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“We are robust when errors in the representation of the unknown and understanding of
random effects do not lead to adverse outcomes — fragile otherwise.”

(Nassim Nicholas Taleb)



Resumo
Exemplos adversários levantaram questões da robustez e segurança de redes neurais pro-
fundas. Neste trabalho nós formalizamos o problema de imagens adversárias dado um
classificador pré-treinado, mostrando que mesmo em modelos lineares a otimização re-
sultante é não-convexa. Nós geramos imagens adversárias utilizando classificadores rasos
e profundos nas bases de dados de imagens MNIST e ImageNet. Nós sondamos o es-
paço dos pixels das imagens adversárias com ruído de intensidade e distribuição variável.
Nós trazemos visualizações novas que mostram o fenômeno e sua alta variabilidade. Nós
mostramos que imagens adversárias aparecem em regiões grandes no espaço de pixels,
entretanto, para a mesma tarefa, um classificador raso parece mais robusto a imagens
adversárias que uma rede convolucional profunda.

Nós também propomos um novo ataque adversário a autoencoders variacionais. Nosso pro-
cedimento distorce uma imagem de entrada com o objetivo de confundir um autoencoder
a reconstruir uma imagem alvo completamente diferente. Nós atacamos a representação
interna e latente, com o objetivo de que a entrada adversária produza uma representação
interna o mais similar possível da representação de uma imagem alvo. Nós verificamos que
autoencoders são mais robustos ao ataque que classificadores: Apesar de alguns exemp-
los possuírem pequena distorção na entrada e similaridade razoável com a imagem alvo,
há um compromisso quase linear entre esses objetivos. Nós demonstramos os resultados
nas bases de dados MNIST e SVHN, e também testamos autoencoders determinísticos,
chegando a conclusões similares em todos os casos. Finalmente, nós mostramos que o
ataque adversário típico em classificadores, apesar de ser mais fácil, também apresenta
uma relação proporcional entre a distorção da entrada e o erro da saída. No entanto,
essa proporcionalidade é escondida pela normalização da saída, que mapeia uma camada
linear em uma distribuição de probabilidades.

Palavras-chaves: Redes Neurais; Aprendizado Profundo; Imagens Adversárias; Autoen-
coders Variacionais.



Abstract
Adversarial examples have raised questions regarding the robustness and security of deep
neural networks. In this work we formalize the problem of adversarial images given a pre-
trained classifier, showing that even in the linear case the resulting optimization problem
is nonconvex. We generate adversarial images using shallow and deep classifiers on the
MNIST and ImageNet datasets. We probe the pixel space of adversarial images using
noise of varying intensity and distribution. We bring novel visualizations that showcase
the phenomenon and its high variability. We show that adversarial images appear in large
regions in the pixel space, but that, for the same task, a shallow classifier seems more
robust to adversarial images than a deep convolutional network.

We also propose a novel adversarial attack for variational autoencoders. Our procedure
distorts the input image to mislead the autoencoder in reconstructing a completely differ-
ent target image. We attack the internal latent representations, attempting to make the
adversarial input produce an internal representation as similar as possible as the target’s.
We find that autoencoders are much more robust to the attack than classifiers: while
some examples have tolerably small input distortion, and reasonable similarity to the
target image, there is a quasi-linear trade-off between those aims. We report results on
MNIST and SVHN datasets, and also test regular deterministic autoencoders, reaching
similar conclusions in all cases. Finally, we show that the usual adversarial attack for
classifiers, while being much easier, also presents a direct proportion between distortion
on the input, and misdirection on the output. That proportionality however is hidden by
the normalization of the output, which maps a linear layer into a probability distribution.

Keywords: Neural Networks; Deep Learning; Adversarial Images; Variational Autoen-
coders.
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1 Introduction

After a long dominance of ensemble and kernel methods, neural networks regained
— thanks to many empirical successes — primary importance in machine learning. In com-
puter vision, convolutional networks have won the ILSVRC ImageNet competition in clas-
sification and localization since 2012 (RUSSAKOVSKY et al., 2015); in natural language
processing, recurrent neural networks can translate from English to French (SUTSKEVER
et al., 2014); in speech recognition, a recurrent neural network is state-of-the-art on the
TIMIT phoneme recognition benchmark (GRAVES et al., 2013); in reinforcement learn-
ing, two convolutional networks beat one of the best Go players of all time (SILVER et
al., 2016); in signal processing, an autoencoder is able to compress images better than
JPEG or JPEG2000 (GREGOR et al., 2016).

The recent successes of neural networks are tied to the development of Deep Learn-
ing (LECUN et al., 2015). A deep neural network has many layers, but — otherwise —
there is no formal difference between shallow and deep models. The successes are due
to better architectures, optimization, initialization and regularization techniques, which
exploit Graphical Processing Unit (GPU) parallelism and big data. More than a major
theoretical breakthrough, a myriad of incremental improvements explain the performance
of deep neural networks.

Since no unifying theory can explain the success of deep networks, for now we are
forced to probe the learned representations to understand why and how the networks work
and fail. Even if there were such theory, as Science is an empirical endeavor, it would have
to eventually face the scrutiny of data. Empirical exploration of the networks — in the
form of experiments or visualizations — not only improves our intuitive understanding of
the models, but also helps to elicit, validate, and falsify theories. In this work, we advance
that empirical avenue.

We explore different faces of an intriguing property of deep neural networks: ad-
versarial images (SZEGEDY et al., 2014). Adversarial images are one of the most glaring
flaws of deep networks, and, as such, have attracted a lot of attention. Adversarial images
may be thought as “optical illusions for artificial vision” — and in the same way that
illusions provide a way to understand the cognitive processes of human brains (KOCH,
2006), adversarial images give us insights about the decision processes of deep neural
networks.

Adversarial images present us fascinating questions and possibilities:

∙ It is possible to improve resistance to attacks, usually with other benefits, such as
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regularization (GOODFELLOW et al., 2015; KENDALL; GAL, 2017).

∙ They need not know the inner workings of the network for the attack to be success-
ful (PAPERNOT et al., 2017; KURAKIN et al., 2017).

∙ The attack can be transferred across different networks (SZEGEDY et al., 2014;
TRAMÈR et al., 2017).

∙ Many strategies have been tried to completely stop adversarial attacks, but none
has yet succeeded (GU; RIGAZIO, 2015; BRENDEL; BETHGE, 2017; CARLINI;
WAGNER, 2017).

We also extend adversarial images to variational autoencoders. Variational autoen-
coders are unsupervised networks that learn probabilistic representations of data (KINGMA;
WELLING, 2014). An autoencoder reduces input dimensionality by transforming it to a
latent variable space, where the manifold of the input distribution is supposed to lie. Thus,
we can experiment on variational autoencoder latent variables to understand the struc-
ture of deep representations. Here, however, we attack those latent variables via input
distortion in order to fool the representation. We propose a novel method for generating
adversarial images on variational autoencoders based on this latent variable attack.

1.1 Motivation

The debate over the dangers of overconfident machine learning has reached the
headlines of mass media (VAUGHAN; WALLACH, 2016; CRAWFORD, 2016). Indeed,
if our models are to drive cars, diagnose medical conditions, and even analyze the risk
of criminal recidivism, unreliable predictions may have dire consequences. Adversarial
examples provide one way to lead astray the predictions of most classifiers. Thus, we
must understand how the attack works and how to prevent it. We focus on the former,
specifically on the question of how large the space of adversarial images is, in order to
better understand how dangerous the adversarial problem is for deep neural networks.

Our motivation to extend the concept of adversarial images to variational autoen-
coders is threefold: first, we want to understand how the latent representation of the
autoencoders capture semantic knowledge, and attacking the representation is one pos-
sible way to understand their dynamic; second, we want to evidence the dangers of a
possible adversarial attack, in order to inspire other researchers to look for protections
and safeguards, similar to the line of research spun by the original adversarial images
work; third, we want to warn users of autoencoders of the dangers of possible malicious
attacks.
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1.2 Objectives

The primary objective of this work is the empirical investigation of the space
of adversarial images. The secondary objective is the extension of adversarial attacks
to variational autoencoders. To achieve those goals, we aim at answering the following
questions:

∙ How are adversarial images distributed in the input space?

∙ What can be said about the manifold of adversarial images?

∙ How does the nature of the probing change our conclusions?

∙ Can adversarial images be found in autoencoders?

∙ What is the relation between adversarial images for variational autoencoders and
for classifiers?

1.3 Contributions

In this work we present the following contributions:

1. We probe the pixel space of adversarial images using noise of varying intensity and
distribution. We bring novel visualizations that showcase the phenomenon and its
variability.

2. We show that adversarial images appear in large regions in the pixel space, but that,
for the same task, a shallow classifier seems more robust to adversarial images than
a deep convolutional network.

3. We formalize the problem of adversarial image generation in order to show that it
is in general a nonconvex optimization procedure, even for linear models.

4. We propose an adversarial attack on variational — and, for comparison, determinis-
tic — autoencoders. Our attack aims not only at disturbing the reconstruction, but
at fooling the autoencoder into reconstructing a completely different target image.

5. We show that while this attack may be successful given an appropriate regular-
ization parameter, there is a quasi-linear trade-off between input noise and target
reconstruction error.
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6. We make a comparison between attacks for autoencoders and for classifiers, showing
that while the former is much harder, in both cases the amount of distortion on the
input is proportional to the amount of misdirection on the output. For classifiers,
however, such proportionality is hidden by the normalization of the output, which
maps a linear layer into non-linear probabilities.

1.4 Achievements

During these Master studies, the author has participated in four scholarly publi-
cations:

∙ First author of Tabacof & Valle (2016), published at the 2016 International Joint
Conference on Neural Networks (IJCNN). The author received a Travel Grant
from IEEE-CIS to attend the conference. The article was the subject of two media
pieces Winiger (2015), James (2015).

∙ First author of Tabacof et al. (2016), presented at the Workshop on Adversarial
Training at the 2016 Neural Information Processing Systems (NIPS) conference.
The paper was selected as one of the spotlight presentations.

∙ Second author (with equal contribution to the first) of Oliveira et al. (2016), pre-
sented at the Workshop on Bayesian Deep Learning at NIPS 2016.

∙ Second author of Godoy et al. (2017), published at the journal PLOS ONE.

The author was the graduate teaching assistant of the Data Structures course,
where he developed and taught all the practical programming laboratories. The author
attended the Machine Learning Summer School, University of Texas at Austin, in 2015,
and the selective Deep Learning Summer School, Université de Montréal, in 2016.

The author applied for no government scholarships during his Master studies, hav-
ing opted instead to work as an engineer at a startup company (I.Systems, Campinas)
during most of his studies. Later, he founded his own startup company (Datart, Camp-
inas), as the Chief Research Officer. In 2017, he has started the Electrical Engineering
Ph.D. program at FEEC, UNICAMP, funded by a scholarship from Motorola Mobility
Brazil.

1.5 Outline

The remainder of the text is organized as follows:
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Literature review: We review the basics of machine learning, where we present
the basic building blocks necessary to understand deep learning. Then, we briefly
overview the history of neural networks. Finally, we do a more thorough review of
deep learning, focusing on variational autoencoders and adversarial images.

Exploring the space of adversarial images: We show how different probings
of the space of adversarial images enables our understanding of the prevalence of
adversarial images. Based on the work that has lead to the publication of Tabacof
& Valle (2016).

Adversarial images for variational autoencoder: We propose an adversarial
attack for variational autoencoders, where we slightly distort the input image in
order to make the autoencoder reconstruct a completely different image. Based on
the work that has lead to the publication of Tabacof et al. (2016).

Conclusion: We conclude this dissertation and point to possible future work.
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2 Literature Review

The focus of this dissertation, adversarial images and variational autoencoders,
arised in the context of deep learning. Deep learning, however, is a continuation of decades-
old artificial neural networks. While there is a rich literature of neural networks from
neurobiology, computational neuroscience, and cognitive science, we work from the point
of view of statistical learning, as deep learning itself is mostly studied within this context.
We motivate that point of view on section 2.1, where we show the connections between
statistical learning and neural networks.

