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Resumo

A identi�cação automática de animais por meio de seus sons é um dos meios para rea-
lizar pesquisa em bioacústica. Este domínio de pesquisa fornece, por exemplo, métodos
para o monitoramento de espécies raras e ameaçadas, análises de mudanças em comu-
nidades ecológicas, ou meios para o estudo da função social de vocalizações no contexto
comportamental. Mecanismos de identi�cação são tipicamente executados em dois está-
gios: extração de descritores e classi�cação. Ambos estágios apresentam desa�os, tanto
em ciência da computação quanto na bioacústica. A escolha de algoritmos de extração
de descritores e técnicas de classi�cação e�cientes é um desa�o em qualquer sistema de
reconhecimento de áudio, especialmente no domínio da bioacústica. Dada a grande va-
riedade de grupos de animais estudados, algoritmos são adaptados a grupos especí�cos.
Técnicas de classi�cação de áudio também são sensíveis aos descritores extraídos e con-
dições associadas às gravações. Como resultado, muitos sistemas computacionais para
bioacústica não são expansíveis, limitando os tipos de experimentos de reconhecimento
que possam ser conduzidos. Baseado neste cenário, esta dissertação propõe uma arqui-
tetura de software que acomode múltiplos algoritmos de extração de descritores, fusão
entre descritores e algoritmos de classi�cação para auxiliar cientistas e o grande público
na identi�cação de animais através de seus sons. Esta arquitetura foi implementada no
software WASIS, gratuitamente disponível na Internet. Como o WASIS é de código e
expansível, especialistas podem realizar experimentos com diversas combinações de pares
descritor-classi�cador para escolher os mais apropriados para a identi�cação de determi-
nados sub-grupos de animais. Diversos algoritmos foram implementados, servindo como
base para um estudo comparativo que recomenda conjuntos de algoritmos de extração de
descritores e de classi�cação para três grupos de animais.



Abstract

Automatic identi�cation of animal species based on their sounds is one of the means to
conduct research in bioacoustics. This research domain provides, for instance, ways to
monitor rare and endangered species, to analyze changes in ecological communities, or
ways to study the social meaning of animal calls in their behavioral contexts. Identi�cation
mechanisms are typically executed in two stages: feature extraction and classi�cation.
Both stages present challenges, in computer science and in bioacoustics. The choice
of e�ective feature extraction and classi�cation algorithms is a challenge on any audio
recognition system, especially in bioacoustics. Considering the wide variety of animal
groups studied, algorithms are tailored to speci�c groups. Audio classi�cation techniques
are also sensitive to the extracted features, and conditions surrounding the recordings.
As a results, most bioacoustic softwares are not extensible, therefore limiting the kinds
of recognition experiments that can be conducted. Given this scenario, this dissertation
proposes a software architecture that allows multiple feature extraction, feature fusion and
classi�cation algorithms to support scientists and the general public on the identi�cation of
animal species through their recorded sounds. This architecture was implemented by the
WASIS software, freely available on the Web. Since WASIS is open-source and expansible,
experts can perform experiments with many combinations of pairs descriptor-classi�er to
choose the most appropriate ones for the identi�cation of given animal sub-groups. A
number of algorithms were implemented, serving as the basis for a comparative study
that recommends sets of feature extraction and classi�cation algorithms for three animal
groups.
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Chapter 1

Introduction

The typical scenario in eScience involves collaboration among computer scientists and

researchers from other branches of science for the development of their �elds [25], as well

as empowering scientists to do their research and obtain results in faster, better and

di�erent ways [43]. One such example is the work in bioacoustics, in which biologists and

computer scientists collaborate in research concerning sounds produced by or a�ecting

living species.

Audio recognition systems have been developed in several domains, such as automatic

speech recognition [44], music information retrieval [36], acoustic surveillance [24], and

bioacoustics [1] � subject of this work. Primary challenges during the development of

these sound retrieval systems are the identi�cation of e�ective audio features and classi-

�cation methods [63]. Feature extraction focuses on analyzing and extracting meaningful

information from audio signals, while classi�cation use these extracted data to match

against the respective data of samples previously stored in a repository.

A major concern in audio recognition systems is how feature extraction is coupled to

the classi�cation algorithms. In many cases, poor software design restricts the reuse of

code in other contexts and limits the ability of researchers to exchange feature extraction

algorithms [59]. In bioacoustics, the vast majority of researchers are specialized in few or

only one animal group, hence most of the recognition tools in bioacoustics are designed

to meet the needs of the experts in question [1]. On the other hand, researchers de-

mand generic architectures that allow them to implement new algorithms without major

concerns with supporting infrastructure for data manipulation [38].

Typical architectures for audio retrieval systems follow general guidelines that con-

sider classi�cation essentially based on machine learning algorithms [81]. However, the

architecture of software systems for bioacoustic recognition is seldom con�gurable or ex-

pansible, and lacks information on internals - such as documentation. Thus, it is hard for

experts to test di�erent sets of feature extraction and classi�cation algorithms to check

for the most appropriate combinations thereof.

Given this scenario, the goal of this dissertation is to design a software architecture

that supports multiple feature extraction, feature fusion, and classi�cation algorithms to

identify animals based on their sounds. To obtain this goal, we designed and implemented

WASIS1 - a free and extensible software platform that allows scientists to identify animal

10



CHAPTER 1. INTRODUCTION 11

species based on their recorded sounds. A suite of data repositories that speci�es which

components are responsible for processing, retrieving and persisting information was inte-

grated to this architecture. To the best of our knowledge, no similar architecture has ever

been designed for bioacoustic identi�cation. A previous version of the WASIS software

(Version 1.0.0) was implemented for testing the ideas. The results of this implementa-

tion raised several open questions, which resulted in the proposed architecture and the

implementation of several algorithms for sound identi�cation.

The main contributions of this dissertation are:

• an architecture to help on the identi�cation of animal species from their sounds -

this architecture supports multiple feature extraction algorithms, feature fusion and

classi�cation algorithms, and facilitates the extension for new techniques;

• a free software that implements the architecture, to be used by scientists/users on

the identi�cation of animals based on their sounds;

• a comparative study providing recommended sets of feature extraction/classi�cation

algorithms for animal sound identi�cation, exploring di�erent animal groups.

The evaluation and validation of the comparative study was conducted using audio

recordings deposited at Fonoteca Neotropical Jacques Vielliard (FNJV), considered one

of the ten largest animal sound libraries in the world.

Part of this dissertation produced the paper An Architecture for Animal Sound Identi-

�cation based on Multiple Feature Extraction and Classi�cation Algorithms [86] that was

published and presented at the 11o BreSci - Brazilian e-Science Workshop.

The remainder of this document is structured as follows: Chapter 2 provides an

overview of the basic concepts and related work to support and develop this dissertation;

Chapter 3 presents details of the proposed architecture. Chapter 4 contains implemen-

tation aspects of the architecture, a case study on how a scientist can use the WASIS

software, and the comparative study. Finally, Chapter 5 concludes this dissertation and

discusses future work.

