
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Rafael Cardoso Fernandes Sousa

Data Coherence Analysis and Optimization

Análise de Coerência de Dados e Otimização

CAMPINAS
2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296889324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rafael Cardoso Fernandes Sousa

Data Coherence Analysis and Optimization

Análise de Coerência de Dados e Otimização

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Guido Costa Souza de Araujo
Co-supervisor/Coorientador: Dr. Marcio Machado Pereira

Este exemplar corresponde à versão final da
Dissertação defendida por Rafael Cardoso
Fernandes Sousa e orientada pelo Prof. Dr.
Guido Costa Souza de Araujo.

CAMPINAS
2017

Agência(s) de fomento e nº(s) de processo(s): FUNCAMP, 4719.8

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Sousa, Rafael Cardoso Fernandes, 1988-
 So85d SouData coherence analysis and optimization / Rafael Cardoso Fernandes

Sousa. – Campinas, SP : [s.n.], 2017.

 SouOrientador: Guido Costa Souza de Araújo.
 SouCoorientador: Marcio Machado Pereira.
 SouDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Sou1. Arquitetura de computador. 2. Compiladores (Computadores). 3.

Computação heterogênea. 4. Kernel, Mapeamento de. I. Araújo, Guido Costa
Souza de,1962-. II. Pereira, Marcio Machado,1959-. III. Universidade Estadual
de Campinas. Instituto de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Análise de coerência de dados e otimização
Palavras-chave em inglês:
Computer architecture
Compiling (Electronic computers)
Heterogeneous computing
Kernel mapping
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Guido Costa Souza de Araújo [Orientador]
Fernando Magno Quintão Pereira
Sandro Rigo
Data de defesa: 24-03-2017
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Rafael Cardoso Fernandes Sousa

Data Coherence Analysis and Optimization

Análise de Coerência de Dados e Otimização

Banca Examinadora:

• Prof. Dr. Guido Costa Souza de Araujo (Supervisor/Orientador)
IC/UNICAMP

• Prof. Dr. Fernando Magno Quintão Pereira
Universidade Federal de Minas Gerais (UFMG)

• Prof. Dr. Sandro Rigo
Institute of Computing - UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 24 de março de 2017

Agradecimentos

Primeiramente, gostaria de agradecer a minha família, por estarem sempre do meu lado,
me auxiliando e me guiando nos meus momentos mais difíceis. Em especial, agradeço-
lhes por todo o apoio e auxilio dado, visto que sempre foram de grande importância nas
minhas decisões e conquistas.

Gostaria também de agradecer a minha namorada, que além de ter me apoiado por
durante todo esse tempo, esteve também sempre me dando conselhos e sugestões nas min-
has tomadas de decisões. Sobretudo, esteve também durante todo esse período presente,
auxiliando no planejamento do nosso futuro.

Em especial, gostaria de agradecer tanto o meu orientador quanto o meu coorientador
pelo aprendizado que tive advindo de ambos. Vale ressaltar que a paciência e experiência
de ambos foram sempre de grande importância no desenvolvimento da minha dissertação.

Agradeco fortemente o apoio de todos os amigos que fiz no IC e, em especial, àque-
les do Laboratório de Sistemas Computacionais (LSC), por sempre se disponibilizarem,
auxiliando na resolução das minhas dúvidas.

Por fim, gostaria de agradecer a Samsung pelo apoio financeiro dado durante todo
o desenvolvimento do projeto. E, em especial, toda a secretária do IC/UNICAMP, por
terem me auxiliado, pacientemente, em todos os processos burocráticos da UNICAMP.

Resumo

Embora a computação heterogenea tenha permitido ganhos de desempenho (speed-ups)
impressionantes, o conhecimento sobre a arquitetura dos dispositivos aceleradores para
colher todos os benefícios de seu hardware ainda é algo crítico. A programação em cima
dessas arquiteturas é complexa, propensa a erros e geralmente é feita por meio de lin-
guagens especializadas (por exemplo, CUDA) ou bibliotecas (por exemplo, OpenCL). Em
particular, para os programadores não especialistas, o custo de mover e manter dados co-
erentes entre host e o dispositivo acelerador (device) pode facilmente eliminar quaisquer
ganhos de desempenho alcançados pela aceleração. Esta tese propõe Análise de Coerência
de Dados (DCA), uma simples e útil técnica de análise de fluxo de dados que determina
como as variáveis são usadas pelo host/device em cada ponto do programa. Ela também
introduz a Otimização de Coerência de Dados (DCO), um algoritmo baseado em DCA
que: (a) usa informações das variáveis para alocar buffers OpenCL compartilhados entre
o host e o device; e (b) inserir chamadas de função OpenCL apropriadas em pontos do
programa de modo a minimizar o número de operações de coerência de dados. O DCO
foi implementado no compilador GPUClang LLVM que é capaz de traduzir automatica-
mente os loops anotados do OpenMP 4.X para kernels OpenCL, escondendo assim toda
a complexidade da programação direta no OpenCL. Os resultados experimentais revelam
que, enquanto GPUClang mostra desempenho de até 78x, GPUClang com DCO consegue
speed-ups de até 84x em programas do benchmark Polybench rodando em um Exynos
8890 Octacore CPU com ARM Mali-T880 MP12 GPU e até 92x em um Processador dual
core Intel Core i5 de 2,4 GHz equipado com uma unidade Intel Iris GPU.

Abstract

Although heterogeneous computing has enabled some impressive program speed-ups,
knowledge about the architecture of the target device is still critical to reap the full
benefits of its hardware. Programming such architectures is complex, error-prone and is
usually done by means of specialized languages (e.g. CUDA) or complex function libraries
(e.g. OpenCL). In particular, for non-expert programmers the cost of moving and keeping
host/device data coherent can easily eliminate any performance gains achieved by accel-
eration. This dissertation proposes Data Coherence Analysis (DCA) a simple and yet
useful data-flow analysis technique that determines how variables are used by host/device
at each program point. It also introduces Data Coherence Optimization (DCO), a DCA-
based algorithm that: (a) uses variable information to allocate OpenCL shared buffers
between host and devices; and (b) inserts appropriate OpenCL function calls into program
points so as to minimize the number of required data coherence operations. DCO was
implemented in the GPUClang LLVM compiler which is capable of automatically trans-
lating OpenMP 4.X annotated loops to OpenCL kernels, thus hiding all the complexity
of directly programming in OpenCL. Experimental results reveal that while GPUClang
shows performance of up to 78x, GPUCLang with DCO can achieve speed-ups of up to
84x on programs from the Polybench benchmark running on an Exynos 8890 Octacore
CPU with ARM Mali-T880 MP12 GPU and up to 92x on a 2.4 GHz dual-core Intel Core
i5 processor equipped with an Intel Iris GPU unit.

List of Figures

1.1 Inserting map instruction to keep array a coherent between CPU and GPU. 12

2.1 Cost of data offloading and coherence in a CPU/GPU platform using: (a)
Memory Objects created on both sides; (b) Memory object created on host
and (c) Memory object created on device. 15

3.1 Using DCA tuples to insert map and unmap instruction to keep u coherent
between CPU and GPU. 22

3.2 Example to illustrate DCA, SBA and DCO algorithms. 29
3.3 Result of each step of the DCA algorithm. 30
3.4 A variable pointing to more than one CPU buffer. 33
3.5 Result of applying SBA and MUI after DCA. 38

5.1 GPUClang compiler pipeline. 44
5.2 The breakdown of total execution time: (a) & (b) before DCO optimization

(c) & (d) after DCO optimization . 45
5.3 GPUClang+DCO Speedup with respect to GPUClang (both -O2 -opt-tile). 45
5.4 OpenCL overhead variation with the data set size. 47
5.5 Data Offload overhead variation with the data set size (-opt-vectorize). . 48
5.6 The breakdown of total execution time without DCO optimization. 49

List of Tables

3.1 The confluence operator ⊙ for access devices. 24
3.2 The confluence operator ⊙ for access types. 24
3.3 The meet operator ⊕ for access types. 26
3.4 The meet operator ⊕ for access devices. 26
3.5 GEN[s] and KILL[s] table for CPU’s sentences 27
3.6 GEN[s] and KILL[s] table for GPU’s sentences 27
3.7 Call insertion during MUI. 34

5.1 Absolute runtime & speed-ups for Polybench benchmark suite. 46
5.2 Absolute runtime & speed-ups for Parboil and Rodinia benchmark suite. . 48

Contents

1 Introduction 11

2 Background 14
2.1 OpenCL Data Offloading/Coherence . 15

2.1.1 Host/Device Buffers . 16
2.1.2 Host/Device Coherence Calls . 17

3 Data Coherence Analysis and Optimization 20
3.1 Data Coherence Analysis (DCA) . 20

3.1.1 Local Data Coherence Analysis . 22
3.1.2 Global Data Coherence Analysis . 24
3.1.3 Computing GEN and KILL . 26
3.1.4 Running DCA . 27

3.2 Data Coherence Optimization (DCO) . 31
3.2.1 Shared Buffer Allocation (SBA) . 31
3.2.2 Map/Unmap Insertion (MUI) . 33

4 Related Works 39

5 Experimental Evaluation 42
5.1 GPUClang Environment . 42
5.2 DCO Performance Analysis . 44
5.3 Data Size Analysis . 46

6 Conclusions and Future Works 50

Bibliography 52

Chapter 1

Introduction

With the advent of heterogeneous computing many parallel programming models have
emerged seeking to leverage the performance of sequential code by offloading compu-
tation kernels from a host machine (e.g. CPU) to an acceleration device (e.g. GPU).
Computation offloading is typically achieved by annotating program fragments (e.g. hot
loops) so that their execution is mapped to dedicated hardware like GPUs, APUs, FP-
GAs, among others. Most of these models use source code annotation standards like
OpenACC [4] and OpenMP [5] or specialized language and libraries as in CUDA [1] and
OpenCL [2] respectively. While they differ in the way the kernel code is written, all
such models require data to be offloaded to the device and the result of the computation
brought back to the host.

One option to avoid the offload mechanism is to have unified virtual and physical
address spaces between CPUs and accelerators. Unified address spaces enjoy many ben-
efits; they make data structures and pointers globally visible between CPU and GPU,
obviating the need for expensive memory copies between CPUs and accelerators. Uni-
fied address spaces do, however, also require architectural support for virtual-to-physical
address translation [13].

A discrete GPU (dGPU) resides on the PCIe interface and has traditionally required
data to be moved from the host memory to the GPU memory via PCIe. In certain
applications, the overhead of these data transfers between memory spaces can nullify
any performance gains achieved from faster computation on the GPU [16, 36, 37]. To
overcome the data-transfer overheads, recent GPU advancements enable GPUs to directly
access data from the host memory as well as enable CPUs to directly access data from
the GPU memory. Such kind of GPU is called “integrated GPU” (iGPU for short).
Therefore, shared variable are required to be marked as zero-copy during allocation and
data coherence must be guaranteed by the system software so as to avoid computation
inconsistencies on both sides (CPU and device) [33] [34].

Although there has been a number of efforts to address data coherence across host-
device boundaries [17, 18, 19, 20] no universal hardware coherence protocol standard has
yet been defined for heterogeneous systems, particularly due to the fact that different
devices demand very distinct data block sizes. Therefore, coherence has to be performed
in software by means of specific map/unmap function calls that copy variables modified by
the device/host back to the host/device, thus squashing any old copies of the data that

11

CHAPTER 1. INTRODUCTION 12

Figure 1.1: Inserting map instruction to keep array a coherent between CPU and GPU.

B3:

B0:
 KernelGPU(A)

B2:B1:
 B[i]=A[i]+1

 map(A)

B3:

B0:
 KernelGPU(A)

B2:B1:
 B[i]=A[i]+1

 map(A)

they might be holding. Such operations are typically done by the programmer by means
of calls to functions from specialized libraries (e.g. OpenCL) or by a compiler that naively
inserts such calls at the entry/exit of the kernels. Given that most accelerators use very
large data blocks a non-optimal insertion of map/unmap calls can result in unnecessary
coherence operations thus impacting the overall program performance.

In order to reduce the offloading/coherence overhead it is important that optimizing
compilers targeting heterogeneous systems identify variables that can be allocated in the
shared memory between CPU and GPU and perform code transformations to: (a) make
these variables shared between CPU and GPU; (b) automatically avoid data movement
of shared variables; and (c) keep the data used by host and devices coherent. Finding the
best locations to insert coherence map/unmap calls into source code can be casted as the
Data Coherence Analysis and Optimization problem. Hence, solving the DCAO problem
involves: (1) identifying the blocks of code where shared variables are used by different
devices (e.g. CPU or GPU) and (2) insert map/unmap calls so as to minimize the need
of data coherence operations among host and devices. Since both coherence and data
offloading impact program performance, these problems are inter-dependent and should
be addressed together.

In order to exemplify a solution to DCAO please consider the Control-Flow Graph
(CFG) of Figure 1.1(a)-(b). For the sake of simplicity this work will consider a CPU host
and a GPU acceleration device, although all the ideas discussed herein can be applied
to any other devices. In Figure 1.1(a) basic block B0 dispatches and executes kernel
KernelGPU which modifies a large shared array A. In order to keep A coherent with the
CPU host, a non-expert programmer could insert a map(A) instruction at the end of B0
as shown in Figure 1.1(a). Also notice that a naive compiler could also insert a map call
at the end B0 to automatically assure data coherence. This will make the GPU update its
copy of A after KernelGPU finishes and the flow of execution takes the program through
B1. On the other hand, if the execution takes the program through B2 array A is not
accessed and the cost of performing data coherence becomes an overhead. To avoid that,
the programmer or a naive compiler should have inserted the map call on the edge that
connects B0 to B1, instead of inserting it at the end of B0.

