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RESUMO 

 

A análise da fluidodinâmica em reatores de coluna de bolha é importante na compreensão 

dos mecanismos relacionados à transferência de calor, transferência de massa e taxa de reação 

química. A precisão das medições experimentais depende diretamente do domínio de medição. 

A Velocimetria por imagem de partículas (PIV) é uma técnica não intrusiva utilizada para 

determinar o campo de velocidade 2D ou 3D. Um campo 2D-3C (bidimensional, três 

componentes) pode ser determinado por duas câmaras com projeções diferentes numa 

disposição estereoscópica (PIV 2D-3C). A perda de correlação devido ao movimento fora do 

plano de pares de imagens de partículas, que é comum em aplicações PIV, pode ser reduzida 

usando o sistema PIV 2D-3C. Um problema encontrado nas aplicações 2D-3C PIV está 

relacionado com o acesso óptico em algumas instalações. Para determinar a velocidade da fase 

líquida, não é interessante registrar as bolhas no escoamento multifásico. Por conseguinte, as 

partículas traçadoras fluorescentes combinadas com um filtro passa-alta na câmara são 

utilizadas nos sistemas Fluorescent PIV (F-PIV). Este trabalho tem como objetivo avaliar a 

qualidade das medidas 2D-2C e 2D-3C F-PIV da velocidade da fase líquida no regime de 

escoamento homogêneo e de transição homogêneo-heterogêneo de uma seção de coluna de 

bolha. As imagens 2D-2C e 2D-3C F-PIV foram processadas utilizando standard cross-

correlation (SCC), ensemble correlation (EC) e sliding-average correlation (SAC) para 

comparar a qualidade das medições. O coeficiente de correlação cruzada, a relação sinal-ruído 

(SNR) e a quantificação de incerteza PIV estimada por estatísticas de correlação foram 

utilizados como indicadores de qualidade. A baixa concentração de imagem de partícula (baixa 

ppp) e a baixa faixa dinâmica de velocidade (baixa DVR) foram identificadas como fontes de 

ruído dominante nas medidas PIV. O efeito do baixo ppp foi relacionado diretamente com o 

comportamento dos indicadores de qualidade baseados na conectividade de vizinhança 

espacial, erro de reconstrução 3C e no diâmetro do pico de correlação. Quanto às condições de 

qualidade da abordagem SCC, foram obtidos cinco limites que garantem que os outliers (falsos 

vetores) podem ser corrigidos sem que o campo vetorial perca a representatividade do 

escoamento. No regime de escoamento homogêneo, os ruídos randômicos causados pela baixa 

ppp foram consideravelmente reduzidos utilizando a abordagem SAC. 

 

Palavras-chave: 2D-2C F-PIV; 2D-3C F-PIV; Ruído; Coluna de bolhas, Análise de qualidade. 

 



 

 

ABSTRACT 

 

The fluid dynamics analysis in bubble column reactors is important in understanding the 

mechanisms related to heat transfer, mass transfer and chemical reaction rate. The accuracy of 

the experimental measurements depends directly on the measurement domain. Particle image 

velocimetry (PIV) is a non-intrusive technique used to determine the 2D or 3D velocity field. 

A 2D-3C (two dimensional, three-component) field can be determined by two cameras with 

different projections in a stereoscopic arrangement (2D-3C PIV). The loss of correlation due to 

the out-of-plane motion of pairs of particle images, which is common in PIV applications, can 

be reduced using the 2D-3C PIV system. A problem encountered in 2D-3C PIV applications is 

related to optical access in some facilities. In order to determine the liquid phase velocity, it is 

not interesting to record bubbles in the multiphase flow. Therefore, fluorescent tracer particles 

combined with a high-pass filter on the camera are used in the Fluorescent PIV (F-PIV) systems. 

This work aims to evaluate the quality of the 2D-2C and 2D-3C F-PIV measurements of the 

liquid phase velocity in the homogeneous and homogeneous-heterogeneous transition flow 

regime of a bubble column. The 2D-2C and 2D-3C F-PIV images were processed using 

standard cross-correlation (SCC), ensemble correlation (EC), and sliding-average correlation 

(SAC) to compare the measurements quality. The cross-correlation coefficient, signal-to-noise 

ratio (SNR) and PIV uncertainty estimated by correlation statistics were used as quality 

indicators. The low particle image concentration (low ppp) and low dynamic velocity range 

(low DVR) were identified as dominant noise sources in the PIV measurements. The effect of 

the low ppp was directly related to the behavior of the quality indicators based on the spatial 

neighborhood connectivity, 3C reconstruction error, and correlation peak diameter. Regarding 

the quality conditions for SCC approach, five limits were obtained that guarantee that the 

outliers can be corrected without the vector field losing the representativeness of the flow. In 

the homogeneous flow regime, the random noise caused by low ppp was considerably reduced 

using the SAC approach. 

 

 

 

 

 

Keywords: 2D-2C F-PIV; 2D-3C F-PIV; Noise; Bubble column, Quality analysis. 



 

 

 

NOMENCLATURE 

 

Roman symbols 

 

di   Distance between the effective center of the lens and the image plane (m). 

DI   Interrogation window size (pixel) 

do   Distance between the object and the effective center of the lens (m) 

dp   Diameter of the tracer particle (m) 

dt   Interframe time (s) 

dτ   Particle image diameter (pixel) 

F∆   Loss of correlation due to local variation of the displacement 

F0   Loss of correlation due to the out-of-plane motion 

FI   Loss of correlation due to the in-plane motion 

I   Intensities in the image (count) 

LX   Size of the recording medium in X direction (pixel) 

LY   Size of the recording medium in Y direction (pixel) 

M   Mapping function 

M0   Image magnification 

NI   Particle image density per interrogation window 

ppp   Particle image concentration (particle per pixel) 

r   Radial position (m)  

R   Radius of the bubble column (m) 

RC   Average background correlation 

RD   Correlation peak of the particle images displacement 

RF   Correlation due to the random movement of particle images 

s   Position vector in the correlation plane (m) 

Sk   Stokes’ number 

t   Time (s) 

u   Radial component in-plane of velocity (m/s) 

u   Velocity modulus (m/s) 

∆u   Local variation of velocity 

UG   Superficial gas velocities (m/s) 



 

 

∆Umax-min  Difference between the maximum and minimum velocity of the flow 

(m/s) 

UQ   Quantification of PIV uncertainty (m/s) 

UQu   UQ for the velocity modulus (m/s) 

UQx   UQ for the radial component in-plane of velocity (m/s) 

UQx*   UQx normalized by the radial component in-plane of velocity (-) 

UQy   UQ for the axial component in-plane of velocity (m/s) 

UQy*   UQy normalized by the axial component in-plane of velocity (-) 

v   Axial component of velocity (m/s) 

w   Radial component out-of-plane of velocity (m/s) 

∆X   Particle image displacement (pixel) 

∆xp.max   Minimum scale can be resolved by PIV 

∆Z   Out-of-plane motion (pixel) 

∆Z0   Thickness of the light sheet (m). 

 

Greek Symbols 

 

ɛbias   Bias error (pixel) 

ɛMax3C-R  Allowed maximum error of 3C reconstruction (pixel) 

ɛr   Ratio of the average random error of the out-of-plane component by in-

plane component 

    The smallest resolved length scale (m) 

θ   Camera angle in a stereoscopic configuration (degrees) 

λ   Wavelength (nm) 

μ   Dynamic viscosity of the fluid (N s/m2) 

ρ   Density of the fluid (Kg/m3) 

ρp   Density of the tracer particle (Kg/m3) 

σ   Standard deviation 

τf   Characteristic time scale of the flow (s) 

τp   Relaxation time of the tracer particle (s) 

 

Abbreviations  

 

C   Component 



 

 

CCC   Cross-correlation coefficient 

CCD   Charge-coupled device  

CFD   Computational fluid dynamics 

CS   Correlation statistics 

D   Dimension 

DSR   Dynamic spatial range 

DVR   Dynamic velocity range 

EC   Ensemble correlation 

FoV   Field of view 

F-PIV   Fluorescent particle image velocimetry 

IW   Interrogation window 

LOS   Line-of-sight 

Nd:YAG   Neodymium-doped yttrium aluminum garnet 

PDF   Probability density function 

PIV   Particle image velocimetry 

PPR   Primary peak ratio  

PTU   Programmable time unit 

RMS   Root mean square 

SAC   Sliding-average correlation 

SCC   Standard cross-correlation 

SCC*   SCC with PIV post-processing 

SNR   Signal-to-noise ratio 

SSM   Subtract sliding minimum 
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CHAPTER 1.  

INTRODUCTION 

 

Bubble columns are intensively used as multiphase contactors and reactors in chemical, 

biochemical and petrochemical industries. They offer several advantages in respect to the high 

heat and mass transfer rates, compactness and low cost of operation and maintenance. Among 

the main advantages of the use of bubble columns compared with other multiphasic contactors 

are the less maintenance due to the absence of moving parts and the achievement of high values 

of effective interfacial area, overall mass and heat transfer coefficients. Moreover, with the use 

of bubble columns it is possible to avoid any problem of clogging or erosion with solids 

handling besides occupying less floor space, making the reactors cheaper. A relevant 

characteristic of the bubble columns is that slow reactions can be performed due to the large 

residence time of the liquid phase (Levich, 1962; Shah et al., 1982; Hyndman et al., 1997; 

Kantarci et al., 2005; Mudde, 2005). The accuracy and success of the design and scale-up of 

the bubble column requires a better understanding of the dynamics of multiphase flow and its 

influence on the bubble distribution (hold up), mixing and transport characteristics of the phases 

involved. Therefore, accurate investigations using computational fluid dynamics (CFD) and 

experimental data are needed (Degaleesan et al., 2001). Particle image velocimetry (PIV) is a 

non-intrusive technique often employed in determining the velocity field of multiphase flows. 

PIV has been used for over 30 years as a non-intrusive measurement technique to analyze 

various types of flows, but there is still a lack of robust quantification of the measurement 

uncertainty to guarantee reliable experimental data (Wieneke, 2014; Wieneke, 2015).  

According to Oberkampf and Roy (2010), the use of data with unknown uncertainty for 

validation of a numerical model exposes the researcher to two risks: (1) the rejection of a good 

model or, even more worrying (2) the acceptance of a bad model based on erroneous data, 

which can be used later in making a crucial decision. Most existing flows in industrial processes 

are completely 3D. The representation of the flow by a set of experimental measurements is 

directly related to the measurement domain. In general, PIV technique can be classified 
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depending on the measurement domain (dimension, D, and component, C) of the velocity 

distribution: 2D-2C (classic 2D PIV), 2D-3C (stereo-PIV) and 3D-3C PIV (holographic-PIV 

and tomographic-PIV). The PIV performance depends mainly on the concentration of tracer 

particles, particle image diameter, quality of the recorded images and processing. 2D-2C PIV 

uses one camera generally oriented at 90 degrees from the illuminated plane. The resulting 2D-

2C vector field suffers from two deficiencies: (1) the out-of-plane velocity component is lost 

and (2) the in-plane velocity components present perspective error. Stereoscopic imaging (2D-

3C PIV) eliminates both the deficiencies above. Simultaneous views from two different off-

axis directions provide sufficient information to extract the out-of-plane component as well as 

to correct errors in the in-plane components. A problem encountered in 2D-3C PIV applications 

is the restricted optical access in some facilities allowing only the use of 2D-2C PIV (Prasad 

and Jensen, 1995; Prasad, 2000; Raffel et al., 2007; Adrian and Westerweel, 2011). 

In bubble columns, a major problem of PIV applications is the large laser light scattering 

by the bubbles in relation to the tracer particles, which may damage the camera sensor. To avoid 

this problem, fluorescent tracer particles and a high-pass filter on the camera are used to allow 

only the passage of light scattered by the tracer particles in the liquid phase. Even using a high-

pass filter, usually recorded images still present an unequal intensity distribution in the frame 

(complete image) interfering on the accuracy of the velocity distribution (Northrup et al., 1991; 

Lindken and Merzkirch, 2002). The PIV technique that uses fluorescent tracer particles and 

high-pass filter is known as Fluorescent PIV (F-PIV). In addition, the presence of the bubbles 

contributes directly to uneven lighting inside the column forming regions with shadows mainly 

for high superficial gas velocities. In addition, the distortion caused by the curvature of the 

column can cause position and velocity errors. 

 

1.1.GENERAL GOALS 

 

This work aims to evaluate the quality of the 2D-2C and 2D-3C F-PIV measurements in 

a bubble column section. The velocity fields were determined by the standard cross-correlation 

(SCC) approach for a superficial gas velocity (UG) of 0.152, 0.528, 2.106, and 4.212 cm/s. The 

quality of the velocity modulus and components of the liquid phase is analyzed by means of 

cross-correlation coefficient, signal-to-noise ratio (SNR), spatial coherence, and uncertainty 

estimated using correlation statistics. Besides that, the fields determined by the SCC and 

ensemble correlation (EC) approaches were compared to analyze the measurement quality. In 
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addition, the sliding-average correlation (SAC) was used to investigate in detail the noise effect 

in the average field. The effect of a spatial filter in post-processing was also investigated. 

 

1.2.SPECIFIC GOALS 

The specific goals of this work are: 

 

- Optimize the PIV experimental set up;  

- Determine the distribution of PIV quality indicators;  

- Relate the PIV quality indicators with the false vectors present in the velocity field;  

- Investigate the effect of the main noisy sources of the experiments; 

- Investigate the quality of the PIV measurements for different UG; 

- Compare the 2D-2C and 2D-3C F-PIV measurements; 

- Evaluate the effect and performance of the PIV post-processing on the velocity field; 

- Investigate the noise effect on the instantaneous and average fields for both techniques. 

- Optimize the PIV processing;  

 

 

1.3.OUTLINE OF THIS THESIS 

 

This work is divided in 7 chapters, according to the order summarized below: 

 

Chapter 1 presents a brief introduction regarding the importance and challenges of the 

PIV applications in bubble column. The motivations and the aim of this study are also shown. 

Chapter 2 presents the working principle and the main components of the 2D-2C and 

2D-3C F-PIV systems. The main sources of noise and PIV quality indicators are also discussed. 

Chapter 3 presents the main PIV applications in bubble column. Different experimental 

configurations, image processing and limitations of the technique are detailed. 

Chapter 4 presents the characteristics of the investigated bubble column and the F-PIV 

systems used in this work. In addition to the experimental conditions, a preliminary test of the 

camera set up is discussed in detail. 

Chapter 5 presents the image analysis settings. Parameters for the PIV preprocessing, 

processing and post-processing are detailed. 
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Chapter 1 - Introduction 

 

 

 

Chapter 6 presents the results and discussion of the quality analysis of the F-PIV 

measurements in the bubble column. The effects of the main noise sources are analyzed in the 

instantaneous and averaged fields for both techniques. 

Chapter 7 presents the conclusions and recommendations for future work. 

 

  



 

 

 

 

CHAPTER 2.  

2D-2C AND 2D-3C PIV SYSTEM 

 

This chapter presents the working principle and basic concepts of the image analysis of 

2D-2C and 2D-3C PIV systems. In addition, errors and noise sources in PIV recording and 

analysis are detailed. 

The imaging of 2D-3C systems to solve the perspective error in 2D-2C systems is 

discussed. Moreover, the principle of reconstruction of the third velocity component is detailed. 

The method of uncertainty quantification based on correlation statistics and the 

propagation of uncertainty for the average fields are also presented and detailed. 

All the concepts presented in this chapter are important in understanding the 

experimental set ups and in the image processing presented in Chapters 3, 4 and 5. 
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2.1.PRINCIPLE 

 

The working principle of the 2D-2C and 2D-3C PIV system is schematically represented 

in Figure 2.1. Basically, the PIV analysis can be divided into five steps: calibration, recording, 

image preprocessing, processing (PIV correlation and 3C reconstruction), and post-processing 

(Raffel et al., 2007; Adrian and Westerweel, 2011). 

 

 

 

Figure 2.1 - Working principle of the ( ) 2D-2C and ( ) 2D-3C PIV system. 

 

The technique employs tracer particles that must faithfully follow the flow allowing for 

the calculation of the velocity based on the instantaneous position of the tracer population. 

Generally, the particles are illuminated by a laser light source and are homogeneously 

distributed in flow. The light scattered by the particles is registered on the camera sensor located 

at 90° from the light sheet so that the object plane in focus coincides with the slice illuminated 

in flow (Figure 2.2a). The recorded images are transferred to a computer for PIV analysis. 

Instead of determining the displacement of individual particle images, the PIV analysis 

determines the moving average of small populations of particle images contained in regions 

known as interrogation windows (IW) providing a displacement vector per window (Figure 

2.2b). This procedure is known as PIV interrogation (Soloff et al., 1997; Raffel et al., 2007; 

Adrian and Westerweel, 2011). 
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Figure 2.2 – Representation of the (a) geometric image and (b) PIV interrogation (Adapted 

from Amaral, 2013). 

The essence of PIV image is precisely to map the location of each particle (object plane 

or physical space) in the image plane in a calibration procedure. The image magnification is 

defined as M0 = di/do, where di is the distance between the effective center of the lens and the 

image plane and do is the distance between the object and the effective center of the lens (Figure 

2.2a). The mapping should be an M function (known as mapping function) that relates the three-

dimensional location of the particle in the flow field with the image plane. There are several 

ways to determine this function. For example, in a calibration procedure the least squares 

method can be used to determine a mapping function that approximates the data (the points of 

a target plate) and then minimize the mean square error (Soloff et al., 1997; Raffel et al., 2007; 

Adrian and Westerweel, 2011).  

The calibration steps are shown in Figure 2.3. The calibration process can be performed 

manually by the previous orientation of the line-of-sight (LoS) of the camera targeting the 

calibration target. Therefore, the camera lens require adjustment in order to avoid the generation 

of blurry images. In general, different experiments may require different calibration targets. 

The inaccuracies in PIV calibration may be caused by optical distortion due to inaccurate optical 

alignment, imperfection in lens design, refraction of optical windows, fluid interfaces and other 

optical elements in an experiment. In 2D-3C PIV calibration, the mapping of two planes is 

needed for each camera, totaling two mapping functions per camera. Projections of the velocity 

vectors on each camera, which correspond to the same real displacements, are associated. The 

three velocity components are represented by the matrices MB1 and MB2 of each camera (Soloff 

et al., 1997; Raffel et al., 2007; Adrian and Westerweel, 2011).  
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Figure 2.3 – Calibration steps. (a) PIV recording process for a single camera with nonzero 

distortion. (b) Points of the calibration plate. (c) Identification of the points and (c) and 

adjustment of the "mapping function" (red lines) by software Davis 8.2. 

 

In the double-frame recording, a PIV algorithm (usually the standard cross-correlation, 

SCC) is used to correlate the particle images at two different instants of time. The PIV 

correlation plane (Figure 2.4) represents the probability distribution of all possible patterns of 

particle image displacement between consecutive frames and it may be written by Eq. 2.1. This 

plane presents a combination of the effects of various errors that govern the accuracy of the 

particle image displacement pattern. In Eq. 2.1, RD is the correlation peak of the particle images 

displacement, RC is the average background correlation and RF is the correlation due to the 

random fluctuation in the interrogation window. The PIV preprocessing aims to increase the 

image quality obtained in recording before making the calculation of PIV cross-correlation in 

the processing. The choice of the image treatment using spatial and temporal filters performed 

in the preprocessing can improve or harm the information contained in recording. In 2D-3C 

PIV system, the 2D-2C vector fields of each camera are reconstructed to obtain the third 

velocity component. The reconstruction quality of the third velocity component (also called 3C 

reconstruction or Stereo reconstruction) depends on the accuracy of the 2D-3C PIV calibration. 

The 3C reconstruction is accurate when the calibrated image is aligned with the object plane 

(illuminated plane) (Adrian, 1991; Soloff et al., 1997; Prasad, 2000; Raffel et al., 2007; Adrian 

and Westerweel, 2011). 

a.

b. c. d.

Camera

LoS

Calibration target Optical 
window

LoS without  distortion
LoS with  distortion
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Figure 2.4 - Correlation peak of the particle images displacement (RD) and noise sources (RC 

and RF) in the correlation plane for an interrogation window size of 128 pixels. 

 

( , ) ( , ) ( , ) ( , )C F DR s t R s t R s t R s t          (2.1) 

 

The SCC approach is used to determine the instantaneous flow fields for analysis of the 

turbulent parameters and average distribution. A disadvantage of the SCC approach is that the 

fields are easily degraded in the presence of noise. However, the ensemble correlation (EC) 

approach is more robust but only determines the average fields (Figure 2.5). This approach 

sums the ( , )R s t  (Eq. 2.1) in time before the calculation of the vector field. The quality of the 

average field estimated by the EC depends directly on the number of frames used. The EC 

approach can be used to analyse the quality of the processing by the SCC one. If the fields 

processed by the SCC are free of noise, then the average fields determined by the SCC and EC 

are equal (Meihart et al., 2000; Raffel et al., 2007; Adrian and Westerweel, 2011). 

The sliding-average correlation (SAC) approach was applied by Scarano et al. (2010) to 

increase the measurement accuracy of the velocity fluctuations. This approach can reduce the 

random component of the measurement error by averaging the correlation functions of a small 

temporal kernel, k (Figure 2.6). When 𝑘Δ𝑡 ≪ 𝜏 (is   the characteristic time scale of the flow 

fluctuations), the result can be regarded as instantaneous (Sciacchitano, 2014). Effect of the 

SCC and SAC approach in a time series is presented in Figure 2.7. 
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R +RC F

Interrogation 
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Figure 2.5 - Comparison between the ensemble correlation (EC) and standard cross-

correlation (SCC) approach. 