1 WASIS: Wildlife Animal Sound Identi�cation System (Version 2.0.0)
http://www.naturalhistory.com.br/wasis.html



Chapter 2

Basic Concepts and Related Work

This chapter presents the main concepts and related work for the development of this

research. Section 2.1 introduces the study of bioacoustics and the relevance of animal

sound identi�cation. Section 2.2 addresses the concept of Audio Features, while Section

2.3 focuses on Audio Classi�cation, both key elements of audio recognition. At last,

Section 2.4 explores typical architectures for audio retrieval systems.

2.1 Bioacoustics

Bioacoustics is a branch of science related to every sound produced by or a�ecting all

kinds of living organisms. Although it is a research line oriented to animal communica-

tion, studies have been conducted showing that plants can also emit acoustic signals and

communicate through them [33, 34], or even showing an interaction between plants and

animals from acoustic communication [79].

Bioacoustics studies sounds of all animal groups. However, the vast majority of re-

searchers in this �eld are specialized in few or only one speci�c group. Vocalizations are

species-speci�c for many animal groups, being bene�cial by means of identifying species

[57]. Algorithms have been created or applied to automate animal identi�cation of am-

phibians [66, 97], birds [47, 84], insects [17, 20], primates [41, 62] and whales [68, 88], for

instance. Thus, most of the recognition tools in bioacoustics are designed to meet the

needs of the experts in question. In addition, a considerable number of researchers � who

make use of these techniques � do not have the mathematical and programming expertise

to develop e�cient algorithms [1]. The design and development of new algorithms for

analysis and recognition of animal sounds is one of the greatest contributions of the col-

laboration among computer scientists and bioacoustic researchers. Moreover, the advent

of new equipments for sound recording and analysis (e.g., recorders, microphones, sound

level meters) made technology essential for the development of the bioacoustics [92].

Developing animal sound recognition techniques is not a trivial task. Firstly, it is

necessary to understand the signi�cance, functions and strategies used by animals for the

emission of acoustic signals. The main function of sound communication between animals

is to attract mates for reproduction and territorial defense [22, 83, 90]. In dangerous

situations, animals emit sounds to astonish or threat predators, as well as warn members

12
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of their species [56, 90]. Due to large competition in the acoustic space, animals go

through periods of evolutionary and ecological adaptations, and strategies are selected to

maximize the transmission and reduce the interference of their sounds [16]. One example

of an ecological strategy is when animals set the frequencies of their songs [28, 101], which

means that various acoustic signals can occur simultaneously in di�erent frequency ranges

and still be recognized by individuals of the same species (Figure 2.1).

Figure 2.1: Di�erent species sharing the same acoustic space. Species A emits sounds in
higher frequencies (4.5-5.3kHz), while species B calls in lower frequencies (2.8-4.5kHz).

Monitoring animal populations is a recurrent subject in bioacoustics. With climate

change, habitat loss, and high rates of species decline and losses, monitoring animals is an

essential approach to deal with these threats and to manage conservation units [58, 96].

Animal monitoring through their sounds allows the estimation of population trends of

key species in sensitive areas [8], provides evidences of changes in ecological communities

through time [30] and increases the scale of ecological research from various locations over

extended periods [93]. The main advantage of bioacoustic monitoring lies in the detection

of animal sounds in the absence of an observer [8], even over larger spatial temporal

scales [97]. Moreover, it is a popular non-invasive method to study animal populations,

biodiversity and taxonomy [30, 50, 85].

2.2 Audio Features

De�ning appropriate audio features is one of the crucial tasks regarding audio retrieval

systems. Audio features represent the way in which meaningful information is analyzed

and extracted from audio signals in order to obtain highly reduced and expressive data

that are suitable for computer processing [2, 63, 80]. Note that the amount of data in raw

audio �les would be too big for their direct processing; moreover, considerable information

(e.g., frequency variation and timbre) would not be perceptible in their signal waveforms,

often inappropriate for audio retrieval [63].
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The feature extraction process generates output vectors that are usually called de-

scriptors [65]. These descriptors are the fundamental information that algorithms use to

process the original audio �les. A failure to capture appropriate feature descriptors of

audio signals will result in poor performance, no matter how good the classi�er is [59].

There are no optimal feature representations for particular applications, whether di-

rected to an animal sound identi�cation system or an automatic speech recognition appli-

cation. Nevertheless, it is desirable that the choice of audio features covers the following

properties [3]: (a) allows a system to automatically discriminate between di�erent and

similar sounds; (b) allows the creation of acoustic models without the need for excessive

amount of training data; and (c) exhibits statistics that are largely invariant across the

audio source and the environment. In addition, the feature extraction method should

describe an audio segment in such a particular way that other similar segments can be

grouped together by comparing their feature descriptors [82].

Mitrovic et al. [63] performed an extensive review of feature representations for audio

retrieval. Audio features are categorized in di�erent domains that provide information

about their extraction process and computational complexity, as well as allowing the

interpretation of the data. Most audio features representations belong to the following

domains:

• Temporal domain � Based on the aspect represented by the audio signal changes

over time, such as amplitude and power. This domain is considered the basis for

feature extraction. For better audio analysis and identi�cation, the audio signals

are often transformed into more expressive domains;

• Frequency domain � Represents the spectral distribution of the audio signals, trans-

forming such signals from Temporal to Frequency domain. A feature representation

of this domain is Power Spectrum (PS) that employs Fast Fourier Transform (FFT)

algorithm to compute the distribution of signal's power over given frequency bins

of an audio �le [73, 100];

• Correlation/Autocorrelation domain � Represents temporal relationships between

audio signals. This domain reveals repeating patterns and their periodicities in a

signal.

• Cepstral domain � Based on an approximation of the spectral envelope, capturing

timbral information.

The following subsections describe common feature representations from the literature:

2.2.1 MFCC (Mel Frequency Cepstral Coe�cients)

Firstly introduced by Bridle and Brown [13] and later developed by Mermelstein [61]

in the 1970s, the Mel Frequency Cepstral Coe�cents (MFCC) are widely used in audio

recognition systems due to their abilities to represent the audio spectrum according to a

perceptual scale that re�ects the human auditory perception [37].
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The human auditory system follows a linear scale up to 1kHz and logarithmic scale

for frequencies above 1kHz, so humans hear lower frequencies more clearly than higher

frequency components [31]. MFCC redistribute the frequency bands across the spectrum

on the Mel scale, an approximation of the nonlinear human auditory system's response.

MFCC provide a compact representation of the spectral envelope, thus timbre perception.

Terasawa et al. [87] compared di�erent Cepstral feature representations and determined

that the MFCC representation is a good model for the perceptual timbre space.