We begin this chapter with the basics of machine learning. We overview supervised
and unsupervised learning on section 2.1, then we move to artificial neural networks
on section 2.2, ending with the recent developments of deep learning on 2.3. Our brief
reminder of machine learning fundamentals is not aimed at bringing readers with no
background in the area up to speed; for that purpose we suggest Bishop (2007).

The literature upon which we build our contributions on chapters 3 and 4 is,
respectively, on section 2.4 (adversarial images), and on section 2.5 (variational autoen-
coders). The reader already familiar with deep learning might want to skip directly to
those sections.

2.1 Machine Learning

Machine learning is a subfield of Artificial Intelligence (AI). Defining AI is not
straightforward because defining intelligence objectively is an open problem (LEGG,
2008). Is Intelligence the predictive capabilities of an animal (HAWKINS; BLAKESLEE,
2007), or is it the communication abilities of a human (TURING, 1950)? Here we will
assume a broad view that includes goal-oriented behavior involving planning, reasoning,
and learning in an uncertain world.

We are interested in the learning aspect of AI, which is known as machine learning.
Machine learning uses data to train models to perform specific tasks. The models can be
parametric, where the number of parameters is defined by an architect (which could be
human or an AI), and non-parametric, where the number of parameters is undefined,
and may increase with data. In this work we only deal with parametric models. Machine
learning tasks are usually classified as three major types:

Supervised learning: A model learns a mapping between inputs and associated out-
puts that will generalize to unseen input-output pairs. The inputs are usually called
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features. Supervised learning can be further divided into two problems:

– Regression: The output is continuous (a “number”).

– Classification: The output is discrete (a “label”).

Unsupervised learning: A model learns the distribution, geometry, or interesting
properties of unlabeled data.

Reinforcement learning: A model learns actions that maximize expected future re-
wards.

Here, we will focus on the first two types, as they are directly related to our subject:
adversarial images were created to target supervised classifiers; variational autoencoders
are unsupervised learning models.

As mentioned, throughout this brief review of machine learning we will adopt the
point of view of statistical learning, since it has a deep interplay with neural networks. As
we shall see throughout this chapter, the connections between statistical learning, neural
networks (and deep learning) are often direct:

1. The logistic model can be interpreted as a single neuron with sigmoidal activation.

2. The logistic / softmax model is usually the last layer of a neural network for classi-
fication.

3. Learning a neural network for regression usually implies Gaussian likelihood.

4. Learning a neural network for classification usually implies Bernoulli or Categorical
likelihood.

5. Weight decay implies Gaussian prior on the neural network weights.

6. Training a neural network usually consists in doing maximum likelihood or maxi-
mum a posteriori, with extra regularization techniques.

7. Many of the regularization techniques used to train neural networks have a Bayesian
interpretation.

8. Principal Component Analysis (PCA) can be interpreted as a linear autoencoder.

9. Variational autoencoders learn by maximizing a lower bound to the marginal max-
imum likelihood.

10. Learning in variational autoencoders can be interpreted as minimizing the KL-
divergence between the approximation and the true model.
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Due to our exploration of variational autoencoders (chapter 4), we are particularly
interested in the Bayesian viewpoint. Adding a prior on the unobserved variables (as we
will do shortly to find the maximum a posteriori solution of a linear-Gaussian model), is
not enough to characterize a model as Bayesian. True Bayesian models perform not only a
point estimate (or prediction), but provide the entire probability distribution over possible
estimates (predictions). Such extra information is important to measure uncertainty, and
to make principled decisions that weight cost and risk (the subject of decision theory).

Thus, learning in the Bayesian sense consists in finding the posterior of all un-
observed variables, given the prior, the likelihood, and the observed data. A Bayesian
estimate would use the expected posterior. A Bayesian prediction involves marginalizing
out the posteriors, which will lead to a probabilistic output that hopefully captures the
prediction uncertainty better than point estimates.

2.1.1 Supervised Learning

The problem of supervised learning is to find a mapping from a set of input vari-
ables to an output variable1. Input and output variables may have time dependencies,
but we will focus on the static domain. The main challenge is to generalize the mapping
to unseen input-output pairs (otherwise a simple look-up table would suffice for a perfect
mapping).

Fitting well observed data points must be balanced against generalizing well to
unseen points. We can see such balance through different perspectives, but here we will
use the bias-variance trade-off. Bias comes from the models being unable to reflect the
true nature of the data; it arises when the model is too rigid to adapt to the data (or
when assumptions about the model are plain wrong). Variance comes from adapting to
the noise rather than the signal; that will happen even if there is no explicit noise term
in the data, because we can only observe a sample of the data, and the sampling itself
induces such noise.

When analyzing model fitness as the Mean Squared Error (MSE) between the
true (unknown) and the learned model, we can interpret it as the squared bias plus the
variance: 𝑀𝑆𝐸 ∝ 𝐵𝑖𝑎𝑠2 + 𝑉 𝑎𝑟. That decomposition implies that unbiased models are
not necessarily preferred over biased ones (with smaller variance), because their expected
error can actually be greater.

We are dealing with the estimation of function approximators. That is different
than estimating parameters of a model. For example, ordinary least-squares gives an
1 That could be generalized to multiple output variables, where the learning can employ multi-objective

optimization.
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unbiased estimate of the coefficients of a linear model2, but, as a function approximation,
it will be biased unless the true data generating process is also linear. That point of view
comes from machine learning, where the end goal is the prediction provided by the model,
and not the parameters themselves.

To give further examples: a 1-nearest neighbors classifier has small bias but high
variance (FRIEDMAN et al., 2001); a regularized linear model will usually have high bias
but lower variance. Neural networks are in-between, and as we shall see later on, many
strategies are used to either reduce bias (e.g. increase network depth) or reduce variance
(e.g. early stopping).

The prototypical supervised learning model is the linear regression, where the
mapping between input and output is by an affine transformation:

𝑦 = 𝑤 · 𝑥 + 𝑏 (2.1)

The parameters (𝑤 and 𝑏) can be learned different ways, the standard algorithm
being ordinary least squares, which depends on the observed inputs (𝑋̂) and outputs (𝑦):

minimize
𝑤,𝑏

⃦⃦⃦
𝑦 − 𝑦

⃦⃦⃦2

2

subject to 𝑦 = 𝑋̂𝑤 + 𝑏
(2.2)

That is a strict convex procedure, i.e., there is only one local minimum, which is
the global minimum. That particular optimization can be solved by calculating a pseudo-
inverse, but, in general, convex problems can be solved in polynomial time by iterative
procedures (BOYD; VANDENBERGHE, 2004).

Linear least squares is actually equivalent to finding the maximum likelihood pa-
rameters of the following linear-Gaussian model:

𝑦 ∼ 𝒩 (𝑤 · 𝑥 + 𝑏, 𝜎2) (2.3)

Maximum likelihood finds the parameters that best explain the observed data and,
for exactly that reason, are susceptible to overfitting, when the noise is learned instead of
the signal (i.e. low bias and high variance). That can be exemplified through a polynomial
regression3 of varying order (Figure 1).

A more principled learning procedure puts a prior on the unknown parameters,
which reduces the degrees of freedom of the problem and prevents overfitting (that is,
2 As shown by the Gauss-Markov theorem, assuming the errors are uncorrelated, homoscedastic, and

with expected value of zero.
3 A polynomial regression is linear in the parameters: 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 . . .
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Figure 1 – Polynomial regression of varying order. The data was generated by hand.

increases the bias but greatly decreases the variance):

𝑦 ∼ 𝒩 (𝑤 · 𝑥 + 𝑏, 𝜎2)

𝑤 ∼ 𝒩 (0, 𝜎2
𝑤)

(2.4)

That is known as ridge regression or Tikhonov regularization. From a statisti-
cal perspective, this is called Maximum a Posteriori (MAP) estimation, which simply
is maximum likelihood with priors on the estimated parameters. The intuition is that
by shrinking the parameters value towards zero, we are biasing our solution towards a
more likely configuration. That also stabilizes the optimization. Regularizing the linear
model increases the bias but often greatly decreases the variance, thus reducing total
error. The same polynomial regression with Tikhonov regularization shows more sensible
results (Figure 2).

Figure 2 – Polynomial ridge regression of varying order. The data was generated by hand.

One open question is how to determine the regularization strength, which in our
statistical model is represented by the parameter 𝜎2

𝑤. A Bayesian perspective would sug-
gest putting an hierarchical prior over 𝜎2

𝑤, shared by all coefficients. A frequentist per-
spective would favor cross-validation to find the 𝜎2

𝑤 that minimizes validation error. Such
problem is known as hyperparameter optimization and is very important for neural net-
works, where the frequentist perspective usually prevails.

If we use a Laplace (instead of Gaussian) prior on the parameters of the lin-
ear model, the maximum a posteriori procedure would be equivalent to the Lasso algo-
rithm (PARK; CASELLA, 2008), which favors sparse solutions (i.e., individual param-
eters values not only shrink towards zero, but can become exactly zero)(TIBSHIRANI,
1996). That is specially important if there are more features than data points, or when
performing feature selection.
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The extension of linear models to binary classification involves a change in the
likelihood function, from Gaussian to Bernoulli4:

𝑦 ∼ Bernoulli(𝜎(𝑤 · 𝑥 + 𝑏)) (2.5)

The linear model is transformed via the inverse logit link function5 from the real
space to a valid probability range (0 − 1). Other link functions that map the real line
into the probability space interval can be used, such as the probit. This model is known
as logistic regression, and it can also be regularized by a Gaussian or Laplace prior.
The multiclass version uses the softmax link function and thus is known as softmax
regression (JORDAN et al., 1995).

2.1.2 Unsupervised Learning

We can learn the distribution or geometry of data in many ways, such as clustering,
density estimation, or dimensionality reduction. Here we focus on the latter, as it is closely
related to the variational autoencoders we will explore later.

Assume we have unobserved factors that cause the observed data. We will call
those unobserved factors latent variables. The simplest transformation from the latent
variables to the observations is a linear-Gaussian model (represented as a graphical model
in Figure 3):

𝑥 = 𝑊 𝑧 + 𝜇 + 𝜖

𝑧 ∼ 𝒩 (0, 𝐼)

𝜖 ∼ 𝒩 (0, 𝜎2𝐼)

(2.6)

n = 1, · · · , N

Wµσ

zn xn

Figure 3 – Probabilistic PCA.

To find the linear transformation matrix 𝑊 we can marginalize the latent variables
and optimize the resulting likelihood, a procedure called maximum marginal likelihood.
4 Multiclass or multinomial classification involves the Categorical distribution instead of the Bernoulli.
5 𝜎(𝑥) = 1

1 + exp (−𝑥)
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That procedure is known as the probabilistic Principal Component Analysis (PCA) (TIP-
PING; BISHOP, 1999), which we can view as an autoencoder with linear-Gaussian de-
coder and encoder. Autoencoders will be explained in further detail in section 2.5.

The decoder is the explicit generative model above 𝑝(𝑥|𝑧) = 𝒩 (𝑊 𝑧 + 𝜇, 𝜎2𝐼),
while the encoder is the posterior of the latent variables 𝑝(𝑧|𝑥) = 𝒩 ((𝑊 𝑇 + 𝑊 +
𝜎2𝐼)−1𝑊 𝑇 (𝑥−𝜇), 𝜎2(𝑊 𝑇 + 𝑊 + 𝜎2𝐼)−1) (TIPPING; BISHOP, 1999). With such prob-
abilistic model, we can use the observed data to return the latent variables, which we can
use to reduce the dimensionality of the data, or to reconstruct the data from the latent
variables — tasks related to compression.