In order to address the above described problem this work makes the following con-
tributions:

• It proposes the Data Coherence Analysis — DCA, a program data-flow analysis

CHAPTER 1. INTRODUCTION 13

algorithm to determine the usage of data by heterogeneous devices at each program
point; this allows to detect which variables are shared between host and devices.

• It introduces the Data Coherence Optimization — DCO, a DCA-based algorithm
that performs two tasks: (a) replaces standard host memory allocation mechanisms
(e.g. malloc and calloc) for specialized OpenCL shared buffer allocation; and (b)
calls OpenCL functions map and unmap into program points so as to minimize the
amount of data coherence operations required between host and device.

The rest of the work is organized as follows. Chapter 2 details the costs of data offload-
ing and coherence operations in a typical heterogeneous platform. Chapter 3 introduces
the data items required by DCA and describes its mathematical formulation. Section 3.2.2
discusses the implementation details of the corresponding LLVM optimization pass that
implements a solution to DCO. Chapter 4 discusses related work and Chapter 5 shows the
experimental evaluation. DCAO is implemented within GPUClang , a LLVM based com-
piler [10] capable of automatically translating OpenMP 4.X annotated loops to OpenCL
kernels. GPUClang flow is discussed in Section 5.1. Chapter 6 concludes the work and
points to future directions.

Chapter 2

Background

Heterogeneous computing has shown that specialized acceleration devices (e.g. GPUs) can
provide significant performance improvement for a range of applications [38]. However,
knowledge about the architecture of the targeted device is critical to reap the full benefits
of its specialized hardware. For instance, programming a CPU/GPU platform is made
difficult by the subtleties required for a correct access to the memory shared between them.
Fortunately specialized high-level languages (e.g. CUDA) and libraries (e.g. OpenCL)
provide function calls to help with this task, though the programmer still needs to properly
insert and use such calls.

Unlike CUDA, which runs only on NVIDIA devices, OpenCL allows programmers
to execute their code on a broad range of heterogeneous platforms. It enables them to
use any acceleration hardware for which there exist an OpenCL runtime. Nevertheless,
although OpenCL uses high-level function calls, a typical programmer has to undergo a
steep learning curve to be able to write efficient OpenCL code.

OpenMP has been extensively used as a parallel programming standard for multi-
core architectures [39]. In order to extend OpenMP ability to program heterogeneous
architectures the OpenMP Accelerator Model [14] has been recently released; it adds to
the standard a new set of clauses target to programming heterogeneous devices. One
way to enable programmers to leverage on OpenMP easy of programmability and tap on
OpenCL nice heterogeneous programming features is to generate OpenCL kernels from
C/C++ OpenMP code. This work uses an LLVM/Clang compiler called GPUClang that
does exactly that (Section 5.1).

No matter if the OpenCL kernel is directly programmed by a programmer or if it is
synthesized from OpenMP code, the resulting kernel can still suffer from some recurrent
problems. One of the most complex issues involved in using OpenCL is the need to
minimize the overhead of data offloading while keeping up with the coherence between
host and device.

In order to understand how coherence is maintained between CPUs and devices it
is relevant that programmers have a good knowledge of the architecture of modern het-
erogeneous platforms. A typical heterogeneous node includes one multi-core CPU chip
connected to one accelerator through a PCIe bus, where each chip is connected to separate
physical memories. Data-transfers in current commercial heterogeneous nodes are based
on Direct Memory Access (DMA) hardware, which is typically exposed to applications

14

CHAPTER 2. BACKGROUND 15

Figure 2.1: Cost of data offloading and coherence in a CPU/GPU platform using: (a)
Memory Objects created on both sides; (b) Memory object created on host and (c) Mem-
ory object created on device.

(a) Memory objects created
on both sides

Separate Memory

CPU
Buffer

GPU
Buffer

 GPU CPU

3

2
1

5

4

(b) Memory objects created
on host side

Global Shared Memory

CPU
Buffer

GPU
Internal Buffer

 GPU CPU

4

1

2

3

(c) Memory objects created
on device side

Global Shared Memory

 GPU CPU

2

1

GPU
Internal Buffer

3

programmers through memory copy routines [22] [23]. Most programming models for het-
erogeneous systems, such as NVIDIA CUDA [1] and OpenCL [2], assume that the code
running in the CPU (i.e., host) and the accelerator (i.e., device) has access to separate
virtual address spaces. Therefore, any data communication between the CPU and acceler-
ators, or between accelerators, requires explicit data transfers calls (e.g., cudaMemcpy in
CUDA, and clEnqueueCopyBuffer in OpenCL) to copy data across address spaces. The
optimal implementation of these data transfer calls heavily depends on the underlaying
hardware organization. Hence, the behaviour of applications have to be adapted to the
hardware topology where they are being executed.

In order to reduce the offloading/coherence costs modern CPU/GPU architectures
use a shared physical memory by means of a Shared Virtual Memory (SVM) and try
as much as possible to minimize the data movement between CPU and GPU. This is
particularly critical in highly constrained architectures like those found in mobile devices
(e.g. ARM7/Mali) which need to minimize as much as possible the amount of energy
consumed. In such cases, useless data-movements between CPU and GPU represent an
unacceptable overhead.

Today CPUs and GPUs typically use separate virtual and physical address spaces.
Main memory may be physically shared, but is usually partitioned, or allows unidirec-
tional coherence (e.g., ARM allows accelerators to snoop CPU memory partitions but
not the other way around) [13]. More recently, processor vendors like Intel, AMD, ARM,
Qualcomm, and Samsung are embracing integrated CPU/GPUs and moving towards fully
unified address space support, as detailed in Heterogeneous Systems Architecture (HSA)
specifications [9] [12].

2.1 OpenCL Data Offloading/Coherence

This section discusses the main data-structures and functions calls required for data of-
floading and to maintain data coherence during the execution of an OpenCL kernel on an
heterogeneous CPU+GPU platform.

CHAPTER 2. BACKGROUND 16

2.1.1 Host/Device Buffers

Memory objects form the most fundamental architectural unit in OpenCL programming.
These memory objects (or buffers) refer to any type of contiguous data location that can
be used by the kernels during execution. Creating buffer objects is simple in OpenCL and
is akin to the way in which one would use C’s memory allocation routines such as malloc
or alloca. But, that’s where the similarity ends. For instance, host variables can span
multiple non-contiguous pages in host virtual memory whereas the target device operates
on contiguous physical memory. To deal with this memory issue, OpenCL provides the
function clCreateBuffer that creates memory objects based on a set of memory flags.
These flags define the properties of the created memory objects and can assume the
following values:

CL_MEM_READ_WRITE : The buffer is created in the device global memory and
can be read and written by the kernel.

CL_MEM_USE_HOST_PTR : The buffer to be created uses the memory referred
by the host. The function does not allocate any memory at the device; instead it
enables the device to use an existing buffer allocated by the host. This is commonly
used when the programmer wants to read the buffer created by the host, process
the buffer in the device, and send the modified buffer back to the host.

CL_MEM_ALLOC_HOST_PTR : The buffer is allocated at the device memory,
can be mapped to the host memory and accessed by it.

Now, the question which could arise in the reader’s mind is how different are the
usages of these buffer objects and how they affect the costs of offloading and coherence?
Figures 2.1(a)-(c) show the typical ways in which host and devices use OpenCL buffers
to communicate. As described below, there are basically two ways of storing OpenCL
buffers, in separate or shared memories. In Figure 2.1, dashed lines represent host/device
actions on the buffers and full lines are data movement operations.

• Separate Host/Device Memories
Figure 2.1(a) shows the kernel execution flow when host and device do not share
the memory, a typical scenario when a GPU device has a dedicated memory and
the data must be moved through an interface card to/from the host memory. First,
a memory allocation routine (e.g. malloc) is called to create buffers in the host
memory to store the host data variables 1 . Before dispatching the kernel to the
device, the host must call clCreateBuffer with the CL_MEM_READ_WRITE memory
flag to create the GPU buffer in the device memory 2 . The host also needs to
offload the data in the CPU buffer to the GPU buffer 3 . After all the input data
has been offloaded, the host dispatches the kernel to operate on the GPU buffer 4 .
The output of the kernel is then copied back to the CPU buffer 5 .

• Shared Host/Device Memory Figures 2.1(b) and 2.1(c) show the buffering ap-
proaches that can be more efficient when the host and device share the same global

CHAPTER 2. BACKGROUND 17

memory ("physical memory"). In this case, the device memory is mapped on the
global shared memory space. In Figure 2.1(b), prior to calling clCreateBuffer
with flag CL_MEM_USE_HOST_PTR, the host allocates the shared buffer and initial-
izes its memory locations 1 . This allocation typically uses host runtime calls like
malloc which do not have the data layout expected by the device. After calling the
function clCreateBuffer the host invalidates its own pointer to the buffer, turns
over the CPU buffer control to the OpenCL driver. Depending on the OpenCL
implementation, the driver transparently copies the newly created buffer from the
host shared memory into the device internal memory layout in order to speed-up the
kernel access to it 2 . Thus, at the end of this call only the device has a valid pointer
to the buffer and can operate on it 3 . The host can request the data back through
a map call (see Section 2.1.2). In this case data is automatically transferred to the
host and remains there until an unmap call occurs 4 . In Figure 2.1(c), memory
objects are created at the device memory by the clCreateBuffer using memory
flag CL_MEM_ALLOC_HOST_PTR 1 . If the host needs to access the data on the buffer,
it calls the map function 2 . As detailed on Section 2.1.2, the map function transfers
data ownership to the host and the device cannot access it until the host calls unmap
, and releases the device to access it 3 .

Although there are many ways to handle buffer mapping in OpenCL, their efficiency
depends on the OpenCL driver implementation and programmer expertise. For example,
clCreateBuffer with the CL_MEM_USE_HOST_PTR flag uses the host memory as a buffer
location, but when it comes to accessing the data at the device side, the OpenCL im-
plementation may pin this memory and then transfer the data over to the device. But
in the case of CL_MEM_ALLOC_HOST_PTR flag, the OpenCL implementation may allocate
memory directly on the pinned memory location which the OS uses for data transfer us-
ing DMA. This may be faster when compared to previous clCreateBuffer call with the
CL_MEM_USE_HOST_PTR memory flag. Nevertheless, it is a consensus that the program-
ming model of Figure 2.1(c) gives significant improvement in performance when compared
to a regular clCreateBuffer call with the CL_MEM_READ_WRITE memory flag, and thus
the GPUClang implementation of DCO is based on it.

2.1.2 Host/Device Coherence Calls

In order to keep the coherence of the data between host and device, OpenCL provides four
function calls that enables the host to switch access to the shared buffer. These functions
are:

• map: this call is implemented using the OpenCL function clEnqueueMapBuffer. It
hands the shared buffer pointer from the device to the host. Before releasing the
pointer to the host it also flushes into the shared buffer all the data modified by the
device that sits in its internal memory or cache. For example, this operation is always
required after the execution of a GPU kernel that modifies a given shared buffer v
that is used in sequence by the CPU. The map function can be mapped for read or
write, depending on the behavior taken by the program. The map function must be

CHAPTER 2. BACKGROUND 18

used in two different scenarios. First, it is necessary to call the map function for any
operation that occurs in shared buffer by the CPU, whether it is a read or write
operation on buffer. Following a control flow execution of the application, if there
is more than one sequential use of the buffer, without any GPU execution between
them, this means that only one map function is required during this execution flow.
The second way to apply the map function occurs after a GPU execution that writes
in the buffer defined as shared between CPU and GPU.

• unmap: this call hands the shared buffer pointer from the host to the device. It is
implemented by means of the OpenCL function clEnqueueUnMapMemObject. Before
releasing the pointer to the device it also flushes into the shared buffer all the
data modified by the host. For example, this call is always required before a GPU
execution that uses a given shared buffer v that was modified by the CPU before its
execution. The unmap function must be called before a kernel execution on the GPU;
Applying unmap functions is always necessary when the kernel execution writes in
the shared buffer. This is also necessary when the buffer is written by the host before
calling the kernel execution. Note that this is not necessary when host and GPU
computing are read-only, since the buffer contents are not modified. If the unmap
function is not called, the execution becomes undefined. If the CPU attempts to
access the contents of a pointer that has been unmapped previously, the execution
also becomes undefined.

• read: this call is executed by means of the OpenCL function clEnqueueReadBuffer.
This function copies the specified data from the device buffer to the host buffer.

• write: this call is implemented using the OpenCL function clEnqueueWriteBuffer.
This function copies the specified data from the host buffer to the device buffer.
This function does not add any additional functionality in terms of maintaining
coherence between host and device, as a similar behavior can be attained by means
of the map/unmap function calls.

When working with buffers shared between CPU and GPU, a data coherence protocol
must be applied to avoid an undefined execution. Therefore, after making one buffer
shared, it becomes necessary to insert map and unmap functions to maintain the data
coherent between CPU and GPU. When applying it in an iGPU, the map function causes
the shared buffer to becomes visible to the CPU so that when called, it returns a pointer
to the buffer that was previously defined as shared between the CPU and GPU. The
action taken by the map function is to invalidate all pages that the buffer has in the CPU
cache, since there is no automatic coherence of the CPU for the GPU. However, there is
coherence in the opposite direction. The unmap function basically serves to deallocate a
pointer used by the CPU so a write-back operation is done in the CPU cache, making the
buffer available exclusively for GPU use.

