
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Julio César Mendoza Bobadilla

Lung Nodule Classi�cation

Based on Deep Convolutional Neural Networks

in Chest X-Ray Images

Classi�cação de Nódulos Pulmonares

Baseada em Redes Neurais Convolucionais Profundas

em Radiogra�as

CAMPINAS

2017



Julio César Mendoza Bobadilla

Lung Nodule Classi�cation
Based on Deep Convolutional Neural Networks

in Chest X-Ray Images

Classi�cação de Nódulos Pulmonares
Baseada em Redes Neurais Convolucionais Profundas

em Radiogra�as

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
ful�llment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Hélio Pedrini

Este exemplar corresponde à versão �nal da
Dissertação defendida por Julio César
Mendoza Bobadilla e orientada pelo Prof.
Dr. Hélio Pedrini.

CAMPINAS

2017



Agência(s) de fomento e nº(s) de processo(s): CAPES
ORCID:  https://orcid.org/0000-0001-5820-2615

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

    
  Mendoza Bobadilla, Julio César, 1990-  
 M523L MenLung nodule classification based on deep convolutional neural networks in

chest X-ray images / Julio César Mendoza Bobadilla. – Campinas, SP : [s.n.],
2017.

 

   
  MenOrientador: Hélio Pedrini.
  MenDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.
 

    
  Men1. Pulmões - Câncer. 2. Diagnóstico auxiliado por computador. 3.

Processamento de imagens. 4. Redes neurais (Computação). I. Predrini, Hélio,
1963-. II. Universidade Estadual de Campinas. Instituto de Computação. III.
Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Classificação de nódulos pulmonares baseada em redes neurais
convolucionais profundas em radiografias
Palavras-chave em inglês:
Lungs - Cancer
Computer-aided diagnosis
Image processing
Neural networks (Computer science)
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Hélio Pedrini [Orientador]
Marcelo Zanchetta do Nascimento
Esther Luna Colombini
Data de defesa: 18-12-2017
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)



Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Julio César Mendoza Bobadilla

Lung Nodule Classi�cation
Based on Deep Convolutional Neural Networks

in Chest X-Ray Images

Classi�cação de Nódulos Pulmonares
Baseada em Redes Neurais Convolucionais Profundas

em Radiogra�as

Banca Examinadora:

• Prof. Dr. Hélio Pedrini
IC/UNICAMP

• Prof. Dr. Marcelo Zanchetta do Nascimento
FACOM/UFU

• Prof. Dra. Esther Luna Colombini
IC/UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 18 de dezembro de 2017



Resumo

O câncer de pulmão, que se caracteriza pela presença de nódulos, é o tipo mais comum
de câncer em todo o mundo, além de ser um dos mais agressivos e fatais, com 20% da
mortalidade total por câncer. A triagem do câncer de pulmão pode ser realizada por
radiologistas que analisam imagens de raios-X de tórax (CXR). No entanto, a detecção
de nódulos pulmonares é uma tarefa difícil devido a sua grande variabilidade, limitações
humanas de memória, distração e fadiga, entre outros fatores. Essas di�culdades motivam
o desenvolvimento de sistemas de diagnóstico por computador (CAD) para apoiar radio-
logistas na detecção de nódulos pulmonares. A classi�cação do nódulo do pulmão é um
dos principais tópicos relacionados aos sistemas de CAD. Embora as redes neurais convo-
lucionais (CNN) tenham demonstrado um bom desempenho em muitas tarefas, há poucas
explorações de seu uso para classi�car nódulos pulmonares em imagens CXR. Neste tra-
balho, propusemos e analisamos um arcabouço para a detecção de nódulos pulmonares em
imagens de CXR que inclui segmentação da área pulmonar, localização de nódulos e clas-
si�cação de nódulos candidatos. Apresentamos um método para classi�cação de nódulos
candidatos com CNNs treinadas a partir do zero. A e�cácia do nosso método baseia-se
na seleção de parâmetros de aumento de dados, no projeto de uma arquitetura CNN
especializada, no uso da regularização de dropout na rede, inclusive em camadas convolu-
cionais, e no tratamento da falta de amostras de nódulos em comparação com amostras
de fundo, balanceando mini-lotes em cada iteração da descida do gradiente estocástico.
Todas as decisões de seleção do modelo foram tomadas usando-se um subconjunto de
imagens CXR da base Lung Image Database Consortium and Image Database Resource
Initiative (LIDC/IDRI) separadamente. Então, utilizamos todas as imagens com nódulos
no conjunto de dados da Japanese Society of Radiological Technology (JSRT) para avalia-
ção. Nossos experimentos mostraram que as CNNs foram capazes de alcançar resultados
competitivos quando comparados com métodos da literatura. Nossa proposta obteve uma
curva de operação (AUC) de 7.51 considerando 10 falsos positivos por imagem (FPPI) e
uma sensibilidade de 71.4% e 81.0% com 2 e 5 FPPI, respectivamente.



Abstract

Lung cancer, which is characterized by the presence of nodules, is the most common type
of cancer around the world, as well as one of the most aggressive and deadliest cancer, with
20% of total cancer mortality. Lung cancer screening can be performed by radiologists
analyzing chest X-ray (CXR) images. However, the detection of lung nodules is a di�cult
task due to their wide variability, human limitations of memory, distraction and fatigue,
among other factors. These di�culties motivate the development of computer-aided diag-
nosis (CAD) systems for supporting radiologists in detecting lung nodules. Lung nodule
classi�cation is one of the main topics related to CAD systems. Although convolutional
neural networks (CNN) have been demonstrated to perform well on many tasks, there are
few explorations of their use for classifying lung nodules in CXR images. In this work, we
proposed and analyzed a pipeline for detecting lung nodules in CXR images that includes
lung area segmentation, potential nodule localization, and nodule candidate classi�cation.
We presented a method for classifying nodule candidates with a CNN trained from the
scratch. The e�ectiveness of our method relies on the selection of data augmentation pa-
rameters, the design of a specialized CNN architecture, the use of dropout regularization
on the network, inclusive in convolutional layers, and addressing the lack of nodule sam-
ples compared to background samples balancing mini-batches on each stochastic gradient
descent iteration. All model selection decisions were taken using a CXR subset of the
Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI)
dataset separately. Thus, we used all images with nodules in the Japanese Society of Ra-
diological Technology (JSRT) dataset for evaluation. Our experiments showed that CNNs
were capable of achieving competitive results when compared to state-of-the-art methods.
Our proposal obtained an area under the free-response receiver operating characteristic
(AUC) curve of 7.51 considering 10 false positives per image (FPPI), and a sensitivity of
71.4% and 81.0% with 2 and 5 FPPI, respectively.
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Chapter 1

Introduction

Lung cancer is the most common type of cancer in men, and the third in women around the

world. Moreover, it is one of the most aggressive cancers with a survival rate of 10−15%,

as well as the deadliest cancer with 20% of total cancer mortality [53]. Figure 1.1 shows

the percentages of cancer deaths worldwide. Lung cancer is characterized by the presence

of nodules. Notwithstanding this fact, lung nodules can also be caused by scar tissues,

in�ammations or infections related to benign conditions, such as tuberculosis [9, 38].

Lung cancer screening is performed by radiologists through the analysis of computer

tomography (CT) or chest X-ray (CXR) images. Although screening using CT is superior

to screening with CXR [88], the acquisition process is more expensive. In consequence,

lung cancer screening with CXR are considered by countries that cannot a�ord a screening

program with CT due to its cost and availability [81].

Lung cancer screening can be improved with computational tools that assist radi-

ologists in their image analysis. Computer-aided detection (CAD) systems detect the

location of lung nodules automatically with the objective of enhancing the performance

of radiologists by considering the output of the system as a second opinion [13, 37]. Thus,

CAD systems can potentially detect nodules missed by the radiologists, increasing their

detection rate. Furthermore, CAD systems can reduce the reading time allowing the

radiologists to focus on the image interpretation tasks, and have the potential to pro-

vide additional information such as di�erentiation among benign, malign and non-nodule

structures [2, 13].

CAD systems generally involve three main stages for detecting lung nodules: lung seg-

mentation, candidate detection, and nodule classi�cation. Lung nodules can be detected

by considering bright masses of expected size, shape and texture [37]. Then, the methods

used for the candidate detection and classi�cation stages should consider these features

to recognize potential nodule locations.

1.1 Motivation

One of the main motivations to develop CAD systems for detecting lung nodules is to

support cancer screening procedures. Lung cancer screening is performed through the

analysis of low-dose CT, CXR or sputum cytology samples [81]. Several studies have been
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Figure 1.1: Estimated number of cancer deaths on both sexes (Source: World Cancer
Report 2014 [53]).

conducted to analyze the e�ectiveness for lung cancer screening with low-dose CT and

CXR images in high risk patients [6, 21, 58, 88]. These studies suggest that screening with

CXR increases the detection rate, but not reduce lung cancer mortality. Screening with

low-dose CT has better detection rate compared to screening with CXR [88]. Moreover,

the usage of low-dose CT reduces lung cancer mortality, as well as mortality caused by

other diseases [88].

However, screening low-dose CT has some potential risks. For instance, the exposure

to CT ionizing radiation may increase the risk of cancer in patients, and the usage of

low-dose CT has higher false positive rate than CXR screening. Therefore, it requires

further investigation and also additional costs [81]. On the other hand, lung cancer

screening with CXR is cheaper, as previously mentioned. Furthermore, screening with

CXR can be improved when radiologists use CAD systems in clinical routine [81]. Thus,

the potential role of CXR on lung cancer screening motivates research e�orts to improve

the e�ectiveness of CAD systems in CXR, and to measure the impact of these systems

on the radiologist performance.

Detecting lung nodules is a challenging task due to their wide variability. In CXR

images, lung nodules may have low contrast, can overlap with ribs, large pulmonary

vessels and other anatomical structures outside the lung, as well as they usually have

irregular size, shape and opacity [37]. Besides the variability of lung nodules, another

factor that leads to misdetection of lung nodules on screening is that radiologists are

subject to the human limitations of memory, distraction and fatigue. Radiologists usually

detect lung nodules by considering brightness and shape of circular objects within the

thoracic cavity.

CAD systems for lung nodule detection on CXR images also consider nodule features.

Traditional approaches are based on the design of hand-crafted features that characterize

lung nodules. This approach presents some drawbacks, such that manual design and tun-

ning may work well on one dataset, but may not work on a new dataset [76]. Moreover,

designing hand-crafted features is time-consuming, and typically requires expert knowl-
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edge [84]. On the other hand, CAD systems based on deep learning approaches have

advantages over traditional methods, such as the automated feature learning based on

an objective function that optimizes nodule classi�cation or detection e�ectiveness [76].

Besides, deep learning based approaches face challenges on lung nodule detection, for in-

stance, the need of large labeled datasets for training, which is also a challenge for several

medical imaging tasks.

1.2 Hypotheses

A research question often found in the literature, also considered in this dissertation, is:

Can CNNs be used in medical imaging applications e�ectively, overcoming the di�culties

present in this domain?.

Several approaches have been proposed to adopt CNNs in medical imaging tasks.

