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Resumo
Quando novas tecnologias para tingimento de tecidos são desenvolvidas, avaliar a qualidade
dessas técnicas envolve a medição da homogeneidade de cores resultante através de imagens.
A presença da textura do tecido cria uma estrutura de dependência sofisticada para as cores
dos pixels. A transformada de Fourier é utilizada juntamente com técnicas de regularização
para separar o efeito da textura das imagens. As imagens são então modeladas por campos
aleatórios de Markov ocultos e bases de Fourier como covariáveis possibilitando, assim,
uma avaliação da homogeneidade de cores baseada em entropia, utilizando apenas a parte
correspondente ao tingimento.

Palavras-chave: Campos aleatórios de Markov, campos aleatórios ocultos, transformada
de Fourier, seleção de variáveis, regularização.



Abstract
When new textile dyeing technologies are developed, evaluating the quality of these
techniques involves measuring the resulting color homogeneity using digital images. The
presence of a texture effect caused by the fabric creates a sophisticated dependence
structure in pixels coloring. Fourier transform is used with regularization techniques to
remove the texture signal from the image. Images are then modeled as a hidden Markov
random field and Fourier basis as covariates, allowing an entropy-based evaluation of color
homogeneity using the filtered signal that corresponds to the dyeing process only.

Keywords: Markov random fields, hidden random fields, Fourier transform, variable
selection, regularization.
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Introduction

Most of the colorants currently used for textile dyeing are synthetic, originated
from non-renewable sources. These products are usually preferred due to technical and
economic advantages, but they are also associated to environmental and toxic issues.
Therefore, more sustainable processes have been a great demand in our society, see
Alihosseini et al. (2008); Santis et al. (2005). In this sense, the interest for natural colorants
for textile dyeing has increased in recent years. However, the regular natural dyes (from
plant and animal sources) yields only a few grams per kg of dry material, increasing their
prices (c.a. US$ 1/g) and limiting their applications, see Velmurugan et al. (2010). In
order to overcome this problem, many researchers have investigated the use of microbial
pigments as an alternative for textile dyeing, for example, Nagia and El-Mohamedy (2007)
and Kasiri and Safapour (2014), and the number of publications in this field is increasing
in the last years.

Although there are still few articles dealing with the use of microbial pigments
for dyeing textile materials, the reports demonstrate that fungi, especially molds, have
great potential for this purpose. In this context, based on the observation that filamentous
fungi grow in wet tissues (e.g. black spots in bath towel), causing extremely persistent
stains, Prof. Juliano Lemos Bicas from Faculdade de Engenharia de Alimentos/Unicamp
and his team idealized a textile “biodyeing” procedure consisting of growing a colored
filamentous fungi directly into the fabric to make a “controlled stain” in such material
(Patent Application – BR 10 2013 027036 9). In principle, they expect that this “biodyeing”
strategy can be applicable for other pigment-producing molds, such as Monascus sp.

One of the greatest challenges in such approach involves color homogeneity,
which is difficult to achieve due to the heterogeneity of fungal growth. Thus, a method for
measuring color distribution and color homogeneity in textiles has emerged as an essential
tool to evaluate this process. But when regular image analysis software (e.g. ImageJ) is
used, we observed that the inclination of the fibers and the thickness of wart and weft had
a great (negative) impact on the image analysis. Consequently, a new method for image
analysis would have to be developed in order to ignore the fibers during image treatment.
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1 Materials and Methods

1.1 Dataset
The data used in this work consist of four digital images of 378ˆ 237 pixels in

the Portable Network Graphics (.png) format provided by Prof. Juliano Lemos Bicas from
Faculdade de Engenharia de Alimentos/Unicamp, shown in Figure 1. Originally, the data
for each pixel consisted of three integer values, representing red, green and blue channels,
ranging from 0 to 255 each.

(a) (b)

(c) (d)

Figure 1 – Original digital images.

These images were transformed to gray scale by using the imager package from
R, which takes a specific linear combination of the 3-channel color values that corresponds
to a lightness index, ranging from 0 to 1. Despite this index being discrete, the space of
possible values is very dense, making it a nearly continuous variable. The transformed
images are shown in Figure 2.
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Mathematically, the gray scale data corresponds to matrices Y , with

0 ď Y px, yq ď 1, px, yq P t0, . . . , 377u ˆ t0, . . . , 236u. (1.1)

Note that when representing these matrices, the gray-level in each pixel is
relative to the range of values present in that specific matrix, the highest value (which
may not be 1) representing the white color and the lowest (not necessarily 0) black color.
That is, for any real b and positive a, aY ` b have the same visual representation as Y .

(a)
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Figure 2 – Gray-scale transformed images.

1.2 Entropy-based Measure of Color Homogeneity
The concept of color homogeneity is vague, with no rigorous definition available

and, therefore, defining measures of color homogeneity is not a trivial task. Alemaskin,
Manas-Zloczower and Kaufman (2005) defines a measure of color homogeneity for both
3-channel colored and gray scale images based on entropy. Particularly for gray-scale
images, it is assumed that on a very high resolution, images consist of only independent
"black" (0) and "white"(1) particles uniformly spread along the image region. Observed
gray-scale value (in a r0, 1s scale) of a particular pixel is an average of the values from all
the particles in a corresponding region, which is called a bin.

Under these assumptions, considering bins corresponding to individual pixels
j “ px, yq, Y px, yq, the average number of "white" particles in bin j, is an estimate for the
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conditional probability of a particle being "white" given the j-th bin, denoted pj. With J
bins, the color homogeneity index of an observed image Y defined by the authors is

CJ
Y “ ´

řJ
j“1 pj logppjq ` p1´ pjq logp1´ pjq

J logp2q , (1.2)

which varies from 0 to 1, and only assumes the maximum value if every pixel in the image
has the same value of 0.5. We assume none of the bins has all its particles of the same
color, i.e., 0 ă pj ă 1.

The index defined in Equation 1.2 is constructed based on the concept of
entropy. While entropy itself measures how heterogeneous a probability measure is, the
homogeneity index CJ

Y gets larger as the estimated probability for each bin gets closer to 0.5.
This means that, while having all probabilities close to 0.5 indicates a very heterogeneous
distribution for particles within a bin, the distributions are homogeneous between bins.

It is important to note that, when defining color homogeneity for textile dyeing,
the measure should be shift invariant, i.e. adding the same constant value to each pixel
should result in similar homogeneity measure, which is not the case for (1.2), as for example,
an image with all pixels assuming the value 0.8 has a smaller index than a constant image
with value 0.5. The authors define a transformation to the data to accommodate what
they call an "ideal gray-level" g˚ (0 ă g˚ ă 1) that allows the index to achieve large values
when bin colors are concentrated around g˚ rather than 0.5. This is done by substituting
the estimated conditional probability for each bin pj from (1.2) by

p˚j “

pj
g˚

pj
g˚
`

1´pj
1´g˚

. (1.3)

We use this transformation with g˚ “ Ȳ(the average color of the image) to
obtain a "fair" homogeneity measure, in the sense that large values for the index will be
achieved when colors for each bin are concentrated around Ȳ, rather than 0.5.

Another important aspect of CJ
Y is the number of bins J and its relation with

the image resolution. Despite the impossibility of observing a number of bins greater than
the number of pixels in our original image, we can group multiple pixels in the same
bin and treat them as a single pixel, obtaining a lower resolution image, by averaging
gray-levels in each bin i.e. we compute pj as the average of all particles in the (larger than
a pixel) bin, and since the particles are assumed equally distributed on the image region,
the estimate is given by the average of grouped values. Particularly, we will consider bins
formed by square regions of pixels (2ˆ 2, 3ˆ 3, and so on) and when a dimension of the
original image is not a multiple of these increasing factors, we just group the remaining
pixels, causing the borders bins to be possibly a rectangular region.
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Increasing the size of bins causes a reduction on the image resolution, which
results in a loss of details, like the visual effect of the weft in textile images. Because
the color variation that comes from the texture fades as the resolution is reduced, color
homogeneity index naturally increases for larger bins sizes. Figure 3 shows values of CJ

Y

for images of fungal dyed fabric from Figure 2 and an additional image of a synthetic
colorant dyed textile, with bin sizes of 1ˆ 1 up to 20ˆ 20.
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(b)
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Synthetic

Figure 3 – CJ
Y computed for five different images and 20 bin sizes.

The same trend can be observed for every analyzed image, where there is a
large increase in the color homogeneity for the first few bin sizes until the details are lost,
then, we see an almost flat relation between bin size and the index. While the general trend
is the same in each image, relations between resolution and color homogeneity depends
directly on characteristics of "background" textures, as the bin size increase necessary to
remove the details varies. To exemplify this effect, the synthetic dye image has practically
the same color homogeneity index as images (c) and (d) when looking at the maximum
resolution, but as the bin sizes increase, the homogeneity difference can be clearly perceived.
Image (a) has the lowest index for high resolution, while it ranks third (very close to
second) at lower resolutions.

The presence of texture hinders the usage of CJ
Y, as using the highest resolution

introduces an effect that should not be accounted to the dyeing process, even causing a
change in index rankings when compared to lower resolutions and as this effect is not the
same for every image (different weft structures), appropriate bin sizes may not be the
same for every case. Due to these facts, before computing the color homogeneity index
proposed, we need to make sure we can remove the texture effect and take into account
only the color variation that comes from the dyeing process itself.



Chapter 1. Materials and Methods 20

While this is not an optimal measure of color homogeneity because it depends
only on pixel colors regardless of their position, this index successfully illustrates the
additional challenges for measuring the concept color homogeneity in textile images brought
by the weft structure and we won’t extend the discussion on color homogeneity definitions
and possible measures in this work.

1.3 Objectives and Methodology
With the negative effect texture causes when measuring color homogeneity

in mind, our objective is to use models that are capable of identifying and isolating the
signal corresponding to dyeing, obtaining a procedure that can evaluate color homogeneity
resulting from the dyeing process exclusively. To achieve this, we consider that the observed
images can be decomposed into three different components

Y “ S`T` ε, (1.4)

with S being a fixed effect, the smooth component, corresponding to dyeing, T is a random
effect that corresponds to the main structure of the weft and ε is a random measurement
error.

The methodology used to achieve these objectives consists of:

• To isolate the signal corresponding to the fungal dyeing process, we use Fourier
transforms and regularization techniques to identify important low-frequency basis,
as presented in Chapter 2.

• We model the random effect of the weft structure as a discrete Markov Random
Field with pairwise interactions, presented in Chapter 3.

• To include the observational error, the theory of Hidden Markov Random Fields,
presented in Chapter 4 is used.

• Finally, we recompute the same color homogeneity index defined for S and compare
to commercially dyed samples.
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2 Bivariate Fourier Basis and Filtering

The analysis of this dataset is challenging because not only the presence of the
texture will bring a change in the color of neighboring pixels, but also, any inclination of
the fibers and the thickness of wart and weft makes it difficult to measure homogeneity
directly from the data.Therefore, it is crucial to separate the signal that comes from the
texture and the one that comes from the dyeing process.