The read and write functions are commonly used in applications that require data
offloading. Applications running in a dGPU (e.g. NVIDIA Tesla), usually call both
functions to transfer data via PCI-e into and out of the device, since it has its own
internal memory used during kernel computation. It is important to note that the use of

CHAPTER 2. BACKGROUND 19

read and write calls in an iGPU may generate unnecessary overheads, since two buffers
are created, even though it can be run in only one. The CL_MEM_USE_HOST_PTR
flag can also be used by dGPU, where map and unmap functions instead of maintaining
the cache coherence – as the case of iGPU, it performs data offloading between CPU and
GPU memories.

Chapter 3

Data Coherence Analysis and
Optimization

Nowadays with GPU and CPU sharing the same physical memory, programmers must
perform a series of manual code modifications based on the characteristics of the architec-
ture and application algorithms. This task is typically error-prone, since the programmer
needs to have a very good knowledge of the underlying hardware and of the application
data layout and execution flow.

This research work makes two main contributions. The first one is an analysis algo-
rithm, called Data Coherence Analysis (DCA), whose main focus is to gather information
from the program execution flow. The second is Data Coherence Optimization (DCO),
an algorithm that inserts map and unmap calls into the program in order to maintain data
coherence between CPU and GPU, based on the informations gathered DCA.

The main goals of this work are threefold: (a) to identify variables that are used by
both host and device and make then shared; (b) to allocate buffers for shared variables;
and (c) to discover which program points need map/unmap OpenCL calls for a given shared
variable that is used at different moments by CPU and GPU.

DCAO is performed in two passes. First, DCA analysis is used to determine at each
program point which devices (e.g. CPU/GPU) accesses live program variables, as well as
the type of the accesses – read (R), write (W), or read and write (RW). In the second pass,
DCO optimization performs two code transformation steps: (a) shared buffer allocation
which detects those CPU allocated variables (through malloc or calloc) that are also
accessed from within GPU kernels; allocation of such variables at the CPU side are then
replaced by allocation of OpenCL buffers that are shared by both CPU and GPU; (b)
coherence call insertion which inserts map and unmap function calls to keep CPU-GPU
shared buffers coherent during program execution.

3.1 Data Coherence Analysis (DCA)

In the GPUClang compiler, the host adopts a standard offloading mechanism; OpenCL
functions are called to copy kernel’s input data to the GPU memory and return the
kernel’s output to the CPU.

20

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 21

Data Coherence Analysis (DCA) is an intra-procedural analysis that gathers infor-
mation to identify program execution points where transitions occur between CPU and
GPU usage. The analysis must be performed for variables used by the CPU that are
also accessed by the GPU kernel. However, for reasons of efficiency in this work, these
variables are restricted to arrays and pointer variables.

For each variable v, it is necessary to identify if there exist any use of variable v before
the dispatch of the kernel execution to GPU, and if there is an access to v after the kernel
execution. Overall DCA seeks to answer the following questions for each variable v at
each program point p:

• What is the first access to variable v reachable from p?

• Which type of access is performed: read, write, or read and write?

• Which devices access v: CPU or GPU?

For example, in Figure 1.1 if the compiler would know at the end of block B0 that a
CPU access to array A is performed at its successor block B1 it could automatically insert
a map instruction to make array A available to the CPU after it is modified by the GPU
through KernelGPU(A) .

To assemble this type of information at any program point p the compiler has to know:
(a) all variables v that are live at any execution path P that starts at point p and reaches
the end of the program; (b) the type (read/write) of the first access to v on P ; and (c)
the device that accesses v. In order to capture this information one can define the access
tuple A (Equation 3.1) as the coherence item that will work as the basic element during
DCA. The first component of A, named v identifies the variable being analyzed. The
second component t describes the type of the access to v, i.e. whether it is a read (R), a
write(W), or a read and write (RW) operation. The third component d identifies if the
device that performs the access is CPU, GPU or X, i.e. unknown at that program point.
Hence, at each program point p there exist a coherence set Sp of tuples which contains
the coherence items for all variables that are reachable on all paths starting at p. For
example if Ap = (x,R,GPU) is an item of Sp (i.e. Ap ∈ Sp) one can say that there is a read
of variable x from GPU at some path P starting at program point p.

(variable, type[R,W,RW], device[CPU,GPU,X]) (3.1)

To illustrate how the access in Equation 3.1 can be used to identify coherence op-
timization opportunities, please consider from Figure 3.1(a) the coherence sets Sp =
{(u,W,CPU)} and Sp+1 = {(u,R,GPU)} where p + 1 is the point just after instruction
Ip in basic block B0. Given these two sets, one can say that: (a) instruction Ip is a CPU
instruction that writes to variable u; and (b) at point p+1 just after Ip starts an execution
path that reaches kernel GPUKernelA(u) which reads u (at basic block B1).

Observe that the transition from p to p+ 1 is a CPU to GPU transition, which means
that it is necessary to unmap variable u after p + 1 and before the host CPU dispatches
kernel GPUKernelA(u) to the GPU as GPUKernelA(u) reads to variable u in B1. Now

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 22

Figure 3.1: Using DCA tuples to insert map and unmap instruction to keep u coherent
between CPU and GPU.

B1:
GPUKernelA(u)

B0:
p { (u,W,CPU) }

Ip u := …
p+1 { (u,R,GPU) }

{ (u,R,GPU) }

B0:
p { (u,R,CPU) }

Ip … := u
p+1 { (u,R,GPU) }

(a) (b)

{ (u,R,GPU) }

unmap(u)

B2:
GPUKernelB(u)

consider in Figure 3.1(b) that variable u is read by the CPU at instruction Ip and that
the flow of execution leaves B0 and goes to B2 where it finds a kernel GPUKernelB(u) that
only reads u. Hence, set Sp+1 = {(u,R,GPU)} and it is not necessary to unmap variable u

before dispatching kernel GPUKernelB(u) given that the GPU does not modify it.
In order to define the DCA data-flow equations one has to answer three basic questions:

• What is the flow of the analysis in DCA? As discussed above, the accesses to program
variables should move upward on the CFG, i,e. contrary to the program execution
flow. Hence, DCA is a backward data-flow analysis;

• What is the “combiner” operator (⊍) in DCA? An access that points to a sentence
p + 1 is combined with its predecessor p using the combiner operator to generate
the set Sp. Its use is as follows: from a sentence s, it takes an access tuple Ai from
GEN[s], and another access tuple Aj of OUT [s], considering that both have same
variable v, to generate an access tuple Ak to compose set IN[s].

• What is the meet operator (⊎) in DCA? All accesses that arrive at a point p + 1 just
after an instruction Ip should be combined into a single coherence set Sp+1. Thus
the DCA meet operator is the union operator, slightly changed to handle the cases
when accesses to the same variable with different types and devices meet at p + 1

(detailed in Section 3.1.2).

Given the answers above one can think of DCA as an extended form of Liveness
Analysis [15], where the information item is an access containing not only the name of
the variable but also the type of the access and the device that performed it.

3.1.1 Local Data Coherence Analysis

In order to formulate a data-flow analysis problem one has to define the information items
generated (GEN[s]) and killed (KILL[s]) at each program statement s. This requires
analyzing each possible statement type in the compiler Intermediate Representation (IR)
to determining such sets. For the sake of simplicity this section shows at Equations 3.2 –
3.4 definitions for GEN[s] and KILL[s] for the generic three-address code statement s:
v = a op b which computes the operation op on two operands a and b and stores the

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 23

result into v. In those equations the set of accesses performed on variable v is represented
by Av.

GEN[s] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(v,W, d), (a,R, d), (b,R, d)},

if v ≠ a ∧ v ≠ b (a)

{(a,RW, d), (b,R, d)},if v = a (b)

{(a,R, d), (b,RW, d)},if v = b (c)

(3.2)

KILL[s] = Av −GEN[s] (3.3)

Av = {set of accesses to v} (3.4)

For the computation of GEN[s] three cases need to be treated in Equation 3.2, as
follows: 3.2(a) in this case a and b are read and a different variable v is written; thus
GEN[s] will contain accesses to a and b and the access (v,W,d) which defines that
variable v is written during the execution of s. 3.2(b) this case occurs when variable a is
read, operated with variable b and the result is stored into v = a. In such case, GEN[s]

will have an access (b,R,d) which informs that variable b is read by device d, and access
(a,RW,d) meaning that variable a is read and written by d; 3.2(c) this is a similar case
as in Equation 3.2(b) but this time it refers to variable b; similarly as in liveness analysis,
in Equation 3.3 statement s kills from set Av all accesses that read or write to v, but
those accesses that are in GEN[s].

The OUT [s] is defined as a function applied on all successors of IN[S], according
to the Equation 3.5, where S is the successor of sentences s. It uses the meet operator
to combine tuples. The meet operator (⊎) is explained in more details in the Section
3.1.2, where its complexity is in fact used; but, considering that Local DCA only applies
it at the level of sentences, where one sentence has only one successor, then the tuples in
IN[si+1] are directly attributed to OUT [si].

OUT [s] = ⊎
S∈Succ[s]

IN[S] (3.5)

Finally, given that DCA is a backward analysis one can define the IN[s] as a func-
tion of OUT [s] according to the Equation 3.6. Therefore, for a given basic block B

one can compute IN[si] as a function of OUT [si], GEN[si], and KILL[si], where
s0, s1, . . . , sk−1 ∈ B are the k statements of block B.

IN[s] = GEN[s] ⊍ (OUT [s] −KILL[s]) (3.6)

The operation S1⊍S2 is defined in Equation 3.7 as the relation S1 ⊙ S2 for which
all elements Ai ⊙Aj ∈ S1⊍S2 are computed according to the Equation 3.8. Operation
Ai ⊙Aj basically takes two accesses and determines the access which should result when
they are combined.

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 24

S1⊍S2 = ⋃
∀i,j

{Ai ⊙Aj},∀Ai ∈ S1 ∧Aj ∈ S2 (3.7)

Ai ⊙Aj =

⎧⎪⎪
⎨
⎪⎪⎩

{Ai,Aj}, if vi ≠ vj (a)

{(v, ti ⊙ tj, di ⊙ dj)},otherwise (b)
(3.8)

Tables 3.1 and 3.2, define, respectively, the confluence operator for access devices and
access types. This operator is applied to combine two tuples that have the same variable
v of a sentence s in the IN[s] computation.

In order to clarify how ⊙ works, consider for example sentence s, that uses variable
v, and , where GEN[s] = {Ai} and Ai=(v,RW,CPU). Assume also that OUT [s] = {Aj},
where Aj=(v,RW,GPU). When applying the confluence operator Ai ⊙ Aj, a new tuple
Ak=(v,RW,CPU) results, and thus IN[s] = {Ak}. The operator (⊙) first checks where
the computation is being applied, and which type of access is performed both Ai and Aj

before generating Ak. It is important to notice that this operation depends on the tuple’s
order, i.e., operator (⊙) is not commutative.

Table 3.1: The confluence operator ⊙ for access devices.

Confluence Access Devices
di dj di ⊙ dj

CPU [CPU,GPU,X] CPU
GPU [CPU,GPU,X] GPU

Table 3.2: The confluence operator ⊙ for access types.

Confluence Access Types
ti tj ti ⊙ tj
R R R

R [W,RW]
if (di == CPU &&
dj == GPU) R
else RW

W [R,RW] RW
W W W
RW [R,W,RW] RW

By using the above described formulation Local DCA of basic block B (containing n
sentences) is performed as follows. It starts execution from the last sentence sn of B until
it reaches the first sentence s1, using at each sentence s Equation 3.6 to compute IN[sn].
In sequence, the sentence sn spreads all tuples of IN[sn] to OUT [sn−1] of its successor
sn−1, so that sn−1 can apply the same data flow equation.

3.1.2 Global Data Coherence Analysis

After GEN[B] and KILL[B] are computed for each basic block B of the program Global
Data Coherence Analysis (Global DCA) can determine the set of accesses Sp that reach

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 25

program point p. As described in Section 3.2.2 this is the information required to correctly
insert the map and unmap calls needed to keep CPU and GPU data coherent.

As discussed above, Global DCA is a backward analysis and as such one can define
at the end of each basic block B the meet operator ⊎ that merges together sets IN[S],
for all basic blocks S ∈ Succ[B], where Succ[B] is the set of blocks that are successors of
B. This can be represented by Equation 3.9. The operator (⊙) is also applied in Global
DCA to generate the tuples of IN[B] of a basic block B, according to the Equation 3.10.

OUT [B] = ⊎
S∈Succ[B]

IN[S] (3.9)

IN[B] = GEN[B] ⊍ (OUT [B] −KILL[B]) (3.10)

Hence, for each basic block B of the program, Equations 3.9 – 3.10 compute the sets
IN[B] and OUT [B] at the entry and exit of each block. This can be achieved using a
standard fixed-point iteration algorithm very similar to Liveness Analysis and for which
there exist well-know proofs of convergence [15].

On the other hand, unlike Liveness Analysis which uses a standard set union as a
meet operator, in Global DCA the meet operator is more complex. The reason is that in
Liveness Analysis the information item is just the name of the variable v while in DCA
it is the access tuple A = (v, t, p) which contains not only the variable name v, but also
the type of access t and the device d that performed this access. Thus one has to define
how two accesses should be merged in the final union. This is simple when both accesses
refer to different variables: one just needs to add both accesses to the resulting meeting
set. But this is not obvious when the accesses refer to the same variable.

In order to explain that, and without loss of generality, please consider the case when
a basic block B has two successors S1 and S2. Also for the sake of simplicity assume that
Ai ∈ S1 and Aj ∈ S2 are accesses from sets S1 and S2 respectively and that
Ai = {(vi, ti, di)} and Aj = {(vj, tj, dj)}.