Initially and regularly applied for automatic speech recognition [26, 44], MFCC have

also had e�ective use in music information retrieval [31, 55]. In animal sound recognition,

MFCC presented signi�cant results in amphibians [10, 66, 97], birds [18, 19, 91], among

other animal groups. Jan£ovi£ et al. [47] reported signi�cant reduction in the accuracy

of the identi�cation when MFCC are applied in noisy environments. The failure of the

conventional MFCC lies on the capture of the entire frequency band, which may contain

signi�cant background noise and/or presence of other animal sounds simultaneously [47,

48].

As shown in Figure 2.2, MFCC extraction consists of seven steps:

Figure 2.2: Block diagram of the MFCC algorithm.

• Pre-emphasis - Passes the audio signal through a �lter that equalizes amplitude of

high and low frequencies (high frequencies have smaller magnitudes compared to

lower frequencies);

• Framing - Splits the signal into smaller frames, usually 20ms to 40ms with 50%

overlap between consecutive frames (audio signals do not change much over short

time scales and further processing across the entire signal would lose frequency

contours over time);

• Windowing - Applies a window function to reduce discontinuities and smooth the

audio signals at the edges of each frame;

• Fast Fourier Transform (FFT) - Converts each windowed frame from the time

domain into the frequency domain by computing the Discrete Fourier Transform

(DFT) and returns the magnitude distribution over di�erent frequency bands;
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• Mel Filter Bank - Multiplies the frequency magnitudes by a set of �lters (the output

adapts the magnitude spectrum to the Mel scale which satis�es the properties of

the human ears, and reduces the size of the feature);

• Log - Computes the logarithm of the Mel Filter Bank output;

• Discrete Cosine Transform (DCT) - Converts the Mel Log powers into a time-like

domain resulting in the desired set of MFCC.

MFCC extraction creates a vector of coe�cients for each frame created in the Framing

process. These MFCC vectors describe only the spectral envelope, thus they do not pro-

vide information about temporal changes in the spectra that also play an important role

in human perception [45]. One method to capture this information is to calculate delta

coe�cients that measure the changes in coe�cients over time. Delta MFCC (Di�eren-

tial Coe�cients) are extracted from the static MFCC vectors, while Delta-Delta MFCC

(Acceleration Coe�cients) are extracted from the dynamic Delta MFCC.

There is no common guideline for the number of MFCC coe�cients. A large number

of coe�cients increases the feature dimensionality and may cause data redundancy, which

demands more computational resources, while a small number of coe�cients may lead

to insu�cient data which results in low recognition performance [46]. A typical MFCC

vector consists of 13 coe�cients, but the 0th coe�cient is commonly ignored because it is

considered as a collection of average energies of the frequency bands [27], resulting on 12

coe�cients. Adding 12 Delta coe�cients and 12 Delta-Delta coe�cients, the �nal MFCC

vector contains 36 coe�cients for each frame.

Most of the meaningful information needed for audio recognition is already contained

in the 12 static MFCC coe�cients, but the inclusion of Delta and Delta-Delta coe�cients

can signi�cantly reduce the recognition error [45]. The performance of MFCC may also

be a�ected by several factors, such as the number of �lters, the shape of �lters, and the

type of window function [27, 89].

2.2.2 LPC (Linear Predictive Coding)

The basic concept of Linear Predictive Coding (LPC) is that a given audio sample at the

current time can be well estimated based on a linear combination of previous sample values

[67]. The goal of LPC is to estimate time-varying parameters of speech wave signals, such

as the transfer function of the vocal tract and formant1 frequencies [6].

Rabiner & Juang [74] reviewed the reasons why LPC has been widely used in speech

analysis: (a) LPC is a good model of the speech signal, providing a good approximation

to the vocal tract envelope shape; (b) LPC leads to a reasonable source-vocal tract sep-

aration, resulting on a parsimonious representation of the vocal tract characteristics; (c)

the LPC model is mathematically precise, as well as simple and straightforward to imple-

ment both in software and hardware; and (d) LPC works well in recognition applications

- performance based on LPC front ends is comparable or better that of recognizers based

on di�erent front ends.

1 A formant is a concentration of acoustic energy within a particular frequency region.
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LPC also makes a good representation of the spectral envelope, being applied to do-

mains other than speech analysis [63]. Schön et al. [78] classi�ed stress calls of domestic

pigs using LPC and most of the unknown calls were correctly assigned. Mitrovic et al.

[64] reported that LPC outperformed MFCC results using the popular Support Vector

Machine (SVM) classi�er when applied to a database with birds and domestic animals.

However, the accuracy of LPC was considerably lower compared to other feature repre-

sentations for frog sound identi�cation, as reported by [97, 99].

Figure 2.3: Block diagram of the LPC algorithm.

Figure 2.3 illustrates the LPC feature extraction process, which consists on �ve steps:

(1) Pre-emphasis, (2) Framing and (3) Windowing are performed the same way as in the

MFCC algorithm; (4) Autocorrelation Analysis provides a set of (N+1) coe�cients, where

N is the order of the LPC analysis; and (5) Linear Prediction Analysis computes the �nal

LPC coe�cients from the autocorrelated vector using Levinson-Durbin algorithm.

2.2.3 LPCC (Linear Prediction Cepstral Coe�cients)

Created as an audio representation in the Cepstral domain [32], Linear Prediction Cepstral

Coe�cients (LPCC) is an extension of Linear Predictive Coding (LPC). The fundamental

idea of LPCC extraction is to apply a recursion technique to the LPC vectors rather than

applying Fourier transform to the original audio signals.

One signi�cant drawback in LPCC and LPC is their high sensitivity to noisy environ-

ments [102]. LPC components are also highly correlated, but it is desirable to obtain less

correlated feature descriptors for acoustic modeling [4]. Thanks to the cepstral analysis,

LPCC feature components are decorrelated, which is important to reduce computational

complexity for probabilistic modeling [39].

Both LPC and LPCC extraction create vectors of coe�cients for each frame created

in the Framing process, similar to the process performed in the MFFC extraction.
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2.2.4 PLP (Perceptual Linear Predictive)

Like many other popular audio feature representations, Perceptual Linear Predictive

(PLP) was introduced for automatic speech recognition [42]. PLP produces a better

representation of the spectral shape than the conventional linear predictive analysis by

approximating three properties from the human hearing: (a) the critical-band spectral

resolution, (b) the equal-loudness curve, and (c) the intensity-loudness power law.

Figure 2.4: Block diagram of the PLP algorithm.

Figure 2.4 shows detailed steps of the PLP computation:

• Framing, Windowing and Fast Fourier Transform (FFT) are performed the same

way as explained in previous feature representations;

• Bark Filter Bank - Converts the frequency magnitudes to Bark scale (better repre-

sentation of the human auditory resolution in frequency);

• Equal Loudness | Pre-emphasis - Provides an approximation to the non-equal sen-

sitivity of human hearing at di�erent frequencies;

• Intensity Loudness - Provides an approximation to the power law of hearing and

simulates the non-linear relation between the intensity of sound and its perceived

loudness.

