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Resumo

Uma metodologia para abordar missões autônomas persistentes a longo prazo é apresentada junta-
mente com uma formalização geral do problema em hipóteses simples. É derivada uma realização dessa
metodologia que reduz o problema geral para subproblemas de construção de caminho e de otimização
combinatória, que são tratados com heuŕısticas para a computação de solução viável. Quatro estudos de
caso são propostos e resolvidos com esta metodologia, mostrando que é posśıvel obter caminhos cont́ınuos
ótimos ou subótimos aceitáveis a partir de uma representação discreta e elucidando algumas propriedades
de solução nesses diferentes cenários, construindo bases para futuras escolhas educadas entre o uso de
métodos exatos ou heuŕısticos.

Palavras-chave: Planejamento, Roteamento, Design de Metodologia, Robótica Cooperativa



Abstract

A Methodology for tackling Persistent Long Term Autonomous Missions is presented along with
a general formalization of the problem upon simple assumptions. A realization of this methodology
is derived which reduces the overall problem to a path construction and a combinatorial optimization
subproblems, which are treated themselves with heuristics for feasible solution computation. Four case
studies are proposed and solved with this methodology, showing that it is possible to obtain optimal or
acceptable suboptimal continuous paths from a discrete representation, and elucidating some solution
properties in these different scenarios, building bases for future educated choices between use of exact
methods over heuristics.

Keywords: Planning, Routing, Methodology Design, Cooperative Robotics



List of Figures

1.1 Example of a Persistent Long Term Mission with sampling and surveillance objectives. . 13
1.2 Deforestation of Brazil’s Amazon legal region, from 1988 to 2016. . . . . . . . . . . . . . . 14
1.3 Airship Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Overall autonomous platform view and its inter-relations. . . . . . . . . . . . . . . . . . . 16

2.1 Mission planning workflow diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Two examples to highlight the segmentation effect on the drift from the best true path

obtained after segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Two examples of reconstruction after position planning (left) and during position planning

(right) highlighting the necessity of treating orientation with positioning. . . . . . . . . . 19
2.4 Visual representation of the lattice used in the segmentation. In this case showing the

maximum possible lattice gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Example of primitive and neighborhood definitions. . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Constituent simpler elements of a complex maneuver. . . . . . . . . . . . . . . . . . . . . 20
2.7 Example of equivalent lattices achieved via displacement. The left lattice is the original,

the middle lattice is the same as the left one, but displaced diagonally, and the right one is
the lattice obtained by displacing a full diagonal from the left one and half diagonal from
the middle one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Intervals of search for positioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Two different continuous reconstruction with cohesive node links. . . . . . . . . . . . . . . 26
2.10 Example of possible problems with relaxed model limits. . . . . . . . . . . . . . . . . . . . 28
2.11 Illustration of the tour merge transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.12 Illustration of the tour removal transformation. . . . . . . . . . . . . . . . . . . . . . . . . 30
2.13 Illustration of the node transfer transformation. . . . . . . . . . . . . . . . . . . . . . . . . 30
2.14 Illustration of the node removal transformation. . . . . . . . . . . . . . . . . . . . . . . . . 31
2.15 Ray casting algorithm visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.16 Simple convex region and its segmentation objective function. . . . . . . . . . . . . . . . . 35
2.17 Result of filtering for interest nodes after segmentation. . . . . . . . . . . . . . . . . . . . 35

3.1 Point cloud and cell graph of case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Filtered interest nodes for case 1 with their covering radii. . . . . . . . . . . . . . . . . . . 40
3.3 Sample of all constructed paths for case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Resulting tours for exact and ASC solutions of case 1. . . . . . . . . . . . . . . . . . . . . 42
3.5 Resulting tours for exact and ASC solutions of case 2. . . . . . . . . . . . . . . . . . . . . 43
3.6 Resulting tours for a ASC+OOS solution of case 3. . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Resulting tours for exact solution of case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 Resulting tours for a ASC+OOS solution of case 4. . . . . . . . . . . . . . . . . . . . . . . 46
3.9 Resulting tours for exact solution of case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 47



List of Algorithms

1 Eager Uniform Cost Search (Dijkstra’s algorithm) . . . . . . . . . . . . . . . . . . . . . . 25
2 Lazy Uniform Cost Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 ASC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 OOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 ReSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6 Polygon pertinence ray casting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Glossary

ASC Admissible Score Clustering. 39, 42, 44, 45, 49, 50, 60, 63

AURORA Autonomous Unmanned Remote Monitoring Robotic Airship. 24

CTI Centro de Tecnologia de Informação Renator Archer.

CVRP Capacited Vehicle Routing Problem.

DRONI Conceptually Innovative Robotic Airship. 24

MILP Mixed Integer Linear Programming. 35, 37, 39, 42, 63

OOS Order and Orientation Switching. 42, 44, 49, 50, 60

PLTAM Persistent Long Term Autonomous Mission. 23–26, 29, 35

ReSC Restarting Sequential Construction. 42, 49, 50, 60

ShorPaP Shortest Path Problem. 30, 35, 36, 63

SimPaD Simple Path Drift. 30, 32, 63

TSP Traveling Salesman Problem. 39, 42

UAV Unmanned Air Vehicle. 25, 49, 50

UGV Unmanned Ground Vehicle. 34, 49, 50

VRP Vehicle Routing Problem. 29, 30, 39



Symbols

Ec+ Cell graph edges, being primitives.

Ed+ Decision graph edges, being primitives.

Gc Cell graph, resulting from segmentation.

Gd Decision graph, resulting from path construction.

Ia Index of agent classes.

Io Index of operations.

Ir Index of interest regions.

N c+ Cell graph nodes, being positions and orientations.

Nd+ Decision graph nodes, being positions and orientations.

Ri Sub interest region of index i.

R Working total region.

βa Capacity limits for agent class a.

N Set containing all natural numbers (without zero).

R Set containing all real numbers.

P(bR) Set of discrete paths that originate and end in bR.

PC(bR) Set of discrete paths that originate and end in any other point than bR.

S(bR) Set of continous paths that originate and end in bR.

S(p1, p2) Set of continous paths that originate in p1 and end in p2.

T Set of graph transformations.

µca Cost functional for agent class a.

µea Efficiency functional for agent class a.

µea,o Supply functional for agent class a and operation o.

ρc Maximum covering radius of all agent classes.

Φ Set of discrete orientations.

bR Base location.

rmin Minimum turning radius of all agent classes.



Contents

1 INTRODUCTION 13
1.1 WORK INSPIRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 PLATFORM DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 MAIN CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 MISSION PLANNING 17
2.1 PROBLEM FORMALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 SEGMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 COST ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 PATH CONSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 OPTIMAL ASSIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Mixed Integer Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Admissible Score Clustering heuristics family . . . . . . . . . . . . . . . . . . . . . 28

2.6 IMPLEMENTATION ASPECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 VALIDATION AND RESULTS 37
3.1 CASE STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 CONCLUSION AND FUTURE WORKS 49



13

1 INTRODUCTION

This chapter discusses the motivations and related previous research present in the literature. Therefore,
if the reader is already familiar with the matter of this text, this chapter can be safely skipped, with the
exception of the platform overview at Section 1.4.

Persistent Long Term Autonomous Missions (PLTAMs) refer to autonomous operations which are de-
signed to last long periods of time with the least external intervention as possible. Examples include au-
tonomous agricultural harvesting or continuous surveillance in urban or wild environments (TSOURDOS;
WHITE; SHANMUGAVEL, 2010), such as the development of cooperative aerial robots for environmental
monitoring in large forest regions like the Brazilian Amazon (PINAGÉ; CAVALHO; QUEIROZ-NETO,
2013). Figure 1.1 shows a sampling and surveillance mission with a central base that the agents, or
robots, return in order to refuel and exchange information.

Surveillance
Interest

Comm.
Tower

Main
Base

Sampling
Interest

Figure 1.1: Example of a Persistent Long Term Mission with sampling and surveillance objectives.

A minor problem regarding PLTAMs, or Autonomous missions in general, is nomenclature. There
is not, as of 2018, naming conventions in the literature for problems similar to the one treated in this
thesis; the closest ones are called robotic coverage problems and may have very different constraints
with similar goals. Section 1.3 lists some previous relevant work that may employ other names for their
challenges. Here, the term persistent autonomous mission or persistent autonomous operation will be
used for multi-agent systems whose goal is executing some tasks optimally, whatever the metric, in a
repeatable manner, while respecting all agents running constraints, e.g. fuel.

1.1 WORK INSPIRATIONS

Persistent Long Term Autonomous Mission (PLTAM) is not a new concept in engineering practice. For
instance, platforms destined to exploration have already for many years now embraced this paradigm as
the safest and most economical approach, the most famous of these late platforms being the discovery
autonomous Mars rover (NASA, 2017). Other cases where autonomous missions can be classified as
PLTAMs occur in military operations of surveillance, agriculture in automated farming and, more recently,
safe commercial self-driving connected vehicles. All these problems have similar descriptions in which a
metric, usually time or operation cost, must be minimized by the cooperation of all agents simultaneously,
while respecting their constraints and ending in the same place they started: a “base”, thus, conforming
to the definition of PLTAM given earlier.
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In Brazil, a continued research effort aims to study an autonomous surveillance systems for the Amazon
rainforest, in order to contain illegal deforestation that has been decreasing in the last years but is still
significant to greatly impact the ecosystem as a whole. Figure 1.2 shows the deforestation estimates for
the legal Amazon region in Brazil from 1988 to 2017 (INPE, 2017).

