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Abstract

Proper orthogonal decomposition is employed for identifying coherent structures in
wall-bounded turbulent flows. A large eddy simulation database of turbulent flows past a
NACA0012 airfoil at Mach numbersM∞ = 0.115 and 0.4, at 0 and 5 degs. angle of attack
for Reynolds number Rec = 408000 is employed in the present investigations. Analyses
of different POD techniques are presented using the snapshot method, the spectral POD
method (SPOD) and a Fourier-POD implementation combined with the SPOD. The latter
technique is viable once the present turbulent flow has a homogeneous direction along the
airfoil span. An assessment of different vector norms and filter functions employed in the
correlation matrix is presented. The spectral POD technique is applied assuming periodic
and non-periodic temporal signals. Results show that the SPOD method provides a better
coupling of the modes, redistributing the energy among the POD eigenvalues and leading
to an improved identification of coherent structures. The application of a Gaussian filter
allows an enhanced control in the response of the SPOD when compared to a square-box
filter. The assumption of periodic temporal signals in the construction of the correlation
matrix provides further improvement in the coupling of POD modes and cleans their
spectral content. Pressure based on kinetic energy norms are used and, for both norms,
the first pair of POD modes are related to coherent structures responsible for airfoil tonal
noise generation. However, the kinetic energy norm tends to reconstruct low-frequency
structures in the flow field for higher POD modes while the pressure norm reconstructs
high-frequency structures. The combination of Fourier decomposition with the SPOD
method allows a clear identification of coherent structures for the specific Fourier modes
along the airfoil span. The spectral content of the POD modes can be decoupled to each
spanwise Fourier mode. For the coherent structures identified in the numerical database,
the interaction between modes at different ranges of frequencies is identified. Coherent
structures aligned with the airfoil span are shown to be related to tonal noise peaks,
making it possible to identify the main aeroacoustic sources. Coherent structures aligned
with the streamwise direction and diagonally aligned with the span are formed for all
flow configurations due to the curvature of the airfoil and the adverse pressure gradient
after the forced turbulence transition. For flows at 5 degs. angle of attack, only diagonal
structures at high frequencies are present. At 0 degs. angle of attack, diagonal coherent
structures at low frequencies are present affected by the weaker adverse pressure gradient.

Keywords: POD, LES, Turbulence, Coherent Structures, Airfoil Flow



Resumo

Decomposição Ortogonal Própria é aplicada para identificar estruturas coerentes em
escoamentos turbulentos sobre um perfil NACA0012. A base de dados numérica é
formada por escoamentos com números de Mach M∞ = 0.115 e 0.4, e 0 e 5 graus de
ângulo de ataque, para um número de Reynolds Rec = 408000. Análises de diferentes
técnicas de POD são apresentadas usando o método de snapshots, o método de POD
espectral (SPOD) e a combinação Fourier-POD com o SPOD. Esta última análise é
possível devido à direção homogênea na envergadura através da condição de contorno
numérica de periodicidade do escoamento. Uma avaliação de diferentes normas vetoriais
e funções filtro na matriz de correlação é realizada neste trabalho. A técnica de SPOD
é aplicada assumindo sinais temporais periódicos e não-periódicos. Resultados mostram
que o SPOD melhora o acoplamento dos modos, redistribuindo a energia ao longo dos
autovalores e levando à uma melhor identificação das estruturas coerentes. Aplicação
de um filtro gaussiano permite um melhor controle na resposta do SPOD comparado
ao filtro quadrado. A hipótese de sinais temporais periódicos na matriz de correlação
melhora o acoplamento dos modos e limpa seu conteúdo espectral. Normas de pressão
e energia cinética são usadas neste trabalho e, para ambas, o primeiro par de modos é
relacionado à estruturas coerentes responsáveis pela geração de ruído tonal. Entretanto,
a norma de energia cinética tende a capturar estruturas de baixa frequência nos modos
subsequentes, enquanto a norma de pressão captura estruturas de alta frequência. A
combinação Fourier-POD permite uma melhor identificação das estruturas coerentes para
cada modo de Fourier ao longo da envergadura. O conteúdo espectral dos modos de POD
pode ser desacoplado para cada modo de Fourier. Foi possível identificar a interação
entre modos em diferentes frequências nos dados numéricos. Estruturas alinhadas com a
envergadura são relacionados ao ruído tonal na análise acústica, identificando as fontes
sonoras. Estruturas alinhadas com o escoamento, ou na diagonal, são formadas em todas
as análises devido à curvatura do perfil e ao gradiente de pressão adverso após a transição
turbulenta. Para os casos com 5 graus de ângulo de ataque, apenas estruturas diagonais de
alta frequência estão presentes. Afetados pelo gradiente de pressão mais fraco, estruturas
diagonais de baixa frequẽncia estão presentes no perfil para 0 graus de ângulo de ataque.

Palavras-chave: POD, LES, Turbulência, Estruturas Coerentes, Escoamentos em
Aerofólios
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1 Introduction

1.1 Airfoil Noise

Aerodynamic lifting devices are known for its intense noise scattering due to broadband
surface pressure fluctuations from turbulent boundary layers (Wang and Moin, 2000).
This problem is encountered in a wide range of engineering applications where low noise
emissions from turbulence-solid body interaction is desired. These applications include
rotor blades, wind and gas turbines, pumps, high-lift devices, fans and wings. The
physics of noise scattering is associated with surface pressure fluctuations from unsteady
aerodynamic loads generated as air flows past a solid body. In the case of blunt bodies
immersed in low Mach number turbulent flows, the far-field acoustic power is proportional
to the sixth power of the Mach number (Curle, 1955). However, when a sharp trailing
edge is immersed in a low-speed turbulent flow, the far-field acoustic power is proportional
to the fifth power of the Mach number (Ffowcs-Williams and Hall, 1970).

Brooks, Pope and Marcolini (1989) performed a series of experiments which were used
to identify the main sources of airfoil noise, namely turbulent and laminar boundary layer
noise, separation-stall noise, tip vortex noise and trailing edge bluntness noise. Each of
these sources appear for different flow conditions and all the mechanisms described are
related to the so-called airfoil self-noise generation. Stall noise may occur for some flow
conditions in wind turbine blades and tip vortex noise is characteristic of flap side edges
which are deployed when aircraft are landing.

Turbulent boundary layer noise is the most common airfoil self-noise generation
mechanism since most flows of engineering applications occur in turbulent conditions.
On the other hand, laminar boundary layer noise is present in airfoil shapes of reduced
characteristic lengths, such as in automotive cross-bars installed in the top roof of
cars, as in the work of Massaroti and Wolf (2016). Automotive cross-bars employ
airfoil profiles with blunt trailing edges and, therefore, trailing edge bluntness noise
is also present in these configurations. While turbulent boundary layers present a
broadband far-field noise spectrum, laminar boundary layers and blunt trailing edges
usually present narrowband tones from coherent sources such as vortex-shedding or
Tollmien-Schlichting waves. In this context, coherent structures are more effective
sources of noise generation. While small turbulent scales along boundary layers behave
as incoherent sources with phase-destructive interference, coherent turbulent structures
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present a constructive behavior, generating noise more efficiently.
Lockard and Lilley (2004) identified the trailing edge noise as the main aeroacoustic

source in airfoil noise problems. However, leading edge noise from a turbulent flow
impinging on an airfoil is also a topic of interest for aeroacousticians, as shown by Miotto
et. al (2016). In order to correctly analyze and identify aeroacoustic sources, as well as to
understand the physics involved in the turbulent structures which are responsible for the
noise generation, well resolved turbulence data is needed. Several experimental, numerical
and analytical approaches can be employed to study the physics of turbulence and its
subsequent noise generation. Among the experimental techniques which can be applied for
measuring velocity fields, one can cite particle image velocimetry, PIV, and laser Doppler
anemometry, LDA. Surface and far-field pressure fluctuations can be obtained by pressure
transducers and microphones, respectively. Although all these experimental techniques
may be used for the analysis of turbulent flows and noise generation, one should mention
that experimental campaigns in aeroacoustic wind tunnels have high costs and, therefore,
are not used in conceptual design stages. Analytical models have been developed along
the past decades to predict the noise from airfoils (Brooks, Pope and Marcolini, 1989).
However, these models are not general and need to be tuned to specific geometries and
flow conditions for accurate results.

Summarizing, as the computational resources are continuously being enhanced, the
frontier of what is feasible in high-fidelity CFD has been expanded and numerical
simulations have become a viable approach for the investigation of turbulent flows (Lele
and Nichols, 2014; Kocheemoolayil and Lele, 2014; Wolf et. al, 2014; Kocheemoolayil
and Lele, 2016). However, in order to obtain accurate results, low-dissipation and
low-dispersion numerical methods need to be employed. Techniques such as direct
numerical simulation, DNS, and large eddy simulation, LES, are well-suited for the
calculation of unsteady flows.

1.2 Turbulence Analysis

Although numerical simulations may provide three-dimensional (3D) turbulent
velocity fields, analyzing coherent structures in well-resolved turbulence is still not a
simple task and it represents, indeed, and “old dream” for physicists and engineers. The
earliest works on flow visualization were performed by Brown and Roshko (1974), whose
shadowgraphs revealed convection at almost constant speed of an organized vortex-like
quasi-2D coherent structure. In 1981, Cantwell reviewed the research on turbulent
flows, discussing possible ways to investigate the dynamics of organized structures. The
definition of coherent structures as fluid mass with instantaneously correlated vorticity
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over space was given by the work of Hussain (1980, 1983 and 1986), who also characterized
vorticity as a characteristic measure of coherent structures. Hussain also proposed a
decomposition of the fluid flow into mean flow, coherent and incoherent turbulence for a
better understanding of the origins and dynamics of the problem.

The first proposal for investigating coherent structures without the dependence
of a conditional criteria was proposed by John Lumley (1967 and 1970) who
employed the Proper Orthogonal Decomposition, POD, technique. Briefly, POD uses
second-order statistics to extract large energy-containing structures from turbulence. The
mathematical basis of POD will be discussed further in Section 3.1.

Despite of its early introduction in the field of fluid mechanics, POD has only gained
attention recently, especially for its use in reduced-order models (ROM) using the Galerkin
Projection of the POD modes to turn partial differential Navier-Stokes equations into a
set of ordinary differential equations. Aubry et. al (1988) employed this technique for the
study of incompressible flows while Rowley (2002) performed POD on numerical data of
flow past a two-dimensional (2D) open cavity in order to expand the Galerkin Projection
to model compressible flows at moderate Mach numbers. The results obtained by Rowley
showed better long-time behavior when applying vector-valued POD modes than using
scalar-valued ones. Also, Nagarajan et. al (2009) studied the compressible cavity problem
using POD-Galerkin for flow control.

In its use for flow analysis, many researchers found interesting results due to the
capability of POD to extract the most energetic coherent structures in turbulent flowfields.
Podvin (2009), Podvin et. al (2010) and Podvin and Sergent (2012) made use of POD
for investigating the dynamics of turbulence in the near-wall region of well-resolved
turbulence data. Liberzon et. al (2005) performed important studies in channel flow
using POD to characterize the flow and identify large eddies in 3D numerical data using
the linear combination of POD modes to understand the vorticity fields. Gurka et. al
(2006) used POD in vorticity fields for spatial characterization of large scale coherent
structures present in a channel flow from experimental PIV results. Diamessis et. al
(2010) studied slices from numerical simulation data of a stratified fluid flow using POD
for identifying the eddies present in the flow. Important conclusions on the 2D and 3D
coherent structures were drawn from the work of Liberzon et. al (2011), presenting the
main differences between the application of POD in channel flow analyzing experimental
data from PIV slices and combining multiple slices for the analysis of the entire fluid flow
region. Taira (2011) analyzed the results obtained for numerical simulations of high angle
of attack airfoils obtained by Taira and Colonius (2009) and Colonius and Taira (2008).
Even for laminar flows, as in the work of Backes (2016), the coherent structures can be
important on the flow analysis, so POD modes were used to characterize the spatial eddies
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and the energy associated to them in a canonical rod-airfoil configuration in tandem. In
acoustics, the work of Freund and Colonius (2009) is a reference for understanding how
POD can be used to investigate the dynamics of coherent structures in homogeneous jet
flows including the understanding of jet noise sources and the application of POD modes
for acoustic propagation.

POD ranks modes ordered by the amount of energy, corresponding to large scale
observable states. Although the observability is important, it does not mean that the
most observable states are the ones with relative dynamical importance to the system.
This drawback must be addressed by Dynamic Mode Decomposition, DMD, and Balanced
POD, BPOD. The standard method have been extended to address some of the drawbacks
of the method, some approaches such as the Split POD (Camphouse et. al, 2008),
Temporal POD (Gordeyev and Thomas, 2013), Joint POD (Gordeyev et. al, 2014) and
the promising Spectral POD (Sieber et. al, 2016) which performs a transition between
POD and DFT modes and will be treated further in this work (Section 3.6). Good results
have been obtained for DMD and BPOD, so they will be briefly discussed here.

In the past few years, DMD has gained attention due to its capability of capturing
spatial and temporal instabilities. Whereas POD is based on the correlation matrix
gathered from the snapshots, the DMD extracts from the snapshots a low-dimensional
evolution matrix. The technique was first proposed by Schmid and Sesterhenn (2008),
as an Arnoldi-type method for the decomposition of fluid flows. After that, Schmid et.
al (2009) compared DMD modes and POD modes showing that both techniques capture
bifurcation points. While the POD modes had the capability of concentrating the most
energetic coherent structures, DMD gathered the less-energetic, but more unstable modes,
which could be useful for instability analysis and flow control as instabilities have dynamic
behavior commonly associated to modes with small energy. In the same year, Rowley et.
al (2009) realized that the Arnoldi-type algorithm proposed by Schmid and Sesterhenn
is able to compute Koopman modes, applying its spectral analysis to jet crossflow data.
As stated by Rowley et. al (2009), the Koopman modes have a single temporal frequency
information and growth rate and can be analyzed as a nonlinear generalization of global
eigenmodes of a linearized system. In the work of Schmid (2010), the full information in
DMD implementation was gathered with its mathematical basis and made its use well
known for different applications.

Tu et. al (2011) used the Koopman modes to study controlled flows. Later,
Tu et. al (2014) expanded the use of DMD to other applications, establishing the
connections between DMD and Koopman modes and other decomposition techniques,
such as eigensystem realization algorithm (ERA) and linear inverse method (LIM). The
spectral content of the Koopman operator was analyzed among with other decomposition
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techniques in Mezić (2013), also based in his previous work analysis (Mezić (2005)).
Recently, Rowley and Dawson (2017) reviewed the recent evolution in model reduction for
analysis and control of fluid flows, demonstrating the recent advances in modal analysis,
including the recent implementations, including the extended DMD (EDMD).

DMD has been important in flow control specially for its time frequency information
and the ability for dynamic analysis of instabilities. Among other modal decompositions,
e. g. POD, DMD is promising for been used for model reduction of fluid flows. Due to the
intrinsic problems in reduced-order modeling for nonlinear systems, further improvements
in both techniques are been proposed.

In a different approach, balanced truncation can be extended to POD resulting
in the Balanced POD (Rowley, 2005). BPOD was derived from the standard POD
snapshot method to balance the observability and controllability capabilities of modal
decomposition. As stated before, POD modes gather the states with large scale motion
that contain the most energetic structures of the flow. However, the energy-ranked
POD modes may not correspond to their dynamical importance. BPOD determines
the coordinate system containing high observability, related to the most energetic large
scale modes that present the most observable outputs in the system, and also high
controllability, related to states that can be easily excited by control inputs.

The method has been mainly used for linear systems (Ilak and Rowley, 2008; Ahuja
and Rowley, 2010). The method generates a set of balancing and adjoint modes, where
the large scale motion can be analyzed in observability and controllability, which makes
this method being of utmost importance for reduced-order modeling and flow control. Due
to the need of adjoint modes, the used of the method for experimental results is limited.
This issue have been addressed by the use of the eigensystem realization algorithm, ERA
(Juang and Pappa, 1985). One of the drawbacks of the method is the need of balancing and
adjoint modes based on linear dynamics. Nonlinearities extensions have been proposed,
specially by the works of Lall et. al (2002) and Ilak et. al (2010).

Modal decomposition is of paramount importance for turbulence analysis of well
resolved turbulence data and, as computational resources are continuously increasing,
pushing the barriers for feasibility in numerical analysis, the use of these challenging
eigenvalue problems will be even more necessary (Rowley and Dawson (2017)).

1.3 Overview and Motivation

Recently, Wolf et. al (2012 and 2013) performed several large eddy simulations of
compressible flows past a NACA0012 airfoil. These authors showed that, for some of
the flow configurations analyzed, a narrowband tone could dominate the far-field noise.
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Among the flow conditions analyzed, they presented results showing a dominant acoustic
tone for a NACA0012 airfoil at 5 degs. angle of attack (AoA). In this case, a moderate
Reynolds number - low Mach number flow configuration was studied and results were
compared to experimental data from Brooks et. al (1989). In order to represent the
experiments, the suction side boundary layer was tripped using suction and blowing and
the pressure side boundary layer developed under a favorable pressure gradient, being
laminar up to the trailing edge. The tonal noise in this case was said to be related
to the presence of large energy-containing elongated 2D coherent structures aligned in
the spanwise direction. However, due to the turbulent boundary layer developing along
the tripped suction side of the airfoil, it was still difficult to identify the presence of
coherent structures. In this sense, POD will be used in the present work for decomposing
the flow field and identifying the coherent structures which act as efficient aeroacoustic
sources in the current turbulent flow past a NACA0012 airfoil. Along this dissertation,
POD will also be employed to analyze the presence of coherent structures in other flow
conditions past airfoils. Furthermore, an analysis of different POD techniques will be
investigated, implemented and applied to perform the present studies and, finally, results
will be discussed.

1.4 Objectives

The main goal of the present work is to develop knowledge beyond the simple
application of the POD technique for turbulent flows. In this sense, one of the objectives of
the present work is to analyze the main characteristics of different POD reconstructions,
for instance, the snapshot method and the spectral proper orthogonal decomposition,
SPOD, recently proposed. Moreover, Fourier POD reconstructions are also employed
combined with the previous techniques. Hence, this work focuses on explaining features
and implementation details of different POD techniques, providing insights for different
applications.

In parallel, the present work is committed to the analysis of coherent structures in
several airfoil flow configurations, including compressibility and angle of incidence effects.
For the former, low and moderate Mach number flows are investigated and, for the latter,
angles of attack of 0 and 5 degs. are considered. All flows studied here are obtained
for a moderate Reynolds number. Global modes are the solution for modal analysis
of turbulent flows, due to the nonlinear physics inherent of turbulence. Analyzing the
physics of turbulence in global modes is still a hard task and a deep analysis on the
behavior of such modes is important to provide the basis for more complex solutions
for engineering applications. The fundamental knowledge on the physics of turbulence
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presented in high-resolution simulation data, as the ones that will be used in this work,
is paramount for aeronautical, automotive and industrial applications in a wide variety
of projects, from wind turbines, to commercial and military airplanes.

1.5 Main Accomplishments

The present work provides several contributions to the use of POD modes in order
to analyze turbulence in high-resolution numerical data. The insights here provided
can be extended to different flow configurations and experimental data analysis. A
thorough investigation is performed to analyze specific features of POD analysis to
generate global modes for turbulent flows. One important feature that is highly used in
literature is the coupling between Fourier decomposition and POD when the flow contains
a homogeneous direction. However, in industrial applications and fully three-dimensional
flows, a homogeneous flow direction is not always possible. The continuous improvement
of computer processing will expand the barrier of what is computationally feasible in
computational fluid dynamics for well-resolved turbulence data. So, more complex
geometries will generate complex numerical data for highly nonlinear flows. The present
work shows results for a general implementation of POD not considering the symmetry
in the span direction. When the homogeneous direction is considered in POD analysis,
the Fourier POD coupling already helps in decomposing the flow and analyzing specific
components of the physics. However, when no homogeneous direction is present, this work
shows how to improve the POD results and enhance the capabilities for capturing useful
physics from the turbulence data. In this sense, the spectral POD technique is employed
and analyzed considering different implementation approaches. Even when the spanwise
symmetry is present, the Fourier-POD coupling can be enhanced by the SPOD technique
in order to better capture coherent structures in the flow and this is also shown in this
work results.