• Linear Prediction - Computes a linear prediction model (LPC) from the perceptually

equally weighted signals;

• Cepstrum Computation - Cepstral coe�cients (LPCC) are obtained from the pre-

dictor model using a recursion technique resulting in the desired set of PLP.

PLP has not been widely used in bioacoustics, despite o�ering better performance than

linear predictive analysis in noisy conditions [51, 102]. Clemins & Johnson [21] created

a generalized model (gPLP) that generates perceptual features for animal vocalizations

by incorporating information about each species' sound perception. Potamitis et al. [72]

applied PLP to automatic bird sound detection in continuous real �eld recordings with

high scores of precision and recall.
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2.2.5 Feature Fusion

The performance of audio feature representations may be a�ected by a series of factors

in animal identi�cation systems, such as the presence of background noise [5] and the

duration of animal calls [97]. Feature fusion is a technique that is able to combine two

or more audio feature representations. Disadvantages of feature extraction methods can

be attenuated when several of these techniques are combined, as reported by Noda et al.

[66] who merged four di�erent methods. Their resulting feature descriptors held infor-

mation of lower and higher frequency ranges and time variable characteristics employed

separately in previous state-of-the-art work. Their combinations of feature extraction

methods have also had better performance than the use of single feature representations

for every identi�cation using di�erent retrieval techniques.

Arencibia et al. [5] combined temporal, frequency and cepstral domain features, show-

ing they are more e�cient than a single cepstral feature. Xie et al. [97] merged features

from di�erent domains (e.g., temporal, cepstral) that were able to better distinguish the

content of frog calls. The authors concluded that their enhanced feature representation

presented better classi�cation accuracy than non-fused features, as well as good anti-noise

ability.

One simple way to implement feature fusion is concatenating the descriptors of di�er-

ent feature representations horizontally, creating a matrix where each row corresponds to

an audio frame or audio segment (Figure 2.5), same as employed by Noda et al. [66].

Figure 2.5: Example of feature fusion matrix with 5 feature representations concatenated.

Table 2.1 shows an overview of the most common feature extraction algorithms pre-

sented and highlights some of their characteristics. Most of these feature representations

belong to the Cepstral domain, in which timbre properties are extracted. Power Spectrum

(PS) is the only algorithm that has the ability to �lter the frequency band of audio signals,

helpful in situations with signi�cant background noise or even when several animal species

calls at the same time. The size of the resulting descriptors may vary according to the

information that is being �ltering, as well as the number of coe�cients of the algorithms.

The resulting descriptors may also de�ne whether or not a feature representation is al-

lowed to perform fusion with other representations. MFCC, LPC, LPCC and PLP are

allowed to perform fusion due to the Framing step in their extraction process. The last

line of the table points out some applications, and in which animal groups the algorithms

were applied, along with related literature. Note that most of the feature representations

were initially designed for speech recognition and later applied to the bioacoustic domain.
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Table 2.1: Overview of common feature representations

2.3 Audio Classi�cation

Audio classi�cation is the process by which an individual audio sample is assigned to a

class, based on its characteristics [54, 95]. These characteristics are the feature descriptors

of the audio sample that will be used on the identi�cation. In animal sound recognition,

each species represents one class, usually labelled by their taxonomic information (e.g.,

genus, and speci�c epithet). Two classi�cation approaches are found in the literature:

• Brute Force - The classi�cation is performed by linearly traversing either the nor-

malized or the entire set of feature descriptors, providing similarity results among

every possible audio segment [77]. One statistical algorithm used for this approach

is Pearson Correlation Coe�cient (PCC);

• Class Model - Considered by the literature the main approach for audio classi�cation

[15, 81]. Commonly, it employs supervised machine learning algorithms for animal

sound identi�cation. These algorithms allow the computer to understand a data

collection on a semantic level and assign them to previously created categories [53].

One popular techniques using this approach is Hidden Markov Model (HMM).

Standard classi�cation is de�ned in the current context where each audio instance con-

tains only one label (Single-Label). A sound can also be described by several meaningful

tags where the sound may be related to multiple categories. The purpose of this kind of

annotation is to label new sounds with all relevant tags [31]. For instance, on the top panel

of Figure 2.6, each audio is assigned to a single species class (Single-Label). Occasionally,

it is also signi�cant to annotate/identify the animal sound category (e.g., advertisement

call, social call, distress call) providing a better understanding of the animal behavior

(Multi-Label), illustrated on the bottom panel of Figure 2.6.

In sound processing, the classi�cation performance is mostly evaluated in terms of

accuracy and speed [3]. Accuracy may be measured in percentage as the total number of

correctly classi�ed samples divided by the number of total samples [81]. Speed may be

related to the total time needed on the classi�cation, both in the training phase and in the

evaluation phase. Minimum computing times on the evaluation phase makes a classi�er

more suitable for implementation in portable devices [66].
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Figure 2.6: Species Classi�cation (Single-Label) versus Species Annotation (Multi-Label).

2.3.1 PCC (Pearson Correlation Coe�cient)

Pearson Correlation Coe�cient is a measure of the strength of the linear association

between two variables [40]. PCC considers the range values between +1 and −1, where

+1 is total positive linear correlation, 0 is no linear correlation and −1 is total negative

linear correlation.

Figure 2.7 exempli�es four di�erent associations between two variables and their re-

spective correlations. For example, the left top result shows total positive correlation,

while right top shows total negative correlation.

PCC has been used in many applications related to audio analysis, such as noise

reduction [11] and sound recognition [35]. This technique was also applied to establish a

relationship between body measurements and acoustic features in primates [70].

Figure 2.7: Pearson Correlation Coe�cient results of di�erent associations.
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2.3.2 HMM (Hidden Markov Model)

The basic concept of Hidden Markov Model was introduced by Baum [9] in the 1960s. It

is de�ned as a powerful statistical technique of characterizing observed data samples of a

discrete-time series [45]. The main assumption of HMM is that the data samples can be

well characterized as a parametric random process, and the parameters of the stochastic

process can be estimated in a precise and well-de�ned manner [75].

The Hidden Markov Model is an extension of the Markov Chain Models, a discrete

random process whose probability state at a given time depends solely on the state at the

previous time [45]. HMM incorporates an observation which is a probabilistic function

of the state. Hence, HMM is a double stochastic process with an underlying stochastic

process which is not observable (hidden), but can only be observed through another set

of stochastic process that produces the sequence of observations [75].

Figure 2.8 illustrates a Bakis type of HMM, also called left-right model, particularly

appropriate for the bioacoustic domain because the transitions between states are pro-

duced in a single direction, similar to audio signal properties that change over time [75].

Figure 2.8: Diagram of a Hidden Markov Model, extracted from [98].

