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RESUMO 

 

Dentre as estratégias de redução de gordura em alimentos, destacam-se a heteroagregação de 

gotas lipídicas e a gelificação de emulsões. Dessa forma, este trabalho teve como objetivo 

produzir heteroagregados de gotas lipídicas e emulsões gel-like utilizando proteínas lácteas 

como agentes emulsificantes e diferentes métodos de emulsificação. Inicialmente emulsões 

foram produzidas com o intuito de caracterizar estruturalmente os sistemas obtidos e avaliar o 

efeito do ultrassom sobre as propriedades estruturais e tecnológicas das proteínas. O caseinato 

de sódio sofreu redução significativa de tamanho em sua estrutura molecular, o que não foi 

observado para a lactoferrina. A hidrofobicidade superficial foi afetada positivamente pelo 

aumento do tempo de ultrassom e foram observadas diferenças mínimas na eletroforese em gel 

da lactoferrina. Não foram detectadas diferenças no sinal dicróico para o caseinato de sódio, 

mas uma leve mudança conformacional foi observada para a lactoferrina. Emulsões com 

tamanho de gotas reduzido foram obtidas com maiores tempos de sonicação para ambas as 

proteínas, no entanto, a lactoferrina levou à formação de emulsões mais estáveis. O tratamento 

ultrassônico prévio das proteínas melhorou suas propriedades emulsificantes, mas este 

tratamento ultrassônico em conjunto com o processo de formação de gotas resultou em 

emulsões mais estáveis, facilitando a deposição dos emulsificantes na interface óleo/água. A 

partir desses resultados, as emulsões foram misturadas em diferentes razões de volume, 

permitindo a formação de heteroagregados. As características desses heteroagregados 

dependeram fortemente da razão de volume das emulsões misturadas. Além disso, variações de 

força iônica não influenciaram a estabilidade dos heteroagregados. Na etapa seguinte os 

heteroagregados foram caracterizados frente às condições do trato gastrointestinal. A digestão 

lipídica dependeu do tipo de emulsificante que recobria as gotas, bem como da ação das enzimas 

digestivas e dos sais biliares. Os heteroagregados apresentaram o menor percentual de digestão 

lipídica, possivelmente devido a interação dos lipídeos com os peptídeos que foram digeridos. 

Na última etapa, foram produzidas emulsões gel-like através de uma técnica a frio. Para isso, 

dispersões de lactoferrina foram previamente aquecidas por aquecimento ôhmico ou 

convencional. O efeito do aquecimento na agregação da lactoferrina foi avaliado a fim de 

fornecer conhecimento sobre os mecanismos que podem influenciar nas propriedades das 

emulsões gelificadas. A formação das emulsões foi atribuída à capacidade emulsificante da 

lactoferrina, combinada com o método de emulsificação e o tratamento térmico da proteína. O 

aquecimento ôhmico influenciou no desdobramento e agregação das moléculas de lactoferrina. 



 

 

Comparado ao aquecimento convencional, foi possível obter moléculas menos agregadas, o que 

foi confirmado pelo menor aumento de tamanho, turbidez e fluorescência, refletindo 

diretamente nas emulsões obtidas. As propriedades reológicas e microestruturais dependeram 

do tipo de aquecimento, onde o aquecimento convencional possibilitou a formação de emulsões 

gel-like com uma estrutura mais forte. De uma forma geral, foi possível avaliar o efeito do 

ultrassom e do aquecimento nas propriedades estruturais e tecnológicas das proteínas, bem 

como propor estratégias de estruturação de emulsões visando a substituição e redução de 

gorduras em produtos alimentícios.  

 

Palavras-chave: emulsões, proteínas, estabilidade, digestibilidade. 

 

 



 

 

ABSTRACT 

 

Among the fat reduction strategies in foods, the heteroaggregation of lipid droplets and the 

gelation of emulsions stand out. Thus, the aim of this work was to produce heteroaggregates of 

lipid droplets and gel-like emulsions using milk proteins as emulsifying agents and different 

emulsification methods. Initially, emulsions were produced with the purpose of characterizing 

structurally the obtained systems and evaluate the effect of ultrasound on the structural and 

technological properties of proteins. Sodium caseinate molecular structure showed a 

significantly reduce in size, which was not observed for lactoferrin. Surface hydrophobicity was 

positively affected by the increase in the duration of ultrasonic treatment and minimal 

differences were observed in lactoferrin gel electrophoresis. No differences were detected in 

the dichroic signal for sodium caseinate, but a slight conformational change was observed for 

lactoferrin. Emulsions with reduced droplet size were obtained with higher sonication times for 

both proteins, however, lactoferrin led to the formation of more stable emulsions. Previous 

ultrasonic treatment of the proteins improved their emulsifying properties, but this ultrasonic 

treatment associated to the droplet formation process resulted in more stable emulsions, 

facilitating the deposition of the emulsifiers at the oil/water interface. From these results, the 

emulsions were mixed in different volume ratios, allowing the formation of heteroaggregates. 

The characteristics of these heteroaggregates strongly depended on the volume ratio of the 

mixed emulsions. In addition, variations in ionic strength did not influence the stability of 

heteroaggregates. In the next step the heteroaggregates were characterized against conditions 

of the gastrointestinal tract. Lipid digestion depended on the type of emulsifier that covered the 

drops, as well as the action of digestive enzymes and bile salts. Heteroaggregates presented the 

lowest percentage of lipid digestion, possibly due to the interaction of the lipids with the 

peptides that were digested. In the latter step, gel-like emulsions were produced by a cold 

technique. For this, lactoferrin dispersions were preheated by ohmic or conventional heating. 

The effect of heating on aggregation of lactoferrin was evaluated in order to provide knowledge 

about the mechanisms that may influence the properties of the gelled emulsions. The formation 

of the emulsions was attributed to the emulsifying ability of lactoferrin, combined with the 

emulsification method and the heat treatment of the protein. The ohmic heating influenced the 

unfolding and aggregation of the lactoferrin molecules. Compared to conventional heating, it 

was possible to obtain less aggregate molecules, which was confirmed by the smaller increase 

in size, turbidity and fluorescence, directly reflecting the obtained emulsions. The rheological 



 

 

and microstructural properties depended on the type of heating, since conventional heating 

allowed the formation of gel-like emulsions with a stronger structure. In general, it was possible 

to evaluate the effect of ultrasound and heating on the structural and technological properties 

of proteins, as well as to propose strategies for structuring emulsions aiming at the substitution 

and reduction of fats in food products. 

 

Keywords: emulsions, proteins, stability, digestibility.  
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1.1 INTRODUÇÃO  

 

A obesidade é um problema de saúde em muitos países, pois está associada ao 

grande risco de ocorrência de algumas enfermidades, tais como doenças cardiovasculares, 

diabetes, acidente vascular cerebral e câncer (ARANCETA et al., 2009). O aumento do número 

de obesos tem sido atribuído à ampla oferta de alimentos de baixo custo e altamente calóricos, 

e também pelo aumento do estilo de vida sedentário (MAO e MCCLEMENTS, 2012a). No 

entanto, as gorduras presentes nos alimentos desempenham um papel fundamental na 

determinação da aparência, textura e sabor, e quando são removidas dos alimentos muitas das 

qualidades desejáveis são perdidas, afetando negativamente atributos sensoriais de qualidade 

(MCCLEMENTS e DEMETRIADES, 1998). Dessa forma, várias estratégias de redução de 

gordura em alimentos têm sido desenvolvidas, incluindo o uso de gorduras de baixa absorção, 

gorduras de calorias reduzidas, espessantes e partículas coloidais (WILLIAMS e BUTTRISS, 

2006). 

Uma ampla variedade de produtos alimentícios é constituída parcial ou 

integralmente por emulsões como o leite, o iogurte, molho para saladas, maionese, sorvete e 

muitos outros. Emulsões óleo em água (O/A) convencionais são sistemas termodinamicamente 

instáveis e, para manterem-se estáveis por períodos consideráveis de tempo, devem ser 

adicionadas substâncias com atividade de superfície, denominados emulsificantes 

(MCCLEMENTS, DECKER e WEISS, 2007). Também podem ser adicionados estabilizantes 

que aumentam a viscosidade da fase contínua (DICKINSON, 2003). Dentre os agentes 

emulsificantes encontram-se as proteínas que são de grande interesse pois são naturais e de 

característica anfifílica, reduzindo a tensão na interface óleo/água (LAM e NICKERSON, 

2013). 

Outro fator muito importante que se encontra diretamente relacionado à 

estabilidade cinética das emulsões é a escolha do método de emulsificação a ser utilizado 

(SANTANA, PERRECHIL e CUNHA, 2013). A emulsificação através de homogeneização a 

altas pressões é uma das técnicas mais utilizadas na indústria de alimentos (SANTANA, 

PERRECHIL e CUNHA, 2013). O homogeneizador de alta pressão consiste essencialmente de 

uma bomba de alta pressão e uma válvula de homogeneização, sendo utilizado para produzir 

emulsões com diâmetros de gotas menores que 1,0 µm (até 0,1 µm) e com baixo índice de 

polidispersidade (STANG, SCHUCHMANN e SCHUBERT, 2001). A técnica de ultrassom 

tem sido bastante utilizada na produção de emulsões (BECHER, 1965; BROWN e 
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GOODMAN, 1965; ABISMAı̈L et al., 1999; ABBAS et al., 2013; SILVA, ROSA e 

MEIRELES, 2015) com diversos benefícios em relação aos métodos convencionais de 

emulsificação, dentre eles: a formação de gotas com tamanho reduzido e estreita distribuição 

de tamanho, maior estabilidade cinética, baixo custo de produção, facilidade de operação, 

limpeza e controle do dispositivo (ABBAS et al., 2013). Esta técnica baseia-se na aplicação de 

um campo acústico que em conjunto com o fenômeno da cavitação provocam a formação de 

gotas (LI e FOGLER, 1978a; b). Além disso, o ultrassom também tem sido utilizado para 

melhorar as propriedades funcionais e tecnológicas de proteínas (SHANMUGAM, 

CHANDRAPALA e ASHOKKUMAR, 2012; O'SULLIVAN et al., 2014; SHANMUGAM e 

ASHOKKUMAR, 2014; YANJUN et al., 2014). 

Emulsões com diferentes estruturas, propriedades físico-químicas, e atributos 

funcionais podem ser preparadas através do controle das características das partículas coloidais 

(como tamanho, carga, forma, concentração), das condições ambientais (como pH, força iônica, 

temperatura) e do método de preparação (como a ordem de adição dos ingredientes e condições 

de mistura). Estudos recentes têm relatado que a heteroagregação controlada de gotas lipídicas 

carregadas com cargas opostas pode ser usada para manipular as características dos produtos à 

base de emulsões (MAO e MCCLEMENTS, 2012a; b). Esta técnica tem refletido em uma série 

de vantagens para a criação de produtos com teor de gordura reduzido, contendo quantidades 

apreciáveis de proteína, que podem induzir a sensação de saciedade (WESTERTERP-

PLANTENGA et al., 2009). Emulsões gel-like, as quais são tratadas termicamente, acidificadas 

ou adicionadas de sais (CHEN et al., 2000; BOUTIN et al., 2007; YE e TAYLOR, 2009), 

também têm mostrado ser promissoras para a substituição e redução de gorduras em produtos 

alimentícios (PINTADO et al., 2015; PINTADO et al., 2016). 

Desta forma, acredita-se que o uso de proteínas emulsificantes em conjunto com 

métodos de emulsificação de alta eficiência podem ser adequados para a produção de novas 

características desejáveis em produtos com teor de gordura reduzido através do processo de 

heteroagregação ou de gelificação de emulsão. 
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1.2 OBJETIVOS 

 

1.2.1 Objetivo Geral 

 

O objetivo geral desta tese foi estudar a técnica de heteroagregação de gotas a partir 

de emulsões obtidas por ultrassom usando caseinato de sódio e lactoferrina como agentes 

emulsificantes, bem como estudar a produção de emulsões gel-like a partir do aquecimento 

ôhmico e convencional de dispersões de lactoferrina.  

 

1.2.2 Objetivos específicos 

 

=> Produzir emulsões utilizando caseinato de sódio e lactoferrina através do 

processo de emulsificação por ultrassom; caracterizar estruturalmente os sistemas obtidos e 

avaliar o efeito do ultrassom sobre as propriedades estruturais e tecnológicas das proteínas. 

 

=> Estudar a formação, estabilização e caracterização de heteroagregados a partir 

de emulsões obtidas em diferentes condições de emulsificação e força iônica. 

 

=> Caracterizar os heteroagregados frente às condições in vitro do trato 

gastrointestinal. 

 

=> Produzir emulsões gel-like a partir de dispersões de lactoferrina aquecidas por 

um sistema ôhmico e um sistema convencional de aquecimento; caracterizar fisicamente e 

estruturalmente os sistemas obtidos e avaliar o efeito do aquecimento sobre as propriedades 

estruturais da lactoferrina. 
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1.3 ESTRUTURA DA TESE 

 

A apresentação desta tese foi organizada em nove capítulos como descrito a seguir. 

No Capítulo 1 são expostos uma introdução geral do estudo, o objetivo geral e os objetivos 

específicos envolvidos na realização desta tese. No Capítulo 2 são abordados aspectos teóricos 

dos sistemas estudados, bem como uma revisão bibliográfica relatando a literatura recente e 

mais relevante sobre o tema deste trabalho. Os Capítulos 3, 4, 5 e 6 consistem em artigos 

publicados (FURTADO et al., 2016; FURTADO et al., 2017a; b) ou submetidos para 

publicação em periódicos internacionais. No Capítulo 3 são apresentados os resultados 

experimentais sobre a influência do ultrassom nas propriedades estruturais e emulsificantes do 

caseinato de sódio e da lactoferrina. Posteriormente, com base nos resultados obtidos de tempo 

de ultrassom, no Capítulo 4, a formação, estabilização e caracterização de heteroagregados a 

partir de emulsões obtidas em diferentes condições de emulsificação e força iônica foi avaliada. 

Com base nos resultados obtidos de formação e estabilidade dos heteroagregados, no Capítulo 

5, a digestibilidade in vitro dos heteroagregados foi avaliada. No Capítulo 6 são apresentados 

os resultados de um estudo complementar desenvolvido em estágio sanduíche na Universidade 

do Minho (Portugal) onde foi avaliado o efeito do aquecimento ôhmico nas propriedades 

estruturais da lactoferrina e na subsequente produção de emulsões gel-like. Por fim, no 

Capítulo 7, uma discussão geral é realizada e no Capítulo 8 são apresentadas as principais 

conclusões do desenvolvimento da tese. O Capítulo 9 apresenta as referências bibliográficas e 

os Anexos apresentam as licenças para utilização dos artigos publicados. 
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2.1 REVISÃO BIBLIOGRÁFICA 

 

2.1.1 Emulsões 

 

As emulsões compreendem uma mistura de óleo e água, contendo gotas dispersas 

e uma fase contínua. O diâmetro das gotas é tipicamente da ordem de 0,1 a 100 µm, no entanto, 

podem variar de poucos nanômetros a centenas de micrômetros. Os dois tipos mais comuns de 

emulsões são do tipo água em óleo A/O e óleo em água O/A, no entanto, podem existir emulsões 

múltiplas como água em óleo em água A/O/A, óleo em água em óleo O/A/O e sistemas ainda 

mais complexos (MIKULA, 1992). 

Uma emulsão é formada a partir de três requisitos fundamentais, sendo eles: a 

existência de dois líquidos imiscíveis; agitação suficiente para que um dos líquidos esteja 

disperso na forma de gotas no outro líquido; e um emulsificante para estabilizar as gotas 

dispersas (ARNOLD e SMITH, 1992). São sistemas termodinamicamente instáveis em virtude 

da grande tensão interfacial existente entre a água e o óleo, acompanhada pelo aumento da área 

interfacial no processo de formação das gotas, implicando em uma elevada energia livre de 

Gibbs (𝛥𝐺𝑓 > 0)  (CASTELLAN, 1986). Nas emulsões, o termo de energia interfacial (𝛾𝛥𝐴) 

da Eq. 2.1 geralmente é mais elevado que a entropia de formação das gotas (𝛥𝑆𝑓), devido ao 

processo de redução do tamanho das gotas e consequente aumento de área superficial. Desta 

forma, a emulsão tende ao equilíbrio termodinâmico com a diminuição da área interfacial entre 

as duas fases, promovendo a coalescência das gotas e favorecendo a separação das fases 

(ANTON, BENOIT e SAULNIER, 2008). 

 

𝛥𝐺𝑓 = 𝛾𝛥𝐴 − 𝑇𝛥𝑆𝑓        (Eq. 2.1) 

 

onde:  

𝛥𝐺𝑓 é a energia livre de formação, [J/kg]; 

𝛾 é a tensão interfacial, [J/kg.m2]; 

𝛥𝐴 representa o aumento da área superficial total das gotas, [m2]; 

T a temperatura, [K];  

𝛥𝑆𝑓 a entropia de formação, [J/kg.K]. 
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A separação das fases de uma emulsão está relacionada com sua propriedade mais 

importante que é a estabilidade cinética, ou o tempo em que a emulsão permanece sem mostrar 

mudanças significativas na distribuição e tamanho das gotas, bem como no estado de agregação 

e arranjo espacial (ADAMSON e GAST, 1987). A desestabilização das emulsões pode ocorrer 

devido aos seguintes processos: cremeação, sedimentação, floculação e coalescência das gotas 

(Figura 2.1). A cremeação ocorre se as gotas dispersas possuem densidade menor que a fase 

contínua, e estas migram para a parte superior da emulsão. No caso da densidade das gotas ser 

maior que a densidade da fase contínua ocorre o processo de sedimentação. Já quando duas ou 

mais gotas se agregam mantendo sua integridade é denominado floculação e na coalescência, 

duas ou mais gotas se fundem formando uma gota maior (MCCLEMENTS, 2005). Há ainda o 

mecanismo de amadurecimento de Ostwald onde o aumento no tamanho das gotas se dá pelo 

transporte de massa através da fase contínua (TAYLOR, 2003). 

 

 

Figura 2.1 - Mecanismos de instabilidade em emulsões O/A. Fonte: (MCCLEMENTS e RAO, 

2011)  

 

2.1.2 Agentes Emulsificantes e Estabilizantes 

 

A separação das fases de uma emulsão pode ser evitada ou retardada pela adição de 

agentes emulsificantes e/ou estabilizantes. Os emulsificantes se adsorvem na interface existente 
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entre o óleo e a água, fornecendo uma camada protetora à floculação ou coalescência das gotas. 

Estas moléculas atuam na redução da tensão interfacial durante a formação da emulsão, levando 

à formação de um filme viscoelástico na interface que pode ser rígido (barreira mecânica para 

a coalescência), formar uma dupla camada elétrica (barreira contra a aproximação das gotas) 

ou uma camada flexível (barreira estérica). Já os estabilizantes são definidos como 

componentes que conferem estabilidade às emulsões via modificação das propriedades 

reológicas da fase contínua, com o aumento da sua viscosidade ou mesmo sua gelificação 

(DICKINSON, 2003).  

Os agentes emulsificantes são constituídos por uma parte hidrofílica e outra 

lipofílica, sendo denominados de anfifílicos. Na presença de água e óleo, a porção hidrofílica é 

atraída pela água, enquanto a lipofílica é atraída para o óleo (CAPEK, 2004). Existem duas 

grandes classes de agentes emulsificantes usadas no processamento de alimentos: surfactantes 

de baixa massa molecular (monoglicerídeos, polissorbatos, lecitina, etc.) e emulsificantes 

macromoleculares (geralmente proteínas, como as do leite e do ovo) (DICKINSON, 2003). 

As proteínas são comumente usadas como agentes emulsificantes em emulsões óleo 

em água presentes em produtos alimentares, tais como bebidas, iogurte, maionese e sorvetes. 

Dentre as proteínas mais utilizadas estão as proteínas do leite, do ovo e da soja 

(MCCLEMENTS, 2005; DICKINSON, 2009). As propriedades estruturais e interfaciais das 

proteínas definem sua capacidade de adsorção na interface de modo a proporcionar uma 

combinação de repulsão eletrostática e estérica entre as gotas de óleo, obtendo-se então uma 

emulsão cineticamente estável (WILDE et al., 2004; MCCLEMENTS, 2005). No entanto, as 

gotas das emulsões estabilizadas por proteínas tendem a se agregar, flocular ou coalescer 

quando expostas a ambientes desfavoráveis, como é o caso de sistemas alimentícios ácidos, 

principalmente em pH próximo ao ponto isoelétrico da proteína, na presença de eletrólitos, ou 

calor, devido à neutralização de carga eletrostática ou desnaturação das proteínas (DIFTIS e 

KIOSSEOGLOU, 2006; DAY et al., 2009). 

 

2.1.2.1 Caseinato de Sódio 

 

As proteínas do leite são muito utilizadas como emulsificantes/estabilizantes (GUZEY 

e MCCLEMENTS, 2006), além de possuírem alto valor nutricional e serem consideradas 

seguras (GRAS) (CHEN, REMONDETTO e SUBIRADE, 2006). As caseínas representam 

cerca de 75 a 85% das proteínas do leite (DAMODARAN, PARKIN e FENNEMA, 2007), são 
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partículas coloidais, aproximadamente esféricas e altamente hidratadas (≈ 4 g água / g proteína). 

Essas proteínas são consideradas fosfoproteínas compostas por diferentes frações (αs1-, αs2-, β- 

e κ-caseína) susceptíveis à associação em micelas devido às regiões de alta hidrofobicidade e 

distribuição de cargas dos aminoácidos. A distribuição de tamanho da estrutura supramolecular 

da micela de caseína tem sido reportada em uma extensa faixa entre 20 e 600 nm de diâmetro, 

com tamanho médio entre 100 e 200 nm, e o número de moléculas de proteínas que constituem 

a supramolécula de caseína é cerca de 104 para uma partícula coloidal de ≈ 150 nm 

(MCMAHON e OOMEN, 2008; DALGLEISH e CORREDIG, 2012; MCSWEENEY e FOX, 

2013). Além disso, as caseínas são proteínas ricas em prolina e por isso, apresentam estrutura 

altamente desorganizada, formam pouca estrutura secundária e terciária e não formam 

estruturas globulares (WALSTRA, WOUTERS e GEURTS, 2006), permitindo-as serem 

flexíveis e não sofrerem alterações conformacionais induzidas pelo calor (MCCLEMENTS, 

2015). 

No processo de obtenção do caseinato de sódio, a caseína é precipitada com ácido 

e dissolvida em álcali (hidróxido de sódio), e essa solução é então seca por atomização 

(WALSTRA, WOUTERS e GEURTS, 2006). No entanto, existem diferenças consideráveis 

entre o caseinato de sódio e as micelas de caseína. Em termos de composição, os dois materiais 

têm diferentes teores de fosfato de cálcio, e funcionalmente o caseinato é mais solúvel do que 

as micelas de caseínas. Hidrodinamicamente, o caseinato de sódio é menor (10 – 100 nm) do 

que as caseínas na forma micelar (PAN, ZHONG e BAEK, 2013). Em pH neutro o caseinato 

de sódio é carregado negativamente (MA et al., 2009), e tem sido muito utilizado como 

ingrediente na indústria de alimentos, devido sua elevada capacidade gelificante e emulsificante 

(DICKINSON e GOLDING, 1997; DICKINSON, 2006). 

 

2.1.2.2 Lactoferrina 

 

As proteínas do soro do leite (α-lacotalbumina, β-lactoglobulina e albumina sérica 

que são as principais) representam 15 a 22% das proteínas do leite (DAMODARAN, PARKIN 

e FENNEMA, 2007). Existem ainda proteínas minoritárias no soro do leite, como a lactoferrina, 

uma glicoproteína globular da família das transferrinas (carreadores de ferro). A lactoferrina 

ocorre em muitos fluidos de secreção de mamíferos, e possuiu várias funções biológicas, como 

por exemplo, capacidade antioxidante, atividade antimicrobiana, antiviral e anticancerígena 

(WAKABAYASHI, YAMAUCHI e TAKASE, 2006). Esta proteína é composta por 
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polipeptídios de cadeia simples de cerca de 80 kDa contendo de uma a quatro glicanas (SPIK 

et al., 1994). Além de apresentar efeitos benéficos contra doenças, o fato de ser segura para a 

saúde, amplia seu potencial de aplicação como aditivo alimentar para humanos e animais 

(WAKABAYASHI, YAMAUCHI e TAKASE, 2006). Estudos têm mostrado que a lactoferrina 

pode ser utilizada como agente emulsificante para estabilizar emulsões (SARKAR, GOH e 

SINGH, 2009; SARKAR, HORNE e SINGH, 2010; TOKLE e MCCLEMENTS, 2011; 

PINHEIRO, COIMBRA e VICENTE, 2016).  

A lactoferrina apresenta ponto isoelétrico entre 8,6 e 8,9, e, portanto, é uma proteína 

básica, sendo catiônica em pH neutro enquanto que a maioria das proteínas globulares lácteas 

são aniônicas (STEIJNS e VAN HOOIJDONK, 2000). O ponto isoelétrico elevado da 

lactoferrina é devido ao alto teor de aminoácidos básicos (como lisina e arginina) (SGARBIERI, 

1996; BAKER e BAKER, 2005), e em virtude de sua natureza básica, a lactoferrina pode ser 

purificada através de cromatografia de troca catiônica (CONESA et al., 2008). Como a 

lactoferrina apresenta carga positiva sob uma ampla faixa de pH, comparada as demais 

proteínas lácteas, esta proteína estabiliza emulsões em um intervalo de pH muito mais amplo 

(YE e SINGH, 2006). 