 

 
Figure 2.6 - Scheme of the sliding-average correlation (Sciacchitano, 2014) 

 

 

 
Figure 2.7 – Effect of the SCC and SAC approach in a time series. 
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In a noiseless field, the velocity value in the interrogation window varies smoothly 

between its neighborhoods. However, in PIV measurements it is difficult to avoid the presence 

of false vectors in the field. The neighborhood connectivity is the basis for the development of 

spatial and temporal filters in PIV post-processing. Post-processing filters based on the spatial 

and temporal coherence may fail in the presence of false vectors groups (outlier clusters). A 

measurement is said to be spatial and temporal coherent when its distribution varies smoothly 

(in space and time) between adjacent interrogation windows (Raffel et al., 2007; Adrian and 

Westerweel, 2011; Sciacchitano, 2014; Masullo and Theunissen, 2016). The effect of the PIV 

post-processing on fields with outliers (false vectors that are easily detected) can be seen in 

Figure 2.8. 

 

 

Figure 2.8 – Effect of the PIV post-processing on fields with outliers. 

 

2.2. ERROR AND NOISE SOURCES 

 

Errors are defined as the difference between the measurement and true value (unknown). 

Total errors consist of systematic (bias) and random errors (Coleman and Steele, 2009). 

Systematic errors are defined as errors that are fixed depending on their sources. The nature of 

these errors is that they follow a trend that makes them predictable. In PIV systems, systematic 
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errors include calibration errors and errors due to failure in adjusting the correlation peak when 

the particle image diameter is smaller than one pixel (peak-locking, Figure 2.9a), for example 

(Westerweel, 1997; Raffel et al., 2007; Adrian and Westerweel, 2011; Sciacchitano, 2014). 

 

 
Figure 2.9 – PIV measurement with (a) peak locking, (b) random noise, and (c) outliers. 

 

By tuning the PIV setup and processing, the systematic errors can be reduced or removed. 

Random errors are different for each measurement and are associated with noise in the 

recordings, out-of-plane motion, low concentration of tracers (“low density”), high 

concentration of tracers (“high density”), and displacement gradients among other sources of 

error (Figure 2.9b). These errors typically range between 0.03 and 0.1 pixel, which makes their 

identification difficult. In contrast, outliers are of the order of several pixels. Outliers are wrong 
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estimates of the displacement that occurs when the interrogation windows contain insufficient 

particle image pairs and a high noise level (Figure 2.9c). In general, an outlier may be defined 

as an observation (data point) which is very different from the rest of the data. Although this 

error may be considered acceptable for the instantaneous velocity, it can prevent the accurate 

evaluation of statistical quantities derived from fields such as the Reynolds stresses, 

acceleration, velocity gradient, divergence and vorticity (Westerweel, 1997; Raffel et al., 2007; 

Adrian and Westerweel, 2011; Sciacchitano, 2014). 

 

2.2.1. Distortion of the particle image 

 

Recorded images of the particles are subject to deformation (defocusing) and the 

individual particles can be recorded by the CCD (charge-coupled device) sensor as blurred. 

Optical windows as ducts, columns or complex geometries and fluids with different refractive 

indices produce distortion in the image. The distortion is directly related to the distribution of 

the refractive index on the environment, producing two types of systematic errors: position and 

velocity error. Before the recording of the particle images, the distortion caused by optical 

windows can be corrected by the image deformation using the mapping function obtained in 

PIV calibration. This mapping function is used to reconstruct the image compensating the 

distortion caused by the optical windows. However, the compensation of the defocusing of 

particle individual images in the flow is more difficult. Besides the defocus, the particle image 

can be shifted from its actual position because of refraction, which is designated as optical 

displacement.  

According to Elsinga et al. (2005a, 2005b), the main disadvantage of the particle image 

blur is a consequent reduction in the particle image contrast and signal-to-noise ratio (SNR). 

Furthermore, the blur effect on the particle image can cause the enlargement of the correlation 

peak and can decrease the measurement accuracy. This peak elongation depends on the 

displacement of tracer particles in the recordings (Figure 2.10). If the tracer particle is moved 

from an undistorted region to a distorted (Figure 2.11), the cross-correlation map will be 

elongated resulting in an error of sub-pixel order (also known as bias). However, the map is 

symmetrical and without bias errors when the particles are blurred by the same amount on both 

recordings. According to the simulations carried out by Elsinga et al. (2005a), the particle 

images can be divided into four types in an environment with heterogeneous distribution of the 

refractive index: not distorted, blurred (elongated), duplicate, and duplicate with blurring 
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(Figure 2.12). Duplicate images of particles can further decrease the SNR since they may have 

different displacements of real particles (tracer particles). 

 

 
 

Figure 2.10 – Correlation plane for the image (a) without and (b) with the distortion effect 

(Adapted from Elsinga et al., 2005a). 

 

 
Figure 2.11 – Differences between distorted and undistorted medium (Adapted from Elsinga 

et al., 2005b). 

 

b.
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Figure 2.12 – Four types of particle image in an environment with heterogeneous distribution 

of refractive index: (a) not distorted, (b) blurred (elongated), (c) duplicate, and (d) duplicate 

with blurring (Adapted from Elsinga et al., 2005a). 

 

2.2.2. Background noise 

The quality of the images should normally be already guaranteed in the recording, 

optimizing the illumination of the particle tracers and positioning of the camera to eliminate the 

images background noise (Fincham and Spedding, 1997). Furthermore, a darkroom can be used 

to decrease or eliminate the background illumination. In practice, however, these conditions are 

hardly ever performed. The intensity of the laser light can vary in the frame or between the 

image frames due to differences in the two lasers (in the case of a Nd:YAG laser system). 

Furthermore, optical windows, objects in motion, and bubbles can introduce strong light 

reflections. Any light that is not the particle images contributes to the correlation plane as 

background intensity noise (RC in Eq. 2.1) causing systematic errors. Several approaches such 

as temporal and spatial filters are available in the literature to reduce the effect of these problems 

(Northrup et al., 1991; Westerweel 1993; Raffel et al., 2007, Adrian and Westerweel, 2011) 

In multiphase systems, the use of Fluorescent PIV (F-PIV) systems to solve this problem 

is quite common. This system uses fluorescent tracer particles and a high-pass filter on the 

camera to allow only the passage of light scattered by the tracer particles (Figure 2.13). Even 

using a F-PIV, usually recorded images still present an unequal intensity distribution in the 

frame interfering on the velocity accuracy (Lindken and Merzkirch, 2002; Honkanen and 

Nobach, 2005; Shavit et al., 2007; Theunissen et al., 2008; Seol and Socolofsky, 2008; Niels et 

al., 2010). 
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Figure 2.13 – (a) Representation of a Fluorescent PIV system (b) Excitation and emission 

spectrum of the Rhodamine B based on Wilson et al. (1986). 

2.2.3. Noise in correlation 

 

2D-2C PIV is based on matching two images to calculate a displacement field (dx, dy) as 

the best fit between the intensities in the frame 0, 0I , and frame 1, 

1

*

1( , ) ( ( , ), ( , ))I x y I x dx x y y dy x y   , of the Figure 2.4. Typically, this involves maximizing 

the correlation given by the sum of 0 1I I  (Wieneke, 2015). In PIV interrogation, the majority 

of the parameters are set considering a uniform displacement field (Westerweel, 1993; 

Westerweel, 1997; Olsen and Adrian, 2001; Adrian and Westerweel, 2011). Under these 

conditions, it was shown that the width of the correlation peak is proportional to the particle 

image diameter, dτ (Westerweel, 2000; Westerweel, 2008). However, PIV is applied to study 

the flow fields that are typically non-uniform.  

The parameters that influence the measurement error attributable to PIV interrogation is 

the dτ, particle image density per interrogation window (NI), particle image contrast, out-of-

plane and in-plane motion associated with the velocity gradient (Scarano, 2002). For uniform 

displacement, the detection of the correlation peak is proportional to I I ON F F F   , where FI, 

FO, and FΔ are the loss of correlation due to the in-plane motion, out-of-plane motion and due 

to local variation of the displacement, respectively. Unfortunately, NI, FI, FO, and FΔ are 

unknown in the measurements of flow velocity (Keane and Adrian, 1990; Hain and Kahler, 

2007; Westerweel, 2008). 

An extensive study using Monte Carlo simulation for double-exposure single-frame, 

multiple-exposure single-frame, and single-exposure double-frame was performed by Keane 
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and Adrian (1990, 1991, 1992). This study resulted in four practical design rules for PIV 

measurements: 10IN  , 4ID X , 0 4Z Z   , and 𝑎 ≡ 𝑀0|Δ𝐮|Δt ≪ d𝜏, where a  is the 

velocity gradients, X  is the particle image displacement, DI is the interrogation window size, 

Z  is the out-of-plane motion, 0Z  is the thickness of the light sheet, and u  is the local 

variation of velocity. A practical measure of cross-correlation quality that can be associated 

with the I I ON F F F     is the signal-to-noise ratio (SNR), which is defined as the ratio of the 

highest correlation peak and the second highest peak (Kahler and Kompenhans, 2000; Pereira 

et al., 2004). Numerical investigations show that a correlation coefficient of 0.5 and an SNR of 

2.0 are ideal to avoid errors in the field vector (Hain and Kahler, 2007). 

In PIV interrogation, a discrete window shift technique (Westerweel et al., 1997) can be 

used to increase the SNR by offsetting the interrogation windows according to the mean 

displacement (Figure 2.14b).  

 

 

Figure 2.14 – PIV Interrogation: (a) Without and (b) with the offseting the interrogation 

window. (c) Iterative technique based on the offseting and deformation of the interrogation 

window 
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Analysis of the cross-correlation may be performed with an iterative technique based on 

the deformation of the interrogation window (Scarano, 2002), where the interrogation windows 

are deformed based on the result of the previous interrogation (Figure 2.14c). Moreover, 

multiple steps may be employed in which the size of the interrogation window can be 

progressively decreased (Raffel et al., 2007; Adrian and Westerweel, 2011). 

The PIV performance may be associated with the multiplication of the dynamic velocity 

range (DVR) and dynamic spatial range (DSR). LX and LY are the size of the recording medium, 

then the field of view in the fluid is given by ℓ𝑥 = 𝐿𝑋 𝑀0⁄  and ℓ𝑦 = 𝐿𝑌 𝑀0⁄ , then 

    0 ,max 0 ,maxDSR Min ,X p Y pL M x L M x   , where 
,maxpx  is the resolved minimum 

scale. DSR can be increased by increasing the number of pixels, or by using smaller 

interrogation windows. On the other hand, DVR is defined as the ratio between the maximum 

and minimum velocity which can be solved as 
,maxDVR= .p xx   For PIV conventional 

systems, DVR usually reaches values up to 200-300 (Adrian, 1997; Hain and Kahler, 2007). 

 

2.2.4. Perspective error and 3C reconstruction 

 

A major limitation in 2D-2C PIV systems is caused by the perspective error on the in-

plane velocity components. This problem can be solved by using a 2D-3C PIV system that 

applies two cameras with different projections to record simultaneously the same field of view 

to determine the out-of-plane motion of the tracer particles providing a 2D-3C velocity field 

(Figure 2.15) (Raffel et al., 2007; Adrian and Westerweel, 2011). 

 

 

Figure 2.15 - Schematic representation of the 2D-2C and 2D-3C PIV imaging. 
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Lawson and Wu (1997) analyzed the best angle for 3C reconstruction through a geometric 

model. The authors investigated the ratio of the average random error of the out-of-plane 

component by in-plane component (
r RMS z RMS x   ) as a function of the camera angle ( 2 ) in 

a stereoscopic configuration. The lowest 
r  is obtained when 2  = 90 degrees (Figure 2.16). 

This condition requires a high optical access of the investigated area and large image distortion 

due to curvatures of optical windows or fluid interfaces. In various practical situations, 2  

between 60 and 80 degrees provide an out-of-plane component with high accuracy. The 

Scheimpflug condition is used as a method to obtain images in good focus over the entire image 

plane. This condition requires that the object plane, lens plane, and image plane are colinear. 

The use of the Scheimpflug condition results in a significantly non-uniform magnification 

(di/do) across the image plane. Besides that, the presence of out-of-plane motion or the non-

overlapping of the two laser sheets change the relative intensity between particle images at first 

and second exposure. This difference of intensity was demonstrated to be the source of large 

errors (Raffel et al., 2007; Nobach and Bodenschatz, 2009; Adrian and Westerweel, 2011). 

 

 
Figure 2.16 - Ratio of the average random error of the out-of-plane component by in-plane 

component (
r RMS z RMS x   ) as a function of the camera angle ( ) in a stereoscopic 

configuration investigated by Lawson and Wu (1997). 

In 2D-2C fields, multiple passes decreasing the interrogation window size (multiple steps) 

can be used to increase the SNR in the PIV interrogation. Usually, the 2D-2C vector fields 

converge sufficiently (match between the particle images) after four passes at the final 

interrogation window size. The image dewarping and image deformation are done 
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simultaneously before each step in the multi-pass iterative scheme. The image dewarping is 

performed to compute the 2D-2C fields in the correct positions of the spatial coordinates. A 

sub-pixel interpolation is required during this process. The image deformation aims to 

compensate the distortion caused by the environment. The size and shape of the interrogation 

windows for both cameras must be the same, i.e., the correlation must be done on the same 

particle images. A preliminary stereo reconstruction is done to remove the false vectors in the 

2D-2C fields. Usually, these false vectors produce larger reconstruction errors (larger than 1 

pixel). Then, the stereo reconstruction is performed solving a system of four linear equations 

with three unknowns (u, v, w). The deviation (reconstruction error) from the measured (ui1, vi1) 

and (ui2, vi2) reconstructed in image plane can be calculated from (u1, v1) and (u2, v2) components 

in 2D-2C vector field. Usually, the reconstruction error is below 0.5 pixels when the 2C vector 

error is less than 0.1 pixel. The reconstruction is accurate when the calibrated image is aligned 

with the object plane (illuminated plane) (Calluaud and David, 2004; Wieneke, 2005). 

 

2.3. UNCERTAINTY QUANTIFICATION: CORRELATION STATISTICS METHOD 

 

Currently, four methods of quantification of PIV uncertainty have been in focus: 

uncertainty surface (Timmins et al., 2012), primary peak ratio (Charonko and Vlachos, 2013), 

particle disparity (Sciacchitano et al., 2013), and correlation statistics (Wieneke, 2014, 

Wieneke, 2015). Sciacchitano et al. (2013, 2014) experimentally analyzed the four methods of 

uncertainty quantification and observed that the correlation statistics (CS) approach provides 

the most accurate estimates using the standard cross-correlation (SCC). The CS method 

analyzes the overall contribution of pixel intensity to the shape of the correlation function. 

Furthermore, this method is based on the assumption that the PIV interrogation algorithm 

should always produce a symmetric correlation peak after convergence. In this case, the image 

in frame 1, 
1I , is dewarped back onto image in frame 0 using the displacement field u (Eq. 2.2) 

keeping image in frame 0, 
0I , constant.  

 

*

1 1( ) ( ) I x I x u           (2.2) 

 

In Figure 2.17, ( )   C C u x  should be equal to ( )  C C u x  for a small distance 

x  away from u (Eq. 2.3). However, the contribution of the unmatched particle images and 

image noise produces the asymmetrical shape of the correlation peak (Figure 2.18). In this case, 
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fitting a Gaussian curve through the three points leads to the residual displacement δu given by 

Eq. 2.4. A measured displacement error is obtained when δu is optimized by the PIV predictor–

corrector scheme as ΔC equals zero again (Eq. 2.5). The uncertainty estimation of the 

displacement field is obtained from δu and the standard deviation of  iC . 

 

 

Figure 2.17 - Correlation function, C(u) (Wieneke, 2015). 

 

 * *

0 1 0 1( , ) ( , ) ( , ) ( , ) 0        C C C I x y I x x y I x y I x x y   (2.3) 
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Figure 2.18 - Correlation function for (a) ideal noise-free image and (b) with added noise. (c) 

Correlation peak shifted by the PIV predictor–corrector scheme (Wieneke, 2015). 

Assuming that the samples are independent and follow a normal distribution of the 

standard deviation σx, the standard uncertainty of the time-averaged value is defined by Eq. 2. 

6 (Benedict and Gould, 1996; Bendat and Piersol, 2010), where N is the number of samples. 

Ahn and Fessler (2003) reported that for N ⩾ 30 the Eq. 2.6 presents precision of 1% (Coleman 

and Steele 2009). When the samples are not independent, the parameter N must be substituted 

with the effective number of independent samples Neff (Eq. 2.7), where the autocorrelation 

coefficient between two samples ( )n t   is considered for an interval t  and time step n.  

( ) 1




  n t  and consequently Feff FN N  when the measurements are correlated. In 

Equation 2.6, the systematic errors due to spatial modulation errors or peak locking are not 

taken into account. The standard deviation  u
 (Eq. 2.8) contains both the true velocity 

fluctuations (
,u fluct

) and the measurement errors (
,u err

), where 
uU  is the uncertainty of the 

instantaneous velocity component and 2

uU  is the mean-square of 2

uU  (Sciacchitano and 

Wieneke, 2016). 
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CHAPTER 3.  

PIV APPLICATIONS IN BUBBLE COLUMNS 

 

This chapter presents a brief review of the literature on flows in bubble column. The 

flow characteristics of the liquid and gaseous phase are discussed in each flow regime. In 

addition, the shape of the bubbles in different conditions is detailed. 

Examples of different configurations of PIV systems in bubble column are also 

presented in this chapter. The adaptations and purpose of each PIV application are detailed. 
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3.1. FLOW IN BUBBLE COLUMN 

3.1.1.  Flow regimes 

The characterization of the fluid dynamics has a significant effect on the operation and 

performance of the bubble column reactor. The regimes in these reactors are classified 

according to the gas superficial velocity. Basically, three regimes can be observed (Figure 3.1): 

homogeneous (bubbly flow), heterogeneous (churn-turbulent), and slug flow (Shah et al., 

1982). The bubbly flow regime is characterized by the quasi-uniform distribution of the bubbles 

through the column radius. Typically, this regime occurs when the gas superficial velocity is 

less than 0.05 m/s (aqueous solution) and the rising velocity of the bubbles is between 0.18 and 

0.30 m/s. The turbulent regime is achieved as the gas superficial velocity in the column 

increases. The gas-liquid dispersion leads to an unstable flow pattern with increasing velocity. 

This heterogeneous regime presents large bubbles moving with high velocities in the presence 

of small bubbles. The random velocity distribution induced by the bubbles when no turbulent 

production occurs is defined as “pseudo-turbulence” (Lance and Bataille, 1991). The slug 

regime occurs in columns of smaller diameters and high gas rates. In this regime, the bubbles 

are stabilized near the column wall, causing to formation of large bubbles (Slug). In addition, 

there is a homogeneous-heterogeneous transition regime, in which the interaction between the 

gaseous and liquid phases varies considerably (Levich, 1962; Shah et al., 1982; Hyndman et 

al., 1997; Kantarci et al., 2005; Mudde, 2005).  

 

 

Figure 3.1 – Flow regimes in bubble columns (Shah et al., 1982) 

 

The effect of the column dimensions on flow regimes is important for the scale-up, 

design, and optimization of real apparatus. The effect of the column diameter, D, is often related 

to the turbulence scale, intensity of circulations, backmixing, axial dispersion, wall friction, and 

turbulent viscosity (Mersmann, 1978; Ueyama and Miyauchi, 1979; Shah et al., 1982; Tinge 
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and Drinkenburg, 1986; Deckwer, 1992, Kastanek et al., 1993; Groen et al., 1996; Zahradnik 

et al., 1997; Krishna et al., 1999, Baten and Krishna, 2001; Ruzicka et al., 2001). Flow regime 

in function (approximate dependency) of the gas superficial velocity, UG, and column diameter, 

DC (water and dilute aqueous solutions) is presented in Figure 3.2 

 

 

Figure 3.2 – Flow regime in function (approximate dependency) of the gas superficial 

velocity, UG, and column diameter, DC (water and dilute aqueous solutions) (Shah et al., 

1982). 

 

3.1.2.  Shape of the bubbles 

 

The shape of the bubble under the influence of the gravity are generally classified into 

three categories: spherical, ellipsoidal, and spherical-cap or ellipsoidal-cap. The “spherical” 

form is obtained when inertial forces become significant in respect to viscous forces (creeping 

flow or stokes flow). The “ellipsoidal” bubbles presents convex interface (viewed from inside) 

around the entire surface. In addition, bubbles with ellipsoidal shapes exhibit periodic dilation 

or random oscillation movements. The “spherical-cap” form is observed in large bubbles tend 

to adopt flat bases and asymmetric (Cliff et al., 1978). 
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Figure 3.3 – Ellipsoidal bubbles (Adapted from Cliff et al., 1978). 

 

 
Figure 3.4 - Spherical-cap bubbles (Adapted from Cliff et al., 1978). 

 

The shape of the bubble can be correlated in terms of the Eötvös number (Eq 3.1), 

Morton number (Eq 3.2), and Reynolds number (Eq 3.3) in Figure 3.5. In Eq. 3.1-3.3, de is the 

diameter of volume-equivalent sphere for the bubble, g is the gravitational acceleration,   is 

the interfacial or surface tension,   is the viscosity of continuous, U is the velocity of the 

bubble in relation to the fluid phase, and     b  is the absolute value of density 

difference between the bubble and continuous phase (Cliff et al., 1978). 
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    eEo g d           (3.1) 

34 2      M g          (3.2) 

Re    ed U           (3.3) 

 

 

 
 

Figure 3.5 - Shape regimes for bubbles in terms of the Eötvös number (Eo), Morton number 

(M), and Reynolds number (Re) (Adapted from Cliff et al., 1978). 
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The homogeneous flow regime is characterized by a narrow bubble size distribution and 

the bubble coalescence is insignificant. In addition, the radial and axial distribution of bubble 

size is uniform. In heterogeneous regime, large and small bubbles are observed, that is, this 

regime presents a wide distribution of bubble size. In addition, bubble coalescence 

predominates. In the slug regime, the shape of the bubble is affected by the wall of the column 

(Levich, 1962; Shah et al., 1982; Hyndman et al., 1997; Kantarci et al., 2005; Mudde, 2005). 

