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RESUMO 

Descobertas recentes no pré-sal brasileiro revelaram quantidades significativas de 

petróleo associadas a grandes quantidades de CO2 em reservatórios carbonáticos. O CO2 

produzido não pode ser liberado para a atmosfera devido ao efeito estufa. Injeção de Água 

Alternada com Gás CO2 é um método conhecido de Recuperação Melhorada de Petróleo 

utilizado para aumentar a recuperação de campos de óleo e pode ser aplicado nos campos do 

pré-sal. O CO2 injetado pode interagir com os fluidos no reservatório e mudar as propriedades 

da rocha carbonática. Quando o CO2 dissolve na água, forma o ácido carbonico, causando a 

dissolução dos minerais carbonáticos na rocha (principalmente calcita e dolomita). Isto pode 

causar mudanças nas propriedades de escoamento na rocha, principalmente a porosidade e 

permeabilidade, e o seu impacto não foi quantificado nas condições do pré-sal brasiliero 

(9.000 psi e 64
o
C). Tendo isso em mente, este trabalho experimental tem como objetivo 

principal o de avaliar como a porosidade e permeabilidade de rochas carbonáticas mudam 

devido à exposição de CO2 e água em condições próximas às dos reservatórios do pré-sal. Um 

objetivo secondário também foi definido como o de delinear as melhores práticas para a 

medição de porosidade e permeabilidade em condições de laboratório. O primeiro objetivo foi 

alcançado através de dois estudos experimentais em reatores: o primeiro, projetado para 

avaliar como a permeabilidade e porosidade de amostras de coquina e dolomita varia em 

sistemas de água fresca/CO2, com variação de pressão (até 9.000 psi) e temperatura constante; 

o segundo, para avaliar a variação das mesmas propriedades nas mesmas amostras de rocha, 

em sistemas de salmoura/CO2 em alta pressão (9.000 psi), temperatura constante e salmoura 

de salinidade variável. Foi concluído que a taxa dissolução diminiu com o tempo, aumenta 

com a pressão e porosidade inicial. Também foi constatado que a taxa de dissolução é 

inversamente proporcional com a salinidade da salmoura. A taxa de dissolução de coquina é 

maior que a da dolomita. Foi observado que a despressurização do reator de alta pressão 

poderia causar diminuições na porosidade e permeabilidade da rocha. O procedimento 

experimental proposto no segundo estudo experimental diminuiu este efeito. Em geral, 

quando a taxa de dissolução aumenta, a porosidade e permeabilidade das rochas aumentam 

também. O segundo objetivo foi alcançado comparando os valores de permeabilidade à gás e 

líquido medidos em laboratório de amostras de coquina e dolomita, assim como, avaliando 

medidas de porosidade e permeabilidade à gás de amostras de coquina, dolomita e arenito. Foi 

visto que, com o aparato experimental utilizado, não foi possível realizar a análise de 



 

  

Klinkenberg para converter permeabilidade à gás em permeabilidade à liquido. Também foi 

visto que a diminuição de permeabilidade com o aumento do diferencial de pressão utilizado 

na medade é mais evidente em rochas carbonáticas e que a permeabilidade média a gás da 

mesma amostra, medida nas mesmas condições, pode ser utilizada para avaliar a variação da 

permeabilidade da amostra. 

 

Palavras Chave: Dissolução de Rochas Carbonáticas, Dióxido de Carbono, Rochas 

Carbonáticas, Permeabilidade, Porosidade, Pré-sal, Alta Pressão. 



 

  

ABSTRACT 

Recent discoveries in brazilian pre-salt fields revealed significant quantities of oil 

associated with high quantities of CO2 in carbonate reservoirs. The produced CO2 may not 

simply be liberated in the atmosphere due to the Greenhouse Effect. Water alternating Gas 

(WAG) injection together with CO2 is a well know Enhanced Oil Recovery (EOR) Method 

used to increase recovery in oil fields and may be applied in the pre-salt fields. The injected 

CO2 will interact with the fluids in the reservoir and change the carbonate rocks properties. 

When CO2 dissolves in water, it forms carbonic acid, causing the dissolution reaction of the 

carbonate minerals in the rock (mainly calcite and dolomite). This will change the rock flow 

properties, mainly porosity and permeability, and its impact has not been fully quantified in 

pre-salt conditions (9,000 psi and 64
o
C). Therefore, this experimental work has the main 

objective of evaluating how permeability and porosity of carbonate rocks changes due to 

exposure of CO2 and water at conditions close to that of the pre-salt reservoirs. A secondary 

objective was also defined as to delineate the best practices for measuring porosity and 

permeability in laboratory conditions. The first objective was achieved by two batch 

dissolution experimental studies: the first one, designed to evaluate how the permeability and 

porosity of coquina and dolomite outcrop rocks varies in fresh water/CO2 systems, with 

increasing pressure (up to 9,000 psi) at constant temperature (64
o
C); and the second, to 

evaluate the variation of the same properties for the same rock types, in high pressure (9,000 

psi) brine/CO2 systems at constant temperature and varying brine salinity. It was concluded 

that dissolution rate decreases with time, it increases with the pressure and with initial 

porosity. Also, dissolution rate is inversely proportional with brine salinity. Coquina’s 

dissolution rate is higher than Dolomite’s. It was found that the depressurization of the high 

pressure vessel could cause decreases in porosity and permeability of the rock. The 

experimental procedure proposed in the second experimental study decreased this effect. In 

general, as the dissolution rate increases, the permeability and porosity of the rocks increases 

as well. The secondary objective was achieved by comparing gas permeability and liquid 

permeability measured in laboratory of coquina and dolomite rock samples and assessing gas 

porosity and permeability measurement of coquina, dolomite and sandstone samples. It was 

found that with the used experimental set-up it was not possible to perform Klinkenberg’s 

analysis to convert gas permeability into liquid permeability. It was also found that the 

decrease in permeability with increase in measuring pressure differential is more evident in 



 

  

carbonate rocks and the average gas permeability of the same sample, measured at the same 

conditions can be used to evaluate the variation of the sample’s permeability. 

 

Key Word: Carbonate Rock Dissolution, Carbonate Rocks, Permeability, Porosity, Pre-salt, 

High Pressure. 
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1. INTRODUCTION 

Recent discoveries in Brazilian pre-salt carbonate reservoirs revealed significant 

quantities of oil at very high pressure conditions (≈ 9,000 psi). One of the main issues the 

development of these fields is related to the high proportions of CO2 present together with the 

oil, that cannot be released in the atmosphere for environment reasons, mainly the greenhouse 

gas effect. One alternative to that is the reinjection of the CO2 together with water in the 

reservoir, with the added benefit of ensuing an efficient Enhanced Oil Recovery Method 

(EOR). 

In terms of physical displacement and pressure maintenance of the reservoir, CO2 

is a very good candidate to be injected in the reservoir because it has sufficient low viscosity, 

similar to many organic solvent, and density similar to the oil at reservoir conditions. 

However, it is important to take into account the interactions of this gas with the liquid phases 

(oil and water) present in these reservoirs. Specifically, when CO2 dissolves in water, it forms 

carbonic acid, decreasing pH and, in the case of carbonate reservoir rocks, it will also cause 

the dissolution of the calcite present in the rock. 

The dissolution of carbonate rocks can cause changes in the rock properties, 

mainly porosity and permeability, which are the fundamental properties for reservoir studies, 

and therefore, quantifying these changes is very. The main objective of the present work is to 

evaluate how permeability and porosity of carbonate rocks changes due to the exposure of 

CO2 and water at conditions close to that of the pre-salt reservoirs (9,000 psi and 64
o
C). A 

secondary objective was also defined as to delineate the best practices for measuring porosity 

and permeability in laboratory conditions.  

Chapter COMPARISONS OF GAS AND LIQUID PERMEABILITY and 

REPEATABILITY ASSESSMENT OF GAS PERMEABILITY AND POROSITY 

MEASUREMENT address the secondary objective. The first is the study of the conversion of 

gas permeability to liquid of eight samples of coquina and dolomite. Klinkenberg’s analysis 

was performed in measured gas permeability values to obtain a calculated liquid permeability 

which was compared with measured liquid permeability. The second mentioned chapter was 

performed to access the repeatability of gas porosity and permeability in coquina, dolomite 

and sandstone sample. 
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The main objective of this work was addressed by DISSOLUTION OF 

CARBONATE ROCKS: EFFECTS OF PRESSURE and DISSOLUTION OF CARBONATE 

ROCKS: EFFECTS OF SALINITY. Chapter 5 presents an experimental study performed to 

determine the effects of dissolution carbonate rocks in high pressure fresh water/CO2 systems. 

It comprised of ten batch dissolution experiments with coquina and dolomite samples at 

pressures up to 9,000 psi and fixed temperature at 64
o
C. Chapter 6 presents another 

experimental study performed to determine the effects of dissolution of carbonate rocks in 

high pressure Brine/CO2 systems. It involved four batch dissolution experiments with coquina 

and dolomite, at fixed pressure and temperature (9,000 psi and 64
o
C) and different brine 

salinity (35,000 ppm and 200,000 ppm). 
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2. BIBLIOGRAPHICAL REVIEW 

This chapter presents a bibliographical review of the main concepts used in the 

dissertation. The concepts of permeability and porosity will be first discussed together with 

the methods most used to quantify these properties in the laboratory. In sequence, the current 

literature on dissolution of carbonate rocks and how it can affect the permeability and porosity 

of carbonate rocks are reviewed.  

2.1. Porosity 

Porosity is the measure of the available space in a rock for fluid (gas or liquid) 

storage. It is defined as the ratio of the void space volume in the rock to the bulk volume of 

the rock (Amyx et al, 1960). The definition is expressed by  

 

 
  

  

  
 (2.1) 

where   is the porosity of the rock,    is the pore (void) volume of the rock and    is the total 

(bulk) volume of the rock. It is important to recall that the total volume of the rock (  ) is the 

sum of the pore volume of the rock (  ) with the grain volume of the rock (  ). 

For reservoir studies it is also important to define effective porosity, which is ratio 

of the interconnected void space of the rock to the bulk of the rock (Amyx et al, 1960). The 

most valuable  for reservoir studies is the effective porosity, because it represents the space 

occupied by mobile fluids. 

2.1.1. Porosity Measurement 

To calculate the porosity of a rock it is necessary to measure two of three 

parameters (total rock volume   , the rock grain volume    and rock pore volume   ). The 

bulk volume can be determined by measuring the dimensions of a uniformly shaped rock 

sample, or by observing the volume of fluid displaced by the rock, making sure the fluid does 

not penetrates into the pore space of the rock (e.g. by coating the sample with resin or a 

similar substance, or by previously saturating the sample with the fluid used for the 

measurement). 
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The grain volume is usually calculated from the dry weight of the sample and the 

sample’s grain density. To determine the pore volume, usual methods consider the volume of 

fluid that is ether extracted from the rock, or inserted into it (Amyx et al, 1960). 

In the petroleum industry it is common to use a gas porosimeter, such as the Ultra-

Pore 300 from Core Lab Instruments, to measure porosity. This equipment is an industry 

standard that uses the Boyle’s Law method to determine the pore or grain volume from the 

expansion of a known mass of an inert gas (e.g. nitrogen or helium) into a calibrated sample 

holder. Figure 2.1 depicts a schematic of the gas porosimeter set to measure grain volume. 

 

 

Figure 2.1. Schematic of a gas porosímeter used for grain volume measurements (from the 

Ultra-Pore 300 operations manual). 

 

The equation used to calculate the grain volume (  ) is derived from Boyle’s Law 

for a given mass of gas at the same temperature, as: 

            (2.2) 

where,    and    are the initial pressure and volume of the gas and,    and    are the 

expanded pressure and temperature conditions of the gas.  