HMM have been used for numerous purposes in bioacoustics including species recog-

nition of birds [48, 91], amphibians [1, 66] and whales [68]. Potamitis et al. [72] employed

HMM for automatic bird sound detection focusing on small amount of training data and

evaluated the proposal in continuous real �eld recordings with high scores of precision

and recall. Pace [68] stated that the performance of HMM is maximized when several

samples of various call categories and recordings of di�erent quality are included in the

classi�er, so that variability amongst calls is taken into account.

2.4 Typical Architectures for Audio Retrieval

The general approach to automatic sound recognition (ASR) is commonly inspired from

techniques employed in speech recognition systems, and most of these ASR systems have a

model based on three key steps, according to Sharan & Moir [81]: (a) signal pre-processing,

responsible for preparing the audio signal for (b) feature extraction, and (c) classi�cation.
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However, this model of a typical architecture considers only machine learning-based algo-

rithms, ignoring other techniques, such as the Brute Force approach.

Mitrovic et al. [63] described an architecture with more detailed database components

with three main modules: (a) Input Module that performs feature extraction from audio

stored in an audio database, and persists the descriptors into a feature database; (b) Query

Module in which the user provides audio objects of interest for identi�cation and feature

extraction is also performed in these objects; and (c) Retrieval Module that estimates the

similarity among the user's and the feature database's audio objects, returning the most

similar objects.

Foggia et al. [29] presented an architecture that employs bag-of-audio-words (BoAW)

approach between the typical feature extraction and classi�cation steps. The idea of

this approach is to create a dictionary of perceptual units of hearing using a clustering

process and feed the classi�er with a histogram of the occurrences of these perceptual

units. However, this method has numerous criticisms, mostly due to information loss in

the clustering step [69].

Classical feature extraction-classi�cation architectures may use a variety of techniques

for each stage. For instance, Deep Learning has gained signi�cant attention in the clas-

si�cation stage for pattern recognition [44, 81]. In recent years, this technique has been

adopted in architectures for animal sound identi�cation based on acoustic and image

features [12, 60, 76].



Chapter 3

The WASIS Architecture

This work is focused on a novel architecture to support the identi�cation of animal species

based on their sounds. This architecture combines multiple algorithms for feature extrac-

tion and audio classi�cation to a suite of data repositories. The WASIS software is the

�rst implementation of the proposed architecture � described in Chapter 4.

3.1 Overview

Figure 3.1 presents an overview of the WASIS architecture, which uses the classical feature

extraction and classi�cation structure. The inputs are Audio Files, in which users select

Audio Segments � also known as regions of interest (ROIs). These ROIs are forwarded to

the Feature Extraction module (1). Several feature extraction techniques can be performed

for each audio segment, as well as the Fusion among these feature representations (2).

The results of this extraction process (3a; 3b) are the Feature Descriptors.

Figure 3.1: Detailed software architecture.

24
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The Data Repositories component represents all the di�erent repositories created and

accessed in the architecture. In particular, Descriptors and Species Models (bottom circles

of the �gure) belong within the general Data Repositories � detailed in Section 3.2.

The Feature Descriptors can be either stored into the appropriate data repository with

the associated metadata of their audio �les (4) or sent directly to the Classi�cation &

Ranking module (5). The �rst choice (4) is more suitable for users who want to create

their own database for future identi�cation. The second choice (5) is more appropriate

for those who just want to identify the animal species from sound samples.

The Classi�cation & Ranking module classi�es the input ROIs, receiving Feature De-

scriptors as inputs (5). For the Brute Force approach, the Brute Force Comparison

module calculates the similarities among the Feature Descriptors (6) and the descriptors

of audio segments previously stored in their appropriate repository (7). In the Class Model

approach, an Audio Model is created from the Feature Descriptors based on a machine

learning algorithm (8). Then, the Class Model Prediction module estimates the similarity

degrees among the Audio Model (9) and the Species Models stored in the repository (10).

Note that both Brute Force and Class Model approaches are processed totally apart.

There is no combination of their results, though both kinds of results are independently

ranked by the Rank of Matching Species (11). The �nal output shows a ranked list of

matching species (12).

3.2 Data Repositories

Figure 3.2 details our data repositories and highlights which components of the architec-

ture are responsible for processing, retrieving and persisting information to these data

repositories. These are the repositories previously mentioned in the architecture overview

(Section 3.1).

Figure 3.2: Structure of the data repositories.



CHAPTER 3. THE WASIS ARCHITECTURE 26

Each data repository stores di�erent information from particular modules:

• Audio Files - Raw audio �les for processing;

• Segments (ROIs) - Regions of interest where the audio signals will be used to iden-

ti�cation;

• Metadata - Information used to identify, describe and organize the audio �les. In

animal sound recognition, the most important information is scienti�c classi�cation,

followed by recording location, date and time;

• Descriptors - The outputs of the Feature Extraction module;

• Species Models - Particularly used in machine learning-based classi�ers, models

of animal species are trained from their respective feature descriptors to predict

whether an audio segment belongs to a speci�c species.

The Database Middleware provides a bridge between the modules of the architecture

and the data repositories. This access granted by the Database Middleware allows the

modules of the architecture to retrieve or persist information into the data repositories

for any desired module. Moreover, if new feature extraction techniques are implemented,

the Feature Extraction module is able to process the audio �les and their ROIs already

stored in the data repository and generate its own Descriptors. The same goes for newly

implemented classi�ers that can invoke the Class Model Builder module to generate their

own Species Models.

Figure 3.3 shows the database schema describing the organization of data and how

these data are related in the repositories.

Figure 3.3: Database schema of the data repositories.
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The table AudioFile contains �elds that have information about path locations of

the raw audio �les, together with some of their related metadata (e.g., location, date,

time). In addition to the AudioFile table, the table AnimalSpecies stores metadata about

scienti�c classi�cation of the species. This separation of metadata between tables allows

the inclusion of several ROIs of di�erent species for a same audio �le, as seen in table

Segment, which is related to AudioFile and AnimalSpecies.

The table Descriptor stores the audio segment vectors obtained from the feature ex-

traction process. Note that the identi�er of feature extraction algorithm and its parame-

ters are stored as well. Di�erent modules of the architecture must retrieve from this table

the data related to the feature extraction algorithm that will be used on training and

classi�cation stage. For instance, in a given scenario, the MFCC algorithm is selected

to perform the Brute Force identi�cation, therefore the Brute Force Comparison module

must retrieve only descriptors associated with the MFCC feature extraction algorithm.

Lastly, table AnimalSpeciesModel contains �elds to store information about the trained

models for the Class Model approach � detailed in Section 3.3.

3.3 Class Model Builder

The architecture provides the Class Model Builder (Figure 3.4), which requests metadata

and feature descriptors of the audio �les stored in the data repositories, to create models

that are able to identify animal species through the Class Model approach.

Figure 3.4: Design of the Class Model Builder.

