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RESUMO  
 

A necessidade de métodos analíticos mais rápidos e com alta eficiência é o 

que move a pesquisa aplicada às áreas de ciência e análise de alimentos. A 

metabolômica é uma plataforma extremamente versátil, que integra dados 

estatísticos e experimentais na produção de resultados analíticos de alta 

confiabilidade. Aliado às técnicas modernas de espectrometria de massas, isso 

torna este segmento extremamente fértil para a realização de melhorias e 

desenvolvimento. Este projeto teve como escopo a análise direta de amostras 

de diversos alimentos com características funcionais, como azeites, amendoim 

e chocolates, com mínimo preparo de amostra, através de espectrometria de 

massas convencional (MS) e por imagem (MSI). Foram avaliadas 

características químicas de sua composição em casos de adulterações, 

degradações ou contaminações. Para tal finalidade, fontes de inonização como 

a dessorção a laser assistida por matriz (MALDI) e o spray de elétrons (ESI) 

foram amplamente exploradas. Toda a elucidação estrutural teve o respaldo de 

reações de fragmentação e análises por espectrometria de massas de alta 

resolução (ESI-Orbitrap). Os compostos (marcadores) foram tanto previamente 

definidos (target analysis) quanto identificados pós-análise (metabolic 

fingerprinting).  

 

 

Palavras chave: biomarcadores; análise de alimentos; espectrometria de 

massas. 

 

 

 



ABSTRACT 
 

The urge for faster and highly efficient analytical methods is the drive force in 

food research and analysis. Metabolomics is a versatile platform that integrates 

both statistical and experimental data, providing highly reliable analytical 

results. Along with the modern mass spectrometric techniques, there is a very 

prominent scenario for the development of new and improved approaches. This 

project aimed at developing direct analysis methods for samples of various 

functional food products, such as olive oil, peanuts and chocolate through both 

conventional mass spectrometry (MS) and mass spectrometry imaging (MSI), 

with little sample preparation. Chemical characterization, degradation and 

adulteration processes were abundantly monitored within this scope. Ionization 

sources, such as matrix-assisted laser desorption/ionization (MALDI) and 

electrospray ionization (ESI) were largely explored tools in this context. 

Structural elucidations were performed with the assistance of high-resolution 

mass spectrometry (ESI-Orbitrap). Chemical markers were either previously 

elected for a targeted analysis, or identified after the analytical process, as in 

metabolic fingerprinting. 

 

 

Keywords: biomarkers; food analysis; mass spectrometry 
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INTRODUÇÃO GERAL 

Nos últimos anos, tem-se criado uma grande tendência no investimento 

em pesquisas capazes de realizar análises essenciais para garantir a qualidade 

e a segurança de alimentos. A avaliação e o desenvolvimento de métodos 

analíticos adequados para as necessidades de um grande país produtor como 

o Brasil, bem como a natureza dos seus produtos, demandam a geração dados 

confiáveis e assertivos acerca dos alimentos comercializados ou 

potencialmente comercializáveis. O desenvolvimento de uma infraestrutura 

analítica eficiente garante à população alimentos de agregado valor nutritivo, 

com bom nível de segurança quanto a contaminantes e, portanto, de alta 

qualidade. Além disso, é possível também evitar a rejeição de produtos com 

potencial para exportação, respeitando os mais altos padrões de qualidade 

internacionais. Dessa forma, o uso de técnicas instrumentais rápidas, com alta 

precisão, exatidão, versatilidade e simplicidade operacional torna-se 

extremamente desejável dentro do escopo de análise de alimentos. [1, 2] 

Nesse segmento, figuram com grande destaque as técnicas baseadas em 

espectrometria de massas (MS). O desenvolvimento de novas fontes de 

ionização, as melhorias em analisadores (como o aumento da sensibilidade e 

especificidade) e a criação de sistemas de aquisição de dados com grande 

rapidez qualitativa e quantitativa contribuíram em grande escala para a 

aplicação da MS em análise de moléculas e ativos encontrados em alimentos. 

[3, 4] 

Tendo em vista esse promissor cenário, a espectrometria de massas 

tornou-se a principal ferramenta em metabolômica de alimentos. Com início no 
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final dos anos 90, a análise do metaboloma e a impressão digital metabólica 

(metabolic fingerprinting – MF) conquistaram grande aplicação em rotinas de 

análises de alimentos. [5, 6] Rapidez, fácil interpretação de dados e métodos 

simplificados na elucidação do perfil químico das amostras são características 

que trouxeram forte interesse na última década, tanto por parte da indústria e 

academia, para incorporar e desenvolver essas metodologias em laboratórios 

especializados. Some-se isso ao fato de o grande mercado econômico de 

produtos com alto valor nutricional e com garantida qualidade exigir estratégias 

analíticas altamente refinadas plataforma metabolômica estará em nível 

privilegiado, inclusive, nas próximas décadas. [5, 7]  

 

Metabolômica em Alimentos 

A definição mais aceita de Metabolômica é a de que esse ramo da 

ciência trata da pesquisa e análise qualitativa e/ou quantitativa de todos os 

metabolitos em um sistema ou processo bioquímico. [8] Esses metabólitos são 

intrínsecos ao nível de atividade bioquímica (ou fisiopatológica) desse 

organismo, via metabólica ou processo, facilitando sua correlação com o 

fenótipo ou resultado desenvolvido. A expansão da utilização de estratégias 

metabolômicas é salientada em estudos de diferentes áreas do conhecimento, 

como doenças humanas [9], toxicologia [10], análise de plantas [11], nutrição 

humana [12] e, mais recentemente, controle de qualidade e processo. [13, 14] 