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
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Figure 1.2: Deforestation of Brazil’s Amazon legal region, from 1988 to 2016.

Two projects that are part of these efforts are the robotics airships Autonomous Unmanned Remote
Monitoring Robotic Airship (AURORA) (ELFES, ALBERTO et al., 1998) and Conceptually Innovative
Robotic Airship (DRONI), the latter being a reworking and improvement of the former, destined to
monitor large areas of the Amazon with the least supervision possible, i.e. in a PLTAM. Figure 1.3 shows
an AURORA implementation in test and a DRONI geometric model concept.

Figure 1.3: The AURORA (left) and DRONI (right) projects.

Once again, all these projects share the common assumption that the robots must execute tasks
cooperatively in a certain map and must return to a prescribed point, a base, so that they refuel and
exchange information. This abstraction is the key inspiration for all work done in this thesis, as will
become apparent in Chapter 2. Hence, although no explicit real-life application is studied in this text, the
eventual implementation of a planning methodology for these autonomous amazon surveillance missions
constitute the goal that the theoretical exploratory studies in this text have.

1.2 OBJECTIVES

The main objective of this thesis is to build a framework of techniques which permits the planning
of cooperative persistent long-term autonomous missions with the minimum overall mission cost on a
long-term basis.

Rodolfo Jordão
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1.3 RELATED WORK

As mentioned earlier, a similar problem to the PLTAM is repeated robotic area coverage, sometimes also
treated as one-off area coverage. In these problems, the work done by Fazli, Davoodi, and Mackworth
(2013) considers a group of homogeneous robots for repeated area coverage, starting from a region de-
scription for robotic task construction, although non-holomonic constraints are not naturally embedded
into the solution workflow. Closer to this one, the research developed in Xu, Viriyasuthee, and Rekleitis
(2014) tries to segment and route the surveillance in a region to homogeneous Unmanned Air Vehicles
(UAVs) agents, treating non-holomonic agents via after-route greedy techniques. The major difference
is that the methodology here considers the agents constraints directly during planning, via creation of
“state graphs”, somewhat similar to the idea developed by Pivtoraiko, Knepper, and Kelly (2009), but
treating the objectives in their natural domain, rather than the agents’.

Some coverage problems are treated three dimensionally to better fit the operation in question, for
instance, in Bentz et al. (2017), a workflow was developed for inspection missions where multiple homo-
geneous UAVs cover a 3D map with defined visual sensors and resampling. In Bircher et al. (2016), a
similar objective was sought, but the energy capacity of the UAVs was considered along with the coverage
of the 3D environment, resulting in the return of the covering agents to a refuel station near their end
of energy capacity. Although 3D approaches are able to model a greater number of robotic missions,
there is still a major drawback allied with the complexity of choosing to do so: the works so far usually
model the problem as a control one, increasing the difficulty of optimality provability when compared to
modeling problems in a pure optimization fashion, as done here. Note that this observation is also valid
for 2D ambiances, independently of the reduced dimensional complexity.

There is also the study and design of a completely decentralized schemes: in Javanmard Alitappeh
et al. (2017), agents are routed in a general topological map in way suited for indoor missions, although
details of its construction were not the major focus; in Mitchell et al. (2015), a decentralized scheme for
routing that respects the capacity and refueling constraints of the robots was developed and tested in
real robots, planning a PLTAM successfully for about 10 robots. Aligned closely to off-line planning,
in Broderick, Tilbury, and Atkins (2014), a topological deconstruction in a sweep manner is done in a
bidimensional map, then treated as optimal control problem where the covering mechanic happens due to
the cost function. Other similar theoretical works include also an optimal planning scheme for choosing
the best swiping order, where swiping is the linear geometry the agents make to cover the environment,
cooperatively in an agricultural setting with many agents (BURGER; HUISKAMP; KEVICZKY, 2013)
and a continuous area coverage discretized by methodical sampling of the domain, followed by routing
and assignment of a single UAV (ISAACS; HESPANHA, 2013). The main difference of the methodology
proposed here is that it does not require a priori setup of swiping motion geometries commonly found in
general coverage missions while also treating the continuous planning in a discretized manner.

Other studies include treatment of these persistent missions in a more concrete fashion, researching
and developing a complete Unmanned Aerial Systems with similar considerations as developed here, but
focusing on implementation, homogeneous agents, testing and system deployment aspects (DAMILANO
et al., 2013; BOCCALATTE et al., 2013), in contrast to the problem abstraction and solution focus of
this work. That is, their main goal is the hardware and software required for implementation of a system
such as the one displayed in Figure 1.4.

Additionally, the heuristic family proposed in this text takes inspiration from tabu-search heuristics
and the seminar clustering heuristic proposed by Fisher and Jaikumar (1981), but relies equally on both
graph structures and optimization model, unlike other approaches that tend to treat the optimization
model directly (CAMPOS; MOTA, 2000). Moreover, the algorithms proposed here do not require a
startup procedure, e.g. seed selection, although this may be studied in the future to increase the heuristics’
efficiency.

1.4 PLATFORM DESIGN

A methodology can be proposed here, tuned to PLTAMs missions, that consists in a planner knowing a
model for each agent class and using this model to estimate operational costs while this agent is performing

Rodolfo Jordão
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a task in route, then, with these estimates, the agents can be ordered and assigned accordingly. As a
consequence, optimality, as defined per mission, could be achieved via exact methods to the accuracy of
these estimations.

In certain sense, this methodology tends to be centralized, as agents try to follow the planner orders
as close as possible, but also gives each of them relative autonomy to preserve themselves by disobeying
orders if necessary. An implementation of it is shown diagrammatically in Figure 1.4, where some
information flows are named for easier visualization. Note that the biggest autonomous aspects refer
to the methodology and platform as a whole, rather than the planner or the agents alone, since it can be
rightfully argued that this platform transfers the autonomy of the agents to the planner.

Mission Planning
Route Construction

External Communication
Supervisor

Status

Goals

Environment

Direct
Sense

C
on

tr
o
l
L
ay
er

P
la
n
n
in
g
L
ay
er

Agent

Motion Control
Obstacle Avoidance

Actuators Sensors

Input Output

Act Sense

Agent

Motion Control
Obstacle Avoidance

Actuators Sensors

Input Output

Act Sense

Route and Map

Costs and Obstacles

More
Agents

Figure 1.4: Overall autonomous platform view and its inter-relations.

Using Figure 1.3 as a visual aid, it is clear that the platform possesses a hierarchical structure, with
the planner functioning as a “hive mind” and issuing the believed best actions for all agents, based on its
knowledge of them and the environment. This knowledge can optionally be updated with every round-
trip the agents make, based on their collected data, and on some instrumentation that the planner may
have itself, an idea that is not pursued in this initial study, but is left as a possible follow-up with in
Chapter 4. Once issued and order, or used here as synonymous, a task, a route or an tour, it must strive
to maintain all orders given by the planner whilst being able to alter some actions depending on the
environment for self-preservation. For example, it can stray from its given route by circumventing static
obstacles in the environment or dynamic obstacles, like another agent. Therefore, it is plausible to affirm
that this architecture fits well missions where the target region is relatively known a priori and has mild
temporal variations, as are the majority of the inspirational missions here.

1.5 MAIN CONTRIBUTIONS

This work main contributions are twofold:

1. a formalization of the PLTAM problem in relatively general form, assuming that the only refuel
station is the base itself and that the agent must always return to it, in Chapter 2,

2. development of a solvable realization for said formalization with an accompanying solution workflow
that can treat heterogeneous and non-holomonic agents, in Chapter 2, and its validation via a
number of case studies, in Chapter 3.

The results and conclusions were also summarized into a journal paper entitled “Cooperative Planning
Methodology for Persistent Long Term Autonomous Missions” which is currently under review.

Rodolfo Jordão
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2 MISSION PLANNING

This chapter deals with cooperative PLTAMs planning for the platform, as to maximize the agents
efficiency in their missions.

2.1 PROBLEM FORMALIZATION

Consider that there is a region R ⊂ R2, subregions of interest Ri ⊂ R indexed by Ir and a point bR ∈ R,
acting as source of all agents. Let Ia be the index set of all agents classes, not their members. Let S(bR)
be the set of all cyclic directional paths in R2 adjoined with their path-following orientation, that start
and end in bR; and let Io be the index set of all operations possibly performed by all agents.

Also, define indexed functionals, µea, µda,o and µca, so that µea : S(bR) → R gives every path s a cost
measure, such as the amount of energy spent moving and performing operations in s, by the agent of class
a; µda,o : S(bR)×R→ R, represents the amount that the path s supplies of operation o to the subregion

Ri, if performed by agent class a; and µca : S(bR) → R maps every path s to a capacity measure, which
may coincide with µea, for every agent class a. In these lines, let αi,o ∈ R represent the minimum amount
of demand that a region Ri ⊂ R requires of operation o, and let βa ∈ R represent the maximum amount
of capacity an agent is able to effect.