The Class Model Builder may eventually create two datasets using the metadata and

feature descriptors. The Training Set is obligatory created to provide feature descriptors

to the machine learning algorithm that will create the Species Models. The Testing Set

is created using di�erent data from those used in the Training Set for the purpose of

estimating how well the models were trained and optimize the parameters of the models.

Lastly, the �nal task of the Class Model Builder is persisting the trained and optimized

Species Models to the appropriate data repository.



Chapter 4

Implementation Aspects

This chapter presents the implementation aspects and the comparative study of this dis-

sertation. Section 4.1 presents an overview of the software WASIS that implements the

proposed architecture and a brief description of the technologies used on this software.

Section 4.2 contains examples of WASIS usage. Lastly, Section 4.3 presents the experimen-

tal methodology applied and the results obtained from the comparison study of feature

representations and classi�cation algorithms.

4.1 WASIS

The �rst implementation of the architecture produced the second version of the WASIS1

software, originally created as part of a joint research partnership between Laboratory

of Information Systems (LIS) and Fonoteca Neotropical Jacques Vielliard (FNJV) of the

University of Campinas (UNICAMP) in 2013. The �rst version of WASIS was designed to

support only Power Spectrum (PS) feature extraction and Pearson Correlation Coe�cient

(PCC) as the comparison method. In the course of this research, the original architecture

of WASIS was replaced by the proposed architecture in this dissertation.

WASIS is implemented in Java due to its cross-platform support that allows running

the application on multiple operating systems, such as Windows, Linux and Mac OS. In

addition, Java applications may be executed on mobile devices that run Android platform.

Since the main focus of this application is bioacoustical identi�cation and there is extensive

work in �eld locations in this domain, the software can be further extended to portable

devices, such as smartphones and tablets.

The database needs of WASIS were implemented using MySQL and H2 databases.

H2 is more adequate for those who just need the software for sound identi�cation due to

its embedded mode that does not require previous installation, and is more �exible for

portable device. On the other hand, MySQL is more appropriate for those who want to

do research, store and analyze more volume of data.

1 WASIS: Wildlife Animal Sound Identi�cation System (Version 2.0.0)
http://www.naturalhistory.com.br/wasis.html
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4.2 Case Study

Let us consider the following case study: a scientist has recorded a given bird species and

wants to check its identi�cation using WASIS. Initially, the scientist has to select audio

segments (ROIs) that contain the bird vocalizations to be identi�ed. Figure 4.1 illustrates

a screen copy of WASIS interface which shows in red squares the audio segments selected

by the scientist.

Figure 4.1: WASIS interface with audio segments to be identi�ed.

Figure 4.2 shows a screen copy of a Brute Force classi�cation. The scientist �lters

the source from where the data will be compared, along with the feature extraction

and classi�er. The software performs the comparison according to the architecture �ow

(Section 3.1). Initially, the module extracts features of the audio segment requested by the

scientist and returns the descriptors necessary to the classi�cation. Then, these descriptors

are matched against other audio �les vectors contained in the Descriptors repository,

returning a ranked list of matching species, using Pearson Correlation Coe�cient. The

higher the correlation coe�cient between two audio segments, the higher the probability

of a species being classi�ed correctly. In this example, the software indicates that the

audio segment selected by the scientist is more likely to belong to a Smooth-billed Ani

(Crotophaga ani).
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Figure 4.2: Screen copy for Brute Force audio comparison with its results.

The software also provides detailed information about audio identi�cation. Figure

4.3 illustrates a visual comparison between audio segments, providing more information

about the feature descriptors extracted. The Power Spectrum feature comparison shows

information about the signal's maximum power (vertical axis) through the frequency bins

(horizontal axis).

Figure 4.3: Power Spectrum comparison using Brute Force shows the data of the scientist
audio segment (red) against the data samples from the Descriptors repository (blue).
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The scientist has the choice of saving the audio segments into the appropriate data

repositories and use their information for future identi�cation. Figure 4.4 illustrates a

screen with the information of several audio segments selected by the scientists. The

top part of the �gure shows the audio segments that were not saved into the database.

Considering that an audio �le may contain calls of several species, the scientist has to

select the audio segments of one species and press the button "Save Audio File Segments"

to continue the saving process. The bottom part of the same �gure shows the audio

segments already stored into the database and details to which species they belong.

Figure 4.4: Screen copy for selection of audio segments to be saved.

Figure 4.5: Form containing metadata and details about audio segments to be stored into
the data repositories.
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Figure 4.5 shows a screen copy with a form that contains the metadata belonging to

the audio segments. When saving these metadata, the software automatically extracts

the feature descriptors and stores them into the adequate Descriptors repository. For

instance, the extracted MFCC coe�cients can be stored in a table that contains only

MFCC descriptors.

For the Class Model approach, the scientist initially needs to train species models

prior to the identi�cation. Figure 4.6 shows a screen copy of the Class Model Builder.

Considering the scientist an expert in a speci�c �eld of research (e.g., birds, amphibians),

he/she is able to train only the models of the specialized �eld by �ltering the taxonomic

data on the top of the screen. Then he/she selects the sets of features and classi�ers,

and starts building the species models. The time required to train the models may vary

depending, mainly, on the number of audio records stored into the repositories, as well

as the size of the feature descriptors, the fusion among feature representations, and the

classi�ers. Lastly, the species models created are stored into their respective Species

Models repository.

Figure 4.6: Class Model Builder screen copy.

Figure 4.7 shows a screen copy of Class Model classi�cation and comparison. Similar

to the Brute Force, the scientist chooses the taxonomic data, feature representation and

classi�er, and the software performs the comparison. Instead of retrieving information

from the Descriptors repository, the software performs the classi�cation from the Species

Models repository. In this example, HMM was applied to classify the feature descriptors

based on MFCC and the result indicates that the audio segment is more likely to belong

to a Blue-winged Parrotlet (Forpus xanthopterygius).
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Figure 4.7: Screen copy for Class Model audio comparison with its results.

4.3 Comparison Study

The following experiments have been designed to provide recommended sets of feature

extraction and classi�cation algorithms for animal identi�cation, exploring sounds of dif-

ferent animal groups. In this comparison study, 30 species of birds, 15 species of amphib-

ians and 5 species of primates were chosen. All recordings were obtained from Fonoteca

Neotropical Jacques Vielliard (FNJV)2, one of the ten largest animal sound libraries in

the world. This sound collection has more than 33,000 digitized �les - mainly birds. Most

of these audio �les were recorded in the Neotropical Region (mainly Brazil), but FNJV

also possesses �les from North America, Europe and Africa.

The audio recordings of FNJV cover a wide distribution of the Neotropical region,

mainly Brazil. It is important to note that these are �eld recordings and each �le po-

tentially holds vocalizations of several species and background noise caused by weather

or anthropogenic interference. For each animal species, 10 audio �les are evaluated and

a maximum of 5 audio segments per �le were manually selected with various duration

ranges, depending on the duration of the vocalizations. A number of 2,019 of segments

were selected from the 500 audio �les, combining a total of 1 hour, 21 minutes and 29

seconds of recordings to be analyzed. The information of the audio �les chosen for the

comparison study, along with the information of their selected segments is available at

http://www2.ib.unicamp.br/wasis/Segments.xlsx.