2.2 Artificial Neural Networks

In 1943, McCulloch and Pitts proposed a simple thresholding neuron, and proved
that a network of such neurons could implement any Boolean function (MCCULLOCH;
PITTS, 1943). In the late 1950s, Rosenblatt proposed the perceptron, which included
adaptive weights (ROSENBLATT, 1958). Those neurons apply a nonlinear function to
the output of what is basically a linear model — a weighed combination of input values
plus a bias term:

𝑓(𝑥) = 𝜑(𝑤 · 𝑥 + 𝑏) (2.7)

The nonlinear function 𝜑(𝑥) is called, in this context, the activation function, 𝑤

is the adaptive weight vector, 𝑏 is the bias term, 𝑥 is the input vector, and 𝑓(𝑥) is the
scalar output. A layer of neurons is the parallel application of those functions:

𝑓(𝑥) = 𝜑(𝑊 𝑥 + 𝑏) (2.8)

Now the output 𝑓(𝑥) is also a vector, 𝑊 is the weight matrix and 𝑏 is the bias
vector. The activation function 𝜑 is applied element-wise. A feedforward neural network
is a nonlinear mapping between input and output consisting of successive applications of
layers of neurons. The prototypical neural network is the Multilayer Perceptron (MLP)
with one hidden layer:

𝑦 = 𝑓1(𝑓2(𝑥)) (2.9)

Where 𝑓2 is the hidden layer and 𝑓1 is the output layer. Typically, the hidden layer
uses a hyperbolic tangent (tanh) nonlinearity and the output layer is linear. Neural net-
works are usually trained with maximum likelihood or maximum a posteriori optimization.
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As in the linear models described in section 2.1, the typical choice of likelihood is Gaus-
sian for regression problems and Bernoulli for categorical problems. Maximum likelihood
with Gaussian likelihood leads to the mean squared error loss function minimization:

ℒ𝜃(𝑥, 𝑦) = 1
𝑁

𝑁∑︁
𝑖=0

(𝑓𝜃(𝑥𝑖)− 𝑦𝑖)2 (2.10)

Where 𝑥𝑖 and 𝑦𝑖 are respectively the input and output observations. 𝜃 is the con-
catenation of all free parameters of all layers (e.g. the bias vector 𝑏1 of the first layer, the
weight matrix 𝑊2 of the second layer, etc). Maximum likelihood with Bernoulli likelihood
leads to the cross-entropy loss function minimization:

ℒ𝜃(𝑥, 𝑦) = 1
𝑁

𝑁∑︁
𝑖=0
−(𝑦𝑖 · log(𝜎(𝑓𝜃(𝑥𝑖))) + (1− 𝑦𝑖) · log(1− 𝜎(𝑓𝜃(𝑥𝑖)))) (2.11)

The two classical ways to regularize neural networks are via weight decay or early
stopping. Weight decay adds a term to the cost proportional to the Euclidean norm of
the weights, and corresponds, from a Bayesian viewpoint to adding a Gaussian prior to
the weights:

ℒ𝜃(𝑥, 𝑦) = 1
𝑁

𝑁∑︁
𝑖=0

(𝑓𝜃(𝑥𝑖)− 𝑦𝑖)2 + 𝜆
⃦⃦⃦
𝜃

⃦⃦⃦2

2
(2.12)

Early stopping, as the name suggests, stops the optimization procedure (be it
maximum likelihood or MAP) before a local minima has been reached. A metric (e.g.
accuracy) computed over a validation set is used to decide when to stop, as further
training will lead to overfitting.

Finding the optimal set of weights for a nonlinear model is generally a hard op-
timization problem — a nonconvex procedure with no guarantees of finding the global
optimum. However, a local solution can be found using the assumption of local convexity,
applying first- and second-order optimizations. Those techniques require the gradient of
the loss function with respect to the weights. The backpropagation algorithm (rediscov-
ered many times (SCHMIDHUBER, 2015)) achieves that by exploiting the chain rule,
and the associativity of matrix multiplication. We can also seen backpropagation as a
special case of automatic differentiation (the reverse accumulation case) (BASTIEN et
al., 2012).

The basic idea behind backpropagation is differentiating the loss function with
respect to the weights, a direct application of the chain rule on the loss function:

∇ℒ𝜃(𝑥, 𝑦) = 𝜕ℒ(𝑓𝜃(𝑥), 𝑦)
𝜕𝑓𝜃(𝑥)

𝑑𝑓𝜃(𝑥)
𝑑𝜃

(2.13)
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The first term, the derivative of the loss function with respect to its inputs, is
usually simple, unless unusual loss functions are used. The second term, the gradient of
the neural network output with respect to its weights and biases (encapsulated by 𝜃), is
the source of most practical optimization and numerical issues. On the next section, we
show the general formula for the second term, as it applied to both shallow and deep
networks, but the problems are exarcerbated in the latter.

2.3 Deep Learning

Deep learning is a rebranding of neural network models with more than one hidden
layer. The difference between a deep and shallow network is subjective — it is hard to
pinpoint where shallow ends and deep begins — but any model with more than 10 hidden
layers is definitely considered deep learning (SCHMIDHUBER, 2015).

Deep models leverage massive datasets through stochastic training of mini-batches
of data within GPUs. The rise of massive datasets, such ILSVRC2016 containing over
one million images (DENG et al., 2009), allowed the training of ever increasing neural
networks, reaching hundreds of millions of neurons within a single deep network (SI-
MONYAN; ZISSERMAN, 2015).

While research on specific hardware for neural networks has existed since the 1990s,
they have never enjoyed the popularity of graphical-processing units (GPUs). Originally
intended for video rendering and gaming, GPUs soon brought massive parallelism to
the masses, with what became known as general-purpose computing on GPU (GPGPU).
GPGPU sped up the training of neural networks by a factor of 50 or more, allowing the
use of massive datasets to train deep neural networks (SCHMIDHUBER, 2015).

Deep neural networks with more than one hidden layer can be seen as a complex
nonlinear function composed by the successive application of individual layers:

𝑦 = (𝑓𝑁 ∘ 𝑓𝑁−1 ∘ . . . ∘ 𝑓1)(𝑥) (2.14)

The strong non-convexity of such models makes the training of deep neural net-
works difficult. For a long time, escaping bad local minima was considered the biggest
challenge in training neural networks (LECUN et al., 2012), but recent research sug-
gests that all local minima are likely to have similar values, close to the global mini-
mum (KAWAGUCHI, 2016). Instead, deep models are plagued by saddle points (CHORO-
MANSKA et al., 2015), which slow the optimization down, and mislead it towards poor
solutions (DAUPHIN et al., 2014).

Many practical problems of training deep models are due to vanishing or exploding
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gradients. As explained in the previous section, the gradient is defined using backpropa-
gation, which is an application of the chain rule in an efficient manner. The gradient of a
deep neural network output with respect to its weights is the following expression:

𝑑

𝑑𝜃
𝑓𝑁 ∘ . . . ∘ 𝑓1(𝑥) = 𝜕𝑓𝑁

𝜕𝜃𝑁

𝑑𝜃𝑁

𝑑𝜃
+ 𝜕𝑓𝑁

𝜕𝑓𝑁−1

𝑑𝑓𝑁−1

𝑑𝜃

= 𝜕𝑓𝑁

𝜕𝜃𝑁

𝑑𝜃𝑁

𝑑𝜃
+ 𝜕𝑓𝑁

𝜕𝑓𝑁−1

𝜕𝑓𝑁−1

𝜕𝜃𝑁−1

𝑑𝜃𝑁−1

𝑑𝜃
+ 𝜕𝑓𝑁

𝜕𝑓𝑁−1

𝜕𝑓𝑁−1

𝜕𝑓𝑁−2

𝑑𝑓𝑁−2

𝑑𝜃

= . . .

(2.15)

Where 𝜃 is the concatenation of all the free parameters of the network (i.e., weight
matrices and bias vectors), and 𝜃𝑗 are the parameters of some particular layer 𝑗. Therefore,
the gradient with respect to the weights of the first layer will be the multiplication of the
partial derivative of each layer with respect to its input times the partial derivative of the
first layer with respect to its weights:

𝜕

𝜕𝑊1
𝑓𝑁 ∘ . . . ∘ 𝑓1(𝑥) = 𝜕𝑓𝑁

𝜕𝑓𝑁−1

𝜕𝑓𝑁−1

𝜕𝑓𝑁−2
. . .

𝜕𝑓2

𝜕𝑓1

𝜕𝑓1

𝜕𝑊1
(2.16)

If each partial derivative is smaller than 1, their multiplication will lead to a van-
ishing value. If they are bigger than 1, their multiplication will lead to an exploding
value. Thus, training can only be possible if the partial derivative of each layer is very
close to 1. That can be achieved through proper weight initialization, or a thoughtful
choice of activation functions. For example, the Xavier initialization rule assumes that
each activation function is linear and tries to set the expected value of the activation to
0 and the variance to 1 (GLOROT; BENGIO, 2010). The Rectified Linear Unit (ReLU)
nonlinearity is 𝑚𝑎𝑥(0, 𝑥), so when the input is positive, its gradient will be exactly 1
everywhere (NAIR; HINTON, 2010). Batch normalization ensures the feedforward acti-
vations have zero expectation and unitary variance within each mini-batch of training
samples (IOFFE; SZEGEDY, 2015).

2.3.1 Regularization and Optimization

Weight decay is not enough to regularize deep models. The complex interaction of
layers allows overfitting even with small weight values. Dropout randomly drops neurons
from one particular layer in order to simulate an ensemble of an exponential number
of networks and prevent the co-adaption of units (SRIVASTAVA et al., 2014). Dropout
can also be interpreted as a Bayesian inference procedure, which makes the network
more robust to overfitting if compared to point estimation procedures such as maximum
likelihood or maximum a posteriori (GAL; GHAHRAMANI, 2016) (we will explore that
interpretation in more detail in section 2.3.2).
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Weight tying reduces the number of weights and exploits the structure of the input.
The most popular strategy for that is the convolutional layer (LECUN; BENGIO, 1995).
A convolutional unit uses the same weights to process different parts of the input image,
so one convolutional unit may learn to detect one kind of regularity in the image, such as
edges. Deep convolutional networks are able to learn invariant and high-level features of
the input image (ZEILER; FERGUS, 2014).

The flow of gradients is made explicit in architectures such as the Long Short-
Term Memory Network (LSTM) recurrent network (HOCHREITER; SCHMIDHUBER,
1997) and the residual convolutional network (HE et al., 2016). They both use connec-
tions between layers that are not hampered by nonlinearities, so the gradient cannot
vanish through these connections. Gradient clipping can be used to prevent exploding
values (PASCANU et al., 2013). That allows training networks using more layers (up to
a 1000 in the residual network case) or more timesteps in the recurrent case.

Most deep learning models are trained using some variant of Stochastic Gradient
Descent (SGD) applied to mini-batches of data. Second-order models, such as L-BFGS,
usually do not scale well with the number of parameters and data points used in modern
neural networks. However, there are efficient second-order methods, such as the Nonlinear
Conjugate Gradient (CG) algorithm, that do not require the direct calculation of the
Hessian and scale as well as first-order methods with the number of parameters (SANTOS;
VON ZUBEN, 1999). Unfortunately, they do not appear to provide advantage in practice
over the stochastic gradient descent. For example, a variant of the CG algorithm was
proposed recently to train LSTMs (MARTENS; SUTSKEVER, 2011), but it was soon
superseded by SGD and momentum with better initialization (SUTSKEVER et al., 2013).

The basic stochastic gradient descent algorithm is:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇ℒ𝜃(𝑥, 𝑦) (2.17)

where 𝛼 is the learning rate and ∇ℒ𝜃(𝑥, 𝑦) is the gradient of the loss function with respect
to one or few input points. A popular variant includes momentum:

𝑣 = 𝛾𝑣 + 𝛼∇ℒ𝜃(𝑥, 𝑦)

𝜃𝑡+1 = 𝜃𝑡 − 𝑣
(2.18)

Other variants include Adagrad (DUCHI et al., 2011), Adadelta (ZEILER, 2012)
and ADAM (KINGMA; BA, 2015), which offer some kind of adaptation of the learning
rate to the local curvature of the loss function. This is done by assigning an individual
rate to each weight of the network and using their recent history to adapt their values.
Those methods can be seen as a simplification of second-order methods that scale better
with the dimensionality of the network and the number of training samples.
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Recently, ADAM has been widely used in practice (KARPATHY, 2017). It uses
an unbiased estimation of the first two moments of the gradient (𝑚𝑡 and 𝑣𝑡, respectively)
to adapt the optimization steps (KINGMA; BA, 2015):

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝑚𝑡√
𝑣𝑡 + 𝜖

(2.19)

2.3.2 Bayesian Deep Learning

A Bayesian neural network treats its weights as unobserved variables, whose dis-
tribution must be inferred using the data. The prior distribution is usually simple and
uninformative, as there is no direct a priori physical interpretation for the weights. The
standard Gaussian distribution is the most commonly used prior: 𝜃 ∼ 𝒩 (0, 1).