The operation S1 ⊎ S2 is defined in Equation 3.11 as the relation S1 ⊕ S2 for which all
elements Ai ⊕Aj ∈ S1 ⊎ S2 are computed according to Equation 3.12. Operation Ai ⊕Aj

basically takes two accesses and determines the access which should result when they are
combined.

S1⊎S2 = ⋃
∀i,j

{Ai ⊕Aj},∀Ai ∈ S1 ∧Aj ∈ S2 (3.11)

Ai ⊕Aj =

⎧⎪⎪
⎨
⎪⎪⎩

{Ai,Aj}, if vi ≠ vj (a)

{(v, ti ⊕ tj, di ⊕ dj)},otherwise (b)
(3.12)

As shown in Equation 3.12(a) if Ai and Aj do not access the same variable v they will
both be added as elements of S1 ⊕ S2. On the other hand, if they access the same variable
as in Equation 3.12(b) (i.e. vi = vj = v) the operator ⊕ needs to define the resulting type
and device that accesses v. As shown in Table 3.3 if the types of ti and tj are the same
the resulting type is given by ti ⊕ tj and is either R, W, or RW. On the other hand, if one of

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 26

Table 3.3: The meet operator ⊕ for access types.

Meeting Access Types
ti tj ti ⊕ tj
R R R
R [W,RW] RW
W W W
W RW RW
RW RW RW

Table 3.4: The meet operator ⊕ for access devices.

Meeting Access Devices
di dj di ⊕ dj

CPU CPU CPU
GPU GPU GPU
GPU [CPU,X] X
CPU [GPU,X] X
X [CPU,GPU,X] X

the types is RW then ti ⊕ tj = RW meaning that if some successor at the end of B performs
a read and write to v this information should be carried up to the statements in block B.

Regarding the resulting device di ⊕ dj of the accesses that meet at the end of block
B, Table 3.4 reveals that if both accesses are the same the resulting device is CPU or GPU.
On the other hand, if the devices are not the same one cannot at compile time determine
which device will access v. Thus the resulting device will be X meaning that it is not
possible to statically compute the accessing device at the meet point. This information
will propagate upwards in the CFG and will later be used, during the optimization pass
(see Section 3.2.2) to determine the need to insert map or unmap instructions on the edges
that take block B to its successors.

Global DCA uses a standard backward data-flow analysis algorithm. It starts comput-
ing GEN[B] and KILL[B], through Local DCA inside each basic block of the CFG. The
transfer function at each statement is defined in Section 3.1.1. The out-states (OUT [B])
result from applying the meet operator on the in-sets (IN[S]) of the successors S of basic
block B.

3.1.3 Computing GEN and KILL

The GEN and KILL sets are generated for all LLVM IR sentence that read or write a
variable v, either by the CPU or GPU. As discussed before, it is restricted to variables that
are arrays or pointer variables.

The sentences si that DCA consider as a CPU’s scope are those that perform a read
or write on a given variable v by the CPU, according to the Table 3.5. The call instruction
is considered of type W to maintain the conservativeness, given that DCA is an intra-
procedural algorithm.

The sentences si that DCA considers as in GPU’s scopes are those that execute a
kernel computation according to the Table 3.6. However, as those sentences do not carry

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 27

Table 3.5: GEN[s] and KILL[s] table for CPU’s sentences

si GEN[s] KILL[s]

load (v, R, CPU)
(u,x, y) ∀ u = v ∣

x ∈ {R,W,RW}

y ∈ {CPU,GPU,x}

store
call (v, W, CPU)

(u,x, y) ∀ u = v ∣

x ∈ {R,W,RW}

y ∈ {CPU,GPU,x}

enough informations to classify the access type done by the kernel execution as R or W,
DCA works looking for sentences sj that the program uses to create GPU buffers, used
by the kernel, and it also looks for sentences that performs data offload before and after
the kernel execution.

Table 3.6: GEN[s] and KILL[s] table for GPU’s sentences

si sj GEN[s] KILL[s]

_cl_execute_tiled_kernel
_cl_execute_kernel

_cl_create_read_only
_cl_offloading_read_only
_cl_read_only

(v, R, GPU)
(u,x, y) ∀ u = v ∣
x ∈ {R,W,RW}

y ∈ {CPU,GPU,x}
_cl_create_write_only
_cl_create_read_write
_cl_read_buffer
_cl_offloading_read_write
_cl_offloading_write_only

(v, W, GPU)
(u,x, y) ∀ u = v ∣
x ∈ {R,W,RW}

y ∈ {CPU,GPU,x}

Note that for both Tables 3.5 and 3.6 the KILL function eliminates all previous tuples
for the same variable. Also, notice that for all other LLVM IR that are not in the tables
have empty GEN[s] and KILL[s] sets.

3.1.4 Running DCA

Before starting Global DCA, a Local DCA pass is used to compute the initial value of
IN[B] from GEN[B], as expressed in Equation 3.13. In sequence, a global data-flow
fixed-point algorithm based on Equations 3.9 – 3.10 is then executed. After that, another
Local DFA pass takes place for each block B that uses OUT [B] to compute the access
sets at each program point internal to B. For the sake of clarity, the pseudo-code of DCA
is shown in Listing 3.1 which details each one of these steps. Moreover, the code of the
Figure 3.2 is also used to illustrate the working of DCA.

GEN[B] = IN[s] ∣ s ∈ FIRST [B]

IN[B] = GEN[B]
(3.13)

The DCA algorithm described in Listing 3.1 runs in three steps for each function
F in the Module. A module has list of functions, a list of global variables, and others
useful informations that composes a source file. The first step of DCA performs local
analysis for all sentences of each basic blocks that belongs to the function F, according
to lines 3—8. For each basic block BB, it starts from its last sentence, and propagate

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 28

Listing 3.1: DCA algorithm
1 DCA(Module) {
2 f o r each F in Module {
3 f o r each BB in CFG {
4 f o r each s {
5 BB. s .OUT = ⊎S ∈ Succ[s] IN[S] ;
6 BB. s . IN = GEN[s] ⊍ (OUT [s] −KILL[s]) ;
7 }
8 }
9

10 f o r each BB in CFG
11 s0 = BB. F i r s t () ;
12 BB. IN = BB. s0 . IN ;
13 BB.GEN = BB. IN ;
14 }
15

16 do{
17 check = FALSE;
18 f o r each BB in CFG {
19 BB_old .OUT = BB.OUT;
20 BB_old . IN = BB. IN ;
21

22 BB.OUT = ⊎S ∈ Succ[B] IN[S] ;
23 BB. IN = GEN[B]⊍ (OUT [B] −KILL[B]) ;
24 i f (BB_old .OUT /= BB.OUT | | BB_old . IN /= BB. IN)
25 check = TRUE;
26 }
27 }whi l e (check) ;
28

29 f o r each BB in CFG {
30 sx = BB. Last () ;
31 BB. sx .OUT = BB.OUT;
32 }
33

34 f o r each BB in CFG {
35 f o r each s in BB {
36 BB. s .OUT = ⊎ IN [Succ s] ;
37 BB. s . IN = GEN[s] ⊍ (OUT [s] −KILL[s]) ;
38 }
39 }
40 }

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 29

Figure 3.2: Example to illustrate DCA, SBA and DCO algorithms.

accesses backwards until it reaches the first sentence of the block. In this first step, the
last sentence of the basic block starts with OUT[s] empty, as accesses at this points were
not propagated in the CFG yet. Sets OUT [s] and IN[s] are described, respectively, by
Equations 3.5 and 3.6.

The second step of DCA starts setting IN[B] and GEN[B] of each basic blocks
equal to the IN[S] of its first sentence, according to lines 10—14. After that, it runs the
global analysis, propagating informations through the basic blocks, according to the lines
16—27.

The first and second steps described above, respectively implement Local and Global
DCA, by applying the meet operator according to the Table 3.3 to define a new access
type and the Table 3.4 to define the new access device. Both also apply the combiner
operator to generate the IN[s] of all sentences and IN[B] of all basic blocks.

The last step applies Local DCA again; but, before it, the OUT[s] of the last sentence
of each basic block is updated according to the OUT [B] of the basic block.

For sake of clarity, consider the Figure 3.3 as a example of the three steps of the DCA
algorithm. To keep it simple, we are using only one sentence per basic block. Figure 3.3a
shows the sets generated by applying the first step of DCA. One particularity of this
first step is that the last sentences of each basic block started its OUT [s] as an empty
set. The second step, illustrated at Figure 3.3b, shows how the global DCA applies
the data flow equations at the basic block level. Observe that the basic block BB3

started its IN[BB3] and GEN[BB3] equal to the IN[s] of its first sentence, that is
IN[BB3]=GEN[BB3]={(A,R,CPU)}. Also in the second step, notice that the data flow
equation propagates the IN[BB3] to OUT [BB2], so that OUT [BB2]={(A,R,CPU)}.
The last step, as illustrated at Figure 3.3c, applies Local DCA again; however, it considers
the OUT [s] of the last sentence of block B equal to OUT [B]. For example, observe that
OUT [s3] is equal to OUT [BB2]. The last step of the DCA algorithm is applied in order
to update the sentences of each basic block with the data that was captured during the
global analysis.

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 30

Figure 3.3: Result of each step of the DCA algorithm.

(a) First Step — Local DCA (b) Second Step — Global DCA

(c) Third Step — Local DCA

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 31

3.2 Data Coherence Optimization (DCO)

The set of accesses at each program point resulting from DCA is used to implement Data
Coherence Optimization (DCO). This is done by means of two optimization passes that
run back-to-back on the program LLVM IR: (a) Shared Buffer Allocation (SBA) (see
Section 3.2.1) — this pass replaces CPU allocated data (through malloc or calloc) by
OpenCL shared buffers if the variables associated to the data are used by both CPU and
GPU; and (b) MapUnmap Insertion (MUI) (see Section 3.2.2) to insert calls to OpenCL
so as to keep variables coherent.

3.2.1 Shared Buffer Allocation (SBA)

The main goal of the SBA algorithm is to share buffers between CPU and GPUs. SBA
works by analyzing the program to identify CPU and GPU buffers that can be merged
into just one. Notice that DCA+DCO works upon the code generated by GPUClang
compiler, transforming the host-side code, which uses offload as a coherence method, into
a code that shares the same buffer between CPU/GPU.

Before starting running MUI algorithm, a tracking is performed to identify all CPU
buffers used by any GPU computation so that it identifies which malloc or calloc the
CPU buffer is associated. This is done to identify which buffers can be transformed in a
shared buffer between CPU and GPU. This is an inter-procedural analysis, since one GPU
execution can be in a function that does not allocate the CPU buffer. The pseudo-code
to identify shared buffers was shown on Listing 3.2.

The SBA algorithm starts by looking at sentences that call data offload functions to
identify which CPU variables are passed as a parameter to GPU kernels in map OpenMP
clauses (line 3). With the result, it takes all CPU’s variables that are passed as argument
to these calls, and for each variable, it runs a function called recursive_ud_chain (line
13), that checks recursively the ud-chain of the variable until it reaches the malloc or
calloc associated to it. This process is similar to the Reach Definitions Algorithm. This
function takes the variable v identified by calling identifyGPUBuffers and applies a ud-
chain on it. The result of this operation is a sentence si that is the definition of variable
v. If the definition found is not an argument of a function, or a sentence that calls malloc
or calloc, then a new ud-chain is applied for each variable that the sentence si uses. If
one sentence that matches a malloc or calloc is found, then this sentence is stored in a
set that is returned when the function finishes its execution. Otherwise, if it finds an
argument of a function as a result of the recursive_ud_chain, then all caller functions
are also analyzed, running on the same way, but starting from the argument passed as
parameter. At the end, after no more iterations of ud-chain is possible to be executed, the
function takes all variable pointers that have been reached and apply du-chain on them
to try to identify, forward on program flow, if some of those pointers are associated with
some malloc or calloc. This is necessary because it is possible that the CPU buffers are
allocated in different functions that the variable pointers are defined. After applying all
theses steps, and finding the CPU buffers associated to variable v, all reachable malloc or
calloc are returned and analyzed to checked if they are suitable to be replaced by OpenCL

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 32

Listing 3.2: Shared Buffer Allocation algorithm
1 SBA(DCA_result) {
2 f o r each F{
3 va r i a b l e s [] = ident i fyGPUBuffers (DCA_result) ;
4 f o r each v in v a r i a b l e s [] {
5 cpu_buffer [] = recursive_ud_chain (v) ;
6

7 i f (cpu_buffer [] . s i z e () > 1 && checkOf f load (cpu_buffer))
8 re turn 0 ;
9

10 bu f f e r = crea teSharedBuf f e r (cpu_buffer) ;
11 map(bu f f e r) ;
12 update_DCA(v , bu f f e r , DCA_result) ;
13 }
14 }
15 }

buffer creation calls.
Our goal with SBA is to share buffers between the CPU and the GPU if and only if

a given variable, at the end of this process, points to only one malloc or calloc function.
Lines 7—8 check if the recursive_ud_chain function returns more than one CPU pointer.
If the variable points to more than one CPU buffer, then it is necessary runtime support
to handle it, and SBA cannot be applied. If a given variable can point to more than
one buffer, the identification of the current buffer can only be done at runtime. To
illustrate better when this happens, consider the Figure 3.4. The SBA algorithm applying
the identifyGPUBuffers function will identify variable pointer, at sentence s7. Applying
function recursive_ud_chain to variable pointer, the first ud-chain will find sentences s5
and s6, where s5 points to A and s6 points to B. Applying one more time a ud-chain chain,
but now upon variables A and B, the function will find sentences s3 and s4, respectively,
i.e., the algorithm reaches two CPU buffers. If SBA transforms both buffers into a shared
buffer, it will be necessary to identify at runtime which flow is taken to set the argument
to the correct buffer.