The Ultra-Pore 300, for example, initially, will pressurize the reference cells, with 

a total volume of     , by admitting gas into it and recording its pressure value   . In the 
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second step, the equipment will connect the Matrix cup, which has a volume            , with 

the sample already inside of it, to the system, and record the pressure   . Therefore: 

 

                                 (2.3a) 

 
   (                )  

  

  
      (2.4b) 

2.1.2. Precision of Porosity Measurement 

The precision of the usual methods employed to measure porosity has been 

evaluated by Dotson et al (1951). The authors described a core sample porosity-check 

program where the measurement of ten selected natural and synthetic core samples were 

performed by a number of laboratories, and each one employed its own method (or methods) 

of measurement, including Boyle’s Law method, water saturation and liquid saturation. They 

found that the average deviation of porosity from the mean or average values for the group of 

samples was ±0.5 porosity per cent with the exception of a friable, high-permeability, 

sandstone sample, for which the deviating from the mean porosity value was ±1.0 porosity per 

cent.  

Another interesting finding of this study was that in general, the gas methods gave 

slightly higher values, on the average, than liquid saturation methods. This may be partially 

due to the presence of adsorbed gases in the Boyle's Law Method or to lack of complete 

saturation of the samples in the liquid saturation methods, or a combination of both (Dotson et 

al, 1951). Bustin et al (2008) also identified that the porosity value can vary depending on the 

gas used (helium, methane, argon…), being Helium the one with the lowest adsorption of 

those presented. Argon and Methane can significantly adsorb on the pore wall resulting in an 

overestimation of the grain density and therefore has to be corrected by integrating the pore 

wall adsorption. 

Although accurate core porosity measurements are important in all rock types, this 

accuracy becomes critical in low porosity rocks such as thigh gas sands and source rocks. The 

growing concern that the current routine core analysis may not be sufficiently reliable in low 

porosities motivated the works of Luffel and Howard (1987) and Bihan et al (2014) to 

investigate the porosity measurement of low porosity rocks.  

Luffel and Howard (1987) performed a quality check study of the routine core 

porosity measurement on 242 core plugs of tight gas sand and concluded that: with proper 
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attention and quality control, measuring porosity at ambient conditions, ether using gas 

(Boyle’s method) or resaturating the sample with water, can be made with errors less than 

±0.2 % to ±0.4 %. Furthermore, the quality control measures involve the use of 1-1/2” 

diameter cores, repeat measurements on 10 to 20% of samples, comparison of porosity with 

other rock properties and so on.  

It can be seen that current methods of core porosity measurements using the fluid 

displacement method are fully defined conceptually and most of the recent works found in the 

literature addresses methods to increase the accuracy of these measurements as they are 

needed for samples with very low pore volumes. 

2.2.Permeability 

Another key parameter for the success of a reservoir engineering project is the 

ability of the rock to conduct fluids. This is called permeability and it is formally defined as a 

property of the porous medium and as a measure of the capacity of the medium to conduct 

fluids (Amyx et al, 1960). The Darcy’s law is used to calculate the permeability of a porous 

medium and its generalized form is given as: 
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(2.5) 

where,   is distance in direction of flow in cm and is always positive;    is the volume flux 

across a unit area of the porous medium in unit time along flow path s in cm/sec;   is the 

vertical coordinate, considered positive downward, in cm;   is the density of the fluid in 

gm/cc;   is the acceleration of gravity, 980.665 cm/sec
2
;       is the gradient along s at the 

point to which    refers in atm/cm;   is the viscosity of the fluid in centipoises and   is the 

permeability of the medium in darcys (Amyx et al, 1960). 

The generalized form of Darcy’s law can be simplified for the case of rectilinear 

steady state flow in porous media which is generally used for permeability measurements of 

core samples. Consider a block of a porous medium as in Figure 2.2. Here Q, the volume rate 

of flow, is uniformly distributed over the inflow face of area A. By considering the block 100 

percent saturated with an incompressible fluid and is horizontal, then        ,        

      and Eq. (2.4) reduces to (Amyx et al, 1960): 
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(2.6) 

by separating the differential variables and integrating between 0 and L in x and    and   , it 

is obtained the following equation: 

   
         

  
 

(2.7) 

 

Figure 2.2. Schematic for rectilinear flow of fluids (from Rosa et al., 2006) 

 

Equation 2.6 is extensively used in calculations of flow in porous medium, as well 

as for measuring the permeability for core samples. It is important to note that the following 

approximations were used to derive said equation: isothermal, laminar and steady flow; 

incompressible and homogeneous fluid, and its viscosity does not change with pressure; and a 

homogeneous porous medium which does not react with the fluid (Rosa et al., 2006). 

If a compressible fluid flows through the porous medium, the generalized form of 

Darcy’s law (Eq. 2.4) is still valid. However, for steady flow, instead of the volume rate of 

flow being constant through the system, it is the mas flow rate that is constant. Therefore, the 

integrated form of the equation differs. Moreover, considering the linear and steady flow of 

ideal gases, Eq. (2.4) becomes (Amyx et al, 1960): 

 
     

  

 
 
  

  
 

(2.8) 

where,    is the gas permeability. Since       , 

  
 

 
  

  

 
 
  

  
 

 

and                 , where the subscript “b” stands for base conditions,   and    

are defined at flowing temperature and           . Therefore, 
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separating variables and integrating, 

     

 
  

  

 

   
    

  

 
 

 

finally, 

 
   

   

   

   
    

  

  
 

(2.9) 

Equation (2.8) is very useful for measuring permeability using gas as it will be 

shown latter. 

2.2.1. Permeability Measurement 

This section focus on the permeability measurements made on core plugs. To 

perform this measurement, a core-holder as the one shown in Figure 2.3 is usually used. First, 

the sample is mounted in the core-holder and a confining pressure is applied in the rubber 

tubing. A fluid is then injected at the inlet until a steady flow is achieved. The inlet and outlet 

pressures are measured (   and   , respectively), together with the flow rate  .  

If a liquid is used as the displacement fluid, the flow rate is considered equal 

through the core-holder and the following equation, obtained from Eq. (2.6), can be used to 

calculate the liquid permeability of the core-plug. 

 
  

   

        
 

(2.10) 

If, however, a gas is used, the flow rate is measured in the outlet of the core-

holder and the following equation, modified from Eq. (2.8), is used to calculate the gas 

permeability of the sample. 

 
   

      

    
    

  
 

(2.11) 
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Figure 2.3. Core-holder used to measure the permeability of core-plugs (Torsaeter 

e Abtahi, 2003). 

 

The liquid permeability measurements performed in this dissertation took place 

using a core-holder like the one shown in Figure 2.3, connected to a pump and a back 

pressure, and Eq. 2.9 was used to calculate the permeability of the samples. To measure gas 

permeability, the Ultra-Perm 300 from Core Lab Instruments, which is an industry standard 

permeabilimeter, was used connected to a core-holder similar to the one shown in Figure 2.3 

and Eq. (2.10) was used to calculate gas permeability. 

2.2.2. Factors Affecting Permeability Measurements 

When measuring permeability of core plugs, it is important to exercise certain 

precautions in order to obtain accurate results. The first precaution that must be taken is to 

make sure that the conditions of viscous flow are being satisfied and therefore Darcy’s law 

may be applied. When liquid is being used as the measuring fluid, care must be taken that it 

does not react with the solids in the core sample. Also, corrections must be applied for the 

change in permeability because of the change in confining pressure of the sample. When gas 

is the testing fluid, it is important to make sure that the value is corrected for gas slippage 

effect (Amyx et al, 1960). 

The requirement that the permeability be determined for conditions of viscous 

flow is best satisfied by obtaining data at several flow rates and plotting the results as shown 
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in Figure 2.4 for uncompressible fluids and Figure 2.5 for ideal gases. For conditions of 

viscous flow, the data should render a straight line, passing through the origin. Turbulence is 

indicated by curvature of the plotted points (Amyx et al, 1960). This is derived from the fact 

that Darcy’s law should only apply to viscous flow, and therefore the relationship of flow rate 

and pressure difference should follow Eq. (2.6) for liquid flow and Eq. (2.8) for ideal gas. 

 

 

Figure 2.4. Determination of viscous and turbulent flow for uncompressible fluids (from 

Amyx et al, 1960). 

 

 

Figure 2.5. Determination of viscous and turbulent flow for ideal gases (from Amyx et al, 

1960). 

 

Effects of reactive liquids on permeability are very important to take into account 

when using liquids to measure permeability. For instance, while water is commonly 

considered to be nonreactive in the ordinary sense, the occurrence of swelling clays in many 
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reservoir rock materials results in water being the most frequently occurring reactive liquid in 

connection with permeability determinations. Reactive liquids alter the internal geometry of 

the porous medium, making it so that using these types of liquids do not vitiate Darcy’s law, 

but rather results in a new porous medium with a permeability determined by the new internal 

geometry (Amyx et al, 1960). The effect of clay swelling in the presence of water is 

particularly important in connection with the determination of the permeability of some rock 

samples. Since, the degree of hydration of the clays is a function of the salinity of the water, it 

has been reported permeability changes of 50-fold or more between that determined with air 

and that determined with fresh water (Johnston and Beeson, 1945). 

The other factor that can affect the liquid permeability measurement is the 

overburden pressure. Compaction of the core due to overburden pressure may cause as much 

as 60 per cent reduction in the permeability of various formations (Amyx et al, 1960). Some 

formations are much more compressible than others and therefore this factor must be taken 

into consideration. 

Regarding permeability measurements using gas as a displacement fluid, the key 

factor to consider is the gas slippage effect. Discrepancies between liquid and air 

permeabilities have been reported by Muskat (1937), Fancher et al (1933) and Klinkenberg 

(1941). The authors found that, with highly permeable media, the differences between liquid 

and air permeabilities were small, whereas these differences were considerable for media of 

low permeability. 

Klinkenberg (1941) showed that permeability determined with gases is dependent 

upon the nature of the gas, and is approximately a linear function of the reciprocal mean 

pressure. He argued that in capillaries with a diameter comparable to the mean free path of the 

gas (that is, the distance travelled by a gas molecule between successive molecular collisions) 

the interactions between the gas molecules and the capillary walls help move the gas 

molecules forward in the direction of flow. This gas slippage reduces “viscous” drag and 

increases permeability (McPhee and Arthur, 1991). 

It has been proved by Kundt and Warburg in 1875 that, when a gas is flowing 

along a solid wall, the layer of gas next to the surface is in motion with respect to the solid 

surface. Therefore, if the wall is at zero velocity, then the velocity of the gas layer in the 

immediate vicinity of the wall  is at that same velocity value. With that in mind, Klinkenberg 

(1941) idealized a laminar flow of fluids through a porous medium as one in which all the 
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capillaries in the material are of the same diameter and oriented at random through the solid 

material.  

Consider a cube of this idealized material, as the one shown in Figure 2.2, and let 

there be   capillaries of radius  . The amount of liquid flowing through per unit time is found 

by applying Poiseuille’s law: 

  

 
 

 

 

    

   
        

(2.12) 

combining Eqs. (2.6) and (2.11) gives: 

 

 
  

 

 

    

 
 

(2.13) 

Klinkenberg found that the modified form of Poiseuille’s law for a gas, if slipping of the gas 

in contact with the wall is taken into account is: 
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(2.14) 

where,    is the mean free path at the mean pressure                 and c is a 

proportionality fact “slightly less than 1” (Klinkenberg, 1941). Combining Eqs. (2.13) and 

(2.12), gives: 
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(2.15) 

or, combined with Eq. (2.8): 
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(2.16) 

equations (2.8) and (2.15) lead to: 
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(2.17) 

as the mean free path is inversely proportional to pressure, it is possible to write that: 

     

 
 

 

  
 

(2.18) 

where   is a constant, which is referred to as the gas slippage factor. Eq.(2.7) substituted in 

Eq. (2.16) gives: 
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(2.19) 
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Eq. (2.18) is a relation between the apparent and the true permeability of an 

idealized porous system to gas (Klinkenberg, 1941). From Eq. (2.17) it can be seen that  at 

lower pressures, the mean free path increases, and the slippage effect, as well as gas 

permeability, is enhanced. At high mean pressures, the slippage effect is suppressed and 

permeability reduces until, at infinite mean pressure, the mean free path is reduced to zero, 

and the gas molecules are considered to behave as a liquid and therefore,     . 

