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Abstract

Image analysis has been widely employed in many areas of the Sciences and Engi-
neering to extract and interpret high-level information from images, with applications
ranging from a simple bar code analysis to the diagnosis of diseases. However, the
state-of-the-art solutions based on deep learning often require a training set with a
high number of annotated (labeled) examples. This may imply significant human
effort in sample identification, isolation, and labeling from large image databases,
specially when image annotation asks for specialists in the application domain, such as
in Medicine and Agriculture, such requirement constitutes a crucial drawback. In this
context, Convolution Networks (ConvNets) are among the most successful approaches
for image feature extraction, such that their combination with a Multi-Layer Perceptron
(MLP) network or a Support Vector Machine (SVM) can be used for effective sample
classification. Another problem in these techniques is the resulting high-dimension
feature space, which makes difficult the analysis of the sample distribution by the
commonly used distance-based data clustering and visualization methods. In this
work, we analyze both problems by assessing the main strategies for ConvNet design,
namely Architecture Learning (AL), Filter Learning (FL), and Transfer Learning (TL),
according to their capability of learning from a limited number of labeled examples,
and by evaluating the impact of feature space reduction techniques in distance-based
data classification and visualization. In order to confirm the effectiveness of feature
learning, we analyze the progress of the classifier as the number of supervised samples
increase during active learning. Data augmentation has also been evaluated as a poten-
tial strategy to cope with the absence of labeled examples. Finally, we demonstrate the
main results of the work for a real application — the diagnosis of intestinal parasites —
in comparison to the state-of-the-art image descriptors. In conclusion, TL has shown
to be the best strategy, under supervised data constraint, whenever we count with a
learned network that suits the problem. When this is not the case, AL comes as the
second best alternative. We have also observed the effectiveness of Linear Discriminant
Analysis (LDA) in considerably reducing the feature space created by ConvNets to
allow a better understanding of the feature learning and active learning processes by
the expert through data visualization. This important result suggests an interplaying
between feature and active learning with intervening of the experts to improve both
processes as future work.



Resumo

A análise de imagens vem sendo largamente aplicada em diversas áreas das Ciências e
Engenharia, com o intuito de extrair e interpretar o conteúdo de interesse em aplicações
que variam de uma simple análise de códigos de barras ao diagnóstico automatizado
de doenças. Entretanto, as soluções do Estado da Arte baseadas em redes neurais
com múltiplas camadas usualmente requerem um elevado número de amostras ano-
tadas (rotuladas), implicando em um considerável esforço humano na identificação,
isolamento, e anotação dessas amostras em grandes bases de dados. O problema é
agravado quando tal anotação requer especialistas no domínio da aplicação, tal como
em Medicina e Agricultura, constituindo um inconveniente crucial em tais aplicações.
Neste contexto, as Redes de Convolução (Convolution Networks - ConvNets), estão
entre as abordagens mais bem sucedidas na extração de características de imagens, tal
que, sua associação com Perceptrons Multi-Camadas (Multi Layer Perceptron - MLP)
ou Máquinas de Vetores de Suporte (Support Vector Machines - SVM) permite uma
classificação de amostras bastante efetiva. Outro problema importante de tais técnicas
se encontra na alta dimensionalidade de suas características, que dificulta o processo
de análise da distribuição das amostras por métodos baseados em distância Euclidi-
ana, como agrupamento e visualização de dados multidimensionais. Considerando
tais problemas, avaliamos as principais estratégias no projeto de ConvNets, a saber,
Aprendizado de Arquitetura (Architecture Learning - AL), Aprendizado de Filtros (Filter
Learning - FL) e Aprendizado por Transferência de Domínio (Transfer Learning - TL) em
relação a sua capacidade de aprendizado num conjunto limitado de amostras anotadas.
E, para confirmar a eficácia no aprendizado de características, analisamos a melhoria
do classificador conforme o número de amostras aumenta durante o aprendizado
ativo. Métodos de data augmentation também foram avaliados como uma potencial
estratégia para lidar com a ausência de amostras anotadas. Finalmente, apresentamos
os principais resultados do trabalho numa aplicação real — o diagnóstico de parasitos
intestinais — em comparação com os descritores do Estado da Arte. Por fim, pudemos
concluir que TL se apresenta como a melhor estratégia, sob restrição de dados super-
visionados, sempre que tivermos uma rede previamente aprendida que se aplique
ao problema em questão. Caso contrário, AL se apresenta como a segunda melhor
alternativa. Pudemos ainda observar a eficácia da Análise Discriminante Linear (Linear
Discriminant Analysis - LDA) em reduzir consideravelmente o espaço de característi-
cas criado pelas ConvNets, permitindo uma melhor compreensão dos especialistas
sobre os processos de aprendizado de características e aprendizado ativo, por meio de
técnicas de visualização de dados multidimensionais. Estes importantes resultados
sugerem que uma interação entre aprendizado de características, aprendizado ativo, e
especialistas, pode beneficiar consideravelmente o aprendizado de máquina.
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Chapter 1

Introduction

"Understand well as I may, my comprehension can
only be an infinitesimal fraction of all I want to
understand."

—Ada Lovelace

In many areas of Sciences and Engineering, images can provide important informa-
tion about real problems, such as diagnosis of diseases, biometric access to a service by
image analysis, and quality control of industrial products based on image inspection.
This image analysis usually requires an initial step of manual isolation (identification
and/or segmentation) and identification (label assignment) of the content of interest,
named sample, in training images. Such samples may appear as (Figure 1.1):

i. pixels, the constituent image elements;

ii. superpixels, connected regions that transmit a same color
and texture visual sensation;

iii. objects, connected regions with known shape, or

iv. subimages around regions of interest.

The advance of imaging and storage devices favor the acquisition of unlabeled
images in large scale. In some applications, such as the diagnosis of human intestinal
parasites (enteroparasites) from optical microscopy image analysis [88], each image
may also contain a high number of samples — objects to be identified as either fecal
impurity (the great majority) or one among the 15 most common species of human
enteroparasites in Brazil. A single microscopy slide with 22× 22 mm2 may contain, for
instance, 2.2 thousand images containing about 100 thousand of such samples each. In
such cases, manual labeling by experts of a high number of samples for supervised
machine learning can be infeasible, especially when crowd-sourcing techniques [16]
cannot be applied.

For a given training set with samples labeled by experts, the supervised learning
process relies on mathematical characterization (image features) of each sample to design

15
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(a) (b) (c) (d)

Figure 1.1: (a) Superpixels of a remote sensing image identified as either coffee or non-coffee plantation
region. (b) Objects from optical microscopy — fecal impurities and species of human enteroparasites —
for classification, being (c) several impurities similar to the parasites. (d) Subimages around iris and
fingerprints for person identification.

a pattern classifier — a function that assigns labels to new samples. Therefore, the
supervised learning process encompasses both tasks i.e., the feature learning process
and the design of the pattern classifier.

1.1 Scope of the work

The present work assumes sample isolation can be automated and concentrates on the
supervised learning process. For the sake of feasibility, this work also assumes the
number of training samples labeled (supervised) by experts is limited to a reasonably
low value with respect to the number of available unlabeled samples. Each training
sample s can be characterized by a set of n > 1 measures extracted from the image,
which maps s into a vector ~x(s) ∈ Rn (or point) of the corresponding n-dimensional
feature space. The process of learning a good set of measures is called feature learning,
which selects a feature space where samples from different labels (categories) fall in
separable regions by a pattern classifier.

Methods for feature learning can be divided into knowledge-based and data-driven
approaches. Knowledge-based methods count on experts knowledge about the problem
to develop a suitable feature extraction algorithm [4]. In the diagnosis of Alzheimer
disease from brain MR-image analysis, for instance, features of interest are expected
to capture some abnormal hippocampal atrophy [37]. Such handcrafted features are
usually more meaningful to experts of the application domain and therefore less
susceptible to generate a pattern classifier that overfits the training data 1 than features
from the data-driven approaches. On the other hand, data-driven methods, such
as those that rely on neuron network architectures with multiple hidden layers —

1A classifier with considerably reduced power to predict the labels of new samples.
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a strategy well known as deep learning —, have been shown to be more effective
than knowledge-based approaches [46, 59, 68]. Data-driven methods rely on some
optimization process to exploit correlation between features extracted from the samples
and the corresponding sample labels. Such approaches can be further divided into filter
and wrapper methods [33], where filters select features independently of the pattern
classifier, while wrappers design the feature extraction algorithm and the classifier at
the same time, by using the performance of the classifier on part of the training set to
score the predictive power of the features.

Many deep learning techniques can be seen as a wrapper that embraces a wide
family of different techniques based on the concept of stacking several neural network
layers. Among these techniques, Convolution Networks (ConvNets) present the best
results to extract features from subimages around detected/segmented objects for
image classification in many different scenarios [19, 32, 46, 52]. These ConvNets
consist of a sequence of layers, with linear and non-linear operations each, to transform
low level image features (e.g., pixel intensities) into high level texture features, more
suitable for pattern classification. As we will discuss in this work, the output of
the last convolution layer can be interpreted as a high-dimensional feature vector. Thus
following it, one may consider either a decision layer (classifier) or more network layers
for feature space dimensionality reduction followed by a decision layer — i.e., the
traditional multi-layer perceptron network [36].

However, feature learning through ConvNets is known to require a high number of
supervised samples. Therefore, the scope of this work is reduced to study image fea-
ture learning by ConvNets under supervised data constraint. Under such constraint,
for the cases where the pattern classifier is able to achieve high accuracy rates in a test
set, we can certainly conclude the descriptor is less prone to overfit.

1.2 Image feature learning by ConvNets

The name ConvNet stems from the operation performed by the first layers of such
networks, which relies on a linear convolution between input data and a filter bank —
a considerable simplification of the first operation in a typical neural network layer,
since the general case defines a different weight set for each neuron. In this operation,
each pixel can be interpreted as a neuron with the same synaptic weights for all pixels
of the same layer. The filter coefficients are those synaptic weights and the filter size,
which is the same for all filters in the layer, defines the neuron receptive field. The
adjacent pixel values form the input data of each neuron. A ConvNet layer also consists
of additional operations, namely activation, pooling, and normalization. Therefore, learn
the best features for a problem consists of finding the best solution for the number
of layers, number of filters per layer, their coefficients, and the parameters of each
remaining operation. These are called the network hyperparameters, with exception of
the filter coefficients which are called the network parameters.

The general pipeline for feature learning based on ConvNets is shown in Figure 1.2.
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The input data is a subimage (supervised sample) and the output data is a feature
vector in some n-dimensional feature space, which is usually high and sparse. For the
sake of feasibility, the existing feature learning techniques optimize either the choice
of the network parameters or the choice of its hyperparameters, and the classification
errors in a training/evaluation set are used as optimization criterion.

  

Supervised
Samples

Feature ExtractionFeature Extraction
(ConvNet)(ConvNet)

Cross-validationCross-validation
by Feature Spaceby Feature Space
Reduction and/orReduction and/or

ClassificationClassification

Choice of ParametersChoice of Parameters
and Hyperparametersand Hyperparameters

Optimum
Feature Extraction

Algorithm

Figure 1.2: General pipeline for image feature learning based on ConvNets.

As previously mentioned, one can use directly the output features of the ConvNet
as input to a decision layer — e.g., a classifier based on logistic regression or support
vector machines [36]. Optionally the output features of the ConvNet may be used
as input to a multi-layer perceptron, when aiming to reduce dimensionality and
specialize neurons for each category [74] before the decision layer. Thus, the weights
for convolution, dimensionality reduction, and decision layers are called the network
parameters, in contrast to the hyperparameters, previously mentioned.

Feature learning strategies based on ConvNets may be divided as follows. The
most common one fixes the network architecture and learn the weights of all network
layers [10]. We call this strategy Filter Learning. In Filter Learning, it is also possible
to set up the weights of the network with values learned from a different image
classification problem, as a starting point, and refine them with a back-propagation
gradient descent algorithm. This strategy is called Transfer Learning [64, 95], also known
as fine tunning. And, finally, one can learn the best network architecture (Architecture
Learning), by setting the weights of the ConvNet randomly [69].
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1.3 Objectives and methodology

In order to study feature learning based on ConvNets under supervised data constraint,
we must consider the popular existing strategies, select image data sets with the
various distinct characteristics (e.g., type of sample, balanced and unbalanced number
of samples per category, image domain, and number of categories), and establish
a reasonably low number of supervised samples for the feature learning process.
Under these conditions, we wish to identify the best feature learning strategy with an
empirical analysis.