The process of learning in a Bayesian neural network is the process of Bayesian
inference: Given the prior on the weights, the likelihood function, and the data, we infer
the posterior distribution of each weight. In practice, we can perform the inference in
three ways:

∙ Markov chain Monte-Carlo (MCMC): We construct a chain of posterior samples,
which will approximate the true posterior. Hamiltonian Monte Carlo (HMC) is the
most used method, as it leverages the gradient to scale the inference to the high
dimensions of neural networks (NEAL et al., 2011).

∙ Variational approximation: We approximate the posterior to a function or func-
tional, whose parameters or forms we find by maximizing a lower bound on the
marginal log-likelihood (BLUNDELL et al., 2015).

∙ Dropout: We use multiple dropout forward passes in test time, as they are equivalent
to a Bayesian prediction (marginalized over the parameters’ posteriors) given a
particular variational approximation (GAL; GHAHRAMANI, 2016).

Bayesian neural networks are robust to overfitting, and give better estimates for the
uncertainty of the prediction, as they consider two sources of uncertainty: aleatoric, which
comes from the likelihood function, and epistemic, which comes from the weights (KENDALL;
GAL, 2017).

Due to the costs of Bayesian inference, Bayesian neural networks are not widely
used in practice. However, we may profitably reinterpret under a Bayesian perspective
some of the ad hoc regularizations used in ordinary deep learning, including dropout (GAL;
GHAHRAMANI, 2016; BLUM et al., 2015), early stopping (MACLAURIN et al., 2015),
and weight decay (BISHOP, 2007; BLUNDELL et al., 2015). In addition, Bayesian neural
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networks may provide protection against adversarial attacks (LI; GAL, 2017; LOUIZOS;
WELLING, 2017).

2.4 Adversarial Images

After the huge empirical success of deep neural networks, Szegedy et al. surprised
the community, showing that small but purposeful pixel distortions can easily fool the
best convolutional networks for image classification (SZEGEDY et al., 2014). Szegedy et
al. used the gradient of the network output with respect to its input to find the minimal
pixel distortion that leads to misclassification — small distortions which are hardly visible
to humans. We present some examples in Figure 4 for two different datasets (MNIST
and ImageNet) and three different network architectures. The optimization problem, the
algorithm to solve it, and the practical details are explained in Chapter 3.

Adversarial images even generalize across different network architectures (TRAMÈR
et al., 2017). Nguyen et al. showed how adversarial images can be generated using evo-
lutionary approaches (NGUYEN et al., 2015). Goodfellow et al. demonstrated that only
one gradient evaluation is necessary to arrive at an adversarial image (GOODFELLOW et
al., 2015). Papernot et al. showed that even a black-boxes can be adversarially attacked,
given an oracle to provide labels for input images by training a local substitute model
(PAPERNOT et al., 2017). That black-box attack can be used in a more general man-
ner to steal machine learning models that are available as prediction APIs (TRAMÈR
et al., 2016). Sara Sabour et al. (SABOUR et al., 2016) show that adversarial attacks
can not only lead to mislabeling, but also manipulate the internal representations of the
network. Adversarial examples can also attack neural network policies in the context of
reinforcement learning (HUANG et al., 2017).

The problem of adversarial images has divided the Machine Learning community,
with some hailing it as a “deep flaw” of deep neural networks (BI, 2014); and others
promoting a more cautious interpretation, and showing, for example, that most classifiers
are susceptible to adversarial examples (GOODFELLOW et al., 2015; FAWZI et al., 2016).

Despite the controversy, adversarial images surely suggest a lack of robustness,
since they are (for humans) essentially equal to correctly classified images. Immunizing a
network against those perturbations increases its ability to generalize, a form of regulariza-
tion (GOODFELLOW et al., 2015) whose statistical nature deserves further investigation.
Even the traditional backpropagation training procedure can be improved with adversar-
ial gradient (NØKLAND, 2015). The idea behind adversarial regularization is to make the
input space smooth, therefore small changes in the input will not lead to large changes on
the output, which is one explanation of the existence of adversarial images. This idea is
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(a) MNIST with logistic regression. The correct labels are self-evident.

(b) MNIST with convolutional network. The correct labels are self-evident.

(c) OverFeat on ImageNet. From left to right, correct labels: ‘Abaya’, ‘Ambulance’, ‘Ba-
nana’, ‘Kit Fox’, ‘Volcano’. Adversarial labels for all: ‘Bolete’ (a type of mushroom).

Figure 4 – Adversarial examples for each network. For all experiments: original images
on the top row, adversarial images on the bottom row, distortions (difference
between original and adversarial images) on the middle row.

formalized in the Virtual Adversarial Training, where a regularization term of input space
smoothness is added to the training procedure, allowing even unsupervised networks to
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benefit from this concept (MIYATO et al., 2016).

Recent work shows that it is possible for the training procedure to make classifiers
robust to adversarial examples by using a strong adversary (HUANG et al., 2015), de-
fensive distillation (PAPERNOT et al., 2016), bio-inspired units that saturate (NAYEBI;
GANGULI, 2017), and Bayesian neural networks (LI; GAL, 2017). Those attempts of
protection against adversarial images make the attack harder, but not impossible, in the
sense that either new techniques are required for the attack or that more input distortion
is necessary. For example, after the publication of (NAYEBI; GANGULI, 2017), it was
shown that a different optimization procedure enables an attack (BRENDEL; BETHGE,
2017). We have found via preliminary unpublished experiments that Bayesian neural net-
works can be attacked, given an appropriate optimization objective, therefore, the results
of (LI; GAL, 2017) shows how to increase the attack difficulty (i.e. require more distortion
in order to arrive at the same misdirection), instead of preventing it completely.

2.5 Variational Autoencoders

Autoencoders are unsupervised learning models that learn a mapping between the
input data to a latent space of smaller dimensionality, which can be used to reconstruct the
original input. Autoencoders are trained to minimize the reconstruction error plus some
regularization cost. Autoencoders are composed of two parts: an encoder, which trans-
forms the input into the latent variable representation, and a decoder, which transforms
the latent representation back into the input:

Input
𝑥

Encoder
𝑝(𝑧|𝑥)

Latent space
𝑧

Decoder
𝑝(𝑥|𝑧)

Output
𝑥

A nonlinear autoencoder uses nonlinear mappings in the encoder and decoder.
Some famous variants include the sparse autoencoder, which uses a sparsity (L1) regular-
ization term (NG, 2011), and the denoising autoencoder, which regularizes implicitly by
feeding the input signal with noise, while the reconstruction term uses the original input
signal (VINCENT et al., 2010).

A modern variant that is growing in popularity is the variational autoencoder (KINGMA;
WELLING, 2014). It gives a Bayesian interpretation to the latent variables to determine
the reconstruction and regularization objectives in a principled manner. The variational
autoencoder is a probabilistic generative model, so we find the probability distribution of
the data by marginalizing the latent variables:

𝑝𝜃(𝑥) =
∫︁

𝑝𝜃(𝑥, 𝑧)𝑑𝑧 =
∫︁

𝑝𝜃(𝑥|𝑧)𝑝(𝑧)𝑑𝑧 (2.20)
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The likelihood 𝑝𝜃(𝑥|𝑧) is the probabilistic explanation of the observed data, but
in practice it is usually just the decoder network under some noise consideration. All the
decoder parameters are comprised in 𝜃 (i.e. weights and biases). The 𝑝(𝑧) prior is usually
considered as a standard Gaussian (𝒩 (0, 𝐼)) (KINGMA; WELLING, 2014), but it can be
discrete (e.g. Bernoulli) (KINGMA et al., 2014), a mixture model (DILOKTHANAKUL
et al., 2016), or even have some geometric interpretation (“what” and “where” latent
variables) (ESLAMI et al., 2016).

The expression above is generally intractable, so we maximize the variational lower
bound instead:

log 𝑝(𝑥) ≥ E𝑞𝜑(𝑧|𝑥)[ln 𝑝𝜃(𝑥|𝑧)]−𝐾𝐿(𝑞𝜑(𝑧|𝑥) ‖ 𝑝(𝑧))

= −𝐾𝐿(𝑞𝜑(𝑧|𝑥) ‖ 𝑝(𝑧|𝑥))
(2.21)

Note that the variational lower bound is equivalent to the Kullback-Leibler (KL)
divergence6 between the approximated posterior and the real posterior (which is un-
known). So another interpretation of the lower bound maximization is finding the best
posterior approximation in the KL sense. The KL divergence measures how similar two
probability distributions are, though it is not a metric as it is not symmetric. The ap-
proximated posterior is often parametrized as an independent multivariate Gaussian dis-
tribution with means and variances determined by the encoder network:

𝑞𝜑(𝑧|𝑥) = 𝒩 (𝜇𝜑(𝑥), exp(𝜎2
𝜑(𝑥))) (2.22)

If the prior and posterior are both Gaussian, their KL divergence has analytical
form:

𝐾𝐿(𝑞𝜑(𝑧|𝑥) ‖ 𝑝(𝑧)) = 1
2

𝐽∑︁
𝑗=1

1 + log 𝜎𝜑𝑗
(𝑥)2 − 𝜇𝜑𝑗

(𝑥)2 − 𝜎𝜑𝑗
(𝑥)2 (2.23)

The likelihood expectation under the posterior approximation can be approxi-
mated using Monte Carlo samples (i.e. by averaging the likelihood of the reconstruction
of multiple samples). The reparameterization trick makes the variance of the gradient of
the lower bound scale with the inverse of the mini-batch size (BLUM et al., 2015), so in
practice it is common to see just one Monte Carlo sample. The reparameterization trick
is just the sampling of simple standard distributions and their transformation into the
actual posterior (latent variable) sample. For example, for a Gaussian posterior, we can
use the affine transformation property of the Gaussian distribution:

𝜖 ∼ 𝒩 (0, 1)

𝑧 = 𝜇(𝑥) + 𝜎(𝑥)𝜖
(2.24)

6 𝐾𝐿(𝑃 ‖ 𝑄) =
∫︀ ∞

−∞ 𝑝(𝑥) log( 𝑝(𝑥)
𝑞(𝑥) )𝑑𝑥
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where 𝜇(𝑥) and 𝜎(𝑥) are the outputs of the encoder network.

Input image Reconstructed image

Input image Reconstructed image

Input image Reconstructed image

Input image Reconstructed image

Input image Reconstructed image

Figure 5 – MNIST reconstructions using a fully-connected variational autoencoder and
100 latent variables.

The encoder and decoder networks can be any neural network, such as a multi-
layer perceptron (KINGMA; WELLING, 2014) or a convolutional network (RADFORD
et al., 2016). We show some examples of input and reconstruction of a fully-connected
(i.e. both encoder and decoder networks are MLPs) variational autoencoder trained on
the MNIST dataset in Figure 5. In Chapter 4 we give more details about the procedures
used to train the variational autoencoders and generate those images.

A recent development are recurrent variational autoencoders, which use soft at-
tention to encode and decode patches of the image (GREGOR et al., 2015). The encoder
and decoder are LSTM recurrent networks (HOCHREITER; SCHMIDHUBER, 1997).
A related approach using convolutional LSTMs achieved better lossy image compression
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than the JPEG algorithm (GREGOR et al., 2016).

Figure 6 – Recurrent variational autoencoder. The encoder and decoder are LSTM recur-
rent networks. The encoder receives the reconstruction error (the difference of
the previous reconstruction and the input image). We use 10 latent variables
for 16 time-steps. The first column shows the input image, and the others show
from left to right the evolution of the reconstruction at each time-step.

Recurrent variational autoencoders build the reconstruction step by step, using the
feedback between the real image and the current reconstruction to guide the process. With
an attention mechanism, that reconstruction by feedback process allows such autoencoders
to achieve the state of the art of lossy compression for images (GREGOR et al., 2016). See
figure 6 for some examples of the step by step reconstruction process (without attention)
on the MNIST dataset.