De forma geral, a metabolômica é didaticamente dividida em duas 

estratégias: análise de moléculas-alvo (“target analysis”) ou análise de 

identidade amostral (“metabolic fingerprinting”). Como os próprios nomes 

sugerem, na primeira deseja-se obter dados sobre composição e/ou função 
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molecular de uma via metabólica ou molécula em particular, onde métodos 

bastante específicos são desenvolvidos para essa finalidade. Sua 

contrapartida, por sua vez, tem por finalidade estabelecer uma “impressão 

digital” da amostra, baseando-se em sinais característicos de um grupo 

particular de moléculas/classes de compostos presentes na mesma, 

estabelecendo um “padrão químico”, muitas vezes mesmo sem a necessidade 

de quantificação e/ou elucidação estrutural. [15] Os compostos identificados 

através destas estratégias metabolômicas podem ser validados e, 

posteriormente, utilizados como biomarcardores, também chamados de 

“compostos identificadores”, que conferem à amostra características 

importantes do ponto de vista de processamento, controle de qualidade, 

segurança e autenticidade de alimentos, sempre mediante a sua presença ou 

ausência. [16] 

Diferentes abordagens metabolômicas podem ser efetivamente 

empregadas na análise de contaminantes químicos e microbiológicos de 

alimentos. Diferentes fungos e bactérias contaminantes alimentares podem ser 

identificados através das técnicas utilizadas em metabolômica. Elas podem ser 

significativamente mais rápidas, baratas, eficazes e especificas do que 

algumas técnicas bioquímicas tradicionalmente empregadas; um bom exemplo 

é a utilização de MALDI-MS na rápida identificação de microrganismos. [17] As 

toxinas produzidas por microrganismos podem também ser determinadas e 

quantificadas através da plataforma metabolômica, como no exemplo de 

algumas classes de micotoxinas. [18] As análises de contaminantes vão além 

daqueles oriundos de fontes microbiológicas; os contaminantes químicos, como 

poluentes orgânicos persistentes (POPs), agrotóxicos geralmente empregados 
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como praguicidas no cultivo de matérias primas alimentares podem ser 

detectados por essas técnicas, num desafio ainda pouco explorado em 

metabolômica de alimentos [6, 19, 20] 

 

Técnicas de Espectrometria de Massas para Determinação de 

Substâncias em Alimentos utilizando a Plataforma Metabolômica. 

Apesar de a consolidação da espectrometria de massas como técnica de 

referência no âmbito de química analítica quali e quantitativa ter ocorrido já 

desde as décadas de 60 e 70, sua utilização em alimentos foi, por muito tempo, 

restrita por impedimentos tecnológicos. Estes foram contornados através de 

melhorias e desenvolvimento de duas das mais largamente distribuídas 

técnicas de ionização. Essa consequente popularização da ionização por spray 

de elétrons (ESI) [3] e da ionização por dessorção a laser assistida por matriz 

(MALDI) [4] ampliou enormemente a gama de aplicações de MS ao final dos 

anos 80 e início da década seguinte. Ademais, o desenvolvimento de novos 

analisadores e as melhorias nas técnicas e controle de reações de 

fragmentação molecular (MSn) permitiram a aplicação da espectrometria de 

massas altamente específica na elucidação estrutural de compostos, 

ampliando ainda mais seu leque na área de alimentos. Assim, segmentos como 

segurança alimentar e toxicologia de alimentos são desafios potencialmente 

auxiliados por meio desse desenvolvimento tecnológico. 

 

MALDI  

Essa técnica de ionização preconiza essencialmente a utilização de uma 

matriz, composta de moléculas orgânicas de caráter ácido e baixo peso 
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molecular, para o recobrimento da amostra. Um feixe de laser (infravermelho 

ou ultravioleta) incide e vaporiza a amostra recoberta com matriz e esta, por 

suas características químicas, auxilia a ionização dos analitos presentes na 

amostra através da doação ou retirada de íons H+, podendo gerar íons 

positivos do tipo [M + H]+ ou negativos do tipo [M – H]-. As moléculas ionizadas 

e no estado gasoso são analisadas e, posteriormente, detectadas. [4] Em 1997, 

Caprioli et al. introduziram a técnica de MALDI acoplada à espectromeria de 

massas por imagem (MSI), na qual imagens químicas são geradas a partir de 

espectros de massas adquiridos ponto-a-ponto (pixels) em uma superfície de 

amostra qualquer. Essa introdução da MSI possibilitou a identificação e 

colocalização de compostos in situ em virtualmente qualquer tipo de amostra, 

num plot que pode ser em duas ou três dimensões. [21, 22]. 

A aplicação dessa técnica em alimentos se deu recentemente, quando 

pesquisadores japoneses caracterizaram antocianinas presentes no pericarpo 

de arroz negro de forma direta [23]. Esse trabalho elucida de maneira excelente 

o potencial da MSI em alimentos, pois fornece dados de distribuição espacial, 

tanto em relação às substâncias benéficas quanto à presença e localização de 

contaminantes químicos e/ou microbiológicos. 