Klinkenberg demonstrated that, by plotting gas permeability against the inverse mean 

pressure for a range of porous media samples, the data fell on a straight and the Y-intercept 

(that is, infinite mean pressure) is the true liquid permeability   as it can be seen in Figure 2.6. 

He also proved that b is smaller for higher permeability samples, as expected, since the slip 

factor is inversely proportional to the pore radius and directly proportional to mean free path.  

 

 

Figure 2.6. Permeability constant of core sample “L” to hydrogen, nitrogen and carbon 

dioxide at different pressures (permeability constant to isooctane, 2.55 mD) –(from 

Klinkenberg, 1941). 

 

A more recent publication by McPhee and Arthur (1991) provided practical 

recommendations that can overcome or minimize experimental problems to obtain 

conventionally-derived Klinkenberg parameters. The authors point out the importance of 

selecting test flow procedures, optimizing process sensor accuracy and standardizing sleeve 

and net effective core pressures. It was also evidentiated that non-Darcy flow must be 
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recognized in any Klinkenberg measurement. Figure 2.7 shows an example of Klinkenberg 

plot taken from Noman and Kalam (1990). It can be seen that the points that follows the 

straight line are the ones in a laminar flow regime and therefore, can be used for the 

Klinkenberg analysis, and the ones that are not following the straight line are in a non-Darcy 

flow regime (turbulent flow regime) and may not be used in the aforementioned analysis. This 

plot can be used together with the one shown in Figure 2.5, to make sure that the points being 

analyzed are following Darcy’s law.  

 

 

Figure 2.7. Example of Klinkenberg plot. (from Noman and Kalam, 1990). 

 

Another important factor for measuring Klinkenberg permeability is, as pointed 

out by McPhee and Arthur (1991), to perform the measurements under backpressure. This, 

according to the authors, provides improved control of gas flow rate and core differential 

pressure, and assists in maintaining viscous flow at higher mean pressures. Rushing et al 

(2004) also noted the importance of using a finite backpressure in these measurements, 

because it improves the accuracy of steady-state flow measurements. 

2.3.Dissolution of Carbonate Rocks 

When CO2 dissolves in water it forms carbonic acid (H2CO3) (Eq. 2.19) 

decreasing the pH level of water. This may, in turn, cause a reaction with the main 
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constituents of carbonate rocks, mainly calcite and dolomite. The equilibrium reaction 

governing the dissolution of calcite is shown in Eq. (2.21). According to Zhang et al (2007) 

the dissolution of dolomite takes place in two parts: the first one (Eq. 2.21) forming 

magnesium carbonate and a second slower reaction of the dissolution of the previously 

formed carbonate (Eq. 2.22). 
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The topic of dissolution of carbonate rocks has been studied by many authors 

using different laboratory techniques. Fredd and Floger (1998), Liu et al (2005) and Taylor et 

al (2006) used a rotating disk apparatus to evaluate the dissolution rate of carbonate. To 

evaluate changes in flow properties, like permeability and porosity, percolation experiments 

(core flooding experiments) were used by Bacci et al (2010); Grigg et al (2005); Izgec et al 

(2005); Luquot and Gouze (2009); Noiriel et al (2009) and Zekri et al (2009), to better mimic 

the natural reservoir conditions. Batch dissolution experiments were also used to study 

dissolution rates of carbonate rocks by Yadav et al (2008).  

Fred and Floger (1998) studied the dissolution rate of calcite in various pHs and 

acetic acid concentration using a rotating disk. The rotating disk serves as a means of studying 

the complex interplay between transport and reaction for the dissolution under conditions in 

which the transport processes are well defined. The authors demonstrated that the rate of 

calcite dissolution in acetic acid solution is influenced by the rate of transport of reactants to 

the surface, the kinetics of the surface reaction, and the rate of transport of products away 

from the surface.  

Liu et al (2005) used a rotating disk apparatus to investigate de dissolution rate of 

dolomite and limestone samples in CO2 and water. They found that, under similar conditions 

not only were the initial dissolution rates of dolomite lower by a factor of 3-60 than those of 

limestone, but also there are different dissolution rate-determining mechanisms for limestone 
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versus dolomite. According to the authors, the stronger CO2 conversion and mass trasport 

controlling mechanisms of limestone indicate that dissolution of limestone is mainly 

controlled by differential dissolution caused by flow rate for example. Dolomite dissolution is 

mainly homogeneous and determined by surface reaction. 

Taylor et al (2006), also using a rotating disk, found that the dissolution rate of 

carbonate reservoir rocks in HCl acid will generally increase as the concentration of calcite 

increases. This trend is varied if significant amounts of clay are present in the rock. It is 

important to note that the authors observed that the anhydrite contained in the carbonate disks 

appears to have formed, after the experiments, fine needles that might cause formation 

damage in tight carbonate reservoirs. One of the samples in particular, named C2/T23, even 

though presented no Anhydrite in its XRD analysis (95.6 wt% Calcite, 3.4 wt% Dolomite and 

1.0 wt% Quartz) have formed these needles, which can be seen in Figure 2.8.  

 

 

Figure 2.8. ESEM (environmental scanning electroscope) picture of Sample C2/T23 from 

Taylor et al (2006) after reaction in 1 M HCl at 85oC. Anhydrite needles are shown in circle. 

 

The importance of formation damage due to the dissolution of carbonate rocks, 

together with any effects it may have during flow is difficult to evaluate using the rotating 
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disk apparatus. Bacci et al (2010) proposed a core flooding experiment to study the changes in 

injectivity due to the dissolution near wellbore and far field using an HCL solution to simulate 

the effect of CO2 injection on carbonates. In their study they used two types of experimental 

set ups (Figure 2.9), the first one (Figure 2.9a) to study the effects of the pressure differences 

close to the injection point and in the reservoir bulk, and the second one (Figure 2.9b) to study 

the effects of the temperature differences also close to the injection point and in the reservoir 

bulk. 

 

 

 

Figure 2.9. Experimental set ups used by Bacci et al (2010) 

 

Bacci et al (2010) core flooding experimental results are summarized in Table 2.1. 

Their results indicated that the effect of pressure changes is small and it is not considered to 

be a major threat to CO2 injectivity. It was also observed that the difference of temperature 

from the injection point to somewhere far in the field can lead to re-precipitation and 

permeability reduction. The authors also noted that, since they did not use CO2 in their 

experiment, the results obtained are not directly applicable to real CO2 injection cases, as the 

acidity of the solution used in the experiments was unrealistically high and the reactions 

observed may be different to those taking place in a real injection scenario. However, the 

results of their study can be a good indication of the changes in the petropysical properties of 

carbonate rocks due to variations in the thermodynamic conditions around an injection 
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wellbore regarding the change in pressure between the injection well and the reservoir as well 

as change in temperature. 

 

Table 2.1. Petrophysical properties pre- and post- core flood (Bacci et al 2010) 

 

Test Sample Δɸ (%) N2 Permeability (m) 

Pressure difference (Figure 2.9a) Core 1 +1.7 2.64 → 522.45 

Pressure difference (Figure 2.9a) Core 2 +0.30 2.71 → 2.97 

Temperature Difference (Figure 2.9b) Core 1 +1.39 2.91 → 7.90 

 

Also according to Bacci et al (2010), the changes in the petrophysical properties 

of carbonate rocks due to variations in the thermodynamic conditions around an injection 

wellbore may lead to more injection impairments. In fact, an increase of temperature together 

with a decrease in fluid pressure in the far field would not only decrease the solubility of 

carbonates but also cause degassing of CO2. Therefore, the concentration of carbonic acid in 

solution would also decrease resulting in an increase in pH. This would further increase the 

potential of carbonate deposition and therefore of an injectivity loss. The authors also pointed 

out that, in a real injection scenario the precipitation front would be progressively moving 

away from the wellbore, therefore, the impact on injectivity of the precipitation phenomena 

may be less than what may be observed in a linear geometry. 

Grigg et al (2005) used core-flooding experiment to study the dissolution of 

carbonate rocks. They reported findings and comparisons of five large core flooding 

experiments performed on limestone and dolomite samples with co-injection or alternating 

injection of CO2 and brine at reservoir conditions. They used only one core-holder in their 

experimental set up, therefore, to be able to evaluate change in porosity and permeability 

along the core, they divided the core into two segments. According to the authors, the 

dissolution of carbonates at reservoir conditions during co-injection of CO2 and brine was 

confirmed by porosity and permeability increases, neutron CT, and brine compositional 

analysis performed on effluent brine samples obtained at reservoir conditions. When 

deposition occurred it was indicated by porosity and permeability reductions in the 

downstream core, back-scattered electron imaging (BSEI) identification, and modeling. It is 

also important to note that, in one of the core floodings, even though there was no evidence of 
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plugging in the entire core and its permeability was essentially the same, the second half of 

the core had a permeability reduction of about a half, which is an indication of deposition.  

Izgec et al (2005) presented core flooding experiments with CO2 monitored by 

computerized tomography to characterize the changes on carbonate core plugs. In their 

experiments, they first saturated the sample with the desired brine and then injected CO2 into 

the sample, while measuring its porosity and permeability changes. They used core plugs with 

mainly calcite and 5% alteration.  Figure 2.10 shows their results for the effects of 

temperature on the porosity and permeability changes in horizontally oriented core floodings. 

The tests performed in 18
o
C and 50

o
C showed an initial decrease of permeability to 40% and 

later, it started to decrease again. For the 35
o
C experiment, the permeability did not follow a 

clear trend. The porosity did not follow the permeability trend. 

The authors also studied the effects of salinity, on the same type of samples, in the 

permeability changes in vertically oriented core floodings. Figure 2.11 shows their results. 

They observed that salinity changes from 0 to 5% by weight of NaBr had no drastic effect on 

the changes in permeability. Also, when distilled water was used, the initial permeability 

increase was 40%, whereas for the saline cases, 20%. They also noted that as the salt content 

of the brine increased, permeability drop was more pronounced. 

Luquot and Gouze (2009) studied a set of four flow-through experiments with 

CO2 and brine in limestone samples using decreasing CO2 partial pressures to mimic the 

increase in distance from the injection well. The brine composition was also changed as the 

distance from the injection well changed to mimic the ions transportation as the injection 

wave propagates. The three experiments that simulate the distances nearer to the injection 

indicated an increase in permeability and porosity, being this increase more pronounce as the 

distance to the injection point decreased. The one experiment that simulated a point in the far 

field presented a decrease in permeability and porosity. Using scanning electron micro-scope 

(SEM) they identified the cause of this decrease as an Mg-calcite precipitation as it can be 

seen in Figure 2.12. 
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Figure 2.10. Effects of temperature on porosity and permeability change (from Izgec et al, 

2005) 
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Figure 2.11. Effects of salinity on permeability change (from Izgec et al, 2005) 
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Figure 2.12. SEM micrograph in secondary electron mode showing Mg-calcite (1) 

precipitated and rock forming Mg-calcite (2). (from Luquot and Gouze, 2009). 

 

Noiriel et al (2009) investigated the change in the reactive surface area of a 

limestone sample during a flow-through experiment using CO2 rich water with the aid of X-

ray microtomography. The authors indicated that dissolution occurs in areas where the pore 

connectivity is the highest. They also noted that the porosity changes were not evenly 

distributed, and that the porosity increase was slightly higher near the sample inlet.  

Zekri et al (2009) studied coreflooding experiments with limestone samples to 

evaluate interactions between CO2-water-carbonate rock, and CO2-oil-carbonate rock. Their 

analysis of experimental data showed that dissolution and precipitation can occur in the core 

during a given experiment.  