 

3.2. PIV IN BUBBLE COLUMN 

Most PIV applications in bubble columns are from adaptations of 2D-2C classical PIV 

systems. These adaptations mainly sought to solve the problems associated with the great 

scattering of light caused by the bubbles. In addition, the adapted PIV systems sought to 

simultaneously determine the velocity of the two phases. 

 

3.2.1. 2D-2C measurements. 

Deen et al. (2000) used PIV/LIF, PIV, and LDA systems to investigate the multiphase 

flow in a bubble column (Figure 3.6). The PIV/LIF system combines the particle image 

velocimetry and laser induced fluorescence methods. This method uses two cameras and 

fluorescent tracer particles. Optical filters are used to obtain images of solely tracer particles 

with one camera and images of the dispersed phase with the other camera. The column used 

had a square cross-section of 0.15 x 0.15 m and a height of 1 m. The column was filled with 

distilled water and 4 g of sodium chloride per litre was added to obtain a non-coalescing system. 

In the PIV/LIF system, 300 image-pairs were recorded during a period of 900 s considering a 

superficial gas velocity of 0.5 cm/s. The interrogation window size was 64 x 64 pixel (0.01 x 

0.01 m). Some outliers in the velocity fields were detected and removed with two subsequent 

tests. The instantaneous velocity fields of both phases obtained by PIV/LIF are shown in Figure 

3.7. The bubble plume showed large random oscillations and most of the outliers were observed 

in the gas velocity field (Deen et al., 2000). 
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Figure 3.6 – Experimental PIV/LIF set-up used by Deen et al. (2000). 

 

 
Figure 3.7 – Instantaneous velocity field of (a) gas and (b) liquid phase. The measurement 

was made in the centre plane of the column at a height of 0.26-0.41 m (Deen et al., 2000). 

b.
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Lindken and Merzkirch (2000) used PIV system and high-speed camera to investigate the 

2D-2C velocity field of the liquid phase and 3D velocity of the bubbles for low UG. For the PIV 

system, a double-pulsed Nd:YAG laser (532 nm) was used as light source and the particle 

images were recorded with a CCD sensor (Figure 3.8). For determining the 3D positions of the 

bubbles, a 2.5-W cw Ar+ laser was also used as light source providing a light sheet orthogonal 

to the PIV light sheet. In addition, a digital high-speed camera (576 Hz) was positioned above 

the column to reconstruct the bubbles in the image space. In PIV evaluation, the digital mask 

technique was applied to separate the images of particles and bubbles. The images of the 

bubbles were processed, binarized, and reconstructed using the cameras projection in time. An 

instantaneous velocity field with 2D-2C for the liquid phase and 3D for the bubbles are 

presented in Figure 3.9a. Wake regions were observed using an interrogation window size of 

29 x 29 pixels (Figure 3.9b) for an average bubble diameter of 5.5 10-3 m. 

 

 
 

Figure 3.8 – Experimental set-up for simultaneous PIV measurements and 3D bubble 

visualization (Lindken and Merzkirch, 2000). 
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Figure 3.9 – (a) Velocity field with 2D-2C for the liquid phase and 3D for the bubbles. (b) 

Vorticity and velocity distribution in the wake region (Lindken and Merzkirch, 2000). 

Delnoij et al. (2000) developed the ensemble correlation approach that enables the 

simultaneous measurement of the tracer particles and bubbles velocities using a PIV system 

with a single CCD camera. In the correlation map (Figure 3.10), the ensemble cross-correlation 

function contains two distinct peaks: one associated with the displacement of the bubbles 

(RD
(BB)) and the other related to the displacement of the tracer particles (RD

(TT)). In addition, the 

amplitude of this bubble displacement component is proportional to the mean effective number 

of the bubble image pairs in the interrogation window.  

 
Figure 3.10 – Cross-correlation function (interrogation window size of 32 x 32 pixels) in two-

phase single-exposure, double-frame PIV (Delnoij et al., 2000). 

b.a.
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The authors studied the performance of the ensemble correlation approach using synthetic 

bubble-tracer particle patterns (Monte Carlo simulation). Moreover, the approach was tested by 

studying experimentally the two-phase flow in a pseudo-two-dimensional bubble column 

(Figure 3.11a). The image density of the tracers and their velocity were assumed to be constant 

and the image density of the bubbles was varied from 1 to 10. The authors did not investigate 

the effect of the bubble-tracer size difference. The particle and bubble images diameters were 

set as 2 pixels. The valid detection probability (number of correct measurements) was defined 

as the probability that a single interrogation window produces a bubble velocity measurement 

that is within 0.5 pixel of the bubble velocity specified as an input parameter for the Monte 

Carlo simulation. The valid detection probability increased as the number of images in the 

ensemble correlation set increased because the bubble displacement correlation peak was 

amplified. The overall noise level was decreased due to the mutual extinction of random noise 

peaks. The random noise level decreased by a factor 21/2 as the size of the ensemble correlation 

set increased by a factor of 2. 

 

 
Figure 3.11 – (a) Schematic representation of the pseudo two-dimensional bubble column 

used in the test experiments. (b) Liquid and bubble velocity field (Delnoij et al., 2000). 

The viewing section of the column (200 mm wide, 500 mm high and 8 mm deep) was 

constructed with ordinary glass. The gas was injected through five gas distributors. Low 

concentration of tracer particles was observed near the bubble plume. On the other hand, there 

b.a.
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were also distinct regions with a high concentration of tracer particles. The liquid and bubble 

velocity field in the pseudo two-dimensional bubble column is presented in Figure 3.11b. The 

experimental results revealed the capability of the PIV technique to measure simultaneously 

the whole field characteristics of the gas-liquid two-phase flow (Delnoij et al., 2000). 

Deen et al. (2001) used synthetic PIV images to derive theoretical rules that relate the 

maximum gas hold-up to the measurement accuracy in the flow of a bubble column. In addition, 

PIV images from an actual experiment were also used. The authors investigated the valid 

detection probability (number of correct measurements) under conditions existing in different 

regions of the flow (Figure 3.12). In the R1 area the bubble concentration is rather low and the 

valid detection probability is high. In the R3 area the bubble concentration is rather high and 

the valid detection probability is low. According to the authors, the measurement accuracy is 

not only a function of the gas fraction, but it also depends on the analysis technique. 

 

‘  

Figure 3.12 - Raw image at a gas volume fraction of about 1% (Deen et al., 2001). 

 

Lindken and Merzkirch (2002) developed a novel PIV system to determine phase-

separated velocity measurements in a two-phase flow of a bubble column (Figure 3.13). This 

system is a combination of the three PIV techniques most used in multiphase flows: PIV with 

fluorescent tracer particles, shadowgraphy, and the digital phase separation with a masking 

technique. For the recording of the particle images a double-pulsed Nd:YAG laser (532 nm) 

was used. Fluorescent tracer particles in the flow reflect part of the light and they emit light at 

a wavelength of 555–585 nm with an emission peak at 566 nm. A double-pulsed high-power 

light emitting diode (LED, 675 nm) array illuminates the multiphase flow for the recording of 

the bubbles. The flow is back-illuminated and the bubbles produce shadows. Both sets of 

information from the tracers and from the bubbles were recorded simultaneously in the same 

frame of the CCD sensor. The method is based on shifting the background intensity to higher 

R2

R3
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intensity values (Figure 3.14). The shadow image with light of wavelength 675 nm passes the 

optical high pass filter and the shadow image is recorded on the detector. They do not interfere 

with each other, because they are spatially separated in the object field as well as in the image 

field. Figure 3.14c shows a typical PIV/shadowgraphy image. The measurements showed that 

the method developed by Lindken and Merzkirch (2002) is able to measure velocities in two-

phase flows with high precision for low UG. Figure 3.15 shows an instantaneous velocity field 

for multiphase PIV measurement. 

 

 
Figure 3.13 - Set-up and triggering of the combined PIV/shadowgraphy experiment (Lindken 

and Merzkirch. 2002). 
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Figure 3.14 – (a) Principle of the combined PIV/shadowgraphy experiment (b) Histogram of 

the intensity (gray) values of the pixels. (c) Raw image (Lindken and Merzkirch. 2002). 

 
Figure 3.15 – Instantaneous velocity field for multiphase PIV measurement (Lindken and 

Merzkirch. 2002). 

The two-phase pulsed-light velocimetry (PLV) system was developed by Bröder and 

Sommerfeld (2002) to evaluate instantaneous flow fields of both rising bubbles and the 

b.

a.
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continuous phase. Basically, the system consists of a classic PIV coupled to a Fluorescent-PIV, 

where the cameras were placed in a non-perpendicular arrangement with respect to the light 

sheet to improve the phase separation (Figure 3.16). The arrangement of the cameras was based 

on the scattering intensity of the bubbles using geometrical optics (Figure 3.17). The different 

scattering components obtained from geometrical optics were plotted for spherical bubbles. The 

raw images for each camera are presented in Figure 3.18a. The camera with the filters of 532 

nm and 585 nm was used to determine the velocity of the liquid phase and bubbles, respectively. 

The acquired images were evaluated with the minimum-quadratic-difference (MQD) algorithm. 

The bubbles velocity was obtained using the particle tracking velocimetry (PTV) approach. The 

local resolution (i.e. the size of the smallest interrogation area) was 1.9 x·3.7 mm for the tracers 

and 2.8·x 5.4 mm for the bubbles. The distortion of the images due to the non-perpendicular 

arrangement of the CCD cameras was removed by the geometric transformation based on a 

perspective projection (similar to PIV calibration). The time series of the bubble and liquid 

velocities in a section located 500 mm above the aerator are presented in Figure 3.18b. 

 

 
Figure 3.16 - Experimental setup (Bröder and Sommerfeld, 2002). 
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Figure 3.17 - Intensity of the different scattering modes as a function of scattering angle 

(measured from the forward scattering direction) for air bubbles in water (relative refractive 

index m=0.75) obtained by geometrical optics (φB: Brewster’s angle, φc: critical angle) 

(Bröder and Sommerfeld, 2002). 

 

 
Figure 3.18 – Field-of-view of the camera with the filters (a) 532 and (b) 585 nm. Time series 

(c) bubble and (d) liquid velocities 500 mm above the aerator (Bröder and Sommerfeld, 

2002). 

Liu et al. (2005) investigated the liquid flow velocity field and pseudo-turbulence induced 

by a chain of bubbles rising through stagnant liquids using a system similar to Fluorescent – 

d.
b.

a.
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PIV (Referenced by the authors as laser-induced fluorescence - LIF). The “pseudo-turbulence” 

is defined as the random velocity field induced by the bubbles when no turbulent production 

occurs (Lance and Bataille, 1991). This condition enhances multiphase interaction and 

influences the motion of the bubbles. The PIV system was used to measure the entire field 

velocity instantaneously to provide an accurate and complete description of the flow field 

surrounding bubbles. In addition, a digital camera was used to capture the motions of rising 

bubbles at a rate of 15 fps (Figure 3.19). A single bubble stream was injected into the rectangular 

column. The observing field was 65.5 × 87.9 mm2, located 260 mm above the bottom of the 

column. The frequency of the bubble generation was controlled by a needle valve for different 

flow rates Q. Gas and four liquids of different viscosity were used: deionized water (S-1), 50 

wt% glycerin in water (S-2), 64 wt% glycerin in water (S-3), and 72 wt% glycerin in water (S-

4). The authors observed that the bubbles travel upwards in three different trajectories, varying 

from one- to three-dimensional mode as liquid viscosity reduces (Figure 3.20). In addition, 

different bubble motions led to different instantaneous liquid velocity fields, turbulent intensity 

and Reynolds stress (Figure 3.21). 

 

 
Figure 3.19 - Experimental setup investigated by Liu et al. (2005). 
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Figure 3.20 - Bubble trajectory captured by digital camera in liquid (i) S-4, (ii) S-3, (iii) S-2, 

and (iv) S-1; and model trajectory: (a) trajectory A - straight line in liquid S-4; (b) trajectory B 

- Zigzag in liquid S-3; (c) trajectory C - Spiral in liquids S-2 and S-1 (Liu et al., 2005). 
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Figure 3.21 - Reynolds stress profiles across the column of liquid (a) S-2, (b) S-3, and (c) S-4 

(Liu et al., 2005). 
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Seol and Socolofsky (2008) developed a simple phase separation method using vector 

post-processing techniques to measure velocity fields in a bubble plume. The experimental 

setup is presented in Figure 3.22. The fluorescent particles contained rhodamine 6G and 

dichlorofluorescein with a size distribution of 20–100 µm were used. Fluorescent-PIV data 

were used for validation. In addition, a third dataset was derived by applying a digital mask to 

remove bubbles from the mixed-phase images. All datasets were processed using cross-

correlation. The scheme of the vector post-processing algorithm applied for phase 

discrimination of the mixed-phase PIV vector maps is presented in Figure 3.23. In the mixed-

phase vector field, a maximum velocity threshold for the continuous-phase velocities and the 

median filter to remove bubble-velocity vectors were applied (Figure 3.24b). In investigation 

of the bubble-velocity, the two-dimensional median filter was applied to a raw image to remove 

noise and reduce the intensity of the fluorescent tracer particles. An intensity threshold was 

used to remove the remaining continuous phase tracers. The PTV algorithm was used to obtain 

the bubbles velocities (Figure 3.24d). 

 

 
Figure 3.22 -Experimental setup (Seol and Socolofsky, 2008). 

 



65 

 

Chapter 3 – PIV application in bubble column 

 

 

 
Figure 3.23 – Scheme of the vector post-processing algorithm applied for phase 

discrimination of the mixed-phase PIV vector maps (Seol and Socolofsky, 2008). 

 

 
Figure 3.24 – (a) Raw image, (b) post-processed fluid-phase velocity field, (c) post-processed 

dispersed-phase velocity field, and (d) PTV-processed dispersed-phase velocity vector (Seol 

and Socolofsky, 2008). 
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The comparison among the methods shows that the algorithm predicts well both 

instantaneous and time average statistical quantities for flows having 10% or less of the field 

of view occupied by bubbles. In addition, the authors observed that the velocity around the 

bubbles in the post-processed data are higher than nearby continuous-phase vectors and 

sometimes show significant differences from the optically filtered data. In Figure 3.25, in the 

regions immediately around a few bubbles (wake regions), some vectors are identified as fluid-

phase velocities by the post-processing algorithm, which are much greater in magnitude than 

corresponding vectors measured in the optically filtered data. In the correlation maps (Figure 

3.26), the authors observed that the cross-correlation field for the mixed-phase image showed 

one distinct displacement peak and two secondary peaks. On the other hand, the cross-

correlation field from the optically filtered image had only one peak, and this peak is at the 

same position as the second highest peak in the mixed-phase image. 

 

 
Figure 3.25 - Samples of fluid-phase velocity vector maps: (a) vector post-processed PIV and 

(b) optic-filtered PIV. The white box is the interrogation window investigated in Figure 3.26 

(Seol and Socolofsky, 2008). 
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Figure 3.26 – The correlation maps of the interrogation window for (a) mixed-phase image 

and (b) optically filtered image. The size of interrogation window was 16 x 16 pixels (Seol 

and Socolofsky, 2008). 

 

Bröder and Sommerfeld (2009) used a planar shadow image velocimetry system to 

analyze the hydrodynamics and bubble behavior in a bubble column. The system consists of a 

background illumination utilizing a LED-array and a single CCD-camera which records 

simultaneously bubble and tracer images (Figure 3.27). The PIV and PTV approaches were 

used to determine the velocities of the liquid phase and bubbles, respectively.  

 

 
Figure 3.27 - Experimental setup investigated by Bröder and Sommerfeld (2009). 

 

The gas holdup was lower than 5% and the fluctuation energy of the continuous phase 

was considerably lower than that of the bubble phase. In addition, the bubble mean diameters 
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were between 2 and 3.8 mm. Filter operations were carried out for phase discrimination (Figure 

3.28). The Laplacian of Gaussian (LOG) edge filter was applied with a standard deviation 

corresponding to the image size of the tracer particles. The resulting image B presented the in-

focus tracer images as well as images from the sharply depicted bubbles. An image C was 

produced applying a 3 × 3 median filter on image B highlighting the edges of the bubbles. 

Finally, the image B was subtracted from the image C and resulting in an image D which only 

includes in-focus tracer images. An instantaneous flow field of the continuous phase in the 

bubble column overlapped onto the raw image containing bubble and tracer is presented in 

Figure 3.29. 

 

 

 
Figure 3.28 - Schematic diagram of the filter operations for phase discrimination by extracting 

the images of tracer particles from the images of the two-phase flow (Bröder and Sommerfeld, 

2009). 
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Figure 3.29 – Raw image and instantaneous flow field of the continuous phase (Bröder and 

Sommerfeld, 2009). 

 

3.2.2. 2D-3C measurements 

 

 Ali and Pushpavanam (2011) used 2D-2C and 2D-3C F-PIV measurements to 

investigate the dynamics of gas-liquid flows in a 2D column (Figure 3.30). In addition, the 

authors used the PIV measures to validate 2D/3D Euler-Lagrangian simulations. The column 

used had a square cross-section of 0.2 x 0.2 m, 0.75 m height, and 0.05 m deep. The gas was 

introduced at the center of the 2D column through a needle. For 2D-2C system, the camera was 

positioned perpendicular to the plane of the light sheet. For 2D-3C system, both the cameras 

are mounted on the same side of the light sheet (backward-forward scattering) and the aperture 

angle between the two cameras was 90o. The calibration error was 0.28 pixel for the 3C-2D 

system. The authors did not report whether the calibration procedure was also done for the 2D-

2C system. Rhodamine was used as tracer particle and an optical filter (λ = 560 nm) was used 

on camera. Four hundred image pairs were taken for gas flow rates varying from 0.2 to 1 L/min. 

The results presented by the authors showed that the 2D-2C and 2D-3C measurements did not 

show the same flow pattern. In velocity component profile of the Figure 3.31, the number of 

peaks or wave cycles presented was different for both systems. According to the authors, the 

out-of-plane velocity component (w) is responsible for this difference. 

 

 

 



70 

 

Chapter 3 – PIV application in bubble column 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.30 - Schematic diagram of experimental setup used by Ali and Pushpavanam (2011). 
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Figure 3.31- Temporal variation of instantaneous liquid velocity at a point obtained using 2D-

2C and 2D-3C PIV measurement for a gas flow rate of 0.4 L/min. (a) u, (b) v, and (c) w 

(Adapted from Ali and Pushpavanam, 2011). 
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Yoshimoto and Saito (2010) used a 2D-3C F-PIV system to investigate the surrounding 

liquid motion of the bubble in an acrylic water vessel (0.16 × 0.16 × 0.3 m, Figure 3.32). The 

liquid phase used was water. In addition, the height of the liquid was 0.23 m. 2D-3C 

measurements were done at several depth positions sliced by laser sheet to investigate the 3-D 

structure of the liquid motion around the bubble. Rhodamine B as tracer particle and a sharp 

cut filter (threshold of 560 nm) to remove the scattering light from the bubble surface were 

used. Two sets of high-speed video cameras (2000 frames/sec) were used. The angle between 

the optical axes of the cameras was 45 degrees and the spatial resolution of the imaging system 

was 12 μm/pixel. LED light was also used to visualize the bubble motion. Furthermore, 

LIF/HPTS method was used to visualize the wake of a CO2 bubble. A comparison between the 

results of the 2D-3C F-PIV and those of the LIF/HPTS is presented in Figure 3.33. 

 

 

 

 

Figure 3.32 - Experimental setup for Stereo PIV used by Yoshimoto and Saito (2010). (a) 

Water vessel, (b) needle, (c) bubble launch device, (d) function generator, (e) ND: YAG 

Laser, (f) water and PIV particle, (g) rod lens, (h) Hi-speed video cameras, (i) sharpcut filter, 

and (j) LED (Yoshimoto and Saito, 2010). 
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Figure 3.33 - Comparison between the results of the (a) 2D-3C F-PIV and those of the (b) 

LIF/HPTS (Adapted from Yoshimoto and Saito, 2010). 

 

3.2.3. Quality analysis of the PIV measurements 

 

Although a dewarping function was developed by Soloff et al. (1997), the distortions in 

PIV measurements caused by the wall of the column or by the camera lens were not investigated 

by the authors presented in section 3.2.1 and 3.2.2. In addition, the effect of variation of the 

image magnification was not analyzed or compensated, except for Bröder and Sommerfeld 

(2002). 

Most PIV applications were investigated in dilute systems (low bubble concentration - 

low hold up). In addition, the authors presented in section 3.2.1 and 3.2.2 reported problems 

related to shadows, light reflections, and the presence of bubbles in the generation of false 

vectors (outliers). However, the quality analysis of the measurements was non-existent or was 

not detailed in the studies. Deen et al. (2000) used the SNR > 1.2 as a quality factor to eliminate 

the false vectors in the PIV post-processing. Lindken and Merzkirch (2002) and Bröder and 

Sommerfeld (2002) also used a SNR criterion, but the limit value was not presented. Seol and 

Socolofsky (2008) studied the effect of the presence of the bubbles on the correlation peak. 

However, the authors used the post-processed field as a reference to estimate the measurement 

error. 
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In PIV analysis, a limit value of the SNR that guarantees the quality of the measurements 

has not yet been established. This is because the noise in the correlation plane is more related 

to the shape of the peak. Although the uncertainty is based on the symmetry of the correlation 

peak, the CS method (Section 2.3) is not robust to the image noise and out-of-plane motion 

according to Wieneke (2015). 

