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Resumo

O desenvolvimento de equipamentos multimídia permitiu um crescimento significativo na
produção de vídeos por meio de câmeras, celulares e outros dispositivos móveis. No en-
tanto, os vídeos capturados por esses dispositivos estão sujeitos a movimentos indesejados
devido à vibração da câmera. Para superar esse problema, a estabilização digital visa re-
mover o movimento indesejado dos vídeos pela aplicação de ferramentas computacionais,
sem o uso de hardware específico, para melhorar a qualidade visual das cenas de forma
a melhorar aspectos do vídeo segundo a percepção humana ou facilitar aplicações finais,
como detecção e rastreamento de objetos. O processo de estabilização digital de vídeos
bidimensional geralmente é dividido em três etapas principais: estimativa de movimento
da câmera, remoção do movimento indesejado e geração do vídeo corrigido. Neste tra-
balho, investigamos e avaliamos métodos de estabilização digital de vídeos para corrigir
vibrações e instabilidades que ocorrem durante o processo de aquisição. Na etapa de esti-
mativa de movimento, desenvolvemos e analisamos um método consensual para combinar
um conjunto de técnicas de características locais para estimativa do movimento global.
Também apresentamos e testamos uma nova abordagem que identifica falhas na estima-
tiva do movimento da câmera por meio de técnicas de otimização e calcula uma estimativa
corrigida. Na etapa de remoção do movimento indesejável, propomos e avaliamos uma
nova abordagem para estabilização de vídeos com base em um filtro Gaussiano adaptativo
para suavizar a trajetória da câmera. Devido a incoerências existentes nas medidas de
avaliação disponíveis na literatura em relação à percepção humana, duas representações
são propostas para avaliar qualitativamente os métodos de estabilização de vídeos: a pri-
meira baseia-se em ritmos visuais e representa o comportamento do movimento do vídeo,
enquanto que a segunda é baseada na imagem da energia do movimento e representa a
quantidade de movimento presente no vídeo. Experimentos foram realizados em três ba-
ses de dados. A primeira consiste em onze vídeos disponíveis na base de dados GaTech
VideoStab e outros três vídeos coletados separadamente. A segunda, proposta por Liu
et al., consiste em 139 vídeos divididos em diferentes categorias. Finalmente, propomos
uma base de dados complementar às demais, composta a partir de quatro vídeos coletados
separadamente. Trechos dos vídeos originais com presença de objetos em movimento e
com fundo pouco representativo foram extraídos, gerando-se um total de oito vídeos. Re-
sultados experimentais demonstraram a eficácia das representações visuais como medida
qualitativa para avaliar a estabilidade dos vídeos, bem como o método de combinação de
características locais. O método proposto baseado em otimização foi capaz de detectar e
corrigir falhas de estimativa de movimento, obtendo resultados significativamente superi-
ores em relação à não aplicação dessa correção. O filtro Gaussiano adaptativo permitiu
gerar vídeos com equilíbrio adequado entre a taxa de estabilização e a quantidade de pi-
xels preservados nos quadros dos vídeos. Os resultados alcançados como o nosso método
de otimização nos vídeos da base de dados proposta foram superiores aos obtidos pelo
método implementado no YouTube.



Abstract

The development of multimedia equipments has allowed a significant growth in the pro-
duction of videos through professional and amateur cameras, smartphones and other
mobile devices. However, videos captured by these devices are subject to unwanted vi-
brations due to camera shaking. To overcome such problem, digital stabilization aims
to remove undesired motion from videos through software techniques, without the use
of specific hardware, to enhance visual quality either with the intention of enhancing
human perception or improving final applications, such as detection and tracking of ob-
jects. The two-dimensional digital video stabilization process is usually divided into three
main steps: camera motion estimation, removal of unwanted motion, and generation of
the corrected video. In this work, we investigate and evaluate digital video stabilization
methods for correcting disturbances and instabilities that occur during the process of
video acquisition. In the motion estimation step, we develop and analyzed a consensual
method for combining a set of local feature techniques for global motion estimation. We
also introduce and test a novel approach that identifies failures in the global motion esti-
mation of the camera through optimization and computes a new estimate of the corrected
motion. In the removal of unwanted motion step, we propose and evaluate a novel ap-
proach to video stabilization based on an adaptive Gaussian filter to smooth the camera
path. Due to the incoherence of assessment measures available in the literature regarding
human perception, two novel representations are proposed for qualitative evaluation of
video stabilization methods: the first is based on the visual rhythms and represents the
behavior of the video motion, whereas the second is based on the motion energy image
and represents the amount of motion present in the video. Experiments are conducted
on three video databases. The first consists of eleven videos available from the GaTech
VideoStab database, and three other videos collected separately. The second, proposed
by Liu et al., consists of 139 videos divided into different categories. Finally, we propose a
database that is complementary to the others, composed from four videos collected sepa-
rately, which are excerpts from the original videos with moving objects in the foreground
and with little representative background extracted, resulting in eight final videos. Exper-
imental results demonstrated the effectiveness of the visual representations as qualitative
measure for evaluating video stability, as well as the combination method over individ-
ual local feature approaches. The proposed method based on optimization was able to
detect and correct the motion estimation failures, achieving considerably superior results
compared to when this correction is not applied. The adaptive Gaussian filter allowed to
generate videos with adequate trade-off between stabilization rate and amount of frame
pixels. The results reached with our optimization method for the videos of the proposed
database were superior to those obtained with YouTube’s state-of-the-art method.
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Chapter 1

Introduction

Digital image and video processing refers to the set of techniques applied to the input data
in order to produce enhanced images or videos, extract meaningful information, perform
geometric transformations, detect regions of interest, measure object properties, among
many other different operations [33, 85, 114]. A variety of knowledge domains can be
benefitted from image and video processing techniques, for instance, medicine, biology,
remote sensing, surveillance, robotics, photography, astronomy, microscopy.

The availability of new digital technologies and the reduction of equipment costs have
facilitated the generation of large volumes of videos in high resolutions. Several devices
have allowed the acquisition and editing of videos in various circumstances, such as digital
cameras, smartphones and other mobile devices. However, the use of cameras under
adverse conditions usually results in non-precise motion and occurrence of shaking, which
may compromise the stability of the obtained videos.

1.1 Problem and Motivation

Video stabilization [4,16,27,44,55,57,62,77,80,94] aims to correct camera motion oscilla-
tions that occur in the acquisition process, particularly when the cameras are mobile and
handled in adverse conditions. Different categories of stabilization approaches have been
developed to improve the quality of videos, which can be broadly classified as mechanical
stabilization, optical stabilization and digital stabilization.

Unlike other categories, the digital stabilization is done in software, without the aid
of any specific device. This type of stabilization is important because the costs in terms
of hardware requirements are low. In addition, it is indispensable for videos already
recorded. From the definitions presented previously, digital video stabilization can be
thought as a video processing problem.

The digital stabilization problem can be categorized into online stabilization [36,112]
and offline stabilization [31,59]. In the first category, the calculation of the transformation
to be applied only on a frame employs information from previous frames. On the other
hand, information from all video frames can be used in the second category and, therefore,
the entire video must be available a priori. To limit the scope of this work, we do not
deal with the development of strictly online techniques.
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Due to the large amount of video that are captured, stored and transmitted, it is
fundamental to investigate and develop efficient multimedia processing and analysis tech-
niques. In the case of video stabilization, efficient methods are important to improve their
quality according to human perception or to facilitate certain tasks, such as multimedia
indexing and retrieval [23, 24, 41]. Applications include: video enhancement in general,
robotics, unmanned aerial vehicle cameras, among others.

Methods found in the literature for digitally stabilizing videos are usually classified
into two-dimensional (2D) or three-dimensional (3D) categories. We are particularly
interested in investigating 2D methods, in which geometric transformations are employed
to represent frame-to-frame motion and stabilize the videos. The reason for this interest
is that even though 3D methods allow higher quality stabilization, 2D methods have a
lower computational cost and are more robust to a variety of situations [65, 117], which
causes them to be constantly preferred in practice [59]. The 2D digital video stabilization
process is usually divided into three main steps: camera motion estimation, removal of
unwanted motion, and generation of the corrected video.

In the first step, the motions made by the camera are estimated, constructing a path
that corresponds to the one traveled by the camera, in an unstable way. The presence
of moving objects, non-rigid motions and the parallax effect are some of the aspects
that increase the challenges in the research and development of techniques for motion
estimation.

The estimation step of the camera motion can be divided into two main approaches: (i)
global estimation, when only rigid transformations are applied to the frames and (ii) local
estimation, when non-rigid transformations are applied to correct frames with spatially
distinct movements [69]. Due to the time available to carry out this work, we aim to
improve only the global motion estimation. This step is typically performed through
local features [36,69]. Among the possible failure scenarios in the methods based on local
features, we highlight:

• presence of moving objects in scenes where the background is not very representa-
tive;

• situations where objects in the foreground cover most of the scene;

• scenes that are not very representative in general.

From the path made by the camera, it is calculated what is unwanted motion. Because
most videos have motions that are intentional, just the unwanted motion must be removed.
In this step, there is usually a trade-off between the number of pixels held in the video
frames and the quality of the stabilization. If we wrongly consider the intentional motion
as unwanted, we may have a large loss of pixels in the frames of the stabilized video. After
removing unwanted motion, the video frames are transformed according to the remaining
motion and a smoother video is obtained.

Techniques and metrics for quality evaluation must be well established so that video
stabilization approaches can be developed, refined and compared in a consistent manner.
Therefore, ineffective evaluation measures may lead to the development of inadequate
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techniques, compromising the advance of state-of-the-art video stabilization approaches.
However, most of the quantitative techniques for the evaluation of video stabilization
available in the literature appear to be inaccurate and, in some cases, incompatible with
human visual perception. Moreover, the techniques used to evaluate and report the results
subjectively are little explored.

1.2 Objectives

This work aims to investigate and evaluate digital video stabilization methods for cor-
recting disturbances and instabilities that occur during the process of video capture. It
also proposes novel methods for digital video stabilization and for qualitative evaluation
of the video stabilization process. Experiments are performed on several video sequences.
A comparative analysis of the results obtained with the proposed method and with other
approaches of the literature are presented and discussed.

This general objective is correlated with the following specific objectives:

• carrying out a wide bibliographic survey, with the study of the main methods that
constitute the state-of-the-art in video stabilization;

• evaluation of the performance of different local features methods in motion estima-
tion;

• proposition and rating of a new technique for motion estimation;

• evaluation of the use of different filtering techniques for the removal of unwanted
motion;

• presentation and evaluation of a new filter to removal of unwanted motion step;

• verification and documentation of the behavior of the stabilization evaluations
present in the literature in different cases;

• proposition of methods for subjective evaluation of video stabilization;

• conducting comparative experiments with other available approaches.

1.3 Research Questions

By considering the presented objectives, the questions that we intend to answer through
the development of this research work include:

• Can the use of different local features combined improve the motion estimation?

• Can the information from motion estimation of adjacent frames be used to detect
and correct failures in the motion estimation?

• Can an adaptive filter generate videos with a higher amount of information main-
taining the quality of the stabilization?
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• Are the stabilization evaluation metrics available in the literature coherent with
visual perception?

• Can the visual rhythm and the motion energy image characterize the stability of a
video and be used for its evaluation?

1.4 Contributions

The main contributions of this work are:

• A consensual approach to combining different methods of local features
in motion estimation. The motivation for this step is the hypothesis that different
local features methods do not perform the same in different contexts. That is, a
method that obtains good results in a particular situation may not obtain good
results in others. This scenario can be determined by factors such as lighting,
blurring or even content of the images. We have experimentally shown that the
results of individual methods can be improved by combining different methods.

• An approach that detects failures in the global motion estimation ob-
tained through local features and proposes an optimization technique to
calculate a new estimate of the corrected motion. Experiments show that
estimation of the optimization method is considerably superior when compared to
the individual use of local features. In addition, it is evident that this stage is crucial
to the success of the video stabilization process. The state-of-the-art stabilization
method used in YouTube [36] is also used for comparison, which presents typical
flaws when using local features to motion estimation, obtaining in these cases a
worse result than the method proposed.

• A new technique for removing unwanted motion based on the Gaussian
filter to smooth the camera path. Applying simple and direct low-pass filters
to smooth the camera path is not enough in cases where movements are made
intentionally. Thus, we propose the application of low-pass filters, more specifically
the Gaussian filter, adaptively, in which the intensity of the filter is different in
each part of the path. Experiments demonstrate the effectiveness of the method,
which generates videos with proper stabilization rate while maintaining a reasonable
amount of frame pixels.

• New techniques for the qualitative evaluation of video stabilization
through visual representations based on visual rhythms and motion en-
ergy image. We believe that the information about the movement present in the
video can characterize and be used to evaluate the quality of the stabilization. Thus,
we propose a visualization scheme based on visual rhythms to represent the behav-
ior of the motion present in a video. In addition, a visualization based on motion
energy image is used to represent the amount of motion present in a video. Both
proposed evaluation approaches are intended for human beings to assess the quality
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of the stabilization. Experimental results demonstrate that the both visual repre-
sentations are effective to evaluate the stability of camera motion by differentiating
stable and unstable videos. Furthermore, the visual rhythm allows to determine
how and when a given motion occurs. More complex types of motion, such as zoom
and quick shifts, can also be identified.

1.5 Text Organization

This text is organized as follows. Relevant concepts and work related to the topic of digital
video stabilization are presented and described in Chapter 2. The proposed approaches,
tested databases, evaluation measures and computational resources used in the develop-
ment of the project are described in Chapter 3. Experimental results are presented and
discussed in Chapter 4. Some final remarks and directions for future work are included
in Chapter 5. Appendix A presents some additional experiments explored in this work.
Bibliographic references associated with the subject under investigation are presented at
the end of this work.
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Chapter 2

Background

This chapter is divided into two parts. The first presents some fundamental theoretical
concepts for the understanding of this work. The second part describes some works related
to the research theme.

2.1 Theoretical Concepts

This section presents some topics associated with the problem of digital video stabiliza-
tion. The topics presented here are employed throughout the entire process of digital
stabilization. Local features and optimization methods are used to calculate the geomet-
ric transformations between each pair of frames in order to estimate the camera motion.
Then, this motion is filtered to generate a smoother motion. Finally, visualizations are
used to carry out a qualitative evaluation of the stabilized video.

2.1.1 Local Features

Local features can be used to find a sparse set of corresponding locations in different im-
ages [105]. The advantage of using features to find such matches is due to the robustness of
the recent methods that have been proposed over recent decades. Among them, we high-
light: Harris and Stephens [40], Scale Invariant Feature Transform (SIFT) [71, 72], Max-
imally Stable Extremal Regions (MSER) [78], Speeded Up Robust Features (SURF) [7],
Center Surround Extremas (CenSurE - also referred to as STAR) [1], Binary Robust In-
variant Scalable Keypoints (BRISK) [60], Oriented FAST and Rotated BRIEF (ORB) [93],
Fast Retina Keypoint (FREAK) [3].

The process of extracting local features can be divided into three stages: detection,
description and matching [72, 105]. In the detection stage, a search is performed on
the image in order to find locations that can be used to evaluate the correspondence
in the other images. We can categorize local feature methods according to the type of
structure they detect: corners, blobs and regions [106]. The techniques used to detect
potential local features differ among methods, such as difference of the Gaussian filter [72]
and determinant of the Hessian matrix [7]. Then, orientation of the detected features is
determined through techniques such as wavelet transformation [7] and image gradient [72].
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The region around the local feature is then described so that it is preferably invariant
to scaling and rotation, among other variations. Such invariance is only possible due
to the calculation of the scale and orientation of each local feature. As a result of the
description, we have a vector describing the characteristics of each local feature, computed
by considering the scale and orientation. The matching step determines the corresponding
regions between the local feature sets of two images. Alternatively, the search between
equivalent local features can be done by considering only a small neighborhood, a process
called tracking. For more information about local features, references [105, 106] can be
consulted.

The combination and complementarity of different methods for the detection of local
features have been studied in recent works [9,30]. The main motivations for them are: (i)
with little prior knowledge of the image contents, it is recommended to combine different
types of detectors [106]; (ii) methods that detect a same type of structure still differ in
their theoretical basis and can be used together [105]. Among recent works, it is possible
to mention a study of the complementarity on eleven local features detectors based on
measures of repeatability, spatial distribution, contribution [30], as well as an adaptive
combination of local features for content-based image retrieval [9], where a regressor is
trained to find the best pair of local features based on measures of spatial distribution,
contribution, and local structures of a cluster.

Local Feature Matching

In order to find the equivalent local features between two images I and I ′, the correspon-
dence between the previously described local features should be computed. A strategy
would be: for each local feature in I, find the closest feature in I ′, considering some
measure of distance between the characteristics of the local features.

A simple way to find local feature correspondences would be to determine a threshold
and consider only matches that are below that threshold. Another technique would be
brute force, so that xi ∈ I corresponds to x′j ∈ I ′ if and only if the characteristics of xi
are the closest to x′j among all local features. In addition, we can use the cross-validation
strategy, in which the characteristics of x′j also need to be the closest to xi.

2.1.2 Geometric Transformations

Given two sets of points P and P ′, which refer to two images I and I ′, such that xi ∈ P
e x′i ∈ P ′ and xi and x′i are matching, a transformation can be defined by matrix M , of
size 3× 3 and arranged in homogeneous coordinates, so that x′i = M · xi.

Among the different types of transformation matrices possible, we will define five:
translational, Euclidean, similarity, affine and projective [29]. These types differ, in the
context of this work, regarding the type of unwanted motion to be corrected and the
minimum number of points required to calculate the estimation. The translational trans-
formation corrects only horizontal and vertical shifts and is defined by the matrix shown
in Equation 2.1, where Tx and Ty define the translations. To estimate this transformation,
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only one point is required in each set.

MT =

1 0 Tx
0 1 Ty
0 0 1

 (2.1)

From at least two points in each set, the Euclidean transformation also corrects the
rotational motion between two frames. Equation 2.2 shows the transformation matrix,
where Tx and Ty define the translations and θ represents the angle of rotation.

ME =

cos θ − sin θ Tx
sin θ cos θ Ty

0 0 1

 (2.2)

The affine transformation also corrects scales, in which it requires at least three points
for its estimation. This transformation is given in Equation 2.3a, where the unknowns aij
represent a system of four equations that can be decomposed into the multiplication of
Euclidean matrices 2.2 and scaling 2.3b. If λ1 = λ2 we call this similarity transformation.

MA =

a11 a12 Tx
a21 a22 Ty
0 0 1

 (2.3a)

[
λ1 0

0 λ2

]
(2.3b)

(2.3c)

Finally, in the projective transformation (homography), defined in Equation 2.4a, four
points are needed to correct, in addition to all previous parameters, horizontal and vertical
perspectives in addition to compression and shear. As in the related transformation,
variables hij of Equation 2.4a are described as a system of nine equations, which can be
decomposed as the multiplication of the affine matrix 2.3a by the perspective matrix 2.4c
and compression and shear matrix 2.4b.

HP =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (2.4a)

[
ζ α

0 1
ζ

]
(2.4b) 1 0 0

0 1 0

px py 1

 (2.4c)
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Robust Estimation

When estimating a transformation matrix using local features, problematic correspon-
dences can affect the estimation, generating an estimate of low quality, which compromises
the performance of the entire stabilization system. Two main problems can be addressed:

1. incorrect matches, where one or more local features of the first image may have been
mismatched with a local feature of the other image. This problem is quite common,
although it is simple to solve with an outlier detection method.