Four experiments were considered based on the selected animal groups: (1) Amphib-

ians, (2) Birds, (3) Primates, and (4) All Groups. A total of 10 sets of data for testing

2 Fonoteca Neotropical Jacques Vielliard (FNJV), UNICAMP, Brazil - http://www2.ib.unicamp.br/fnjv/

http://www2.ib.unicamp.br/wasis/Segments.xlsx
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were generated for the experiments, each with 70% of the audio �les for training, and

the remaining 30% of the recordings for the purpose of evaluation. Note that in case

of Brute Force classi�cation, it is not necessary to perform training, but each segment

of an evaluation dataset will be matched against each segment of its respective training

dataset. The catalog number of the audio �les belonging to each dataset is available at

http://www2.ib.unicamp.br/wasis/Experiments.xlsx.

All experiments were performed in an Intel i7-7700 3.60Ghz computer with 8GB of

RAM, non-dedicated Windows 7 64-bit. Before any analysis, the audio �les were encoded

as 16-bit mono WAV format with a sampling rate of 44.1 kHz. After feature extraction,

the descriptors and metadata of all audio �les were stored into a MySQL database (Version

5.7.18), and further evaluations were performed by retrieving the stored information.

The following measures were analyzed in this comparison study: (1) time required to

extract features of the audio segments; (2) time required to classify and rank the audio

segments; and (3) the accuracy of di�erent sets of feature representations and classi�ers.

4.3.1 Feature Extraction

A total of �ve audio feature representations were evaluated in this comparison study:

Power Spectrum (PS), Mel Frequency Cepstral Coe�cents (MFCC), Linear Predictive

Coding (LPC), Linear Prediction Cepstral Coe�cients (LPCC) and Perceptual Linear

Predictive (PLP). MFCC implementation was based on the algorithm contained in the

jAudio3 library, a framework for feature extraction. LPC, LPCC and PLP implemen-

tations were based on the algorithms from CMUSphinx4, a set of speech recognition

libraries.

Power Spectrum is the only feature representation capable of �ltering the minimum

and maximum frequencies of the selected audio segments. The other representations

extract their information based on full individual frames, considering the whole frequency

spectrum [14]. Hence, PS generates only a single vector per audio segment with variable

size, not suitable to the Class Model approach. The Power Spectrum descriptors were

extracted with approximately 23ms frames with 50% overlapped Hamming window and

FFT size of 1024.

The remaining feature representations (MFCC, LPC, LPCC and PLP) were extracted

with approximately 23ms frames with 50% overlapped Hamming window. MFCC were

computed with 23 Mel �lter bank and a total of 12 static coe�cients were generated. Delta

and Delta-Delta coe�cients were also computed to form the full MFCC vectors with 36

coe�cients, considering that these dynamic coe�cients can reduce the recognition error

[45]. The LPC and LPCC vectors were extracted with 24 coe�cients, which is more

suitable for the sampling rate in which the audio �les were encoded [71]. PLP vectors

were computed with 21 �lters and a total of 24 coe�cients, which had the best recognition

results for various numbers of �lters and coe�cients in [49].

Similar to a time series, MFCC, LPC, LPCC and PLP generate multiple vectors for

each audio segment (precisely one vector for each frame extracted). In order to reduce

3 jAudio, McGill University, Canada - https://sourceforge.net/projects/jaudio/
4 CMUSphinx, Carnegie Mellon University, USA - https://cmusphinx.github.io/

http://www2.ib.unicamp.br/wasis/Experiments.xlsx
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them to compact feature representations [81, 84], mean and standard deviation were also

computed and concatenated forming a new vector per audio segment.

The comparison study also evaluated the fusion among feature representations. Power

Spectrum was discarded in this analysis due to its variable vector sizes and its inability

to create one vector for each frame of the audio segments. The fusions considered in this

study were: MFCC+LPC, MFCC+LPCC, MFCC+PLP and MFCC+LPC+LPCC+PLP.

4.3.2 Classi�cation

Two classi�ers were assessed in this comparison study: Pearson Correlation Coe�cient

(PCC) using the Brute Force approach, and Hidden Markov Model (HMM) using the

Class Model approach. HMM implementation was based on the algorithm contained in

the OC Volume5, a speech recognition engine.

Pearson Correlation Coe�cient is able to classify all feature extraction techniques in

the experiments. The whole set of descriptors resulting of the PS extraction are processed,

while the vectors containing mean and standard deviation are the only ones processed for

the MFCC, LPC, LPCC and PLP representations.

Temporal information of audio signals can be well applied to Hidden Markov Model

[44], which means that HMM can handle the whole set of vectors of an audio segment

(discarding mean and standard deviation vectors). Bakis type of HMM were employed,

particularly appropriate for audio analysis [75]. K-means clustering algorithm were ap-

plied to generate a codebook with 256-dimension size. Additional parameters include a

total of 5 HMM states, Baum-Welch algorithm to estimate the species models, and Viterbi

algorithm to calculate the likelihood among observation sequences (audio segments) given

the models.

4.3.3 Results and Discussions

Figure 4.8 shows the average time required to extract the feature descritors. Ten repeti-

tions were performed to extract each feature representation from the 2,019 audio segments.

There was no need to calculate the time required for feature fusions, since it is a simple

concatenation of already computed descriptors.

MFCC, LPC and LPCC had the best results with averages of 203.67s, 202.95s and

206.63s, respectively. PLP took about 54% longer than the previous feature represen-

tations, due to its extraction that also includes LPCC calculation. PS extraction was

approximately 80% slower than the best results, explained by a �aw in the implemen-

tation that performed some unnecessary veri�cations regarding minimum and maximum

frequencies contained in the audio segments. The highest standard deviation observed was

4.89 seconds for LPC, indicating that the results of each feature extraction representation

are very close to the average.

5 OC Volume - https://github.com/dannysu/ocvolume
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Figure 4.8: Comparison of time required for feature extraction (in seconds).

Figure 4.9 details the average time spent to classify and rank the matching species using

Pearson Correlation Coe�cient (PCC). For each feature representation, the fastest results

were related to the Primates experiments, which contains fewer species for identi�cation

(only �ve). As we increase the number of species to be identi�ed, the average time may

increase considerably as observed in PS feature representation that use the entire set of

descriptors for identi�cation.

Figure 4.9: Comparison of time required for PCC classi�cation and ranking (in seconds)
with di�erent feature representations.

MFCC, LPC, LPCC and PLP have similar number of coe�cients and use only the

mean and standard deviation vectors for identi�cation in the Brute Force approach.

