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“You are young and life is long and there is time to kill today
And then one day you find ten years have got behind you.

No one told you when to run, you missed the starting gun.”
– Pink Floyd, Time

“It is far better to grasp the universe as it really is than to persist in delusion,
however satisfying and reassuring.”

– Carl Sagan, The Demon-Haunted World: Science as a Candle in the Dark



Resumo
Plantas industriais modernas estão suscetíveis a falhas em equipamentos de processo e em
instrumentos e componentes da malha de controle. Tais eventos anormais podem acarretar
danos a equipamentos, degradação do desempenho do processo e até cenários extremos
como a parada da planta e acidentes graves. Em vista disso, o emprego de sistemas de
controle tolerante a falhas visa a elevar o grau de confiabilidade e segurança do processo
por meio do tratamento e mitigação de eventos anormais, evitando que evoluam para
situações críticas. Nesse sentido, este trabalho tem como objetivo desenvolver uma técnica
de controle reconfigurável tolerante a falhas para processos sujeitos a falhas em atuadores.
A presente proposta é baseada em abordagens por atuadores virtuais e ocultação da
falha. Essas técnicas consistem no recálculo das ações de controle e na ocultação da
falha do ponto de vista do controlador nominal, permitindo que o mesmo seja mantido
após a reconfiguração da malha de controle. Na presente proposta, o atuador virtual é
baseado na estrutura do controlador preditivo em duas camadas. Uma camada consiste
no cálculo de referências para as variáveis de entrada e para o desvio previsto entre o
comportamento da planta nominal e com falha. A outra camada, por sua vez, é responsável
por conduzir as variáveis de processo para as referências calculadas na etapa anterior.
Ambas as camadas são baseadas em problemas de programação quadrática e levam em
consideração as restrições do processo, como limites de atuadores e desvios permissíveis
em relação ao comportamento nominal da planta. Essa técnica possibilita a consideração
de cenários de falhas nos quais não há graus de liberdade suficientes para a manutenção de
variáveis controladas em valores desejados. Assim, a estimativa de perturbações permite
que novas referências atingíveis sejam calculadas, ainda que haja erros de identificação do
modelo pós-falha do processo. Por fim, a estrutura de controle proposta foi aplicada em
simulações utilizando um processo de tanques quádruplos, bem como em experimentos
conduzidos em uma planta de neutralização de pH.

Palavras-chave: Controle Tolerante a Falhas, Controle Reconfigurável, Controle Preditivo,
Atuador Virtual.



Abstract
Modern industrial plants are susceptible to faults in process equipment and in instruments
and components of the control loop. Such abnormal events can lead to equipment damage,
degradation of process performance and even extreme scenarios such as plant shutdown and
serious accidents. Thus, the use of fault-tolerant control systems aims to increase process
reliability and safety by treating and mitigating abnormal events, preventing them from
evolving to critical situations. In this sense, this work aims to develop a reconfigurable fault
tolerant control technique for processes subject to actuator faults. The present proposal is
based on the virtual actuator and fault hiding approaches. These techniques consist of
recomputing control actions and hiding the fault from the nominal controller perspective,
allowing it to be maintained after the control loop reconfiguration. We propose a virtual
actuator based on the two-layer model predictive control structure. One layer consists
of calculating references for input variables and for the predicted deviation between the
nominal and faulty plant behaviors. The other layer, in turn, is responsible for driving
process variables to the references calculated in the previous step. Both layers are based
on quadratic programming problems and take into account process constraints such as
actuator limits and permissible deviations from the nominal plant behavior. This technique
allows the consideration of fault scenarios in which there are not enough degrees of freedom
for the maintenance of controlled variables in desired values. Thus, disturbance estimation
allows the calculation of new achievable references, even though there are identification
errors in the post-fault model. Finally, the proposed control structure has been applied
to an experimental pH neutralization plant. Finally, the proposed control structure was
applied in simulations to a quadruple-tank process as well as in experiments conducted in
a pH neutralization plant.

Keywords: Fault Tolerant Control, Reconfigurable Control, Model Predictive Control,
Virtual Actuator.
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ȳp output target of the post-fault model
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CHAPTER 1

Introduction

Following several global changes, industrial processes have undergone extensive
modernization in recent decades. The growth of the world economy and the production of
goods and products has resulted in the search for more efficient and economic processes.
Thus, with the expansion of production and competition on the market, tasks such as
increasing productivity and reducing energy consumption often led to the development
of more complex chemical processes. Therefore, in order to attend new performance
requirements, it was necessary to increase the degree of automation and the use of advanced
control and monitoring systems, which also increased the level of instrumentation in the
plants.

Like all technological processes, industrial systems are subject to failure or
malfunction of equipment and components of the control loop. In addition, the greater
the level of instrumentation employed in monitoring and controlling the process, the
greater the number of points susceptible to failures. Malfunctioning actuators, for example,
can significantly decrease performance of control systems, while poorly calibrated sensors
generate inaccurate measurements and are responsible for deviations from desired operating
points (BLANKE et al., 2006). A conventional feedback loop may present poor performance
or even instability in the presence of faults in any of the system components. In light of
this, it is necessary to apply techniques capable of dealing with abnormal events, thus
avoiding the degradation of process behavior and plant shutdown, or the occurrence of
damages to equipment and to the environment and even catastrophes.

A control loop capable of automatically dealing with malfunction of its com-
ponents while maintaining stability and acceptable process performance is classified as
a fault tolerant control system (FTCS) (ZHANG; JIANG, 2008). In general, FTCS can
be classified as passive (PFTCS) or active (AFTCS), where PFTCS are based on robust
control laws that deal with predetermined fault scenarios and AFTCS perform the recon-
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figuration of the control loop – also called reconfigurable control (RC) – and require fault
detection and diagnosis (FDD) systems.

The development and study in the FTCS area was mostly stimulated by aircraft
control systems design, especially after the occurrence of aircraft accidents (PATTON, 1997).
For example, during flight 1080 of Delta company in April 1977, there was no indication
of an elevator, compromising the control of vertical movement of the aircraft. In this case,
the pilot was fortunately able to regain the airplane stability using physical redundancies.
Another example is the American Airlines (Flight 191) crash in Chicago in May 1979 that
was caused by an engine loss in a wing. However, further investigations concluded that the
crash could have been avoided if the alarm system had worked (MONTOYA et al., 1983).

In the context of the chemical process industry, the use of fault-tolerant control
systems was also intensified after some incidents such as the Three Mile Island nuclear
plant in Pennsylvania, USA, in 1979, as well as the well-known Chernobyl disaster in
1986 (ZHANG; JIANG, 2008). Since then, several methods have been developed and new
strategies have been research subjects in the last years (YU; JIANG, 2015; ROTONDO et
al., 2015; GAO; DING; CECATI, 2015; YANG; GE; SUN, 2015; TABATABAEIPOUR;
STOUSTRUP; BAK, 2015; COSTA, 2014; ZHANG et al., 2014; ROTONDO; NEJJARI;
PUIG, 2014). It should be emphasized here that, due to the complexity of FTCS techniques,
most of the works treat FDD and RC separately. Thus, many RC strategies assume that
an FDD is available to provide post-fault information.

Currently, the applications of FTCS strategies are diverse and can be found not
only in process, manufacturing, automotive, aerospace and nuclear industries, but also in
electronic systems, communications networks and even software (ZHANG; JIANG, 2008).

1.1 Motivation and objectives

Most reconfigurable control strategies eliminate the nominal controller from the
reconfigured control loop, that is, the controller used in non-fault situations is discarded.
However, the methods presented in Steffen (2005) and Lunze and Steffen (2006) perform the
control reconfiguration by means of a virtual actuator, characterized by a reconfiguration
block inserted between the nominal controller and plant actuators. This structure aims to
modify the output signal of the nominal controller in order to produce the same control
effort previously applied to the nominal plant. This is a less intrusive approach since it
maintains the knowledge about the plant that was incorporated in the nominal controller
design (RICHTER; LUNZE; SCHLAGE, 2007; RICHTER, 2011).

As an extension to this technique, recent works (COSTA et al., 2013; COSTA,
2014) presented a proposal of a moving horizon-based virtual actuator that aims to
minimize the deviation between nominal and faulty plant behaviors. This approach allows
the consideration of physical limits of actuators and other process constraints in the
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controller design.
However, these studies do not consider fault situations in which plant control-

lability is compromised and setpoint values become unreachable. Thus, without available
redundancies, the remaining degrees of freedom in the system may be insufficient to conduct
controlled variables to their desired levels. Such scenario, in the absence of appropriate
fault tolerant control techniques, leads to the overload of the remaining actuators, which
may lead to saturation in its limits, as well as a significant reduction in the performance
of the control loop, not to mention its instability. In addition, even though the process is
stabilized, attempting to maintain unreachable setpoints in a fault scenario may produce
offsets in the controlled variables. Thus, the steady state configuration of the process
variables may not be the best option available from an economic or safety point of view.