 

ESI-MS  

O processo de ionização por spray de elétrons forma moléculas tanto 

positivamente quanto negativamente carregadas (cátions e ânions, 

respectivamente). Isso depende do tipo de solução na qual a amostra se 

encontra: soluções ácidas favorecem a formação de cátions e soluções 

negativas, ânions. Em ambos os casos, os íons são formados em solução, que 

é submetida a um spray eletrolítico que oxida os íons negativos, deixando as 
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gotas produzidas no spray com excesso de íons positivos (ESI positivo), ou 

alternativamente através da redução dos íons positivos, com excesso de íons 

negativos (ESI negativo). O feixe de íons é colimado, formando o “cone de 

Taylor” e, através de contra-corrente de nitrogênio, o solvente começa a ser 

evaporado e o volume das gotas começa a ser gradativamente reduzido.  

 

Ocorre então repulsão crescente entre íons de mesma carga, com 

possível subdivisão (decomposição) das gotas, e estes íons são eventualmente 

transferidos para a fase gasosa em um processo brando e eficaz 

(dessolvatação). A partir desta etapa, operam os processos normais de análise, 

seleção e detecção de íons na fase gasosa por MS [3]. 

 

Espectrometria de Massas de Alta Resolução  

A alta resolução é dada pela capacidade de um instrumento de massas 

em identificar um composto com alto grau de certeza, baseado na relação 

massa/carga (m/z) do mesmo, utilizando como parâmetro a massa exata de 

cada isótopo dos elementos que o compõem. Essa capacidade de resolver 

sinais distintos é dada na unidade de medidas FWHM, onde quanto maior seu 

valor, maior a resolução do instrumento. Os erros de massas, desvios 

existentes entre o valor medido e o valor real da massa exata, são dados 

partes por milhão (ppm) sendo desejável, portanto, um resultado com o menor 

erro possível expresso em ppm. Além da alta resolução e exatidão, essa 

técnica destaca-se por fornecer informações que atuam na elucidação 

estrutural de moléculas desconhecidas, sendo possível atribuir fórmulas 

moleculares (CcHhNnOoSs) inequivocamente para medidas de baixa massa 

molar (< 450 u.m.a.) utilizando o princípio de massas exatas e defeitos de 
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massas. [24] Devido à complexidade das matrizes alimentares, instrumentos 

analíticos de resolução de massa limitada podem levar a resultados imprecisos. 

Espectrômetros de massas com analisadores do tipo Orbitrap comercializados 

já alcançam experimentalmente resoluções de até 500.000 FWHM com erros 

de massas inferiores a 1 ppm tendo, portanto, excelente aplicabilidade na área 

de alimentos.  

 

Reações de Fragmentação (MSn)  

Outra ferramenta auxiliar na elucidação estrutural são as reações de 

fragmentação de íons, também chamadas de MS/MS ou espectrometria de 

massas em tandem. Diversos instrumentos suportam essa função, 

especialmente os híbridos, com dois ou mais tipos de analisadores 

combinados. Exemplos clássicos são os analisadores de massas do tipo triplo 

quadrupolo (QqQ), quadrupolo-ion trap (LTQ) ou mesmo quadrupolo-time-of-

flight (qTOF). Nesse tipo de experimento, elege-se um íon precursor de m/z 

conhecida e o mesmo é “bombardeado” por átomos de um gás inerte (He, Ar), 

que fragmenta a molécula inicial, gerando íons-produto. Esses, por sua vez, 

auxiliam na elucidação da estrutura do íon precursor, já que o padrão de 

fragmentação de uma molécula é, em grande parte, único. 
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OBJETIVOS 
 

 
Objetivo Geral 

 

Propor novas metodologias de análise direta de alimentos utilizando a 

plataforma metabolômica em conjunto com novas técnicas de ionização e 

analisadores em espectrometria de massas. 

 

Objetivos específicos 

 

a. Utilizar as metodologias desenvolvidas tanto para monitorar compostos 

funcionais quanto contaminações em diferentes matrizes alimentares, 

resguardando aspectos de segurança alimentar e nutrição. 

b. Minimizar ou eliminar o preparo de amostras na analises de alimentos, 

diminuindo custos, tempo e principalmente o consumo de solventes 

orgânicos, adequando-se aos parâmetros de química verde. 
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CAPÍTULO I 
 

Análise direta e simultânea de compostos tóxicos e 
funcionais em amendoins 
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Rapid and simultaneous in situ assessment of Aflatoxins and 
Stilbenes using Silica Plate Imprinting Mass Spectrometry 

Imaging 
 

Diogo Noin de Oliveira, Mônica Siqueira Ferreira, Rodrigo Ramos Catharino 
 
 

 

Abstract: A fast and direct combination of techniques for simultaneous 

mycotoxin and phytoalexin identification in peanut skin and kernel is described. 

Silica Plate Imprinting Laser Desorption/Ionization Mass Spectrometry Imaging 

(SPILDI-MSI) is a powerful technique that exhibits great advantages, such as 

solvent-free and matrix-free characteristics, as well as no sample preparation or 

separation steps. It also permits accurate identification of mycotoxins and 

phytoalexins with unique fingerprint profiles in just a few seconds. Results are 

expressed as chemical images of the four identified types of aflatoxins (B1, B2, 

G1 and G2) and a stilbenoid (resveratrol). In addition, SPILDI-MSI allows the 

comparison between the spatial distribution of aflatoxins and resveratrol found 

in kernel and skin. This novel application has proven to be useful for 

instantaneous qualitative assessment of aflatoxins and stilbenoids both in the 

peanut skin and kernel and offers precise tracking of fungal contamination in 

nuts and other foodstuffs. 