Note that, from the production method, the fabric texture signal presents a
periodic pattern, what leads to the idea of using sines and cosines functions to model it.
Separating the high-frequency signals from very low-frequency ones should isolate the
texture and give us an exploratory tool to start analyzing the images.

In the following sections, we introduce the two-dimensional Fourier basis
expansion, in its trigonometric (real) version, and some frequency-based filters that are
useful for grouping signals according to their periodicity and strength, giving us a first
idea of how to isolate the texture.

2.1 Two-dimensional Fourier Basis
Consider a rectangular grid of real values (an image) Y P RNM

“ Y px, yq,
0 ď x ď N ´ 1, 0 ď y ď M ´ 1. We can assume Y corresponds to observations of a
function fpx, yq and write this surface as a combination of basis functions

Y px, yq “ fpx, yq “
p
ÿ

k“1
βkφkpx, yq. (2.1)

A matrix representation Y “ Wβ can be obtained by considering Y , a NM ˆ 1
vector, where each row corresponds to the observed value in a coordinate Y px, yq, W
a NM ˆ p matrix, with rows corresponding to coordinates px, yq and columns to basis
functions φkpx, yq and β the pˆ 1 vector of coefficients βk. Note that, the number of basis
p required to interpolate fpx, yq at each point of Y is, at most, NM .

One particular choice of basis functions is Fourier basis. These functions have
the form

φkpx, yq “
1
ck
φ
p1q
k

ˆ

2πnkx
N

˙

φ
p2q
k

ˆ

2πmky

M

˙

, (2.2)

where φp1qk p.q and φ
p2q
k p.q are trigonometric functions sinp.q or cosp.q and integers nk and

mk corresponding, respectively, to x-axis and y-axis directions frequencies, and ck is a
constant.
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Some of these basis functions are illustrated at Figures 4 to 7 on 100 ˆ 100
pixels images (N “M “ 100). The colors of the plots are relative to the function value,
so the constant doesn’t interfere. Notice how combining these basis can create repetitive
patterns in specific directions, accommodating different possibles orientations of the image.
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Figure 6 – φk3 “ cos
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Figure 7 – φk1 ` φk2

Many combinations of n, m, φp1q and φp2q lead to linear dependent columns of
matrix W , due to trigonometric identities. In this work, we select a set of NM columns
for W that are linearly independent to form our basis functions. These columns are
orthogonal by construction and we also choose c to normalize each column of W , obtaining
an orthonormal transformation matrix.

For the coefficients β computation, we use the fast Fourier transform algorithm,
which is very efficient for the complex version of Fourier basis and is available in most
softwares, like R, and obtain those coefficients by the relations between the complex and
the trigonometric forms of the Fourier transform, see Alexander and Poularikas (1998).
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2.2 Filtering Frequencies
To obtain a particular type of signal, for example, the non-periodic part of the

image, we can try to select a subset B of basis functions φk that corresponds to it

Y ˚px, yq “
ÿ

kPB
βkφkpx, yq, (2.3)

particularly for textures, we observe a very repetitive pattern. For this reason, we expect
functions φk with at least one high frequency nk or mk to be important for texture signal,
while functions with low values for both frequencies (what we will refer as low-frequency)
should be sufficient to describe blurs in the image.

Another important relationship between the Fourier representation and the
image features is the absolute value of coefficients βk, as values close to zero indicate that
these functions can be discarded in order to describe the original image. Note that these
coefficients are directly comparable because we used an orthonormal basis.

Consider the 378 by 237 pixels image in Figure 8 and its 89586 corresponding
Fourier basis coefficients in Figure 9 as an example. For illustrating the effects of considering
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Figure 8 – Original image Y .

different subsets of basis functions, we will consider four groups of basis:

• (a) Low frequencies: functions corresponding to coefficients at left side of the black
dashed line, expected to capture the blurry signal.

• (b) Thresholding frequencies: functions corresponding to coefficients above the white
dashed line, expected to recover the original image with very small error.

• (c) Thresholded high frequencies: above the white dashed line and to the right the
black dashed line, expected to capture the texture.
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Figure 9 – Absolute coefficients of basis in the y-axis and maximum of nk and mk for each
basis φk.

• (d) Least important frequencies: below the white dashed line. It should have no
pattern, corresponding to noise.

We arbitrarily chose the values used for frequency selection (black dashed line) and
coefficient thresholding (white dashed line) as 10 and 15, respectively. With these values,
247(0.02%) basis were selected by (a), 3007(3.37%) by (b) and 2779(3.12%) by (c).

The resulting images are shown in Figures 10 to 13. A small number of periodic
functions is enough to describe each type of signal in our image and all the remaining (the
noise) have no apparent structure.
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Figure 10 – Image reconstructed with (a).
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Figure 11 – Image reconstructed with (b).

In conclusion, we can capture the effect of the dyeing process with low-frequency
functions and we can ignore a large number of higher frequency basis that have small
coefficients and still recover a very similar image, as these basis corresponds to noise.
In the example above,the values 10 and 15 were chosen arbitrarily, however we need a
statistical method for answering questions such as: How to select which frequencies are
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Figure 12 – Image reconstructed with (c).
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Figure 13 – Image reconstructed with (d).

considered low and how to determine whether a coefficient is small enough to remove the
corresponding basis.

2.3 Penalized Least-Squares
Penalized least-squares is a modification of the usual ordinary least-squares

used in regression problems that is able to achieve regularization, for example, by producing
sparse coefficients estimates. This type of variable selection is done by introducing a penalty
function to the objective function in the optimization problem. In a regression model with
k covariates, Y “ Wβ ` ε, where ε is a vector of independent Gaussian distributed errors
with zero mean, and W a nˆ k design matrix, we can write the penalized least-squares
(β̂PLS) estimate, given penalty functions pip¨q, 1 ď i ď k, as

β̂PLS “ arg min
β
||Y ´Wβ||22 `

k
ÿ

i“1
pip|βi|q. (2.4)

Different choices of penalty functions lead to different characteristics of the
estimate. Some particular cases of penalty functions include pip|βi|q “ λ|βi|, which leads
to the Least Absolute Shrinkage and Selection Operator (LASSO) from Tibshirani (1996),
pip|βi|q “ λp1 ´ δp|βi|, 0qq, where δpa, bq “ 1, if a “ b and 0 otherwise, which is a best
subset selection method (can be seen as a modification of selection based on AIC) and
pip|βi|q “ λ|βi|

2 that corresponds to Ridge Regression (Hoerl and Kennard (1970)).

While the optimization in (2.4) can be quite difficult depending on the choice of
penalty function, for orthogonalW matrix, this estimation process can be done component-
wise and has a closed form for many types of penalties. Particularly, for LASSO and best
subset methods, the penalized least-squares estimators are obtained by soft-thresholding
and hard-thresholding, respectively, as shown in Fan and Li (2006). Unlike Ridge Regression,
these methods of regularization lead to sparsity of the estimates, which we will be interested
on.
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Table 1 and Figure 14 illustrate how penalized least-squares can be obtained
from ordinary least-squares, denoted by β̂ when the design matrix W is orthogonal. aλ
and bλ are thresholding constants that depend on the penalizing constant λ.

Method Penalty Estimator
LASSO pipβiq “ λ|βi| β̂PLS “ pβ̂ ´ aλsignpβ̂qq1|β̂|ěaλ

Best Subset pipβiq “ λp1´ δp|βi|, 0qq β̂PLS “ β̂1
|β̂|ěbλ

Table 1 – Penalized least-squares estimators for LASSO and Best Subset.

(a) (b)

Figure 14 – Relation between Ordinary Least-Squares (OLS) and Penalized Least-Squares
estimates for the two mentioned cases. Penalty constant λ was chosen to have
aλ “ bλ “ 1.

2.4 Frequency Filtering via Penalized Least-Squares
As mentioned in Section 2.1, we can write Y “ Wβ, whereW is an orthonormal

nˆ n matrix with each column corresponding to a certain Fourier basis function. We can
see the problem of filtering a smaller set of basis functions to represent an image (and
consider all the remaining signal as noise) as a variable selection problem. Note how this
is a similar problem to choosing the order of a polynomial to fit a regression problem.

Directly applying a variable selection method like LASSO to the image data will
produce a sparse representation of the image like done in Figure 11, but it won’t be able to
isolate low-frequency signal. In order to obtain a method for extracting low-frequency signal
only, we make a slight modification of the previously presented methods by introducing
a varying penalty value. Let φip¨q be the Fourier basis corresponding to the i-th column
of W , and ni,mi its corresponding pair of frequencies. We can then define new penalty
functions as pip|βi|q “ λi|βi| for LASSO and pip|βi|q “ λip1 ´ δp|βi|, 0qq for best subset,
with

λi “ gpmaxpni,miqq. (2.5)
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In this case, we can increase the penalty for basis associated high-frequency
components, by choosing gp¨q as a non-negative strictly increasing function. In this case,
considering the orthogonal design matrix W , each coefficient βi in the solution of 2.4 will
be given by hard-thresholding or soft-thresholding, depending on the type of penalty, and
with varying constants aλi and bλi rather than a fixed value.

Note that there is a unique relation between the thresholding constants aλi , bλi
and the penalty function constant λi, and due to easier interpretation, we won’t describe the
constants used in the optimization process, but the corresponding constants in the solution.
In summary, there is a relationship between a penalized least-squares regularization of the
linear model with Fourier basis and thresholding frequencies.

To exemplify the usage of penalized least-squares for isolating the low-frequency
signal consider Y the image from Figure 8 again. We start by computing the Fourier basis
representation of the image Wβ, then we hard-threshold the coefficients depending on the
corresponding frequency, by using bλi “ exp

ˆ

maxpni,miq

2

˙

, obtaining the low-frequency
signal Ylow. Results are shown in Figure 15.
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Figure 15 – Penalized Least-Squares based low-frequency extraction. (a) is the original
image Y , (b) has the frequencies which basis were selected (with some noise to
visualize multiple functions with the same frequencies), (c) is the reconstructed
image from the selected basis functions Ylow and (d) is the residual Y ´ Ylow.

Note how the large penalty for high-frequency functions prevented them from
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being included in the set of selected basis, the highest frequency among the included basis
is 9. Since the high-frequency signal isn’t present in Ylow, all the periodic pattern from
the texture is included in the residual. As a second step, we repeat this process with a
constant thresholding value bλ “ 15 to the image in (d) to separate the high-frequency
signal from the noise, extracting the high-frequency part Yhigh. In the end, we are able to
separate the signal in the image as a low-frequency signal Ylow, a high-frequency signal
Yhigh and a random noise ε̂ with

Y “ Ylow ` Yhigh ` ε̂. (2.6)

Results from the second step are shown in Figure 16. The image in Figure
16(c) successfully captures the texture and ε̂ seems to correspond purely to random noise.
Similar quality results are obtained when using the same procedure with soft-thresholding
instead. We prefer to use hard-thresholding because it results in unbiased estimates.
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Figure 16 – Extraction of the high-frequency signal. (a) is the starting image Y ´ Ylow, (b)
has the frequencies which basis were selected (with a small noise to visualize
multiple functions with the same frequencies), (c) is the reconstructed image
from the selected basis functions Yhigh and (d) is the final residual ε̂.
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3 Markov Random Fields

3.1 Introduction to Markov Random Fields
Markov Random Fields are a generalization of Markov Chains for processes

with a local dependence feature but no natural sequence-like structure. In general, processes
with local dependence can be described by a graph, with edges representing the dependence
structure.