In this sense, more interesting operational points can be obtained by recalcu-
lating the setpoints taking into account the post-fault model and constraints both in the
limits of actuators and in the permissible deviations between nominal and faulty plant
behaviors. In addition, conserving controlled variables within acceptable ranges avoids
unnecessary plant shutdowns and allows the process to operate under safer conditions
until corrective maintenance is performed on defective actuators.

In view of the above, this work aims to present an extension of the virtual
actuator based on a moving horizon approach, presented in recent works (COSTA et al.,
2013; COSTA, 2014; COSTA et al., 2015). Thus, the present proposal contemplates the
recalculation of the references to be followed by the controller and considers restrictions in
the deviation between nominal and faulty plant behaviors. For this, a control reconfiguration
block is proposed whose structure is composed of three items: an observer of states and
disturbances, an optimization layer responsible for the recalculation of references and the
virtual actuator based on a moving horizon optimization. This approach is similar to the
two-layer predictive controller (MPC) in which an external (static layer) optimization is
used in conjunction with the MPC (dynamic layer) (YING; VOORAKARANAM; JOSEPH,
1999). The use of a static layer within the virtual actuator was first proposed in (COSTA
et al., 2015).

In addition to calculating new reachable setpoints in a fault scenario, the
proposed technique also contemplates situations in which the post-fault model is not
perfect, which is a case that has received little attention in the literature, as pointed out by
(RICHTER; LUNZE; SCHLAGE, 2007). Thus, differences between the model provided by
the FDD system and the true condition of the faulty plant are considered as disturbances,
whose estimates are provided by an observer based on a disturbance model.

Finally, for the purpose of testing the proposed technique, simulations were
carried out using a quadruple-tank process subjected to actuator faults. In addition,
experiments were performed on a experimental pH neutralization plant.



CHAPTER 2

Theory and literature review

In this chapter we introduce the concepts that will serve as the basis for
the proposed reconfiguration block described in Chapter 3. First, the formulation of
MPC is discussed, exposing the development of equations with focus on a control loop
structure composed of a state estimator, an external optimization (static layer) and the
moving horizon-based controller (dynamic layer). Later, a brief theoretical foundation
on reconfigurable fault tolerant control is presented, in which we describe some recently
proposed methods that served as a starting point for this work.

2.1 Model predictive control

2.1.1 Introduction

Model Predictive Control is a term used to designate a class of control algorithms
that make use of the process model and perform the optimization of a linear or quadratic
objective function subjected to constraints along a prediction horizon of the open loop
plant response. Thus, the future trajectory of the manipulated variable is obtained, but
only the first control action is implemented in the plant. After updating the measured
variables, the trajectory of the control variable is recomputed and the procedure is repeated
at each sampling interval (MUSKE; RAWLINGS, 1993). This strategy is called receding
horizon or moving horizon control (Figure 1).

MPC is a well-established control strategy in both industry and academia and
its early developments and industrial applications date back to the 1970s. Among the
first implementations are the Model Predictive Heuristic Control (MPHC) developed by
Richalet et al. (1978) and the Dynamic Matrix Control (DMC) developed by Shell engineers
Cutler and Ramaker (1980). An extension of the DMC that comprises a quadratic objective
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... N

Figure 1 – The moving horizon scheme.

Source: Adapted from the original by Martin Behrendt, via Wikimedia Commons and licensed under the
terms of the GFDL (<http://www.gnu.org/copyleft/fdl.html>).

function subjected to constraints was later proposed by Garcia and Morshedi (1986). Qin
and Badgwell (2003) presented in detail the historical development of MPC as well as
approaches to different products and industrial solutions that use this class of algorithms.
In addition, extensive material can be found in the literature, from tutorials (RAWLINGS,
1999; RAWLINGS, 2000; WANG, 2004), to textbooks (CAMACHO; BORDONS, 2007;
RAWLINGS; MAYNE, 2009; WANG, 2009; MACIEJOWSKI, 2002).

Among the reasons for the success of MPC in applications in the process
industry is the optimization of an objective function that easily incorporates constraints
such as limits of actuators and product specification. In this way, the process can operate
safely close to the constraints, reaching more interesting operating conditions from the
economic point of view. Another great advantage is the possibility of applying MPC in
multivariable processes by superposition of linear models that are usually based on transfer
functions, space-state models or even convolution models. Normally, these models do not
require advanced methods of system identification and can be obtained by analyzing the
data collected in tests carried out in the plant (MUSKE; RAWLINGS, 1993).

2.1.2 The MPC formulation

For discrete time-invariant systems, the state space linear model that is assumed
to describe the system dynamics is given according to 2.1, in which x ∈ Rnx is the vector
of states, u ∈ Rnu is the vector of inputs and y ∈ Rny is the vector of plant outputs. The
system matrices are A ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx .

x(k + 1) = Ax(k) +Bu(k) (2.1a)

y(k) = Cx(k) (2.1b)

http://www.gnu.org/copyleft/fdl.html
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Usually, the conventional form of the model predictive controller are given by
the following optimization problem:

min
∆U(k)

V :=
N∑
j=k

(
y(j)− ysp(k)

)T
Qy

(
y(j)− ysp(k)

)
+

Nc−1∑
j=k

∆u(j)TR∆u(j) (2.2)

subjected to

x(j + 1) = Ax(j) +Bu(j) j = k, . . . , Nc − 1 (2.3)

umin ≤ u(j) ≤ umax j = k, . . . , Nc − 1 (2.4)

∆umin ≤ ∆u(j) ≤ ∆umax j = k, . . . , Nc − 1 (2.5)

in which ysp is the current output setpoint, ∆u(k) = u(k)− u(k − 1) is the input change,
∆U(k) is the vector of future input changes given in 2.6, Qy and R are weighting matrices
assumed to be positive definite, N is the prediction horizon and Nc is the control horizon.

∆UT (k) =
[
∆uT (k) ∆uT (k + 1) · · · ∆uT (k +Nc − 1)

]T
(2.6)

However, as pointed out by Bitmead, Gevers and Wertz (1990), the controller
based on the objective function presented in 2.2 has no guaranteed stability since the
prediction of the process response is performed over a finite horizon. In general, there
are several methods for obtaining a stable MPC and one of the most popular is the
inclusion of a state terminal constraint (MEADOWS et al., 1995). Another approach was
proposed in (RAWLINGS; MUSKE, 1993), in which the authors present a controller with
infinite horizon and whose stability is guaranteed and independent of the controller tuning
parameters. The infinite horizon control problem is defined as follows

min
x(j),u(j)

V :=
∞∑
j=k

xT (j)QxT (j) +
∞∑
j=k

uT (j)Ru(j) (2.7)

subjected to

x(j + 1) = Ax(j) +Bu(j) (2.8)

umin ≤ u(j) ≤ umax (2.9)

−∆umax ≤ ∆u(j) ≤ ∆umax (2.10)

The solution of this convex optimization problem is intractable since it has an
infinite number of decision variables. However, the control objective 2.7 can be written as
a finite horizon problem as follows

V :=
N−1∑
j=k

xT (j)QxT (j) +
N−1∑
j=k

uT (j)Ru(j) + xT (k +N)Px(k +N) (2.11)

in which xT (k +N)Px(k +N) denotes the terminal cost and P is a positive semi-definite
matrix computed by the Lyapunov equation according to 2.12 for stable systems.

ATPA− P = −Q (2.12)
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2.1.3 The two-layer MPC

In modern industrial plants, MPC is usually part of a multi-layer hierarchical
structure, as shown in Figure 2. The real time optimization (RTO) layer is characterized
by an economical optimizer based on rigorous steady state process models. Usually,
this optimizer determines new desired operational points in periods of the order of hours.
However, these operational points may become unreachable when disturbances are affecting
the system. Therefore, in some applications there are local optimizers that solves linear or
quadratic optimization problems at the same frequency as the MPC layer. These local
optimizers are based on steady state linear models and are responsible for calculating
targets to be tracked by the MPC layer (MACIEJOWSKI, 2002).

  

Real Time Optimization
(RTO)

Target Calculation

MPC

Process

Figure 2 – Hierarchical control structure.

Before formulating the two-layer MPC we shall address a method for adding
integral control and also discuss the estimation of states and disturbances.

Disturbance model

The steady state mismatch between the linear model and the true plant can be
captured by augmenting the plant model with a disturbance model, which adds integrating
modes to the system. The resulting model is given by 2.13 in which Bd ∈ Rnx×nd ,
Cd ∈ Rny×nd , I ∈ Rnd×nd is the identity matrix and nd is the number of additional
disturbances.

x(k + 1) = Ax(k) +Bu(k) +Bdd(k) (2.13a)

d(k + 1) = d(k) (2.13b)

y(k) = Cx(k) + Cdd(k) (2.13c)
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This model can be rewritten as followsx(k + 1)
d(k + 1)

 =
A Bd

0 I

x(k)
d(k)

+
B

0

u(k) (2.14a)

y(k) =
[
C Cd

] x(k)
d(k)

 (2.14b)

Muske and Badgwell (2002) and Pannocchia and Rawlings (2003) have shown
conditions for the model to be detectable, which is an indispensable requirement for the
existence of an asymptotically stable observer. Such condition is related to the choice of
matrices Bd and Cd according to the following lemma.