Yadav et al (2008) conducted static experiments using buffer solutions with 

various pHs to study the dissolution kinetics of calcite, dolomite, leucogranite and gneiss. The 

authors used SEM microtomography to characterize the samples. It was found that although 

the samples were ultrasonically cleaned prior to experiment, the calcite grains seem to be 

attached with very few ultrafine particles, while the dolomite grains presented many ultrafine 
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particles adhering to them. The authors suggested that the decrease in the specific surface 

areas of dolomite is most likely due to rapid preferential dissolution of fine particles and other 

highly soluble phases during the short experimentation period.  

Surface adsorption and desorption may also play a role in the rock fluid 

equilibrium. Studies of the impact of different salinity water in the oil recovery in carbonates 

has shown how the ions Mg
2+

, Mg
2+

 and SO4
2-

, may alter the wettability of carbonates (Zhan 

et al, 2007). The authors explained this effect by the adsorption and desorption of the 

aforementioned ions. Throughout this work, this effect was considered in conjunction with the 

overall dissolution and precipitation mechanisms of carbonate rocks in carbonated water. 

To summarize, when CO2 dissolves in water, it forms carbonic acid, which causes 

a decrease in pH of the water. The acid will react mainly with the calcite and dolomite present 

in carbonate rocks. The dissolution rate of dolomite is lower than that of limestone. As CO2 is 

injected in a carbonate rock filled with brine, the dissolution reaction will be predominant 

close to the injection point, and as the flow front moves away from the injection point, 

precipitation can occur. The dissolution is usually characterized by an increase in permeability 

and porosity, and precipitation is usually characterized by a decrease in both properties. This 

behavior will change with changes in temperature, brine composition, pressure and rock 

composition. 

2.4. Carbonate Rocks 

According to the U.S. Bureau of Mines Staff (1996), a “carbonate rock is a 

sedimentary rock composed of more than 50% by weight of carbonate minerals, e.g. 

limestone, dolomite or carbonatite”. These carbonate minerals are formed by the combination 

of the radical (CO3)
-2 

with cations. In the laboratory studies performed for this dissertation 

coquina and dolomite samples were used as they are considered analogues to the pre-salt 

reservoirs. 

The U. S. Bureau of Mines Staff (1996) defines coquina as “a detrital limestone 

composed wholly or chiefly of mechanically sorted fossil debris that experienced abrasion 

and transport before reaching the depositional site and that is weakly to moderately cemented, 

but not completely indurated”. The coquina sample used in all experiments reported here is 

from Morro do Chaves outcrop in Alagoas-SE sedimentary basin. According to Nogueira et al 

(2003), “The sedimentary sequence of Eocretaceous of Morro do Chaves Member in the 

Alagoas Basin represents the deposition of "coquinas" beds, interbedded with calcilutites and 
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shales that show porosity variations on vertical section”. They also pointed out that the 

importance of this formation is the fact that the Lagoa Feia Formation in Brazil and Toca 

Formation in Africa are important oil bearing carbonate rocks formation comprised by 

coquinas. 

A scanning electron microscope with energy-dispersive x-ray (SEM-EDX), model 

Zeiss Ultra 55, was used by a team member of the Laboratory of Miscible Recovery Methods 

(LMMR), in CEPETRO – Unicamp, to analyze the chemical composition of one small sample 

of the coquina samples (Munõz, 2015). Table 2.2. Chemical composition of coquina samples 

shows the results obtained by his analysis. It can be seen that the only elements detected by 

the equipment were Carbon, Oxygen and Calcium. This is an indication of the purity of these 

samples. However, when the percentage of calcite (CaCO3) is calculated using the numbers of 

Table 2.2, by assuming that all the Calcium is in the form of calcite, it was obtained 96.7% of 

this mineral, which means that this rock is composed mainly by calcite. 

 

Table 2.2. Chemical composition of coquina samples 

 

Element Wt% 

C 13.86 

O 47.38 

Ca 38.75 

 

The experimental  results presented in this dissertation also refer to dolomites 

from Silurian Formation (US). The definition of dolomite by the U. S. Bureau of Mines Staff 

(1996) leaves room for variation: “a carbonate sedimentary rock consisting of more than 50% 

to 90% mineral dolomite, depending upon classifier, or having a Ca:Mg ratio in the range 1.5 

to 1.7, or having an MgO equivalent of 19.5% to 21.6%, or having a  magnesium-carbonate 

equivalent of 41.0% to 45.4%”. The mineral dolomite has the formula CaMg(CO3)2. With that 

in mind, the same experiment mentioned above was performed by the same team member, 

with a sample of this dolomite. Table 2.3. Chemical composition of dolomite samples shows 

the chemical composition obtained for these samples. It can be seen that there is very little 

Calcium in these samples and besides Magnesium there is also traces of Iron, in comparison 

with the coquina samples. 
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It was also calculated the maximum amount of the dolomite mineral that may be 

present in these rocks, by assuming that all the calcium is in the form of dolomite 

(CaMg(CO3)2). The value obtained was 32.1%.  

 

Table 2.3. Chemical composition of dolomite samples 

 

Element Wt% 

C 20.28 

O 25.84 

Mg 45.74 

Ca 7.46 

Fe 0.68 

 

In summary, the carbonate rocks that were used in the laboratory studies, were 

coquinas and dolomites, coquinas composed mostly by calcite minerals and the dolomites 

formed by multi-minerals with predominance of the ones composed with magnesium. 
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3. COMPARISONS OF GAS AND LIQUID PERMEABILITY 

The Comparisons of Gas and Liquid Permeability was performed to address the 

secondary objective of this work, which is to delineate the best practices for measuring 

porosity and permeability in laboratory conditions. This chapter reports the experimental 

work performed to investigate the issue of converting gas permeability measurements to 

liquid permeability measurements. 

3.1.Materials and Methods 

The samples used in this experimental series were five dolomite samples, from 

Silurian Formation - USA, and five coquina samples, from Morro do Chaves Outcrop – 

Brazil, shown in Figure 3.1. To make sure there were no organic substances left in these 

rocks, they were cleaned prior to commencing the experiment. First, they were stacked 

together with a paper filter between them (to ensure capillarity continuity), then toluene was 

injected in the rocks until it was clear in the outlet. After this, the samples were dried in a 

heater at 80
o
C for at least 48 hours. 

 

 

Figure 3.1. Rock Samples used for the air-to-liquid permeability study (C is for coquina and 

D for dolomite) 

 

After cleaning, the rock characterization was performed. First, a paquimeter was 

used to measure the diameter and length of the samples. Next, the air permeability was 
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measured using an Ultra-Perm 500 permeabilimeter (Figure 3.2) and finally the porosity of 

the samples was measured using an Ultra-Pore 300 (Figure 3.3).  

The air permeability measurements were done for each sample varying the flow 

rate so that the entire range of flow rate from the equipment was used. The error of the gas 

permeability measurement was calculated as explained in APENDIX B. The porosity 

measurement of each sample was repeated five times so that a standard deviation could be 

calculated. 

 

 

Figure 3.2. Permeabilimeter Ultra-Perm 500 
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Figure 3.3. Porosimeter Ultra-Pore 300 

 

Now, to determine the liquid permeability of these rocks, first a chemically inert  

liquid to carbonate rocks was chosen. The mineral oil EMCA was selected over water, 

because carbonates may be reactive with the latter. The EMCA oil was filtered and deaerated 

before use. The viscosity of this oil was then measured in the pressure and temperature of the 

experiment.  

To begin the viscosity measurement, some of EMCA oil was inserted in a high 

pressure container, connected at one end to the high pressure pump and at the other end to the 

high pressure viscometer (Figure 3.4). The viscosity measurement was then performed with 

pressures from zero to 2,400 psi in steps of 400 psi. The temperature varied in each step from 

19.5
o
C to 23.0

o
C. 
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Figure 3.4. In the left is the high pressure pump, and to the right the high pressure viscometer 

 

Following sample cleaning and characterization, a core-flooding was performed to 

measure the liquid permeability of each sample. First, the sample was loaded in a core-holder 

with a confining pressure of 2,500 psi. The core-holder was then connected to a vacuum pump 

(Figure 3.5) and the pressure was decreased to below 10
-1

 bar. 

After that, the core-holder was connected to the experimental apparatus, seen in 

Figure 3.6 in a schematic diagram and in Figure 3.7 as disposed in the laboratory. The core 

holder was connected at the inlet to the high pressure pump, and in the outlet to a back 

pressure valve, adjusted to maintain pressure of 1,000 psi. The outlet of the back pressure 

valve was collected in a glass beaker. The high pressure pump was connected in the inlet to a 

big filtering flask filled with EMCA oil. A differential pressure transducer was connected to 

both ends of the core holder. The pressure transducer and the high pressure pump were 

connected to a computer, where all the data were recorded. 
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Figure 3.5. Vacuum experimental set up 

 

Quiziks Pump

Filtering 

Flask Core-holder

Differential Pressure 

Transducer

V-5
Back Pressure 

Valve
Beaker

 

Figure 3.6. Schematics of the experimental apparatus 

 

In the beginning of core-flooding, the EMCA oil was injected at a very slow rate 

(0.1 cc/min), for at least two pore volumes, to guarantee that the sample was completely 

saturated. After that, the experiment took place with increasingly higher flow rates, depending 

on the sample permeability and the liquid permeability of each sample was determined. The 

procedure used to calculate the error of this measurement is shown in detail in APENDIX B. 

 



46 

 

 

 

 

  

 

Figure 3.7. In the left is the high pressure pump, and to right the rest of the experimental 

apparatus. 

 

3.2.Results 

The initial properties of the coquina and dolomite samples used in this chapter are 

shown in Table 3.1. The dolomite samples are 38.1 mm in diameter by 50 mm in length.  

Their porosity varied from 14.4 % to 17.5 % and their average air permeability varied from 

90.0 mD to 318 mD. The coquina samples, on the other hand, are 37.8 mm in diameter by 50 

mm in length, with porosities varying from 14.9% to 17.0 % and average air permeability 

from 58.3 mD to 131 mD.  

It is important to note for future reference that, the air permeability measurements 

were obtained by varying the flow rate seeking to cover the entire equipment range and the 

computed air permeability is the average of all the values obtained for each sample. 

Figure 3.8 displays the results of the viscosity measurements of the EMCA oil. As 

expected, the viscosity is directly proportional to pressure and temperature in the covered 

ranges. There is an increase of more than 10 cP in the EMCA oil viscosity from 0 to 2.400 psi 

and 4 cP when the temperature raised form 19.5
o
C to 23

o
C.  

 

Table 3.1. Main properties of the samples 

 

Sample m (g) l (mm) D (mm) Ø (%) Kair_ave (mD) 

D1 137.1631 50.1 38.1 14.4 90.0 ± 1.9 

D2 131.4184 49.9 38.1 17.5 300 ± 5.4 

D3 134.1650 50.5 38.1 17.0 318 ± 6.4 

D4 134.5696 50.4 38.1 16.5 185 ± 3.8 
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D5 134.6895 50.0 38.1 15.9 195 ± 3.9 

C1 127.3597 50.4 37.8 16.7 58.3 ± 1.3 

C2 130.3604 50.6 37.8 15.3 131 ± 2.6 

C3 130.7775 50.5 37.8 14.9 129 ± 2.6 

C4 130.2795 50.8 37.8 15.6 105 ± 2.1 

C5 127.5713 50.7 37.8 17.0 130 ± 2.5 

 

 

 

Figure 3.8. Viscosity results of EMCA oil 

 

At least four different flow rates were used for each sample considering the high 

pressure pump flow rate limitations and the permeability of the rocks. For the same sample, 

the flow rate was only changed after the mean pressure and the differential pressure from the 

inlet and outlet of the core holder reached stabilization. 

