five 2D and fourteen 3D different Bravais lattices (García, 2010). Figure A.2
illustrates examples of artificial crystals, for instance PnCs with 1D, 2D and 3D periodicity.

Figure A.2: Artificial crystals with 1D, 2D and 3D periodicity (Laude, 2015).

The lattice of a periodic system is defined as:

r̄ =
𝑛∑︁

𝑖=1

𝑧𝑖a𝑖, (A.1)
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where 𝑧𝑖 ∈ Z and a𝑖 are the primitive translation vectors of the lattice. The parallelepiped
formed by a𝑖 is known as primitive cell (a type of unit cell). There is always a lattice point per
unit cell. The Wigner–Seitz cell is an example of a primitive cell, which is a unit cell containing
exactly one lattice point. It is the locus of points in real space that are closer to that lattice point
than to any of the other lattice points.

In order to proceed further with the Fourier analysis, there is the reciprocal lattice in
reciprocal space (also known as momentum space or k-space), which is related to the direct
lattice (Bravais lattice) in direct space (real space). Reciprocal lattice is a basic definition in
Solid State Physics for better understanding of the physical properties of periodic systems. The
primitive cell in reciprocal space is called Brillouin zone (Brillouin, 1946). Thus, a Brillouin
zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice (Kittel, 2004). Primitive
cell vectors in the reciprocal lattice are defined from direct lattice vectors as:

b𝑖 = 2𝜋
𝜀𝑖𝑗𝑘a𝑗 × a𝑘

a1 ··· (a2 × a3)
, (A.2)

where 𝜀𝑖𝑗𝑘 is the completely anti-symmetric Levi-Civita symbol, also known as permutation
symbol, and it is 1 if (𝑖,𝑗,𝑘) is an even permutation of (1,2,3), -1 if it is an odd permutation,
and 0 if any index is repeated. Any linear combination g =

∑︀𝑛
𝑖=1 𝜇𝑖b𝑖, with 𝜇𝑖 ∈ Z, gives a

lattice point in the reciprocal space, where g is known as reciprocal lattice vector. In addition,
the primitive vectors on reciprocal and real spaces have the following orthogonality relation
a𝑖 ··· b𝑗 = 2𝜋𝛿𝑖𝑗 , where 𝛿𝑖𝑗 = 0 if 𝑖 ̸= 𝑗 or 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 is the Kronecker delta.

Every periodic system has two lattices associated with it, that is the real and reciprocal
lattices. The reciprocal lattice is a lattice in the Fourier space related to the crystal. An interesting
analogy is that the diffraction pattern of a crystal is a map of its reciprocal lattice, whereas a
microscope image, if it can be resolved in fine enough scale, is a map of the crystal structure in
real space (Kittel, 2004).

Figure A.3 illustrates some examples of lattices for 2D PnCs, i.e., square (a), rectangular
(b), triangular (c), honeycomb (d) and Kagomé (e) lattices. The first irreducible Brillouin zone
(FIBZ) of these lattices is also illustrated in Figure A.3 (f-j). The FIBZ is the first Brillouin
zone (FBZ) reduced by all of the symmetries in the lattice point group (crystal point group).
In Figure A.3, note that 𝑎 is lattice parameter for square, triangular, honeycomb and Kagomé
lattices, whereas 𝑎1 and 𝑎2 are lattice parameters for rectangular lattice.

The FIBZ points in Figure A.3 (f-j) are Γ (0,0), X (𝜋/𝑎,0) and M (𝜋/𝑎,𝜋/𝑎) for square
lattice, Γ (0,0), X (𝜋/𝑎1,0), M (𝜋/𝑎1,𝜋/𝑎2) and K (0,𝜋/𝑎2), with 𝑎1 > 𝑎2, for rectangular
lattice, Γ (0,0), X (4𝜋/3𝑎,0) and M (𝜋/𝑎,𝜋/