Besides the POD enhancements, the present work provides useful information about
the coherent structures developing over the airfoil surface along the boundary layer and the
vortex wake for different flow configurations. The results show a combination of coherent
structures aligned with the streamwise direction and also diagonally aligned with the
spanwise direction. These coherent structures appear at specific ranges of frequencies
related to the intrinsic physics of the turbulent flow and they are associated to the
aeroacoustic sources from the fluid flow that are “hidden” inside the chaotic turbulent
field. When the adverse pressure gradient is stronger, at 5 degs. angle of attack, the
coherent structures diagonally aligned are thinner and oscillate at higher frequencies.
However, when the adverse pressure gradient is weaker, for 0 degs. angle of attack, the
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diagonal coherent structures are larger, as the fluctuations are less intensive near the
trailing edge.

Summarizing, the main contributions of this work include:

• the development and implementation of a fully 3D POD numerical tool which
employs the snapshot method, the spectral POD method and a combination of
Fourier decomposition with the SPOD method;

• the analysis of different vectorial norms for the reconstruction of the correlation
matrix in the snapshot method, the SPOD method and the Fourier-SPOD method;

• the investigation of methodologies for the reconstruction of the correlation matrix
in the SPOD method including different filtering procedures to the temporal signal
including the role of the periodicity;

• the analysis of coherent structures in wall bounded turbulent flows developing along
a NACA0012 airfoil at different flow configurations.
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2 Fluid Dynamics Formulations

2.1 Governing Equations

Turbulent flows at low and moderate Mach numbers can be modelled in Cartesian
coordinates by the Navier-Stokes equations (using Einstein’s Notation) as follows:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.1)

∂(ρui)
∂t

+ ∂(ρuiuj + gijp− τij)
∂xj

= 0, (2.2)

∂E

∂t
+ ∂[(E + p)uj − τijgikuk + qj]

∂xj
= 0, (2.3)

where ui, ρ and p are instantaneous velocity components, density and pressure,
respectively. The total energy, E, the viscous stress tensor, τij, and the heat flux, qj,
are given by

E = p

γ − 1 + 1
2ρgijuiuj, (2.4)

τij = µ

Re

(
gjk

∂ui
∂xk

+ gik
∂uj
∂xk
− 2

3g
ij ∂uk
∂xk

)
, (2.5)

qj = − µ

RePr
gij

∂T

∂xi
. (2.6)

The set of equations is closed by the equation of state, assuming the medium as a
perfect gas:

p = γ − 1
γ

ρT . (2.7)

In the equations above, gij and gij are the covariant and contravariant metric tensors,
respectively. T is the temperature, γ is the ratio of specific heats, Re is the Reynolds
number defined as Re = ρ∞U∞C/µ∞ and Pr is the Prandtl number defined as Pr =
µ∞Cp/κ∞. C is the reference length, subscript ∞ stands for freestream variables, Cp is
the heat capacity at constant pressure, µ is the viscosity and κ is the thermal conductivity.
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2.2 Numerical Methods for Large Eddy Simulation

2.2.1 Introduction

The important features of the numerical methods used for resolving high Reynolds
flows used for database in the present work will be discussed. The database is constructed
by the use of large eddy simulations conducted to accurately resolve nearfield physics.
Typically, the grid resolution in terms of wall units for wall-resolving LES (Wagner et.
al, 2007) is given by 50 < ∆x+ < 100, ∆y+ < 1 and 10 < ∆z+ < 20, where x, y and z
are the streamwise, wall-normal and spanwise flow directions, respectively.

With the overset mesh capability implemented by Bhaskaran and Lele (2010), a
body-fitted O-mesh is carefully designed to resolve the turbulent boundary layers along
the airfoil wall region and a background rectangular mesh is designed to capture the
turbulent wake behind the airfoil. The stretching factor of the background mesh is chosen
such that metric terms are smooth and, therefore, the acoustic nearfield is captured with
no distortions. The background mesh needs to be large enough for which boundary
conditions to not affect the flow with reflections of acoustic waves or distortions of the
mean flow field. A two-step second-order implicit scheme is used for the O-mesh since
the fine grid spacings near the wall impose significant restrictions on the time step for
explicit time marching schemes. A third-order explicit time marching scheme is used for
the coarser background mesh since, for this mesh, the time step is restricted by accuracy
rather than stability. More details about the numerical methods described in this Section
can be found in Nagarajan et. al (2007) and Bhaskaran and Lele (2010).

2.2.2 Spatial Discretization

The numerical scheme for spatial discretization is a sixth-order accurate compact
scheme from Nagarajan et. al (2003) implemented on a staggered grid. In a general
curvilinear coordinate system, the staggered first derivative, f ′ , of a function f at interior
nodes is computed as

αf
′

j−1 + f
′

j + αf
′

j+1 = b
fj+3/2 − fj−3/2

3∆x + a
fj+1/2 − fj−1/2

∆x , (2.8)

where α = 9/62, a = 3/8(3 − 2α) and b = 1/8(−1 + 22α). The use of a staggered
variable arrangement requires a mid-point interpolation formula. The implemented
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sixth-order accurate formula is given by

αf Ij−1 + f Ij + αf Ij+1 = b
fj+3/2 − fj−3/2

2 + a
fj+1/2 − fj−1/2

2 , (2.9)

where α = 3/10, a = 1/8(9 + 10α) and b = 1/8(−1 + 6α). The boundary and
near-boundary nodes require one side derivative and interpolation formulas that can be
found in Nagarajan et. al (2007).

Compact finite-difference schemes are non-dissipative and numerical instabilities
arising from insufficient grid resolution, mesh non-uniformities, approximate boundary
conditions and interpolation at grid interfaces have to be filtered to preserve stability of
the numerical schemes. The high wavenumber compact filter presented by Lele (1992) is
applied to the computed solution at prescribed time intervals in order to control numerical
instabilities. A one parameter family of sixth-order filters is constructed using

αf̃j−1 + f̃j + αf̃j+1 = afj + b
fj+1 + fj−1

2 + c
fj+2 + fj−2

2 + d
fj+3 + fj−3

2 , (2.10)

where f̃j is the filtered solution, a = 1/16(11 + 10α), b = 1/32(15 + 34α), c =
1/16(−3 + 6α) and a = 1/32(1 − 2α). The spectral response of the filter is adjusted by
the filter coefficient α that ranges from −0.5 ≤ α ≤ 0.5. Higher values of α provide less
dissipation and values of α ≥ 0.48 are used in the present computations. The boundary
nodes use different filtering formulas that can be found in Bhaskaran and Lele (2010).

2.2.3 Time Integration

Far away from the solid boundaries, the governing equations are integrated using an
explicit third-order compact storage Runge-Kutta scheme (Wray, 1986). After the spatial
discretization, the set of partial differential equations become a set of ordinary differential
equations that can be expressed in the form

dQ

dt
= f(Q, t). (2.11)

This set of ordinary differential equations can be integrated from tn to tn+1 using the
following third-order Runge-Kutta scheme

Qn+1/3 = Qn + 8
15∆tf(Qn, tn)
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Qn+2/3 = Qn + 1
4∆tf(Qn, tn) + 5

12∆tf(Qn+1/3, tn+1/3)

Qn+1 = Qn + 1
4∆tf(Qn, tn) + 3

4∆tf(Qn+2/3, tn+2/3),

where the intermediate time levels are tn+1/3 = tn + 8/15∆t and tn+2/3 = tn + 2/3∆t.
The time integration of the fluid equations is carried out by a fully implicit

second-order Beam-Warming scheme (Beam and Warming, 1978) in the near-wall region
in order to overcome the time step restriction. The second-order implicit method is given
by

3Qn+1 − 4Qn +Qn−1

2∆ = f(Qn+1, tn+1). (2.12)

The right hand side is solved through approximate factorization followed by
diagonalization of the implicit matrix in the x and z directions. Details about the
approximate factorization are presented by Nagarajan et. al (2007).

2.2.4 Boundary Conditions

Sponge layers and characteristic boundary conditions based on Riemann invariants are
applied at inflow and outflow boundaries. For a subsonic inflow boundary, four incoming
quantities must be specified along with one outgoing quantity computed from the interior
domain. In the current study, the entropy, tangential and spanwise velocities and incoming
Riemann invariant are constrained. The outgoing Riemann invariant is computed by
extrapolation from the interior nodes neighboring the inflow boundary. For a subsonic
outflow boundary, one incoming quantity must be specified along with four outgoing
quantities computed from the interior domain. Here, the incoming Riemann invariant
is imposed and the entropy, tangential and spanwise velocities and outcoming Riemann
invariant are computed by extrapolation from the interior nodes neighboring the outflow
boundary.

Assuming an inflow boundary located at a x plane normal to the inflow, the locally
one-dimensional Riemann invariants are defined in the normal direction as

R1 = u− 2c
γ − 1 (2.13)

and

R2 = u+ 2c
γ − 1, (2.14)
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where u is the velocity in the x Cartesian direction normal to the inflow and c is the
local speed of sound. Hence, at the inflow boundary, the following constraints are applied
v = vinflow, w = winflow, s = sinflow, R1 = R1incoming and R2 = R2outgoing . The outgoing
Riemann invariant, R2, is computed using zero-th order extrapolation from the plane
immediately neighboring the inflow plane. The primitive variables can be constructed
from the constraints as

u = 1
2(R1incoming +R2outgoing), (2.15)

c = γ − 1
4 (R2outgoing −R1incoming), (2.16)

ρ =
(

c2

γsinflow

) 1
γ−1

(2.17)

and
T = c2

γ − 1. (2.18)

The same methodology applies to an outflow boundary condition. However, only the
incoming Riemann invariant is imposed and the other constraints are obtained by zero-th
order extrapolation from the interior plane immediately neighboring the outflow plane.
In the current simulations, both inflow and outflow boundary conditions are applied on
the background mesh, where an explicit time marching scheme is used. At each time step
the solutions in the inflow and outflow planes are updated with those obtained from the
application of the inflow and outflow boundary conditions, respectively. The boundary
conditions are applied after transformation to a Cartesian coordinate system along a
normal to the boundary plane. The velocity components are first evaluated at the density
nodes and then interpolated to their respective staggered locations.

A damping sponge layer is also applied along the inflow and outflow boundaries to
minimize reflections of disturbances (Nagarajan et. al, 2007; Bhaskaran and Lele, 2010).
In the sponge layers, the following relaxation term is added to the governing equations

−σ(Q−Qref ), (2.19)

where σ is the sponge strength specified as

σ = A

(
x− xsponge
L− xsponge

)n
. (2.20)

Here, xsponge is the starting sponge location and L is the full length of the sponge
layer. The sponge effect vanishes at the starting location and gradually grows in the
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strength as the maximum size of the sponge is reached. The sponge reference solution,
Qref , is specified as the freestream condition. The constants A and n used in the present
computations are A = 20 and n = 4. These values are found by numerical experimentation
and provide good results for the present grid and flow configurations.

Adiabatic, no-slip boundary conditions are applied at the solid boundaries. The wall
density is obtained by the solution of the continuity equation

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0. (2.21)

The momentum and energy equations are replaced by the following constraints on the
velocity

ρui = 0 (2.22)

and temperature

∂T

∂n
= 0, (2.23)

where the term ∂(.)/∂n represents a derivative in the wall-normal direction.

2.2.5 Overset Mesh Capability

A fourth-order Hermite interpolation scheme is implemented in the current overset
mesh capability. Interpolation is performed in two dimensions (streamwise and
wall-normal) since the third dimension (spanwise) is homogeneous in the present
simulations. In two dimensions, the Hermite interpolation at an overlap point is
constructed using function values and first derivatives at the four surrounding points
in the donor grid that bounds the interpolated point in the uniform computational space.
The coordinates (ξ, η) form a local grid system that is constructed in the computational
space. The origin of this coordinate system is at the center of the box formed by the
points bounding the interpolated point. The coordinates of the interpolated point in
this local coordinate system are found by the inverse mapping (ξ, η) = M−1(x, y). The
forward mapping M(ξ, η) is defined at all points using the Hermite interpolation scheme,
and the inverse mapping M−1(x, y) is found using a Newton-Raphson procedure. The
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interpolation formula is given by

f(ξ, η) =
1∑

l,k=0

C0
lk(ξ, η)fi+l,j+k + Cξ

lk(ξ, η)
(
∂f

∂ξ

)
i+l,j+k

+ Cη
lk(ξ, η)

(
∂f

∂η

)
i+l,j+k

+O(∆4),

(2.24)
where the interpolation coefficients are given by

C0
lk(ξ, η) =

[1
2 − (−1)lξ

] [1
2 − (−1)kη

]

{1− 2
[
(−1)lξ

(1
2 + (−1)lξ

)
+ (−1)kη

(1
2 + (−1)kη

)]
},

Cξ
lk(ξ, η) = (−1)l

(1
4 − ξ

2
) [1

2 − (−1)lξ
] [1

2 − (−1)kη
]
, (2.25)

Cη
lk(ξ, η) = (−1)k

(1
4 − η

2
) [1

2 − (−1)lξ
] [1

2 − (−1)kη
]
.

More details about the implementation of the method of overset grids can be found
in Bhaskaran and Lele (2010).

2.3 Aeroacoustic Analogies

The aeroacoustic equations derived from Lighthill (1952) can be expanded to account
different types of sound sources in the flow field. In this context, the general
Ffowcs-Williams and Hawkings (1969) (FW-H) acoustic analogy is used for noise
predictions. The integral formulation in frequency domain can be written as

[
p̂′H (f)

]
= −

∫
f=0

[
iωQ̂ (y)G (x,y) + F̂i (y) ∂G (x,y)

∂yi

]
dS

−
∫
f>0

T̂ijH (f) ∂
2G (x,y)
∂yi∂yj

dV , (2.26)

where i =
√
−1, p′ is the acoustic pressure, ω is the angular frequency, y = (y1, y2, y3)t

is the source position, x = (x1, x2, x3)t is the observer’s position. Hat over variables (̂.)
means it’s in frequency domain. The f = 0 term represents the FW-H surface and H (f)
is the Heaviside function defined as H (f) = 1, if f > 0, and H (f) = 0, if f < 0.
Monopole Q̂ (y) and dipole F̂i acoustic sources are given by

Q = [ρ (ui + Ui)− ρ0Ui] ∂f/∂xi , (2.27)
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Fi = [p′δij − τij + ρ (ui − Ui) (uj + Uj)− ρ0UiUj] ∂f/∂xi . (2.28)

Here, ui represents a Cartesian fluid velocity vector and Ui is the FW-H surface velocity
vector, ρ0 is the free-stream density, p′ is the acoustic pressure, p is pressure, δij is the
Kronecker delta (which is 0 if i 6= j and 1 if i = j) and τij is the viscous stress tensor.
Quadrupole sources are defined as

Tij = ρuiuj +
(
p1− c2

0ρ
′)
δij − τij , (2.29)

where c2
0 is the free-stream sound speed. If one considers mean flow velocity in cartesian

x-direction, the three-dimensional Green’s function accounting to convective effects is
given by

G (x,y) =

−
exp

{
−ik

1−M2

[√
(x1 − y1)2 + (1−M2)

[
(x2 − y2)2 + (x3 − y3)2

]
−M (x1 − y1)

]}
4π
√

(x1 − y1)2 + (1−M2)
[
(x2 − y2)2 + (x3 − y3)2

] .(2.30)

In this equation, k is the wavenumber, M is the free-stream Mach Number defined as
M ≡ U1/c0. The Eq. 2.30 can be used for two-dimensional cases, considering x3 = y3. In
the present work, the FW-H surface is computed over the solid airfoil surface and because
of this assumption, Eq. 2.26 integrals are computed over a solid body only. In this way,
ui = Ui for both dipole and monopole sources, reducing Eqs. 2.31 and 2.32 to

Q = −ρ0Ui∂f/∂xi , (2.31)

Fi =
[
p
′
δij − τij + ρ0UiUj

]
∂f/∂yi . (2.32)

So, monopole sources and the second term of the dipole sources are now stationary,
having no influence in frequency domain analysis. For Low-Mach number flows and, due
to the fact that FW-H surface is considered a solid body over the airfoil, the quadrupole
sources will be neglected and Eq. 2.26 can be re-writen as the Curle’s Analogy (Curle,
1955)

p̂′ (x) = −
∫
Surf

p̂′ (y)ni
∂G (x,y)

∂yi
dS . (2.33)

The surface integral appearing on Eq. 2.33 is computed along the scattering body
surfaces and dipole sources are define only as F̂i = p̂′ni, with ni being the normal vector
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pointing outside the airfoil surface. The Hanning filter proposed by Lockard (2000) is
used to guarantee conservation of the dipole sources energy before transforming data to
frequency domain.



38



39

3 Proper Orthogonal Decomposition

3.1 Mathematical Formulation

Turbulent flows are composed of a wide range of scales and frequencies and identifying
coherent structures and its dynamic behavior is not always an easy task in the space-time
domain. Therefore, many techniques for modal analysis and statistical approaches have
been used in order to improve the knowledge on turbulence and coherent structures.

Turbulence can be highly nonlinear, so a modal analysis may account to the
propagation of waves in broad range of frequencies in both time and space. For analyzing
a non-linear system of partial differential equations, as described in Section 2.1, global
modes can be used to capture the coherent oscillations in time (Drazin, 1974). Since the
1990s, modal analysis of turbulent flows has gained importance for analyzing unsteady
aerodynamics as shown by Huerre and Monkewitz (1990) and later by Hall (1994) and
Dowell et. al (1998).

Among the several modal decomposition techniques, one can cite the Proper
Orthogonal Decomposition (POD) that was first proposed by Lumley (1967) as a modal
decomposition technique for unsteady flowfields, especially for the analysis of turbulent
coherent structures. In this chapter, a brief discussion on the main features of POD will
be provided and, for further details and mathematical formulation, the work by Rowley
(2002), Cordier and Bergmann (2003), Freund and Colonius (2009), Andrianne et. al
(2009) and Podvin et. al (2010) is recommended.

In POD, the vector of flow quantities q(x, t) is assumed to be a function of space and
time. This vector can be decomposed as a sum of the mean flow and fluctuation quantities
q̄(x, t) and q′(x, t), respectively. The latter can be further expanded in a combination of
vector-valued spatial eigenfunctions φφφi(x) and its time-coefficient mode amplitudes ai(t)
for a defined number of M modes as

q(x, t) = q̄(x) + q′(x, t) = q̄(x) +
M∑
i=1

ai(t)φφφi(x) . (3.1)

There are several ways of computing the terms φφφi(x) and ai(t). For example, one
can cite two standard POD techniques such as the classical method, also known as direct
method, and the snapshot method, well described by Cordier and Bergmann (2003).
A combination between the discrete Fourier transform (DFT) and POD can be used
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when the flow field has translational symmetry, also known as homogeneous turbulence
direction. In this case, the POD modes along the homogeneous direction are the Fourier
modes (Lumley, 1970). For all numerical database cases studied in the present work,
the spanwise direction is considered to be homogeneous and, therefore, the vector of flow
quantities q(x, t) can be re-written as

q(x, y, z, t) =
∑
k

qk(x, y, t)e2iπ(kz/Lz) , (3.2)

where Lz is the periodic dimension of the flow and kz is the spanwise wavenumber.
The direct method computes the spatial correlation matrix and averages over time. This
is the technique of choice for experimental data that are usually obtained with a high
time resolution but are poorly resolved spatially (Cordier and Bergmann, 2003).

In general, one may consider Q as a matrix consisted of grid points in rows and time
frames ordered in columns. POD is a singular value decomposition (SVD) of the matrixQ.
For more details on the mathematical background on SVD an its relation with POD, one
may refer to the work of Atwell and King (2004). For mathematical basis on eigenvalue
decomposition and SVD, the books of Saad (1992), Trefethen and Bau III (1997), Horn
and Johnson (2012) and Golub and Van Loan (2012) are highly recommended.

Q = UΣΣΣV∗ , (3.3)

where U is the spatial eigenfunction matrix formed by grid points in rows and modes
in columns, ΣΣΣ is the diagonal singular values matrix and V∗ is the Hermitian matrix that
gathers the temporal dynamics of the POD modes.