2. matches of moving objects, where local features may be present in moving objects
and not in the static background. This problem is more difficult to solve than
the previous one since the correspondences follow a certain pattern, and in extreme
cases, when in greater number, they are determined as inliers. Either way, an outlier
detection method solves most cases.

These problems are typically solved with the Random Sample Consensus
(RANSAC) [28] method, an iterative technique for estimating mathematical model pa-
rameters from a data set containing outliers. At each iteration of the algorithm, the
following tasks are performed:

1. a model is estimated from a random subset of the data.

2. each instance of the data is classified as inlier or outlier by means of the residues
obtained when applying the previously estimated model.

3. the model is saved with the maximum number of inliers in all iterations.

After executing all iterations, the final model is generated from the set of maximum
inliers. Figure 2.1 shows frames with correct and incorrect matches, before and after the
execution of RANSAC.

(a) all matches (b) only correct matches

Figure 2.1: Frames with incorrect matches.
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2.1.3 Optimization

Optimization can be defined as a search for the best solution, given a set of possible
solutions. Typically, an optimization problem consists of minimizing or maximizing a
given function. We can also define an optimization problem as [21]

minimize f(x)

subject to x ∈ Ω
(2.5)

where f is the function in which it is desired to minimize, called cost function or objective
function. The vector x is a vector of dimension n of independent variables, called decision
variables. The set Ω is a subset of Rn, called feasible set or constraints set. When
Ω = Rn, we determine that this is an unconstraint optimization problem. To maximize
f , just minimize −f [52].

It is possible to have multiple values for x that minimize the function f [21]. The
minima of a function can be limited by an interval; in this case, we call them the local
minima. Alternatively, they can still be considered throughout the domain of the function,
which we call them the global minima. An optimization problem can be categorized
depending on the type of the decision variable, objective function, and constraints [25].
Among them, we highlight:

• linear programming: the objective function and constraints are linear.

• nonlinear programming: the objective function and/or constraints are non-linear.

• integer programming: decision variables are integers.

• multi-objective optimization: the problem involves more than one objective.

Optimization has been widely explored in the context of image registration [5, 34, 42,
53,54,75,76,109,111]. Typically, initial parameters are calculated in order to approximate
the alignment of the images, then an optimization guided by a measure of similarity leads
to the initial solution to the final [34]. That is, the measure of similarity is the objective
function, which must be maximized. Or minimized, in the case of a dissimilarity measure.
In problems with images of the same modality, the cross-correlation coefficient can be
used as a similarity measure [5], whereas mutual information can be used in problems with
images of different modalities [75]. Several optimization methods have been proposed in
literature, for instance, gradient descent method [53], evolutionary algorithms [111] and
simulated annealing [51].

Powell’s Method

In this work, we use Powell’s method [87] in the motion estimation step. Powell’s method
is a local optimization method, which uses only function values without performing deriva-
tive calculations. Thus, it is categorized as a zero-order method [52]. Algorithm 1 de-
scribes the main steps of Powell’s method with d directions [52, 87].
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Algorithm 1 Powell’s Method [52]
1: procedure Powell
2: Initialize the initial guess x0

3: Initialize the direction vectors v as the unit vectors of each direction i ∈ d
4: repeat
5: for each direction vi do
6: xi−1 ← the minima along the line through xi−1 in the direction vi
7: vn+1 ← x0 − xn
8: xn+1 ← the minima along the line through x0 in the direction vd+1

9: for each direction vi do
10: vi ← vi+1

11: x0 ← xd+1

12: until |xd+1 − x0| < ε

The search for minimum points, shown in lines 6 and 8 of the Algorithm 1, is typically
performed by Brent’s method [12]. A possible alternative would be the Golden-section
search [49] method. For further details on optimization concepts and Powell’s method,
the references cited in this subsection can be consulted.

2.1.4 Filtering

In this section, we present two filtering techniques that had their use investigated in the
removal unwanted motion step. These are: Kalman filter and Gaussian filter.

Kalman Filter

The Kalman filter [48] is an instantaneous “state” estimator of a linear system disturbed by
a Gaussian white noise [35]. This is one of the most commonly used methods for tracking
and estimation in linear systems due to their simplicity, optimality and robustness [47].
Subsequently, the filter was extended to nonlinear systems [47]. The filter performs the
estimation based only on the value of the previous state and the current measurement.
Normally, it is described in two phases: prediction and update, described in Equations 2.6
and 2.7, respectively.

In the prediction phase, an a priori estimate x̂t|t−1 is generated, which considers only
the previous value x̂t−1|t−1. In Equations 2.6, Ft is the state transition matrix, ut defines
the vector of input controls, Bt represents the input control matrix, whereas Qt is the
covariance matrix associated with the input noise control, Pt|t−1 refers to the a priori
covariance matrix and Pt−1|t−1 a covariance matrix of the previous iteration.

x̂t|t−1 = Ftx̂t−1|t−1 +Btut

Pt|t−1 = FtPt−1|t−1F
T
t +Qt

(2.6)

In the update phase, x̂t|t−1 is combined with the current observation zt, thus obtaining
an estimate x̂t|t . In Equations 2.7, Kt is the Kalman gain, Ht is the transformation
matrix that maps the parameters to the observation domain and Rt is the uncertainty
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matrix associated with the noise of observation.

x̂t|t = x̂t|t−1 +Kt

(
zt −Htx̂t|t−1

)
Pt|t = Pt|t−1 −KtHtPt|t−1

Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t +Rt

)−1

(2.7)

Gaussian Filter

The Gaussian filter is a linear low-pass filter and therefore attenuates the high frequencies
of a signal. The Gaussian filter modifies the input through a convolution considering a
Gaussian function in a window of sizeWg. Thus, the Gaussian function is used as impulse
response in the Gaussian filter and can be defined as

G(x) = ae
−

(x− µ)2

2σ2 (2.8)

where a is a constant considered as 1 so that G(x) has values between 0 and 1. The
constant µ is the expected value, considered as 0, whereas σ2 represents the variance.

The Gaussian filter is commonly used in the field of digital communication. In two
dimensions, the Gaussian filter is used mainly in the smoothing of images [33, 85].

2.1.5 Video Visualization

Video visualization is concerned with the creation of a new visual representation, obtained
from an input video, capable of indicating its characteristics and important events [10].
Video visualization techniques can generate different types of output data, such as another
video, a collection of images or a single image. Borgo et al. [10] reported a review of several
video visualization techniques proposed over the last years.

In this work, we use as base two concepts of the literature to create representations
that allow us to evaluate methods of stabilization of videos: Visual Rhythms and Motion
Energy Image.

Visual Rhythms

Visual rhythm [22] (VR) is a summary of the video temporal information in a single
image. This is done by concatenating information from each frame of the video. Visual
rhythms have been generally applied in the context of video identification and classifica-
tion, for instance, location of video subtitles, detection of shot boundaries, detection of
face spoofing, among others [86,97].

In this work, two different paths for constructing the visual rhythms are considered
for each video: horizontal and vertical. These rhythms differ according to the information
that is extracted from the video frames. The vertical rhythm extracts the information
from the columns of each frame, whereas the horizontal rhythm is constructed from the
rows of each frame.

Typically, a single column or row (or a small set of them) of each frame is used
to construct the visual rhythm. Figure 2.2 represents the construction of a horizontal
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visual rhythm typically presented in the literature. In this work, however, we adopted
the average of the columns for the vertical rhythm and the average of the rows for the
horizontal rhythm.

Figure 2.2: Construction of a horizontal visual rhythm - traditional mode.

Motion Energy Image

Motion energy image (MEI) is a binary image that represents the occurrence of video
motion in a given region. This occurrence is determined by the difference in the gray
level intensities of the video frames. The white pixels denote the occurrence of motion,
whereas the black pixels denote the absence of motion [2].

In conjunction with the motion history image (MHI), MEI is generally used in the
context of recognizing human actions in videos [2]. In this work, we consider the average
of the motion energy images obtained throughout the video to assess the amount of motion
and to characterize its stability. Figure 2.3 shows examples of motion energy images.

2.2 Related Work

In this section, we briefly describes some relevant work related to 2D and 3D video sta-
bilization. Then, we present some objective and subjective evaluation measures used in
previous approaches.

2.2.1 Digital Video Stabilization

Video stabilization is usually categorized into three main classes: mechanical stabilization,
optical stabilization, and digital stabilization.

Mechanical stabilization typically uses sensors to detect camera shifts and compensate
for unwanted motion. A common way is to use gyroscopes to detect motion and send
signals to motors connected to small wheels so that the camera can move in the opposite
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Figure 2.3: Example of motion energy images for a frame sequence. Original frames on
top, and their MEI on the bottom.

direction of motion. The camera is usually positioned on a tripod. Despite the efficiency
usually obtained with this type of system, there are disadvantages in relation to the
resources required, such as device weight and battery consumption.

Optical stabilization [14] is widely used in photographic cameras and consists of a
mechanism to compensate for the angular and translational motion of the cameras, stabi-
lizing the image before it is recorded on the sensor. A mechanism for optical stabilization
introduces a gyroscope to measure velocity differences at distinct instants in order to
distinguish between normal and unwanted motion. Other systems employ a set of lenses
and sensors to detect angle and speed of motion for video stabilization.

Digital stabilization of videos is implemented without the use of special devices. In
general, unwanted camera motion is estimated, and then compensated by applying trans-
formations to the frames. These techniques are typically slower when compared to optical
techniques; nevertheless, they can achieve adequate results in terms of quality and speed,
depending on the algorithms used.

Digital video stabilization methods are commonly categorized into two-dimensional
(2D) and three-dimensional (3D). 2D techniques estimate camera motion from two con-
secutive frames, and apply two-dimensional transformations to stabilize the video. On the
other hand, 3D techniques attempt to reconstruct the camera path from three-dimensional
transformations, such as scaling, translation and rotation.

2D Methods

Approaches that use 2D transformations focus on contributing to specific steps in their
stabilization process [59]. By considering the estimation of camera motion, 2D methods
can be further subdivided into two categories [18]: (i) intensity-based approaches [15,89],
which directly use the texture of the images as motion vector and (ii) local feature-based
approaches [6, 95], which locate a set of corresponding local features in adjacent frames.
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Since local feature-based approaches have a lower computational cost, they are most
commonly used [79].

Techniques such as the extraction of regions of interest can be used in this step, in
order to avoid cutting certain objects or regions that are supposed to be important to the
observer [19]. The use of a depth sensor was proposed in order to handle with scenes that
have depth variations [68].

Recently, the combination of local feature detection methods using the maximally sta-
ble extremal regions (MSER) [78] and features from accelerated segment test (FAST) [92]
was employed for frame-to-frame motion estimation by performing keypoint detection
with FAST only within regions detected by MSER, which demonstrated to be very ef-
fective [118]. Line segments and keypoints were combined to estimate a warping-based
motion model estimation [61].

In the removal of unwanted motion step, approaches have employed the Kalman fil-
ter [26, 63], regularization [15], optimization [36, 69], among other methods. Such mech-
anisms aim to remove instability from camera motion, normally located in the high fre-
quency of the camera path [59]. Other works focus on improving the quality of the
videos, often lost in the stabilization process. The most commonly used techniques in-
clude: inpainting to fill missing frame parts [19,31,79], deconvolution to improve the video
focus [19,79], and weighting of stabilization metrics and video quality aspects [31,59].

Recent improvements in 2D methods have made them comparable to 3D methods in
terms of quality. In the following subsections, we will present two of these methods in
more detail, which are considered state-of-the-art in 2D digital stabilization.

Auto-Directed Video Stabilization with Robust L1 Optimal Camera Paths

In the work developed by Grundmann et al. [36], the motion estimation step was per-
formed using pyramidal Lucas-Kanade [73]. A local outlier rejection was employed by
discretizing features into a grid of 50×50 pixels, applying RANSAC within each grid cell,
and discarding matches with distance was greater than two pixels.

A L1-norm optimization was proposed in order to generate a camera path that follows
cinematographic rules. The algorithm is based on a linear programming to minimize the
first, second and third derivatives of the resulting camera path. Additional constraints
are incorporated on the path of the camera.

To mimic professional footage, the paths are optimized to be composed of three path
segments:

• constant path, where DP (t) = 0;

• constant velocity path, where D2P (t) = 0;

• constant acceleration path, where D3P (t) = 0;

The goal is to find a camera path minimizing these objectives while satisfying some
constraints. Three constraints are explored: the cropping window transformed by the
new path should be contained within the frame rectangle transformed by the old path;
the new path should preserve the original intent of the original path; salient points should



CHAPTER 2. BACKGROUND 30

be included within all or a specific part of the cropping window transformed by the new
path.

The optimization can be expressed as

O(P ) = w1|D(P )|1 + w2|D2(P )|1 + w3|D3(P )|1 (2.9)

whereD(P ), D2(P ), andD3(P ) are the first, second and third derivatives of the smoothed
path, respectively, whereas w1, w2, and w3 are the weights assigned to each of these terms.

Each weight w1, w2, and w3 can be tuned for a better stabilization. The optimization
can be done using forward differencing method for the three terms. Without constraints,
the optimal path is constant.

Motion models with higher degree of freedom than similarities are needed for complete
stabilization. However, even though they can achieve better performance for a few frames,
they start to suffer from excessive skew and perspective when applied to more frames.
Thus, in order to deal with wobble and rolling shutter, a hybrid approach is proposed,
applying the rigid camera path (similarity matrix) only for every k key-frames. For
intermediate frames, the homographies are used to account for misalignments.

The difference between two optimal and rigid adjacent camera transforms is decom-
posed into the know estimated similarity part and a smooth residual motion. The low-
dimensional similarity is replaced with the higher-dimensional homography. For each
intermediate frame, these replacements are concatenated starting from its previous and
next key-frames. This results in two sample location per pixel. Thus, a linear blending
between these two locations is applied in order to determine a per-pixel warp for the
frame. This is called a wobble suppression method.

Bundled Camera Paths for Video Stabilization

In the work developed by Liu [69], the global motion estimation was performed using the
SURF method. A global outlier rejection was applied by RANSAC with greater threshold,
followed by a local outlier rejection in 4× 4 sub-images with a lower threshold.

A mesh-based model, in which multiple paths are calculated at different locations of
the video, proved to be efficient in dealing with parallax and removing rolling shutter
effects while stabilizing the video without the use of 3D methods.

At each frame, a uniform grid mesh is defined. At the i-th grid cell, the warping from
frame t to frame t + 1 introduces a homography Fi(t), which can be determined from
the motion of the four vertices. This mesh is defined between global homography and
per-pixel optical flow. However, estimating this model is very risky, because we may not
have sufficient features in every cell. Thus, a shape-preserving constraint is proposed. The
motion is estimated by minimizing two energy terms: data term for matching features,
and a shape-preserving term.

Suppose {p, q} is the p-th matched feature pair from frame t to frame t + 1. The
feature p can be represented by a 2D bilinear interpolation of the four vertices Vp, where
wp are interpolation weights that sum to 1. Is expected that the corresponding feature q
can be represented by the same weights of the warped grid vertices V̂q. The data term Ed
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is defined as
Ed(V̂ ) =

∑
p

‖Vqwp − q‖2 (2.10)

where Vq is the set of vertices after the transformation (to be found), vector wp corresponds
to the weights found by the interpolation, whereas p and q are matched local features in
the frames t and t+ 1.

The shape-preserving term Es requires the triangle of neighboring vertices v, v0, v1 to
follow a similarity transformation.

Es(V̂ ) =
∑
v̂

‖v̂ − v̂1 − sR90(v̂0 − v̂1)‖2, R90 =

[
0 1

−1 0

]
(2.11)

where v̂, v̂0 and v̂1 are the neighbor vertices after the transformation, and s =
‖v − v1‖
‖v0 − v1‖

.

The data term is the quadratic error between the bilinear interpolation and the feature
q. The shape-preserving is the quadratic error between the estimated vector and the
vector that would make the triangle be a rectangle triangle. The final energy is the linear
combination of the two terms with an alpha factor to control the amount of regularization.
Since the final energy is quadratic, the warped mesh V can be solved by a sparse linear
system solver.

The alpha factor was adaptively set per frame, based on two errors: (i) fitting error,
which is the average residual of the feature matching under the estimated homographies;
(ii) smoothness error, which measures the similarity between neighboring local cells ho-
mographies. The final error is the sum of this two factors. Alpha is discretized into 10
values between 0.3 and 3. Then, the model is estimated using every discretized value and
the model with minimum error.

After having a new mesh, each local homography in the grid cell can be estimated
by solving a linear equation involving the four vertices before and after the warping. To
facilitate the warping estimation, a global homography was used to let matching features
closer.

The camera path smoothing applied consider multiple competing factors: remove
jitters, avoid excessive cropping, and minimize various geometrical distortions. Given an
original path C = C(t), we seek an optimized path P = P (t) by minimizing the following
function:

O({P (t)}) =
∑
t

(
‖P (t)− C(t)‖2 + λt

∑
r∈Ωt

ωt,r(C) · ‖P (t)− P (r)‖2

)
(2.12)

where Ωt are the neighborhood at frame t; the data term ||P (t) − C(t)||2 enforcing the
new camera path to be close to the original one; the smoothness term ||P (t) − P (r)||2
stabilizing the path; the weight wt, r(C) to preserve motion discontinuities under fast
panning/rotation or scene transition; and parameter λt to balance the above two terms.

The adaptive weight is defined as:

ωt,r = Gt(‖r − t‖) ·Gm(‖C(r)− C(t)‖) (2.13)
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where Gt gives larger weight to nearby frames and Gm measures the changes of two camera
poses. If the bundled paths are optimized independently, neighboring paths could be less
consistent. Hence, the paths are optimized together minimizing the following function.∑

i

O({Pi(t)}) +
∑
t

∑
j∈N(i)

‖Pi(t)− Pj(t)‖2 (2.14)

where N(i) includes eight neighbors of the grid cell i.
Both optimizations were be solved by a Jacobi-based iteration. The term Gm is eval-

uated at individual cells. The λt value is determined from the global path, which are
empirically set to 5 and check the cropping ration and distortion for every frame. For any
frame that does not satisfy the threshold, its parameter is decreased by a step (1/λt).

3D Methods

In turn, 3D methods usually employ structure-from-motion (SFM) techniques [64, 65].
Typically, the stabilization quality of the 3D methods is superior compared to 2D methods,
however, with a higher computational cost [65,117] and with less robustness for the various
possible situations present in a video [59].

Although 3D methods can generate good results in static scenes using image-based
rendering techniques [8,13], they usually do not handle dynamic scenes correctly, causing
motion blur [64]. Thus, the concept of content preservation was introduced, restricting
each output frame to be generated from a single input frame [64]. Other approaches
address this problem through a geometric approximation by abdicating to be robust with
respect to the parallax [116]. Other difficulties found in 3D methods appear in amateur
videos, such as lack of parallax, zoom, use of complementary metal-oxide-semiconductor
(CMOS) sensors, among others [65].

Although not common, 3D methods can fill missing parts of a frame by using in-
formation from several other frames [8]. More recently, 2D and 3D methods have been
extended to deal with stereoscopic videos [37, 66]. Hybrid approaches have emerged to
obtain the efficiency and robustness of 2D methods in addition to the high quality of
3D methods. Some of them are based on concepts such as trajectories subspace [65] and
epipolar transfer [32].