 

2.1.2.3 Estrutura e propriedades funcionais das proteínas 

 

Uma proteína pode se apresentar em diferentes graus de estruturação (estrutura 

primária, secundária, terciária, quaternária) que são mantidos por vários tipos de ligação e/ou 

interações entre vários grupos funcionais dos aminoácidos que a compõem. As proteínas têm 

como base de sua estrutura os polipeptídeos, formados por ligações peptídicas entre os grupos 

(-NH2) de um aminoácido e carboxílico (-COOH) de outro. A estrutura primária se caracteriza 

por apresentar apenas ligações peptídicas entre os aminoácidos formando polímeros de cadeia 

distendidas (random coil). Proteínas do tipo random coil existem em um estado desdobrado e 

de completa desordem estrutural. A estrutura secundária é mantida por ligações de hidrogênio 

que podem ser intramoleculares (estrutura helicoidal, α-hélice) ou intermoleculares (estrutura 

foliar, folha pregueada). As estruturas terciária e quaternária se referem ao arranjo espacial da 

cadeia polipeptídica (dobramento ou formação de laços), já dotada ou não de estrutura 

secundária. Na estabilização destas estruturas e na determinação da conformação de uma 

proteína entram forças de natureza diversas, tais como: ligações dissulfeto, ligações salinas ou 
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interações eletrostáticas, ligações de hidrogênio, interações dipolares, hidrofóbicas e de Van 

der Waals (SGARBIERI, 1996).  

O tipo, número e sequência dos aminoácidos de uma proteína determina as suas 

características moleculares (como massa molecular, conformação, carga elétrica, flexibilidade 

e hidrofobicidade). Por sua vez, estas características moleculares determinam sua 

funcionalidade, como por exemplo, a sua capacidade para espessar soluções, formar géis, reter 

água, adsorver em interfaces, estabilizar emulsões e espumas, catalisar reações enzimáticas e 

ligar-se a moléculas (MCCLEMENTS et al., 2009). Frequentemente, a funcionalidade das 

proteínas é associada a transições estruturais, como seu desdobramento em função da 

desnaturação (FOEGEDING e DAVIS, 2011) e subsequente exposição de grupos hidrofóbicos 

(RAFFAELE e PETER, 2013). 

 

2.1.3 Métodos de emulsificação 

 

Diferentes técnicas de emulsificação visam produzir emulsões com diâmetro de 

gotas reduzido e com baixo índice de polidispersidade. Para isso, faz-se necessário uma grande 

quantidade de energia, além da adição de um emulsificante (JAFARI et al., 2008). As técnicas 

de emulsificação que empregam alta energia podem ser realizadas por dispositivos de alta 

pressão, ultrassônicos e tipo rotor-estator. Existem ainda técnicas que empregam baixa energia 

como emulsificação espontânea e temperatura de inversão de fases, no entanto os 

emulsificantes utilizados para produzir estas emulsões geralmente não são de grau alimentício 

ou são necessárias grandes concentrações do mesmo (SANTANA, PERRECHIL e CUNHA, 

2013; SHANMUGAM e ASHOKKUMAR, 2014). 

 

2.1.3.1 Emulsificação a altas pressões 

 

A homogeneização a alta pressão visa a redução do tamanho das gotas de uma 

macroemulsão pré-formada por misturadores do tipo rotor-estator (MCCLEMENTS, 2005). O 

processo de homogeneização em alta pressão consiste na passagem da macroemulsão por um 

estreito orifício sob uma pressão elevada (Figura 2.2), sendo que o fluido acelera rapidamente, 

alcançando uma velocidade de até 300 m/s. A energia fornecida pelo processo como resultado 

do cisalhamento, impacto e cavitação é representada como a energia livre adicional necessária 

para a redução do tamanho de gotas que leva à criação de uma grande área interfacial (ANTON, 
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BENOIT e SAULNIER, 2008), permitindo produzir emulsões com gotas dispersas de 

diâmetros menores que 500 nm (WEISS, TAKHISTOV e MCCLEMENTS, 2006). Em geral, 

emulsões com reduzido tamanho de gota da fase dispersa, possuem maior estabilidade e textura 

mais fina (MCCLEMENTS, 2005). No entanto, a distribuição de tamanho também afeta 

diretamente a textura e estabilidade das emulsões (FLOURY, DESRUMAUX e LEGRAND, 

2002) e dependendo da taxa de adsorção interfacial do emulsificante, a distribuição do tamanho 

de gotas pode ser mono ou polidispersa (JAFARI et al., 2008). 

 

 

Figura 2.2 - Representação esquemática de um homogeneizador a alta pressão. Adaptado de 

SANTANA, PERRECHIL e CUNHA (2013) 

 

O decréscimo no tamanho de gota pode levar a um aumento na viscosidade das 

emulsões estabilizadas por proteínas (KUHN e CUNHA, 2012; MANTOVANI, CAVALLIERI 

e CUNHA, 2016), o que pode ser atribuído a uma maior interação entre as gotas (PAL, 2000) 

devido a uma maior quantidade de proteína adsorvida ou a um maior empacotamento das 

proteínas na interface óleo-água (INNOCENTE et al., 2009). No entanto, o decréscimo no 

tamanho de gota também pode levar a uma diminuição na viscosidade das emulsões 

(DESRUMAUX e MARCAND, 2002; SANTANA et al., 2011), o que pode ser atribuído à 

redução da funcionalidade da proteína provocada pela pressão de homogeneização (FLOURY, 

DESRUMAUX e LEGRAND, 2002). 

 

2.1.3.2 Emulsificação por ultrassom 

 

O ultrassom é definido como ondas sonoras com frequências além do alcance da 

audição humana. Em frequências entre 20 e 100 kHz, ondas de ultrassom interagem com a 

matéria, produzindo mudanças físicas e químicas (ABBAS et al., 2013). O ultrassom pode ser 

dividido em diferentes faixas de frequência usando sondas de alta e baixa frequência. Altas (100 
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kHz a 1 MHz) e baixas frequências (16-100 kHz) aplicam níveis de intensidade de 1 W.cm-2 e 

10-1000 W.cm-2, respectivamente (SORIA e VILLAMIEL, 2010). 

A energia ultrassônica tem sido descrita como um eficiente modo para melhorar o 

desempenho de diferentes processos, como extração de compostos orgânicos e inorgânicos, 

homogeneização, dispersão de suspensões, dentre outros (NASCENTES et al., 2001). Um 

aparato ultrassônico comum (Figura 2.3) usado na produção de emulsões é constituído de um 

gerador, um transdutor, um amplificador e uma sonda. O gerador produz energia elétrica que é 

convertida pelo transdutor em vibrações mecânicas em uma frequência similar à da corrente 

elétrica. Estas vibrações mecânicas são amplificadas e propagadas através de uma sonda, na 

forma de ondas acústicas. O processo de emulsificação por ultrassom ocorre em dois estágios. 

No primeiro estágio ocorre a geração de gotas primárias, devido a um campo acústico que 

produz ondas interfaciais, gerando uma instabilidade que causa a erupção da fase oleosa na fase 

aquosa na forma de gotas. O segundo estágio envolve a quebra das gotas primárias através da 

cavitação acústica, que exerce uma alta turbulência e força cisalhante local, produzindo 

violentas e assimétricas implosões das bolhas, que por consequência formam microjatos que 

também auxiliam na quebra das gotas primárias produzindo gotas de tamanho nanométrico (LI 

e FOGLER, 1978a; b). 

 

 

Figura 2.3 - Componentes de um ultrassom. Adaptado de SILVA, ROSA e MEIRELES 

(2015) 

 

A eficácia do processo de emulsificação por ultrassom depende de fatores como o 

tempo e potência de ultrassom, a proporção óleo/água e as propriedades físico-químicas do 

óleo. Em geral, um aumento da potência e do tempo de ultrassom resulta em um maior 
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fracionamento da fase dispersa com uma diminuição no tamanho da gota (GAIKWAD e 

PANDIT, 2008). Estudos têm mostrado que dentre as técnicas de emulsificação o uso de 

ultrassom tem se estabelecido como uma ferramenta superior em comparação ao uso de rotor-

estator em termos de obtenção de gotas de tamanho reduzido e alta eficiência energética 

(ABISMAı̈L et al., 1999; KENTISH et al., 2008).  

 

2.1.3.2.1 Alterações estruturais causadas pelo ultrassom às proteínas 

 

O uso do ultrassom tem demonstrado possuir uma capacidade de reduzir o tamanho 

das proteínas em solução aquosa e aumentar a sua dissolução. A sonicação de proteínas lácteas, 

como proteínas do soro e caseínas, resultou em uma redução de tamanho (CHANDRAPALA 

et al., 2011; ARZENI et al., 2012; SHANMUGAM, CHANDRAPALA e ASHOKKUMAR, 

2012; MCCARTHY et al., 2014; YANJUN et al., 2014) associado às altas forças cisalhantes 

devido a cavitação ultrassônica (TRUJILLO e KNOERZER, 2011). No entanto, tempos 

prolongados de sonicação podem levar a um aumento de tamanho devido a desnaturação das 

proteínas, diminuição da solubilidade e agregação em virtude das elevadas temperaturas do 

tratamento ultrassônico (GÜLSEREN et al., 2007; SHANMUGAM, CHANDRAPALA e 

ASHOKKUMAR, 2012; MCCARTHY et al., 2014). O uso do ultrassom também tem mostrado 

reduzir a viscosidade das dispersões de proteína (ZISU et al., 2010; ARZENI et al., 2012; 

YANJUN et al., 2014) em virtude da redução no tamanho como consequência da cavitação. 

Apesar da redução de tamanho, muitos autores relataram que o uso do ultrassom 

não provocou mudanças na estrutura primária das proteínas (MARTINI, POTTER e WALSH, 

2010; JIANG et al., 2014; YANJUN et al., 2014; O'SULLIVAN et al., 2016), pois o tratamento 

ultrassônico fornece uma energia insuficiente para causar ruptura das ligações peptídicas 

(O’SULLIVAN et al., 2017). No entanto, alguns autores reportaram a diminuição da massa 

molecular das proteínas após o tratamento ultrassônico (JAMBRAK et al., 2010; JAMBRAK 

et al., 2014). 

Estudos também relatam a melhora nas propriedades emulsificantes das proteínas 

tratadas por ultrassom (O'SULLIVAN et al., 2014; YANJUN et al., 2014). A melhora na 

formação e estabilidade das emulsões pode ser atribuída às forças de cisalhamento geradas 

durante a cavitação acústica que levaram à desnaturação parcial das proteínas levando ao 

aumento da hidrofobicidade destas moléculas (SHANMUGAM, CHANDRAPALA e 
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ASHOKKUMAR, 2012; SHANMUGAM e ASHOKKUMAR, 2014), contribuindo para a 

melhor adsorção interfacial. 

 

2.1.4 Heteroagregação de gotas lipídicas 

 

A técnica de heteroagregação de gotas lipídicas carregadas com cargas opostas tem 

sido utilizada na produção de materiais altamente viscosos com reduzido teor de gordura (MAO 

e MCCLEMENTS, 2012a; b). O fenômeno da heteroagregação se dá pela agregação de 

partículas similares, as quais podem diferir em tamanho, forma, carga, composição química ou 

outras propriedades (YATES et al., 2005; LOPEZ-LOPEZ et al., 2006). 

As gotas carregadas com cargas opostas interagem umas com as outras através de 

atração eletrostática (Figura 2.4), levando à formação de microclusters que formam uma rede 

tridimensional de agregados que apresentam comportamento elástico. Assim, a microestrutura 

e as propriedades reológicas destes sistemas dependem da concentração de gotas, da razão entre 

cargas positivas/negativas e das propriedades da fase aquosa que influenciam nas interações 

eletrostáticas, como pH e força iônica (MAO e MCCLEMENTS, 2012a; b). Controlar as 

propriedades interfaciais para induzir o fenômeno de agregação é complexo devido ao número 

limitado de emulsificantes que possuem carga superficial que sejam de grau alimentício, e ainda 

que possam ser utilizados dentro de uma ampla faixa de pH (MAIER, ZEEB e WEISS, 2014).  

 

 

Figura 2.4 - Diagrama esquemático do processo de formação de heteroagregados de gotas 

recobertas com proteínas de cargas opostas. Adaptado de MAIER, ZEEB e WEISS (2014). 
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Um dos modelos mais utilizados para descrever as interações entre partículas 

coloidais carregadas é a teoria DLVO (ISLAM, CHOWDHRY e SNOWDEN, 1995; MAO e 

MCCLEMENTS, 2013). Nesta teoria, a interação entre as partículas coloidais é representada 

pelo somatório de três contribuições (Eq. 2.2): 

 

𝑉𝑇 = 𝑉𝑉 + 𝑉𝐸 + 𝑉𝑆        (Eq. 2.2) 

 

onde:  

𝑉𝑇 é a energia de interação total; 

𝑉𝑉 é a energia resultante das forças de van der Waals; 

𝑉𝐸 é a energia associada com as interações eletrostáticas; 

𝑉𝑆 é a energia associada com as forças de repulsão estérica. 

 

As interações eletrostáticas podem ser atrativas ou repulsivas, o que leva a 

diferentes perfis de interação coloidal (MAO e MCCLEMENTS, 2013).  

 

2.1.5 Emulsões gel-like 

 

Emulsões estabilizadas por proteínas lácteas, como proteínas do soro, podem ser 

transformadas em emulsões gelificadas (gel-like) através de técnicas tradicionais como 

tratamento térmico (CHEN et al., 2000; LIU e TANG, 2011), acidificação com glucona-delta-

lactona (BOUTIN et al., 2007; YE e TAYLOR, 2009) ou adição de sais (SOK LINE, 

REMONDETTO e SUBIRADE, 2005; YE e TAYLOR, 2009). 

O tratamento térmico necessário para produzir as emulsões gel-like limita suas 

aplicações em formulações contendo ingredientes sensíveis ao calor, como bioativos, enquanto 

que sistemas obtidos por técnicas a frio (sem tratamento térmico) são mais favoráveis para 

incorporar tais ingredientes (SOK LINE, REMONDETTO e SUBIRADE, 2005; LIU e TANG, 

2011), mostrando melhores características funcionais, como maior proteção dos bioativos e 

uma melhor estabilidade oxidativa dos lipídeos (LEE, CHOI e MOON, 2006). No entanto, nas 

técnicas a frio, um tratamento térmico prévio das dispersões de proteína é necessário para 

garantir a formação dos agregados (SOK LINE, REMONDETTO e SUBIRADE, 2005; 

BOUTIN et al., 2007) através da desnaturação parcial da proteína nativa e a subsequente 
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agregação das moléculas desnoveladas (NIELSEN, SINGH e LATHAM, 1996). A adição de 

íons divalentes pode ser feita de modo a melhorar a reticulação das proteínas e promover sua 

gelificação (BRYANT e MCCLEMENTS, 2000). 

O tratamento térmico pode ser realizado de maneira convencional ou ainda pode-se 

utilizar o aquecimento ôhmico. Esta tecnologia tem recebido grande atenção devido ao seu 

rápido aquecimento, onde altas temperaturas são aplicadas em um curto espaço de tempo, 

permitindo obter produtos com qualidade superior àqueles processados com aquecimento 

convencional (CASTRO et al., 2003; MACHADO et al., 2010; RODRIGUES et al., 2015). 

Durante o aquecimento ôhmico, uma corrente elétrica passa pelo alimento que se comporta 

como um resistor em um circuito elétrico, gerando calor internamente, de acordo com a lei de 

Joule (DE ALWIS e FRYER, 1990). A presença de variáveis elétricas inerentes ao aquecimento 

ôhmico (como campo elétrico, frequência elétrica e densidade da corrente) podem levar a 

mudanças conformacionais e comportamentos de gelificação distintos em proteínas lácteas, 

como as proteínas do soro do leite (PEREIRA et al., 2010; PEREIRA, TEIXEIRA e VICENTE, 

2011; RODRIGUES et al., 2015). 

 

2.1.6 Digestibilidade in vitro  

 

Apesar das dificuldades de simular com precisão os eventos físico-químicos e 

fisiológicos que ocorrem no trato gastrointestinal humano, o uso de modelos de digestão in vitro 

com o intuito de estudar alterações estruturais, digestibilidade, biodisponibilidade e liberação 

de compostos alimentícios nas condições gastrointestinais tem sido de grande interesse (HUR, 

DECKER e MCCLEMENTS, 2009). Os estudos de digestão in vitro são bastante utilizados 

com o objetivo de avaliar a lipólise de emulsões alimentícias no trato gastrointestinal por 

apresentarem menor custo e tempo, quando comparados aos estudos in vivo e também por não 

possuírem restrições éticas. Existem dois tipos de modelos gastrointestinais: os estáticos e os 

dinâmicos. Os modelos estáticos são aqueles nos quais a agitação da amostra é realizada através 

de movimento orbital e não reproduzem os movimentos peristálticos. Já os modelos dinâmicos 

incluem os processos físicos e mecânicos além de promover a simulação das mudanças das 

condições físico-químicas de maneira contínua para se aproximar mais às condições in vivo 

(HOEBLER et al., 2002; PARADA e AGUILERA, 2007; KONG e SINGH, 2008). No entanto, 

grande parte dos estudos in vitro são realizados em modelos estáticos onde a digestão na boca, 

no estômago e intestino delgado são reproduzidas em etapas consecutivas, levando em conta a 
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presença e concentrações de enzimas digestivas, pH, tempo de digestão, concentrações de sais 

e temperatura. O modelo estático utilizado neste estudo foi um protocolo padronizado definido 

recentemente com o objetivo de uniformizar os protocolos existentes na literatura e produzir 

resultados mais comparáveis (MINEKUS et al., 2014). 

O estudo da digestão em sistemas emulsionados está relacionado principalmente a 

hidrólise lipídica que envolve a adsorção dos sais biliares para a posterior adsorção da lipase na 

superfície das gotas de óleo, o que faz com que a enzima tenha acesso aos triacilgliceróis 

(WILDE e CHU, 2011). Portanto, a natureza do emulsificante impacta diretamente na 

susceptibilidade das gotas de óleo quanto à coalescência e quebra dentro do trato 

gastrointestinal, alterando a área total superficial exposta à ação da lipase. Assim, as 

características da camada interfacial influenciam na adsorção e atividade da lipase na interface 

óleo/água (HUR, DECKER e MCCLEMENTS, 2009). Os produtos resultantes da lipólise são 

então incorporados nas micelas de sais biliares/fosfolipídeos para serem transportados no meio 

aquoso e absorvidos através da mucosa do intestino delgado, se estiverem em um sistema in 

vivo (DAMODARAN, PARKIN e FENNEMA, 2007). 
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Highlights 

 

The ultrasound effect on proteins structure was investigated. 

Ultrasound promoted conformational changes only for lactoferrin. 

Higher proteins hydrophobicity was observed with increasing of sonication time.  

Higher sonication time produced smaller droplets and more stable emulsions. 
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ABSTRACT 

 

Structural, physical and emulsifying properties of sodium caseinate and lactoferrin 

were investigated after these proteins were subjected to ultrasound treatment. Aqueous sodium 

caseinate or lactoferrin solutions were sonicated for 2 to 6 minutes using a power of 300 W. 

Protein properties as size, surface charge, molecular weight distribution, intrinsic viscosity, 

surface hydrophobicity and structural conformation from circular dichroism were evaluated. 

Sodium caseinate size was significantly reduced after ultrasound treatment while an opposite 

effect was observed for lactoferrin. Slight differences in molecular weight after ultrasound 

treatment were observed only for lactoferrin. Intrinsic viscosity and surface hydrophobicity was 

positively affected by the increase of sonication time. Circular dichroism spectra revealed no 

differences for sodium caseinate structure but slight changes were observed for lactoferrin. In 

addition, a fixed amount (1 wt.%) of this ultrasound-treated protein was employed as an 

emulsifier to prepare oil in water emulsions (o/w). Emulsions were also produced using the 

same ultrasound conditions that aqueous protein solutions were subjected. They were evaluated 

in terms of droplet size, emulsifying activity, creaming index and emulsion stability. Emulsions 

showed reduced droplet size and improved stability with higher sonication times. Coarse 

emulsions stabilized by ultrasound-treated proteins showed a slightly higher stability when 

compared to coarse emulsions stabilized by non-treated proteins. However, completely stable 

emulsions were produced only by ultrasound emulsification of coarse emulsions, suggesting 

that the protein changes occurring simultaneously to the droplets size reduction contributed to 

the enhancement of emulsifying properties. 

 

Keywords: emulsion, hydrophobicity, ultrasound. 
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3.1 INTRODUCTION 

 

A wide variety of food products consists at least partially by emulsions such as 

milk, yogurt, salad dressing, mayonnaise and ice cream. Oil in water emulsions are 

thermodynamically unstable systems but a kinetic stability for considerable periods of time can 

be reached with the addition of emulsifiers that act onto the interface (McClements, Decker, & 

Weiss, 2007). Proteins can act as emulsifiers due to their amphiphilic nature, reducing the 

interfacial tension between oil and water (Lam & Nickerson, 2013). Moreover the protein 

adsorption onto the interface provides a combination of electrostatic and steric repulsion 

between the oil droplets which allows the formation of a kinetically stable emulsion (Wilde, 

Mackie, Husband, Gunning, & Morris, 2004). Milk proteins are commonly used as emulsifiers 

showing high nutritional value and can be considered as safe (GRAS) (Chen, Remondetto, & 

Subirade, 2006; Guzey & McClements, 2006). Caseins are approximately 75 to 85% of milk 

protein and these phosphoproteins are composed by four different fractions: αs1-, αs2-, β- and κ-

caseins (McSweeney & Fox, 2013). In aqueous solution at neutral pH or in foods such as milk, 

casein is a mixture of small aggregates called casein micelles attached to calcium salts. They 

are prone to association in micelles due to regions of high hydrophobicity and the charge 

distribution arising from the amino acid sequence (O'Regan, Ennis, & Mulvihill, 2009). 

Calcium salts when replaced by sodium salts leads to the production of sodium caseinate, which 

is an ingredient widely used in food industry with high emulsifying capacity (Dickinson, 2006; 

McSweeney, et al., 2013). 

Whey proteins represent 15 to 22% of milk proteins. The major fractions are α-

lactalbumin, β-lactoglobulin and serum albumin with other minor proteins as lactoferrin 

(Damodaran, Parkin, & Fennema, 2007). Lactoferrin occurs in mammalian secretory fluids 

showing a number of biological functions such as antioxidant activity, antimicrobial activity, 

antiviral and anticancer (Wakabayashi, Yamauchi, & Takase, 2006). This protein is composed 

by a single polypeptide chain of about 80 kDa, containing one to four glycans (Spik, et al., 

1994). Besides of their beneficial effects, lactoferrin is safe for health and shows potential 

application as food additive for human and animal (Wakabayashi, et al., 2006). Some studies 

have shown that lactoferrin can be used as an emulsifier to stabilize emulsions (Sarkar, Goh, & 

Singh, 2009; Sarkar, Horne, & Singh, 2010).  

Another important factor that is directly related to the kinetic stability of emulsions 

is the emulsifying method (Jafari, He, & Bhandari, 2007; Santana, Perrechil, & Cunha, 2013). 
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Ultrasound can be used in the production of emulsions and is based on the application of an 

acoustic field that results in cavitation phenomena causing the formation of droplets (Abismaı̈l, 

Canselier, Wilhelm, Delmas, & Gourdon, 1999; Li & Fogler, 1978a, 1978b). The use of this 

technique presents a number of advantages as production of smaller droplets size (less than 1 

μm) and narrow size distribution resulting in more stable emulsions; minimal emulsifier content 

requirements depending on the emulsifier used; easy operation, control and cleaning; and low 

production costs (Abbas, Hayat, Karangwa, Bashari, & Zhang, 2013). Changes on structural 

and technological properties of milk proteins has been associated to the application of 

ultrasound which usually improved their emulsifying properties due to structural changes 

(Arzeni, et al., 2012; Chandrapala, Zisu, Palmer, Kentish, & Ashokkumar, 2011; Jambrak, 

Mason, Lelas, Paniwnyk, & Herceg, 2014; O'Sullivan, Arellano, Pichot, & Norton, 2014). 

However, a deeper investigation about the effects of ultrasound on the structural and functional 

properties of sodium caseinate (a protein with random coil structure negatively charged at pH 

7.0) and lactoferrin (a globular protein positively charged at pH 7.0) is necessary in order to 

understand the influence of process conditions on the emulsifying properties of these proteins 

showing unlike conformational structure. 

The objective of this research was to understand the effects of ultrasound treatment 

on the structural and physical properties of sodium caseinate and lactoferrin. Changes in the 

structural and physical properties of the proteins were measured in terms of protein size and 

surface charge, molecular structure, intrinsic viscosity, surface hydrophobicity and circular 

dichroism. Furthermore, we investigated the ultrasound effect on the proteins capacity to 

increase the stability of oil in water emulsions against coalescence and decrease droplets size.  

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Materials 

 

Ultrapure water from a Millipore Milli-Q system (resistivity 18.2 MΩ/cm) was 

used. Sodium caseinate (protein content 87 wt. %) and lactoferrin (protein content 92.1 wt. %) 

were kindly provided by Allibra Ingredientes Ltd (Campinas, Brazil) and Synlait Milk Ltd 

(Canterbury, New Zeland), respectively. Sunflower oil (Bunge Alimentos S.A., Gaspar, Brazil) 

was purchased in the local market. The other reagents were of analytical grade. 
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3.2.2 Methods 

 

3.2.2.1 Protein solutions preparation 

 

Sodium caseinate or lactoferrin were dispersed in ultrapure water (0.25 – 1.429 wt. 

%) using magnetic stirring at room temperature overnight, ensuring complete dissolution of the 

protein. The pH of protein solutions was adjusted to pH 7.0 using sodium hydroxide (1 M) or 

hydrochloric acid (1 M). 

 

3.2.2.2 Ultrasound treatment of protein solutions 

 

Protein solutions (100 ml) were homogenized using a rotor-stator device 

(SilentCrusher M, Heidolph, Schwabach, Germany) at 5,000 rpm for 3 minutes prior to 

sonication. An ultrasonic processor (QR 750 W, Ultronique, Campinas, Brazil) attached with a 

titanium probe (13 mm diameter) was used to sonicate sodium caseinate and lactoferrin aqueous 

solutions at fixed concentration of 1.0 wt. %. Sonication time was 2, 4 or 6 minutes, while the 

power and the frequency were fixed in 300 W and 20 kHz, respectively. The temperature of the 

protein solutions was measured before and after sonication and did not exceed 30 °C. The pH 

of the protein solutions was measured before and after sonication using a pH meter (Metrohm 

827, Metrohm, Herisau, Switzerland). The "control" is the protein solution and "0 min" is the 

protein solution dispersed by rotor-stator before the ultrasound treatment. 