Figure 3.9 charts the average pressure (Pmean) and differential pressure (dP) 

between the inlet and outlet of the core-holder for sample D1. The plot shows that with each 

increase in flow rate, there was an increase in dP, as expected. Liquid permeability was 

calculated using Darcy’s Law, after an average in the region where Pmean and dP stop 

varying. Similar results are shown in Figure A1 – Figure A7 (Appendix A) for the samples 
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C2, D3, C3, D4, C4, D5 and C5, respectively. It can be seen that for all the samples it was 

possible to obtain a value of liquid permeability at each flow rate, the only exception being 

sample D3. For the slowest flow rate, the pressure difference kept too close to the pressure 

gauge resolution, therefore the results were discarded. At q = 1 cc/min the pressure difference 

measured did not reach a stabilized value, therefore it was not possible to define a 

permeability value for this rate. It was not possible to carry out the liquid permeability 

evaluation for the samples C1 and D2 because of operational issues.  

 

 

Figure 3.9. Pressure results for sample D1 

 

The calculated values of liquid permeability are shown in Figure 3.10 and in 

Figure 3.11 as a function of the flow rate, for the dolomite and coquina samples, respectively. 

It can be seen that as the flow rate increases the permeability error decreases. Because of that 

behavior, the liquid permeability value for each sample was defined as the one with the lowest 

error.  

In Table 3.2 it is shown, for comparison, the values of the average air permeability 

of all samples, and the calculated liquid permeability of them. In a first glance, it can be said 

that the simple average of the gas permeability yields permeability values closer to the liquid 
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permeability for the dolomite sample, but the same is not true for the coquina samples. The 

gas average permeability will vary depending on the pressure difference points chosen. 

 

 

Figure 3.10. Liquid permeability versus flow rate calculated for dolomite samples 

 

Liquid permeability may be correlated to gas permeability. As explained in 

Section 2.2.2, Klinkenberg (1941) provided a procedure to calculate liquid permeability of a 

sample using the gas permeability of the same sample, measured at more than one mean 

pressure. First, it is necessary to make sure that viscous flow is hold during the measurement. 

To do that, a plot such as the one shown in Figure 2.5 was made for each measurement, 

omitted here for cleanness. It confirmed that all  permeability measurements, not only in this 

section, but of this entire dissertation, were performed in the viscous flow regime. 

Second, Klinkenberg’s procedure consists in plotting the measured gas 

permeability against the inverse of the mean pressure and fitting a line straight line to the data 

points. The Y-intercept of the line should be the liquid permeability. All values  calculated 

using the procedure in the work were either too low or negative. Rushing et al (2004) 

mentioned in their paper that non-Darcy effects can be identified as deviations from the 

straight line in the Klinkenberg’s plot at high mean pressure, as it can be seen in Figure 3.12. 
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The same behavior is seen in the permeability measurements reported here, and it will be 

further analyzed in the next paragraphs. 

 

 

Figure 3.11. Liquid permeability versus flow rate calculated for coquina samples. 

 

Table 3.2. Liquid and air permeability for the samples 

 

Sample Kair_ave (mD) Kliq (mD) 

D1 90.0 ± 1.9 79.3 ± 2.3 

D2 300 ± 5.4 - 

D3 318 ± 6.4 309 ± 70 

D4 185 ± 3.8 168 ± 21 

D5 195 ± 3.9 178 ± 7.3 

C1 58.3 ± 1.1 - 

C2 131 ± 2.6 95.5 ± 4.6 

C3 129 ± 2.6 97.7 ± 3.2 

C4 105 ± 2.1 66.1 ± 1.5 

C5 130 ± 2.5 93.2 ± 2.4 
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Figure 3.12. Hypothetical Klinkenberg plot showing non-Darcy flow behavior identified as 

deviations from line at high mean pressure (Rushing et al 2004) 

 

The Klinkenberg plots for the samples C2 and C3 are shown in Figures 3.13 and 

3.14. For samples C2 and C3, the first point measured with the lowest mean pressure was left 

out of analysis because it had a higher permeability error when compared with the other data 

points. A first linear trend line was fit, in red, with the remaining points. As it can be seen, the 

line fit is good, but the Y-intercept value is negative for C2. Similar results were obtained for 

sample C3, with the  Y-intercept  much lower than the measured liquid permeability . An 

attempt was made to fit a line with the Y-intercept fixed as the liquid permeability measured, 

and by eliminating from the analysis the permeability values with the highest Pmean. This line 

is shown in black. It was not possible to obtain an adequate fit. Therefore, it is probable that 

all the measurements of these samples were done in non-Darcy flow regime, and a correlation 

between gas permeability and liquid permeability cannot be obtained.  
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Figure 3.13. Klinkenberg plot for sample C2 

 

The Klinkenberg plot for the sample C4 is shown in Figure 3.15. Here again the 

point obtained with the lowest mean pressure was not used in the analysis for the same reason 

as before. The same procedure was applied: the red line indicates the linear fit performed for 

the remaining points, rendering a very small liquid permeability value (compared with the one 

measured). After that, a line with the Y-intercept fixed as the liquid permeability measured 

was fitted using the two points with the smallest Pmean, after the eliminated point. The line is 

shown in black in the graph. This time, an adequate match was obtained. It can be seen that 

these two points were measured in a Darcy flow regime, while the other points clearly fall 

below the line, indicating that they were probably measured in a non-Darcy flow regime. 

Figure 3.16 shows the results of  the same procedure applied for sample C5. Here no point 

was eliminated in the analysis. Again, the red fitted line showed a negative permeability 

value. The black line, with the Y-intercept fixed as the liquid permeability measured, was fit 

using the three points with the lowest mean pressure used in the measurement. A good match 

was also obtained, indicating that the points used in the matching were measured in the Darcy 

flow regime, and the points that do not follow this trend were measured probably in a non-

Darcy flow regime. 
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Figure 3.14. Klinkenberg plot for sample C3. 

 

 

 

Figure 3.15. Klinkenberg plot for sample C4 
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Figure 3.16. Klinkenberg plot for sample C5 

 

Figure 3.17, Figure 3.18, Figure 3.19 and Figure 3.20 show the results of the same 

procedure applied for the samples D1, D3, D4 and D5, respectively. For all these samples, the 

two points with the smaller Pmean used, had to be eliminated from the curve fits, due to the 

high calculated errors. Again, all red fitted lines obtained a liquid permeability value either 

negative or significantly smaller than the liquid permeability measured. The black line, 

obtained by fixing the Y-intercept as the liquid permeability measured, and by eliminating 

from the analysis the permeability values with the highest Pmean. Again, it was not possible to 

obtain good fits for the black lines, using the procedure. This indicates that probably all the 

measurements, for all dolomite samples, were done in non-Darcy flow regimes, and therefore, 

a correlation between liquid and gas permeabilities was not obtained. 
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Figure 3.17. Klinkenberg plot for sample D1 

 

 

Figure 3.18. Klinkenberg plot for sample D3 

 

 

 



56 

 

 

 

 

  

 

Figure 3.19. Klinkenberg plot for sample D4 

 

 

Figure 3.20. Klinkenberg plot for sample D5 
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3.3. Discussions 

The correlation between the gas permeability and the liquid permeability was first 

proposed by Klinkenberg, using a plot of the gas permeability versus the inverse of the mean 

pressure. The experiment presented in the section showed that gas permeability values cannot 

be used to calculate the liquid permeability values in a simple manner. Non-Darcy flow 

regimes can be present in higher mean pressures measurements and for lower mean pressures 

the error of the permeability value is significant. The behavior was found in every sample 

used in this dissertation and identified as explained above. 

For all the samples used, with the exception of sample C5, it was not possible to 

obtain reliable gas permeability values for very small mean pressure measurements. One data 

point had to be eliminated in the analysis of the coquina samples and two data points  in the 

dolomite cases. The analyses point that measurements were in the Darcy flow regime only for 

the samples C4 and C5 , while as for the samples C2, C3, D1, D3, D4 and D5, the 

measurements were done in non-Darcy flow regimes at the lowest mean pressures. 

The author recommends that a different experimental set up be tested in order to 

calculate the liquid permeability of rock samples using gas permeability data. The set up 

should include a back pressure regulator, because it provides improved control of gas flow 

rate and core differential pressure, as well as it may assist in maintaining viscous flow in 

higher mean pressures, as it is recommended by McPhee and Arthur (1991). 

In conclusion, it was not possible to calculate the corresponding liquid 

permeability using only gas permeability data from the experimental set up used. As the 

pressure difference used in the gas permeability measurement increased, the permeability 

decreased more than it was expected by Klinkenberg’s analysis. Therefore, the experimental 

study in REPEATABILITY ASSESSMENT OF GAS PERMEABILITY AND POROSITY 

MEASUREMENT was performed in order to evaluate if this variation in permeability is 

permanent and what is the best procedure for this measurement.  
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4. REPEATABILITY ASSESSMENT OF GAS PERMEABILITY 

AND POROSITY MEASUREMENT 

In the previous chapter it was shown that it was not possible to obtain a general 

correlation between liquid permeability and gas permeability. The decrease in gas 

permeability with the increase in the pressure differential was higher than expected in the 

Klinkenberg’s analysis. Therefore the current chapter will present the experimental study 

performed in order to evaluate if this variation in permeability is permanent and what is the 

best procedure for gas permeability and porosity measurement. 

4.1.Materials and Methods 

Industry standard gas permeabilimeter and porosimeter Ultra-Perm 500 (Figure 

3.2) and Ultra-Pore 300 (Figure 3.3) are the object of the study. They were used connected to 

a pure N2 source. The rock samples were two dolomites (from Silurian Formation, USA), two 

coquinas (from Morro do Chaves Outcrop, Brazil) and two sandstone (from Botucatu 

Formation, Brazil) all measuring 1” in diameter by 1” in length. For the permeabilimeter 

study,a metallic standard was also used. 

The study of the gas permeabilimeter was designed to cover a range of pressure 

differences as wide as possible, exploring the equipment range. The equipment is limited in 

the experiment by its flow transducer, which did not allow the pressure difference to go high., 

Four levels of pressure difference were considered for every sample.  

The study procedure was to load the sample into a core-holder, submit it to a 

confining pressure of 600 psi and measure permeability in four pressure differences, pre-

defined in an increasing pressure order. The sequence is called here a cycle of permeability 

measurements. For each sample, the flow direction of the permeability measurement was also 

noted, either as the upward or downward flow. The first test consisted of 10 cycles of 

permeability measurements in alternating flow directions, followed by a 5 min injection of N2 

at 290 psi in the upward direction. The procedure was repeated one more time and the 

experiment finished with 6 cycles of permeability measurements in alternating flow 

directions. The permeability error was calculated as explained in APENDIX B. 

For the study of gas porosity measurement, one cycle was determined to be the 

procedure of injecting the sample with N2 and measuring its porosity. The cycle was then  
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repeated 7 times. The injection of N2 was made in the same flow direction at 290 psi and 

during 5 min. Each porosity measurement, for every cycle, was performed 5 times, so that a 

standard deviation could be calculated. 

4.2. Results 

Figure 4.1 shows the results of the permeability measurement study for the 

metallic standard. This metallic standard is made of an outer metallic shell filled with 

consolidated grains with a determined permeability. Note that between cycles 10 and 11, as 

well as, between 20 and 21, it was when the N2 burst at 290 psi for 5 min took place. It can be 

seen that, the average permeability at each cycle changed very little (less than 1% difference) 

and within the calculated error, even after the N2 burst. In the same cycle, the permeability 

varied less than 2%, and it is also within the calculated error. 

 

 

Figure 4.1. Gas permeability measurement results for the metallic standard 

 

 

Figure 4.2 depicts the results of the permeability measurement study for the 

sandstone sample. The sample is fairly homogeneous and well sorted. It can be seen that 

before the first N2 burst, the permeability varied 2% between measurement cycles. This 
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variation is within the measurement error. After the first N2 burst, there was a 5% decrease in 

the permeability from cycles 10 to 11, and this value was maintained in the following 

measurement cycles. This can mean that this sample was not very well consolidated, since the 

injection of the N2 at 290 psi was enough to decrease its permeability. Within the same cycle, 

the permeability varied 2%, which is within the calculated measurement error. 