 

 

Keywords: aflatoxinas; SPILDI-MS; peanuts; resveratrol 
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Introduction 

Mycotoxins have been more closely monitored in the past decades due to 

their harsh effects observed in humans and animals; potent toxic effects in 

humans and animals have been related to these molecules, such as 

cytotoxicity, carcinogenicity, mutagenicity, neurotoxicity, hepatotoxicity, 

immunosuppressive, and estrogenic effects [1-4].  As to their occurrence, 

aflatoxins and ochratoxins are produced mainly by Aspergillus sp., fumonisins, 

trichothecenes and zearalenone  by Fusarium sp., patulin by Penicillium sp., 

and ergot alkaloids, produced in the sclerotia of Claviceps sp. [5]. Furthermore, 

these compounds have great financial impact. From an economic point of view, 

mycotoxins cause money loss to producers, processors and consumers of food 

and feeds. Significant reduction in foreign exchange is also an issue, as 

exported products are rejected in other countries due to the presence of these 

molecules [5-7]. In peanuts (Arachis hypogaea L.), Aspergillus sp. correspond 

to the main class of fungi that are associated to aflatoxin contamination, 

producing the types B1, B2, G1 and G2 [8].  

Phytoalexins, more specifically stilbenoids, are molecules that help monitor 

fungal contamination [9]. They are secondary metabolites of nuts, produced in 

response to infections, injuries and/or other suffered attacks [10]. Many of these 

species are oxidation products derived from resveratrol, a phenolic compound 

that exhibits great antioxidant potential, especially in humans, with many 

potential applications for the treatment of several diseases such as cancer and 

cardiopathies in the past few years [11-14]. In plants, it is believed that an 

increased phytoalexin production is directly related to the defensive response of 

the vegetable, and this may also correspond to lower levels of aflatoxins [10]. 
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Traditional analytical methods for assessing mycotoxins and phytoalexins 

include many steps of sample preparation, as liquid-liquid extraction (LLE), 

supercritical fluid extraction (SFE), solid phase extraction (SPE) and solid phase 

microextraction (SPME) [10, 15-21].  After these procedures, the sample is then 

subjected to a separation and detection system for identification and/or 

quantification. Generally, thin-layer chromatography (TLC), high-pressure liquid 

chromatography (HPLC), gas chromatography (GC) and liquid chromatography 

(LC) coupled to mass spectrometry (MS) detector are the most used 

approaches [11, 17, 22-26]. For these time-consuming characteristics, faster 

and more effective methods for high-throughput screening of mycotoxins and 

stilbenes in foodstuffs are necessary.  

New approaches have already been developed in this field. Matrix-assisted 

laser desorption/ionization (MALDI) coupled with Time-of-Flight (TOF) analyzer 

has been successfully employed in aflatoxin screening [27]. This technique 

uses an energy-absorbent molecule (matrix), which is mixed with the sample or 

applied directly over it to assist laser ionization. Due to their characteristic 

structure, stilbenes have also been employed as MALDI matrices [28]. Within 

the most common configurations, apart from MALDI-TOF, there has recently 

been an increasing interest in instruments with Mass Spectrometry Imaging 

(MSI) [29]. This modern and interesting approach provides spatial distribution of 

compounds with intensities of a given ion on a coordinate system and its 

relative position in a physical sample, creating a sample image based on the 

specific molecular information measured [29].  

Another recent analytical trend is the sorptive tape extraction (STE), in 

which a sorbent surface is used for molecular imprisonment and posterior 
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instrumental analysis [30]. This technique requires little sample preparation and 

no derivatization or liquid extractions. The STE principle was used as the basis 

for our procedure of sample preparation for subsequent LDI-MSI analysis, 

where a silica gel plate (Thin-Layer Chromatography plate) was used as a 

sorptive tape-like support for the imprinting of samples, in a slightly modified 

methodology as the ones described in previous works [31, 32].  

The aim of this work is to provide, for the first time, a new method for direct 

and simultaneous screening of aflatoxins and a stilbenoid (resveratrol) in 

peanuts (Arachis hypogaea L.) skin and kernel using SPI as a sorptive tape-like 

extraction method followed by LDI-MSI. A silica gel (60 Å) plate is used as a 

molecular trapping surface for the samples. The greatest advantage associated 

to these methods is that they do not require chromatographic separation or 

many steps of sample preparation. This is also the first work that assesses both 

health hazardous and beneficial compounds to humans in a single sample, at 

the same time. 

 

Materials and Methods 

Reagents and Standards. Methanol and acetonitrile were HPLC grade (> 

98%), purchased from J.T. Baker (Xastoloc, Mexico). Aflatoxins and resveratrol 

standards were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). 