Lemma 1. The augmented system 2.14 is detectable if and only if the pair (C,A) is

detectable, that is, if the matrix
I − A

C

 ∈ R(ny+nx)×nx has rank nx, and if 2.15 holds true.

rank

I − A −Bd

C Cd

 = nx + nd (2.15)

In addition, the number of additional disturbances in the augmented system
must not exceed the number of system outputs, that is, nd ≤ ny (see Pannocchia and
Rawlings (2003), Corollary 1).

It should be noted that the augmented system 2.14 is not stabilizable since the
addition of disturbances introduces unstable modes to the system. Thus, since these modes
can not be controlled, the purpose of adding disturbances is removing their influences from
the controlled variables (MUSKE; BADGWELL, 2002; PANNOCCHIA; RAWLINGS,
2003).

State estimation

In real applications the states may not be available through plant measurements
so they must be estimated. A simple approach is to use a steady state Kalman filter to
perform state and disturbance estimation. Here, we shall rewrite the augmented system
given in 2.14 according to 2.16, in which w(k) ∈ R(nx+nd) and ξ(k) ∈ Rny are state and
output noises, respectively.x(k + 1)

d(k + 1)

 =
A Bd

0 I

x(k)
d(k)

+
B

0

u(k) + w(k) (2.16a)

y(k) =
[
C Cd

] x(k)
d(k)

+ ξ(k) (2.16b)



Chapter 2. Theory and literature review 24

Also, these noises are assumed to be white, zero-mean, uncorrelated and have known
constant covariance matrices Θw and Θξ as follows:

w(k) ∼ (0,Θw(k))

ξ(k) ∼ (0,Θξ(k))

E
[
w(k)w(i)T

]
= Θwδ(k − i)

E
[
ξ(k)ξ(i)T

]
= Θξδ(k − i)

E
[
ξ(k)w(i)T

]
= 0

in which δ(k− i) is the Kronecker delta function, with δ(k− i) = 1 if k = i and δ(k− i) = 0
if k 6= i.

First, using past information about the states and disturbances, we can predict
them at current instant k according to 2.17. The notation ψ̂(i | j) denotes the estimate of
the variable ψ at instant i using information available up to instant j.x̂(k | k − 1)

d̂(k | k − 1)

 =
A Bd

0 I

 x̂(k − 1 | k − 1)
d̂(k − 1 | k − 1)

+
B

0

u(k − 1) (2.17)

Then the estimates can be updated by taking into account the plant measurements y(k)
at the current sampling time according to 2.18,x̂(k | k)

d̂(k | k)

 =
x̂(k | k − 1)
d̂(k | k − 1)

+
Lx
Ld

 (y(k)− Cx̂(k | k − 1)− Cdd̂(k | k − 1)
)

(2.18)

in which Lx ∈ Rnx×ny and Ld ∈ Rnd×ny are filter gains related to the states and disturbances,
respectively, and are computed according to 2.19 (SIMON, 2006).

L̃ = ÃΛC̃T
(
C̃ΛC̃T + Θξ

)
(2.19)

in which

L̃ =
Lx
Ld

 , Ã =
A Bd

0 I

 , C̃ =
[
C Cd

]
and Λ is given as the steady state solution of the discrete-time algebraic Riccati equation
(DARE) provided that the augmented system is stabilizable (WANG, 2009).

Λ = ÃΛÃT + Θw − ÃΛC̃T
(
ÃΛÃ+ Θξ

)−1
C̃ΛÃT (2.20)

Targets calculation

Given the disturbances estimates, the target calculation is performed to obtain
updated values of x̄ and ū. This is done by solving a quadratic programming problem with
exact soft constraints, which are formulated by adding a penalty l1/l22 to the objective
function. In this way, the solution of the problem reaches the desired values xsp and usp if
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possible, but it is relaxed if the problem is unfeasible. Details and comments regarding the
use of exact penalty can be found in Rawlings (1999).

The target calculation problem is given from 2.21 to 2.25, in which it is assumed
that the weighting matrices Qt and Rt are symmetric positive-definite with appropriate
dimensions and η ∈ Rny is the vector of slack variables.

min
x̄(k),ū(k),η(k)

Vt := ηT (k)Qtη(k) +
(
ū(k)− usp(k)

)T
Rt

(
ū(k)− usp(k)

)
+ qTt η(k) (2.21)

subjected to 
I − A −B 0
C 0 I

C 0 −I



x̄(k)
ū(k)
η(k)




=
≥
≤




Bdd̂(k)
ysp(k)− Cdd̂(k)
ysp(k)− Cdd̂(k)

 (2.22)

umin ≤ ū(k) ≤ umax (2.23)

ymin ≤ Cx̄(k) + Cdd̂(k) ≤ ymax (2.24)

η(k) ≥ 0 (2.25)

Regulator

After the target calculation, the control actions are obtained as solution of an
optimization problem, in which the quadratic objective function of the infinite horizon
controller is given by Equation 2.26, where Q, R and S are weighting matrices (MUSKE;
RAWLINGS, 1993).

V :=
∞∑
j=k

(
x(j)− x̄(k)

)T
Q
(
x(j)− x̄(k)

)
+
∞∑
j=k

(
u(j)− ū(k)

)T
R
(
u(j)− ū(k)

)

+
∞∑
j=k

∆u(j)TS∆u(j) (2.26)

We can express this objective function considering a finite horizon N so the controller is
given as solution of the following optimization problem.

min
U(k)

V :=
N−1∑
j=k

(
x(j)− x̄(k)

)T
Q
(
x(j)− x̄(k)

)
+

N−1∑
j=k

(
u(j)− ū(k)

)T
R
(
u(j)− ū(k)

)

+
N−1∑
j=k

∆u(j)TS∆u(j) +
(
x(k +N)− x̄(k)

)T
P
(
x(k +N)− x̄(k)

)
(2.27)

subjected to

x̃(j + 1) = Ax̃(j) +Bũ(j) (2.28)

umin − ū(k) ≤ ũ(j) ≤ umax − ū(k) (2.29)

∆umin ≤ ∆u(j) ≤ ∆umax (2.30)

x̃(j) = x̂(j)− x̄(k), ũ(j) = u(j)− ū(k) (2.31)
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in which U(k) is the vector of future control actions 2.32 and P is the terminal penalty
matrix and can be computed with the Lyapunov equation 2.12 for open-loop stable systems.

U(k) =
[
uT (k) uT (k + 1) · · · uT (k +N − 1)

]T
(2.32)

Finally, combining the states and disturbances estimation, the target calculation
and the regulator (Figure 3), the MPC algorithm can be summarized in the following
steps:

1. Obtain states and disturbances estimates (x̂(k), d̂(k)) trough plant measurements
y(k);

2. Solve the static optimization layer in order to determine the steady state targets
(ȳ(k), x̄(k), ū(k));

3. Solve the dynamic layer problem to obtain ũ(k);

4. Make u(k) = ũ(k) + ū(k) and apply to the plant;

5. Repeat this procedure at the next sampling time.

  

Observer

Target
Calculation

MPC Process

Figure 3 – The MPC control structure.

2.2 Reconfigurable control

An extensive bibliographical review on reconfigurable control is presented in
(ZHANG; JIANG, 2008). We will present here only the concepts that served as the basis
for the proposal described in Chapter 3.

2.2.1 The fault hiding and virtual actuator approaches

Actuator faults may affect the process controllability, which can lead to degraded
performance and even undesirable shutdowns. As already mentioned, there are several
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fault-tolerant control techniques, which are mostly based on the removal of the nominal
controller from the reconfigured control loop. An exception is the virtual actuator-based
approach, being less intrusive since it maintains all the knowledge about the plant that
was incorporated in the nominal controller design (RICHTER; LUNZE; SCHLAGE, 2007;
RICHTER, 2011).

This approach consists of a block that is placed between the nominal controller
and process actuators in order to modify the interface signals, such as the process output
yp and the control action um (see Figure 4). Thus, the output signal of the nominal
controller is changed so as to cause the same control effort that the faulty actuator had
in the nominal plant before the fault occurrence (STEFFEN, 2005; LUNZE; STEFFEN,
2006). In addition, the process performance degradation is hidden from the point of view
of the nominal controller by reconstructing the normal behavior of the plant ym. Next, the
development of the strategy is exposed.

  Sensors

Nominal
Controller Actuators Process

Reconfiguration
Block

fault

Figure 4 – Reconfiguration block placed between the nominal controller and the faulty
plant.