The planning model can then be stated as an optimization process by simultaneous construction and
assignment of variable number n of routes s1, . . . , sn to the agent classes,

min
n∈N

s1,...,sn∈S(bR)


 ∑

i∈{1,...,n}
min
a∈Ia

µea(si)


 , (2.1)

as long as the assigned agents, ai = argmina∈Iaµ
e
a(si), meet all subregions demands,

∑

i∈{1,...,n}
µdai,o(si, Rj) > αj,o, ∀j ∈ Ir; o ∈ Io, (2.2)

and have their capacity limits respected,

µcai(si) < βai ∀i ∈ {1, ..., n}. (2.3)

Equations (2.1)-(2.3) from now on consists of the true problem to be solved. This generalization is
not a unification in planning and optimization, as previous works in the literature (VIDAL et al., 2014,
2013) settled for Vehicle Routing Problems (VRPs) in general, which is one of the core subjects for this
work; rather, it is a fairly general mathematical abstraction tied to continuous planning and routing, in
essence, abstracting the concepts of goal, demand and limits. For example, the cost functional could be
defined upon energy, where as the capacity functional could be defined upon trajectory time estimation,
but for all purposes of this work, the cost and capacity functionals coincide, being the operational cost
of a given agent class: µa(s) = µca(s) = µea(s).

Due to the abstractness of this optimization model, restatements are necessary in order to solve it. One
approach is to separate the problem into construction and assignment, whereas the second stage works
upon the built paths of the first. Once this separation is made, the entire region R can be segmented so
that both planning subproblems are treated in a discrete fashion and can be solved efficiently via suitable
methods. This complete discretization has the added benefit that both generated subproblems are very
similar or equal to two other widely studied problems in the literature, namely, Shortest Path Problems
(ShorPaPs) and VRPs, to give weight to the efficiency claim. This workflow for discretization followed
by construction and assignment is shown in Figure 2.1, where dashed blocks represent names of stage
results while continuous ones represent stages.
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Figure 2.1: Mission planning workflow diagram.

Every stage shown in Figure 2.1 may also have substages associated with their smaller specific pre-
requisites. Segmentation, as will be expanded in Section 2.2, must address the orientation of the agents
and the inherent segmentation error. The path construction, expanded in Section 2.4, gets the resulting
segmentation discrete representation as a digraph and thus must be able to connect every possible state
segmentation using only this graph, and finally, the assignment substage, expanded in Section 2.5, must
be able to build tours for all agent classes knowing only the strongly connect graph resulting from these
previous substages.

Also, note that grouping together agents into classes is in fact beneficial, for if there are less agents
than routes, these will simply be cycled at the availability of said agents, and more importantly, if there
are more agents than routes, the route assignment can cycle every individual, distributing concentrated
effort stress and granting higher robustness against unforeseen problems during operation.

2.2 SEGMENTATION

The segmentation scheme chosen is required to fulfill three requirements. First, conserve the original
cost, demand and covering aspects of the original continuous problem. Second, and minimize inherent
segmentation error between the best arbitrary continuous path and the best discretized path, the Simple
Path Drift (SimPaD), which is illustrated with examples in Figure 2.2, where the difference between the
true best path becomes more pronounced as the lattice is made coarser.

Third, any segmentation scheme must be aware of orientation during the path making process to
contemplate agents that are non-holomonic and more precisely estimate the cost of operation by any of
the agents, otherwise, if this account is not made at the segmentation substage, the generated paths cost
estimates will become hard to predict, or even impossible to follow by non-holomonic agents, beating one
of the advantages of ahead-of-time planning central to this methodology. Figure 2.3 shows the difference
of a continuous path that would be rebuilt solely looking on the previous traversed node of each arc
visited and another rebuilt by planning the orientations of each node along their positions, shown in
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Best General

Best Rebuilt

Figure 2.2: Two examples to highlight the segmentation effect on the drift from the best true path

obtained after segmentation.

solid lines, for the same path without considering orientations, shown in dashed lines: not only the first
reconstruction is more distorted, but it would also be harder to determine a more precise estimate of the
cost necessary to traverse it, since the continuous reconstruction must happen after all positions are set.

A
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D

A

B

C

D

Figure 2.3: Two examples of reconstruction after position planning (left) and during position planning

(right) highlighting the necessity of treating orientation with positioning.

Lastly, although not strictly required, it is desirable that the scheme be simple enough so that modest
hardware are able to solve all algorithms in soft real-time, so that it can more easily, and cheaply, be
deployed anywhere.

One scheme fulfilling these prerequisites is a quadrangular, uniformly spaced, grid as shown in Fig-
ure 2.4, where the lattice gap needs to be small enough so that no patch of region is left uncovered, but
also must be big enough so that the agents are able to follow the planner generated paths. In other
words, the gap, denoted by l, must lie between the agents’ minimum turning radius rmin and their
covering radius, ρc, the maximum possible value of this gap being

√
2ρc.

Additionally, for every point a finite number of continuous paths connecting other neighboring points
are created, called here primitives and exemplified visually in Figure 2.4, so that orientation can be
treated along positioning as mentioned earlier, effectively creating a state lattice for all agents, thus
giving nodes an orientation and a position based on these primitives. Here, in accordance with the
square-like segmentation, eight angles are chosen as equal divisions of the trigonometric circle.

This scheme is part of a broader class of segmentations called grid-based methods, since they in-
volve repeated patterns that represent the original continuous domain. A current popular alternative to
grid-based methods are those based on sampling, termed sampling-based methods, which can treat more
complex cases more easily as they involve literally repeated operational domain exploring and sampling
until some criteria is met. This means they can depend solely on the mathematical model of an agent
class, but also, this means that contrary to grid-based methods, sampling ones may not induce lattices
(PADEN et al., 2016). This weak regularity, while very useful in other scenarios, is detrimental for the
problem treated here, as it is necessary to always check that no single point of the plane is left uncovered
and keep sampling in these regions accordingly. Still, repetitive sampling on regions that are uncovered
may create unintentional dense clusters of points in some areas to cover R completely. Therefore, with-
out special modifications, grid based methods are more attractive for this covering segmentation than
sampling based ones, despite their better exploratory and computational performance in more general
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Figure 2.4: Visual representation of the lattice used in the segmentation. In this case showing the

maximum possible lattice gap.

Figure 2.5: Example of primitive and neighborhood definitions.

and complex scenarios (KARAMAN; FRAZZOLI, 2011). Further enhancements and alternatives to this
simple quadrangular scheme are discussed in Chapter 4.

An advantage of this state lattice inducing scheme is that the state neighborhood is defined on a
handful of continuous primitives, for a single state or node, which also means that complex continuous
maneuvers can be described by the sum of simpler constituent primitives as seen in Figures 2.6. Note
that these reconstructions must allow non-holomonic agents to follow it, hence the primitive function
classes, the lattice gap and the neighboring definition collectively play a significant role in the agents’
path tracking success.

= +2 +

Figure 2.6: Constituent simpler elements of a complex maneuver.

The last concern for the success of this segmentation scheme, aside from choosing the primitives and
node gap, is the positioning of the grid itself over the region, as it can “glide” and rotate above it. For
simplicity, it is possible to assume that rotations are unnecessary as the regions is already in a rotated
frame that fits the quadrangular segmentation very well, either by some pre-processing or hand-crafting,
leaving out translation to be addressed. Naturally, it is desirable to minimize the SimPaD and get the best
discretization; this, however, implies that the continuous paths are known beforehand, for all variations
of gaps, primitives and dislocations chosen, or at least some SimPaD estimate that depends on these
features is known. An alternative is to maximize the number of points contained in the region, guided
by the thought that the SimPaD gets smaller by increasing the amount of reconstruction possibilities
available. Therefore, the segmentation dislocation can be made by finding the displacement of highest
point count inside the region, or, since major importance are given to the interest subregions, the grid
can be biased towards interest locations by recounting points inside them. Note that the points are not
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the nodes themselves, but points with a orientation attached.
To effect this point maximization for a planar region R, let δR(p) be an indicator function that returns

1 if the point p ∈ R2 is in region R and 0 otherwise,

δR(p) =

{
1, p ∈ R
0, else

, (2.4)

and let d ∈ R2 be the displacement vector in the plane that contains R. Consider all the points that are
generated by the segmentation scheme in r indexed by the set ip. Then, the positioning maximization
can be stated as,

max
d∈r2

∑

p∈ip
δr (d+ p) . (2.5)

If the bias is to be used, let λ be a positive real number, and δRi a pertinence function for each of the
interest subregions Ri, in the same fashion as δR. Then the optimization problem can be restated as

max
d∈R2

∑

p∈Ip

(
δR (d+ p) + λ

∑

i∈Ir
δRi (d+ p)

)
, (2.6)

where solutions that do not contain at least one point inside every subregion Ri are discarded,

s.t.
∑

p∈Ip
δRi

(d+ p) > 0, ∀i ∈ Ir (2.7)

Solving (2.6)-(2.7) efficiently requires knowledge of limits for d. Fortunately, these bounds can be
found when the quadrangular symmetry of the packaging scheme is considered, so that whenever the
mesh is moved more than one lattice gap, the same exact mesh is obtained, as exemplified visually by
Figure 2.7, where the region R is circular.

d
d

Figure 2.7: Example of equivalent lattices achieved via displacement. The left lattice is the original,

the middle lattice is the same as the left one, but displaced diagonally, and the right one is the lattice

obtained by displacing a full diagonal from the left one and half diagonal from the middle one.