Peanut samples. Commercially available raw peanut bags were purchased 

from grocery stores in Campinas, Brazil. The bags were properly stored in a 

cabinet, free from light and at 25ºC. Samples were utilized after 1 year from the 

expiration date. 
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Sample preparation. Skin was removed from kernel and thin transversal 

sections of peanuts were cut with a stainless steel blade to obtain thin slices (~ 

1 mm) of the sample. SPILDI experiments were carried out by pressing the 

samples against two silica 60 thin-layer chromatography (TLC) plates (Merck, 

Darmstadt, Germany) for five minutes. Preliminary tests with 1, 5, 10 and 15 

minutes were performed; no signal improvements were observed with pressing 

times higher than 5 minutes (data not shown). Plates were then sent to analysis 

with no matrix coating. A representation of the analytical workflow is depicted in 

Figure 1. Standards were prepared as 1 mg/mL solutions in MeOH:H2O (50:50). 

2 L of each standard solution were directly spotted in the TLC plate and then 

sent to analysis under the same MS conditions as the samples. 

Mass spectrometry imaging. Samples were analyzed in a MALDI-LTQ-XL 

instrument (Thermo Scientific, California, USA) with imaging feature. The 

instrument uses an ultraviolet nitrogen laser. Typical conditions for data 

acquisition were as follows: 20 J laser power, 100 m raster step size with 

laser spot size of 50 m (factory default setting) and 30-50 normalized collision 

energy for collision-induced dissociation (CID) when performing MS/MS 

reactions. All mycotoxins data were acquired in the positive ion mode and 

resveratrol was analyzed in the negative ion mode (both at the m/z range of 

100-500).  

Data workup. The obtained MS/MS spectral data from standards and samples 

were submitted to structural analysis with Mass Frontier software (v. 6.0, 

Thermo Scientific, California, USA). The inputted structures are analyzed using 

algorithms and database information to produce fragment possibilities, which 

are then compared to the MS/MS spectra to assist in compound identification. 
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Chemical images were treated with ImageQuest software (Thermo Scientific, 

California, USA) and all intensities were normalized according to the total ion 

current. 
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Figure 1. Detailed workflow of the SPILDI-MSI experiments for compound identification in peanut skin and kernel. Cross-sections 

of the kernel and the skin are imprinted in a TLC plate and then sent for MSI analysis. 
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Results 

 As the experiments were conducted with the skin and the kernel of 

peanuts, the spatial distribution of the different aflatoxins are compared in 

both regions as chemical images in Figures 2 (skin) and 3 (kernel). It was 

possible to observe that all types of aflatoxins were present even deeply into 

the internal regions of the kernel. CID was performed for the [M + H]+ species 

for identification of the different aflatoxin types, with MS/MS data presented in 

figures 4 and 5 and also organized in Table 1. These data were analyzed 

using Mass Frontier software for fragmentation processes; they were also 

supported by the comparison with the MS/MS fragmentation pattern of the 

standards (found in Supplementary Material). Two-dimensional distributions 

on the surfaces of skin and kernel were collected directly via MS/MS of the 

characterized [M + H]+ species, with results plotted as follows: AFB1 (m/z 

313), AFB2 (m/z 315), AFG1 (m/z 329) and AFG2 (m/z 331). 
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Figure 2. Example of SPILDI-Mass spectrometry images of the peanut skin: aflatoxins B1, B2, G1 and G2 are noted in their 
characteristic spatial distributions. Positive ion mode. 
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Figure 3. Sample SPILDI-Mass spectrometry images of the peanut kernel: aflatoxins B1, B2, G1 and G2 are noted in their 
characteristic spatial distributions. Positive ion mode. 
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Figure 4. MS/MS spectra of aflatoxins (A) B1 and (B) B2. The characteristic fragments identified with Mass Frontier are identified 
along with the respective signals. Positive ion mode. 
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Figure 5. MS/MS spectra of aflatoxins (A) G1 and (B) G2. The characteristic fragments identified with Mass Frontier are identified 
along with the respective signals. Positive ion mode. 
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Table 1. Identified species and their CID products for structural elucidation. 

 

 

MSI was also utilized to assess resveratrol, evaluating its spatial 

distribution using the same methodology as for the aflatoxins. The stilbenoid-

derivative was also identified in the negative ion mode by MS/MS at resveratrol 

as [M - H]- (m/z 227) with characteristic fragments, as elucidated in Figure 7. 

Figure 6 presents (A) the molecular structure of resveratrol and the spatial 

distribution of these compounds both in the (B) skin and (C) in the kernel of 

peanuts.  

Compound Precursor ion → Product ions 

Aflatoxins 
[M+H]+ CID fragments 

m/z m/z 

B1 313 295, 285, 271, 269, 255, 243 

B2 315 297, 287, 271, 259, 254, 245 

G1 329 311, 301, 285 

G2 331 313, 303, 287, 291 

Stilbene 
[M – H]- CID fragments 

m/z m/z 

Resveratrol 227 185, 159, 157, 145 
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Figure 6.Schematic representation of the resveratrol molecule (A) and characteristic distribution on (B) peanut skin and (C) kernel. 
Data acquired in the negative ion mode. 
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Figure 7. MS/MS spectrum of the compound identified as resveratrol at m/z 227 [M – H]- and the characteristic product ions. 
Negative ion mode. 
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Discussion 

This novel approach on aflatoxin and phytoalexin detection directly on peanut 

surface has proven to be a fast and reproducible method. Without extensive sample 

preparation steps and no organic solvent employment, this technique shows great 

compromise with green chemistry trends [33]. Furthermore, this also avoids analyte losses 

in extraction and clean-up phases [34]. 