Let X “ tX1, . . . , Xnu be a set of discrete and finite random variables and
G “ pX,N q a graph with X as vertices and neighborhood system N . Denote XNi

the set
of neighbors of Xi according to N and X´i “ tXj, j ‰ iu.

Definition 1 (Markov Random Field). The set of finite discrete-valued random variables
X is a Markov Random Field (with respect to the neighborhood system N ) if it satisfies:

P pXi “ a|X´iq “ P pXi “ a|XNi
q, i “ 1, . . . , n, @a (3.1)

Definition 2 (Clique). A subset Xtku “ tXk1 , . . . , Xklpkqu of X is a clique if @i, j P tku,
Xi P XNj and Xj P XNi (all of its elements are neighbors). A single element or the empty
set are also a clique.

1
2

3

4

5

6

Figure 17 – Example of graph.

Note that, the number of elements lpkq in a clique varies and any subset of a
clique is also a clique. Figure 17 is an example of graph with cliques t1, 2, 3u, t1, 4u, t1, 6u,
t5, 6u, t4, 5u, as well as each vertex individually.
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Hammersley-Clifford theorem, see Besag (1974), states that, under the positivity
condition (every configuration x for the random field X has positive probability), if X is a
Markov Random Field with cliques set of K, its probability function can be written

P pX “ xq “
1
ZV

exp
«

ÿ

kPK
Vkpxkq

ff

, (3.2)

for some:
Vk : t0, 1, . . . , Gulpkq Ñ R,

ZV “
ÿ

zPX
exp

«

ÿ

kPK
Vkpzkq

ff

,

X “ t0, 1, . . . , Gun is the set of all possible configurations of X.

The probability mass function in (3.2) is referred as a Gibbs distribution (or
Gibbs measure) and, for this reason, Markov Random Fields are also referred as Gibbs
Random Fields. The functions Vk are called clique potentials and ZV is referred as the
partition function (in practice, it’s a normalizing constant that depends on potentials).

3.2 Gibbs Distributions with Pairwise Interactions
Given a specific neighborhood system N , the expression in (3.2) gives us a

general form for the probability of possible configurations of the field X, but for moderate
sized problems, the number of cliques |K| leads to a large number of parameters if no
structure is assumed for clique potentials Vk, therefore, it is convenient to consider some
class of Gibbs distributions that respects some structure with desired properties and can
be represented with a reduced number of parameters.

Consider a finite rectangular lattice of dimension N ˆM , X “ tXpi1,i2q, 0 ď
i1 ď N ´ 1, 0 ď i2 ďM ´ 1u. For notation simplicity, we will write Xpi1,i2q as Xi, but now
i represents a coordinate rather than just an index. We also refer to the variables Xpi1,i2q
as pixels because our field will represent an image. We also assume each pixel’s color is in
the set Y “ 0, 1, . . . , G.

In the context of image processing, different types of analysis can be done
using MRFs with nearest-neighbor interaction, see Besag (1986) and Geman and Geman
(1984), but particularly for images with textures, a family of Gibbs distributions with
more sophisticated dependence structure is necessary. In this case, we will consider a
neighborhood system that has edges connecting pixels on a set of relative positions and
assume the potentials for each pair of pixels in a specific relative position to be the same in
the whole image what implies a spatial stationarity property. We will consider a model with
these properties similar to Gimel’farb (1996) and a feature function for each interacting
pair.
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Definition 3 (Feature Function). A feature function maps a pair in Y2 to a finite set
D. h : Y2

Ñ D, |D| “ D. Some examples of feature functions are hpa, bq “ b ´ a,
hpa, bq “ |b´ a| and hpa, bq “ 1´ δpa, bq, where δpa, bq “ 1a“b.

Let C be a set of relative positions where pixels interact. We will work with
(3.2) as

P pX “ xq “
1
ZV

exp
«

ÿ

i

˜

V0pxiq `
ÿ

cPC

ÿ

j“i`c

Vcphpxi, xjqq

¸ff

. (3.3)

Note that the last sum has, at most, one element because there can only be one pixel in a
specific relative position of another specific pixel, but including this sum accommodates
the irregularities in the borders where the neighbor, in some relative position, might not
exist (i` c doesn’t belong to the lattice).

Figure 18 shows examples of interacting structures. The nearest-neighbor
structure in Figure 18(a) is the simplest, with C “ tp0, 1q, p1, 0qu (note that we don’t
need opposite directions of the same relative position in the model). Interaction structures
shown in Figures 18(c) and 18(d), due to increased complexity, can produce a richer variety
of patterns.

Figure 18 – Examples of dependence structures.

(a) (b) (c) (d)

Let g P G and d P D. Define n0pgq “
ÿ

i

δpxi, gq, the number of occurrences

of g in an image, ncpdq “
ÿ

i

ÿ

j“i`c

δpd, fpxi, xjqq, the number of occurrences of feature d

in pairs with relative position c, and nc “
ÿ

dPD
ncpdq, total number of pairs with relative

position c. Define parameters θdc “ Vcpdq and θw0 “ V0pwq (note that the knowledge of V
and θ are equivalent, we use the most appropriate notation in each case), we can rewrite
(3.3) in terms of the occurrence counts

P pX “ xq “
1
Zθ

exp
«

ÿ

wPY
θw0 n0pwq `

ÿ

cPC

ÿ

dPD
θdcncpdq

ff

. (3.4)

This allows us to notice two things: First, the statistic tncpdq, n0pgq, c P C, d P D, g P Yu is
a sufficient statistic for the vector of parameters θ. And second, this representation of the
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probability distribution is not unique unless we add restrictions to the parametric space,
as shown below.

Consider a different parameter vector ψ˚ which differs from the original θ only
for a specific relative position c by a constant, ψdc “ θdc ` u for some constant u. Then

PψpX “ xq “
1
Zψ

exp
«

ÿ

wPY
ψw0 n0pwq `

ÿ

cPC

ÿ

dPD
ψdcncpdq

ff

“
1
Zψ

exp
«

ÿ

wPY
θw0 n0pwq `

ÿ

cPC

ÿ

dPD
θdcncpdq ` ncu

ff

“
exp

ř

dPDpn
d
cvq

Zψ
exp

«

ÿ

wPY
θw0 n0pwq `

ÿ

cPC

ÿ

dPD
θdcncpdq

ff

“
1
Zθ

exp
«

ÿ

wPY
θw0 n0pwq `

ÿ

cPC

ÿ

dPD
θdcncpdq

ff

“ PθpX “ xq,

this shows that by adding a constant value to all potentials of specific relative position
(similar can be done for the single site potentials), we obtain a new set of parameters
leading to the exact same distribution (non identifiability of the model). In order to obtain
a unique representation of the distribution function in terms of θ, the following linear
restrictions are included

ÿ

dPD
θdc “ 0, @c and

ÿ

wPY
θw0 “ 0. (3.5)

Figures 19 – 23 illustrate how different sets of relative positions and potentials
can create a variety of patterns on 100ˆ 100 lattices. They were simulated from binary
Gibbs distributions, with specified interacting positions and potentials in Tables 2 – 6,
respectively. Single site potentials were all set to zero for better visualization of the effect of
relative positions selection and the feature function selected was hpa, bq “ |a´b|. As can be
seen, these models are particularly good for describing textures as they can accommodate
many different stationary patterns.

The field in Figure 19 has positive parameters for equal pixel values (θ0
c ą 0)

on both p0, 1q and p1, 0q relative positions. This causes pixels of the same value to cluster
and form big regions of the same value along the image. The same is valid to Figure 20,
except there are more isolated pixels with different value from it’s neighbors, due to the
parameters being closer to zero than the ones used in 19. This specification lead to a
distribution equivalent to the Ising Model. On Figure 21 we see the effect of adding a
repulsive effect in the diagonal p1, 1q direction. This creates a texture-like effect. Figure
22 has a repulsive effect on relative position p5, 0q, what creates this pattern of 5 pixels
wide stripes. Figure 23 has the most complex interaction structure and is the same as 21
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with an additional repulsive effect on p1,´1q, what leads configurations of parallel lines
alternating values.
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1

Figure 19 – Simulated Gibbs random field.

c θ0
c θ1

c

p1, 0q 1 ´1
p0, 1q 1 ´1

Table 2 – Parameters used in Figure 19
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Figure 20 – Simulated Gibbs random field.

c θ0
c θ1

c

p1, 0q 0.6 ´0.6
p0, 1q 0.6 ´0.6

Table 3 – Parameters used in Figure 20.
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Figure 21 – Simulated Gibbs random field.

c θ0
c θ1

c

p1, 0q 1 ´1
p0, 1q 1 ´1
p1, 1q ´1 1

Table 4 – Parameters used in Figure 21.

Different specifications of feature function also leads to different types of
patterns, as well as number of parameters. Table 7 presents notation and properties for
some feature functions to be used in this work.

The main difference between these functions is that h1 can have some directional
effects, since it allows hpa, bq ‰ hpb, aq. h2 cannot detect different interactions on opposite
directions, but the parametric space has its dimension reduced almost in half when
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Figure 22 – Simulated Gibbs random field.

c θ0
c θ1

c

p1, 0q 1 ´1
p0, 1q 1 ´1
p5, 0q ´1 1

Table 5 – Parameters used in Figure 22.
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Figure 23 – Simulated Gibbs random field.

c θ0
c θ1

c

p1, 0q 1 ´1
p0, 1q 1 ´1
p1, 1q ´1 1
p1,´1q ´1 1

Table 6 – Parameters used in Figure 23.

Table 7 – Feature functions and properties.

Symbol function |D| dimpθq
f1 h1pa, bq “ b´ a 2G` 1 Gp2|C| ` 1q
f2 h2pa, bq “ |b´ a| G` 1 Gp|C| ` 1q
f3 h3pa, bq “ 1´ δpa, bq 2 |C| `G

compared to h1. h3 leads to a significant reduction on the number of free parameters and
is mainly used in situations where the measured variable doesn’t have a numeric meaning
(for example if the values of X represents a field of different, unordered colors). Note the
model with h2 can be obtained from h1 by forcing θac “ θ´ac , @c, a and h3 can be considered
the same as h2 with the restriction θac “ θ1

c @c, a ą 1.