The discrete time state-space model that describes the nominal plant is given
in 2.33, in which xm ∈ Rnx , um ∈ Rnu and ym ∈ Rny are vectors of states, inputs and
outputs, respectively. The system matrices are A ∈ Rnx×nx , Bm ∈ Rnx×nu e C ∈ Rny×nx .

xm(k + 1) = Axm(k) +Bmum(k) (2.33a)

ym(k) = Cxm(k) (2.33b)

Similarly, the faulty plant can be represented by the post-fault model given in 2.34, in
which up ∈ Rnu . In cases of actuator faults, the input matrix of the post-fault model differs
from its counterpart in the nominal model, so that Bp 6= Bm. For instance, the actuator
locked at the nominal position can be represented by a null column in the input matrix
(RICHTER; LUNZE; SCHLAGE, 2007).

xp(k + 1) = Axp(k) +Bpup(k) (2.34a)

yp(k) = Cxp(k) (2.34b)

We can now build the difference model (STEFFEN, 2005) that describes the deviation
between nominal and faulty plant behaviors. This model is given in 2.35, in which
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x∆(k) = xm(k)− xp(k).

x∆(k + 1) = Ax∆(k) +Bmum(k)−Bpup(k) (2.35a)

y∆(k) = Cx∆(k) (2.35b)

After the fault occurrence, the post-fault model is provided by the FDD system
and the nominal plant output signal can be reconstructed according to 2.36.

ym(k) = yp(k) + Cx∆(k) (2.36)

As proposed in (STEFFEN, 2005; LUNZE; STEFFEN, 2006; RICHTER; LUNZE; SCHLAGE,
2007), the control signal is modified according to 2.37, in which M and N are feedback and
feedforward matrices, respectively. Details regarding the computation of these matrices
can be found in (STEFFEN, 2005; RICHTER, 2011).

up(k) = Mx∆(k) +Num(k) (2.37)

2.2.2 The moving horizon-based virtual actuator

A moving horizon-based strategy as an extension of the virtual actuator ap-
proach was first presented by (COSTA et al., 2013) and detailed in his PhD thesis (COSTA,
2014). This proposal is based on the solution of a quadratic programming problem to
obtain control actions in order to stabilize the deviation between faulty and nominal
plant behaviors. Also, this technique allows the insertion of process constraints in the
optimization problem, which allows to consider physical limits of actuators and process
variables.

Problem formulation

The formulation of the moving horizon-based virtual actuator is similar to the
MPC algorithm that was presented in Section 2.1.

Using the difference model 2.35 and applying it along a prediction horizon Nv,
we obtain the Equation 2.38

X∆(k + 1) = Fx∆(k) + ΦmUm(k)− ΦpUp(k) (2.38)
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with

X∆(k + 1) =


x∆(k + 1)
x∆(k + 2)

...
x∆(k +Nv)

 , F =


A

A2

...
ANv

 ,

Φm =


Bm 0 . . . 0
ABm Bm . . . 0
... ... . . . ...

ANv−1Bm ANv−2Bm . . . Bm

 , Φp =


Bp 0 . . . 0
ABp Bp . . . 0
... ... . . . ...

ANv−1Bp ANv−2Bp . . . Bp

 ,

Um(k) =


um(k)

um(k + 1)
...

um(k +Nv − 1)

 , Up(k) =


up(k)

up(k + 1)
...

up(k +Nv − 1)

 .

The trajectory Up of future control actions is obtained by solving an optimization problem
as given from 2.39 to 2.41, in which Q̄v and R̄v are diagonal block matrices formed by the
penalty matrices Qv and Rv, respectively.

min
Up

V := XT
∆Q̄vX∆ + UT

p R̄vUp (2.39)

subjected to

X∆(k + 1) = Fx∆(k) + ΦmUm(k)− ΦpUp(k) (2.40)

∆U ∈ U (2.41)

It is worth mentioning that this technique uses the nominal control trajectory,
which is easily obtained when there is a well defined control law to be applied to the plant
model. However, Costa et al. (2013) also discussed the possibility of keeping constant the
nominal controller output in Um. This is necessary when the control law equation is not
available or is too complex. It is understood that the maintenance of the future control
signal as constant represents an additive disturbance along the prediction horizon. However,
simulation results presented in Costa (2014) have demonstrated that this simplification
does not compromise process performance and fault accommodation.

An extension to the moving horizon approach for virtual actuators was presented
in COSTA et al. (2015), whose proposal is based on the use of an external optimization
layer responsible for calculating the steady-state deviation between the nominal and faulty
plant behaviors. In addition, the calculation of the control trajectory Up is modified in
order to incorporate the tracking of steady state references x̄∆ and ūp, computed according
to the following optimization problem.
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min
x̄p,ūp

Vt := (x̄m − x̄p)T Qs (x̄m − x̄p) (2.42)

subjected to

(I − A) x̄p −Bpūp = 0 (2.43)

ūp ∈ U (2.44)

As pointed out in COSTA et al. (2015), if the process redundancies perform
enough control effort to maintain the null steady-state deviation, complete fault accom-
modation can be achieved. However, more severe fault scenarios may lead to a non-zero
steady-state deviation in some variables.



CHAPTER 3

The two-layer moving horizon
virtual actuator

3.1 The proposed reconfiguration block

As already mentioned, Costa et al. (2013) proposed a moving horizon-based
virtual actuator. Similar to the MPC algorithm, this approach aims to minimize the
deviation x∆ between the nominal and faulty plant behavior over a prediction horizon.
This is accomplished by solving a quadratic programming problem (QP), in which the
constraints of the nominal plant, as actuator limits and product specification, can be taken
into account.

However, in cases of actuator loss with no available redundancies, the control-
lability of the plant is affected and it may become impossible to drive x∆ to the origin,
since there are not enough degrees of freedom in the system. In this sense, since we have
the post-fault model, it is possible to calculate achievable references to be traced by the
optimization problem in a manner similar to that presented in Section 2.1. On the other
hand, if the post-fault model is not perfect due to misidentified faults, the calculation of
references can result in erroneous values in the steady state that may lead to offset. This
can also occur when using a linear model-based approach in nonlinear processes, which is
often the case of real applications.

Thus, in order to deal with the aforementioned situations, the proposed recon-
figuration block makes use of a structure typical of many MPC applications (see Section
2.1). This approach consists of two layers: an optimization layer responsible for computing
steady state targets for the faulty plant and a second one that computes control actions
in order to track the targets. The way these steps are connected is shown in Figure 5, in
which the reconfiguration block is inside the red dashed rectangle.



Chapter 3. The two-layer moving horizon virtual actuator 32

  

Sensors
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Figure 5 – The proposed reconfiguration block structure.

3.1.1 Target calculation

From the difference model described in 2.35, Equation 3.1 must hold in the
steady state supposing the system is undisturbed.

x̄∆(k + 1) = Ax̄∆(k) +Bmum(k)−Bpūp(k) (3.1a)

ȳ∆(k) = Cx̄∆(k) (3.1b)

in which x̄∆ ∈ Rnx , ūp ∈ Rnu and ȳ∆ ∈ Rny represent steady states, inputs and outputs of
the faulty plant, respectively.

When the process is subjected to faults, the origin of the system may not be
reachable, causing the controlled variables to present steady state offset. Then, new steady
states can be computed by solving the following optimization problem.

min
x̄∆(k),ūp(k),η(k)

Vt := ȳT∆(k)Qtȳ∆(k) + (ūp(k)− usp(k))T Rt (ūp(k)− usp(k)) (3.2)

+ ηT (k)Stη(k) (3.3)

subjected to:

(I − A) x̄∆(k) +Bpūp(k) = Bmum(k) (3.4)

η(k) + ȳ∆min ≤ Cx̄∆(k) ≤ ȳ∆max + η(k) (3.5)

ymin ≤ Cx̄∆(k) ≤ ymax (3.6)

umin ≤ ūp(k) ≤ umax (3.7)

However, when the model used by the reconfiguration block does not represent
the true faulty plant, the targets can be sub-optimal and even unreachable. In fact, this is
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known to happen in real control applications in which the true plant is often nonlinear.
Besides plant nonlinearities, the post-fault model can also be wrong if the fault magnitude
is misidentified by the FDD system.