In the scenario of PIV applications in a bubble column represented in Figure 3.34, this 

thesis seeks to answer the following questions: 

1.  Which PIV parameters in the correlation plane or vector field can we use as quality 

indicators? 

2. What are the effects of the dominant noise sources in the experiments? 

3. What PIV quality indicators exhibit the same behavior of the dominant noise? 

4. In what experimental conditions in the bubble column and PIV processing can we 

obtain reliable data? 

5. How can we compensate or decrease the effect of the dominant noises in velocity 

fields? 

 

  

Figure 3.34 - Application scenario of this thesis in the investigation of the quality of the PIV 

measurements in a bubble column.



 

 

 

 

 

 

CHAPTER 4.  

THE BUBBLE COLUMN AND MEASUREMENT 

SYSTEMS 

 

This chapter presents the characteristics and operating conditions of the bubble column 

and the configurations of the F-PIV systems used in this work. 

The experimental apparatus used to obtain a homogeneous illumination of the laser light 

sheet and to avoid reflections of the environment are presented. 

For the imaging system, a preliminary evaluation of the angle between the cameras and 

the light sheet based on the best light scattering of the tracer particles is discussed in detail. In 

addition, the possible configurations and angle of the cameras for 2D-3C F-PIV system are 

also discussed. 

In recording, the interframe time and laser power are displayed for each gas surface 

velocity. 

The optimization of the experimental setup in this chapter is fundamental to ensure the 

performance of the image processing presented in Chapter 5. 
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4.1. BUBBLE COLUMN AND F-PIV SYSTEMS 

 

The experimental tests were carried out using an acrylic bubble column of 0.145 m 

diameter and 1 m height (Figure 4.1a) developed by Silva (2011). The column was filled with 

water at 298 K and air was fed with a superficial gas velocity (UG) of 0.152, 0.528, 2.106, and 

4.212 cm/s. According to the correlations developed by Shah et al. (1982) shown in Figure 3.2, 

the column presents a homogeneous regime at UG = 0.152, 0.528, and 2.106 cm/s and 

homogeneous–heterogeneous regime transition at UG = 4.212 cm/s. The investigation area was 

located 0.552 m from the distributor and had a size of 0.14 × 0.10 m. An acrylic box filled with 

water was used in the investigation area to reduce the distortion effect caused by the curvature 

of the column. The height of the liquid in the column was 0.8 m. A plane plate with 21 holes 

(10-3 m in diameter) equally distributed was used as the distributor in a square array (Figure 

4.1b). In the region immediately before distributor (Figure 4.1c), glass spheres with 2 mm of 

diameter were positioned to ensure a better distribution of the gas inside the column. 

 

 
Figure 4.1 – (a) Acrylic bubble column developed by Silva (2011). (b) Air distributor. (c) 

Region filled with glass spheres. 

The F-PIV systems were developed by LaVision. The cameras (two “Imager Intense 

cross correlation” CCD camera 12 bits with 1376 x 1040 pixels and 1376 x 1024 pixels) and 

laser system (Nd:YAG, 200 mJ/pulse and λ = 532 nm) can be controlled with a programmable 

time unit (PTU) by Davis 8.2 software. An objective lens with focal distance of 60 mm 

Column

1
0

0
 c

m

55
2
 c

m
.

BoxFoV
FoV

14  cm.2

1
 cm

0

b.

c.

a.

Column

Box



77 

 

Chapter 4 – The bubble column and measurement systems 

 

 

(F/2.8D), Rhodamine-B (diameter of 20–50 µm) as tracer particle, and a high-pass filter on the 

camera that allows only the passage of emitted light by tracer (λ = 620 nm) were used. The 

fluorescent particles are based on poly(methyl methacrylate) and they were supplied by 

LaVision. The fluorescent dye was homogeneously distributed over the entire particle volume. 

The concentration of the tracer particles is limited by its high cost and safety (see Pedocchi et 

al., 2008).  

 

4.2. ILLUMINATION 

The laser head was located 1.2 meters from the column so that the laser beam could be 

expanded through a cylindrical lens producing a light sheet (Figure 4.2). Before reaching the 

column, the expanded light sheet (Gaussian distribution) passed through a slit (12 x 0.4 cm) to 

produce a more homogeneous light intensity profile (top-hat intensity profile). The thickness 

of the light sheet was 4.2 ·10-3 m. In addition, the use of a box with a slit (Figure 4.3) aims to 

prevent a large amount of light to reach the column. Black cloths were used to avoid reflections 

of light caused by the wall of the column and screws (Figure 4.4). These reflections can saturate 

the image and damage the CCD sensor. 

 

 
Figure 4.2 - Formation of the top-hat intensity profile by the slit. 
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Figure 4.3 – Details of the box with the slot. 

 

 
Figure 4.4 – (a) Use of black cloths to avoid reflection of light caused by the wall of the 

column and (b) screws. 
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4.3. EVALUATION OF THE CAMERA SETUP 

4.3.1. Angle between the light sheet and the camera 

The experimental setup used for the evaluation of the camera angle for the 2D-2C PIV 

system is presented in Figure 4.5. The CCD cameras were placed at an angle β from the light 

plane in an angular configuration satisfying the Scheimpflug condition. The angle β was chosen 

based on the study by Broder and Sommerfeld (2002), calibration error and focus of the 

investigated area. These authors investigated the best angle β  to record the smallest amount of 

light scattered by a cylindrical air bubble in water using geometrical optics. A laser power and 

interframe time equal to 30 % and 2 · 10-3 s were used for UG = 0.105, 0.528, and 1.053 cm/s, 

respectively. Under these conditions, the bubble column presents a homogeneous regime and 

the effect of bubble coalescence is not observed. 

According to Broder and Sommerfeld (2002), β = 73.9 degrees. However, image 

distortion and therefore the calibration error are greater when the angle β is smaller. The 

distortion is minimal when β = 90 degrees and the light reflecting on the column wall is easily 

registered when β ≠ 90 degrees. A preliminary test evaluating the angles β of 90 and 80 degrees 

was performed for the camera and 2000 frame pairs were recording. The measurements were 

made simultaneously. The calibration error for β = 90 and 80 degrees was 0.579 and 0.588 

pixel, respectively.  

 

 

Figure 4.5. Experimental setup used in the evaluation of the camera angle for the 2D-2C PIV 

system.  
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The probability density function (PDF) of the time-averaged intensity distribution I  

for UG = 0.105, 0.528, and 1.053 cm/s is presented in Figure 4.6. For 80 degrees, the frame 0 

(F0) and 1 (F1) presented a spatial average of I , I , of approximately 61 and 82 counts. 

On the other hand, for 90 degrees, F0 and F1 presented a I  of approximately 40 and 69 

counts. Table 4.1 shows the detailed values of I for all UG. In Figure 4.6, the images were 

not preprocessed and reconstructed. The frames are presented in Figure 4.7 for UG = 0.105 cm/s 

and in Figure A1 and A2 (Appendix A) for UG = 0.528 and 1.053 cm/s. 

The difference between F0 and F1 was approximately 30 counts for β = 90 degrees and 

20 counts for 80 degrees. F1 had a larger background illumination due to the light scattering of 

the first laser pulse. This large light scattering is observed in the width of the PDF curve mainly 

for β = 90 degrees. Then, the β value chosen was 80 degrees based on the recording of the 

lowest background illumination. 

 

 
Figure 4.6 – Probability density function (PDF) of the time-averaged intensity distribution 

I  in frame 0 (F0) and 1 (F1) of the camera A with a 2  equals to 80 and 90 degrees 

without PIV preprocessing for UG = (a) 0.105, (b) 0.528, and (c) 1.053 cm/s. 
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Table 4.1 - Spatial average of in frame I , I , for UG = 0.105, 0.528, and 1.053 cm/s. 

UG [cm/s] 
I  [Counts] for 90º I  [Counts] for 80 º 

F0 F1 F0 F1 

0.105 40.952 70.963 62.280 83.659 

0.528 40.053 68.568 60.663 81.462 

1.053 41.160 70.146 61.067 86.312 

 

 

 

 
Figure 4.7 - Distribution of time-averaged intensity of the frames 0 and 1 (F0 and F1) for the 

two camera arrangement presented in Figure 4.5 for UG =0.105 cm/s. 

 

The scattering of laser light in acrylic wall was observed in recorded images even with 

the use of black cloths. Some reflections appeared in the second frame mainly due to the light 

scattering of the environment caused by the first pulse (Figure 4.8). 
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Figure 4.8 - Profile of the time-averaged intensity for the frames 0 and 1 (F0 and F1) at Y = 

0.552 m and the two cameras arrangement presented in Figure 4.5 (a) 0.105, (b) 0.528, and (c) 

1.053 cm/s. 

 

4.3.2. Aperture angle of the 3C-2D system 

The cameras were located in a plane parallel to the axis of the column (Figure 4.9). In 

addition, the camera plane was 80 degrees from the light sheet (similar to that evaluated in the 

previous section). An angle 2 yz
= 60 degrees was chosen for the stereo arrangement of the 
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cameras (camera B) to ensure the quality of the 3C reconstruction based on the investigation 

carried out by Lawson and Wu (1997). The configuration of the stereoscopic imaging used was 

angular. In addition, a Scheimpflug adapter was used on each camera to ensure focus in the 

plane. In Figure 4.9, an angle 2 yz
 = 90 degrees (optimal angle) was not chosen due to the 

large distortion in the bubble column. 

 

 
 

Figure 4.9 - Experimental setup used in the 2D-3C PIV system 

 

The Figure 4.10 presents two possible configurations with the cameras located in a plane 

cross to the axis of the column. The cameras D observe the tracer particles in a forward 

scattering direction while the cameras C observe in the backward scattering direction. In stereo 

configuration, the use of the cameras C1 and D1 (similar to C2 and D2) is not recommended 

because the cameras C and D register different light scattering directions. The configuration of 

the cameras D is not ideal because it records large amounts of light from the bubbles and the 

environment as observed by Broder and Sommerfeld (2002). The disadvantage of using the 

configuration of the cameras C is mainly in the difficult calibration procedure requiring 

calibrated two-sided plates. In addition, the light scattering on the wall is more easily observed 

by the cameras C and D than by cameras B. 
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Figure 4.10 – Possible configuration with the cameras located in a plane cross to the axis of 

the column 

 

4.4. CALIBRATION PROCEDURE 

 

The calibration procedure was performed manually by the previous orientation of the line-

of-sight (LOS) of the camera targeting the calibration plate. Two-level calibration plate made 

of alloy steel developed by LaVision (Figure 4.11) was not used. In addition to presenting a 

size larger than the diameter of the column, LaVision's plate could scratch the acrylic wall. The 

calibration plate was created using Inkscape software. The pattern was made with a point 

diameter and spacing of 0.5 and 2.5 · 10-3 m, respectively. The real-size calibration plate is 

presented in Figure B1. The plate was made of plastic corrugated sheet (Figure 4.12). Ideally, 

the calibration plate should have the maximum points to compensate for the effect of the 

heterogeneous distribution of the refractive index throughout the plane. 
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Figure 4.11. Two-level calibration plate made of alloy steel developed by LaVision. 

(LaVision, 2016) 

 

 

 
 

Figure 4.12 - The plate made of plastic corrugated sheet used in the calibration procedure. 

 

A plastic rod and two rubbers were used to support and align the calibration plates with 

the field of view (Figure 4.13). The calibration plate 1 was fixed on the plastic rod. 
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Figure 4.13 - Support and align the calibration plates with the field of view using a plastic rod 

and two rubbers. 

Two Z planes were used for the calibration of the 2D-3C system. The ∆Z variation of the 

mapping plane was chosen based on the thickness (4.15 mm) of the calibration plate. In Figure 

4.14, the calibration plate 1 and 2 represents the plane 0 and -4.15 ·10-3 m. After mapping the 

plane -4.15 mm, the plate 2 was removed with the aid of a string. For the 2D-2C PIV calibration, 

only the plate 1 (0 mm) was used. 

The relation between the physical (X, Y, Z) and the image (x, y, z) coordinates was 

described by a third order polynomial adjustment (Eq. 4.1), where dX and dY are defined by 

Eq. 4.2. The dX and dY displacement are determined using the normalized coordinates 

0s = 2 (X-X )/n x
 and 

0 yt = 2 (Y-Y )/n , where nx and ny are the image sizes in pixels. The least 

squares method was used to determine a mapping function. 

The coefficients of the mapping function for the PIV 2D-2C and 2D-3C system are 

presented in Table 4.2.  
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Figure 4.14 - Details of the two-plane calibration for the 2D-3C system. 
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Table 4.2 - Coefficients of the mapping function for the PIV 2D-2C and 2D-3C system. 

Z [10-3 m] 
Camera A Camera B1 Camera B2 

0 0 - 4.15 0 - 4.15 

X0 570.046 721.297 721.297 721.297 721.297 

Y0 619.443 572.144 572.144 572.144 572.144 

nx 1376 1376 1376 1376 1376 

ny 1376 1040 1040 1040 1040 

a0 37.117 43.314 34.985 40.109 40.111 

a1 16.887 30.438 31.160 10.984 10.975 

a2 -7.965 -2.061 -1.142 -3.627 -3.617 

a3 -0.030 7.679 13.051 6.537 6.565 

a4 15.164 17.710 12.785 -21.577 -21.591 

a5 1.210 1.573 0.623 1.599 1.568 

a6 0.829 1.928 1.268 2.510 2.589 

a7 -5.045 -16.572 -15.480 12.054 12.066 

a8 0.028 -1.273 -1.449 0.094 0.058 

a9 0.687 2.259 1.907 1.173 1.138 

b0 15.281 41.661 3.270 92.385 92.389 

b1 -3.343 -4.178 -0.493 -17.271 -17.268 

b2 -0.221 4.834 1.196 -7.127 -7.095 

b3 1.625 1.456 1.368 -0.556 -0.563 

b4 2.102 85.724 86.716 69.207 69.167 

b5 -5.330 -11.128 -11.393 9.276 9.186 

b6 1.722 2.981 0.727 0.809 1.043 

b7 -10.984 -1.037 -1.638 -4.668 -4.669 

b8 0.740 -2.458 2.856 4.918 4.810 

b9 1.270 -0.026 -0.154 0.230 0.233 

 

 

Recorded image of the calibration plate, identification of the marks, and corrected image 

for the 2D-2C and 2D-3C PIV system are presented in Figure B2 - Figure B5. The average 

resolution of the imaging system was 10 pixels/mm and calibration error for all the cameras 

was below 1 pixel (Table 4.3). The ambient light saturated the image of the calibration plate in 

some regions of different projections. This makes it difficult to identify the points of the 

calibration plate by the software and contributes directly to the calibration error.  
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Table 4.3 - Calibration Error 

Camera  Plane (10-3 m) Calibration error [pixel] 

A  0 0.982 

B1  0 0.925 

B1 - 4.15 0.925 

B2  0 0.976 

B2 - 4.15 0.979 

 

4.5. RECORDING PARAMETERS 

 

The 2D-2C and 2D-3C F-PIV measurements were performed separately (not 

simultaneously). The interframe time and the laser power used in experiments are presented in 

Table 4.4. The interframe time was chosen to provide a particle image maximum displacement 

(shift) of 15 - 20 pixels. The laser power was adjusted in each experiment to get the best particle 

image contrast and to prevent that the reflections of light do not damage the camera even when 

using the high-pass filter.  

 

Table 4.4 - Interframe time (dt) and laser power used in experiments. 

System 2D-2C PIV  2D-3C PIV  

UG [cm/s] 0.152 0.528 2.106 4.212 0.152 0.528 2.106 4.212 

Interframe time (10-6 s) 500 1000 1000 1000 1000 1000 1000 1000 

Laser power (%) 20 20 35 35 25 35 35 35 

 

Four thousand pairs of frames (NR) were recorded with a frequency of 4.2 Hz. For NR > 

4000, some instabilities in the PIV system were observed. The effect of these instabilities was 

observed in the oscillation of the laser system, contributing directly to the heterogeneous 

distribution of the light intensity in frame. As detailed in Chapter 6, this heterogeneous 

distribution increases the number of outliers in the vector field. According to Drahoš et al. 

(1991) and Lin et al. (1996), the dominant frequency of the flow structures presented in the 

column is less than 3 Hz for UG ≤ 4 cm/s.  

 

 



 

 

 

 

CHAPTER 5.  

DATA PROCESSING 

This chapter presents the image analysis settings used in this work. Parameters and 

strategies of the PIV preprocessing, processing and post-processing are detailed.  

Even using the experimental set up optimized in Chapter 4, some regions with shadows 

and large scattering of light were observed in the frame. Spatial filters were used and are 

detailed in preprocessing to reduce the heterogeneous illumination in frame. Moreover, the 

fluid dynamics effect on recording the light emitted by the tracer particles is discussed. 

The interrogation strategies used in this work to provide the highest spatial resolution 

and best quality of the measurements are presented. In addition, the post-processing filters to 

correct the noisy fields obtained by the standard cross-correlation (SCC) approach are also 

detailed. 

The quality indicators from the velocity field and the correlation plane are detailed in 

this Chapter. 
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5.1. PREPROCESSING 

 

The time-averaged intensity distribution, I , in the 2D-2C and 2D-3C PIV frames for 

raw image is showed in Figure 5.1. I  is shown for the non-reconstructed images. Besides 

the cameras with different projections, the bubbles cause an unequal distribution of intensity 

along the radius and between the frames of each camera. These factors added to the light 

scattered on the column wall contribute directly to the background illumination. The raw images 

are showed in Figure 5.2. In PIV preprocessing, two spatial filters are applied to remove the 

background illumination and improve the particle image contrast. RMS (Root Mean Square) 

and SSM (Subtract Sliding Minimum) filter of 3x3 pixels were applied sequentially in the 

recorded images. An upper limit of 50 counts and a pixel intensity lower than 10 counts were 

used to improve the image contrast. The effect of the PIV preprocessing can be observed by 

comparing the Figure 5.2 and Figure 5.3. 

The bubbles present in the light sheet formed regions with shadows in frame (Figure 5.2, 

Figure 5.3, and Figure 5.4). This was observed mainly with the increase of UG. In addition, the 

region between the cameras and the light sheet was also occupied by the bubbles. These bubbles 

in front of the light sheet also contribute directly to the shadow regions in the frame by not 

allowing the light emitted by the tracer particles to leave the column.  

 

 

Figure 5.1 - Time-averaged intensity distribution, I , for UG = (a) 0.152, (b) 0.528, (c) 

2.106, and (c) 4.212 cm/s.  
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Figure 5.2 - Raw image for UG = 0.152, 0.528, 2.106, and 4.212 cm/s. Regions with shadows 

and large light scatters were observed mainly for low and high UG, respectively. 

 

 

 

 
 

Figure 5.3 - Preprocessed image from the raw image of the Figure 5.2. The large amount of 

light is practically eliminated by the filters. However, the presence of the bubbles in the light 

sheet increased the regions with shadows. 

Intensity
 [co

u
nts]

60

80

140

120

100

U
=

 0
.1

5
2
 c

m
/s

G

U
G
=

 0
.5

2
8
 c

m
/s

 
U

G
=

 4
.2

1
2
 c

m
/s

 

U
G
=

 2
.1

0
6
 c

m
/s

0 0.5 1- 0.5-1

r/R

610

590

570

550

530

510

Y
 [1

0
m

]
-3

610

590

570

550

530

510

Y
 [1

0
m

]
-3

0 0.5 1- 0.5-1
r/R

610

590

570

550

530

510
Y

 [1
0

m
]

-3

610

590

570

550

530

510

Y
 [1

0
m

]
-3

In
ten

sity
 [co

u
n
ts]10

15

30

25

20U
=

 0
.1

5
2
 c

m
/s

G

U
G
=

 0
.5

2
8
 c

m
/s

 
U

G
=

 4
.2

1
2
 c

m
/s

 

U
G
=

 2
.1

0
6
 c

m
/s

5

610

590

570

550

530

510

Y
 [1

0
m

]
-3

610

590

570

550

530

510

Y
 [1

0
m

]
-3

0 0.5 1- 0.5-1
r/R

0 0.5 1- 0.5-1

r/R

610

590

570

550

530

510

Y
 [1

0
m

]
-3

610

590

570

550

530

510

Y
 [1

0
m

]
-3



93 

 

Chapter 5 – Data processing 

 

 

 

 

 

 
 

Figure 5.4 - Heterogeneous illumination caused by the bubbles for UG = (a) 0.152, (b) 0.528, 

(c) 2.106, and (d) 4.212 cm/s. 
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For UG = 4.212 cm/s (homogeneous–heterogeneous flow regime transition), the presence 

of coalesced bubbles also contributes significantly to the formation of regions with shadows in 

frame (Figure 5.4d). For UG = 2.106 cm/s (homogeneous flow regime), the recorded light 

scattering in frame was greater than for UG = 4.212 cm/s, even using the same laser power 

(Figure 5.4c). This shows that increasing the laser power may not contribute to improve the 

illumination in the column. 

 

5.2. PROCESSING AND POST-PROCESSING 

 

In PIV processing, the standard cross-correlation (SCC) was made using an interrogation 

strategy with two steps: the first using an interrogation window size of 256 pixels (50% overlap 

of adjacent windows) and the second of 128 pixels (75% overlap of adjacent windows). The 

final size of the interrogation window was 32 x 32 pixels (  3.2 x 3.2 ·10-6 m2). The evaluation 

of multiple steps and adaptive PIV method were used with decreasing interrogation window 

size in the PIV correlation. According to Wieneke and Pfeiffer (2010), the adaptive PIV method 

is used to change the size and shape of the interrogation window automatically according to the 

particle image density and flow gradients to increase the correlation coefficient and SNR. The 

initial and final size of the interrogation window was defined using 2 and 3 passes to ensure the 

convergence in determining the particle image displacement. The overlap of the interrogation 

window with its neighborhood was used in order to increase the spatial resolution of the vector 

field.  