One may consider that solving SVD for high-fidelity turbulence data is unfeasible due
to computational memory costs. A less expensive approach is using the snapshot method,
which consists of solving the SVD problem not for the database Q, but for a correlation
matrix formed by QTQ, or a covariance matrix formed by 1

N
QTQ, where N is the number

of snapshots or time frames. As N is a scalar, it influences only the singular values, not
the eigenvectors. The right singular vectors, V, are the orthonormal eigenvectors of QTQ.
The square roots of the eigenvalues of QTQ are equal to the singular values ΣΣΣ.

In the present work, we prefer to use the snapshot method since our numerical
simulations provide a high resolution in space but with a limited number of collected
snapshots, resulting in a correlation matrix feasible to be computed via SVD. Here, we
generalize the vector of primitive variables as q = (ρ, ux, uy, uz, p)t, where (ux, uy, uz)t are
the Cartesian velocity components, ρ is the density and p is the pressure. The snapshots
of q are computed at time t and the correlation matrix Cij is defined as the following
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product of a number N snapshots computed along a domain of fluid Ω

Cij = 1
N

(q′(x, ti),q′(x, tj))Ω . (3.4)

Using a correlation matrix it is also possible to vectorize the matrix using a POD
norm. We define a norm vector βββ = (β1, ..., β5) that determines which norm is being used
in the POD analysis. A kinetic energy norm uses βββ = (0, 1, 1, 1, 0), a pressure-based norm
uses βββ = (0, 0, 0, 0, 1) and so on. Considering q′(x, ti) = q′i, the norm vector is applied
together with the inner product of the snapshots as follows

Cij =
(
q′i,q′j

)
Ω

=
∫

Ω

[
β1ρ

′
iρ
′
j + β2u

′
xiu
′
xj + β3u

′
yiu
′
yj + β4u

′
ziu
′
zj + β5p

′
ip
′
j

]
dΩ , (3.5)

where Ω is the fluid region employed to provide the physics for the reconstruction,
here called the domain of information. This domain is an important part of the POD
reconstruction. For instance, if one intends to understand the coherent structures along
the wake of a bluff body, this flow region should be used as the domain of information
and a kinetic energy norm could be used. If the interest lies in the acoustic far-field, one
should use the domain of information along the acoustic field only.

The singular values are computed as follows:

CS = λλλS , (3.6)

where S is the matrix of right eigenvectors of C and λλλ represents the matrix with the
eigenvalues ofC. Here, SVD can be employed to compute the eigenvalues and eigenvectors
of C since this matrix is positive semi-definite (Atwell and King, 2004). The LAPACK
package (Anderson et. al, 1999) is used to perform the SVD computations. As the
matrices computed in 3.6 are square of order about 1000, no parallelization is required.

The covariance matrix is used for the SVD computation. The usage of the snapshot
method to form a covariance matrix C leads to a normalization of the singular values S in
order to form an orthogonal basis of eigenvectors, written in the form si

√
λiN . Here, the

term si is the ith-column of matrix S and N is the number of snapshots. In this sense,
the spatial eigenfunctions of the POD reconstruction can be defined as

φφφi (x) = 1√
λiN

N∑
m=1

q′i (x) smi . (3.7)

As the flowfield is decomposed, the spatial eigenfunctions are only dependent of the
position. However, the mode amplitudes are functions of time and describe the unsteady
dynamics of the flowfield composed by the spatial eigenfunctions. The mode amplitudes
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can be computed as

ai (t) =
∫

Ω
q′i (x, t)φφφi (x) dΩ . (3.8)

Eventually, as already stated, the domain of information Ω can be different from the
entire flow field domain. Hence, a more general form of computing the time coefficients of
the model shape amplitudes can be used. The general formula takes into account only the
eigenvectors and eigenvalues generated by solution of the eigenvalue problem in Eq. 3.6.
In this way, the mode amplitudes ai (t) are related to the domain of information as well as
to the spatial eigenfunctions φφφi (x). So, for a number N of snapshots, in a simplified form,
the mode amplitudes ai (t) are computed in the following form in the snapshot method

ai (t) = si
√
λiN . (3.9)

Since we are able to perform a modal decomposition of the unsteady components of
the flow, it is possible to reconstruct the flowfield with using only a limited number of
spatial eigenfunctions and mode amplitudes using Eq. 3.1. If one has a number N of
snapshots, it is possible to generate the same number of eigenvalues and eigenfunctions.
By definition, a reconstruction employing all the M modes (where M = N) would result
in the original unsteady flow.

POD has received attention in the several fields of study due to its capacity of data
compression. In this sense, when the SVD procedure is applied to the correlation matrix,
it provides the singular values in an organized fashion, in this case, in a decreasing order
of magnitude. Therefore, it is possible to separate the POD modes based on their energy.
One of the important aspects of POD is that one can then reconstruct the flowfield using
the most energetic modes. For several flows, the use of only a few modes may result in
the reconstruction of a flowfield with the important dynamics and, hence, compressing
information of large numerical and experimental databases. As already mentioned, if one
uses Eq. 3.1 with the all snapshots and modes, the reconstructed flowfield will contain
100% of the original flowfield energy. In this case, the reconstructed flowfield q∗(x, t) will
be given by

q∗(x, t) = q(x, t) . (3.10)

If the flowfield is reconstructed with N < M modes, q∗(x, t) will be an approximation
of the original flow q(x, t) and it will contain the information related to the spatial
eigenfunctions and mode amplitudes used in the reconstruction process. Therefore, POD
can be applied in two ways: a) it can be used to understand the dynamics of specific flow
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structures such as coherent structures in turbulence and b) it can be used to reconstruct
complex flowfields using the most energetic scales of the flow and, hence, to compress
large databases and to generate reduced-order models.

3.2 1D Periodic Domain POD

In order to clarify and state important features of POD, a test case will be computed
in a one-dimensional (1D) periodic domain. As stated previously by Lumley (1970), in
homogeneous directions, POD modes are Fourier modes. In the present case, a wave
is described initially by Eq. 3.11, which satisfies the homogeneous condition. The pure
advection of this wave is solved using a high-order accurate numerical methodology.

p(x) = 1
1 + 25x2 . (3.11)

A 6th-order compact finite-difference scheme (Lele, 1992) is used for the spatial
discretization of the linear wave equation and a 4th-order Runge-Kutta explicit scheme
is used for the time marching. The numerical scheme employed here for the spatial
discretization should introduce little numerical dissipation. Therefore, the entire
procedure should produce high-frequency oscillations which should be damped by low-pass
filters. In the present case, no explicit filtering techniques are used to highlight the POD
capabilities of capturing small scale fluctuations in less energy-containing modes. Figure
3.1 shows the wave propagation after one period of simulation in the periodic domain.
This figure also shows the spectral content for one single point in the spatial domain. In
the present simulation, the CFL parameter was set to CFL = 0.5 to guarantee stability
of the numerical scheme.
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(a) Wave advection in time.

k

||
p
||
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0
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(b) Spectral content of the wave.

Figure 3.1: Time and spectral content of the wave given by Eq. 3.11 propagated in a 1D
periodic domain.
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The correlation matrix is computed for the present data set in a simplified version
of the Eq. 3.4. Figure 3.2 shows an example of correlation matrix and the distribution
of eigenvalues over the POD spectrum. Since the case is periodic, the first and the last
snapshots are highly correlated due to the small dissipation and dispersion inherent to
the high-order numerical methods used in the wave propagation. The first eigenvalues
shown in Fig. 3.2(b) contain most of the energy. Figure 3.2(c) shows the accumulative
values of the normalized singular values for a number n of POD modes. We may call the
accumulative singular values as the convergence of the POD modes, since it shows the
relative amount of energy present for a number n of POD modes compared to the full
energy of the dataset. One can notice that a reconstruction using around 50 modes would
have almost the total amount of energy of the original dataset. Figure 3.2(c) is obtained
by the sum of the normalized singular values shown in Fig. 3.2(b).

(a) Correlation matrix.

POD mode, n

 
i /

 
M i 

i

0 10 20
0

0.15

(b) Normalized singular values
of POD modes.

POD mode, n

n i 
i /

 
M i 

i

100 200
0

0.5

1

(c) Normalized sum of singular
values.

Figure 3.2: Correlation matrix, its singular values in the POD spectrum and the POD
energy convergence to original data set.

POD modes usually appear in pairs, as shown in Fig. 3.2(b), where the coupled modes
have similar amplitudes. In this case, their behavior is similar to Fourier modes which
are mirrored in the Fourier spectrum. However, in POD, due to the singular values
decomposition, they are ranked in an energetic sense, from the most energy-containing
ones to the lowest energetic ones. Paired modes usually have useful information in
turbulent data set analysis, as will be shown later.

In POD modes that contain small portions of the energy of the original data set,
the signal-to-noise ratio may affect the clarity of the information in the eigenfuntions
and mode amplitudes. For the present case, this appears for modes beyond 50. Hence,
POD modes with small signal-to-noise ratio are not considered when extracting important
information from the data set. For example, Fig. 3.3 shows how the most energy
containing modes differ from those with small signal-to-ratio. One must remember that,
due to its homogeneity, for the present 1D case, the POD modes have sine and cosine
shapes and are phase correlated.
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Figure 3.3: Spatial eigenmodes and mode amplitudes.

The flow reconstruction shown in Eq. 3.1 can be used to compress big data. In the
present case, it is possible to see how the sum of the POD modes affect the reconstruction
of the advected pressure wave. Here, POD is able to represent the important features of
the original pressure wave as shown in Fig. 3.4.
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Figure 3.4: 1D domain POD reconstruction, using Eq. 3.1, compared to original wave
propagation at t = 2.5 s (1/4).

Even when only 10 POD modes are employed in the reconstruction, the function peak
is already represented in the correct portion of the domain, as shown in Fig. 3.4(a). A
reconstruction using 20 modes, in Fig. 3.4(b), presents a wave form which is close to the
original and, for a reconstruction with 50 modes or more, the small scale fluctuations
present in the data are captured smoothly, as shown in Fig. 3.4(c). Not presented here,
the use of 200 POD modes, which is the number of snapshots used in the full dataset,
completely captures the data set information and reconstructs the original wave form, as
shown in Section 3.1 and Eq. 3.10.
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3.3 Flow Configuration

In this Section, the POD reconstruction is employed to analyze coherent structures
in a turbulent flow past a NACA0012 airfoil with rounded trailing edge at 5 degs. angle
of attack (AoA). This turbulent flow is obtained by a compressible large eddy simulation
(LES) with wall resolution. The LES database was obtained by Wolf and co-authors and
more details of the numerical methods employed in the simulation can be found in Wolf
(2011). The structured spatial discretization is formed by a staggered grid body-fitted
O-grid with 960 × 125 × 128 grid points and a background grid with 896 × 511 × 64
grid points. The dimensionless timestep is ∆t = 0.02 for 874 time frames recorded in
conservative variables. The total simulation time is 17.46. The baseline configuration
uses blowing along the suction side of the airfoil to trip the boundary layer which becomes
turbulent. The pressure side boundary layer is laminar since it is not tripped and develops
under a favorable pressure gradient. Numerical results are compared to experimental data
from Brooks, Pope and Marcolini (1989) and good agreement is obtained for the acoustic
predictions.

The acoustic predictions for this flow configuration present a tonal peak which was
thought to be related to the presence of correlated aeroacoustic sources along the span of
the airfoil, as stated by Wolf et. al (2012). The current POD analysis will be employed to
shed light into this topic. Figure 3.5 shows the turbulent flow passing over the suction side
of the airfoil surface, after blowing is employed, and along the wake region downstream
the trailing edge. The following POD techniques presented in this Section are used to
provide a better understanding of possible coherent structures present in the flow. In
this context, POD would serve as a filtering process to identify such structures in the
turbulent flow.

The baseline case was selected due to the intricate physics that presents tonal and
broadband noise generation. Figure 3.6 was presented by Wolf et. al (2012) and shows
the sound pressure level spectrum at an observer located 7.9 chords at the mid-chord
location above the trailing edge. Results are shown as a function of the Helmholtz
number, kc, where k is the acoustic wavenumber and c is the airfoil chord. In this
figure, numerical results are compared to experimental data available from Brooks et. al
(1989) and it is possible to notice the good agreement between simulation and experiment,
especially concerning the tonal peak at kc = 8.5 and a small peak between kc = 15 and 20.
These peaks are thought to be associated to large coherent structures highly correlated
along the spanwise direction, although these structures are not clearly observed in the
numerical simulation. In general, tonal noise is associated with highly-coherent sources
which generate noise at a specific frequency more efficiently. For example, a von Kármán
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Figure 3.5: Large eddy simulation of flow past a NACA 0012 airfoil at AoA = 5 degs.
AoA, M∞ = 0.115, Rec = 408000. Isosurfaces of Q-criterion coloured by vorticity

magnitude with contours of divergence of velocity in the background. Airfoil surface in
blue.

vortex street behind a cylinder would generate tonal noise at the reduced frequency of
vortex shedding, St ≈ 0.2, where the Strouhal number is given by St = fD/U∞. Here, f is
the frequency, D is the cylinder diameter and U∞ is the free stream velocity. While free
turbulence would result in a set of uncorrelated three-dimensional eddies that generate
noise in an inefficient fashion, vortex shedding could result in a spanwise coherent source
that would generate noise in an almost two-dimensional fashion. In the current numerical
simulation, where periodical boundary conditions are applied, this source could indeed be
fully two-dimensional.

Figure 3.6: Sound pressure level (SPL) at an observer location x = c, y = 7.9c and
mid-span originally presented by Wolf et. al (2012).

As the results have a homogeneous direction along the airfoil span (z-direction), the
snapshot method could be adapted considering that POD modes are Fourier modes in
the z-direction Lumley (1970). The advantages of using Fourier decomposition in the
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homogeneous direction, instead of computing the POD modes directly for the full domain,
will be clarified along the text.

In this Section, the first POD approach employed will consider an average along the
z-direction, i.e., it will be a two-dimensional POD for the entire flowfield. Despite of the
simplicity of this computation, it can yield very useful insights on POD norms to be used
and the acoustic scattering, which can be easily computed for a 2D field.

The full three-dimensional proper orthogonal decomposition will also be implemented
to analyze the behavior of the coherent structures in the spatial eigenfunctions and to
perform a comparison with the Fourier-POD implementation. Also, in this chapter, a time
spectral POD (SPOD) implementation Sieber et. al (2016) will be performed in the full
3D flowfield to assess the effects of filtering on the correlation matrix and its consequences
in the decomposition of the most energy-containing structures in the flowfield. Different
types of filtering will be tested and the importance of considering a periodic time signal
will be analyzed.

Finally, the Fourier-POD will be analyzed in terms of the spatial eigenfunctions in
order to identify coherent structures in the flowfield. Also, a coupled implementation
of the Fourier-POD and the SPOD will be made to see how the filtering affects small
disturbances at different Fourier modes.

3.4 Spanwise Averaged 2D POD

In order to filter three-dimensional fluctuations in the flow field, a spanwise average
is performed resulting in a two-dimensional set of flow data. Figure 3.7 shows mean
results for x-momentum and root mean square, RMS, of x-momentum. This 2D averaging
process will be used for the analysis of POD norms. Figure 3.7 shows that fluctuations
are considerably smaller than the mean values, however, they cannot be neglected.

(a) X-momentum component. (b) RMS of x-momentum
component.

Figure 3.7: Results of spanwise averaging.

Despite its simplicity, 2D POD can provide insights about the different norms which
can be used for the reconstruction process and also about the largest structures that
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are present in the turbulent field. In the present work, both pressure (p-mean 2D) and
kinetic energy (k-mean 2D) based norms are used. These norms are used in literature
for POD analysis in many references, one important to be discussed is that Freund and
Colonius (2009) found good results for reconstructing the acoustic waves using pressure
norm and turbulent structures using kinetic energy norm. In this work we are willing to
characterize the coherent structures where the turbulent fluctuations are higher, that is,
near the airfoil and in the vortex wake region. For this reason the use of pressure norm
computed only for acoustic waves region may not present good results when computing
spatial eigenfunctions near the solid body, however their results will be compared among
the other POD norms in further discussion (Section 3.5.2).

Considering that the term “mean 2D” is used here to emphasize that the POD
reconstructions are employed in the 2D flowfield. As already discussed, POD allows
the representation of most of the energy of the flowfield using a small number of modes.
Figure 3.8 presents the energy contained in the first 20 modes for the reconstruction of
the 2D spanwise-averaged flowfield and the sum of the energy for the first 200 modes.
Initially, the sum of the energy of the modes for the pressure-based norm grows faster
than for the kinetic energy one. Therefore, for a smaller number of POD modes, the
reconstructed flowfield would have more energy for the pressure norm than for the kinetic
energy one. This observation can also be made from the energy of the single modes.
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Figure 3.8: Eigenvalues for pressure and kinetic energy POD norms.

POD norms may influence the coupling of modes and sometimes, singles modes may
appear. For example, the results obtained by the kinetic energy norm presents a better
coupling of eigenvalues than the pressure norm, as shown in Fig. 3.8(a). For the former
norm, the three pairs of modes can be seen in the plot while, for the latter, modes 1 and
2 have similar energy levels, denoting a pair, but modes 3, 4 and 5 represent one pair and
one single mode. This issue will affect the information contained in spatial eigenfunctions.

Figure 3.9 presents pressure fluctuations obtained by the first mode eigenfunction from
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POD. One can see that the results obtained by the pressure norm have higher magnitudes
of pressure fluctuations in the acoustic field compared to the kinetic energy norm. This
is related to the information in Fig. 3.8 (a), where the pressure norm presents higher
eigenvalues for the first modes.

(a) Pressure norm. (b) Kinetic energy norm.

Figure 3.9: Pressure fluctuations obtained by the POD spatial eigenfunctions of mode 1.

3.4.1 Acoustic Analysis

For the sake of performing a refined analysis on the flow reconstruction using POD and
its subsequent acoustic field, the solid Ffowcs-Williams and Hawkings (1969) formulation
is implemented using a 2D approach. Here, the FWH formulation assumes that the
sources and observers are in uniform motion and, therefore, the implementation is similar
to Curle (1955). This study is performed to assess the effects of the POD reconstructions
on the acoustic far-field. For this analysis, the sound spectra is computed using a POD
reconstruction of the sources through the pressure-based norm, which is thought to be
more appropriate for the acoustic analysis. Results are presented in Fig. 3.10 for the
direct computational fluid dynamics (CFD) calculation, acoustic analogy and POD. In
Fig. 3.10(a) the pressure fluctuations from CFD are measured directly at 1.0 chord length
above the mid-chord of the airfoil. Curle’s analogy results are computed at the same
point using surface pressure fluctuations from the CFD data. The results of the original
2D flow (shown as CFD2D in the figure) and from the POD reconstruction (POD in the
figure) are compared. One can see that the first 2 POD modes are able to reconstruct
the tonal noise content of the spectrum at kc = 8.5. This means that the most energetic
flow structures are associated with noise generation at that particular frequency. When
more modes are added, the spectrum tends to approximate the original one computed
from the CFD. Some differences between the direct calculation of pressure fluctuations
in the acoustic field and the FWH solution are related to the lack of quadrupole sources
which are neglected in the acoustic analogy computation.

A far-field analysis is also presented in terms of sound pressure level in Fig. 3.10(b)
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Figure 3.10: Pressure-based norm results for scattering spectra with acoustic analogy
presented in Eq. 2.33.

where only the acoustic analogy is used to compute the sound spectra far from the airfoil.
In this case, the observer is at 7.9c above the trailing edge and, therefore, this position
is outside the CFD computational domain. Here, the POD reconstruction provides the
surface pressure signal along the airfoil which is required for the FWH acoustic analogy.
The spectral shape in the far-field is practically the same as for the near acoustic field,
despite the differences in magnitude. Again, the first 2 modes are able to capture the
tonal noise peak at kc = 8.5 and the other modes account for the broadband content of
the sound spectrum.