On the proposed scenario of supervised data constraints, we want to figure out
which is the best approach for feature learning, among Filter Learning, Transfer Learn-
ing and Architecture Learning, by imposing a strong limitation on the ammount of
supervised data available for ConvNet feature learning.

In order to confirm whether or not this feature learning process was effective, we
must also decouple the feature extraction algorithm from the pattern classifier, and
evaluate the performance of the latter, with the former being fixed, as the number
of supervised samples increases. We also evaluates, specifically for Architecture
Learning, how increasing the number of samples impacts the descriptor and classifier,
separately. Considering the output of ConvNets usually consists of a high-dimensional
feature vector, harming some common operations (e.g., data clustering, distance-
based classification, content-based image retrieval) that depend on computing distance
functions among samples, therefore we want to evaluate the effectiveness of the
dimensionality space reduction strategies as well.

Among the available strategies to deal with supervised data constraint, we can
include the possibility of augmenting the training set with unsupervised samples
(also known as data augmentation). For this reason, we also want to asses the effect
of augmenting the number of samples in the performance of ConvNets, considering
artificial data augmentation strategies, as well as the inclusion of the expert in the
learning process.

Finally, we wish to validate the best solution in a real problem and, for that purpose,
we have selected data sets from the diagnosis of intestinal parasites. Such data sets can
be automatically obtained when processing images from the microscopy slides [88].

These questions are seen in more details on Chapter 3.

1.4 Main contributions

Preliminary results for the diagnosis of intestinal parasites were published in [66]. As
it will be shown, we have found the best strategy to handle supervised data constraint
among the studied ones, while evaluating important limitations and characteristics of
ConvNets on such restrictions. After all, we validated our results on the diagnosis of
intestinal parasites in comparison with the state-of-the-art handcrafted image features
from [88] and our own ConvNet-based approach from [66].
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The fact we decoupled the feature extraction algorithm and the pattern classifier to
evaluate the effectiveness of the feature learning process, revealed the importance of
exploiting in future work an interplay between feature learning and active learning [53]
— a process that uses an apprentice classifier to label and discover the most relevant
samples in a given feature space for expert supervision along learning iterations,
in which the classifier is retrained with a higher subsequent number of supervised
samples. In the beginning of this process, the samples that better represent the
categories are necessary to teach the classifier the rough location of the decision
boundaries between categories. In the remaining learning iterations, the samples
near those decision boundaries (the most informative ones) are needed to adjust
them finely, by minimizing classification error in an evaluation set. Current solutions,
named active feature learning [97, 98], do not decouple feature extraction and pattern
classification, and so the samples selected in a given feature space might not be the
most relevant ones to retrain the neural network. By decoupling feature extraction
and pattern classification, we believe the active learning process will reveal when the
selected feature space is suitable for the problem. At the same time, a question remains
unsolved: how can we identify an initial set of relevant samples for feature learning?
Currently, the expert is responsible for that. If they are suitable, they should be enough
to select a feature space in which, by using multidimensional data projection [74], the
expert can identify more representative samples for feature learning.

1.5 Organization of the text

Chapter 2 introduces the main concepts, terminology, and provides an overview about
popular Deep Learning methods. Chapter 3 presents the proposed methodology
to evaluate feature learning by ConvNets under supervised data constraint. The
considered ConvNet-based strategies for feature learning are evaluated in Chapter 4,
where the best approach in feature learning is validated in a real application — the
diagnosis of intestinal parasites — in Chapter 5. Chapter 6 states the conclusion
by discussing the main results and indicating the most promising strategy to be
investigated in future work.



Chapter 2

Background

"Deep learning is just a buzzword for neural nets,
and neural nets are just a stack of matrix-vector
multiplications, interleaved with some
non-linearities. No magic there."

—Ronan Collobert

This chapter provides the main concepts and terminology to understand the related
methods and remaining chapters.

2.1 Problem definition

For any given set Z of samples from c distinct categories of a pattern recognition prob-
lem, we wish to discover a function (model) M : Z→ {1, 2, . . . , c} that can assign to any
sample s ∈ Z the label Ω(s) ∈ {1, 2, . . . , c} of its corresponding category [13]. In super-
vised pattern recognition, M is estimated based on a set X(s) = {x1(s), x2(s), . . . , xn(s)}
of n observations (measures or features) about each sample s of a training set Z1 ⊂ Z,
for which the label Ω(s) is known a priori. One can also represent the feature set
X(s) as a vector ~x(s) = (x1(s), x2(s), . . . , xn(s)) ∈ Rn (or point) of the corresponding
n-dimensional feature space. Hence, the solution of the problem essentially consists
of finding a feature extraction algorithm X that maps samples s ∈ Z into separable
regions of the feature space Rn. The model M must then be essentially designed to
minimize the classification errors (i.e., when the label L(s) assigned by M is different
from Ω(s)), which might occur whenever the success of X is incomplete and/or the
design of M is imperfect. That is, the model M is expected to maximize the posterior
probability P(L(s) = Ω(s)\~x(s)) of the correct decision over the samples s ∈ Z1. Fea-
ture learning is then concerned with the design of the feature extraction algorithm,
but deep learning approaches put together in the same pipeline the design of X and
M. The general (traditional) pattern recognition pipeline, however, is illustrated in
Figure 2.1.

21
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Figure 2.1: Pattern recognition general work flow.

The above problem is general for many different application domains and types
of samples, such as text in a spam detector, photos in a face recognizer, and audio
in a voice transcription application. By estimating X and M from Z1 by a supervised
machine learning method, the label L(s) assigned to new samples s ∈ Z\Z1 is expected
to be equal to Ω(s). Some methods may count on another set Z2 ⊂ Z, such that
Z1 ∩Z2 = ∅, named evaluation set, to measure the performance of X and M during their
design.

When the assignment errors of M are significantly lower in the test set Z3 =

Z\Z1 ∪Z2, we say M generalizes to unseen samples. Otherwise, M is said to overfit the
training data. In architecture learning, the use of Z2 makes the overfit less prone [59].
Note, however, that M strongly depends on the success of X. This makes the feature
learning process more important than the design of the classifier. At the same time,
Deep Learning methods usually produce high-dimensional feature vectors, making
the choice of M restricted to a linear classifier, such as logistic regression, support
vector machines, or a stacking of linear classifiers, such as multi-layer perceptrons, that
essentially transforms the feature space, specializing the neurons (features) for each
category in order to apply the classification at the last layer [36, 74].

In this work, all samples derive from images. An image Î = (DI,~I) is a pair, where
DI ⊂ Rm, where m corresponds to the number of bands, is the image domain, and
each element p ∈ DI is assigned to a vector ~I(p) ∈ Rm of image properties, such as
intensity, color components, or other measures obtained by some image transformation
(e.g., linear filtering).

The set Z can then be composed of images or other type of sample previously
isolated from them, such as pixels, superpixels (connected regions that transmit the
same color and texture visual sensation), objects (connected regions with known shape),
and subimages (regions of interest around objects), as illustrated in Figure 1.1. In
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this work, we are interested in feature learning methods as the crucial solution of the
presented problem when samples are images, subimages, objects, or superpixels.

2.2 Image feature learning

In Chapter 1 we divided the feature learning methods in two categories: knowledge-
based approaches [4] and data-driven approaches [10, 23, 83, 92]. The first creates
handcrafted features based on the knowledge of experts on the problem, which
makes the solutions specific and difficult to scale up to different domains [11]. This
turns our interest towards data-driven approaches. Among the most well succeeded
paradigms, we can highlight Dictionary Learning [83, 92] and Deep Learning [10, 23].
The techniques in Dictionary Learning are usually filters rather than wrappers, since
the design of the dictionary does not usually use the classification performance in
Z2 as a criterion for optimization. These techniques are also unsupervised, usually,
since the knowledge about the labels of the training samples is ignored in most of
them. Although, supervised methods for dictionary learning can be found [57]. As a
result, Dictionary Learning usually creates mid-level features rather than high-level
features. By stacking multiple hidden layers, Deep Learning techniques can transform
the low-level features, in our case represented by the pixel colors, into high-level
features, which are more suitable for pattern recognition. The next sections presents
both paradigms.

2.2.1 Dictionary learning

A dictionary, originally developed for text categorization, is composed by a collection
of words from a vocabulary (codebook). In the case of images, we are interested in Visual
Dictionary Learning — methods that build a collection of the most frequent image
patches (words), as represented by local image features, from a set of training images,
wherein all possible patches form the vocabulary. The origin of visual dictionary
learning comes from the seminal article of Zellig Harris [35] from linguistics. In the
general context of information retrieval, the idea is to build a Bag of Words (BoW) of
a given vocabulary and then represent a text (sometimes related to image indexing)
by its most frequent words — i.e., a feature vector of the text as a histogram of the
words in the dictionary — for the purpose of text retrieval or classification[85]. In the
context of content-based image retrieval, the idea was to build a Bag of Visual Words
(BoVW) and represent an image by the histogram of its most frequent patches in the
dictionary[63]. This essentially creates a mid-level image representation from low-
level features, suitable for content- based image retrieval and classification problems.
The patches resulting from images of different categories are expected to differ, such
that histograms of images from the same category will be similar among them and
dissimilar from the histograms of remaining categories.



Chapter 2. Background 24

The main operations in constructing a BoVW (also called visual vocabulary) from
training images are [92].

i. Interesting point detection — detection of corresponding
points (also called local features) 1 that frequently occur
in the training images, such as the object corners. Meth-
ods based on the Harris-Laplace, Difference-of-Gaussian
(DoG), and Hessian-Laplace operators are examples of in-
teresting point detectors [60]. The success of these methods
is questionable and some works adopt a dense/random
sampling of points (see examples in Figure 2.2).

ii. Local image description — extraction of local image fea-
tures (also called local descriptors) in patches centered
at the detected points. These descriptors usually aim at
being invariant to image rotation and scaling. Examples
are SIFT [55] and SURF [8].

iii. Visual world generation/vector quantization — local de-
scriptors extracted from all training images are grouped,
usually by the k-means algorithm [26], and the representa-
tive descriptors of the groups are chosen as visual words
for the dictionary.

In order to create a feature vector for a new image (also called a term vector),
the local image descriptors are extracted from the detected interesting points and
matched with the visual words of the dictionary. At this stage, there are two most
popular approaches, namely hard assignment and soft assignment (and also called
pooling approaches) [6, 14]. In hard assignment, each descriptor is matched with its
closest word according to a distance function and the histogram of the words form the
resulting feature vector. In soft assignment, the feature vector contains the distances
between each local descriptor and all words in the dictionary.

Figure 2.3 summarizes the BoVW approach (also known as Bag-of-Features, BoF,
approach).

2.2.2 Deep learning

Deep Learning techniques can be seen as an evolution of visual dictionaries. By
stacking multiple hidden layers of neurons, they can transform local image features
into mid-level image representations at the output of the initial (shallowest) layers
and subsequently into high-level image representations at the output of the deepest
layers. Besides the linear operation between the input image data and each neuron,
other non-linear transformations, such as activation, pooling, and normalization can also

1We should avoid confusion here, since these features are not measures but image coordinates.
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Figure 2.2: DoG, Harris-Laplace, and dense sampling for interesting point detection, respectively.

Figure 2.3: Process for BoVW image representation [63].

be applied. In the context of machine learning, these techniques can be unsupervised
(generative), supervised (discriminative), or semi-supervised (hybrid) [23]. While
the generative models, such as Deep Autoencoders [39] and Deep Belief Networks
(DBN) [82], assume that, after unsupervised training, the parameters of the network
will be able to generate dissimilar high-level representations for new images of distinct
categories, the discriminative models, such as Recurrent Neural Networks (RNN) [17]
and Convolutional Networks (ConvNets) [18, 42, 48], use the knowledge of the training
image categories to specialize the parameters of the network such that an additional
decision layer can easily assign new images to their categories. The discriminative
models then usually learn features and train a classifier at the same time, as a single
operation. A hybrid method can simply use the image representation from a generative
network architecture as input for training a discriminative network architecture.

Perceptron and Neural Networks

Altough there is no consensus, a neural network can be considered deep when it
contains more than two hidden layers, in addition to the input and output layers.
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Hinton et al. [41] proposed a deep network, considering only three fully connected
hidden layers.