For the image reconstruction, the particle image displacement information of the first step 

and the mapping function using a bicubic interpolation were used (Fincham and Delerce, 2000; 

Scarano and Riethmuller, 2000). The Gaussian function was applied for peak detectability and 

the correlation peak was fitted by an estimator of three points (Westerweel, 1997). The allowed 

maximum error of 3C reconstruction ( 3Max C R  ) was 5 pixels. 

The fields determined by the ensemble correlation (EC) and sliding-average correlation 

(SAC) approach using 4000 images were used as a reference for the fields obtained by SCC. In 

addition, a temporal kernel k equal to 2 was used for SAC approach. The interrogation strategy 

was the same as that used in the SCC approach. The EC approach is suitable when the SNR is 

very low (Meinhart et al., 2000). In double-frame images, the loss of temporal resolution is one 

of the main disadvantages of the SAC approach. Table 5.1 presents an overview of the PIV 

correlations used in this work. 
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Figure 5.5 – Application of the sliding-average correlation (SAC) approach for k = 2 in 

double -frame images.  

 

Table 5.1 - Overview of the PIV correlations used in this work. 

PIV correlation Advantage Disadvantage 

Standard cross-

correlation (SCC) 
- Low computational cost - Less robust to noise 

Sliding-average 

correlation (SAC) 

- More robust to random noise than 

the SCC approach 

- Loss of temporal 

resolution 

Ensemble correlation 

(EC) 
- More robust to noise 

- It provides only 

average fields 

 

In PIV post-processing, the filter developed by Westerweel and Scarano (2005) was used 

to mainly reduce the outliers of the fields obtained by SCC approach. According to the authors, 

a removal threshold of 2 is suitable for detecting false vectors in a neighborhood of 3 x 3 pixels. 

The post-processed fields (SCC*) were compared with those obtained by the EC approach to 

investigate the correction performance. 

Overview of the PIV processing and post-processing used in this work is presented in 

Figure 5.6. 
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...Velocity 
fields

Double-frame images
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Figure 5.6 – Overview of the PIV processing and post-processing used in this work. 

 

5.3.QUALITY INDICATORS 

 

The quality indicators used in this work were determined from the velocity field and the 

correlation plane. All of these indicators are found in the Davis 8.2 software. The indicators 

obtained from velocity field were compared to those obtained from correlation plane to identify 

behavior patterns and to establish quality ranges.  

 

5.3.1. Indicators from velocity field: Diff_4 and ɛ3C-R 

 

The Diff_4 (Eq. 5.1) is the average of the velocity difference in the interrogation window 

and its four spatial neighbors (Figure 5.7). The high values of Diff_4 can be used as an indicator 

of outliers in the vector field (Figure 5.8). 

 

0 0 0 0( ) ( ) ( ) ( )

4

a b c dabs u u abs u u abs u u abs u u
Diff_4

      
    (5.1) 
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Figure 5.7 – Definition of Diff_4 

 

 

 
 

Figure 5.8 – Effect of the outliers on Diff_4. Velocity field (a) without and (b) with outliers.  

 

For 2D-3C measurements, the reconstruction error (Eq. 5.2) can also be used as a quality 

indicator. The 3C reconstruction error (Figure 5.9) is determined from the deviation of the 

projection of the reconstructed velocities, (ui1, vi1) and (ui2, vi2), and components in 2D-2C 

fields, (u1, v1) and (u2, v2). This projection is performed in the image plane of each camera and 

can be referenced as a “back-reconstruction”. 
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Figure 5.9 - Definition of the 3C reconstruction error 

 

2 2

3 1 1 2 2( ) ( )C R i iu u u u             (5.2)  

 

 

5.3.2. Indicators from correlation plane: CV, CCC, SNR, and UQ 

 

The cross-correlation value (CV) was determined by Eq. 5.3. The correlation coefficient 

(Eq. 5.4) was used for the SCC approach. In Eq. 5.1, Nx and Ny are the interrogation area size, 

μ0 is the average of the intensity in frame 0 (I0), and μ1 is the average of the intensity in frame 

1 (I1).  The signal-to-noise ratio (SNR) was determined using the Eq. 5.5, where P1st and P2st 

are the peak heights of the first and second highest correlation peak and Pmin is the lowest value 

of the correlation plane (Figure 5.10). For the 3C-2D measurements, the CCC and SNR values 

are estimated as the average of the values of each 2D-2C field. The uncertainty quantification 

(UQ, Section 2.2) was estimated by CS method developed by Wieneke (2014, 2015) as a 

generic post-processing method. 

 

  0 0 1 1

0 0

CV=
yx

NN

i j

I I 
 

          (5.3) 
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Figure 5.10 – Definition of SNR (Adapted from LaVision, 2016) 
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CHAPTER 6.  

RESULTS AND DISCUSSION 

 
The profiles and vector fields of the liquid phase are presented for different UG under the 

conditions of homogeneous and homogeneous-heterogeneous transition regime. The effect of 

the quality indicators from the vector field and correlation plane is analyzed and quality limits 

are established. 

In addition to the effect of the regions of shadows and presence of the bubbles observed 

in section 5.1, the quality of the velocity components was individually investigated to identify 

new noise sources. 

The effect of the spatial resolution and allowed maximum error of 3C reconstruction is 

presented. In addition, the ability of the tracer particles to follow the flow were discussed. 

The noise effect on the convergence of the average fields evaluating the number of frame 

pairs is presented. The velocity fluctuation was investigated to identify the noise effect. In 

addition, the performance of the sliding-average correlation (SAC) approach in the correction 

of false vectors is discussed. 

An optimization strategy of the PIV processing is presented and discussed based on 

observed quality limits. 
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The profile of the time-averaged velocity modulus, u , using the SCC and EC method 

for Y = 0.552 m and UG of 0.152, 0.528, 2.106, and 4.212 cm/s is presented in Figure 6.1. In 

all cases, the u  profile is asymmetric and the wall condition is not satisfied ( 0u u  ). 

The asymmetric velocity profile can be result of the recirculation regions in the column or 

distributor design. In this case, the recirculation regions are influenced by the low height of 

liquid in the column. The low spatial resolution (DSR) of both techniques can explain the wall 

condition not satisfied. Moreover, the final size of the interrogation window is greater than the 

flow structures of the order of the boundary layer thickness. The concentration of bubbles near 

the wall, vibration of the column, large distortion caused by the curvature of the wall and 

reflection of tracer particles forming "doublets" can also contribute directly to the correlation 

noise. 

 

 

Figure 6.1  – Profile of the time-averaged velocity modulus, u , using the standard cross-

correlation (SCC) and ensemble correlation (EC) method (Y = 0.552 m) for UG = (a) 0.152 

(b) 0.528, (c) 2.106, and (d) 4.212 cm/s. 

For SCC, the measurements apparently showed a spatial coherence along the radius for 

UG = 0.152 and 0.528 cm/s. However, the measurements were less spatial coherent in -1 < r/R 

SCC; 2D-2C F-PIV SCC; 2D-3C F-PIV EC; 2D-2C F-PIV EC; 2D-3C F-PIV
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< 0.5 for UG = 2.106 cm/s. As discussed in section 2.1, a measurement is said to be spatial 

coherent when its distribution varies smoothly in space between adjacent interrogation 

windows. For UG = 4.212 cm/s, this spatial incoherence was evident mainly in -1 < r/R < 0.75. 

In Figure C1 and C2, this behavior was also observed for the 2D-3C F-PIV system. However, 

the vorticity field and profile were smoother compared to the 2D-2C F-PIV system. This 

behavior can be related to the allowed maximum error of reconstruction, 3 Max C R , as discussed 

in Section 6.1.4. 

The effect of the low spatial coherence caused by the false vectors is more easily observed 

in the fields derived from velocity, such as the vorticity field (Eq. 6.1). The vorticity profile and 

field determined by the standard cross-correlation (SCC), SCC with post-processing (SCC*) 

and ensemble correlation EC from the 2D-2C F-PIV measurements is presented in Figure 6.2 

and Figure 6.3. For standard cross-correlation (SCC) approach, the spatial coherence decreased 

with increasing UG in Figure 6.2 and Figure 6.3. A low spatial coherence was observed in -1 < 

r/R < - 0.25 for UG = 0.152 and 0.528 cm/s. This behavior was observed in -1 < r/R < 0 for UG 

= 2.106 cm/s and across all radius for UG = 4.212 cm/s. For ensemble correlation (EC) approach, 

only the measurements for UG = 4.212 cm/s presented low spatial coherence. Comparing the 

fields obtained by the SCC and EC approaches, some differences were observed in the regions 

with high spatial coherence. Comparing the fields obtained by the standard cross-correlation 

with post-processing (SCC*) and EC approaches, the post-processing filters corrected the 

outliers for UG ≤ 2.106 cm/s without losing the characteristics of the original field. This can be 

easily observed in the small difference between the EC and SCC profiles in Figure 6.3. 

However, this behavior was not observed for UG = 4.212 cm/s. Beyond the outliers, these 

differences may be related to the random noises, the limitation of the correlation approaches 

(discussed in Section 6.1), and the number of frame pairs used to estimate the average field 

(discussed in Section 6.2). 

 

 

vorticity
v u

x y

 


 

       (6. 1) 
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Figure 6.2 – Time-averaged vorticity field determined by the standard cross-correlation 

(SCC), SCC with post-processing (SCC*) and ensemble correlation (EC) from the 2D-2C F-

PIV measurements. 
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Figure 6.3 – Time-averaged vorticity profile (Y = 0.552 m) determined by the standard cross-

correlation (SCC), SCC with post-processing (SCC*) and ensemble correlation (EC) from 

2D-2C F-PIV measurements for UG = (a) 0.152, (b) 0.528, (c) 2.106, and (c) 4.212 cm/s. 

 

Similar to the velocity profile (Figure 6.1), the asymmetry of the vorticity profile for low 

UG is clearly observed in Figure 6.3. In addition, the vorticity profile becomes more 

symmetrical as UG increases. Becker et al. (1999) observed in a 2D column that the bubble 

plume produced by a single-orifice sparger moved in an undulatory motion due to a lateral 

movement (Figure 6.4). According to the authors, this behavior was caused by the continuous 

movement of the bubbles that changed the flow direction of the liquid phase. However, the 

column investigated in this work presented movements of bubble clusters without the 

observation of coalesced bubble in the homogeneous regime (UG ≤ 2.106 cm/s). This behavior 

was also observed by Chen et al. (1994) analyzing a cylindrical column (10.2 cm ID and 1.2 m 

high) using PIV for 1.7 cm/s ≤ UG ≤ 2.1 cm/s. For 2.1 cm/s ≤ UG ≤ 4.9 cm/s, the authors also 

observed that the bubble clusters and the coalesced bubbles presented upward and laterally 

oscillatory spiral movements (vortical-spiral flow). In addition, the liquid flows downwardly in 

the same spiral shape between the column wall and the central bubble stream and it is carried 

upward by the spiral movement of the central bubble stream. This vortical-spiral frow regime 

is presented in Figure 6.5. In 2D or 3D bubble columns, the irregular axial movement of vortical 
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structures through the column was also reported by Sokolichin and Eigenberger (1994), Becker 

et al. (1994), Lin et al. (1996), Mudde et al. (1997), and Jakobsen et al. (2005). 

 

 
 

Figure 6.4 - Lateral movement of the bubble plume in the 2D bubble column (gas flow rate: 

0.8 L/min) (Becker et al., 1999) 

 
 

Figure 6.5 - Flow structure in the vortical-spiral flow regime in a 3-D bubble column (Chen et 

al., 1994) 

 Figure 6.2 and Figure 6.3 show the importance of the quality analysis of the raw velocity 

fields before the application of the post-processing filters. The velocity field for UG = 4.212 

cm/s does not represent the phenomenon in the image space based on the analysis of the spatial 

coherence and the comparison of the different correlation approaches. In addition to ensuring 
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the representativeness of the analyzed phenomenon, the quality analysis (Figure 6.6) can serve 

as a reference in the optimization of the PIV system in the physical space (hardware and 

experimental set up) and in the image space (software). Quality indicators in physical space 

such as triplicate experiments are often infeasible or do not estimate all error sources (mainly 

systematic errors). In this case, an investigation of the quality indicators in the imaging space 

becomes necessary in different experimental conditions. 

 

 
 

Figure 6.6 – Quality analysis used in the representativeness of the phenomenon and in the 

optimization of hardware and software. 

6.1. QUALITY ANALYSIS OF F-PIV MEASUREMENTS 
 

6.1.1. Quality analysis from velocity field: Diff_4 and 3C R   

 

Figure 6.7a and b presents the profile of the time-averaged Diff_4, _ 4Diff , and Diff_4 

normalized by u, _ 4 uDiff , for standard cross-correlation (SCC) approach. For SCC 

approach, _ 4Diff  and _ 4 uDiff  increased with UG, where the difference between the 

2D-2C and 2D-3C measurements was low. In addition, the left side of the column (- 1 ≤ r/R ≤ 

0) presented high _ 4Diff  and values in relation to the right (0 ≤ r/R ≤ 1), except for UG ≤ 

0.528 cm/s and 2D-3C measurements. Outliers were observed mainly when _ 4 0.1.uDiff

In addition, the performance of the post-processing filters decreases considerably when 

_ 4 0.4uDiff  (or _ 4 0.2Diff  m/s). In this case, the resulting vector fields are not 

reliable. 

Physical space Image space
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Figure 6.7 – Profile of the time-averaged of (a) Diff_4, _ 4Diff , and (b) Diff_4 normalized 

by velocity modulus, _ 4 / uDiff , for standard cross-correlation (SCC). Profile of (c) Diff_4 

and (d) Diff_4/u for ensemble correlation (EC). Y = 0.552 m. 

As discussed in Chapter 2, the spatial incoherence is mainly caused by the existence of 

outliers (error > 1 pixel), which arise mainly due to the low particle image concentration (ppp 

– particle per pixel) in the frame. Table 6.1 and Table 6.2 presents the ppp of the preprocessed 

images for 2D-2C and 2D-3C F-PIV. The field of view (FoV) was divided in FoV1 (- 1 ≤ r/R ≤ 

0) and FoV2 (0 ≤ r/R ≤ 1) to analyze in detail the particle image concentration along the radius 

(Figure 6.8). In Table 6.1 and Table 6.2 it was observed that ppp decreased with increasing UG. 

In addition, the right side of the column (FoV2) had a higher ppp in relation to the left one 

(FoV1) in most of the frames and UG. As illustrated in Figure 5.2 and Figure 5.3, this can be 

explained by the heterogeneous illumination caused by the bubbles. The low ppp in FOV1 is 

mainly due to the presence of bubbles in the light sheet.  
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Table 6.1 - Particle image concentration (ppp) of the preprocessed 2D-2C images  

FoV1 = - 1 ≤ r/R ≤ 0 and FoV2 = 0 ≤ r/R ≤ 1. 

UG 

[cm/s] 

ppp [10-3] 

Frame 0 Frame 1 

FoV1 FoV2 FoV1 FoV2 

0.152 19 25 18 25 

0.528 16 22 12 22 

2.106 9 12 5 10 

4.212 ≤ 1 3 ≤ 1 2 

 

Table 6.2 - Particle image concentration (ppp) of the preprocessed 2D-3C images 

 FoV1 = - 1 ≤ r/R ≤ 0 and FoV2 = 0 ≤ r/R ≤ 1. 

UG 

[cm/s] 

ppp [10-3] 

Frame 0 Frame 1 Frame 2 Frame 3 

FoV1 FoV2 FoV1 FoV2 FoV1 FoV2 FoV1 FoV2 

0.152 26 26 25 26 27 25 26 26 

0.528 19 18 20 19 17 20 18 19 

2.106 3 7 3 7 2 6 2 6 

4.212 4 7 4 6 2 6 2 6 

 

In Figure 6.9, the effect of the low ppp in the quality indicators can be clearly observed 

in the instantaneous vector field for image of Figure 5.3, SCC approach, and UG = 0.528 cm/s. 

High values of UQ and Diff_4 were observed in the shadow regions. In addition, the SNR values 

were the lowest in these regions. In this case, low ppp is a dominant source of noise for standard 

cross-correlation (SCC) approach in the imaging space (Figure 6.10). 

 

 
Figure 6.8 - Definition of the field of view (FOV) analyzed in the column. FoV1 = - 1 ≤ r/R ≤ 

0 and FoV2 = 0 ≤ r/R ≤ 1. 
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Figure 6.9 - Quality analysis for the PIV processing of Figure 5.3 (UG = 0.528 cm/s): (a) 

outliers in the velocity vector field, (b) grid, (c) velocity modulus, u, (d) Diff_4, (e) SNR, and 

(f) uncertainty quantification field, UQ, using SCC approach. 

 
 

Figure 6.10 – Low ppp as a noise source for the standard cross-correlation (SCC) approach. 
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For 2D-3C measurements, the profile of the 3C reconstruction error did not exhibit the 

same behavior as _ 4Diff for the SCC approach (Figure 6.11a). However, the profile of 3C R 

normalized by velocity modulus in pixel (ushif ), 
3 uC R shif 

 presented the same behavior as 

_ 4Diff  (Figure 6.11b). In addition, outliers were observed mainly when 
3 0.20.  uC R shif

The performance of the post-processing filters decreases considerably when 

3 0.25  uC R shif
 (or 3 0.7  C R  pixel).  

 

 
 

Figure 6.11 - Profile of (a) the time-averaged of the 3C reconstruction error, 3C R   and (b) 

3C R   normalized by velocity modulus in pixel (ushif ), 
3 uC R shif 

 for standard cross-

correlation (SCC) and Y = 0.552 m. 

A proof that the ensemble (EC) approach is more robust than the standard cross-

correlation (SCC) is shown in Figure 6.7, where the Diff_4 and Diff_4/u values for EC were 

smaller than those for SCC (except for UG = 0.528 cm/s, 2D-2C measurements, and -1 ≤ r/R ≤ 

- 0.75). In addition, the effect of low ppp on Diff_4 and 3 uC R shif   was not similar to the SCC 

approach (Figure 6. 12). However, 2D-2C and 2D-3C fields using EC approach presented high 

Diff_4 and Diff_4/u for UG = 4.212 cm/s and -1 ≤ r/R ≤ 0.75 (Figure 6.7c). In this case, the 

measurements obtained using the EC approach are not ideal to be used as a reference in the 

analysis of spatial coherence (Figure 6.1d). This problem may be related to the number of 

frames used or the presence of noise. One possibility is that 4 000 frames are not sufficient to 

estimate the average field under these conditions, since the total time of image acquisition is 

not enough to obtain the steady state of the flow and consequently the average convergence is 

not obtained. On the other hand, the total time may have been sufficient, but the presence of 
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noise in the image may deteriorate the field, requiring a greater number of frames. Some tests 

showed that the average field converged after 3000 frames for all UG. The average field 

determined by 4000 frames was used as a reference field to study the convergence. By using 

3000 frames it was found a deviation of 3%. The average deviation of the field determined by 

3500 frames was of 1.5%. A detailed study of the convergence of the average field is presented 

in Section 6.2. 

 

 

Figure 6. 12 - Profile of (a) 3C R   and (b) 3C R   normalized by velocity modulus in pixel (

ushif ), 3 uC R shif  , for ensemble correlation (EC) and Y = 0.552 m. 

6.1.2. Quality analysis from correlation plane: CCC, SNR, and UQ. 

 

The time-averaged of the other quality indicators (CCC, SNRSCC, and UQ) for SCC 

approach are shown in Figure 6.13a-c. Furthermore, Figure 6.13d shows the time-averaged of 

the uncertainty normalized by velocity uUQ u . In general, the CCC  and SCCSNR  

distribution presented a small difference between the 2D-2C and 2D-3C measurements. The 

CCC  values decreased with UG, except in some points in -1 < r/R < 0. In this case, some 

values for UG = 4.212 cm/s were higher than those for UG = 2.106 cm/s. The SCCSNR  values 

also decreased with UG. On the other hand, the UQu values increased with UG, where a 

significant difference was observed between the 2D-2D and 2C-3C measurements for UG = 

2.106 and 4.212 cm/s. In Figure 6.13d, the uUQ u  values were below 0.7, i.e. the 

measurement uncertainty was less than 70 % of the velocity value. For uUQ u  distributions, 

it was not possible to establish a direct relationship with UG. 
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Figure 6.13 – Profile of time-averaged quality indicators (Y = 0.552 m): (a) cross-correlation 

coefficient, CCC ; (b) SNR for SCC, SCCSNR ; (c) u uncertainty, uUQ ; (d) UQu 

uncertainty normalized by u, uUQ u ; (e) correlation value, CV ; and (f) SNR for EC 

method, ECSNR . 

A large difference between the measurements of the both techniques was observed for UG 

= 0.152 cm/s, where the 2D-2C measurements presented the highest values of uUQ u . This 

can be related directly to the DVR and the choice of dt, since it was chosen a time of 500 μs for 

the 2D-2C measurements. Apparently, this did not affect the spatial coherence analyzed in 

Figure 6.1 and Figure 6.7. For UG = 0.528 cm/s, the uUQ u  values were the lowest in relation 
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to others UG, except for the 2D-2C measurements in -1 < r/R < - 0.75. For UG = 2.106 and 4.212 

cm/s, the uUQ u  values were between 0.3 and 0.7, where a considerable difference between 

both techniques was observed.  