In this sense, we can remove the steady state offset by including disturbances
estimates in the targets calculation. To do so, we build a disturbance model by augmenting
the post-fault model with disturbances. From the post-fault model 2.34, we add terms that
represent disturbances affecting the system or the difference between model and plant due
to model mismatch, obtaining the model shown in 3.8, in which Bd ∈ Rnx×nd , Cd ∈ Rny×nd

and nd is the number of disturbances.

xp(k + 1) = Axp(k) +Bpup(k) +Bsus(k) +Bdd(k) (3.8a)

yp(k) = Cxp(k) + Cdd(k) (3.8b)

Then, using the nominal plant model, we can obtain the new difference model making
x∆(k) = xm(k)− xp(k):

x∆(k + 1) = Ax∆(k) +Bmum(k)−Bpup(k)−Bsus(k)−Bdd(k) (3.9a)

y∆(k) = Cx∆(k)− Cdd(k) (3.9b)

Therefore, the targets calculation can be reformulated as in the following
optimization problem.

min
x̄∆(k),ūp(k),η(k)

Vt := ȳT∆(k)Qȳ∆(k) + (ūp(k)− usp(k))T R (ūp(k)− usp(k)) (3.10)

+ ηT (k)Sη(k) (3.11)

subjected to:

(I − A) x̄∆(k) +Bpūp(k) = Bmum(k)−Bsus(k)−Bdd(k) (3.12)

η(k) + ȳ∆min + Cdd(k) ≤ Cx̄∆(k) ≤ ȳ∆max + Cdd(k) + η(k) (3.13)

ymin ≤ Cx̄∆(k) ≤ ymax (3.14)

umin ≤ ūp(k) ≤ umax (3.15)

3.1.2 Moving Horizon Virtual Actuator

Thus, we formulate the moving horizon-based problem responsible for tracking
the targets x̄∆, ūp and ȳ∆. So, the objective function can be written according to 3.16.

Vv :=
∞∑
j=k

(
x∆(j)− x̄∆(k)

)T
Qv

(
x∆(j)− x̄∆(k)

)

+
∞∑
j=k

(
up(j)− ūp(k)

)T
Rv

(
up(j)− ūp(k)

)

+
∞∑
j=k

∆uTp (j)Sv∆up(j)

(3.16)
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Problem solution

By applying the Equation 3.9 along a prediction horizon Nv, we obtain 3.17.

X∆(k + 1) = Φx∆(k) + ΓmUm(k) + ΓpUp(k) + ΓsUs(k) + ΓdUd(k) (3.17)

with

X∆(k + 1) =


x∆(k + 1)
x∆(k + 2)

...
x∆(k +Nv)

 , Φ =


A

A2

...
ANv

 , Um(k) =


um(k)
um(k)

...
um(k)

 ,

Up(k) =


up(k + 1)
up(k + 2)

...
up(k +Nv − 1)

 , Us(k) =


us(k)
us(k)

...
us(k)

 , Ud(k) =


d(k)
d(k)
...

d(k)

 ,

Γm =


Bm 0 . . . 0
ABm Bm . . . 0
... ... . . . ...

ANv−1Bm ANv−2Bm . . . Bm

 , Γp =


Bp 0 · · · 0
ABp Bp · · · 0
... ... . . . ...

ANv−1Bp ANv−2Bp · · · Bp

 ,

Γs =


Bs 0 · · · 0
ABs Bs · · · 0
... ... . . . ...

ANv−1Bs ANv−2Bs · · · Bs

 , Γd =


Bd 0 · · · 0
ABd Bd · · · 0
... ... . . . ...

ANv−1Bd ANv−2Bd · · · Bd

 .

Since the targets are considered constant along the prediction horizon, we can
write 3.17 using steady state values according to 3.18.

X̄∆(k) = Φx̄∆(k) + ΓmUm(k) + ΓpŪp(k) + ΓsUs(k) + ΓdUd(k) (3.18)

with

X̄∆(k) =


x̄∆(k)
x̄∆(k)

...
x̄∆(k)

 , Ūp(k) =


ūp(k)
ūp(k)

...
ūp(k)

 .

Then we can simplify the problem by changing the system origin so we define x̃∆ = x∆− x̄∆

and ũp = up − ūp and subtract 3.18 from 3.17, obtaining 3.19.

X̃∆(k + 1) = Φx̃∆(k) + ΓpŨp(k) (3.19)



Chapter 3. The two-layer moving horizon virtual actuator 35

So the value of the control objective is given as follows

Vv(k) = x̃T∆(k)Qx̃∆(k) +


x̃∆(k + 1)
x̃∆(k + 2)

...
x̃∆(k +Nv)



T


Q 0 · · · 0
0 . . . . . . ...
... . . . Q 0
0 · · · 0 P




x̃∆(k + 1)
x̃∆(k + 2)

...
x̃∆(k +Nv)



+


ũp(k)

ũp(k + 1)
...

ũp(k +Nv − 1)



T


R 0 · · · 0
0 R

. . . ...
... . . . . . . 0
0 · · · 0 R




ũp(k)

ũp(k + 1)
...

ũp(k +Nv − 1)



+


∆ũp(k)

∆ũp(k + 1)
...

∆ũp(k +Nv − 1)



T


S 0 · · · 0
0 S

. . . ...
... . . . . . . 0
0 · · · 0 S




∆ũp(k)

∆ũp(k + 1)
...

∆ũp(k +Nv − 1)



(3.20)

Then 3.20 can be rewritten as 3.21 using the prediction given by 3.19.

Vv(k) = x̃T∆(k)Qx̃∆(k) + X̃T
∆(k + 1)Q̄X̃∆(k + 1) + ŨT

p (k)R̄Ũp(k)

+ ∆ŨT
p (k)S̄∆Ũp(k)

(3.21)

Given the previous control action ũp(k − 1), we can write Ũp(k) in terms of ∆Ũp(k)
according to 3.22, in which Iu is the identity matrix with dimensions nu × nu.

Ũp(k) =

M1︷ ︸︸ ︷
Iu

Iu
...
Iu

 ũp(k − 1) +

M2︷ ︸︸ ︷

Iu 0 · · · 0
Iu Iu

. . . ...
... ... . . . 0
Iu Iu · · · Iu

∆Ũp(k) (3.22)

Then 3.20 can be expanded as follows

Vv(k) = x̃T∆(k)Qx̃∆(k) + x̃T∆(k)ΦTQΦx̃∆(k) + ũTp (k − 1)MT
1 ΓTp Q̄ΓpM1ũp(k − 1)

+ ∆ŨT
p (k)MT

2 ΓTp Q̄ΓpM2∆Ũp(k) + ũTp (k − 1)MT
1 R̄M1ũp(k − 1)

+ ∆ŨT
p (k)MT

2 R̄M2∆Ũp(k) + 2x̃T∆(k)ΦT Q̄ΓpM1ũp(k − 1)

+ 2x̃T∆(k)ΦT Q̄ΓpM2∆Ũp(k) + 2ũTp (k − 1)MT
1 R̄M2∆Ũp(k)

+ ∆ŨT
p (k)S̄∆Ũp(k)

(3.23)

Now we can write the control objective in the standard form of a quadratic
programming problem

Vv(k) = 1
2∆ŨT

p (k)H∆Ũp(k) + gT∆Ũp(k) + c (3.24)



Chapter 3. The two-layer moving horizon virtual actuator 36

with

H = 2
(
MT

2 R̄M2 +MT
2 ΓTp Q̄ΓpM2 + S̄

)
g = 2

(
MT

2 ΓTp Q̄Φx̃∆(k) +MT
2 ΓTp Q̄ΓpM1ũp(k − 1) +MT

2 R̄M1ũp(k − 1)
)

c = x̃T∆(k)Qx̃∆(k) + x̃T∆(k)ΦT Q̄Φx̃∆(k) + ũTp (k − 1)MT
1 ΓTp Q̄ΓpM1ũp(k − 1)

+ ũTp (k − 1)MT
1 R̄M1ũp(k − 1) + 2x̃T∆(k)ΦT Q̄ΓpM1ũp(k − 1)

3.2 Illustrative example

The following illustrative example aims to show the advantage of incorporating
the zone control strategy in target calculation problem in order to obtain operating points
that attend control objectives. In the next chapter we will cover the case in which there
is model mismatch as well as wrong identification of the post-fault model. Although the
following application example is based on simulations, in the next chapter we will present
experimental results of a pH neutralization plant.

3.2.1 The quadruple-tank process

The quadruple-tank process (JOHANSSON, 2000) is a laboratory process that
was designed to illustrate various concepts in control design of multivariable processes.
The plant consists of four water tanks and two pumps. A schematic diagram is depicted in
Figure 6. The system has adjustable zero, which allows to operate with either minimum
or nonminimum phase conditions by simply changing valves setting. The goal is to control
both lower tanks by manipulating the speed of the pumps. Therefore, the system has two
inputs v1 and v2 that are input voltages to pump 1 and 2, respectively; and two outputs1

y1 and y2, which are the level of tank 1 and 2, respectively.
The mathematical model can be obtained from mass balances and Bernoulli’s

law as follows

dh1

dt
= − a1

A1

√
2gh1 + a3

A1

√
2gh3 + γ1k1

A1
v1 (3.25)

dh2

dt
= − a2

A2

√
2gh2 + a4

A2

√
2gh4 + γ2k2

A2
v2 (3.26)

dh3

dt
= − a3

A3

√
2gh3 + (1− γ2) k2

A3
v2 (3.27)

dh4

dt
= − a4

A4

√
2gh4 + (1− γ1) k1

A4
v1 (3.28)

with variables described in Table 1.
1 The outputs of the original plant are voltages provided by level measurement devices.
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Tank 3 Tank 4

Tank 1 Tank 2

Reservoir Tank

Pump 1 Pump 2

Figure 6 – Schematic diagram of the quadruple-tank process.