 

 

Figure 4.2. Gas permeability measurement results for the sandstone sample 

 

The next set of results can be seen in Figure 4.3 for the permeability 

measurements of the coquina sample. It can be seen that the average permeability varied less 

than one 1% before and after cycle 6 where a 15% increase in permeability happened. This is 

maybe due to the poorly-consolidated nature of this sample, which could cause movement of 

particles from one pore throat to the other and this permeability increase may have been 

caused by the unblocking of a pore throat with one such particle. In the same cycle a 

difference between the lowest and highest pressure difference of around 5% is seen, and as 

the pressure increases there is a decrease in permeability. This is the behavior expected when 

the slippage effect takes place, but as it was discussed in the previous chapter, due to non-

Darcy flow effects it was not possible here as well to perform a Klinkenberg analysis and 

calculate the liquid permeability of the sample.  
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Figure 4.3 Gas permeability measurement results for the coquina sample 

 

The final set of experiments for the permeability measurement study is shown in 

Figure 4.4, where it is found the permeability results for the dolomite sample. These results 

showed less than 1% variation on the average permeability except for the first N2 burst which 

caused a 2.5% permeability decrease and the second, which caused a 1.5% increase. These 

changes of average permeability before and after the N2 burst is probably an indication of the 

unconsolidated nature of outcrop samples that as it was explained for the coquina sample, 

may have very small particles that can move from one pore throat to another causing blockage 

and opening of the path for fluid flow. It can also be seen that in the same time-step the 

difference between the highest and lowest permeability are around 10% and as the pressure 

increases, the permeability decreases, as expected due to the gas slippage effect takes place. 

For the dolomite sample, this permeability difference in the same time-step was twice as 

higher than for the coquina samples. This effect was also seen in COMPARISONS OF GAS 

AND LIQUID PERMEABILITY. 
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Figure 4.4. Gas permeability measurement results for the dolomite sample 

 

The results for the last 3 samples are shown in Figure 4.5. In the graph the 

permeability of each sample was normalized with its initial permeability for easier 

comparison. It can be seen that if the effects of the permeability changes due to the presence 

of unconsolidated grains in the samples (like the sudden change in permeability in the coquina 

sample) are not taken into consideration, the average value of consecutive permeability 

measurements, done within the same pressure difference range, can be compared within the 

measurement error. This means that the gas permeability measured in the Ultra-Perm 500 can 

be used to evaluate permeability changes in samples if the measurements are made using 

always the same flow conditions (flow rate or pressure difference). 
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Figure 4.5. Normalized results for the permeability measurement experiment for sandstone, 

dolomite and coquina samples 

 

Besides the permeability measurement study, a porosity study was also carried 

out, to evaluate the Ultra-Pore 300 precision and the conditions that the measurements can be 

best done. It was not necessary to use a standard plug, because the measurement of porosity is 

performed by calibrating the equipment using closed metallic cylinders. Therefore, before 

using the equipment, a calibration is performed for a set of metallic cylinders with defined 

grain volumes. The calibration is then used to calculate the grain volume of each sample.  

During this experiment, it was found that the calibration does not last for more 

than 5-10 measurements. It is speculated that the changes in the temperature of the cylinder of 

N2, located outside of the laboratory, can change significantly (especially in the middle of the 

day) causing the calibration to expire. That is why, in this experiment, the calibration was 

performed for every new 5 porosity measurements. 

The results of the  study are shown in Figure 4.6. It can be seen that the N2 burst 

did not only increase porosity but also decreased it. This decrease in porosity is only possible 

because the gas porosimeter measures the effective porosity. Therefore, due to the poorly-

consolidated nature of the samples and possibly the presence of fine particles, the N2 burst 

caused the isolation of pores (by blockage of pore throats) or the addition of pores (by 

unblocking of pore throats).  
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Figure 4.6. Normalized results for the porosity measurement experiment for sandstone, 

dolomite and coquina samples 

 

4.3. Discussions 

The main objective of this dissertation is to evaluate how permeability and 

porosity of carbonate rocks changes due to exposure of CO2 and water at conditions close to 

that of the pre-salt reservoirs the effects. Therefore, permeability and porosity are key 

properties that need to be properly measured and compared in laboratory conditions. In 

COMPARISONS OF GAS AND LIQUID PERMEABILITY it was shown that it was not 

possible to obtain a general correlation between the gas permeability and liquid permeability. 

Generally, the decrease in gas permeability with the increase in the pressure differential was 

higher than expected in the Klinkenberg’s analysis. 

In the current Chapter it was presented an experimental study evaluate if this 

variation in permeability is permanent and what is the best procedure for gas permeability and 

porosity measurement. It was seen that this change in permeability with increase in 

measurement pressure is not permanent for any of the samples. It was also shown that the 

average permeability for the same sample, measured in similar conditions (same pressure 
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difference or gas rate), can be used to evaluate changes in a sample’s permeability within 

measurement error. The gas porosity measurement can also be used, with the condition that a 

calibration is performed after every 5 consecutive porosity measurements. 

The samples of sandstone, coquina and dolomite used in this study are not so well 

consolidated, since considerable changes in permeability and porosity took place due to the 

N2 burst and sometimes even before (as it was seen for the coquina sample). It is reasoned 

that these changes are due to movements of fine particles in the pore system, blocking or 

releasing the flow path. Another conclusion that can be made from this study is that for 

homogeneous and grained samples, such as the metallic standard and the sandstone samples, 

it was not possible to detect the typical changes of permeability due to the slippage effect.  
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5. DISSOLUTION OF CARBONATE ROCKS: EFFECTS OF 

PRESSURE 

Chapters 3 and 4 of this dissertation addressed the secondary objective of this 

work, which is to delineate the best practices for measuring porosity and permeability in 

laboratory conditions. study the current methods of measuring the permeability and porosity 

of carbonate core samples and determine the best procedure to do so. It was shown that the 

average permeability for the same sample, measured in similar conditions (same pressure 

difference or gas rate), can be used to evaluate changes in a sample’s permeability within 

measurement error. This conclusion was taken into consideration in the following chapters 

whenever the permeability and porosity of the samples were measured. 

This chapter addresses the main objective of this work, which is to evaluate how 

permeability and porosity of carbonate rocks changes due to the exposure of CO2 and water at 

conditions close to that of the pre-salt reservoirs (9,000 psi and 64
o
C). The experimental study 

presented here was designed to evaluate how the permeability and porosity of coquina and 

dolomite outcrop rocks varies in fresh water/CO2 systems, with increasing pressure (up to 

9,000 psi) at constant temperature (64
o
C). 

5.1.Materials and Methods 

In the study, 5 core samples of coquina (from Morro do Chaves outcrop, Brazil) 

and 5 of dolomite (Silurian Formation, USA), measuring 1” in diameter and 1” in height were 

used. All the experiments were performed at 64
o
C and each of 5 dolomite samples and 5 

coquina samples were tested at pressures of 500 psi, 2,000 psi, 4,500 psi, 6,500 psi and 9,000 

psi. Table 5.1 shows a list of the samples with their assigned pressure. 

 

Table 5.1. Samples names and assigned pressures 

 

Sample P (psi) 

D11 500 

D13 2,000 

D14 4,500 

D15 6,500 

D16 9,000 
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C12 500 

C13 2,000 

C14 4,500 

C16 6,500 

C18 9,000 

 

The rock characterization procedure performed on these samples consisted of the 

sequence: mass measurement using a semi-analytical scale, permeability measurement with 

the Ultra-Perm 500 (Figure 3.2) connected with a filtered air source and the porosity 

measurement with the Ultra-Pore 300 (Figure 3.3) connected with a pure N2 source. 

Permeability measurements in each sample were done at five different pressure differences, 

which did not changed in the entire experiment. The permeability error was calculated as 

explained in APENDIX B. The porosity measurement was done five times for each sample, 

so that a standard deviation could be calculated. 

To begin the experiments, all the samples were characterized, using the 

aforementioned procedure. After that, each rock was loaded in a high pressure vessel (Figure 

5.1) with 20 ml of fresh water. Then, a high pressure transfer cylinder (Figure 5.2) was filled 

with CO2. They were both left in an air bath heater (Figure 5.3) until they reached the desired 

temperature of 64
o
C. The high pressure transfer cylinder was then connected by the hydraulic 

fluid end to the high pressure pump (Figure 5.4) and to the high pressure vessel in the CO2 

end. The experimental set up can be seen in Figure 5.5. Next, CO2 was injected in the vessel 

until it reached the assigned pressure and was left pressurized for 48h in the heater. In the end, 

the vessel was depressurized, the remaining water was collected and the sample was dried at 

80
o
C for 16 hours in the heater and the rock characterization repeated. The entire procedure, 

starting from the characterization of the rocks, was repeated 5 times for each sample, resulting 

in a total of 240 hours of experiment. The remaining water from samples D11, D14, C12 and 

C14 were taken to an analytical laboratory to determine the Mg
2+

 Ca
2+

 concentrations at time-

step t=48, 144 and 240 hours, while the water from samples D16, C18 were taken for the 

same analysis at every time-step. 
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Figure 5.1. High pressure vessels 

 

 

Figure 5.2. High transfer cylinder 
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Figure 5.3. Air bath heater 

 

 

Figure 5.4. High pressure positive displacement pump 
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Figure 5.5. Experimental set up 

 

5.2. Results 

The results of the initial rock characterization are shown in Table 5.2. Figure 5.6 

shows the mass variation results for the dolomite samples. These results are presented in a 

normalized form, so that the comparison between samples can be better visualized. It is 

important to note that sample D14 broke in the fourth time step and was reconstituted to 

continue the experiment. The mass, permeability and porosity variations from the breakage 

was measured but not considered in the analysis.  

Table 5.2. Initial rock characterization of the samples 

 

Sample mi (g) ɸi (%) Ki (mD) 

D11 28.99 16.12±0.08 42.1±0.8 

D13 31.42 13.45±0.07 5.27±0.3 

D14 28.78 17.30±0.09 135±2 

D15 28.75 18.60±0.09 242±5 

D16 30.87 15.36±0.08 43.7±0.8 

C12 28.03 14.12±0.07 14.4±0.2 

C13 29.42 12.13±0.06 2.41±0.2 

C14 28.87 9.32±0.05 2.47±0.2 

C16 29.08 11.28±0.06 9.42±0.2 

C18 25.25 13.39±0.07 5.42±0.2 
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Figure 5.6. Dolomite mass variation vs time with varying pressure 

 

In the batch reactor dissolution experiments, the whole system is static in constant 

pressure and temperature conditions, with an excess of CO2. Therefore, it is expected that 

dissolution takes place during the entire experiment. The total mass of the samples is 

inversely proportional with dissolution rate, consequently all the samples showed a negative 

mass variation. There was an overall tendency of decrease in mass variation with time.  

Equations (2.20) - (2.23) show the dissolution reaction of dolomite and limestone. 

The reactants in the reactions are carbonic acid (formed by the reaction of CO2 and water) and 

the minerals of dolomite or limestone. As the pressure of the experiment increases, the 

amount of CO2 dissolved in water increases, and the amount of carbonic acid is also higher. 

Also, the amount of dolomite and limestone available for the reaction is directly proportional 

to porosity Therefore, it is expected that as the dissolution rate is directly proportional to the 

pressure of the system and the porosity of the sample. 

Sample D16, submitted to the highest pressure, showed the highest dissolution 

rate as expected. In the lower pressure spectrum, sample D13 that was assigned to the 

pressure of 2,000 psi, presented a lower mass loss (lower dissolution rate) than sample D11, 
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assigned to the pressure of 500 psi. This happened because the porosity of sample D11 is 

considerably higher than that of sample D13. Looking at the results of the last two samples 

left, D14 and D15, it can be seen that in time-step 1, sample D15 with the highest working 

pressure (6,500 psi) showed a higher dissolution rate than sample D14 (working pressure of 

4,500 psi). After that, the mass loss of sample D14 increased a lot, especially after breakage. 