Other Approaches

Several recent approaches to digital video stabilization have been proposed in the litera-
ture. Some of them are briefly described as follows.

The use of depth sensors has been proposed to deal with scenes with depth varia-
tions [68]. One method assigns spatio-temporal weights to local patches, which empha-
sizes regions with motion similar to that of the camera [50]. A multi-camera panoramic
video stabilization technique considers independent oscillations in each camera [38]. A
hybrid algorithm has been proposed for 360 degree video stabilization using a deformable
rotational motion model [56].

More recently, a real-time smoothing method based on a linear estimation of the
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Kalman filter with constant velocity has been proposed. The projection, estimated to
guarantee certain restrictions, is combined with a model that smooths the camera path
probabilistically [43]. In addition, a method has been proposed to stabilize encoded
videos constructing the motion made by the camera through motion vectors of the coding
itself [67].

2.2.2 Video Stabilization Evaluation

In the context of image and video processing, results can be typically analyzed through two
categories: (i) objective evaluation, when obtained through functions applied between two
images [33] or video frames, and (ii) subjective evaluation, when the analysis is performed
by human observers. In both cases, a desired goal is to assess stabilization based on
criteria in agreement with the perception of the human visual system.

Objective Evaluation

Criteria for measuring the amount and nature of the camera displacement have been
proposed to evaluate the quality of video stabilization in an objective manner [82]. Un-
intentional motion is decomposed into divergence and jitter through low-pass and high-
pass filters, respectively. The amount of jitter from the stabilized and original video is
compared. The divergence is also verified, which indicates the amount of expected dis-
placement. For an overall assessment, the blurring caused by the stabilization process is
considered.

Most of the video stabilization works found in the literature have adopted the Inter-
frame Transformation Fidelity (ITF) [6, 18,20,89,96], which can be expressed as

ITF =
1

N − 1

N−1∑
t=1

PSNR(t) (2.15)

where N is the number of frames in the videos. Typically, the stabilized sequence has a
higher ITF value than the original sequence. The Peak Signal to Noise Ratio (PSNR) is
used to evaluate the overall difference between two frames of the video, expressed as

PSNR(ft, ft+1)=10 log10

WHL2
max

W∑
x=1

H∑
y=1

[ft(x, y)−ft+1(x, y)]2

(2.16)

where ft and ft+1 are two consecutive frames of the video, W and H are the width and
height of each frame, respectively, Lmax is the maximum value intensity of the image.
The PSNR metric is expressed in decibel (dB), a unit originally defined to measure sound
intensity on a logarithmic scale. Typical PSNR values range from 20 to 40. The PSNR
value should increase from the initial video sequence to the stabilized sequence, since
frames after transformation will tend to be more similar.

More recent works have considered the Structural Similarity (SSIM) [110] as an alter-
native to PSNR [18]. The SSIM was originally developed to measure qualitative differences
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between two images. Calculated in several image windows, the SSIM between the window
x and window y of the frames fi and fi+1 can be expressed as

SSIM(x, y)=
(2µxµy+(k1+Lmax)

2)(2σxy+(k2+Lmax)
2)

(µ2
x+µ

2
y+(k1+Lmax)2)(σ2

x+σ
2
y+(k2+Lmax)2)

(2.17)

where µx and µy are the means of x and y, σ2
x and σ2

y are the variances of x and y. Variable
σxy is the covariance between x and y, whereas k1 and k2 are constant.

For each pixel (x, y) of the input frames ft and ft+1, we will have an SSIM value in
the range [−1, 1], where the higher its value, the greater their similarity. These values
will compose another image, denoted St. The mean of these values is typically used as a
measure of similarity.

We will refer to the value of SSIM and PSNR as their respective abbreviation. ITF is
used as in Equation 2.15, whereas ITFSSIM refers to ITF calculation considering SSIM in
place of PSNR.

Liu et al. [69] employed the amount of energy present in the low-frequency portion of
the 2D motion estimated as a stability metric. The rate of frame cropping and distortion
are used to assess the stabilization process more generally.

Synthesizing unstable videos from stable videos has been proposed for the evaluation
of video stabilization [90] in order to provide the ground-truth of the stable videos. The
methods are evaluated according to two aspects: (i) the distance between the stabilized
frame and the reference frame and (ii) the average of the SSIM between each pair of
consecutive frames.

Due to the weaknesses of ITF in motion videos, an evaluation method based on the
variation of the intersection of angles between the global motion vectors, calculated from
the scale-invariant feature transform (SIFT) keypoints [71], was proposed to evaluate the
video stabilization process [17]. In fixed-camera videos, the ITF is considered, however,
only for overlapping the frame background, instead of the entire frame.

Subjective Evaluation

Several methods found in the literature briefly describe and analyze review the path made
by the camera and the path of the stabilized video [15,19,63,79,91]. These paths are usu-
ally related to the different factors that compose the estimated 2D motion. For instance,
the works present the camera path for horizontal and vertical translations and rotations.
Figure 3.9 (in the next chapter) shows examples of path for horizontal translation esti-
mated from the original (green) and smoothed (blue) path.

From the path, it is possible to identify when a motion occurs and its intensity in the
original video, as well as such motion after its smoothing. This type of visualization can
be very useful to analyze the behavior of the motion smoothing step used in a certain
method. However, its result depends on the technique used in motion estimation, so that
the path does not reliably represent the video motion. Thus, the path visualization may
not be a good alternative to the evaluation of the stabilization quality, as well as not an
adequate visualization for videos with spatially distinct motion.

Some works in the literature deal with frame sequences usually superimposed by hor-
izontal and vertical lines [15, 18, 20, 63, 79, 95, 113]. Thus, it is possible to check the
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alignment of a small set of consecutive frames. Figure 2.4 illustrates an example of such
type of visualization, where objects intercepted by lines are more aligned in the stabilized
video.

Figure 2.4: Sequence of video frames. (a) original video; (b-d) different versions of the
stable video. Extracted from [113].

From the sequence of frames, the displacement of each frame is noticeable, in addition
to the amount of pixels lost due to the transformation applied to each frame. However, this
technique becomes impractical when a large number of frames is considered, compromising
the analysis of the entire video.

Furthermore, there are approaches that summarize a video in a single image calculated
through the average gray levels of the frames [46, 118], as shown in Figure 2.5. Better-
defined images are expected for more stable videos. From this representation, it is possible
to check if is exists motion in the video, but it is difficult to determine the amount and
nature of the motion.
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(a) (b)

Figure 2.5: The average gray levels for the first ten frames. (a) original video; (b) stabilized
video.
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Chapter 3

Video Stabilization Methods

In this chapter, we present the proposed methods for digital stabilization of videos. Fig-
ure 3.1 illustrates the main stages of the general stabilization process, where the most
relevant contributions of this work are indicated in each step. As input to the process, we
have an unstable video that will go through all the stages of the method. As output, we
have the generated stabilized version of the video as well as quantitative and qualitative
outcomes derived from the stabilization evaluation.

Figure 3.1: Main steps of the proposed digital video stabilization method.

Initially, the camera motion is estimated. In this step, we propose two approaches: (i)
the combination of local features [100], which fuses different local feature methods in a
consensual way in order to estimate the global camera motion, and (ii) an optimization
strategy based on the structural similarity index [99] that considers spatial and temporal
information to correct cases of failure in the global motion estimation.

A smoother motion is then calculated from the camera motion. For this, we propose
an adaptive Gaussian filter [101], in which the intensity of the filter is changed adaptively
along the video according to the behavior of the estimated motion. Subsequently, the
frames of the video are transformed in order to follow the smoothed motion. In addition,
frame borders are cropped to keep only the useful information.

Finally, the final video is submitted to a qualitative assessment. In the evaluation
stage, we propose two approaches: (i) evaluation of the behavior of motion present in the
video based on visual rhythms [103], and (ii) evaluation of the amount of motion present
in the video based the motion energy image [102].
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3.1 Motion Estimation

This section describes the developed methods associated with motion estimation. Initially,
we present the motion estimation approach with only a single local feature. Next, we show
the method for estimating motion with combined local features. Finally, we present the
method for correction of the estimation based on optimization.

The process of motion estimation with a single local feature starts with the detection
and description of local features in the video frames. After extracting the local features
between two adjacent frames, their correspondence is performed using the brute-force
method with cross-checking [104], where the Euclidean distance (or Hamming distance
when the descriptor is binary) between the feature vectors for each pair of local features
xi ∈ ft and x′j ∈ ft+1 is calculated for two adjacent frames ft and ft+1. Thus, xi cor-
responds to x′j if and only if xi is the closest local feature to x′j, and x′j the closest to
xi.

Figures 3.2 and 3.3 show the detection of local features in a frame and the correspon-
dence between the local features of two adjacent overlapped frames, respectively.

Figure 3.2: Detection of local features between adjacent frames.

Figure 3.3: Matching of local features between adjacent frames.

After determining the matches between local features, it is necessary to estimate the
transformation matrix that maps the set of local features in a frame ft to the set of local
features in a frame ft+1. We consider the similarity matrix, therefore, the parameters
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of the matrix transformation take into account camera shifts (translation), distortion
(scaling) and undesirable motion (rotation) for the construction of a stabilization model.
We decide to choose the similarity matrix because matrices with a greater degree of
freedom can generate excessive distortions, as discussed by Grundmann et al. [36] and
presented in Chapter 2. Such problems were confirmed in preliminary experiments.

In the process of digital video stabilization, oscillations of the camera that occurred at
the time of recording must be compensated. The transformation matrix should take into
account only the correspondences that are, in fact, between two equivalent local features.
In addition, it should not consider the movement of objects present in the scene.

The Random Sample Consensus (RANSAC) method [28] is applied to estimate a
transformation matrix that considers only inliers in order to disregard the incorrect cor-
respondences and those that describe the movement of objects. In the application of
this method, the value of the residual threshold parameter, which determines the max-
imum error for a match to be considered as inlier, is calculated for each pair of frames.
Algorithm 2 presents the calculation to determine the final similarity matrix.

Algorithm 2 Similarity Matrix Computation
1: procedure FinalMatrix
2: Generate the similarity matrix M by considering all matches.
3: Let MSE(M) be the mean square error of matrix M .
4: Apply the RANSAC considering the MSE(M) as residual threshold value.
5: Generate the similarity matrixM ′ considering only the inliers obtained previously.
6: Let MSE(M ′) be the mean square error of matrix M ′.
7: Apply the RANSAC considering the MSE(M ′) as residual threshold value.
8: Generate the similarity matrix Mfinal considering only the inliers obtained for the

second execution of RANSAC.

In cases of pairs of frames with spatially variant motion, the correct matches also tend
to have certain variation. Thus, the residual threshold is calculated so that its value is low
enough to eliminate undesired matches and high enough such that the correct matches
are maintained.

In the following subsections, we present the proposed method that combines local
features for motion estimation. Next, we describe the optimization method to correct
problems in the global estimation.

3.1.1 Motion Estimation with Local Combined Features

The diagram shown in Figure 3.4 presents the main components of the motion estimation
with combined local features.

Initially, we consider a set of methods Mf to be combined. For each method m ∈Mf ,
its respective detection and description are applied for each pair of frames. Then, the
local features are matched considering the local features of each method m separately.
The correspondence is performed using the brute-force method with cross-checking [104].
Given the sets of local features that belong to the adjacent frames ft and ft+1, such that
xmi ∈ ft and ymj ∈ ft+1, we calculate the Euclidean distance (or Hamming distance when
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Figure 3.4: Main components of method for combining local features.

the descriptor is binary) between the feature vectors for each pair of local features xmi and
ymj . Thus, xmi corresponds to ymj if and only if xmi is the closest local feature to ymj , and
ymj the closest to xmi .

Before combining the matches of each method, a pre-evaluation is necessary to discard
those that would perform poorly or could contribute negatively to the final combination.
After having computed the correspondences between the local features of each method
in the previous step, a transformation matrix for each method m is calculated taking
into account all its local features. The mean squared error em for each transformation
matrix is then computed. We conjecture that a transformation matrix with a very high
mean square error indicates a large number of outliers. Thus, we consider the harmonic
mean of the quadratic errors ehmean, and all methods that do not satisfy Equation 3.1 are
disregarded.

em ≤ σehmean (3.1)

where σ is a constant. In this work, σ was assigned as 1.5.
After the pre-evaluation of the methods, a consensual combination is applied in the

remaining methods, such that only local features that are consistent with their transfor-
mation are considered as final local features. This combination can be seen as a method
based on RANSAC [28], which makes use of different sources of information rather than
considering random samples from the same source. The combination step is shown in the
diagram in Figure 3.5.

Figure 3.5: Main stages of the combination of local features.

Let the sets of local features be Fall = F0 ∪ F1... ∪ ...F i, and F ′all = F ′0 ∪ F ′1... ∪ ...F ′i ,
where Fi are the local features of the frame ft, F ′i the features ft+1, and i the methods
that passed in the previous step. The transformation matrix of Fall to F ′all, called the
global transformation matrix, is estimated. This is done in order for the mean square
error of that transformation matrix to be used as threshold in the following steps.

Next, a transformation matrix is calculated for each possible combination of methods.
Figure 3.6 illustrates this calculation for three different methods, in which each geometric
object represents a distinct method.

Subsequently, each previously calculated transformation matrix Hc is applied to the
set of local features Fall, obtaining F

′′

all. For each local feature of F ′′

all, the quadratic error
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Figure 3.6: Transformation matrices for the combination of local features.

with its equivalent local feature in F ′all is calculated. If this quadratic error is less than or
equal to the mean square error of the global transformation matrix, such local feature is
considered inlier of Hc, and otherwise, outlier of Hc.

Finally, the combined local features are taken as the inliers of the transformation
matrix that has the largest number of inliers. Figures 3.7(a) and 3.7(b) illustrate the
expected result before and after applying the process of combining local features. The
transformation matrix that represents the motion of the frame is then calculated from the
combined local features. Whenever it is not possible to estimate a transformation matrix,
the identity matrix is considered.

(a) matching of local features

(b) matching of combined local features

Figure 3.7: Combination of local features.

The motivation of this combination is to use different methods and types of local fea-
tures to confirm the motion between two frames. Typically, the RANSAC method for the
removal of outliers is applied. This is important because in addition to removing possible
incorrect matches, it also removes matches describing the motion of objects present in the
scene, which we are not interested in compensating. As our combination approach uses
a consensus method, the subsequent application of RANSAC may be dispensable. The
computational performance of the proposed method is highly related to the number of
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methods under consideration and their respective costs.

3.1.2 Motion Estimation with Spatio-Temporal Optimization

The diagram shown in Figure 3.8 presents the main steps of the motion estimation pro-
posed with spatio-temporal optimization. Initially, the motion estimation between two
consecutive frames is made through local features methods, as described in the previous
subsections. Next, the spatio-temporal consistency of the estimation is verified. If there
is inconsistency, the motion estimation is done again using the proposed optimization
method.

Figure 3.8: Main steps of the proposed motion estimation with spatio-temporal optimiza-
tion.

Detection of Spatio-Temporal Inconsistency

We applied a consistency check on the estimated matrix, comparing it with the estimated
(and final) in the previous frame pair. As premise, we consider that the previous frames
have a correct motion estimation. Moreover, difference in the camera motion and by
the objects between two frames is small. Even though sudden movements may occur,
the video sequences have typically several frames per second, which makes the difference
between adjacent frames more gradual.

The structural similarity index (SSIM) [110] is the basic evaluation metric for the
detection and optimization steps. In the SSIM calculation, we consider only the previously
cropped regions of the frames. We calculate the SSIM image St for the frame pair f ′t and
ft+1. Then, we calculate the absolute difference of the image pixels of St, with the image
St−1. Thus, we obtain the difference image Dt = St − St−1, which indicates how similar
the image of similarity is in relation to the previous image. Since the images St and
St−1 consider the transformed frames, the regions of them with high values indicate the
presence of remaining movements. If the estimation is correct, such motion corresponds
to objects, not to the camera. Thus, if the movements are similar and spatially close in
both images (St and St+1), Dt tends to have lower values.

For an estimate to be considered potentially inconsistent, at least one of the following
inequalities must be satisfied

mean(St)− SSIMm ∗ cS < tolS (3.2)
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where mean(St) is the mean of values of the image St (also called SSIM value), SSIMm is
the mean of the SSIM values of the last k estimations of previous frames, whereas cS is a
constant that defines the percentage of the mean that will be considered as the threshold
and tolS defines the tolerance.

mean(Dt)−DIFFm ∗ cD > tolD (3.3)

where mean(Dt) is the mean difference image Dt (also called DIFF value), and DIFFm
is the average of the DIFF values of the last k estimations of previous frames, whereas
cD is a constant that defines the percentage of the mean that will be considered as the
threshold and tolD defines the tolerance.

Inequality 3.2 checks the variation between (i) the similarity between the reference
frame ft+1 and the transformed frame f ′t and (ii) the similarity obtained in the previous
frame pairs. On the other hand, Inequality 3.3 checks the variation between (i) the
difference of the similarity of the current and previous frame and (ii) the difference between
the pairs of previous frames.

As the estimation of the previous frame pair is correct and the movements of con-
secutive pairs are comparable, both similarity and difference values should have little
variation. If the inconsistency is detected, the motion is again estimated using the op-
timization method described as follows. Otherwise, the motion estimated by the local
features will compose the estimation of the path made by the camera.

Although we use the local feature method as basis, our optimization method can be
applied to any other approach that estimates the motion between pairs of frames.

Improved Motion Estimation Based on Optimization

After detecting an inconsistency, the new motion estimation is calculated. This new
estimate refers to the transformation matrix that minimizes an objective function based
on the similarity value and the difference value. This objective function can be expressed
as

f =

{
(α)(1−mean(Snew)) + (1− α)(mean(Dnew)) if conditions are satisfied

1 + per + dist otherwise

where Snew is the SSIM image between the reference frame ft+1 and the frame trans-
formed by the matrix being minimized f ′′t , considering the cropping area obtained by the
same matrix, whereas Dnew is the difference image between Snew and St−1. The factor
α is responsible for the proportion between the two terms. These values are considered
only if three conditions are met: cropping condition, coherence condition, and boundary
condition.

• cropping condition: in this condition, the cropping percentage (per) should be have
lower and higher bounds defined as constants. In this work, we consider 0.8 ≤ per ≤
1. This condition is applied to prevent optimization from finding the minimum
considering only a small amount of pixels in the frames. After transformation, a



CHAPTER 3. VIDEO STABILIZATION METHODS 44

small region of the frame may be very similar to the region of the reference frame,
but this does not fit the entire frame.

• coherence condition: this condition is complementary to the previous one, such that
the cropping may be within the established limits, but the corners of the cropping
rectangle may be incoherent. For this, four inequalities must be satisfied, which can
be expressed as

x′2 > x′1 (3.4)

y′2 > y′1 (3.5)

x′2 ≤ rows (3.6)

y′2 ≤ columns (3.7)

where x′1 is the coordinate x of the left vertex of the cropping rectangle, y′2 the
coordinate y of the lower vertex, whereas rows and columns refer to the dimensions
of the original frame.

• limit condition: this condition is used to limit the values of the components of the
transformation matrix to be found. In this work, we limit only the value of the scale
component, so that it has an absolute value less than or equal to 1.5.