Table 1 – Variables of the quadruple-tank process model.

Symbol Significance
hi water level of tank i
ai cross-section area of outlet pipe of tank i
Ai cross-section area of tank i
γ1 ratio of water diverting to tanks 1 and 4
γ2 ratio of water diverting to tanks 2 and 3
ki gain of pump i
g acceleration of gravity

Parameters values of the laboratory plant used by Johansson (2000) are given
in Table 2.

A linear state-space model that describes the plant around a given operating
point is obtained according to Equations 3.29 and 3.30.

dx(t)
dt

=


− 1
τ1

0 A3
A1τ3

0
0 − 1

τ2
0 A2

A4τ4

0 0 − 1
τ3

0
0 0 0 − 1

τ4

x(t) +



γ1k1
A1

0
0 γ2k2

A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

u(t) (3.29)
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Table 2 – Parameters of the quadruple-tank process.

Parameter Value Units
A1, A3 28 cm2

A2, A4 32 cm2

a1, a3 0.071 cm2

a2, a4 0.057 cm2

k1 3.33 cm3/Vs
k2 3.35 cm3/Vs
g 981 cm/s2

y(t) =
1 0 0 0

0 1 0 0

x(t) (3.30)

in which x(t) = h(t)− h0 and u(t) = v(t)− v0 are deviations from the operating points
and the time constants are defined as

τi = Ai
ai

√√√√2h0
i

g
, i ∈ {1, 2, 3, 4}.

Linear model matrices are computed by considering an operating point given in
(JOHANSSON, 2000), in which the valve settings correspond to a minimum phase system.
The operating point is given in Table 3.

Table 3 – Operating point of the quadruple-tank process.

Variable Value Units
h0

1 12.4 cm
h0

2 12.7 cm
h0

3 1.8 cm
h0

4 1.4 cm
v0

1 3.0 V
v0

2 3.0 V
γ1 0.7 -
γ2 0.6 -

The discretization of the linear system is performed using the Scilab function
dscr with a sampling period Ts = 1 s. The following discrete-time system is obtained:

x(k + 1) =


0.9842 0 0.0407 0

0 0.9890 0 0.0326
0 0 0.9590 0
0 0 0 0.9672

x(k) +


0.0826 0.0010

0 0.0625
0.0005 0.0469
0.0307 0

u(k) (3.31)

y(k) =
1 0 0 0

0 1 0 0

x(k) (3.32)
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As proposed in (JOHANSSON, 2000), decentralized PI controllers are applied
with the following output-input pairing: y1 − u1, y2 − u2. The control law is given in 3.33
in which ` denotes the closed-loop, e(k) = y(k)− ysp(k) where ysp is the setpoint and Kc

and τi are tuning parameters given in Table 4.

u`(k) = u`(k − 1) +Kc`

(
e`(k)− e`(k − 1) + Ts

τi`
e`(k)

)
, l ∈ {1, 2} (3.33)

Table 4 – Tuning parameters of the PI controllers applied to the quadruple-tank process.

Closed-loop Kc (V/cm) τi (s)
y1 − u1 3.0 30
y2 − u2 2.7 40

As already mentioned, we aim to control the levels of the lower tanks. However,
modern industrial plants may have complex control loops with multiple objectives and
priority rules. For example, variables with higher economic value or that involve safety
hazards may have control priority over the less important ones. Such priorities should
exist especially in situations of lack of degrees of freedom which may occur during fault
scenarios with actuator losses.

In order to illustrate these situations, we assume that y1 is an important variable
so the control of y1 is prioritized over y2. Also, acceptable control zones instead of setpoints
will be considered during fault scenarios. Then, y1 and y2 should lie inside a zone around
their setpoint values. These limits are summarized in terms of y∆min

and y∆max in Table 5.

Table 5 – Control zones during fault scenarios.

Zone limit Value (cm)

y∆min
− [1, 2]T

y∆max [1, 2]T

Process constraints given in Table 6 were considered for the purpose of per-
forming the simulations. Outputs constraints were computed by taking into account the
operating point (Table 3) as well as tank dimensions given in (JOHANSSON, 2000).

3.2.2 Simulation results

In the following simulations2, we change the setpoint at time t = 1 min from
[ysp1 , ysp2 ]T = [0, 0]T to [ysp1 , ysp2 ]T = [4, 0.5]T . All the results are shown in deviation
variables.
2 Simulations were carried out using Scilab, a free and open-source software for numerical computation

(<http://www.scilab.org>).

http://www.scilab.org
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Table 6 – Process constraints in deviation variables.

Constraint Value

umax [4, 4]T V
umin − [1, 1]T V

∆umax [0.5, 0.5]T V
∆umin − [0.5, 0.5]T V
ymax [7.6, 7.3]T cm
ymin − [12.4, 12.7]T cm

Normal operation

The process response in normal operating situation is shown in Figure 7. In
addition, Figure 8 shows the setpoint and final value of controlled variables, as well as
their feasible space respecting the plant constraints. The process stabilized at the setpoint
[ysp1 , ysp2 ]T = [4, 0.5]T , as expected in fault-free situations.

Scenario 1a

In Figure 9 a fault is inserted at time t = 5 min, when the input u1 remains
locked in u1 = 0.5. The control of y2 is not compromised, since the input u2 remains
functional. However, y1 stabilized with an offset error and the output of the controller
reached the upper limit of u1. We can observe in Figure 10 the new feasible region after
the fault occurs, which is represented by just a line. It is also observed that controlled
variable y2 remained at its setpoint value, while the zone control of y1 was violated.

Scenario 1b

The same fault scenario was simulated with control reconfiguration after the
fault occurrence. The penalty matrices used in the two-layer MHVA are given in Table 7.

Table 7 – Penalty matrices of the two-layer MHVA in the Scenario 1a.

Parameter Value
Qt diag ([20, 10, 0, 0])
Rt diag ([1, 1])× 10−1

St diag ([0, 0])
Qv diag ([5, 1, 0, 0])
Rv diag ([1, 1])× 10−1

Sv diag ([1, 1])

Note that we have chosen Qt so the distance between the target and the setpoint
of y1 is more penalized in comparison to y2. In addition, we chose S null in this example
to disregard the zone control. The process response is presented in Figure 11, in which we
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observed that y1 stabilized closer to its control range, while y2 remained within its range.
Figure 12 illustrates the approximation of y1 towards its range. However, there is a region
where both variables are within their specified ranges. This region would be preferred in a
fault scenario according to the assumptions regarding control objectives.

Scenario 1c

Thus, a new simulation was performed activating the control zones by choosing
nonzero S. The tuning parameters os this scenario are given in Table 8. Note that this
value of S allows the control zone of y2 to be violated before the y1 one. The process
response (Figure 13) was similar to the previous case, but stabilized within the range
specified for both controlled variables. Figure 14 illustrates the steady state reached after
the fault occurrence. In this way, the use of nonzero penalty of slack variables increases
the attraction of targets to the control zone.

Table 8 – Penalty matrices of the two-layer MHVA in the Scenario 1b.

Parameter Value
Qt diag ([20, 10, 0, 0])
Rt diag ([1, 1])× 10−1

St diag ([105, 1])× 1010

Qv diag ([5, 1, 0, 0])
Rv diag ([1, 1])× 10−1

Sv diag ([1, 1])

Scenario 2a

In this scenario, a fault is inserted into the plant so that u1 remains locked
at the nominal equilibrium point, i.e. u1 = 0. The process response without control
reconfiguration is presented in Figure 15 and the steady state reached after the fault is
shown in Figure 16. Similar to the Scenario 1a, the nominal controller output concerning
u1 saturated at its upper limit, while the control of y2 was not affected, since the actuator
referring to u2 still remained functional.

Scenario 2b

Figure 17 shows the process response when the same fault of the previous
scenario is inserted into the plant and the control reconfiguration is performed with the
tuning parameters given in Table 7. The fault was hidden and the nominal controller
output signals remained the same as the fault-free scenario. However, it is interesting
to note that the system reached a steady state that violates the control zones of both
controlled variables, as shown in Figure 18. This occurs because, without the penalty of
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the zones violation, the targets are computed only by taking into consideration the penalty
of distances from setpoints.