Therefore, it is enough to have both displacements be contained in the interval of 0 to the lattice gap,
given by l, which is shown in Figure 2.8 by the new position of point A, A’, generated by the displacement
d. The final displacement optimization model is thus given by

max
d∈[0,l]2

∑

p∈Ip

(
δR (d+ p) + λ

∑

i∈Ir
δRi (d+ p)

)
, (2.8)

subject to restriction (2.7).
The segmentation results in two entities: the position points themselves in a set N c and a graph

Gc = (N c+, Ec+) named state cell graph, in which the nodes, as defined earlier, are the positions in N c

augmented with a finite set of orientations ϕ ∈ Φ, resulting in the node set N c+ and its connections Ec+.
Further possibilities of segmentation are discussed in Chapter 4. Next, the cost estimation of every edge
in Ec+ is discussed.
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Figure 2.8: Intervals of search for positioning.

2.3 COST ESTIMATION

To be able to estimate costs between the generated nodes in the segmentation, a representative model
of each agent class is required so prediction of the amount of effort spent between two desired nodes can
be made. As such, some aspects of control and dynamics need to be discussed with their relations to the
discretization.

Alluding established nomenclature from the literature (LAVALLE, 2006; SICILIANO, 2009), there
are mainly two concerning spaces for any description, the operation or trajectory space S, where, as the
name implies, all possible trajectories and operations happen, and the configuration space X , where all
general information of the agent, such as joint positions, engine thrusts, etc lies. The former, in this
work, is given by R × [0; 2π], since all trajectories are described by a history of plane positions and an
angle of orientation; while the latter can change wildly from agent to agent.

To make these last ideas more formal, consider that an agent a has generalized coordinates q ∈ Xa ⊂
Rn that completely describe it, a number of free variables u ∈ Ua ⊂ Rm that works as the input in the
system, and finally a model fa : R×Xa × Ua → Xa that represents the agent,

q̇(t) = fa(t, q(t), u(t)), (2.9)

where t ∈ R symbolizes “time” in a context that makes sense for this description. Equation (2.9) is the
general form of any agent description in the configuration space, however, the objective is to control the
agent trajectory rather than its configuration, i.e. controlling in S rather than in Xa. Thus, every fa
must be coupled with a transformation, or output, function ha : R×Xa → S,

s(t) = ha(t, q(t)), (2.10)

where s(t) ∈ S for any t ∈ R. Finally, there may be constraints on the agent that forbid it to make
impossible actions, such as a Unmanned Ground Vehicle (UGV) instantly making a half-turn with zero
radius to backtrack somewhere; represented by the function ga : R×Xa × Ua → R,

0 = ga(t, q(t), u(t)). (2.11)

Equations (2.9) to (2.11) form the basis of any agent description, where the control objective is to
make s(t) follow a predetermined reference path sr(t). It should be remarked that the symbol S was
used here intentionally, to reinforce its relationship with S(bR) from the overall formalization, seeing that
every sr is, in fact, a member of S(bR) and that R ⊂ S: the symbolism of applying S to a point should
be understood as a “filter” function that returns only the continuous paths that start and end at that
point, in the same sense, S applied to two different points, S(p1, p2), should be understood as the set of
all continuous paths that start at the first point and end at the second.

Using these definitions for costs estimation, consider a path s ∈ S(pi, pj), for any pi ∈ S and pj ∈ S,
a minimum speed vmina and generalized coordinates qa ∈ Xa so that in a time span t ∈ [0;T ], s(t) =
ha(t, qa(t)), that is, the agent follows perfectly s in [0;T ] by means of a control ua(t) while respecting its
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constraints,
q̇a(t) = fa(t, qa(t), ua(t)),

0 = ga(t, qa(t), ua(t)),

|ṡ(t)| > vmina ,

s(t) = ha(t, qa(t)),

(2.12)

the cost function of s, µa(s), is defined as

µa(s) =

∫ T

0

La(ua(t))dt, (2.13)

where La is a strictly positive function that takes the control vector ua and outputs a scalar number, for
each agent class a, representing its cost metric. The minimum speed is a simple mathematical device to
incorporate the possibilities of the agent using the environment in its favor when possible, e.g. a UGV
going down a hill may let its speed increase instead of stopping it. Naturally, unless the agent has perfect
energy savings, or spontaneous energy generation, the cost function is strictly positive for any non-zero
cyclic path s starting and ending at any point with minimum speed vmina ,

µa(s) > 0, ∀a ∈ Ia.

Back to segmentation, this continuous cost must be described in terms of nodes and primitives.
Consider a path P formed by two neighbor nodes in Gc, (i, ϕi) and (j, ϕj),

P = {(i, ϕi), (j, ϕj)},

and let s be the path formed by the primitive connection between these two nodes as chosen at the
segmentation. The cost of P is then defined to be the cost of s,

µa(P ) = µa(s), (2.14)

and in the same line, the cost variable representing this edge, that is, the weight ci,j,ϕi,ϕj ,a of this edge
in Gc, can be defined:

ci,j,ϕi,ϕj ,a = µa(s) = µa(P ) (2.15)

The extension for a discrete path P with higher number of nodes follows the same build-up principle
of primitives: for a path P = {(i1, ϕi1), . . . , (in, ϕin)}, the cost is defined as,

µa(P ) =

n−1∑

j=1

µa({(ij , ϕij ), (ij+1, ϕij+1)}), (2.16)

that is, the sum of the individual costs of each neighboring segment present in P . For example, consider
a path P = {(1, 1), (2, 3), (3, 5), (4, 1)}, then its cost would be the sum of all middle segments:

µa(P ) = c1,4,1,1,a = c1,2,1,3,a + c2,3,3,5,a + c3,4,5,1,a.

2.4 PATH CONSTRUCTION

The ShorPaP can be first enunciated in its continuous form, agreeing with the original continuous PLTAM
problem. For an initial point pi and a final point pf , the problem consists in finding the least costly path
s ∈ S(pi, pf ), while having the required minimum speed vmina ,

min
s∈S(pi,pf )

µa(s), (2.17)
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or, in a more explicit way and closer to what is usually found in optimal control literature (KIRK, 2004),

min
s∈S(pi,pf )

∫ T

0

La(ua(t))dt

s.t.

q̇a(t) = f(t, qa(t), ua(t)),

0 = ga(t, qa(t)),

ha(t, qa(t)) = s(t),

|ṡ(t)| > vmina ,

(2.18)

where all variables preserve the meaning they had previously on (2.12), and for a path that needs to be
built knowing the start and end orientations, the constraints function ga would feature this requirement.

Translating this idea into a segmentation-aware form, let P be a variable sized node path with known
start and end nodes, (i, ϕi) and (f, ϕf ), P = {(i, ϕi), . . . , (f, ϕf )}. The ShorPaP can then be solved by
finding in Gc which nodes minimize the cost between the start and end nodes,

min
P⊂Nc+

µa(P ), (2.19)

where all constraints and timing concerns are assumed to be solved by the correct use of lattice gap,
primitives choice and positioning. Thus, the computational complexity of computing the solution of
(2.18) or (2.17), which usually involve solving a boundary-valued differential partial equation (KIRK,
2004), is traded with a graph minimal path problem, which usually involve techniques with known time
and computational resources consumption (CORMEN, 2009).

Two major ways of solving (2.14) is by treating through graph search techniques or modeling it in a
combinatorial manner via a Mixed Integer Linear Programming (MILP) model. One big setback of the
latter is that it is computationally difficult: as the size of nodes in Gc grows, there are exponentially
more possible solutions to seek for a minimum. Problems with this characteristic are usually referred as
having NP difficulty (CORMEN, 2009), meaning that bigger instances of this problem cannot be solved
within reasonable time and computational resources, as of 2018, since the debate of whether P equals
NP still has no solution (WOEGINGER, 2018). Fortunately, the former approach do not suffer from this
difficulty, and is able to solve this problem optimally, or at least find a very good solution, by looking at
the graph directly and exploiting its connective nature, instead of tackling the combinatorial problem.

For example, he Bellman-Ford algorithm has O
(

(dimEc+)
2
)

, i.e. polynomial worst case complexity

(BELLMAN, 1958), compared to MILP exact methods such as branch-and-bound which have hard to
estimate complexities.

The best known ShorPaP solution algorithm to date in a weighted graph, such as Gc, where all
weights are positive and no easy guide heuristic is known between any two nodes, is the uniform cost
search algorithm, both eager and lazy versions, the former being commonly known as Dijkstra’s algorithm
(FELNER, 2011; DIJKSTRA, 1959). Both are presented here, in Algorithms 1 and 2, respectively, both
being orientation-aware for cohesive construction of optimal paths and able to return all shortest paths
from a given starting node to any other. Their main differences reside on the trade-off between memory
and processing use: even thought the lazy version would be superior in all ways in a theoretical view
(FELNER, 2011), manipulating a list structure takes computational effort, so the total computation time
suffers accordingly, whereas the eager has all nodes already loaded from start. Any variation of these
algorithms which can efficiently reuse previous computed shortest paths in broader way still did not find
widespread study in the related literature, and may be a research topic on its own.