There are many possible applications to variational autoencoders. By simulating
a chain of samples of the latent variables and likelihood function it is possible to do
image denoising and missing data imputation (image inpainting) (REZENDE et al., 2014).
The latent variables of a variational autoencoder can be used for visual analogy and
interpolation (RADFORD et al., 2016). The latent variables can also represent states in
dynamical systems, allowing the control of complex systems from high-dimensional inputs,
such as images (WATTER et al., 2015).

2.6 Conclusion

We reviewed the basics of machine learning from a statistical learning perspective,
neural networks, and deep learning, with a focus on adversarial images and variational
autoencoders, which will be the subject of the following chapters. We showed that many
procedures used in neural networks and deep learning — including variational autoen-
coders — may be interpreted under the lens of statistics, and in particular of Bayesian
statistics.
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We also showed that even though adversarial examples for deep learning are a
rather new research topic, there is already plenty of work presenting many different adver-
sarial attacks. There are, as well, many attempts to defend the models against adversarial
attacks, but none has so far convincingly succeeded.
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3 Exploring the Space of Adversarial Images

In this chapter, we extend previous works on adversarial images for deep neural
networks (SZEGEDY et al., 2014), by exploring the pixel space of such images using ran-
dom perturbations. This chapter in based on the paper Tabacof & Valle (2016), published
at the IEEE International Joint Conference on Neural Networks (IJCNN) 2016.

Initial skepticism about the relevance of adversarial images suggested they existed
as isolated points in the pixel space, reachable only by a guided procedure with complete
access to the model. More recent works (GOODFELLOW et al., 2015; GU; RIGAZIO,
2015) claim that they inhabit large and contiguous regions in the space. The correct
answer has practical implications: if adversarial images are isolated or inhabit very thin
pockets, they deserve much less worry than if they form large, compact regions. In this
work we intend to shed light to the issue with an in-depth analysis of adversarial image
space. We propose a framework (Figure 7) that allows us to ask interesting questions
about adversarial images.

a	
  

Figure 7 – Fixed-sized images occupy a high-dimensional space spanned by their pixels
(one pixel = one dimension), here depicted as a 2D colormap. Left: classifiers
associate points of the input pixel space to output class labels, here ‘banana’
(blue) and ‘mushroom’ (red). From a correctly classified original image (a), an
optimization procedure (dashed arrows) can find adversarial examples that are,
for humans, essentially equal to the original, but that will fool the classifier.
Right: we probe the pixel space by taking a departing image (white diamond),
adding random noise to it (black stars), and asking the classifier for the label.
In compact, stable regions, the classifier will be consistent (even if wrong). In
isolated, unstable regions, as depicted, the classifier will be erratic.

We can embed fixed-sized images into a vector space, each pixel corresponding
to a dimension. The pixel space, however, contains a lot of structure that the vector
space discards. Most researchers currently believe that images of a given appearance (or
a given meaning) exist in low-dimensional, but extremely intricate manifolds within the
whole vector space (BENGIO, 2009). However, given that determining and exploring the
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manifolds of deep neural networks is still a matter of ongoing research, we restrict our
analyses to the pixel space.

3.1 Creating Adversarial Images

Assume we have a pre-trained classifier 𝑝 = 𝑓(𝑥) that, for each input 𝑥 ∈ ℐ,
corresponding to the pixels of a fixed-sized image, outputs a vector of probabilities 𝑝 =
[𝑝1 · · · 𝑝𝑖 · · · 𝑝𝑛] of the image belonging to the class label 𝑖. We will be rather lax in what
we accept as output: most uncertainties behaving like probabilities will do (i.e., ranging
from 0 to 1, additive, normalized, etc.). We can assign ℎ to the label corresponding to
the highest probability 𝑝ℎ. Assume further that ℐ = [𝐿 − 𝑈 ], for grayscale images, or
ℐ = [𝐿−𝑈 ]3 for RGB images, where 𝐿 and 𝑈 are the lower and upper limits of the pixel
scale. In most cases 𝐿 is 0, and 𝑈 is either 1 or 255.

Assume that 𝑐 is the correct label and that we start with ℎ = 𝑐, otherwise there
is no point in fooling the classifier. We want to add the smallest distortion 𝑑 to 𝑥, such
that the highest probability will no longer be assigned to ℎ. The distortions must keep
the input inside its space, i.e., we must ensure that 𝑥 + 𝑑 ∈ ℐ. In other words, the input
is box-constrained. Thus, we have the following optimization:

minimize
𝑑

⃦⃦⃦
𝑑

⃦⃦⃦
subject to 𝐿 ≤ 𝑥 + 𝑑 ≤ 𝑈

𝑝 = 𝑓(𝑥 + 𝑑)

max(𝑝1 − 𝑝𝑐, ..., 𝑝𝑛 − 𝑝𝑐) > 0

(3.1)

That formulation is more general than the one presented by (SZEGEDY et al.,
2014), for it ignores non-essential details, such as the choice of the adversarial label. It
also showcases the non-convexity: since max(𝑥) < 0 is convex, the inequality is clearly
concave (BOYD; VANDENBERGHE, 2004), making the problem non-trivial even if the
model 𝑝 = 𝑓(𝑥) were linear in 𝑥. Deep networks, of course, exacerbate the non-convexity
due to their highly non-linear model. For example, a simple multi-layer perceptron for
binary classification could have 𝑓(𝑥) = logit−1(𝑊2 · tanh(𝑊1 · 𝑥 + 𝑏1) + 𝑏2), which is
neither convex nor concave due to the hyperbolic tangent.

3.1.1 Procedure

Training a classifier usually means minimizing the classification error by changing
the model weights. To generate adversarial images, however, we hold the weights fixed,
and find the minimal distortion that still fools the network. Because any two images can
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be directly switched with a large-enough distortion, the problem is only interesting for
small distortions, preferably those imperceptible to humans.

We can simplify the optimization problem of equation 3.1 by exchanging the max
inequality for a term in the loss function that measures how adversarial the probability
output is:

minimize
𝑑

⃦⃦⃦
𝑑

⃦⃦⃦2

2
+ 𝐶 · H(𝑝, 𝑝𝐴)

subject to 𝐿 ≤ 𝑥 + 𝑑 ≤ 𝑈

𝑝 = 𝑓(𝑥 + 𝑑)

(3.2)

where we introduce the adversarial probability target 𝑝𝐴 = [1𝑖=𝑎], which assigns zero
probability to all but a chosen adversarial label 𝑎. We use the square of the ℓ2-distance
as the penalty term to the adversarial distortion. We experimented with the ℓ1-distance
penalty, but we did not find any improvements in the adversarial attack. The formulation
in equation 3.2 is essentially the same of Szegedy et al. (2014), picking an explicit (but
arbitrary) adversary label. We stipulate the loss function: the cross-entropy (H) between
the probability assignments; while Szegedy et al. (2014) keep that choice open.

The constant 𝐶 balances the importance of the two objectives. The lower the
constant, the more we will minimize the distortion norm. Values too low, however, may
turn the optimization unfeasible. We want the lowest, but still feasible, value for 𝐶.

We can solve the new formulation with any local search compatible with box-
constraints. Since the optimization variables are the pixel distortions, the problem size is
exactly the size of the network input, in our case 28 × 28 = 784 for MNIST (LECUN et
al., 1998) and 221 × 221 × 3 = 146 523 for OverFeat (SERMANET et al., 2013)1. Such
input sizes make numeric differentiation (e.g. finite differences) impractical to compute
the huge number of gradients required to find an adversarial image: a single gradient
of the output with respect to the input of a 256×256 pixels×3 channels image requires
almost 200 thousand feedforward evaluations. We must, thus, resort to backpropagation,
just as if we were training the network.

In contrast to current neural network training, that reaches hundreds of millions
of weights, those sizes are small enough to allow second-order procedures, which converge
faster and with better guarantees (NOCEDAL; WRIGHT, 2006). We chose L-BFGS-
B, a box-constrained version of the popular L-BFGS second-order optimizer2 (ZHU et
al., 1997). We set the number of corrections in the limited-memory matrix to 15, and
the maximum number of iterations to 150. We used Torch7 to model the networks and
1 In neural networks we often constraint images to some fixed size, as required by the dense layers.
2 L-BFGS is the limited memory version of the BFGS optimization algorithm.
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extract their gradients with respect to the inputs3 (COLLOBERT et al., 2011).

Finally, we implemented a bisection search to determine the optimal value for
𝐶 (BURDEN; FAIRES, 1985). The algorithm is explained in detail in the next section.

3.1.2 Algorithm

Algorithm 3.1 implements the optimization procedure used to find the adversarial
images. The algorithm is essentially a bisection search for the constant 𝐶, where in each
step we solve a problem equivalent to equation 3.2. Bisection requires initial lower and
upper bounds for 𝐶, such that the upper bound succeeds in finding an adversarial image,
and the lower bound fails. It will then search the transition point from failure to success
(the “zero” in a root-finding sense): that will be the best 𝐶. We can use 𝐶 = 0 as lower
bound, as it always leads to failure (the distortion will go to zero). To find an upper
bound leading to success, we start from a very low value, and exponentially increase it
until we succeed. During the search for the optimal 𝐶 we use warm-starting in L-BFGS-B
to speed up convergence: the previous optimal value found for 𝑑 is used as initialization
for the next attempt.

To achieve the general formalism of equation 3.1 we would have to find the ad-
versarial label leading to minimal distortion. However, in datasets like ImageNet (DENG
et al., 2009), with hundreds of classes, that search would be too costly. Instead, in our
experiments, we opt to consider the adversarial label as one of the sources of random
variability. As we will show, that does not upset the analyses.

3 In regular neural network training, the gradient required would be with respect to the weights. Back-
propagation also requires the gradient with respect to the input for internal computations, so it is
easy to extract such information from Torch7 or an equivalent library.
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Algorithm 3.1 Adversarial image generation algorithm
Require: A small positive value 𝜖
Ensure: 𝐿-𝐵𝐹𝐺𝑆-𝐵(𝑥, 𝑝𝐴, 𝐶) solves optimization 3.2

1: {Finding initial 𝐶}
2: 𝐶 ← 𝜖
3: repeat
4: 𝐶 ← 2× 𝐶
5: 𝑑, 𝑝← 𝐿-𝐵𝐹𝐺𝑆-𝐵(𝑥, 𝑝𝐴, 𝐶)
6: until max(𝑝𝑖) in 𝑝 is 𝑝𝑎

7: {Bisection search}
8: 𝐶𝑙𝑜𝑤 ← 0, 𝐶ℎ𝑖𝑔ℎ ← 𝐶
9: repeat

10: 𝐶ℎ𝑎𝑙𝑓 ← (𝐶ℎ𝑖𝑔ℎ + 𝐶𝑙𝑜𝑤)/2
11: 𝑑′, 𝑝← 𝐿-𝐵𝐹𝐺𝑆-𝐵(𝑥, 𝑝𝐴, 𝐶ℎ𝑎𝑙𝑓 )
12: if max(𝑝𝑖) in 𝑝 is 𝑝𝑎 then
13: 𝑑← 𝑑′

14: 𝐶ℎ𝑖𝑔ℎ ← 𝐶ℎ𝑎𝑙𝑓

15: else
16: 𝐶𝑙𝑜𝑤 ← 𝐶ℎ𝑎𝑙𝑓

17: end if
18: until (𝐶ℎ𝑖𝑔ℎ − 𝐶𝑙𝑜𝑤) < 𝜖
19: return 𝑑

3.2 Adversarial Space Exploration

In this section we explore the vector space spanned by the pixels of the images
to investigate the “geometry” of adversarial images: are they isolated, or do they exist
in dense, compact regions? Most researchers currently believe that images of a certain
appearance (and even meaning) are contained into relatively low-dimensional manifolds
inside the whole space (BENGIO, 2009). However, those manifolds are exceedingly con-
voluted, discouraging direct geometric approaches to investigate the pixel space.

Thus, our approach is indirect, probing the space around the images with small
random perturbations. In regions where the manifold is nice — round, compact, occupying
most of the space — the classifier will be consistent (even if wrong). In the regions
where the manifold is problematic — sparse, discontinuous, occupying small fluctuating
subspaces — the classifier will be erratic.