Scenario 2c

Now we change the tuning parameters according to Table 8 and obtain the
results shown in Figure 19. In this case, the system stabilizes in a more interesting steady
state according to the control objectives (Figure 20). This time, y1 is held at the edge of
its control zone, while only the control zone of y2 is violated.
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Figure 7 – Process response after a setpoint change during normal operation.
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Figure 8 – Output space, setpoint and final value during normal operation.
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Figure 9 – Scenario 1a: the actuator related to u1 became stuck at 0.5 V.
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Figure 10 – Scenario 1a: Output space, setpoint and final value.
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Figure 11 – Scenario 1b: control reconfiguration without control zones when the actuator
related to u1 became stuck at 0.5 V.
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Figure 12 – Scenario 1b: Output space, setpoint and final value.
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Figure 13 – Scenario 1c: control reconfiguration with control zones when the actuator
related to u1 became stuck at 0.5 V.
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Figure 14 – Scenario 1c: Output space, setpoint and final value.
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Figure 15 – Scenario 2a: the actuator related to u1 became stuck at 0 V.
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Figure 16 – Scenario 2a: Output space, setpoint and final value.
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Figure 17 – Scenario 2b: control reconfiguration without control zones when the actuator
related to u1 became stuck at 0 V.
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Figure 18 – Scenario 2b: Output space, setpoint and final value.
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Figure 19 – Scenario 2c: control reconfiguration with control zones when the actuator
related to u1 became stuck at 0 V.
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Figure 20 – Scenario 2c: Output space, setpoint and final value.



CHAPTER 4

Application to an experimental
pH neutralization plant

4.1 The pH neutralization experiment

The use of pH control is widely found in many chemical and biotechnological
processes with applications ranging from the maintenance of pH within optimal ranges of
operation in fermentation processes to neutralization of industrial effluents that are later
destined to water bodies. In addition to its applicability, pH neutralization processes have
also been employed in the study and development of new control strategies due to their
high static nonlinearity, which represents a challenge from the point of view of controllers
design (HERMANSSON; SYAFIIE, 2015).

Thus, the ease of experimental design of the neutralization process as well as
the possibility of studying advanced control structures made possible the construction
of the experimental pH neutralization plant (Figure 21) located in the Laboratory of
Process Control and Automation (LCAP) of the School of Chemical Engineering at the
University of Campinas. The experimental set-up was constructed and initially operated
by Costa (2010) for his master dissertation in which he implemented a GPC controller
(Generalized Process Control) based on a network of local linear models (COSTA 2015a).
After, the plant was modified as described in Costa’s PhD thesis Costa (2014), allowing
the application of the moving horizon virtual actuator. Thus this plant has been used for
the experimental evaluation of the proposed reconfiguration block presented in this work.
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Figure 21 – The experimental pH neutralization plant.

4.1.1 Experimental apparatus description

The instrumentation diagram1 of the experimental pH neutralization process is
shown in Figure 22. The reactor is fed by four streams: two of nitric acid (HNO3) solution,
one of sodium hydroxide (NaOH) solution and one of sodium bicarbonate (NaHCO3)
solution. Concentration values of these streams were defined based on Costa (2014) and
are shown in Table 9.

Table 9 – Feed streams concentrations.

Chemical specie Name Stream Concentration (mol/L)
HNO3 nitric acid #1 1 0.0028
NaOH sodium hydroxide 2 0.0057
HNO3 nitric acid #2 3 0.0034

NaHCO3 sodium bicarbonate 4 0.03

In this plant, acid and base solutions are stored in tanks with 100 L capacity
whose outputs are connected to gear pumps magnetically coupled to motors that are
actuated by standard 4− 20 mA analog signal. The volumetric flow in these streams are
measured by positive-displacement flow sensors that send pulse signals to transmitters
that, in turn, convert to standard 4− 20 mA signal and send it to a Programmable Logic
Controller (PLC). PI (Proportional-Integral) controllers embedded in the PLC are used
to control the flow of these streams. The sodium bicarbonate buffer solution is stored in
1 Further information regarding brands and models of the equipment installed in the plant can be found

in Costa’s thesis (COSTA, 2014), in Portuguese.
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Figure 22 – Instrumentation diagram of the pH neutralization plant.

Source: Reproduced from Costa (2014) with author’s permission.

a 5 L tank and is sent to the reactor through a peristaltic pump whose flow can be set
manually by means of a potentiometer.

The reactor consists of a jacketed cylindrical vessel with nominal capacity of
6 L, height of 30 cm and base area of 201.06 cm2. A mechanical stirrer is used for mixing
the reaction medium into which is immersed an industrial pH electrode connected to a
pH transmitter and indicator. The level of the reaction medium is inferred by measuring
the hydrostatic pressure of the liquid by means of a pressure sensor located at the reactor
base.

The reactor effluent is collected in a 200 L storage tank where it is treated before
disposal. The liquid flow in the outlet stream can be carried out either by gravity or by
means of a positive displacement pump whose motor is connected to a variable-frequency
drive. A manual valve allows the operator to select the desired output flow setting. It
should be noted that level and pH control loops are highly coupled in the case of output
flow by gravity. On the other hand, the use of a pump in the outlet stream adds an
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integrating mode to the system dynamics. In this work the output flow by gravity was
used.

Also, there is a cooling system installed in the plant consisting of a thermal
bath and a positive displacement pump that circulates the utility fluid (propylene glycol
solution) through the reactor jacket. However, this cooling system was not used in this
work.

4.1.2 Plant model

In order to obtain a phenomenological model for the pH neutralization system,
we use theoretical concepts presented in (GUSTAFSSON; WALLER, 1983; GUSTAFSSON
et al., 1995; HENSON et al., 1994).

In general, acid-base systems models consist of mass balances for hydrogen
and hydroxide ions as well as for ampholytes and weak acids and bases. Since acid-base
reactions between diluted components usually have high reaction rates, we can consider
the system is approximately at equilibrium so additional algebraic state equations may be
used (GUSTAFSSON; WALLER, 1983).

Reactions between strong acid and base as well as carbonates ions are present
in the system reactor described above. Considering the equilibrium is approached, we may
write the following dissociation reactions:

H2O −−⇀↽−− H+ + OH− (4.1)

H2CO3 −−⇀↽−− H+ + HCO−3 (4.2)

HCO−3 −−⇀↽−− H+ + CO2−
3 (4.3)

The ionic product of water is given in 4.4 and equilibrium relations between chemical
species in 4.2 and 4.3 are given by 4.5 and 4.6, respectively.

Kw = [H+][OH−] (4.4)

Ka1 = [HCO−3 ][H+]
[H2CO3] (4.5)

Ka2 = [CO2−
3 ][H+]

[HCO−3 ]
(4.6)

The electroneutrality condition and the mass balance for the weak acid and its conjugates
species are described by the reaction invariants 4.7 and 4.8, respectively, for each reactor
inlet i.

Wai = [H+]i − [OH−]i − [HCO−3 ]i − 2[CO−3 ]i (4.7)

Wbi = [H2CO3]i + [HCO−3 ]i + [CO2−
3 ]i (4.8)
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Then, mass balance equations can be written as follows

Abh
dWa

dt
= q1 (Wa1 −Wa) + q2 (Wa2 −Wa) + q3 (Wa3 −Wa) + q4 (Wa4 −Wa) (4.9)

Abh
dWb

dt
= q1 (Wb1 −Wb) + q2 (Wb2 −Wb) + q3 (Wb3 −Wb) + q4 (Wb4 −Wb) (4.10)

Ab
dh

dt
= q1 + q2 + q3 + q4 − q (4.11)

in which Ab denotes the reactor base area, h is the reactor level, qi denotes the inlet i flow
rate and q is the outlet flow rate.

Finally, from 4.7 and 4.8 we can obtain an implicit nonlinear equation that
relates the reaction invariants Wa and Wb to the pH of the medium according to 4.12.

Wa + 10pH−14 − 10−pH +Wb
1 + 2× 10pH−pKa2

1 + 10pKa1−pH + 10pH−pKa2
= 0 (4.12)

with

pH = − log
(
[H+]

)
(4.13)

pKai = − log (Kai) , i ∈ {1, 2} (4.14)

Following the steps described in (COSTA, 2014) and considering the operating
point given in Table 10, we obtain the discrete-time linear model given in 4.15 and 4.16.

Table 10 – Operating point of the pH neutralization plant.

Variable Value Units
W 0
a −4.6627× 10−4 mol/L

W 0
b 6.5059× 10−4 mol/L

h0 19.57 cm
pH0 6.75 -
q0

1 29 L/h
q0

2 29 L/h
q0

3 29 L/h
q0

4 1.93 L/h

x(k + 1) =


0.8820 0 0

0 0.8820 0
0 0 0.9470

x(k) +


1.5878 −2.5102 1.8008
−0.3108 −0.3108 −0.3108
0.0968 0.0968 0.0968

u(k) (4.15)

y(k) =
 0 0 1
−0.0328 −0.0235 0

x(k) (4.16)

with

x(k) =


Wa(k)−W 0

a

Wb(k)−W 0
a

h(k)− h0

 , u(k) =


q1(k)− q0

1

q2(k)− q0
2

q3(k)− q0
3

 , y(k) =
 h(k)− h0

pH(k)− pH0


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4.2 Experimental results

4.2.1 Normal operation

In the plant start-up, all the inlet flow rates were set up at their nominal steady
state values. Then, the controller was turned on when reactor level reached about 70%.
Initially, the setpoint for the level and pH were 20 cm and 8, respectively. At time 10 min
the pH setpoint was changed to 8.8. Figure 23 shows the process response. Although the
process was not at the steady state in the beginning of the experiment, the controlled
variables were driven to their setpoint values before the pH setpoint change. After the pH
setpoint change the reactor level was not disturbed since the control loops are decoupled.