Figures 24 – 26 show patterns that illustrate properties of each feature function.
Figure 24 has an unitary increasing from left to right, and then a 4 units decrease. This
directional asymmetric effect can only be obtained in models with h3. Figures 25 and 26
demonstrates how h2 and h3 differ in terms of how the “sequence” of colors in horizontal
direction following a more structured pattern or a completely random one.
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Figure 24 – Simulated Gibbs random
field.

c θ´4
c θ´3

c θ´2
c θ´1

c

p1, 0q ´1{8 ´1{8 ´1{8 ´1{8
p0, 1q ´1{8 ´1{8 ´1{8 ´1{8
p5, 0q 1 0 0 ´4
θ0
c θ1

c θ2
c θ3

c θ4
c

1 ´1{8 ´1{8 ´1{8 ´1{8
1 ´1{8 ´1{8 ´1{8 ´1{8
0 3 0 0 0

Table 8 – Parameters used in Figure 24. Fea-
ture function h1 “ b´ a was used.
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Figure 25 – Simulated Gibbs random
field.

c θ0
c θ1

c θ2
c

p1, 0q 1 ´1{2 ´1{2
p0, 1q 1 ´1{2 ´1{2
p5, 0q ´1 2 ´1

Table 9 – Parameters used in Figure 25. Fea-
ture function h2pa, bq “ |b´ a| was
used.
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Figure 26 – Simulated Gibbs random
field.

c θ0
c θ1

c

p1, 0q 1 ´1
p0, 1q 1 ´1
p5, 0q ´1 1

Table 10 – Parameters used in Figure 26. Fea-
ture function h3pa, bq “ 1´δpa, bq
was used.

3.3 Simulating from Markov Random Fields
Simulating realizations from a Markov Random Field plays an important

role in studying and understanding these processes, but the normalizing constant Zθ
cannot be computed except for trivial cases (either in really small graphs/lattices or
when all potentials are equal to zero) making it impossible to take samples from X
directly. Fortunately, we can compute ratios of probabilities for different configurations
(the intractable constant cancels out) and we can easily compute conditional distributions
due Markovian dependence. These two facts allow to sample from Gibbs Random Fields
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via well-known methods like Metropolis-Hastings algorithm and Gibbs Sampler.

Consider two field configurations x and y. For the family of Gibbs distributions
described in previous section, the probability ratio, given a model specification is

PθpX “ xq
PθpX “ yq

“
exp

”

ř

i

´

V0pxiq `
ř

cPC

ř

j“i`c Vcphpxi, xjqq
¯ı

exp
”

ř

i

´

V0pyiq `
ř

cPC

ř

j“i`c Vcphpyi, yjqq
¯ı

“ exp
«

ÿ

i

˜

V0pxiq ´ V0pyiq `
ÿ

cPC

ÿ

j“i`c

Vcphpxi, xjqq ´ Vcphpyi, yjqq

¸ff

. (3.6)

Note that when x and y differ only in one pixel, this expression simplifies due to all terms
in the sums not involving the differing pixel being zero.

And for conditional distribution of a specific pixel Xi,

PθpXi “ a|X´iq9 exp
«

V0paq `
ÿ

cPC

˜

ÿ

j“i`c

Vcphpa, xjqq `
ÿ

k“i´c

Vcphpxk, aqq

¸ff

, (3.7)

@a P Y. In this expression, we also have to include the relative positions in the opposite
direction of the ones listed in the set C.

Equations (3.6) and (3.7) are sufficient to implement both Gibbs Sampler and
Metropolis-Hastings algorithm for simulating Gibbs Random Fields. Gimel’farb (1999)
implements a Gibbs Sampler algorithm for this model as follows:

Algorithm 1 – Gibbs Sampler algorithm for Markov Random Field simulation.

begin
Sample xp0q from an independent discrete uniform distribution.;
Set j Ð 0;
while j ă m do

Sample a random sequence of pixels S to visit where every pixel appears
exactly one time.;
for Si P S do

update pixel xSi by sampling from PθpXSi |X´Si “ x´Siq.
end
j Ð j ` 1

end
end

Steps 2 and 3 together are called a macrostep, and according to general Gibbs
Sampler theory, if the number of macrosteps m is sufficiently large, the last field sampled
is a sample from Pθ. This procedure produces a single sample from the random field and
due to the possibility of using parallel computing with recent technology and (empirically
observed) poor mixing properties for some parameters specifications, when sampling
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Figure 27 – Initial field configuration.

25

50

75

100

25 50 75 100

x

y

Figure 28 – Field after 5 macrosteps.
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Figure 29 – Field after 50 macrosteps.
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Figure 30 – Field after 150 macrosteps.

multiple random field configurations we use multiple independent chains, rather than
taking spaced samples from a single chain.

Figures 27 – 30 presents steps of Gibbs Sampler algorithm for the model
specified in Table 2 after a specific number of macrosteps. Our experiments suggests that
both Gibbs Sampler and Metropolis-Hastings algorithm perform very similar. For this
work we chose to use Gibbs Sampler because the computation of conditional probabilities
can be reused when working with Hidden Markov Random Fields.

3.4 Parameter Estimation in Markov Random Fields
As mentioned in the previous section, the likelihood (or probability mass)

function for MRFs cannot be computed due to the intractable constant Zθ, and therefore,
maximum likelihood estimation for parameters cannot be done directly. Many different
approaches have been proposed to obtain consistent estimates in this kind of model. Some
of these methods include using an alternative, easier to compute, objective function called
Pseudo-Likelihood, searching for estimates using approximations of the gradient of the
(concave) Likelihood Function, as in Stochastic Approximation methods or attempts to
find Monte-Carlo approximations of the likelihood function itself. Some of these methods
are briefly presented in following subsections.
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3.4.1 Maximum Pseudo-Likelihood

An alternative to find estimates for parameters in models with complicated
interactions, that leads to intractable normalizing constants in the joint distribution
(likelihood function), is by taking the product of conditional distributions of each variable
instead. The pseudo-likelihood function is defined as

Definition 4 (Pseudo-Likelihood function). The Pseudo-Likelihood function for a vector
of parameters θ and a fixed observed field x P X is defined as

PLpθ; xq “
n
ź

i“1
PθpXi “ xi|X´i “ x´iq. (3.8)

In MRFs particularly, these conditional distributions are simplified due to the
local dependence property. Recall from Equation (3.7) how conditional probabilities are
easily computed for the pairwise interactions model, except for a proportionality constant,
which in this case can be computed, since it requires summing |X | terms rather than
|X |NM terms in the joint distribution. Maximum Pseudo-Likelihood Estimator (θ̂MPLE) is
defined as

θ̂MPLE “ arg max
θ
PLpθ; xq, (3.9)

which is a naive, but easier to compute, estimate for θ. Discussion and results for the
MPLE can be found at Besag (1975).

3.4.2 Monte-Carlo Maximum Likelihood

In order to introduce the Monte-Carlo Likelihood, recall the parametrization
of Gibbs Distributions in Equation (3.4). Consider a vector tpxq that contains the counts
of pixel values n0pwq and counts for each feature d in every relative position ncpdq and θ
the vector of parameters associated to each respective component of tpxq. The equation
can be rewritten with an inner-product as

PθpX “ xq “
1
Zθ

exp xtpxq, θy, (3.10)

and Zθ in terms of the sufficient statistics

Zθ “
ÿ

zPX
exp xtpzq, θy.

Consider a fixed and known set of parameters θ0. If we look at the ratio

Zθ
Zθ0

“

ř

zPX exp xtpzq, θy
Zθ0

“

ř

zPX exp xtpzq, θ ´ θ0y exp xtpzq, θ0y

Zθ0

“

ÿ

zPX
exp xtpzq, θ ´ θ0yPθ0pX “ zq “ Eθ0pexp xtpXq, θ ´ θ0yq,
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we obtain the expected value of a random variable. We can combine this result with the
fact that it is possible to simulate from the Gibbs Distribution with parameters θ0 to obtain
a Monte-Carlo approximation to the normalizing constants ratio. Let W1,W2, . . .WK be
a sample of random fields from a Gibbs Distribution with parameters θ0,

R̂Kpθq “
K
ÿ

i“1

1
K

exp xtpWiq, θ ´ θ0y
a.s.
ÝÑ
KÑ8

Zθ
Zθ0

. (3.11)

Note that multiplying our likelihood function by a constant factor (in this case,
Zθ0) doesn’t affect maximum-likelihood estimation, therefore it is possible to define the
MLE θ̂MLE, given an observed field x as

θ̂MLE “ arg max
θ
xtpxq, θy ´ log Zθ

Zθ0

. (3.12)

By combining the results in (3.11) and (3.12), we use the Monte-Carlo approxi-
mation of the ratio Zθ

Zθ0

in the latter.

Definition 5 (Monte-Carlo MLE). The Monte-Carlo MLE of θ, with a size K Monte-Carlo
sample approximation to the normalizing constants ratio, θ̂KMCE

θ̂KMCE “ arg max
θ
xtpxq, θy ´ log R̂Kpθq. (3.13)

A detailed description and discussion of this method can be found at Geyer
(1991) and Geyer and Thompson (1992), with examples and comparisons to maximum
pseudo-likelihood methods. In general, maximum pseudo-likelihood estimates are not
always good for finite samples, specially when the dependence is too strong. On the other
hand, Monte-Calor MLE requires sampling from a Markov Random Field a possibly large
number of times (K), the averaging of large exponentials and the optimization of a function
that has considerable computational cost to evaluate.

This method is also sensible to the arbitrary choice of θ0. Although the asymp-
totic convergence in (3.11) is valid for any choice of θ0, if the proposed value is not close
enough to the actual MLE, the number of Monte-Carlo samples K to achieve good results
becomes unreasonable.

3.4.3 Stochastic Approximation

If we take the first derivative of logpPθpX “ xqq, we get
B logP pX “ xq

Bθ
“
B

Bθ
pxtppxq, θqy ´ logpZθqq ,

and
B

Bθ
logpZθq “

B

Bθ
logp

ÿ

zPX
extpzq,θyq “

1
Zθ

ÿ

zPX
tpzqextpzq,θy “ EθptpXqq.
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Note that, both tpxq and θ have the same dimension, because the same number
of linear restrictions on θ (0 sum for each relative position and the single-pixel parameters)
also exist for tpxq because

ÿ

dPD
ncpdq is also fixed for each relative position.

Due to exponential family properties, found for example in Barndorff-Nielsen
(2014), the likelihood function PθpX “ xq is a log-concave function with respect to θ,
therefore, the MLE θ̂ is the point that satisfies the system of equations

tpxq ´ EθptpXqq “ 0. (3.14)

The stochastic approximation algorithm proposed in Robbins and Monro
(1951) consists of an iterative algorithm to solve (3.14), by obtaining estimates of EθptpXqq
and successively moving the current solution in the (estimated) gradient direction with
predefined step sizes,

θri`1s
“ θris ` arisptpx0q ´ tpxrisqq, (3.15)

where x0 is the observed (learning) field, xris is a field sampled with θris and aris ą 0 is the
i-th step size, satisfying

8
ÿ

i“1
aris “ 8,

8
ÿ

i“1
parisq2 ă 8. (3.16)

Note that the estimates θris are random variables (particularly, a Markov Chain)
as they depend on the simulated field from the previous value and the conditions in (3.16)
are necessary for convergence θris Ñ θ̂ in probability. This method resembles Newton-
Raphson algorithm, but with an estimate for the gradient and a constant vector instead
of the Hessian matrix at each step.