If one of the above conditions is not satisfied, the second term of Equation 3.1.2 is
considered. This term is used only as a penalty, whose values are always greater than
the first. This is guaranteed by the constant 1. To guide the optimization method,
the cropping percentage is also added to the equation, as well as a variable called dist.
This variable refers to the distance L1 between the transformation matrix applied in the
previous frame and the matrix to be estimated. Thus, smaller values are obtained if closer
to the previous matrix, helping the method to return to a feasible solution.

In this work, the Powell method [88] is used to minimize the objective function pre-
sented in Equation 3.1.2. As an initial estimation, we consider the transformation matrix
of the previous frame, also based on the premise that the movement has little variation
from one frame to another. The Powell method obtained the best results in preliminary
experiments. Due to this, the conditions were maintained as presented and not modeled
as constraints.

3.2 Removal of Unwanted Motion

After estimating the final similarity matrices for each pair of adjacent frames of the video,
a trajectory is calculated for each of the factors. In this work, we consider a vertical
translation factor, a horizontal translation factor, a rotation factor and a scaling factor.
Each factor f of the matrix is decomposed and the trajectory of each of them is calculated
in order to accumulate its previous values, expressed as

tfi = tfi−1 + ∆f
i (3.8)
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where ti is the value of a given trajectory in the i-th position, and ∆f
i is the value of

factor f for the i-th similarity matrix previously estimated. The trajectories are then
smoothed. The equations presented in the remainder of the text will be always applied
to the trajectories of each factor separately. Thus, the factor index f will be omitted in
order to not overload the notation.

In contrast to the recent work of the literature [36, 69], we decompose matrices into
factors so that it is possible to filter each factor with different intensities.

Assuming that only the camera motion is present in the transformation matrices, the
calculated trajectory refers to the path made by the camera during the video recording.
To obtain a stabilized video, it is necessary to remove the oscillations from this path,
keeping only the desired motion. For this, we apply and analyze the filtering methods
presented in Chapter 2.

For the Gaussian filter, the parameterWg indicates the number of points of the output
window, whose value is expressed as

Wg =
N

3
− 1 (3.9)

where N is the total number of frames in the video.
The best results in terms of stability were achieved with σ = 40 in our preliminary

experiments. For the Kalman filter, covariance matrix Qt = 4e−4 and uncertainty matrix
Rt = 0.25 were the values that obtained intensity closer to the Gaussian filter. However,
the direct application of the filter is not enough and different instants of the video have
distinct oscillations. Therefore, we propose an adaptive Gaussian filter to remove only
the unwanted camera motion.

3.2.1 Adaptive Gaussian Filter

The smoothing of an intense motion may result in videos with a low amount of pixels.
Moreover, this type of motion is typically a desired camera motion, which should not be
smoothed. Therefore, the parameter σ is computed in such a way that it has smaller
values in these regions. Thus, the trajectory will be smoothed by considering a distinct
value for σi at each point i. To determine the value of σi, a sliding window of size twice
as large as the frame-rate measure is applied, so that the window information lasts for
two video seconds. The ratio ri is expressed as

ri =

(
1− µi

max_value

)2

(3.10)

where max_value corresponds to either width in the horizontal translation trajectory or
height in the vertical translation trajectory. In this work, we consider θ = π

6
as the angle

(in radians) in the rotation trajectory. Thus, the motion will be considered large based
mainly on the video resolution. Value µi is calculated in such a way to give higher weights



CHAPTER 3. VIDEO STABILIZATION METHODS 46

to points closer to i, where µi is expressed as

µi =

∑
j∈Wi, j 6=iG(|j − i|, σµ)∆j∑

j∈Wi
G(|j − i|, σµ)

(3.11)

where j is the index of each point in the window of i, whereas G() is a Gaussian function
with σ calculated as

σµ = (FPS)(1− CV) (3.12)

where FPS is the video frames per second, and CV is the coefficient of variation of the
absolute values of the trajectory that are inside the window. Since the value of CV lies
between 0 and 1, its final value is limited to 0.9 in order for σµ not to have null values.
Therefore, σµ makes the actual size of the window adaptive, such that the higher the
variation of motion inside the window, the higher the weight given to the central points.

The coefficient of variation can be expressed as

CV =
std(∀ti | i ∈ Wi)

avg(∀ti | i ∈ Wi)
(3.13)

where Wi is the same window as in Equation 3.11 and ti the trajectory value. Therefore,
the coefficient of variation corresponds to the standard deviation std to the average avg.

Assuming that ri ranges between 0 and 1, a linear transformation is applied to obtain
a proper interval for the Gaussian filter. This transformation is given as

σi =
σmax − σmin

rmax − rmin

(ri − rmin) + σmin (3.14)

where σmin and σmax are the minimum and maximum values of the new interval (after
linear transformation), respectively. In this work, these values are defined as 0.5 and
40, respectively. Values rmin and rmax are the minimum and maximum values of the old
interval (before linear transformation). In this work, value rmax is always set to 1. To
control whether a motion is unwanted, a value in the interval between 0 and 1 is set to rmin.
The same rmin is used as a lower limit to ri, before applying the linear transformation.

An exponential transformation is then applied to σi values to amplify their magnitude.
After calculating σi for each point of the trajectory, its values are lightly smoothed by a
Gaussian filter with σ = 5, chosen empirically. This is done to avoid abrupt changes in
the value of σi along the trajectory. Finally, the Gaussian filter is applied n times (once
for each point in the trajectory), generating a smoothed trajectory (indexed by k) for each
σi previously calculated. The final smoothed trajectory corresponds to the concatenation
of points for each of the generated trajectories, and the k-th trajectory contributes with
its k-th point. Thus, an adaptive smoothed path is obtained.

Figures 3.9a, 3.9b and 3.9c show the trajectory generated by considering the horizontal
translational factor (blue) and the obtained smoothing (green), respectively, using the
Gaussian filter with σ = 20 and σ = 40, besides the adaptive version proposed in this
work. It is possible to observe that the smoothing is applied at different degrees along
the trajectory.
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(a) Gaussian filter with σ=10
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(b) Gaussian filter with σ=40
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(c) Adaptive Gaussian filter

Figure 3.9: Smoothing of camera motion trajectories.

3.3 Generation of the Corrected Video

After applying the motion filtering, it is necessary to recalculate the value of each factor
for each transformation matrix. In order to do that, the transformation matrix value of a
given factor is calculated by the difference between each point of its smoothed trajectory
and its predecessor. With the transformation matrices of each pair of frames updated, the
transformation matrix is applied to the first frame of the pair to take it to the coordinates
of the second.

Applying the geometric transformation in the frame causes information to be lost in
certain pixels of the frame boundary. Figure 3.10 presents a transformed frame, where
it is possible to observe the loss of information at the borders. They are then cropped
so that no frames in the stabilized video hold pixels without information. To determine
the frame boundaries, each transformation matrix is applied to the original coordinates
of the four vertices, thus generating the transformed coordinates for the respective frame.
Finally, the innermost coordinates of all frames are considered final. Figure 3.11, extracted
from [79], illustrates the cropping process applied to the transformed frame.
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Figure 3.10: Frame after application of geometric transformation.

Figure 3.11: Frame after boundary cropping.

3.4 Evaluation of Stabilization

After the stabilization process, we performed an evaluation of the stability of the video,
in order to verify and analyze the performance of different methods in different scenarios.
Although it is not very common in the literature, we believe that evaluating the motion
estimation step separately is essential in the evaluation of stabilization. Since the motion
estimation has a great influence on the final stabilization result, and can be difficult to
detect the stabilization failure with a single and final evaluation.

One way to evaluate the motion estimate is with similarity measures, such as the PSNR
or SSIM. However, as discussed later in Chapter 4, such measures may not represent
the motion estimation in a coherent way. The overlapping of the frames, as shown in
Figure 3.10, can be used for this evaluation. For this, we generate a new video from the
motion estimation. In which, each frame gt of the new video is composed of the overlap
of the transformed frame f ′t and the original frame ft+1. Thus, we can evaluate the
motion estimation by the overlapping of each frames pair and by the temporal information
contained in the video. So, the background must be correctly overlapped, and in addition,
the overlapping region must have some continuity.

In the evaluation of the entire stabilization, we believe that two main attributes should
be considered: (i) the rate of preserved pixels and (ii) the stability of the video. The rate
of preserved pixels is reported by few works in the literature. However, we believe that



CHAPTER 3. VIDEO STABILIZATION METHODS 49

a stabilization that maintains very little information is unsatisfactory, regardless of the
stability of the video generated. Therefore, such that measure is indispensable.

The rate of preserved pixels in a video can be expressed as

Rate of preserved pixels = 100
WsHs

WH
(3.15)

where W and H correspond to the width and height of the frames in the original video,
Ws and Hs correspond to the width and height of the frames in the video generated by
the stabilization process, respectively.

To evaluate the stability of the video in a qualitative way, we propose two approaches:
an approach based on visual rhythms, presented in the subsection 3.4.1. And another
based on the motion energy image, exposed in the subsection 3.4.2.

3.4.1 Visual Rhythms

In the evaluation based on visual rhythms, two different path directions are considered:
horizontal and vertical. The vertical rhythm extracts the information from the columns
of each frame, while the horizontal rhythm takes the information from the lines of each
frame.

For both path directions, the rhythm is obtained from the sequential concatenation
of the information, so that the j-th column of the visual rhythm image corresponds to
the information in the j-th frame. In the horizontal rhythm, a rotation is performed on
the rows in order to obtain the columns in the final image. The width of a visual rhythm
corresponds to the number of frames of the video, whereas its height corresponds to the
height or width of the frames for the vertical or horizontal rhythm, respectively.

Figure 3.12 shows the relations between the pixels of the neighborhood in a visual
rhythm image, from which we can see that the visual rhythm maintains the temporal and
spatial information of the video. Thus, the temporal behavior of the gray levels in a certain
region can be easily visualized. This provides information on how and when movements
occur in the video, that is, in addition to being able to distinguish the direction, the
intensity, and the form that the movements are spatially arranged, we can verify the
frequency of certain type of movement and determine the moments of its occurrence.
Stable video is expected to have a more uniform visual rhythm, with fewer twitches and
better defined curves.

Figure 3.13 shows the construction of a horizontal rhythm for two frames 3 × 3. At
the transition between frames A and B, the camera moves from right to left, causing the
pixels to be to the right of their original position. Thus, when obtaining the horizontal
rhythm, the pixels of the column corresponding to frame B are below the equivalent pixels
of frame A, thereby forming a declination.

The separation of the vertical and horizontal visual rhythms is important to detect and
evaluate problems in the video stabilization process more thoroughly. From the vertical
rhythm, we can analyze the characteristics of the motion in the y axis. Thus, inclined
rhythm lines indicate camera movements from the bottom to top, whereas declined lines
indicate camera movements from top to bottom. From the horizontal rhythm, in turn, we
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Figure 3.12: Patterns for pixel neighborhood in the visual rhythm.

Figure 3.13: Direction of horizontal visual rhythm.

have the characteristics of the motion in the x axis. Thus, sloped lines indicate camera
movements from left to right, whereas declined lines indicate camera movement from right
to left.

The use of only one column or row in the extraction of information from each frame
may be inadequate since it considers little information of the frame. In addition, it
makes horizontal and vertical separation less accurate. This problem can be seen in
Figure 3.14, where a vertical movement of the camera occurs, which can influence the
horizontal rhythm, depending on the difference of the pixels between the rows. Thus, the
average of the columns or rows is adopted in our work to compensate for this difference,
making the horizontal rhythm less sensitive to vertical movements, and the vertical rhythm
less sensitive to horizontal movements.

In Figure 3.14, both columns of the horizontal rhythm should have either the same
values or values very close. However, with a single row in each frame, the direction of the
rhythm is uncertain.

As post-processing, we apply an adaptive histogram equalization technique through
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Figure 3.14: Direction of horizontal visual rhythm with a single row.

the Contrast Limited Adaptive Histogram Equalization (CLAHE) [119]. This is done to
improve the contrast of the visual rhythm, facilitating human perception.

The construction of the visual rhythms is not based on motion estimation, as occurs in
other visualizations, shown in Chapter 2. Therefore, their performance is not dependent
on any motion estimation technique, which makes the representation of the video motion
more reliable. In the context of video stabilization, such independence of methods for
motion estimation is crucial to allow a more unbiased assessment of the results.

Among the good practices in the construction of visual rhythms for the evaluation of
video stabilization results, we recommend to:

• crop the frames of the stabilized video so that there are no pixels with null infor-
mation (since null information may imply inadequate row or column averages);

• preserve the frame rate of the video in order to not change its number of frames or
generate visual rhythms of different sizes;

• rescale the video frames to the original size in order for the visual rhythms to have
the same size.

3.4.2 Motion Energy Image

We conjecture that the stabilization evaluation can be done through the amount of motion
present in the video, which complements the analysis of the motion behavior. Thus, we
propose a stabilization evaluation method based on the motion energy image. Figure 3.15
presents the main stages of our method.

Figure 3.15: Main steps of the proposed stabilization evaluation method.
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For each video frame i, the difference of the gray level intensities of each pixel is
calculated. This is done by considering the pre-processed frames through a Gaussian
filter with kernel experimentally set as σ = 5, which is applied to smooth the frames, so
that the difference is calculated without disregarding unnecessary details. In this step, a
binary image is obtained, in which 1 is assigned to the pixel with difference greater than
a certain threshold, and 0 otherwise. This calculation can be seen as a sub-step of the
MEI construction, expressed as

Diffi,j(x, y) =

{
1 if med(|fi(x, y)− fj(x, y)|) ≥ T

0 otherwise
(3.16)

where (x, y) denotes a given pixel and f is the already smoothed frame. In turn, i and j
correspond to the i-th and j-th frame indices, respectively. T corresponds to the threshold,
experimentally chosen as 10. Finally, med() is a median filter with kernel of size 5, applied
to decrease the discontinuities of the differences.

We consider an MEI for each frame i, which is obtained through the differences of the
frames within a sliding window of size WMEI , centered in i. The MEI calculation can be
expressed as

MEIi =

∑
j∈Ωi,j 6=i

G(|i− j|, σ)Diffi,j∑
j∈Ωi,j 6=i

G(|i− j|, σ)
(3.17)

where G() is a Gaussian function that assigns larger weights to the differences of the
nearest frames. Ωi is the neighborhood of i determined by the sliding window.

In contrast to the MEI calculation typically performed in the literature, we consider
the differences from the central window frame. This is done so that motion that occurs
more gradually can be captured by MEI.

The window size WMEI is based on the number of frames per second (FPS), in order
to always consider the same time interval, expressed as

WMEI =
FPS

5
(3.18)

where 5 was chosen empirically.
The use of a Gaussian function to provide larger weights for the frames closer to the

central frame is premised on the fact that oscillations present in unstable videos usually
occur more suddenly than a desired motion.

By taking the MEI of each frame, the average image of the MEIs is calculated, where
each pixel (x, y) is taken as the arithmetic mean of the pixels (x, y) of all the MEIs of the
video. Thus, from the gray level image obtained, it is possible to verify the amount of
motion present in the video, its location and spatial distribution in the frames.

The human visual system can distinguish thousands of tones and intensities of color,
however, only a few tens of shades of gray [33, 85]. Thus, a pseudocolor transformation
is applied, so that high gray-level intensity values are mapped to red, whereas lower
intensities to blue. Figure 3.16 shows the color mapping used. A more stable video is
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expected to have less motion and, therefore, a view with colors that are closer to blue
than an unstable video is obtained.

Figure 3.16: Pseudocolor transformation applied to the images of the average MEIs.
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Chapter 4

Experiments

Results obtained in the experiments are described in this chapter. Three databases are
used to evaluate the effectiveness of the proposed video stabilization methods. The first
consists of eleven videos available in the GaTech VideoStab [36] dataset and three others
collected separately. The second, available by Liu et al. [69], consists of 139 videos di-
vided into categories. Finally, we create a dataset that is complementary to the others, in
which four videos are collected separately. From the original videos, excerpts with mov-
ing objects in the foreground and with little representative backgrounds are extracted,
generating a total of eight videos.

4.1 Datasets

Table 4.1 reports a summary of the first database with videos in alphabetical order.
This dataset is composed of videos with more general situations, where some videos can
be stabilized successfully even using simpler stabilization methods, while others require
more complex methods. From now on, we will refer to the videos in this database through
the identifiers assigned to each of them. Videos #1, #2, #3, #4, #6 and #8 present simpler
motion, not requiring complex stabilization methods.

Video #5 contains intense zoom. This type of video may cause certain difficulties in
the removal of the unwanted motion step, making simpler methods keep few video frame
pixels. Video #7 contains objects in constant motion, which may cause difficulties in the
stability of the final video if the motion estimation step is not able to deal with such
objects.

Video #10 presents non-rigid motion, that is, methods based on a global motion esti-
mation may not yield good results. Video #11 contains an object very close to the camera,
occupying much of the scene. This type of situation may also compromise the quality of
final stabilization if the motion estimation is not done correctly and does not disregard
the object in all frames.

Video #12 presents the rolling shutter effect. In this case, a wobble suppression method
or a more local estimation is necessary to achieve higher quality stabilization. Videos #10
and #14 contain a large number of translational movements made intentionally during
the video acquisition process. Just as in the case of zooming, a simpler unwanted motion
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removal method can lead to excessive frame cropping and hold only few pixels.

Table 4.1: Video sequences from the first dataset.

# Video Source Features

1 gleicher1 GaTech VideoStab Regular Video
2 gleicher2 GaTech VideoStab Regular Video
3 gleicher3 GaTech VideoStab Regular Video
4 gleicher4 GaTech VideoStab Regular Video
5 greyson_chance GaTech VideoStab Zooming
6 hippo nghiaho.com/uploads/hippo.mp4 Regular Video
7 lf_juggle GaTech VideoStab Moving Objects
8 new_gleicher GaTech VideoStab Regular Video
9 sam_1 GaTech VideoStab Moving Objects
10 sam and cocoa youtu.be/627MqC6E5Yo Non-rigid Camera Motion
11 sany0025 GaTech VideoStab Near Objects
12 shake_pgh_1 GaTech VideoStab Rolling Shutter and Scene Change
13 shaky_car MatLab Abrupt Motion
14 yuna_long GaTech VideoStab Intentional Motion

Table 4.2 presents the database proposed by Liu et al. [69], which is divided into six
categories, containing a total of 139 videos. The Crowd category has videos in the presence
of crowds. Videos in the Parallax category have large parallax. The Quick Rotation
category has videos with abrupt translations. The videos in the Regular category are
more general. In the Running category, the camera operator is always running, which
produces videos with a lot of translational movements. In the Zooming category, videos
are characterized by the presence of zoom. Subsequently, we will refer to the videos in this
dataset by the name of the category followed by the identifier of each video, attributed
by the authors.

Table 4.2: Categories and amount of videos present in the second dataset.

Category # Videos

Crowd 22
Parallax 17

Quick Rotation 28
Regular 22
Running 21
Zooming 29

Total 139

Table 4.3 presents a summary of the videos from the database created in this work.
We will refer to the videos in this database through the term oursID, where ID is the
identifier assigned to each video. Video our1 consists of an artificial video created by Liu
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et al. [70] in which an object was added to an already unstable video. This object moves
forward and backward, occupying different proportions of the scene along the video. This
scenario presents difficulties for the motion estimation step due to possible interference
of the object, especially when it occupies most of the scene. Videos ours2, ours3−5 and
ours6−8 are collected from YouTube and consists of drones flying in indoor scenarios. They
also present difficulties for the motion estimation step, since closed scenarios usually have
little representative background and the drones are constantly moving.