The connection between neurons of different layers is called synapses (resembling
the brain). Each of these neurons constitute the most important structure in a neural
network, which are also known as perceptrons [77].

A perceptron (Figure 2.4) performs a linear operation (inner product) on the input
data, followed by bias and a non-linear activation function. Considering ~w ∈ Rk the
synaptic weights, b ∈ R the bias, and ϕ : R → R the activation function. Given an
input ~x ∈ Rk, the perceptron transformation is defined by

ϕ(〈~w,~x〉+ b). (2.1)

By adjusting the weights in ~w and the bias b, the response of the perceptron can be
adapted to different problems.

x3

b

x2

x1

ᶨ(∑)

W1

Figure 2.4: The perceptron transformation on input data.

These perceptrons encode the information with the intensity of the activation in the
output ϕ(〈~w,~x〉+ b) of all perceptrons. Such information can be encoded considering
three main approaches [30]:

i. Local Coding: where each category is represented by a
unique perceptron. Thus requiring a dimensional space
equivalent to the number of categories. Despite its poor
representation power, such encoding provides an easy
classification, sufficing a simple argmax function,

ii. Dense Coding: where each category is represented by the
output of all perceptrons combined, which increases the
representation power of the descriptor. Considering only
a binary output for each neuron, such encoding strategy
can represent up to 2

n different categories, and even more
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when considering a real valued perceptron. However, such
encoding requires a more robust classification,

iii. Sparse Coding: poses as an intermediate alternative be-
tween the representation power of dense encoding and
the discrimination power of local encoding. Such encod-
ing allows the activation of a small group of perceptrons
per category. Considerably increasing the representation
power of the descriptor, while retaining most of its dis-
crimination power, where a simple linear classifier can be
learned.

One perceptron per category can be used to make decisions in classification prob-
lems (e.g., logistic regression) [36]. Support vector machines also adopt an approach
similar to the perceptron, excluding the activation function, where their parameters are
learned by convex optimization [21]. Both approaches require a high-dimensional and
sparse feature space, in which the categories are more likely to be linearly separable.
When this is not the case, a Multi-Layer Perceptron (MLP) network can handle feature
space reduction by one or more hidden layers of perceptrons followed by the output
(decision) layer, as illustrated in Figure 2.5.

Figure 2.5: A multi-layer perceptron with three values in the input layer, three perceptrons in the single
hidden layer, and two perceptrons in the output (decision) layer.

In both, logistic regression and MLP, a classifier can be trained by finding the best
weight and bias sets of the perceptrons at each layer, which minimize the classification
errors in Z1. The evaluation set Z2 can be alternatively used to find the best network
architecture (i.e., number of hidden layers and number of perceptrons per layer).
Among the possible optimization techniques, the most commonly used is the gradient
descent method [36]. In the case of multiple layers, it consists of subsequent iterations
of forward and backward passes. In the forward pass, the feature vector of a training
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sample can be submitted to the network, with some parameter initialization, to measure
the classification error and, in the backward pass, the parameters of the network can
be adjusted to reduce error. This is known as the backpropagation algorithm, which is
addressed next.

Backpropagation

For a brief introduction on the backpropagation concept, consider a neural network
with layers l = 0, 1, 2, . . . ,L, such that l = 0 and l = L refer to the input and output
layers, respectively. We call xl−1

i the output of the ith perceptron (node) from the
previous layer l− 1, l ∈ [1,L] (actually, it is the ith feature input when l− 1 = 0), and
wli,j the synaptic weight of the connection between that perceptron and the jth node of
layer l, being blj its bias term. The output xlj of the jth node of layer l is given by

xlj = ϕ

(
blj +

∑
i

wli,j x
l−1

i

)
= ϕ(olj) (2.2)

for all nodes j in layer l.
For pattern classification, the last layer l = L contains as many perceptrons as the

number c of categories. Its output XL ∈ Rc is a column matrix, whose values fall
within [0, 1], such that the highest value indicates the chosen category for the input data
X0 ∈ Rn of the network, where n is the number of features. Let Λc = [λ1, λ2, . . . , λc]> be
the local encoded column matrix with λj = 1, j ∈ [1, c], at the corresponding category
(row) of the input X0 and 0 elsewhere. The decision error at the output layer L is then
given by

E =
1

2

‖XL −Λc‖2

2
, (2.3)

where ‖.‖ is the Frobenius norm. This is equivalent to

E =
1

2

c∑
kL=1

(
xLkL − λkL

)
2

. (2.4)

The error E depends of the choice of wli,j,b
l
j ∀i, j and l = 1, 2, . . . ,L. It can be

minimized by the gradient descent approach, which updates the weights and biases of
the layers according to the gradient direction of E. The partial derivative ∂E

∂w
L−p
i,j

of E

according to a given synaptic weight wL−pi,j of the layer L− p, p ∈ [0,L− 1], is given by
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∂E

∂w
L−p
i,j

=
∑
kL
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xLkL − λkL

) ∂(xLkL − λkL)
∂w
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i,j

∂E

∂w
L−p
i,j

=
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(
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) ∂xLkL
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i,j
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(
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) ∂ϕ(oLkL)
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(2.5)

and the term
∂xL−2

kL−2

∂w
L−p
i,j

can be further expanded until
∂x
L−p
kL−p

∂w
L−p
i,j

. Let δL−qkL−q
be defined for

q = 0, 1, . . . ,p as follows.

δ
L−q
kL−q

=


(
xLkL − λkL

)
if q = 0, and

w
L−q+1

kL−q,kL−q+1

otherwise.
(2.6)

Note that,
∂x
L−p
kL−p

∂w
L−p
i,j

is ϕ′
(
o
L−p
kL−p

)
x
L−p−1

i where kL−p = j and kL−p−1 = i. Note also that,

for p = q,
∑
kL−p

δ
L−p
kL−p

ϕ′
(
o
L−p
kL−p

)
= δL−pj ϕ′

(
o
L−p
j

)
, since the weight wL−pi,j affects only

the output of the jth neuron. Given that, Equation 2.5 can be simplified to

∂E

∂w
L−p
i,j

= xL−p−1

i δ
L−p
j ϕ′

(
o
L−p
j

) p−1∏
q=0

∑
kL−q

δ
L−q
kL−q

ϕ′
(
o
L−q
kL−q

) , (2.7)

for p = 0, 1, . . . ,L− 1, where for activation based on a sigmoid function, for example,
ϕ′ = ϕ(1 −ϕ).

The backpropagation algorithm executes in several iterations until some conver-
gence criterion is reached (e.g., the mean error is less than a threshold, or a maximum
number of epochs is reached). After a forward pass at iteration t, the weight update of



Chapter 2. Background 30

each layer p = 0, 1, . . . ,L− 1, is computed by

w
L−p
i,j

(t+1)
= w

L−p
i,j

(t)
−α

∂E

∂w
L−p
i,j

(t)
, (2.8)

where α ∈ [0, 1] is a learning rate, wli,j
(t) is the current weight, and wli,j

(t+1) is the
weight matrix to be considered in the next iteration. Similarly, by computing ∂E

∂b
L−p
j

, for

p = 0, 1, . . . ,L− 1, one can obtain an update equation for the bias bL−pj .
The error function (Equation 2.3) may take into consideration the prediction error

of each training sample per iteration (stochastic gradient descent), as described above, or
it can be reformulated to consider the total prediction error of all training samples per
iteration — the batch gradient descent, which is less susceptible to noise in gradient, but
also more prone to become trapped in local minima. An intermediate alternative is to
consider a small number of samples in the weights update, this approach is known
as minibatch gradient descent, where a minibatch of 1 is equivalent to the stochastic
approach, while a minibatch as big as |Z1| corresponds to the batch approach. Regard-
less the batch approach, the process of forward and backward passes for all training
samples characterize one epoch.

Many epochs may be needed to achieve convergence, and the learning usually
decreases over iterations, as the method approaches the minimum. The learning rate
decay γ updates the learning rate as an α(d) that decreases the original learning rate
α(0) over iterations. A common approach is the step learning rate decay, defined as

α(d) = α(0)γ(d), (2.9)

where the iterations d are defined according to the learning rate drop, which consists
of the number of epochs, before the learning rate is updated.

The weight (and bias) matrix updates in Equation 2.8 can also consider ∂E

∂wli,j
(t) of a

previous iteration, introducing an inertial factor µ (momentum) to the learning process,
which is empirically known to speed up convergence, and avoid local minima.

Finally, in order to avoid overfitting, as the synaptic weights grow, the weight decay
λ can be considered as a regularization function over the network error E, which is
equivalent to subtract a factor of the current weight in the backpropagation update.

Considering the hyperparameters momentum, learning rate decay and weight decay.
Equation 2.8 becomes as following

wli,j
(t+1)

= wli,j
(t)

−α(d) ∂E

∂wli,j
(t)

− µ
∂E

∂wli,j
(t−1)

− λwli,j
(t)

. (2.10)

By referring Deep learning, we include a whole class of machine learning techniques,
where many layers of information processing stages in hierarchical architectures are
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exploited for both, feature learning and pattern classification [23]. Neural networks
are, in the long run, a collection of perceptrons, and their variants, with different
architectures and weight learning strategies.

2.3 Unsupervised neural networks

Although the scope of this work relies on supervised feature learning, and more
specifically in convolution networks, unsupervised neural networks can also be used
for feature learning as well, and those features may also be used for semi-supervised
learning, as input to train a supervised network. This strategy might be interesting
under supervised data constraint. Two basic and popular examples of unsupervised
neural networks are autoencoders and the Boltzmann machines.

An autoencoder [78] is a network aiming to reconstruct in the output the same
data used for input. It can have one or multiple hidden layers and the features may be
represented, for instance, by the output of the most central hidden layer [7]. It might
sound illogical to learn an identity function. However, when applying constraints in the
representation, such as a reduced number of hidden units or sparsity constraints [62],
the autoencoder is able to learn a simplified model that describes the most significant
information in the input data. When adopting linear activation functions, or a single
hidden layer with sigmoidal activation function, the autoencoder is strongly related to
Principal Component Analysis (PCA) [15].

A Boltzman machine [40], and more specifically a Restricted Boltzmann Machine
(RBM) [86], consists of one input and one hidden layer, connected with symmetrical
binary synapses, assuming two different states (on and off). The synaptic weights of a
RBM are learned through a Gibbs sampling approach, where the difference between
the probability distribution of the input and the hidden layer output is minimized. It
can be used to learn latent factors. For example, people provide a collection of movies
they like and dislike, and given that those movies may be characterized as scientific
fiction or fantasy, as latent factors, the network learns which type they like mostly
based on the probability distribution of the latent factors.

Popular deep learning approaches, such as Stacked Denoising Autoencoders [94]
and Deep Belief Networks [82], use as building blocks, the concepts drawn by autoen-
coders and RBMs.

2.4 Convolutional networks

Since 2012, the Convolutional Networks (ConvNets) have shown to outperform the
state-of-the-art methods in the ImageNet challenge [46], being successfully applied to
many scenarios. Therefore, we have chosen to focus our investigation in supervised
image feature learning on ConvNets.
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Each layer in a ConvNet consists of at most four operations: convolution, activation,
pooling, and normalization, which require the concept of adjacency relation and convolu-
tion kernel. Differently from a MLP, where the layers are usually fully connected — i.e.,
the input data, coming from the previous layer, to each perceptron of the current layer
is fixed —, the convolutional layer uses the values of a sliding window of adjacent
pixels as input to the neural unit in the current layer. In addition to that, the weight set
(kernel coefficients) is the same for all adjacencies at the current layer.

ConvNets consider a box adjacency relations A ⊂ DI ×DI between pixels of an
input image Î = (DI,~I). Let p = (xp,yp) be the 2D image coordinates of a pixel p, a
pixel q is said adjacent to a pixel p when

A : q ∈ A(p) if |xq − xp| 6 b
2

and |yq − yp| 6 b
2

, (2.11)

for some kernel size b > 3. A convolution kernel K̂ = (A,K) is a pair where K(q− p),
∀q ∈ A(p), is the weight of each adjacent pixel q. We may interpret A(p) as the
receptive field of a neuron unit at pixel p and the values of its adjacent pixels as
the input data for the neuron p. The kernel coefficients may also be vectors in a
multi band kernel. In this case, the convolution kernel K̂ is given by (A, ~K), where
~K = (K1,K2, . . . ,Km). Therefore, the main operations in a ConvNet layer may be
described as follows.