The use of MSI to identify both toxic and benefitial molecules in the same sample 

run is an effective and simpler approach. The possibility of identifying the colocalization of 

the targeted molecules directly from the sample surface is very interesting and may be 

appealing in terms of quality control and assurance.  

Tandem mass spectrometry also provides accurate structural information for the 

analyzed molecules, especially when compared to chemical standards. The use of MS/MS 

as the main identification tool for small molecules is largely described as a very useful and 

reliable approach [35, 36] and the use of a linear-trap quadrupole for these purposes is 

also feasible and compatible with this application, and is especially a well-established 

routine with MSI [37-40]. To the extent of this work, structural elucidation of the targeted 

molecules was supported by software-predicted molecular fragmentation. Mass Frontier is 

an expert system where CID products and fragmentation mechanisms can be modeled. To 

do so, it uses MS databases as well as algorithm calculations to propose fragmentation 

pathways and final product ions [41]. For this work, aflatoxin structures were proposed 

based on the matches between all obtained MS/MS experimental data and the calculated 

Mass Frontier fragments. To support even further the given information, structures of the 

product ions are presented in the sample spectra from Figures 4 and 5. For resveratrol, 

the same principles have been applied, and the results are plotted in Figure 7. This 
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reinforces the high specificity of our methodology, where MS information is given with a 

high level of certainty. 

Aflatoxin analysis is extremely relevant in terms of public health, as they are known 

for their carcinogenic effects and hepatotoxicity [42]. For the first time, the spatial 

distribution of these molecules is reported with information obtained directly from the skin 

and the kernel of peanuts, as illustrated by Figure 1. Interestingly, these mycotoxins 

present higher density towards the extremities of the skin and a more thorough distribution 

in the kernel. The analyzed phytoalexin, resveratrol, is a phenolic-derived compound. As 

well as an important role in plant defenses [10], this molecule is also important for human 

health and nutrition [43].  

The overall amount of time dedicated to all analytical steps altogether (sample 

preparation, plate imprinting, instrumental analysis and data interpretation) can take as 

long as 15 minutes. This makes the presented approach a very fast and viable alternative 

for compound assessment directly from sample surface, with minimum sample preparation 

steps. 

In summary, this work has demonstrated an effective analytical approach using 

SPILDI-MSI for direct assessment of aflatoxins and phytoalexins in peanut samples that 

has proven to be a simple and accurate strategy. This can be especially interesting for 

product treatment and toxin-removal processes, since it is possible to see that aflatoxins 

are not only present on the skin surface, but also in the inner parts of the kernel.  
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Identificação direta de componentes lipídicos em azeites de 
oliva e determinação de adulterações através de metabolic 

fingerprinting 

 



47 
 

 

Direct Metabolic Fingerprinting of Olive Oils using STELDI-MS 
  

Diogo Noin de Oliveira, Rodrigo Ramos Catharino 
  
 

Abstract: A new and rapid approach for analysis of olive oil has been developed 

using sorptive tape-like extraction in combination with laser desorption ionization mass 

spectrometry (STELDI-MS). This powerful combination has some great advantages, 

as no-separation steps, solvent-free, matrix-free, and no sample preparation. The olive 

oil compounds are analyzed by LDI-MS, directly from the sample spot in a thin-layer 

chromatography (TLC) plate. Chosen samples represent products commonly used as 

adulterants in extra virgin olive oil (EVOO) and the main monitored ions were lipid 

adulteration markers. Analytical procedures consisted of profiling the main fatty acids 

(m/z 255 – palmitic acid, 279 – linoleic acid, 281 – oleic acid and 283 – stearic acid), 

triacylglycerols (m/z 901 – LLL and 907 – OOO) and some phenolic compounds (m/z 

169 – gallic acid, 193 – ferulic acid and 195 – 2(4-hydroxyphenyl) ethyl acetate) in 

extra virgin olive oil (EVOO), olive oil (OO), hazelnut oil (HO) and soybean oil (SO).  

Compound identification was confirmed by analysis of collision-induced dissociation 

(CID) products in positive (ion [M+Na]+) and negative mode (ion [M-H]- ). This method 

is simple, fast and efficient in identifying compounds that can be used to recognize 

different levels of adulteration, oxidation and hydrolysis of vegetables oils. 

 

 Keywords: olive oil; adulterations; food analysis; mass spectrometry; thin-layer 

chromatography; laser desorption ionization; sorptive tape-like extraction laser 

desorption ionization mass spectrometry; STELDI-MS 
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Introduction 

Olive oil is widely distributed and highly appreciated worldwide due to its 

perceived beneficial effects on human health and its gastronomic uses. It is the major 

fat component of the Mediterranean diet, and Greece, Portugal, Spain and Italy are 

major suppliers of olive oils on the world market. It shows great economic importance, 

representing one of the main export products from these countries. The quality of olive 

oils covers many factors, such as genetic variety, geographical origin, climatic 

conditions, agronomic techniques and production technologies. These factors affect 

total fatty acid composition – particularly the concentration of oleic acid – and the 

concentration profiles of many other oil components [1, 2]. 