4.2.2 Actuator fault scenarios

Scenario 1a

An actuator fault was inserted at time t = 15 min in which the actuator related
to the acid #1 flow rate became stuck. This was performed by setting q1 to 32 L/h and
disregarding the nominal controller output for this variable. The results have shown steady
state error in both pH and level as expected since only one actuator was functioning after
the fault occurrence (Figure 24). It should be noticed that the system control resulted in
steady state error in both variables because it was operating with decoupled control loops.
Otherwise, in a coupled loops situation, we would expect an offset only in the reactor level.

Scenario 1b

In this scenario, the same fault described in Scenario 1a was inserted in the
experiment. However, the control loop was reconfigured immediately after the fault
occurrence. The results are shown in Figure 25. The offset was removed only in the pH,
but it was increased in the level. This occurs because the system does not have sufficient
degrees of freedom to drive both variables to their setpoints. In this case, there is a tradeoff
between removing the offset of one or other controlled variable. Then, supposing that the
pH is a more important variable and must be as close as possible to its setpoint, it was
prioritized over the reactor level. In addition, the target level was computed to suit the
new steady state.

Also, the fault was hidden from nominal controller perspective. Then the
nominal plant output signal ym was driven to the setpoint in both controlled variables
and the output of the nominal controller did not saturate at the limit of q2.
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Figure 23 – Process response after a pH setpoint change during normal operation.
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Figure 24 – Scenario 1a: the actuator related to q1 became stuck at 32 L/h.
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Figure 25 – Scenario 1b: the actuator related to q1 became stuck at 32 L/h and control
reconfiguration occurred immediately.
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Scenario 1c

Again, the system is subjected to the same fault described in scenario 1a, but
in this case the control reconfiguration is performed 3 minutes after the fault occurrence.
In fact, the delay between the fault occurrence and control reconfiguration is expected
in real situations in which fault detection is only performed when online indexes are out
of stipulated thresholds or when process dynamics begins to be compromised depending
on the detection method used. In addition, the diagnostic step can take several sampling
times to determine a reliable post-fault model.

In this case, the results shows the pH value tended to present offset after the
occurrence of fault, but this trend was interrupted after the control reconfiguration and
the offset was removed. The targets for the level were calculated according to the new
steady state. Since the fault hiding depends on the availability of the post-fault model, it
only occurred after the control reconfiguration. Even though, the nominal plant output
signals were driven to their setpoints and the nominal controller output did not saturate
in q2 lower limit.

Since the same fault occurred in scenarios 1b and 1c, it was expected that
the steady state deviation of the reactor level from its setpoint would be similar in both
cases. However, the use of tap water to prepare the solutions can generate situations with
different levels of buffering agents in each experiment, leading to distinct steady states.

Scenario 2a

In this scenario, a fault was inserted into the base solution stream at time
t = 15 minutes, blocking the actuator at its upper limit. Then, the flow rate of this stream
was maintained at 40 L/h, disregarding the output signal from the nominal controller for
this actuator. Figure 27 shows the process response a pH setpoint change from 8 to 8.8
and after the occurrence of fault in a case where the control loop is not reconfigured and
remains with the actuation of the nominal controller.

As a result of the fault in the system both level and pH presented steady state
deviation from the desired setpoint. If the control loops were not decoupled, only the pH
would present offset since it was the manipulated variable used to control the pH that was
blocked. The nominal controller output related to q2 has saturated at its lower limit. This
is because this signal has no effect on the plant which causes the pH error to remain and
then makes controller to indefinitely increase the signal until it reaches saturation.

Scenario 2b

The same fault of the previous scenario was inserted in the system, but in this
case the control reconfiguration was performed 3 minutes after the fault occurrence. Figure
28 shows the data collected from the plant. The system had the same tendency to present
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Figure 26 – Scenario 1c: the actuator related to q1 became stuck at 32 L/h and control
reconfiguration was performed 3 minutes after the fault occurrence.
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Figure 27 – Scenario 2a: the actuator related to q2 became stuck at its upper limit of
40 L/h.
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offset, however new targets were calculated after the control reconfiguration and the pH
stabilized around 9 instead of 10, as in the previous scenario.

It is interesting to note that, although the control reconfiguration has occurred,
both controlled variables remained with steady state error from the setpoint. This happened
because it was not possible to transfer all the deviation to the level, since its target reached
its upper limit of security, that is, 26 cm to prevent the reactor from overflowing. Thus,
the pH was prioritized to a certain extent and, for safety reasons, the acid stream flow
rate could not be increased to bring the pH back to 8.8.

Just after the control reconfiguration at time t = 18 min, the pH target
was initially computed around 10, but it was continuously updated as new estimates of
disturbances are made. This occurs because between t = 15 min and t = 18 min the
estimate of states and disturbances were based on a wrong model and this estimated
values were used as the initial condition for estimating states and disturbance based on
the post-fault model from t = 18 min.

Scenario 2c

It is intended to evaluate now the case in which the fault diagnosis system fails
in detecting the right position of the stuck actuator, thus generating a wrong post-fault
model. Thus, the same fault as the previous scenario is inserted, but an identification
error is assumed so the actuator became stuck at 29 L/h. The results for this scenario are
shown in Figure 29.

The target of the level initially tends to present a negative deviation from the
setpoint, but it was updated until reaching the maximum allowed limit of 26 cm. This is
explained by the fact that the observer makes estimates of states and disturbances using
the nominal model until t = 18 min and, from that moment on, it uses the post-fault
model with the wrong stuck position. In fact, if the true stuck position of q2 were 29 L/h,
a lower acid flow rate would be required to reduce the pH to its setpoint of 8.8, causing
the level to stabilize at a lower value.

Another interesting thing to note is that the pH target differed from the setpoint
only when the target of the level reached its upper limit with the estimate of disturbances.
In addition, the steady state pH deviation was similar to the previous scenario, as expected.

Finally, the output signals of the nominal plant were driven to their setpoints
and the fault was hidden.
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ȳp ysp ym yp
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Figure 28 – Scenario 2b: the actuator related to q2 became stuck at 40 L/h and control
reconfiguration was performed 3 minutes after the fault occurrence.
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Figure 29 – Scenario 2c: the actuator related to q2 became stuck at 40 L/h, control
reconfiguration was performed 3 minutes after the fault occurrence and the
blocked position was misdetected at 29 L/h.



CHAPTER 5

Conclusions and future research
directions

A moving horizon virtual actuator with target tracking was proposed as an
extension of recent works (COSTA et al., 2013; COSTA, 2014; COSTA et al., 2015). This
approach is based on the two-layer MPC framework used in most industrial applications
and that comprises basically three elements: a state and disturbance estimator, an external
optimizer to perform target calculation and the moving horizon-based controller itself.

In addition, the proposal contemplates constraints in the deviation between
nominal and faulty plant behaviors. It can be argued that one way to prioritize the reference
of a controlled variable so that it approaches its setpoint value is the configuration of the
weights in the Qt matrix. However, the use of constraints in y∆ allows to meet process
requirements, such as security criteria or product specifications. In addition, the use of
an augmented model in the estimation of states and disturbances allows the steady state
targets to not be compromised by modeling errors, especially in the post-fault model
provided by the FDD system.

In general, cases of actuator loss without the availability of redundancies in
the system represent a greater challenge in terms of fault accommodation. As mentioned,
insufficient degrees of freedom in the system can affect the controllability of the plant,
making setpoints unreachable in some cases. Therefore, in order to investigate these
situations, we considered scenarios in which there are no redundancies to be triggered
after the occurrence of faults.

The proposed reconfiguration block was applied to a quadruple-tank process.
Simulation results demonstrated the advantage of using the zone control in fault situations,
allowing the stabilization of the process in more interesting operating points in comparison
to the targets calculation without the approach by zones. In fact, it has been shown that



Chapter 5. Conclusions and future research directions 72

simply penalizing the distance between the setpoints of controlled variables can lead to a
steady state condition that violates the specified ranges.

In addition, experiments were conducted in a pH neutralization plant. In this
step, we aimed to demonstrate situations in which there were errors in the fault model, by
the plant nonlinear dynamics as well as by the wrong identification of the actuators stuck
position. The results demonstrated the fault hiding from the point of view of the nominal
controller, allowing to drive the reconstructed signals ym to the setpoints. In addition, the
targets were continuously updated according to new disturbance estimates.

Future work may contemplate a combined design of observer and disturbance
model (PANNOCCHIA; BEMPORAD, 2007) before the reconfiguration of the control
loop as well as the extension of the virtual actuator using the multi-model approach for
robust MPC, as proposed by Badgwell (1997), which allows to consider uncertainties in
the process model, improving control performance.
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