SBA is restricted to some programs where the data offload is performed only in a
part of the CPU buffer. In order to keep the kernel function the same, without any
transformation, SBA must guarantee that the data offload occurs from the first element
of the CPU buffer being offloaded to the GPU. If this does not happens, then some
modifications must be done in the kernel function so that its computation works in the
correct positions of the shared buffer being create (adding offset in the buffers accesses).
SBA does not work in these cases in order to avoid any kind of modifications in the kernel
function. All these checks are done in line 7 of SBA algorithm by calling the checkOffload
function.

Finally, once identified only one buffer that variable v points to, then a shared buffer
between CPU and GPU is created overwriting the malloc or calloc by clCreateBuffer
function using flag CL_MEM_ALLOC_HOST_PTR. A map upon the shared variable
created is done in the sequence. Line 12 of the SBA algorithm updates all tuples of
DCA_result, by taking all tuples that have variable v, and modifying them to buffer,

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 33

Figure 3.4: A variable pointing to more than one CPU buffer.

since that is the information used by the following MUI pass to insert map and unmap
functions.

To clarify how the algorithm works, consider the Figure 3.4 with BB2 as an empty
basic block. Taking variable pointer at s7; after applying ud-chain on it, sentence s5

results as the variable that defines pointer. Applying one more time ud-chain, but on
variable A, that is used by sentence s5, it finds sentence s3, that creates a CPU buffer by
calling malloc. This malloc at sentence s3 is returned so that the shared buffer is created
and mapped to CPU use.

The most complex case when applying SBA is when it needs to track programs that
have CPU buffer allocation in a function other than the one running the GPU kernel.
Another complexity resides in the applications where the allocation of a variable is made
in a function different from the function that the variable was defined. In the case of
programs that define the execution kernels for the GPU in the same function that creates
the CPU buffers, usually the algorithm reaches the CPU buffer directly by applying a
single ud-chain.

3.2.2 Map/Unmap Insertion (MUI)

After DCA analysis is performed each program point p has associated to it a set Sp

containing all accesses that can be reached at some path starting at p. Therefore, one
can use Sp to determine which future accesses a variable might have and thus identify the
need to insert map or unmap instructions at p, an optimization pass of DCO that is called
Map/Unmap Insertion (MUI). In order to achieve that, MUI visits the CFG starting at its
first basic block towards its end. At each point p it compares the accesses in Sp against the
value of Current Access (CA), a tuple that is used by MUI to indicate who owns the pointer
to the shared buffer, and thus who controls its access. In a typical heterogeneous platform
CA = (v,[R,W,RW],[CPU,GPU]), and before MUI starts CA = (v,W,CPU), meaning that
the CPU controls the first access to the buffer of shared variable v.

The application of map and unmap can generate unnecessary overheads when applied
redundantly. The time taken by those functions are the time to maintain the CPU and

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 34

GPU cache memory updated, respectively. For example, the application of the unmap
function can increase the time taken by the GPU computation when in fact it could be
executed in the values that were in the cache memory previously its apply. MUI works
conservatively applying map and unmap functions when necessary in order to maintain
the program’s semantic. MUI also applies both functions in a way to reduce as much as
possible their redundant application.

Table 3.7: Call insertion during MUI.

CA Tuple Inserted Call New CA

(v,R,CPU)

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,R,GPU)
(v,W,GPU)
(v,RW,GPU)

–
–
–
–
unmap
unmap

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,R,CPU)
(v,W,GPU)
(v,RW,GPU)

(v,W,CPU)

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,R,GPU)
(v,W,GPU)
(v,RW,GPU)

–
–
–
unmap
unmap
unmap

(v,W,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,R,GPU)
(v,W,GPU)
(v,RW,GPU)

(v,RW,CPU)

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,R,GPU)
(v,W,GPU)
(v,RW,GPU)

–
–
–
unmap
unmap
unmap

(v,RW,CPU)
(v,RW,CPU)
(v,RW,CPU)
(v,R,GPU)
(v,W,GPU)
(v,RW,GPU)

CA Tuple Inserted Call New CA

(v,R,GPU)

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,R,GPU)
(v,W,GPU)
(v,RW,GPU)

map
map
map
–
–
–

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,R,GPU)
(v,W,GPU)
(v,RW,GPU)

(v,W,GPU)

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,R,GPU)
(v,W,GPU)
(v,RW,GPU)

map
map
map
–
–
–

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,RW,GPU)
(v,W,GPU)
(v,RW,GPU)

(v,RW,GPU)

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,R,GPU)
(v,W,GPU)
(v,RW,GPU)

map
map
map
–
–
–

(v,R,CPU)
(v,W,CPU)
(v,RW,CPU)
(v,RW,GPU)
(v,RW,GPU)
(v,RW,GPU)

Now, consider for example that CA = (u,W,CPU) at the entry of B0 in Figure 3.1(a).
When MUI reaches p it notices that Sp = {(u,W,CPU)} and thus nothing needs to be
done. On the other hand, when MUI moves to p+1 it notices that Sp+1 = {(u,R,GPU)}
and thus a future read access will be performed by the GPU. Hence, an unmap operation
needs to be inserted on the edge to B1 in order to flush the values of u updated by the
CPU and to hand the shared pointer to the GPU. As a result DCO updates the value of
CA to (u,R,GPU). Assume that the flow of execution moves from B0 to B1. Given that
CA = (u,R,GPU) nothing needs to be done at the entry of B1, and CA value continues
(u,R,GPU).

MUI uses Table 3.7 in order to generalize the insertion of map and unmap calls at each
program point. That table shows for each value of CA and access Ai ∈ Sp at program
point p the resulting call which should be inserted at that point. Observe that map and
unmap calls not only have the role of keeping coherence but are also used to transfer buffer
control between CPU/GPU.

How MUI works is discussed below. For clarity, the pseudo-code for MUI is shown
in Listing 3.3.

MUI starts its computation from the information captured by DCA. It also uses all the
shared buffers that were created by SBA. To each shared buffer, MUI makes the coherence
of it at each function by inserting map and unmap functions. In this version, the algorithm
is conservative, that is, it ensures that every function of the program starts and ends with
the shared buffers mapped to CPU.

Lines 5–7 in the pseudo-code shows that the first basic block from function F is taken
to be optimized. The algorithm starts setting its CA with access device equal to CPU

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 35

and access type equal to W. Following, lines 9—12, some sets are initialized to hold some
important data during MUI execution. Set reachableBB is used to identify basic blocks
that are ready to be optimized so that it applies map and unmap functions between its
sentences and its successors. A basic block BB is said ready to be optimized when all
its successor’s were optimized by MUI; in other words, when all its successors’ CA are
defined. The visitedBB set is used to track all basic blocks already optimized and the
checkAfter set holds all basic blocks that are reachable, but do not have the CA defined.
Lines 15—90 do the insertion of map and unmap function calls for each basic block BB
that belongs to function F, starting from its first basic block. Lines 26—29 identify the
transitions CPU↔GPU between the sentences of the basic block BB, and insert map or
unmap according to Table 3.7.

The next step is to identify which basic blocks are ready to be optimized. MUI starts
by checking all successors of BB seeking its devices captured during the DCA algorithm.
The possible devices are CPU, GPU and X. As shown in lines 35—44, if the successor’s
device is defined as CPU, and the CA of BB has been finished with GPU’s device, then it is
necessary to insert a map call between BB and its successor. Otherwise, as shown in lines
45—55, the inverse occurs when the successor’s device is defined as GPU, being necessary
to insert an unmap call between BB and its successor. Observe that in both cases a new
basic block may be necessary, depending on the number of predecessors of BBSucc. This
is necessary to avoid conflicts in different execution flows. Finally, when the successor’s
device is undefined, i.e., defined as X by DCA, some more checks become necessary. First,
if the number of predecessors of BBSucc is just one (lines 57—59), it means that only one
execution flow is possible to reach BBSucc so that its CA can be updated using the CA
of its unique predecessor. Otherwise, if the number o predecessors of BBSucc is larger
than one, it is necessary to check if all predecessors of BBSucc were optimized, so that
it is possible to identify if it is necessary to insert map or unmap calls between BBSucc
and its predecessors. To check this, line 61 identifies if all predecessors of BBSucc were
optimized. If at least one predecessor was not optimized at this point, BBSucc is inserted
into checkAfter set. Notice that line 63 identifies if there is a combination of two CA
equal to CPU and GPU among the predecessors of BBSucc. If so, then the access device of
BBSucc is set with device equal to CPU, so that it becomes necessary to check the need
of inserting a map call between its predecessors that finished with CA equal to GPU.

By definition, any variable enters and leaves all functions mapped to CPU. As so, MUI
certifies, before starting to analyze the next variable, if the current variable v of function
F is mapped to GPU at the last sentence of F, according to lines 92—95. If so, a map
function is called to ensure that the variable finishes its execution mapped to the CPU.

The algorithm finishes when all functions with all its basic blocks were already analyzed
and optimized according to the variables that were previously identified and created as
shared buffer between CPU and GPU.

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 36

Listing 3.3: DCO algorithm
1 MUI(DCA_result , Module) {
2 f o r each F in Module {
3 f o r each v in v a r i a b l e s [] {
4 FirstBB = F. f r on t () ;
5 CA. dev i c e = CPU;
6 CA. type = W;
7 updateTopCA(FirstBB , v , CA) ;
8

9 reachableBB . c l e a r () ;
10 vis i tedBB . c l e a r () ;
11 checkAfter . c l e a r () ;
12 reachableBB . i n s e r t (FirstBB) ;
13

14 counter = 0 ;
15 do{
16 i f (! reachableBB [counter]) {
17 BB = checkAfter . push_back () ;
18 reachableBB . i n s e r t (BB) ;
19 CA = checkPredece s so r s (BB) ;
20 updateTopCA(BB, v , CA) ;
21 }
22 BB = reachableBB [counter] ;
23 CA = getTopCA(BB, v) ;
24 vis i tedBB . i n s e r t (BB) ;
25

26 f o r each s in BB{
27 hasChanged = setMapOrUnmapIfNecessary (CA, s) ;
28 updateCA(CA, hasChanged) ;
29 }
30 updateBottomCA(BB, v , CA) ;
31 BBSuccs [] = ge tSucce s so r (BB) ;
32 f o r each BBSucc in BBSuccs [] {
33 numPred = getNumberOfPredecessor (BBSucc) ;
34

35 i f (getINScopeBB (BBsucc , v) == CPU){
36 i f (CA. dev i ce == GPU){
37 i f (numPred > 1) {
38 newBB = createNewBB(BB, BBSucc) ;
39 map(newBB, v , newBB. f r on t ()) ;
40 }
41 e l s e map(BBSucc , v , getLastSentence (BBSucc)) ;
42 }
43 updateTopCA(BBSucc , v , CA) ;
44 }
45 e l s e i f (getINDeviceBB (BBsucc , v) == GPU){
46 i f ((CA. dev i ce == CPU && CA. type == W) | |
47 (CA. dev i c e == CPU && getINTypeBB(BBsucc , v) != R)) {
48 i f (numPred > 1) {
49 newBB = createNewBB(BB, BBSucc) ;
50 unmap(newBB, v , newBB. f r on t ()) ;
51 }
52 e l s e unmap(newBB, v , getLastSentence (BBSucc)) ;

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 37

53 }
54 updateTopCA(BBSucc , v , CA) ;
55 }
56 e l s e i f (getINDeviceBB (BBsucc , v) == X){
57 i f (numPred == 1) {
58 updateTopCA(BBSucc , v , CA) ;
59 }
60 e l s e i f (numPred > 1) {
61 i f (checkI fAl lPredWereVis i ted (BBSucc)) {
62 newCA. type = getCATypeCombination (BBSucc) ;
63 hasCombination = getCombination (BBSucc) ;
64

65 i f (hasCombination) {
66 newCA. dev i ce = CPU;
67 BBPreds [] = ge tPredec e s so r s (BBSucc) ;
68 f o r each BBPred in BBPreds [] {
69 i f (BBPred . bottom . v == GPU){
70 createNewBB(BBPred , BBSucc) ;
71 map(newBB, v , newBB. f r on t ()) ;
72 }
73 }
74 }
75 e l s e newCA. dev i ce = CA. dev i c e
76

77 updateTopCA(BBSucc , v , newCA) ;
78 i f (checkAfter . f i nd (BBSucc))
79 checkAfter . remove (BBSucc) ;
80 }
81 e l s e checkAfter . i n s e r t (BBSucc) ;
82 }
83 }
84 }
85

86 f o r each BBSucc in BBSuccs [] {
87 i f (! v is i tedBB . f i nd (BBSucc) && ! checkAfter . f i nd (BBSucc))
88 reachableBB . i n s e r t (BBSucc) ;
89 counter++;
90 }whi l e (! v is i tedBB . allBB ())
91

92 BB = getLastBas icBlock (F) ;
93 CA = getBottonCA (BB, v) ;
94 i f (CA. dev i ce == GPU)
95 map(BB, v , getLastSentence (BB)) ;
96 }
97 }
98 }

CHAPTER 3. DATA COHERENCE ANALYSIS AND OPTIMIZATION 38

Figure 3.5: Result of applying SBA and MUI after DCA.