For this work, when iterating (3.15), we take advantage of parallel computing
to simulate multiple samples with θris and average the sufficient statistics instead of taking
a single sample xris, what results in a more precise gradient estimate at each step and
faster convergence.

For the step size sequence, we use an approach similar to Gimel’farb (1996),
and consider the sequence aris “ c0

npc1 ` c2iq
, that allows to control the rate of convergence

with the constants c0, c1, c2 and make the relation between chosen constant constants and
the convergence characteristics not depend on the dimension (n) of X.

When using this algorithm, we will always start with θr0s “ 0. Defining reason-
able stopping condition would involve considering image size and the dependence structure,
so we fix the large number of iterations like 2000.

Stochastic Approximation produced better results when estimating parameters
for high complexity interaction structures in simulations, as can be seen in Appendix A,
and since we are interested on complex high dependence models necessary to describe
textures, we use Stochastic Approximation when estimating parameters for MRFs.
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3.5 Interaction Structure Specification
While there are multiple approaches for estimating the parameters of Markov

Random Fields, all these methods requires prior knowledge of the interacting structure, in
this model, specified by the set of relative positions C.

Csiszár and Talata (2006) proposes the estimation of the smallest region
neighborhood based on a pseudo-Bayesian information criterion, which is an adaptation
of the usual BIC but considering the pseudo-likelihood instead of the likelihood function.
Particularly for our textures, we suppose the interaction structure can be sparse with
spread relative positions, therefore, it is not possible to define these interaction structures
in a set of naturally nested models. For this reason, we can’t define a sequence of candidate
models to compare, requiring the comparison of pseudo-likelihoods for all 2H, where H is
the number of candidate relative positions, leading to high computational cost. Galves,
Orlandi and Takahashi (2010) presents estimation of the dependence structure for general
families of interacting pairs, but requires multiple observations and considers only the case
of binary data (Ising model).

(a) (b) (c) (d)

Figure 31 – Nested neighborhood regions and sparse structure.

Figure 31 is an example of how some sets of relative positions allowed cannot
be described by nested neighborhood regions. While Figures 31(a) – 31(c) can be seen as
a sequence of complexity reduction (nested models), this form of nesting won’t be able to
include the position p3, 0q without p2, 0q, as in 31(d), which is a structure less complex
than the others, but is not a sub-model from none of them.

We follow the search algorithm based on interaction maps proposed in Gimel’farb
(1999). We consider a sufficiently large window of relative positions and for each of these
positions, the distance between normalized sufficient statistics ncpdq{nc (nc is the total
number of pairs with relative position c) and the expected values of these statistics in an
independent random field (triangular distribution) is computed. The interaction structure
is then chosen by thresholding these distances. When constructing interaction maps, we
will always consider the most general feature function hpa, bq “ b´ a.

Algorithm 2 shows the complete algorithm used to choose an interaction
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Algorithm 2 – Algorithm for construction of an interaction map and dependence
structure selection.

begin
Define a window W “ tw P Z2 : maxpwq ď cmaxu of relative positions.;
for w P W do

dpwq “
G
ÿ

u“´G

´

nwpuq
nw

´ Epuq
¯2

Epuq
;

end
Select the set Ĉ “ tc : dpcq ě cthru

end

structure. cmax controls the size of the initial window and cthr is a constant for thresholding,
the author suggests using d̄` kσpdq, with d̄ the mean of the computed distances and σpdq
their standard deviation. Epuq is the probability of observing the difference u P t´G, . . . , Gu
in a pair of independent discrete uniform (in Y “ t0, . . . , Gu) random variables

Epuq “
p1`G´ |u|q
p1`Gq2 .

Note that, for positions in the actual dependence structure C, the distances
dpwq should be large, naturally, because this is related to the (spatial) auto-correlation
for those positions. On the other hand, for some w that don’t belong in the interaction
structure, particularly, those that are linear combination of others in C, we observe a
decaying of the computed distances, similar to what happens in auto-regressive models.
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Figure 32 – Interaction Map example. (a) is the dependence structure used, (b) is a
simulated image with that structure, (c) and (d) are interaction maps before
and after thresholding with k “ 4.

Figures 32 and 33 are examples of interaction maps. Due to this type of persistent
correlation on combinations of conditionally dependent relative positions, interaction maps
tend to miss consecutive relative positions with opposite interactions θ0

c1 ą 0 and θ0
c2 ă 0

with c2 “ 2c1, for example. Figure 34 is an example where the interaction map fails to
recover the correct structure due to consecutive interacting positions with opposite signals.

In time series, an important tool for determining the order an auto-regressive
process is the partial auto-correlation function, because it removes the decaying correlations
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Figure 33 – Interaction Map example. (a) is the dependence structure used, (b) is a
simulated image with that structure, (c) and (d) are interaction maps before
and after thresholding with k “ 2.5.
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Figure 34 – Interaction Map example. (a) is the dependence structure used, (b) is a
simulated image with that structure, (c) and (d) are interaction maps before
and after thresholding with k “ 2.5.

from previous lags. Since the distance computed for constructing interaction maps is directly
related to the (absolute) correlation of pixels in that relative position, we can naturally
construct an auto-correlation map that is very similar to the interaction map proposed. On
the other hand, we can construct partial auto-correlation maps that remove the correlation
from a subset of positions iteratively. Therefore, we propose the following Algorithm 3 to
heuristically choose the interaction structure, depending a constant thresholding v.

Our experiments suggests that Algorithm 3 is able to correctly capture de-
pendence structures like in Figure 34 and is less sensible to the choice of the arbitrary
constant. We chose to use v “ 0.08 because it worked for most cases, while no choice of
k could consistently lead to correct structures when using Algorithm 2. While there are
no theoretical results to show that these methods work, Gimel’farb (1996) have achieved
acceptable results using interaction maps, and we will use the proposed algorithm for the
slight advantage that can be observed empirically.
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Algorithm 3 – Algorithm for choosing interaction structure based on conditional
auto-correlation maps.

begin
Define a window W “ tw P Z2 : maxpwq ď cmaxu of relative positions;
Start with empty structure Ĉ “ H;
for w P W do

ρpwq “ |corpxi ´ PĈpxiq, xi`w ´ PĈpxi`wqq|;
where PCpxiq is the projection of xi on the space spanned by columns
xi`c, c P C.

end
Select the relative position with highest absolute auto-correlation c.;
if ρpcq ě v then

Ĉ Ð Ĉ Y c.;
Return to auto-correlations computation.

else
Select Ĉ as the interaction structure.

end
end
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4 Hidden Markov Random Fields

While MRFs have been successfully used to model textures in images with a
moderate number of colors, in recent years, the quality of digital images have increased
considerably and one consequence is a more dense color scale. For example, if we take
a 256 gray levels image (G “ 255), the number of parameters in the previous models
would increase drastically and the relationships between colors (i.e. the feature function)
could become a lot more complex. In cases like that or our transformation of the original
3-channel color values to a r0, 1s interval, it is appropriate to model pixels as continuous
variables, but we also want to preserve the texture characteristics from MRFs.

Hidden Markov Random Fields (HMRFs) are an extension of the idea of
hidden Markov chains. In many problems, an underlying process with local dependence
characteristics exists but it cannot be observed directly. Instead, we observe a random
variable which distribution depends on that hidden process.

Let T “ tTi, i P J u be an observed field and X “ tXi, i P J u the underlying
random field, for some set of indexes J . Because we need knowledge about X to estimate
for fpt|Xq and we need information about fpt|Xq to obtain estimates of X, likelihood
optimization is a challenge, specially because, just like in hidden Markov chains, the
observed field T loses the local dependence property.

A random field T is said a Gaussian hidden Markov random field if T|X is
Normal distributed. Particularly, we will also assume that, Ti|X is independent from Tj|X
if i ‰ j and the distribution of Ti|X only depends on Xi. We can then write

fpt|X “ xq “
ź

iPJ

1
a

2πσ2
xi

exp
ˆ

´pti ´ µxiq
2

2σ2
xi

˙

, (4.1)

what leads to the marginal distribution of T

fptq “
ÿ

xPX

ź

iPJ

1
a

2πσ2
xi

exp
ˆ

´pti ´ µxiq
2

2σ2
xi

˙

P pX “ xq. (4.2)

In Equation (4.2) we see that, marginally, T is a mixture of multivariate
Gaussian distributions, but instead each class in each index having the same probability
in the whole set J , the probability of the underlying variables is measured for a complete
configuration x, thus, falling under the same type of problem from Markov random fields
with an exponential number of cases to sum in order to evaluate the likelihood function.
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4.1 An Expectation-Maximization algorithm for Gaussian Hidden
Markov Random Fields

The EM algorithm is an iterative method for finding maximum-likelihood
estimates in problems involving unobserved variables due to the often intractable form
of the likelihood function. Let θ be a vector of parameters, T “ t observed and X latent
variables. Maximum-likelihood estimation via EM-algorithm consists of finding the value
θ̂ that satisfies

θ̂ “ arg max
θ
Lpθ, tq “ arg max

θ

ż

fθpt,xqdx, (4.3)

by, given an initial value θp0q, iteratively computing the function Qpθ|θpjqq (E-step) as

Qpθ|θpjqq “ EX|T“t,θpjq rlog fθpt,Xqs , (4.4)

and updating the solution θpj`1q (M-step) as

θpj`1q
“ arg max

θ
Qpθ|θpjqq. (4.5)

The sequence tθpjq, i “ 0, 1, 2, . . . u converges to the maximum-likelihood esti-
mator θ̂ under some conditions. An overview on the convergence and other properties of
this method can be found at Dempster, Laird and Rubin (1977).

Consider a Gaussian HMRF model, with known (hyper-)parameters for the
underlying Markov random field, let θ “ tµk, σ2

k, k “ 0, 1, ..., Gu be the vector of parameters
with ti P t0, 1, ..., Gu, @i P J and denote Nkpwq the density of a Normal distribution with
mean µk and variance σ2

k evaluated at the point w and N pjq
k pwq the same with parameters

µ
pjq
k and σ2pjq

k . In this scenario, the joint distribution of T and X (also called the complete
likelihood) is given by

fθpt,xq “ P pX “ xq
ź

iPJ
Nxiptiq, (4.6)

what makes the Q function intractable due to the demand of summing over every possible
configuration to compute the expected value, as mentioned in previous section

Qpθ|θpjqq “
ÿ

xPX
P pX “ x|T “ t, θpjqq log

«

P pX “ xq
ź

iPJ
Nxiptiq

ff

. (4.7)

We use the version of EM-algorithm presented in Zhang, Brady and Smith
(2001) which maximizes pseudo-likelihood instead, to obtain a tractable version of the Q
function by substituting P pX “ xq by

ź

iPJ
P pXi “ xi|X´iq in Equation (4.7),

Q˚pθ|θpjqq “
ÿ

iPJ

G
ÿ

k“0
P pXi “ k|Ti “ ti, X´i, θ

pjq
q rlogP pXi “ k|X´iq ` logNkptiqs (4.8)
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“
ÿ

iPJ

G
ÿ

k“0
P pXi “ k|Ti “ ti, XNi

, θpjqq

„

logP pXi “ k|XNi
q ´

1
2
`

log σ2
k ` log 2π

˘

´
pti ´ µkq

2

2σ2
k



.