First, the input image may be normalized by

I ′j(p) =
Ij(p)√∑m

j=1

∑
∀q∈A(p) Ij(q)Ij(q)

, (2.12)

where Î ′ = (DI,~I ′), ~I ′ = (I ′
1
, I ′

2
, . . . , I ′m), in order to avoid any prevalence of some pixel

values over the others. Second, by using another box adjacency relation B, the input
image is convolved with a kernel bank (B, ~Ki), i = 1, 2, . . . ,nk, with nk multi band
kernels ~Ki = (K1,i,K2,i, . . . ,Km,1). The convolution operation with each kernel in the
bank results a new image band Ji, i = 1, 2, . . . ,nk, of the output image Ĵ = (DJ,~J),
where ~J = (J1, J2, . . . , Jnk):

Ji(p) =
∑
∀q∈B
〈~I ′(q), ~Ki(p− q)〉. (2.13)

The values Ji(p) are subsequently submitted to an activation function ϕ. Considering
Ji(p) ← ϕ(Ji(p)), the features extracted with convolution must be aggregated by
pooling, which is intended to cope with possible object shifts in the training images.
The pooling operation takes into account another adjacency relation C and outputs an
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image Û = (DU, ~U), where ~U = (U1,U2, . . . ,Unk) and

Ui(p) = β

√ ∑
∀q∈C(p)

Ji(q)β. (2.14)

The value β controls the operation which can varies from additive (β = 1) to max-pooling
(β is too high, e.g., β = 10). The pooling can also reduce the dimension |DU| =

|DJ|
s2

by a stride factor s > 1, when it is computed only for pixels at each shift of s pixels
horizontally and vertically, respectively (Figure 2.6). Finally, the feature values in Û
can be normalized and used as input for a next layer.

12 13 2 2
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Figure 2.6: Example of a 2x2, and stride 2, max-pooling operation.

When learning the kernel weights by backpropagation, one may consider a last
logistic regression layer or a MLP after the last layer of the ConvNet (Figure 2.7). In this
case, the weights and biases of the MLP are learned as well, making feature learning
and design of a pattern classifier a single operation. However, in very deep networks,
the derivatives of the error in backpropagation can become too small, or even zero
(vanish), for the first ConvNet layers. This is known as the vanishing problem and can
be alleviated if we choose a Relu (Rectified linear) activation function ϕ(p) = max(p, 0)

[34], which has a derivative output ϕ′i(p) = min(sign(p) + 1, 1). Note also that the
main purpose of activation is to create a sparse code [30].

By stacking several layers, the ConvNet transforms low-level into high-level image
features. The output feature vectors are usually high-dimensional and sparse, so
they can also be used with linear classifiers such as logistic regression and SVM (see
example in Figure 2.8).

Considering the weights of a network as its parameters. The sizes of the above
adjacency relations, number of kernels at each layer, number of layers, stride, etc., are
all considered hyperparameters, as they define the general architecture for the network.
We then identify two main strategies for supervised image feature learning with
ConvNets: Filter Learning [51, 76] and Architecture Learning [12, 59, 69, 87]. The first
fixes an architecture (hyperparameters) and learns the kernel weights (parameters)
by backpropagation, while the second randomly chooses the weights of the kernels
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Feature 
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Dimensionality 
Reduction

Classification

Convolutional Fully Connected

Figure 2.7: A ConvNet followed by MLP for backpropagation. The ConvNet performs feature extraction,
the first fully-connected layers of the MLP perform feature space reduction, and the last layer of the
MLP is responsible for the final decision.

Figure 2.8: Example of ConvNet architecture for object recognition [28].

(parameters) while learning the architecture (hyperparameters) by using the evaluation
set. Transfer Learning can also be adopted, where we adapt a previously learned
network, with its parameters and hyperparameters for a different scenario.

The next chapter then proposes a methodology to study the effectiveness of image
feature learning by ConvNets under supervised data constraint according to these
three approaches.
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Methodology

"No great discovery was ever made without a bold
guess."

—Isaac Newton

Deep learning techniques, and of course Convolutional Networks (ConvNets), are
known for requiring large training sets to learn the parameters (weights and biases) of
the network [75]. Whenever, large supervised training sets require manual labeling
by experts, which constitutes a serious drawback for deep learning methods [53].
However, ConvNets architecture (using random weights) could be learned in scenarios
with no huge amount of supervised data for some categories of problems, such as iris
spoofing detection [59]. These facts aroused the interest in the present study about
image feature learning by ConvNets under supervised data constraints.

The absence of supervised training samples in deep learning can be addressed
by unsupervised and semi-supervised methods, such as Deep Belief Networks [41]
and Stacked Auto Encoders [94]. The Stacked Deep Polynomial Network [84] is
another example, proposed for tumor classification, which combines data-driven with
handcrafted features. In this chapter, we propose to investigate ConvNets under
supervised data constraint, with no help from handcrafted features and unsupervised
samples from the problem. We believe both can improve our results, but we are
interested in understanding the pros and cons of ConvNets when using a reasonably
low number of supervised samples only.

The chapter is organized as follows. Section 3.1 describes the methods considered
for ConvNet-based image feature learning. These methods must be evaluated on
data sets of various distinct characteristics: type of sample, balanced and unbalanced
number of samples per category, image domain, and number of categories. Section 3.2
describes the selected data sets that satisfy such a heterogeneity condition. A reasonably
low number of supervised samples for the feature learning process is established for
each data set. The main questions in this study and the proposed experiments to
answer them are presented in Section 3.3.

35
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3.1 Image feature learning by ConvNets

The three main approaches identified in Chapter 2 for ConvNet-based image feature
learning are described in this section: Filter Learning [46, 51], Transfer Learning [25,
64, 91], and Architecture Learning [12, 59, 69, 87]. In order to compare them, we must
separate the feature extraction layers from the other layers and consider their output
features as input to a same pattern classification model.

3.1.1 Filter learning

By fixing the ConvNet architecture and using its last layer as the input layer of a Multi-
Layer Perceptron (MLP), one can use the backpropagation algorithm (Section 2.2.2)
to learn not only the parameters of the fully-connected layers of the MLP, but also
the weights of the kernel banks in each layer of the ConvNet (Figure 2.7). We have
chosen the architecture of the AlexNet network [46] for this purpose, since it has been
trained in a large image data set. Figure 3.1 illustrates the architecture of the AlexNet.
Where the input images must have 224× 224 pixels and 3 color channels in the RGB
color space. The ConvNet contains 5 layers, Ci, i = 1, 2, . . . , 5. The kernel bank of the
first layer contains 96 kernels of 11× 11× 3 coefficients. The activation function is
Relu and is applied after convolution with the kernel bank of each layer, as well as in
the fully connected layers. However, normalization Ni followed by max-pooling Pi
is used only in layers Ci, i = 1, 2, and max-pooling is also applied in C5. Due to the
strides and number of kernels, the spatial resolutions of the output multi band images
of Ci, i = 1, 2, . . . , 5, are 55× 55× 96, 27× 27× 256, 13× 13× 384, 13× 13× 384, and
6× 6× 256, respectively. Therefore, the output feature vector of the ConvNet contains
6× 6× 256 = 9, 216 features (input layer of the MLP). And the two fully-connected
hidden layers of the MLP reduce the input feature vector from 9, 216 to 4, 096 features,
and the decision layer outputs the final vector with the likelihood values of the 1, 000

categories.
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Figure 3.1: An illustration of AlexNet architecture. Denoting all Convolutional (C), Normalization (N),
Max Pooling (P) and Fully Connected layers (FC), interleaved by Relu activation units.

In order to evaluate the effect of supervised data constraint in Filter Learning,



Chapter 3. Methodology 37

all weights in the AlexNet are randomly initialized, allowing us to verify if the FL
approach can find effective parameters from a limited number of supervised training
samples. In order to use the AlexNet in different data sets, all input images must
be interpolated to the input dimension of the AlexNet and the output layer must be
changed to contain the number of categories (classes) required by the new problem.

As previously mentioned, a fair comparison among the learning approaches require
image descriptors to be fed to the same classifier without dimensionality reduction.
For this reason, we use the output of P5 as image descriptor and the classifier is an
SVM — one-versus-all for c categories, depending on the data set, with parameters
optimized by grid search (Figure 3.2).
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Figure 3.2: An illustration of the evaluated AlexNet descriptor. Feeding the output of the last convolu-
tional layer to a linear SVM classifier.

In order to evaluate the behavior of such descriptors in an distance-based classifier,
we also include the Optimum-Path Forest classifier [65] in our experiments, following
the same approach applied in SVM.

3.1.2 Transfer learning

The AlexNet has also shown excellent performance, when its original parameters are
fine tuned for a new application [64, 89, 95]. The strategy, known as Transfer Learning
from source to target domains [91], is more promising to succeed than Filter Learning
given a supervised data constraint [89]. The learning process starts with the original
weights of the AlexNet [95]. Given that the first layers are usually more stable, we set a
learning factor for the last layer 10 times higher than the factors of the previous layers
in the AlexNet (Figure 3.1). After this fine tunning, the MLP is substituted by the SVM
classifier as in Filter Learning.

3.1.3 Architecture learning

In Architecture Learning [69], the kernel weights of ConvNet are drawn from a
Gaussian distribution chosen to have mean 0 and norm 1. Such a setting usually
produces orthonormal kernels at each layer. The aim is to learn the hyperparameters
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represented by the number of layers, kernels (and their size), the pooling factor β, as
well as the window size and stride applied for pooling and normalization. The kernels,
in this case, together with the Relu activation function, produce a sparse code, since
50% of the convolution results tend to be positives and the remaining 50% negatives.

Search the best set of hyperparameters can be performed by adding a last decision
layer (SVM or logistic regression) to the ConvNet, using the training set to find
the weights of the classifier, and evaluating the results of different hyperparameter
combinations, as feature extractors, on an evaluation set. In this work, we adopt an
SVM classifier evaluating a 5× 2 cross validation, considering the same hyperparameter
search space (Figure 3.3) used in [59], where, in a network up to 3 layers, we have 25

hyperparameters for optimization.

l Layer Parameters:

u convolution filter size,

u number of convolution filters,

u pooling filter size,

u pooling stride,

u pooling factor,

u apply/not normalization filter, and

u normalization filter size.

l Network Parameters:

u input image size,

u apply/not input normalization, and

u normalization filter size,

u depth.

As shown in [59], Architecture Learning has been able to learn well suited descrip-
tors for a iris spoofing scenario, even without huge training data sets. However, the
work in [22] has shown that only a very small portion of the evaluated architectures
are able to show a reasonable performance. Figure 3.4 shows the hyperparameter
search space for a face recognition problem [22] and the corresponding accuracy of
the evaluated models, where most evaluated architectures present a considerably poor
performance.
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Figure 3.3: Hyperparameter search space for architecture optimization [59].

Figure 3.4: Accuracy distribution of evaluated models in Architecture Learning for face recognition [22].
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3.2 Data sets

Deep Learning techniques, specially ConvNets, have achieved good classification
performance in many different scenarios [31, 46, 59, 61]. In order to evaluate ConvNets
under supervised data constraint, we have chosen a group of image classification data
sets with diverse characteristics in respect to the number of samples per class, number
of classes, sample type (image, subimage, superpixel, and object), image properties,
etc. Some of these data sets have been proposed in the literature with specific protocols
to evaluate image classification. However, those protocols do not represent a scenario
of supervised data constraint. Hence, we have designed our own evaluation protocols
for all data sets, aiming to answer the questions raised in Section 3.3.

We have chosen eight data sets, representing different types of samples: images
(Stl10, Cifar10, Scenes15, and Melanoma), objects ( Larvae, Mnist), subimages (Pubfig5),
and superpixels (Rome). The number of categories of these data sets varies from 2 to
15, and the categories are unbalanced in number of samples for Larvae, Melanoma,
and Rome. These data sets also vary in many fundamental image properties, such as
color, dimension and ratio. Only Scenes15, Mnist and Pubfig5 lack in color information,
being composed by grayscale images. All image dimension vary from a 28× 28 to
1816× 742 pixels.

In following sections we describe, in more details, the properties of each data set.

3.2.1 Stl10

Stl10 [20] consists of natural images extracted from the ImageNet challenge [79].
It contains 13, 000 images (samples) uniformly distributed in 10 distinct categories:
airplane, bird, car, cat, deer, dog, horse, monkey, ship, and truck.