 

3.2.2.3 Characterization of untreated and ultrasound-treated proteins 

 

3.2.2.3.1 Particles size distribution and zeta potential 

 

The proteins size distribution and zeta potential were measured using a Zetasizer 

Nano Series (Malvern Instruments, Worcestershire, UK). Mean protein size was reported as 

average hydrodynamic diameter (�̅�), which was calculated according to Eq. 3.1.  

 

�̅� = ∑ 𝑥𝑖𝐷𝑖          (3.1)  
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where 𝑥𝑖 is the fraction of a given particle 𝑖 with a given scattering intensity and 𝐷𝑖 is the 

diameter of the particle 𝑖. The polydispersity index (PDI) was calculated from cumulant 

analysis of the measured dynamic light scattering intensity autocorrelation function. Zeta 

potential was determined at a fixed pH value (7.0).  

 

3.2.2.3.2 Polyacrylamide gel electrophoresis  

 

Molecular weight distribution of untreated and ultrasound-treated proteins was 

evaluated by Native-PAGE and SDS–PAGE under non-reducing conditions, according to 

Laemmli (1970). A vertical slab Mini-Protean electrophoresis system (Bio-Rad Laboratories, 

Hercules, USA) was used. For SDS-PAGE the resolving and stacking gels contained 15% and 

5 wt. % of acrylamide, respectively. Untreated and ultrasound-treated protein solutions (1 wt. 

%) were diluted in deionized water (2 mg protein/mL). These solutions were diluted in a sample 

buffer containing SDS (1:1) to obtain non-reducing conditions. The gels were run at 120 V with 

a running buffer containing SDS (pH 8.3). For Native-PAGE a buffer without SDS (pH 8.3) 

and a 10 wt. % acrylamide gel was used for sodium caseinate while for lactoferrin a buffer 

without SDS (pH 10.2) and a 6 wt. % acrylamide gel was used. The gels were then stained with 

0.25 wt. % Coomassie Brilliant Blue in ethanol:acetic acid:water (45:10:45 vol. %), and 

diffusion-destained by repeated washing in an ethanol:acetic acid:water solution (10:5:85 vol. 

%). Commercial molecular weight markers (Broad Range Protein Molecular Weight Markers, 

Promega Corporation, Madison, USA and BenchMark™ Pre-stained Protein Ladder, Carlsbad, 

CANADA) were used to evaluate molecular weight of proteins.  

 

3.2.2.3.3 Intrinsic viscosity  

 

The protein solutions viscosity was measured in a very dilute concentration range 

of 0.25 – 0.45 wt. % using a rheometer (AR1500ex, TA Instruments, New Castle, USA) 

equipped with a double gap concentric cylinders (31.85 mm inner diameter, 35.01 mm outer 

diameter, 42.07 mm height). Viscosity values of protein solutions and solvent (ultrapure water) 

were obtained from flow curves (0 – 1000 s-1) which were subsequently used to determine the 

relative and intrinsic viscosity.  
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Intrinsic viscosity of untreated and treated protein solutions was obtained from the 

slope of relative viscosity-concentration relationship using equations 3.2 to 3.4 (Higiro, Herald, 

& Alavi, 2006; Tanglertpaibul & Rao, 1987). 

 

𝜂𝑟𝑒𝑙 =
𝜂

𝑛𝑠
= 1 + [𝜂]. 𝐶         (3.2) 

 

𝜂𝑟𝑒𝑙 =
𝜂

𝑛𝑠
= 𝑒[𝜂].𝐶         (3.3) 

 

𝜂𝑟𝑒𝑙 =
𝜂

𝑛𝑠
=

1

1−[𝜂].𝐶
         (3.4) 

 

where 𝜂𝑟𝑒𝑙 is the relative viscosity, 𝜂 is the protein solution viscosity, 𝑛𝑠is the solvent viscosity, 

[𝜂] is the intrinsic viscosity and 𝐶 is the protein concentration wt. %.  

 

3.2.2.3.4 Surface hydrophobicity (𝑺𝟎)  

 

Protein surface hydrophobicity was determined according to Alizadeh-Pasdar and 

Li-Chan (2000) with minor modifications using the anionic fluorescence probe 1-anililo-

naphthalene-8-sulfonate (ANS). Protein solution was prepared in 0.1 M phosphate buffer (pH 

7.0) and the protein concentration ranged from 0.005 – 0.025 wt. %, while ANS was 8 mM. 

Samples containing 4 mL of diluted proteins was mixed by vortexing with 20 μL of ANS 

solution. After 15 minutes in the dark, the relative fluorescence intensity (RFI) was measured 

using a multiphase fluorometer (K2, ISS, Champaign, USA). The excitation/emission slits and 

wavelengths were set at 0.5 mm/0.5 mm and 390/470 nm respectively. 𝑆0 was determined from 

the initial slope of the linear regression analysis of the plot of RFI against protein concentration 

(wt. %). 

 

3.2.2.3.5 Far-UV circular dichroism (CD) 

 

Far-UV circular dichroism was used to investigate the secondary structure of 

untreated and ultrasound-treated proteins. Protein solutions (0.1 mg/mL) were evaluated at 

25±0.1 °C in the spectral range from 190 to 260 nm with a spectropolarimeter (Jasco J-810, 

Jasco Corp., Japan), using a quartz cuvette with an optical path of 0.1 cm. The spectral 
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resolution was 0.5 nm, and the scan speed was 100 nm/min, with a response time of 0.125 s at 

a bandwidth of 1 nm. Twenty scans were accumulated and averaged, and the spectra were 

corrected using a protein-free sample. Results were expressed as molar ellipicity (θ) using Eq. 

(3.5) (Barreto, et al., 2003): 

 

θ =
3300.𝛥𝐴𝑏𝑠

𝑐.𝑙
          (3.5) 

 

where 𝛥𝐴𝑏𝑠 is the observed difference in absorbance for the left and right circular components 

of the incident light, 𝑙 is the pathlength (in cm), and 𝑐 is the protein concentration in mol.l-1. 

 

3.2.2.4 Oil in water emulsions preparation 

 

Oil in water emulsions were prepared according to the scheme presented in Figure 

3.1. Coarse emulsions were formed by homogenizing 70 mL of untreated protein solutions 

(1.429 wt. %, pH 7.0, which were prepared according to section 3.2.2.1) and 30 mL of 

sunflower oil using a rotor-stator homogenizer (SilentCrusher M, Heidolph, Schwabach, 

Germany) at 5,000 rpm for 3 minutes. Fine emulsions were prepared by subjecting the coarse 

emulsion in an ultrasonic processor (QR 750W, Ultronique, Campinas, Brazil) with a 13 mm 

diameter titanium probe immersed 3 mm depth. A magnetic stirrer was also used in combination 

with ultrasound process to homogenize the mixture. Sonication time varied between 2 and 6 

minutes, while the power and the frequency were fixed in 300 W and 20 kHz, respectively. The 

temperature of preparation did not exceed 30 °C during the homogenization process. Coarse 

emulsions were also prepared with the ultrasound-treated protein solutions in the same 

conditions of untreated protein solutions in order to evaluate only the effect of ultrasound on 

the emulsifying properties of the proteins. 
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Figure 3.1 - Schematic representation of the procedure used for emulsions preparation. 

 

3.2.2.5 Emulsion characterization 

 

3.2.2.5.1 Emulsion stability 

 

Immediately after preparation, 25 mL of each emulsion was poured into a 

cylindrical glass tube (internal diameter = 17 mm, height = 105 mm), sealed with a plastic cap 

and stored at 25 °C for 7 days. The change in height of the top phase (H) was measured during 

storage time and the creaming index (CI) determined according to Eq. (3.6). Emulsifying 

activity (EA) of the fresh emulsions was also determined from centrifugation. Samples (15 ml) 

were centrifuged at 1200g for 10 minutes, and the remaining emulsion height (𝐻𝐸𝐴) was 

measured and compared with the initial height of emulsion (Eq. 3.7). In addition, emulsion 

stability (ES) (Eq. 3.8) was determined by emulsion heating to 80°C for 30 minutes, cooling 

down to room temperature and centrifuging at 1200g for 5 minutes. ES was expressed as the 

percentage of the emulsified layer height (𝐻𝐸𝑆) remaining in the original emulsion volume 

(Chau, Cheung, & Wong, 1997). 

 

𝐶𝐼 (%) =
𝐻

𝐻0
100         (3.6) 

 

𝐸𝐴 (%) =
𝐻𝐸𝐴

𝐻0
100         (3.7) 

 

𝐸𝑆 (%) =
𝐻𝐸𝑆

𝐻0
100         (3.8) 
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where 𝐻0 represents the initial height of the emulsion.  

 

3.2.2.5.2 Droplet size  

 

The droplets size distribution of the cream phase was determined based on the static 

light scattering method using a Multi-Angle Static Light-Scattering Mastersizer (Mastersizer 

2000, Malvern Instruments, Worcestershire, UK). The emulsions were analyzed immediately 

after their preparation and after 7 days of storage. The mean diameter of the oil droplets was 

expressed as the volume-surface mean diameter (𝐷3,2) (Eq. 3.9) and volume mean diameter 

(𝐷4,3) (Eq. 3.10). 𝑆𝑝𝑎𝑛 was used as a polydispersity index (Eq. 3.11).  

 

𝐷3,2 =
∑ 𝑛𝑖𝐷𝑖

3

∑ 𝑛𝑖𝐷𝑖
2          (3.9) 

 

𝐷4,3 =
∑ 𝑛𝑖𝐷𝑖

4

∑ 𝑛𝑖𝐷𝑖
3          (3.10) 

 

𝑆𝑝𝑎𝑛 =
(𝐷90−𝐷10)

𝐷50
         (3.11) 

 

where 𝑛𝑖 is the number of droplets with diameter 𝐷𝑖, and 𝐷10, 𝐷50 and 𝐷90 are diameters at 10, 

50 and 90% of cumulative volume, respectively. 

 

3.2.2.5.3 Microstructure  

 

Microstructure of the emulsions was evaluated after 7 days of storage. The samples 

were poured onto microscopes slides, covered with glass cover slips and observed using a Carl 

Zeiss Axio Scope A1 microscope (Zeiss, Oberkochen, Germany) with x40 objective lenses.  

 

3.2.3 Statistical analysis 

 

The results were reported as the average and the standard deviation of three 

replicates and evaluated by one way analysis of variance (ANOVA), and significant differences 

(p<0.05) between the treatments were evaluated by the Tukey procedure. The statistical 
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analyses were carried out using the trial version software Minitab 16.1.0 (Minitab Inc., State 

College, PA, USA).  

 

3.3 RESULTS AND DISCUSSION 

 

3.1 Changes on structural and physical properties of proteins in aqueous 

medium induced by ultrasound 

 

Zeta potential, size and pH measurements of protein as a function of sonication time 

are shown in Table 3.1. A significant reduction of pH values was observed for both proteins 

indicating a higher exposure of acidic amino acid residues (Bermudez-Aguirre, Mawson, & 

Barbosa-Canovas, 2008; O'Sullivan, et al., 2014; Sakurai, Konuma, Yagi, & Goto, 2009). On 

the other hand, zeta potential values did not vary significantly, but at pH 7.0 sodium caseinate 

is negatively charged while lactoferrin is positively charged. Sodium caseinate presented a 

monomodal size distribution and a significant reduction in average hydrodynamic diameter 

with the increase in the sonication time as a consequence of the cavitational forces, micro-

streaming and turbulent forces of the ultrasonic treatment exerted by the probe, which could 

lead to changes in electrostatic and hydrophobic interactions (Jambrak, et al., 2014; O'Brien, 

2007; O'Sullivan, et al., 2014; Yanjun, et al., 2014). Furthermore, caseins present completely 

flexible chains and a certain number of susceptible residues that are more easily broken 

(Swaisgood, 1993). However, lactoferrin presented a multimodal size distribution with three 

peaks and a significant increase in average hydrodynamic diameter (peak 1) with the increase 

in the sonication time. Such result was also observed for sonicated bovine serum albumin 

suggesting that small aggregates may have been formed (Gülseren, Güzey, Bruce, & Weiss, 

2007). Commercial lactoferrin is not completely purified and non-covalent molecular 

interactions such as electrostatic and hydrophobic interactions between this protein and other 

residual whey proteins can be occurring. In addition, by presenting a low concentration of iron 

(iron saturation 9.9 %, according to the manufacturer), lactoferrin may be in the apo form which 

shows a more open conformation (Andersen, Baker, Morris, Rumball, & Baker, 1990) and 

treatment by ultrasound may have triggered a wider opening chain. The polydispersity index 

can vary from 0 to 1 (Table 3.1), where higher values indicate a less homogeneous particle size 

distribution. PDI values remained below 0.2 and tended to increase at higher sonication times. 
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Table 3.1 - Zeta potential, pH, protein diameter and PDI of sodium caseinate and lactoferrin solutions subjected to different sonication times. 

Protein Treatment pH Zeta potential (mV) 
�̅� (nm) 𝑃𝐷𝐼 

Peak 1 Peak 2 Peak 3 Peak 1 Peak 2 Peak 3 

Sodium Caseinate 

Control 7.05±0.00a - 29.17±1.55a 345±12a - - 0.14±0.09 - - 

0 min 7.03±0.00b - 29.60±0.78a 328±10ab - - 0.06±0.04 - - 

2 min 7.03±0.00bc - 27.57±0.64a 307±17bc - - 0.11±0.08 - - 

4 min 7.02±0.01bc - 28.8±0.80a 286±20c - - 0.13±0.06 - - 

6 min 7.02±0.01c - 28.53±0.58a 276±2c - - 0.20±0.02 - - 

Lactoferrin 

Control 7.04±0.00a 17.43±0.12a 332±7b 48±11a 7±2ab 0.06±0.01 0.08±0.01 0.05±0.05 

0 min 6.99±0.00b 17.97±0.42a 316±20b 50±11a 13±0a 0.03±0.01 0.06±0.01 0.05±0.01 

2 min 6.96±0.00d 17.40±0.52a 386±4ab 52±7a 11±6ab 0.06±0.04 0.12±0.04 0.06±0.01 

4 min 6.97±0.00c 17.27±0.76a 421±38ab 41±4a 6±1b 0.05±0.04 0.07±0.06 0.03±0.01 

6 min 6.87±0.00e 18.10±0.40a 487±79a 47±2a 7±0ab 0.04±0.01 0.14±0.05 0.03±0.05 

Identical letters in the same column for each protein indicate that there are no differences between the measurements (p > 0.05) 
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Native-PAGE electrophoretic profiles showed no differences for sodium caseinate 

treated in different conditions (Fig. 3.2a). The band near 26-37 kDa refers to the major fractions 

of sodium caseinate (β- and αs-casein) (O’Regan & Mulvihill, 2009). However, bands between 

49 and 64 kDa and above 115 kDa refer to aggregates formed by non-covalent interactions such 

as electrostatic and hydrophobic interactions since they disappeared after SDS addition (Fig. 

3.2c). Lactoferrin native-PAGE electrophoretic profile (Fig. 3.2b) showed a band near 82 kDa 

and higher than 180 kDa that refers to the lactoferrin (Raei, Rajabzadeh, Zibaei, Jafari, & Sani, 

2015; Spik, et al., 1994) and protein aggregates, respectively. Furthermore, some aggregates 

between 82-115 kDa were observed for ultrasound-treated lactoferrin, which corroborates the 

particles size distribution presented in Table 3.1. These aggregates also disappeared after SDS 

addition, confirming that these aggregates are formed by non-covalent interactions. However, 

a band near 15 kDa appeared and possibly refers to α-lactalbumin (14.2 kDa) (Jambrak, et al., 

2014) which was forming aggregates observed in native-PAGE. Electrophoretic profiles 

obtained by SDS-PAGE for untreated and ultrasound treated proteins did not show differences 

in protein fractions in agreement with those reported for other milk proteins like bovine serum 

albumin (Gülseren, et al., 2007), milk protein concentrate (Yanjun, et al., 2014), sodium 

caseinate and whey protein isolate (O'Sullivan, et al., 2014). The absence of differences in the 

electrophoretic profile of the untreated and ultrasound treated proteins in SDS-PAGE confirms 

that the structural changes induced by ultrasound process are of non-covalent nature. 
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Figure 3.2 - Native-Page (a and b) and SDS-PAGE (c) eletrophoretic profiles of protein 

solutions: (0) Molecular weight standard, (1) Untreated sodium caseinate, (2) Rotor-stator 

stirred sodium caseinate, (3) Ultrasound treated sodium caseinate for 2 minutes, (4) 

Ultrasound treated sodium caseinate for 4 minutes, (5) Ultrasound treated sodium caseinate 

for 6 minutes, (6) Untreated lactoferrin, (7) Rotor-stator stirred lactoferrin, (8) Ultrasound 

treated lactoferrin for 2 minutes, (9) Ultrasound treated lactoferrin for 4 minutes, (10) 

Ultrasound treated lactoferrin for 6 minutes. 

 

Intrinsic viscosity [η] values of protein solutions were determined from fitting Eqs. 

(3.2), (3.3) and (3.4) as can be observed in Table 3.2. A tendency of the intrinsic viscosity 

decreasing with the increase in sonication time was observed, but such a decrease was not 

statistically significant. Intrinsic viscosity reflects the ability of a solvent to hydrate proteins 

and provides information about the molecular hydrodynamic volume, which is related to the 
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chain conformation of the proteins in solution (Behrouzian, Razavi, & Karazhiyan, 2014). 

Despite of the non significant differences, these results are in agreement with the reduction in 

size measured by dynamic light scattering (Table 3.1) for sodium caseinate, but for lactoferrin 

occurred the opposite behavior. However, the protein conformation is also a consequence of 

the hydrophobic interactions. Therefore, the decrease of proteins intrinsic viscosity after 

ultrasound treatment could indicate an increase of the hydrophobicity degree of the proteins. 

Since the most of the hydrophobic side chains are buried in the interior of proteins modifying 

protein intrinsic viscosity (Kauzmann, 1959; Tanner & Rha, 1980). Such assumption can be 

confirmed by the surface hydrophobicity (S0) measurements (Fig. 3.3), since the S0 for all 

proteins increased with the increase of sonication time. Increasing hydrophobicity is positive 

for the adsorption of amphiphilic biopolymers at the oil water interface (Khan, Bibi, Pervaiz, 

Mahmood, & Siddiq, 2012). Ultrasound treatment induced a partial molecular unfolding of the 

protein molecules leading to exposure of more hydrophobic groups which made easier the 

access of ANS to previously hindered hydrophobic sites (Arzeni, et al., 2012; Chandrapala, et 

al., 2011; Gülseren, et al., 2007). However, as the ANS is anionic, electrostatic interactions may 

have occurred with lactoferrin because it presents positive zeta potential value giving a higher 

value of hydrophobicity. Although ultrasound caused the exposure of hydrophobic groups with 

a consequent increase in the hydrophobicity value, these groups did not change the zeta 

potential values.  
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Table 3.2 - Intrinsic viscosity values for sodium caseinate and lactoferrin solutions treated at different sonication times. 

Protein Treatment 
  Tanglertpaibul-Rao (Eq. 3.2)   Higiro 1 (Eq. 3.3)   Higiro 2 (Eq. 3.4) 

 
[η] (dl/gr) R2 

 
[η] (dl/gr) R2 

 
[η] (dl/gr) R2 

Sodium Caseinate 

Control 
 

0.15±0.02aA 0.985 
 

0.15±0.02aA 0.975 
 

0.14±0.02aA 0.975 

0 min 
 

0.16±0.03aA 0.915 
 

0.16±0.03aA 0.925 
 

0.15±0.03aA 0.920 

2 min 
 

0.14±0.02aA 0.940 
 

0.14±0.02aA 0.950 
 

0.13±0.02aA 0.935 

4 min 
 

0.14±0.01aA 0.960 
 

0.13±0.01aA 0.970 
 

0.13±0.02aA 0.965 

6 min 
 

0.12±0.01aA 0.980 
 

0.12±0.00aA 0.975 
 

0.12±0.01aA 0.985 

Lactoferrin 

Control 
 

0.15±0.01aA 0.999 
 

0.14±0.01aA 0.999 
 

0.14±0.01aA 0.999 

0 min 
 

0.14±0.03aA 0.915 
 

0.14±0.03aA 0.925 
 

0.14±0.03aA 0.999 

2 min 
 

0.14±0.00aA 0.999 
 

0.14±0.00aA 0.999 
 

0.14±0.00aA 0.999 

4 min 
 

0.13±0.01aA 0.925 
 

0.13±0.01aA 0.925 
 

0.13±0.01aA 0.915 

6 min   0.10±0.01aA 0.999   0.10±0.01aA 0.999   0.10±0.01aA 0.999 

Identical capital letters in the same raw for each protein indicate that there are no significant differences between results (p > 0.05) 

Identical small letters in the same column for each protein indicate that there are no significant differences between results (p > 0.05) 
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Figure 3.3 - Surface hydrophobicity values of sodium caseinate ( ) and lactoferrin ( ) 

after different sonication times. Identical letters for each protein indicate that there are no 

significant differences between the values (p > 0.05). 

 

Circular dichroism (CD) spectroscopy was used to determine the changes in the 

secondary structure of the proteins, considering that the major elements, α-helix, β-sheet and 

coil have a characteristic CD spectra. The α-helix configuration shows an intense and positive 

band at 190 nm and negative peaks at 208 and 220 nm. A negative dichroic peak with a 

minimum in the 215 nm region is typical of β-sheet configuration and random coil structures 

generally have a positive CD peak near 215 nm and a negative one near to 200 nm (Barreto, et 

al., 2003; Kasinos, et al., 2013). Fig. 3.4 shows the far UV-CD spectrum of sodium caseinate 

and lactoferrin. CD spectra of sodium caseinate did not change with ultrasound treatment and 

the shape of the curve and the minimum ellipticity at 203 nm was attributed to random coil 

structure, representing the pattern of typical unfolding proteins (Kato, Miyazaki, Kawamoto, & 

Kobayashi, 1987). Despite the high content of hydrophobic amino acids (proline residues), 

casein presents an open and hydrated random structure with only small amount of secondary 

structure (Barreto, et al., 2003) which can not be affected by ultrasound. However, lactoferrin 

presented a minimum near 210 nm suggesting that its structure is partially based on a β-sheet 

conformation (Daidone, et al., 2010). Furthermore, CD spectra differed slightly in intensity and 

shape with the increase in sonication time, indicating that ultrasound treatment promoted 

conformational changes in the protein structure. This conformational change was also observed 

in bovine serum albumin treated with ultrasound (Gülseren, et al., 2007) and the increase in the 
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magnitude of ellipticity may indicate the formation of less ordered structures and a possible 

unfolding of the protein, which favors hydrophobic interactions, aggregation and size increase 

(Barreto, et al., 2003; Munialo, Martin, van der Linden, & de Jongh, 2014). 

 

 

Figure 3.4 - Far UV-CD spectra of sodium caseinate solutions (a) and lactoferrin solutions (b) 

under different treatments: Untreated protein solution (solid line), Rotor-stator stirred protein 

solution (dotted line), Ultrasound treated protein solution for 2 minutes (dashed line), 

Ultrasound treated protein solution for 4 minutes (dash-dotted line) and Ultrasound treated 

protein solution for 6 minutes (double dashed line). 
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3.3.2 Effect of sonication time on the emulsion properties  

 

The influence of different sonication times on the structure and volume particles 

size distribution of the emulsions stabilized by non-treated proteins can be observed in Figure 

3.5. Whole emulsions were evaluated at day 0 while the cream (top) phase of the emulsions 

was analyzed at day 7 (except for lactoferrin emulsions produced with higher sonication times) 

since most of the emulsions showed phase separation during storage. The microscopy images 

of cream phase showed that increasing the sonication time decreased the droplet size. In 

addition, particles size distribution pattern changed since a shorter sonication time led to a 

bimodal distribution. A longer sonication time led to a unimodal size distribution and lower 

droplet size (Table 3.3), in agreement with results presented by Shanmugam & Ashokkumar, 

(2014) and Shamsara, et al. (2015).  

Depending on the mean droplet size of the dispersed phase, emulsions are generally 

classified as nano (0.01-0.1 μm), mini (0.1-1 μm) and macroemulsions (1-100 μm) (Windhab, 

Dressler, Feigl, Fischer, & Megias-Alguacil, 2005). Only macroemulsions were obtained in this 

work since the mean droplet sizes (𝐷3,2) ranged from 1.89±0.06 to 14.68±3.98 μm, immediately 

after preparation (Table 3.3). The 𝐷3,2 and 𝐷4,3 values showed a 6 (𝐷3,2) and 13 (𝐷4,3) fold 

reduction for sodium caseinate and 7 (𝐷3,2) and 14 (𝐷4,3) fold reduction for lactoferrin between 

0 and 6 min of ultrasound treatment. These values were significantly different for cream phase 

stabilized by for lactoferrin after 7 days of storage at 25 °C since higher droplets were observed. 

However, for sodium caseinate mean droplets size of cream phase remained similar to whole 

emulsions. The span values were used to express the width of the size distribution and the 

degree of polydispersity. A high span value of the emulsion implies in a wide size distribution 

and high droplets polydispersity. Despite the rotor-stator homogenization have resulted in lower 

span values (0 min) (Table 3.3), the mean droplets size was much higher than the ultrasound 

treated emulsions and the span value was similar to the higher sonication time, immediately 

after preparation of emulsions. Span values of cream phase (7 day) for sodium caseinate 

increased comparing to fresh emulsions (Day 0) while for lactoferrin they decreased with 

storage time. The homogenization process is one of the factors that determines the droplet size 

(Henry, Fryer, Frith, & Norton, 2009).  
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Figure 3.5 - Optical micrographs and droplets size distribution of the cream phase of the oil in 

water emulsions stabilized by sodium caseinate and lactoferrin under different sonication 

times after 7 days of storage at 25 ºC. 
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Table 3.3 - Mean droplet size and polydispersity of the oil in water emulsions stabilized by sodium caseinate or lactoferrin under different 

sonication times. 