From Equation (4.8), P pXi “ k|Ti “ ti, XNi
, θpjqq doesn’t depend on θ, but

varies depending on the conditioning configuration XNi
. Therefore, to perform the M-step,

we first need to find the configuration x̂pjq which maximizes the conditional probabilities
(which is the same as the maximum a posteriori estimate of X). Once x̂pjq is computed,
the M-step iteration has closed form as

µ
pj`1q
k “

ř

iPJ P pXi “ k|Ti “ ti, XNi
“ x̂

pjq
Ni
, θpjqqti

ř

iPJ P pXi “ k|Ti “ ti, XNi
“ x̂

pjq
Ni
, θpjqq

, (4.9)

σ
2pj`1q
k “

ř

iPJ P pXi “ k|Ti “ ti, XNi
“ x̂

pjq
Ni
, θpjqqpti ´ µ

pj`1q
k q2

ř

iPJ P pXi “ k|Ti “ ti, XNi
“ x̂

pjq
Ni
, θpjqq

. (4.10)

Note that, from results in Chapter 3, P pXi “ k|XNi
“ xNi

q9 exppgpk, xNi
qq

where g is some functions that depend on the parameters of the underlying Markov random
field, thus, except for a (tractable) normalizing constant, we have

P pXi “ k|Ti “ ti, XNi
“ xNi

, θpjqq9 exppgpk, xNi
qqN

pjq
k ptiq. (4.11)

To obtain the MAP estimate of X, Zhang, Brady and Smith (2001) use the
Iterated Conditional Modes algorithm from Besag (1986). This algorithm consists of
starting with a configuration x0 and perform pixel-wise updates

xi Ð arg max
k

P pXi “ k|Ti “ ti, XNi
“ xNi

, θq

for the complete sequence of indexes i. After going through the whole image several times,
the current set of labels t coincides with the MAP estimate x̂ which satisfies

x̂ “ arg max
x̂

P pX “ t|T “ t, θq.

We select the initial labels x0 and parameter values θp0q as the estimates from an usual
EM-algorithm for independent mixture of Gaussian distributions.

The complete algorithm is shown below. Convergence criterion adopted usually
depends on the distance between consecutive parameter vector estimates and number of
iterations.

4.2 Hidden Markov Random Fields with covariates
A fixed effect can be included to HMRFs by adding an extra wiβ term to

conditional expected value in each point, where wi is a m-dimensional row vector of
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Algorithm 4 – Complete EM-algorithm for Gaussian HMRFs estimation.

begin
Set initial values for θp0q and initial labels x̂p0q;
set j Ð 0;
while Convergence criterion not met do

Update x̂pjq using the Iterated Conditional Modes algorithm, starting with
the previous estimated labels x̂pj´1q;
Update θpj`1q according to (4.9) and (4.10).;
j Ð j ` 1;

end
θpjq and x̂pjq are estimates for the vector of parameters and the underlying field
labels, respectively.

end

covariates and β is vector of coefficients. Since the only difference from the previous model
presented is that EpTi|Xi “ xiq “ µxi `wiβ, rather than µxi , conditional distribution can
be written as

fpt|X “ xq “
ź

iPJ

1
a

2πσ2
xi

exp
ˆ

´pti ´ µxi ´wiβq
2

2σ2
xi

˙

. (4.12)

An EM algorithm very similar to the case with no covariates can be done,
concatenating β to the vector of parameters θ, with two differences: First, for the E step,
for Q˚pθ|θpjqq we get
ÿ

iPJ

G
ÿ

k“0
P pXi “ k|Ti “ ti, XNi

, θpjqq

„

logP pXi “ k|XNi
q ´

1
2
`

log σ2
k ` log 2π

˘

´
pti ´ µk ´wiβq

2

2σ2
k



,

(4.13)
with

P pXi “ k|Ti “ ti, XNi
“ xNi

, θpjqq9 exppgpk, xNi
qqN

pjq
k pti ´wiβ

pjq
q, (4.14)

and for the M step, we also need to maximize Q˚pθ|θpjqq with respect to β, requiring a
numerical optimization instead of a closed form estimator as in previous case. We use a
slightly modified version of the EM algorithm for HMRF with a "bias field" from Zhang,
Brady and Smith (2001), and update θ by a sequence of component-wise optimizations,
i.e., we fix µ’s and σ’s most recent values to update β, then use this new value to compute
the remaining estimates.

βpj`1q
“

«

ÿ

iPJ
wT
i

˜

G
ÿ

k“0

P pXi “ k|ti, x̂
pjq
Ni
q

σ
2pjq
k

¸

wi

ff´1 «
ÿ

iPJ
wT
i

˜

G
ÿ

k“0

P pXi “ k|ti, x̂
pjq
Ni
, θpjqq

σ
2pjq
k

pti ´ µ
pjq
k q

¸ff

(4.15)

µ
pj`1q
k “

ř

iPJ P pXi “ k|Ti “ ti, XNi
“ x̂

pjq
Ni
, θpjqqpti ´wiβ

pj`1qq
ř

iPJ P pXi “ k|Ti “ ti, XNi
“ x̂

pjq
Ni
, θpjqq

, (4.16)
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σ
2pj`1q
k “

ř

iPJ P pXi “ k|Ti “ ti, XNi
“ t̂

pjq
Ni
, θpjqqpti ´ µ

pj`1q
k ´wiβ

pj`1qq2

ř

iPJ P pXi “ k|Ti “ ti, XNi
“ t̂

pjq
Ni
, θpjqq

. (4.17)

The complete EM algorithm is the same as Algorithm 4, with estimates updates
as in (4.15), (4.16) and (4.17) instead. Note that if the covariates include an intercept (any
column of X is a constant), there would be an identifiability problem, i.e., adding a value
to the coefficient associated with this intercept and subtracting it from each of the random
effect means µk could result in the same likelihood and, therefore, the maximization step
would not have a unique solution. To avoid identifiability problems, when fitting HMRF’s
with covariates, we add the restriction

ÿ

k

µ
r0s
k “ 0, and due to the sequential updates,

(4.16) results in estimates with the same restriction at each step.

4.3 Bayesian estimation for Gaussian Hidden Markov Random Fields
A second approach for estimating labels and parameters on hidden Markov

random fields is to treat θ as random variables with prior distribution πpθq and sample
the interest quantities from their a posteriori distribution πpθ, t|tq, which is given by

πpθ, t|tq9P pX “ tqπpθq
ź

iPJ

1
a

σ2
xi

exp
ˆ

pti ´ µxiq
2

2σ2
xi

˙

, (4.18)

If we that consider the components of θ are independent a priori and they
are, for example, uniformly distributed πpµkq “

1
2l1t´lďµkďlu and πpσ

2
kq “

1
L
1t0ďσ2

k
ďLu for

some positive constants l and L, we can obtain very simple forms for the full conditional
distribution of each component in θ and t as follows

πpti|t, θ,X´i “ t´iq9P pXi “ ti|X´i “ t´iq
1

a

σ2
xi

exp´
ˆ

pti ´ µxiq
2

2σ2
xi

˙

, (4.19)

πpµk|X “ x, t, σ2
kq9 exp

ˆ

pȳk ´ µkq
2

2σ2
k{nk

˙

1t´lďµkďlu, (4.20)

πpσ2
k|X “ x, t, µkq9σ2p´nk{2q

k exp
ˆ

´
ř

i:ti“kpti ´ µkq
2

2σ2
k{nk

˙

1t0ďσ2
k
ďLu, (4.21)

where nk “
ÿ

iPJ
1txi“ku and t̄k “

ÿ

i:xi“k
ti{nk.

In each of these full conditionals we can recognize kernels of known distributions
with πpti| ¨ ¨ ¨ q being a multinomial with weights as specified in (4.19), πpµkq a truncated
(r´l, ls) Normal distribution with mean ȳk and variance σ2

k{nk and πpσ2
k| ¨ ¨ ¨ q as a truncated
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(r0, Ls) inverse gamma distribution with shape parameter nk ´ 2
2 and scale parameter

ř

i:ti“kpti ´ µkq
2

2 .

Since we can sample from these known conditional distributions with little
computational cost, a Gibbs Sampler scheme appropriate to sample from (4.18) is presented
in Algorithm 5. In this work, we use Uniform a priori distributions, but similar approach
can be done, for example, by using conjugate priors or any other distribution that imply
the full conditionals to have known forms.

For the Gibbs sampling scheme, we sample initial θ from its a priori distribution
and t0 from independent uniform multinomial distributions. µk and σ2

k are estimated by
either mean or median of the a posteriori sample. On the other hand, for the underlying
field, these statistics do not have the same meaning, since the labels may not have a
numerical interpretation, hindering the use of mean or median. We adopt a similar approach
to the EM-algorithm version and estimate t as the maximum a posteriori value, when
conditioning on the estimated parameters.

Algorithm 5 – Gibbs Sampling scheme for (4.18).

begin
Set initial values for θp0q and initial labels tp0q;
set j Ð 1;
while Convergence criterion not met do

Sample tpjq component-wise by sampling from (4.19);
Sample each µpjqk according to πpµk|X “ xpjq, t, σ2pj´1q

k q;
Sample each σ2pjq

k according to πpσ2
k|X “ xpjq, t, µpjqk q;

j Ð j ` 1;
end
Burn-in the first B samples to suppress the effect of choosing the initial
configuration and then select H spaced samples to obtain low correlation.

end

4.4 Simulation Example
In order to illustrate and compare the described methods of estimation for

HMRFs, we consider a binary Markov Random Field with pairwise interactions and a
moderate dependence structure as presented in Table 12. We define two Gaussian mixture
densities, with the same means, but different variances, as specified in Table 11. Figure
35 shows how the variance increase implies the resulting density losing its two modes
characteristic.

We sample 10 binary fields X from the specified Markov Random Field with
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Density k 0 1
1 µk ´1.0 1.0

σk 0.7 0.6
2 µk ´1.0 1.0

σk 1.4 1.2

Table 11 – Parameters for Gaussian mix-
tures.

c θp0qc θp1qc
Single 0.0 0.0
(1,0) 0.6 -0.6
(0,1) 0.6 -0.6
(3,3) -0.3 0.3

Table 12 – Parameters specification for
the underlying field of HM-
RFs simulations.

(a) (b)

Figure 35 – Gaussian mixtures densities with parameters from Table 11. Dashed gray lines
represent individual components of the mixture.

dimensions 150ˆ 100 and for each of these binary fields, we simulate pixels independently
according to parameters of a density in Table 11 given its class fpti|Xiq, resulting in a
sample from a Hidden Markov Random Field T. For each T, we estimate µk and σk,
k “ 0, 1 and class labels via the EM algorithm presented, an EM algorithm considering an
independent field and Gibbs sampler with Uniform a priori distributions (1000 a posteriori
samples after burn-in and thinning). Figure 36 shows examples of fields sampled for each
mixture density.