A directivity analysis is also performed to assess the effects of the POD reconstruction
on the noise propagation. Figure 3.11 presents directivity plots for different frequencies.
These plots are obtained through pressure fluctuations which are reconstructed using a
different number of modes. It is important to notice that both the magnitudes and shapes
of the directivities are modified by the POD reconstructions. One can observe that, for
the tonal noise frequency, the shape of the directivity is always similar, indicating that
the first modes already contain the important content in terms of pressure fluctuations
for this particular frequency. On the other hand, for other frequencies, the shapes of the
directivities are completely different from the original FWH one. This means that the
noise generated for these frequencies depends on finer turbulent structures which are not
recovered in the POD reconstruction using only a few modes. That is, the use of more
or less POD modes for reconstruction affects the properties of turbulence not only in
magnitude, but in this case, also in the shape of acoustic scattering.

3.4.2 Turbulent Wake Analysis

The focus of the present study is to identify coherent structures in the flowfield
along the turbulent wake. The kinetic energy and pressure norms will be employed
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Figure 3.11: Acoustic pressure directivity for observer locations at 7.9c above the
trailing edge.

in the present analysis. One way to identify if the POD modes carry information of
periodical dynamics, which may represent coherent structures, is via the λi POD spectrum
distribution presented in Fig. 3.8(a). Figure 3.12 highlights the presence of eigenvalues of
modes with similar values, typical of coupled modes. POD modes appear in pairs in the
eigenvalue distribution analogue to the sine-cosine relation in Fourier modes.

When the POD modes are not present in pairs, or when there is an odd number of
eigenvalues with similar energetic levels, the information in the spatial eigenfunctions
may not be clearly presented making it impossible to identify coherent structures. As
Fig. 3.12 shows, for the present flow configuration, the kinetic energy norm allows a
better coupling of the POD modes, especially for the first 8 singular values. On the other
hand, the p-mean 2D norm shows that modes λ1 and λ2, and λ6 and λ7, form pairs with
eigenvalues of similar energy levels. However, modes λ3, λ4 and λ5 seem to be uncoupled.

Figure 3.13 shows the spatial eigenfunctions for some of the POD modes from Fig. 3.12
obtained using the pressure norm. Results are presented in terms of the y-momentum
component. It is possible to see that POD modes λ1 and λ6, which have pairs in Fig.
3.12(b), present a clear vortex wake structure with periodic disturbances. A similar
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Figure 3.12: POD eigenvalues of the most energy-containing paired modes highlighted in
red circles. Unpaired modes shown in blue circles.

alternated pattern of disturbances is also visualized along the turbulent boundary layer
region developing on the suction side of the airfoil. On the other hand, POD modes λ3 and
λ4 show fluctuations which are distorted and without regularity besides some additional
noise. This happens since the pressure norm is not able to characterize the structures
formed in this part of the energy spectrum, generating uncoupled modes. This result
indicates that the pressure norm may not be well suited for identification of coherent
structures in the region of the flow comprising the wake and boundary layer. However, it
is better suited for the reconstruction of pressure waves propagating to the far-field.

(a) Eigenfunction for λ1. (b) Eigenfunction for λ3.

(c) Eigenfunction for λ4. (d) Eigenfunction for λ6.

Figure 3.13: Spatial eigenfunctions formed via paired and unpaired modes computed
using the p-mean 2D norm.
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Figure 3.14 presents the POD modes obtained through the k-mean 2D norm for the
y-momentum component. In this figure, one can see that all modes show structures with
alternate pattern and which represent coherent structures in the vortex wake. The even
POD modes are similar to their counterparts (odd modes). Therefore, for the current
case, the k-mean 2D norm presents better results in terms of visualization of coherent
structures along the vortex wake. In fact, the first modes shown in the figure seem to
have similar wavelengths.

(a) Eigenfunction for λ1. (b) Eigenfunction for λ3.

(c) Eigenfunction for λ5. (d) Eigenfunction for λ7.

Figure 3.14: Spatial eigenfunctions formed via paired eigenvalues computed using the
k-mean 2D norm.
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Figure 3.15: Phase diagram for time mode amplitudes obtained by the k-mean 2D norm.

Paired modes can be identified by a phase space plot which should describe a harmonic
motion. Unpaired modes, on the other hand, should be described by a non-harmonic
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motion. Therefore, the paired modes are visually inspected via a harmonic correlation
in the phase diagram, which is a laborious process since each pair of modes needs to be
identified one by one. Figure 3.15 shows the phase diagram for POD modes obtained
using the k-mean 2D norm and one can see that mode amplitudes a1 and 2 are phase
related, as well as modes a3 and a4. If this relation is well defined, the coherent structures
in the spatial eigenfunctions will be also defined, as shown by Fig. 3.14.
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Figure 3.16: Phase diagram computed for mode amplitudes obtained by the p-mean 2D
norm.

The pressure based norm results presented in Fig. 3.16 show that the temporal mode
amplitudes a1 and a2 are paired, but for mode amplitudes a3, a4 and a5 are not. This
should be also observed in the phase diagram computed for these modes. One may notice
in Fig. 3.16(a), the phase diagram for modes a1 and a2 show the cyclical pattern expected
for a periodic structure with strong phase correlation. The phase plots computed for
the combinations of modes a3, a4 and a5 present a non-harmonical behavior. This is an
indicative of the lack of clarity in the identification of coherent structures in the flow
field for these modes. Modes that usually contain coherent turbulence information are
presented in pairs and have strong phase correlation.

For all that is stated in this section, it is possible to conclude that the k-mean 2D
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norm presents better results for finding coherent structures in the turbulent flowfield.
The fist modes capture important physics and are phase related yielding a clear view of
the turbulent structures formed near the trailing edge and along the wake. The first pair
of POD modes presents the form of an elongated wavepacket starting from the trailing
edge region. This pair of modes is present in both kinetic energy and pressure norms with
more or less intensity. The second pair of modes obtained by the kinetic energy norm is
composed by modes 3 and 4 which also show the wavepacket content near the trailing edge.
However, for the pressure norm, modes 3 and 4 are not paired and present some distinct
information from each other, including some noise. The presence of large wavepackets
will also be shown and discussed in the three-dimensional POD reconstruction.

3.5 General 3D POD Implementation

3.5.1 Parallel Implementation and Computational Cost

The proper orthogonal decomposition is a computational expensive process in terms
of both memory allocation and CPU processing. As stated in Section 3.1, the snapshot
method computes the correlation matrix for every time frame and, in order to accelerate
the computation, the entire numerical data must be saved in the RAM memory.

This becomes extremely expensive when computing high-fidelity simulation cases with
millions of degrees of freedom in terms of mesh resolution and hundreds or maybe
thousands of time samples. For example, considering the baseline case here analysed
which consists of a body-fitted O-grid with 960× 125× 128 grid points and a background
grid with 896 × 511 × 64 grid points. The simulation is stored for 874 data frames
with double-precision in PLOT3D format. Each frame stores five conservative variables
including density, x-, y- and z-momentum and total energy. In this case, we have
approximately 1.5 Tb of information to allocate in the RAM memory without considering
the auxiliary variables, matrices, vectors and integers. A personal computer or even the
available high-performance clusters usually do not have such amount of memory available
for RAM allocation.

In order to overcome this issue, the standard snapshot method (Sirovich, 1986) was
implemented in Fortran in parallel using the standard message passing interface (MPI) for
memory partitioning and the open multi-processing (OpenMP) approach for accelerating
the computation of the correlation matrix in each partition and process. As shown in Fig.
3.17, the domain is partitioned into one direction only, i.e., a 1D-decomposition in the
spanwise direction with one MPI partition per process. Inside each process, the OpenMP
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processes compute the correlation matrix and modes in a parallel fashion.

Figure 3.17: MPI domain partitioning example using an one dimensional decomposition
for memory usage optimization. The example figure was extracted from Li and Laizet

(2010).

The overall process is parallelized in equal sized slices along the spanwise direction
and summed up to compute the correlation matrix. Even so, the PLOT3D format is
still a barrier because it only allows the access of the entire flow data of a single frame
at once. In this way, one MPI process is used to read the entire flow data and, then, it
splits the data to the other processes slowing down the procedure. The solution found
to deal with this problem was to convert the files to the CFD general notation system
(CGNS), a highly recommended format for storing simulation data. The advantage of
this format is due to the ability of accessing parts and variables separately. Also, when
converting the files, the conservative variables from PLOT3D are converted to primitive
variables which makes it possible for accessing each variable separately for the correlation
matrix computation without the need of converting them inside the code. In this way,
the total memory to be allocated decreases to approximately 290 Gb. In order to obtain
a further reduction in the memory usage, the variables are allocated as single precision,
which decreases the memory usage to 145 Gb.

The fully parallel code computes the correlation matrix in approximately 6 hours using
the entire 874 data files. The computational resources were 8 MPI processes allocating
50 Gb each inside the RAM memory, 1 for each computer node (40 OpenMP processes
per node). Without the implemented solutions to speed up the processing, the numerical
tool could read only 200 out of the 874 data files due to lack of RAM. Furthermore,
the computation of the correlation matrix would be extremely time-consuming. For
example, once, using the same computational resources but allocating only 600 snapshots
inside the RAM Memory, the correlation matrix computation took 28 hours. The
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homogeneous direction consideration (Fourier-POD, in Section 3.7) drastically reduces the
RAM memory usage, but does not affect the overall time for the computations. Hence,
the current version of the POD implementation is able to reduce both memory and time
processing costs.

3.5.2 POD 3D Results

This section presents results obtained by the fully 3D POD reconstruction. One should
remind that the original flowfield has a homogeneous spanwise direction. This means that
along the spanwise direction, POD modes should correspond to Fourier modes Lumley
(1970). In this case, a combination of Fourier and POD could be implemented. However,
in this case, we will not force the homogeneous direction to analyze the results of a
direct implementation of POD in the full domain. Hence, it will be possible to know how
a combination of Fourier decomposition in the homogeneous direction differs from the
full-domain POD results.

In order to assess the effects of the physical domains on the POD modes, 4 different
reconstructions will be considered. These reconstructions differ in the POD norm used
(kinetic energy and pressure) and the simulation domain employed. Many analysis can
be performed for POD norms and information domains. Still, there is no definition in
literature on what norm is better stated for all possible vector-POD studies. Usually,
an analysis of the POD spectrum, the mode coupling and an analysis of the spectral
content in the most energetic modes may clarify what physics is covered and uncovered
by the use of each norm. Freund and Colonius (2009) found good results for acoustic field
reconstruction using pressure-norm and coherent structures in the turbulent jet in the
kinetic norm. However, it is not possible to state it is the best application for all situations,
specially because of the numerical database used at M∞ = 0.9 and low Reynolds number
(Freund, 2001). For a realistic database, the analysis must be taken carefully, not jumping
into conclusions, maybe considering the application of many norms for the flow field data
to extract useful information for modeling, control and analysis.

Reconstructions obtained using the full computation domain are implemented using
kinetic energy (k-3D) and pressure (p-3D) norms. Moreover, the kinetic-energy norm
(k-wake) is implemented for a limited portion of the computational domain including
only a subset of the domain where turbulent fluctuations are more intense. This region
corresponds to the airfoil wake and its suction side boundary layer. The acoustic pressure
norm (p-acoustic) is also implemented considering a region of acoustic propagation above
the airfoil surface. This subset of the domain was chosen for a region were acoustic
waves propagate as pressure fluctuations in a reduced order of magnitude compared to
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the turbulent wake region fluctuations. These particular regions of the k-wake and the
p-acoustic norms are shown in Fig. 3.18.

(a) k-wake norm. (b) p-acoustic norm.

Figure 3.18: Limited computational domain regions Ωi employed for the calculation of
the correlation matrix using different norms.

The correlation matrix is computed by a sum of product of correlations among
variables over the computational domain employed. Therefore, the summation of variables
with low or negligible values should have a small influence in the results. Such observation
can be seen in Fig. 3.19 which presents the energy of specific eigenvalues obtained by the
k-mean and the k-3D norms. One can see that the energy levels of the modes are very
similar although the computational domains employed in the POD mode reconstructions
are different. It is clear that the fluctuations of turbulent kinetic energy occur mainly
along the airfoil wake and boundary layer regions and, hence, this should be the region of
choice for the reconstruction using the kinetic energy norm. At the same time, employing
the entire computational domain in the reconstruction does not add much computational
cost to the calculations since the grid points are concentrated close to the airfoil and its
wake. Therefore, along this section, results will be shown in terms of the k-3D norm which
uses the entire data along the computational domain.

Figure 3.20 presents the different correlation matrices computed via the 3 different
norms (k-3D, p-3D and p-acoustic). One can notice that the k-3D norm produces a high
correlation only for the elements along the main diagonal while the pressure based norms
present higher correlations outside the diagonal. In the case of the p-acoustic norm, the
correlations are computed along the acoustic field where pressure waves radiate outwards.
These pressure waves have higher correlation among themselves which is demonstrated in
the correlation matrix.

The different norms affect the way that the eigenvalues group information in the
POD spectra as shown in Fig. 3.21(a), and they will also affect the convergence of the
POD modes in terms of the energy contribution as shown in Fig. 3.21(b). The k-3D
norm presents eigenvalues with smaller energetic content in the first modes. On the
other hand, the p-acoustic norm has most of the energy accumulated in the first modes.
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Figure 3.19: Eigenvalues of the full 3D POD reconstructions using the kinetic energy
norm along the entire computational domain (k-3D) and only the airfoil wake region

(k-wake).

(a) k-3D norm. (b) p-3D norm. (c) p-acoustic norm.

Figure 3.20: Correlation matrices for different POD norms.

Although this norm may recover the total energy with fewer modes, it does not mean that
the information contained in the modes provide useful information in terms of physical
coherent structures.

As one can see in Fig. 3.21(a), for the three POD norms tested, the first 4 modes seem
to be paired, which means that they are phase related as already stated in Section 3.4.2.
Figure 3.22 shows the phase diagram for the first 3 pairs of temporal mode amplitudes
in order to better evaluate the coupling among them. Results obtained for the first two
modes using the k-3D norm present a strong phase relation as can be observed in the
circular pattern in the figure. However, mode amplitudes a3 and a4, as well as modes a5

and a6, show a distorted pattern in the phase diagram meaning that they are not paired
and do not represent coherent structures. The p-3D norm presents some phase relation
between modes a1 and a2 and a3 and a4, respectively. One can clearly see that the latter
represent structures at higher frequencies than the former since they have more cycles in
the phase plot. Modes a5 and a6 do not present do not present a phase relation.
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Figure 3.21: Singular values for 3D implementation of POD using the k-3D, p-3D and
p-acoustic norms.

Finally, results obtained by the p-acoustic norm presents a phase relation between
mode amplitudes a1 and a2 similarly as the results obtained by the other norms. However,
the plot shows some distortion in the phase compared to the other norms, especially
the k-3D norm. Similar results are obtained for modes a3 and a4, which may contain
information about coherent structures. As observed for all norms, modes a5 and a6

obtained by the p-acoustic norm do not present a clear phase relation.
The phase relation is computed using the temporal coefficients of the individual POD

modes. In Fig. 3.23, one can analyze the behavior of the temporal coefficients obtained
using the p-3D norm. Figures 3.23(a), (b) and (c) present the temporal evolution of the
coefficients and results show that mode amplitudes a1 and a2 are related by a phase shift.
A similar observation can be made for modes a3 and a4, which have a higher frequency
dynamics. However, the temporal behavior of modes a5 and a6 do not show any clear
phase relation, as expected. In Figs. 3.23(d), (e) and (f), one can see the amplitudes of
the Fourier transformed temporal coefficients in logarithmic scale. It is possible to notice
that the first two modes are responsible for fluctuations in the tonal peak frequency at
Helmholtz number kc ≈ 9. One should remind that this tonal peak dominates the acoustic
radiation in the farfield as observed by Wolf et. al (2012) and it is caused by a energetic
coherent structure such as vortex shedding. In Fig. 3.6, a tonal acoustic peak is presented
at k ≈ 8.5. Aeroacoustic sources in the form of quadrupoles suffer noise scattering along
the airfoil surface. In this case, it is possible to conclude that the first two POD modes
represent the aeroacoustic sources responsible by the tonal noise observed. The second
pair of modes excite higher frequencies and present a broad-tonal peak at kc ≈ 25. The
oscillation at higher frequencies was already noticed in Fig. 3.22(e), where the phase
diagram presents several cycles. The third pair of modes present broadband spectra with
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Figure 3.22: Phase diagrams for POD modes computed using different norms. Circular
patterns represent significant phase relation between mode pairs.

different levels and, therefore, confirm the previous analysis which assumed they had no
phase relation.

From previous analysis, we assume that the first POD modes are associated to coherent
structures which generate noise at the tonal peak frequency. However, we cannot say that
the only modes that contribute to the tonal noise frequency are those from the first pair
and we presume that other modes may also contain information related to that frequency.
The different norms studied here capture approximately the same dynamics for the first
pair of modes. However, it is possible to see small differences among the results in terms
of the eigenfunctions which are representative of the spatial components of the modes.
Figures 3.24 and 3.25 show detail views of the spatial modes along the boundary layer
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Figure 3.23: Dynamics of temporal coefficients for different POD modes obtained by the
p-3D norm in the time domain (a,b,c) and Fourier domain (d,e,f).

and wake regions, respectively. In these figures, one can observe the spatial distribution
of the first POD mode for the three norms investigated here. Both the k-3D and p-3D
norms computed using information along the entire computational domain present clear
alternating coherent structures which can be visualized in terms of the y-component of
velocity. On the other hand, when the spatial modes are obtained using p-acoustic norm,
one can see some additional noise in the velocity components, especially along the wake
region. Although the p-acoustic provides a faster convergence in terms of energy levels for
the singular values, its application to the nearfield turbulence fluctuations is not able to
decompose the coherent turbulent structures. The other norms which form the correlation
matrices using nearfield information can provide a clearer identification of such structures,
which is a desirable property for the study of turbulence.

Figure 3.24 shows that coherent structures are formed just after the suction-blowing
tripping mechanism that induces transition in the suction side of the airfoil. The scale
of the plots are adjusted for the different norms in order to present equal-sized coherent
structures for each figure. In this analysis, only small differences are perceived between the
k-3D and p-3D norms, but the p-acoustic norm is clearly different from the others. The
presence of 2D elongated structures in the spanwise direction is present in the p-acoustic
norm eigenfunctions, but they appear with larger rollers which differ from those observed
in the other norms. In Fig. 3.25, one can see the development of large 2D elongated
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coherent structures after the flow passes the trailing edge and the differences between the
k-3D and p-3D norms are small. The p-acoustic norm presents instabilities in the vortex
wake which contaminate the 2D structures.

(a) k-3D norm. (b) p-3D norm. (c) p-acoustic norm.

Figure 3.24: Isosurfaces of y-component of velocity reconstructed using eigenfunctions
for POD mode λ1 for different norms along the airfoil surface. Airfoil surface in blue.

(a) k-3D norm. (b) p-3D norm. (c) p-acoustic norm.

Figure 3.25: Isosurfaces of y-component of velocity reconstructed using eigenfunctions
for POD mode λ1 for different norms along the wake region.

There is a considerable difference between the results obtained by different norms
for the second pair of modes. Previous results showed that the second pair of modes
computed using the kinetic energy norm are not coupled. Figure 3.26 shows the spatial
eigenfunctions for mode λ3 from this norm. This POD mode carry part of the energy
content required to reconstruct the original turbulent flowfield. The non-coupled modes
are not further studied in literature but, due to the physics observed for the current
baseline case, they may be related to convection of the coherent structures in the
streamwise direction. In the present case, Fig. 3.26(a) shows the presence of large
streamwise structures, however, they are distorted and are hard to be identified. Fig.
3.26(b) shows that these eddies does not affect the acoustic waves propagated in the
nearfield.

The p-3D and p-acoustic norms have coupled modes in the second pair and their
eigenfunctions are presented in Fig. 3.27. The scale is once again adjusted for better
visualization of the spatial modes but, in this case, it is not possible to observe coherent
structures of similar wavelengths. The second pair of modes presents more higher
frequency coherent structures in the suction side of the airfoil and in the vortex wake region
near the trailing edge, especially for the p-3D norm. In this case, Fig. 3.23(e) shows thin



65

(a) Velocity-Y. (b) Contours of pressure component.