Different from the original ImageNet data set, all images in Stl10 have the same
dimension (96× 96 pixels), as the examples in Figure 3.5.

Figure 3.5: Examples of images from all categories in Stl10.
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3.2.2 Cifar10

Cifar10 [45] is a data set with 10, 000 natural images (samples) uniformly distributed
in 10 categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.
Although it has not been derived from ImageNet, the images in Cifar10 and Stl10

have some similarities. The images in Cifar10, however, present a considerably lower
dimension of 32× 32 pixels.

Figure 3.6: Examples of images from all categories in Cifar10.

3.2.3 Larvae

The data set Larvae is private and it has been obtained from our project to automate
the diagnosis of parasites [88]. The original images are regions of interest automatically
detected and extracted from 4M-pixel images of microscopy slide fields. All images
have a rectangular shape of 1816× 742, where a black background is added to turn
them a square image, followed by a resize interpolation to 224× 224 pixels. In Larvae,
there are two types of categories: S. stercoralis (with 476 samples) and fecal impurity of
similar size (with 3, 068 samples). Together, they represent a data set with 3, 544 images,
being some impurities very similar to larvae in shape. Figure 3.7 shows examples where
these categories are different in shape and position. A special aspect of this data set
relies on the strong unbalance in number of samples. Although we have not segmented
the image, samples are represented by a single segmented object (a different sample
type than the previous ones).

3.2.4 Melanoma

Melanoma contains 1, 039 images of skin lesions, being 495 images of benign tumors
(nevus), 272 images of malign tumors (melanoma), and the remaining 272 images of
other injuries. This is also a private data set, which was kindly provided by Prof. M.
Emre Celebi from the Dept. of Computer Science, University of Central Arkansas. Due
to different image acquisition protocols, the original images considerably change in
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Figure 3.7: Examples of a helminth larvae (left) and a fecal impurity (right) from the data set Larvae.

dimension (varying from 220× 203 to 220× 552 pixels), illumination, focus, partial
occusion by artifacts such as hair, ruler, mesh, etc. To apply on ConvNets, the images
are interpolated to a 224× 224 pixels(Figure 3.8). Again, the sample type is an object
with some uniform background.

Figure 3.8: Examples of images from the three categories in Melanoma: nevus (left), melanoma (center),
and other injury (right).

3.2.5 Mnist

Mnist [50] contains 60, 000 images of handwritten digits from 0 to 9, representing 10

uniformly distributed categories. The digits are represented by good-contrast grayscale
images of only 28× 28 pixels, being the data set with smallest dimension, among the
selected ones. Again, the object (sample) is the only information in the image. Figure
3.9 shows examples extracted from the Mnist dataset.

3.2.6 Pubfig5

Pubfig5 is a data set with only 5 categories extracted from the original Pubfig [47],
which contains 58, 797 face images of 200 popular people, as collected from the internet,
without any pose, illumination, or alignment restrictions (i.e., the scenario is said to be
in the wild). The faces and eyes in the images have been automatically detected, the
images were aligned by the positions of the eyes, and a region of interest with 200× 200
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Figure 3.9: Examples of images from all categories in Mnist.

pixels was extracted around the face to create the samples of the data set. Pubfig5 was
created with the five most frequent categories out of the original 83 individuals in the
data set, with 299, 300, 300, 354 and 367 images, respectively, composing a roughly
balanced data set with 1, 620 grayscale images.

Figure 3.10: Examples of images from all categories in Pubfig5.

3.2.7 Scenes15

Scenes15 is a data set with 8, 760 grayscale images of natural scenes, with dimensions
varying from 203× 220 to 552× 220 pixels each, distributed in 15 categories [49]:
office (215 samples), kitchen (210 samples), living room (289 samples), bedroom (216

samples), store (315 samples), industrial (311 samples), tall buildings (356 samples),
inside city (308 samples), street (292 samples), highway (260 samples), coast (360

samples), open country (410 samples), mountain (374 samples), forest (328 samples),
and suburb (241 samples), which are interpolated to the input size of the ConvNet. As
shown in Figure 3.11, it can be strongly difficult to distinguish across some categories,
even for humans, since their categorization depends on the contextual information not
always represented by the image content.

3.2.8 Rome

Rome [93] comes from a high-resolution aerial image taken from the city of Rome. The
original image contains 2, 817× 2, 847 pixels and we have segmented it into 24, 968
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Figure 3.11: Examples of images from all categories in Scenes15.

superpixels (samples) [1], in order to evaluate the ability of ConvNets in handling
small and irregular homogeneous regions. The superpixels have been pre-annotated
into 7 categories: road (2048 samples), tree (2936 samples), shadow (4702 samples),
water (843 samples), building (13082 samples), Grass (1021 samples) and bare soil (336

samples). For deep learning, we extracted a small region of interest around each given
superpixel, showing its context, and scaled it to the dimension of the corresponding
input of the ConvNet.

Figure 3.12: A portion of the aerial image of Rome, showing the obtained superpixels.
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As superpixels are essentially composed of non regular areas, a pre processing
stage is needed in order to solve this non regularity issue. In this work, we consider
a bounding box surrounding the superpixel, with an extra padding of 10% in each
dimension. This bounding box is then interpolated to match the input of the ConvNet.
An illustration of the process is shown in Figure 3.13.

Figure 3.13: An example of the sample extraction and interpolation applied in the Rome data set.

The data sets presented in this section comprises a wide range in several aspects,
including dimension, color, ratio, number of classes and balance, in an attempt to
evaluate the behavior of ConvNets in many different scenarios. Table 3.1 summarizes
the characteristics of all data sets considered in the following experiments:

Data sets dimension color ratio # classes # samples balanced

Stl10 96× 96 yes constant 10 13,000 yes

Cifar10 32× 32 yes constant 10 60,000 yes

Larvae 1816× 742 yes constant 2 3,544 no

Melanoma [220× 203, 220× 552] yes variable 3 1,039 no

Mnist 28× 28 no constant 10 60,000 yes

Pubfig5 200× 200 no constant 5 367 roughly

Scenes15 [203× 220, 552× 220] no variable 15 8,760 no

Rome [10× 8, 54× 62] yes variable 7 24,968 no

Table 3.1: An overview of all data sets considered in the experiments.
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3.3 Research questions and proposed experiments

In order to assess the performance of Feature Learning (FL), Transfer Learning (TL),
and Architecture Learning (AL) for supervised data constraint, we first have to define a
reasonably low number of samples for manual annotation. For the presented data sets,
is feasible and reasonable to expect the specialist to be able to annotate 100 images per
category. In a real application, those images could be carefully selected by the specialist
to better represent their categories. In this work, we simply randomly selected 100

images per category from each data set. They constitute the respective training set for
image feature learning. The remaining images, for which we also know the label, have
been used to compose the test set. As we will see in the next chapter, the experiments
have also been repeated for different choices of training, and test sets, being the test
set fixed for all approaches, in order to obtain the statistics of the results.

Under such data constraint, we want to figure out which is the best method for
image feature among FL, TL, and AL? FL has a tendency to overfit, while TL can
considerably reduce the overfit and AL has shown to be effective with data limitation
in spoofing detection [59]. Therefore, we want to evaluate first, in the next chapter,
the best among the learning approaches to deal with supervised data restrictions.
However, how do we know the method with the best performance has learned an
effective feature space? When the feature space is effective, we should expect the
accuracy of a suitable classifier to increases with the number of supervised samples.
We then propose to observe the behavior of the SVM classifier when additional samples
are selected from the evaluation set and included in the training set by active learning.
The underlying idea here is to use the classifier to select the most important samples
for its learning process.

We believe that, using unsupervised samples from the same problem we can
improve the results of classification. However, for the present study, we would like
to explore only the supervised samples in the training set. This implies in the use of
data augmentation by affine transformations on our training samples. Can such type
of data augmentation improve image feature learning for any of the three methods,
FL, TL, and AL?

Another important aspect is the ability of reducing the feature space to make
feasible the use of operations that rely on distance functions, such as clustering
methods, distance-based classifiers, and content-based image retrieval applications.
The use of an MLP allows feature space reduction when the feature vector is extracted
from the output of the last hidden layer, as well as traditional dimensionality reduction
approaches, namely, PCA and LDA. Therefore, can we reduce the obtained feature
space from FL, AL, and TL?

Therefore, the next chapter is dedicated to answer the above questions and the
subsequent one evaluates the best solution for a real application.
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Experiments and Results

"No particular theory may ever be regarded as
absolutely certain.... No scientific theory is
sacrosanct..."

—Karl Popper

In the preceding chapters we have presented the main concepts of Deep Learning,
focusing on Convolutional Networks (ConvNets), as well as the main contributions
these techniques have brought into machine learning and image analysis fields. We
have also raised some questions about the behavior of ConvNets in overlooked scenar-
ios, with special attention to problems under supervised data constraint. This chapter
presents the experiments designed to answer those questions and a discussion about
their results.

4.1 General setup

We consider three approaches for image feature learning: Architecture Learning (AL),
Filter Learning (FL), and Transfer Learning (TL). This section describes the hyper-
parameter architecture search space adopted for AL, as well as the backpropagation
hyperparameters adopted to learn weights and biases in FL and TL.

ConvNets can be extremely expensive due to the large number of convolutions and
inner products to be computed. Since these operations are easily parallelized, modern
implementations of ConvNets rely on the recent advances in Graphics Processing Units
(GPUs) to speedup both, learning and deployment of such networks. In order to benefit
from these implementations, as well as make the results reproducible, all experiments
are performed with Simple-HP [18], which is based in Theano [90], and Caffe [43]
frameworks, for hyperparameter and parameter optimization, respectively.

For AL, we choose the best descriptor among 2, 000 randomly generated architec-
tures, while considering the AL search space, inspired by [59], described in Table 4.2.

Notice that, in order to deal with the small images obtained with superpixels, we
include an extra input size dimension of 32× 32 pixels.

47
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Table 4.1: Architecture Learning hyperparameters space.

Layer

Convolution Filter Size {3, 5, 7, 9}

Number of convolution filters {32,64,128,256}

Pooling filter size {3,5,7,9}

Pooling stride {1,2,4,8}

Pooling factor {1, 2, 10}

Apply/Not normalization filter yes/no

Normalization filter size {3,5,7,9}

Network

Input Size {32,64,128,256}

Apply/Not normalization filter yes/no

Normalization filter size {3,5,7,9}

Number of layers {1,2,3}

For FL and TL, we adopt the approach employed in [46] with the traditional
AlexNet architecture, training through 40 epochs of backpropagation. After the first 40

epochs, the original learning rate is dropped by a 0.1 decay, and followed by another
40 extra epochs. The backpropagation hyperparameters are chosen as follows:

FL and TL use the entire training set for feature learning (Z2 = ∅), while AL adopt
5× 2-fold cross validation over the training samples. That is, 50% of the samples (Z1)
are randomly chosen to train the SVM classifier for a given architecture and the other
50% are selected for the evaluation set Z2, used to assess the quality of the architecture
(i.e., classification accuracy in Z2). This process swaps Z1 and Z2, and repeats 5 times
to obtain the mean score of the architecture. Once the architecture with the highest
mean score is chosen, all samples (Z1 ∪Z2) are used to train the SVM classifier for final
assessment in the unseen test set Z3.

1For FL and TL respectively. The considerably smaller learning rate for TL is justified by the fact the
weights in TL are expected to be slightly adjusted only.
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Table 4.2: Filter and Transfer Learning stochastic gradient descent setup.

Backpropagation

Momentum 0.9

Learning Rate 0.01/0.0001
1

Weight Decay 0.05

Learning Rate Drop 40 epochs

Learning Rate Decay 0.1

Batch Size 50

4.2 What is the best image feature learning approach?

We are seeking the best image feature learning approach, among AL, FL, and TL, when
the training set contains only 100 supervised samples per category. Two challenges
stem from the fact ConvNets usually require large training sets [44, 46] and suffer with
category imbalance. The second problem justifies our choice for a uniform number
of training samples per category [38]. It is important to point out that, the imbalance
remains present in the test set of some data sets, as shown in the previous chapter.

After image feature learning with AL, FL, and TL, the output of the last ConvNet
layer is used as input to project a final SVM classifier with the entire training set
(Z1 ∪ Z2). The process is repeated considering different training and test data sets,
where different descriptors are learned and evaluated. The average of balanced
accuracy (numerical value on bars), along with the standard deviation (error bar in
black), are presented in Figure 4.1.