(a) (b) (c)

Figure 36 – An example of simulated HMRF: (a) is the underlying field, (b) was sampled
with Density 1 and (c) with Density 2.
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Density Estimate Real EM ind. EM Gibbs
µ̂0 -1 -1.005(0.0106) -1.002(0.0156) -1.004(0.0110)
µ̂1 1 0.9944(0.0069) 0.9970(0.0078) 0.9954(0.0070)

1 σ̂0 0.7 0.6968(0.0072) 0.6988(0.0098) 0.6975(0.0075)
σ̂1 0.6 0.6001(0.0059)) 0.5988(0.0053) 0.5997(0.0058)

Misclassification – 0.019 0.061 0.025
µ̂0 -1 -1.037(0.0130) -1.005(0.0203) -0.9970(0.0151)
µ̂1 1 0.9897(0.0179) 1.002(0.01502) 0.9962(0.0136)

2 σ̂0 1.4 1.382(0.0098) 1.395(0.0115) 1.400(0.0093)
σ̂1 1.2 1.202(0.0119) 1.199(0.0157) 1.204(0.0116)

Misclassification – 0.093 0.220 0.073

Table 13 – Results for 10 simulations of each mixture density. Values in each cell represent
the average of estimates for a particular combination of parameter and method
and their sample deviation in parenthesis.

Resulting estimates are shown in Table 13. All three estimation methods had a
very similar performance for µk and σk, k “ 0, 1, but for the estimation of class labels, the
EM algorithm considering an independent mixture had the highest misclassification ratio
in both cases, what was expected since it ignores all spatial information. Figures 37 and
38 shows estimated labels for each method in a simulation.

(a) (b) (c) (d)

Figure 37 – Estimated class labels for a simulation using Density 1. (a) Real labels, (b)
EM, (c) Independent EM, (d) Gibbs Sampler.

(a) (b) (c) (d)

Figure 38 – Estimated class labels for a simulation using Density 2. (a) Real labels, (b)
EM, (c) Independent EM, (d) Gibbs Sampler.
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5 Analyzing dyed textile images

We analyzed the fungal dyed textile images by applying sequentially some of
the presented methods. For each of the gray-scale images shown in Figure 39, we start by
extracting the low-frequency signal using Penalized Least-Squares methods and Fourier
basis from Chapter 2. The penalty function used was pipβiq “ λbi1tβi‰0u, which results in
a hard-thresholding of the OLS estimates solution. We selected penalty constants (λbi)

to have thresholding constants of the form bi “ λ exp
ˆ

maxpni,miq

α

˙

. We compared the
results from several choices of λ, which controls the base thresholding value related to scale
of the gray levels and α that controls how the penalty relates to the frequency. λ “ 1 and
α “ 2, as in the example from Figure 15, produced appropriate results and were selected
for extracting the low-frequency signal, denoted as Ylow. Resulting images from applying
this hard-thresholding to Fourier basis are shown in Figures 40 (Ylow) and 41 (Y ´ Ylow).
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Figure 39 – Gray-scale images.

Due to the general structure of weft, we can identify a small number of main
gray-scale levels forming a texture, with small variations in these structures. Due to
these characteristics, a Hidden Markov Random Field model should be appropriate to
describe the fabric structure seen after removing the color variation resulting from the
dyeing process. We use Fourier basis selected by the Penalizes Least-Squares procedure as
covariates to fit a Hidden Markov Random Field model that can describe the two main
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Figure 40 – Low-frequency filtered images Ylow.
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Figure 41 – Remaining signal after low-frequency filtering Y ´ Ylow.

parts of the image, texture and dyeing, simultaneously.

The estimation methods for Hidden Markov Random Fields shown in Chapter
4 require knowledge of the random effect distribution P pX “ xq, therefore, we first need
to estimate these distributions for each texture with some method from Chapter 3. Since
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we cannot observe the underlying field x directly to estimate its distribution, we need a
proxy sample of the texture X.

We fit an independent Gaussian mixture model to the data (after removing
the low-frequency signal) with 5 classes and obtain maximum a posteriori estimates for
labels in the underlying field. Since there is a certain symmetry for gray-levels histograms
in each image, an odd number of classes is required to fit the data appropriately, and
three classes wasn’t enough to capture some details of the weft. We use these MAP class
labels as a proxy learning sample of the underlying MRF to estimate the parameters for
each texture and simulate multiple observations from the estimated distribution to check
whether the sampled fields had patterns similar to the training sample. Figure 42 shows
the regions of class labels used for the estimation process.
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Figure 42 – Proxy samples from the underlying Markov Random Field used in estimation.

For each of these proxy samples, we used both Algorithm 3 and Algorithm 2
with a (partial) auto-correlation thresholding of 0.075 and k “ 3, respectively, with initial
window size 25. While none of the interaction structures could produce simulated samples
with similar patterns (after estimating parameters), by gathering relative positions resulting
from both algorithms and including nearest-neighbor interaction, similar simulated textures
were achieved. Figure 43 shows interaction structures used for each image, 18, 18, 14 and
14 relative positions were selected for images (a) to (d), respectively. Note how the set of
relative position reflects features of the texture, for example, the inclination of weft in the
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image.

(a)

i

(b)

i

(c)

i

(d)

i

Figure 43 – Selected interaction structures C for each texture. i denotes the origin and
gray squares corresponds to positions in C.

Given these interaction structures, parameters for each underlying MRF were
estimated by using Stochastic Approximation, with feature function h2pa, bq “ |b ´ a|.
This method was preferred over Maximum Pseudo-Likelihood, due to the high complexity
of interactions, and Monte-Carlo Maximum Likelihood, due to an excessive number of
parameters that would require a precise initial guess to estimate normalizing constant
ratios with a reasonable number of sample, while stochastic approximation, despiting
being a slower algorithm, deals with high complexity models in a more efficient manner.
We use aris “ 1

np3` i{20q , leading to small steps and a slow monotone convergence, with

θr0s “ 0 (independent field) and 2000 steps. Estimated parameters are shown in Annex A.

With the estimated interaction structures and parameters for the underlying
fields, we fitted a Hidden Markov Random Field with previously selected low-frequency
Fourier basis as covariates. Initial parameters and class labels were chosen as the estimates
from independent Gaussian mixture fitted to obtain proxy learning samples. Table 14
presents estimates for parameters in each class. Figure 44 shows the estimated fixed effect
Xβ̂, which, naturally, looks very similar to Ylow and Figure 45 are estimated means for
each pixel, using MAP estimate for class labels.

k 0 1 2 3 4
(a) µk -0.12 -0.05 -0.00 0.05 0.14

σk 0.03 0.02 0.02 0.02 0.04
(b) µk -0.10 -0.06 -0.00 0.06 0.11

σk 0.02 0.02 0.02 0.02 0.02
(c) µk -0.09 -0.05 0.00 0.04 0.08

σk 0.03 0.02 0.02 0.02 0.02
(d) µk -0.11 -0.06 -0.00 0.06 0.10

σk 0.02 0.02 0.02 0.02 0.02

Table 14 – Estimated parameters for Hidden Markov Random Field classes.

Finally, with an estimate for the fixed effect that corresponds to dyeing, we
compute the color homogeneity index presented for images formed by Wβ̂, which doesn’t
take into account color variation caused by the weft. Computed indexes for 1ˆ 1 to 20ˆ 20
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Figure 44 – Estimated fixed effect Xβ̂.
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Figure 45 – MAP estimated means Xβ̂ ` µ̂k̂.
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bins are shown in Figure 46. The same estimation procedure was done for a synthetic
dyed fabric image for comparison. While for original images there was an increase of color
homogeneity as bin sizes also increase, we see a practically flat relationship between bin
size and homogeneity for filtered images.
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Figure 46 – Color Homogeneity Index for each image, in bin sizes varying from 1 (original
resolution) to 20, for original image Y and HMRF filtered image Wβ̂.
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6 Final Considerations

Markov Random Fields play an important role in probabilistic modeling of some
types image data. For most problems, a simple interaction structure like nearest-neighbor is
enough to describe dependence, allowing a variety of proposed methods in the literature to
solve computational challenges imposed by the unknown normalizing constant from Gibbs
distributions. However, this is not the case for complex dependence structures necessary
to describe textures, as the high dimension optimization may lead to unreasonable results
for finite samples.

These challenges are even bigger when it is not possible to obtain an actual
sample field, what is the case for Hidden MRFs. Our strategy of obtaining a proxy sample
from estimates of independent Gaussian mixture model produced reasonable results for
this type of model.

The negative effect from textures caused by the texture in color homogeneity
index was successfully solved by using low-frequency Fourier basis. Simple Penalized
Least-Squares fit with specific penalty functions were enough to extract the dyeing effect
from images, in fact, results obtained by applying this method were very close to the final
estimated fixed effect for HMRF, but they are essentially a numerical feature extraction
procedure, as we do not make (or check) any strong assumptions to stochastic characteristics
of the data at this step. On the other hand, assuming a probabilistic model describing the
data, despite the high complexity and extra computational costs, allows future development
of inferential methods, like hypothesis testing.

All source codes used in this work were included in the R package available at
https://github.com/Freguglia/GibbsRF (complete documentation is still under construc-
tion) and can be installed via ’install_github’ function from ’devtools’ package.

Possible topics for future work include:

• Inferential estimation of the interaction structure for Markov Random Fields.

• Bayesian estimation of parameters for Markov Random Fields.

• Simultaneous estimation of underlying field parameters and mixture densities for
Hidden Markov Random Fields.

• Variable selection (for fixed effects) in a HMRF.

• Strategies for defining the number of classes in a HMRF.

• HMRFs with non-gaussian mixture.
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APPENDIX A – A Simulation Study for
parameter estimation in MRFs

To compare the described parameter estimation methods for MRFs, we consider
three different models, shown in Tables 15 – 17 to simulate from and compare estimators in
each scenario: Model 1 and 2 are binary fields with nearest neighbor interaction structures
with low and high dependence, respectively, while Model 3 is a 4-color field with a more
complex interaction structure.

c θp0qc θp1qc
Single 0 0
(1,0) 0.4 -0.4
(0,1) 0.4 -0.4

Table 15 – Parameter configuration for
Model 1.

c θp0qc θp1qc
Single 0 0
(1,0) 1 -1
(0,1) 1 -1

Table 16 – Parameter configuration for
Model 2.

c θp0qc θp1qc θp2qc θp3qc
Single 0 0 0 0
(1,0) 0.50 -0.17 -0.17 -0.17
(0,1) 0.50 -0.17 -0.17 -0.17
(3,0) -0.60 0.00 0.30 0.30
(5,3) 0.60 -0.20 -0.20 -0.20
(2,0) -0.10 0.30 -0.10 -0.10

Table 17 – Parameter configuration for Model 3.

We simulate 10 samples of 100ˆ 100 images for each model and compute the
following estimators

• MPLE: Maximum Pseudo-Likelihood estimate.