Figure 3.26: Visualization of the spatial eigenfunction for POD mode λ3 computed using
the k-3D norm. (a) Isosurfaces, airfoil surface in blue; (b) mid-span plane.

elongated 2D structures with considerable background noise. These structures may be
related to high frequency noise generation by poorly correlated turbulent structures. For
the p-acoustic norm, one can notice larger structures in the figure that shows the spatial
components for the third mode. However, these structures still present some distortions
and background noise. For this case, the second pair of modes is capturing structures
that may be related to the physics described by the first pair of modes but which were
not contained by them in the eigenvalue decomposition.

(a) Suction side view; p-3D norm. (b) Vortex wake view; p-3D norm.

(c) Suction side view; p-acoustic norm. (d) Vortex wake view; p-acoustic norm.

Figure 3.27: Isosurfaces of y-velocity component reconstructed using the eigenfunctions
for POD mode λ3 for different norms.

The direct implementation of POD, without considering the present homogeneous
flow direction along the airfoil span is computationally expensive. Moreover, the results
obtained by different POD norms can be contaminated by the information from different
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modes. In order to obtain improved results, one can use spatial filters such as Fourier
decomposition along the homogeneous direction or time spectral filters for the correlation
matrix. The current section is still important to show how a direct implementation of the
full 3D POD reconstruction can be performed. For fully 3D flows, without homogeneous
directions, this may be the only implementation possible and one should be aware of the
challenges which appear in the POD reconstruction. Moreover, the current section is also
important since the results presented will serve as a basis for comparison with other 3D
POD reconstructions obtained using filters and other techniques.

3.6 Spectral POD

From the previous analysis of the POD temporal and spatial modes, it is possible to
say that the total energy of the flow reconstruction may not be well distributed along the
POD spectrum. Such issue results in uncoupled modes which, as shown in Sections 3.4.2
and 3.5.2, may not represent physical coherent structures that can be identified by visual
inspection of the spatial eigenfunctions or temporal modes. Thereby, it is important to
obtain as many coupled modes as possible to organize the POD spectrum in order to
better identify the coherent structures present in the turbulent flow and to perform an
energy assessment contained by these structures.

In this way, it is possible to consider applying a filter in the correlation matrix,
which acts a transition between POD and DFT. This technique is called spectral proper
orthogonal decomposition (SPOD), it was first proposed by Sieber et. al (2016) and it
consists of a filtering applied to the correlation matrix prior to the SVD. This process
conserves the total energy of the flow redistributing the energy along the POD spectrum
through specific frequencies. As observed in the previous section, the POD modes are
built based on energy and a specific mode usually contains information of structures at
different frequencies. In the SPOD, modes are also constructed based on energy but
the filtering process of the correlation matrix allows the reconstruction of most energetic
modes at particular frequencies.

The filter is applied according to Eq. 3.12 to the correlation matrix C resulting in
a new correlation matrix C̄ which has increased diagonal similarity. The general POD
methodology is not altered according to Section 3.1 and the presence of the filtering
is formed by three important parameters: the window function of the filtering (gk),
the Nf integer scalar value that represents the size of the window, and the periodic
or non-periodic considerations about the time series in the correlation matrix. The
periodicity is considered over the boundaries of the correlation matrix when the Nf

parameter must account to points outside the matrix. The periodic considerations in
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the time series leads to a periodic correlation matrix. In this way, when the Nf parameter
accounts for points outside the matrix, they must be mirrored with respect to inner
terms of the matrix. When the time series is non-periodic, the points outside the matrix
correlation can be zeroed.

C̄i,j =
Nf∑

k=−Nf
gkCi+k,j+k (3.12)

The three main parameters described previously will be analyzed using the two main
POD norms investigated before: the kinetic energy and pressure norms employed along the
entire flow field, k-3D and p-3D norms, respectively. The p-acoustic norm is not considered
here due to its considerable signal-to-noise ratio. For the sake of simplicity in the analysis
and to investigate the effects of the fully three-dimensional SPOD implementation, the
studies will not consider the homogeneity of the spanwise direction, i.e., we are performing
a direct full domain 3D SPOD reconstruction.

3.6.1 Filtering Function and Window Size

Several filtering functions can be applied to the correlation matrix in order to obtain
optimum spectral response. The filtering functions applied in the present work are the
square filter represented by gk = 1/(2Nf + 1), and the smooth response optimized Gaussian
filter (Pope, 2001) represented by gk = e

8k2/N2
f/
∑

gk. The advantage of the Gaussian filtering
is the smooth spectral response as shown in Fig. 3.28 which presents the Fourier response
of the square and Gaussian functions. One can notice that the Gaussian filtering is less
sensitive to changes in the window size and, hence, it provides an enhanced control in the
response of the SPOD compared to the square filter. The latter shows a fast decay in the
frequency response.

For the coupled modes, the relation shown in the phase diagrams using the temporal
POD coefficients is a harmonic correlation. For the uncoupled modes, one could see that
no phase relation could be observed. SPOD can improve the phase relation of POD modes
through coupling. This way, uncoupled modes can be coupled and the phase relation of
already coupled modes can also be improved. For example, let us consider the evolution
of the first two temporal modes shown in the phase diagram of Fig. 3.29. The total time
of the recorded data corresponds to 874 frames which gives a total non-dimensional time
of t = 17.46. One must remind that the time scale is obtained using the chord length and
the freestream speed of sound as characteristic length and velocity scales. Figure 3.29
shows how the harmonic correlation develops in time for the general 3D implementation
of the POD using the k-3D norm. In a similar fashion, Fig. 3.30 presents the harmonic
correlation for the same pair of modes computed by the SPOD technique using a square
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Figure 3.28: Normalized spectral response of the square and Gaussian filtering functions
for different window sizes Nf .

window filtering with Nf = 800 and the same k-3D norm.
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Figure 3.29: Phase diagram showing the temporal evolution of POD modes 1 and 2,
represented by a1 and a2, obtained using the k-3D norm.

The major difference between Figs. 3.29 and 3.30 is that the latter presents more
organized phase patterns as they evolve in time. Figure 3.29 shows a growth in amplitude
of the temporal modes with some harmonic synchronization. However, the modes still
have some intersection points representing that there are multiple frequencies represented
in the mode pair and that their mode coupling is not well stated in the POD spectrum.
Figure 3.30 presents a cleaner harmonic correlation in the first pair of modes showing that
their coupling is well determined and the coherent structures in its eigenfunction will be
better represented. As the SPOD with square window filtering has a faster transition to
DFT, as shown in Fig. 3.28, the representation with Nf = 800 is approximately the same
as employing a DFT for this case.

In Fig. 3.31 it is possible to see how the SPOD technique filters the information of the
mode amplitudes as the window size Nf is increased. The square window is applied in
this case and one can notice that the SPOD not only filters information but redistributes
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Figure 3.30: Phase diagram showing the temporal evolution of SPOD modes a1 and a2
obtained using the k-3D norm. A square window filtering is applied with Nf = 800.

the information in the temporal modes creating a wavepacket structure that increases and
decays along the time span. Also, the highest point in the mode amplitudes is exactly
in the middle of the temporal signal. As the window size increases, the energy of the
wavepacket decreases and the oscillations have lower magnitude. This means that the
energy of the first pair of modes has been spread along the POD eigenvalue spectrum.
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Figure 3.31: Evolution of temporal mode a1 obtained with k-3D norm and square-box
filtering with different window sizes Nf .

Figures 3.32 and 3.33 present spectra of the first temporal mode computed using the
square-box and Gaussian filtering functions in the SPOD method, respectively. In Fig.
3.32(a), one can see the spectrum for the first POD mode without the application of any
filtering. As the square filter is applied in Figs. 3.32(b) and (c), the broadband content
of the spectra become cleaner and the tonal peak at kc ≈ 8.5 is better characterized.

In this case, the low frequency tones are smoothed out and the high frequency content
has a faster amplitude decay. However, as shown in Fig. 3.28, the square-box filtering
may affect other frequencies that represented by the physics in the POD mode and so,
the spectrum shows a minor noise in the signal, especially at low frequencies.

Spectra of the first temporal mode are shown in Fig. 3.33 for the Gaussian filter applied
with different values of Nf . Results are smoother than those presented in Fig. 3.32 since
the Gaussian filtering has a more controllable frequency response, as shown in Fig. 3.28.
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Figure 3.32: Spectra of 1st temporal mode a1 obtained by the k-3D norm and
square-box filtering SPOD with different window sizes Nf .

The Gaussian filter has improved results presenting less noise for all frequencies, especially
in the low frequency regime which does not show oscillations. In this case, the Gaussian
filtering presents a smoother transition between POD and DFT.
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Figure 3.33: Spectra of 1st temporal mode a1 obtained by the k-3D norm and Gaussian
filtering SPOD with different window sizes Nf .

Similarly to the square-box function, the Gaussian filter also improves the harmonic
correlation in the first pair of modes obtained by the k-3D norm, as shown in Fig. 3.34.
Even so, the SPOD cannot guarantee that coherent structures are clearly represented
along the entire POD spectrum, unless when the transition to DFT is complete and only
for those modes with considerable signal-to-noise ratio.

An example where the phase diagram is improved by the Gaussian filter employed
in the SPOD technique, but still the mode pair is not fully coupled, can be seen Fig.
3.35 which shows the phase diagram for the second mode pair obtained by the k-3D
norm. It is possible to see that the modes oscillate at some lower frequency, but the
harmonic correlation is not well represented. At lower frequencies, only large window
sizes can present good harmonic correlation and, in this case, the SPOD technique is
not very useful as the DFT would present the same results. One should remind that,
for the present numerical simulations, statistical convergence is not obtained for the low
frequency content of the spectrum. For this portion of the spectrum to be well captured,
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Figure 3.34: Phase diagram of the 1st POD mode pair obtained by the k-3D norm with
Gaussian filtering for different window sizes Nf .

the simulations would have to be run for a much longer time considerably increasing the
computational cost of the simulation and the data storage requirements. Furthermore,
the tonal frequency of interest here is in the mid-frequency portion of the spectrum, which
is statistically well-captured.
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Figure 3.35: Phase diagram of the 2nd mode pair (a3 and a4) obtained by the k-3D
norm with Gaussian filtering for different window sizes Nf .

The previous analysis of the filtering functions and window sizes were obtained using
the turbulent kinetic energy norm, k-3D, along the entire computational domain. Here,
we will present a similar investigation in terms of phase diagrams and spectra using the
pressure norm, p-3D. In Sec. 3.5.2, Fig. 3.22 presents the harmonic correlations for the
3 first mode pairs obtained by the standard POD technique for different POD norms. It
was also shown that the p-3D norm has a stronger harmonic correlation for the second
mode pair than for the first mode pair.

Figure 3.36 presents the spectrum of the temporal modes for mode amplitude a1

obtained by the p-3D norm and the Gaussian filter with different window sizes, Nf .
Differently from the k-3D norm, for the pressure norm, higher noise levels are observed
at high frequencies when the standard POD technique is employed. When the SPOD
method is applied, the oscillations at low frequencies vanish and only small oscillations
appear in the high frequency content of the spectrum. The application of the Gaussian
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filter with Nf = 400 cleans the spectrum leaving a well-defined tonal peak at the kc ≈ 9
frequency.
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Figure 3.36: Spectra of 1st temporal mode obtained by the p-3D norm and Gaussian
filtering with different window sizes Nf .

An analysis for the third mode amplitude a3 is presented in Fig. 3.37 using the same
parameters as for the first mode a1. One can see that when the filtering is not applied, the
energy is spread along several frequencies with a tonal peak at kc ≈ 25. From Fig. 3.37(a),
it is impossible to define a particular frequency for the third mode. However, when the
SPOD technique is employed, the energy is redistributed in the correlation matrix and
the spectrum shows a tonal peak at a lower frequency, similar to that observed for the
first POD mode. This tonal frequency is in the same frequency band where the tonal
acoustic peak occurs in Fig. 3.6. In this case, the third SPOD mode is representative of
the aeroacoustic sources that compose the tonal peak noise sources in the current airfoil
noise problem. On can notice that the SPOD technique distributes the energy of the
flow in the POD spectrum. The second mode pair from SPOD contains flow information
related to lower frequencies than those presented in the non-filtered POD spectrum.
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Figure 3.37: Spectra of 3rd temporal mode a3 obtained by the P-3D norm and gaussian
filtering with different window sizes Nf .

Figure 3.38 shows the phase diagram and the harmonic correlation of the second mode
pair obtained by the p-3D norm and the Gaussian filtering. One can see the significant
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improvement in the harmonic correlation for this mode pair compared to the standard
POD technique. That means that the energy region where the second mode pair is
comprised in the non-filtered POD is different from that presented in the filtered SPOD
method. The non-filtered spectrum for the first POD mode presents a tonal peak but it
also has high energy at other frequencies in the spectrum. The Gaussian filtering in the
SPOD redistributed the energy in the POD spectrum. Now, both the first and second
mode pairs represent the physics originally contained in the first pair of unfiltered POD
modes. The information at high frequencies does not disappear but it is now related to
another region of the filtered POD spectrum, for example, in the third mode pair obtained
by the p-3D norm.
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Figure 3.38: Phase diagram of the 2nd mode pair obtained by the p-3D norm and
Gaussian filtering for different window sizes Nf .

The phase diagram results obtained for the third pair of modes are presented in
Fig. 3.39. This figure shows that the non-filtered POD has no harmonic correlation
and, therefore, no useful information in terms of coherent structures since it contains
a considerable noise-to-signal ratio. The SPOD technique employed using the Gaussian
filtering is capable of presenting useful information at high frequencies and, with a window
size Nf = 200, the harmonic correlation is already considerably improved.
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Figure 3.39: Phase diagram of the 3rd mode pair obtained by the p-3D norm and
Gaussian filtering for different window sizes Nf .
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As the SPOD affects the POD spectrum redistributing spectral energy over the POD
modes, it is expected that the energy convergence becomes slower when SPOD is used.
The total turbulent flow energy is spread along the spectrum which gives mode pairs
containing less energy than before. Although this is undesirable if the main interest is
in ROM or data compression, it can imply significant improvements in the analysis of
coherent structures and turbulent flow decomposition. In this case, the eigenfunctions
will present well-defined turbulent structures and the SPOD modes will have information
closely related to a single or a narrowband of frequencies, making it easier to understand
the turbulent flow field.

The POD eigenvalue spectrum for the first 10 POD modes is shown in Fig. 3.40
obtained by the Gaussian filtering with Nf = 0, 200 and 400. In these cases, the increase
in the window size Nf decreases the energy contained in the first mode pair. However,
one can notice that the SPOD filtering helps in flattering the POD spectrum, improving
the mode coupling for both POD norms. The k-3D norm is less sensitive to the filtering
process, but the p-3D norm suffers great reduction in the energy contained in the POD
modes. The second pair of modes in the p-3D norm decays considerably in terms of the
energy content compared to the non-filtered case. This is also represented by the results
in Figs. 3.37 and 3.38 which show that the information contained in the second pair of
modes is completely changed due to the application of the spectral filtering. The k-3D
norm presents the re-distribution of the flow energy and, for some POD modes, the energy
contained in the mode pair for the SPOD is higher than the non-filtered POD. This is
caused by the flattering effect on the SPOD spectrum, which re-distributes the energy
and helps in coupling the POD modes.
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Figure 3.40: Normalized singular values for different window sizes Nf in the Gaussian
filtering.

In Figure 3.41, the correlation matrix for the p-3D norm is shown and the effect
of increasing the diagonal similarity is clearly noticed when different window sizes are
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applied in the filtering procedure. The DFT approach increases dramatically the diagonal
similarity, but the window size is large enough to affect the main diagonal of the matrix.
One must remember that, in the present analysis, only non-periodical considerations are
used so far in the calculation of the correlation matrix. In this way, the correlation outside
the matrix is considered as zero when the filtering procedure is applied. When the window
size accounts for points outside the correlation domain, the zero information accounts for
reducing the correlation value and, hence, important information in the main diagonal of
the matrix, which is non-physical but easy to be implemented computationally.

(a) Nf = 0. (b) Nf = 400. (c) Nf = 800.

Figure 3.41: Correlation matrices obtained by p-3D norm with Gaussian filtering SPOD
for different window sizes Nf .

Nevertheless, one should remind that the time series is not periodic as well as this
consideration will produce some drawbacks in the analysis. The consideration is not
extremely harmful as for a DFT analysis because, in POD, the presence of a step function
does not produce the same effect as in Fourier domain.

3.6.2 Periodic vs. Non-Periodic Time Series

Proper orthogonal decomposition does not require periodicity of the time signal. For
a finite time series, the spectral filtering has no information outside the boundaries of
the correlation matrix. In this case, one may consider that the lack of information
represents a zero correlation outside the boundaries. However, if the time series is
stated as periodic, the outside region of the correlation matrix is computed considering
the matrix as periodic itself. In well-resolved numerical data of statistically converged
turbulent flows, the periodicity of the signal is usually assumed and that can improve
the reconstruction of information in POD modes. Also, the choice between Gaussian or
square-box type functions for the filtering operation may produce considerable differences
when the periodic time series is considered. One of the noticeable differences between the
periodic and the non-periodic time series in the filtering operation is on the correlation
matrix, as shown in Fig. 3.42. This figure presents the correlation matrices obtained by
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the pressure norm, p-3D, for the non-periodic case and for the square-box and Gaussian
filtered periodic cases. The main diagonal of the matrix computed in the non-periodic
case decreases its magnitude near the boundaries due to the accounting of zero values
outside the matrix domain. Assuming that the time series is periodic, one has a periodic
correlation matrix where the main diagonal presents higher values near the boundaries
when compared to the non-periodic case.

(a) Non-periodic. (b) Square-box periodic. (c) Gaussian periodic.

Figure 3.42: Correlation matrix obtained with the p-3D norm for different filtering
functions for window size Nf = 400.

The POD eigenvalue spectrum is slightly affected by the periodic assumption, as
shown in Fig. 3.43. The filtering operation may flatter the POD spectrum and periodicity
improves such feature as can be seen in the second mode pair for the k-3D norm in Fig.
3.40(a). The SPOD technique did not show a considerable improvement in the coupling
of the second pair of modes obtained using the kinetic energy norm for the non-periodic
time series assumption. However, when periodicity is considered, the second mode pair
of modes is coupled for the k-3D norm. The p-3D norm presents only small differences in
the POD spectrum when periodicity is assumed.

The visualization of the spectral content of the temporal modes helps in the
identification of the differences between the periodic and non-periodic assumptions.
Figure 3.44(a) shows how the periodicity in the time series improves the definition of the
amplitudes in the spectrum, focusing only in the main frequency of the POD mode. One
can see that the low and high-frequency broadband content of the spectrum is considerably
reduced when periodicity is enforced. Here, the Gaussian filtering is used with Nf = 400
for both periodic and non-periodic cases.

The comparison between the square-box and the Gaussian filtering functions is shown
in Fig. 3.44(b). The oscillations in the frequency content are present for both filter types.
When the non-periodic assumption is considered, as shown in Figs. 3.32 and 3.33, the
oscillations are more prominent for the square-box filtering, especially the dominant tonal
frequency. In these cases, the Gaussian function presents a smoother spectral content.
When the periodic time series is assumed, the cleaning effect in the spectrum is intensified
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Figure 3.43: POD spectrum including the filtering operations assuming periodic and
non-periodic time series. Results are obtained using the Gaussian filtering with window

size Nf = 400.
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Figure 3.44: Spectra of the 1st temporal mode a1 obtained with the k-3D norm. Results
are obtained for non-filtered and filtered correlation matrices with and without the

periodicity time signal consideration for window size Nf = 400.

outside the narrowband of the dominant POD mode frequency.
Figure 3.45 presents the phase diagram for the first POD mode pair obtained by

the k-3D norm using different filter functions. This figure shows that, for the same
window size Nf , the square-box function with periodic assumption converges faster to
the Fourier modes which contain information of a single frequency. For a POD analysis,
it may be desirable that the modes contain more than only one frequency in order to
extract useful turbulence information in the POD eigenfunctions. In Figs. 3.45(b) and (c)
one can observe that, for the Gaussian filter, the periodic assumption presents noticeable
improvements in harmonic correlation compared to the non-periodic implementation. The
first POD mode pair has a clear correlation in the phase diagram. However, it was shown
in Figs. 3.22 and 3.35 that the standard POD and the spectral POD could not provide a
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Figure 3.45: Phase diagram for the first pair of modes (a1 and a2) showing the
improvements in harmonic correlation obtained by the k-3D norm for different filter

functions with Nf = 400.

harmonic correlation for the second and third mode pairs when the kinetic energy norm
was employed. When the correlation matrix is assumed periodic in the spectral POD
method, these mode pairs present an improved correlation as one can notice in Fig. 3.46.
As one can see, these mode pairs oscillate at low frequencies which are not well captured
by the present simulation database, due to computational costs. Even though these larger
scale structures may not be computed entirely, they are still part of the resolved turbulent
flow. The assumption of the periodic time series combined with the spectral filtering in
the POD are able to capture the presence of the high energy POD modes oscillating at
lower frequencies than for the first mode pair. A similar analysis would be difficult to
perform using DFT.
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Figure 3.46: Phase diagrams for different mode pairs obtained by the k-3D norm with
the Gaussian filter, Nf = 400 and periodic time series assumption.