The result achieved by applying MUI, after applying DCA and SBA, in the CFG of
the Figure 3.2, is showed in Figure 3.5. Before, applying SBA on the code, variable A
used by function GPUKernelD is taken, so that it attempts to find the sentence where the
CPU buffer is created. Observe that it is found in sentence s1 of the code of Figure 3.2,
where the CPU buffer is created by calling malloc. Once found, the malloc is overwritten
by clCreateBuffer, so that this buffer becomes shared between CPU and GPU. After that,
a map function is called, according to sentence s2 of Figure 3.5. With the shared buffer
created, MUI is then applied. BB0 starts its CA equal to (CPU,W). Basic block BB1,
that has a tuple with variable A with CPU device in its IN[BB1], does not require
neither map and unmap calls, since basic block BB0 has finished its CA with device also
pointing to CPU. The contrary happens with BB2, that has variable A with device GPU
in its IN[BB2]; hence it requires an unmap function call. In sequence, BB2 requires a
map call since basic block BB3 has variable A pointing to CPU.

Chapter 4

Related Works

Previous work have shown that sharing host/device buffers in a shared memory inte-
grated CPU-GPU can considerably improve program performance when comparing to a
separate CPU-GPU architecture. Nilakant et al. [31] showed that using shared buffers
in an integrated CPU-GPU outperforms by 15% to 50% the same application running
on a separate CPU-GPU architecture. Backes et al. [21] showed a 30% improvement
in the overall execution time when running the real-time image processing application
SLAM on an integrated CPU-GPU architecture of a mobile device [31]. Shen et al. [33]
also reached good speed-ups by reducing more than 80% of the transfer time through
an adequate usage of the OpenCL memory flag CL_MEM_ALLOC_HOST_PTR. These works
require the programmer to directly deal with the problem of sharing and making the data
between CPU-GPU coherent. In GPUClang/DCO this task is automatically handled by
the compiler.

Jablin et al. [27] proposed an approach to automatically manage and optimize CPU-
GPU communication. They proposed a system called CPU-GPU Communication Man-
ager (CGCM) that removes from the programmer the task of manually manage data
transfers in a separate CPU-GPU architecture. Their solution maps a buffer to GPU by
allocating memory and copying it to the GPU memory automatically. Their approach
has a function called unmap, to update the CPU buffer with the data modified by the
GPU. Likewise, our work uses map /unmap functions, but our goal is to make coherence
of a buffer physically shared between CPU and GPU.

Jablin et al. [26] proposed a solution called Dynamically Managed Data (DyManD),
to automatically handle the data communication using a run-time library, without the
need of any static analysis. Their solution creates an illusion of a buffer being shared
between CPU and GPU; but, their library performs data offloading, since their memory
allocator keeps equivalent allocation in both CPU and GPU; moreover, the data transfer
from CPU to GPU only happens when needed, and the data transfer from GPU to
CPU only occurs on data that was modified by the GPU. GPUClang/DCO avoids the
automatic data transfer between CPU and GPU thus ensuring coherence, as only one
buffer is created and shared between them.

Various approaches have been tried before to raise the level of abstraction of OpenCL
programming. Thouti et al. proposed a methodology that takes function calls from C
language and convert them to an equivalent OpenCL Kernel to be executed on GPU’s

39

CHAPTER 4. RELATED WORKS 40

devices [35]. The limitation is that it only works on function calls. Thouti has mentioned
about the use of shared buffer between CPU and GPU, but they chose to use offloading.

To make GPU programming easy, Lee et al. [28] developed a source-to-source solution
from OpenMP directives to CUDA. Their solution extract marked regions to be executed
on GPUs. They developed an algorithm that reduces CPU-GPU memory transfers by
only copying back the data modified inside the kernel region that is needed by the CPU
afterwards. They also developed similar features as in [24]. Different from their solu-
tion, our work shares data buffers between CPU and GPU, without the need of memory
transfers.

Said et al. developed hiCL [32], an abstraction layer that was developed on top of
OpenCL in order to reduce the programming burden, simplifying the memory manage-
ment and the kernel execution. They developed functions to map buffers physically shared
between the CPU and GPU; however, their solution only abstracts the OpenCL complex-
ity, letting the programmer the work of make the coherence annotations in the code.

Becchi et al. [40] developed a runtime library that automatically schedule kernels to
the GPU. Besides that, their solution identifies when it is worth to send a computation
to the GPU; it analyzes the data size, during runtime, to decide if the computation will
be executed on CPU or GPU. Also, their solution manages data placement, so that data
offload is done only when it is necessary. The solution requires data offload and besides
that, it also uses a runtime library to decide when to offload the data to GPU and when
to execute a computation in both CPU and GPU.

Some solutions that translate OpenMP to OpenCL or CUDA have been developed.
Grewe et al. [41] developed a solution using this approach that generates an optimized
kernel. Also, their approach is capable to determine when to move a computation to the
GPU by using machine learning. Ferrer et al. [42] developed a solution called OMPSs
that uses the same approach to offload execution. However, unlike the DCO optimization
described in this work, both solutions also require offloading data to the GPU.

Some previous approaches proposed new architectural models for sharing and making
data coherent between CPU and GPU. Gelado et al. developed a solution called Asym-
metric Distributed Shared Memory (ADSM) [22]. Their approach maintains a shared
logical memory space for CPUs to access an object in the physical memory of the ac-
celerator, but not vice versa. They also focused on portability so that their library run
on different devices. This assures coherence between CPU-GPU by means of duplicated
memory spaces, one that is hosted on the device and other on the host; hence, so that
memory copies are necessary to update both buffers. Furthermore, in their solution the
programmer needs to manually assign coherence annotations. Our work proposes an ap-
proach in which CPU and GPU share the same address space and programmers do not
need to insert coherence annotations.

Henry et al. proposed the SOCL platform that enables the coordination of multiples
devices [25]. SOCL performs data transfers and kernel scheduling automatically. Their
solution handles load-balancing issues and maintains the data coherency across all devices
by performing appropriate data transfers among all devices. Their solution works on
multiples devices that need memory transfers while our solution aims at integrated CPU-
GPU architectures with shared memory.

CHAPTER 4. RELATED WORKS 41

Han et al. developed directives called hiCUDA, a high-level directive-based language
for CUDA programming [24]. Their solution works with pragmas, using several CUDA
features as well as shared scratchpad memories. Their approach performs a source-to-
source translation that relieves the programmer from the sometimes tedious and error-
prone task of writing device code. Like other approaches, their solution needs explicit
data transfers before dispatching the kernel and after performing the computation.

NVIDIA have included new mechanisms as Unified Memory and Page Migration En-
gine in CUDA 8 [11]. Buffers created using CUDA 8 works as a single pointer accessible
anywhere (by both CPU/GPU). With this resource, programs running using CUDA 8
works without the need of memory transfer. They have also created ways to access the
single pointer simultaneously by both CPU and GPU. Their solution works in a page-
fault fashion, where the coherence is made by the CUDA driver in page granularity. Their
solution has already solved the coherence between CPU/GPU for discrete GPUs. Our
work propose a solution to solve coherence in software for integrated GPU.

Chapter 5

Experimental Evaluation

This section presents an experimental evaluation of the Data Coherence Optimization
(DCO) implementation inGPUClang . Section 5.1 describes the infrastructure and method-
ology used in the experiments and Sections 5.2 – 5.3 report their results.

GPUClang and DCO have been evaluated using two integrated CPU-GPU architec-
tures: (a) a mobile Exynos 8890 Octa-core CPU (4x2.3 GHz Mongoose & 4x1.6 GHz
Cortex-A53) integrated with an ARM Mali-T880 MP12 GPU (12x650 Mhz) running An-
droid OS, v6.0 (Marshmallow); and (b) a laptop with 2.4 GHz dual-core Intel Core i5
processor integrated with an Intel Iris GPU with 40 execution units. The results pre-
sented in all experiments are averaged over ten executions. Variance is negligible; hence,
we will not provide error intervals.

The experiments use a set of programs from the well-known Polybench benchmark
suite with standard input sizes [6]. The programs have been re-written in OpenMP 4.X.
For the sake of simplicity we refer to this set of modified programs as the Polybench suite.

5.1 GPUClang Environment

Although OpenCL provides a library that eases the task of offloading kernels to devices,
its function calls are complex, have many parameters and require the programmer to have
some knowledge of the device architecture’s features (e.g. block size, memory model, etc.)
in order to enable a correct and effective usage of the device. Hence, OpenCL can still be
considered a somehow low-level library for heterogeneous computing.

Introduced through OpenMP 4.0 the new OpenMP Accelerator Model [14] proposes
a number of new clauses aimed at speeding up the task of programming heterogeneous
architectures. This model extends the concept of offloading and enables the programmer
to use dedicated directives to define offloading target regions that control data movement
between host and devices. Although most OpenMP directives used for multicore hosts can
also be used inside target regions, the new accelerator model easies the tasks of identifying
data-parallel computation.

GPUClang is an LLVM/Clang based compiler aimed at implementing the OpenMP
Accelerator Model. It adds an OpenCL runtime library to LLVM/CLang that supports
OpenMP offloading to devices like GPUs and FGPAs. The kernel functions are extracted

42

CHAPTER 5. EXPERIMENTAL EVALUATION 43

from the OpenMP region and are dispatched as OpenCL [2] or SPIR [3] code to be loaded
and compiled by OpenCL drivers before being executed by the device. This whole process
is transparent and does not require any programmer intervention.

GPUClang OpenCL runtime library has two main functionalities: (a) it hides the
complexity of OpenCL code from the compiler; and (b) it provides a mapping from
OpenMP directives to the OpenCL API, thus avoiding the need for device manufacturers
to build specific OpenMP drivers for their GPUs or FPGAs.

Listing 5.1 presents two loops from mvt program of the Polybench [6] benchmark suite
after they have been annotated with OpenMP 4.X clauses. In the first loop the program
computes the matrix vector multiplication followed by the transpose between a and y1
storing the result into vector x1. The second loop does a similar task for a, y2 and x2.
As shown in Listing 5.1, the target clause defines the portion of the program that will
be executed by the target device (i.e. GPU). The map clause details the mapping of the
data between the host and the target device. For example in the first kernel of Listing 5.1
inputs (a and y1) are mapped to the GPU, and array x1 is mapped to/from the GPU.
This means that array x1 is read and written during the kernel execution in the GPU.
This strategy offers maximal flexibility to the developer decide what part of the code is
profitable to run on which architecture.

Listing 5.1: Piece of Polybench mvt benchmark application
1 // Problem s i z e
2 #de f i n e N 8192
3

4 void mvt_gpu(f l o a t ∗ a , f l o a t ∗ x1 , f l o a t ∗ x2 ,
5 f l o a t ∗ y1 , f l o a t ∗ y2)
6 {
7 i n t i , j ;
8

9 #pragma omp ta rg e t dev i ce (GPU)
10 #pragma omp ta rg e t map(to : a [:N∗N] , y1 [:N]) map(tofrom : x1 [:N])
11 #pragma omp p a r a l l e l f o r
12 f o r (i =0; i<N; i++)
13 f o r (j =0; j<N; j++)
14 x1 [i] = x1 [i] + a [i ∗N + j] ∗ y1 [j] ;
15

16 #pragma omp ta rg e t map(to : a [:N∗N] , y2 [:N]) map(tofrom : x2 [:N])
17 #pragma omp p a r a l l e l f o r
18 f o r (i =0; i<N; i++)
19 f o r (j =0; j<N; j++)
20 x2 [i] = x2 [i] + a [j ∗N + i] ∗ y2 [j] ;
21 }

Figure 5.1 shows the GPUClang compiler pipeline. The OpenMP-OpenCL transfor-
mation pass generates two outputs. First, GPUClang extracts annotated loops from the
AST and transforms them to OpenCL kernels in source code format. The generated ker-
nel can also go through the SPIR generation pass to produce kernel bit code in the SPIR
format. The second output describes which parameters should be passed to the kernel
and the number of blocks and threads that it will run in the device. This information is
used by the compiler code generator to increase kernel performance. GPUClang leverages
on ISL [30] polyhedral model optimizations [29] to transform the extracted loops so that
they can be tiled and mapped to the blocks and threads in the OpenCL kernel code. It
implements a multilevel tiling strategy tailored to the multiple levels of parallelism and to

CHAPTER 5. EXPERIMENTAL EVALUATION 44

the memory hierarchy of GPU accelerators. As an example, tiling can be directly applied
to the loops of Listing 5.1, as outermost loops can be executed in parallel because their
iterations update disjoint parts of the x1 and x2 arrays.

Figure 5.1: GPUClang compiler pipeline.

Host	Code
Generation

Host	Code
Optimization

Kernel
OpenCL

Host	
Binary

OpenMP -- OpenCL transformation

Parallel		
FOR	

Extractor

CL	Code	
Generation

Polyhedral
Optimization

Kernel
SPIR-V

SPIR-V
Generation

Source	Code AST
Generation

5.2 DCO Performance Analysis

One of the claims of this work is that DCO brings an improvement over the regular
data offloading/coherence mechanism. To evaluate that, the OpenCL runtime library,
a component of the GPUClang compiler, was instrumented to measure the percentage
of the total program execution time corresponding to each one of the following tasks
represented as bars in Figures 5.2a – 5.2d: (a) kernel computation (Kernel bar); (b)
OpenCL driver tasks like context creation, queue management, kernel objects creation
and GPU dispatch (OpenCL bar); and (c) kernel data offloading/coherence (Offloading
bar). As shown in Figures 5.2a – 5.2b the Offloading bar is a major component of the
total kernel execution time before DCO is applied; for example approximately 40% of the
total execution time of 3dconv on the Intel/Iris architecture is spent on offloading data
and maintaining coherence.