Table 4.3: Video sequences created in this work.

# Video Source Range

1 artificial Liu et al. [70] entire video
2 drone youtu.be/z5GQJq2esw0 00:00:06 to 00:00:26
3 witch_1 00:00:00 to 00:00:30
4 witch_2 youtu.be/LsaVrWCma9k 00:00:15 to 00:00:30
5 witch_3 00:00:30 to 00:00:42
6 witch2_1 00:00:00 to 00:00:15
7 witch2_2 youtu.be/a8_nko2MeCE 00:00:15 to 00:00:30
8 witch2_3 00:00:30 to 00:00:43

In the following sections, the videos present in the described datasets are used to
conduct the experiments required to evaluate the methods proposed in this work. All
experiments were implemented in Python programming language [74] version 2.7.6 with
the following libraries: SciPy [45], NumPy [107], scikit-learn [84], scikit-image [108] and
OpenCV [11].

4.2 Evaluation Metrics

The results obtained with the evaluation metrics are reported in this section, which is di-
vided into two subsections. The first presents the results obtained with the visualization
based on visual rhythms, whereas the second shows the results of the evaluation based on
the motion energy image. These results are presented first because they will serve as a
basis for reporting the results obtained with the other stages of our method. The incon-
sistencies of objective metrics will be presented throughout this chapter. Despite these
problems, objective metrics are used in this work for the comparison of large datasets.

4.2.1 Visual Rhythms

In this subsection, we present the results obtained through the visualization based on
visual rhythms. Vertical and horizontal rhythms, extracted from some videos of the
evaluated datasets, are shown.

Figure 4.1 presents the visual rhythms generated for the video #12 before and after
the video stabilization process. This experiment was done to verify if an unstable video
could be differentiated from a stabilized video. In order to obtain the stabilized version
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of the video, we submit it to YouTube, which applies one of the state-of-the-art digital
video stabilization approaches [36]. The width of all the images presented in this section
was considered constant for a better organization.

(a) horizontal visual rhythm - original video (b) horizontal visual rhythm - stabilized video

(c) vertical visual rhythm - original video (d) vertical visual rhythm - stabilized video

Figure 4.1: Visual rhythms for video #12.

From the horizontal visual rhythm of the unstable video, shown in Figure 4.1a, we
can notice the twitches and irregularities present in the lines. On the other hand, in the
horizontal visual rhythm of the stabilized video, shown in Figure 4.1b, there are more
continuous, well defined and softer lines. Analogously, the vertical visual rhythm of the
unstable video, shown in Figure 4.1c, has twitches and irregularities that are eliminated in
the visual rhythm of the stabilized video, shown in Figure 4.1d. We can also observe that
vertical and horizontal rhythms are not influenced by each other, where certain motion
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regions occur in one but not in the other.
For the video Regular8, we present a comparison of the visual rhythms obtained

through the average of the rows or columns, and through the column or central row. In
this case, we present the horizontal and vertical visual rhythms only for the unstable
video. We present this figure to show the superiority of our strategy, which uses the
mean rows and columns in order to have a better separation of horizontal and vertical
movement.

(a) horizontal visual rhythm - mean row (b) horizontal visual rhythm - central row

(c) vertical visual rhythm - mean column (d) vertical visual rhythm - central column

Figure 4.2: Visual rhythms for original video Regular8.
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It can be seen from Figure 4.2a that the visual rhythm with only one row can be nega-
tively influenced by the vertical motion of the video, with artifacts that do not correspond
to the horizontal motion, such as the discontinuities present in the rhythm, whereas the
visual rhythms presented by their average are more consistent with the motion present in
the video. An analogous behavior can be seen in the vertical rhythm shown in Figure 4.2c.

Figure 4.3 presents the visual rhythms of the unstable video #1. For this video,
we present the rhythms obtained after the stabilization of YouTube, in addition to a
stabilization with inferior performance. Figure 4.4 shows the horizontal and vertical
rhythms for both versions of the stabilized video. The purpose of this experiment is
to demonstrate that the visualization can also distinguish videos stabilized by different
methods.

(a) horizontal visual rhythm (b) vertical visual rhythm

Figure 4.3: Visual rhythms for original video #1.

By comparing the visual rhythms for the unstable video and the rhythms for the
stabilized videos, it is possible to confirm the validity of using visual rhythms to compare
versions of stable and unstable videos. In addition, from the visual rhythms of the two
different methods, illustrated in Figure 4.4, we can observe the occurrence of less twitches
and smoother lines throughout the entire rhythm, both for the horizontal and vertical
rhythm. This shows that the visual rhythm can be used in the comparison of two different
video stabilization methods.

The horizontal and vertical rhythms for the original and stabilized video
Quick Rotation0 are shown in Figure 4.5. In this case, the video was stabilized with
the method proposed by Liu et al. [69]. The version of the video #4 stabilized with
YouTube was not shown here since the method modified its frame rate, reducing the num-
ber of frames and making the visualization of the stabilized video considerably smaller
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(a) horizontal visual rhythm - stabilization with
an inferior result

(b) horizontal visual rhythm - YouTube stabiliza-
tion

(c) vertical visual rhythm - stabilization with an
inferior result

(d) vertical visual rhythm - YouTube stabilization

Figure 4.4: Visual rhythms for stabilized video #1.

than the original video. The objective of this experiment is to show that it is possible to
notice the presence of abrupt translations in the video from the visualization.

Besides confirming that the smoother lines obtained with the visual rhythm for the
stabilized video, it is possible to observe the occurrence of totally vertical lines in the
horizontal visual rhythms, which indicates a very fast horizontal movement of the camera.
It is also possible to notice that the horizontal lines are inclined in their origin, which
indicates that the displacement is from left to right.

In Figure 4.6, we present the horizontal and vertical visual rhythms for the original
and stabilized video Zooming0. The video was stabilized through the method proposed
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(a) horizontal visual rhythm - original video (b) horizontal visual rhythm - stabilized video

(c) vertical visual rhythm - original video (d) vertical visual rhythm - stabilized video

Figure 4.5: Visual rhythms for video Quick Rotation0.

by Liu et al. [69]. The aim of this experiment is to show that it is possible to notice the
presence of zoom in the video from the visualization.

In the visual rhythms for video Zooming0, it is also possible to see the presence of
well defined, regular lines in the visual rhythm of the stabilized video. In addition, it is
possible to observe inclined and declined lines in the horizontal visual rhythms present
simultaneously in the beginning of the video, which indicates the existence of zoom.

4.2.2 Motion Energy Image

In this subsection, we present the results obtained in our experiments with the evaluation
based on the motion energy image. Figure 4.7 presents the difference images by consid-
ering several indices within a sliding window for the originally unstable video. Figure 4.8
illustrates the images corresponding to the videos obtained after the stabilization process
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(a) horizontal visual rhythm - original video (b) horizontal visual rhythm - stabilized video

(c) vertical visual rhythm - original video (d) vertical visual rhythm - stabilized video

Figure 4.6: Visual rhythms for video Zooming0.

through the YouTube approach [36].
From Figures 4.7 and 4.8, we can notice the presence of more white pixels in the

images of the difference of the unstable video, indicating a larger amount of motion. This
is even more visible with the increase in frame distance. These results confirm that the
use of the difference between frames with a certain distance can capture motion that is
not perceived by comparison of adjacent frames.

Figure 4.9 shows the MEI for the same frame obtained for both the unstable video
and the stabilized video. It can be verified that the MEI summarizes well the images of
the differences and that the version of the stabilized video has darker pixels compared to
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(a) j = 3 (b) j = 4 (c) j = 5

(d) j = 6 (e) j = 7

Figure 4.7: Difference images for unstable video #4 with i = 2.

(a) j = 3 (b) j = 4 (c) j = 5

(d) j = 6 (e) j = 7

Figure 4.8: Difference images for video #4 after stabilization with i = 2.

that of the unstable video, which indicates the presence of less motion.

(a) original video (b) stabilized video

Figure 4.9: MEI for video #4 with i = 2.

Figure 4.10 illustrates the gray level image of the average of the MEIs for the unstable
and stabilized video. From the figure, it is possible to observe an image with darker gray
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levels and with more defined shapes in the image corresponding to thee stabilized video.
Similar results were observed in all videos in the database under consideration.

(a) original video (b) stabilized video

Figure 4.10: Image of average of the MEIs for video #4.

In the following results, we present the images obtained with the proposed method
and compare them with the average grayscale of the video frames, as shown in Figure 2.5
described in Section 2. The purpose of these experiments is to demonstrate that our
visualization can distinguish unstably and stabilized videos, as well as show that it is
superior to the simple average of the gray tones of the frames.

Figure 4.12 shows a color image of the average of the MEIs for the unstable and
stabilized video #4. It is possible to observe a greater visual distinction when compared
to the gray level image. For the unstable video, the image contains red regions, which
indicates the occurrence of a large amount of motion throughout the video. On the other
hand, the image is predominantly blue and green for the stabilized video. Figure 4.11
shows the result obtained with the average grayscale for the same video. It is possible to
notice that the stabilized version is better defined, whereas the unstable video image is
more blurred. However, it is difficult to infer how much motion is present in the video
from the image.

(a) original video (b) stabilized video

Figure 4.11: Average grayscale image for video #4.

The drawback of the average grayscale image becomes even clearer in the comparison
of the results obtained for the video #7. Figures 4.13 and 4.14 show the results of the
average grayscale and the average of the MEIs for video #7. From the gray level image,



CHAPTER 4. EXPERIMENTS 65

(a) original video (b) stabilized video

Figure 4.12: Average image of the colored MEIs for video #4.

it is not so easy to differentiate the unstable video from the stabilized one. In fact, the
stabilized video seems to have more motion. On the other hand, the stabilized video
presents an average MEI image with bluer tones, correctly indicating a smaller amount
of motion.

(a) original video (b) stabilized video

Figure 4.13: Average grayscale image for video #7.

The visual representation proposed in this work is efficient to show the amount of
motion present in a video, making possible the evaluation and comparison of different
stabilization methods. Our technique is more effective than the simple average of the
gray levels of the video frames, which can generate inaccurate results when considering
the intentional motion of the camera and small changes in the scene.

Figures 4.15 and 4.16 show the results obtained for the average grayscale image and
the proposed visual representation in a video for a crowded scene.

From Figures 4.15 and 4.16, we can see the differences between the image versions
in the proposed visual representation, before and after the video stabilization. Even
after stabilization, we can notice red color in the result, which is probably due to the
presence of moving people in the scene. However, stronger tones of red are featured in the
unstable version of the video, which characterizes a video in the presence of much motion.
The images of the average grayscale, however, show little difference, demonstrating the
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(a) original video (b) stabilized video

Figure 4.14: Average image of the colored MEIs for video #7.

(a) original video (b) stabilized video

Figure 4.15: Average grayscale image for video Crowd0.

(a) original video (b) stabilized video

Figure 4.16: Average image of the colored MEIs for video Crowd2.

superiority of our visual representation.
Figures 4.17 and 4.18 show the results obtained for the average grayscale image and

the proposed visual representation in a video that contains parallax effect.
From Figures 4.17 and 4.18, we can observe that redder tones were obtained in the un-

stable video version, whereas the image of the average grayscale presents little distinction
between the two versions of the video.
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(a) original video (b) stabilized video

Figure 4.17: Average grayscale image for video Parallax0.

(a) original video (b) stabilized video

Figure 4.18: Average image of the colored MEIs for video Parallax0.

Figures 4.19 and 4.20 illustrate the results obtained for the average grayscale image
and the proposed visual representation in a video with fast translations.

(a) original video (b) stabilized video

Figure 4.19: Average grayscale image of the average for video QuickRotation0.

From Figures 4.19 and 4.20, we can notice that a video in the presence of fast trans-
lations tends to have very red tones. Similarly to other cases, lighter tones are obtained
in the stabilized version. After stabilization, the visual representation continues with red
tones, since there is still a certain amount of motion desired in the video. Again, the
visualization of the average grayscale image is not very effective.

Figures 4.21 and 4.22 present the results obtained for the average grayscale image and
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(a) original video (b) stabilized video

Figure 4.20: Average image of the colored MEIs for video QuickRotation0.

the proposed visual representation in a video with regular scene.

(a) original video (b) stabilized video

Figure 4.21: Average grayscale image for video Regular0.

(a) original video (b) stabilized video

Figure 4.22: Average image of the colored MEIs for video Regular0.

From Figures 4.21 and 4.22, the image for the stabilized version has considerably
lighter colors, once this a simple scene and has less movement. We can also notice that
redder tones are present in the region where a person is moving.

Figures 4.23 and 4.24 show the results obtained for the average grayscale image and
the proposed visual representation, where the person shooting the video was running at
the time of scene acquisition.
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(a) original video (b) stabilized video

Figure 4.23: Average grayscale image for video Running0.

(a) original video (b) stabilized video

Figure 4.24: Average image of the colored MEIs for video Running0.

From Figures 4.23 and 4.24, we can observe that the image tones are very reddish in
both versions. This occurs due to the substantial change in the scene and to the motion
caused by the person who shoots the video. Notwithstanding, we can notice lighter tones
in the stabilized version.

Figures 4.25 and 4.26 present the results obtained for the average grayscale image and
the proposed visual representation in a video in the presence of zoom.

(a) original video (b) stabilized video

Figure 4.25: Average grayscale image for video Zooming0.

From Figures 4.25 and 4.26, it is possible to observe that the stabilized version has
lighter tones, which demonstrates the advantages of our method.



CHAPTER 4. EXPERIMENTS 70

(a) original video (b) stabilized video

Figure 4.26: Average image of the colored MEIs for video Zooming0.

4.3 Motion Estimation

In this section, we describe the results obtained in the motion estimation step. Tables 4.4
and 4.5 show the PSNR and SSIM average values obtained through different local features
for the videos presented in Table 4.1. In these experiments, we consider only a single
application of RANSAC. SIFT, SURF and ORB features are described by their own
methods, whereas the other ones are described by Fast Retina Keypoint (FREAK) [3].
Tables 4.6 and 4.7 present the results obtained with the dual application of RANSAC,
as described in Chapter 3. This experiment was performed to verify the performance of
different local features methods in the motion estimation step. In addition, it checks the
impact of using RANSAC with one and two passes.

Table 4.4: PSNR for different local features in motion estimation with one-pass RANSAC.

Video Original BRISK FAST GFTT HARRIS MSER ORB SIFT STAR SURF

1 18.792 16.304 29.961 30.349 30.418 28.961 30.133 29.787 29.306 30.358
2 20.390 19.532 29.571 29.805 29.815 27.359 29.819 29.571 28.876 30.275
3 16.186 14.587 24.654 25.629 25.756 22.580 25.164 22.902 24.096 25.651
4 19.965 21.728 32.160 32.620 32.684 27.389 33.073 32.245 30.893 33.214
5 23.276 18.713 31.564 32.769 30.705 32.563 33.304 33.207 32.445 33.609
6 19.680 16.044 29.313 29.615 29.761 23.513 28.478 29.751 25.760 29.373
7 24.108 22.958 29.392 29.627 29.231 26.153 29.196 29.256 25.270 30.082
8 17.880 17.202 28.180 28.469 28.514 26.912 28.234 27.830 27.532 28.351
9 19.248 18.070 24.281 24.840 24.676 23.222 25.244 24.790 23.522 25.859
10 12.971 14.444 18.861 19.057 19.098 18.287 18.945 18.856 18.791 18.872
11 21.487 19.599 28.466 28.623 28.768 27.878 28.682 28.526 27.492 28.325
12 15.081 17.439 23.676 24.052 24.034 22.962 23.933 23.467 22.958 23.934
13 23.840 24.059 27.746 27.673 30.278 28.048 30.412 26.378 28.639 28.394
14 18.064 18.395 26.288 26.836 26.926 25.839 26.113 27.075 24.410 26.210

Average 19.355 18.505 27.437 27.855 27.905 25.833 27.909 27.403 26.428 28.036

From the results, we can see that the SURF method obtains the best results for most
of the cases, always presenting the highest average values. In addition, the two-pass
RANSAC strategy was effective, obtaining higher values and evidencing the superiority
of the SURF method in comparison to the others. In addition to the excellent results
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Table 4.5: SSIM for different local features in motion estimation with one-pass RANSAC.

Video Original BRISK FAST GFTT HARRIS MSER ORB SIFT STAR SURF

1 0.467 0.333 0.944 0.948 0.949 0.928 0.946 0.941 0.934 0.949
2 0.570 0.548 0.925 0.926 0.927 0.872 0.928 0.925 0.911 0.939
3 0.333 0.231 0.828 0.875 0.878 0.765 0.858 0.760 0.818 0.875
4 0.673 0.734 0.957 0.961 0.962 0.880 0.965 0.957 0.942 0.965
5 0.714 0.539 0.923 0.939 0.893 0.944 0.954 0.953 0.943 0.960
6 0.554 0.307 0.946 0.953 0.956 0.753 0.929 0.950 0.841 0.950
7 0.718 0.687 0.896 0.904 0.888 0.787 0.882 0.894 0.752 0.921
8 0.485 0.461 0.922 0.923 0.922 0.889 0.915 0.914 0.908 0.923
9 0.441 0.413 0.753 0.780 0.767 0.687 0.785 0.777 0.692 0.834
10 0.294 0.358 0.649 0.653 0.653 0.606 0.633 0.649 0.641 0.650
11 0.688 0.617 0.886 0.888 0.893 0.875 0.889 0.886 0.872 0.879
12 0.317 0.425 0.755 0.760 0.755 0.718 0.747 0.738 0.722 0.760
13 0.642 0.658 0.773 0.769 0.815 0.770 0.818 0.737 0.784 0.784
14 0.657 0.640 0.917 0.929 0.930 0.899 0.907 0.934 0.862 0.921

Average 0.540 0.496 0.862 0.871 0.870 0.812 0.868 0.858 0.830 0.879

Table 4.6: PSNR for different local features in motion estimation with two-pass RANSAC.

Video Original BRISK FAST GFTT HARRIS MSER ORB SIFT STAR SURF

1 18.792 28.334 30.303 29.773 29.637 29.537 29.696 30.378 29.783 30.593
2 20.390 28.941 30.246 30.163 30.095 28.198 29.771 29.863 29.300 30.418
3 16.186 24.689 26.104 25.979 25.973 23.382 25.644 24.853 24.925 26.143
4 19.965 30.783 33.411 33.163 33.170 27.984 32.667 32.678 31.377 33.486
5 23.276 29.779 33.554 33.562 32.775 32.797 33.338 33.531 32.787 33.706
6 19.680 26.153 29.592 29.349 29.179 25.279 28.711 29.893 27.136 30.014
7 24.108 27.928 30.269 30.280 30.047 26.287 29.951 29.520 29.520 30.311
8 17.880 27.482 28.302 28.226 28.101 27.356 27.654 27.806 27.806 28.499
9 19.248 23.257 26.005 26.021 25.788 23.587 25.329 26.156 23.730 26.164
10 12.971 18.966 19.020 18.966 18.959 18.560 18.937 18.972 18.885 19.011
11 21.487 27.847 28.613 28.501 28.418 27.971 28.488 28.621 28.621 28.635
12 15.081 23.793 24.064 24.132 24.106 23.281 23.952 23.761 23.279 24.165
13 23.840 28.397 30.234 30.302 30.029 27.963 30.229 26.558 28.638 30.401
14 18.064 25.897 27.818 27.714 27.689 26.168 27.438 27.205 24.731 27.861

Average 19.355 26.589 28.395 28.295 28.140 26.311 28.022 27.803 26.819 28.529

obtained with SURF, we highlight the considerable gain of the BRISK method by adopting
the two-pass strategy. The results obtained are consistent between the two measures used.