The spectral content of the time mode amplitudes a1, a3 and a5 obtained by the
k-3D norm is shown in Fig. 3.47. These results are obtained using the Gaussian filter
with Nf = 400. When the periodic assumption is applied, the broadband content of the
spectrum at lower and higher frequencies is reduced and the tonal peak is better defined.
The first mode is responsible for capturing the most energetic turbulent structures in
the flow which oscillate at the narrowband frequencies associated to the tonal noise peak
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analyzed in the acoustic radiation, as shown in Fig. 3.6. As observed in the phase diagrams
of Fig. 3.46, the 3rd and 5th modes, a3 and a5, associated to the 2nd and 3rd mode
pairs, respectively, are related to lower frequencies in the spectrum. In these cases, the
periodic assumption is also able to clear the broadband content of the spectra defining
the amplitudes of the low frequency phenomena associated to these modes.
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Figure 3.47: Spectra of POD temporal modes obtained by the k-3D norm and the
Gaussian filtering with window size Nf = 400.

The POD eigenfunctions describe the spatial coherent structures that oscillate at the
respective frequency content of the mode pair. In Fig. 3.48 one can see the spatial
eigenfunctions for POD modes λ1, λ3 and λ5, obtained using the k-3D norm with the
same parameters as in the previous analysis. One can see the periodic structures in
the airfoil wake region for mode λ1. Modes λ3 and λ5 present a distorted pattern
since they are related to larger structures, which oscillate at lower frequencies, not
well-resolved. However, one may notice that these eddies are aligned with the flow
stream on the suction side of the airfoil. Coherent structures perpendicular to the trailing
edge have poor acoustic propagation, so are poorly captured in the acoustic scattering
analysis (Ffowcs-Williams and Hall, 1970). Fig. 3.48(b) shows improvement in spatial
characterization compared to Fig. 3.26(a), which presents the eigenfunction for mode λ3

without spectral filtering. As expected from the phase diagrams, the structures obtained
for mode λ3 have longer wavelengths than those observed in mode λ5.

(a) Eigenfunction for λ1. (b) Eigenfunction for λ3. (c) Eigenfunction for λ5.

Figure 3.48: Isosurfaces of y-component of velocity for POD spatial eigenfunctions
obtained by the k-3D norm. Results are computed using the Gaussian filter with

Nf = 400 and considering periodicity of the correlation matrix.
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When the pressure norm, p-3D, is employed for the reconstruction of the correlation
matrix, one can notice in Fig. 3.49 that the spectra of the temporal modes are modified
compared to those obtained by the k-3D norm. For this case, the first, second and third
mode pairs are related to narrowband information surrounding the tonal noise peak.
Again, the assumption of a periodic time series reduces the broadband noise from the
spectra allowing the identification of a cleaner tonal region. The frequencies of the tonal
regions for the present mode pairs are the same as that analyzed in the airfoil self-noise
generation studied in Wolf et. al (2012). On the other hand, the time mode amplitude
a7, associated to the 4th mode pair, is related to a high frequency narrowband region. In
this case, the effects of periodicity on the construction of the correlation matrix are more
evident. When the time series is assumed non-periodic, the SPOD spectrum associates
the 4th mode pair to information at moderated frequencies, visualized as a narrowband
tone at kc ≈ 25. Considering a periodic time signal makes the SPOD reconstruction shift
the energy of the 4th mode to higher frequencies as observed in Fig. 3.49(d).
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Figure 3.49: Spectra of POD temporal modes obtained by the p-3D norm and the
Gaussian filtering with window size Nf = 400.
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In this way, it is possible to understand that the coherent structures present in the first
3 mode pairs of the SPOD reconstruction are related to the main noise sources at the tonal
peak. The large elongated structures associated to these mode pairs are shown in Fig. 3.50.
As they oscillate at more than one single frequency, the POD eigenfunctions still have some
noise which slightly distorts the structures along the wake and boundary layer regions.
The 4th mode pair is associated to the presence of high frequency oscillations. In Fig.
3.23, the high frequency oscillations were present in the 2nd mode pair, mode amplitudes
a3 and a4, but the harmonic correlation was not clean enough for a visualization of the
coherent structures in the flow data.

(a) Eigenfunction for λ1. (b) Eigenfunction for λ3.

(c) Eigenfunction for λ5. (d) Eigenfunction for λ7.

Figure 3.50: Isosurfaces of y-component of velocity for POD spatial eigenfunctions
obtained by the p-3D norm. Results are computed using the Gaussian filter with

Nf = 400 and considering periodicity of the correlation matrix.

The high frequency oscillations are well-captured by the current high-fidelity
simulation due to the low-dispersion/low-dissipation characteristics of the numerical
methods employed. These methods are adequate for resolving the high-frequency
turbulent structures in the flowfield. In this sense, the small coherent structures
responsible for these high-frequency scales are clearly observed in Fig. 3.50(d).

As an important insight on the turbulence and the coherent structures detected in this
analysis, one can notice that the small coherent structures present in the 4th mode pair
for the p-3D norm dissipate faster than those in the 1st, 2nd and 3rd mode pairs. This is
related to the dissipative characteristics of turbulent flows at small scales. Similar to that,
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the larger coherent structures, which are poorly resolved in the k-3D norm for the 2nd
and 3rd POD mode pairs, propagate for the entire domain after passing through the solid
body. For the POD analysis, even when the large coherent structures are not resolved
entirely, it is possible to understand their behavior. In the present simulation data, more
simulation time could result in a better representation of the spatial eigenfunctions.

In conclusion, the spectral filtering operation may present small differences in the
energy distribution of the POD eigenvalue spectrum. However, the filtering can affect
deeply the information contained by each POD mode. The distribution of energy changes
the information present in the mode pairs providing a better harmonic correlation in
the phase diagrams and, therefore, showing an improved correlation to physical coherent
structures of the flowfield.

3.7 Fourier-POD Coupling for Homogeneous
Directions

As stated by Lumley (1970), in homogeneous directions, POD modes are Fourier
modes. This leads to a simplification in the POD analysis since Fourier decomposition can
be applied along the homogeneous directions and the general POD reconstruction is only
applied to the other directions. In the present flow configuration, due to the application
of periodic boundary conditions and the 2D geometry, the flow is homogeneous along the
spanwise direction. In this way, POD is applied to the flow quantities q(x, t) in the form
of the Eq. 3.2. This technique fully decouples the quantities in the spanwise direction so
POD can be computed for each Fourier mode (z) separately. Thus, the present Section will
discuss the features of such implementation and analyze the results from this methodology.
Since the Discrete Fourier Transform, DFT, will be used for decoupling the homogeneous
direction, the present method will be a combination of Fourier decomposition and POD,
namely, Fourier-POD analysis.

A Fast Fourier Transform (FFT) algorithm is used to decompose the homogeneous
direction due to its simplicity and computational speed. Nevertheless, different
decomposition techniques could be applied, such as dynamic mode decomposition (DMD)
for spatial instability analysis, or wavelet decomposition. For the sake of clarity, spanwise
Fourier modes are named z with superscript corresponding to the specific Fourier mode,
starting from mode 0, which provides the mean value. POD modes λ can also use
superscript to identify the correct Fourier mode and subscript referred to the singular
value, when applied.

In the present LES data, the flow is resolved using a staggered grid and the body-fitted
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O-grid has twice the number of nodes than the background grid. In order to allow the
Fourier decomposition of the flowfield in the spanwise direction, a 2nd-order interpolation
is performed on the background grid along the spanwise direction to refine the mesh
and build data with the same number of grid points all over the computational domain.
Therefore, a Fourier decomposition via FFT is performed in the computational domain
for all nodes along the spanwise direction. This procedure is performed after computing
the mean flow and extracting the fluctuating quantities.

The current procedure yields similar results for the Fourier mode z0 compared to the
spanwise mean 2D procedure described in Section 3.4. However, the Fourier-POD here
described consists in decomposing the Fourier modes in the spanwise direction only after
the fluctuating quantities are computed. Even so, some analysis of Section 3.4 can be
applied to what is analyzed in the present section, especially regarding to mode coupling
and spectral content of the Fourier modes. The analysis of Section 3.4 can be considered
as a Fourier-POD analysis using only the Fourier mode z0, i.e., the constant mode.

As the spanwise direction is fully decoupled, the Fourier-POD is performed for each
individual Fourier mode. Figure 3.51 shows the POD eigenvalue spectra for the k-3D and
p-3D norms. The singular values are normalized by the sum of values in the constant mode
z0. That is because the singular values are higher when the content of the correlation
matrix presents higher values. The normalization shows how the energy of the fluctuations
is more intense for the 1st Fourier mode z0 mode and decays along the spectra. For Fourier
modes of larger wavenumbers than the mode z4, the fluctuations are so small that the
POD spectrum is not even considered in the analysis for the POD norms analyzed here.
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Figure 3.51: POD spectrum of first 4 Fourier modes in the spanwise direction (z)
normalized by the sum of singular values from the constant Fourier mode (z0) for

different norms.

In Fig. 3.51, one can see that the singular values in the λ0
3, λ0

4 and λ0
5 POD modes are

decoupled for the p-3D norm in z0. On the other hand, the first 3 POD mode pairs seem to
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be clearly coupled for the k-3D norm. The behavior of the coupled and decoupled modes
has been analyzed in the previous sections, so the corresponding harmonic correlations
will not be presented here. Instead, the spectral content of the modes will be analyzed.

As a Fourier decomposition is performed, the eigenvectors, mode amplitudes and
spatial eigenfunctions are now complex values. Figure 3.52 shows how the real and
imaginary parts of the complex numbers which represent the time mode amplitudes
are related. It shows that they have a phase relation and the spectral content of these
quantities is approximately the same. This is not applied to the Fourier mode z0, as
its imaginary part is zero. Consequently, for easiness in the following analysis, only
the spectral content of the real parts of the eigenvectors and mode amplitudes will
be analyzed. To visualize the spatial eigenfunctions, an inverse Fourier transform is
performed computing only the respective Fourier mode desired. From now on, the analysis
will focus in each Fourier mode separately.
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Figure 3.52: Analysis of 1st POD modes.

As shown in the previous sections, kinetic energy and pressure norms yield different
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decompositions of the POD modes. For example, the pressure norm captures high
frequencies after the tonal noise and the kinetic energy norm tends to reconstruct low
frequency information in the turbulent field. As the computational domain is not large
enough for the propagation of low frequency waves and, as the pressure fluctuations decay
faster after passing trough the trailing edge, the high frequency information is better
captured by the pressure norm. On the other hand, the turbulent structures propagate
over the domain until the buffer zone is reached which grants the kinetic energy norm with
low frequency information that is not captured by the pressure. So, after reconstructing
the main energetic content in the first POD modes at the narrowband near kc ≈ 9, each
norm decomposes the turbulent information according to its own solution, low-frequency
content in the kinetic energy norm and high-frequency content in the pressure norm.
Therefore, both norms will continue to be used in the current analysis to allow a better
understanding of the dynamics of the coherent structures in the flowfield data.

Figure 3.53 shows the spectral content of the time mode amplitudes a1, a3 and a5 for
each of the Fourier modes z0, z1 and z2 using the k-3D norm. As shown in Fig. 3.14, the
coherent structures present in the most energy containing mode pairs for the spanwise
mean mode are related to the same spectral content. In Fig. 3.53(a) it is clear that these
coherent structures oscillate at frequencies close to the tonal noise peak. Even so, these
POD modes are still influenced by a large set of other frequencies. Figures 3.53(b) and
(c) show the presence of low frequency coherent structures in the flowfield which were
previously observed. One may notice that these low frequency coherent structures are
not related to the spanwise correlated structures responsible for the tonal noise show in
Fig. 3.6 and analyzed by Wolf et. al (2012).
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Figure 3.53: Spectral content of the real part of the POD temporal modes a1, a3 and a5
obtained by the k-3D norm for different Fourier modes.

In Fig. 3.54, the dynamic behavior of the coherent structures can be analyzed through
an analysis of the spatial eigenfunctions for Fourier mode z0. The 1st POD mode
λ0

1 eigenfunction presents a large wavepacket developed on the turbulent flow over the
suction side and that grows after passing by the trailing edge. POD eigenfunctions
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from the modes λ0
3 and λ0

5 show how some instabilities are present over the suction side.
This figure indicates how the Fourier mode z0 contains the information related to the
turbulence generated in the boundary layer and that propagates as 2D coherent structures
downstream the solid body. Near the trailing edge, large 2D coherent structures oscillate
and, as the POD mode λ0

5 shows, the coherent structures are combined to form larger
wavepackets downstream the trailing edge.

(a) Eigenfunction for λ0
1. (b) Eigenfunction for λ0

3. (c) Eigenfunction for λ0
5.

Figure 3.54: Spatial eigenfunctions for spanwise Fourier mode z0 obtained by the k-3D
norm.

A visual inspection of the Fourier mode z1 shows that it contains information related to
turbulence with wavenumber one along the spanwise direction. The present high-fidelity
flow data was generated to accurately compute the small turbulent structures along the
airfoil span. In this sense, the spanwise direction has 5 times the size of the displacement
thickness in the trailing edge region, which would be sufficient to reduce the correlation of
the small scale turbulent structures which compose the noise sources for an aeroacoustic
prediction. However, the development of larger scale coherent structures would require
a wider span in order to be fully resolved in the numerical simulation. As shown in
Fig. 3.53(b), the spectral content of the POD modes in z1 is related to low frequency
oscillations which may not be fully captured in the large eddy simulation. As the first
POD mode pair is decoupled for the current Fourier mode, the analysis of the spatial
eigenfunctions is not easy, as shown in Fig. 3.55.

(a) Eigenfunction for λ1
1. (b) Eigenfunction for λ1

3. (c) Eigenfunction for λ1
5.

Figure 3.55: Spatial eigenfunctions for spanwise Fourier mode z1 obtained by the k-3D
norm.

Taking a closer look over the structures formed over the suction side in Fig. 3.56,
one can notice the presence of large coherent structures aligned with the airfoil chord
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and that oscillate in the spanwise direction. As the low frequency information is poorly
captured in the numerical data with limited time signal, the large structures present are
not clearly captured as well. Also, the limited span size affects the capturing of these
structures via Fourier-POD analysis. That is because for the larger wavelengths in the
spanwise direction, mode z1 may not be enough to capture the dynamics of these coherent
structures.

(a) Eigenfunction for λ1
3. (b) Eigenfunction for λ1

5.

Figure 3.56: Detail view of spatial eigenfunctions for spanwise Fourier mode z1 obtained
by the k-3D norm.

The analysis of the Fourier mode z1 leads to doubts over the span size required to
capture large turbulent structures in homogeneous directions. An analysis of the POD
modes for z2 can be observed in Fig. 3.57 where one may notice the presence of large
eddies aligned with the flow, in the same way presented in z1. Now, the spanwise length
is not the problem as the wavelength solved comprises half the span. These coherent
structures oscillate at low frequencies as shown in Fig. 3.53(c) and they have similar
dynamics compared to that observed in Fig. 3.55. From these figures, it is possible to
determine that the poorly captured coherent structures in the POD modes for z1 are
related to the limited time signal of the numerical data.

As the computational time is limited by simulation costs and data storage, low
frequency structures are seldom captured on a Fourier-POD analysis. Despite this
observation, it is indeed a great capability of the current analysis to show that running
the simulation for a longer time would result in the capturing of further energy containing
turbulence information. Also, the Fourier-POD analysis proves that these large coherent
structures are related to spanwise Fourier mode z1, and that they oscillate in the
homogeneous direction, forming large rolls over the suction side of the airfoil that will
further interlace in the vortex wake.

These large structures are not present in the acoustic scattering analysis, because the
eddies are perpendicular to the trailing edge and do not propagate sound efficiently to the
farfield. These coherent structures can only be analyzed via global modes of the nonlinear
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(a) Eigenfunction for λ2
1. (b) Eigenfunction for λ2

3.

Figure 3.57: Detail view of spatial eigenfunctions for spanwise Fourier mode z2 obtained
by the k-3D norm.

flow. They have similar spatial behavior as the POD modes λ3 and λ5 in POD and SPOD
analysis in Sections 3.5.2 and 3.6.2.
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(c) Fourier mode z2.

Figure 3.58: Spectral content of the real part of the POD temporal modes a1, a3 and a5
obtained by the p-3D norm for different Fourier modes.

As previously mentioned, the p-3D norm will tend to reconstruct POD modes at
high-frequencies, differently from the k-3D norm. Figure 3.58 shows the spectral content
of the temporal mode amplitudes for spanwise Fourier modes z0, z1 and z2. The constant
mode does not contain only information for the tonal band as shown for the k-3D norm
in Fig. 3.53(a). This can be observed in the spectral content of the 3rd POD mode λ0

3

which is not coupled and contains information for a broad range of frequencies, especially
at high frequencies. The following paired mode contains the POD modes λ0

6 and λ0
7. The

spanwise Fourier mode z1 also presents POD modes with information spanning multiple
frequencies and, for this case, the temporal modes a1

3 and a1
5 contain information at the

tonal noise frequency. However, the 1st mode amplitude a1
1 is composed by information at

high frequencies, similar to that of the time mode amplitude a0
3 for z0. The POD modes

for spanwise mode z2 contain too much noise in their spectral content but oscillate mainly
in the high-frequency range.

As mentioned, the POD modes λ0
1 and λ0

2, also the λ0
6 and λ0

7 are coupled for the
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spanwise mode z0. Therefore, they present a clear turbulent information in their spectral
content and spatial eigenfunctions. The 3rd POD mode λ0

3 is noisy and presents spectral
content at a broad range of frequencies. As a result, in Fig. 3.59(b), 2D correlated
structures at multiple length scales are presented. The 1st POD mode λ0

1 eigenfucntion
shows a clear wavepacket downstream the trailing edge, but the 6th POD eigenfunction
λ0

6 is already disturbed in the vortex wake. It is important to notice the presence of
large coherent structures detaching from the airfoil surface in the 6th POD mode λ0

6

eigenfunction after the turbulent transition. Instabilities in the vortex wake are also
present.

(a) Eigenfunction for λ0
1. (b) Eigenfunction for λ0

3. (c) Eigenfunction for λ0
6.

Figure 3.59: Spatial eigenfunctions for spanwise Fourier mode z0 obtained by the p-3D
norm.

For the spanwise Fourier mode z1, the 1st POD mode λ1
1 eigenfunction oscillates at

higher frequencies as shown in its spectral content. However, the 3rd and 5th POD modes,
λ1

3 and λ1
5, present a spectral content that is dominant at the tonal peak frequency. The

tonal noise is said to be related to the presence of coherent structures aligned in the span
direction and that generate noise more efficiently. Figure 3.60 shows coherent structures
which are not perfectly aligned in the spanwise direction. They propagate as sound with
low efficiency, but also oscillate at the narrowband frequencies around the tonal peak.
Therefore, they also contribute to the noise generation at this frequency range. Also, it is
possible to see that the vortex wake contains instabilities that cause a merging of coherent
structures.

The spanwise Fourier mode z2 is formed mainly from high frequency oscillations as
observed in the spectra plots of the POD temporal modes. Therefore, the POD modes
contain noise from a broad range of frequencies as shown in Fig. 3.58 and it is difficult to
analyze the spatial eigenfunctions. The oscillations at these frequencies also contain the
presence of diagonally aligned structures, but oscillating at higher frequencies than those
observed for z1.