3.2.1 Datasets and Models

To allow comparison with the results of Szegedy et al. (2014), we employ the
MNIST handwritten digits database (10 classes, 60k training and 10k testing images),
and the 2012 ImageNet Large Visual Recognition Challenge Dataset (1000 classes, 1.2M+
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Table 1 – Convolutional network for MNIST classification.

Layer Size Filter Nonlinearity
Input 28x28
Convolution 32 5x5 ReLU
Max pooling 3x3
Convolution 64 5x5 ReLU
Max pooling 2x2
Linear 200 ReLU
Linear 10
Softmax

training and 150k testing images).

For MNIST, Szegedy et al. (2014) tested convolutional networks and autoen-
coders. We employ both convolutional networks and a logistic linear classifier. While
logistic classifiers have limited accuracy (∼7.5% error), their training procedure is con-
vex (BOYD; VANDENBERGHE, 2004). They also allowed us to complement the original
results (SZEGEDY et al., 2014) by investigating adversarial images in a shallow classifier.

The convolutional network we employed for MNIST/ConvNet consisted of two
convolutional layers, two max-pooling layers, one fully-connected layer, and a softmax
layer as output. We used ReLU for the nonlinearity. More details of the architecture can
be found in table 1. The network was trained with SGD and momentum. Without data
augmentation, that model achieves 0.8% error on the test set.

For ImageNet, we used the pre-trained OverFeat network (SERMANET et al.,
2013), which achieved 4th place at the ImageNet competition in 2013, with 14.2% top-5 er-
ror in the classification task, and won the localization competition the same year. (SZEGEDY
et al., 2014) employed AlexNet (KRIZHEVSKY et al., 2012), which achieved 1st place
at the ImageNet competition in 2012, with 15.3% top-5 error. The OverFeat network
consists of five convolutional and two fully-connected layers. More details can be found
in Sermanet et al. (2013).

On each dataset, we preprocess the inputs by standardizing each pixel with the
global mean and standard deviation of all pixels in the training set images. We used
Torch7 (COLLOBERT et al., 2011) for the implementation4.

Figure 4, displayed in Chapter 2 for didactic purposes, illustrates all three cases
generated by the procedure above. Original and adversarial images are virtually indistin-
guishable. The pixel differences (middle row) do not show any obvious form — although a
faint “erasing-and-rewriting” effect can be observed for MNIST. Figures 4(a) and 4(b) also
suggest that the MNIST classifiers are more robust to adversarial images, since the dis-
4 The source code for adversarial image generation and pixel space analysis can be found at <https:

//github.com/tabacof/adversarial>.

https://github.com/tabacof/adversarial
https://github.com/tabacof/adversarial
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tortions are larger and more visible. We will see, throughout this chapter, that classifiers
for MNIST and for ImageNet have important differences in how they react to adversarial
images.

3.2.2 Methods

Each case (MNIST/Logistic, MNIST/ConvNet, ImageNet/OverFeat) was investi-
gated independently, by applying the optimization procedure explained in Section 3.1.1.
For ImageNet we sampled 5 classes (Abaya, Ambulance, Banana, Kit Fox, and Volcano), 5
correctly classified examples from each class, and sampled 5 adversarial labels (Schooner,
Bolete, Hook, Lemur, Safe), totaling 125 adversarial images. For MNIST, we just sampled
125 correctly classified examples from the 10K examples in the test set, and sampled an
adversarial label (from 9 possibilities) for each one. All random sampling was made with
uniform probability. To sample only correctly classified examples, we rejected the misclas-
sified ones until we accumulated the needed amount. We call, in the following sections,
those correctly classified images originals, since the adversarial images are created from
them.

The probing procedure consisted in picking an image pair (an adversarial image
and its original), adding varying levels of noise to their pixels, resubmitting both to the
classifier, and observing if the newly assigned labels corresponded to the original class, to
the adversarial class, or to some other class.

We measured the levels of noise (𝜆) relative to the difference between each image
pair. We initially tested an independent and identically distributed (i.i.d.) Gaussian model
for the noise. For each image 𝑥 = {𝑥𝑖}, our procedure creates an image 𝑥′ = {clamp(𝑥𝑖 +
𝜖)} where 𝜖 ∼ 𝒩 (𝜇, 𝜆𝜎2), and 𝜇 and 𝜎2 are the sample mean and variance of the distortion
pixels. In the experiments we ranged 𝜆 from 2−5 to 25. To keep the pixel values of 𝑥′

within the original range [𝐿− 𝑈 ] we employ clamp(𝑥) = min(max(𝑥, 𝐿), 𝑈). In practice,
we observed that clamping has little effect on the noise statistics.

An i.i.d. Gaussian model discards two important attributes of the distortions:
spatial correlations, and higher-order momenta. We wanted to evaluate the relative im-
portance of those, and thus performed an extra round of experiments that, while still
discarding all spatial correlations by keeping the noise i.i.d., adds higher momenta infor-
mation by modeling non-parametrically the distribution of the distortion pixels. Indeed,
a study of those higher momenta (Table 2) suggests that the adversarial distortions have
a much heavier tail than the Gaussians (shown by the positive excess kurtosis), and we
wanted to investigate how that affects the probing. The procedure is exactly the same
as before, but with 𝜖 ∼ ℳ, where ℳ is an empirical distribution induced by a non-
parametric observation of the distortion pixels. That is, we resample the distortion pixels
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Table 2 – Descriptive statistics of the adversarial distortions for the two datasets aver-
aged over the 125 adversarial examples. Pixels values in [0− 255]. Logistic and
ConvNet refer to MNIST dataset, OverFeat refers to ImageNet dataset.

Mean S.D. Skewness Ex. Kurtosis

Logistic 30.7± 4.3 18.3± 11.3 0.1± 1.0 7.8± 3.2
ConvNet 27.5± 2.1 23.0± 9.4 −0.5± 1.6 17.6± 7.3
OverFeat 118.4± 0.1 1.9± 2.0 0.0± 0.1 6.5± 4.1

with replacement, like the bootstrap procedure (EFRON; TIBSHIRANI, 1994). In those
experiments we cannot control the level: the variance of the noise is essentially the same
as the variance of the distortion pixels.

Our main metric is the fraction of images (in %) that keep or switch labels when
noise is added to a departing image, which we use as a measure of the stability of the
classifier at the departing image in the pixel space. The fraction is computed over a sample
of 100 probes, each probe being a repetition of the experiment with all factors held fixed
but the sampling of the random noise.

3.2.3 Results

Figure 8 shows that adversarial images do not appear isolated. On the contrary,
to completely escape the adversarial pocket we need to add a noise with much higher
variance — notice that the horizontal axis is logarithmic — than the distortion used to
reach the adversarial image in the first place.

In both networks, the original images display a remarkable robustness against
Gaussian noise (Figures 8(b) and 8(f)), confirming that robustness to random noise does
not imply robustness to adversarial examples (FAWZI et al., 2016).

The results in Figure 8 are strongly averaged, each data point summarizing, for
a given level of noise, the result of 125 experiments: the fraction of images that fall in
each label for all five original class labels, all five original samples from each label, and
all five adversarial class labels. In reality there is a lot of variability that can be better
appreciated in Figure 9. Here each curve alongside the axis experiments represents a single
choice of original class label, original sample, and adversarial class label, thus there are
125 curves. (The order of the curves along that axis is arbitrary and chosen to minimize
occlusions and make the visualization easier). The graphs show that depending on a
specific configuration, the label may be very stable and hard to switch (curves that fall
later or do not fall at all), or very unstable (curves that fall early). Those 3D graphs also
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Figure 8 – Adding Gaussian noise to the images. We perform the probing procedure ex-
plained in Section 3.2.2 to measure the stability of the classifier boundaries at
different points of the pixel space. To escape the adversarial pockets completely
we have to add a noise considerably stronger than the original distortion used
to reach them in the first place: adversarial regions are not isolated. That is
especially true for ImageNet/OverFeat. Still, the region around the correctly
classified original image is much more stable. This graph is heavily averaged:
each stacked column along the horizontal axis summarizes 125 experiments ×
100 random probes.

reinforce the point about the stability of the correctly classified original images.

The results suggest that the classifiers for MNIST are more resilient against adver-
sarial images than ImageNet/OverFeat. Moreover, the shallow MNIST/logistic behaves
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Figure 9 – Adding Gaussian noise to the images. Another view of the probing procedure
explained in Section 3.2.2. Contrarily to the averaged view of Figure 8, here
each one of the 125 experiments appears as an independent curve along the
Experiments axis (their order is arbitrary, chosen to reduce occlusions). Each
point of the curve is the fraction of probes (out of a hundred performed) that
keeps their class label.

differently than the deep MNIST/ConvNet, as shown by the “falling columns” in Figure
8: initially, a small push in MNIST/logistic throws a larger fraction of the adversarial ex-
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(a) MNIST / logistic regression
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(b) MNIST / convolutional network
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(c) ImageNet / OverFeat

Figure 10 – For each of the 125 experiments we measure the fraction of the probe images
(i.e., departing image + random noise) that stayed in the same class label.
Those fractions are then sorted from biggest to lowest along the Experiments
axis. The area under the curves indicates the entire fraction of probes among
all experiments that stayed in the same class.

amples back to the correct space. However, at large noise levels, MNIST/logistic saturates
with a larger fraction of images still adversarial than MNIST/ConvNet.

Finally, we wanted to investigate how the nature of the noise added affected the
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experiments. Recall that our i.i.d. Gaussian noise differs from the original optimized dis-
tortion in two important aspects: no spatial correlations, and no important higher-order
momenta. To explore the influence of those two aspects, we introduced a noise modeled
after the empirical distribution of the distortion pixels. That still ignores spatial corre-
lations, but captures higher-order momenta. The statistics of the distortion pixels are
summarized in Table 2, and reveal a distribution that is considerably heavier-tailed than
the Gaussians we have employed so far.

Figure 10 contrasts the effect of that noise modeled non-parametrically after the
distortions with the effect of the comparable Gaussian noise (𝜆 = 1). Each point in the
curves is one of the 125 experiments, and represents the fraction of the 100 probe images
that stays in the same class as the departing — adversarial or original — image. The
experiments where ordered by that value in each curve (thus the order of the experi-
ments in the curves is not necessarily the same). Here the individual experiments are not
important, but the shape of the curves: how early and how quickly they fall.

For ImageNet, the curves for the non-parametric noise (dotted lines) fall before the
curves for the Gaussian noise (continuous line), showing that, indeed, the heavier tailed
noise affects the images more, even without the spatial correlation. In addition, all curves
fall rather sharply, showing that in almost all experiments, either all probes stay in the
same label as the original, or all of them switch. Few experiments present intermediate
results. Such rather bimodal behavior was already present in the curves of Figure 9. For
MNIST, again, the effect is different: Gaussian and heavy-tailed noises behave much more
similarly and the curves fall much more smoothly.

3.3 Conclusion

Our in-depth analysis reinforces previous claims found in the literature (GOOD-
FELLOW et al., 2015; GU; RIGAZIO, 2015): adversarial images are not necessarily iso-
lated, spurious points: many of them inhabit relatively dense regions of the pixel space.
That helps to explain why adversarial images tend to stay adversarial across classifiers
of different architectures, or trained on different sets (SZEGEDY et al., 2014): slightly
different classification boundaries stay confounded by the dense adversarial regions.

The nature of the noise affects the resilience of both adversarial and original im-
ages. The effect is clear in ImageNet/OverFeat, where a Gaussian noise affects the images
less than a heavy-tailed noise modeled after the empirical distribution of the distortions
used to reach the adversarial images in the first place. An important next step in the ex-
ploration, in our view, is to understand the spatial nature of the adversarial distortions,
i.e., the role spatial correlations play.
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Recent works have attributed susceptibility to adversarial attacks to the linearity in
the network (GOODFELLOW et al., 2015), but our experiments suggest the phenomenon
may be more complex. A weak, shallow, and relatively more linear classifier (logistic
regression), seems no more susceptible to adversarial images than a strong, deep classifier
(deep convolutional network), for the same task (MNIST). A strong deep model on a
complex task seems to be more susceptible. Are adversarial images an inevitable Achilles’
heel of powerful complex classifiers? Speculative analogies with the illusions of the Human
Visual System are tempting, but the most honest answer is that we still know too little.
Our hope is that our work will keep the conversation about adversarial images ongoing
and help further explore those intriguing properties.
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4 Adversarial Images for Variational Autoen-
coders

In this chapter we extend adversarial images to variational autoencoders. We pro-
pose an optimization — and its algorithm — to generate adversarial images for variational
autoencoders. We test our proposal on two different datasets, autoencoder architectures,
and compare to a version for deterministic autoencoders. This chapter in based on the
paper Tabacof et al. (2016), presented at the Workshop on Adversarial Training at the
conference on Neural Information Processing Systems (NIPS) 2016.