√
3𝑎) for triangular lattice, Γ (0,0), X (4𝜋/3

√
3𝑎,0)

and M (𝜋/
√

3𝑎,𝜋/3𝑎) for honeycomb lattice, and Γ (0,0), X (2𝜋/3𝑎,0) and M (𝜋/2𝑎,𝜋/2
√

3𝑎)

for Kagomé lattice.
The primitive vectors in real space are defined for square lattice, a𝑖 = 𝑎e𝑖 (𝑖 = 1,2),

rectangular lattice, a1 = 𝑎1e1, a2 = 𝑎2e2, triangular lattice, a1 = 𝑎e1, a2 = 𝑎
2
e1 + 𝑎

√
3

2
e2, hon-
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Figure A.3: Transverse cross section of the 2D PnC with (a) square, (b) rectangular, (c) trian-
gular, (d) honeycomb and (e) Kagomé lattices. The first irreducible Brillouin zone, in shaded
region, for (f) square, (g) rectangular, (h) triangular, (i) honeycomb and (j) Kagomé lattices.

eycomb lattice, a1 = 𝑎
√
3

2
e1+

3𝑎
2
e2, a2 = −𝑎

√
3

2
e1+

3𝑎
2
e2 and Kagomé lattice, a1 = 𝑎e1+𝑎

√
3e2,

a2 = −𝑎e1 + 𝑎
√

3e2, where e𝑖, 𝑖 = 1,2, are the basis vectors in real space. The reciprocal lat-
tice vector, g, calculated for square, rectangular, triangular, honeycomb and Kagomé lattices is
expressed by g𝑚,𝑛 = 2𝜋

𝑎
(𝑚e1 + 𝑛e2), g𝑚,𝑛 = 2𝜋(𝑚

𝑎1
e1 + 𝑛

𝑎2
e2), g𝑚,𝑛 = 2𝜋

𝑎
[𝑚e1 + (−𝑚+2𝑛)√

3
e2],

g𝑚,𝑛 = 2𝜋
𝑎
√
3
[(𝑚−𝑛)e1 + (𝑚+𝑛)√

3
e2] and g𝑚,𝑛 = 𝜋

𝑎
[(𝑚−𝑛)e1 + (𝑚+𝑛)√

3
e2], 𝑚,𝑛 ∈ Z, respectively.

The vector g𝑚,𝑛 is two-dimensional because it is considered 2D periodicity.
Another important concept for 2D PnCs is the filling fraction, defined as 𝑓 = 𝑆𝐴

𝑆𝐶
for

square, rectangular and triangular lattices, where 𝑆𝐴 and 𝑆𝐶 = ||a1 × a2|| are the cross section
areas of inclusion and unit cell. For honeycomb and Kagomé lattices, the filling fraction can be
defined as 𝑓 = 2𝑆𝐴

𝑆𝐶
and 𝑓 = 3𝑆𝐴

𝑆𝐶
, respectively, since they have two and three inclusions per

unit cell. The PnC inclusions in Figure A.3 (a-e) are arbitrary, but they can be, for instance, in
Figure A.4 – circular (a), hollow circular (b), square (c) and rotated square with a 45∘ angle of
rotation with respect to the x and y axes (d). For hollow circular inclusion, Figure A.4 (b), grey
region represents the same material of matrix.

Figure A.4: Transverse cross section of the PnC inclusions: (a) circular, (b) hollow circular, (c)
square and (d) rotated square with a 45∘ angle of rotation with respect to the x, y axes.
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A.2 Wave propagation

The basis of periodic structure study, from a mathematical point of view, was pioneered
by Floquet (1883). He proposed analytical solutions for ordinary differential equations with
periodic coefficients. Until 1887, only discrete models of periodic structures composed of reg-
ular lattices of springs connected to point masses had been considered. Later, Bloch (1928)
extended the results presented by Floquet (1883) for the 1D spatial periodicity to the 3D case
(Silva, 2015).