A quick comparison among the results obtained for the spectral content of the mode
amplitudes using the Fourier-POD implementation and the full 3D POD implementation,
both considering the p-3D norm, shows that the Fourier-POD analysis does not lose any
turbulence information with respect to the full 3D POD technique. The spectral content
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(a) Eigenfunction for λ1
3. (b) Eigenfunction for λ1

5.

Figure 3.60: Detail view of spatial eigenfunctions for spanwise Fourier mode z1 obtained
by the p-3D norm highlighting coherent structures diagonally aligned with the airfoil

span.

(a) Eigenfunction for λ2
1. (b) Eigenfunction for λ2

3. (c) Eigenfunction for λ2
5.

Figure 3.61: Spatial eigenfunctions for spanwise Fourier mode z2 obtained by the p-3D
norm.

of the coupled modes presented in Fig. 3.23(d) are also shown in Figs. 3.58(a) and (b). The
high frequency oscillations present in Fig. 3.23(e) are now appearing mainly in Fig. 3.58(c)
but are also a part of the spectral content of the 1st POD mode for z1. Fourier-POD
improves the identification of coherent structures related to each Fourier mode in the
homogeneous direction. In this way, it cleans the turbulence information and is useful in
the analysis of separate components of the flowfield that appear clustered in the results
of the general 3D implementation proposed in Section 3.5.

3.8 Combined Fourier-Spectral POD

For those cases where a homogeneous direction in the flowfield is not available, for
example, a fully 3D geometry such as a landing gear, the general 3D implementation of
POD may be the only procedure available for the analysis of the most energetic coherent
structures in the flow. However, as already shown in previous sections, the POD modes
may contain excessive noise from multiple frequencies making the analysis of coherent
structures difficult. Moreover, a broad spectral content may is also not adequate for



91

the understanding of the coherent structures. For these cases, an implementation of the
spectral POD method was shown in Sec. 3.6 to produce improved mode decompositions at
specific frequencies and, hence, improving the analysis of turbulent structures composing
the flowfield.

When a homogeneous direction is available in the flowfield, a Fourier decomposition
can be employed reducing the cost of the POD reconstruction and allowing a clearer
identification of coherent structures along the span. However, even with the Fourier
decomposition, the reconstruction of turbulent structures may contain broadband spectral
content which may difficult the analysis of the spatial eigenfunctions and temporal mode.
In this sense, the spectral POD technique which already showed good results for the
general 3D implementation of POD will be combined with the Fourier-POD method in
order to assess the benefits of the combination of both techniques.
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Figure 3.62: POD spectrum of first 4 Fourier modes in the spanwise direction (z)
normalized by the sum of singular values from the constant Fourier mode (z0) for

different norms.
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(c) Fourier mode z2.

Figure 3.63: Spectral content of temporal POD modes a1, a3 and a5 obtained by the
k-3D norm using a periodic time series and Gaussian filter with window size Nf = 400

for different Fourier modes (z).
In the present section, a spectral filtering of the correlation matrix is applied using
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the Gaussian window and the periodic time series assumption. These methods are chosen
since they presented superior results for all cases analyzed. The window size is set as
Nf = 400 for all spanwise modes. Clearly, a different window size could be applied for each
Fourier mode optimizing the analysis according to the need of each correlation matrix.
However, in the present work, only constant window sizes will be applied. Figure 3.62
shows the POD spectrum normalized by the sum of singular values for the mean Fourier
mode z0 for norms p-3D e k-3D. As expected, the combined Fourier-SPOD flatters the
POD spectrum increasing the mode coupling and, therefore, improving the identification
of coherent structures.

The spectral content of the mode amplitudes for z0, z1 and z2, obtained using the
Gaussian periodic spectral filtering and the k-3D norm is shown in Fig. 3.63. One
may notice that the spectral content is more well defined and the frequencies which are
away from the main narrowband associated with the specific POD mode have reduced
amplitudes. In the same way as for the 3D POD implementation, the spectral filtering
cleans the spectral content of POD modes. For the k-3D norm, the range of frequencies
of the POD modes is slightly altered from the Fourier-POD results.

(a) Eigenfunction for λ2
1. (b) Eigenfunction for λ2

3.

Figure 3.64: Spatial eigenfunctions for Fourier mode z2 and k-3D norm highlighting
suction side coherent structures aligned with the airfoil chord and oscillating in the
vortex wake. Results are obtained by a Gaussian filtering using a periodic time series

and window size Nf = 400.

As the spectral filtering reduces the noise in the spectral content, only small differences
are perceived in the analyses of the spatial eigenfunctions produced with and without the
spectral POD. Nevertheless, it is possible to see in Fig. 3.64 that the coherent structures
formed over the airfoil for span mode z2 are cleaner. The presence of large rolls over
the suction side along the spanwise direction is more visible for the spectral POD. Also,
low frequency oscillations highlighted in Fig. 3.64(a) were not clearly identified in Fig.
3.57(a). These structures are formed in the vortex wake and are clearly visible only in
the 1st POD mode λ2

1 eigenfunction for z2. They are components of the low frequency
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content present in the spectral analysis shown in Fig. 3.65(c). Figure 3.64(b) presents
streamwise coherent structures formed along the vortex wake and which were not clearly
identified in Fig. 3.57(b).
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Figure 3.65: Spectral content of POD temporal modes a1, a3 and a5 obtained by the
p-3D norm using a periodic time series and Gaussian filter with window size Nf = 400

for different Fourier modes (z).

For the p-3D norm, using the same spectral POD parameters, the flow is mainly
decomposed into tonal narrowband spectral content for Fourier modes z0 and z1, and
high frequency oscillations for z2, as shown in Fig. 3.65. The 3rd POD mode λ1

3 obtained
for z1 presents oscillations at higher frequencies and its spectral content is similar to
those obtained for z2. The spectral POD has the clear characteristic of organizing the
distributed energy over the spanwise Fourier modes.

(a) Eigenfunction for λ0
1. (b) Eigenfunction for λ0

3. (c) Eigenfunction for λ0
5.

Figure 3.66: Spatial eigenfunctions for spanwise Fourier mode z0 obtained by the p-3D
norm.

The Fourier mode z0 computed for the p-3D norm presents spectral content at the
same narrowband obtained by the k-3D norm. This is expected since this band is related
to the most energy containing portion of the turbulent spectra and as it is associated to
the presence of correlated 2D coherent structures on the flowfield, as shown in Fig. 3.66.
This figure presents the eigenfunctions for different POD modes and z0. As the p-3D
norm was not able to capture these coherent structures initially, the implementation of
Fourier-SPOD combination increased the mode coupling improving the identification of
the large coherent structures related to the z0 mode.
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(a) Eigenfunction for λ1
1. (b) Eigenfunction for λ1

5.

Figure 3.67: Spatial eigenfunctions for Fourier mode z1 obtained by the p-3D norm,
highlighting suction side coherent structures diagonally aligned with the airfoil span.
Results are obtained using a periodic time series and Gaussian filter with window size

Nf = 400.

For the Fourier mode z1, the 3rd POD mode λ1
3 contains spectral information of higher

frequencies than for the 1st and the 5th POD modes, λ1
3 and λ1

5. Its information is closely
related to what is obtained in Fig. 3.68 for Fourier mode z2. In Fig. 3.67 one can notice
that the diagonal coherent structures formed over the suction side are clearly identified. It
is possible to see how their dynamics is affected after passing the boundary layer tripping
and how small coherent structures are detached from the boundary layer forming smaller
structures over the airfoil. Also, as highlighted in red in Fig. 3.67, after passing the
trailing edge, these structures collapse together to form larger 2D coherent structures in
the vortex wake and that are not aligned with the spanwise direction but are diagonal to
it. These coherent structures form a wake instability that breaks the eddies into small
parts, before dissipating.

(a) Eigenfunction for λ2
1. (b) Eigenfunction for λ2

3.

Figure 3.68: Spatial eigenfunctions for Fourier mode z2 obtained by the p-3D norm,
highlighting suction side coherent structures diagonally aligned with the airfoil span.
Results are obtained using a periodic time series and Gaussian filter with window size

Nf = 400.
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The Fourier mode z2 has a spectral content containing mainly higher frequencies.
This results in small coherent structures that are diagonal to the spanwise direction.
Figure 3.68 shows how they change in direction quickly and dissipate fast downstream
the trailing edge. Such issue is related to the grid stretching which dissipates smaller
structures quicker. Also, it is important to notice how these small structures are close
to the boundary layer, never detaching from the solid body. The presence of these high
frequency oscillations shows how the spectral content of the turbulent boundary layer is
formed from a broad range of frequencies.

One can notice how the spatial eigenfunctions are better defined when the spectral
filtering is employed together with the POD reconstruction. A quick comparison between
the results obtained in Figs. 3.61 and 3.68 shows how the content of the eigenfunctions
can now be clearly analyzed, even when they contain lower energy at the Fourier modes.
Even for z1, a comparison of results obtained in Figs. 3.60 and 3.67 shows that the
Fourier-SPOD eigenfunctions are better defined than those from the Fourier-POD. The
spectral filtering combined with the Fourier-POD analysis presents cleaner results which
improves the visualization of coherent structures present in the turbulent flows.
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4 Coherent Structures in Wall-Bounded Turbulence

The present section will show results for Proper Orthogonal Decomposition (POD)
applying the techniques discussed previously in different flow configurations. All numerical
data analyzed in this section are computed using the numerical methodology presented
in Section 2.2.

In Section 3, the mathematical basis of POD as well as the application to fully
turbulent numerical data showed the benefits of applying the gaussian window filtering in
the correlation matrix for coherent structures analysis, resulting in Spectral POD (SPOD)
modes. The periodic time series assumption also enhanced the quality of the spatial
characterization. Considering the spanwise direction as homogeneous, the flow can be
decomposed in spatial Fourier modes, which makes the problem less for computationally
expensive.

The POD norms resulted in different spatial and temporal characterization of inner
structures of the turbulent flow. The turbulent kinetic energy norm (k-3D) captured
the tonal noise in the first mode pair, then presented characteristics of hidden eddies at
low frequencies. The pressure fluctuations norm (p-3D) characterized the high-frequency
oscillations mainly after capturing the tonal noise in the first mode pair. The discrepancy
between the POD norms is related to the characteristics of the oscillations of variables
used for computing each norm.

When the homogeneous spanwise direction is considered, the Fourier decomposition
gathered POD and SPOD modes with correlated spectral content at approximately the
same range of frequencies. This feature was enhanced using the k-3D norm. Using the
p-3D norm, for the same spanwise Fourier mode, the most energy containing POD mode
pairs could present spectral content at different frequency ranges.

(a) M∞ = 0.4. (b) AoA = 0 degs.

Figure 4.1: Sound pressure level (SPL) for analyzed flow configurations in Section 4 at
an observer location x = c, y = 7.9c and mid-span originally presented by Wolf et. al

(2012).
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The cases studied in the present section were previously analyzed by Wolf et. al (2012)
and the sound spectra related to them is shown in Fig. 4.1. The general implementation
of POD not considering the spanwise homogeneous direction will be used for the moderate
Mach number configuration as an example due to its relation with the case studied in
Sections 3.5 and 3.6. For both flow configurations, the combined Fourier-SPOD will be
applied to analyze the spatial and temporal content of the coherent structures.

4.1 Moderate Mach Number Flow Configuration

The moderate Mach number flow configuration refers to the simulation database at
M∞ = 0.4 whereby the acoustic scattering analysis presented in Fig. 4.1(a) is computed. It
is related to a similar case described in Section 3.3. The grid configuration is not changed,
the setup is changed in the Mach number applied, from M∞ = 0.115 to M∞ = 0.4. The
time discretization is altered to non-dimensional time step ∆t = 0.005 in order to correctly
capture the aeroacoustic sources in the turbulent field. The number of frames is greater
than the low-Mach number configuration, however, due to the refined time step, the
dimensionless total simulation time is 5.125.

Running a POD analysis, at first not considering the homogeneous spanwise direction,
the computed singular values (λ) resulted in the POD spectrum presented in Fig. 4.2. One
may notice that the p-3D norm gathers almost all the information in the first POD mode.
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Figure 4.2: Singular values for k-3D and p-3D norms normalized by the sum of singular
values presented in (a) single and (b) accumulative representation. (c) presents a close

view of k-3D norm.

As shown in Fig. 4.1(a), the present flow configuration has a tonal peak noise at
kc = 27. The influence of other frequency ranges in the acoustic scattering is smaller.
This may be related to the fact that the p-3D norm did not spread the energy along
the POD spectrum. In Fig. 4.2 it is possible to see the differences in the correlation
matrix when the k-3D norm is applied. The pressure based norm correlation matrix does
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not decay completely to zero. Which means that the time frames are not completely
uncorrelated. Turbulent flows always present coherent structures, however the temporal
and spatial correlation in turbulence decays to zero, due to the dissipation present in real
flows.

(a) k-3D norm. (b) p-3D norm.

Figure 4.3: Covariance matrix computed for present flow configuration using k-3D and
p-3D POD norms without spectral filtering.

Well-correlated information is associated to acoustic propagation in the computational
domain. Figure 3.20(c) shows the presence of correlated information in the matrix when
the p-acoustic norm is used. The presence of correlated information along the correlation
matrix in p-3D norm shows the importance of the acoustic propagation in the domain
compared to the pressure fluctuations near the solid body computed in the turbulent flow.

As a result, the p-3D norm does not present a coupled 1st pair of POD modes formed
by the POD modes λ1 and λ2, but formed by the λ2 and λ3. Figure 4.4 shows the spectral
content of the POD modes computed in k-3D and p-3D POD norms. Now, the SPOD is
applied to perform a enhanced analysis of the POD modes, using a similar window size
Nf = 400 applied in previous analysis as it shows good results in Section 3.6.2 using a
periodic time series assumption and a gaussian window type for the flow configuration
presented in Section 3.3. The spectral content of the 1st POD mode λ1 using the p-3D
norm is presented, which differs from the tonal noise range, but contains information
related to low-frequency range.

As shown in Fig. 4.4(b), only the 2nd mode pair, represented by λ5 captures the tonal
noise shown in Fig. 4.1(a). The k-3D norm is closely related to the results obtained in
Section 3.6.2. The k-3D norm captures the tonal noise at kc = 27 in the 1st mode pair and
low-frequency information at the subsequent POD mode pairs, as shown in Fig. 4.4(a).

It is important to notice in the 1st POD mode pair the spectral content captures the
tonal noise information and contains a small peak at high frequency kc ≈ 70. This shows
that the most energy containing POD modes gathers the information of high frequencies
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Figure 4.4: Spectral content for the 3 most energy containing POD mode pairs using
periodic time series assumption and spectral POD with gaussian window filtering

Nf = 400.

as well in a frequency range that is not even present in the acoustic analysis shown in Fig.
4.1(a).

As the flow presents an translational symmetry in spanwise direction, the flow can be
decomposed in Fourier modes. The singular values for each POD norm is presented in
Fig. 4.5, normalized by the sum of singular values for the mean Fourier mode z0.

The POD spectrum is well distributed for the k-3D norm, however, the p-3D norm is
poorly represented, in the same way as occurs for the general implementation presented in
Fig. 4.2(b) when the homogeneous direction is not considered for POD analysis. Again, as
presented in Section 3.8, the coupling between Fourier modes in spanwise direction and
spectral filtering in the correlation matrix using Fourier-SPOD enhances the coupling
between POD modes and the identification of temporal and spatial information related
to coherent structures.

As show in Fig. 4.6(a), the spectral content for Fourier mode z0 captures the
tonal noise information, but the most energy containing POD mode, λ0

1 is related to
low-frequency information, as well as the most energy containing POD mode in the general
implementation, computed without considering the translational symmetry in spanwise
direction.

Figure 4.6(b) and (c) presents spectral content for Fourier modes z1 and z2,
respectively. Fourier mode z1 presents information at high-frequency range for the most
energy containing mode pair, while the 2nd and 3rd POD mode pairs represented by λ1

3

and λ1
5 are related to the tonal noise. The spectrum is different for Fourier mode z2, when

tonal noise range is captured mainly by the 3rd mode pair, λ2
5 and λ2

6. This shows how
the spectral content is not clearly defined for p-3D norm. For this reason, k-3D norm
will be used for analysis of the present flow configuration, due to better results in POD
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(b) k-3D norm; filtered.
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(c) p-3D norm; non-filtered.
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(d) p-3D norm; filtered.

Figure 4.5: Singular values normalized by the sum of singular values for z0 with and
without periodic time series assumption applied to spectral POD filtering with gaussian

window with Nf = 400.
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(a) Fourier mode z0.
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(b) Fourier mode z1.
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(c) Fourier mode z2.

Figure 4.6: Spectral content POD modes a1, a3 and a5 for the first 3 spanwise Fourier
modes z0, z1 and z2 using p-3D POD norm and periodic time series assumption and

spectral POD with gaussian window filtering Nf = 400.

spectrum and spectral content, as shown in Fig. 4.7.
Figure 4.7 shows how the spectral content for the z0, z1 and z2 in the 3 most energy
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(a) Fourier mode z0.
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(b) Fourier mode z1.
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(c) Fourier mode z2.

Figure 4.7: Spectral content POD modes a1, a3 and a5 for the first 3 spanwise Fourier
modes z0, z1 and z2 using k-3D POD norm and periodic time series assumption and

spectral POD with gaussian window filtering Nf = 400.

containing POD mode pairs. Similar to the results obtained in Section 3.8, as shown
in Fig. 4.7(a), the first Fourier mode z0 contains mainly the spectral content related to
the tonal noise of the flow configuration presented in Fig. 4.1(a). The Fourier mode z1

contains information related to oscillations in coherent structures at low-frequency range.
Similar behavior is observed in Fig. 3.63, which shows the spectral content for the low
Mach number flow configuration presented in Section 3.3.

Nevertheless, for the present flow configuration, as shown in Fig. 4.7(c), the most
energy containing mode, λ2

1 in Fourier mode z2. The frequency is associated to the
wavenumber kc ≈ 70 which is captured in the POD analysis presented in fig. 4.4(a) for
the POD mode pair represented by λ1. This shows that coherent structures containing a
considerable part of the turbulence energy also oscillate in spanwise direction, not being
consisted only of structures from Fourier mode z0.

Figure 4.8 shows that spatial wavenumbers z4, z5 and z6 also have similar behavior
presented in Fig. 4.7(c). The spectral content related to the most energy containing
mode pairs, λn1 and λn2 , for these Fourier modes is related to the small peak at kc ≈ 70
presented in the spectral content for the most energy containing mode pair in Fig. 4.4(a),
when homogeneous flow direction is not considered. Despite of the modes λn1 being the
ones with more energy for these Fourier modes, the energy of the flow they contain is
already small. Because they contain little portion of the total turbulence energy of the
flow, they appear as a small peak in Fig. 4.4(a) for λ1 for a full 3D POD.

The spatial characterization of the coherent structures, analyzing the structures
formed in spatial eigenfunctions for each POD mode, shows similar results to the ones
obtained in Section 3.8 for the k-3D POD norm, as shown in Figs. 4.9, 4.10 and 4.11.

The structures for Fourier mode z0 shows large coherent structures formed after the
forced turbulent transition in the suction side. The elongated structures for POD modes
λ1, λ3 and λ5 have approximately the same size, which relates to the spectral content of
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(c) z6.

Figure 4.8: Spectral content POD modes a1, a3 and a5 for the spanwise Fourier modes
z4, z5 and z6 using k-3D POD norm and periodic time series assumption and spectral

POD with gaussian window filtering Nf = 400.

(a) Eigenfunction for λ0
1. (b) Eigenfunction for λ0

3. (c) Eigenfunction for λ0
5.

Figure 4.9: Spatial Eigenfunction for 3 most energy containing POD mode pairs and
spanwise Fourier mode z0 using k-3D POD norm and periodic time series assumption

and spectral POD with gaussian window filtering Nf = 400.

(a) Eigenfunction for λ1
1. (b) Eigenfunction for λ2

1. (c) Eigenfunction for λ2
3.