Adversarial attacks expressly optimize the input to “fool” models, e.g., in image
classification, the adversarial input — while visually tantamount to an ordinary original
image — leads to mislabeling with high confidence. In this chapter, we explore adversarial
images for autoencoders — models optimized to reconstruct their inputs from compact
internal representations. In an autoencoder, the attack targets not a single label, but a
whole reconstruction.

We propose an adversarial attack on variational — and, for comparison, determin-
istic — autoencoders. Our attack aims not only at disturbing the reconstruction, but at
fooling the autoencoder into reconstructing a completely different target image;

We make a comparison between attacks for autoencoders and for classifiers, show-
ing that while the former is much harder, in both cases the amount of distortion on the
input is proportional to the amount of misdirection on the output. For classifiers, however,
such proportionality is hidden by the normalization of the output, which maps a linear
layer into non-linear probabilities.

Evaluating generative models is hard, there are no clear-cut success criteria for
autoencoder reconstruction (THEIS et al., 2016), and therefore, neither for the attack.
We attempt to bypass that difficulty by analyzing how inputs and outputs differ across
varying regularization constants.

Gu et al. used autoencoders to preprocess the input and try to reinforce the
network against adversarial attacks, finding that although in some cases resistance im-
proved, attacks with small distortions remained possible (GU; RIGAZIO, 2015). A more
recent trend is training adversarial models, in which one attempts to generate “artifi-
cial” samples (from a generative model) and the other attempts to recognize those sam-
ples (GOODFELLOW et al., 2014). Makhzani et al. employ such scheme to train an
autoencoder (MAKHZANI et al., 2016).

Although autoencoders appear in the literature of adversarial images as an at-
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tempt to obtain robustness to the attacks (GU; RIGAZIO, 2015), and in the literature
of adversarial training as models that can be trained with the technique (MAKHZANI
et al., 2016), we are unaware of any attempts to create attacks targeted to them. In the
closest related literature, Sara Sabour et al. show that adversarial attacks can not only
lead to mislabeling, but also manipulate the internal representations of the network. In
this chapter, we show that an analogous manipulation allows us to attack autoencoders,
but that those remain much more resistant than classifiers to such attacks (SABOUR et
al., 2016).

4.1 Adversarial Attack on Autoencoders

Adversarial procedures minimize an adversarial loss to mislead the model (e.g.,
misclassification), while distorting the input as little as possible. If the attack is successful,
humans should hardly be able to distinguish between the adversarial and the regular
inputs (SZEGEDY et al., 2014; TABACOF; VALLE, 2016). We can be even more strict,
and only allow a distortion below the input quantization noise (GOODFELLOW et al.,
2015; SABOUR et al., 2016).

To build adversarial images for classification, one can maximize the misdirec-
tion towards a certain wrong label (SZEGEDY et al., 2014; TABACOF; VALLE, 2016)
or away from the correct one (GOODFELLOW et al., 2015). The distortion can be
minimized (SZEGEDY et al., 2014; TABACOF; VALLE, 2016) or constrained to be
small (GOODFELLOW et al., 2015; SABOUR et al., 2016). Finally, one often requires
that images stay within their valid space (i.e., no pixels “below black or above white”).

In autoencoders, there is not a single class output to misclassify, but instead a
whole image output to scramble. The attack attempts to mislead the reconstruction: if a
slightly altered image enters the autoencoder, but the reconstruction is wrecked, then the
attack worked. A more dramatic attack — the one we attempt in this chapter — would
be to change slightly the input image and make the autoencoder reconstruct a completely
different valid image (Figure 11).

Our attack consists in selecting an original image and a target image, and then
feeding the network the original image added to a small distortion, optimized to get an
output as close to the target image as possible (Figure 11). Our attempts to attack the
output directly failed: minimizing its distance to the target only succeeded in blurring the
reconstruction. As autoencoders reconstruct from the latent representation, we can attack
it instead. The latent layer is the information bottleneck of the autoencoder, and thus
particularly convenient to attack. At a high level, our adversarial attack is the solution
to the following optimization problem:



Chapter 4. Adversarial Images for Variational Autoencoders 55

Figure 11 – Adversarial attacks for autoencoders add (ideally small) distortions to the
input, aiming at making the autoencoder reconstruct a different target. We
attack the latent representation, attempting to match it to the target image’s.

min
𝑑

Δ(𝑧𝑎,𝑧𝑡)+𝐶
⃦⃦⃦
𝑑

⃦⃦⃦2

2

s.t. 𝐿 ≤ 𝑥+𝑑 ≤ 𝑈

𝑧𝑎 = encoder(𝑥+𝑑)

(4.1)

where 𝑑 is the adversarial distortion; 𝑧𝑎 and 𝑧𝑡 are the latent representations,
respectively, for the adversarial and the target images; 𝑥 is the original image; 𝑥 + 𝑑 is
the adversarial image; 𝐿 and 𝑈 are the bounds on the input space; and 𝐶 is the regularizing
constant the balances reaching the target and limiting the distortion.

We must choose a function Δ to compare representations. For regular autoencoders
a simple ℓ2-distance sufficed; however, for variational autoencoders, the KL-divergence
between the distributions induced by the latent variables not only worked better, but also
offered a sounder justification. This leads to the following optimization problem:

minimize
𝑑

𝐾𝐿(𝑧𝑡𝑎𝑟𝑔𝑒𝑡 ‖ 𝑧𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙) + 𝐶
⃦⃦⃦
𝑑

⃦⃦⃦2

2

subject to 𝐿 ≤ 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑑 ≤ 𝑈

𝑧𝑡𝑎𝑟𝑔𝑒𝑡 ∼ 𝒩 (𝜇𝜑(𝑥𝑡𝑎𝑟𝑔𝑒𝑡), exp(𝜎2
𝜑(𝑥𝑡𝑎𝑟𝑔𝑒𝑡)))

𝑧𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 ∼ 𝒩 (𝜇𝜑(𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑑), exp(𝜎2
𝜑(𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑑)))

(4.2)

where the 𝑧* are uncorrelated multivariate Gaussian distributions with parameters
given by the encoder. The output of the encoder is composed by two parts: one which
determines the representation mean vector (𝜇𝜑(𝑥)); another which determines the (di-
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agonal) covariance matrix (𝜎2
𝜑(𝑥)). In practice, those two outputs come from the same

neural network, and they differ only in the last layer, where each part is transformed by
independent linear layers into the means and variances of the latent representation. 𝜑 are
the autoencoder parameters — learned previously by training it for its ordinary task of
reconstruction. During the entire adversarial procedure, 𝜑 remains fixed.

We show examples of adversarial images for variational autoencoders in Figure 12.
We used a convolutional autoencoder (i.e. the encoder is a convolutional and the decoder
is a deconvolutional network) trained on the Street-view House Numbers dataset (SVHN)
to generate those images. The details of the procedure used to train the autoencoder and
to generate those images are explained in the next section.

(a) Original image label: 1. Target image label: 0.

4.1.1 Data and Methods

We worked on the binarized MNIST (LECUN et al., 1998) and SVHN datasets (NET-
ZER et al., 2011). The former allows for very fast experiments and very controlled condi-
tions; the latter, while still allowing to manage a large number of experiments, provides
much more noise and variability. Following literature (KINGMA; WELLING, 2014), we
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(b) Original image label: 9. Target image label: 3.

Figure 12 – Adversarial images for a convolutional variational autoencoder trained on
SVHN with 100 latent variables.

Table 3 – Fully-connected variational autoencoder for MNIST.

Layer Size Nonlinearity
Input 28x28
Linear 512 ReLU
Linear 512 ReLU
Latent 20 Identity
Linear 512 ReLU
Linear 512 ReLU
Linear 784 Sigmoid
Output 28x28

modeled pixel likelihoods as independent Bernoullis (for binary images), or as indepen-
dent Gaussians (for RGB images). We used Parmesan and Lasagne (DIELEMAN et al.,
2015) for the implementation1.

The loss function to train the variational autoencoder (equation 2.21) is the ex-
pectation of the likelihood under the approximated posterior plus the KL divergence
1 The code for the experiments can be found at <https://github.com/tabacof/adv_vae>

https://github.com/tabacof/adv_vae
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Table 4 – Convolutional variational autoencoder for SVHN.

Layer Size Filter Stride Nonlinearity
Input 3x32x32
Convolution 32 4x4 2 ELU
Convolution 64 4x4 2 ELU
Convolution 128 4x4 2 ELU
Linear 256 ELU
Latent 100 Identity
Linear 256 ELU
Deconvolution 128 5x5 2 ELU
Deconvolution 64 5x5 2 ELU
Deconvolution 32 5x5 2 ELU
Deconvolution 3 4x4 Identity
Output 3x32x32

between the approximated posterior and the prior. We approximate the expectation of
the likelihood with one sample of the posterior. We extract the gradients of the lower
bound using automatic differentiation and maximize it using stochastic gradient ascent
via the ADAM algorithm (KINGMA; BA, 2015). We used 20 and 100 latent variables
for MNIST and SVHN, respectively. The prior of the latent variables are independent
Gaussians, with zero mean and unitary variance. We parameterized the approximated
posterior as an independent multivariate Gaussian distribution with means and variances
determined by the encoder network (see equation 2.21), so the KL divergence has an
analytical form (KINGMA; WELLING, 2014).

We set the encoder and decoder as fully-connected networks in the MNIST case,
and as convolutional and deconvolutional (ZEILER et al., 2010) networks in the SVHN
case. The architectures are described in detail in tables 3 and 42. After the training is
done, we can use the autoencoder to reconstruct some image samples through the latent
variables, which are the learned representation of the images. An example of a pair of
input image/reconstructed output appears in Figure 5.

For classification tasks, the regularization term 𝐶 (equation 4.1) may be chosen
by bisection as the smallest constant that still leads to success (TABACOF; VALLE,
2016). Autoencoders complicate such choice, for there is no longer a binary criterion for
success. Goodfellow et al. (GOODFELLOW et al., 2015) and Sabour et al.(SABOUR
et al., 2016) optimize differently, choosing for Δ an ℓ∞-norm constrained to make the
distortion imperceptible, while maximizing the misdirection. We found such solution too
restrictive, leading to reconstructions visually too distinct from the target images. Our
solution was instead to forgo a single choice for 𝐶, and analyze the behavior of the system
throughout a series of values. We formalize our exploration of adversarial images for
2 Exponential Linear Unit (ELU) is an alternative to the ReLU activation function (CLEVERT et al.,

2015).
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Algorithm 4.1 Adversarial images for variational autoencoders experimental methodol-
ogy
Require: An original image 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, a target image 𝑥𝑡𝑎𝑟𝑔𝑒𝑡, a set of regularization con-

stants C, number of samples 𝑁
Ensure: 𝐿-𝐵𝐹𝐺𝑆-𝐵(𝑥, 𝜇𝑡𝑎𝑟𝑔𝑒𝑡, 𝜎𝑡𝑎𝑟𝑔𝑒𝑡, 𝐶) solves optimization 4.2

1: 𝜇𝑡𝑎𝑟𝑔𝑒𝑡, 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑡𝑎𝑟𝑔𝑒𝑡)
2: for 𝐶 ∈ C do
3: 𝑑← 𝐿-𝐵𝐹𝐺𝑆-𝐵(𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝜇𝑡𝑎𝑟𝑔𝑒𝑡, 𝜎𝑡𝑎𝑟𝑔𝑒𝑡, 𝐶)
4: for 𝑖 = 1 to 𝑁 do
5: 𝜇, 𝜎 ← 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑑)
6: 𝑧 ∼ 𝒩 (𝜇, 𝜎)
7: 𝑥𝑟𝑒𝑐𝑜𝑛 ← 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑧)
8: 𝑒[𝑖]←

⃦⃦⃦
𝑥𝑟𝑒𝑐𝑜𝑛 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡

⃦⃦⃦
2

9: end for
10: 𝐸𝑟𝑟𝑜𝑟𝑠[𝐶]←𝑀𝑒𝑎𝑛(𝑒)
11: 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠[𝐶]← 𝑑
12: end for
13: return 𝐸𝑟𝑟𝑜𝑟𝑠, 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠

variational autoencoders in algorithm 4.1.