Three common approaches explored to use CNNs are: (i) training CNNs from scratch,

(ii) use of o�-the-shelf CNN features, (iii) use of transfer learning with �ne-tuning [73].

From these strategies, transfer learning with �ne tuning has been demonstrated to be the

best option in diverse tasks with di�erent imaging modalities [73, 78].

In this work, we explore the �rst approach. The main hypothesis is that CNNs trained

from scratch can perform well on lung nodule classi�cation by setting proper regularization

and optimization methods. Secondary hyphoteses studied in this work include:

• Does the design of a specialized architecture for lung nodule classi�cation improve

the performance of the model?

• Are regularization e�ects of data augmentation, dropout and weight penalties crit-

ical for lung nodule classi�cation due to the amount of samples used in training?

• Do regularization and optimization e�ects of unsupervised objectives in loss func-

tions improve CNN performance in lung nodule classi�cation?

1.3 Contributions

The main contributions of this dissertation are:

• an analysis and evaluation of lung area segmentation and candidate nodule localiza-

tion: we analyzed and compared the performance of relevant approaches to can-

didate nodule classi�cation, and we evaluated the performance of statistical shape

model for lung area segmentation.

• the proposition of a method for lung nodule classi�cation based a CNN trained from

scratch: our approach investigates the selection of data augmentation parameters,

the design of a specialized CNN architecture, the use of dropout regularization on the

network, including convolutional layers, and the lack of nodule samples compared

to background samples balancing mini-batches in each stochastic gradient descent

iteration.
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1.4 Text Structure

This dissertation is organized as follows. Chapter 2 describes relevant concepts and work

related to the topic under investigation. Chapter 4 presents the methodology proposed

in this work. Chapter 5 describes and discusses our experimental results. Chapter 6

concludes this work with �nal remarks and directions for future work.
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Chapter 2

Background

In this chapter, we provide an overview of the technical background for computer-aided

detection (CAD) of lung nodules in chest radiography images. First, we introduce relevant

concepts related to lung nodule detection. Then, we present three subproblems considered

in most of the CAD systems used for detecting lung nodules, and we describe the methods

used in this dissertation to address these subproblems. Finally, we present the related

work focusing on the methods used in every stage of lung nodule detection.

2.1 Related Concepts

Medical imaging is itself a major subject that involves many areas, from physics to

medicine, to build visual representations of the interior of a human body for clinical

analysis. Usage of medical images in the diagnosis, detection and treatment of diseases is

of increasing importance due to the need for more accurate, cost-e�ective and less invasive

procedures, as well as the advances in medical imaging technologies [85].

Human experts, such as physicians and radiologists, read and interpret medical im-

ages. An important component of image interpretation is the identi�cation of anatomical

structures present in the images. However, image interpretation is di�cult due to the

wide variability of anatomical structures, such as human limitation of memory, distrac-

tion, fatigue, among others. These di�culties motivate the development of image analysis

tools, such as CAD systems, to assist human experts in image analysis.

2.1.1 Computer Aided Detection of Lung Nodules

CAD refers to the procedure that assists radiologists in the analysis and evaluation of

medical images. CAD systems can help radiologists in the reading process, for instance,

highlighting suspicious locations that may be related to a pathology condition and indicate

their degree of con�dence.

CAD systems are used for interpretation of images in various modalities such as CXR,

CT, magnetic resonance imaging, and ultrasound. Moreover, CAD systems assist radi-

ologists in several tasks, such as breast mass detection, polyp detection and lung nodule

detection, which is the focus of this dissertation.
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There are two common modes to use CAD systems by radiologists [10]. First, ra-

diologists consider the CAD system as a �rst reader such that they need only analyze

suspicious regions detected by the system. This mode helps radiologists reduce the time

spent in locating suspicious regions, prevents fatigue, and allows them to focus on image

analysis. However, it also limits its e�ectiveness to the CAD system performance. Second,

radiologists can analyze the CXR �rst, and consider the CAD system as a second reader,

such that missed nodules may be detected by the system, improving the e�ectiveness of

the radiologists.

The impact of CAD systems on the radiologists performance depends on the system

e�ectiveness and radiologists experience. There is evidence that CAD systems used as a

second reader enhance the performance of unexperienced radiologists, while not bene�ting

signi�cantly experienced radiologists [20].

CAD systems for detecting lung nodules in CXR images receive as input a CXR image

and give as output the same image highlighting the locations of suspicious regions found

by the system. Moreover, CAD systems usually detect nodules solving three subproblems:

lung area segmentation, candidate nodule detection, and false positive reduction though

candidate classi�cation.

2.1.2 Lung Area Segmentation

Lung area segmentation is a binary segmentation problem in which, given an input CXR

image, our objective is to determine a function f : Ω → {0, 1} such that, for every pixel

P ∈ Ω, where Ω is the lattice that represents the image, f(P ) = 1 if the pixel belongs to

the lung area, and 0 otherwise.

The function f can be represented by a binary mask and, according to the type of

segmentation method used, it can be calculated in various ways. For instance, deformable

model based methods �nd a set of representative points along the lung boundary, also

called landmarks. Thus, landmarks linked with lines can approximate the lung boundary,

and can be used to generate the lung area mask.

The aim of this stage is to separate the lung area in order to prevent the detection of

structures similar to nodules located outside the lung. The accuracy of the segmentation

method in�uences directly the lung nodule detection performance. If the method under-

segments the lung area, some nodules located on missed regions would not be found in

posterior stages of the CAD system. If the method over-segments the lung area, more

candidate regions that are not nodules would be detected, increasing the false positives

on the last stages.

Deformable Models

Deformable models correspond to a class of segmentation methods that estimate the shape

of an object starting from an initial contour, which is improved iteratively by shrinking

or expansion operations. Deformable models interpret the segmentation as a global opti-

mization problem. The goal is to minimize a cost function that reaches its optimum when

the shape perfectly �ts the object boundary. Optimization is performed using numerical

optimization methods, such as gradient descent or Gauss-Newton methods.
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Deformable models can be grouped into two classes according to the way in which they

represent the shapes: parametric and geometric models [54]. Parametric models repre-

sent shapes explicitly with their parametric forms. Geometric models represent shapes

implicitly as a level set of a higher-dimensional scalar function.

In this work, we focus on a family of parametric methods called statistical shape

models [16, 54] conformed by active shape models (ASM) [17], active appearance models

(AAM) [18], deformable templates [35], among others. The main characteristic of these

models is that they learn statistical information about the object to segment. Statistical

shape models are particularly well suited for problems in which the landmarks in the

boundary of the object to segment are available as part of the ground truth.

In this work, we focus on AAM for segmentation. We introduce concepts related to

AAMs in the next section.

Active Appearance Models

AAMs are generative non-linear parametric models that describe variations of deformable

objects in terms of shape and appearance [3]. By estimating the shape and appearance

basis of an object class in a set of images, AAM parameters can be adjusted to generate

synthetic images as similar as possible to unseen images. Moreover, AAM parameters can

be used for segmentation, such as in this work, and for image interpretation [18, 50, 83].

AAMs are constructed from a set of images with a set of v landmark points xi =

(xi, yi)
T ∈ R2, de�ned a priori, that represents the shape s = (x1, y1, · · · , xv, yv)T ∈ R2v×1

of the target object on the image [3]. AAMs can approximate instances of an object with

a model that explains its shape and appearance, and a function to map the estimated

appearance from the AAM reference shape to the estimated shape.

Shape Model. The shape is modeled to allow linear variation such that it could be

expressed as the sum of the mean shape s̄ and a linear combination of n shape vectors si:

s = s̄ +
n∑

i=1

pisi (2.1)

= s̄ + Sp (2.2)

where s̄ ∈ R2v×1 , and S ∈ R2v×n and p ∈ Rn×1 describe the shape bases and parameters,

respectively. Object shapes are �rst normalized using procrustes analysis (PA) to re-

move variation using a global shape transformations. Then, principal component analysis

(PCA) is applied to obtain the shape bases. PCA only considers local shape non-rigid

variations due to the application of PA normalization [50].

Appearance Model. The appearance is modeled for all pixels x in a reference frame

s̄. AAMs are built to allow linear appearance variation. The model can be expressed as

the sum of the mean appearance Ā(x) and a linear combination of m appearance bases

Ai(x) with parameters ci. Let a be the vectorized representation of A(x), such that the
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Figure 2.1: An example of AAM instantiation for face modeling (Source: Matthews and
Baker [50])

model can be denoted as follows:

A(x) = Ā(x) +
m∑
i

ciAi(x) (2.3)

a = ā + Ac (2.4)

where ā ∈ RF×1 is the mean appearance,A ∈ RF×n and c ∈ Rn×1 describe the appearance

bases and parameters, respectively.

Model instantiation. The aforementioned models describe shape and appearance

variations, but they do not describe how to use the models to approximate a new image

I with a target object. Given the shape parameters p, we can generate a shape s. Given

the appearance parameters c, we can generate an appearance a de�ned in a reference

shape s̄. Then, we generate an approximation to I by using a warp function W(x,p)

that maps the pixel positions x from the frame of the shape s̄ to the estimated shape

s with parameters p [50]. Figure 2.1 shows an example of model instanciation on face

modeling.

Fitting AAMs. Given a new image I, a shape model, an appearance model and a

warp function, we wish to generate a synthetic image M as similar as possible to the new

image. In other words, the di�erence between I and M must be minimal. We measure

this di�erence as the sum of squared di�erences. Then, the �tting process could be de�ned

as the following optimization problem:

p∗, c∗ = arg min
p,c

‖i[p]− (ā + Ac)‖2 (2.5)
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where i[p] is the vectorized representation of I(W(x,p)).

2.1.3 Detection of Nodule-like Regions

Detection of nodule-like regions, also called candidate regions, consists in �nding a set of

locations c = {(xi, yi)} ∈ Rn×2, given an input image, such that the region of interest

around each location (xi, yi) is likely to contain a lung nodule.

Methods for candidate detection can provide us with additional information about the

candidates besides their location, such as size and the likelihood of being a nodule. For

instance, under the assumption that lung nodules are circular objects, scale-space based

detectors can give us an approximated radius of the candidates. Moreover, convergence

index based detectors calculate the convergence index, that is directly proportional to the

nodule likelihood, for all pixels on the image, including candidate locations.

Scale-Space Representation based Detectors

Nodule-like regions appear as blobs of variable size on the image. An intuition to detect a

blobs is to describe a property that di�erentiates the blob from the background. However,

the detection methods should consider that such description depends on the scale in which

the blob is represented on the image. Since we do not know the scale in which the object

is best described, we can represent the image at multiple scales such that one the scales

will have the desired description.

An approach for representing the image at multiple scale is the scale-space frame-

work [44]. The central idea is that, given an image, we can create a multi-scale repre-

sentation by generating a family of derived images where �ne-scale details are removed

sequentially by a scale-space smoothing mechanism.