• MCMLE(R): Monte-Carlo Maximum Likelihood estimate with the real parameters
as reference θ0 and K “ 1000.

• MCMLE(P): Monte-Carlo Maximum Likelihood estimate with the MPLE estimates
as reference θ0 and K “ 1000.

• SA: Stochastic Approximation estimate with c0 “ 1, c1 “ 3, c2 “ 1{20 and 200
iterations.

For one of the images in each model, we also compute MCMLE(P)* with
K “ 15000 to check the improvement caused by a larger Monte-Carlo sample size.
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Simulation results are shown in Tables 18 – 20. We omit one of the parameters for each
relative position due to the zero sum condition.

Our results suggests that MPLE, as mentioned in Geyer and Thompson (1992),
overestimates de dependence, i.e., the absolute value of parameters is larger than it should
be. This implies an inefficient reference parameter θ0 for MCMLE(P), which results in
bad estimates for K “ 1000, with large standard deviations and means with opposite sign.
Increasing the Monte-Carlo sample size to 15000 resulted in an apparent improvement
only for a simple interaction structure with high dependence (Model 2).

On the other hand, using MCMLE(R) with appropriate reference θ0 resulted
in far better results, as expected, specially in Model 2. For the more complex interaction
structure, these estimates were reasonable on average, but had a higher standard deviation.
Except for MCMLE(P) in Model 2, Stochastic Approximation method had the most
consistent results, achieving acceptable estimates in terms of both mean and sample
deviation for every model.

Since Stochastic Approximation, even using only 200 iterations, is apparently
the best option for more complex interaction structures, like the ones we use to describe
textures in our problem, we select it as the estimation method for MRFs parameters in
this work.

Real MPLE MCMLE(R) MCMLE(P) SA MCMPLE(P)*
θ
p1q
0 0 0.008p0.036q 0.036p0.113q ´0.125p0.340q 0.001p0.005q 0.034

θ
p1q
p1,0q ´0.4 ´0.505p0.015q ´0.310p0.291q 0.270p1.306q ´0.399p0.013q 0.309
θ
p1q
p0,1q ´0.4 ´0.505p0.015q ´0.478p0.247q 0.575p0.799q ´0.400p0.014q 0.098

Table 18 – Model 1 simulation results: Estimates mean and its respective standard devia-
tion in parenthesis.

Real MPLE MCMLE(R) MCMLE(P) SA MCMPLE(P)*
θ
p1q
0 0 0.000p0.024q 0.000p0.0005q 0.015p0.048q 0.005p0.010q 0.050

θ
p1q
p1,0q ´1 ´1.125p0.055q ´0.995p0.022q ´1.026p0.251q ´1.053p0.119q ´1.124
θ
p1q
p0,1q ´1 ´1.120p0.046q ´0.999p0.012q ´0.950p0.536q ´1.043p0.122q ´1.190

Table 19 – Model 2 simulation results: Estimates mean and its respective standard devia-
tion in parenthesis.
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Real MPLE MCMLE(R) MCMLE(P) SA MCMPLE(P)*
θ
p1q
0 0 0.041p0.055q ´0.048p0.302q 0.098p0.142q 0.003p0.022q ´0.032
θ
p2q
0 0 0.070p0.079q 0.119p0.459q 0.115p0.213q 0.004p0.015q ´0.177
θ
p3q
0 0 ´0.017p0.068q ´0.031p0.152q ´0.053p0.139q ´0.005p0.019q ´0.098

θ
p1q
p1,0q ´0.17 ´0.118p0.044q ´0.060p0.317q ´0.112p0.131q ´0.163p0.020q 0.190
θ
p2q
p1,0q ´0.17 ´0.278p0.044q ´0.11p0.770q ´0.232p0.348q ´0.171p0.028q ´0.240
θ
p3q
p1,0q ´0.17 ´0.099p0.067q ´0.149p1.044q ´0.058p0.197q ´0.165p0.042q ´0.132
θ
p1q
p0,1q ´0.17 ´0.223p0.045q ´0.252p0.235q 0.013p0.200q ´0.170p0.016q ´0.012
θ
p2q
p0,1q ´0.17 ´0.179p0.062q ´0.115p0.320q 0.022p0.253q ´0.165p0.020q 0.091
θ
p3q
p0,1q ´0.17 ´0.226p0.089q 0.052p0.416q 0.025p0.220q ´0.163p0.035q 0.030
θ
p1q
p3,0q 0.00 0.072p0.034q 0.128p0.301q 0.081p0.220q 0.006p0.012q ´0.306
θ
p2q
p3,0q 0.30 0.436p0.043q 0.474p0.377q ´0.193p0.205q 0.304p0.015q ´0.061
θ
p3q
p3,0q 0.30 0.365p0.130q 0.465p0.267q 0.137p0.187q 0.304p0.032q 0.023
θ
p1q
p5,3q ´0.20 ´0.257p0.064q ´0.175p0.428q 0.086p0.142q ´0.202p0.016q ´0.005
θ
p2q
p5,3q ´0.20 ´0.266p0.060q ´0.277p0.599q ´0.001p0.109q ´0.200p0.031q ´0.235
θ
p3q
p5,3q ´0.20 ´0.223p0.088q ´0.298p0.673q ´0.060p0.174q ´0.192p0.040q 0.017
θ
p1q
p2,0q 0.30 0.282p0.063q 0.323p0.209q ´0.027p0.237q 0.298p0.021q 0.217
θ
p2q
p2,0q ´0.10 0.035p0.043q ´0.139p0.303q ´0.122p0.307q ´0.102p0.018q ´0.109
θ
p3q
p2,0q ´0.10 0.071p0.080q 0.181p0.387q ´0.068p0.195q ´0.084p0.036q ´0.079

Table 20 – Model 3 simulation results: Estimates mean and its respective standard devia-
tion in parenthesis.
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ANNEX A – Underlying MRF estimates in
Textile Images

c θp0qc θp1qc θp2qc θp3qc θp4qc
Single 0.15 -0.09 -0.11 -0.08 0.13
(1,0) 0.50 0.24 -0.11 -0.41 -0.22
(8,0) 0.25 0.15 0.02 -0.13 -0.28
(9,0) -0.04 0.01 0.15 -0.04 -0.08
(17,0) 0.06 0.03 0.06 -0.06 -0.08
(-13,5) 0.24 0.08 -0.06 -0.15 -0.11
(-4,5) 0.25 0.12 -0.04 -0.21 -0.12
(4,5) 0.35 0.18 -0.09 -0.29 -0.15

(-17,11) 0.13 0.03 -0.02 -0.05 -0.09
(-9,11) 0.06 0.01 0.04 -0.03 -0.08
(0,11) 0.37 0.19 -0.12 -0.30 -0.14
(8,11) 0.16 0.08 0.02 -0.16 -0.10

(-13,16) 0.06 0.01 0.07 -0.06 -0.07
(-5,16) 0.07 0.04 0.08 -0.06 -0.14
(-4,16) -0.01 -0.02 0.08 -0.01 -0.04
(4,16) 0.18 0.05 -0.02 -0.13 -0.09
(12,16) 0.07 0.00 0.02 -0.02 -0.08
(-1,2) -0.09 -0.05 0.02 0.06 0.06
(2,1) -0.24 -0.13 0.02 0.16 0.19

Table 21 – Estimated parameters for the underlying MRF of (a).
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c θp0qc θp1qc θp2qc θp3qc θp4qc
Single 0.20 -0.14 -0.12 -0.15 0.21
(1,0) 0.61 0.21 -0.13 -0.44 -0.25
(3,0) 0.13 0.13 0.08 -0.13 -0.21
(4,0) 0.28 0.16 -0.04 -0.20 -0.20
(7,0) 0.07 0.03 0.02 -0.01 -0.12
(11,1) 0.24 0.14 -0.01 -0.17 -0.19
(14,1) -0.05 -0.05 0.03 0.12 -0.04
(-13,3) 0.03 -0.01 0.01 0.02 -0.05
(-2,4) 0.30 0.17 -0.03 -0.24 -0.20
(1,4) 0.01 0.05 0.08 -0.01 -0.13
(2,4) 0.13 0.08 0.02 -0.08 -0.15
(5,4) 0.04 0.02 0.06 0.02 -0.14
(-4,8) -0.01 -0.05 0.03 0.07 -0.04
(-1,8) 0.03 0.01 0.03 0.01 -0.07
(0,8) 0.11 0.06 0.00 -0.06 -0.11
(3,8) 0.10 0.08 0.06 0.02 -0.26
(1,12) -0.00 -0.02 0.01 0.05 -0.05
(-1,16) 0.05 0.00 -0.02 0.01 -0.04
(0,2) -0.06 -0.04 -0.02 0.03 0.08

Table 22 – Estimated parameters for the underlying MRF of (b).

c θp0qc θp1qc θp2qc θp3qc θp4qc
Single 0.15 -0.10 -0.11 -0.11 0.17
(0,1) 1.36 0.59 -0.67 -0.84 -0.43
(1,0) 0.77 0.43 -0.07 -0.51 -0.62
(2,-2) -0.24 -0.22 -0.11 0.14 0.44
(1,2) -0.27 -0.18 0.07 0.28 0.10
(-4,2) 0.14 0.09 0.04 -0.11 -0.17
(0,-4) 0.20 0.13 0.01 -0.15 -0.19
(0,-5) 0.01 0.02 0.08 0.02 -0.13
(-1,2) -0.04 0.01 0.13 0.08 -0.18
(-1,-1) 0.17 0.11 0.07 -0.05 -0.30
(-2,1) -0.08 -0.05 -0.03 0.04 0.12
(-8,0) 0.13 0.07 -0.01 -0.07 -0.12
(-8,-1) -0.07 -0.05 0.02 0.08 0.02
(2,0) -0.02 -0.03 -0.04 0.01 0.09
(3,0) 0.14 0.12 0.05 -0.11 -0.20

Table 23 – Estimated parameters for the underlying MRF of (c).
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c θp0qc θp1qc θp2qc θp3qc θp4qc
Single 0.04 -0.06 0.03 -0.04 0.03
(1,0) 1.16 0.64 -0.08 -0.84 -0.88
(0,1) 1.01 0.51 -0.11 -0.71 -0.71
(-2,2) -0.23 -0.23 -0.21 0.04 0.63
(-2,-2) -0.12 -0.12 -0.11 0.05 0.30
(-8,0) 0.61 0.38 -0.02 -0.50 -0.46

(-11,-11) 0.10 0.02 -0.01 0.00 -0.12
(-2,1) -0.29 -0.22 -0.03 0.20 0.34
(1,2) -0.05 -0.01 0.02 0.02 0.02
(9,1) -0.03 0.00 0.10 0.09 -0.17
(-8,1) -0.25 -0.15 0.08 0.27 0.04
(2,1) -0.05 0.00 0.08 0.09 -0.12
(0,2) -0.01 0.00 0.06 0.03 -0.07
(-1,3) 0.07 0.09 0.08 -0.04 -0.20
(-4,2) 0.05 0.09 0.05 -0.05 -0.14

Table 24 – Estimated parameters for the underlying MRF of (d).
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