It is possible that this last sample was more fragile than the others and the mass loss cannot be 

attributed only to the dissolution reaction. 

Figure 5.7 shows the permeability results for the dolomite samples. As discussed 

in Section 2.3, dissolution is related with increases in permeability, while deposition with 

decreases in permeability. In the considered static regime, it is expected that only dissolution 

occurs, with increases in permeability. As it can be seen in the aforementioned plot, decreases 

in permeability also took place. By analyzing the experimental methodology further, it can be 

concluded that since the permeability measurement is made after the depressurization of the 

system, which may cause deposition to occur.  

Therefore, the decreases in permeability seen in the graph of Fig 5.7 may not be 

due to the intended experiment, but an artifact brought in by  the depressurization after the 

experiment. Comparing the permeability results with the mass variation results, for each 

sample, it can be seen that the sample that presented the highest dissolution rate, presented 

also the lowest change in permeability. Sample D14 showed the higher permeability variation, 

with an increase in the permeability after the fourth time-step, even after the increase in 

permeability due to the breakage was removed from the analysis.  

The porosity results for the dolomite samples are shown in Figure 5.8. Overall, 

there were very small changes in porosity to the negative and to the positive side. The changes 

in porosity to the negative side can be explained in the same way as it was for permeability, 

since the equipment used measures effective porosity. The two samples that sustained the 

highest change in porosity were D16 and D11. The D16 sample (working pressure of 9,000 

psi) was the one with the highest dissolution rate, therefore its porosity increased. The D11 

sample (working pressure of 500 psi) presented the second lowest dissolution rate, but since 

its permeability changed markedly to the negative side, this may have an effect in the 

effective porosity as well. 

 



73 

 

 

 

 

  

 

Figure 5.7. Dolomite permeability variation vs time. 

 

 

Figure 5.8. Dolomite porosity variation vs time. 
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Mass variation of the coquina samples is shown in Figure 5.9. It is important to 

note that sample C18 broke in the last time-step and was reconstituted to continue the 

experiment. The mass, permeability and porosity variations due to the breakage was measured 

and not considered in the analysis. The same behavior expected for the dolomite samples is 

expected for the coquinas samples, in a higher degree, as indicated in Section 2.3. Therefore, 

the mass of the samples are inversely proportional to the dissolution rate, which in turn, is 

directly proportional to the pressure and to the porosity of the sample. 

The sample submitted to the highest working pressure (C18) was also the one that 

presented the highest mass variation. Sample C12 had the lowest working pressure and its 

dissolution rate was lower only than that of sample C18. This is because the latter is also the 

one with the highest porosity out of the coquina samples. Sample C13 presented the lowest 

mass variation, since it was tested at  the lowest working pressure. The dissolution rate of 

samples C14 and C16 were very similar, although it was expected that sample C16 should  

stand a higher dissolution rate, because it was under a higher working pressure and had a 

higher initial porosity. 

Figure 5.10 and 

Figure 5.11 show the permeability and porosity variations results, respectively. Here again, 

any decrease in porosity and permeability of the samples are related to the deposition reaction 

caused by the depressurization of the system after the experiments. It can be seen that the 
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coquina samples presented an overall increase in permeability and porosity, although from t = 

144 h t = 196 all samples porosity decreased.  

Comparing the results for the coquina samples with those for the dolomite 

samples, it can be seen that the dissolution rate of the latter is much lower than of the former. 

It can also be seen that the dolomite samples had an overall permeability variation to the 

negative side, while the coquina samples presented an overall permeability variation to the 

positive side. Also, the overall variation of permeability for the dolomite samples was higher 

than for the coquina samples. The variation of porosity was low for the dolomite samples, 

while for the coquina samples there was a variation to the positive side up until t = 144 h and 

after that the variation was to the negative side.  

 

 

Figure 5.9. Coquina mass variation vs time. 
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Figure 5.10. Coquina permeability variation vs time. 

 

Figure 5.11. Coquina porosity variation vs time. 

 

Results of the water analysis for the dolomite samples are shown in Figure 5.12 

and Figure 5.13 in terms of [Ca
2+

] and [Mg
2+

], respectively. The same results are shown in 



77 

 

 

 

 

  

Figure 5.14 and Figure 5.15 for the coquina samples. From the dolomite results it can be seen 

that these samples released very little [Ca
2+

] in the water and a lot of [Mg
2+

]. It can also be 

seen that the concentrations of these ions did not show any tendency of increase or decrease, 

meaning that the dissolution reaction of the dolomite samples take longer to occur. The 

coquina water results shows that the coquina samples may have impurities in them, since it 

was seen a detectable amount of in the water. And, as expected, the [Ca
2+

] concentration in 

water is much higher than that of [Mg
2+

]. It can also be seen that the dissolution is very fast 

up until t = 144 h (as it was seen before) and after that it slows down (as it can be seen in both 

[Ca
2+

] and [Mg
2+

]). 

 

 

Figure 5.12. Water analysis: [Ca2+] for the dolomite samples. 
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Figure 5.13. Water analysis: [Mg2+] for the dolomite samples. 

 

 

Figure 5.14. Water analysis: [Ca2+] for the coquina samples. 
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Figure 5.15. Water analysis: [Mg2+] for the coquina samples. 

 

 

5.3.Discussions 

Chapter 5 reports a series of experiments designed to study how permeability and 

porosity of coquina and dolomite change in presence of CO2 and water at the pre-salt 

reservoir conditions. It was seen that dissolution rate decreases with time, it increases with 

pressure and initial porosity. Coquina’s dissolution rate is higher than Dolomite’s. In general, 

dissolution of carbonate rocks causes increases in permeability and porosity of the rock. In the 

experimental results, decreases of these properties were also found. These decreases were 

attributed to the deposition caused by the depressurization after the dissolution experiment. 

The depressurization effect was more pronounced in  the dolomite samples which 

presented an overall decrease in permeability and little change in porosity. Coquina samples 

showed higher dissolution rates, and an overall increase in porosity and permeability.  
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6. DISSOLUTION OF CARBONATE ROCKS: EFFECTS OF 

SALINITY 

This chapter also addresses the main objective of this work, which is to evaluate 

the permeability and porosity changes of carbonate rocks due to the injection of CO2 and 

water at conditions close to that of the pre-salt reservoirs. Here the focus is on how different 

water salinities affect the rock properties. The experiments performed herein were repeated 

with two different salinities and at 9,000 psi. One more step was added before starting the 

experiment, which involved cleaning the samples with toluene before starting the tests to 

remove any organic components left. Also, before the permeability and porosity 

measurements, the samples were cleaned with distilled water to try and decrease the effects of 

the depressurization. 

6.1.Materials and Methods 

For the experiments, 2 samples of dolomite (Silurian formation, USA) and 2 

samples of coquina (Morro do Chaves, BR) measuring 1” in diameter by 1” in height were 

used. First, the samples were cleaned using a Soxhlet apparatus. For that 400 mL of toluene 

were loaded in the heating flask, and three samples at a time were cleaned until the solvent 

was clear in the extraction tube. After that, the toluene was exchanged for 400 mL of alcohol 

and again the cleaning lasted until the alcohol was clear in the extraction tube. The effects of 

the cleaning were evaluated by performing the rock characterization before and after the 

cleaning took place. 

Here again, the rock characterization procedure performed on these samples 

consisted of: mass measurement using, this time, an analytical scale, permeability 

measurement with the Ultra-Perm 500 (Figure 3.2) connected with a filtered air source and 

porosity measurement with the Ultra-Pore 300 (Figure 3.3) connected with a pure N2 source. 

For each sample, three different pressure differences were used for the permeability 

measurements and those differences were not changed in the entire experiment. Again, the 

permeability error was calculated as explained in APENDIX B. The porosity measurement 

was performed five times for each sample so that a standard deviation could be calculated. 

Tests were carried out at the temperature of 64
o
c and at the working  pressure of  

9,000 psi. Each of the 2 samples of dolomite and 2 samples of coquina, was assigned a 
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different brine with a salinity of 35,000 ppm or 200,000 ppm. The brines were prepared with 

distilled water and NaCl at the two concentrations.  

After rock cleaning and characterization, each sample was loaded in a dedicated 

high pressure vessel (Figure 5.1) with 20 ml of the assigned brine for that sample. Each vessel 

was then connected to the vacuum pump shown in Figure 3.5 until the pressure inside was 

below 1.0e-1 bar to ensure that the brine filled every pore of the sample. After that, the vessel 

was disconnected form the vacuum pump and, together with a high pressure transfer cylinder 

(Figure 5.2) filled with CO2. The container was put inside an air bath heater (Figure 5.3)  at 

the temperature of 64
o
C. The same experimental set up shown in Figure 5.5 was used to inject 

CO2 in the high pressure container until it reached 9,000 psi.  

The high pressure vessels were left in the air bath heater during the time period 

defined for that time-step. In the end, the samples were depressurized and washed-out with 

distilled water using a desiccator connected to the vacuum pump. The rocks were then dried 

for at least 16 hours in the air bath heater at 80oC. The procedure was repeated 5 times for 

every sample. Before and after each experiment cycle, the rock characterization procedure 

was performed. 

Each time the procedure was repeated, a different time-step (the duration of the 

dissolution reaction) was used. They were: 24h, 24h, 48h, 72h and 72h, in the sequence order, 

totaling 240h. 

6.2. Results 

Figure 6.1 to Figure 6.3 show the cleaning effects in the coquina samples in terms 

of mass variation, permeability variation and porosity variation, respectively. It can be seen in 

the plot of mass variation that there were organic impurities in the coquina samples that were 

removed after cleaning. For most samples this implicated in increases in permeability and 

decreases in porosity. Figure 6.4 to Figure 6.6 show the cleaning effects in the dolomite 

samples in the same order as it was shown for the coquina samples. Here again, some 

impurities were removed, although in a lesser proportion than from the coquina samples. It 

also implied in increases in permeability and decreases in porosity. The occurrence can be 

explained by the blockage and release of pore throats by the impurities. Therefore, it is 

possible to have a decrease in porosity if blockage of pore throats leaves some pores 

inaccessible. 
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Figure 6.1. Cleaning effects on coquina: mass variation. 

 

 

Figure 6.2. Cleaning effects on coquina: permeability variation 
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Figure 6.3. Cleaning effects on coquina: porosity variation. 

 

 

Figure 6.4. Cleaning effects on dolomite: mass variation. 
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Figure 6.5. Cleaning effects on dolomite: permeability variation. 

 

 

Figure 6.6. Cleaning effects on dolomite: porosity variation. 
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Values of mass, permeability and porosity after the cleaning are the starting 

values for the experiment. By comparing these values, two samples of coquina and two of 

dolomite were chosen for the experiment as the ones having similar permeabilities. Table 6.1. 

Samples names and assigned brine salinities. shows  the samples names and its assigned brine 

salinities. 

 

Table 6.1. Samples names and assigned brine salinities. 

 

Sample Salinity (ppm) 

D22 35,000 

D25 200,000 

C29 35,000 

C20 200,000 

 

 

Mass variation results are shown in Figure 6.7. It is important to note that all 

samples lost partial integrity at t =96 h, and lose some mass. The mass losses were computed 

and removed from the analysis.  

As it was explained in Chapter 5, the dissolution reaction is controlled by the CO2 

dissolved in water and the availability of minerals indicated by the porosity of the sample. 

Here, as the salinity of the brine increases, the amount of CO2 dissolved in water decreases, 

decreasing the dissolution rate. Therefore, the dissolution rate (or the mass variation of the 

samples) is inversely proportional to salinity of the brine and directly proportional to the 

porosity of the samples. That said, for samples from the same outcrop, the higher mass 

variations were found for the samples that were assigned to  brines with 35,000 ppm salinity. 