Formally, let a 2D image be denoted as f : R2 → R. The scale-space representation

L : R2 × R+ → R is de�ned as the family of images that result from the convolution of

the image with various Gaussian kernels g : R2 × R+ → R with a variance t = σ2, which

is referred to as the scale parameter [46]:

L(·, ·, t) = g(·, ·; t) ∗ f(·, ·) (2.6)

We can �nd blobs using di�erential operators over L at a �xed scale. For instance,

detectors such as Laplacian of Gaussian (LoG) [44] derive from second order partial deriva-

tives of L. The LoG corresponds to the trace of the Hessian matrix, and its local extrema

indicate bright or dark blobs on the image. The Di�erence of Gaussians (DoG) [48] is an

approximation of the LoG, therefore, the local extrema of its response also correspond to

blobs in the image. The Determinant of Hessian (DoH) [46] is another detector in which

the extrema responses correspond to blobs and saddle points on the image.

We can �nd blobs at multiple scales calculating local extrema over multiple scales.

However, we cannot compare responses of di�erent scales directly since numerical values of

the derivatives of L decrease when scale t increases due to the non-enhancement property

of spatial smoothing. Instead, multi-scale detectors localize blob-like structures by �nding
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local extrema on the response of di�erential expressions calculated using normalized-

derivatives of L [45]. Figure 2.2 depicts multi-scale LoG detector.

t

sc
ale

(a) L(·, ·; t) = g(·, ·; t) ∗ f(·, ·)

t

sc
ale

(b) Laplacian of Gaussian responses

local extrema

(c) Blobs

Figure 2.2: Scale-space blob detection with the LoG operator.

Convergence Index based Detectors

The convergence index (CI) measures the degree in which gradients around a point of

interest are oriented to it. We can de�ne convergence degree of the gradient at the point

Q in the neighborhood or support region R of a point of interest P as cos θ(k, l), which is

the projection of the unitary vector with same orientation as the gradient, with respect

to the line PQ as we show in Figure 2.3. Then, the convergence index point of interest

P is the average of the convergence degrees of the gradients of all pixels in its support

region R [39]. Formally, the convergence index at the point P with the location (i, j) can

be calculated as follows:

CI(i, j) =
1

M

∑
(k,l)∈R

cos θ(k, l) (2.7)

where (k, l) is the position of the point Q, and M is the number of pixels in R. Several

CI-based �lters such as coin, iris, adaptive �lters were proposed in [39, 86] for detecting

lung nodules.

2.1.4 Classi�cation for False Positive Reduction

Candidate classi�cation can be seen as a binary classi�cation problem in which we aim

to estimate a function f : Rn → R such that, for a candidate region r ∈ Rwh centered at

the location (x, y), we have y = f(r) where y is the estimated probability of the region r

may contain a truth nodule, and w and h are the dimensions of the candidate region.

P
Qθ

(i, j)
(k, l)

gradient vector
R

Figure 2.3: CI �lter computation at the pixel (i, j)
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Figure 2.4: Classical pattern recognition pipeline for lung nodule classi�cation

In the end, we have a list of candidate locations sorted by probabilities estimated by

the classi�cation method. False positive reduction is performed by considering only the

�rst elements of the sorted list of candidates that have higher probability of being true

positives.

Most of the available methods follow a classical pattern recognition pipeline that we

show in Figure 2.4 . Typically, the �rst stage is preprocessing. Preprocessing may include

image resizing, noise removal, contrast enhancement and nodule feature enhancement,

nodule segmentation, among others. The second stage is feature extraction, which in-

volves representing characteristics of the nodule that will help to di�erentiate them from

background tissue. The third stage is feature selection, which aims to reduce the number

of dimensions of the feature vector to save computational time and reduce irrelevant or

noisy features. Finally, the classi�cation stage consists in using the features selected as

representations of the candidates, and using them for building a classi�cation model.

On the other hand, deep learning approaches have been used in several tasks related

to medical imaging, including false positive reduction on CAD systems [29, 76]. However,

they have been rarely used for lung nodule classi�cation on CXR images [84]. In the next

sections, we introduce some concepts of deep learning and their use for classifying lung

nodules.

2.1.5 Deep Learning

Deep learning is a subarea of machine learning that studies methods for solving tasks

from the experience by learning a hierarchy of concepts, in which abstract concepts are

de�ned as compositions of concepts. In this section, we provide an overview of the history

of deep learning. Then, we introduce some concepts related to architecture and learning

procedure of CNNs.

Deep Learning History

Several approaches have contributed to the development of deep learning. These contri-

butions occurred in three waves [26, 70]: the �rst wave began with the development of

biologically inspired linear models, the second wave began with the connectionism move-

ment, and the third wave began with the use of greedy layerwise pre-training and the

popularization of deep learning.

The predecessors of deep learning models were simple linear models inspired by the

brain function. The McCulloch-Pitts Neuron [52] was an earlier linear model able to

classify two categories of inputs, but the weights of the models should be set manually.
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Emergence of learning algorithms [32] inspired the development of supervised and un-

supervised linear models. The Perceptron [65] was the �rst model that learned weights

given inputs and its categories. The adaptive linear element [90] was a linear model

trained with an algorithm that is a special case of stochastic gradient descent algorithm,

which is nowadays used to train deep learning models. Later, limitations of linear models

reduced the interest of researchers on brain inspired models in general [55].

The biologically inspired idea that computational units can achieve complex behaviors

via their interactions motivated the development of models that introduced concepts that

are being used in modern deep networks. The Cognitron [23] introduced a more compli-

cated version of the recti�er linear unit [25, 56], and a simpli�ed version is widely used

today. The Neocognitron [24] introduced a model architecture that combines convolution,

weight or parameter sharing and subsampling mechanisms. This architecture was the ba-

sis of modern CNNs [41]. The Cresceptron introduced Max-Pooling as subsampling layer

to gain tolerance to local location deformations [89].

The second wave began in part with the connectionism movement [51, 66], which

in the context of cognitive science has as central idea that simple computational units

can accomplish intelligent behaviors when interconnected together. The connectionism

movement introduced the concept of distributed representation [34]. Another advance was

the successful application of backpropagation algorithm to deep networks with internal

representations in hidden layers [67], followed by its application to earlier CNNs [41].

Interest in neural networks diminished due to the good results of methods from other

machine learning areas in several tasks. The algorithms proposed in this wave were quite

well to train deep networks, however, limited amount of data and hardware available at

that time did not allowed much experimentation.

The third wave began with the use of layerwise unsupervised pre-training to deep belief

networks e�ciently [33]. This pre-training scheme was used to train other kinds of deep

networks [7, 64]. Then, the interest in the deep learning research increased, �rst motivated

by the success of unsupervised learning algorithms for allowing deep networks to generalize

well from small datasets, and followed by the success of supervised learning algorithms for

leveraging large labeled datasets. Deep networks improved the state-of-the-art on several

tasks, such as object recognition [40], speech recognition [33], pedestrian detection [71],

image segmentation [22]. Moreover, deep networks are used in top technology companies

and have supported research in other sciences [42].

Convolutional Neural Networks

CNNs are a category of neural networks for processing data with grid-like topology such

as time-series which can be seen as 1D grid, images which can be seen as 2D grid, and

volumes and videos which can be represented as 3D grids [26]. CNNs introduce two

concepts that other types of neural networks do not consider: convolution and pooling.

Convolution operates on two functions: the input and the kernel, and produces an out-

put known as feature map. In its discrete representation the input, kernel and the feature

map are represented as multi-dimensional arrays known as tensors. Convolution operator

adds relevant properties to CNNs [26]: (i) sparse interactions, which refers to reducing
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the interaction of output units with a few local input units (receptive �eld), allowing the

network to detect meaningful features e�ciently, (ii) parameter sharing, which refers to

learning the same set of parameters for every output unit, and (iii) equivariance to trans-

lation, which indicates that if a feature is translated on the input, its representation is

translated on the output.

Pooling allows for approximating invariance to small local translations by replacing

the content of the convolutional output at speci�c locations with a statistic calculated over

its neighborhood, and by reducing the dimensionality of the output via subsampling [91].

Invariance to local translations is useful when knowing the presence of an object in an

image is more important than the exact location of the object. Moreover, pooling improves

the e�ciency due to the size reduction of feature maps. Modern CNN usually perform

pooling selecting the maximum value over the neighborhood, however other functions can

be used such as the average, weighted average and L2-norm [26].

Building CNNs, as other kinds of neural networks, involves making decisions about the

proper hidden unit, regularization, and learning mechanisms. Neural networks use non-

linear activation functions in their hidden units to increase their learning capacity. CNNs,

similarly to other kinds of deep neural networks, use a recti�ed linear unit (ReLU) as non-

linearity due to its e�ectiveness in large models [36]. Moreover, several generalizations

of ReLU have been proposed and successfully applied to CNNs such as leaky ReLU [49],

parametric ReLU [31] and Maxout units [27].

The score function maps the input of the network to probabilities for the target classes.

A score function is more appropriate according to the task and its con�guration. For

instance, the softmax function is a common choice for classi�cation problems in which

the output is categorical distribution. The cost function measures the cost of con�guration

of the network according to the agreed between its estimation of the network over the

training set and the ground truth (GT) labels. In the same way as the score function, the

choice of the cost function depends on the task, however, most of the CNNs are trained

using the cross-entropy cost [26].

CNNs can be trained using gradient-based learning algorithms such as stochastic gra-

dient descent (SGD). Besides, several variants of SGD have been proposed. SGD with

momentum has been proposed to accelerate learning [63]. Another recent variant is SGD

with Nesterov momentum [77].

Training CNNs with Imbalanced Datasets

Classi�cation with imbalanced data is an important problem due to the existence of

several application with skewed class distribution. For instance, applications in which

the class of interest has the minority of samples, such as fraud detection in banking

operations, abnormal cell detection in histological images, and lung nodule detection in

medical images since the amount of background samples obtained in candidate detection

stage is much greater than true nodule samples.

There are two main approaches to addressing the classi�cation problem with imbal-

anced datasets: cost-sensitive learning and sampling-based methods. The central idea of

cost-sensitive learning is to assign a higher cost to misclassi�cation of minority samples
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in the learning stage. Sampling based approaches include oversampling and subsampling.

In oversampling, the samples of the minority class are replicated to make the dataset bal-

anced. Oversampling may lead to over�tting [93]. In subsampling, the majority samples

are reduced to make the dataset balanced. However, subsampling involves ignoring many

samples of the majority class, producing loss of information.

2.2 Related Work

In this section, we brie�y describe some relevant approaches used in CAD systems to

detect lung nodules. The �rst step usually is to downsample the image to reduce compu-

tational time [11, 69]. Moreover, downsampling is commonly followed by a noise reduction

procedure. The next step is to segment the lung region to reduce the search space of lung

nodules. Then, methods aim to localize candidate nodules through methods for enhancing

nodule like-regions and for selecting local maxima. The last step consists in reducing false

positives found in the candidate detection stage using a classi�cation method that scores

candidates allowing for the user to have a high sensitivity to select the most suspicious

candidates.

Lung �eld segmentation methods can be grouped into rule-based methods, pixel clas-

si�cation methods, deformable model-based methods, and hybrid methods [14, 83]. De-

formable model-based methods, such as ASM, are broadly used for lung �eld segmentation.