European Mediterranean countries have adopted common regulations to protect 

olive oil growers and consumers from fraud. According to the European Union 

Legislation [3], virgin olive oils are classified as extra virgin olive oil (EVOO), virgin 

olive oil (VOO) and lampante virgin olive oil (LVOO). EVOO is the highest-priced of all 

olive oil grades. Thus, adulteration of higher quality olive oils with either seed oils or 

lower-quality olive oils is a relatively common fraudulent practice, aiming to increase 

the product value.  One of the most common adulterations in Europe is based on the 

addition of hazelnut oil (HO) or lower-quality grade olive oils because of the similarities 

in their chemical composition (triacylglycerol, sterol and fatty acid compositions). In 

Brazil, the most common form of adulteration of EVOO is addition of soybean oil (SO), 

a product widely available in the internal market. It can be added right before the 

process of filling, and this is usually done in the Brazilian territory by companies that 

buy large volumes of EVOO. Apart from the abusive character of such practices, using 

unrefined HO and SO has potential hazard for consumers who are allergic to hazelnut 

and soybean proteins [4-7]. 
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Traditionally, gas chromatography (GC), high performance liquid chromatography 

(HPLC), supercritical fluid chromatography (SFC), and capillary electrophoresis (CE) 

are used in the authentication and analyses of olive oil. Recently, other techniques 

have been employed, especially using mass spectrometry. A few examples are Direct 

Analysis in Real Time coupled with high-resolution Time-of-Flight (DART-TOF-MS) [8], 

Easy Ambient Sonic-spray Ionization in negative ion mode (EASI-(-)-MS) [9], and 

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry 

(MALDI-TOF-MS) [10]. These techniques present an attractive analytical alternative 

for their minimal requirements of sample preparation and no chemical derivatization or 

chromatographic separation. 

Sisalli et al. (2006) [11] and Bicchi et al. (2007) [12] introduced sorptive tape 

extraction (STE) to study compounds in biological matrices. In these applications, the 

analytes were trapped in polydimethylsiloxane (PDMS) tapes and then recovered by 

either thermal or solvent desorption and then analyzed by GC or GC–MS. This 

technique was the basis for the procedure of compound-trapping for subsequent LDI-

MS analysis, where a silica gel sheet (Thin-Layer Chromatography plate) was used as 

a sorptive tape-like support to the samples, according to a modified approach 

described by de Oliveira et al. (2013) [13] and Ferreira et al. (2014) [14]. 

The aim of this work was, for the first time, to describe a fast technique that can 

characterize compounds of interest – quality markers – in vegetable oils, as well as 

readily identify frauds and adulterations in EVOO using OO, HO and soybean oil SO 

directly from a spot in a thin-layer chromatography (TLC) plate, using LDI-MS with no 

matrix and no sample preparation steps. 
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Material and Methods 

 

Samples. This study employed samples of extra virgin olive oil (EVOO), olive oil (OO), 

soybean oil (SO) and hazelnut oil (HO), available at regular market stores in 

Campinas, São Paulo, Brazil. Extra virgin olive oil (EVOO) with Protected 

Designations of Origin (PDO) and olive oil (OO) were produced in Spain, soybean oil 

(SO) in Brazil and hazelnut oil (HO) in Denmark. Mixtures of EVOO + HO and EVOO + 

SO are prepared at 80:20 proportions and EVOO + OO at 50:50. Trademarks and 

producers are suppressed due to ethical and legal purposes. 

 

Sample Preparation. One microliter (µL) of each sample was directly spotted onto a 

thin-layer chromatography (TLC) silica gel 60 plate (Merck, Darmstadt, Germany), 

which was embedded on a special plate suitable for MALDI Mass Spectrometry 

Imaging (Thermo Fisher, San Jose, California, USA) and immediately sent for 

analysis. No matrix was applied and no further steps were taken.  

 

 LDI Mass Spectrometry. A MALDI-LTQ-XL instrument (Thermo Fisher) was used to 

acquire mass spectrometric data. Typical operation conditions were 20 μJ Nitrogen 

laser power, three laser shots per step and 30–50 eV of collision-induced dissociation 

(CID) for MS/MS experiments. All spectra were acquired in the positive and negative 

ion modes. Full scan analyses were performed in the m/z range of 100 to 600 in 

negative mode and 600 to 1200 in positive mode. The proposed identification of the 

compounds was based on both MS/MS spectra and software calculations with Mass 

Frontier (v. 6.0, Thermo Fisher).  
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Results and Discussion 

Figure 8 shows STELDI-MS spectra in negative mode. The proposal for 

compound identification was based on the search of the main [M-H]- ion, as well as the 

interpretation of characteristic collision-induced dissociation (CID) products. Table 2 

summarizes the data obtained for each of the analyzed sample in negative mode. 

Positive mode spectra are shown in figure 9 and the identification of compounds is 

based on search of the main [M+Na]+  ion with CID products (Table 3). In some cases, 

the ionic species [M-H]− or [M+Na]+ were neither detected nor observed (assigned as 

‘nd’ in Table 2 and 3), which may be due to either unfavorable MS ionization, signal 

suppression or high intrinsic resistance towards dissociation. 
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Figure 8. STELDI-MS spectra in negative ion mode. 
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 Figure 9. STELDI-MS spectra in positive ion mode. 
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The identified ions within the m/z range of 100 to 600 in the negative mode 

represent both free fatty acids and phenolic compounds. The presence of the latter in 

vegetable oils is intimately related to potential health benefits due to their potent 

antioxidant activity [15]. For this experiment, three of them were chosen for their 

considerable distribution in vegetable oils: 2-(4-hydroxyphenyl) ethyl acetate (m/z 

195), ferulic acid (m/z 193) and gallic acid (m/z 169). Generally, determination of 

phenolic species is performed using chromatographic techniques, such as liquid 

chromatography coupled with mass spectrometry (LC-MS) [16]. In the present work, 

the capability of analyzing this class of compounds simultaneously with lipids (free 

fatty acids) is placed as one of its most interesting features. It was observed that OO is 

the only sample in which gallic acid was found, which can probably represent 

increased antioxidant potential for this product. Moreover, as far as antioxidant 

content, SO was the only sample that did not present ferulic acid.  