Protein Treatment 
 

Day 0 
 

Day 7 

 
𝐷3,2 

 
𝐷4,3 

 𝑆𝑝𝑎𝑛  
𝐷3,2 

 
𝐷4,3 

 𝑆𝑝𝑎𝑛 

 
(μm) 

 
(μm) 

  
(μm) 

 
(μm) 

 

Sodium Caseinate 

0 min 
 

12.10±0.34aB 
 

34.53±0.09aB 
 

1.90±0.24aA 
 

116.22±1.80aA 
 

124.197±1.26aA 
 

0.68±0.03aB 

2 min 
 

2.90±0.08bA 
 

7.17±0.58bA 
 

3.73±0.11bB 
 

2.87±0.00bA 
 

7.70±0.41bA 
 

4.01±0.01bA 

4 min 
 

2.21±0.03cA 
 

3.57±0.12cA 
 

2.36±0.14cB 
 

2.53±0.38bA 
 

4.82±1.21cA 
 

3.18±0.58cA 

6 min 
 

1.89±0.03dA 
 

2.57±0.09dA 
 

1.63±0.11aA 
 

1.35±1.57bB 
 

4.91±0.94cB 
 

1.36±1.58cB 

Lactoferrin 

0 min 
 

14.68±3.98aB 
 

42.02±10.67aB 
 

1.86±0.30aA 
 

96.05±0.60aA 
 

102.06±0.0.74aA 
 

0.65±0.01aB 

2 min 
 

2.98±0.03bB 
 

7.07±0.73bB 
 

3.33±0.22bA 
 

4.61±0.36bA 
 

13.46±0.71bA 
 

1.74±0.05bB 

4 min 
 

2.39±0.05bB 
 

4.11±0.21bB 
 

2.54±0.11cA 
 

2.75±0.17cA 
 

5.87±0.64cA 
 

1.95±0.13cB 

6 min 
 

2.04±0.06bA 
 

3.10±0.05bA 
 

2.08±0.11aA 
 

2.00±0.02dA 
 

2.42±0.05dB 
 

1.19±0.04dB 

Identical capital letters in the same raw for each protein between Day 0 and Day 7 indicate that there are no significant differences between the 

values (p > 0.05) 

Identical small letters in the same column for each protein indicate that there are no significant differences between the values (p>0.05) 
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However, these differences in the effectiveness of the studied proteins may also be 

explained by their adsorption rate to the oil water interface and effectiveness at generating 

repulsive interactions between droplets (Jafari, Assadpoor, He, & Bhandari, 2008). Sodium 

caseinate molecules have a flexible structure and relatively low molecular weight (≈ 20 kDa), 

whereas lactoferrin molecules have a globular structure and relatively high molecular weight 

(≈ 80 kDa). Thus, these differences in molecular characteristics may account for their different 

relative affinities for the droplet surfaces (Lesmes, Baudot, & McClements, 2010). 

Table 3.4 shows the stability parameters (EA, CI, ES) of the prepared emulsions. 

Stable emulsions show EA and ES parameters values equal to 100% and CI equal to 0%. 

Emulsions prepared with lactoferrin under 6 minutes of sonication time showed 100% of 

emulsifying activity and stability against creaming until 7 days of storage, while those prepared 

with shorter sonication times presented lower values of emulsifying activity and stability 

against creaming. For sodium caseinate emulsions the highest values of EA, CI and ES were 

40.8±1.0, 40.5±1.9 and 42.4±0.5%, respectively and these values corresponded to the highest 

sonication time. At pH 7.0, sodium caseinate is negatively charged (Ma, et al., 2009) and 

lactoferrin is positively charged (Lonnerdal & Iyer, 1995) suggesting that electrostatic repulsion 

contributed to the emulsions stability (see zeta potential values, Table 3.1). Steric repulsion 

may also be involved in the lactoferrin emulsion stabilization because it is a glycoprotein that 

has some sugar groups covalently attached to its peptide backbone (Oliver, Melton, & Stanley, 

2006). In addition, this protein showed aggregates of high molecular weight (Figure 3.2) formed 

by non-covalent interactions (probably hydrophobic) (Figure 3.3) favoring their deposition onto 

interface and contributing to both electrostatic and steric stabilization. Thus, formation of stable 

emulsions was considered to be the effect of the ultrasound process and the emulsifying 

properties of the proteins. These results are also in agreement with the intrinsic viscosity (Table 

3.2) analysis demonstrating that emulsifying properties of proteins improved during the 

emulsification provided by ultrasound and this enhancement was favored with increasing of 

sonication time. 
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Table 3.4 - Stability parameters for fine emulsions stabilized by sodium caseinate or 

lactoferrin under different sonication times. Protein was not previously ultrasound-treated. 

Protein Treatment 
  𝐸𝐴   𝐶𝐼   𝐸𝑆 

 
[%] 

 
[%] 

 
[%] 

Sodium Caseinate 

0 min 
 

30.0±7.1b 
 

16.0±2.8c 
 

19.5±0.7c 

2 min 
 

36.7±2.5ab 
 

34.1±1.4b 
 

37.8±2.1b 

4 min 
 

40.4±1.4a 
 

39.5±1.0a 
 

37.8±1.6b 

6 min 
 

40.8±1.0a 
 

40.5±1.9a 
 

42.4±0.5a 

Lactoferrin 

0 min 
 

27.5±3.5c 
 

40.4±0.6c 
 

42.0±0.0b 

2 min 
 

40.0±0.0b 
 

39.1±1.0d 
 

42.3±2.1b 

4 min 
 

43.8±2.5b 
 

98.0±0.0b 
 

100.0±0.0a 

6 min 
 

100.0±0.0a 
 

0.0±0.0a 
 

100.0±0.0a 

Identical letters in the same column for each protein indicate that there are no significant 

differences between the values (p > 0.05) 

 

3.3.2.1 Coarse emulsions produced with ultrasound-treated protein solutions 

 

Coarse emulsions produced with ultrasound-treated protein solutions showed 

bimodal size distributions and mean droplets size varying between 19.6-26.3 μm (D3,2), 62.3-

74.5 μm (D4,3) and polydispersity between 1.4-1.7 for sodium caseinate, while for lactoferrin 

mean droplets size varied between 18.8-21.4 μm (D3,2), 56.7-66.9 μm (D4,3) and polydispersity 

between 1.7-1.8 (Fig. 3.6). These mean droplets size were much higher than those obtained for 

coarse emulsions produced with untreated protein solutions (0 min), but span values were 

similar. When these coarse emulsions are compared to the fine emulsions produced by 

ultrasound, it is clear that the ultrasound emulsification process is much more effective than 

rotor stator homogenization producing smaller droplets (near 2 μm (Table 3.3)) due to the 

cavitation effects.  
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Figure 3.6 - Size distribution, mean droplet size and polydispersity of coarse emulsions 

stabilized by ultrasound-treated sodium caseinate (a) and lactoferrin (b) solutions under 

different times: 0 minutes (dashed double dotted line), 2 minutes (solid line), 4 minutes 

(dotted line) and 6 minutes (dashed line). 

 

Table 3.5 shows the stability parameters (EA, CI, ES) of the coarse emulsions 

produced with ultrasound-treated protein solutions. It can be observed that these parameters 

increased when compared to those from emulsions produced with untreated protein solutions 
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(0 min), however ES from lactoferrin decreased and there was no significant difference between 

the sonication times used. Such slight increase in the stability parameters could be related to 

the increase in hydrophobicity (Fig. 3.3), but the effective reduction in droplets size and the 

complete stability (for lactoferrin) was only possible when ultrasound was used for droplets 

formation. This finding has also been related by other authors (Silva, Gomes, Hubinger, Cunha, 

& Meireles, 2015). Thus, we assumed that the interaction between hydrophobic groups and the 

oil phase during emulsification contributed positively to the decrease in the coalescence rate of 

the droplets and consequently to the emulsions stabilization, while in the absence of oil phase 

the proteins could be interacting with themselves hindering more efficient process of 

emulsification. Thus, ultrasound was suitable for change the surface properties (increasing 

hydrophobicity) of the proteins but its main contribution was reducing the droplets size at the 

same time during emulsification. 

 

Table 3.5 - Stability parameters for coarse emulsions stabilized by ultrasound-treated sodium 

caseinate or lactoferrin solutions under different times. 

Protein Treatment 
  𝐸𝐴   𝐶𝐼   𝐸𝑆 

 
[%] 

 
[%] 

 
[%] 

Sodium Caseinate 

0 min  30.0±7.1a  16.0±2.8b  19.5±0.7b 

2 min 
 

37.0±1.7a 
 

40.0±0.0a 
 

34.3±0.6a 

4 min 
 

39.3±1.2a 
 

40.8±0.8a 
 

36.3±2.9a 

6 min 
 

37.7±2.5a 
 

40.5±0.5a 
 

36.0±2.0a 

Lactoferrin 

0 min  27.5±3.5b  40.4±0.6b  42.0±0.0a 

2 min 
 

41.7±7.5a 
 

42.0±0.0ab 
 

31.7±2.9a 

4 min 
 

42.0±6.9a 
 

43.3±1.2a 
 

37.7±7.5a 

6 min 
 

39.7±0.6ab 
 

41.3±1.2ab 
 

35.3±0.6a 

Identical letters in the same column for each protein indicate that there are no significant 

differences between the values (p > 0.05) 

 

3.4 CONCLUSIONS 

 

The ultrasound treatment of sodium caseinate caused a significant reduction in the 

protein diameter while an opposite effect was observed for lactoferrin. This effect was attributed 
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to the unlike proteins conformation that showed opposite behavior when exposed to the strong 

mechanical forces resulting from ultrasonic cavitation. Surface hydrophobicity was also 

positively affected by the increase in sonication time and slight differences in molecular weight 

were observed between untreated and ultrasound treated lactoferrin attributed to non-covalent 

interactions between proteins. CD spectra revealed no differences for sodium caseinate but 

slight conformational changes were observed for lactoferrin since β-sheet structures decreased 

and random coil increased after ultrasound treatment. Emulsions stabilized by lactoferrin and 

prepared using ultrasound showed reduced droplet size and improved stability with the highest 

sonication times, while that it is not enough to stabilize emulsions containing sodium caseinate. 

However, both proteins showed a greater hydrophobicity with increasing sonication time but 

different emulsifying activity and stability against creaming. Therefore, a higher ability of 

lactoferrin to stabilize emulsions was attributed to electrostatic and steric repulsions caused by 

protein aggregates. Previous ultrasound treatment of aqueous protein solutions allowed to 

promote a slight improvement of emulsifying properties while treating aqueous protein 

solutions during emulsions or droplets formation resulted in a clear enhancement of emulsions 

stability, which means that the presence of oil (non-polar phase) and droplets formation 

occurring at the same time of emulsifiers deposition onto interface were essential to obtain 

stable emulsions using ultrasound treatment. 
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Highlights 

 

Heteroaggregates formation with oppositely charged lipid droplets was investigated. 

Their properties depended on droplets volume ratio and protein properties. 

Improved rheological properties can be obtained compared to a single emulsion. 

Heteroaggregates with gel-like behavior were obtained depending on protein ratio. 

Heteroaggregates were not affected to salt addition.  
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ABSTRACT 

 

Formation and characterization of droplet heteroaggregates were investigated by 

mixing two emulsions previously stabilized by proteins oppositely charged. Emulsions were 

composed of 5 vol. % of sunflower oil and 95 vol. % of sodium caseinate or lactoferrin aqueous 

dispersions. They were produced using ultrasound with fixed power (300 W) and sonication 

time (6 min). Different volume ratios (0-100%) of sodium caseinate-stabilized emulsion 

(droplet diameter around 1.75 µm) to lactoferrin-stabilized emulsion (droplet diameter around 

1.55 µm) were mixed under conditions that both proteins showed opposite charges (pH 7). 

Influence of ionic strength (0-400 mM NaCl) on the heteroaggregates stability was also 

evaluated. Creaming stability, zeta potential, microstructure, mean particle diameter and 

rheological properties of the heteroaggregates were measured. These properties depended on 

the volume ratio (0-100 %) of sodium caseinate to lactoferrin-stabilized emulsion (C:L) and the 

ionic strength. In the absence of salt, different zeta potential values were obtained, rheological 

properties (viscosity and elastic moduli) were improved and the largest heteroaggregates were 

formed at higher content of lactoferrin-stabilized emulsion (60-80%). The system containing 

40 and 60 vol. % of sodium caseinate and lactoferrin stabilized emulsion, respectively, 

presented good stability against phase separation besides showing enhanced rheological and 

size properties due to extensive droplets aggregation. Phase separation was observed only in 

the absence of sodium caseinate, demonstrating the higher susceptibility of lactoferrin to NaCl. 

The heteroaggregates produced may be useful functional agents for texture modification and 

controlled release since different rheological properties and sizes can be achieved depending 

on protein concentrations.  

 

Keywords: Emulsion, sodium caseinate, lactoferrin, heteroaggregation, electrostatic 

interactions. 
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4.1 INTRODUCTION 

 

Structural design principles have been utilized to create food with improved or 

novel functional properties as high quality food products with reduced calorie content 

(McClements, Decker, Park & Weiss, 2009; Nehir El Simsek, 2012). However, fats plays a 

fundamental role in food products since they determine the appearance, texture and flavor 

thereof. Indeed, fat removal is associated to the lost of desirable qualities affecting adversely 

sensory quality attributes (McClements & Demetriades, 1998). Thus, a number of fat reduction 

strategies have been developed, including the use of non-absorbable fats, reduced calorie fats, 

thickeners and colloidal particles (Williams & Buttriss, 2006). 

A wide variety of food products consists, at least partially, by emulsions such as 

milk, yogurt, salad dressing, mayonnaise and ice cream (McClements, 2004). Emulsions with 

different structures, physicochemical properties and functional attributes may be prepared by 

controlling the characteristics of the colloidal particles (such as size, surface charge, 

concentration), environmental conditions (such as pH, ionic strength, temperature) and the 

method of preparation (such as the order of addition of ingredients and mixing conditions) (Mao 

& McClements, 2011). Recent studies have reported that controlled heteroaggregation of lipid 

droplets may be used to manipulate the characteristics of the emulsion-based products (Mao & 

McClements, 2011, 2012b, 2012c, 2012d). Heteroaggregated emulsions are formed by mixing 

two single emulsions containing lipid droplets coated by electrically charged emulsifier 

molecules as proteins (Mao & McClements, 2011, 2012c). This technique allows creating 

products with reduced fat content but substantial amounts of protein, inducing a feeling of 

satiety that could be related to kinetics of amino acid profiles consumption (Westerterp-

Plantenga, Nieuwenhuizen, Tome, Soenen, & Westerterp, 2009).  

Proteins can act as emulsifiers providing a combination of electrostatic and steric 

repulsion between the oil droplets which allows the formation of a kinetically stable emulsion 

(Wilde, Mackie, Husband, Gunning, & Morris, 2004). Casein is a mixture of small aggregates 

in milk at neutral pH which is called casein micelles and they are attached to calcium salts. 

These calcium salts when replaced by sodium salts lead to the production of sodium caseinate. 

Sodium caseinate is a complex mixture of different casein variants (α, β, and κ casein), showing 

an average molecular weight around 24 kDa and isoelectric point around pH 4.5. At neutral pH 

sodium caseinate is negatively charged (Ma et al., 2009). 
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Lactoferrin is a minor milk protein composed by a single polypeptide chain of about 

80 kDa, containing from one to four glycans (Spik et al., 1994). Due to the high levels of basic 

amino acids, it has high isoelectric point (pI > 8). Therefore, this protein is positively charged 

at neutral pH whereas most of other dairy proteins are anionic (Steijns & van Hooijdonk, 2000). 

Besides of their beneficial effects like antioxidant, antimicrobial, antiviral and anticancer 

activity (Actor, Hwang, & Kruzel, 2009; Huang, Satué-Gracia, Frankel, & German, 1999; 

Tomita et al., 2009), lactoferrin is safe for health and shows potential application as a food 

additive for human and animal (Wakabayashi, Yamauchi, & Takase, 2006). Many studies have 

shown that lactoferrin is an excellent emulsifier since it adsorbs to the oil water interface and 

produces a cationic emulsion (Tokle & McClements, 2011; Ye & Singh, 2006). 

Many methods are available to produce emulsions and they are directly related to 

the kinetic stability of these emulsions (Santana, Perrechil, & Cunha, 2013). Ultrasound can be 

used in the production of emulsions and is based on the application of an acoustic field that 

results in cavitation phenomena causing the formation of droplets (Abismail, Canselier, 

Wilhelm, Delmas, & Gourdon, 1999). The use of this technique presents several advantages, 

such as smaller droplets size production and narrower size distribution resulting in more stable 

emulsions; minimal emulsifier content requirements depending on the emulsifier used; easy 

operation, control and cleaning; and low production costs (Abbas, Hayat, Karangwa, Bashari, 

& Zhang, 2013). 

In the current study we investigated the droplets heteroaggregation by mixing two 

emulsions stabilized by proteins oppositely charged varying the emulsion volume ratio and 

ionic strength. Their properties were evaluated in terms of creaming stability, microstructure, 

mean particle size and rheological parameters. Valuable information about heteroaggregates 

formation and characteristics were provided to better understand about the mechanisms 

involved in their formation. 

 

4.2 MATERIALS AND METHODS 

 

4.2.1 Materials 

 

Ultrapure water from a Millipore Milli-Q system (resistivity 18.2 MΩ/cm) was 

used. Sodium caseinate (protein content 87 wt. %) and lactoferrin (protein content 92.1 wt. %) 

were kindly provided by Allibra Ingredientes Ltd (Campinas, Brazil) and Synlait Milk Ltd 
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(Canterbury, New Zeland), respectively. Sunflower oil (Bunge Alimentos S.A., Gaspar, Brazil) 

was purchased in the local market. The other reagents were of analytical grade. 

 

4.2.2 Methods 

 

4.2.2.1 Protein dispersions preparation 

 

Sodium caseinate and lactoferrin were dispersed in ultrapure water (0.30 wt. %) 

using overnight magnetic stirring at room temperature, ensuring complete dissolution of the 

protein. The pH of protein solutions was adjusted to pH 7.0 using sodium hydroxide (1 M) or 

hydrochloric acid (1 M).  

 

4.2.2.2 Oil in water emulsions preparation 

 

Coarse emulsions were prepared by homogenizing 95 ml of protein dispersions 

(0.30 wt. %, pH 7.0) and 5 mL of sunflower oil using a rotor-stator homogenizer (SilentCrusher 

M, Heidolph, Schwabach, Germany) at 5,000 rpm for 3 minutes giving a final protein 

concentration of 0.29 wt. %. This protein concentration was based on the same protein:oil ratio 

used by Dickinson & Golding (1997) which resulted in good stability against creaming at nearly 

saturation coverage of droplets for sodium caseinate. The same approximation was used for 

lactoferrin since a protein:oil ratio closed to 0.05 is considered adequate to stabilize lactoferrin 

emulsions (Acero-Lopez, Schell, Corredig, & Alexander, 2010). Fine emulsions were prepared 

by subjecting the coarse emulsion in an ultrasonic processor (QR 750W, Ultronique, Campinas, 

Brazil) with a 13 mm diameter titanium probe immersed 3 mm depth, which was used in 

combination with a magnetic stirrer to enhance mixture homogenization. Sonication time, 

power and the frequency were fixed at 6 minutes, 300 W and 20 kHz, respectively. The time 

and power used were based on preliminary tests, considering a decrease of droplets without a 

significant heating of emulsions. The temperature of preparation did not exceed 30 °C during 

the homogenization process.  
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4.2.2.3 Heteroaggregate preparation 

 

The heteroaggregates were prepared by mixing different volume ratios of the two 

fine emulsions under magnetic stirring at 250 rpm for 10 min (HEI-TEC, Heidolph, Schwabach, 

Germany). After that, this mixed material was stand for 24 hours prior to analysis. Mixed 

emulsions showed different amounts of sodium caseinate coated droplets (0 – 100 vol. %) and 

lactoferrin coated droplets (0 – 100 vol. %) in order to keep unlike volume ratios of negative-

to-positive droplets. For convenience, we used the notation 30C:70L to refer to heteroaggregate 

containing 30 vol. % of sodium caseinate stabilized emulsion and 70 vol. % of lactoferrin 

stabilized emulsion. A similar notation was used to other formulations. 

The influence of ionic strength was evaluated for three heteroaggregate conditions 

(0C:100L, 40C:60L and 100C:0L). Aliquots of these heteroaggregates (50 mL) were mixed 

with 50 mL of different sodium chloride solutions (NaCl) (0, 50, 100, 200, 400, and 800 mM) 

at pH 7.0. The final mixed emulsions contained 2.5% oil and 0–400 mM NaCl. 

 

4.2.2.4 Emulsion and heteroaggregates characterization 

 

4.2.2.4.1 Interfacial tension 

 

The interfacial tension between the aqueous protein solutions (0.30 wt. %) and 

sunflower oil was measured by the pendant drop method using a TrackerS tensiometer (Teclis, 

Longessaigne, France). Assays were performed at 25 ± 0.1 °C with the formation of a drop of 

the aqueous phase in the oil phase. A syringe with diameter of 3 mm was used and the drop 

volume was 10 μL. 

 

4.2.2.4.2 Particle size  

 

The particle size distribution of emulsions and heteroaggregates was determined 

based on the static light scattering method using a Multi-Angle Static Light-Scattering 

Mastersizer (Mastersizer 2000, Malvern Instruments, Worcestershire, UK). The emulsions and 

the heteroaggregates were analyzed at the first and the seventh day after their preparation. The 

samples were diluted in ultrapure water (pH 7) (refractive index 1.33). The mean diameter was 
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expressed as the volume mean diameter (𝐷4,3) (Eq. 4.1). The polidispersity (𝑆𝑝𝑎𝑛) was also 

evaluated (Eq. 4.2).  

 

𝐷4,3 =
∑ 𝑛𝑖𝐷𝑖

4

∑ 𝑛𝑖𝐷𝑖
3          (4.1) 

 

𝑆𝑝𝑎𝑛 =
(𝐷90−𝐷10)

𝐷50
         (4.2) 

 

where 𝑛𝑖 is the number of droplets with diameter 𝐷𝑖, and 𝐷10, 𝐷50 and 𝐷90 are diameters at 10, 

50 and 90% of cumulative volume, respectively. 

Mean particle size of the heteroaggregates should only be treated as an indicative 

of the dimensions. The theory used to interpret light scattering data assumes that the scattering 

particles are homogeneous spheres with well-defined refractive indices and flocculated systems 

are non-spherical and non-homogeneous particles. Furthermore, the stirring and dilution used 

for this measurement may alter the dimensions and structural organization of the 

heteroaggregates (Mao & McClements, 2012a). 

 

4.2.2.4.3 Microstructure  

 

Microstructure of the emulsions and the heteroaggregates were evaluated after 1 

day of storage. Small quantities of sample were poured onto microscopes slides, covered with 

glass cover slips and observed using a Carl Zeiss Axio Scope A1 microscope (Zeiss, 

Oberkochen, Germany) with x40 and x100 objective lenses. 

Confocal laser scanning microscopy was also used to investigate microstructure of 

the samples. Sunflower oil was stained with Nile Red (0.005 wt. %) and lactoferrin was stained 

with FITC (0.5 wt. %). Each material was stained separately and then emulsions and 

heteroaggregates were prepared as described previously (2.2.2 and 2.2.3). Samples were 

examined using a Leica TCS SP5 II confocal microscope (Leica Microsystems, Wetzlar, 

Germany) with a x100 objective lense. Images were collected using 551 and 498 nm laser lines 

for excitation of Nile Red and FITC fluorophores, respectively. 
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4.2.2.4.4 Creaming stability 

 

Immediately after preparation, 100 mL of each emulsion were poured into a 

cylindrical glass tube (internal diameter = 26 mm, height = 173 mm), sealed with a plastic cap 

and stored at 25 °C for 7 days. Change in height of the top phase 𝐻 (cm) was measured visually 

using a ruler during storage time and the creaming index (CI) determined according to Eq. (4.3) 

(Keowmaneechai & McClements, 2002). 

 

𝐶𝐼 (%) =
𝐻

𝐻0
100         (4.3) 

 

where 𝐻0 represents the initial height (cm) of the emulsion.  

 

4.2.2.4.5 Zeta potential  

 

Zeta potential was determined using a Zetasizer Nano Series (Malvern Instruments, 

Worcestershire, UK) in a fixed pH value (7.0). The heteroaggregates were diluted in MilliQ 

water to a droplet concentration of approximately 0.001 vol. %. Samples were equilibrated for 

about 120 s into the instrument before particle charge data was collected over 10 continuous 

readings. 

 

4.2.2.4.6 Rheology 

 

Rheological measurements of the emulsions and the heteroaggregates were 

performed using a rheometer Physica MCR301 (Anton Paar, Graz, Austria) with a stainless 

steel plate geometry (75 mm) and a 0.05 – 0.1 mm gap. Flow curves were obtained by an up-

down-up steps program with shear rate ranging from 0 to 300 s−1 and the models for Newtonian 

Eq. (4.4) and shear-thinning fluids (power law model) Eq. (4.5) were fitted to the data to obtain 

the consistency index (k) and the behavior index (n). The viscoelastic properties were evaluated 

by oscillatory measurements, using a frequency sweep between 0.1 and 10 Hz within the linear 

viscoelasticity domain. These measurements were done at 25 ± 0.1°C after one day of samples 

storage. The contribution of the elastic and viscous characteristics was evaluated from storage 

(G′) and loss (G″) moduli. Evaluation of viscoelastic properties can help understanding the 
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contribution of viscous and elastic components on emulsions stability since these measurements 

are performed at low deformation (Torres, Iturbe, Snowden, Chowdhry, & Leharne, 2007).  