Figure 4.10: Spatial Eigenfunction for z1 and z2 using k-3D POD norm and periodic
time series assumption and spectral POD with gaussian window filtering Nf = 400.

these structures, shown in Fig. 4.7(a). These coherent structures are the main portion of
the tonal noise peak analyzed in acoustic scattering in Fig. 4.1(a).

Figure 4.10 plots the difference between the spatial eigenfunctions that capture low
and high frequency information in the k-3D POD norm. POD modes that capture
low frequency coherent structures are present in Fig. 4.10(a) and (c). These coherent
structures are associated to a frequency band that is not well captured in the acoustic
analysis, but the turbulent structures are resolved in the flow and are captured in the POD
analysis. The high frequency coherent structures, associated to oscillations at kc ≈ 70
are associated to the spatial coherent structures shown in Fig. 4.10(b).

Figure 4.11 shows the development of the coherent structures captured in Fourier
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(a) Eigenfunction for λ2
1. (b) Eigenfunction for λ2

3.

Figure 4.11: Closer view on the suction side for spatial eigenfunctions for z2 using k-3D
POD norm and periodic time series assumption and spectral POD with gaussian

window filtering Nf = 400.

mode z2 for POD modes λ2
1 and λ2

3. The high frequency coherent structures are diagonally
aligned and the low-frequency coherent structures are aligned with the airfoil chord in the
suction side.

One may notice that the coherent structures are not very different from the ones
studied at low Mach number flow configuration. The physics of the coherent structures
is not very different in spatial characterization, however, they do behave differently in
temporal modes. The increase in the number of frames did not enhanced the analysis
in low-frequency eddies, maybe a wider window for temporal simulation data would be
necessary to generate better defined global modes in low frequency range.

The major difference to be pointed is the maintained correlation of the matrix for
p-3D norm, closely related to p-acoustic norm used for low Mach number analysis. As
the numerical data has a tonal peak at kc = 27, the acoustic propagation is said to
play an important role in the correlation matrix computation. In this way, the pressure
oscillations are not uncorrelated in the acoustic field and influence negatively the p-3D
norm for POD analysis.

4.2 Zero AoA Flow Configuration

The present flow configuration is analyzed in acoustic scattering in Fig. 4.1(b). The
case is set atM∞ = 0.115, at 0 degs. angle of attack (AoA). The suction-blowing technique
is used to force transition to turbulence in suction and pressure sides. As a result, the
interaction between laminar and turbulent boundary layers presented in the previous
cases does not occur in the present one. Near the trailing edge, an interaction between
suction side and pressure side turbulent boundary layers is formed. Thus, the elongated
turbulent structures formed in the previous cases, responsible for the tonal noise captured
in the acoustic scattering, are broken and dissipated near the trailing edge. This results
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in a broadband noise scattered along the sound spectra, as analyzed in the experiments
performed by Brooks et. al (1989). Time discretization is maintained as dimensionless
∆t = 0.02 along a total simulation time equal to 15.98.
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(a) k-3D norm; non-filtered.
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(b) k-3D norm; filtered.
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(c) p-3D norm; non-filtered.
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(d) p-3D norm; filtered.

Figure 4.12: Singular values normalized by the sum of singular values for z0 with and
without periodic time series assumption applied to spectral POD filtering with gaussian

window with Nf = 400.

In order to correctly compute and capture the aeroacoustic sources for this case,
the grid is refined near the airfoil in both suction and pressure sides. The structured
body-fitted O-grid contains 1536×125×128 grid points and the background grid contains
896× 511× 64 grid points.

It is a low Mach number configuration at 0 degs. AoA. The flow has translational
symmetry along the spanwise direction. Only the Fourier-POD will be used in this
analysis. A combined Fourier-SPOD with gaussian type filtering using window size
Nf = 400, which, in this case, corresponds to half the number of snapshots is used
for temporal and spatial characterization of the turbulent flow.
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Figure 4.12 shows the POD spectrum for the present numerical data normalized by
the sum of singular values in the POD spectrum fo Fourier mode z0. Once again, the
spectral filtering enhances the mode coupling flattering the POD spectrum. For the k-3D
POD norm the results are good without spectral filtering, even so an improvement can
be perceived using spectral filtering as shown in Fig. 4.12(b). The p-3D POD norm once
again does not present good results, specially for the Fourier mode z0 that gathers the
largest part of the energy. Without the spectral filtering, the first POD singular value for
z0 is decoupled and gathers a large amount of the turbulent energy of the flow. Using the
spectral filtering, the results are improved, however, the first pair is not well coupled and
the first pair is represented by λ0

4 and λ0
5, as shown in Fig. 4.12(d). For the subsequent

Fourier modes, the coupling is achieved using the spectral filtering with Nf = 400. Due to
the improvements obtained, the spectral filtering with gaussian type filtering and window
size of Nf = 400 will be used in the following analysis.
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Figure 4.13: Spectral content POD modes a1, a3 and a5 for the first 3 spanwise Fourier
modes z0, z1 and z2 using p-3D POD norm and periodic time series assumption and

spectral POD with gaussian window filtering Nf = 400.

As the acoustic scattering of the present flow does not present a tonal noise as the
previous cases, the spectral content of the flow is dominated by a broadband noise. The
p-3D norm presents results for low-frequency content at the Fourier mode z0, as shown in
Fig. 4.13(a). The first coupled mode is represented by the spectral content of the POD
mode λ0

5. The following Fourier modes z1 and z2 gather information at high frequency
range. This behavior is shown in p-3D norm in other flow configurations.

The spatial characterization of the turbulent structures is presented in Fig. 4.14. As
shown in Fig. 4.14(a) and (b), the eddies are distorted as a result from the non-coupling in
the POD spectrum. Figure 4.14(c) shows the behavior of the spanwise mean modes. The
suction and pressure side structures are mixed in the trailing edge. Growth and decay
behavior is formed as the coherent structures split and merge in the turbulent wake.

As shown in Figs. 4.14(d) to (i) the coherent structures captured by the p-3D norm
are high frequency eddies. The spatial characteristics of these eddies is very similar. They
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(a) Eigenfunction for λ0
1. (b) Eigenfunction for λ0

3. (c) Eigenfunction for λ0
5.

(d) Eigenfunction for λ1
1. (e) Eigenfunction for λ1

3. (f) Eigenfunction for λ1
5.

(g) Eigenfunction for λ2
1. (h) Eigenfunction for λ2

3. (i) Eigenfunction for λ2
5.

Figure 4.14: Spatial Eigenfunction for 3 most energy containing POD mode pairs and
spanwise Fourier modes z0, z1 and z2 using p-3D POD norm and periodic time series

assumption and spectral POD with gaussian window filtering Nf = 400.

are an important part of the spectral content of the flow that is gathered using the p-3D
norm.

The p-3D norm is able to capture coherent structures at high frequency range in
Fourier modes different from z0. For the spanwise mean mode, the POD spectrum is not
clearly defined, generating non-coupled modes and making it difficult to understand the
behavior of low-to-moderate frequency range in the global modes.

For the k-3D POD norm, a similar behavior to what is present in the previous cases
at 5 degs. AoA is obtained. The global modes are mainly dominated by low-to-moderate
frequency range at the Fourier modes z0, z1 and z2, as shown in Fig. 4.15. Similarly to
what is analyzed in p-3D norm, in Fig. 4.13(a), the spanwise mean mode z0 in the k-3D
norm contains a spectral energy from kc = 2 to kc = 6, as shown in Fig. 4.15(a). The
frequency related to this range is characterized as the range containing most of the energy
of the present fluid flow.
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Figure 4.15: Spectral content POD modes a1, a3 and a5 for the first 3 spanwise Fourier
modes z0, z1 and z2 using k-3D POD norm and periodic time series assumption and

spectral POD with gaussian window filtering Nf = 400.

(a) Eigenfunction for λ0
1. (b) Eigenfunction for λ0

3. (c) Eigenfunction for λ0
5.

(d) Eigenfunction for λ1
1. (e) Eigenfunction for λ1

3. (f) Eigenfunction for λ1
5.

(g) Eigenfunction for λ2
1. (h) Eigenfunction for λ2

3. (i) Eigenfunction for λ2
5.

Figure 4.16: Spatial Eigenfunction for 3 most energy containing POD mode pairs and
spanwise Fourier modes z0, z1 and z2 using k-3D POD norm and periodic time series

assumption and spectral POD with gaussian window filtering Nf = 400.

Fourier modes z1 and z2 contain spectral energy at low frequencies. As the energy
present in the singular values for the 2nd and 3rd mode pairs, the coherent structures
captured in the fluid flow region are distorted. The most energy containing POD modes,



109

presented in Figs. 4.16(d) and (g) are well captured and show the presence of large diagonal
structures interacting in the turbulent boundary layer region.

(a) Eigenfunction for λ0
1. (b) Eigenfunction for λ0

3. (c) Eigenfunction for λ0
5X.

Figure 4.17: Closer view on the suction side for spatial eigenfunctions for z0 using k-3D
POD norm and periodic time series assumption and spectral POD with gaussian

window filtering Nf = 400.

Figure 4.17 presents a closer view of the spanwise mean coherent structures, showing
the interaction between suction and pressure sides boundary layers. Larger structures are
shown in Fig. 4.17(a), presenting spatial eddies rolling over each other until they merge
in the turbulent wake.

Smaller coherent structures are present in Fig. 4.17(b) and (c), which are also splitted
by the solid body and merging after the flow passes through the trailing edge. This
behavior shows that the interaction between turbulent boundary layers in the present
case is not only destructive and dissipative but also creates large eddies correlated in
spanwise direction at the wake region.

(a) Eigenfunction for λ1
1. (b) Eigenfunction for λ2

1.

Figure 4.18: Closer view on the suction side for spatial eigenfunctions for z1 and z2

POD modes λ1 using k-3D POD norm and periodic time series assumption and spectral
POD with gaussian window filtering Nf = 400.

Figure 4.18 show the spatial behavior of the structures which spectral content is
presented in Figs. 4.15(b) and (c). The eddies characterized by the Fourier mode z1 are
diagonally aligned and contain a low frequency range spectral content. Small structures
are also detached from the boundary layer and merge over the flow after passing the
trailing edge. The structures are well characterized and contain a spatial behavior similar
to what is observed in the low Mach number case at 5 degs. AoA for Fourier modes z1
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using the p-3D norm in Fig. 3.67. The difference, as stated, is the spectral content of
the global modes being composed of low-frequency range energy, resulting in larger and
thicker coherent structures.

The presence of these large diagonal coherent structures for the flow at 0 degs. AoA
can be related to the weaker pressure gradient caused by the airfoil curvature at 0 degs.
AoA. At 5 degs. AoA the airfoil curvature and the AoA combine to generate a stronger
pressure gradient, as shown by the mean flow in Fig. 4.19(a). The stronger pressure
gradient generates a higher local Reynolds number. As a result, in the adverse pressure
gradient, the flow at 5 degs. AoA contains smaller coherent structures at high frequencies
containing a considerable energy. At 0 degs. AoA the pressure gradient is weaker in the
suction side, due only to the airfoil curvature, as shown in Fig. 4.19(b). As a result, local
Reynolds number flow in the adverse pressure gradient is low, generating larger coherent
structures.

(a) 5 degs. AoA. (b) 0 degs. AoA.

Figure 4.19: Gradient pressure magnitude for the mean flow for the two different
numerical databases at low Mach number M∞ = 0.115 configuration.

The coherent structures for z2 presented in Fig. 4.18(b) are similar to coherent
structures obtained in cases with 5 degs. AoA for Fourier mode z2, as shown in Figs.
3.64 and 4.11(b). These eddies are aligned with the stream and perpendicular to the
trailing edge, so they have low-efficiency in noise propagation. It is proved by the spectral
content of the POD modes for Fourier mode z2 that oscillate at kc ≤ 2, a low-frequency
behavior that is not well-captured in the acoustic scattering analysis.
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5 Final Remarks

Proper orthogonal decomposition is used to identify coherent structures in turbulent
flows past a NACA0012 airfoil at different conditions. The turbulent flow is obtained
by compressible large eddy simulation of the NACA0012 airfoil at 0 and 5 degs. angle
of attack for Mach numbers M∞ = 0.1 and 0.4 at Reynolds number Rec = 408000
based on the airfoil chord. For the 5 degs. angle of attack numerical simulations, a
turbulent boundary layer develops along the suction side of the airfoil due to boundary
layer tripping and, in the pressure side, a laminar boundary layer develops due to the
favorable pressure gradient. Previous work has shown that the current flow configuration
leads to noise generation at a narrowband tonal peak associated to spanwise coherent
structures. For the 0 degs. angle of attack case, turbulent boundary layers are formed
in suction and pressure sides due to boundary layer tripping. The interaction between
the turbulent boundary layers dissipates the tonal noise presented in the 5 degs. angle of
attack cases. As a result, a broad band tonal noise is formed. An investigation of the
coherent structures formed in the present wall-bounded turbulent cases is provided via an
analysis of different POD techniques including a fully three-dimensional implementation
of the standard snapshot method, the recently proposed spectral POD method (SPOD)
and the combination of Fourier decomposition and SPOD.

5.1 Proper Orthogonal Decomposition Techniques

A POD analysis of the low Mach number 5 degs. angle of attack case is presented
for different vector norms in the construction of the correlation matrix. Both kinetic
energy and pressure norms tested are able to couple the first pair of POD modes
which are related to coherent structures responsible for the airfoil tonal noise generation.
However, higher order modes are uncoupled making it difficult to distinguish further
coherent structures. For these higher POD modes, the kinetic energy norm tends to
reconstruct low-frequency structures in the flow field while the pressure norm reconstructs
high-frequency structures. This distinction is associated to the physical behavior of
low-frequency large scale structures propagating in the streamwise direction and pressure
oscillations that dissipate faster downstream the trailing edge, resulting in moderate to
high-frequency fluctuations.

The SPOD method presents a better coupling of the modes, redistributing the energy
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among the POD spectrum and leading to an improved identification of coherent structures.
Square box and Gaussian filters are applied to the correlation matrix assuming periodical
and non-periodical temporal signals. The application of the Gaussian filter allows an
enhanced control in the response of the SPOD when compared to the square box filter.
The assumption of periodic temporal signals in the construction of the correlation matrix
provides a considerable improvement in the coupling of POD modes. In this case, phase
diagrams show that low-frequency coherent structures obtained by the kinetic energy norm
become coupled when temporal signal periodicity is enforced. The SPOD method is also
able to improve the phase correlation of already coupled modes. The SPOD technique
presents the best results in terms of mode coupling when employed together with the
pressure norm. In this case, it is able to provide well resolved spatial eigenfunctions even
for high-frequency structures. Spectra of the temporal modes obtained by the SPOD
show that the filtering operation is able to reduce noise, focusing on energetic coherent
structures at specific narrowband frequencies.

The combination of Fourier decomposition along the airfoil span and the spectral POD
method allows a clear identification of coherent structures for the specific Fourier modes.
The spectral content of the POD modes has a characteristic behavior for each Fourier
mode in the kinetic energy norm. The pressure norm presents modes with more than one
narrowband dominant frequency. Both norms recover the most energetic two-dimensional
coherent structures associated to Fourier mode zero. The kinetic energy norm is able
to identify large turbulent structures aligned with the airfoil chord. On the other hand,
results obtained by the pressure norm show smaller scale turbulent structures diagonally
aligned with the airfoil span. For the Fourier POD method, the SPOD also shows a
considerable improvement in the identification of tonal narrowband and high-frequency
coherent structures, especially when the correlation matrix is computed using a pressure
norm. The filtering reduces the noise contained in the POD modes and results in enhanced
spatial characterization of coherent structures in the eigenfunctions and also an improved
identification of the spectral content related to them.

5.2 Coherent Structures in Turbulent Flows Past a
NACA0012 Airfoil

The low Mach number case at 5 degs. angle of attack presented large coherent
structures aligned with span, oscillating at the tonal range of frequencies characterized
by the wavenumber kc ≈ 9. Passing through the forced tripping to turbulence, on the
suction side of the airfoil, streamwise aligned coherent structures are perceived by the
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kinetic energy norm in spanwise Fourier modes z1 and z2. These coherent structures are
captured by POD eigenfunctions at low frequencies, where the acoustic scattering analysis
did not perform well due to the necessity to improve results below kc = 5 in the numerical
simulations. Also, streamwise aligned coherent structures do not propagate efficiently as
sound, as they are perpendicular to the trailing edge.

For the pressure norm, high frequency coherent structures are captured in the spanwise
Fourier modes z1 and z2. These eddies are small and are spatially disposed diagonally
along the suction side. The structures associated to these frequencies dissipate faster after
passing through the trailing edge. The tonal noise range is mainly captured by the POD
modes in spanwise Fourier mode z0, which proves that correlated modes in the spanwise
direction are responsible for the tonal noise presented in the acoustic scattering analysis.

For the moderate Mach number configuration at 5 degs. angle of attack, the tonal noise
is shifted to higher frequencies, corresponding to kc ≈ 27. The pressure norm performs
poorly and the kinetic energy norm is used to analyze the coherent structures in the fluid
flow. The small changes in the compressibility of the turbulent flow does not affect the
characterization of the coherent structures and, as a result, the global modes are very
similar to those obtained in the low Mach number configuration.

An investigation of the flow at 0 degs. angle of attack shows that the broadband noise is
decomposed into small ranges of the spectral content analyzed via Fourier-SPOD modes.
The span mean Fourier mode captures the most energetic coherent structures between
kc = 2 and kc = 6. The kinetic energy norm captures low-frequency eddies with different
behavior for the subsequent Fourier modes including global modes diagonally aligned for
Fourier mode z1 and streamwise aligned for Fourier mode z2.

The diagonally aligned eddies captured in Fourier mode z1 are larger and thicker than
diagonal eddies captured in database from 5 degs. angle of attack. The eddies present
in the spanwise Fourier mode z2 are very similar to those obtained by the kinetic energy
norm for the turbulent flow at 5 degs. angle of attack for the same Fourier mode. The
coherent structures are equal on the suction and pressure sides. For the pressure norm,
high frequency coherent structures are observed diagonally aligned with the flow and
these coherent structures are very similar to the high frequency eddies observed for the
low Mach number flow at 5 degs. angle of attack also using the pressure norm.

For all cases studied, the coherent structures formed by spanwise Fourier modes z1

and z2 increase and gain energy over the adverse pressure gradient on the airfoil. This
shows that the pressure gradient formed by the airfoil curvature influences the formation
of these larger coherent structures diagonally aligned with the flow for Fourier mode z1

and aligned with the flow stream for Fourier mode z2.
Flows at 5 degs. angle of attack present a stronger pressure gradient due to the
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airfoil AoA. At M∞ = 0.4, the pressure gradient is stronger, generating high frequency
oscillations for spanwise Fourier modes z1 and z2 even for the kinetic energy norm. Such
high frequency coherent oscillations are not present in the low Mach number case using
the same POD norm. One may notice that, at 0 degs. angle of attack, the smaller eddies
diagonally aligned with the flow increase in size. Due to the weaker adverse pressure
gradient near the trailing edge the fluctuations contain less energy and the coherent
eddies may increase in size. The same effect is perceived in turbulent flows at low Reynolds
numbers which present larger coherent structures than moderate-to-high Reynolds number
flows.

5.3 Future Work

The results obtained in the present work can be extended to different techniques of
modal analysis. A dynamic mode decomposition (DMD) analysis could be performed in
order to analyze the global instability of the present flow configurations. Such an analysis
would also lead to results from the spectral content of the global modes.

As the database analyzed spans a similar parameter space for turbulent flows over a
NACA0012 airfoil, a reduced order modeling (ROM) could be performed using the dataset
present in the three simulations under the same parameter space using the POD-Galerkin
or Petrov-Galerkin methods, or even new ROM-based techniques from advanced machine
learning to perform fast analysis of the transient flow under these conditions and flow
conditions between the parameter space defined by the LES database to generate new
high-fidelity turbulence data. The knowledge generated under the stated parameter space
could lead to the development of high-level techniques for flow control of turbulent flow
over an airfoil.

Several modal analyses could be performed based on the high-fidelity database
presented. This work also provides an insight on the POD modes generated for a general
implementation of POD. As a results, the POD analysis here performed could be extended
to computational domains where no translational symmetry is present, for example, for
more complex geometries typical of aeronautical and mechanical engineering applications.
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