4.3.1 Local Combined Features

In this subsection, we present the results obtained with the consensual local feature combi-
nation method. In our experiments, we consider three different local features: Maximally
Stable Extremal Regions (MSER) [78], Scale-Invariant Feature Transform (SIFT) [71] and
STAR [1]. The SIFT features are described in the method itself, whereas the other ones
are described with Fast Retina Keypoint (FREAK) [3]. Each method is also evaluated
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Table 4.7: SSIM for different local features in motion estimation with two-pass RANSAC.

Video Original BRISK FAST GFTT HARRIS MSER ORB SIFT STAR SURF

1 0.467 0.913 0.950 0.946 0.945 0.938 0.943 0.948 0.941 0.952
2 0.570 0.914 0.939 0.938 0.938 0.895 0.932 0.929 0.920 0.942
3 0.333 0.845 0.891 0.890 0.890 0.803 0.879 0.843 0.850 0.892
4 0.673 0.945 0.967 0.966 0.966 0.892 0.962 0.961 0.949 0.967
5 0.714 0.899 0.958 0.960 0.944 0.947 0.961 0.959 0.948 0.964
6 0.554 0.859 0.958 0.955 0.953 0.836 0.944 0.955 0.893 0.960
7 0.718 0.853 0.927 0.927 0.916 0.792 0.912 0.901 0.760 0.930
8 0.485 0.909 0.924 0.920 0.918 0.900 0.903 0.920 0.911 0.925
9 0.441 0.686 0.850 0.848 0.834 0.705 0.837 0.805 0.701 0.864
10 0.294 0.651 0.660 0.651 0.648 0.624 0.627 0.654 0.647 0.660
11 0.688 0.876 0.895 0.894 0.893 0.877 0.894 0.887 0.874 0.894
12 0.317 0.753 0.779 0.770 0.765 0.733 0.753 0.750 0.737 0.779
13 0.642 0.780 0.815 0.818 0.816 0.766 0.815 0.741 0.782 0.819
14 0.657 0.910 0.950 0.949 0.949 0.907 0.946 0.936 0.870 0.951

Average 0.540 0.842 0.890 0.887 0.883 0.830 0.879 0.871 0.842 0.892

individually with the step of removing outliers performed by RANSAC. These methods
were used because they obtained good results in preliminary experiments. The aim of
this experiment is to show that the combined use of local features methods can improve
the motion estimation of isolated methods when these methods do not make a correct
estimation.

Initially, we evaluated the results only for the motion estimation step. This is done in
order to remove the influence of the later steps. In this evaluation, we computed the mean
of the PSNR and SSIM values frame by frame, considering the similarity matrix obtained
shortly after the estimation step. In order for the extracted metrics to be coherent, the
transformed frames are cropped by taking into account only the similarity matrix of that
frame.

Tables 4.8 and 4.9 present the results obtained, in which we can see a better combi-
nation performance for most videos for both PSNR and SSIM. In average values where
the combination is not the best result, it tends to be close to the best. For example,
in video #7 the combination has a better result than the MSER and STAR methods,
whereas in video #13 the result is greater than MSER and SIFT. These results show that
the application of the combination strategy obtains a greater robustness in the motion
estimation.

Although the results obtained after the smoothing confirm the results obtained in
the assessment of motion estimation, this evaluation is important because it provides us
with more precise information about the motion estimation step, once applying different
methods in the smoothing step may change what is considered as unwanted motion.

Tables 4.10 and 4.11 present the results obtained for the dataset presented in Table 4.2.
In Table 4.10, it can be noted that the combination always provides higher values in terms
of average PSNR in comparison to the other detection methods. From Table 4.11, it is
possible to observe that the PSNR results are consistent with the SSIM results, confirming
the superiority in motion estimation with the use of the combination.
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Table 4.8: PSNR for different local features in motion estimation.

Video Original MSER SIFT STAR Combination

1 18.792 29.537 30.378 29.783 30.513
2 20.390 28.198 29.863 29.300 29.993
3 16.186 23.382 24.853 24.925 25.772
4 19.965 27.984 32.678 31.377 32.985
5 23.276 32.797 33.531 32.787 33.726
6 19.680 25.279 29.893 27.136 29.988
7 24.108 26.287 29.520 25.486 28.801
8 17.880 27.356 28.115 27.806 28.249
9 19.248 23.587 25.329 23.730 25.463
10 12.971 18.560 18.937 18.885 19.016
11 21.487 27.971 28.621 27.600 28.424
12 15.081 23.281 23.761 23.279 23.922
13 23.840 27.963 26.558 28.638 28.516
14 18.064 26.168 27.205 24.731 26.987

Average 19.355 26.311 27.803 26.819 28.025

Table 4.9: SSIM for different local features in motion estimation.

Video Original MSER SIFT STAR Combination

1 0.467 0.938 0.948 0.941 0.950
2 0.570 0.895 0.929 0.920 0.931
3 0.333 0.803 0.843 0.850 0.880
4 0.673 0.892 0.961 0.949 0.964
5 0.714 0.947 0.959 0.948 0.963
6 0.554 0.836 0.955 0.893 0.959
7 0.718 0.792 0.901 0.760 0.874
8 0.485 0.900 0.920 0.911 0.920
9 0.441 0.705 0.805 0.701 0.807
10 0.294 0.624 0.654 0.647 0.658
11 0.688 0.877 0.887 0.874 0.885
12 0.317 0.733 0.750 0.737 0.759
13 0.642 0.766 0.741 0.782 0.783
14 0.657 0.907 0.936 0.870 0.930

Average 0.540 0.830 0.871 0.842 0.876

Figures 4.27 and 4.28 present the percentage gain for PSNR and SSIM metrics. It
is possible to notice that the combination performs better in the Regular and Zooming
categories. In addition, it can be seen that the percentage gain can vary according to the
metrics adopted.
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Table 4.10: PSNR for different local features in motion estimation.

Category Original MSER SIFT STAR Combination

Crowd 19.479 25.337 25.870 25.781 26.256
Parallax 18.746 22.566 23.217 23.388 23.657

Quick Rotation 19.963 25.805 27.465 26.694 28.020
Regular 19.468 24.162 26.605 26.290 27.259
Running 17.326 23.272 24.475 24.399 24.641
Zooming 20.113 25.625 27.916 27.503 28.776

Average 19.180 24.461 25.925 25.675 26.435

Table 4.11: SSIM for different local features in motion estimation.

Category Original MSER SIFT STAR Combination

Crowd 0.602 0.842 0.860 0.857 0.872
Parallax 0.562 0.737 0.762 0.764 0.776

Quick Rotation 0.568 0.789 0.852 0.825 0.866
Regular 0.500 0.695 0.813 0.809 0.846
Running 0.434 0.734 0.786 0.782 0.788
Zooming 0.535 0.779 0.860 0.847 0.889

Average 0.534 0.763 0.822 0.814 0.840
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Figure 4.27: Average PSNR gain. (%).
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Figure 4.28: Average SSIM gain. (%).

The gains obtained in each video using the combination were relatively low. However,
there are some videos that the gain obtained is above average. We highlight one of these
videos, the video #11 of the Zooming category, called Zooming11. Table 4.12 presents
the PSNR and SSIM for three frames of the Zooming11, in addition to the average of all
frames.

Table 4.12: PSNR and SSIM for frames of video Zooming11.

# Frame MSER SIFT STAR Combination

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

73 18.812 0.501 17.152 0.358 16.716 0.302 18.663 0.481
364 13.719 0.049 18.265 0.525 13.250 0.034 22.135 0.803
399 13.435 0.092 14.740 0.134 15.371 0.231 20.000 0.700

Overall 15.598 0.230 18.646 0.464 19.054 0.494 20.831 0.642

We can see in Table 4.12 that the performance of the combination is related to the
best individual method, and in some cases may perform considerably better than all the
methods used. Due to the success of the combination, the mean value for both metrics is
considerably higher in the Zooming11.

Figures 4.29, 4.30 and 4.31 present the three frames in which the frames are trans-
formed and overlapped to the next frame. It is possible to note, in all cases, that the
overlap obtained in the combination is more accurate.

We present only this subset of local features, which is the one that obtained the largest
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(a) Combination (b) SIFT (c) STAR

Figure 4.29: Comparison among the methods for frame #73.

(a) Combination (b) MSER (c) STAR

Figure 4.30: Comparison among the methods for frame #364.

(a) Combination (b) MSER (c) SIFT

Figure 4.31: Comparison among the methods for frame #399.

gain in comparison to the individual methods. We believe that this improvement occurs
because we are combining methods with inferior results. Thus, the combination of weaker
methods produces superior results. In addition, we notice that the results obtained with
the combination are lower than previously shown, for instance, with the SURF method.
This occurs because the results achieved with SURF for these two datasets are already
very good, correctly estimating the global motion between two frames in practically all
cases.

4.3.2 Spatio-Temporal Optimization

In order to avoid an exhaustive analysis, we report the results obtained only for some video
portions, since they illustrate the cases that are repeated in the others. Figures 4.32, 4.33
and 4.34 present some failure situations of local features for different videos, as well as the
correction performed with our method. Matches considered as inliers by the RANSAC
method are drawn in blue and green, whereas the outlier matches are drawn in pink and
yellow. This experiment was done to demonstrate that the spatio-temporal optimization
method was able to correct the motion estimation between pairs of frames that had an
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incorrect estimation.

(a) matches of local features (b) warped frame based on local
features

(c) our result

Figure 4.32: Motion estimation for the 11th frame of video ours1.

(a) matches of local features (b) warped frame based on local
features

(c) our result

Figure 4.33: Motion estimation for the 481th frame of video ours2.

(a) matches of local features (b) warped frame based on local
features

(c) our result

Figure 4.34: Motion estimation for the 129th frame of video ours6.

In the three cases presented, we can see that the matches of the objects were considered
as inliers, which made the movements of the object, not the camera, compensated. On
the other hand, our optimization-based method obtained excellent results, finding the
transformation matrix that matches the motion performed by the camera.

Higher values of similarity measures, such as PSNR or SSIM, may indicate a better
quality in the motion estimation for most cases. However, there are cases where such mea-
sures do not indicate the correct estimate and, therefore, a simple optimization that takes
the measures into account would not be efficient. Figure 4.35 presents different matches
for the same pair of frames, where different values of PSNR and SSIM are obtained. It
can be observed that higher values are obtained in incorrect cases. Since background is
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unrepresentative, higher similarity is obtained if object matching is done. However, this
is semantically incorrect since the object is in motion.

(a) PSNR = 30.576 and SSIM = 0.932 (b) PSNR = 23.491 and SSIM = 0.896

Figure 4.35: Different matches for the 40th frame of video ours7.

4.4 Removal of the Unwanted Motion

In this section, we describe the results obtained in the removal of the unwanted motion.
In the experiments performed, we compared the values of the ITF metric, as well as the
amount of pixels held for different versions of the trajectory smoothing. In addition, we
present the visual rhythm for some cases.

In the first version, we used the Gaussian filter considering σ = 40. In another version,
the Gaussian filter is used in a slightly more adaptive way, choosing different values of σ
for each trajectory according to the size of the trajectory range with respect to the size of
the video frame. Higher values of σ are assigned to paths with smaller intervals; we denote
this version as semi-adaptive. The adaptive version of the Gaussian filter proposed in this
work is presented. For all these versions, we use the SURF method with the two-pass
RANSAC in the motion estimation. The SURF was used in this experiment because it
obtained the motion estimation correctly for all videos we considered. In this way, the
motion estimation step does not interfere with the evaluation of this step. In addition,
the videos were submitted to the YouTube stabilization method [36] in order to compare
its results against ours.

The following experiments were performed to verify and compare the performance of
the Gaussian filter and the Kalman filter in the removal of unwanted motion. The ITF
and ITFSSIM metric are calculated for the video sequence before and after the stabilization
process. Tables 4.13, 4.14 and 4.15 shows the results obtained with the Kalman filter and
the Gaussian filter with σ = 40.

We can observe a certain superiority in the use of the Gaussian filter, which achieves
a higher ITF and ITFSSIM value for all videos with basically the same amount of pixels
kept for most videos. Videos #5, #9, #10, #12 and #14 keep a lower amount of pixels
compared to the other videos. This is due to the presence of desired camera motion, which
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Table 4.13: Comparison of ITF values between Gaussian filter and Kalman filter.

Video Original Gaussian Filter Kalman Filter

1 18.793 27.738 25.888
2 20.390 29.331 27.201
3 16.186 22.559 22.122
4 19.965 33.380 26.298
5 23.277 28.660 25.991
6 19.681 29.804 25.576
7 24.109 28.510 28.063
8 17.881 25.448 24.081
9 19.248 23.251 21.426
10 12.972 18.453 16.680
11 21.487 26.826 25.704
12 15.081 - -
13 23.841 30.621 28.200
14 18.065 20.265 -

Average 19.355 26.526 24.769

Table 4.14: Comparison of ITFSSIM values between Gaussian filter and Kalman filter.

Video Original Gaussian Filter Kalman Filter

1 0.468 0.903 0.846
2 0.571 0.937 0.894
3 0.334 0.819 0.773
4 0.673 0.962 0.844
5 0.715 0.862 0.794
6 0.555 0.950 0.864
7 0.719 0.908 0.895
8 0.486 0.884 0.840
9 0.442 0.652 0.605
10 0.295 0.557 0.528
11 0.689 0.847 0.827
12 0.317 - -
13 0.643 0.844 0.800
14 0.657 0.777 -

Average 0.540 0.839 0.793

is erroneously considered as oscillations by the Gaussian filter, if the value of σ used is
high enough. However, smaller values may not remove the oscillations from the videos
efficiently, since each video has oscillations of different proportions.

When we analyze the visual rhythms of the videos, we notice that the Gaussian filter
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Table 4.15: Comparison of hold pixels (%) between Gaussian filter and Kalman filter.

Video Gaussian Filter Kalman Filter

1 69.276 71.000
2 71.750 74.771
3 72.972 73.003
4 48.958 54.903
5 2.540 4.958
6 67.891 73.507
7 60.495 57.167
8 70.648 72.287
9 25.797 33.818
10 17.519 27.204
11 43.599 52.875
12 0 0
13 70.312 71.875
14 7.448 0

Average 44.943 47.669

obtains softer rhythms than the Kalman filter for all fourteen videos, confirming the
results obtained with the measures. However, in addition to not giving us more detailed
information about the movement of each video, the values (ITF mainly) do not correctly
reflect the difference between the two versions.

Figures 4.36, 4.37 and 4.38 show the visual rhythms obtained for the video #3 in the
original version and after filter stabilization Kalman and Gaussian filter with σ = 40.
Even if both versions obtain similar measure values, we can note that the visual rhythms
obtained by the Gaussian filter are considerably smoother than the rhythms obtained by
the Kalman filter, which indicates the superiority of the Gaussian filter.

Tables 4.16, 4.17 and 4.18 presents a comparison of the mean of the ITF and ITFSSIM

values, besides the mean of the percentage of pixels held in each category, considering
the Kalman filter and the Gaussian filter. For all categories, the Gaussian filter obtained
higher values. Both versions have pixel percentages kept close by, alternating between
the highest category-by-category value.

We conjecture that the Gaussian filter obtained results superior to the Kalman filter
because the former does not use only previous values for the estimation, but more complete
information.

4.4.1 Adaptive Gaussian Filter

In order to improve the quality of the stabilization for cases where there is a small amount
of pixels held. Tables 4.19, 4.20 and 4.21 present the results obtained with the version
of the semi-adaptive Gaussian filter, where trajectories with greater difference between
the minimum and maximum values will have a lower value for σ. We used σ = 40 for
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(a) horizontal visual rhythm (b) vertical visual rhythm

Figure 4.36: Visual rhythms for original video #3.

trajectories with intervals smaller than 80% of the respective frame size, whereas σ = 20

otherwise. For the adaptive version proposed in this work, we experimentally set rmin

as 0.4. The purpose of the following experiments is to analyze the performance of semi-
adaptive and adaptive Gaussian filters in the removal of unwanted motion and to compare
them with the results obtained previously.

The semi-adaptive version maintains more pixels in the videos in which the original
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(a) horizontal visual rhythm (b) vertical visual rhythm

Figure 4.37: Visual rhythms for video #3 stabilized by Kalman filter.

Gaussian filter had problems, since σ = 20 was applied to them. However, the amount
of pixels held in the frames is lower than the other videos. This is because, in many
cases, σ = 20 is still a very high value. On the other hand, smaller values for σ can
ignore the oscillations that are present in other instants of the video, thus generating
videos not stabilized enough and consequently with a lower measure value. Therefore,
as shown in the adaptive version, whose smoothing intensity is changed along the tra-
jectory, achieved measure values comparable to the original and semi-adaptive version,
maintaining considerably more pixels.

Although the ITF and ITFSSIM values has decreased in the adaptive version, this does
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(a) horizontal visual rhythm (b) vertical visual rhythm

Figure 4.38: Visual rhythms for video #3 stabilized by Gaussian filter.

not necessarily represent that the videos are more unstable. When we analyze the visual
rhythms for the fourteen videos, we notice that the rhythms have smooth lines, even if
slightly different from those obtained by the version of the Gaussian filter with σ = 40.

Figure 4.39 shows the visual rhythms extracted from the video, from which we can
verify the smoothness of the rhythms. Even with video #3 having similar values in the
adaptive version, compared to the Kalman filter version. The visual rhythms obtained in
the adaptive version are considerably smoother.

Tables 4.22, 4.23 and 4.24 presents the averages of the ITF and ITFSSIM values and the
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Table 4.16: Comparison of ITF between Gaussian filter and Kalman filter.

Video Original Gaussian Filter Kalman Filter

Crowd 19.479 23.621 22.218
Parallax 18.746 21.136 20.888

QuickRotation 19.964 23.115 -
Regular 19.457 25.135 23.958
Running 17.327 23.123 21.942
Zooming 20.113 22.076 21.964

Average 19.181 23.034 22.194

Table 4.17: Comparison of ITFSSIM between Gaussian filter and Kalman filter.

Video Original Gaussian Filter Kalman Filter

Crowd 0.603 0.780 0.727
Parallax 0.562 0.667 0.656

Quick Rotation 0.569 0.519 -
Regular 0.501 0.782 0.745
Running 0.435 0.726 0.666
Zooming 0.536 0.580 0.507

Average 0.534 0.676 0.660

Table 4.18: Comparison of hold pixels (%) between Gaussian filter and Kalman filter.

Video Gaussian Filter Kalman Filter

Crowd 37.200 41.702
Parallax 44.609 39.523

QuickRotation 1.829 0.000
Regular 64.023 64.370
Running 31.044 32.392
Zooming 17.911 15.470

Average 32.769 32.243

percentage of pixels held with the semi-adaptive Gaussian filter and the adaptive Gaussian
filter. It can be noticed that the semi-adaptive version can maintain a higher percentage of
pixels when compared to the Gaussian filter with σ = 40. However, a significant increase
is obtained only with the adaptive version. The gain in the percentage of pixels held can
be seen in all categories and is even more significant in the QuickRotation, Zooming and
Running categories.