 

𝜎 = 𝜂. �̇�          (4.4) 

 

𝜎 = 𝑘. �̇�𝑛          (4.5) 

 

where 𝜎 is the shear stress (Pa) , 𝜂 is the viscosity (Pa.s), �̇� is the shear rate (s−1), 𝑘 is the 

consistency index (Pa.sn) and 𝑛 is the flow behavior index (dimensionless). 

 

4.2.3 Statistical analysis 

 

The results were reported as the average and the standard deviation of three 

replicates and evaluated by one way analysis of variance (ANOVA), and significant differences 

(p <0.05) between the treatments were evaluated by the Tukey test. The statistical analyses were 

carried out using the trial version software Minitab 16.1.0 (Minitab Inc., State College, PA, 

USA).  

 

4.3 RESULTS AND DISCUSSION 

 

4.3.1 Interfacial tension 

 

The interfacial tension between aqueous protein solutions and oil phase is shown in 

Fig. 4.1. The initial interfacial tension was around 15 mN/m for water and decreased from 10.3 

to 9.3 mN/m for sodium caseinate and lactoferrin aqueous dispersions, respectively. For all the 

systems, the interfacial tension decreased with time and lactoferrin addition was more efficient 

to reduce the interfacial tension at water–sunflower oil interface suggesting a better surface 

activity compared to sodium caseinate. Lower interfacial tension means greater adsorption of 

surfactant molecules at the interface, decreasing thermodynamically unfavorable contacts 

between immiscible liquids (Furtado, Picone, Cuellar, & Cunha, 2015; Gülseren & Corredig, 

2013; Spinelli, Mansur, González, & Lucas, 2010). Furthermore, sodium caseinate molecules 

show a flexible structure and relatively low molecular weight (≈ 20 kDa), whereas lactoferrin 

is a globular protein with a relatively high molecular weight (≈ 80 kDa). Thus, besides the 



Capítulo 4 96 

 

 

 

amino acidic composition, these differences may account for the different relative affinities for 

the droplet surfaces (Lesmes, Baudot, & McClements, 2010). Despite sodium caseinate was not 

more effective in reducing interfacial tension, due to its low molecular weight, the amino acid 

composition of lactoferrin could have a greater relevance in the interfacial tension reduction 

velocity. 

 

 

Figure 4.1 - Kinetics of interfacial tension between sunflower oil and water (●), sodium 

caseinate (■) or lactoferrin (▲) aqueous dispersions. 

 

4.3.2 Formation of sodium caseinate and lactoferrin emulsions 

 

The influence of protein type on the structure and volume particles size distribution 

of the emulsions can be observed in Figure 4.2. Emulsions stabilized by both proteins were 

kinetically stable during 7 days and the microscopy images showed that fine emulsions were 

obtained for both proteins. Furthermore, ultrasound process allowed to obtain a unimodal 

particle size distribution pattern, in agreement with results presented by some authors (Gaikwad 

& Pandit, 2008; Shanmugam & Ashokkumar, 2014). 
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Figure 4.2 - Optical micrographs and droplets size distribution of the oil in water emulsions 

stabilized by sodium caseinate (a) and lactoferrin (b) after 1 day of storage at 25 ºC. Scale bar: 

10 µm. 

 

Mean droplet size was 1.75±0.01 µm for emulsions stabilized with sodium 

caseinate while for emulsions stabilized with lactoferrin it was slightly lower (D4,3=1.55±0.01 

µm). Low span values (around 1) were obtained and small droplet size values around 1-2 µm 

were also observed in another studies using ultrasound emulsification (Huck-Iriart, Pizones 

Ruiz-Henestrosa, Candal, & Herrera, 2012; Shanmugam & Ashokkumar, 2014). D4,3 and span 

values did not vary statistically during storage, showing the good kinetic stability of the 

emulsions since phase separation was not observed during this period (7 days) (data not shown). 
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Emulsions are unflocculated using protein content around that required for monolayer 

saturation coverage and consequently they are very stable towards creaming and coalescence 

(Huck-Iriart, Álvarez-Cerimedo, Candal, & Herrera, 2011). At pH 7.0, sodium caseinate is 

negatively charged (Ma et al., 2009) and lactoferrin is positively charged (Lönnerdal & Iyer, 

1995), suggesting that electrostatic repulsion contributed to the emulsions stability. Steric 

repulsion may also be involved in the lactoferrin emulsion stabilization because it is a 

glycoprotein that has some sugar groups covalently attached to its peptide backbone (Oliver, 

Melton, & Stanley, 2006). Furthermore, ultrasound treatment can induce protein aggregate 

formation, favoring their deposition onto interface and contributing to both electrostatic and 

steric stabilization (O’Sullivan et al., 2014). 

 

4.3.3 Heteroaggregate formation 

 

Different mixtures of negatively and positively charged droplets were evaluated to 

establish conditions of heteroaggregate formation, which was reached after evaluation of zeta 

potential, particle size, creaming index, microstructure and rheology. 

Zeta potential values of the heteroaggregates are presented in Fig. 4.3, showing that 

heteroaggregates with different surface charge characteristics can be created. Zeta potential 

varied from highly positive to highly negative values, depending on the volume ratio of sodium 

caseinate to lactoferrin stabilized emulsions. Droplets coated only with sodium caseinate 

presented high negative charge (≈ - 39 mV) and droplets coated only with lactoferrin showed 

high positive charge (≈ + 32 mV). These opposite charge values are a consequence of pH 7, 

since the isoelectric point of lactoferrin is around 8.5 and sodium caseinate is close to 4.5 

(Lönnerdal & Iyer, 1995; Ma et al., 2009). Zero surface charge was observed with 40 vol. % of 

sodium caseinate and 60 vol. % of lactoferrin stabilized emulsions, indicating that more 

positively charged protein was necessary to coat droplets and reach neutral charge. Similar 

results were obtained in the production of mixtures of beta lactoglobulin and lactoferrin coated 

droplets (Mao & McClements, 2012a).  
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Figure 4.3 - Zeta potential values of the heteroaggregates produced at pH 7.0 using different 

volume ratio of sodium caseinate and lactoferrin stabilized emulsions after 1 day of storage at 

25 ºC. 

 

Most of heteroaggregates were stable during 7 days including 40C:60L that showed 

zero surface charge. However, 20C:80L showed phase separation (Fig. 4.4) and its cream phase 

was gel-like. The other conditions showed the formation of extensive aggregated droplets (Fig. 

4.5), suggesting that the main driving force is the electrostatic interaction between droplets 

coated with oppositely charged proteins. Furthermore, some partial droplet coalescence was 

observed, mainly at conditions that zeta potential was close to zero, due to the strong attraction 

between the droplets coated with oppositely charged proteins, as also observed for other authors 

(Mao & McClements, 2011, 2012a; Ye, Hemar, & Singh, 2004). 
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Figure 4.4 - Visual aspect of the heteroaggregates produced under different volume ratio of 

sodium caseinate:lactoferrin stabilized emulsions after 1 day of storage at 25 ºC. 
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Figure 4.5 - Optical micrographs of the heteroaggregates produced under different volume 

ratio of sodium caseinate:lactoferrin stabilized emulsions after 1 day of storage at 25 ºC. Scale 

bar: 10 µm. 
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The heteroaggregates presented a unimodal particles size distribution pattern (Fig. 

4.6). A broad peak was observed for heteroaggregates formed with higher content of lactoferrin 

stabilized emulsion (20C:80L and 40C:60L), while the other conditions presented a narrow 

peak, differing slightly from the control emulsions 0C:100L and 100C:0L. Figures 4.5 and 4.6 

suggest that besides the partial droplets coalescence, a marked droplets flocclulation occurred 

in the presence of sodium caseinate and high lactoferrin content while small heteroaggregates 

were formed at low or intermediate lactoferrin content (higher sodium caseinate content). 

Aggregation between sodium caseinate and lactoferrin stabilized droplets can be visualized 

from the confocal micrograph presented in Figure 4.7. Lactoferrin stabilized droplets (oil 

stained with Nile Red) are surrounded by a green color interface (lactoferrin stained with FITC) 

while oil droplets with a non-stained interface should be stabilized by sodium caseinate.  

 

 

Figure 4.6 - Particles size distribution of the heteroaggregates produced under different 

volume ratio of sodium caseinate:lactoferrin stabilized emulsions after 1 day of storage at 25 

ºC. 
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Figure 4.7 - Confocal micrograph of the 40C:60L heteroaggregate after 1 day of storage at 25 

ºC. Scale bar: 25 µm. 

 

The mean particle diameter and span of the heteroaggregates are presented in Table 

4.1. The values increased with the increase in volume ratio of lactoferrin reaching D4,3 = 

69.13±2.15 µm to the 20C:80L heteroaggregates since they formed a gel network (Fig. 4.5). 

After seven days D4,3 values of the 20C:80L and 40C:60L heteroaggregates increased while 

D4,3 values from the other systems remained approximately constant. Although the 40C:60L 

heteroaggregate showed zero charge and both 20C:80L and 40C:60L heteroaggregates 

exhibited size increase (Fig. 4.3), only the 20C:80L heteroaggregate presented creaming index 

around 27% (Table 4.1). 

Low amount of droplets was stabilized by sodium caseinate in the 20C: 80L system 

which allowed a strong aggregation and the higher exposition of lactoferrin stabilized droplets, 

resulting in a net positive zeta potential value (Fig. 4.8). We can assume that such intense 

aggregation led to the formation of larger heteroaggregates influencing negatively the stability 

against gravitational separation. On the other hand, the higher amount of sodium caseinate 

stabilized droplets in the 40C: 60L system allowed the formation of heteroaggregates with a 

more uniform ratio of positive and negatively charged droplets, implying that the balance 

between surface charges remained close to neutrality (Fig. 4.8). Furthermore, the size of the 

heteroaggregates was relatively lower, contributing to the good stability against gravitational 

separation. 
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Table 4.1 - Mean droplets size, polydispersity and creaming index of the heteroaggregates produced under different volume ratio of sodium 

caseinate:lactoferrin stabilized emulsions after 1 day of storage at 25 ºC. 

Heteroaggregate 
D4,3 (μm) Span CI (%) 

Day 1 Day 7 Day 1 Day 7 Day 1 Day 7 

0C:100L 1.56±0.01cA 1.58±0.01cA 1.22±0.05cdA 1.24±0.05cA 0.0±0.0 0.0±0.0 

20C:80L 69.13±2.15aB 87.19±3.86aA 1.8±0.04bA 1.75±0.03bA 30.0±2.0 27.0±2.0 

40C:60L 3.83±0.05bB 7.88±0.34bA 2.57±0.04aA 2.64±0.17aA 0.0±0.0 0.0±0.0 

50C:50L 2.25±0.01bcA 2.19±0.09cA 1.29±0.00dB 1.54±0.04bA 0.0±0.0 0.0±0.0 

60C:40L 2.37±0.01bcA 2.39±0.01cA 1.25±0.01cdA 0.99±0.00dB 0.0±0.0 0.0±0.0 

80C:20L 1.91±0.00cA 1.92±0.01cA 1.31±0.06dA 1.19±0.06cdB 0.0±0.0 0.0±0.0 

100C:0L 1.76±0.00cB 1.80±0.00cA 1.15±0.04cA 1.17±0.04cdA 0.0±0.0 0.0±0.0 

Identical capital letters in the same raw between Day 1 and Day 7 results indicate that there are no significant differences (p < 0.05) 

Identical small letters in the same column indicate that there are no significant differences (p < 0.05) 
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Figure 4.8 - Illustration of a model demonstrating the proposed behavior of the 

heteroaggregates. 

 

Emulsions containing heteroaggregates showed Newtonian behavior, except for 

20C:80L heteroaggregate that showed shear-thinning behavior (Table 4.2). The behavior index 

(n) obtained from power law equation indicates the degree of deviation from the Newtonian 

linear rheological behavior. Newtonian fluids show n equals to the unit whilst shear-thinning 

samples present n < 1. The shear-thinning behavior is typically observed in concentrated 

suspensions of solid particles or liquid droplets in emulsions interacting with each other 

(McClements, 2004). Values of viscosity (η) (Table 4.2) showed a statistical significant 

increase for heteroaggregates with higher lactoferrin content (20C:80L and 40C:60L), 

confirming the increase of emulsion structuration due to a probable higher interaction between 

the droplets. Therefore, the most of the heteroaggregates were dispersed in a stable emulsion 

showing a unimodal particle size distribution and a Newtonian rheological behavior, which was 

also observed by Eliot and Dickinson (2003). 
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Table 4.2 - Rheological parameters of the heteroaggregates produced under different volume 

ratio of sodium caseinate and lactoferrin stabilized emulsions after 1 day of storage at 25 ºC. 

Heteroaggregates 𝜂 or ∗ 𝜂100 (mPa.s) 𝑘 (mPa.sn) 𝑛 R2 

0C:100L 0.97±0.03cd - - 0.9992 

20C:80L *784.58±0.00a 142.77±0.00 0.63±0.00 0.9999 

40C:60L 1.46±0.01b - - 0.9996 

50C:50L 1.06±0.05c - - 0.9999 

60C:40L 1.02±0.00cd - - 0.9999 

80C:20L 0.98±0.00cd - - 0.9999 

100C:0L 0.91±0.00d - - 0.9995 

Identical small letters in the same column indicate that there are no significant differences (p 

< 0.05) 

∗ 𝜂100 is the apparent viscosity at 100 s-1. 

 

Preliminary measurements were done to identify the linear viscoelastic region by 

measuring the shear moduli at different strain values at a fixed frequency (1 Hz). The shear 

modulus remained constant until 5% strain, decreasing appreciably at higher strain values. 

Thus, a constant strain of 1% was used for the subsequent measurements. Storage modulus (Gʹ 

) and loss modulus (G″) can indicate whether the emulsion system is strongly or weakly 

associated (Torres et al., 2007). Mechanical spectra of the heteroaggregates (Fig. 4.9) indicates 

that all systems presented gel-like behavior (Gʹ higher than G″ throughout the frequency) and 

the higher content of lactoferrin led to higher moduli values or stronger gel structure. The same 

behavior was observed in the heteroaggregates formation with beta lactoglobulin and lactoferrin 

coated droplets (Mao & McClements, 2012e). Elastic modulus (Gʹ) of the heteroaggregates 

showed a frequency-dependence, which is associated to a weaker gel or a less stable emulsion. 

Such increase of the elastic moduli could be associated to the formation of an aggregated droplet 

network with a weak elastic network structure. However, the elastic modulus (Gʹ) was close 

and typical of strong gels for the 20C:80L heteroaggregate (Torres et al., 2007). Furthermore, 

due to the phase separation a more packed phase was obtained increasing particle-particle 

interactions, which led to an increase of the gel strength (Quemada & Berli, 2002).  

Thus, this increase in viscosity and elastic moduli at higher content of lactoferrin 

stabilized emulsion allowed to produce heteroaggregated systems with much more structured 

rheological behavior using the same oil volume fraction than that used in a single emulsion. 
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Figure 4.9 - Storage (G’) and loss moduli (G’’) of the heteroaggregates produced under 

different volume ratio of sodium caseinate:lactoferrin stabilized emulsions ( ) 0C:100L, ( ) 

20C:80L, ( ) 40C:60L, ( ) 50C:50L, ( ) 60C:40L, ( ) 80C:20L, ( ) 100C:0L after 1 day of 

storage at 25 ºC. 

 

4.3.4 Influence of ionic strength on heteroaggregates formation 

 

We investigated the influence of ionic strength on heteroaggregates formation, 

since salt addition is common in a great variety of commercial products besides of changing the 

magnitude and range of electrostatic interactions between droplets (Mao & McClements, 

2012a; McClements, 2004; Srinivasan, Singh, & Munro, 2000). Three systems were 

investigated: controls (0C:100L and 100C:0L) and 40C:60L. The later system was chosen 

because it did not present phase separation (keeping its liquid form), but showed improved 

rheological properties. We observed that 40C:60L and 100C:0L systems were stable against 

creaming independent of NaCl concentration, but 0C:100L system showed phase separation 

after 24 hours (Fig. 4.10). A pronounced creaming occurred for all NaCl concentration, but 

phase separation was more evident at intermediate concentrations (100 to 200 mM NaCl).  
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Figure 4.10 - Visual aspect of the heteroaggregates under different concentration of NaCl 

after 1 day of storage at 25 ºC. 

 

The influence of NaCl concentration on particles size distribution and mean droplet 

size depended on the volume ratio of the heteroaggregates and proteins composition (Fig. 4.11). 

The 100C:0L control presented almost no difference on particle size distribution with NaCl 

addition, but a broad peak was observed at higher ionic strength (400 to 800 mM NaCl) and 



Capítulo 4 109 

 

 

 

mean size values (D4,3) were slightly higher (span values increased from 1.10 to 1.48 for the 

highest salt content). The 0C:100L control tended to exhibit a higher mode and mean size value 

with salt addition, probably due to intense droplets aggregation. Interestingly, the system 

40C:60L was stable to salt addition but exhibited an increase in mean particle diameter. These 

results suggest that some partial destabilization and coalescence of lactoferrin stabilized 

droplets occurred due to its susceptibility to NaCl addition as observed in the control 0C:100L. 

 

 

Figure 4.11 - Particles size distribution and mean size of the heteroaggregates 100C:0L (a), 

40C:60L (b) and 0C:100L (c) under different concentration of sodium chloride after 1 day of 

storage at 25 ºC. 
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Zeta potential of the 0C:100L system decreased as the NaCl concentration increased 

(Fig. 4.12), which could be attributed to the high amount of 𝐶𝑙− ions closed to the droplet 

surfaces promoting a change of electrostatic interactions and also a salting out effect. As ionic 

strength is increased, the electrostatic repulsion between droplets decreases because counter-

ions in the aqueous phase shield the charges on droplet surfaces (Demetriades, Coupland, & 

McClements, 1997; Mao & McClements, 2012a; Srinivasan et al., 2000) increasing the protein 

solubility which is attributed to a salting-in effect. But when the ion concentration increases 

reaching a critical level, the protein-protein interactions prevail, which is named salting-out 

effect. However, for 100C:0L system the magnitude of zeta potential values only slightly 

increased with NaCl addition and remained constant with salt concentration higher than 200 

mM. Since the zeta potential of the 40C:60L system remained close to zero across the entire 

range of NaCl concentration used. 

 

 

Figure 4.12 - Zeta potential values of the heteroaggregates ( ) 100C:0L, ( ) 40C:60L and ( ) 

0C:100L under different concentration of sodium chloride after 1 day of storage at 25ºC. 

 

Mao and McClements (2012a) suggest that cationic patches of the lactoferrin 

stabilized droplets could be highly bounded to anionic counter-ions (e.g., 𝐶𝑙−). Thus, these 

emulsions could be highly unstable to gravitational separation even at low salt concentrations. 

Susceptibility of lactoferrin to salt addition was also observed for other authors and could be 

attributed to the ions ability to screen the electrostatic repulsion between droplets leading to the 

salting-out effect, which causes collapse of the protein structures around the droplets. As a 
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consequence, stabilizing effects of steric repulsion between the droplets decrease (Acero-Lopez 

et al., 2010; Lesmes et al., 2010). Furthermore, salt interaction with aqueous medium could 

inhibit the steric stabilization action of lactoferrin sugar groups. On the other hand, addition of 

NaCl to sodium caseinate stabilized emulsions seems to enhance creaming stability. Other 

authors also reported improved emulsifying properties of casein with the addition of salt 

(Mohanty, Mulvihill, & Fox, 1988; Pearce & Kinsella, 1978). According to Srinivasan et al. 

(2000), addition of NaCl to sodium caseinate solution may cause αs-casein to form dimers, 

tetramers, hexamers etc., which may subsequently become adsorbed, resulting in a high 

concentration of this casein fraction at the interface. Moreover αs-casein can act as a molecular 

chaperone avoiding protein aggregation which could kept a intact structure independent of salt 

addition (Morgan, Treweek, Lindner, Price, & Carver, 2005). 

 

4.4 CONCLUSIONS 

 

The formation of heteroaggregates by mixing two emulsions stabilized by proteins 

with opposite charges, varying the emulsion volume ratio and ionic strength allowed to produce 

systems with distinct properties. Biggest heteroaggregates with good stability were formed with 

60 vol. % and 40 vol. % of lactoferrin and sodium caseinate emulsions, respectively. Mixed 

emulsions with higher concentration of lactoferrin produced strong aggregation that resulted in 

phase separation and gel formation besides increasing viscosity and elastic moduli, thus 

producing heteroaggregated systems with much more structured rheological behavior using the 

same oil volume fraction than that used in a single emulsion. The lactoferrin stabilized emulsion 

was susceptible to NaCl addition showing phase separation and changes in zeta potential and 

size values, while sodium caseinate stabilized emulsion and the heteroaggregate (40C:60L) 

were stable to salt addition. The 40C:60L heteroaggregate showed an adequate combination of 

sodium caseinate and lactoferrin coated droplets improving rheological properties, but the 

presence of sodium caseinate provided the stabilization to salt addition while lactoferrin was 

necessary to provide the steric stabilization. Thus, valuable information about heteroaggregate 

formation and characteristics were provided showing that the choice of protein concentration 

and properties are fundamental to obtain heteroaggregates to be used as functional agents for 

texture/viscosity modification and controlled release. 

 

 



Capítulo 4 112 

 

 

 

4.5 ACKNOWLEDGEMENTS 

 

Authors would like to thank National Council for Scientific and Technological 

Development (CNPq) for the PhD fellowship (140271/2014-7) and for the research grant 

(305477/2012-9 and 479459/2012-6). We also acknowledge Allibra Ingredientes Ltd and 

Synlait Milk Ltd for the protein samples donation. 

 

4.6 REFERENCES 

 

Abbas, S., Hayat, K., Karangwa, E., Bashari, M., & Zhang, X. (2013). An Overview of 

Ultrasound-Assisted Food-Grade Nanoemulsions. Food Engineering Reviews, 5(3), 

139-157.  

Abismail, B., Canselier, J. P., Wilhelm, A. M., Delmas, H., & Gourdon, C. (1999). 

Emulsification by ultrasound: drop size distribution and stability. Ultrasonics 

Sonochemistry, 6(1-2), 75-83.  

Acero-Lopez, A., Schell, P., Corredig, M., & Alexander, M. (2010). Characterization of 

lactoferrin oil-in-water emulsions and their stability in recombined milk. Journal of 

Dairy Research, 77(4), 445-451.  

Actor, J. K., Hwang, S. A., & Kruzel, M. L. (2009). Lactoferrin as a Natural Immune 

Modulator. Current Pharmaceutical Design, 15(17), 1956-1973.  

Demetriades, K., Coupland, J. N., & McClements, D. J. (1997). Physical Properties of Whey 

Protein Stabilized Emulsions as Related to pH and NaCl. Journal of Food Science, 

62(2), 342-347. 

Dickinson, E., & Golding, M. (1997). Depletion flocculation of emulsions containing 

unadsorbed sodium caseinate. Food Hydrocolloids, 11(1), 13-18.  

Eliot, C., & Dickinson, E. (2003). Thermoreversible gelation of caseinate-stabilized emulsions 

at around body temperature. International Dairy Journal, 13(8), 679-684.  

Furtado, G. F., Picone, C. S. F., Cuellar, M. C., & Cunha, R. L. (2015). Breaking oil-in-water 

emulsions stabilized by yeast. Colloids and Surfaces B: Biointerfaces, 128, 568-576.  

Gaikwad, S. G., & Pandit, A. B. (2008). Ultrasound emulsification: Effect of ultrasonic and 

physicochemical properties on dispersed phase volume and droplet size. Ultrasonics 

Sonochemistry, 15(4), 554-563.  



Capítulo 4 113 

 

 

 

Gülseren, İ., & Corredig, M. (2013). Interactions of chitin nanocrystals with β-lactoglobulin at 

the oil–water interface, studied by drop shape tensiometry. Colloids and Surfaces B: 

Biointerfaces, 111, 672-679.  

Huang, S.-W., Satué-Gracia, M. T., Frankel, E. N., & German, J. B. (1999). Effect of 

Lactoferrin on Oxidative Stability of Corn Oil Emulsions and Liposomes. Journal of 

Agricultural and Food Chemistry, 47(4), 1356-1361.  

Huck-Iriart, C., Álvarez-Cerimedo, M. S., Candal, R. J., & Herrera, M. L. (2011). Structures 

and stability of lipid emulsions formulated with sodium caseinate. Current Opinion in 

Colloid & Interface Science, 16(5), 412-420.  

Huck-Iriart, C., Pizones Ruiz-Henestrosa, V. M., Candal, R. J., & Herrera, M. L. (2012). Effect 

of Aqueous Phase Composition on Stability of Sodium Caseinate/Sunflower oil 

Emulsions. Food and Bioprocess Technology, 6(9), 2406-2418.  

Keowmaneechai, E., & McClements, D. J. (2002). Influence of EDTA and Citrate on 

Physicochemical Properties of Whey Protein-Stabilized Oil-in-Water Emulsions 

Containing CaCl2. Journal of Agricultural and Food Chemistry, 50(24), 7145-7153.  

Lesmes, U., Baudot, P., & McClements, D. J. (2010). Impact of Interfacial Composition on 

Physical Stability and In Vitro Lipase Digestibility of Triacylglycerol Oil Droplets 

Coated with Lactoferrin and/or Caseinate. Journal of Agricultural and Food Chemistry, 

58(13), 7962-7969.  

Lönnerdal, B., & Iyer, S. (1995). Lactoferrin: Molecular Structure and Biological Function. 

Annual Review of Nutrition, 15(1), 93-110.  

Ma, H., Forssell, P., Partanen, R., Seppänen, R., Buchert, J., & Boer, H. (2009). Sodium 

Caseinates with an Altered Isoelectric Point As Emulsifiers in Oil/Water Systems. 