With the optimal paths coded in values and parents tree, constructing a continuous path is done by
starting from the leaves of the parents tree and backtracking until the starting state is reached. A final
concern is dealing with bR, due to its out-of-grid nature. The approach used here is to link the “closest”
node in N c to bR, thus discarding the need to accommodate an extra orientation exclusively related to bR,
then considering that the agents start from this immediate node, rather than in bR itself, subtracting this
small trip between the immediate node and bR from the agent limit βa. For example, suppose that after
segmentation is done, the closest node to bR, for agent class a, is i and that the orientation that causes
the least cost from i to bR is ϕi. Then, all agents of class a are considered to start at this states (i, ϕi),
while their capacity is reduced by the cost of both going to and from bR, say, termed cR, βa := βa− 2cR.

The results of the path construction stage are the set of all interest points, Nd, and the decision
graph, Gd = (Nd+, Ed+), which is densely connected by the resulting shortest paths computed. Due to
this dense connection, it follows, for easier posterior treatment, that Nd+ = Nd × Φ.
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Algorithm 1 Eager Uniform Cost Search (Dijkstra’s algorithm)

Require: Gc = (N c+, Ec+), a, ci,j,ϕi,ϕj ,a, (is, ϕs)

Q← N × Φ \ {(is, ϕ)|ϕ ∈ Φ}
V alues← {(i, ϕ)→∞|∀i ∈ N ;ϕ ∈ Φ}
V alues[(is, ϕs)]← 0

Parents← {(i, ϕ)→ −1|∀i ∈ N ;ϕ ∈ Φ}
while Q 6= ∅ do

(i, ϕi)←MinimumValue(Q,V alues)

for (j, ϕj) ∈ Neighbors((i, ϕi)) do

if V alues[(j, ϕj)] > V alue[(i, ϕi)] + ci,j,ϕi,ϕj ,a then

V alues[(j, ϕj)]← V alue[(i, ϕi)] + ci,j,ϕi,ϕj ,a

Parents[(j, ϕj)]← (i, ϕi)

end if

end for

Q← Q \ {(i, ϕi)}
end while

return V alues, Parents

Algorithm 2 Lazy Uniform Cost Search

Require: Gc = (N c+, Ec+), a, ci,j,ϕi,ϕj ,a, (is, ϕs)

Q← {(is, ϕs)}
C ← ∅
V alues← {(is, ϕs)]→ 0}
Parents← {(i, ϕ)→ ∅}
while Q 6= ∅ do

(i, ϕi)← ExtractMinimum(Q,V alues)

C ← C ∪ {(i, ϕi)}
for (j, ϕj) ∈ Neighbors((i, ϕi)) \ C do

v ← V alues[(i, ϕi)] + ci,j,ϕi,ϕj ,a

if (j, ϕj) 6∈ Q then

Q← Q ∪ {(j, ϕj)}
V alues[(j, ϕj)]← v

Parents[(j, ϕj)]← (i, ϕi)

else if (j, ϕj) ∈ Q and v < V alues[(j, ϕj)] then

V alues[(j, ϕj)]← v

Parents[(j, ϕj)]← (i, ϕi)

end if

end for

end while

return V alues, Parents
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2.5 OPTIMAL ASSIGNMENT

Consider the set containing all possible cyclic node paths in Gd starting and ending bR, P(bR), the
discrete equivalent of S(bR), The objective is to assign enough cycles P ∈ P(bR) for different agent
classes, a ∈ Ia, satisfying both demand and capacity constraints. One way to systematically treat this
discrete combinatorial optimization is through an MILP model.

2.5.1 Mixed Integer Linear Model

Let xi,j,ϕi,ϕj ,a be an integer decision variable that decides how many agents of class a ∈ Ia move from
(i, ϕi) ∈ Nd+ to another state (j, ϕj) ∈ Nd+, this integer definition emanating from the fact that agents of
the same class may have intersecting paths to reach their respective goals. The objective is minimization
of all paths costs,

min
x

∑

i∈Nd,j∈Nd

ϕi∈Φ,ϕj∈Φ
a∈Ia

ci,j,ϕi,ϕj ,axi,j,ϕi,ϕj ,a, (2.20)

with four constraints. First, only connected and cohesive paths, whatever the chosen primitives (Fig-
ure 2.9), for every agent class a, are allowed,

∑

i∈Nd

ϕi∈Φ

xi,j,ϕi,ϕj ,a −
∑

k∈Nd

ϕk∈Φ

xj,k,ϕj ,ϕk,a = 0, ∀j ∈ Nd;ϕj ∈ Φ; a ∈ Ia. (2.21)

i

j

k

cohesion

i

j

k

cohesion

Figure 2.9: Two different continuous reconstruction with cohesive node links.

Second, all demands must be covered by the agents able to supply that demand visiting the cell,

∑

i∈Nr,a∈Ia
ϕi∈Φ,ϕj∈Φ

vj,a,oxi,j,ϕi,ϕj ,a ≥ αdj,o, ∀j ∈ Nr; o ∈ Io, (2.22)

where Nr, αdj,o are constructed from Ir, αj,o, and vj,a,o is constructed from µda,o in accordance to the
segmentation scheme, preserving (2.2) demand properties. On the other hand, considering that the
decision graph retains only nodes to be visited, and that the primary function of this demand constraint
is to ensure that they are all visited and covered, a further reduction can be made,

∑

i∈Nd,a∈Ia
ϕi∈Φ,ϕj∈Φ

δa,oxi,j,ϕi,ϕj ,a ≥ δj,o, ∀j ∈ Nd \ {bR}; o ∈ Io, (2.23)

where δa.o is 1 if an agent class a can do some operation and 0 otherwise, the same applies for δj,o in
relation to a node j. This observation removes the necessity to compute and store vj,a,o, α

d
j,o for all

interest nodes and operations.
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For the remaining subtour and capacity constraints, let yi,j,ϕi,ϕj ,a be a variable that represents if any
class a agent transverses from (i, ϕi) to (j, ϕj), then, it can be defined in relation to x,

yi,j,ϕi,ϕj ,a = min(1, xi,j,ϕi,ϕj ,a) (2.24)

and let PC(bR) be the set of all cyclic paths that do not contain the base. Then, every agent class that is
in a cycle without the base must necessarily exit this path to somewhere else, meaning that P ∈ PC(bR)
must not sum up to the total of nodes that it contains,

∑

(i,ϕi)∈P
(j,ϕj)∈P

yi,j,ϕi,ϕj ,a ≤ dimP − 1, ∀P ∈ PC(bR); a ∈ Ia, (2.25)

and the fourth, capacity constraint,

∑

(i,ϕi)∈P
o∈Io

δa,oc
n
i,o +

∑

(i,ϕi)∈P
ci,i+,ϕi,ϕi+ ,a

yi,i+,ϕi,ϕi+ ,a
≤ βa, ∀P ∈ P(bR); a ∈ Ia, (2.26)

where cni,o is the cost of performing operation o at node i, assuming that the cost of doing the operation is
indifferent of the agent doing it, βa are the same limits used in the continuous case, and the sum signifies
a cyclical sequential addition, with i+ being the next node of i in P , i.e. first and second, second and
third, and so on.

Since constraints (2.25) and (2.26) are equivalent to subtour elimination constraints commonly found
in Traveling Salesman Problems (TSPs) and VRPs (GOLDEN; RAGHAVAN; WASIL, 2008; TOTH;
VIGO, 2002), it would be possible to replace these for equivalent MTZ (DESROCHERS; LAPORTE,
1991) or commodity-flow (LANGEVIN; SOUMIS; DESROSIERS, 1990) constraints. Yet, doing such
modifications diminishes some computational properties of the MILP model, namely, it makes the relax-
ation of the problem itself weaker (TOTH; VIGO, 2002), fixing the best solution obtainable at a margin
of the best solution obtainable with the model shown here. Moreover, recent research points out that
this is true for any MTZ-like constraint, notwithstanding its form (BEKTAŞ; GOUVEIA, 2014).

Another related restatement, in attempt to ease the exponential number of inequalities, is to include
a temporal index τ directly. That is, make x time-aware, xi,j,ϕi,ϕj ,a,τ , which would trade a higher
number of variables for removal of subtour restrictions, since a solution which makes a connected route
go unnecessarily backwards certainly is not optimal. Further examination shows that this trade-off cannot
in fact be achieved, because every agent is required to start and end its route at the base bR within any
time interval; and that requires the model to have a subtour-elimination alike (2.25) for any time interval,
actually increasing the number of constraints.