Schilham et al. [69] used ASM to segment the lung �elds. Hardie et al. [30] segmented

the lung with an ASM. In order to produce a better delineation, the ASM was applied

�rst in the images with low resolution, and later re�ned with the original image. The

low resolution image was generated by resampling the input image to reduce noise and

processing time using a �nite impulse response low-pass anti-aliasing �lter followed by

bilinear interpolation.

Chen and Suzuki [13] argued that ASM cannot cover variations in the boundaries

of the lungs accurately because they model shape with equidistant landmarks along the

boundary, and they cannot �t segments with high curvature. They used multi-segment

active shape model (M-ASM) in which a proper number of landmarks is �xed according

to the structural properties of the segments of lung boundaries. Then, boundary seg-

ments with high curvature have more landmarks than �at segments. Wang et al. [84]

segmented the lung region using ASM with an objective function based on distance and

edge constraints.

Shiraishi et al. [75] and Campadelli et al. [11] segmented the lung �elds on the deriva-

tives of the image. Shiraishi et al. [75] proposed a method that segments the lung �eld

using ribcage edge detection method that works on the derivative of the image. Cam-

padelli et al. [11] segmented the lung area using a multi-scale edge-tracking method that

�nds the lung boundaries on the edge image which they found through the �rst deriva-

tives of Gaussian �lters taken at di�erent orientations. Campadelli et al. [11] proposed

a method that segments the hidden lung area such as the regions of the diaphragm and

heart. Segmentation masks produced with the method described by Shiraishi et al. [75]

also segmented hidden regions of the lung.
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The next step is the candidate nodule detection. However, before extracting candi-

dates, preprocessing techniques are usually applied to enhance characteristics of nodule-

like regions. Rib suppression methods were used to improve the visibility of candidates

overlapped with ribs. A method proposed by Chen and Suzuki [13] uses Dual-Energy

CXRs and a regression model based on arti�cial neural networks (ANNs) to suppress

rib-like structures by learning to generate virtual ribs enhanced CXR supervisedly, and

subtracting these images from the conventional CXRs. In contrast, unsupervised meth-

ods do not require Dual-Energy CXR to suppress ribs. Wang et al. [84] removed ribs in

conventional CXR with an unsupervised method based on PCA.

Most of the methods for detecting candidate nodules can be grouped into scale-space

representation based methods [11, 69, 84], radial gradient �lters [13, 14, 75], and conver-

gence index �lters [30, 62, 87].

Campadelli et al. [11] detected candidate nodules in two stages: �rst, they used a

multi-scale enhancement procedure that highlighted high-frequency regions in the image.

Then, they used a multi-scale candidate detection approach based on selecting regions

with high contrast between their center and the surrounding area. Moreover, they re-

duced the amount of candidates using a set of rules derived from observations of nodule

characteristics.

Schilham et al. [69] searched for candidates in the scale-space using LoG �lters. Wang

et al. [84] localized candidate regions using generalized LoG �lters at multiple scales and

orientations. In contrast with symmetric LoG �lters, generalized LoG can capture blobs

with elliptical shapes. Shiraishi et al. [75] used an average radial gradient (ARG) �lter

to enhance nodule-like regions and multi-level thresholding to localize an initial set of

candidates. Moreover, they reduced the amount of candidates with a set of rules based on

nodule characteristics. Chen and Suzuki [13] used a directional gradient magnitude �lter

on the enhanced image to produce a likelihood map in which local maxima were taken as

candidate nodules.

Wei et al. [87] used an adaptive ring (AR) �lter, a CI-based �lter that enhances

positions with high convergence degree with a ring-like shape support regions, and selected

local peaks as candidate locations. Hardie et al. [30] showed that a CI-based detector

outperform LoG blob detector and ARG detector. They introduced the Weighted Multi-

scale Convergence Index (WMCI) �lter. WMCI �lter is a set of weighted CI-�lters at

di�erent scales in which each �lter increases the contribution of pixels closer to the center

of the structure. Finally, the local maxima values were taken as candidate nodules.

Pereira et al. [62] proposed the sliding band (SB) �lter to enhance the image. SB-�lter

is a CI-based �lter with a support region with a non-uniform band shape. After image

enhancement, Watershed segmentation is used to divide the image in non-overlapping

regions, and the maxima values in regions are taken as candidate nodules.

The candidate nodule detection step is followed by the classi�cation stage. Several

approaches available in the literature have followed a common pattern recognition pipeline

that consists in two main steps: feature extraction and classi�cation [11, 13, 30, 69, 75, 87].

On the other hand, some methods classify candidates directly from the pixels using neural

networks [19, 43, 47], and other use an hybrid approach [84].

Several methods perform feature selection to �nd a better set of features before classi�-
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cation. Chen and Suzuki [13] used stepwise feature selection method on the morphological

and gray-level-based features extracted from candidate nodules in the original and rib-

suppressed images. Then, a SVM classi�er with Gaussian kernel is used for classi�cation.

Campadelli et al. [11] extracted a set of 160 features from candidates. Then, they perform

univariate feature selection using the Golub statistic and classi�cation using a SVM with

polynomial kernel.

Moreover, some methods transform the candidate regions to highlight di�erent features

and improve the representation capability of their descriptors. For instance, Shiraishi et al.

[75] described candidate nodules using geometric, intensity, background and edge gradient

features from the original and density corrected, nodule enhanced, and contralateral sub-

tracted images of each suspicious nodule. Classi�cation is performed by applying ANNs

in three stages: �rst, they reduce the amount of false positives using simple ANNs trained

on feature pairs; then, they trained ANNs for four sets of features taken from transforma-

tions of the original images; �nally, they used an ANN trained with the outputs of latter

ANNs.

In addition, candidate representation can also be improved by performing nodule seg-

mentation to describe nodule area and its context separately. Wei et al. [87] proposed an

optimal feature set extracting features from candidates in the original and transformed

images. Transformed images were obtained with Adaptive Ring �lter, Iris �lter, and So-

bel �lter. Wei et al. [87] segmented the candidate nodules using an active contour model

(ACM). Then, geometric features, contrast features, �rst and second order statistics were

extracted from the inner and outer regions on the original and transformed candidates at

multiple scales. Next, Wei et al. [87] selected features using the forward stepwise selection,

and classi�ed candidates using a statistical method based on the Mahalanobis distance

measure.

Schilham et al. [69] segmented candidate nodules with a multi-scale approach based

on ray-casting to �nd nodule boundaries. They described the candidates using statistics

extracted from their inner and band regions in the output of the convolution of the image

with Gaussian �lters. They also used the candidate position and the Hessian matrix

for nodule description. The authors proposed a two-stage classi�cation approach using

an approximate k-nearest neighbor algorithm, �rst to reduce the number of candidates

before nodule segmentation and, �nally, to estimate the probability of being a nodule for

each candidate. The authors found that the two-stage classi�cation boosted the method

performance, whereas candidate segmentation did not improve their results.

Hardie et al. [30] proposed an adaptive distance-based thresholding approach to nodule

segmentation. Then, a set of geometric, gradient and intensity features were extracted

from the local contrast enhanced, normalized, nodule segmentation and WCMI versions

of each candidate region. Finally, they used a sequential forward selection method to �nd

a proper subset of features and Fisher Linear Discriminant for classi�cation.

Lo et al. [47] used a three-layer CNN to classify candidates, whereas Lin et al. [43]

used a two-layer CNN. CNNs proposed in [43, 47] are shallow when compared with CNNs

used nowadays due to hardware limitations in terms of computational time in which these

works were conducted. Coppini et al. [19] used a multi-scale ANN architecture. At each

scale, Gabor �lters at various orientation and a LoG �lter were applied to the candidate
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region. The �lters outputs were used to train an ANN to learn the subtlety degree. Then,

an optimal linear combiner merged the outputs of the ANNs at each scales to determine

the nodule likelihood.

Recently, Wang et al. [84] showed that fusing handcrafted features with features ex-

tracted from a deep model can obtain good results for lung nodule classi�cation. They

extracted a set of geometric, intensity, contrast and �rst and second order �lter derived

features, then extracted deep features using the AlexNet model [40]. They used PCA to

reduce the dimensionality of the fused descriptor, and then they used a cost-sensitive ran-

dom forest for classi�cation. The authors used data augmentation in the positive samples

to balance the amount of positive and negative samples.
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Chapter 3

Materials

In this chapter, we present the datasets used in the experiments to validate our results, as

well as the hardware and software resources employed in the implementation and execution

of the codes.

3.1 Datasets

We used three datasets to evaluate the e�ectiveness of our approach. Two datasets that

contain chest X-rays with/without nodules were used to train and evaluate the detection

and classi�cation stages. One dataset with landmarks on the border of lung �elds was

used to train and evaluate the segmentation stage.

In the following subsections, we brie�y describe each dataset, including details about

its purpose, data, and annotation process.

3.1.1 Japanese Society of Radiological Technology (JSRT)

Dataset

This publicly available dataset [74], used in the evaluation of several approaches in the

literature, was created by the Japanese Society of Radiological Technology (JSRT) for

research on digital medical imaging, training, education, and quality assurance. The

parameters used in the imaging acquisition were de�ned aiming to be appropriate for

lung nodule detection. The dataset is composed of 247 posterior-anterior chest images

collected from 14 medical centers. Each image is represented by a 2048×2048 matrix,

with a pixel spacing of 0.175 mm, and 12-bit gray levels.

The dataset was annotated by three experienced chest radiologists. There are 154 im-

ages with single nodules that may be benign or malignant, and 93 images without nodules.

Malignant nodules can be associated to certain conditions such as lung and metastatic

cancers, whereas benign nodules can be associated to conditions such as tuberculosis and

hematoma.

The annotations include information about patients: age and sex; and nodules: size,

anatomical location, x and y coordinates, degree of subtlety, malignancy condition, and

�nal diagnosis [74]. Occurrence of nodules were con�rmed by CT examination. Malig-



CHAPTER 3. MATERIALS 31

nant condition was con�rmed by histologic and cytologic examination. Benign condition

was con�rmed by histology examination, de�nitive isolation of a pathogenic organism,

shrinkage and disappearance with the use of antibiotics, or no change observed during a

follow-up period of 2 years [74].

The dataset contains a wide range of nodules. Table 3.1 reports the distribution of

nodules according to their size and subtlety level. In particular, the degree of subtlety is

suitable for showing the variability of the nodules on the dataset, and how di�cult is to

recognize them.

Table 3.1: Number of nodules by subtlety level and e�ective diameter.

E�ective diameter

Degree of subtlety 0�10 mm 11�15 mm 16�20 mm 21�25 mm 26�30 mm 31�60 mm Total

Extremely Subtle 10 8 2 2 3 0 25

Very Subtle 5 11 7 4 2 0 29

Subtle 10 18 11 6 4 1 50

Relatively Obvious 5 12 14 2 4 1 38

Obvious 1 3 2 1 3 2 12

Total 31 52 36 15 16 4 154

Figure 3.1 illustrates samples selected randomly by each subtlety level. We excluded

nodules located on opaque areas, that overlap with tissues outside of the lung such as the

hearth, the mediastum, and the diaphragmatic region.