Journal of Agricultural and Food Chemistry, 57(9), 3800-3807.  

Mao, Y., & McClements, D. J. (2011). Modulation of bulk physicochemical properties of 

emulsions by hetero-aggregation of oppositely charged protein-coated lipid droplets. 

Food Hydrocolloids, 25(5), 1201-1209.  

Mao, Y., & McClements, D. J. (2012a). Fabrication of functional micro-clusters by 

heteroaggregation of oppositely charged protein-coated lipid droplets. Food 

Hydrocolloids, 27(1), 80-90.  

Mao, Y., & McClements, D. J. (2012b). Fabrication of viscous and paste-like materials by 

controlled heteroaggregation of oppositely charged lipid droplets. Food Chemistry, 

134(2), 872-879.  



Capítulo 4 114 

 

 

 

Mao, Y., & McClements, D. J. (2012c). Influence of electrostatic heteroaggregation of lipid 

droplets on their stability and digestibility under simulated gastrointestinal conditions. 

Food & Function, 3(10), 1025-1034.  

Mao, Y., & McClements, D. J. (2012d). Modulation of emulsion rheology through electrostatic 

heteroaggregation of oppositely charged lipid droplets: Influence of particle size and 

emulsifier content. Journal of Colloid and Interface Science, 380(1), 60-66.  

Mao, Y., & McClements, J. D. (2012e). Fabrication of Reduced Fat Products by Controlled 

Heteroaggregation of Oppositely Charged Lipid Droplets. Journal of Food Science, 

77(5), 144-152.  

McClements, D. J. (2004). Food Emulsions: Principles, Practices, and Techniques, Second 

Edition: CRC Press. 

McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2009). Sructural design principles for 

delivery of bioactive components in nutraceuticals and functional foods. Critical 

Reviews in Food Science and Nutrition, 49(6), 577-606. 

McClements, D. J., & Demetriades, K. (1998). An Integrated Approach to the Development of 

Reduced-Fat Food Emulsions. Critical Reviews in Food Science and Nutrition, 38(6), 

511-536.  

Mohanty, B., Mulvihill, D. M., & Fox, P. F. (1988). Emulsifying and foaming properties of 

acidic caseins and sodium caseinate. Food Chemistry, 28(1), 17-30.  

Morgan, P. E., Treweek, T. M., Lindner, R. A., Price, W. E., & Carver, J. A. (2005). Casein 

Proteins as Molecular Chaperones. Journal of Agricultural and Food Chemistry, 53(7), 

2670-2683.  

Nehir El, S., & Simsek, S. (2012). Food technological applications for optimal nutrition: An 

overview of opportunities for the food industry. Comprehensive Reviews in Food 

Science and Food Safety, 11(1), 2-12. 

O'Sullivan, J., Arellano, M., Pichot, R., & Norton, I. (2014). The effect of ultrasound treatment 

on the structural, physical and emulsifying properties of dairy proteins. Food 

Hydrocolloids, 42, Part 3, 386-396.Oliver, C. M., Melton, L. D., & Stanley, R. A. 

(2006). Creating Proteins with Novel Functionality via the Maillard Reaction: A 

Review. Critical Reviews in Food Science and Nutrition, 46(4), 337-350.  

Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: evaluation of a 

turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716-723.  



Capítulo 4 115 

 

 

 

Quemada, D., & Berli, C. (2002). Energy of interaction in colloids and its implications in 

rheological modeling. Advances in Colloid and Interface Science, 98(1), 51-85.  

Santana, R. C., Perrechil, F. A., & Cunha, R. L. (2013). High- and Low-Energy Emulsifications 

for Food Applications: A Focus on Process Parameters. Food Engineering Reviews, 

5(2), 107-122. 

Shanmugam, A., & Ashokkumar, M. (2014). Ultrasonic preparation of stable flax seed oil 

emulsions in dairy systems – Physicochemical characterization. Food Hydrocolloids, 

39, 151-162.  

Spik, G., Coddeville, B., Mazurier, J., Bourne, Y., Cambillaut, C., & Montreuil, J. (1994). 

Primary and Three-Dimensional Structure of Lactotransferrin (Lactoferrin) Glycans. In 

T. W. Hutchens, S. V. Rumball & B. Lönnerdal (Eds.), Lactoferrin: Structure and 

Function (pp. 21-32). Boston, MA: Springer US. 

Spinelli, L. S., Mansur, C. R. E., González, G., & Lucas, E. F. (2010). Evaluation of process 

conditions and characterization of particle size and stability of oil-in-water 

nanoemulsions. Colloid Journal, 72(1), 56-65.  

Srinivasan, M., Singh, H., & Munro, P. A. (2000). The effect of sodium chloride on the 

formation and stability of sodium caseinate emulsions. Food Hydrocolloids, 14(5), 497-

507.  

Steijns, J. M., & van Hooijdonk, A. C. M. (2000). Occurrence, structure, biochemical properties 

and technological characteristics of lactoferrin. British Journal of Nutrition, 84, 11-17.  

Tokle, T., & McClements, D. J. (2011). Physicochemical properties of lactoferrin stabilized oil-

in-water emulsions: Effects of pH, salt and heating. Food Hydrocolloids, 25(5), 976-

982.  

Tomita, M., Wakabayashi, H., Shin, K., Yamauchi, K., Yaeshima, T., & Iwatsuki, K. (2009). 

Twenty-five years of research on bovine lactoferrin applications. Biochimie, 91(1), 52-

57.  

Torres, L. G., Iturbe, R., Snowden, M. J., Chowdhry, B. Z., & Leharne, S. A. (2007). 

Preparation of o/w emulsions stabilized by solid particles and their characterization by 

oscillatory rheology. Colloids and Surfaces A: Physicochemical and Engineering 

Aspects, 302(1–3), 439-448.  

Wakabayashi, H., Yamauchi, K., & Takase, M. (2006). Lactoferrin research, technology and 

applications. International Dairy Journal, 16(11), 1241-1251.  



Capítulo 4 116 

 

 

 

Westerterp-Plantenga, M. S., Nieuwenhuizen, A., Tome, D., Soenen, S., & Westerterp, K. R. 

(2009). Dietary Protein, Weight Loss, and Weight Maintenance Annual Review of 

Nutrition (Vol. 29, p. 21-41). 

Wilde, P., Mackie, A., Husband, F., Gunning, P., & Morris, V. (2004). Proteins and emulsifiers 

at liquid interfaces. Advances in Colloid and Interface Science, 108–109, 63-71.  

Williams, C., & Buttriss, J. (2006). Improving the Fat Content of Foods: Elsevier Science. 

Ye, A., Hemar, Y., & Singh, H. (2004). Influence of Polysaccharides on the Rate of 

Coalescence in Oil-in-Water Emulsions Formed with Highly Hydrolyzed Whey 

Proteins. Journal of Agricultural and Food Chemistry, 52(17), 5491-5498.  

Ye, A., & Singh, H. (2006). Adsorption behaviour of lactoferrin in oil-in-water emulsions as 

influenced by interactions with β-lactoglobulin. Journal of Colloid and Interface 

Science, 295(1), 249-254.  

 

 

 



 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAPÍTULO 5 - DIGESTIBILIDADE DOS HETEROAGREGADOS 

 

 

 

 

 

 



Capítulo 5 118 

 

 

 

 

 

IN VITRO DIGESTIBILITY OF HETEROAGGREGATED DROPLETS COATED 

WITH SODIUM CASEINATE AND LACTOFERRIN 

 

 

 

 

 

 

 

 

 

 

Os resultados desse capítulo foram publicados no periódico 

“Journal of Food Engineering” 

Vol. XX, p. 1-7, 2017 (in press) 

DOI: 10.1016/j.jfoodeng.2017.07.025 

 

 

 

 

 



Capítulo 5 119 

 

 

 

IN VITRO DIGESTIBILITY OF HETEROAGGREGATED DROPLETS COATED 

WITH SODIUM CASEINATE AND LACTOFERRIN 

 

Guilherme de Figueiredo Furtado1; Karen Cristina Guedes Silva1; Cristiane Conte 

Paim de Andrade1; Rosiane Lopes Cunha1* 

 

1Department of Food Engineering, School of Food Engineering, University of Campinas, 

13083-862, Campinas, SP, Brazil. 

Corresponding Author. Tel.: +55 19 35214047 E-mail address: rosiane@unicamp.br 

 

Highlights 

 

In vitro digestibility of heteroaggregated lipid droplets was evaluated. 

After digestion proteins were hydrolyzed forming small peptides. 

Heteroaggregated droplets presented the lowest extent of lipid digestion. 
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ABSTRACT 

 

Aggregation of droplets coated with oppositely charged proteins could be affected 

during emulsion digestion. Thus, emulsions stabilized by sodium caseinate, lactoferrin or 

heteroaggregated droplets formed from the mixture of both emulsions were evaluated by in 

vitro digestibility. Emulsions properties were analyzed in terms of stability, microstructure, 

particle size, surface charge and free fatty acids. Changes in physical properties at the different 

digestion steps depended on the emulsifier properties and were probably attributed to physico-

chemical environment conditions and protein hydrolysis. The heteroaggregates undid in simple 

emulsions at the gastric phase due to the electrostatic repulsion between the proteins at low pH. 

Free fatty acids release depended on emulsifier properties, in addition to the presence of bile 

salts. Heteroaggregates presented the lowest extent of lipid digestion followed by droplets 

coated with lactoferrin. These results may be useful for the design of food matrices with a 

decreased digestibility. 

 

Keywords: emulsions, heteroaggregation, lipid digestion. 
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5.1 INTRODUCTION 

 

Emulsions with different structures, physicochemical properties, and functional 

attributes can be prepared by controlling the characteristics of the colloidal particles (such as 

size, surface charge, concentration), environmental conditions (such as pH, ionic strength, 

temperature) and the method of preparation (such as the order of ingredients addition and 

mixing conditions) (Mao and McClements, 2011). Recent studies have reported that controlled 

heteroaggregation of lipid droplets can be also used to manipulate the characteristics of 

emulsion-based products (Furtado et al., 2016; Mao and McClements, 2011, 2012b, c, d). 

Heteroaggregated emulsions are formed by mixing two simple emulsions with lipid droplets 

coated by electrically charged emulsifier molecules, as proteins (Mao and McClements, 2011, 

2012c). This technique allows the creation of products with reduced fat content but substantial 

amounts of protein, inducing a feeling of satiety (Westerterp-Plantenga et al., 2009). 

Generally, researches are focused on the influence of emulsifiers on the stability of 

emulsions prior to consumption, but more recently there has been increasing interest in the fate 

of emulsions after ingestion (Hur et al., 2009; Malaki Nik et al., 2011; McClements and Li, 

2010a, b; Mun et al., 2007; Zhang et al., 2015a). Understanding the role of emulsion 

composition and structure on the gastrointestinal fate is a big challenge, but this knowledge is 

useful for the design of foods and beverages with improved nutritional quality (Zhang et al., 

2015a). In addition, the interfacial composition of the droplets can become quite complex, 

depending on the concentration and surface activities of the gastric and intestinal components 

during digestion. Therefore, model systems are used to understand such complex conditions 

because the digestion behavior and the effect of interactions between individual physiological 

components of an emulsion can be investigated separately (Li et al., 2012). Consequently, 

emulsions can be designed to increase the bioavailability of encapsulated substances, to control 

satiety, or to deliver components to specific regions of the gastrointestinal tract (Marze, 2015; 

McClements et al., 2008).  

Previous researches evaluated the stability and digestion of sodium caseinate 

stabilized emulsions (Li et al., 2012; Mun et al., 2007; Zhang et al., 2015a), lactoferrin stabilized 

emulsions (Lesmes et al., 2010; Sarkar et al., 2009a; Zhang et al., 2015a) and heteroaggregates 

(Mao and McClements, 2012c; Simo et al., 2012). However, to our knowledge there are no 

previous studies about the behavior of heteroaggregated droplets coated with sodium caseinate 
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(a cheaper protein with random coil structure) and lactoferrin (a globular protein) under gastric 

and intestinal conditions using a simulated gastrointestinal tract system. 

 

5.2 MATERIALS AND METHODS 

 

5.2.1 Materials 

 

Ultrapure water from a Millipore Milli-Q system (resistivity 18.2 MΩ/cm) was 

used. Sodium caseinate (protein content 87 wt. %) and lactoferrin (protein content 92 wt. %) 

were kindly provided by Allibra Ingredientes Ltd (Campinas, Brazil) and Synlait Milk Ltd 

(Canterbury, New Zeland), respectively. Sunflower oil (Bunge Alimentos S.A., Gaspar, Brazil) 

was purchased in the local market. Bile extract porcine (B8631), pancreatin from porcine 

(P7545) and pepsin from porcine gastric mucosa (P6887) were purchased from Sigma-Aldrich 

(St. Louis, USA). The other reagents used in this study were of analytical grade. 

 

5.2.2 Methods 

 

5.2.2.1 Protein dispersions preparation 

 

Sodium caseinate and lactoferrin were dispersed separately in ultrapure water (0.30 

wt. %) using magnetic stirring at room temperature overnight, ensuring complete dissolution of 

the protein. The pH of protein dispersions was adjusted to pH 7.0 using 1 M NaOH or 1 M HCl. 

 

5.2.2.2 Oil in water emulsions preparation 

 

Coarse emulsions were prepared by homogenizing 95 mL of protein dispersions 

(0.30 wt. %, pH 7.0) and 5 mL of sunflower oil using a rotor-stator homogenizer (SilentCrusher 

M, Heidolph, Schwabach, Germany) at 5,000 rpm for 3 minutes, giving a final protein 

concentration of 0.29 wt. %. Fine emulsions were prepared by subjecting the coarse emulsions 

in an ultrasonic processor (QR 750W, Ultronique, Campinas, Brazil) with a 13 mm diameter 

titanium probe immersed to 3 mm depth, which was used in combination with a magnetic stirrer 

to enhance mixture homogenization. Sonication time, power and frequency were fixed at 6 

minutes, 300 W and 20 kHz, respectively, since these conditions resulted in emulsions with 
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good stability against creaming (Furtado et al., 2016). The temperature of preparation did not 

exceed 30 °C during the homogenization process. 

 

5.2.2.3 Heteroaggregates preparation 

 

The heteroaggregates were prepared by mixing 40 vol. % of sodium caseinate 

stabilized emulsion and 60 vol. % of lactoferrin stabilized emulsion under magnetic stirring at 

250 rpm for 10 min (HEI-TEC, Heidolph, Schwabach, Germany). Emulsions volume fraction 

(%) was based on previous results (Furtado et al., 2016), since the heteroaggregates obtained 

using this condition showed a relatively big size (≈ 4 µm), compared to single emulsions (≈ 1.6 

µm), but without presenting phase separation. For convenience, we used the notation 40C:60L 

to refer to heteroaggregates containing 40 vol. % of sodium caseinate stabilized emulsion and 

60 vol. % of lactoferrin stabilized emulsion. A similar notation was used in other formulations 

(0C:100L or 100C:0L). Simple emulsions stabilized by sodium caseinate or lactoferrin stirred 

at 250 rpm for 10 min were used as control samples. Heteroaggregates and simple emulsions 

were evaluated after one day of storage. 

 

5.2.2.4 In vitro digestion of emulsions and fatty acid release 

 

Emulsions/heteroaggregates were digested by subjecting them to sequential 

incubation in simulated gastric fluid (SGF) and then simulated intestinal fluid (SIF) using the 

slight modified in vitro digestion protocol of Minekus et al. (2014), where according to the 

authors the mouth step can be eliminated for liquid samples. The samples were placed in a 

stirred (100 rpm) double jacketed reaction vessel maintained at 37±1°C (Mun et al., 2016). 60 

mL of each sample was incubated for 2 hours with 60 mL of simulated gastric fluid (SGF) at 

pH 3 (SGF contained 6.9 mmol L-1 of KCl, 0.9 mmol L-1 KH2PO4, 25.0 mmol L-1 NaHCO3, 

47.2 mmol L-1 NaCl, 0.1 mmol L-1 MgCl2(H2O)6, 0.5 mmol L-1 (NH4)2CO3, 0.15 mmol L-1 

CaCl2(H2O)2 and 9.6 mL of fresh pepsin dispersion (25,000 U mL-1). After 2 hours of 

incubation in SGF, 20 mL of sample was collected for immediate characterization (section 

5.2.2.5). Then sample+SGF was mixed (1:1) with SIF. The temperature was adjusted to 37±1°C 

and pH was adjusted to 7 with 1M NaOH. The SIF contained 6.8 mmol L-1 KCl, 0.8 mmol L-1 

KH2PO4, 85.0 mmol L-1 NaHCO3, 38.42 mmol L-1 NaCl, 0.33 mmol L-1 MgCl2(H2O)6, 0.6 
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mmol L-1 CaCl2(H2O)2, 70.72 g L-1 of bile salts and 25 mL of fresh pancreatin dispersion (800 

U mL-1 based on trypsin activity).  

During intestinal digestion, the pH was maintained at 7.0 by the addition of 1 M 

NaOH, through a burette, under continuous magnetic stirring (100 rpm) using a pH meter 

(Metrohm 827, Metrohm, Herisau, Switzerland). The measurements were taken every 15 

minutes. The volume of NaOH added to the samples was used to calculate the concentration of 

free fatty acids (FFA) released in the reaction vessel. FFAs released were calculated using Eq. 

1, taking into account the number of moles of NaOH required to neutralize the FFA that could 

be produced from the triacylglycerols if they were completely digested (assuming the 

generation of 2 FFAs per triacylglycerol molecule by the action of lipase) (Li and McClements, 

2010). 

 

% 𝐹𝐹𝐴 = 100𝑥
𝑉𝑁𝑎𝑂𝐻𝑥𝑀𝑁𝑎𝑂𝐻𝑥𝑀𝑊𝑙𝑖𝑝𝑖𝑑

2𝑥𝑊𝑙𝑖𝑝𝑖𝑑
      (5.1) 

 

where 𝑉𝑁𝑎𝑂𝐻 is the volume of NaOH, 𝑀𝑁𝑎𝑂𝐻 is the molarity of NaOH, 𝑀𝑊𝑙𝑖𝑝𝑖𝑑 is the average 

molecular weight of sunflower oil and 𝑊𝑙𝑖𝑝𝑖𝑑 is the weight of lipid initially present in the 

reaction vessel. 

 

5.2.2.5 Emulsions/heteroaggregates characterization 

 

5.2.2.5.1 Particle size  

 

Particle size distribution of the emulsions/heteroaggregates was determined based 

on the static light scattering method using a Multi-Angle Static Light-Scattering Mastersizer 

(Mastersizer 2000, Malvern Instruments, Worcestershire, UK). The mean diameter was 

expressed as the volume mean diameter (𝐷4,3) (Eq. 2).  

 

𝐷4,3 =
∑ 𝑛𝑖𝐷𝑖

4

∑ 𝑛𝑖𝐷𝑖
3          (5.2) 

 

where 𝑛𝑖 is the number of droplets with diameter 𝐷𝑖.  
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Mean particle size of the heteroaggregates should only be treated as an indicator of 

their dimensions. The theory used to interpret light scattering data assumes that the scattering 

particles are homogeneous spheres with well-defined refractive indices, although flocculated 

systems are non-spherical and non-homogeneous particles. Furthermore, stirring and dilution 

used for this measurement may alter the dimensions and structural organization of the 

heteroaggregates (Mao and McClements, 2012a). 

 

5.2.2.5.2 Microstructure  

 

Emulsions/heteroaggregates were poured onto microscope slides, covered with 

glass cover slips and observed using a Carl Zeiss Axio Scope A1 microscope (Zeiss, 

Oberkochen, Germany) with x100 objective lenses. At least six pictures of each slide were 

taken, with three slides per sample. The AxioVision Rel. 4.8 (Zeiss, Oberkochen, Germany) 

imaging software was used. 

 

5.2.2.5.3 Zeta potential  

 

Zeta potential of the emulsions/heteroaggregates was determined using a Zetasizer 

Nano Series (Malvern Instruments, Worcestershire, UK). Samples were diluted in MilliQ water 

(0.001 vol. %) and then equilibrated for 120 s into the instrument before particle charge data 

was collected over 10 continuous readings. In addition, the zeta potential of the aqueous protein 

dispersions under different pH values was also determined. 

 

5.2.2.5.4 Polyacrylamide gel electrophoresis  

 

Molecular weight distribution of the proteins used to stabilize 

emulsions/heteroaggregates was evaluated by Tricine-SDS–PAGE under reducing conditions, 

according to Schägger and von Jagow (1987). The 1.5 mm thickness gels consisted of a 

resolving gel (16.5 %T, 3 %C), spacing gel (10 %T, 3 %C) and stacking gel (4 %T, 3 %C). 

Emulsions/heteroaggregates were diluted in deionized water to 0.75 mg protein/mL, mixed with 

sample buffer (62.5 mM Tris–HCl pH 6.8, 20% glycerol, 2% SDS, 0.1% Coomassie Blue G250 

and 5% β-mercaptoethanol, pH 6.8) (1:1) and heated at 40 °C for 30 min. Aliquots of 20 μL 

were loaded and the electrophoresis was performed at 80 V in a vertical slab Mini-Protean 
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electrophoresis system (Bio-Rad Laboratories, Hercules, USA). The gels were then stained with 

0.25 wt. % Coomassie Brilliant Blue in ethanol:acetic acid:water (45:10:45 vol. %), and 

diffusion-destained by repeated washing in an ethanol:acetic acid:water solution (10:5:85 vol. 

%). BenchMark™ Pre-stained Protein Ladder (Carlsbad, Canada) was used as molecular 

weight marker (from 6 to 180 kDa).  

 

5.2.3 Statistical analysis 

 

All experiments were performed in triplicate, with at least three measurements 

being made per sample. The results were reported as the average and the standard deviation of 

these measurements. 

 

5.3 RESULTS AND DISCUSSION 

 

5.3.1 Emulsions/heteroaggregates characterization in SGF 

 

Physical stability of the emulsions/heteroaggregates was evaluated after their 

passage through the in vitro digestion steps. The mean particle size, particle size distribution, 

microstructure, and macroscopic appearance of the emulsions were determined at each stage of 

the in vitro digestion (Figs. 5.1 to 5.4). 

Mean particle diameter (𝐷4,3) was relatively small for both emulsions stabilized by 

sodium caseinate or lactoferrin, showing values near 2 μm, but it was considerably higher for 

the 40C:60L heteroaggregates (≈ 4 μm) (Fig. 5.1). They also showed a broader particle size 

distribution while the sodium caseinate and lactoferrin stabilized emulsions showed narrower 

particle size distribution (Fig. 5.2). These results corroborate with microscopy images (Fig. 

5.3), since oil droplets from the fine emulsions stabilized by the single proteins were uniformly 

distributed throughout the emulsions. However, an extensive aggregation of droplets coated by 

sodium caseinate or lactoferrin was observed for the 40C:60L heteroaggregates, since the main 

driving force is the electrostatic interaction between droplets coated with oppositely charged 

proteins (Furtado et al., 2016). 

Initially, all the samples presented stability against creaming and phase separation 

(Fig. 5.4), however, after exposure to gastric conditions, particle size distribution became 

slightly broader for simple emulsions and slightly thinner for heteroaggregates (Fig. 5.2). For 
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sodium caseinate stabilized emulsions there was evidence of flocculation (Fig. 5.3) and 

creaming (Fig. 5.4), while these properties did not show clear changes for lactoferrin stabilized 

emulsions. Emulsion stability against creaming depends on the strength of interaction between 

droplets, which is determined by the electrostatic interaction and steric hindrance co-existing 

on their interface. In emulsions stabilized by sodium caseinate, the droplets are negatively 

charged when the pH is above the isoelectric point (pI), while for pH < pI they are positively 

charged (Perrechil and Cunha, 2010). If the pH is adjusted to values close to the pI, the repulsive 

forces may no longer be strong enough to prevent the droplets from aggregating leading to 

phase separation (McClements, 2004). Previous studies also reported that the most part of 

protein-stabilized emulsions is prone to aggregation under gastric conditions due to hydrolysis 

of adsorbed proteins (Singh et al., 2009; Zhang et al., 2015a, b). Pepsin addition could promote 

some kind of surface hydrolysis diminishing the protective effect of protein, and possibly 

predisposing the droplets towards flocculation (Sarkar et al., 2009b). Furthermore, protein 

surface adsorption can affect pepsin hydrolysis depending fundamentally on the specific 

conformation of the protein (del Castillo-Santaella et al., 2014; Macierzanka et al., 2009; 

Maldonado-Valderrama et al., 2013; Maldonado-Valderrama et al., 2012). Besides that, caseins 

in their native state are very susceptible to proteolysis by pepsin due to their flexible random 

coil structure (Li et al., 2012). Maldonado-Valderrama et al. (2013) also reported that hydrolysis 

of adsorbed β-caseins by pepsin increases the elasticity interfacial network, which is indicative 

of the presence of irreversibly adsorbed peptides. Lactoferrin is also unable to resist to pepsin 

proteolysis (Onishi, 2011; Wang et al., 2017), besides that, the pH range of the lactoferrin 

stabilized emulsions remained below the pI favoring electrostatic repulsion, contributing to the 

good stability of the emulsions. Furthermore, lactoferrin is a glycoprotein that shows some 

sugar groups covalently attached to its peptide backbone contributing to a better steric repulsion 

effect (Oliver et al., 2006). The 40C:60L heteroaggregates undid after gastric conditions (Fig. 

5.2 and 5.3) probably because both proteins present positive zeta potential value at pH 3.0 (Fig. 

5.5) and electrostatic repulsion between them occurred, undoing the heteroaggregates in 

individual droplets. 
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Figure 5.1 – Droplet size (D4,3) of the emulsions/heteroaggregates 0C:100L (black), 40C:60L 

(light gray) and 100C:0L (dark gray) before (initial) and after gastric and intestinal phases. 
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Figure 5.2 – Volume size distribution of the emulsions/heteroaggregates before (initial) and 

after gastric and intestinal phases. 
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Figure 5.3 – Microscopy of the emulsions/heteroaggregates before (initial) and after gastric 

and intestinal phases. Scale bar: 20 μm. 