Also, the MILP model can be “relaxed” (not to be confused with relaxed solutions) for lighter com-
putational costs when using exact methods, e.g. branch-and-bound, by simply removing the binary that
depends variable y and using x in its place. This turns large-scale complex situations intractable, but
can improve the running time and memory requirements for smaller scenarios. To see how this modeling
difference affects the problem tractability, consider that at certain moment, a path P , with 6 states, for
some agent class a, connected to bR, is analyzed, and that a subpath P ′, with 3 states, inside P without
connection to bR (Figure 2.10) has been analyzed beforehand. Since the x decision variable cannot sum
more than 2 in P ′, if x > 2 in P while P is feasible capacity-wise, then this solution that should be feasible
with the presence of y, would be accused of infeasibility in the relaxed model. A similar argument can
show that a solution that respects the capacity limits of each agent class can be deemed infeasible from
the relaxed model perspective. Thus, it is a useful tool only when the optimal routes intersections are
known to be sparse.

To solve this MILP model, it is possible to use general-case algorithms available to the standard form
for these models, where x and c must be flattened to a single row vector and all inequalities must also
be flattened to obey a matrix inequality,

min cTx s.t. Ax ≤ b, (2.27)

equalities can then be introduced by means of slack or surplus variables. If one uses MILP solvers,
Equation (2.27) is the object of solution, mainly by branch-and-bound techniques. Another approach,
considering this problem NP-Hard complexity, is to construct specialized heuristics that solve the MILP
model indirectly through some special structure of the problem for increased time and resources perfor-
mance, whilst finding acceptable valued solutions.
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bR

P

P ′

Figure 2.10: Example of possible problems with relaxed model limits.

2.5.2 Admissible Score Clustering heuristics family

For problems that resemble VRPs, a viable solution is to first cluster nodes someway and then optimize
the route in this cluster, which consists to solving a local instance of a TSP, effectively separating it into
a general assignment problem coupled with many TSPs. The algorithm developed here, Admissible Score
Clustering (ASC), takes inspiration from tabu-search meta-heuristics (GLOVER, 1986) and other cluster-
and-route heuristics already present in the literature (FISHER; JAIKUMAR, 1981). Its conception is
modular and treats routes in the graph directly through transformations in order to achieve better
performance, making every solution obtained also feasible. Unsurprisingly, graph matching problems,
where graph transformations are normally defined and studied, are also NP-hard (ZAGER; VERGHESE,
2008). The pseudo-code for general ASC is displayed at Algorithm 3 and its description follows.

Let a tour w be the junction of a path P ∈ P(br) with an agent class a ∈ Ia, w = (P, a). The
starting solution W is one very far from optimal, composed by single node tours for each of the agent
classes. If this initial solution cannot be made feasible by removal of some tours, the overall problem
is infeasible. From this initial solution the main loop starts: all tours are locally optimized as a TSP
followed by determination of the highest variation feasible transformation T from the transformations set
T , (discussion of the local optimization and transforms T are deferred because of their interchangeability),
once this best transform, T ∗, is determined and applied, its score is updated according to the solution
variation. If a local minimum is reached, it is stored if better than the best solution or discarded otherwise,
then, a new solution with a random feasible subset of all tours visited so far is built for another iteration,
but not before applying a forgetting factor to the scores computed up to that moment. The algorithms
stops if no better solution is attained after maxRepeats local minima were found or maxIters iterations
have elapsed. Here, a simple scoring system which consists of adding one to every tour at every iteration
was used, and the forgetting vector is set to be make all scores lose 1% of their value at each iteration.

Four transforms were defined in this work in a way that they can return favorable variations for
every solution possible; two of these transform are macroscopic transformations while the other two are
microscopic. Explicitly,

1. Tour Merge: merge in a tail-head fashion two tours from the solution. Illustrated in Figure 2.11.

2. Tour Removal: completely erase a tour from the solution. Illustrated in Figure 2.12.

3. Node Transfer: transfer the nodes between two routes that makes the most cost reduction along
their reorientation. Illustrated in Figure 2.13.

4. Node Removal: completely remove a node from a tour in a solution. Illustrated in Figure 2.14.

It must be remarked that the new tours produced by each transform retain the previous agent class,
limiting manipulation of classes in use by a solution to tour and node removals. Also, transfer is chosen in
place of insertion as it may result in a favorable transform, whereas insertion would always be unfavorable,
requiring special treatment. The following variation deductions, whenever applicable, use the same
variables of the illustrations as a visual aid.

Transference variation applied to two tours w1, w2 in a solution is given by the best sum of node
insertion and removal in the direction w1 → w2 or in w2 → w1,

∆transfer
w1→w2

= min
k∈N(w1)

(
∆insertion
w2,k + ∆removal

w1,k

)
,
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Algorithm 3 ASC

Require: Nd, Φ, Ia, c, Constraints, T , maxRepeat

W ← InitialSolution(Nd, Φ, Ia, c, Constraints)

Scores← ∅
repeat← 0

W best ←W

Tours← {representation(w)→ w|w ∈W}
while repeat < maxRepeat do

for w ∈W do

w ← TourOptimization(w, c)

Tours[representation(w)]← w

end for

score← 0

Wnext ←W

T ∗ ← Identity

for T ∈ T do

∆T , WT ← T (W,Φ, c)

scoreT ← ApplyScore(∆T , T,W,WT , Scores)

if score < scoreT and Constraints(WT ) then

Wnext ←WT

T ∗ ← T

score← scoreT

end if

end for

if score > 0 then

Scores← UpdateScores(T ∗,W,Wnext, Scores)

W ←Wnext

else

if SolutionValue(W ) < SolutionValue(W best) then

repeat← 0

W best ←W

end if

repeat← repeat+ 1

W ← ∅
while not Constraints(W ) do

W ←W ∪Random(Tours)

end while

end if

Scores← ForgetScores(Scores)

end while

return W best
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Figure 2.11: Illustration of the tour merge transformation.
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Figure 2.12: Illustration of the tour removal transformation.
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Figure 2.13: Illustration of the node transfer transformation.

Rodolfo Jordão



Admissible Score Clustering heuristics family 31

bR

1

2

3

4

Node 1
Removal

bR

1

2

3

4

Figure 2.14: Illustration of the node removal transformation.

whereN is a function that returns the ordered node set from a tour, i.e. N(w) ⊂ Nd, and the minimization
aligns with the search for the most favorable (most negative) transform. Now, the insertion variation for
adding a node k in w, is given by subtracting the edge that existed before insertion and summing most
favorable state addition in the route w with agent class a,

∆insertion
w,k = min

ϕk∈Φ
(ci,k,ϕi,ϕk,a + ck,j,ϕk,ϕj ,a)− ci,j,ϕi,ϕj ,a,

while removal variation of a node k is simply computed by subtraction of the edges that were in the tour
before-hand and sum of the new formed edge in the route w with agent class a,

∆removal
w,k = ci,j,ϕi,ϕj ,a − (ci,k,ϕi,ϕk,a + ck,j,ϕk,ϕj ,a).

For a tour w with path P and agent class a to be removed from any solution W , the variation is
naturally subtraction of its cost,

∆removal
w = −µa(P ),

whereas merge cost variation is given by the minimum of two possible head-tail combinations for two
merging tours w1, w2 ∈W . Let (i, ϕi) be the final state of w1 before the base state (br, ϕb), and let (j, ϕj)
be the state of w2 just after base exit (bR, ϕb); the variation of this cost is given by,

∆merge
w1→w2

= ci,j,ϕi,ϕj ,a − (ci,bR,b,ϕb,a + cbR,j,ϕi,ϕj ,a),

merge direction w2 → w1 is defined symmetrically.
Regarding local tour optimization, one possibility is to solve the orientation-aware TSP MILP model

directly, where techniques prevalent in the literature could be adapted to accommodate orientations. Here
two heuristics where tested, one inspired by ASC itself and one faintly based on Ant Colony heuristics
(DORIGO; BLUM, 2005) and construction methods. The former, named Order and Orientation Switch-
ing (OOS) is shown in Algorithm 4, with its transforms T w consisting of reordering states or reorienting
them, while the latter, named Restarting Sequential Construction (ReSC) is shown in Algorithm 5 and
consists in choosing two starting states randomly and trying to construct the best tour possible based
on this starting tour, both local heuristics make use of scoring for local attractor escaping. The ReSC
connection with Ant Colony Heuristics is given by its constructive nature and the scoring system: like
pheromones, the scores guide the balance between exploration and exploitation of the local optimization,
but also are forgotten as the procedure goes on, just like the pheromones become less pronounced.