Figure 3.1: Patches extracted from the JSRT dataset that correspond to nodues arranged
by subtlety level. Each row shows the patches that correspond to very obvious, obvious,
subtle, very subtle and extremely subtle nodules.
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3.1.2 Segmentation on Chest Radiographs (SCR) Dataset

This publicly available dataset [83] was created by the Image Sciences Institute of the

University Medical Center Utrecht, whose main purpose is to evaluate methods for seg-

mentation of lungs, heart and clavicles in chest X-rays. The dataset is composed of a

set of landmarks extracted from the listed anatomical structures of the images on JSRT

dataset.

The dataset was annotated by two observers with the supervision of an experienced

radiologist. First, observers marked points on the boundaries of the anatomical structures.

Several segmentation methods usually require a �xed number of landmarks. To obtain

a �xed number of landmarks, observers annotated additional distinguishable points that

indicate anatomical or other characteristics. These additional points are considered as

landmarks. Then, a �xed number of points is equidistantly sampled using initial boundary

points. These points are also considered as landmarks. Figure 3.2 shows the initial points,

as well as the �nal landmarks.

Figure 3.2: Boundary annotations on a sample of the JSRT dataset. On the left side:
the initial points marked by an observer to delineate the anatomical structures on the
image. Distinguishable points are marked with circles. On the right side: the interpolated
landmarks along the boundary for use of segmentation methods [83].

The �rst observer was a medical student, whereas the second one was a computer

science student specializing in medical image analysis. Both observers were supervised

by the experienced radiologist until their segmentation outputs were considered reliable.

The landmarks annotated by the �rst observed were used as ground truth, and the land-

marks of the second observer were used to compare the human performance with several

automated segmentation methods [83].

3.1.3 Lung Image Database Consortium and Image Database Re-

source Initiative (LIDC/IDRI) Dataset

This publicly available dataset [5] was created by the Lung Image Database Consortium

and Image Database Resource Initiative (LIDC/IDRI), a group of public and private
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medical institutions, with the purpose of development of CAD methods for detection,

classi�cation and quantitative assessment of lung nodules.

The dataset contains a set of 1018 cases with series of CT scans, and a subset of

290 cases with X-rays associated to these CT scans. This dataset was collected from

eight medical institutions. Each case of dataset is associated to an XML �le with the

annotations performed by four experienced radiologists. The annotations contain the

coordinates of suspicious lesions categorized as non-nodules, nodules with diameter <

3mm, and nodules with diameter >= 3 mm. In addition, each radiologist independently

assessed characteristics of the nodule, such as subtlety and level of malignancy [5].

The con�dence on the annotated regions depends on the consensus of radiologists.

Nodules annotated by few radiologists have lower con�dence than those annotated by all

radiologists. Nodules size also determines if a nodule is important for certain condition.

For instance, nodules with diameter lower than 3 mm are not considered relevant for

cancer screening. Based on a competition hosted in an international conference that uses

a subset of CT scans of this dataset [72], we �ltered the annotation by selecting nodules

with diameter greater or equal than 3 mm accepted by at least 3 radiologists. A single

nodule could have several center coordinates annotated by di�erent radiologists. We set

the center of a nodule as the medoid of its corresponding annotations.

We evaluated heuristics to select more signi�cant nodules. First, we include nodules

annotated by two radiologists when the sum of the con�dence level is greater or equal

than 7. Then, we excluded nodules that have an average subtlety level lower than 2.

We decided to use these heuristics because their positive impact on the performance on

preliminary experiments. In addition we excluded X-rays that are not on in posterior-

anterior orientation. The �nal dataset is composed of 265 chest images, where 138 images

do not have nodules, 98 images have a single nodule, and 29 images have multiple nodules.

Table 3.2 shows the distribution of nodules according the approximated size and average

subtlety level.

Table 3.2: Number of nodules by subtlety level and e�ective diameter.

E�ective diameter

Degree of subtlety 0�10 mm 11�15 mm 16�20 mm 21�25 mm 26�30 mm 31�60 mm Total

Very Subtle 27 18 5 3 0 0 53

Subtle 14 11 11 3 1 0 40

Relatively Obvious 13 14 16 10 4 0 57

Obvious 0 1 3 6 2 2 14

Total 54 44 35 22 7 2 164

Figure 3.3 illustrates samples selected randomly by each subtlety level. As well as in

JSRT dataset, We excluded nodules located on opaque areas, that overlap with tissues

outside of the lung.
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Figure 3.3: Patches extracted from CXRs of the LIDC-IDRI dataset arranged by subtlety
level. Each row shows the patches that correspond to very obvious, obvious, subtle, and
very subtle nodules.

3.2 Hardware and Software Platform

We used convolutional neural networks (CNNs) in several experiments conducted in this

dissertation. The major computational burden on working with deep learning models,

such as CNNs, is associated with tensor operations. Graphics processing units (GPUs)

are suitable for e�ciently performing these operations, contributing signi�cantly to the

advance of deep learning [70].

GPUs were crucial for this research by speeding up the execution of the codes. We

conducted all experiments on Linux machines with Intel Core-i7 CPUs, 32 GB of RAM,

and GTX TITAN Black and GeForce GTX 660 GPUs.

Our approaches were implemented in Python programming language. The most im-

portant libraries used were OpenCV [1], Scikit-Image [82] and Menpo [4] for preprocessing,

detection and segmentation methods; and Theano [79] , Keras [15] and Scikit-Learn [61]

for the classi�cation and evaluation.
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Chapter 4

Proposed Method

The success of convolutional neural networks (CNNs) on several �elds has motivated

their use on medical imaging applications. Recent works [8] have explored the application

of CNNs to CAD systems. Recent research on CAD systems for detecting pulmonary

nodules on CXR and CT images have used CNNs on lung segmentation, candidate nodule

detection, and classi�cation.

Related work has reported high sensitivity values, however, with too many false pos-

itives per image. Although several approaches have been explored in classi�cation stage

for false positive reduction (Section 2.1.4), there is a performance gap that should be

reduced to make the CAD systems more useful for clinical usage. We focus on the use of

CNNs in the classi�cation task to reduce such performance gap.

Given a set of CXR images, our method returns an list of locations ordered by their

probability of being a lung nodule. The goal of our method is to achieve a high sensitivity

on detecting lung nodules by selecting a few suspicious locations. Figure 4.1 illustrates an

overview of our method, which is divided into three stages: segmentation (Section 4.1),

candidate detection (Section 4.2), and classi�cation (Section 4.3).

We segment the input images through Active Appearance Models (AAMs). This

method is trained with a set of CXR images and a set of landmarks located in the border

of the lungs, in order to model their shape and appearance. Given a new CXR, AAMs

are capable to estimate the landmark points corresponding to the lung border. We use

the landmarks to generate a mask of the lung area.

We then detect the candidate locations by applying a Sliding Band (SB) �lter to the

input images. This �lter assigns a convergence index (CI) to all pixels. For SB �lters,

the convergence index measures the degree in which the gradients on a band region are

oriented to the pixel of interest. Then, we select the local maxima of the convergence

index image as candidate locations. Next, we exclude candidates outside the lungs using

the mask produced in the segmentation stage.

We use a CNN to estimate the probability of a nodule being in suspicious locations

found on the detection stage. Then, radiologists can set the amount of candidates (more

likely of being nodules) to be shown by the system. We evaluated empirically several CNN

architectures, regularization schemes, and transformations used for data augmentation to

�nd the best con�guration for classifying lung nodules in CXR images.
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Figure 4.1: Overview of the main steps of the proposed methodology. First, (a) we
segment the lung area using patch-based AAM. Then, (b) a SB detector �nds candidate
locations. Candidates outside the lungs are excluded using the masks generated in the
segmentation stage. Finally, (c) we estimate the probability of nodules being candidates
using a CNN.

4.1 Segmentation

In this section, we describe the method proposed for the lung segmentation. Figure 4.2

depicts an overview of the segmentation stage. We downsampled the images to 512× 512

pixels before the segmentation process to reduce the computational time.

Given a training set with n CXR images and a set of landmarks L = {si} ∈ R2v×n

with si = (s1, s2, . . . , sv) ∈ R2v denoting the boundaries of the lung region for the image

Ii. We follow the method explained in Section 2.1.2 for normalizing L using Procrustes

Analysis (PA).

Then, we build the shape and appearance models using Patch-based AAM. Given an

unseen image I, we initialize the landmark points of I to the mean landmarks. Using

the parameters of the appearance and shape models, we �t the landmark points to lung

boundaries in I. Finally, we generate the segmentation mask S by joining the landmarks

with straight lines.

Patch-based AAM works by sampling the patches centered around the landmarks
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Figure 4.2: Overview of the segmentation stage.

points. The warp function W(x,p) maps the pixel positions x from the patches on the

reference shape s̄ to the patches on the estimated shape s.

There are two main di�erences between the standard AAM, described in Section 2.1.2,

and the Patch-based AAM we used for lung segmentation. First, we model the appear-

ance on a representation space. We applied the dense Scale-Invariant Feature Transform

(SIFT) [48] descriptor to represent the patches more distinctively. Then, we modeled the

appearance by selecting the most discriminative components pcappearance obtained from the

representations.

Second, we model the lung boundary variation in two resolutions. Thus, we use the

low resolution model to provide a robust initial segmentation. Then, we re�ne the initial

segmentation with the high resolution model. For the low resolution model, we downscale

the input image by a factor of slow, and extract patches of width wlow. For the high

resolution model, we maintain the resolution of the images and extract patches of width

whigh. Figure 4.3 shows a representation of the Patch-based AAM.

We �nd the shape and appearance parameters using the Wiberg Inverse-Composition

optimization method [80]. Figure 4.4 shows how the shape changes while searching the

best shape and appearance parameters. Once we �nd the best shape parameters p∗, we

project them onto the image space to generate the �nal landmarks for the image I.

4.2 Detection

In this section, we describe the methods used for candidate nodule detection. We evaluate

several detectors and group them into two sets: detectors based on scale-space represen-

tation and detectors based on convergence index. Before using a candidate detector, we

processed the images from JSRT and LIDC-IDRI datasets. First, we smoothed the images
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(a) Low resolution model (b) High resolution model

Figure 4.3: Visualization of Patch-based AAM (for low and high resolution models) �tted
on the sample JPCLN001.IMG from the JSRT dataset.

(a) Mean shape (b) Iteration 4 (c) Iteration 9 (d) Iteration 13 (e) Iteration 18

Figure 4.4: Shape parameters projected onto the image space throughout iterations of
the Wiberg method. (a) mean shape initialization, (b-e) shape on the 4, 9, 13 and 18
iterations.

using a Gaussian �lter with an 11× 11 kernel and resampled the images to 512× 512 to

decrease noise and reduce computational time. We describe the evaluated detectors in

the following subsections.

4.2.1 Detectors based on Scale-Space Representation

Nodules are di�cult to recognize due not only to low contrast between the lesion and

background tissue, but also due to internal structures such as ribs and vessels. Low

contrast makes di�cult to �nd nodules with methods based on spatial di�erences. Inspired

by the works [30, 69], we deal with the low contrast problem by normalizing the contrast

using local contrast enhancement (LCE).