Hence, their average time for classi�cation and ranking dropped signi�cantly compared

to PS. Considering feature fusion, it is necessary to concatenate the mean and standard

deviation vectors, which generally doubles the average time spent.
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Figure 4.10: Comparison of time required for HMM classi�cation and ranking (in seconds)
with di�erent feature representations.

It can be seen from Figure 4.10 that MFCC, LPC, LPCC and PLP together with Hid-

den Markov Model (HMM) can perform the fastest classi�cation and ranking for all exper-

iments. When combining two feature representations, such as MFCC+LPC, the average

time for HMM classi�cation and ranking increases similarly to PCC. HMM uses all descrip-

tors obtained from the feature extraction process for classi�cation, making it very costly to

concatenate more than two feature representations, as seen in MFCC+LPC+LPCC+PLP

results.

Note that even with a larger number of species of Amphibians compared to Primates,

Amphibians had faster classi�cation with HMM. It can be explained by the fact that the

audio segments extracted for the Amphibians experiments are much shorter, generating

less descriptors than the Primates experiments. All segments from bird audio �les have

approximately 53 minutes, while segments of amphibians have 14 minutes, and segments

of primates have 14 minutes and 30 seconds.

The following results are related to the recognition accuracy of the feature representa-

tion and classi�ers. We calculated the mean of the true positive rate (TPR), that measures

the proportion of species that were correctly identi�ed. We also calculate the standard

deviation to assess the variability of the results around the mean. Figure 4.11 illustrates

the results for the Pearson Correlation Coe�cient comparison, while Figure 4.12 shows

the results for the Hidden Markov Model classi�cation.

The combination of Power Spectrum and Pearson Correlation Coe�cient achieved the

best performance for the Amphibians experiment � 74.38%. In spite of its slow average

time of classi�cation and ranking, this combination of PS and PCC was the only one able

to reach accuracy rate close to 75% in any of the experiments.

Pearson Correlation Coe�cient can be recommended for every animal group due to the

highest classi�cation accuracy for all feature representations. Several factors contribute

for future improvements of recognition rates of HMM classi�cation, such as setting better

initial parameters and estimates, and increasing the size of training data [45].
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Figure 4.11: Comparison of true positive rate (TPR) for PCC among feature representa-
tions.

Figure 4.12: Comparison of true positive rate (TPR) for HMM among feature represen-
tations.

In most cases, the experiments also con�rm that feature fusion slightly enhances the

identi�cation rate. For Birds, MFCC+PLP achieved slight improvement when compared

to other fusions. MFCC+LPCC outperformed all the other feature representations for

the Primates and All Groups experiments.

We can observe that the results involving MFCC and the fusions that contain MFCC

had similar performances. Also considering the average time from previous evaluations

(feature extraction and classi�cation/ranking), MFCC is a suitable feature representation

for implementations in portable �eld devices.

Last but not least, it is best to perform analysis for close taxonomic groups, and when

there are large amount of data. The All Groups experiments did not perform well for

these two reasons.



Chapter 5

Conclusions and Future Work

The ability to identify animal species based on their sounds is extremely useful for scien-

tists and the general public. Besides the curiosity itself of knowing which species is calling,

we can, for instance, identify invasive species in a certain area, estimate population trends

of key species in sensitive areas and analyze changes in ecological communities over time.

This dissertation proposed a software architecture for bioacoustics that supports mul-

tiple audio feature extraction, feature fusion and classi�cation algorithms, and is capable

of performing the identi�cation of animal species based on their sounds. Along with the

architecture, a conceptual database design described many di�erent entities and their

relationships, and illustrates the logical structure of a data repository suite. This archi-

tecture also allows the implementation of new algorithms without major concerns with

supporting infrastructure.

The software WASIS was the �rst implementation of the architecture. In addition,

several feature extraction and one classi�cation algorithm for each classi�cation approach

were implemented in this software, validating the architecture as feasible. A case study

was presented showing how scientists and users can use the software.

This dissertation also conducted a comparative study of di�erent sets of feature ex-

traction and classi�cation algorithms for animal sound identi�cation. Four sets of tests to

measure accuracy and time needed to execute the experiments were generated. Three of

these tests were performed with di�erent animal groups and one with the combination of

the groups. The results indicate that a Brute Force comparison technique (Pearson Cor-

relation Coe�cient) outperformed a Class Model technique (Hidden Markov Model) in all

experiments. The results also showed that feature fusion slightly enhances the recognition

rate, even though this combination of feature representations increases the time required

for classi�cation and ranking.

There are many possible extensions to this dissertation. Some examples of these

extensions are:

• Redesign the implementation database to improve performance and �exibility. For

instance, store the raw audio �les into the software database instead of just persisting

a path from where the �les are located;

• Investigate techniques to automatically select audio segments from which to extract

feature descriptors. The recommendation of ROIs in an audio �le would support

39
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researchers on the analysis of long-duration recordings;

• Correct the �aws on Power Spectrum extraction algorithm and adapt this feature

representation to the Class Model approach. Instead of considering the whole in-

formation in just one vector, several vectors would be generated, similar to other

feature representations;

• Investigate sound recognition techniques other than acoustic-based features. For

instance, image shape features extracted from spectrograms [52];

• Reduce the dimensionality of feature vectors. Techniques, like Linear Discrimi-

nant Analysis (LDA), aim to perform dimensionality reduction and retain the class

discriminatory capacity as much as possible [7]. This reduction would consume

signi�cant less amount of memory, together with less computing power;

• Investigate di�erent approaches of fusion. Late-fusion techniques may be applied to

the classi�cation stage, improving the recognition accuracy [76];

• Create a bioacoustic repository for storing feature extraction and classi�cation al-

gorithms. Challenges for this domain-speci�c repository would be implementing it,

maintaining it, and gaining adoption;

• Integration of well-known software workbenchs to current implementations. Weka

[94] is a collection of machine learning algorithms and has achieved widespread

acceptance within academia. The integration of softwares, like Weka, would not

require the implementation of complex algorithms;

• Provide more extensive comparative studies in animal sound identi�cation. Inclu-

sion of new feature extraction and classi�cation algorithms (such as Support Vector

Machine [23]), setting di�erent number of coe�cients/�lters for each feature repre-

sentation, and more training data for the classi�cation algorithms would contribute

to the recommendation of appropriate sets of feature extraction/classi�cation tech-

niques for di�erent animal groups;

• Perform comparison studies with other tools for bioacoustics. For instance, Raven1

is a software specialized in sound analysis with correlation functionality for sound

comparison. ARBIMON2 is specialized in acoustic monitoring and provides tools

for species identi�cation.

1 Raven, Cornell Lab of Ornithology, USA - http://www.birds.cornell.edu/brp/raven/RavenOverview.html
2 ARBIMON, University of Puerto Rico-Rio Piedras, Puerto Rico/USA - https://www.sieve-
analytics.com/arbimon
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