For the EC approach, the time-averaged of the correlation value, CV , and SNR, 

ECSNR , are shown in Figure 6.13e-f. In general, the SNR values were higher than those for 

SCC, with values between 5 and 700. This confirms the robustness of the EC approach. In 

addition, the SNR distribution also showed no differences between the 2D-2C and 2D-3C 

measurements. However, the CV distribution presented a significant difference. Note that a 

direct relationship between the CV and neighborhood coherence (Figure 6.1) was not 

established, since the profile for 2.106 cm/s presented a better coherence. But the CV 

distribution for UG = 2.106 cm/s was lower than those for UG = 0.152 and 0.528 cm/s and the 

SNR values were lower than those for 0.152 cm/s. Moreover, it is not possible to establish a 

range of CV and SNREC values where the spatial coherence is high. 

For SCC approach, the quality indicators did not exhibit the same behavior of 

_ 4 uDiff in relation to the effect of the low particle image concentration (ppp). This can be 

clearly observed by analyzing the value of the indicators on the left side of the column which 

should be the highest. However, some uUQ u  profiles presented the same trend observed in 

_ 4 uDiff . As presented in section 2.2, the estimate of UQ is related to the form of the 

correlation peak. 

The particle image diameter d  (Eq. 6.1) calculated by Davis 8.2 software can be used to 

investigate the shape of the correlation peak for standard cross-correlation approach (Figure 

6.14), since it is estimated by the standard deviation,  , of the Gaussian peak fit (Raffel et al., 

2007, Adrian and Westerweel, 2011). It is important to note that this equation is obtained 

considering a uniform displacement field.  

 

2 2d           (6. 1) 
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Figure 6.14 - Standard deviation,  , of the Gaussian peak fit (Adapted from Sciacchitano, 

2014). 

 

 

Figure 6.15 – Time-averaged and RMS of the particle image diameter, d   and RMSd , 

using SCC approach. (a-b) Camera A. (c-d) Camera B1 and B2. 

Basically, d  increases with the increasing of the correlation peak width. Figure 6.15 

shows the time-averaged and RMS of d  ( d  and RMSd ) for the 2D-2C fields of the 

cameras A, B1, and B2. The d   values varied along the radius for all cameras and UG (Figure 

6.15a and c). In Figure 6.15b and d, the variation of the RMSd  values is directly related to the 

noise in PIV interrogation (NI, Z , u , and distortion caused by the bubbles), since the d
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values for the preprocessed image were 2-3 pixels. The RMSd values can be directly related to 

low ppp  (observed in Table 6.1 and Table 6.2) and therefore, their behavior is similar to Diff_4 

and _ 4 uDiff  in Figure 6.7a and b. The same behavior was observed for RMSd  normalized 

by time-averaged of the particle image diameter, RMSd d  ,  in Figure D1. In addition, 

outliers were observed mainly when RMSd  > 0.07 pixel and RMSd d  > 0.04.  

 

6.1.3. Quality analysis of the velocity components 

 

The fields of the time-averaged velocity components are shown in Figure 6.16, Figure 

6.17, and Figure 6.18. In general, the fields for the axial component ( v ) presented greater 

spatial coherence than those for the radial components (in-plane, u , and out-of-plane, w ). 

Regarding the spatial coherence, the fields for standard cross-correlation (SCC) approach are 

more sensitive to noise than those for ensemble correlation (EC) approach. This behavior was 

observed previously in Figure 6.1. One can also verify that the fields are deteriorated with the 

increase of UG, mainly for u  and w . Note the low spatial coherence caused by low ppp 

(Table 6.1 and Table 6.2) on the left side of u  and v  fields, especially for UG = 0.528 and 

2.106 cm/s. This effect is easily observed when the SCC, SCC* and EC fields are compared. 

For the SCC fields, the low spatial coherence was also observed when RMSd > 0.07 in Figure 

6.19.  
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Figure 6.16 – Time-averaged u fields, u , calculated using standard cross-correlation 

(SCC), SCC with PIV post-processing (SCC*), and ensemble correlation (EC) approach. 
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Figure 6.17 – Time-averaged v fields, v , calculated using standard cross-correlation (SCC), 

SCC with PIV post-processing (SCC*), and ensemble correlation (EC) approach. 
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Figure 6.18 – Time-averaged w fields, w , calculated using standard cross-correlation 

(SCC), SCC with PIV post-processing (SCC*), and ensemble correlation (EC) approach. 

 

 
 

Figure 6.19 – RMSd  distribution using SCC approach for camera A, B1, and B2. 
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If low ppp is the dominant noise source in the measurements, then the effect on the 

components should be the same. However, this was not observed in the velocity fields (Figure 

6.16, Figure 6.17, and Figure 6.18). In addition, a large difference was observed between the 

u  fields of the 2D-2C and 2D-3C measurements. The axial displacement is considerably 

greater than the radial. This difference makes it difficult to choose a dt for a low-DVR PIV 

system. For a dt defined in relation to the velocity modulus, the image displacement in the axial 

direction is easier to determine, i.e., the correlation peak displacement is greater in the axial 

direction (dsy > dsx in Figure 6.20). Table 6.3 presents the maximum and minimum 

displacement in pixel of the time-averaged velocity components. This can explain the difference 

between the quality of the fields according to the spatial coherence. The correlation peak 

displacement, sD, can be written by Eq. 6.2, where dr is the pixel pitch, m0 and n0 are the 

displacements related to integer numbers of pixel. ɛX and ɛY are the fractional displacements 

(Adrian and Westerweel, 2011).  

 

 

 

Figure 6.20 – Determination of the correlation peak displacement in the interrogation window 

(32 x 32 pixels) 
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Table 6.3 - Maximum and minimum displacement in pixel of the time-averaged velocity 

components. 

UG [pixel] 

2D-2C F-PIV 2D-3C F-PIV 

SCC EC SCC EC 

min max min max min max min max 

0
.1

5
2
 c

m
/s

 

u -0.084 0.163 -0.025 0.111 -0.059 0.117 -0.056 0.036 

v -0.365 0.317 -0.221 0.314 -0.503 0.626 -0.435 0.652 

w - - - - -0.172 0.073 -0.065 0.056 

u 0.002 0.367 0.003 0.314 0.004 0.627 0.011 0.654 

0
.5

2
8
 c

m
/s

 

u -2.361 0.540 -0.050 0.123 -0.069 0.166 -0.016 0.155 

v -1.267 1.167 -1.144 1.270 -1.268 1.164 -1.177 1.273 

w - - - - -0.226 0.136 -0.146 0.080 

u 0.021 2.504 0.011 1.270 0.070 1.277 0.056 1.277 

2
.1

0
6
 c

m
/s

 

u -3.285 3.676 -0.155 0.174 -2.595 1.701 -0.135 0.167 

v -5.245 3.079 -1.810 2.088 -7.185 4.965 -1.910 2.163 

w - - - - -4.723 4.502 -0.471 0.169 

u 0.048 5.382 0.040 2.090 0.004 8.617 0.075 2.168 

4
.2

1
2
 c

m
/s

 

u -31.649 36.794 -0.615 0.773 -5.654 4.921 -0.283 0.352 

v -47.798 33.787 -2.782 2.432 -15.513 13.645 -2.167 2.362 

w - - - - -11.086 11.252 -1.018 0.644 

u 0.022 51.382 0.062 2.783 0.019 19.667 0.108 2.365 

 

The value of the fractional part in Eq. 6.2 is determined by a three-point Gaussian 

estimator (as presented in Section 5.2) using a subpixel interpolation. This fractional part is 

directly related to the correlation value (peak detectability, SNR, and correlation coefficient) 

and peak shape. Several authors have studied the optimization and performance of subpixel 

interpolations such as, for example, Westerweel (1993), Willet (1996), Westerweel (2000), 

Scarano (2002), and Foucaut et al. (2004). 

The time-averaged absolute value of the velocity normalized by uncertainty for radial (

 *

x xUQ Abs UQ u  and  *

z zUQ Abs UQ w ) and axial (  *

y yUQ Abs UQ v ) 

components can be used to analyze in detail the quality of the measurements. Table 6. 4 shows 

the spatial average of *

i i=x,y,zUQ , *

i i=x,y,zUQ , for different UG. The *

yUQ  values were the 

lowest for all UG. For the 2D-3C measurements, the *

zUQ  values were the highest. This can 

be directly related to the loss of correlation due to the out-of-plane motion, peak detectability 

(SNR), or 3C reconstruction error. Moreover, the bubbles located in the front of the 
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investigation area can change the refractive index distribution, damaging the performance of 

the 3C reconstruction. 

 

Table 6. 4 – Spatial Average of *

i i=x,y,zUQ  in the area investigated for different UG. 

UG 

[cm/s] 

2D-2C F-PIV 2D-3C F-PIV 

*UQx  
*UQ y  

*UQx  
*UQ y  

*UQz  

0.152 0.552 0.349 0.448 0.322 0.690 

0.528 0.410 0.227 0.428 0.285 0.612 

2.106 0.518 0.320 0.548 0.438 0.657 

4.212 0.397 0.288 0.450 0.372 0.507 

 

In PIV post-processing, the difference in the quality of the velocity components directly 

affects the performance of the filters. The effect of the filter developed by Westerweel and 

Scarano (2005) in the post-processed fields (SCC*) can be observed in Figure 6.16, Figure 6.17, 

and Figure 6.18. Moreover, the post-processed fields can be compared with those obtained by 

the ensemble correlation (EC) approach. Except for UG = 4.212 cm/s, the v distributions 

obtained by the SCC* and EC approach were almost the same. This behavior was not observed 

in the u  and w  distributions. However, the distribution of the radial components obtained 

by the SCC* and EC approaches also did not show large differences for UG = 0.152 and 0.528 

cm/s. For UG = 4.212 cm/s, all the velocity components obtained by the SCC* and EC approach 

were different. This is due to the large amount of false vectors (outliers) reducing the 

performance of the post-processing filter. In this case, the post-processed fields do not represent 

the actual flow even these fields with a greater spatial coherence. 

 

6.1.4. Effect of the allowed maximum error of reconstruction 3Max C R   

 

For measurements 2D-3C shown in Figure 6.16 and Figure 6.17, the allowed maximum 

reconstruction error of reconstruction 3Max C R   may be the explanation of the high spatial 

coherence observed in the fields in relation to the 2D-2C measurements. In this case, 3Max C R   

acts as a post processing filter eliminating the outliers. The difference between the profiles of 

the time-averaged velocity components with and without 3Max C R   is shown in Figure 6.21. The 
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improvement in the spatial coherence was observed in some cases mainly for UG = 4.212 cm/s 

based on _ 4Diff  values in Table 6.5. 

 

 

 

 

Figure 6.21 - Profiles of the time-averaged velocity components with and without 3Max C R   
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Table 6.5 - Spatial average of _ 4Diff , _ 4Diff  [m/s], with and without 3Max C R   for 

different field of view (FOV). FoV = - 1 ≤ r/R ≤ 1, FoV1 = - 1 ≤ r/R ≤ 0, and FoV2 = 0 ≤ r/R ≤ 

1. 

UG 0.152 cm/s 0.528 cm/s 2.106 cm/s 4.212 cm/s 

3Max C R   with without with without with without with without 

FoV 0.007 0.009 0.013 0.012 0.481 0.441 1.065 1.764 

FoV1 0.008 0.011 0.016 0.014 0.774 0.638 1.368 2.199 

FoV2 0.006 0.006 0.011 0.011 0.225 0.277 0.803 1.418 

 

In Table 6. 4, it was expected that *

i i=x,y,zUQ  values would be the highest for UG = 4.212 

cm/s. These low values can be explained by the large number of outliers and 3Max C R   for the 

2D-3C measurements. Besides affecting the spatial coherence, the low ppp can decrease the CS 

method performance on the uncertainty quantification. The 3Max C R   effect can be observed in 

Figure 6.22. For all UG, there was large differences between the *

i i=x,y,zUQ  values with and 

without 3Max C R  . If the 2D-3C field has a vector in the interrogation window with 

3 3C R Max C R   , then this vector is rejected and a new estimate is made using the second 

highest correlation peak. The 2D-3C PIV system is more sensitive to the noise than the 2D-2C 

one mainly because of the 3C reconstruction. The 3C reconstruction error, 3C R  , can be used 

as an quality indicator for the 3C-2D measurements.  

 

 

Figure 6.22 - Spatial average of *

i i=x,y,zUQ in the area investigated for different UG with 

and without 3Max C R   
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The spatial average of the time-averaged 3C reconstruction error, 
3C R 

, with and 

without 3Max C R   is presented in the Table 6.6. Small differences between the 
3C R 

 values 

were observed for UG = 0.152 and 0.528 cm/s. However, the differences are greater for UG = 

2.106 cm/s and especially for UG = 4.212 cm/s.  

 

Table 6.6 – Spatial average of the time-averaged 3C reconstruction error, 
3C R 

, in the area 

investigated for different UG. 

UG 

[cm/s] 

3C R 
 [pixel] 

With 3Max C R   Without 3Max C R   

0.152 0.089 0.109 

0.528 0.190 0.194 

2.106 0.647 2.554 

4.212 1.001 10.730 

 

 

Table 6.7 - Spatial average of _ 4Diff , _ 4Diff  [m/s], with and without 3Max C R   for 

different field of view (FOV). FoV = - 1 ≤ r/R ≤ 1, FoV1 = - 1 ≤ r/R ≤ 0, and FoV2 = 0 ≤ r/R ≤ 

1. 

UG 0.152 cm/s 0.528 cm/s 2.106 cm/s 4.212 cm/s 

3Max C R   with without with without with without with without 

FoV 0.007 0.009 0.013 0.012 0.481 0.441 1.065 1.764 

FoV1 0.008 0.011 0.016 0.014 0.774 0.638 1.368 2.199 

FoV2 0.006 0.006 0.011 0.011 0.225 0.277 0.803 1.418 

 

 

6.1.5. Effect of the tracer particle and spatial resolution  

Besides the peak detectability, this difference in the measurement quality of the 

components can be related to the ability of the tracer particles to follow the flow. This capability 

is guaranteed when the Stokes´ number is less than 0.1, considering that the external forces 

(gravity, centrifugal and electrostatic) are neglected. The Stokes’ number (Eq. 6.3) is defined 

as the ratio between the relaxation time (τp) and the characteristic time scale of the flow (τf). 

The relaxation time (Eq. 6.4) is defined as the response time of the tracer particle to changes in 

the fluid velocity, where dp is the diameter of the tracer particle, ρp is the tracer particle density, 
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and   and   is the density and dynamic viscosity of the fluid. The characteristic time scale 

of the flow, τf, can be estimated by Eq. 6.5, where  is the smallest resolved length scale and 

∆Umax-min is the difference between the maximum and minimum velocity of the flow (Samimy 

and Lele, 1991; Melling, 1997; Westerweel, 1997; Raffel et al., 2007). Table 6.8 presents the 

 value estimated using the minimum and maximum velocity in the Y direction considering Sk 

= 0.1 for UG = 0.152 and 0.528 cm/s. For UG > 0.528 cm/s, the estimation ∆Umax-min = νmax -νmin 

is compromised by the presence of outliers. In Table 6.8, the  value was at most of the order 

of 10-5 m, i.e., on the order of 10-1 pixel (sub-pixel precision).  

 

p

K

f
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          (6.3) 
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𝜏𝑓 = 10 ∙ ℓ/∆𝑈𝑚𝑎𝑥−𝑚𝑖𝑛       (6.5) 

 

 

Table 6.8 – Experimental values of ∆Umax-min = νmax -νmin and the smallest resolved length 

scale using rhodamina B for UG = 0.152 and 0.528 cm/s. 

UG 

[cm/s] 

∆Umax-min [m/s]  [µm] 

2D-2C 2D-3C 2D-2C 2D-3C 

0.152 0.60 0.71 8.31 9.84 

0.528 1.60 1.58 22.17 2.91 

 

The effect of the interrogation window size in the measurement quality for 2D-2C PIV 

was investigated. Figure 6.23 presents the vector field from preprocessed image of  Figure 5.3 

for UG = 0.528 cm/s using a size of the final interrogation window (IWf) equal to 24 and 16 

pixels. The amount of outliers increased with the decrease of IWf mainly in the shadow regions 

(low ppp). Except for UG = 4.212 cm/s, this effect of IWf  was observed in the spatial average 

of _ 4Diff , _ 4Diff , in Table 6.9. The spatial coherence for IWf  = 24 and 16 pixels was 

lower in relation to 32 pixels. For UG = 4.212 cm/s, in some regions it was not possible to 

calculate the velocity field due to the absence of particle images. 
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Figure 6.23  – Instantaneous vector field and grid for a size of final interrogation window 

(IWf) equal to 24 and 16 pixels from preprocessed image of the Figure 5.3 for UG = 0.528 

cm/s.  

 

Table 6.9 - Spatial average of _ 4Diff , _ 4Diff , in frame for different size of final 

interrogation window (IWf) 

UG (cm/s) 
IWf 

_ 4Diff  (m/s) 
(pixel) (10-3 m) 

0.152 

32 3.2 0.010 

24 2.4 0.022 

16 1.6 0.046 

0.528 

32 3.2 0.064 

24 2.4 0.157 

16 1.6 0.126 

2.106 

32 3.2 0.252 

24 2.4 0.447 

16 1.6 0.554 

4.212 

32 3.2 1.523 

24 2.4 1.195 

16 1.6 0.995 
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6.2. NOISE EFFECT IN CONVERGENCE OF THE AVERAGE FIELD 

6.2.1. Analysis of the velocity fluctuation 

The fluctuations of the velocity modulus, rmsu , were used to identify the noise in the 

instantaneous fields before calculating the average field. In addition, two approaches were used 

in the PIV interrogation: standard cross-correlation (SCC) and sliding-average correlation 

(SAC) approaches. The presence of outliers directly interfered in the time series and 

consequently in rmsu . As discussed in Chapter 2, the SAC approach can reduce the random 

component of the measurement error increasing the measurement accuracy of rmsu  (Figure 2.7). 

Therefore, the comparison between rmsu  obtained by the SCC and SAC approaches can be used 

to identify sources of noise. Figure 6.24 shows an example of the difference between the time 

series obtained by the SCC and SAC approach, where the noise effect can be observed. The 

time-averaged of the series presented in Figure 6.24 was 0.164 and 0.136 m/s for the SCC and 

SAC approaches, respectively. 

 

 

Figure 6.24 – Time series of the velocity modulus, u, obtained using the (a) SCC and (b) SAC 

approach from 2D-2C measurements for r/R = 0, Y = 0.552 cm, and UG = 0.528 cm/s. (c) 

Difference between the time series obtained by standard cross-correlation (SCC) and sliding-

average correlation (SAC) approaches. 
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The velocity modulus fluctuation obtained using SCC, _ Crms SCu , and SAC, _ Crms SAu , 

approaches from 2D-2C and 2D-3C measurements for different UG is presented in Figure 6.25. 

A large difference between the _ Crms SCu  and _ Crms SAu  fields was also observed mainly with 

increasing UG. The spatial coherence of rmsu  field decreased with increasing UG, where the 

spatial coherence of  _ Crms SAu  was higher than _ Crms SCu  proving that the SAC approach was more 

robust than SCC. Similar to the effect presented in Table 6.4, the allowed reconstruction 

maximum error, 3Max C R  , defined in the 3C reconstruction (Chapter 3) can be responsible for 

the difference between the rmsu  for the 2D-2C and 2D-3C measurements. This difference was 

observed mainly for 2.106 and 4.121 cm/s. In Figure 6.26, this can be seen more clearly in the 

rmsu  profiles. The behavior of rmsu  is also directly related to the low particle image 

concentration ( ppp ) in frame as investigated in Table 6.1 and 6.2. 
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Figure 6.25 – Velocity modulus fluctuation field obtained using standard cross-correlation,

_ Crms SCu , and sliding-average correlation, _ Crms SAu , approaches from 2D-2C and 2D-3C 

measurements for different UG. 
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Figure 6.26 - rmsu  profiles for Y= 0.552 m and UG = (a) 0.152, (b) 0.528, (c) 2.106, and (d) 

4.121 cm/s obtained by standard cross-correlation (SCC) and sliding-average correlation 

(SAC) approaches. 

 

6.2.2. Analysis of the convergence of the average field. 

 

Equation 6.6 was used to evaluate if the number of frames NR was enough to obtain the 

convergence of the time-averaged velocity. Theoretically, the ideal frame number is obtained 

when ( *u , *u , *v , *w ) = 0. Figure 6.27 shows the values of the spatial average of *u , *u , 

*v , and *w  ( *u , *u , *v , and *w ) in the area investigated by the SCC, SAC, and EC 

approaches. The effect of noise on the convergence of the average field can be observed by the 

differences of the values of *u , *u , *v , and *w  obtained by the three approaches when 

 4000RN  , in which the values of *v  were lower than those of *u  and *w  in almost all cases 

(Table E1 and Figure E1). Except for UG = 4.121 cm/s using the 2D-2C PIV, the values of *v  

were less than 0.10 (Table E2). This is directly related to large displacement range of the 

correlation peak as discussed in section 6.1.3. In addition, the behavior of *u  was similar to 

that of *v . 
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Figure 6.27 – Spatial average of *u , *u , *v , and *w  in function of the number of frames NR 

for different UG and standard cross-correlation (SCC), and sliding-average correlation (SAC), 

and ensemble correlation (EC) approaches. 
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The analysis of the spatial coherence can be analyzed by Diff_4  of the time-averaged 

field ( tafDiff_4 ), where Diff_4  is the spatial average of the velocity difference in the 

interrogation window and its four neighbors. In Figure 6.28, the noise effect can be clearly seen 

in the spatial average of tafDiff_4  normalized by the time-averaged of u , 
tafDiff_4 / u , for 

different UG. Ideally, 0tafDiff_4 / u  when 4000RN  . For the EC approach, 

0.1tafDiff_4 / u  when NR = 4000. In most cases, the 
tafDiff_4 / u  values were higher 

for the SCC approach than for the SAC. This can also be observed in the comparison of the 

profiles of the velocity modulus for the both approaches in Figure 6.29 and Figure 6.30. The 

profiles of the time-averaged of Diff_4, _ 4Diff , and Diff_4 normalized by velocity modulus, 

_ 4 / uDiff , for sliding-average correlation (SAC) are presented in Figure D2. The _ 4Diff  

and _ 4 / uDiff  values were lower than for the SCC approach (Figure 6.7). 