Figures 5.2c – 5.2d show the results after applying DCO to the Polybench programs. As
shown in the figure, after DCO inserts OpenCL map/unmap calls into the proper program
points almost all data offloading and coherence overhead (Offloading bar) is removed
from the programs. For example, the mvt application in Listing 5.1 (Section 5.1) has
two kernel functions that are dispatched to the GPU. The first kernel computation on
Intel/Iris spent 187 ms on 8192 square array of float values while offloading takes 43 ms
(23%). The second kernel computation is 173 ms while offloading consumes 47 ms (27%).
Overall the time to offload data to these two kernels is 25% of mvt total execution time
(360 ms) and this is entirely eliminated after DCO is applied (Figures 5.2c – 5.2d).

Figures 5.2a – 5.2b also reveal that the OpenCL driver takes an astonishing share of the
total execution time on most Polybench programs (OpenCL bar). As shown in the figure,
this effect is more pronounced in the ARM/Mali architecture meaning that the OpenCL
driver for this architecture needs some performance improvement.

Figures 5.2a – 5.2c and Figures 5.2b – 5.2d show that DCO can remove most of the
program offloading overhead. In order to evaluate its corresponding performance gains,

CHAPTER 5. EXPERIMENTAL EVALUATION 45

Figure 5.2: The breakdown of total execution time: (a) & (b) before DCO optimization
(c) & (d) after DCO optimization

(a) ARM/Mali

��

���

���

���

���

����

��
��
��

��
�

��
��
��

��
�

��
��

��
�� ��

��

��
��
�

��
��
��
�

��
�
�

��
��
�
�
�

��
��
��
�� �

��

��
��
�

��
��

�
�
�
�
�
��
��
��
��
���

�

(b) Intel/Iris

��

���

���

���

���

����

��
��
��

��
�

��
��
��

��
�

��
��

��
�� ��

��

��
��
�

��
��
��
�

��
�
�

��
��
�
�
�

��
��
��
�� �

��

��
��
�

��
��

�
�
�
�
�
��
��
��
��
���

�
(c) ARM/Mali

��

���

���

���

���

����

��
��
��

��
�

��
��
��

��
�

��
��

��
�� ��

��

��
��
�

��
��
��
�

��
�
�

��
��
�
�
�

��
��
��
�� �

��

��
��
�

��
��

�
�
�
�
�
��
��
��
��
���

�

��������� ������ ������

(d) Intel/Iris

��

���

���

���

���

����

��
��
��

��
�

��
��
��

��
�

��
��

��
�� ��

��

��
��
�

��
��
��
�

��
�
�

��
��
�
�
�

��
��
��
�� �

��

��
��
�

��
��

�
�
�
�
�
��
��
��
��
���

�

��������� ������ ������

Figure 5.3: GPUClang+DCO Speedup with respect to GPUClang (both -O2 -opt-tile).

(a) ARM/Mali

��

����

��

����

��

����

��
��
��

��
�

��
��
��

��
�

��
��

��
�� ��

��

��
��
�

��
��
��
�

��
�
�

��
��
�
�
�

��
��
��
�� �

��

��
��
�

��
��

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
��
�
�
�
�
��
�
�

(b) Intel/Iris

��

����

��

����

��

����

��
��
��

��
�

��
��
��

��
�

��
��

��
�� ��

��

��
��
�

��
��
��
�

��
�
�

��
��
�
�
�

��
��
��
�� �

��

��
��
�

��
��

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
��
�
�
�
�
��
�
�

CHAPTER 5. EXPERIMENTAL EVALUATION 46

Table 5.1: Absolute runtime & speed-ups for Polybench benchmark suite.

ARM/Mali Intel/Iris
Benchmarks Sequential GPUClang GPUClang+DCO Seq. GPUClang GPUClang+DCO

(-O2) (-O2 -opt-tile) (-O2 -opt-tile) (-O2) (-O2 -opt-tile) (-O2 -opt-tile)
name size Time (sec) Time Speedup Time Speedup Time Time Speedup Time Speedup
2dconv 8192 1.71 4.54 0.38 3.56 0.48 0.37 0.22 1.66 0.15 2.52
2mm 1024 123.19 2.33 52.87 2.27 54.27 12.04 0.29 41.18 0.30 40.45
3dconv 512 7.20 10.77 0.67 6.42 1.12 0.86 0.55 1.54 0.27 3.14
3mm 1024 39.54 1.50 26.36 1.37 28.86 18.03 0.34 53.56 0.37 49.19
atax 8192 0.29 2.16 0.13 1.84 0.16 0.10 0.34 0.28 0.32 0.30
bicg 8192 0.49 1.98 0.25 1.82 0.27 0.23 0.34 0.65 0.32 0.71
correlation 1024 5.33 3.17 1.68 3.17 1.68 1.35 0.64 2.10 0.66 2.06
covariance 2048 94.74 3.75 25.26 3.55 26.69 69.39 3.71 18.68 3.77 18.42
fdtd-2d 2048 12.99 12.73 1.02 12.53 1.04 3.17 2.81 1.12 2.83 1.12
gemm 2048 198.35 2.55 77.78 2.37 83.69 85.36 0.95 89.64 0.94 91.23
gesummv 8192 0.50 4.14 0.12 3.66 0.14 0.33 0.60 0.54 0.50 0.66
gramschmidt 512 1.05 14.28 0.07 2.72 0.39 0.95 0.55 1.73 0.32 3.00
mvt 8192 2.15 2.14 1.00 1.81 1.19 0.16 0.36 0.43 0.29 0.54
syr2k 1024 2.93 4.67 0.63 4.63 0.63 2.51 2.06 1.21 2.10 1.20
syrk 2048 11.96 16.41 0.73 15.87 0.75 9.42 3.65 2.57 3.82 2.47

we measured the speedup of each application with DCO over the same application without
applying this optimization. The results in Figures 5.3a – 5.3b indicate that DCO reduces
the total execution time of benchmarks with large read and write data sets. Examples
are 2dconv (up to 1.5x on Intel/Iris) and 3dconv (2.0x), gramschmidt (up to 5.3x on
ARM/Mali), atax (1.2x) and mvt (1.2x).

The high speed-up achieved by gramschmidt is caused by the elimination of multiples
data offload that is performed during its execution, where most of them are performed
without any need. By eliminating all those data offload, the GPU can works better since
it may be benefited by the data being in cache among others architectural issues related.
In our experiments, we have noticed that besides eliminating almost 2.8 seconds of the
time taken by data offload, DCO also have reduced the time taken by the GPU execution
from 2.73 to 1.07 seconds. It also benefits from buffer creation, since that GPUClang
create and release the buffers for each iteration.

5.3 Data Size Analysis

Table 5.1 shows absolute runtime numbers for the Polybench programs, in three different
setups: (a) Sequential execution; (b) Parallel execution using GPUClang ; and (c) Paral-
lel execution using GPUClang with DCO. As expected, substantial speed-ups have been
produced in some of the programs that run the longest times. The slowdowns that can
be observed in benchmarks such as 2dconv , atax , bicg and mvt , happened in instances
that execute for a very short time. In such cases, the extra parallelism achieved by GPU-
Clang with or without DCO optimization is not enough to pay off for the time to create
and manage buffers in shared memory. To confirm this analysis, a new experiment was
performed with these applications to measure the percentage of the total kernel execution
time due to the OpenCL overhead when varying the kernel data sizes. As expected, Fig-
ures 5.4a – 5.4b show that longer executions times can amortize the OpenCL overhead.
The immediate effect is a decrease of slowdown or even an increase in the speed-up rel-
ative to the sequential execution for the Intel/Iris architecture, as shown in Figures 5.4a
– 5.4b represented by points and lines on the graphs. For instance, 2dconv benchmark
shows a slowdown of 0.35x for data size equals to 2048 and a speed-up of 1.90x when
the data size is 8192. However is is not true on ARM/Mali architecture. The increase

CHAPTER 5. EXPERIMENTAL EVALUATION 47

Figure 5.4: OpenCL overhead variation with the data set size.

(a) ARM/Mali

��

���

���

���

���

����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

����

��

����

��

�
�
�
�
�
��
��
��
��
���

�

�
�
�
�
�
��
�

�
�
�
�
��
�
�
�
�
�
�
���
�

������ ������

�����������������

(b) Intel/Iris

��

���

���

���

���

����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

����

��

����

��

�
�
�
�
�
��
��
��
��
���

�

�
�
�
�
�
��
�

�
�
�
�
��
�
�
�
�
�
�
���
�

������ ������

�����������������

of slowdown for greater sizes, mainly in the 2dconv benchmark can be explained by the
memory limitation of mobile devices.

Also according to the Table 5.1, it is possible to observe that the DCO algorithm
enables to achieve speed-up in programs that have slowdown with GPUClang without
optimization. As an example, consider the execution of 3dconv on ARM/Mali. The
GPUClang with DCO achieves speed-up of 1.12x. Otherwise, when this application was
compiled with GPUClang without the DCO optimization, we obtained a slowdown of
0.67x.

The benefit of DCO becomes clear as the complexity of the algorithms and the sizes
of the data sets increase. “Gram-Schmidt decomposition” (gramschmidt) is an example.
The kernel functions were extracted from inner loops and the offloading version looses
performance with repeated data movement and GPU buffer creation and destruction,
which does not occur in the DCO optimized version. We conclude that programs that
create buffers more than once, as occur during the execution of gramschmidt , generate
unnecessary data movement overhead. DCO can detect this situation and take advantage
of it, since the buffers are created only once and used throughout the program.

DCO also improves the usage of memory space when compared to standard host size
allocation since the buffers are created only in the device shared memory. For example,
without DCO the execution of the benchmark 3dconv with 512 elements in each dimension
requires 2.5 GB of memory space, since the data is stored in the CPU memory and then
copied to GPU memory upon execution. When applying DCO CPU and GPU share the
same buffer and thus the memory requirement for execution is reduced to 1.5 GB.

When you increase the program data size, the relative time represented by the kernel
execution tends to increase, while the relative time represented by the OpenCL tends
to reduce. An experiment performed on ARM/Mali (see Figure 5.5) show the OpenCL
associated overheads are those that achieve significant reductions. This time becomes
insignificant when compared with the time of kernel execution and data offload. Moreover,
for most programs the time taken by data offload remains almost constant when increasing
the program data size.

Moreover, we also noticed that programs that spend more time executing the kernel
computation do not benefit from DCO optimization. In such cases, as program data size

CHAPTER 5. EXPERIMENTAL EVALUATION 48

Figure 5.5: Data Offload overhead variation with the data set size (-opt-vectorize).

 0

 20

 40

 60

 80

 100

2048 4096 8192 128 256 512 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

%
 o

v
e
r

to
ta

l
ti

m
e

Offload OpenCL Kernel

MVTGESUMMVBICGATAX3DCONV2DCONV

Table 5.2: Absolute runtime & speed-ups for Parboil and Rodinia benchmark suite.

Benchmarks Sequential GPUClang GPUClang+DCO Speedup
name Time (sec) Time Speed-up Time Speed-up GPUClang/DCO
mri-q 25.33 5.32 4.75 5.07 4.99 1.05
spmv 2.77 0.61 4.52 0.45 6.17 1.37
bfs 0.40 1.34 0.29 0.49 0.82 2.75
hotspot 0.09 0.89 0.09 0.78 0.11 1.14
lud 2.03 5.80 0.34 5.76 0.35 1.01
srad 2.84 4.59 0.61 4.30 0.66 1.07

increases, the time taken by the kernel execution also increases, sometimes exponentially,
as for example insyr2k and syrk applications. On the other hand, when GPU computation
complexity is low, and data offloading is high, increasing the size of the data increases
the speed-up achieved by applying the DCO optimization. Now, if the memory used by
the application is extremely large so that it generate cache misses, page fault, etc, DCO
optimization can become a solution because it reduces the data size by combining the
CPU and GPU buffers in just one shared buffer.

DCO also works well when applied on more complex benchmarks, such as Rodinia[8]
and Parboil[7]. We did an experimental evaluation of these benchmarks on ARM/Mali,
where each program was executed with the highest data set available. Table 5.2 shows
the results for absolute runtime and speed-ups and Figure 5.6 shows, for each program,
how the time is distributed among OpenCL Offloading and Kernel. Notice that for all
programs, most of the time is taken by OpenCL. It happens because all programs execute
their kernel thousands of times, since the GPU computation is inside a loop generating
high overhead for the OpenCL Driver to manage it. Programs bfs and hotspot deserve
more attention because their kernels are called thousand of times, and thus at each iter-

CHAPTER 5. EXPERIMENTAL EVALUATION 49

Figure 5.6: The breakdown of total execution time without DCO optimization.

 0

 20

 40

 60

 80

 100

m
ri-

q
sp

m
v

bf
s

ho
ts
po

t
lu
d

sr
ad

%
 o

v
e
r

to
ta

l
ti

m
e

Offloading OpenCL Kernel

ation data offload is performed. This overhead can be removed when applying the DCO
optimization.

One can observe that after DCO is applied to bfs and spmv speed-ups of 2.75x and
1.37x respectively result. Also notice that offload represents a big portion of the execution
times of both programs, what is due to the fact that buffers are created multiple times
within a loop. After applying DCO the resulting optimized program creates shared buffers
only once what explains the improved speed-ups. The other programs were not affected
by DCO because all them create buffers before entering the loop that executes multiple
times the same kernel.

Chapter 6

Conclusions and Future Works

This dissertation described DCAO, a Data Coherence Analysis and Optimization, that
has its root in the observation that making variables used by both CPU and GPU shared,
one can avoid unnecessary data offload. DCAO built atop of the GPUClang compiler
was evaluated using the well-known and widely accepted Polybench benchmark suite.
Preliminary results show that DCAO indeed improves the speedup of applications with
large datasets or medium-to-large kernel duration. We also did some tests with Rodinia
and Parboil benchmarks and the preliminary results are well aligned with the Polybench.