Tables 4.25 and 4.26 present a comparison of the results between our method and
YouTube approach [36]. The percentage of pixels held was not reported since the YouTube
method resizes the stabilized videos to their original size. Thus, a qualitative analysis is
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Table 4.19: Comparison of ITF values between semi-adaptive Gaussian filter and adaptive
Gaussian filter.

# Video Original Semi-Adaptive Gaussian Adaptive Gaussian

1 18.793 27.620 27.455
2 20.390 29.331 28.914
3 16.186 22.559 22.090
4 19.965 33.380 27.931
5 23.277 27.814 27.360
6 19.681 29.804 29.077
7 24.109 28.510 28.876
8 17.881 25.448 25.182
9 19.248 21.845 21.435
10 12.972 17.465 16.381
11 21.487 26.826 25.659
12 15.081 19.827 17.895
13 23.841 30.621 29.987
14 18.065 19.759 19.773

Average 19.355 25.772 24.858

Table 4.20: Comparison of ITFSSIM between semi-adaptive Gaussian filter and adaptive
Gaussian filter.

# Video Original Semi-Adaptive Gaussian Adaptive Gaussian

1 0.468 0.899 0.896
2 0.571 0.937 0.931
3 0.334 0.819 0.789
4 0.673 0.962 0.884
5 0.715 0.857 0.842
6 0.555 0.950 0.941
7 0.719 0.908 0.908
8 0.486 0.884 0.877
9 0.442 0.603 0.587
10 0.295 0.537 0.470
11 0.689 0.847 0.835
12 0.317 0.515 0.465
13 0.643 0.844 0.834
14 0.657 0.782 0.778

Average 0.540 0.810 0.788

done through the first frame of each video, whose results are classified into three categories:
superior (when our method maintains more pixels), inferior (when the YouTube method
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Table 4.21: Comparison of hold pixels (%) between semi-adaptive Gaussian filter and
adaptive Gaussian filter.

# Video Semi-Adaptive Gaussian Adaptive Gaussian

1 70.745 74.500
2 71.750 75.781
3 72.972 76.056
4 48.958 62.465
5 8.312 53.385
6 67.891 70.838
7 60.495 73.667
8 70.648 73.284
9 35.750 57.139
10 27.907 70.296
11 43.559 57.260
12 16.611 59.847
13 70.312 71.719
14 39.045 54.146

Average 50.353 66.455

Table 4.22: Comparison of ITF between semi-adaptive Gaussian filter and adaptive Gaus-
sian filter.

# Video Original Semi-Adaptive Gaussian Adaptive Gaussian

Crowd 19.479 23.016 22.964
Parallax 18.746 20.903 20.808

Quick Rotation 19.964 22.612 21.686
Regular 19.457 25.007 24.732
Running 17.327 22.938 21.413
Zooming 20.113 21.413 20.868

Average 19.181 22.648 22.079

holds more pixels) and comparable (when both methods hold basically the same amount
of pixels). Figures 4.40, 4.41 and 4.42 illustrate the analysis performed. This experiment
verifies the performance of the YouTube’s method and compare the performance achieved
with the adaptive Gaussian filter.

We can observe a certain parity for both methods in terms of ITF and ITFSSIM metrics,
with a slight advantage of the YouTube method [36], while the maintained pixels are in
general comparable and, when lower, they do not differ much. This demonstrates that
the proposed method is competitive with one of the methods considered as current state-
of-the-art.

From Figure 4.40, it is possible to observe that more information is maintained on the



CHAPTER 4. EXPERIMENTS 87

(a) horizontal visual rhythm (b) vertical visual rhythm

Figure 4.39: Visual rhythms for video #3 stabilized by adaptive Gaussian filter.

top, left and right sides of the video obtained with our method. The difference is not
considerably large and the advantage or disadvantage obtained follows these proportions
in most videos.

In Figure 4.41, there is less information maintained on the top and bottom sides in
the use of the adaptive Gaussian filter. On the other hand, there is a larger amount of
information held on the left and right sides. Figure 4.42 illustrates a situation where our
method maintains less pixels. Lower amount of information is held on each side with our
method.
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Table 4.23: Comparison of ITFSSIM between semi-adaptive Gaussian filter and adaptive
Gaussian filter.

# Video Original Semi-Adaptive Gaussian Adaptive Gaussian

Crowd 0.603 0.762 0.763
Parallax 0.562 0.658 0.658

Quick Rotation 0.569 0.563 0.638
Regular 0.501 0.779 0.771
Running 0.435 0.716 0.646
Zooming 0.536 0.604 0.598

Average 0.534 0.680 0.679

Table 4.24: Comparison of hold pixels (%) between semi-adaptive Gaussian filter and
adaptive Gaussian filter.

# Video Semi-Adaptive Gaussian Adaptive Gaussian

Crowd 48.658 59.434
Parallax 54.102 65.675

QuickRotation 7.465 47.217
Regular 67.959 72.046
Running 34.157 57.597
Zooming 26.973 52.140

Average 39.886 59.018

(a) Adaptive Gaussian filter (b) YouTube [36]

Figure 4.40: Video #1: amount of pixels hold through our method is superior than state-
of-the-art approach.

The advantages of YouTube stabilization are a bit sharper when looking at videos
and visual rhythms. Figure 4.43 shows the visual rhythms of the video #3. The hori-
zontal rhythm presents more significant differences, with smoother lines and without the
trepidations presented in the rhythm derived from the adaptive Gaussian filter version.

Some even more pronounced trepidations can be seen in the video #10. Figures 4.44,
4.45 and 4.46 present visual rhythms of the original video #10 and after stabilization with
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Table 4.25: Comparison of ITF between adaptive Gaussian filter and YouTube
method [36].

#
Video

Original
Adaptive

Gaussian Filter
YouTube [36] Hold Pixels

1 18.793 27.455 27.890 Superior
2 20.390 28.914 28.604 Superior
3 16.186 22.090 23.030 Comparable
4 19.965 27.931 33.711 Superior
5 23.277 27.360 27.599 Inferior
6 19.681 29.077 29.390 Superior
7 24.109 28.876 29.252 Comparable
8 17.881 25.182 25.908 Superior
9 19.248 21.435 20.922 Inferior
10 12.972 16.381 20.495 Superior
11 21.487 25.659 26.672 Comparable
12 15.081 17.895 19.283 Comparable
13 23.841 29.987 28.845 Comparable
14 18.065 19.773 20.128 Inferior

Average 19.355 24.858 25.837 -

Table 4.26: Comparison of ITFSSIM between adaptive Gaussian filter and YouTube
method [36].

#
Video

Adaptive
Gaussian Filter

YouTube [36]

1 0.896 0.907
2 0.931 0.931
3 0.789 0.832
4 0.884 0.968
5 0.842 0.849
6 0.941 0.940
7 0.908 0.931
8 0.877 0.900
9 0.587 0.621
10 0.470 0.709
11 0.835 0.871
12 0.465 0.580
13 0.834 0.871
14 0.778 0.768

Average 0.788 0.834

Gaussian filter and YouTube method. We can notice that the motion intent obtained with
the adaptive Gaussian filter is as smooth as than that obtained with YouTube. However,
there are several remaining twitches. This is due to the more local nature of the movement
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(a) Adaptive Gaussian filter (b) YouTube [36]

Figure 4.41: Video #3: amount of pixels hold through our method is comparable to
state-of-the-art approach.

(a) Adaptive Gaussian filter (b) YouTube [36]

Figure 4.42: Video #12: amount of pixels hold through our method is inferior than state-
of-the-art approach.

present in the video. Our method does not produce results with the same quality since it
does not deal with local motion, such as the mesh-based method [69], and does not use
the wobble suppression method applied by the YouTube method [36].

4.4.2 Local Combined Features

In this subsection, we describe the results obtained with the combination of local features
after the removal of unwanted motion. The mean values of ITF and ITFSSIM for the videos
obtained in the end of the process are presented in Tables 4.27 and 4.28, in addition to
the percentage of pixels held reported in Table 4.29. Thus, we can observe the impact of
the estimation of the motion on the final result of the stabilization. For smoothing the
trajectory, the adaptive Gaussian filter was used since the videos to be considered have
intentional camera motion, and the direct application of the Gaussian filter would result
in a video with few or no pixels.

As in the motion estimation evaluation, we can see that the combination obtained
better results for most videos with respect to ITF and the ITFSSIM. The percentage
of video frame pixels held is smaller for the combination compared to SIFT. This is
reasonable, since the higher the correction applied by the transformation matrices, the
larger the amount of pixels lost. However, it is possible to notice that, in some cases,
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(a) horizontal visual rhythm (b) vertical visual rhythm

Figure 4.43: Visual rhythms for video #3 stabilized by YouTube.

the percentage of pixels held in videos with poor quality estimation can also cause many
pixels to be lost. This occurs, for example, in the video #7 for the MSER and STAR
detectors.

In Table 4.30, we have the average ITF values for each category of dataset present
in Table 4.2. In Table 4.31, we have the ITFSSIM values. Finally, Table 4.32 reports the
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(a) horizontal visual rhythm (b) vertical visual rhythm

Figure 4.44: Visual rhythms for original video #10.

(a) horizontal visual rhythm (b) vertical visual rhythm

Figure 4.45: Visual rhythms for video #3 stabilized by adaptive Gaussian filter.

(a) horizontal visual rhythm (b) vertical visual rhythm

Figure 4.46: Visual rhythms for video #3 stabilized by YouTube.
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Table 4.27: ITF for the stabilized videos.

Video Original MSER SIFT STAR Combination

1 18.793 26.824 27.451 27.009 27.540
2 20.390 26.153 28.349 27.760 28.528
3 16.186 20.060 21.041 21.190 21.912
4 19.965 23.765 27.666 26.334 27.676
5 23.277 25.625 27.343 26.385 27.347
6 19.681 23.307 29.089 25.298 29.139
7 24.109 - 28.147 21.383 26.555
8 17.881 24.215 24.702 24.877 25.226
9 19.248 20.369 20.998 20.254 21.454
10 12.972 16.021 16.360 16.359 16.475
11 21.487 25.231 25.708 24.870 25.474
12 15.081 17.785 17.667 18.142 17.834
13 23.841 25.109 25.474 26.903 26.406
14 18.065 19.466 19.725 19.389 19.674

Average 19.355 22.610 24.266 23.297 24.374

Table 4.28: ITFSSIM for the stabilized videos.

Video Original MSER SIFT STAR Combination

1 0.468 0.878 0.895 0.883 0.897
2 0.571 0.853 0.918 0.903 0.920
3 0.334 0.692 0.735 0.745 0.781
4 0.673 0.779 0.881 0.855 0.882
5 0.715 0.799 0.838 0.817 0.839
6 0.555 0.780 0.934 0.849 0.941
7 0.719 - 0.881 0.649 0.824
8 0.486 0.839 0.863 0.865 0.873
9 0.442 0.480 0.560 0.459 0.579
10 0.295 0.441 0.466 0.464 0.475
11 0.689 0.818 0.838 0.805 0.828
12 0.317 0.420 0.453 0.421 0.457
13 0.643 0.720 0.729 0.773 0.762
14 0.657 0.751 0.775 0.749 0.773

Average 0.540 0.712 0.769 0.731 0.774

percentage of pixels held in the video frames.
In the evaluation of the videos obtained after the entire stabilization process, it is

possible to observe from Tables 4.30, 4.31 and 4.32 that the results confirm the best
performance when the combination is used.
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Table 4.29: Pixels kept in the final videos.

Video MSER SIFT STAR Combination

1 73.245 73.500 74.500 73.500
2 76.024 75.762 76.286 76.286
3 76.311 76.823 76.312 76.569
4 60.375 62.465 62.465 62.465
5 23.042 54.253 47.931 54.031
6 71.333 70.838 71.829 70.838
7 0 74.861 4.278 65.333
8 73.241 73.284 73.241 73.590
9 13.512 57.740 7.913 53.389
10 70.296 69.440 71.383 69.146
11 54.771 57.083 54.542 55.958
12 12.092 59.297 10.220 55.660
13 64.500 72.781 68.203 69.094
14 52.576 53.672 50.750 52.877

Average 51.523 66.557 53.561 64.910

Table 4.30: Average ITF for the stabilized videos.

Category Original MSER SIFT STAR Combination

Crowd 19.479 22.200 22.657 22.587 22.930
Parallax 18.746 19.403 20.463 20.528 21.096

Quick Rotation 19.964 20.050 21.514 21.242 21.314
Regular 19.457 23.869 21.354 23.622 24.468
Running 17.327 20.269 20.917 20.664 21.153
Zooming 20.113 19.384 20.658 20.137 20.845

Average 19.181 20.862 21.261 21.463 21.968

Table 4.31: ITFSSIM for the stabilized videos.

Category Original MSER SIFT STAR Combination

Crowd 0.603 0.731 0.751 0.748 0.762
Parallax 0.562 0.603 0.642 0.642 0.671

Quick Rotation 0.569 0.571 0.634 0.508 0.605
Regular 0.501 0.592 0.726 0.722 0.758
Running 0.435 0.581 0.620 0.579 0.628
Zooming 0.536 0.524 0.590 0.565 0.598

Average 0.534 0.600 0.661 0.627 0.670
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Table 4.32: Average of the pixels maintained for the stabilized videos.

Category MSER SIFT STAR Combination

Crowd 56.194 59.555 56.110 58.874
Parallax 55.971 66.283 66.184 62.174

Quick Rotation 35.332 48.669 24.902 37.151
Regular 62.831 71.981 70.941 72.019
Running 47.572 57.332 49.558 56.217
Zooming 45.588 52.042 45.200 49.494

Average 50.581 59.310 52.149 55.988

4.4.3 Spatio-Temporal Optimization

In this subsection, we present the final results of the stabilization of the videos considering
the process of spatio-temporal optimization, after the process of removal of unwanted
motion. For the stabilization of videos, we apply an adaptive Gaussian filter in the
motion estimation obtained only with local features, as in the results obtained with our
method. In addition, we compared our results against those achieved with the state-of-
the-art YouTube stabilization method [36]. To do this, we submitted the unstable videos
on YouTube and retrieved the video generated after the stabilization process.

The step of smoothing the camera path applied by the YouTube method is more robust
and can yield superior results. Moreover, we apply neither a local estimate nor a wobble
suppression technique, such as that applied by the YouTube method. In frames where
there is no critical problem in motion estimation, the YouTube method tends to perform
better. This is not emphasized in our experiments, since the scope of this work is to
present the correction in the global motion estimation. In this subsection, our focus is
to verify the impact of these problems and their correction on the final video, after the
entire stabilization process.

Figure 4.47 shows the horizontal visual rhythms obtained both for the original and
stabilized videos. We can notice that the rhythms obtained in the stabilization through
estimation based on local features and in the version obtained with the YouTube method
have several discontinuities, which represent abrupt movements in the videos, both due to
the problem in the motion estimation presented in Figure 4.32. On the other hand, our
method does not have these discontinuities and achieves a considerably superior result,
as illustrated through its visual rhythm.

Figure 4.48 shows the vertical visual rhythms obtained both from unstable video #13
and videos stabilized with the three versions. We can verify that the beginning of the
YouTube visual rhythm has vertical lines, unlike the original rhythm and the other sta-
bilized versions. This indicates that the YouTube method has added an artificial motion
to the video, which does not correspond to the desired purpose. In this case, the image
remains static in the first frames, without the occurrence of motion. This occurred be-
cause the motion estimation computed by the YouTube method takes into account the
movement of the object, which is consequently compensated in the stabilization.
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(a) original (b) local features (c) our result (d) YouTube

Figure 4.47: Horizontal visual rhythms for video ours1.

The visual rhythms, illustrated in Figure 4.48, show that our method corrects several
instabilities or discontinuities that occur in the estimation based on local features. This
is especially noticeable at the beginning and end of the visual rhythms. Compared to the
visual rhythm obtained with YouTube, the rhythm generated by the proposed method is
significantly more regular, representing a better quality in the video stabilization process.
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(a) original (b) local features

(c) our result (d) YouTube

Figure 4.48: Vertical visual rhythms for video ours7.
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Chapter 5

Conclusions

The main objective of this work was to investigate the problem of video stabilization.
We then developed and evaluated 2D methods for digital stabilization of videos. The 2D
video stabilization process is usually divided into three main steps: estimation of camera
motion, removal of unwanted motion, and generation of the corrected video.

This work presented five novel methods related to digital video stabilization. Exper-
iments were conducted on three distinct sets of videos. The first consisted of fourteen
video sequences. The second consisted of one hundred and thirty-nine videos divided into
six categories. The third, constructed in this work, consisted of eight videos.

For the step of camera motion estimation, this work presented two new approaches.
The first technique combined local features in the context of video stabilization, where
different local feature detectors were applied to each pair of adjacent frames to obtain a
consensual estimation of the frame-by-frame motion of the methods under consideration.
The results obtained with the combination were compared to the methods employed
individually. In general, the combined method was relatively close to the best detector
and, in some videos, was considerably superior. The second technique improved the
global motion estimation through a spatio-temporal optimization. The proposed method
was based on the structural similarity index and used temporal information to detect
and correct the motion estimation obtained with local features. Results achieved with
the stabilization process were compared to the state-of-the-art YouTube method. The
obtained results showed that the proposed method was capable of properly detecting and
correcting problems in the global motion estimation step. Since the motion estimation in
the YouTubemethod is based on local features, these problems were visible in the stabilized
video. Our method, in turn, dealt well with such cases and generated videos that are
considerably more stable. In cases where video frames have neither very representative
background nor moving objects, our method overcomes the YouTube method.

For the step of unwanted motion removal, we presented a technique for video stabi-
lization based on an adaptive Gaussian filter to smooth the camera trajectory in order to
remove oscillations. The proposed filter assigned distinct values to σ along the camera
trajectory by considering that the intensity of the oscillations changes throughout the
video. The results obtained in the experiments were compared to different versions for
the smoothing of the trajectory: Kalman filter, Gaussian filter with σ = 40, and a semi-
adaptive Gaussian filter. The new approach achieved comparable values for stabilization
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quality while maintaining a significantly higher amount of pixels. A comparison against
the stabilization method used on YouTube demonstrated that our approach produced
competitive results.

In this work, we also investigated and proposed two techniques for the subjective
evaluation of stabilization. The first was a representation based on visual rhythms for the
subjective evaluation of video stabilization. The vertical visual rhythm was constructed
from the average of the columns of each frame, whereas the horizontal visual rhythm was
constructed from the average of the rows of each frame. We were able to characterize
and separate the horizontal and vertical movements of the video, determining how and
when they occur. The stability of a video could be determined from the regularity and
smoothness of the curves for each visual rhythm. Furthermore, the presence of more
complex movements, such as zoom, could be verified in the visual rhythm. The second was
a representation based on the motion energy image (MEI) for the subjective evaluation of
video stabilization. The visualization was constructed from the mean of MEIs calculated
for all the video frames and then highlighted with a pseudocolor transformation. We were
able to characterize the amount of spatial motion, as well as its location, present in the
video. By considering that an unstable video has a greater amount of motion than its
stabilized version, we could use this technique to evaluate the stabilization of videos. The
results showed that the proposed visualization was adequate and represented well both
the amount and location of spatial motion.

Based on the results presented and discussed, we answered the research questions
presented in the Chapter 1 as:

• Can the use of different local features combined improve the motion estimation?
Answer: Motion estimation can be improved through the combination of local fea-
tures, that is, if the use of a single local feature method has not been sufficient for
a correct motion estimation.