 

 

Figure 6.28 - Spatial average of Diff_4  for the time-averaged field, tafDiff_4 , normalized by 

the time-averaged u, utafDiff_4 / , for UG = (a) 0.152, (b) 0.528, (c) 2.106, and (d) 4.121 

cm/s. 
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Figure 6.29 - Time-averaged velocity modulus profiles along the radius for different UG and 

NR obtained by the standard cross-correlation (SCC) approach, SCCu  located at Y = 0.552 

m.  
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Figure 6.30 – Time-averaged velocity modulus profiles along the radius for different UG and 

NR obtained by the sliding-average correlation (SAC) approach, SACu  located at Y = 0.552 

m.  

 

For standard cross-correlation (SCC) approach (Figure 6.29), the effect of low ppp 

(Table 6.1 and Table 6.2) can also be observed on the left side of the time-averaged velocity 

modulus profiles and in the difference between 2D-3C and 2D-2C measurements, respectively. 
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This low ppp effect was not observed for the SAC approach (Figure 6.30). In this case, the SAC 

approach becomes a good alternative in the low ppp. Besides the high cost, there is no guarantee 

that the increase in the rhodamine concentration can be directly related to the increase of the 

measurement quality, since ppp also depends on the homogeneous illumination and presence 

of the bubbles in the investigated area (as observed in section 5.1). 

 

6.2.3. Effect of the sliding-average correlation (SAC) on the measurement quality 

 

In general, the spatial average of SNR  and 3C R  , that is SNR  and 
3C R 

, did not 

vary considerably with NR for the SCC and SAC approaches (Figure 6.31). For both 

approaches, the SNR  and 
3C R 

 values decreased and increased with increasing UG, 

respectively. That is, the amount of noise is higher when SNR  is lower and 
3C R 

 is higher. 

In addition, there were no significant differences between the SNR  values of the 2D-2C and 

2D-3C measurements. In Figure 6.31, the SAC approach proved to be more robust than SCC, 

where 
SACSNR  was approximately 2 SCCSNR  (Table E3) and 

3 _C R SAC 
 was 

approximately 
3 _1 2 C R SCC 

.  

In Figure 6.32, the uncertainty quantification of the time-averaged velocity modulus and 

components, 
, , ,ui u v w

i
UQ , decreased with UG for both approaches. In addition, the best quality 

of the SAC approach in respect to the SCC one can also be observed in the low values of the 

spatial average of 
, , ,

_
ui u v w

i SAC
UQ . This behavior can be clearly observed in the 

, , ,ui u v w
i

UQ

values for both approaches when NR = 4000 in Figure 6.33, Table E5, and Table E6. According 

to Sciacchitano (2014), the SAC approach reduces the error by k  assuming that the random 

error is uncorrelated in time. This can also be observed comparing the uncertainty quantification 

profiles for both approaches in Figure 6.34 and Figure 6.35. For SCC approach, the effect of 

low ppp  can be seen on the left side of the profiles mainly for low UG = 0.528 and 2.106 cm/s. 

However, this effect was reduced when using the SAC approach. For the EC approach in Figure 

6.31, the SNR  and 3C R   values were greater than 10 and smaller than 0.1 pixel, respectively. 

This shows that for EC approach it is possible to increase the PIV spatial resolution by 

decreasing the interrogation window if the SNR  values are greater than 2 and the 3C R   are 
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less than 1 pixel. The SNR  and 
3C R 

 values varied considerably with UG and NR for 2.106 

and 4.121 cm/s (Table E4). In addition, the effect of the SAC approach can be observed in the 

low values of 3 C R  and 
3 uC R shif 

 in Figure D3. 

 

 

Figure 6.31 – Effect of NR on the spatial average of SNR  and 3C R   for (a-b) standard 

cross-correlation (SCC) and (c-d) sliding-average correlation (SAC) approach. (e-f) Analysis 

of the spatial average of SNR  and 3C R   for ensemble correlation (EC) approach. 
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Figure 6.32 – Spatial average of the uncertainty quantification of u , u , v , and w  

obtained by the SCC¨and SAC approach (
, , ,

_
i u v w

i SCC
UQ

u

and 
, , ,

_
i u v w

i SAC
UQ

u

). 
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Figure 6.33 – Spatial average of (a) u
UQ , (b) v

UQ , and (c) w
UQ for NR = 4000 in function 

of UG. 
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Figure 6.34 –Uncertainty quantification profiles of u , u , v , and w  along the radius 

(Y = 0.552 m) for different UG and NR obtained by the standard cross-correlation (SCC) 

approach, 
, , ,

_
i u v w

i SCC
UQ

u

. 
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Figure 6.35 - Uncertainty quantification profiles of u , u , v , and w  along the radius 

(Y = 0.552 m) for different UG and NR obtained by the sliding-average correlation (SAC) 

approach, 
, , ,

_
i u v w

i SAC
UQ

u

. 
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The quality of the measurements for the SAC approach can be observed in the smoothing 

of the vorticity fields and profiles (Figures C3-C6) when compared to the SCC approach 

(Figures 6.2 and 6.3). 

6.3.  STRATEGY OF PIV PROCESSING USING THE QUALITY 

INDICATORS 

 

The optimization strategy of the PIV processing using the quality indicators investigated 

in sections 6.1 and 6.2 is shown in Figure 6.36.  

 

 
 

Figure 6.36 - Optimization strategy of the PIV processing using the quality indicators 

investigated in sections 6.1 and 6.2. 
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Regarding the quality conditions for standard cross-correlation (SCC) approach, five 

limits in sections 6.1 and 6.2 were obtained that guarantee that the outliers can be corrected 

without the vector field losing the representativeness of the flow: _ 4Diff < 0.20 m/s, 

_ 4 uDiff  < 0.40, 
3 uC R shif 

< 0.25, 3C R  < 0.70 pixel, and RMSd  < 0.07 pixel. For 

sliding-average correlation (SAC) approach, these quality limits can be applied, except . RMSd  

If the raw fields obtained by the standard cross-correlation (SCC) approach have values 

higher than the quality limits observed previously, these fields probably have a high number of 

outliers that can not be corrected in post-processing. In this case, a new interrogation strategy 

using the SCC approach can be done or the sliding-average correlation (SAC) approach can be 

used to decrease or eliminate the outliers. As presented in section 6.2.2, the SAC approach 

eliminated outliers caused mainly by the low particle image concentration (ppp) (Figure 6.37). 

However, the quality limits should always be analyzed. In addition, the comparison of the post-

processed fields with other fields obtained by ensemble correlation or other more robust 

correlations becomes necessary. In addition, the temporal kernel (k) can be optimized in the 

SAC approach to improve the quality of the measurements. 

 

 
 

Figure 6.37 – Application of the sliding-average correlation (SAC) approach to decrease or 

eliminate the effect of the low particle image concentration (ppp). 

As discussed in section 6.1.3, the quality of the velocity axial component is greater than 

the radial components mainly in the fields obtained by the SCC approach. This is directly 

related to the correlation peak displacement. In this case, the displacement in the axial direction 

is larger and therefore has a smaller error. For PIV systems with low-DVR (conventional PIV 

or low-DVR PIV), the choice of an ideal interframe time to ensure the quality of the velocity 

components is difficult (Figure 6.38). The displacement field of the particle images is less 
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homogeneous due to the passage of few bubbles in the investigated area. This results in a region 

of maximum and minimum displacement, near and far of the bubbles, respectively. 

 

 
Figure 6.38 - Low DVR as a limiting factor in PIV systems. 

 

A large displacement range in the flow requires a high-DVR of the PIV system (PIV-

HDR). For high-DVR PIV, Persoons and O'Donovan (2011) investigated the relationship 

between the interframe time and SNR using a multi-frame approach. In addition, the use of a 

high-DVR PIV system allows the application of temporal filters and correlations in the 

preprocessing, processing, and post-processing. In this case, the temporal and spatial coherence 

can be used together to increase the quality of the measurements. The drawback is that the high-

DVR PIV system is much more expensive than the low-DVR PIV.  

Regarding the radial velocity components, the SAC approach presented a higher quality 

than the SCC approach, as observed in section 6.2.3. However, the development of a correlation 

that optimizes the particle image displacement using multiple frames in double-frame recording 

is necessary (like the multi-double-frame (MDF) PIV developed by Persoons et al. (2008)).  

For investigated correlations in this work, it is only suitable to use the axial velocity, 

v , to represent the flow up to a superficial gas velocity UG = 2.106 cm/s (homogeneous flow 

regime). In the homogeneous-heterogeneous transition regime (UG = 4.212 cm/s), a more 

detailed study applying other correlation strategies (correlation approaches, window size and 

overlap, etc.) becomes necessary.
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CHAPTER 7.  

CONCLUSIONS AND FUTURE WORK 

 

This chapter presents the conclusions of this Thesis and recommendations for future 

work. 
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7.1. CONCLUSIONS 

 

The PIV quality of the liquid phase velocity in the homogeneous and homogeneous-

heterogeneous transition flow regime of a bubble column was evaluated. The experimental 

setup of the 2D-2C and 2D-3C F-PIV system was optimized based on the best recording of light 

scattering of the tracer particles. In addition, the distortion effect caused mainly by the wall of 

the column was compensated by using a third-order polynomial as dewarping function. 

In general, the quality of the PIV measurements decreased with increasing the 

superficial gas velocity UG. This behavior was also related with the low particle image 

concentration in the frame (ppp). The region opposite to the incidence of laser light presented 

a low ppp, causing the increase of outliers (errors > 1 pixel) in the velocity field, particularly 

with increasing UG. This can be caused by the large amount of bubbles in the frame, difficulty 

of penetration of the laser light, and exit of the light emitted by the tracers in column. The effect 

of the non-uniform illumination (low ppp) was observed by the low spatial coherence of the 

velocity distribution, especially for UG = 2.106 and 4.212 cm/s (homogeneous-heterogeneous 

transition flow regime). In addition, a direct relationship between the cross-correlation 

coefficient (CCC), signal-to-noise ratio (SNR), and uncertainty quantification (UQ) with the 

spatial coherence of the velocity fields was not established. On the other hand, a low spatial 

coherence was also observed when the root mean square of the particle image diameter, , RMSd  

was greater than 0.07 pixel. The average of the velocity difference in the interrogation window 

and its four spatial neighbors (Diff_4) was used as a spatial coherence indicator. In addition, 

outliers were observed mainly when _ 4 0.1uDiff , where u is the modulus velocity. 

The quality of the axial velocity was greater than the radial one. This difference can be 

directly related to the correlation peak displacement for each component. The axial component 

had a higher value due to the upward movement of the bubbles. This made it difficult to 

determine the radial velocity in plane and out-of-plane, since the system used in this work has 

a low dynamic velocity range (low-DVR). The spatial coherence of the radial distributions was 

lower than the axial one, even when the post-processing filter was applied. Except for UG = 

4.212 cm/s, the axial velocity distribution was practically the same for the EC and SCC * 

approaches. Furthermore, a small difference was observed between the axial fields for 2D-2C 

and 2D-3C measurements, since the perspective error interfered less than the error caused by 
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the low ppp and distortion of the bubbles, especially in 3C reconstruction. For 2D-3C 

measurements, the in-plane radial velocity showed better quality than the out-of-plane one.  

The performance of the post-processing filter in the velocity fields (SCC *) was 

compromised for UG = 4.212 cm/s. In this condition, the post-processed fields had high spatial 

coherence, but did not represent the flow when compared with the fields obtained by EC 

approach. For the estimation of the average fields, the sliding-average correlation (SAC) 

approach using a temporal kernel equal to 2 presented higher quality than the SCC approach. 

Moreover, the noise interfered mainly in the average fields of the radial components. In low-

DVR PIV applications, the use of the axial velocity obtained by the standard cross-correlation 

with post-processing (SCC*) is the most indicated to describe the flow and validate CFD 

models of the liquid phase velocity in a bubble column for UG = 0.152, 0.528, and 2.106 cm/s 

(homogeneous flow regime). 

Regarding the quality conditions for standard cross-correlation (SCC) approach, five 

limits were obtained that guarantee that the outliers can be corrected without the vector field 

losing the representativeness of the flow: _ 4Diff < 0.20 m/s, _ 4 uDiff  < 0.40, 

3 uC R shif 
< 0.25, 3C R  < 0.70 pixel, and RMSd  < 0.07 pixel. Except  RMSd , these 

quality limits can be applied for sliding-average correlation (SAC) approach. 

The optimization strategy of the PIV processing using the quality indicators investigated 

in this work is shown in Figure 7.1. 
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Figure 7.1 - Optimization strategy of the PIV processing using the quality indicators 

investigated in this work. 

7.2. FUTURE WORK 

 

Further research can be performed to improve the quality of the measurements presented 

along this work. Some suggestions are described below: 
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• Application of the particle tracking velocimetry (PTV) approach to investigate 

mainly the regions near the column wall; 

• Application of other correlation approaches such as Robust Phase Correlation (RPC); 

• Study of the effect of the distortion caused by the bubbles in the velocity field using 

the self-calibration for 2D-3C system (Wieneke, 2005); 

• Investigation of interrogation strategies for the EC and SAC approaches with the aim 

of increasing the spatial resolution without losing the quality of the velocity fields; 

• Application of Synthetic PIV in the investigation of the effects of noise effects for 

flows with high displacement gradients; 

• More detailed investigation of temporal and spatial filters in PIV post-processing; 

• Investigation of the intensity distribution in the bubble column using two laser 

systems. 

• A time-resolved PIV system can be used to increase the spatial resolution of the fields 

using the temporal neighborhood approach to decrease the effect of low ppp. 

• Development of a PIV software in Matlab. 

• Compare the PIV measurements with other techniques. 
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Kaštánek, F., Sharp, D.H. (David H.., Kratochvíl, J., Cermák, J., 1993. Chemical reactors for 

gas-liquid systems. Academia Praha. 

Keane, R.D., Adrian, R.J., 1990. Optimization of Particle Image Velocimeters. Part I: double 

pulsed systems. Meas. Sci. Technol. Vol. 2pp, 1202–1215. 

doi:http://dx.doi.org/10.1088/0957-0233/1/11/013 

Keane, R.D., Adrian, R.J., 1991. Optimization of particle image velocimeters. II. Multiple 

pulsed systems. Meas. Sci. Technol. 2, 963–974. doi:10.1088/0957-0233/2/10/013 

Keane, R.D., Adrian, R.J., 1992. Theory of cross-correlation analysis of PIV images. Appl. Sci. 

Res. 49, 191–215. doi:10.1007/BF00384623 

Krishna, R., Urseanu, M.I., van Baten, J.M., Ellenberger, J., 1999. Influence of scale on the 

hydrodynamics of bubble columns operating in the churn-turbulent regime: experiments vs. 

Eulerian simulations. Chem. Eng. Sci. 54, 4903–4911. doi:10.1016/S0009-2509(99)00211-

0 

Lance, M., Bataille, J., 1991. Turbulence in the liquid phase of a uniform bubbly air–water 

flow. J. Fluid Mech. 222, 95--118. doi:10.1017/S0022112091001015 

Lawson, N.J., Wu, J., 1997. Three-dimensional particle image velocimetry: experimental error 

analysis of a digital angular stereoscopic system. Meas. Sci. Technol. 8, 1455–1464. 

doi:10.1088/0957-0233/8/12/009 

Levich, V., 1962. Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs  N.J. 



152 

 

Reference 

 

 

 

Lin, T.-J., Reese, J., Hong, T., Fan, L.-S., 1996. Quantitative analysis and computation of two-

dimensional bubble columns. AIChE J. 42, 301–318. doi:10.1002/aic.690420202 

Lindken, R., Merzkirch, W., 2000. Velocity measurements of liquid and gaseous phase for a 

system of bubbles rising in water. Exp. Fluids 29, S194–S201. doi:10.1007/s003480070021 

Lindken, R., Merzkirch, W., 2002. A novel PIV technique for measurements in multiphase 

flows and its application to two-phase bubbly flows. Exp. Fluids 33, 814–825. 

doi:10.1007/s00348-002-0500-1 

Liu, Z., Zheng, Y., Jia, L., Zhang, Q., 2005. Study of bubble induced flow structure using PIV. 

Chem. Eng. Sci. 60, 3537–3552. doi:10.1016/j.ces.2004.03.049 

Masullo, A., Theunissen, R., 2016. Adaptive vector validation in image velocimetry to 

minimise the influence of outlier clusters. Exp. Fluids 57, 1–21. doi:10.1007/s00348-015-

2110-8 

Meinhart, C.D., Wereley, S.T., Santiago, J.G., 2000. A PIV Algorithm for Estimating Time-

Averaged Velocity Fields. J. Fluids Eng. 122, 285. doi:10.1115/1.483256 

Melling, A., 1997. Tracer particles and seeding for particle image velocimetry. Meas. Sci. 

Technol. 8, 1406–1416. doi:10.1088/0957-0233/8/12/005 

Mersmann, A., 1978. Design and scale-up of bubble and spray columns. Ger. Chem. Eng. 1, 1–

11. 

Mudde, R.F., 2005. Gravity-driven bubbly flows. Annu. Rev. Fluid Mech. 37, 393–423. 

doi:10.1146/annurev.fluid.37.061903.175803 

Mudde, R.F., Groen, J.S., Van Den Akker, H.E.A., 1997. Liquid velocity field in a bubble 

column: LDA experiments. Chem. Eng. Sci. 52, 4217–4224. doi:10.1016/S0009-

2509(97)88935-X 

Nobach, H., Bodenschatz, E., 2009. Limitations of accuracy in PIV due to individual variations 

of particle image intensities. Exp. Fluids 47, 27–38. doi:10.1007/s00348-009-0627-4 

Northrup, M. a, Kulp, T.J., Angel, S.M., 1991. Fluorescent particle image velocimetry: 

application to flow measurement in refractive index-matched porous media. Appl. Opt. 30, 

3034–3040. doi:10.1364/AO.30.003034 

Oberkampf, W.L., Roy, C.J., 2010. Verification and Validation in Scientific Computing. 

Cambridge University Press, Cambridge. doi:10.1017/CBO9780511760396 



153 

 

Reference 

 

 

 

Olsen, M.G., Adrian, R.J., 2001. Measurement volume defined by peak-finding algorithms in 

cross-correlation particle image velocimetry. Meas. Sci. Technol. 12, N14–N16. 

doi:10.1088/0957-0233/12/2/402 

Pedocchi, F., Martin, J.E., García, M.H., 2008. Inexpensive fluorescent particles for large-scale 

experiments using particle image velocimetry. Exp. Fluids 45, 183–186. 

doi:10.1007/s00348-008-0516-2 

Pereira, F., Ciarravano, A., Romano, G.P., Di Felice, F., 2004. Adaptive multi-frame PIV, in: 

12th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 

Portugal. 

Persoons, T., Donovan, T.S.O., Murray, D.B., 2008. Improving the measurement accuracy of 

PIV in a synthetic jet flow 7–10. 

Persoons, T.,  ’Donovan, T.S., 2011. High dynamic velocity range particle image velocimetry 

using multiple pulse separation imaging. Sensors 11, 1–18. doi:10.3390/s110100001 

Prasad, A. K., Jensen, K., 1995. Scheimpflug stereocamera for particle image velocimetry in 

liquid flows. Appl. Opt. 34, 7092–7099. doi:10.1364/AO.34.007092 

Prasad, A.K., 2000. Particle Image Velocimetry. Curr. Sci. 79, 51–60. doi:10.1007/978-3-540-

72308-0 

Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J., 2007. Introduction, in: Particle Image 

Velocimetry. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–13. doi:10.1007/978-

3-540-72308-0_1 

Ruzicka, M.C., Drahoš, J., Fialová, M., Thomas, N.H., 2001. Effect of bubble column 

dimensions on flow regime transition. Chem. Eng. Sci. 56, 6117–6124. doi:10.1016/S0009-

2509(01)00215-9 

Samimy, M., Lele, S.K., 1991. Motion of particles with inertia in a compressible free shear 

layer. Phys. Fluids A Fluid Dyn. 3, 1915. doi:10.1063/1.857921 

Scarano, F., 2002. Iterative image deformation methods in PIV. Meas. Sci. Technol. 13, R1–

R19. doi:10.1088/0957-0233/13/1/201 

Scarano, F., Riethmuller, M.L., 2000. Advances in iterative multigrid PIV image processing. 

Exp. Fluids 29, S051–S060. doi:10.1007/s003480070007 



154 

 

Reference 

 

 

 

Sciacchitano, A., 2014. Uncertainty quantification in particle image velocimetry and advances 

in time-resolved image and data analysis. TU Delft. doi:10.4233/uuid:bfe57561-523f-4e7e-

8e28-e804a6f1625e 

Sciacchitano, A., Wieneke, B., Scarano, F., 2013. PIV uncertainty quantification by image 

matching. Meas. Sci. Technol. 24, 45302. doi:10.1088/0957-0233/24/4/045302 

Seol, D.G., Socolofsky, S.A., 2008. Vector post-processing algorithm for phase discrimination 

of two-phase PIV. Exp. Fluids 45, 223–239. doi:10.1007/s00348-008-0473-9 

Shah, Y.T., Kelkar, B.G., Godbole, S.P., Deckwer, W.-D., 1982. Design parameters estimations 

for bubble column reactors. AIChE J. 28, 353–379. doi:10.1002/aic.690280302 

Shavit, U., Lowe, R.J., Steinbuck, J. V., 2007. Intensity Capping: a simple method to improve 

cross-correlation PIV results. Exp. Fluids 42, 225–240. doi:10.1007/s00348-006-0233-7. 