Schrödinger equation in quantum mechanics, Maxwell equations in electromagnetism,
vectorial equation of Navier-Cauchy for elasticity and wave equation in acoustics present the
same type of solution when they are solved for periodic system (García, 2010). Floquet-Bloch’s
theorem affirms that the eigenfunctions of the wave equation for a periodic potential are the
product of a plane wave times a function with the same periodicity of the crystal (Kittel, 2004).
Considering 2D periodicity and wave propagation in the xy plane (𝑘3 = 0), one can write
(hereafter omitting frequency dependence):

𝑢𝑖(r) = 𝑒𝑗k···r𝑢𝑖k(r), (A.3)

where 𝑢𝑖(r) (𝑖 = 1,2,3) is the elastic displacement, r = 𝑥e1 + 𝑦e2, 𝑥, 𝑦 ∈ R, is the 2D spatial
vector, 𝑢𝑖k(r) is the Block wave amplitude and note that 𝑢𝑖k(r) = 𝑢𝑖k(r + r̄), 𝑢𝑖(r + r̄) =

𝑢𝑖(r)𝑒
𝑗k···̄r, where 𝑒𝑗k···̄r is known as Floquet-Bloch periodic boundary condition. The Bloch wave

vector, also known as wave number, is defined as k = �̄�b1 + 𝑣b2, where �̄�,𝑣 ∈ Q are the
symmetry points within the FIBZ in reciprocal space, or we may write k = 𝑘1e1 + 𝑘2e2,
𝑘1, 𝑘2 ∈ R are the point coordinates within the FIBZ for reciprocal space in Figure A.3 (f-j).

The equations that describe the elastic waves in an transversely isotropic infinite solid,
considering 2D problem, 𝜕/𝜕𝑥3 = 0, and linear media (small deformation theory), are given by
Navier-Cauchy equations in frequency domain:

−𝜔2𝜌𝑢𝑖 = ∇ ··· (𝑐66∇𝑢𝑖) + ∇ ··· (𝑐66
𝜕u

𝜕𝑥𝑖
) +

𝜕

𝜕𝑥𝑖
[(𝑐11 − 2𝑐66)∇ ··· u], (A.4)

−𝜔2𝜌𝑢3 = ∇ ··· (𝑐44∇𝑢3), (A.5)

where 𝜌 is the density, 𝑐66 = 1
2
(𝑐11 − 𝑐12), ∇ = (𝜕/𝜕𝑥1)e1 + (𝜕/𝜕𝑥2)e2, u = 𝑢1e1 + 𝑢2e2, and

𝑐11, 𝑐12, 𝑐44, 𝑐66 are the elastic constants of stiffness tensor using Voigt notation. In Eq. (A.4),
there are implicit the longitudinal (𝑐𝑙) and transverse (𝑐𝑡) sound velocities, hence longitudinal-
transverse vibrations (XY modes) remain coupled. Furthermore, these vibration directions are
related to the displacements 𝑢1 and 𝑢2. In Eq. (A.5), the transverse vibration (Z modes) is in
𝑧 direction, perpendicular to 𝑥𝑦 plane, and it is associated with 𝑢3. XY modes are also known
as pressure and vertically polarised shear modes – P-SV modes, and Z modes as horizontally
polarised shear modes – SH modes (Barnell, 2014). Equations (A.4) and (A.5) represent a non-
dispersive wave propagation of bulk waves in a infinite medium, since phase velocity does not
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depend on frequency, thus all harmonic waves travel at the same velocity, that is group velocity
is equal to phase velocity. For more details of bulk wave propagation, see Graff (1975).