Likewise T required explicit computation in ASC, acquiring the costs for T w is a necessity for OOS;
but since reorientation is a rather simple transform, only node switching is enunciated next. Switching
requires consideration of two separate cases: whether they are follow-ups in their tour or not. If they are
not, let (i, ϕi) and (j, ϕj) be states of w and assume without loss of generality that i comes first than j
in w; let (i−, ϕ−i ) and (j−, ϕ−j ) be preceding states of i and j, similarly define i+ and j+. The variation

∆switch
i,j is given by:

∆switch
j→i = min

ϕ′j∈Φ

(
ci−,j,ϕ−i ,ϕ′j ,a

+ cj,i+,ϕ′j ,ϕ
+
i ,a

)
−
(
ci−,i,ϕ−i ,ϕi,a

+ ci,i+,ϕi,ϕ
+
i ,a

)
,

∆switch
j→i = min

ϕ′i∈Φ

(
cj−,i,ϕ−j ,ϕ′i,a

+ ci,j+,ϕ′′i ,ϕ
+
j ,a

)
−
(
cj−,j,ϕ−j ,ϕj ,a

+ cj,j+,ϕj ,ϕ
+
j ,a

)
,
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Algorithm 4 OOS

Require: w, Φ, c, T w, maxRepeats

Scores← ∅
repeat← 0

wbest ← w

while repeat < maxRepeat do

score← 0, wnext ← w, T ∗ ← Identity

for T ∈ T w do

∆T , wT ← T (w,Φ, c)

scoreT ← ApplyScore(∆T , T, w,wT , Scores)

if score < scoreT then

wnext ← wT

T ∗ ← T

score← scoreT

end if

end for

if score > 0 then

Scores← UpdateScores(T ∗, w, wnext, Scores)

w ← wnext

else

if TourValue(w) < TourValue(wbest) then

repeat← 0

wbest ← w

end if

repeat← repeat+ 1

w ← Shuffle(w)

end if

Scores← ForgetScores(Scores)

end while

return wbest
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Algorithm 5 ReSC

Require: w, Φ, c, maxRepeats

Scores← ∅
repeat← 0

wbest ← w

N ← ExtractNodes(w)

while repeat < maxRepeat do

Nw ← N

wnext ← {(bR, ϕbR),RandomState(N,Φ)}
while Nw 6= ∅ do

wnext ← BestAddition(wnext, Nw, c, Scores)

Nw ← Nw \ w
Scores← UpdateScores(wnext, Scores)

end while

if TourValue(w) < TourValue(wbest) then

repeat← 0

wbest ← w

end if

repeat← repeat+ 1

Scores← ForgetScores(Scores)

end while

return wbest
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∆switch
i,j = ∆switch

j→i + ∆switch
i→j .

Otherwise, if i+ = j and i = j−, then due to their path overlap,

∆switch
i,j = min

ϕ′i∈Φ
ϕ′j∈Φ

(
ci−,j,ϕ−i ,ϕ′j ,a

+ cj,i,ϕ′j ,ϕ′i,a + ci,j+,ϕ′i,ϕ
+
j ,a

)
−
(
ci−,i,ϕ−i ,ϕi,a

+ ci,j,ϕi,ϕj ,a + cj,j+,ϕj ,ϕ
+
j ,a

)
.

2.6 IMPLEMENTATION ASPECTS

The positioning for segmentation, that is, Equation (2.6), is done via simple linear searches, as they
provide a balance between ease of implementation, light computational cost and solution accuracy; this
balance regulated by the amount of partitions made in the search interval.

The pertinence function for R, δR, can be computed in two ways. If R (or any Ri) is already defined
through a function g,

R = {x ∈ R2 | g(x) ≤ 0}
then it is just a matter of computing the value of g given a desired p to be check for region R. Otherwise,
if the shape R is defined by many boundary nodes connected by straight lines, a different approach is
necessary to correctly test if p is inside R. A fairly general and efficient algorithm is a specialized form
of ray casting: from each candidate point p, a half-line is drawn to either left or right. Let crosses be
the number of boundaries crosses the half-line made in the region R, then if crosses is an odd number,
the point p is inside the region, otherwise, it is outside (Figure 2.15). This method also works to check
the former function-defined boundary; and while this is theoretically correct, simply using p directly with
g greatly improves performance over any other algorithmic method. Asymptotically speaking, the ray
casting algorithm is, at least, of linear complexity on the size of boundary nodes; while direct evaluation
is always constant in complexity, i.e O(n) vs O(1), where O({) is the class of functions that are majored
by f (CORMEN, 2009; APOSTOL, 2007). An efficient implementation is available in Algorithm 6.

1: inside

3: inside

2: outside

2: outside

Figure 2.15: Ray casting algorithm visualization.

Those versed in convex optimization may question the existence of some better search tool in case
R is a convex shape. Due to the discrete nature of the optimization problem, with many instantaneous
oscillations in value, even with a convex region R any guided search method that does not go through, in a
resolution-wise sense, the whole displacements domain, is likely to fail finding the cloud point optimization
global solution. Figure 2.17 shows a very simple convex region R, covered with circles of radius ρc = 0.5,
along resulting values of δR for some variations in the displacement vector d; and the entanglement
observed shows the existence of valleys even for simple shapes.

Also, since only the nodes inside R are necessary, a check-up can be made at the segmentation section
which retains only the points that are inside R for path construction and consequently assignment. The
pertinence function δR can be used as a filter once (2.6)-(2.7) is solved, resulting in a lower sized graph
with coverage as exemplified by Figure 2.17. Possible spots not covered can be made covered by a lattice
refinement in the specific region that contains the spot.
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Algorithm 6 Polygon pertinence ray casting algorithm

Require: point p, Boundary B.

inside← False

for pB ∈ B do

p′ ← NextBoundaryPoint(B, pB) . Get succeeding point in the boundary list

if pBy < py < p′y then . check if y-coord. of p is between those of pB and p′

xref =
(p′x − pBx )

(p′y − pBy )
(py − pBy ) + pBx . Subscripts are axes access.

if |xref − px| < tolerance then

return True . if the x coord. is right on the ref. Then its part of the polygon.

else if xref < px then

inside← ¬inside . else keep looping and counting.

end if

end if

end for

return inside

Reference
Node
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Node
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dx

dy

ρc = 0.5
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255

260

265
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275
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∑
δ R

dx = −0.5000
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dx = −0.4650
dx = −0.4375

Figure 2.16: Simple convex region and its segmentation objective function.

Filter

Figure 2.17: Result of filtering for interest nodes after segmentation.
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Lastly, a minor possible optimization for the ASC is to simply check specific constraints after each
specific transform is executed. For instance, tour removal may violate demand constraint but never
the capacity constraint, whereas merge and transfer may violate the capacity constraint, but never the
demand constraint.
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3 VALIDATION AND RESULTS

3.1 CASE STUDIES

Four missions have been created to test out the merits of this methodology, since there is still a shortage
of benchmarks and standardized tests for problems reasonably similar to PLTAMs. All of them have
the same underlying region and working agent classes, their main difference being capacity and demand
constraints. They are shown in Table 3.1.

Table 3.1: Case studies considered.

Case Interests Obstacles Description Capacity

1 1 Small None Small region to be covered by first operation.
UGV: 100

UAV: 100

2 2 Small 1 Big central One small region is almost unreachable to UGVs.
UGV: 100

UAV: 100

3
2 Small

1 Big
1 Big central One small region is almost unreachable to UGVs.

UGV: 100

UAV: 100

4 2 Medium 1 Big central Both agents have very tight capacity limits.
UGV: 22

UAV: 40

The first and simplest case study is designed to show all the steps of the planner visually. The second is
designed to test out the inherent obstacle avoidance of the known map and exercise cooperation between
the agents. The third is designed to test out local optimization influence on the solution along agent
cooperation. The fourth and last one is designed to test out cooperation and task distribution between
the agents, since they have tight capacity limits.

The agent classes are represented by corpuscular entities, one that is a UGV,

Mgroundv̇(t) = −bgroundv(t) + u(t),

where v is the velocity vector, Mground and bground are parameters representing lumped inertias and
losses, respectively. Velocity damping is a natural lump simplification of terrain effects upon the agent’s
movement, making it lose momentum, otherwise, without any energy input, the agent would move forward
perpetually. The other agent class is a UAV,

Mairv̇(t) = −bairv(t) + bwindw(t) + u(t),

where w is the wind velocity vector, presumably almost constant during operation, and bwind is the
lumped wind effect on the UAV, all other variables having equal significance to the UGV. This addition
represents in a simple way the wind compliance of a general UAV. The model numerical parameters
chosen are displayed in Table 3.2 along the operations each agent class is able to do. In essence, these
parameters were chosen to ensure that UGVs have cheaper operation costs than UAVs, while only UAVs
can access every area of the map.

Explicitly, the missions attempt to study two major aspects of the planning methodology in addition
to demonstrating the workings of the planner: cooperation between the different agent classes to achieve
the demand goal, and distribution between agents of the same class to circumvent capacity limitations.
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Table 3.2: Agent classes definitions

Agent Parameters Operations

UGV
Mground = 1.0

bground = 0.1
1, 2

UAV

Mair = 2.0

bair = 0.05

bwind = 0.1

w(t) = [−1, 0]T

2

These four missions were solved either by exact techniques, as defined by branch-and-bound based ones
with lazily instanced constraints, via the commercial GUROBI solver (GUROBI OPTIMIZATION, 2016),
and by two heuristics from the ASC family discussed earlier: ASC+OOS and ASC+ReSC. Hardware and
software-wise, all overall programs were coded in the open-source language Julia, except by the GUROBI
solver which is closed-source, and ran in a common desktop computer. It should also be noted that the
relaxed model was used for the exact methods, since preliminary tests without relaxation ran for more
than 10 hours without finding their respective solution and that these proposed initial tests have relatively
small cover and demand area, making them unlikely to show the intractability discussed in Section 2.5.1.
Finally, the stopping criteria for the heuristics used were 300 iterations for the ASC overall, allowing up
to 10 local minimum repetitions, and 100 iterations for any local optimization algorithm, allowing again
10 local minimum repetitions before stopping.