Silva, M.K., 2011. Estudo Numérico e Experimental de Colunas de Bolhas Operando em 

Regime Heterogêneo. Biblioteca Digital da Unicamp. 

Sokolichin, A., Eigenberger, G., 1994. Gas—liquid flow in bubble columns and loop reactors: 

Part I. Detailed modelling and numerical simulation. Chem. Eng. Sci. 49, 5735–5746. 

doi:10.1016/0009-2509(94)00289-4 

Soloff, S.M., Adrian, R.J., Liu, Z.-C., 1997. Distortion compensation for generalized 

stereoscopic particle image velocimetry. Meas. Sci. Technol. 8, 1441–1454. 

doi:10.1088/0957-0233/8/12/008 

Sommerfeld, M., Bröder, D., 2009. Analysis of hydrodynamics and microstructure in a bubble 

column by planar shadow image velocimetry. Ind. Eng. Chem. Res. 48, 330–340. 

doi:10.1021/ie800838u 

Theunissen, R., Scarano, F., Riethmuller, M.L., 2008. On improvement of PIV image 

interrogation near stationary interfaces. Exp. Fluids 45, 557–572. doi:10.1007/s00348-008-

0481-9 

Timmins, B.H., Wilson, B.W., Smith, B.L., Vlachos, P.P., 2012. A method for automatic 

estimation of instantaneous local uncertainty in particle image velocimetry measurements. 

Exp. Fluids 53, 1133–1147. doi:10.1007/s00348-012-1341-1 

Tinge, J.T., Drinkenburg, A.A.H., 1986. The influence of slight departures from vertical 

alignment on liquid dispersion and gas hold-up in a bubble column. Chem. Eng. Sci. 41, 

165–169. doi:10.1016/0009-2509(86)85210-1 



155 

 

Reference 

 

 

 

van Baten, J.M., Krishna, R., 2001. Eulerian simulations for determination of the axial 

dispersion of liquid and gas phases in bubble columns operating in the churn-turbulent 

regime. Chem. Eng. Sci. 56, 503–512. doi:10.1016/S0009-2509(00)00254-2 

Westerweel, J., 1993. Digital particle image velocimetry: theory and application. 

Westerweel, J., 1997. Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 

8, 1379–1392. doi:10.1088/0957-0233/8/12/002 

Westerweel, J., 2000. Theoretical analysis of the measurement precision in particle image 

velocimetry. Exp. Fluids 29, S003--S012. doi:10.1007/s003480070002 

Westerweel, J., 2008. On velocity gradients in PIV interrogation. Exp. Fluids 44, 831–842. 

doi:10.1007/s00348-007-0439-3 

Westerweel, J., Scarano, F., 2005. Universal outlier detection for PIV data. Exp. Fluids 39, 

1096–1100. doi:10.1007/s00348-005-0016-6 

Wieneke, B., 2005. Stereo-PIV using self-calibration on particle images, in: Experiments in 

Fluids. pp. 267–280. doi:10.1007/s00348-005-0962-z 

Wieneke, B., 2014. Generic a-posteriori uncertainty quantification for PIV vector fields by 

correlation statistics, in: 17th International Symposium on Applications of Laster 

Techniques to Fluid Mechanics. pp. 1–9. doi:10.1088/0957-0233/26/7/074002 

Wieneke, B., 2015. PIV uncertainty quantification from correlation statistics. Meas. Sci. 

Technol. 26, 74002. doi:10.1088/0957-0233/26/7/074002 

Wieneke, B., Pfeiffer, K., 2010. Adaptive PIV with variable interrogation window size and 

shape, in: 5th Int Symp on Applications of Laser Techniques to Fluid Mechanics. Portugal 

Wilson, J.F., Cobb, E.D., Kilpatrick, F.A., 1986. Fluorometric procedures for dye tracing. Tech. 

Water-Resources Investig. 

Zahradník, J., Fialová, M., Ru˚žička, M., Drahosˇ, J., Kasˇtánek, F., Thomas, N.H., 1997. 

Duality of the gas-liquid flow regimes in bubble column reactors. Chem. Eng. Sci. 52, 

3811–3826. doi:10.1016/S0009-2509(97)00226-1

 

 

  



156 

 

Appendix 

 

 

 

 

APPENDIX 

 

 

A. EVALUATION OF THE CAMERA SETUP FOR THE 2D-2C F-PIV 

SYSTEM 

 

Figures A1-A2 present the distribution of time-averaged intensity of the frames 0 and 1 

(F0 and F1) for the two camera setup presented in Figure 4.5 and UG = 0.528 and 1.053 cm/s. 

 

 

Figure A1 - Distribution of the time-averaged intensity of the frames 0 and 1 (F0 and F1) for 

the two camera arrangement presented in Figure 4.5 - UG = 0.528 cm/s. 
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Figure A2 - Distribution of the time-averaged intensity of the frames 0 and 1 (F0 and F1) for 

the two camera arrangement presented in Figure 4.5 - UG = 1.053 cm/s. 
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B. CALIBRATION PROCEDURE 

 

 

Figure B1 - Real-size calibration plate created in Inkscape. 
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Figure B2 – Calibration procedure for the 2D-2C PIV system: (a) Recorded image of the 

calibration plate. Identification of the calibration plate marks by Davis software (b) without 

and (c) with a mask to isolate the investigated region. (d) Corrected image. 

d.

b.a.
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Figure B3 - Recorded image of the calibration plate for the 2D-3C PIV system. 
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Figure B4 - Identification of the calibration plate marks by Davis software for the 2D-3C PIV 

system. 
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Figure B5 - Corrected image of the calibration plate for the 2D-3C PIV system 
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C. VORTICITY 

 

From standard cross-correlation (SCC) 

 

 

Figure C1 - Time-averaged vorticity field determined by the standard cross-correlation (SCC), 

SCC with post-processing (SCC*) and ensemble correlation (EC) from the 2D-3C F-PIV 

measurements. 
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Figure C2 - Time-averaged vorticity profile (Y = 0.552 m) determined by the standard cross-

correlation (SCC), SCC with post-processing (SCC*) and ensemble correlation (EC) from 

2D-3C F-PIV measurements for UG = (a) 0.152, (b) 0.528, (c) 2.106, and (c) 4.212 cm/s. 
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From sliding-average correlation (SAC) 

 

 

Figure C3 - Time-averaged vorticity field determined by the sliding-average correlation 

(SAC), SAC with post-processing (SAC*) and ensemble correlation (EC) from the 2D-2C F-

PIV measurements. 
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Figure C4 - Time-averaged vorticity field determined by the sliding-average correlation 

(SAC), SAC with post-processing (SAC*) and ensemble correlation (EC) from the 2D-3C F-

PIV measurements. 
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Figure C5 - Time-averaged vorticity profile (Y = 0.552 m) determined by the sliding-average 

correlation (SAC), SAC with post-processing (SAC*) and ensemble correlation (EC) from 

2D-2C F-PIV measurements for UG = (a) 0.152, (b) 0.528, (c) 2.106, and (c) 4.212 cm/s. 
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Figure C6 - Time-averaged vorticity profile (Y = 0.552 m) determined by the sliding-average 

correlation (SAC), SAC with post-processing (SAC*) and ensemble correlation (EC) from 

2D-3C F-PIV measurements for UG = (a) 0.152, (b) 0.528, (c) 2.106, and (c) 4.212 cm/s. 
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D. QUALITY INDICATORS 

 

Particle image diameter for SCC approach 

 

 

Figure D1 - RMSd  normalized by time-averaged of the particle image diameter, RMSd d  , 

using SCC approach. (a) Camera A and (b) Camera B1 and B2. 

 

 

Diff_4 and 3C reconstruction error for SAC approach 

 

 

Figure D2 - Profile of (a) the time-averaged of Diff_4, _ 4Diff , and (b) Diff_4 normalized 

by velocity modulus, _ 4 / uDiff , for sliding-average correlation (SAC). 

 



170 

 

Appendix 

 

 

 

 

Figure D3 - Profile of (a) the time-averaged of the 3C reconstruction error, 3C R   and (b) 

3C R   normalized by velocity modulus in pixel (ushif ), 
3 uC R shif 

 for sliding-average 

correlation (SAC) and Y = 0.552 m. 
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E. STATISTICS OF THE AVERAGE FIELD 

 

 

Table E1 - Spatial average of *u , *v , and *w  for NR = 3750 and SCC, SAC, and EC 

approaches. 

UG [cm/s]  0.152 0.528 2.106 4.212 

*u  

SCC 
2D-2C 0.192 0.158 0.250 0.235 

2D-3C 0.672 0.090 0.423 0.304 

SAC 
2D-2C 0.188 0.129 0.145 0.226 

2D-3C 0.650 0.103 0.236 0.271 

EC 
2D-2C 0.197 0.140 0.173 0.880 

2D-3C 0.690 0.114 0.117 0.157 

*v  

SCC 
2D-2C 0.065 0.051 0.060 0.085 

2D-3C 0.031 0.048 0.055 0.077 

SAC 
2D-2C 0.080 0.023 0.021 0.029 

2D-3C 0.027 0.035 0.049 0.031 

EC 
2D-2C 0.071 0.025 0.023 0.195 

2D-3C 0.031 0.048 0.052 0.066 

*w  

SCC 2D-3C 0.191 0.191 0.253 0.362 

SAC 2D-3C 0.205 0.200 0.153 0.153 

EC 2D-3C 0.182 0.338 0.217 0.241 

 
 

 

Figure E1 - Spatial average of *u , *v , and *w  in function of UG for NR = 3750 and SCC, 

SAC, and EC approaches. 
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Table E2 - Spatial average of Diff_4  for the time-averaged field, tafDiff_4 , normalized by the 

time-averaged u, utafDiff_4 / . 

UG 
NR 

[103] 

SCC SAC EC 

2D-2C 2D-3C 2D-2C 2D-3C 2D-2C 2D-3C 

0
.1

5
2
 c

m
/s

 

0.50 0.034 0.043 0.023 0.019 0.049 0.024 

1.00 0.029 0.044 0.022 0.017 0.043 0.020 

2.00 0.021 0.056 0.020 0.014 0.041 0.016 

3.00 0.025 0.066 0.022 0.018 0.049 0.020 

3.25 0.025 0.071 0.025 0.017 0.048 0.019 

3.50 0.026 0.073 0.024 0.019 0.047 0.020 

3.75 0.027 0.082 0.028 0.020 0.045 0.020 

4.00 0.027 0.080 0.025 0.020 0.044 0.020 

0
.5

2
8
 c

m
/s

 

0.50 0.183 0.029 0.030 0.022 0.031 0.033 

1.00 0.151 0.023 0.029 0.017 0.022 0.022 

2.00 0.136 0.019 0.032 0.015 0.022 0.018 

3.00 0.131 0.017 0.017 0.013 0.017 0.016 

3.25 0.136 0.016 0.016 0.013 0.016 0.016 

3.50 0.129 0.016 0.016 0.013 0.015 0.015 

3.75 0.127 0.015 0.017 0.013 0.016 0.016 

4.00 0.119 0.015 0.017 0.013 0.016 0.015 

2
.1

0
6
 c

m
/s

 

0.50 0.351 0.422 0.058 0.060 0.042 0.058 

1.00 0.266 0.368 0.046 0.052 0.038 0.045 

2.00 0.207 0.284 0.039 0.038 0.026 0.036 

3.00 0.216 0.244 0.030 0.034 0.022 0.031 

3.25 0.343 0.228 0.029 0.033 0.020 0.029 

3.50 0.165 0.228 0.028 0.032 0.019 0.030 

3.75 0.160 0.216 0.027 0.031 0.019 0.029 

4.00 0.164 0.228 0.027 0.030 0.020 0.027 

4
.2

1
2
 c

m
/s

 

0.50 0.678 0.620 0.383 0.167 0.169 0.109 

1.00 0.591 0.591 0.285 0.125 0.136 0.088 

2.00 0.442 0.442 0.240 0.104 0.102 0.071 

3.00 0.433 0.433 0.190 0.092 0.089 0.062 

3.25 0.396 0.396 0.181 0.090 0.037 0.061 

3.50 0.524 0.524 0.179 0.087 0.084 0.058 

3.75 0.365 0.365 0.174 0.087 0.035 0.057 

4.00 0.359 0.359 0.168 0.085 0.078 0.055 
 

  



173 

 

Appendix 

 

 

 

 

Table E3 - Effect of NR on the spatial average of SNR  for SCC and SAC approaches. 

- NR [103] 
UG = 0.152 cm/s UG = 0.528 cm/s UG = 2.106·cm/s UG = 4.212 cm/s 

2D-2C 2D-3C 2D-2C 2D-3C 2D-2C 2D-3C 2D-2C 2D-3C 

S
C

C
 

0.50 6.054 5.631 4.737 4.337 2.966 2.776 2.251 2.316 

1.00 6.073 5.627 4.727 4.343 2.972 2.784 2.237 2.316 

2.00 6.075 5.622 4.714 4.359 2.981 2.792 2.234 2.315 

3.00 6.076 5.635 4.714 4.359 2.984 2.790 2.256 2.321 

3.25 6.074 5.385 4.714 4.359 2.988 2.792 2.223 2.321 

3.50 6.075 5.635 4.718 4.362 2.988 2.795 2.223 2.322 

3.75 6.073 5.632 4.716 4.360 2.699 2.799 2.229 2.324 

4.00 6.225 5.633 4.717 4.358 2.986 2.798 2.223 2.324 

S
A

C
 

0.50 15.521 14.513 8.684 9.489 4.987 5.022 3.911 3.849 

1.00 15.563 14.478 8.711 9.554 4.982 5.033 3.882 3.891 

2.00 15.557 14.431 8.677 9.620 5.007 5.071 3.884 3.904 

3.00 15.544 14.471 8.643 9.626 5.009 5.076 3.871 3.925 

3.25 15.536 14.463 8.641 9.625 5.018 5.083 3.868 3.927 

3.50 15.538 14.458 8.648 9.639 5.018 5.091 3.871 3.930 

3.75 15.523 14.444 8.645 9.628 5.013 5.102 3.870 3.941 

4.00 15.517 14.441 8.644 9.613 5.013 5.103 3.873 3.941 
 

 

 

Table E4 - Effect of NR on the spatial average of SNR  for EC approach. 

NR [103] 
UG = 0.152 cm/s UG = 0.528 cm/s UG = 2.106·cm/s UG = 4.212 cm/s 

2D-2C 2D-3C 2D-2C 2D-3C 2D-2C 2D-3C 2D-2C 2D-3C 

0.50 90.156 95.941 18.824 17.153 16.384 14.480 15.255 17.302 

1.00 110.261 111.657 20.537 18.138 23.131 18.650 18.403 23.450 

2.00 131.033 125.942 21.300 19.132 36.155 29.585 24.751 33.952 

3.00 144.788 140.089 21.303 19.197 48.770 40.825 29.555 43.073 

3.25 148.121 141.488 20.613 19.677 54.093 49.089 38.762 44.698 

3.50 151.010 141.831 21.395 19.176 59.700 45.303 32.199 46.477 

3.75 154.642 142.959 21.436 19.761 60.361 45.596 41.492 48.618 

4.00 155.754 145.386 21.386 19.960 67.928 51.956 34.824 50.532 
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Table E5 – Spatial average of the uncertainty quantification of u , u , v , and w  

obtained by the SCC approach (
, , ,

_
i u v w

i SCC
UQ

u

). 

UQ 
NR 

[103] 

UG = 0.152 cm/s UG = 0.528 cm/s UG = 2.106·cm/s UG = 4.212 cm/s 

2D-2C 2D-3C 2D-2C 2D-3C 2D-2C 2D-3C 2D-2C 2D-3C 

u

 

0.50 0.009 0.022 0.021 0.032 0.046 0.190 0.184 0.364 

1.00 0.007 0.016 0.015 0.024 0.033 0.139 0.132 0.259 

2.00 0.005 0.012 0.011 0.016 0.024 0.100 0.094 0.192 

3.00 0.004 0.010 0.009 0.013 0.019 0.083 0.077 0.161 

3.25 0.004 0.010 0.009 0.013 0.018 0.080 0.074 0.155 

3.50 0.004 0.010 0.009 0.012 0.017 0.077 0.071 0.150 

3.75 0.004 0.010 0.008 0.012 0.017 0.075 0.069 0.146 

4.00 0.004 0.009 0.008 0.011 0.016 0.072 0.067 0.142 

u

 

0.50 0.003 0.008 0.011 0.012 0.029 0.071 0.131 0.135 

1.00 0.002 0.006 0.008 0.009 0.021 0.052 0.094 0.097 

2.00 0.002 0.005 0.006 0.006 0.015 0.038 0.066 0.073 

3.00 0.001 0.004 0.005 0.005 0.012 0.031 0.055 0.061 

3.25 0.001 0.004 0.005 0.005 0.011 0.030 0.053 0.059 

3.50 0.001 0.004 0.004 0.005 0.011 0.029 0.051 0.057 

3.75 0.001 0.003 0.004 0.005 0.011 0.028 0.049 0.056 

4.00 0.001 0.003 0.004 0.005 0.010 0.027 0.047 0.054 

v

 

0.50 0.009 0.017 0.017 0.027 0.033 0.124 0.134 0.231 

1.00 0.007 0.013 0.012 0.020 0.024 0.091 0.096 0.164 

2.00 0.005 0.010 0.009 0.013 0.017 0.065 0.067 0.122 

3.00 0.004 0.009 0.007 0.011 0.014 0.054 0.055 0.102 

3.25 0.004 0.008 0.007 0.011 0.013 0.052 0.053 0.098 

3.50 0.004 0.008 0.007 0.010 0.013 0.050 0.051 0.095 

3.75 0.004 0.008 0.007 0.010 0.012 0.049 0.050 0.092 

4.00 0.004 0.008 0.006 0.010 0.012 0.047 0.048 0.090 

w

 

0.50 - 0.008 - 0.011 - 0.123 - 0.243 

1.00 - 0.006 - 0.009 - 0.090 - 0.173 

2.00 - 0.004 - 0.006 - 0.065 - 0.128 

3.00 - 0.004 - 0.005 - 0.054 - 0.107 

3.25 - 0.004 - 0.005 - 0.052 - 0.095 

3.50 - 0.003 - 0.005 - 0.050 - 0.100 

3.75 - 0.003 - 0.004 - 0.049 - 0.097 

4.00 - 0.003 - 0.004 - 0.047 - 0.095 
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Table E6 – Spatial average of the uncertainty quantification of u , u , v , and w  

obtained by the SAC approach (
, , ,

_
i u v w

i SAC
UQ

u

). 

UQ 
NR 

[103] 

UG = 0.152 cm/s UG = 0.528 cm/s UG = 2.106·cm/s UG = 4.212 cm/s 

2D-2C 2D-3C 2D-2C 2D-3C 2D-2C 2D-3C 2D-2C 2D-3C 

u

 

0.50 0.008 0.021 0.012 0.031 0.012 0.043 0.045 0.078 

1.00 0.006 0.016 0.008 0.023 0.009 0.030 0.033 0.056 

2.00 0.004 0.011 0.006 0.015 0.006 0.021 0.023 0.041 

3.00 0.003 0.010 0.005 0.013 0.005 0.017 0.019 0.034 

3.25 0.003 0.010 0.005 0.012 0.005 0.017 0.019 0.033 

3.50 0.003 0.009 0.004 0.012 0.005 0.016 0.018 0.032 

3.75 0.003 0.009 0.004 0.011 0.005 0.015 0.017 0.031 

4.00 0.003 0.009 0.004 0.011 0.004 0.015 0.017 0.030 

u

 

0.50 0.002 0.008 0.005 0.011 0.006 0.014 0.033 0.027 

1.00 0.002 0.006 0.003 0.008 0.004 0.010 0.024 0.019 

2.00 0.001 0.004 0.002 0.006 0.003 0.007 0.017 0.014 

3.00 0.001 0.004 0.002 0.005 0.002 0.006 0.014 0.012 

3.25 0.001 0.003 0.002 0.004 0.002 0.006 0.014 0.012 

3.50 0.001 0.003 0.002 0.004 0.002 0.006 0.013 0.011 

3.75 0.001 0.003 0.002 0.004 0.002 0.005 0.013 0.011 

4.00 0.001 0.003 0.002 0.004 0.002 0.005 0.012 0.011 

v

 

0.50 0.009 0.018 0.012 0.027 0.011 0.034 0.036 0.053 

1.00 0.006 0.013 0.008 0.020 0.009 0.023 0.026 0.038 

2.00 0.004 0.010 0.006 0.013 0.006 0.016 0.018 0.028 

3.00 0.004 0.009 0.005 0.011 0.005 0.013 0.015 0.023 

3.25 0.003 0.008 0.005 0.011 0.005 0.013 0.015 0.022 

3.50 0.003 0.008 0.004 0.010 0.005 0.012 0.014 0.022 

3.75 0.003 0.008 0.004 0.010 0.004 0.012 0.014 0.021 

4.00 0.003 0.008 0.004 0.009 0.004 0.011 0.013 0.021 

w

 

0.50 - 0.006 - 0.010 - 0.021 - 0.049 

1.00 - 0.005 - 0.007 - 0.015 - 0.035 

2.00 - 0.003 - 0.005 - 0.011 - 0.028 

3.00 - 0.003 - 0.004 - 0.009 - 0.022 

3.25 - 0.003 - 0.004 - 0.008 - 0.021 

3.50 - 0.003 - 0.004 - 0.008 - 0.020 

3.75 - 0.003 - 0.004 - 0.008 - 0.020 

4.00 - 0.003 - 0.003 - 0.008 - 0.019 
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