In our experiments, we pick at random 25 pairs of original/target images (axis “ex-
periment” in the graphs). For each pair, we span 100 different values for the regularization
constant 𝐶 in a logarithmic scale (from 2−20 to 220), measuring the ℓ2-distance between the
adversarial input and the original image (axis “distortion”), and the ℓ2-distance between
the reconstructed output and the target image (axis “adversarial−target”). The “distor-
tion” axis is normalized between 0.0 (no attack) and the ℓ2-distance between the original
and target images in the pair (a large distortion that could reach the target directly). The
“adversarial−target” is normalized between the ℓ2-distance of the reconstruction of the
target and the target (the best expected attack) and the ℓ2-distance of the reconstruction
of the original and the target (the worst expected attack). The geometry of such nor-
malization is illustrated by the colored lines in the graphs of Figure 13. For variational
autoencoders, the reconstruction is stochastic: therefore, each data point is sampled 100
times, and the average is reported.

For comparison purposes, we use the same protocol above to generate a range
of adversarial images for the usual classification tasks on the same datasets. The aim
is to contrast the behavior of adversarial attacks across the two tasks (autoencoding /
classification). In those experiments we pick pairs of original image / adversarial class (axis
“experiment”), and varying 𝐶 (from 2−10 to 220), we measure the distortion as above, and
the probability (with corresponding logit) attributed to the adversarial (red lines) and to
the original classes (blue lines). The axes here are no longer normalized, but we center at
0 in the “distortion” axis the transition point between attack failure and success — the
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point where red and blue lines cross.

4.1.2 Results and Discussion

Figure 13 – Top row: MNIST. Bottom row: SVHN. The figures on the left show the trade-
off between the quality of adversarial attack and the adversarial distortion
magnitude, with changing regularization parameter (implicit in the graphs,
chosen from a logarithmic scale). The figures on the right correspond to the
points shown in red in the graphs, illustrating adversarial images and recon-
structions using fully-connected, and convolutional variational autoencoders
(for MNIST and SVHN, respectively).

We found that generating adversarial images for autoencoders is a much harder
task than for classifiers. If we apply little distortion (comparable to those used for mis-
leading classifiers), the reconstructions stay essentially untouched. To get reconstructions
very close to the target’s, we have to apply heavy distortions to the input. However, by
hand-tuning the regularization parameter, it is possible to find trade-offs where the recon-
struction approaches the target’s and the adversarial image will still resemble the input
(two examples in Figure 13).

The plots for the full set of 25 original/target image pairs appear in Figure 14. All
series saturate when the latent representation of the adversarial image essentially equals
the target’s. That saturation appears well before the upper distortion limit of 1.0, and
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provides a measure of how resistant the model is to the attack: Variational Autoencoders
appear slightly more resistant than Deterministic Autoencoders, and MNIST much more
resistant than SVHN. The latter is not surprising, since large complex models seem, in
general, more susceptible to adversarial attacks. Before the “hinge” where the attack
saturates, there is a quasi-linear trade-off between input distortion and output similarity
to target, for all combinations of dataset and autoencoder choice. We were initially hoping
for a more non-linear behavior, with a sudden drop at some point in the scale, but data
suggests that there is a give-and-take for attacking autoencoders: each gain in the attack
requires a proportional increase in distortion.

Figure 14 – Plots for the whole set of experiments in MNIST and SVHN. Top: variational
autoencoders (VAE). Bottom: deterministic autoencoders (AE). Each line in
a graph corresponds to one experiment with adversarial images from a single
pair of original/target images, varying the regularization parameter 𝐶 (like
shown in Figure 13). The “distortion” and “adversarial−target” axes show
the trade-off between cost and success. The “hinge” where the lines saturate
show the point where the reconstruction is essentially equal to the target’s:
the distortion at the hinge measures the resistance to the attack.

The comparison with the (much better-studied) attacks for classifiers, showed, at
the beginning, a much different behavior: when we contrasted the probability attributed to
the adversarial class vs. the distortion imposed on the input, we observed the non-linear,
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sudden change we were expecting (left column of Figure 16). The question remained,
however whether such non-linearity was intrinsic, or whether it was due to the highly
non-linear nature of the probability scale. The answer appears in the right column of
Figure 16, where, with a logit transformation of the probabilities, the linear behavior
appears again. It seems that the attack on classifiers show, internally, the same linear
give-and-take present in autoencoders, but that the normalization of the outputs of the
last layer into valid probabilities aids the attack: changes in input lead to proportional
changes in logit, but to much larger changes in probability. That makes feasible for the
attack on classifiers to find much better sweet spots than the attack on autoencoders
(Figure 15). Goodfellow et al. (GOODFELLOW et al., 2015) suggested that the linearity
of deep models make them susceptible to adversarial attacks. Our results seems to reinforce
that such linearity plays indeed a critical role, with “internal” success of the attack being
proportional to the distortion on inputs. On classification networks, however, which are
essentially piecewise linear until the last layer, the non-linearity of the latter seems to
compound the problem.

Figure 15 – Examples for the classification attacks. Top: MNIST. Bottom: SVHN. Left:
probabilities. Middle: logit transform of probabilities. Right: images illustrat-
ing the intersection point of the curves. The adversarial class is ‘4’ for MNIST,
and ‘0’ for SVHN. The red curve shows the probability/logit for the adversar-
ial class, and the blue curve shows the same for the original class: the point
where the curves cross is the transition point between failure and success of
the attack.
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Figure 16 – Plot of whose set of experiments for classifiers. Top: MNIST. Bottom: SVHN.
Left: probabilities. Right: logit transform of probabilities. Each experiment
corresponds to one of the graphs shown in Figure 15, centered to make the
crossing point between the red and blue lines stay at 0 in the “distortion”
axis.

4.2 Conclusion

We proposed an adversarial method to attack autoencoders, and evaluated their
robustness to such attacks. We showed that there is a linear trade-off between how much
the adversarial input is similar to the original input, and how much the adversarial re-
construction is similar to the target reconstruction — frustrating the hope that a small
change in the input could lead to drastic changes in the reconstruction. Surprisingly,
such linear trade-off also appears for adversarial attacks on classification networks, if we
“undo” the non-linearity of the last layer. In the future, we intend to extend our empirical
results to datasets with larger inputs and more complex networks (e.g. ImageNet) — as
well as to different autoencoder architectures. For example, the DRAW variational au-
toencoder (GREGOR et al., 2015) uses feedback from the reconstruction error to improve
the reconstruction — and thus could be more robust to attacks. To arrive at the state
of the art of variational autoencoders, we need to add a differentiable attention mech-
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anism (GREGOR et al., 2015) or convolutional LSTMs (GREGOR et al., 2016) to the
recurrent autoencoder. One possible research direction is adding attention to the latent
variables themselves, instead of applying it to the input and output, as it is usually done.
We are also interested in advancing theoretical explanations to illuminate our results.

Besides adversarial attacks, we are interested in understanding the latent repre-
sentation created by the autoencoders. One possibility is to generate a synthetic dataset
where you control some aspects of the image (e.g. position, size, shape, etc) and then
correlate it with the learned representation. Another possibility is to use the synthetic
dataset to create images by interpolation and analogy and verify whether latent variable
arithmetic can accomplish the same task.
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Conclusion

We have explored the intriguing subject of adversarial attacks in two different
contexts — their classical setting of classification, and in a novel setting of autoencoders.
Although autoencoders appear elsewhere in the literature of adversarial images, as far
as we know, we were the first to attempt an adversarial attack on them. We have also
reviewed neural networks in machine learning, the recent developments of deep learning,
and covered in greater depth the recent literature on adversarial images and variational
autoencoders.

Adversarial images have taken the community aback, and cast doubts on the suc-
cesses of deep learning. Literature abounds with strategies attempting to immunize deep
neural networks from them, but it seems that the more powerful and trainable a model
is, the more susceptible it will be to adversarial attacks. Our own brains are plagued by
optical illusions and cognitive biases, and even knowing that they exist is not enough to
prevent the brain from being fooled. That suggests such flaws may be inherent to com-
plex decision systems. Nevertheless, neural networks are products of our design — unlike
the brain, which was shaped by millions of years by evolution — so we must stride to
mitigate flaws like adversarial images. Some strategies, such as adversarial training, had
partial success, with additional benefits such as improved generalization. That indicates
we should keep probing neural networks, and find novel ways to prevent or alleviate the
issue.

Variational autoencoders are part of a recent wave of Bayesian deep learning
and deep generative models that have achieved state-of-the-art results in semi-supervised
learning, image compression, and reconstruction. A competing family of generative mod-
els, Generative Adversarial Networks (GAN), has attracted much attention the past couple
of years and has improved the results of VAEs in some problems, such as realistic image
generation (GOODFELLOW et al., 2014; RADFORD et al., 2016). The nomenclature
is confusing: GANs do not use adversarial images in training, but rather two networks
against each other, one generative to create artificial samples, and one discriminator that
classifies images into “real” (coming from the dataset) or “fake” (generated by the first net-
work). GANs are otherwise unrelated to classical adversarial images. There are attempts
to merge both families of generative models, VAEs and GANs, into a more complete
probabilistic model (MAKHZANI et al., 2016; MESCHEDER et al., 2017). Perhaps such
models will be more resistant to our adversarial attack, but the experience in classical
adversarial images indicates that to be unlikely.

We showed that it is possible to fool autoencoders in similar ways a classifier is
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fooled. It is, however, much harder to do so, as there is no binary decision on whether an
autoencoder was fooled. One important result shows that there is quasi-linear trade-off
between input noise and reconstruction error (and that the nonlinear part is simply the
saturation that happens when the fooling is as good as possible). That is fortunate as
it implies there is no free lunch: the more you want to fool an autoencoder, the higher
the price in distortion you have to pay. This is unlike optical illusions, where a small
change of shape or color may unleash the illusion. With that result, we went back to the
classical adversarial images for classifiers, and showed that their nonlinear behavior is in
large part due those neural networks being probabilistic classifiers. A linear change in the
input of a sigmoidal / softmax function will bring a nonlinear change to the probabilistic
output. That reinforces the idea that adversarial susceptibility comes from the linearity,
rather than the nonlinearity, of deep neural networks, as presented by Goodfellow et
al. (GOODFELLOW et al., 2015).

An interesting question for future explorations is on the slope of the noise-error
trade-off. Are there different slopes for different models and attackers? What makes the
trade-off slope increase or decrease? Ideally, we would want slopes to be as flat as possible,
forcing the attacker to exert great effort in all situations.

Another line of inquiry comes from the Bayesian perspective. Why are Bayesian
neural networks and variational autoencoders susceptible to adversarial images? Intu-
itively, the noise that is injected by Bayesian procedures should make it harder to fool
such models, which has been found to be the case (LI; GAL, 2017; LOUIZOS; WELLING,
2017). Despite that work, we have preliminary experiments showing that Bayesian neural
networks can be attacked given an optimization objective that takes its uncertainty into
account. We have published a workshop paper on evaluating the uncertainty quality of
Bayesian neural networks, but in that paper we did not consider the adversarial problem.
As suggested by Li & Gal (2017), Louizos & Welling (2017), we can use adversarial attacks
as yet another measure of uncertainty quality, which we intend to explore further.

We intend to keep pursuing the question of how a deep neural network with internal
noise, be it from the the weight uncertainty or from the latent variables, can be attacked
by small distortions in the input, and what can de done to thwart such attacks.
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