We perform LCE to normalize the contrast of candidates located in regions with

di�erent levels of contrast to improve the performance of the candidate detector. Normal-

ization is performed by scaling the high-frequency component of I with a factor inversely

proportional to the local standard deviation. LCE can be formally de�ned as follows:

ILCE = (I −G ∗ I)
1

[G ∗ (I2)− (G ∗ I)2]
1
2

(4.1)

where ILCE is the output of the local contrast enhancement, G is a Gaussian �lter with
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zero mean and σLCE standard deviation, and ∗ is the convolution operator.

We evaluated Laplacian of Gaussian (LoG), Di�erence of Gaussians (DoG) and De-

terminant of Hessian (DoH) blob-like detectors. We follow the same steps of all detectors.

Given an image I, we preprocess the image using LCE. Then, we �nd candidate nodules

using a detector. Methods based on scale-space representation detect candidate nodule by

enhancing blob-like features at di�erent levels of scale of each image I, and selecting the

local maxima greater than a threshold t over all scales in the enhanced image [46]. Finally,

we prune the candidates smaller than an adjacent candidate that has an overlapping area

greater than 50%.

4.2.2 Detectors based on Convergence Index

On the other hand, convergence index (CI) based �lters address the low contrast problem

considering only the orientation of the gradients. We evaluated two CI-based �lters:

�rst, the Weighted Multi-Scale Convergence Index (WMCI) �lter which is a multi-scale

convergence index �lter that weights the gradient contributions according to its distance

of the center [30]; and the Sliding Band (SB) �lter which measures the convergence degree

of the gradients considering a support region with non-uniform shape.

Weighted Multi-Scale Convergence Index Filter

The WMCI �lter di�ers from the formulation of CI �lter that we described in Section 2.1.3

because it considers two observations: (i) CI �lters averages the convergence degree of

the gradients on the support regions uniformly. Hardie et al. [30] proposed to weight

the convergence degree contributions according to the application. For candidate nodule

detection, the authors proposed a weight function that decrease the contribution step-wise

while the gradient moves away from the interest point; (ii) since nodule sizes are variable,

it is not possible to use only 1 set of weights. Then, the authors proposed to use various

weighted CI �lters to cover nodule size variability. We refer the reader to reference [30]

for a detailed explanation.

Sliding Band Filter

WCMI de�nes a support region as a circular region around a point of interest. However,

the de�nition of support region can be simpli�ed as a union of N half-lines radiating from

the point of interest. For SB �lter, we select the band with a �xed width d with the

maximum convergence index for each half-line. Then, the support regions is de�ned as

the union of these selected bands.

Figure 4.5 shows the support region of the SB �lter in the pixel P at the position

(x, y), where Bi represents the band with maximum convergence degree in the half-line i,

Rmin and Rmax represents the lower and upper bound of the range in which we search the

bands.
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Figure 4.5: Visualization of the region of support of a SB �lter with N = 16 bands on a
nodule sample.

Given an image I, the output of the SB �lter for a pixel P ∈ I is de�ned formally as:

SB(x, y) =
1

N

N−1∑
i=0

(
max

Rmin≤n≤Rmax

(
1

d

n+d∑
m=n

cos θi,m

))
(4.2)

where N is the number of half-lines radiating from P , and d is the width of the band.

We choose SB �lter because it has features that are suited for nodule detection: (i)

the distance between bands and the point of interest can be vary in di�erent half-lines

that allows detecting nodules with irregular shapes; (ii) the position of the bands depends

only on where the gradients have more convergence index that allows detecting nodules

regardless of its size; (iii) SB �lter calculates the convergence index for pixels in the region

around the boundaries, but not the center of the nodules that may have a random degree

of convergence [62].

Finally, we set as candidates the regions with a center pixel that is local maximum

in its circular neighborhood with radius rsbf . We obtain better results with SB �lter 5.2

and use it as candidate detector in our methodology. The output of the detection stage

is a set of candidate locations C = {ci} where ci = {(xj, yj)} ∈ Rmi×2 is the set of mi

candidates found on the image Ii. Figure 4.6 shows the candidate detection stage.

4.3 Classi�cation

Our method performs candidate analysis directly on the pixel of images. Figure 4.7 shows

an overview of the classi�cation stage. For training phase, we extract the squared regions

centered on the candidate locations found on detection stage to construct the training

dataset. Then, we preprocessed and augmented the samples.

We search the parameters used for the transformations on data augmentation. Then,

we search an optimal CNN for our problem by evaluating several architectures on the

training set. For a new image, after performing segmentation and candidate detection,

we use the best CNN we found on training phase to estimate the probabilities of being a

nodule for the candidate locations in the new image. Finally, we remove candidates that
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(a) Input X-ray (JPCLN001.IMG) (b) SB �lter output

(c) Non-maxima suppression with
rsbf = 7px

Figure 4.6: Visualization of the candidate detection stage. (a) Input x-ray
(JPCLN001.IMG); (b) SB �lter output; (c) candidates detected selecting the local max-
ima with rsbf = 7px on the neighborhood region.

Figure 4.7: Overview of the classi�cation stage

may belong to the same true nodule through an adjacent rejection rule.

4.3.1 Data Preparation and Augmentation

Given a set of candidate locations C, we build a dataset R = {ri}, where ri ∈ Rmi×w×w

is a set of mi squared patches with side w around each location on the set of candidates

ci of the image Ii. Although there is no unique labeling scheme for candidate nodules,

we choose the scheme proposed by Hardie et al. [30], which consists in labeling every

candidate located within 25 mm a truth nodule as true.

We applied a z-score normalization to the pixel intensities over the dataset R to have

zero mean and unit variance.
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The candidate detection stage produces approximately several negative samples for

each positive one. To balance the dataset and prevent over�tting, we augment the data

available by increasing the amount of positive samples and applying the following trans-

formations to all candidates, including negative samples: (i) horizontal/vertical random

shift with a factor of each dimension of the region of interest, selected over a uniform

distribution between 0 and tmax; (ii) random zoom with a scale factor s selected over a

logarithmic distribution of 1.0 and smax; (iii) horizontal �ip: yes or no with a probability

of 0.5; (iv) random rotation with an angle θ between θl and θr degrees, and (v) intensity

shift v selected over a uniform distribution between i ∗ (−σ) and i ∗ σ where i is a scale

factor and σ is the standard deviation of all intensities on R.

We search heuristically the optimal parameters tmax, smax, θl, θr and i for the trans-

formations in data augmentation. First, we search the optimal values for each parameter

empirically and independently. Then, we combine transformation including iteratively

the transformations with greater impact at �rst.

4.3.2 Architecture Design

Motived by the work [28], we consider a family of CNNs with alternating convolutional

and max-pooling, followed by fully connected layers. We can describe each instance of this

family as ConvNet(c, k, f), where c is the number of convolutional layers separated by c

max-pooling layers. The number of �lters in each convolutional layer increases linearly

with a factor of k. For instance, the i-th convolutional layer is supposed to have ik �lters.

Finally, there are f fully connected layers followed by the output layer. Figure 4.8 depicts

an arbitrary convolutional neural network.

output... ...

k

3x3

2k

2c+1x 2c+1

ck
512

f layersc layers

Figure 4.8: Representation of the architecture ConvNet(c, k, f). The network is fed with
images with size 2c+1 × 2c+1. Composed by c alternating convolutional (in red), and
max-pooling (in green) layers, followed by f fully connected layers (in yellow)

Given a network ConvNet(c, k, f), we rescale the inputs to wconvnet = 2(c+1). Convo-

lutional layers have a receptive �eld of 3 with stride 1. Max-pooling is performed over
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windows of 2× 2, with stride 2. We use leaky Recti�er Linear Units (ReLU) with alpha

of 0.333 for all convolutional layers. We apply dropout with a probability of di for the

i-th convolutional layer, and 0.5 for fully connected layers. The output of the last layer

is connected to a softmax layer, which produces a distribution over the two classes.

We search the optimal network heuristically. We use the network ConvNet(5, 64, 1),

similar to the network used in the work [28] for classifying digits of the MNIST database,

as a start-point. Then, for every parameter we search the optimal value keeping the rest

of parameters �xed. For instance: we search the optimal c∗ keeping �xed k = 64 and

f = 1. Then, we search the optimal k∗ keeping �xed c = c∗ and f = 1 and so on.

Dropout on convolutional layer has proven to have a positive impact of CNN perfor-

mance [28, 92]. We explore two schemes of data augmentation: We set a �xed dropout

probability pc for all convolutional layers. Moreover, we can set a linearly increasing

dropout probability of di = i ∗ m, where di is the dropout probability for the i-th con-

volutional layer, and m is the reason in which dropout increases. Then, the dropout

probability is small for lower convolutional layers which are fairly immune to over�t-

ting [28]. We set a linear increasing dropout on the last 4 convolutional layers such that

di = max(0, 4− c+ i ∗m) where c is the number convolutional layers.

4.3.3 Learning

For the learning stage, we use the Stochastic Gradient Descent (SGD) with Nesterov

momentum. We initialized the weights on each layer with the orthogonal random ma-

trix initialization procedure proposed by Saxe et al. [68]. We train until the area under

the free-response receiver operating characteristic (FROC) curve1 stops improving. We

experimented with weight decay regularization, however, it did not improve our results.

Therefore, the �nal model does not use weight decay regularization.

Motivated by the work proposed by Yan et al. [93] we propose the Algorithm 1, we

balance the amount of positives and negatives samples for each batch used to feed the

CNN in the training stage. For positives, we select half of the batch size samples randomly.

For negatives, we select half of the batch size samples iteratively. Positive and negative

samples are perturbed with the transformations described in Section 4.3.1 before they

feed the CNN on each SGD iteration.

1In this dissertation, we will refer to the area under the free-response receiver operating characteristic
(FROC) curve as AUC.
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Algorithm 1 Stochastic Gradient Descent with balanced samples.

1: procedure SGD-BalancedSamples

2: require: Network parameters θ

3: require: Positive samples P

4: require: Negative samples N

5: while AUC does not stop improving do

6: Select the �rst half of the minibatch from N iteratively.

7: Select the second half of the minibatch from P randomly.

8: Apply the data augmentation transformations to all samples of the minibatch.

9: Compute gradient estimate with the minibatch.

10: Update network parameters θ.

11: end while

12: end procedure

4.3.4 Reducing Adjacent Candidates

We select the candidate location as the pixels with maximum convergence index on its

radial neighborhood of 7 pixels as we described in Section 4.2.2. Therefore, several can-

didates may be related to the same true nodule when the nodule radius is greater than

the neighborhood radius.

We use the adjacency rejection rule proposed by Hardie et al. [30]. This procedure re-

duces the number of �nal detections by preserving the candidates that have the maximum

detection probability on their radial neighborhood of 22 mm.
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Chapter 5

Experimental Results

In this chapter, we present the empirical results that we obtained by evaluating the

methods developed for lung �eld segmentation, candidate nodule detection and candidate

nodule classi�cation stages. First, we report our results with path-based AAM, and we

compare them to methods available in the literature. Then, we present the results achieved

with our approaches to candidate detection.