The wave propagation described by Eqs. (A.4) and (A.5) starts to become dispersive
whether a inhomogeneous medium is considered, for instance the 2D PnC illustrated in Fig-
ure A.3 with periodically inclusions embedded in a matrix. For 2D PnCs, one can note that
𝑐11 = 𝑐11(r), 𝑐12 = 𝑐12(r), 𝑐66 = 𝑐66(r) and 𝑐44 = 𝑐44(r). Furthermore, in order to handle sonic
crystals (SnCs), i.e., the acoustic case of PnCs, hence, for instance, periodically solid inclusions
embedded in a fluid matrix, the wave equation can be written as:

− 𝜔2𝑐−1
11 = ∇ ··· (𝜌−1∇𝑝), (A.6)

where 𝑝 = 𝑝(r) is the acoustic pressure in frequency domain. Equation A.6 is known as Helm-
holtz equation and it is used to analyse acoustic wave problems. In addition, Eq. (A.6) can be
obtain from Eq. (A.4) rewritten as:

− 𝜔2𝜌u = ∇ ··· (𝑐66∇𝑢𝑖) + ∇ ··· (𝑐66
𝜕u

𝜕𝑥𝑖
) + ∇[(𝑐11 − 2𝑐66)∇ ··· u], (A.7)

remembering that 𝑐𝑡 is zero in fluids and considering that ∇× 𝜌u = 0 and 𝜌u = ∇𝑝. Equation
(A.6) is more suitable neglecting inclusion shear rigidity (Kushwaha and Halevi, 1997). In ad-
dition, it must be highlighted that Eq. (A.6) is valid only whether waves propagating through a
SnC can be regarded as purely longitudinal as long as coupling of shear elastic waves inside the
inclusions to acoustic waves in the matrix can be completely ignored (Laude, 2015).

When other effects are present in PnCs, such as piezoelectricity and/or piezomagnetism,
the wave propagation becomes more complex, because constitutive relations change, since these
effects must be regarded.

A.3 Band gaps

Band gaps can be defined as ranges of frequency where there are no propagating Bloch
waves. In these frequency ranges, there are only evanescent Bloch waves. Bloch wave vec-
tor is complex for evanescent waves. The imaginary part of Bloch wave vector is especially
significant, since it describes the exponential decay or amplification of the evanescent wave.
The transmission through a finite length PnC or MM at frequencies within a band gap range is
governed by exponentially decaying evanescent waves (Laude, 2015).

There are basically two types of band gaps – locally resonant and Bragg-type. In this
thesis, band gaps are classified as partial, complete and full. Partial band gap is valid for at least
one direction in k-space, but not necessarily for others. A band gap is considered as complete
when it is opened up for all values of k inside the FBZ. A full band gap is a complete band
gap that is opened up for all polarization modes, and thus for all possible waves in the periodic
structure. Bragg-type band gaps can be partial, complete and full, however, locally-resonant
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band gaps are always complete band gaps if the coupling (between propagating wave and the
vibration excited in the resonator) does not vanish for any direction of propagation (Laude,
2015).

The most common and historically first invoked physical mechanism of band gap form-
ation is Bragg interference. Bragg scattering occurs at every periodic plane of scatterers inside
the periodic structure. Bragg-type band gaps can be created anytime a forward and a backward
propagating Bloch waves are phase matched, i.e., when they would have degenerated modes
in the band structure space (k,𝜔) if they did not couple (Laude, 2015). The destructive inter-
ference of waves creates the band gaps (Armenise et al., 2010). Some important parameters
that influence the Bragg-type band gap widths are the PnC lattice, material properties, unit cell
geometry, filling fraction, among others.

The limitation of PnCs and SnCs is that only Bragg-type band gaps are created, thus it
is not possible of achieving low-frequency band gaps for small lattice parameters. This can be
overcome with the locally resonant band gaps opened up by MMs. Achaoui et al. (2013) studied
the propagation of surface acoustic waves in 2D locally resonant PnCs with a random array of
pillars and with a periodic structure. It was shown that the locally resonant in the low frequency
range is almost independent of periodicity and resilient to randomness, while the Bragg-type
band gap disappears with the random array.

Considering local resonance in EMs, there is the possibility of a part of the incoming wave
energy to be trapped in the resonator for some time before it is radiated away to all permitted
propagation modes. Local resonance principle can be viewed as a classical analog of Fano
resonance, i.e., as the coupling of a continuum of propagating waves with a localized resonant
state (Laude, 2015).
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