 

 

Figure 5.4 – Visual aspect of the emulsions/heteroaggregates before (initial) and after gastric 

and intestinal phases. 
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Figure 5.5 – Zeta potential values of sodium caseinate (full symbols) and lactoferrin 

dispersions (empty symbols) under different pH values. 

 

Initially, sodium caseinate stabilized droplets presented highly negative zeta 

potential values, while the 40C:60L heteroaggregates remained close to zero and lactoferrin 

stabilized droplets showed a positive value of zeta potential. There was an increase in the 

magnitude of positive charge for all the samples after passing through the gastric phase (Fig. 

5.6), since proteins are quite below their isoelectric point at this pH (3.0) (Fig. 5.5).  
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Figure 5.6 – Zeta potential values of emulsions/heteroaggregates (0C:100L (black), 40C:60L 

(light gray) and 100C:0L (dark gray)) before (initial) and after gastric and intestinal phases. 

 

Tricine-SDS-PAGE was used to determine the hydrolysis of proteins adsorbed onto 

the interface of the droplets during gastric and intestinal digestion (Fig. 5.7). Electrophoretic 

profiles of initial sodium caseinate stabilized emulsion showed a band between 20-30 kDa that 

refers to the major fractions of sodium caseinate (β- and αs-casein) (O’Regan and Mulvihill, 

2009) and bands above 64 kDa that could refer to aggregates. The lactoferrin stabilized 

emulsion electrophoretic profile showed a band near 82 kDa and higher than 180 kDa that refers 

to the lactoferrin (Spik et al., 1994) and protein aggregates, respectively (Fig. 5.7).  

A band near 15 kDa appeared and possibly refers to α-lactalbumin (14.2 kDa) 

(Jambrak et al., 2014). Initial electrophoretic profiles of the 40C:60L heteroaggregates (lane 

10) showed bands of caseins and lactoferrin. After gastric phase, both adsorbed proteins were 

hydrolyzed to produce small peptides, and the band near 37 kDa in gastric condition observed 

for all samples probably refers to pepsin (Macierzanka et al., 2009). Smearing bands (related to 

the peptides around 6 kDa) were also observed due to the high salt concentration in simulated 

intestinal fluid. The band near 49 kDa observed for all samples after the intestinal phase 

probably refers to lipase (Iizuka et al., 1991). Lactoferrin is highly susceptible to gastric 

proteolysis and can generate bioactive peptides in the human stomach (Kuwata et al., 1998; 

Troost et al., 2001). No intact casein or lactoferrin remained after gastric digestion. Therefore, 

we can assume that the surfaces of the droplets after the gastric phase were covered by small 

peptides. 
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Figure 5.7 – Tricine-SDS-PAGE electrophoretic profiles of the emulsions/heteroaggregates: 

(1) molecular weight standard (MW), (2) gastric digestion control, (3) intestinal digestion 

control, (4) 100C:0L initial, (5) 100C:0L after gastric phase, (6) 100C:0L after intestinal 

phase, (7) 0C:100L initial, (8) 0C:100L after gastric phase, (9) 0C:100L after intestinal phase, 

(10) 40C:60L initial, (11) 40C:60L after gastric phase and (12) 40C:60L after intestinal phase. 

 

5.3.2 Emulsions/heteroaggregates characterization in SIF 

 

After passing through the intestinal condition, the particle size distributions of all 

emulsions became multimodal (Fig. 5.2), with a corresponding increase in mean particle 

diameter (𝐷4,3) (Fig. 1) also observed in microscopy images (Fig. 5.3). Most of the big particles 

could be undigested lipid droplets, since the coalescence occurring after intestinal phase could 

be attributed to protein digestion (Qian et al., 2012) as also observed in the electrophoretic 

profile (Fig. 5.7). However, micelles, vesicles, and insoluble calcium salts could be also present 

(Sarkar et al., 2009b), leading to the multimodal particle size distribution. 

Samples showed no phase separation (Fig. 5.4) and highly negative zeta potential 

values (Fig. 5.6) after incubation in the intestinal phase, which could be attributed to the 

presence of different anionic particles arising from the intestinal fluids (as bile salts) or from 
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the lipid digestion products, such as free fatty acids (Sarkar et al., 2010; Zhang et al., 2015a). 

Moreover, the intense yellow color from the bile salts made difficult the observation of any 

indicative of separation. 

 

5.3.3 In vitro lipid digestion in SIF 

 

The extent of lipid digestion of emulsion samples that had been previously digested 

in SGF was quantified by determining the amount of free fatty acids released under SIF 

conditions (Fig. 5.8). There were clear differences in the extent of lipid digestion among the 

control emulsions stabilized by sodium caseinate or lactoferrin and the 40C:60L 

heteroaggregates. However, for all of them, there was a rapid increase in the FFA release during 

the first 15 min of digestion, followed by a more gradual increase at longer times, reaching a 

constant value. This same behavior was observed in the digestibility of heteroaggregates 

produced with β-lactoglobulin and pectin (Simo et al., 2012) and could be attributed to protein 

hydrolysis (Mao and McClements, 2012c), since pancreatin and bile extracts have protease 

activity (Singh and Sarkar, 2011). Sodium caseinate stabilized emulsion showed the highest 

final extent of lipid digestion, which could be related to the action of bile salts acting to displace 

the original emulsifiers from the interface facilitating the lipase adsorption/activity (Golding et 

al., 2011; Pilosof, 2017; Wilde and Chu, 2011). On the other hand, lactoferrin stabilized 

emulsion and the 40C:60L heteroaggregates presented a lower final extent of FFA, which is 

probably related to the interaction of lactoferrin peptides with bile salts. Small amounts of 

anionic bile salts can bind to the lactoferrin interfacial layer, shifting cationic lactoferrin 

molecules from the continuous phase to the emulsion interface, which could change the ability 

of lipase to interact with the lipids (Sarkar et al., 2010; Zhang et al., 2015b). Somehow, the 

40C: 60L heteroaggregates presented the lowest final extent of FFA, possibly due to an 

interaction between the two proteins or their peptides forming a thicker barrier in the residual 

droplets interface and delaying lipid digestion. Furthermore, droplet size also importantly 

affected lipid digestion (Fig. 5.1), as larger droplets protect from lipolysis due to their low 

interfacial area available for the adsorption of lipase (Giang et al., 2015; Torcello-Gomez et al., 

2011). However, the initial microstructure of the emulsions had lower influence on their 

subsequent lipolysis than the protein conformation type. Additionally, lipids may not have been 

fully digested because of the inhibition of lipase by the free fatty acids present at the droplet 

surface (Pafumi et al., 2002). Due to their surface activity, fatty acids compete for the surface 
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of lipid droplets displacing lipase molecules from the oil–water interface. Alternatively, a liquid 

crystalline phase around the lipid droplets could be formed, which prevents the lipase from 

accessing the undigested lipid inside (Patton and Carey, 1979). 

 

 

Figure 5.8 - FFAs released under simulated intestinal conditions as a function of time. 

 

5.4 CONCLUSIONS 

 

Lipid digestion depended on the emulsifier type used to coat droplets since zeta 

potential changes and other interactions occurring in the different stages of simulated 

gastrointestinal tract affected the aggregation of lipid droplets. These changes can be attributed 

to physico-chemical conditions of the environment and hydrolysis of the interfacial proteins 

due to pepsin action under gastric conditions. The heteroaggregates undid in simple emulsions 

at the gastric phase due to the electrostatic repulsion between the sodium caseinate and 

lactoferrin in gastric pH. The extent of lipid digestion within the intestinal phase was lower in 

the presence of lactoferrin, which could be attributed to the interaction of peptides of this protein 

with bile salts. However, the heteroaggregates presented the lowest extent of lipid digestion, 

possibly due to an interaction between the peptides of both proteins suppressing lipid digestion. 

These results are relevant for the design of food matrices with improved functional properties 

such as decreased digestibility and/or controlled energy intake.  
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Highlights 

 

Ohmic or conventional heating were used to promote structural changes in lactoferrin. 

Cold gel like emulsions were produced with heat treated lactoferrin. 

Emulsion properties were intrinsically related to the heat treatment of the protein. 
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ABSTRACT 

 

Ohmic heating is a technique that has gained increasing attention because of its 

capacity to produce uniform heating, and claimed electrical influence on the functional and 

technological properties of treated protein dispersions. The aim of this work was to evaluate the 

influence of ohmic heating on the properties of cold gel-like emulsions, comparing them with 

those obtained by conventional heating. The effect of ohmic and conventional heating on 

physical and structural properties of lactoferrin was also addressed. Ohmic heating treatment 

resulted in less pronounced aggregation of lactoferrin, when compared to conventional heating. 

An increase of particle size, turbidity, intrinsic and extrinsic fluorescence values and a decrease 

of dichroic signal after heat treatment indicated an increase of protein interactions. Emulsions 

produced from heat-treated lactoferrin showed gel-like behavior which was related to the 

emulsifying capacity of lactoferrin, combined with the emulsification method and the heat pre-

treatment applied to the protein. Rheological and microstructural properties were intrinsically 

related to the heat treatment of the protein since ohmic heating produced gel-like emulsions 

with a less rigid structure. These emulsions could be interesting for food applications containing 

heat-sensitive ingredients. 

 

Keywords: gel-like emulsions, lactoferrin, ohmic heating, rheological properties 

 



Capítulo 6 145 

 

 

 

6.1 INTRODUCTION 

 

Emulsions tend to be destabilized by several mechanisms like aggregation, phase 

inversion, flocculation and coalescence, thus being considered as thermodynamically unstable 

systems (Dickinson, 1997), but a kinetic stability for a considerable time can be reached with 

the addition of emulsifiers (McClements, Decker, & Weiss, 2007). Milk proteins are widely 

used to form and stabilize oil-in-water emulsions, and this functionality is related to their 

capacity to be adsorbed onto the water-oil interface (Dalgleish, 1997; Dickinson, 1997). 

Recently, works have shown the potential of utilization of lactoferrin as an emulsifier (Furtado, 

Mantovani, Consoli, Hubinger, & Cunha, 2017; Pinheiro, Coimbra, & Vicente, 2016; Sarkar, 

Goh, & Singh, 2009; Sarkar, Horne, & Singh, 2010; Tokle & McClements, 2011). This protein 

presents a globular structure with a single polypeptide chain of about 80 kDa (containing one 

to four glycans) and high isoelectric point (pI ≈ 8.6 – 8.9) (Spik et al., 1994; Steijns & van 

Hooijdonk, 2000) attributed to the high content of basic aminoacids. Furthermore, lactoferrin 

shows a number of biological functions, which can include antioxidant, antimicrobial, antiviral 

and anticancer activity (Wakabayashi, Yamauchi, & Takase, 2006) making it a very desirable 

functional ingredient to be incorporated into food formulations. 

Whey protein stabilized emulsions can be transformed into gelled emulsions by 

traditional techniques, such as heat treatment (Chen, Dickinson, Langton, & Hermansson, 2000; 

Liu & Tang, 2011), acidification with glucono-δ-lactone (GDL) (Boutin, Giroux, Paquin, & 

Britten, 2007; Ye & Taylor, 2009) and addition of salts of divalent ions (e.g. CaCl2) (Sok Line, 

Remondetto, & Subirade, 2005; Ye & Taylor, 2009). As lactoferrin is a globular protein 

(Damodaran, Parkin, & Fennema, 2007) we hypothesize it could form gels. Previous studies 

investigated the formation of nanohydrogels (Bourbon et al., 2015) and viscoelastic gels from 

heated emulsion stabilized by lactoferrin (Tokle & McClements, 2011). However, to our 

knowledge there are no previous studies about the production of cold gel-like emulsions with 

lactoferrin. 

The heat treatment necessary to produce gelled emulsions limits their application 

in formulations containing heat-sensitive ingredients, such as bioactives, while those obtained 

by cold-set techniques (without heat treatment) are more favorable (Liu & Tang, 2011; Sok 

Line et al., 2005) and exhibit some enhanced functional characteristics - e.g. controlled release 

of bioactives and improved oxidative stability of lipids (Lee, Choi, & Moon, 2006). However, 

in cold-set techniques, a heat treatment of protein dispersions before emulsification step is 
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needed to ensure denaturation of the protein native structure. This denaturation is characterized 

by the formation of soluble aggregates (Boutin et al., 2007; Sok Line et al., 2005) through the 

partial unfolding of the native protein, and a subsequent aggregation of unfolded molecules 

(Nielsen, Singh, & Latham, 1996). These soluble aggregates will act as “building blocks” 

necessary for the development of protein network systems, such as gels (Pereira et al., 2016). 

Subsequent addition of salts with divalent ions, such as CaCl2, can be done, improving cross-

linking of proteins and thus promoting gelation (Bryant & McClements, 2000; Kuhn, Cavallieri, 

& Da Cunha, 2010, 2011). 

Ohmic heating (OH) has been receiving increased attention due to its volumetric 

heating and rapid heating rates that enable high temperatures to be applied in a short-time, thus 

allowing to obtain products of a superior quality to those processed by conventional heating 

technologies (Castro, Teixeira, Salengke, Sastry, & Vicente, 2003; Machado, Pereira, Martins, 

Teixeira, & Vicente, 2010; Rodrigues et al., 2015). During OH treatment the food product to 

be treated behaves as an electrical resistance, allowing the passage of an alternating electric 

current through it which results in generation of internal heat, according to Joule's law (De 

Alwis & Fryer, 1990). The presence of the inherent electric variables of OH (i.e. electric field, 

electric frequency and current density) lead to protein conformational disturbances and distinct 

gelation behavior during heat-induced denaturation of whey protein isolate (Pereira, Souza, 

Cerqueira, Teixeira, & Vicente, 2010; Pereira, Teixeira, & Vicente, 2011; Rodrigues et al., 

2015). However, there are no particular studies about the influence of OH on lactoferrin 

properties.  

The objective of this work was to produce cold gel-like emulsions from ohmic 

heated lactoferrin dispersions. These gelled emulsions were characterized in terms of their 

physical and structural properties and compared with emulsions produced using a conventional 

heating method. The effect of ohmic and conventional heating on the protein secondary 

structure and consequent thermal aggregation of lactoferrin were evaluated in order to provide 

insight to the mechanisms that may be influencing the observed changes in gelled emulsions 

properties. 
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6.2 MATERIALS AND METHODS 

 

6.2.1 Materials 

 

Lactoferrin from bovine milk (protein content 92.1 wt. %, iron saturation 9.9 %) 

was kindly provided by Synlait Milk Ltd (Canterbury, New Zealand) and sunflower oil (Fula, 

Portugal) was purchased in a local market. The other reagents were of analytical grade. 

 

6.2.2 Methods 

 

6.2.2.1 Preparation of Lactoferrin Dispersion 

 

Lactoferrin (3.0 wt. %) was dispersed in 20 mM sodium phosphate buffer (pH 6.0) 

using magnetic stirring overnight at room temperature, ensuring complete dissolution of the 

protein. Electrical conductivity of the prepared lactoferrin dispersion was approximately 1.5 

mS.cm-1 (WTW LF 538 conductivity meter, Weilheim, Germany), which allowed the ohmic 

heating effect to take place. 

 

6.2.2.2 Conventional Heating (CH) of Lactoferrin Dispersion 

 

A double-walled water jacketed glass reactor vessel (30 mm of internal diameter 

and 100 mm in height) was used, as previously reported by Pereira et al. (2010). Temperature 

was controlled by circulating thermostabilized water from a bath. A magnetic stirrer was used 

to homogenize lactoferrin dispersion, improving heat transfer during the heating cycle. 

Temperature was measured online with a type K thermocouple (accuracy of ±1 °C; Omega 

Engineering, Inc., Stamford, CT, USA), placed at the center of the sample volume, and 

connected to an acquisition system (USB-9161, National Instruments Corporation, Austin, TX, 

USA), as described by Pereira et al. (2016). 

 

6.2.2.3 Ohmic Heating (OH) of Lactoferrin Dispersion 

 

Experiments were performed in a cylindrical glass tube of 30 cm total length and 

an inner diameter of 2.3 cm, with two stainless steel electrodes isolated at each edge with 
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polytetrafluoroethylene (PTFE) caps, as previously reported by Pereira et al. (2010). A gap 

between the electrodes of 4 cm was used, and the supplied voltage ranged from 36 to 86 V. The 

sample temperature was controlled through regulation of the supplied voltage using a function 

generator (1 Hz–25 MHz and 1 to 10 V; Agilent 33220A, Penang, Malaysia) connected to an 

amplifier device (Peavey CS3000, Meridian, MS, USA). The voltage was adjusted to simulate 

the thermal history of samples treated by CH, allowing to discriminate the existence of 

additional non-thermal effects on denaturation of proteins due to the presence of electric 

variables (Pereira et al., 2017). To eliminate different shearing conditions between treatments, 

sample volume and stirring conditions were identical, as described previously for CH treatment.  

 

6.2.2.4 Heating Conditions of Lactoferrin Dispersion 

 

Lactoferrin dispersion (20 mL) was heated at 90 °C for 30 min through CH or OH. 

After a heating come-up time (time to raise temperature from 25 to 90 °C), the temperature was 

held constant at 90 °C for 30 min. The temperature profile was quite similar for CH and OH 

(Figure 6.1) which allowed to evaluate the non-thermal effects (or electric effects) of OH 

treatment. The temperature used was based on the thermal behavior of native bovine lactoferrin, 

that presents two denaturation peaks around 60 and 89 °C, respectively (Bengoechea, Peinado, 

& McClements, 2011; Bokkhim, Bansal, GrØndahl, & Bhandari, 2013). 
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Figure 6.1 - Example of similar thermal histories at 90 °C for conventional (dotted line) and 

ohmic (solid line) heating treatments. 

 

6.2.2.5 Characterization of Lactoferrin Dispersion 

 

6.2.2.5.1 Turbidity 

 

The turbidity of undiluted protein dispersions was analyzed using an UV/visible 

spectrophotometer at 600 nm (Synergy HT, Bio-Tek, Winooski, USA), according to 

Bengoechea et al. (2011). The sodium phosphate buffer described previously (20 mM at pH 

6.0) was used as blank measurement. 

 

6.2.2.5.2 Intrinsic Fluorescence  

 

Intrinsic fluorescence spectra of the protein dispersions (0.01 wt. %) were obtained 

at 20 °C using a spectrofluorimeter (Horiba Scientific, USA) equipped with a standard 

thermostated cell holder and a 1.0 cm path length quartz cuvette. The excitation wavelength 

was 290 nm. Emission spectra were recorded between 300 and 400 nm with 1% attenuation, 

and fluorescence intensities were recorded every 0.5 nm. 
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6.2.2.5.3 Extrinsic Fluorescence  

 

For the extrinsic fluorescence, lactoferrin dispersion (3 μM) was incubated at 20 °C 

with a 50-fold molar excess of freshly prepared 8-anilo-1-naphthalenesulfonate (ANS) (Sigma-

Aldrich, St. Louis, EUA) for 60 min in the dark before the analysis. The excitation was fixed at 

365 nm and the emission was collected between 400 and 600 nm at 20 °C, using a 1.0 cm path 

length quartz cuvette. Spectra of ANS fluorescence were acquired with a spectrofluorimeter 

(Horiba Scientific, USA) (Stroylova et al., 2011). 

 

6.2.2.5.4 Free Sulfhydryl Groups  

 

Free sulfhydryl (SH) groups on lactoferrin dispersion were determined on heat-

treated samples using Ellman's 5,5-dithiobis-2-nitrobenzoicacid (DTNB) method, as described 

in previous literature (Pereira et al., 2010). 

 

6.2.2.5.5 Hydrodynamic Diameter and Polydispersity Index 

 

Particle size measurements were made by dynamic light scattering (DLS) using a 

Zetasizer Nano Series (Malvern Instruments, Worcestershire, UK). Unheated and heat-treated 

samples (0.01 wt. %, 2 mL) were poured into sizing cuvettes and measurements were carried 

out, at least, in triplicate. The temperature of the cell was maintained at 20 °C. The method of 

cumulant fit was used to translate the average diffusion coefficients into average particle 

diameters (Z-Average value) using Stokes-Einstein relationship (Anema & Li, 2003). The 

polydispersity index (PDI) describes the width or the relative variance of the particle size 

distribution and was based on the measurements of dynamic light scattering intensity 

autocorrelation function. 

 

6.2.2.5.6 Far-UV Circular Dichroism (CD) 

 

Far-UV circular dichroism was used to investigate the secondary structure of 

untreated and heat-treated lactoferrin. Protein dispersions (0.01 wt. %) were evaluated at 20 °C 

in the spectral range from 190 to 260 nm with a spectropolarimeter (Jasco J-1500, Jasco Corp., 

Japan), using a quartz cuvette with an optical path of 0.1 cm. Scan speed was set to 50 nm/min 
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and three scans were accumulated and averaged. All the spectra were corrected using a protein-

free sample. 

 

6.2.2.6 Emulsion Preparation  

 

Emulsions were prepared by homogenizing 10 % (v/v) of sunflower oil with 90 % 

(v/v) of preheated lactoferrin dispersion, using an Ultra-Turrax homogenizer (T 25, Ika, 

Germany) at 15,000 rpm for 2 min followed by passage through a high pressure homogenizer 

(NanoDeBee, Bee International, South Easton, Massachusetts, USA) at 137.9 MPa, according 

to Pinheiro et al. (2016). A divalent salt was used to induce cold-set gelation. Thus, emulsions 

were mixed with a concentrated CaCl2 solution to obtain a final concentration of 60 mM by 

vortexing at room temperature, as previously described by Sok Line et al. (2005). The 

emulsions were stored at room temperature for 24 h prior to further analysis. 

 

6.2.2.7 Emulsion characterization 

 

6.2.2.7.1 Droplet size 

 

Droplet size was measured by dynamic light scattering (DLS) using a Zetasizer 

Nano Series (Malvern Instruments, Worcestershire, UK). Samples were diluted (0.01 wt. %, 2 

mL) in the same buffer of lactoferrin dispersion (20 mM sodium phosphate buffer, pH 6.0). 

They were poured into sizing cuvettes and measurements were carried out, at least, in triplicate. 

The temperature of the cell was maintained at 20 °C.  

 

6.2.2.7.2 Rheology 

 

Rheological measurements of the emulsions were performed using a rheometer 

Discovery HR-1 (TA Instruments, New Castle, USA) with a stainless-steel cone plate geometry 

(60 mm, 2° angle, truncation 64 μm). Flow curves were obtained by an up-down-up steps 

program with shear rate ranging from 0 to 300 s−1. Newtonian (Eq. (6.1)) and power law model 

(Eq. (6.2)) were fitted to the data to obtain the rheological properties. Viscoelastic behavior of 

samples was determined from oscillatory measurements using a frequency sweep between 0.1 

and 10 Hz performed within the linear viscoelasticity domain. These measurements were done 
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at 20 °C after one day of samples storage. The contribution of the elastic and viscous 

characteristics was evaluated from storage (G′) and loss (G″) moduli, respectively. Preliminary 

measurements were done in order to identify the linear viscoelastic region by measuring the 

shear moduli at different strain values at a fixed frequency (1 Hz), where a constant strain of 

1% was used for the subsequent measurements. 

 

𝜎 = 𝜂. �̇�          (6.1) 

 

𝜎 = 𝑘. �̇�𝑛          (6.2) 

 

where 𝜎 is the shear stress (Pa) , 𝜂 is the viscosity (Pa.s), �̇� is the shear rate (s−1), 𝑘 is the 

consistency index (Pa.sn) and 𝑛 is the flow behavior index (dimensionless). 

 

6.2.2.7.3 Microstructure  

 

Emulsions were analyzed using an epifluorescence microscope (Olympus BX51) 

coupled with a DP71 digital camera and three sets of filters in the range of 360-370/420; 470-

490/520; and 530-550/590 (Olympus Portugal SA, Porto, Portugal). All images were acquired 

using the Olympus cellSens soſtware. Sunflower oil was stained with Nile Red (0.005 wt. %). 

 

6.2.3 Statistical analysis 

 

The experiments were run in triplicate, and all measured parameters are means of 

nine experimental points. The results were evaluated by one-way analysis of variance 

(ANOVA), and significant differences (p < 0.05) between the treatments were evaluated by the 

Tukey procedure. The statistical analyses were performed using a trial version of the software 

Minitab 16.1.0 (Minitab Inc., State College, PA, USA). 
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6.3 RESULTS AND DISCUSSION 

 

6.3.1 Characterization of lactoferrin dispersion 

 

Turbidity values of lactoferrin dispersion increased with heating time for both 

treatments. However, OH resulted in a lower turbidity value, indicating less protein aggregation 

than in conventional heating (Fig. 6.2). This effect may be attributed to the increase of more 

reactive (unfolded) globular protein molecules at higher temperatures, enhancing protein-

protein collision frequency, thus favoring protein aggregation (Bengoechea et al., 2011). 

The average hydrodynamic diameter (Z-Average) increased considerably in both 

treatments. However, OH produced smaller protein aggregates (p < 0.05) when compared with 

CH (Fig. 6.3a). Lactoferrin dispersions heated 30 min by CH presented Z-Average of 76.0 ± 

0.7 nm while OH showed a value of 68.7 ± 0.4 nm. PDI values decreased after heating, reaching 

a value of 0.2 for both treatments (Fig 6.3b). Figure 6.3c shows the size distribution curves 

obtained for unheated lactoferrin dispersions and after heating at 90 °C. Size distribution curves 

of unheated lactoferrin dispersions showed a first population with a maximum located around 

10 nm that refers to lactoferrin monomers (Tavares et al., 2015), a second population with a 

maximum between 10 and 100 nm, and a third peak between 100 and 1000 nm that could be 

some aggregates. When lactoferrin dispersions were heated at 90 °C, the first and third 

population disappeared with a concomitant increase of the middle peak. These results are in 

agreement with previous works that observed size increase after heating (Pereira et al., 2010; 

Rodrigues et al., 2015), and also corroborates turbidity results. 
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Figure 6.2 – Turbidity values of lactoferrin dispersions after different times of conventional 

(full symbols) or ohmic (empty symbols) heating. Different lowercase letters represent 

significant differences (p < 0.05) between heating time and different uppercase letters 

represent significant differences (p < 0.05) between heating treatments. 