Considering a pairwise t-student test, TL significantly outperforms AL and FL,
except for the data sets Rome, Pubfig5, and Larvae. For these data sets, TL and AL
produce similar results. Indeed, whenever the texture information is higher (more
heterogeneous images), the results of TL and AL approximate each other. All methods
have presented a poor performance on Rome, indicating that the respective ConvNets
can not extract meaningful image features from superpixels. Perhaps, it is caused
by the absence of texture in those superpixels. Considering a pairwise comparison
between AL and FL, the t-student test shows AL is consistently better than FL, except
for Melanoma, as seen in Figure 4.2.

Another question is related to the quality of the AlexNet’s architecture. Can we
attribute the success of TL to the architecture of the AlexNet? This question can be
answered by substituting the ConvNet’s weights of the AlexNet by the randomly
initialized weights, such as in AL. Figure 4.3 presents a comparison between the
learned architecture and the AlexNet’s architecture with random weights.

The learned architecture shows indeed better results than the AlexNet’s architecture
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Figure 4.1: Pairwise comparison between TL and FL, and between TL and AL in accuracy of classification
(∗ indicates statistical significance).
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Figure 4.2: Pairwise comparison between AL and FL in accuracy of classification (∗ indicates statistical
significance).
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Figure 4.3: Pairwise comparison between AlexNet’s architecture and the learned one in accuracy of
classification (∗ indicates statistical significance).

for several cases, including Stl10 and Cifar10, whose images have been originally used
to design the AlexNet.

Another issue is about the impact of the training set size on AL, FL, and TL. Which
are the methods that require large training sets? In order to evaluate this issue, we
perform an experiment with Pubfig5, in which the training sets for AL, FL, and TL
increase at a rate of 15%, going from 15% to 90% of the data set size, leaving a fixed
test set with 10% of the samples. Figure 4.4 presents the respective accuracy curves of
AL, FL, and TL.
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Figure 4.4: Accuracy curves for AL, TL, and FL in Pubfig5, by using an increasing number of training
samples.
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As we can observe, FL really requires large training sets and the impact of more
training samples on TL and AL is considerably less than their impact on FL. The
accuracy gain in TL and AL is considerably higher in the beginning of their curves,
which suggests they do not need large training sets. In order to confirm this observation
for AL, we fix the image descriptor learned with X%, X = 15, 30, 45, 60, 75, 90, of the
training samples, but project the SVM classifier with more training samples. Table 4.3
shows that above X = 30, the accuracy gain is only about 2%. In addition to that, the
network architecture selected by AL is consistently the same. However, it does not
seem feasible to predict the minimum number of required training samples before
their pre-annotation.

Table 4.3: An incremental comparison of sample size effect in architectures learning and the sample size
effect in learning the architecture classifier.

Training Size 15% 30% 45% 60% 75% 90%

15%-Descriptor 0.84849 0.80735 0.86716 0.87686 0.87417 0.87684

30%-Descriptor - 0.91840 0.92050 0.94463 0.94141 0.94730

45%-Descriptor - - 0.92050 0.94463 0.94141 0.94730

60%-Descriptor - - - 0.92162 0.92106 0.92485

75%-Descriptor - - - - 0.94141 0.94730

90%-Descriptor - - - - - 0.94730

We may conclude that TL is the best choice under supervised data constraint.
However, the effectiveness of the feature learning process can only be confirmed when
the number of supervised samples is increased. This issue is addressed next.

4.3 Is the learned feature space effective?

The effectiveness of a feature space may be observed by projecting the training samples
and verifying the separability among the categories [72, 73, 74]. However the obtained
feature spaces are sparse and highly dimensional, and data projection methods usually
depend on distance functions. Another option is to increase the number of supervised
training samples used to project the classifier and verify its accuracy gain. Active learn-
ing methods are the indicated strategies to reduce human effort in sample annotation.
In these methods, at each iteration, an apprentice classifier labels and selects the most
informative samples (i.e., those with uncertain labels) for the expert’s supervision. The
classifier is retrained with the new supervised samples and the process repeats until
the user is satisfied.

Considering an SVM classifier, we have evaluated the improvement in classification
accuracy when additional informative samples are selected per iteration, based on
their distance to the decision boundaries (hyperplanes of each category). We let the
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initial training set, used for feature learning, to increase at each iteration by 10 samples
per category until it doubles the size. Considering a fixed test set, we evaluate the
classification accuracy along iterations, while fixing the previously learned image
descriptors from AL, FL, and TL (Figure 4.52). It should be expected an increase in the
curve as an indication of the effectiveness of the feature learning approach.
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Figure 4.5: Accuracy curves during active learning for image descriptors created by AL, FL, and TL on
each data set.

As we can see, for most data sets, all feature learning approaches obtained reason-
ably effective descriptors (with the exception of Rome and Scenes15). However, it is
interesting to observe that, in the case of Larvae and the descriptor from AL, the choice
of more informative samples during active learning reduces classification accuracy.
In general, TL and AL are the ones that produce the lower standard deviations (as
indicated by colored shadow around the curves), which makes them more stable

2A better version of this plot is available in Appendix A
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descriptors. Note also that the superiority of the descriptor from TL remains during
active learning.

It is important to point that, due to the poor performance obtained ofr Rome and
Scenes datasets during the feature learning process, both data sets have not shown to
benefit from the active learning, when compared with the remaining data sets.

The most important conclusion in this experiment is that we have been able to
improve accuracy with the learned descriptors as the number of supervised samples
increases. However, we still need to assess if the improvement is possible with artificial
data augmentation. This issue is addressed in the next section.

4.4 Does artificial data augmentation improve the results?

Due to the previously mentioned underperformance of Deep Learning under data
constraint, a common approach to deal with the problem is to artificially increase the
number of samples. Many techniques have been developed to virtually augment data
sets, from general approaches, such as affine transformations on images, to expensive
3D models that create different views for face recognition [58, 67].

The benefits of data augmentation on ConvNets have been widely shown in many
applications [46, 54, 96], using different approaches to artificially increase the training
data set (Z1). Since it surpasses the scope of this work, the data augmentation approach
adopted here relies solely in applying rotation on training images (90

◦, 180
◦, 270

◦),
creating data sets 4 times bigger than the data sets adopted in the previous experiments.
Increasing the number of training samples, we also increase the time spent in the
learning process, while adopting the same learning hyperparameters as before on
both, backpropagation and architecture learning. The second reason in experimenting
simple data augmentation approaches is to assess if data augmentation approaches
will always be able to improve the descriptor learning process.

As ConvNets are usually employed with feature learning and design of the classifier
in a same pipeline, it is not usually possible to discriminate the impact of data augmen-
tation on the descriptor or the classifier. In this work, we decouple feature extraction
and classification, making it possible to evaluate two different approaches based on
data augmentation: (i) Learn the ConvNet features and design the SVM classifier
using the augmented data. (ii) Learn the ConvNet features with the augmented data
and design the SVM classifier using the original data only. In Figure 4.6 we present a
comparison among both approaches and the original one with no data augmentation.

Considering a t-student significance test, FL shows a significant improvement
on Rome, Mnist and Larvae data sets, while TL features improves in Rome, Larvae
and Melanoma. Data augmentation in AL, on the other hand, does not produce
considerable improvement in any data set.

In general, the improvement in classification obtained by the adopted data augmen-
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Figure 4.6: Accuracy of Convolution Networks for Filter, Transfer and Architecture Learning, and the
accuracy obtained with artificially augmented data for descriptor learning only and for descriptor and
classifier training.

tation strategies is marginal. In several cases, they can otherwise considerably reduce
performance. One can also notice that, in the cases where data augmentation could
benefit the performance, this positive impact is higher in feature learning than when
using it for both, feature learning and the classifier training.

ConvNet feature spaces are usually sparse and high dimensional, which impair the
performance of distance-based operations, such as clustering and data visualization.
This issue is addressed in the next section.

4.5 Can the obtained feature spaces be reduced?

A known problem with the ConvNet approach lies on their high dimensional sparse
feature vectors, which strongly limits the use of distance-based classification [2], such
as Nearest Neighbors and Optimum-Path Forest [65] classifiers. This also affects the
use of clustering algorithms, which are, mostly based in the Euclidean distance for
similarity measure [71].

The following experiment is drawn to evaluate the impact of the learned descriptors
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on distance-based operators[2], such as the Optimum-Path Forest classifier. As a first
scenario, the output of the last convolutional layer is considered as feature vector. We
then, evaluate the performance of the Optimum-Path Forest classifier using that feature
vector in comparison to the original SVM classification. The results are presented in
Figure 4.7.
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Figure 4.7: Accuracy of Optimum-Path Forest Classifier and Support Vector Machines for all data sets,
with the last convolution hidden layer as feature vector.

Except for the Larvae data set, the Transfer Learning approach has shown to find
more suitable features for distance-based classification. However, the negative impact
of the learned descriptors on OPF is evident.

In order to assess the benefit of the dimensionality reduction on OPF classification,
we assess the feature vector that results at the last hidden layer (after feature space
reduction by the fully connected layers) of the AlexNet, from TL and FL. Figure
4.8 presents a comparison of OPF classification before and after the fully connected
dimensionality reduction.

As we can see, the fully connected dimensionality reduction reduces the negative
impact of the ConvNet features on OPF, for both FL and TL features3. Cifar10 and

3AL is not included in this experiment, since this approach does not use fully connected layers.
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Figure 4.8: The accuracy of Optimum-Path Forest Classifier using the last fully connected hidden layer
as feature vector.

Stl10 data sets show better results using the TL features, since AlexNet was originally
designed with them.

With the consistent benefit of fully connected dimensionality reduction, one might
wonder if conventional dimensionality reduction techniques can also reduce the neg-
ative impact on the OPF classification. For this reason, we consider unsupervised
and supervised dimensionality reduction approaches, namely, Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) to be applied in the ConvNet
descriptor (last convolutional layer). Figure 4.9 presents the accuracy of the OPF
classification with such techniques.

For most data sets LDA outperforms PCA, with the exception of Scenes15 and Rome
data sets, where, as indicated in the previous experiments, we could not learn a proper
descriptor, what considerably impacts the performance of supervised dimensionality
reduction techniques.

As we can see, LDA achieves an accuracy rate similar to the fully connected
reduction, being able to significantly improve the OPF classification. Since LDA
reduces the problem to a Rc−1 feature space, for c categories, this is an interesting
result in addition to the fact that the fully connected reduction outputs a feature vector



Chapter 4. Experiments and Results 58

��������

������

���������

��������

�������

�����

������

�����

������

����

��������

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��������

�
�
��
�
�
�

�������

��

��

��

������������������������

���

���

Figure 4.9: The accuracy of Optimum-Path Forest classifier applying PCA and LDA reduction on the
output of the last convolutional layer.

in R1000.
Since PCA and LDA can provide considerable feature space reduction, one might

wonder if it can perform better if applied after the fully connected reduction. To
evaluate this, we have applied PCA and LDA reduction in the output of the last hidden
fully connected layer. Figure 4.10 shows the results of this experiment.

The application of PCA/LDA over the feature vector reduced by the fully connected
layers does not significant improvement classification performance for most data sets,
with exception of the TL descriptor on Cifar10 and Stl10, which, again, represent
similar data sets to the AlexNet original training data. Although the performance of
the fully connected feature space reduction surpasses LDA, it is important to point out
that the feature space reduction in LDA is consideraby more drastic.

Dimensionality reduction also impacts data visualization methods that rely on
distance functions to project the high-dimensional feature space on to R2, allowing
humans to understand the structure of the data distribution. The t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [56] is a recent approach for such data projection,
being successfully used to understand the neuron activity of ConvNets during feature
learning [74].
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Figure 4.10: The accuracy of Optimum-Path Forest classifier using PCA and LDA to reduce the feature
space of the last fully connected hidden layer.

Figure 4.11
4 presents the t-SNE projection of the high dimensional feature space

obtained in the last convolutional layer of the three feature learning approaches, TL, FL,
and AL, for the Pubfig5 data set. One can notice that, both TL and AL show a reduced
category overlapping when compared with FL. However, while TL is able to create
more compact clusters, AL spreads more the projected samples. In all cases, however,
the overlapping among the categories is still considerable, indicating a negative impact
of the high dimensional feature space on the t-SNE method. In order to alleviate
the problem, we repeat the experiment with the resulting feature spaces of the LDA
reduction on the descriptor of the last convolutional layer (Figure 4.12

5).
As we can see, LDA significantly improves the category separation, which explains

the accuracy gain obtained with the OPF classifier, indicating that it is possible to find
a linear transformation able to properly capture the discrimination power of ConvNet
sparse codes, thus opening the application of ConvNets to a wider range of distance-
based operators, while holding a reasonably good performance in classification.