Next, we present the results for candidate classi�cation. We evaluate several trans-

formations individually and composed for data augmentation. Then, we compare two

dropout regularization schemes on convolutional layers. Moreover, we show the impact of

the parameters considered to design our CNN architecture. Finally, we present a visual

analysis and results obtained with our best architecture and compare its performance

against competing approaches.

5.1 Segmentation

We aim to demonstrate that patch-based AMM is capable of achieving competitive results

compared to state-of-the art methods and, therefore, it does not have a negative e�ect on

the later stages of our pipeline.

5.1.1 Evaluation

We evaluate our segmentation method following the protocol developed by Van Ginneken

et al. [83] in order to allow the comparison of our results to the state-of-the-art. We

divide the images from the JSRT dataset and their corresponding masks from the SCR

dataset into two folds. One fold contains 124 images corresponding to odd numbered

cases, whereas the other fold contains 123 images corresponding to even numbered cases.

We use the images in one fold to train a model that is used to generate the segmentation

of the images in the other fold, and vice-versa. Once we have the segmentation results

for all images in the dataset, we use a metric to assess the quality of our segmentation

output.

We compare our segmentation method to approaches of the literature using the Jaccard

similarity coe�cient, denoted Ω. This metric quanti�es the agreement between the pixels
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in the estimated segmentation mask (S) and the ground truth (GT ).

Ω =
|S ∩GT |
|S ∪GT | =

|TP |
|FP |+ |TP |+ |FN | (5.1)

where TP denotes the pixels inside the lung that are correctly classi�ed, FP denotes the

pixels in the background incorrectly classi�ed as lung, FN denotes the pixels in the lung

incorrectly classi�ed as background. Similarly to [83], we quantify the performance of

our method by averaging the Jaccard coe�cients calculated on the left and right lung

segmentation results.

For the lung nodule detection pipeline, we divide the JSRT dataset into two subsets: a

subset that includes images with a nodule, and the other subset with images without any

nodule. We use the �rst subset to train the segmentation model used to generate masks

for the images from the LIDC-IDRI dataset and for the images that contain nodules from

the JSRT dataset. These masks are used to exclude �ndings outside the lung in candidate

detection stage.

5.1.2 Results

We used a patch-based AAM with pcshape = 20 and pcappearance = 150 principal components

to model shape and appearance, respectively. Our patch-based AAM models the lung

boundaries in two resolutions. We downsample the image with a scaling factor of slow = 0.5

for the low resolution model and maintain the dimensions for the high resolution model.

We extract patches with sides wlow = 20 pixels and whigh = 12 pixels for low and high

resolution models, respectively.

Figure 5.1 shows estimated segmentation results of our model trained with the sam-

ples without nodules of JSRT. The �rst and second rows show the segmentation results

estimated for samples of the subset with nodules on the JSRT dataset and for samples of

the LIDC-IDRI dataset, respectively.

Segmentation results on JSRT samples are more accurate than on LIDC-IDRI samples

because the model was trained with images of the same distribution. In contrast, seg-

mentation results estimated on samples of the LIDC-IDRI are less accurate because lung

boundaries have a di�erent contrast and more shape variability than lung boundaries on

JSRT dataset. For instance, the segmentation estimated for the sample (Figure 5.1(g))

fails including pixels of the diaphragm, and the segmentation estimated for the sample

(Figure 5.1(h)) classi�es pixels on the heart as part of the lung.

Table 5.1 shows that the patch-based AAM obtains results comparable to methods

available in the literature. Ngo and Carneiro [57] proposed an iterative method that ob-

tains impressive results, but it depends on the precision of the initial segmentation. Their

method obtained an mean similarity coe�cient of Ω = 0.985, but it requires initializations

with a mean similarity coe�cient of Ω = 0.955.

An advantage of the graph-cut based method proposed by Candemir et al. [12] and

pixel classi�cation method proposed by Van Ginneken et al. [83] is that they perform

segmentation at pixel level. In contrast, the accuracy of patch-based AAM relies on the

distribution of the landmarks on the lung boundary. Moreover, a drawback of patch-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: Segmentation results using AAM. The �rst and second rows show the land-
marks and boundaries found on samples of the positive subset of JSRT dataset and
LIDC-IDRI datasets, respectively.

Table 5.1: Segmentation results in terms of the Jaccard coe�cient Ω. Methods are ranked
according to their mean.

Ω

µ± σ Min Max

Level Set + Deep Belief Network [57] 0.985 ± 0.003 0.972 0.991

Non-Rigid Registration using Atlas [12] 0.954 ± 0.015 - -

Human Observer [83] 0.946 ± 0.018 0.822 0.972

Pixel Classi�cation Post-Processed [83] 0.945 ± 0.022 0.823 0.972

Proposed method (Patch-based AAM with DSIFT) 0.935 ± 0.019 0.786 0.964

ASM tunned [83] 0.927 ± 0.032 0.745 0.964

Mean Shape 0.714 ± 0.075 0.461 0.889

based AAM is that the lung mask is created by joining landmarks with straight lines,

therefore, ignoring the information contained in pixel intensities about the shape of the

lung boundaries. Thus, a post-processing method that considers pixel intensities between

landmarks may improve the performance of the method considerably. The inclusion of

appearance information through dense SIFT descriptor improves the results of our model

compared to the ASM approach [83] that describes landmark position using only gradient

pro�les.

5.2 Detection

We evaluate the detectors on scale-space representation and based on the convergence-

index to determine the method that produces better set of candidates for the classi�cation
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stage.

5.2.1 Evaluation

We use the LIDC-IDRI dataset for evaluation. We selected the best method based on the

area under the FROC curve (AUC) between the operating points with 0 and 100 false

positives per image. The criterion that we use to consider a candidate as true positive

verify if exists a ground truth nodule in its neighborhood, such that the distance between

the center of the candidate and the center of a ground truth nodule is less than or equal

to true nodule radius.

5.2.2 Results

Candidate detectors have a threshold parameter t that controls the sensitivity of the

detectors. Smaller t values produce less false positive per image than larger t values. We

choose the smallest t that does not reduce the AUC score of the candidate detector on

the LIDC-IDRI dataset.

Figure 5.2 shows the FROC curves of detectors on the LIDC-IDRI dataset. Sliding

band (SB) �lter detector with t = 0.5 obtains better AUC score than DoG with t = 1.0,

LoG with t = 0.5, DoH with t = 0.05, and WMCI with t = 0.0005. We choose the SB

method for the detection stage. Finally, we used SB detector to generate candidates on

the JSRT dataset to evaluate our system on the classi�cation stage.

0 10 20 30 40 50 60 70 80 90 100
Average FPs per Image

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
en

si
ti

vi
ty

DoG, ABPI=87.46, AUC = 52.87

LoG, ABPI=174.81, AUC = 50.22

DoH, ABPI=118.05, AUC = 37.83

WMCI, ABPI=92.58, AUC = 47.43

SBF, ABPI=86.36, AUC = 53.75

Figure 5.2: FROC curves for detectors evaluated using LIDC-IDRI dataset.

5.3 Classi�cation

The main objective of the experiments on classi�cation is to search an optimal con�gu-

ration of our classi�cation model for the lung nodule detection problem.
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5.3.1 Evaluation

There are no standard protocols for evaluating nodule detection methods using either the

JSRT dataset or the CXR set of the LIDC-IDRI dataset. Evaluation protocols used in

the methods that report results using JSRT have many sources of variation that we will

discuss later (Subsection 5.3.2). To the best of our knowledge, there are a few methods [60]

that report results using the CXR subset of LIDC-IDRI. Moreover, LIDC-IDRI dataset

is more used on the evaluation of lung nodule detection methods in low-dose CT images.

We search for parameters for learning method, data augmentation, dropout, and ar-

chitecture design completely on LIDC-IDRI dataset using 5-fold cross-validation. For

evaluation, we perform 5-fold cross-validation on the entire JSRT dataset using the best

parameters. We excluded opaque cases that correspond to the nodules that overlap with

anatomical structures outside the lung.

Several competing methods [19, 30, 59, 69, 84] report results with a cross-validation

strategy using only JSRT dataset. Therefore, we evaluate our CNN, con�gured with the

best parameters found on the LIDC-IDRI dataset, with 5-fold cross-validation.

5.3.2 Results

We use a ConvNet(5, 60, 1), similar to the used by [28] for digit classi�cation MNIST

dataset, as a baseline architecture. We create the training dataset R following the pro-

cedure that we described in Section 4.3.1. We determined the best patch side w = 32

for candidate regions empirically on the LIDC-IDRI dataset. Then, we evaluate the im-

pact of data augmentation, dropout regularization on convolution layers, and architecture

parameters.

Data Augmentation

We evaluated several transformations to increase the amount of images used for training

our model following the procedure described in Section 4.3.1. First, we �nd the best

parameters for each transformation independently. Then, we combine the transformation

including �rst the transformation that has better impact.

Figure 5.3 shows the FROC curves of ConvNet(5, 60, 1) with transformations. Fig-

ure 5.3(a) shows that a horizontal �ip improves the results signi�cantly. We search for the

parameters for the rest of transformations combined with horizontal �ip. Figure 5.3(b)

shows that the performance of our baseline CNN increases when we augment candidates

by performing translation with small tmax to the patches, but decreases when translation

can move the location of the candidate too far from the center. The baseline CNN per-

forms better with tmax = 0.12 when AUC stops improving. Figure 5.3(c) shows that our

baseline model improves by augmenting samples with rotation until θmax = 18. Then, in-

creasing θmax does not vary the AUC substantially. Figure 5.3(d) shows that performance

increases when we augment the samples with intensity variations. We set vmin = −0.2 ∗ σ
and vmax = 0.2 ∗ σ.

Figure 5.3 shows that the transformations are complementary. The baseline CNN

performs better by combining all transformations than including each transformation
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(f) data augmentation schemes

Figure 5.3: We evaluate the impact of several transformations on the performance. We
show in (a) that �ip transform increases the AUC signi�cantly. In (b)-(e), we search for
the best parameters for translation, rotation, intensity shift and scaling transformations.
In (f), we compare the performance of various data augmentation schemes based on
including the transformation incrementally.

individually. We obtain and improvement of 1.29 in the AUC. Moreover, we see that

translation and rotation increase the AUC more than all transformations individually.
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However, Figure 5.3(f) shows that translation does not increase the AUC considerably

when combined with �ip and rotation, whereas scaling, which does not improve the model

performance individually, but increases the AUC when combined with all transformations.

Further experiments are performed to consider all transformations.

Dropout on Convolutions

In this section, we evaluate the impact on using dropout regularization after the convo-

lutional blocks in the baseline CNN. We evaluate the performance of the baseline CNN

using the dropout with constant inclusion probability pc. Figure 5.4(a) shows FROC

curves by varying pc. We observe that independently on the pc values that we evaluated,

dropout improves the performance of the CNN. We have better results with pc = 0.25,

obtaining a gain of 0.14 on AUC compared with the same architecture without dropout

after convolutional blocks.