3.2 SIMULATION RESULTS

The aggregated results from these solutions can be seen in Table 3.3, with descriptive statistics from 100
heuristic techniques runs and 15 exact technique runs. Additionally, Figures 3.1 through 3.8 show at
least one solution for each case covered, remarking that the exact and heuristic solutions for cases 1 and
2 were identical.

Figures 3.1 to 3.4 show all the steps the planner did for case 1 in a demonstrative fashion; starting
in the segmentation stage, filtering the interest points, building the shortest paths and finally solving
the assignment problem to find the solution. Note that the paths showed for the construction stage
(Figure 3.3) are a sample of the total found best paths between the two interest nodes. The second case
(Figure 3.5) serves as an example of the obstacle avoidance feature of the planner, by means of path
cost invalidation for any such paths that traverse an obstacle for that particular agent class, as seen in
this case, where the UGV detours from its optimal path found in case 1 because of the central obstacle,
whereas the UAV moves without problems over this same obstacle for a interest region inside it. Again,
the resulting solution is identical via both heuristic and exact methods. The other two cases (Figures 3.6
to 3.9) have bigger scales and can be subject to further analysis.

Visually, it can be seen from all Figures representing the solutions that this planner was successful on
its objective for creating collaborative continuous paths for the agents. Second, the exact solutions shows
that coverage patterns usually set a priori, such as swiping, appear naturally on the reconstructed tours,
although the agents exit out of the swipe motion early for increased cost economy while still retaining
demand coverage, as evidenced particularly in Figure 3.9.

Some numerical properties of the model and techniques used can be observed from the collected
data. For the cooperation mission, where the capacity constraint is greatly relaxed and far from optimal
solutions with a single tour for each agent class are easily feasible, exact methods can find the final solution
quickly, with about 33% gain in mean time against the two heuristics used, while having 13% and 20%
gain in mean optimum value (including tasks costs). On the other hand, the distribution mission, where
the capacity was tight and far from optimal tours would be infeasible, exact methods ran for much longer
than the heuristics, the mean running time of the former being at least 12500% of the latter, whereas
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Figure 3.1: Point cloud and cell graph of case 1.
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Figure 3.2: Filtered interest nodes for case 1 with their covering radii.
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Figure 3.3: Sample of all constructed paths for case 1.
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Figure 3.4: Resulting tours for exact and ASC solutions of case 1.
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Figure 3.5: Resulting tours for exact and ASC solutions of case 2.
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Figure 3.6: Resulting tours for a ASC+OOS solution of case 3.
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Figure 3.7: Resulting tours for exact solution of case 3.
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Figure 3.8: Resulting tours for a ASC+OOS solution of case 4.
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Figure 3.9: Resulting tours for exact solution of case 4.
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Table 3.3: Solution Value and timing.

Case Purpose Sol. Method Best Value Mean Value Mean Time [s]

1 Steps ASC+OOS 11.88 – 1.12× 10−3 ± 2.05× 10−4

1 Steps ASC+ReSC 11.88 – 1.11× 10−3 ± 2.10× 10−4

1 Steps Exact-Relaxed 11.88 – 9.00× 10−3 ± 1.66× 10−4

2 Collision ASC+OOS 27.35 – 1.12× 10−2 ± 7.04× 10−3

2 Collision ASC+ReSC 27.35 – 1.24× 10−2 ± 1.92× 10−2

2 Collision Exact-Relaxed 27.35 – 2.69× 10−2 ± 4.43× 10−4

3 Cooperation ASC+OOS 50.48 56.31± 2.05 20.20± 5.13

3 Cooperation ASC+ReSC 59.04 66.63± 1.32 15.53± 6.12

3 Cooperation Exact-Relaxed 45.12 – 13.60± 1.12

4 Distribution ASC+OOS 33.04 35.71± 0.59 4.83± 1.28

4 Distribution ASC+ReSC 33.57 41.83± 3.16 3.15± 0.76

4 Distribution Exact-Relaxed 33.04 – 606.44± 20.06

one of the heuristics actually achieved the global optimum, having mean suboptimal values standing
at about 18% of the global optimum. Hence, it can be seen through these cases that the capacity
restriction place the greatest burden on solution techniques for the problem, specially exact general
methods, demanding more resources and solution time as the capacity contribution gets more pronounced.
ASC’s heuristics as proposed here, treats these restrictions naturally via direct tour manipulation, thus
retain performance despite tight capacity restrictions. However, the heuristics saw worse performance
when dealing with dense regions; a situation that can be remedied by parameters and local optimization
algorithm change. Additionally, ASC+ReSC found worse solutions overall, notwithstanding general good
results of probabilistic constructive methods in the literature, such as Ant Colony Heuristics. This can
be attributed to the ASC itself, since its operations are more akin to ordering than to building, making
optimizers like OOS a natural fit. Finally, it becomes clearer that exact methods are more likely to fail
in giving any solution at all for bigger instance, since these results were obtained with the relaxed model,
which lose representation intrinsically on large-scale situations.

Aside from time and value, some implementations of this methodology may also require memory
bounds for the algorithms. Because Julia, which is a Garbage collected language, was selected for this work
of prototypical nature, memory estimates may not represent the best possible hardware resource economy,
as well as the times obtained may also be reduced by code optimization and native implementation.
Nevertheless, by sampling the operational system monitor on some tests, ASC’s attained a maximum
of 300 Mb memory consumption, while the GUROBI solver attained as much as 3 Gb of memory. It
is expected that by implementing the solver on compiled and highly optimized language environments,
such as C++ or FORTRAN, the resource usage and heuristic solution time will decrease and increase,
respectively, favorably.

These tests, their code and instructions for using them are available at a public web repository made
by the authors (JORDAO, 2018) for this work.
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4 CONCLUSION AND FUTURE WORKS

A Methodology tackling Persistent Long Term Autonomous Missions for cooperative autonomous vehicles,
consisted of heurisitcs able to plan ahead of time all agents’ orders, was presented based on a new
formalization that reduces the overall problem to a path construction and a combinatorial optimization
problem and four case studies were proposed and solved for validation purposes.

The methodology designed is able to successfully produce acceptable continuous routes and tasks for
the agents in questions. Moreover, its modular nature enables further studies on other realizations, with
different segmentations into topological maps or different solving methodologies with other heuristics and
implementations. Some possible improvements follow.

It is within the authors’ opinion that the ASC heuristics family is, at least, asymptotically optimal,
observing that the bad initial solution can possibly generate every other solution through admissible
transformations and its performance can be highly-tuned by change of the local optimization heuristic
and scoring system. Confirmation or dismissal of this claim, along with modifications that include seed
generation for faster runs is left for future works. Regarding segmentation, a more hierarchical scheme
can be used, by shrinking each interest subregion into a single entity with many possible entrances and
exists, while the internal cost could be solved with cost transforms commonly used in pure coverage
problems. The downside of this change is that the costs of demand coverage in these subregions may rise
due to the fixed internal trajectories.

Also, the MILP model may be changed to include only the maximum cost of path operations, instead
of their sum; effectively making a single path for same class agents with different tasks, but also requiring a
second optimization procedure for dividing said tasks optimally. Additionally, the methodology is already
general enough to accommodate non-uniform segmentation schemes, through better use of index sets and
broader definition of states for each agent, but then also requiring treatment of sampling schemes as some
of the previous works mentioned. For instance, only interest regions can be segmented in a regular basis,
whereas the outer non-interest regions can be sampled according to some criteria, say, better SimPaD
minimization other than point counting, and then connected via general ShorPaPs, culminating in a
hybrid segmentation scheme.

Some remarks can be made about the up and downsides of the methodology realization as presented
here. It is apparent that although optimality can be checked and achieved systematically via optimiza-
tion, if the agents’ models change quicker than the mean tour designed by the planner, by environment
interaction or hardware degradation, the cost estimate becomes increasingly worse; thus, this realization,
as presented, is more suited to missions with slow environmental changes, good a priori knowledge of
the mission region and missions that need direct treatment of agents with expressive non-holomonic con-
straints. Yet, the only major communication required for success of this long term planning is between
base and agent, during this agent visit to the operations base, possibly lowering the hardware costs of
the mission and also promoting fault tolerance in case of communication breakdown.

Robustness can be achieved by closing an information loop between the agents knowledge of the map
through their traversal and the planner current knowledge, as mentioned briefly in Chapter 1. Thus
updating the real cost of every tour component after each route is complete, for each agent. Such course
is more pertinent to a full integration of the planner with every agent, and is left for future works.

Finally, once these suggestions of improvements are followed, another line of expansion is the use of
better models for agents’ cost estimation, or even more classes of agents, other than corpuscular entities.
Even though this possibility was already covered by the principle of interchangeability of the estimators,
the effective change and possible use of more descriptive models, along with real hardware tests, would
provide stronger validation for this methodology.



50

Bibliography

APOSTOL, Tom M. Calculus, Volume I. [S.l.]: John Wiley & Sons, 2007. v. 1.
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