4A better version of these plots are available in Appendix B
5A better version of these plots are available in Appendix B
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Figure 4.11: t-SNE 2D visualization of all ConvNet descriptors on Pubfig5 dataset.
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Figure 4.12: t-SNE 2D visualization of the LDA dimensionality reduction of ConvNet descriptors on
Pubfig5 dataset.



Chapter 5

Case Study: Diagnosis of Human
Intestinal Parasites

"Science is the captain, and practice the soldiers."

—Leonardo da Vinci

This chapter presents an application of the concepts developed so far, applying
the Deep Learning concepts in a real scenario for the diagnosis of intestinal parasites.
The process of image acquisition is presented, along with the data sets adopted in
this experiment. We also compare the learned features against the state of the art
knowledge-based features [88] and data-driven features [66], where, even with the
data limitation imposed by the problem, ConvNets are able to significantly improve
the current model.

5.1 Automatic diagnosis of human intestinal parasites

Infections by human intestinal parasites can cause death, physical and mental disorders
in children and immunodeficient adults [70]. Image analysis methods have been
proposed [3, 5, 24, 29], in an effort to achieve fast and effective diagnosis. Among the
proposed ones, we can highlight the fully automated system developed by Suzuki et
al. [88], which is unique in performing image acquisition and analysis with no human
intervention.

In a single fecal exam, hundreds of image components (parasites and fecal impu-
rities) can be present per field of the optical microscopy slide. As a first stage, these
components must be detected and the parasite candidates must be segmented from
the images for subsequent characterization and classification. The image segmentation
method, as specified in Suzuki et al. [88], consists of the following steps (illustrated in
Figure 5.1):

i. Quantization: the colored images are converted to a 64 gray
level image, in order to simplify the search for candidate
objects.
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ii. Border enhancement: the borders are enhanced with a Sobel
filter.

iii. Ellipse matching: the regions with ellipse-like shape are
considered parasite candidates, since protozoa cysts and
helminth eggs have circular or elliptical shapes, and larvae
have elongated regions, where ellipses can fit properly.

iv. Object delineation: the matched ellipsis are used to define
external and internal markers, allowing a segmentation
through the Image Foresting Transform (IFT) algorithm
[27].

(a) (b) (c)
(d)

Figure 5.1: (a) Gray level quantization. (b) Sobel border enhancement. (c) Ellipse matching. (d) IFT
object delineation. Adapted from [88].

As some species strongly diverge in shape and size, Suzuki et al. [88] divide the
parasite species in three different groups, for better categorization:

i. Larvae: composed by S. stercoralis and impurities of similar
size and shape,

ii. Helminth eggs: composed by H. nana, H. diminuta, An-
cilostomideo, E. vermicularis, A. lumbricoides, T. trichiura, S.
mansoni, Taenia and impurities of similar size and shape,

iii. Protozoa: composed by E. coli, E. histolytica, E.nana, Giar-
dia, I.butschlii, B.hominis and impurities of similar size and
shape.

All experiments in this chapter are performed in a data set composed of 16.437

candidate objects of fecal impurities and the 15 most common species of intestinal
parasites in Brazil. This is the same data set considered in [88], and some sample
examples are presented in Figure 5.2.

An important aspect of this data set, lies on its strong category imbalance, caused by
an uneven a priori probability of infection by different species, as well as an exceedingly
number of impurities against true parasites. Table 5.1 presents the distribution of
samples per category in the given data set.



Chapter 5. Case Study: Diagnosis of Human Intestinal Parasites 63

(a) (b)

Figure 5.2: (a) Examples of some of the most common parasite species. (b) Impurities with size and
shape similar to parasites.

Table 5.1: Distribution of available samples in the parasites data set, according to parasite species and
group.

Protozoa Helminth eggs Larvae

E. coli 719 H. nana 348 S. stercoralis 446

E. histolytica 78 H. diminuta 80 Impurities 3068

E.nana 724 Ancilostomideo 148

Giardia 641 E. vermicularis 122

I.butschlii 1501 A. lumbricoides 337

B.hominis 189 T. trichiura 375

Impurities 5716 S. mansoni 122

Taenia 236

Impurities 3344

Total 9568 Total 5112 Total 3544

As we can notice, for some species, less than 100 samples are available for training,
evaluation and test, due to a naturally lower occurrence of such species. As mentioned
before, the category balance poses an important requirement for a good performance
of ConvNets. The experiments on ConvNets and the analysis of their results are
presented in the following section.

5.2 Classification of intestinal parasites based on Con-
vNets

In order to improve the automated diagnosis system of intestinal parasites, as proposed
in Suzuki et al. [88], Peixinho et al. [66] presented a ConvNet descriptor based on
Architecture Learning (AL). This descriptor is able to reasonably improve classification
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performance, when the classifier is trained with a sufficient number of samples obtained
by artificial data augmentation. Due to the strong category imbalance previously
mentioned in Section 5.1, this early Deep Learning solution learns the ConvNet
architecture by considering balanced subsets for each category with 5% of the samples
for training and 5% of the samples for evaluation (a total of 10% of the samples are
used to learn the descriptor). However, in order to achieve a reasonable classification
accuracy, the number of samples used to train the classifier is increased to 50% of the
samples, as in the state-of-the-art approach [88].

In this chapter we add the Transfer Learning (TL) of AlexNet, which has shown,
in the previous experiments, to perform better in scenarios where the available data
is strongly restricted. Considering the natural restriction imposed by the category
imbalance, the ConvNet descriptors are learned based on TL and AL with a small
number of training samples. For instance, we set a number of 70 samples per category
for the Helminth and Protozoa groups, and 100 samples for the Larvae group, since
this last group has more available samples.

In the following experiments we compare TL with the knowledge-based and
data-driven (AL) descriptors [66, 88]. Although the original approach, developed by
Suzuki et al. [88], relies on the Optimum-Path Forest [65] classifier, we are using the
SVM classifier due to the ConvNet-based features, thus providing a fair comparison
among the descriptors. Table 5.2 presents the classification accuracy achieved for all
descriptors.

Table 5.2: Classification accuracies using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], under supervised data constraint. (Bold values indicates statistical significance).

Dataset Transfer Learn Arch Learn [66] Suzuki et al. [88]

Larvae 0.974± 0.002 0.931± 0.009 0.936± 0.020

Protozoa 0.959± 0.004 0.915± 0.004 0.903± 0.007

Helmints 0.978± 0.007 0.932± 0.005 0.931± 0.006

The AL and the handcrafted descriptors achieve similar performance in the scenario
under supervised data constraint, while TL is able to significantly outperform them
in all groups. However, dealing with medical diagnosis, it is important to evaluate
how this outperformance reflects in precision and recall for each specie. We present
the comparative results using precision and recall for each specie in Tables 5.3 and 5.4,
respectively.

Although the recall has shown similar results for all descriptors, being the TL
descriptor able to outperform the others for only 3 out of 15 categories, the TL
precision is better for most species, by significantly reducing the number of false
positives.

In order to properly show the precision and recall improvement obtained with the
Deep Learning approaches in a scalar measure, we also evaluate the descriptors with



Chapter 5. Case Study: Diagnosis of Human Intestinal Parasites 65

Table 5.3: Classification precision using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], under supervised data constraint. (Bold values indicates statistical significance).

Species Transfer Learn. Arch Learn [66] Suzuki et al. [88]

E. coli 0.860± 0.034 0.795± 0.037 0.731± 0.066

E. histolytica 0.083± 0.020 0.057± 0.010 0.047± 0.013

E.nana 0.785± 0.034 0.658± 0.048 0.636± 0.074

Giardia 0.742± 0.038 0.570± 0.039 0.516± 0.053

I.butschlii 0.927± 0.024 0.747± 0.042 0.746± 0.040

B.hominis 0.363± 0.047 0.354± 0.066 0.274± 0.028

Protozoa Impurities 0.997± 0.001 0.984± 0.004 0.986± 0.004

H. nana 0.942± 0.032 0.737± 0.065 0.694± 0.113

H. diminuta 0.353± 0.092 0.127± 0.025 0.132± 0.023

Ancilostomideo 0.554± 0.104 0.333± 0.086 0.440± 0.038

E. vermicularis 0.879± 0.061 0.266± 0.040 0.323± 0.042

A. lumbricoides 0.605± 0.099 0.524± 0.084 0.504± 0.079

T. trichiura 0.913± 0.030 0.809± 0.029 0.680± 0.087

S. mansoni 0.414± 0.061 0.267± 0.046 0.136± 0.049

Taenia 0.797± 0.049 0.645± 0.070 0.499± 0.093

Helminth Impurities 0.998± 0.001 0.991± 0.002 0.993± 0.005

S. stercorali 0.762± 0.047 0.475± 0.050 0.527± 0.116

Larvae Impurities 0.998± 0.001 0.999± 0.001 0.998± 0.002

the Cohen’s Kappa statistic κ, which is known to be strongly related to the ROC curve
[9], being a more suitable metric. In Table 5.6, we present the Kappa statistic for each
descriptor, reinforcing the superior performance of TL.

In a scenario with supervised data restriction, the TL descriptor can significantly
improve classification performance, surpassing both, the handcrafted descriptor [88],
and the AL descriptor [66]. However, Suzuki et al. [88] evaluates its descriptor in a
scenario with more available data, since, as a knowledge-based descriptor, it does not
suffer from the strong category imbalance present on the parasite data set.

By increasing the number of training samples, we now compare the performances
of the descriptors similarly to the scenario proposed in Suzuki et al.[88]. Each group is
divided into 50% of training samples and 50% of test samples by random sampling,
with no category balance imposition. We keep the descriptors as previously learned,
while the classifier is retrained with more samples. Tables 5.7 and 5.8 present the
results in accuracy and kappa statistic.
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Table 5.4: Classification recall using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], under supervised data constraint. (Bold values indicates statistical significance).

Species Transfer Learn. Arch Learn. [66] Suzuki et al. [88]

E. coli 0.995± 0.002 0.986± 0.010 0.984± 0.005

E. histolytica 1.000± 0.000 1.000± 0.000 0.975± 0.050

E.nana 0.971± 0.010 0.907± 0.031 0.932± 0.028

Giardia 0.965± 0.009 0.955± 0.010 0.926± 0.017

I.butschlii 0.946± 0.010 0.895± 0.020 0.875± 0.019

B.hominis 0.973± 0.012 0.928± 0.033 0.948± 0.015

Protozoa Impurities 0.862± 0.029 0.735± 0.023 0.682± 0.030

H. nana 0.994± 0.005 0.986± 0.006 0.963± 0.027

H. diminuta 0.980± 0.040 0.980± 0.040 0.960± 0.049

Ancilostomideo 0.990± 0.010 0.928± 0.048 0.977± 0.013

E. vermicularis 0.996± 0.008 0.977± 0.019 0.981± 0.017

A. lumbricoides 0.983± 0.010 0.894± 0.030 0.958± 0.022

T. trichiura 0.997± 0.002 0.988± 0.006 0.974± 0.008

S. mansoni 1.000± 0.000 0.950± 0.029 0.985± 0.014

Taenia 0.994± 0.000 0.989± 0.005 0.993± 0.005

Helminth Impurities 0.865± 0.032 0.699± 0.027 0.592± 0.087

S. stercorali 0.985± 0.009 0.992± 0.006 0.987± 0.012

Larvae Impurities 0.963± 0.010 0.869± 0.024 0.886± 0.047

Table 5.5: The Cohen’s Kappa statistic of classification using the ConvNet-based descriptors and the
handcrafted descriptor proposed in [88], under supervised data constraint.

Table 5.6: A comparison of between the ConvNet and the state-of-the-art descriptor for automatic
diagnosis [88]. (Bold values indicates statistical significance).

Dataset TL AL [66] Suzuki et al. [88]

Larvae 0.839± 0.031 0.581± 0.052 0.626± 0.113

Protozoa 0.841± 0.026 0.708± 0.015 0.664± 0.021

Helmints 0.808± 0.038 0.618± 0.023 0.539± 0.061

With more training samples, a significant improvement in accuracy is achieved
for AL and the handcrafted descriptors. The classification accuracy with the TL
descriptor, however, has not improved much. The differences among the methods is
better perceived when using the kappa score. Tables 5.9 and 5.10 also show similar
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Table 5.7: Classification accuracy using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], with no data constraint. (Bold values indicates statistical significance).