Also, such as it was found in the previous experiment, the mass variations of the coquina 

samples were higher than that of the dolomite samples. 
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Figure 6.7. Mass variation of all samples 

 

The permeability results can be seen in Figure 6.8. Here, the same reasoning made 

in Chapter 5 applies: the dissolution reaction translates into increases in porosity and 

permeability. Decreases in porosity and permeability indicate that deposition is taking place. 

Since the dissolution experiment takes place in static conditions, only dissolution is taking 

place during the experiment. The only moment that deposition can occur is during the 

depressurization of the high pressure vessel. Therefore, any decrease in permeability and 

porosity of the samples is not occurring during the experiment, but after. 

For the permeability results, the samples with the highest salinity brine presented 

the highest permeability variation to the positive side. This is the contrary that it would be 

anticipated, since samples with the highest dissolution rates are expected to present the 

highest permeability variations. The dolomite samples were the ones that suffered the highest 

permeability variations as it was seen in the previous dissolution study.  
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Figure 6.8. Permeability variation of all samples. 

 

The porosity results are shown in Figure 6.9. Porosity varied accordingly  tothe 

mass variation of the samples. Samples under the brine with the 35,000 ppm salinity were the 

ones with the highest porosity variation to the positive side, while the samples with the 

200,000 ppm brine were the ones with the lowest porosity variation to the positive side, if 

comparing samples with the same type of rock. Also, coquina samples showed higher 

porosity variation when compared to dolomite samples. 
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Figure 6.9. Porosity variation of all samples. 

 

Figure 6.10-Figure 6.12 show  mass, porosity and permeability variation results, 

respectively, plotted together with the results for the tests with fresh water at the working 

pressure of 9,000 psi.  As to mass variation, it can be seen that the coquina sample with fresh 

water showed a dissolution rate higher than all the other samples showed in the graph. Also, 

mass variation of the dolomite sample with fresh water is higher than the mass variation of the 

other dolomite samples up to time t =96 h. After this time the dissolution rate for the dolomite 

sample with the brine of 35,000 ppm salinity surpasses that of the dolomite sample D16.  
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Figure 6.10. Mass variation at 9,000 psi for varying water salinities. 

 

Now, in terms of permeability variation, it can be seen that for D16 the values are 

very close to those of sample D22 (brine of 35,000 ppm salinity). No conclusions can be 

drawn for sample C18, since it was considerably affected by the depressurization effects of 

the system. Regarding porosity  (Figure 6.12), sample C18 (fresh water) was the one with the 

highest porosity variation, as anticipated. From the dolomite samples, sample D16 was 

expected to have the highest increase in porosity, but it had not. 
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Figure 6.11. Permeability variation at 9,000 psi for varying water salinities. 
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Figure 6.12. Porosity variation at 9,000 psi for varying water salinities. 

 

6.3. Discussions 

A set of experiments to study how the dissolution of carbonate rocks varies with 

salinity is presented in this Chapter. Coquina and dolomite samples were tested in high 

pressure CO2/brine systems with two types of brine, one with 35,000 ppm salinity and the 

other with 200,000 ppm salinity. An additional provision of cleaning the samples of any 

organic impurities was introduced, prior to the beginning of the experiment. 

The cleaning of the samples removed organic impurities of the sample and also 

changed their porosity and permeability. For the dissolution experiment by itself, in terms of 

mass, it was possible to see that as salinity increased, there was a decrease in the dissolution 

rate and a decrease of the mass variation of the sample. Also, as it was seen in previous 

chapter, the dissolution rates of the dolomite samples were smaller than the ones of the 

coquina samples, if samples are compared at the same brine salinity. 
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Porosity changes of the samples were directly proportional to mass variation. 

Therefore, porosity variation decreased as the brine salinity was increased. The permeability 

variation of the samples was inversely proportional to brine salinity, meaning that the samples 

submitted to the highest salinity brine showed the highest increase in permeability. 

Again, these conclusions are limited due to the fact that deposition occurred after 

the experiments due to the depressurization and only the permeability results were affected.  
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7. CONCLUSION AND RECOMENDATIONS 

The main objective of this dissertation was to evaluate how permeability and 

porosity of carbonate rocks changes due to exposure of CO2 and water at conditions close to 

that of the pre-salt reservoirs. The secondary objective was o delineate the best practices for 

measuring porosity and permeability in laboratory conditions. Chapter 3 and Chapter 4 

addressed the secondary objective, while Chapter 5 and Chapter 6 addressed the main 

objective of the dissertation. 

COMPARISONS OF GAS AND LIQUID PERMEABILITY reports the 

experimental work performed to investigate the issue of converting gas permeability 

measurements to liquid permeability measurements by applying Klinkenberg analysis. It was 

shown that it is not possible to calculate liquid permeability with the gas permeability values 

obtained. Non-Darcy flow regimes can be present in higher mean pressures measurements and 

for lower mean pressures the error of the permeability value is significant.  

The author recommends that a different experimental set up be tested in order to 

calculate the liquid permeability of rock samples using gas permeability data. The set up 

should include a back pressure regulator, because it provides improved control of gas flow 

rate and core differential pressure, as well as it may assist in maintaining viscous flow in 

higher mean pressures, as it is recommended by McPhee and Arthur (1991). 

It was also seen that, as the pressure difference used in the gas permeability 

measurement increased, the permeability decreased more than it was expected by 

Klinkenberg’s analysis. Therefore, the experimental study in REPEATABILITY 

ASSESSMENT OF GAS PERMEABILITY AND POROSITY MEASUREMENT was 

performed in order to evaluate if this variation in permeability is permanent and what is the 

best procedure for this measurement.  

In this Chapter, it was seen that this change in permeability with increase in 

measurement pressure is not permanent for any of the samples. It was also shown that the 

average permeability for the same sample, measured in similar conditions (same pressure 

difference or gas rate), can be used to evaluate changes in a sample’s permeability within 

measurement error. The gas porosity measurement can also be used, with the condition that a 

calibration is performed after every 5 consecutive porosity measurements. These conclusions 

were taken into consideration in the following two Chapters. 
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The experimental study presented in DISSOLUTION OF CARBONATE 

ROCKS: EFFECTS OF PRESSURE was designed to evaluate how the permeability and 

porosity of coquina and dolomite outcrop rocks varies in fresh water/CO2 systems, with 

increasing pressure (up to 9,000 psi) at constant temperature (64
o
C). It was seen that 

dissolution rate decreases with time, it increases with pressure and initial porosity. Coquina’s 

dissolution rate is higher than Dolomite’s. In general, dissolution of carbonate rocks causes 

increases in permeability and porosity of the rock.  

DISSOLUTION OF CARBONATE ROCKS: EFFECTS OF SALINITY presents 

an experimental study to evaluate the variation of porosity and permeability for coquina and 

dolomite, in high pressure (9,000 psi) brine/CO2 systems at constant temperature and varying 

brine salinity. The results showed that as salinity increased, there was a decrease in the 

dissolution rate and a decrease of the mass variation of the sample. Porosity variation 

decreased as the brine salinity was increased and the samples submitted to the highest salinity 

brine showed the highest increase in permeability. 

In the experiments presented in Chapter 5 and 6 it was seen decreases of porosity 

and permeability. These decreases were attributed to the deposition caused by the 

depressurization after the dissolution experiment. During the depressurization of the high 

pressure vessel, some of the ions that were previously dissolved may precipitate on the pore 

throats decreasing the permeability and effective porosity of the samples. To eliminate this 

effect, it would be necessary to exchange the water inside the vessel for an inert fluid, before 

the depressurization. This could be done by changing the experimental apparatus and 

displacing the pressurized water after the experiment is finished with N2 for example.  

In conclusion, it was seen that it was not possible to obtain liquid permeability 

values with the gas permeability measured but it was established how the latter should be 

used together with gas porosity measurement to evaluate the variation of permeability and 

porosity variation of the samples. Dissolution rate decreases with time, it increases with the 

pressure and with initial porosity. Finally, in general, as the dissolution rate increases, the 

permeability and porosity of the rocks increases as well. 
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APENDIX A – ADDITIONAL RESULTS 

Here is shown the detailed results of the experiments developed in the study 

presented in COMPARISONS OF GAS AND LIQUID PERMEABILITY but not included in 

the main text for the sake of objectivity. They are shown here for reference. 

 

Figure A1. Air to liquid permeability experiment – Pressure results for sample C2. 

 

 

Figure A2. Air to liquid permeability experiment – Pressure results for sample D3. 
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Figure A3. Air to liquid permeability experiment – Pressure results for sample C3. 

 

 

Figure A4. Air to liquid permeability experiment – Pressure results for sample C3. 
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Figure A5. Air to liquid permeability experiment – Pressure results for sample C4. 

 

 

Figure A6. Air to liquid permeability experiment – Pressure results for sample D5. 
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Figure A7. Air to liquid permeability experiment – Pressure results for sample C5. 
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APENDIX B – MEASUREMENT ERROR CALCULATIONS 

In this Appendix the error propagation details are presented. They refer to the Gas 

permeability measurement using the Ultra Perm 300 and the liquid permeability measurement 

using the experimental apparatus shown in Figure 3.6. The error calculations for both 

measurements begin with the variance formula (Ku, 1966): 
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where    is the standard deviation of the function  ,    represents the standard deviation of  , 

   represents the standard deviation of  , and so on. 

The calculation of the gas permeability measurement error using the Ultra-Perm 

500 starts with Equation (2.11), repeated below for completeness. 
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where    is the air permeability,   is air viscosity,    is the area of the sample perpendicular 

to the direction of flow,   is the sample length,   is flow rate and the inlet and outlet 

pressures are    and    respectively. In this equipment, the outlet pressure    is maintained 

constant during measurement and the pressure difference (        ) is measured with 

three different pressure transducers: a low pressure transducer (LP), a medium pressure 

transducer (MP) and a high pressure transducer (HP). The flow rate is measured with two 

flow rate transducers: a low flow rate transducer (LF) and a high flow rate transducer (HF). 

Table B.1 shows the measurement ranges and accuracy of all the aforementioned transducers. 

 

Table B.1. Measurement ranges and accuracy of Ultra-Perm 500’s transducers. 

 

Tansducer Measurement 

Range 

Measurement 

Accuracy 

LP 0 - 0.9034 psi 0.0007 psi 

MP 0 - 5 psi 0.005 psi 
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HP 0 - 50 psi 0.05 psi 

LF 0 - 0.166 cc/s 0.00166 

HF 0 - 3.333 cc/s 0.03333 

 

substituting Equation (B.1) into Equation (B.2) and considering the standard deviation of  , A 

and L to be negligible: 
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where    
 is the standard deviation of the air permeability,     represents the standard 

deviation of the pressure difference and    represents the standard deviation of the flow rate. 

Therefore: 
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equation (B.4) was used to calculate the accuracy of air permeability measurements taking     

and    from Table B.1 for the appropriate measurement ranges. 

Now, for the liquid permeability measurement using the experimental apparatus 

shown in Figure 3.6, the calculation of the accuracy of the measured value starts with 

Equation (2.10), repeated here for completeness:  

 

 
  

   

        
 (B.5) 

The flow rate   is measured by the high pressure pump,          is 

measured by a differential pressure transducer and   was determined prior to the core-

flooding using a high pressure viscosimenter. The accuracy of the equipment is shown in 

Table B.2.  

Substituting Equation (B.1) to Equation (B.5), after considering the standard 

deviation of   and   to be negligible: 
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where    is the standard deviation of the air permeability,     represents the standard 

deviation of the pressure difference,    is the standard deviation of the flow rate and    is the 

standard deviation for the viscosity measurement. Therefore: 
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Eq. B.7 was used to calculate the accuracy of the liquid permeability and    ,    

and    were obtained from Table B.2. 

 

Table B.2. Measurement accuracy of the equipment used to measure liquid permeability 

 

Parameter Equipment Measurement 

Accuracy 

  High Pressure Pump 0.018 cc/min 

         
Differential Pressure 

Transducer 

2.25 psi 

  
High Pressure 

Viscosimeter 

0.5 cP 

 

 

 