The experimental evaluation indicates that implementing DCAO integrated withGPU-
Clang can yield significant performance benefits. By combining dataflow analysis, shared
buffer allocation and map/unmap insertion the resulting optimization pass overcame the
data movement costs and delivery non-trivial performance gains in heterogeneous archi-
tectures. We achieved up to 5.3x of the speed-up when compared with GPUClang without
DCAO. When compared with the serial version, we have achieved up to 91.2x speed-up.

The results obtained with Polybench also confirm that the proposed approach points
to the right direction. As a future work, one can modify DCAO algorithm to use inter-
procedural data-flow information. With this, instead of generating the GEN[s] of a given
call instruction s with a tuple equal to Ai=(v,W,CPU), the DCA algorithm should first
analyze the called function F so that all tuples that reaches its first sentence can form
the GEN[s] for all call instructions of the callee function that call F. By applying inter-
procedural DCA could avoid the need to have the initial function device access mapped
always to the CPU. As a result, the called function can follow the execution flow of the
callee function. This could also avoid the need to apply DCO optimization on a function
basis. In such cases, one could expand the called function, so that it can avoid finishing
with the shared buffer pointing to the CPU. Hence, after analyzing the entire called
function, the CA of the last sentence of the called function can be propagated to the next
instruction of the callee function, improving the analysis.

Most programs used in the experiments initialize its buffers pointing to CPU before
calling data offload functions to send its content to the GPU. When applying the DCAO
optimization besides the buffer being created, a map function is inserted in the sequence
to give the pointer of the shared buffer to the CPU. By considering that DCAO algorithm
inserts a map function after creating a buffer, it does not generate extra overhead if the
CPU first touches the buffer before making it available to the GPU. Otherwise, when the

50

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS 51

GPU is the first device that touch the buffer, after being created, then an extra overhead
is generated, since a unmap function should be called unnecessarily to make the buffer
available to the GPU. This should be modified so that SBA can create a shared buffer
without invoking a map function in the sequence. For that, DCAO must be modified so
that CA accepts an undefined device (X).

As DCAO is applied in only one source file, Link Time Optimization (LTO) can be
a solution to perform DCA+DCO in more than one source file, since there are several
benchmarks that the kernel execution is in a separated source file. Other issue that
should be evaluated, is when working in a benchmark that have complex data structures,
e.g. vector of buffers, since DCA+DCO works only with simples mallocs and callocs
structures.

Finally, another point that was observed when applying DCAO, is that GPUClang
generates some extra overheads when creating a kernel inside a loop. This overhead hap-
pens since for each iteration, GPUClang repetitively calls some basic OpenCL functions
that could be called just once. One alternative is to apply some heuristics based on Loop
Invariant and Code Motion to move these OpenCL functions out of the loop, thus resulting
only one call to the kernel execution.

Bibliography

[1] CUDA: A Parallel Computing Platform and Programming Model, 2015, NVIDIA.
https://developer.nvidia.com/cuda-zone

[2] OpenCL: The Open Standard for Parallel Programming Language of heterogeneous
Systems, 2010, Khronos Group. http://www.khronos.org/opencl

[3] SPIR: An OpenCL Standard Portable Intermediate Language for parallel compute
and graphics. 2014, Khronos Group. https://www.khronos.org/spir

[4] OpenACC: Application Programming Interface. 2011, Khronos Group. http://www.
openacc-standard.org/.

[5] OpenMP API Specification for Parallel Programming. Version 4.5 2015, OpenMP
ARB http://openmp.org/wp/openmp-specifications/.

[6] PolyBench/GPU: Implementation of PolyBench codes for GPU processing http:
//web.cse.ohio-state.edu/~pouchet/software/polybench/GPU/

[7] Parboil Benchmarks http://impact.crhc.illinois.edu/parboil/parboil.aspx

[8] Rodinia:Accelerating Compute-Intensive Applications with Accelerators
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:
Accelerating_Compute-Intensive_Applications_with_Accelerators

[9] Heterogeneous System Architecture. Version 1.1 2016, HSA Foundation http://www.
hsafoundation.com/.

[10] The LLVM Compiler Infrastructure 2016, LLVM http://www.llvm.org/.

[11] CUDA 8 2016, NVIDIA https://devblogs.nvidia.com/parallelforall/
cuda-8-features-revealed/.

[12] Phil Rogers and AC Fellow. Heterogeneous system architecture overview. In Hot
Chips, volume 25, 2013.

[13] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. Architectural support for
address translation on GPUs: designing memory management units for CPU/GPUs
with unified address spaces. ACM SIGPLAN Notices, 49(4):743?758, 2014.

52

https://developer.nvidia.com/cuda-zone
http://www.khronos.org/opencl
https://www.khronos.org/spir
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://openmp.org/wp/openmp-specifications/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/GPU/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/GPU/
http://impact.crhc.illinois.edu/parboil/parboil.aspx
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
http://www.hsafoundation.com/
http://www.hsafoundation.com/
http://www.llvm.org/
https://devblogs.nvidia.com/parallelforall/cuda-8-features-revealed/
https://devblogs.nvidia.com/parallelforall/cuda-8-features-revealed/

BIBLIOGRAPHY 53

[14] Liao, C., Yan, Y., Supinski, R., Quinlan, Daniel J., Chapman, Barbara. Early Experi-
ences with the OpenMP Accelerator Model, 9th International Workshop on OpenMP,
Canberra, ACT, Australia, September 16-18, 2013

[15] Alfred V.Aho, Ravi Sethi and Jeffrey D.Ullman “Compilers: Principles, Techniques,
and Tools", Addison-Wesley 1988

[16] Fujii, Yusuke and Azumi, Takuya and Nishio, Nobuhiko and Kato, Shinpei and
Edahiro, Masato. Data Transfer Matters for GPU Computing. Proceedings of the
2013 International Conference on Parallel and Distributed Systems – ICPADS ’13.
pages 275–282. IEEE, 2013.

[17] Sinclair, Matthew D. and Alsop, Johnathan and Adve, Sarita V. Efficient GPU
Synchronization Without Scopes: Saying No to Complex Consistency Models. Pro-
ceedings of the 48th International Symposium on Microarchitecture – MICRO-48,
pages 647–659. ACM, 2015.

[18] Neha Agarwal, and David Nellans, and Eiman Ebrahimi, and Thomas F. Wenisch,
and John Danskin, and Stephen W. Keckler. Selective GPU caches to eliminate
CPU-GPU HW cache coherence. 2016 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pages 494-506. IEEE, 2016.

[19] Kim, Junghyun and Lee, Yong-Jun and Park, Jungho and Lee, Jaejin Translating
device constructs to OpenCL using unnecessary data transfer elimination. Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE Press, 2016.

[20] Pai, Sreepathi and Govindarajan, R and Thazhuthaveetil, Matthew J. Fast and
efficient automatic memory management for GPUs using compiler-assisted runtime
coherence scheme. In Proceedings of the 21st international conference on Parallel
architectures and compilation techniques, pages 33–42, ACM, 2012.

[21] Luna Backes, Alejandro Rico, and Bjorn Franke. Experiences in speeding up com-
puter vision applications on mobile computing platforms. In Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), 2015 International
Conference on, pages 1–8. IEEE, 2015.

[22] Isaac Gelado, John E Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro, and Wen-
mei W Hwu. An asymmetric distributed shared memory model for heterogeneous
parallel systems. In ACM SIGARCH Computer Architecture News, volume 38, pages
347–358. ACM, 2010.

[23] Marc Jorda, Ivan Tanasic, Javier Cabezas, Lluis Vilanova, Isaac Gelado, and Nacho
Navarro. Auto-tuning of data communication on heterogeneous systems. In Embedded
Multicore Socs (MCSoC), 2013 IEEE 7th International Symposium on, pages 135-
140. IEEE, 2013.

BIBLIOGRAPHY 54

[24] Tianyi David Han and Tarek S Abdelrahman. hicuda: a high-level directive-based
language for gpu programming. In Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, pages 52–61. ACM, 2009.

[25] Sylvain Henry, Alexandre Denis, Denis Barthou, Marie-Christine Counilh, and Ray-
mond Namyst. Toward opencl automatic multi-device support. In Euro-Par 2014
Parallel Processing, pages 776–787. Springer, 2014.

[26] Thomas B Jablin, James A Jablin, Prakash Prabhu, Feng Liu, and David I August.
Dynamically managed data for cpu-gpu architectures. In Proceedings of the Tenth In-
ternational Symposium on Code Generation and Optimization, pages 165–174. ACM,
2012.

[27] Thomas B Jablin, Prakash Prabhu, James A Jablin, Nick P Johnson, Stephen R
Beard, and David I August. Automatic cpu-gpu communication management and
optimization. In ACM SIGPLAN Notices, volume 46, pages 142–151. ACM, 2011.

[28] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. Openmp to gpgpu: a com-
piler framework for automatic translation and optimization. ACM Sigplan Notices,
44(4):101–110, 2009.

[29] Bastoul, C. Code generation in the polyhedral model is easier than you think. In
Proceedings of the 13th International Conference on Parallel Architectures and Com-
pilation Techniques – PACT ’04. IEEE Computer Society, 2004

[30] Verdoolaege, S. isl: An integer set library for the polyhedral model. In K. Fukuda, J.
Hoeven, M. Joswig, and N. Takayama, editors, Mathematical Software - ICMS 2010,
volume 6327 of Lecture Notes in Computer Science. Springer, 2010

[31] Karthik Nilakant and Eiko Yoneki. On the efficacy of apus for heterogeneous graph
computation. In Proc. 4th Workshop on Systems for Future Multicore Architectures
(SFMA), Amsterdam, Netherlands, pages 2–7, 2014.

[32] Issam Said, Pierre Fortin, Jean-Luc Lamotte, and Henri Calandra. hicl: an opencl
abstraction layer for scientific computing, application to depth imaging on gpu and
apu. In Proceedings of the 4th International Workshop on OpenCL, page 14. ACM,
2016.

[33] Jie Shen, Jianbin Fang, Henk Sips, and Ana Lucia Varbanescu. Performance gaps
between openmp and opencl for multi-core cpus. In Parallel Processing Workshops
(ICPPW), 2012 41st International Conference on, pages 116–125. IEEE, 2012.

[34] Rubasri Kalidas, Mayank Daga, Konstantinos Krommydas, and Wu-chun Feng.
On the performance, energy, and power of data-access methods in heterogeneous
computing systems. In Parallel and Distributed Processing Symposium Workshop
(IPDPSW), 2015 IEEE International, pages 871?879. IEEE, 2015.

[35] Krishnahari Thouti and SR Sathe. A methodology for translating c-programs to
opencl. International Journal of Computer Applications, 82(3), 2013.

BIBLIOGRAPHY 55

[36] Che, Shuai and Sheaffer, Jeremy W and Skadron, Kevin. Dymaxion: optimizing
memory access patterns for heterogeneous systems. In Proceedings of 2011 interna-
tional conference for high performance computing, networking, storage and analysis,
ACM, 2011.

[37] Daga, Mayank and Aji, Ashwin M and Feng, Wu-chun. On the efficacy of a fused
CPU+ GPU processor (or APU) for parallel computing. In Application Accelerators
in High-Performance Computing (SAAHPC), 2011 Symposium on, pages 141–149,
IEEE, 2011.

[38] Ryoo, Shane and Rodrigues, Christopher I and Baghsorkhi, Sara S and Stone, Sam
S and Kirk, David B and Hwu, Wen-mei W. Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,
pages 73–82. ACM, 2008.

[39] Terboven, Christian and Mey, Dieter and Sarholz, Samuel. OpenMP on Multicore
Architectures. In Proceedings of the 3rd International Workshop on OpenMP: A
Practical Programming Model for the Multi-Core Era – IWOMP’07, pages 54–64.
Springer-Verlag, 2008.

[40] Becchi, Michela and Byna, Surendra and Cadambi, Srihari and Chakradhar, Srimat.
Data-aware scheduling of legacy kernels on heterogeneous platforms with distributed
memory. In Proceedings of the twenty-second annual ACM symposium on Parallelism
in algorithms and architectures., pages 82–91. ACM, 2010.

[41] Grewe, Dominik and Wang, Zheng and O’Boyle, Michael FP. Portable mapping of
data parallel programs to OpenCL for heterogeneous systems In Code Generation and
Optimization (CGO), 2013 IEEE/ACM International Symposium on, IEEE, 2013.

[42] Ferrer, Roger and Planas, Judit and Bellens, Pieter and Duran, Alejandro and Gon-
zalez, Marc and Martorell, Xavier and Badia, Rosa M and Ayguade, Eduard and
Labarta, Jesus. Optimizing the exploitation of multicore processors and GPUs with
OpenMP and OpenCL. In International Workshop on Languages and Compilers for
Parallel Computing, pages 215–229, Springer, 2010.

	Introduction
	Background
	OpenCL Data Offloading/Coherence
	Host/Device Buffers
	Host/Device Coherence Calls

	Data Coherence Analysis and Optimization
	Data Coherence Analysis (DCA)
	Local Data Coherence Analysis
	Global Data Coherence Analysis
	Computing GEN and KILL
	Running DCA

	Data Coherence Optimization (DCO)
	Shared Buffer Allocation (SBA)
	Map/Unmap Insertion (MUI)

	Related Works
	Experimental Evaluation
	GPUClang Environment
	DCO Performance Analysis
	Data Size Analysis

	Conclusions and Future Works
	Bibliography