Figure 5.4(b) shows the FROC curves using dropout with an increasing dropout prob-

ability in the last 4 convolutional blocks. We evaluated the baseline CNN varying the

increasing reason m. This approach performs better with all m values that we evaluated

compared to the same CNN without dropout after convolutional blocks. We obtain better

results with m = 0.125, which assigns 0.0, 0.125, 0.25, 0.375 and 0.5 dropout probabilities

to the �ve convolutional layers of the baseline CNN.

In contrast with assigning constant dropout probabilities, the latter approach assigns

small dropout values to the �rst convolutional blocks. This observation suggests that �rst

convolutional layers are less prone to over�tting for our problem setting. We observed

that convergence is faster and the AUC values have lower variance in training when we

set increasing dropout probabilities to convolutional layers. We use the latter approach

in further experiments.

Architecture Design

In this section, we describe the experiments we conducted to �nd the proper architec-

ture for our problem setting. We evaluate several architectures varying the number of

convolution layers c, �lters by convolution layers k, and fully connected layers f .

First, we evaluate architectures varying c with k = 64 and f = 1. Figure 5.5(a) shows

that deeper CNN performs better until c = 6. We did not evaluate CNN with more than

six convolutional blocks due to the GPU memory limitation of the hardware we used to

conduct our experiments. However, the small performance gain we obtained with a CNN

with 6 convolution layers compared to the CNN with 5 convolutional layers suggests that

adding more convolutional layers will not improve the results drastically. We use c∗ = 6

convolutional layers in further experiments.

In Figure 5.5(b), we report the FROC curves of the architectures that we explored

varying k with c = 6 and f = 1. In contrast with the other architecture parameters, f

impacts considerably on the amount of parameters of the network. ConvNet(6,96,1) has

×28 parameters than ConvNet(6,16,1). We obtain better results with k = 32 �lters.

Figure 5.5(c) shows the results of the architectures obtained varying f with the best

c = 6 and k = 32. We obtain better results with the initial f = 1. The heuristic we
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Figure 5.4: Comparison of constant dropout and linear increasing dropout on convolution
layers.

use to search for a proper architecture requires less evaluations and it is simpler when

compared to grid search, random search or optimization-based methods. However, the

search is biased to the initial con�guration.

Result Comparison

Several CAD systems report their results in the public JSRT dataset. However, making

a proper comparison is still di�cult [13, 59] due to the variability of evaluation protocols

used in related work. The main sources of variation are the usage of entire JSRT dataset

or a subset by excluding opaque cases, di�erent labeling criterion, di�erent validation pro-

cedures, parameter optimization considering the test set such that generalization capacity

is not properly measured, and results reported on di�erent operating points. Table 5.2

summarizes the main sources of variations on competing methods.

We address the dataset variability considering that the evaluated methods excluded

the 14 opaque cases. Thus, we adjust the sensitivity obtained with the JSRT subset by

0.9091 for comparison with the methods that report results on the entire JSRT dataset.
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Figure 5.5: FROC curves varying the parameters c, k and f .

Most of the state-of-the-art methods report their results using a cross-validation strat-

egy. Thus, we use a 5-fold cross-validation. There are three common criteria to consider

a candidate nodule as true positive: if the distance between the candidate and a ground-

truth location is less than a distance threshold, if centroid of the candidate is inside a

ground-truth region, and if the overlap between the candidate region and the ground-

truth regions is greater than a threshold. We consider that comparison with a individual

method should be conducted through the same labeling criterion. However, due to com-

putational time limitation, we report our results using only the distance criterion. We

calculated the e�ectiveness of our method on the operating points reported by competing

methods.

Figure 5.6 shows the FROC curve of our CNN and the main operating points reported

in state-of-the-art approaches. Table 5.3 compares the sensitivity of our CNN with the

evaluated methods at the same FPPI values.

Wang et al. [84] obtained proper results by fusing handcrafted and deep features for

classi�cation, but using a lighter data augmentation scheme in contrast with our scheme.

Chen and Suzuki [13] reported high sensitivity values. However, their system uses dual-

energy radiographs for rib-suppression on training, which is not commonly available as
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CAD System Datasets Protocol Labeling
Criteria

Parameter
Optimiza-

tion

Chen and Suzuki [13] Private dataset,
JSRT excluding 14

opaque cases

Train on private dataset, test on
JSRT subset

Distance
(25 mm)

Considers
test results

Hardie et al. [30] Private dataset,
JSRT excluding 14

opaque cases

Train on a private dataset, test
on JSRT, 10-fold cross-validation

on JSRT subset

Distance
(25 mm.)

Considers
only

training
set

Schilham et al. [69] JSRT dataset 5-fold cross-validation on JSRT Overlap (>
0%)

Considers
test results

Shiraishi et al. [75] Private dataset
augmented with

JSRT images

Train and test on the merged
dataset

Distance
(22mm and

24mm)

Considers
only

training
set

Coppini et al. [19] Private dataset,
JSRT subset of 140

samples

5 partitions of the JSRT subset Centroid Considers
test results

Wei et al. [87] JSRT dataset Leave-one-out cross-validation Not
speci�ed

Considers
test results

Wang et al. [84] JSRT excluding
opaque cases

10-fold cross-validation Distance
(Not

speci�ed)

Not
speci�ed

Table 5.2: Main sources of variation of the evaluation protocol used in competing methods.
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Figure 5.6: Comparison of the method performance on the JRST database. Sensitivity
values are adjusted by considering opaque cases as missed.

conventional CXR. Wei et al. [87] obtained the best results among the methods that

use hand-crafted features. Our proposal was evaluated on the 154 images with nodules

of the JSRT dataset. We obtained an area under the-free-response receiver operating

characteristic (FROC) curve of 7.51 considering 10 false positives per image (FPPI), and

a sensitivity of 71.4% and 81.0% with 2 and 5 FPPI, respectively.
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Table 5.3: CAD system performance comparison.

Average Method Reported CNN
FPPI Sensitivity (%) Sensitivity (%)

5.0 Chen and Suzuki [13] a,c 85.0 90.0
5.0 Hardie et al. [30] a 80.1 90.0
2.0 Schilham et al. [69] 51.0 71.4
4.0 Schilham et al. [69] 71.0 79.2
5.0 Shiraishi et al. [75] a,b 70.1 90.0
4.3 Coppini et al. [19] 60.0 79.9
5.4 Wei et al. [87] 80.0 82.5
1.19 Wang et al. [84] a 69.3 72.1

aResults reported in this row exclude opaque cases.
bResults based on 924 chest radiographs that include the JRST cases.
cA private database was used for training and the JSRT for testing.

Visual Analysis

Figure 5.7 shows the output of the system. We highlight the top 4 locations with high

probability of being nodules. Suspicious locations are connected with a red bounding box

with a saturation directly proportional to the nodule probability. Figure 5.7(c) shows

that our model proposes two locations related to the same region that were not �ltered

by the adjacent candidate rejection rule after classi�cation.

Figure 5.8 shows top �ndings on the JSRT dataset. In the �rst row, we show the top

true positives detected through our network. These samples are well centered nodules.

The sample shown in Figure 5.8(a) shows that there are cases with low contrast even

on the samples with high probability. The second row shows the top false positives. An

interesting observation here is that the top six false positives samples we selected contain

non centered nodules. This suggests that the CNN recognizes nodules even if they are no

well centered. We marked the regions that contain these nodules as non-nodule because

the distance between the center of the ROI and the ground truth annotation is larger

than the threshold distance of our labeling criterion. The third row shows six randomly

selected false positives found by our CNN. These samples contain ribs and large vessels

that are miss-classi�ed as nodules by the network.



CHAPTER 5. EXPERIMENTAL RESULTS 56

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Visual results of our system. We highlight the 4 top positive candidates
detected by each image. The saturation of each bounding box is proportional to the
probability of the candidate of being a true nodule.
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Figure 5.8: Detection results using ConNet(6, 32, 1). The �rst and second rows show the
landmarks and boundaries found on samples of the positive subset of JSRT dataset and
LIDC-IDRI datasets, respectively.
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Chapter 6

Conclusions and Future Work

In this dissertation, we proposed and analyzed a pipeline for lung nodule detection on

CXR images that consists in three stages: (i) lung area segmentation, (ii) candidate nodule

detection, and (iii) candidate nodule classi�cation. An important goal of our method is

to detect potential location of nodules with high sensitivity through a few false positives

per image. To achieve this aim, we explore the e�ectiveness of CNNs for reducing false

positives on the candidate classi�cation stage.

To compare our results with competing approaches, we used a subset of CXR images

on the LIDC-IDRI dataset and the JSRT dataset. Both datasets contain annotations

with the locations and other characteristics of the nodules. Moreover, we used the SCR

dataset, which allowed the lung are segmentation in the images of the JSRT dataset.

We trained our segmentation model with the images of the JSRT dataset, which do not

contain nodules and their annotations on the SCR dataset. The segmentation model was

used to generate the lung masks for the LIDC-IDRI dataset and the images with nodules

on the JSRT dataset. We used the LIDC-IDRI dataset and the images with nodules of the

JSRT dataset for the evaluation of candidate lung detection and classi�cation methods.

In lung area segmentation, we evaluated the performance of a multi-scale patch-based

AAM and compared its performance with various segmentation methods. We found

that our method obtained competitive results when compared to other approaches of

the literature. We observed that the methods that surpassed the AAM e�ectiveness

perform segmentation at pixel level. We concluded that a post-processing method for

�nding accurate boundaries between landmarks may improve the results considerably.

However, we considered that the gain on other stages of the pipeline will produce greater

improvements on the overall performance of the system.

We analyzed the e�ectiveness of the Laplacian of Gaussian, the di�erence of Gaussian,

and the determinant of Hessian, weighted-multiscale-convergence-index �lter and the slid-

ing band �lter detection methods in terms of sensitivity by the amount of FPPI. In this

experiment, we found that the sliding band �lter obtained better results than the other

detectors.

In the classi�cation stage, we proposed a method based on a CNN trained from the

scratch. We analyzed the impact of various data augmentation transformations individ-

ually and combined. We found that the transformations individually can improve the

results substantially. Moreover, we also found that the transformations are complemen-
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tary. Furthermore, we compared two ways to use dropout on convolutional layers. We

found that both approaches improved the e�ectiveness of the model and that assigning

increasing dropout probabilities is slightly superior. We also evaluated the impact of CNN

architecture parameters on the performance of the system.

The main goal of the conducted experiments was to �nd the best con�guration for

lung nodule classi�cation in CXR images. Then, we compared the results of the best

CNN con�guration, ConvNet(6, 32, 1), to competing approaches. Due to factors related

to variation of the methods, it is di�cult to guarantee that our method outperformed

competing approaches. However, we showed that, under our considerations with respect

to variations, our method achieved good results when compared to the state-of-the-art.

As directions for future work, we conjecture that the exploration of other regularization

mechanisms, besides dropout and data augmentation, is an important aspect. Thus, we

conducted some preliminary experiments on augmenting a CNN trained from the scratch,

with a Stacked-What-and-Where-AutoEncoder [94] such that the learning is performed

by considering supervised and unsupervised objectives at the same time. This idea has

improved our results and suggests that further investigation in this direction should be

conducted. Moreover, we could leverage the insights found in this work to develop a

method for lung nodule classi�cation in CT images.
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