Dataset TL AL [66] Suzuki et al. [88]

Larvae 0.976± 0.005 0.948± 0.014 0.921± 0.012

Protozoa 0.961± 0.006 0.940± 0.006 0.914± 0.008

Helmint eggs 0.977± 0.005 0.933± 0.006 0.900± 0.004

Table 5.8: The Cohen’s Kappa statistic of classification using the ConvNet-based descriptors and the
handcrafted descriptor proposed in [88], with no data constraint. (Bold values indicates statistical
significance).

Dataset TL AL [66] Suzuki et al. [88]

Larvae 0.974± 0.002 0.878± 0.026 0.898± 0.017

Protozoa 0.974± 0.002 0.958± 0.003 0.919± 0.002

Helminth eggs 0.978± 0.004 0.941± 0.006 0.918± 0.003

results for precision and recall, respectively, when using more training samples.
The results indicate that, based on the Cohen’s kappa, the precision and the recall

scores, TL is the best candidate to improve the automated diagnosis system of human
intestinal parasites.

Now, in order to understand the presented results by data visualization, we analyze
the data projection of the handcrafted and ConvNet feature spaces in the next section.
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Table 5.9: Classification precision using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], with no data constraint. (Bold values indicates statistical significance).

Species TL. AL [66] Suzuki et al. [88]

E. coli 0.987± 0.005 0.977± 0.009 0.963± 0.009

E. histolytica 0.975± 0.022 0.968± 0.019 0.863± 0.082

E.nana 0.965± 0.005 0.949± 0.009 0.904± 0.014

Giardia 0.966± 0.008 0.958± 0.011 0.930± 0.020

I.butschlii 0.982± 0.004 0.975± 0.004 0.921± 0.011

B.hominis 0.960± 0.015 0.947± 0.031 0.895± 0.034

Protozoa Impurities 0.990± 0.001 0.981± 0.002 0.969± 0.001

H. nana 0.986± 0.006 0.984± 0.016 0.958± 0.012

H. diminuta 1.000± 0.000 0.910± 0.030 0.939± 0.035

Ancilostomideo 0.954± 0.017 0.960± 0.033 0.946± 0.033

E. vermicularis 1.000± 0.000 0.966± 0.011 0.936± 0.014

A. lumbricoides 0.976± 0.014 0.938± 0.017 0.940± 0.015

T. trichiura 0.994± 0.005 0.988± 0.002 0.977± 0.007

S. mansoni 0.986± 0.013 0.920± 0.029 0.883± 0.032

Taenia 0.972± 0.013 0.952± 0.007 0.972± 0.015

Helminth Impurities 0.990± 0.002 0.971± 0.003 0.957± 0.003

S. stercorali 0.943± 0.022 0.881± 0.068 0.989± 0.008

Larvae Impurities 0.994± 0.002 0.988± 0.006 0.978± 0.003
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Table 5.10: Classification recall using the ConvNet-based descriptors and the handcrafted descriptor
proposed in [88], with no data constraint. (Bold values indicates statistical significance).

Species Transfer Learn. Arch Learn. [66] Suzuki et al. [88]

E. coli 0.996± 0.003 0.989± 0.004 0.971± 0.004

E. histolytica 0.954± 0.019 0.908± 0.045 0.887± 0.058

E.nana 0.975± 0.008 0.944± 0.017 0.923± 0.019

Giardia 0.969± 0.003 0.959± 0.006 0.912± 0.015

I.butschlii 0.983± 0.003 0.977± 0.005 0.928± 0.013

B.hominis 0.862± 0.039 0.839± 0.034 0.812± 0.032

Protozoa Impurities 0.990± 0.001 0.985± 0.003 0.968± 0.001

H. nana 0.991± 0.006 0.979± 0.011 0.952± 0.016

H. diminuta 0.980± 0.019 0.960± 0.020 0.905± 0.043

Ancilostomideo 0.946± 0.015 0.846± 0.044 0.862± 0.048

E. vermicularis 0.997± 0.007 0.934± 0.057 0.921± 0.041

A. lumbricoides 0.962± 0.012 0.877± 0.023 0.894± 0.013

T. trichiura 0.999± 0.002 0.994± 0.006 0.965± 0.010

S. mansoni 0.928± 0.034 0.852± 0.018 0.695± 0.088

Taenia 0.998± 0.003 0.968± 0.012 0.925± 0.011

Helminth Impurities 0.992± 0.002 0.984± 0.005 0.979± 0.004

S. stercorali 0.960± 0.012 0.915± 0.042 0.843± 0.023

Larvae Impurities 0.992± 0.003 0.980± 0.015 0.999± 0.001
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5.3 Understanding the results by visual analytics

In [72, 73], it was demonstrated that a good separation among classes in the 2D sample
projection by t-SNE of a high-dimensional feature space is strongly related to a good
classification performance in the original feature space. At the same time, a bad
separation among classes in the 2D sample projection is meaningless. In this section,
we want to verify if the performance of the image descriptors in the previous section
is related to the separation among classes in their corresponding high-dimensional
feature spaces.

First, we use the t-SNE[56] to project in R2 the samples of each group in the feature
space of the knowledge-based image descriptor (Figure 5.3). The fecal impurities, in
gray, represent a diverse class with examples that can be similar to the ones of any
other category. Nevertheless, it is possible to understand that most samples from
distinct classes are separated in the high-dimensional feature space. This becomes
clearer when we overlook the impurities, as shown in Figure 5.4.
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Figure 5.3: The 2D projection of the samples in the feature space of the knowledge-based image
descriptor [88], for each group of parasites.

Given that the dimension of the TL feature space is considerably higher than the
one of the knowledge-based image descriptor, we apply LDA to reduce that feature
space before final projection by t-SNE. The LDA feature space reduction is learned over
50% of the training images only. Figures 5.5 and 5.6 show the 2D sample projections of
the TL feature space, for each group, with and without fecal impurities, respectively.

We can observe that the intermediate feature space reduction based on LDA allows
to reveal a considerably better separation among the classes in the TL feature space
than in the feature space of the knowledge-based image descriptor, which is consistent
to the classification results presented in the previous section.
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Figure 5.4: The 2D projection of the samples in the feature space of the knowledge-based image
descriptor [88], for each group of parasites, but overlooking the fecal impurities.
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Figure 5.5: The LDA followed by the 2D t-SNE projection of the samples in the feature space of the TL
image descriptor, for each group of parasites.
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Figure 5.6: The LDA followed by the 2D t-SNE projection of the samples in the feature space of the TL
image descriptor, for each group of parasites, but overlooking the fecal impurities.
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Conclusion

"We can only see a short distance ahead, but we can
see plenty there that needs to be done."

—Alan Turing

Deep feature learning techniques can address pattern recognition problems from
many areas of Sciences and Engineering, in which decision-making and decision-
support systems based on image analysis rely on an effective feature space representa-
tion of the image content for pattern classification. However, the need for large training
sets with pre-annotated images is a well known problem.

In this work, we studied three possible solutions using Convolution Networks
(ConvNets) under a limited number of supervised images: Transfer Learning (TL),
Architecture Learning (AL), and Filter Learning (FL). We have also evaluated the
impact of increasing the training set size with no user supervision by artificial data
augmentation. The data augmentation strategies based on image rotation are not in
general justified to improve performance of the system. We have shown that TL from
the AlexNet can be effectively applied to learn features from image data sets with
different characteristics, being the best approach in comparison with AL and FL. At
the same time, in the absence of a previously learned network for TL, AL is the best
alternative under supervised data constraint in comparison with FL.

The performance order of the feature learning techniques was also visually verified
by the separation among classes in the 2D projections of their corresponding feature
spaces, as proposed in [72, 73, 74]. This suggests expert’s intervention for data
augmentation as future work. The expert can delineate the regions where unsupervised
samples are more likely to come from each class. We believe that data augmentation
based on the actual unsupervised images will improve deep feature learning, especially
when the accuracy of classification without data augmentation is low.

In order to use distance-based techniques for data visualization, as well as for
pattern classification, the reduction of the high-dimensional feature space created by
ConvNets is an important issue. The space reduction provided by subsequent fully
connected layers and by Linear Discriminant Analysis (LDA) are equally suitable to

72
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address the problem. However, the considerable dimensionality reduction of LDA
makes data visualization more efficient. In addition to the efficiency gain, the accuracy
of the SVM classification using the high-dimensional feature space was slightly affected
by feature space reduction followed by OPF classification. This positive result suggests
the further investigation of feature space reduction techniques and their application
to other distance-based operations, such as the data organization by clustering, with
possible data reduction, for more effective and efficient active learning [80, 81]. By
using active learning, the expert can select more relevant samples for supervision
and/or data augmentation, and the feature learning process can be revisited for
feature improvement. Indeed, we have demonstrated that active learning can improve
the classification accuracy of SVM as those relevant samples are selected for label
supervision. The interplaying between feature learning and active learning strategies
is an interesting research topic, which can reduce human effort and time in data
annotation in order to design effective decision-making (-support) systems.

Finally, we have validated TL and AL in a real application — the diagnosis of the 15

most common species of intestinal parasites, distinguishing them from the numerous
and diverse class of fecal impurities. TL presented the best result among the compared
methods from the state-of-the-art, with and without supervised data constraint. This
demonstrates the potential of TL using ConvNets for this application.

In addition to the above directions to future research, there are many other pos-
sibilities to improve this work. Unsupervised learning techniques, such as Visual
Dictionaries (BoVWs), may be useful to start the process with active learning in or-
der to select the most relevant samples for deep feature learning. The use of data
visualization in both, active learning and feature learning, may be exploited to let
the expert intervene in both by selecting unsupervised samples and by changing the
parameters/hyperparameters of the system. In the end, we expect to build decision-
making and -support systems in which the experts can understand the advantages
and limitations of the machine, and consequently know when they can rely on the
machine’s actions.
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Appendix A

Active Learning Plots

A more detailed version of Active Learning plots, previously presented in Figure 4.5.
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Figure A.1: Accuracy curves during active learning for image descriptors created by AL, FL, and TL on
Stl10 data set.
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Figure A.2: Accuracy curves during active learning for image descriptors created by AL, FL, and TL on
Cifar10 data set.
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Figure A.3: Accuracy curves during active learning for image descriptors created by AL, FL, and TL on
Larvae data set.
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Figure A.4: Accuracy curves during active learning for image descriptors created by AL, FL, and TL on
Melanoma data set.
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Figure A.5: Accuracy curves during active learning for image descriptors created by AL, FL, and TL on
Mnist data set.
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Figure A.6: Accuracy curves during active learning for image descriptors created by AL, FL, and TL on
Pubfig5 data set.
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Figure A.7: Accuracy curves during active learning for image descriptors created by AL, FL, and TL on
Scenes15 data set.
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Figure A.8: Accuracy curves during active learning for image descriptors created by AL, FL, and TL on
Rome data set.



Appendix B

Data Visualization Plots

A better version of the t-SNE 2D plot of data sets.
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Figure B.1: t-SNE 2D visualization of all ConvNet descriptors on Pubfig5 dataset.
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Figure B.2: t-SNE 2D visualization of the LDA dimensionality reduction of ConvNet descriptors on
Pubfig5 dataset.
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Figure B.3: The 2D projection of the samples in the feature space of the knowledge-based image
descriptor [88], for each group of parasites.



Appendix B. Data Visualization Plots 94

(a) Larvae

����

����

����

���

���

���

��� �� � � ��

�����
�

(b) Helminth

���

��

�

�

��

��� �� � � �� ��

�����
�
�
�
�
�
�
�
�

(c) Protozoan

���

��

�

�

�� � �

�����
�
�
�
�
�
�

Figure B.4: t-SNE 2D visualization of the Suzuki et al. [88] descriptor, for all parasite groups, overlooking
impurities, but overlooking the fecal impurities
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Figure B.5: The LDA followed by the 2D t-SNE projection of the samples in the feature space of the TL
image descriptor, for each group of parasites.
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Figure B.6: The LDA followed by the 2D t-SNE projection of the samples in the feature space of the TL
image descriptor, for each group of parasites, but overlooking the fecal impurities.
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