• Can the information from motion estimation of adjacent frames be used to de-
tect and correct failures in the motion estimation? Answer: The information from
previous frames can be used to detect and correct motion estimation through an
optimization method.

• Can an adaptive filter generate videos with a higher amount of information maintain-
ing the quality of the stabilization? Answer: An adaptive Gaussian filter achieved
comparable results for stabilization quality in comparison with its direct version
while maintaining a significantly higher amount of pixels.

• Are the stabilization evaluation metrics available in the literature coherent with
visual perception? Answer: In many cases, the ITF and ITFSSIM values have been
inconsistent with the visual perception of video stability.

• Can the visual rhythm and the motion energy image characterize the stability of a
video and be used for its evaluation? Answer: The two proposed visual representa-
tions, based respectively on visual rhythms and motion energy image, were able to
characterize the stability of a video.
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5.1 Future Work

From the investigation conducted on this work, we have identified some directions that
can be explored in future work. They are briefly described in the following subsections.

5.1.1 Estimation of Camera Motion

There are other local feature methods than those considered in our current experiments.
The performance of these methods could be studied in a future work. Furthermore, only
few combinations of local features were evaluated, such that several other combinations
could be further investigated.

In the optimization method, the impact of the parameters involved in the process
was only superficially studied. Thus, a deeper investigation could be carried out on this
subject. Moreover, additional optimization strategies, replacing Powell’s method, could
be considered and analyzed.

The current methods for estimating local motion are based on the use of local fea-
tures [69], which make them incompatible with the optimization method proposed in this
work. Thus, we could elaborate a method for the local motion estimation for the frames
in which the optimization is applied, extending our method to deal with local motion.

5.1.2 Removal of Unwanted Motion

The adaptive Gaussian filter, proposed in this work, has several parameters that can also
be investigated in a more systematic way. Furthermore, methods that consider more
local motion use their own optimization to remove the unwanted motion. Thus, we could
extend the adaptive Gaussian filter to deal with more local motion estimates.

We could also propose a new method for removing unwanted motion through a con-
strained optimization, which obtained the smoothest camera path possible considering a
certain minimum amount of frame pixels to be held.

5.1.3 Evaluation of Stabilization

The construction of a database with a large number of videos containing ground-truth of
global motion estimation would allow for a more precise assessment of the video stabi-
lization process.

We could develop objective metrics calculated from the visual representations (visual
rhythm and motion energy image) proposed in this paper and use them for the charac-
terization and evaluation of video stabilization.

We could also use the visual representations to train a classifier to recognize unstable
and stable videos on a dataset to be built. From a trained classifier, we could use it to
estimate membership [58,81,115] of an input video, relative to the class of stable videos.
Thus, we would have a percentage of video stability, which could be used as an objective
measure for the stabilization evaluation.
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Additionally, we could train a classifier to determine which types of motion are present
in a particular video. Thus, we would able to develop an adaptive method for the stabiliza-
tion that used the information regarding the motion of the input video to its stabilization.

The determination of what is considered as unwanted motion is usually subjective.
Therefore, we could propose to build a data set with stable videos and perturb them
of how to obtain unstable videos. Thus, we would have the ground-truth of the stable
path made by the camera, which could be used to evaluate the path obtained with the
stabilized video, complementing other measurements.

Finally, we intend to create a data set with several videos divided into different cate-
gories of movements and make it available in order for other researchers to evaluate and
compare their methods.
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Appendix A

Additional Experiments

This appendix presents some additional topics explored in this work related to the video
stabilization problem. We intend to conduct a more detailed investigation on each of
these tasks to extend the methods and improve their results.

The following subsections address each topic: (i) parallelization of digital video stabi-
lization, (ii) objective evaluation from metrics extracted from visual representations, and
(iii) local motion estimation.

A.1 Parallelization of Digital Video Stabilization

Due to the increase in the amount of videos available and their spatial resolution, it
is fundamental to develop efficient methods for video processing. The structure of the
stabilization problem presents some steps that can be performed independently. Thus,
the use of parallelization techniques can significantly reduce the execution time required
in the stabilization process, favoring applications with time restrictions. The diagram of
Figure 3.8 presents the proposed parallel video stabilization architecture.

Figure A.1: Main steps of the proposed parallel video stabilization architecture.

In the initial step, k contiguous frames are assigned to i-th thread, where k can be
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expressed as

k =


N
m if ti = 0 and bj = 0

N
m + 1 + (N mod m) if ti = m− 1

N
m + 1 otherwise

(A.1)

where N is the number of frames in the j-th batch b loaded into memory and m the
number of threads. The batches are used as a device to make it possible to process videos
larger than available memory.

The i-th thread, 1 ≤ i ≤ m, has as its first frame, the last of the previous thread.
The first thread of each batch considers the last frame of the previous batch, for every
batch bj such that j 6= 0. This is done so that every pair of intermediate frames has its
transformation matrix properly calculated. Thus, each thread is responsible for computing
the same number of frames except the first thread of the first batch and the last of each
batch.

We used the Lucas-Kanade method [73] to estimate the motion, and the mean filter
for the removal of unwanted motion. Then, each thread is again responsible for the same
set of frames in the video. From the original and the smoothed path, it is necessary to
recalculate the value of the transformation matrix factors of each frame. At this point,
each thread considers the arrays of their respective frames. With the updated matrix, this
is applied to the first frame of the pair, so as to take it to the coordinates of the posterior
frame. When applying the transformation to all frames, a stabilized video is obtained.

We are interested in evaluating the improvements and effects of parallelization on the
video stabilization process, but not the quality of the video obtained. For this, we use
two metrics: speedup and efficiency.

Speedup measures how fast an algorithm is relative to its sequential version. Ideally,
speedup should be equal to the number of threads used. However, this is rare because of
the overhead present in parallelism. Speedup can be expressed as

Speedup =
Ts
Tp

(A.2)

where Ts is the sequential time and Tp is the time of the parallel version.
The efficiency evaluates how much the threads are used in the execution of a parallel

algorithm, which can be seen as the average percentage of use of each thread, and can be
expressed as

Efficiency =
Ts

m ∗ Tp
(A.3)

where m is the number of threads.
Table A.1 presents the videos considered in these experiments. The videos were taken

from YouTube and cropped in order for them not to have abrupt frame transitions. Three
different video resolutions were considered: 854 × 480 pixels (HQ), 1920 × 1080 pixels
(HD), and 4096× 2160 pixels (4K).

All experiments were executed on a 2.8 GHz Intel(R) Core(TM) i5 CPU with 4GB
RAM using Linux 4.4.0-38 and C++ language. The memory used to store the frames was
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Table A.1: Videos considered in the experiment and their respective sources.

# Video Source

1 youtu.be/95GlwrqE44U
2 youtu.be/W5ZxDYFMLFo
3 youtu.be/1I2nbdg0Yuw

limited to 1GB. The method was implemented in two versions: with the pThreads library,
and with the OpenMP framework. Three executions were performed for each video, and
the metrics were computed from the average time.

Tables A.2 and A.3 present the speedup and efficiency obtained in all videos, respec-
tively, considering the version implemented with pThreads. Tables A.4 and A.5 present
the results of the version implemented with OpenMP.

Table A.2: Speedup values for the implementation in pThreads.

# Video 2 Threads 4 Threads
HQ HD 4K HQ HD 4K

toquio 1.986 2.072 2.113 2.743 2.746 2.863
animals 2.038 2.063 2.093 2.833 2.748 2.853
birds 2.013 2.086 2.107 2.769 2.766 2.866

Table A.3: Efficiency values for the implementation in pThreads.

# Video 2 Threads 4 Threads
HQ HD 4K HQ HD 4K

toquio 0.993 1.036 1.056 0.686 0.686 0.716
animals 1.019 1.032 1.047 0.708 0.687 0.713
birds 1.006 1.043 1.053 0.692 0.691 0.716

Table A.4: Speedup values for the implementation in OpenMP.

# Video 2 Threads 4 Threads
HQ HD 4K HQ HD 4K

toquio 1.898 1.903 1.975 3.024 2.911 2.923
animals 1.903 1.922 1.962 3.054 2.924 2.920
birds 1.908 1.910 1.972 3.033 2.916 2.916

From the results, we can observe that the parallelization mechanism was effective,
obtaining linear speedup with two threads. There was a little change in the results
for the two versions. It was expected that videos with higher resolutions would show
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Table A.5: Efficiency values for the implementation in OpenMP.

# Video 2 Threads 4 Threads
HQ HD 4K HQ HD 4K

toquio 0.949 0.952 0.987 0.756 0.728 0.731
animals 0.952 0.961 0.981 0.763 0.731 0.730
birds 0.954 0.955 0.986 0.758 0.729 0.729

better results, although this did not occur due to the hardware used. Nevertheless, the
parallelization method seems to be promising.

In future experiments, we intend to consider a larger number of video sequences and
a superior hardware configuration to allow us to better evaluate the results for a larger
number of threads.

A.2 Objective Evaluation

Although subjective evaluation is important to observe the effectiveness of the video
stabilization methods, it is indispensable to develop objective metrics that are consistent
with visual perception, especially when we need to comparte large data sets.

The following subsections describe the metrics obtained with both the motion energy
image and visual rhythm representations.

A.2.1 Motion Energy Image

Figure A.2 presents the histograms of the images shown in Figure 4.10, where we can
easily distinguish the image from the stabilized and the non-stabilized video.
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Figure A.2: Histogram of average image of MEIs for video #4.
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We extracted statistical measurements from the graylevel image in order to obtain an
objective metric that characterizes the average amount of motion (AAM) present in the
video and that can be used to determine the quality of the stabilization process. For this,
we consider the normalized average of the gray-level intensities, which can be expressed
as

AAM =

W∑
x

H∑
y

I(x, y)

WHLmax

(A.4)

where W and H correspond to the width and height of the image, respectively, whereas
Lmax is the maximum intensity that a pixel can assume.

The AAM value is normalized between 0 and 1. Higher values indicate a greater
amount of motion. Typically, a more stable video should generate a lower AAM value
than its unstable version. For visualization purpose, we used the AAM to compare videos
before and after the stabilization process. Therefore, we need not be concerned with the
interference of moving objects, since this will occur in both videos.

Table A.6 displays the values of AAM, as well as the ITF values for the original videos
and after the YouTube stabilization method [36].

Table A.6: AAM and ITF values for the videos from the first dataset.

# Video Original YouTube
ITF AAM ITF AAM

1 18.793 0.758 27.890 0.557
2 20.390 0.671 28.604 0.456
3 16.186 0.815 23.030 0.646
4 19.965 0.596 33.711 0.364
5 23.277 0.683 27.599 0.574
6 19.681 0.828 29.390 0.547
7 24.109 0.627 29.252 0.417
8 17.881 0.775 25.908 0.578
9 19.248 0.800 20.922 0.746
10 12.972 0.847 20.495 0.718
11 21.487 0.671 26.672 0.550
12 15.081 0.840 19.283 0.756
13 23.841 0.598 28.845 0.462
14 18.065 0.650 20.128 0.590

Mean 19.355 0.726 25.837 0.569

Table A.7 shows the AAM and ITF values for the tested videos before and after the
stabilization process. Both versions are available in the database. The stabilized version
was originally obtained with the method proposed by Liu at al. [69].

From Tables A.6 and A.7, it can be noticed that the proposed metric has consistent
results with the ITF metric in the evaluated videos, which demonstrates that it can be
used as an alternative to the ITF. From Table A.7, we can see that the mean value of
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Table A.7: Mean AAM and ITF values for the videos from the second dataset.

Category Original Stabilized
ITF AAM ITF AAM

Crowd 19.479 0.787 23.699 0.731
Parallax 18.746 0.741 22.499 0.684

Quick Rotation 19.963 0.758 24.166 0.705
Regular 19.468 0.713 28.248 0.567
Running 17.326 0.828 22.765 0.750
Zooming 20.113 0.746 24.630 0.684

Mean 19.183 0.762 24.334 0.687

AAM is lower in Regular, Zooming and Parallax categories, which have a lower amount
of movement in their videos.

Table A.8 presents the values of AAM and ITF metrics for video #4 stabilized through
a simple method, where a Gaussian smoothing filter is applied with different values of σ.

Table A.8: AAM and ITF values for video #4.

Gaussian σ = 10 Gaussian σ = 40 Gaussian σ = 890

ITF AAM ITF AAM ITF AAM

26.840 0.488 33.380 0.385 33.865 0.375

From Table A.8, it can be seen that the ITF and AAM values decrease with the
increase of σ. This occurs because the method considered the motion as undesired and
corrected most of the motion with increasing σ. It is possible to observe that, with
σ = 890, the ITF obtained with the Gaussian filter is superior to that obtained with
YouTube method. However, the video generated with the Gaussian filter is visually more
unstable, containing several distortions.

The AAM values, also reported in Table A.7, are not smaller than the value obtained
with the YouTube method and, therefore, more consistent with the visual result of the
video.

A.2.2 Visual Rhythm

In the visual rhythm, the behavior of the movement present in the video is represented
by the shapes of the curves. A more stable video has rhythms with smoother curves. As
shown in Figure 3.13, the directions of the visual rhythm can be checked in each column
pair of pixels. We believe that a softer visual rhythm has more regular directions, with less
abrupt changes in the directions that are near. Thus, to get a new objective metric from
the visual rhythm, the directions and then calculate their changes must be computed.
Figure A.3 illustrates the method for calculating the metric.

Initially, we calculate the visual rhythm gradients, in order to obtain the directions
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Figure A.3: Main steps of the objective metric method.

of each pixel of the rhythm. This was implemented through the Sobel filter [98]. The
gradients are decomposed into magnitude and angle.

A thresholding with the Otsu algorithm [83] is applied to the magnitudes in order
to determine the edges of the visual rhythm. This is done in order to consider only the
edge angles in the following calculations. Then, a co-occurrence matrix is calculated. This
matrix is based on the grey level co-occurrence matrix (GLCM) [39]. However, it considers
the co-occurrence of the angles of the edges, in the direction of the angles themselves.

Initially, we eliminate the sign from the angles, leaving them in the range of 0 to 180
degrees. For the calculation of the co-occurrence matrix M , we consider n directions
D = {d0, d1, ..., dn}, resulting in a matrix of size n × n. The angles are then quantized
in possible directions. For each pixel i belonging to the edge, we have its angle θi ∈ D,
from which we calculate the nearest pixel j in the direction of θi itself. Then, it counts
as a co-occurrence at the position Mθi,θj increasing this position of the matrix. For cases
where θi are different from the important angles, we have two pixels j1 and j2. Thus, the
two positions of the matrix are incremented proportionally to the distances of the angles.

Finally, the matrix is normalized by the sum of its elements. Thus, the value of the
matrix in the position Mθi,θj indicates the probability that θj is the next direction of the
visual rhythm, since the previous one was θi. From the generated co-occurrence matrix,
we can calculate features in order to obtain objective metrics. Among the textural features
defined by Haralick and Shanmugam [39], homogeneity can be expressed as

homogeneity =
n∑
i=0

n∑
j=0

1

1 + (i− j)2
Mi,j (A.5)

The homogeneity feature, when calculated from the co-occurrence matrix of the edge
angles, will assume greater values as closer the angles of consecutive directions. Table A.9
reports the results of the homogeneity for the visual rhythms (horizontal and vertical) for
the video sequences shown in Table 4.1 for the original videos stabilized by the YouTube
method [36]. We can notice that the obtained results can distinguish original and stabi-
lized videos. However, we must further investigate the extraction of other features from
the co-occurrence matrix, which may be complementary to the homogeneity feature.

A.3 Local Motion

Local motion estimation is important for both non-rigid oscillations and parallax effects.
The following subsections present methods for both local motion estimation through op-
timization mechanisms and frame transformation based on the local motion.
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Table A.9: Results of homogeneity for video sequences.

# Video Original YouTube
horizontal vertical horizontal vertical

1 0.446 0.449 0.737 0.773
2 0.404 0.478 0.685 0.741
3 0.392 0.473 0.647 0.708
4 0.409 0.425 0.665 0.742
5 0.511 0.575 0.715 0.649
6 0.481 0.627 0.678 0.734
7 0.423 0.446 0.652 0.615
8 0.409 0.508 0.697 0.672
9 0.499 0.523 0.549 0.625
10 0.387 0.441 0.588 0.620
11 0.609 0.557 0.743 0.636
12 0.515 0.474 0.535 0.678
13 0.499 0.441 0.665 0.614
14 0.479 0.618 0.521 0.750

Average 0.461 0.502 0.648 0.682

A.3.1 Local Motion Estimation

When using the optimization method proposed in this work for the correction of global
motion estimation, there is no longer a set of local features to allow the construction of
meshes proposed by Liu et al. [69]. Figure A.4 illustrates the method for constructing the
meshes in these cases based on optimization.

Figure A.4: Main steps of the local motion estimation method.

Initially, the overall estimate of the pair of frames is calculated by the optimization
method, as presented in Chapter 3. Then the frame is divided into four regions of same
size and the motion is estimated for each of them separately. This new estimation is also
calculated through optimization, considering the global motion estimation as the initial
guess. This is done recursively until the stop criterion is satisfied. A minimum size of the
frame region is used as stopping criterion, such that it is not further divided.

The estimation must be calculated in such a way that (i) the consecutive frames are
similar, (ii) that the local motion is not very different from the global motion, and (iii)
that the motion of neighbor cells are similar. For this, we define the objective function as
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f = (α)(1−mean(S)) + (1− α)(d(M0,Mnew)) (A.6)

where mean(S) is the mean value of SSIM between the reference frame and the transformed
frame, considering only the determined region of the frame, whereas d(M0,Mnew) is the
Euclidean distance between the initial guess matrix M0 and the estimated matrix Mnew.
The SSIM value guarantees the similarity of the frames, whereas the use of the distance
between the matrices is intended to meet the two other requirements. In addition, the
transformation presented later tends to force even more than the motions of cells are close.

A.3.2 Frame Transformation

After estimating the local motion, it is necessary to transform the frame in a non-linear
way, however, without losing its shape. For this, Liu et al. [69] used an optimization
approach in the unwanted motion removal step, that approximates the smoothed paths
of each cell, as presented in Equation 2.14. Then, the matrices of each cell are applied
directly to the frame. However, this does not allow the use of techniques such as the
adaptive Gaussian filter proposed in our work. Furthermore, it did not present good
results in our experiments. In our method, each pixel will have a distinct transformation
matrix, which can be defined as

H(i) =

∑
c∈Ωi

1

λi,c
Mc

∑
c∈Ωi

1

λi,c

(A.7)

where H(i) is the transformation matrix of the pixel i. The set Ωi comprises the neigh-
boring cells of the cell in which the pixel i is present, in addition to the cell of the pixel
itself. The matrix Mc is the transformation matrix of cell c, whereas λi,c is the Euclidean
distance between the pixel i and the central pixel of cell c.

Applying such transformation allows the frames to be transformed non-linearly with-
out deforming it. Figure A.5 illustrates overlapping original frames both after the global
and local transformations. From the frames presented, it is possible to notice that the
method was able to improve the global motion estimation, correcting some of the trans-
formations in certain points of the image without undoing the match in points that were
correct.

As future investigation, we intend to refine the local motion estimation method, as well
as the frame transformation approach. In addition, several experiments will be conducted
to demonstrate the effectiveness of the proposed motion estimation strategies.
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(a) original (b) global motion (c) local motion

Figure A.5: Comparison between global and local transformations for video #10.
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