 



Capítulo 6 155 

 

 

 

 

Figure 6.3 – Z-Average (a), PDI (b) and particle size distribution (c) of unheated and 

thermally heated lactoferrrin dispersions. Unheated lactoferrin (solid line), CH-heated 

lactoferrin (dotted line or full symbols) and OH-heated lactoferrin (dashed line or empty 

symbols). Different lowercase letters represent significant differences (p < 0.05) between 

heating time and different uppercase letters represent significant differences (p < 0.05) 

between heating treatments. 
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Local disturbances and changes on protein structure and dynamics are widely 

accessed through intrinsic tryptophan fluorescence measurements (Vivian & Callis, 2001). 

Then, this analysis was performed in order to investigate the effect of heating time on the 

conformational and structural changes of lactoferrin. An increase of fluorescence intensity was 

observed with increasing heating time of protein dispersions, but no significant differences were 

observed between both treatments after 30 min of heating (Fig. 6.4a). This increase in 

fluorescence intensity may be related to changes in the conformational structure of the protein 

molecule due to molecular local unfolding, allowing exposure of buried tryptophan residues 

(Royer, 2006; Stănciuc et al., 2013; Bourbon et al., 2015). The averaged emission fluorescence 

spectra for tryptophans, contained in different parts of lactoferrin, showed a maximum emission 

band near 336 nm (Fig. 6.4a), which is in agreement with previous works (Bourbon et al., 2015; 

Fang et al., 2014). The red shift of the wavelength of maximum fluorescence intensity indicates 

a considerable increase of the accessibility of these residues to the solvent (Uversky, 

Narizhneva, Kirschstein, Winter, & Löber, 1997). 

ANS fluorescence measurements on the lactoferrin dispersions were performed in 

order to provide information about variation of the accessible hydrophobic areas. Figure 6.4b 

shows that an increase in heating time was accompanied by significant changes in the intensity 

of ANS fluorescence, probably due to progressive unfolding of the protein and increasing 

accessibility of ANS probe to the protein hydrophobic core. This increase in extrinsic 

fluorescence intensity corroborates with intrinsic fluorescence results. However, hydrophobic 

groups of lactoferrin treated by OH were less prone to react with ANS than conventional heated 

ones. As the ANS is anionic, electrostatic interactions may have occurred with lactoferrin due 

to its basic character. The interaction of ANS with exposed hydrophobic groups of the protein 

due to heating is accompanied by a considerable increase in the dye fluorescence intensity and 

a pronounced blue shift of the maximum fluorescence (Stănciuc et al., 2013). However, a slight 

blue shift in wavelength for ANS fluorescence was observed (Fig. 6.4b). Probably, the lower 

denaturation/aggregation of OH-induced lactoferrin led to changes at the conformational level 

making these hydrophobic groups less exposed to ANS. 
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Figure 6.4 – Maximum fluorescence intensity and wavelength of maximum fluorescence 

intensity of lactoferrin dispersions after different times of conventional (full symbols) or 

ohmic (empty symbols) heating for intrinsic (a) and ANS (b) fluorescence. Different 

lowercase letters represent significant differences (p < 0.05) between heating time and 

different uppercase letters represent significant differences (p < 0.05) between heating 

treatments. 

 

The content of free SH groups was very low, ranging from ≈ 0.005 to 0.030 μmol/g 

(Fig. 6.5). This was somehow expected once lactoferrin in its native state contains 

intramolecular disulfide bonds but no free sulfhydryl groups (Lönnerdal & Suzuki, 2013). 

However, results from Figure 6.5 show that upon heating SH groups of lactoferrin become 
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available to react with DTNB reagent. This gives an indication that the lactoferrin unfolding 

occurred under the applied heating treatments, thus exposing their SH groups initially 

inaccessible in the native protein structure, which is in agreement with a previous work 

regarding heat-induced changes of lactoferrin (Brisson, Britten, & Pouliot, 2007). Unfolding of 

lactoferrin in respect to the SH groups was apparently very similar between OH and CH 

treatments. A statistically significant difference was observed for the OH and CH treatments 

after 30 min of heating despite these values being very close to each other. This may be linked 

with the development of protein aggregates. 

 

 

Figure 6.5 – Concentration of free sulfhydryl groups (SH) of lactoferrin dispersions after 

different times of conventional (full symbols) or ohmic (empty symbols) heating. Different 

lowercase letters represent significant differences (p < 0.05) between heating time and 

different uppercase letters represent significant differences (p < 0.05) between heating 

treatments. 

 

 

Circular dichroism (CD) spectroscopy was used to investigate the changes in the 

secondary structure of the proteins, considering that the major elements (α-helix, β-sheet and 

coil) have characteristic CD spectra. The α-helix configuration presents an intense and positive 

band at 190 nm and negative peaks at 208 and 220 nm, while β-sheet configuration presents a 
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negative dichroic peak with a minimum in the 215 nm region. Random coil structures generally 

have a positive CD peak near 215 nm and a negative one near to 200 nm (Barreto et al., 2003; 

Kasinos et al., 2013). Unheated lactoferrin presented an ellipticity minimum near 210 nm (Fig. 

6.6) suggesting that its structure is partially based on α-helix and β-sheet conformation 

(Shimazaki, Kawano, & Yung Choon, 1991; Stănciuc et al., 2013; Wang et al. 2013), which is 

in agreement with other works (Bokkhim et al., 2013; Furtado et al., 2017). CD profile of 

unheated lactoferrin and lactoferrin dispersions heated for 0 min (for both treatments) was 

similar, but after 30 min of heating, a decrease in the magnitude of ellipticity in the range of 

190-210 nm and a slight increase in the range of 210-240 nm was observed for both treatments. 

The loss of magnitude in CD signal can be attributed to aggregation (Ioannou, Donald, & 

Tromp, 2015), which corroborates results presented above. Samples heated by OH showed a 

higher loss of magnitude in CD signal in the range of 210-240 nm when compared to CH. It 

has been suggested that the presence of moderate electric fields during heating may change not 

only the number of globular protein aggregates but also their shape or volume (Pereira et al., 

2016), and this may have contributed to differences observed in dichroic signals among the 

heating treatments. 

 

 

Figure 6.6 - Far UV-CD spectra of lactoferrin dispersions after different times of CH or OH: 

unheated lactoferrin (black line), lactoferrin in CH for 0 min (red line), lactoferrin in CH for 

30 min (green line), lactoferrin in OH for 0 min (yellow line) and lactoferrin in OH for 30 min 

(blue line). 

 

Based on results presented above, this lower aggregation observed for heat treated 

lactoferrin by the ohmic system when compared to conventional heating has been reported in 
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the literature for whey proteins, where it is suggested that the application of moderate electric 

fields may be linked to conformational disturbances on tertiary protein structure; reorientation 

of hydrophobic clusters occurring in the protein structure; modification of the molecular 

environment due to the increased number of ions, and their different distributions around the 

protein molecules; and splitting of large protein aggregates (Pereira et al., 2016; Pereira et al., 

2010; Rodrigues et al., 2015). Furthermore, the electric field may also affect the ionic 

movement in the medium (Castro, Macedo, Teixeira, & Vicente, 2004), interfering with 

electrostatic interactions which play a fundamental role in folding, conformational stability and 

protein-protein interactions (Neves-Petersen & Petersen, 2003). Among these hypothesis, 

results show that the presence of an electric field during thermal denaturation seems to affect 

in a very distinctive way the hydrophobic core or local hydrophobic groups of lactoferrin. These 

local disturbances may have contributed to a distinct form of aggregation or interaction between 

unfolded molecules, once it is recognized that the way how hydrophobic groups are exposed 

during the initial stage of denaturation can have a crucial role on the mechanism of protein 

aggregation (Wijayanti, Bansal, & Deeth, 2014). These events may explain the apparent smaller 

or different type of protein aggregates, as well as the distribution of protein secondary structures 

found under the influence of OH. 

 

6.3.2 Characterization of cold gel-like emulsions 

 

Figure 6.7 shows the visual aspect of the emulsions produced with unheated 

lactoferrin dispersion and lactoferrin heated by OH and CH after one day of storage at room 

temperature. It was observed that for both heating treatments the emulsions showed a soft gel-

like appearance, while the emulsion produced with unheated lactoferrin remained in a liquid 

state (Fig. 6.7). Similar appearance was observed in emulsions produced with whey proteins 

(Liu & Tang, 2011; Manoi & Rizvi, 2009), but the network structure seems to be denser for the 

later.  
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Figure 6.7 – Visual aspect of the emulsions produced with unheated (a), OH-heated (b) and 

CH-heated (c) lactoferrin dispersions after one day of storage at room temperature. 

 

When submitted to rheological analysis, emulsions produced with unheated 

lactoferrin dispersion showed Newtonian behavior, while emulsions produced with lactoferrin 

heated by OH or CH showed a shear-thinning behavior (Table 6.1). Such shear thinning 

behavior is related to flocculation of oil droplets forming a network of aggregated droplets due 

to protein matrix (Boutin et al., 2007; Liu & Tang, 2011; Manoi & Rizvi, 2009). Viscosity 

values (η) (Table 6.1) showed a statistically significant increase (p < 0.05) for heat treated 

emulsions, being this increase more pronounced for lactoferrin heated by the conventional 

system, which confirms the increase of emulsion structuration due to a probably higher 

interaction among the droplets (through the formation of new inter- and intramolecular disulfide 

bonds that will engage toward protein aggregation, besides electrostatic and hydrophobic 

interactions between them). 

 

Table 6.1 – Rheological parameters of the emulsions produced with unheated (A), ohmic 

heated (B) and conventionally heated (C) lactoferrin dispersion. 

Emulsion 𝜂 (mPa.s) 𝑘 (Pa.sn) 𝑛 R2 

(A) 1.68 ± 0.12c - - 0.98 

(B) *8.06 ± 0.71b 0.02 ± 0.00b 0.82 ± .01a 0.99 

(C) *29.51 ± 3.47a 0.31 ± 0.1a 0.49 ± 0.05b 0.99 

Identical small letters in the same column indicate that there are no statistically significant differences (p > 

0.05). 

* in this case the value corresponds to the apparent viscosity at 100 s-1 (𝜂100). 

 



Capítulo 6 162 

 

 

 

Viscoelastic properties were determined, once the ratio between storage (Gʹ) and 

loss (G″) moduli may indicate if the emulsion is strongly or weakly associated (Torres, Iturbe, 

Snowden, Chowdhry, & Leharne, 2007). The viscoelastic properties of the emulsions produced 

with unheated lactoferrin dispersion, lactoferrin heated by OH and CH after one day of storage 

at room temperature are presented in Figure 6.8. Mechanical spectra of the emulsions indicate 

that emulsions heated by ohmic or conventional systems presented a gel-like behavior (Gʹ 

higher than G″ throughout the frequency range). Somehow, the emulsion produced with 

lactoferrin heated by the conventional system resulted in the strongest gel-like structure – i.e. 

Gʹ values were 10 times greater than those obtained for emulsions produced with lactoferrin 

heated by the ohmic system and almost 1000 times greater than those obtained for emulsions 

produced with unheated lactoferrin (for low frequency values, 0.1 - 1). On the other hand, it 

was observed only a slight increase in the moduli of heat treated samples for increasing values 

of frequency, which has been attributed to a predominantly solid behavior of the gel-like 

emulsions, indicating that they may formed permanent interactions (Liu & Tang, 2011). 

However, the elastic modulus (Gʹ) of the emulsions produced with unheated lactoferrin showed 

a frequency-dependence, which is associated to a weaker gel or a less stable emulsion (Torres 

et al., 2007). Furthermore, the network entanglement between adsorbed and non-adsorbed 

protein molecules is the main factor that leads to high elastic modulus values and a gel-like 

structure (Dickinson & Hong, 1995). 

 

 

Figure 6.8 – Storage (G’) (a) and loss (G’’) (b) moduli of the emulsions produced with 

unheated ( ), OH-heated ( ) and CH-heated ( ) lactoferrin dispersions. 
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The emulsion prepared with unheated lactoferrin presented droplet size around 

206±2 nm, but it was not possible to measure the droplet size of the other systems due to the 

intense aggregation observed. In order to confirm aggregation of oil droplets, the microstructure 

of the emulsions produced with unheated and heated lactoferrin dispersions was analyzed, and 

the corresponding pictures are shown in Figure 6.9. Emulsions presented remarkable 

differences depending on the heating treatment. The oil droplets of the emulsions produced with 

unheated lactoferrin were homogeneously distributed in the aqueous protein phase with no signs 

of flocculation/aggregation. However, oil droplets entrapped in an entangled protein network 

was observed for emulsions produced with heat treated protein. Besides the heat aggregation of 

the proteins, salt addition also contributed to the formation of this particulate structure 

composed of random aggregates (Sok Line et al., 2005). Microscopic images suggest a denser 

network for emulsions produced with lactoferrin dispersions heated by the conventional system. 

These images confirm rheology results and corroborate protein characterization results (section 

6.3.1). Furthermore, the differences between the microstructures are reflecting the differences 

in interactive forces involved in the formation of the cold gel-like emulsions. 
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Figure 6.9 – Microstructure of the emulsions produced with unheated (a), OH-heated (b) and 

CH-heated (c) lactoferrin dispersions. Scale bar: 100 μm. 
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6.4 CONCLUSIONS 

 

Cold gel-like emulsions were produced using lactoferrin dispersions subjected to a 

heat pretreatment in an ohmic or conventional system. Their formation was associated to the 

good emulsifying capacity of lactoferrin combined with heat treatment of the protein. Both OH 

and CH influenced thermal unfolding and aggregation of lactoferrin molecules. However, 

internal electrical heating and the existence of non-thermal effects - i.e. electric field - possibly 

affected the molecular flexibility or stability of hydrophobic groups of lactoferrin. OH led to 

less aggregated protein molecules, when compared to conventional heating. Such different 

aggregation pattern was confirmed by a lower increase in particle size, turbidity, intrinsic and 

extrinsic fluorescence and a distinct dichroic signal. These events had a direct impact on 

structural and mechanical properties of the prepared emulsions. Therefore, the rheological and 

microstructural properties depended on the heat treatment applied, since conventional heating 

produced stronger gel-like emulsions than OH treatment. OH appears to be an efficient heating 

technology that can be used to modulate lactoferrin thermal denaturation and lead to distinct 

gel-like emulsions. These emulsions could be interesting for several innovative food 

applications, i.e. as texturizers, fat replacers, carrier of heat-sensitive and lipid-soluble 

bioactives. The results from this study also suggest a further fundamental approach about the 

influence of electrical variables of ohmic heating technology on the stability and functionality 

of lactoferrin molecules. Ohmic heating seems to impose small structural changes at the 

nanoscale level that can have a major impact on the macrostructural and functional properties 

of globular proteins. 
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7.1 DISCUSSÕES GERAIS 

 

Em uma primeira etapa foi avaliado o efeito do tratamento ultrassônico nas 

propriedades físicas e estruturais do caseinato de sódio e da lactoferrina. As mudanças nas 

propriedades das proteínas foram avaliadas em termos de tamanho, potencial zeta, estrutura 

molecular, viscosidade intrínseca, hidrofobicidade superficial e dicroísmo circular. Também foi 

avaliado o efeito do ultrassom na capacidade de melhorar a estabilização de emulsões e diminuir 

o tamanho de gota. O caseinato de sódio sofreu uma redução significativa de tamanho, enquanto 

que um comportamento oposto foi observado para a lactoferrina. Este efeito pode ser atribuído 

às características conformacionais distintas das proteínas quando submetidas às forças 

mecânicas resultantes da cavitação ultrassônica que podem levar à mudanças nas interações 

eletrostáticas e hidrofóbicas (JAMBRAK et al., 2014; O'BRIEN 2007; O'SULLIVAN et al., 

2014; YANJUN et al., 2014). A hidrofobicidade superficial foi afetada positivamente pelo 

aumento no tempo de tratamento ultrassônico e foram observadas pequenas diferenças no perfil 

eletroforético em gel de poliacrilamida nativo da lactoferrina, atribuídas à interações não 

covalentes. O dicroísmo circular não detectou diferenças no sinal dicróico para o caseinato de 

sódio, mas uma leve mudança conformacional foi observada para a lactoferrina, com aumento 

de estruturas do tipo desordenadas (Barreto et al., 2003; Munialo et al., 2014). As emulsões 

produzidas com lactoferrina, utilizando o ultrassom por maiores tempos, apresentaram tamanho 

de gota reduzido e boa estabilidade, o que não foi observado para o caseinato de sódio. Assim, 

a melhor estabilidade da lactoferrina pode ser atribuída às repulsões eletrostáticas e estéricas 

causadas pelos agregados de proteína (JAFARI et al., 2008). O tratamento ultrassônico prévio 

das proteínas melhorou suas propriedades emulsificantes, mas este tratamento ultrassônico em 

conjunto com o processo simultâneo de formação de gotas resultou em emulsões mais estáveis, 

facilitando a deposição dos emulsificantes na interface óleo/água.  

Uma vez definido o melhor tempo de ultrassom para se obter emulsões estáveis, o 

próximo passo foi avaliar a heteroagregação de gotas lipídicas através da mistura de duas 

emulsões estabilizadas por proteínas carregadas com cargas opostas, variando a razão de 

volume de emulsão e a força iônica. As propriedades foram avaliadas em termos de estabilidade 

à cremeação, microestrutura, diâmetro de gotas, e parâmetros reológicos. Foram produzidos 

heteroagregados com características distintas. Os maiores heteroagregados que apresentaram 

boa estabilidade à cremeação foram produzidos com uma proporção em volume de 60 % de 

emulsão estabilizada por lactoferrina e 40 % de emulsão estabilizada por caseinato de sódio. 
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Heteroagregados produzidos com uma maior proporção de emulsão estabilizada com 

lactoferrina apresentaram forte agregação, resultando em separação de fases e formação de gel, 

além de aumentar a viscosidade e o módulo elástico. Desta forma, foi possível produzir 

heteroagregados com comportamento reológico muito mais estruturado usando uma mesma 

fração volumétrica de óleo usada em uma emulsão simples. A lactoferrina demonstrou-se 

susceptível ao NaCl, o que pode ser atribuído a sua alta capacidade de ligação a ânions (como 

𝐶𝑙−) (MAO e MCCLEMENTS, 2012), no entanto, a presença de caseinato de sódio permitiu 

maior estabilidade frente à adição do sal, o que pode ser atribuído a uma maior adsorção 

interfacial após a interação com o NaCl (SRINIVASAN et al., 2000). Assim, estes sistemas 

podem ser usados como agentes funcionais para modificação de textura/viscosidade e liberação 

controlada. 

Os maiores e mais estáveis heteroagregados foram selecionados para serem 

submetidos às condições simuladas do trato gastrointestinal, de acordo com o protocolo de 

MINEKUS et al. (2014). As propriedades dos heteroagregados foram avaliadas em termos de 

estabilidade, microestrutura, tamanho de gota, potencial zeta, eletroforese em gel de 

poliacrilamida e liberação de ácidos graxos livres. As mudanças nas propriedades físicas, nas 

diferentes etapas da digestão, dependeram das propriedades do emulsificante. Estas mudanças 

podem ser atribuídas às condições físico-químicas do ambiente e a hidrólise das proteínas 

aderidas na interface devido a ação da pepsina sob as condições gástricas, bem como a ação dos 

sais biliares e da lipase sob as condições da fase intestinal. Os heteroagregados se desfizeram 

na etapa gástrica devido a repulsão eletrostática entre o caseinato de sódio e a lactoferrina no 

pH gástrico. A liberação de ácidos graxos livres foi menor para a emulsão estabilizada com 

lactoferrina, sendo atribuído à maior interação desta proteína com os sais biliares (SARKAR et 

al., 2010; ZHANG et al., 2015). No entanto, os heteroagregados apresentaram a menor 

liberação de ácidos graxos livres, possivelmente devido a interação dos peptídeos que foram 

digeridos, suprimindo a digestão lipídica.  

A produção de emulsões gel-like através da técnica de gelificação a frio também foi 

avaliada. Para isso, dispersões de lactoferrina foram previamente tratadas por aquecimento 

ôhmico ou convencional e caracterizadas em termos físicos e estruturais. Os efeitos do 

aquecimento na estrutura secundária e agregação térmica da lactoferrina foram avaliados a fim 

de fornecer conhecimento sobre os mecanismos que podem influenciar nas propriedades das 

emulsões gelificadas. Foi possível produzir emulsões gel-like com um pré-aquecimento das 

dispersões de lactoferrina por ambos os tratamentos térmicos. Sua formação foi atribuída ao 
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efeito combinado da capacidade emulsificante da lactoferrina, o método de emulsificação e o 

tratamento térmico da proteína. O aquecimento ôhmico influenciou no desdobramento e 

agregação das moléculas de lactoferrina, sendo que as variáveis elétricas inerentes a este 

tratamento possivelmente afetaram a flexibilidade molecular das proteínas (PEREIRA et al., 

2010; PEREIRA et al., 2011; RODRIGUES et al., 2015). Comparado ao aquecimento 

convencional, foi possível obter moléculas menos agregadas, o que foi confirmado pelo menor 

aumento de tamanho, turbidez, fluorescência, grupos sulfidrilas livres e diferença no sinal 

dicroico, refletindo diretamente nas emulsões obtidas. As propriedades reológicas e 

microestruturais dependeram do tipo de aquecimento, sendo que o aquecimento convencional 

possibilitou a formação de emulsões gel-like com uma estrutura mais forte. O aquecimento 

ôhmico demonstrou ser uma tecnologia de aquecimento eficiente que pode ser usada para 

modular a desnaturação térmica da lactoferrina e levar à formação de emulsões gel-like com 

características distintas. Estas emulsões podem ser interessantes em diversas aplicações, como 

texturizantes, substitutos de gordura e carreadores de bioativos lipossolúveis e sensíveis ao 

calor. 
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8.1 CONCLUSÃO GERAL  

 

Com base nos estudos realizados no decorrer deste projeto foi possível concluir que: 

 

A caseína e a lactoferrina têm características conformacionais distintas e mostraram 

comportamento oposto quando submetidas a forças mecânicas resultantes da cavitação 

ultrassônica. O tratamento ultrassônico prévio das proteínas melhorou suas propriedades 

emulsificantes, mas este tratamento quando em conjunto com o processo simultâneo de 

formação de gotas resultou em emulsões mais estáveis, facilitando a deposição dos 

emulsificantes na interface óleo/água. 

 

Heteroagregados com características distintas foram produzidos dependendo da 

composição das emulsões, sendo que os maiores heteroagregados que apresentaram boa 

estabilidade à cremeação foram produzidos com uma proporção em volume de 60 % de emulsão 

estabilizada por lactoferrina e 40 % de emulsão estabilizada por caseinato de sódio. Além disso, 

a adição de NaCl não influenciou a estabilidade dos heteroagregados. Os heteroagregados 

apresentaram comportamento reológico muito mais estruturado que uma emulsão simples 

mantendo-se a mesma fração volumétrica de óleo.  

 

A digestão lipídica dependeu do tipo de emulsificante que recobria as gotas, bem 

como da ação das enzimas digestivas e dos sais biliares. Os heteroagregados se desfizeram na 

etapa gástrica devido à repulsão eletrostática entre o caseinato de sódio e a lactoferrina no pH 

gástrico. E na etapa intestinal estes heteroagregados apresentaram o menor percentual de 

liberação de ácidos graxos, possivelmente devido a interação dos peptídeos que foram 

digeridos, suprimindo a digestão lipídica. 

 

A formação de emulsões gel-like foi atribuída à capacidade emulsificante da 

lactoferrina, combinada com o método de emulsificação e o tratamento térmico da proteína. O 

tratamento térmico influenciou no desdobramento, desnaturação e agregação das moléculas de 

lactoferrina. As propriedades reológicas e microestruturais das emulsões dependeram do tipo 

de aquecimento, sendo que o aquecimento convencional possibilitou a formação de emulsões 

gel-like com uma estrutura mais forte. No entanto, o aquecimento ôhmico demonstrou ser uma 
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tecnologia de aquecimento eficiente que pode ser usada para modular a desnaturação térmica 

da lactoferrina e levar à formação de emulsões gel-like com características diferenciadas. 

De uma forma geral, foi possível avaliar o efeito do ultrassom e do aquecimento 

nas propriedades estruturais e tecnológicas das proteínas, bem como propor estratégias de 

estruturação de emulsões (heteroagregados e emulsões gel-like) visando a substituição e 

redução de gorduras em produtos alimentícios. Através dos ensaios de digestibilidade in vitro 

foi possível confirmar um menor percentual de liberação de ácidos graxos dos heteroagregados, 

mostrando assim um potencial uso como moduladores de saciedade. 
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8.2 SUGESTÕES PARA TRABALHOS FUTUROS  

 

São sugestões para trabalhos futuros: 

 

Substituir a lactoferrina na formação dos heteroagregados por polissacarídeos ou 

proteínas de menor valor agregado, bem como avaliar a estabilidade destes sistemas em 

diferentes condições de pH. 

 

Estudar maiores frações volumétricas de óleo ou maiores concentrações de 

emulsificantes na formação do heteroagregados, de forma a obter sistemas com maior 

viscosidade. 

 

Encapsular bioativos nas emulsões gel-like de forma a fazer um estudo comparativo 

com as emulsões controle quanto à estabilidade e/ou bioacessibilidade após a digestão in vitro. 

 

Fazer um estudo adicional sobre a influência das variáveis elétricas da tecnologia 

de aquecimento ôhmico na estabilidade e funcionalidade das moléculas de lactoferrina. 
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ANEXO I - Permissão para o uso do artigo correspondente ao Capítulo 3  
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ANEXO II Permissão para o uso do artigo correspondente ao Capítulo 4 
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