For the free fatty acids within this range, oleic acid (m/z 281), linoleic acid (m/z 

279), stearic acid (m/z 283) and palmitic acid (m/z 255) were the main species 

observed, which is attributable for their wide distribution among vegetable oils. Oleic 

acid was the major component of HO, OO and EVOO, whereas linoleic acid was the 

major fatty acid in SO. At first glance, it is possible to differentiate SO from all the 

others simply by looking at its spectral profile, and even further, adulteration of EVOO 

with SO can be inferred (but not confirmed) by doing so (Figure 8). 

 The positive mode shows the triacylglycerol (TAG) profiles of each sample, as 

seen on Figure 9. All structure assignments are based on MS/MS reactions. While it is 

not possible to establish oil adulterations simply by analyzing the negative ion mode, 

its combination with the positive mode results allows evidential results. CID has shown 
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characteristic fragmentations with losses equivalent to acyl moieties, confirming the 

negative mode results and even introducing new information on fatty acid composition. 

This enables, in this case, the identification of HO and OO adulteration in EVOO and 

thus reaffirms the importance of a thorough analysis.  

The method presents the possibility of performing MS/MS reactions to confirm 

proposed compound structures. Hence, the analysis is specific enough to the target 

compounds, which in this case are mainly free fatty acids (negative mode) and 

triacylglycerols (positive mode). 

 

Conclusions 

 The proposed methodology is rapid, easy to implement and requires virtually no 

sample preparation steps. Interestingly, without using any matrix, it is possible to apply 

the same experimental conditions to a MALDI instrument. The TLC plate has shown 

characteristics similar to a sorptive tape, with excellent compound trapping. The 

combination between these two techniques has proven to be very useful in the 

metabolic fingerprinting of different vegetable oils. Therefore, this metabolomic 

strategy can be a useful tool applicable to the analysis of adulterations and, since 

structural analysis is feasible to be performed, oxidative and hydrolytic processes can 

potentially be explored in future contributions. 
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Determinação do perfil de degradação térmica do adoçante 
de mesa sucralose
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Thermal degradation of sucralose: a combination of analytical 
methods to determine stability and chlorinated byproducts 

 
Diogo Noin de Oliveira, Maico de Menezes, Rodrigo Ramos Catharino* 

 
 
 
Abstract: In the late years, much attention has been brought to the scientific 

community regarding the safety of sucralose and its industrial applications. Although it 

is the most used artificial sweetener in foods and pharmaceuticals, many questions 

still arise on its potential to form chlorinated byproducts in high temperatures, as 

demonstrated by several recent studies. In the present contribution, we use a 

combination of differential scanning calorimetry and thermogravimetric analysis 

coupled with infrared spectroscopy (DSC/TGA/IR), Hot-stage microscopy (HSM) and 

high-resolution mass spectrometry (HRMS) on samples submitted to water bath at 

mild temperatures to evaluate a broad spectrum of hazardous compounds formed in 

the degradation of this product. TGA/IR has revealed that there is effective 

decomposition in form of CO2 along with the formation of hydrogen chloride and other 

minor compounds. HSM results have provided accurate information, where the melting 

of the crystals was observed, followed by decomposition. Chlorinated derivatives, 

including polychlorinated aromatic hydrocarbons (PCAHs) were also confirmed by 

HRMS. These findings not only corroborate the suspected instability of sucralose to 

high temperatures, but also indicate that even exposed to mild conditions the 

formation of hazardous polychlorinated compounds is observed. 

 

Keywords: sucralose; chlorinated compounds; high-resolution mass spectrometry; 

differential scanning calorimetry; thermogravimetric analysis; infrared spectroscopy 
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Introduction 

 Sucralose (1,6-Dichloro-1,6-dideoxy-β-D-fructofuranosyl-4-chloro-4-deoxy-α-D-

galactopyranoside) is currently the most utilized artificial sweetener for both industrial 

purposes and personal use [1]. Although initially considered safe for use [2], recent 

literature raised awareness regarding the intrinsic biological effects exhibited by 

sucralose [3], as well as the potential that its structure has to hydrolyze into toxic 

compounds when exposed to severe temperature conditions, forming chloropropanols 

and other related chlorinated compounds [4]. Important contributions have significantly 

broadened the knowledge on the accurate conditions under which these undesirable 

molecules emerge. In 2009, Bannach et al. performed thermogravimetry experiments 

that presented a characteristic decomposition profile for sucralose, indicating that the 

molecule is unstable (decomposes) in considerably mild temperatures [5]. Further 

studies utilizing gas chromatography approaches showed that it is possible to assess 

and monitor the formation of chloropropanols (CPs) in the presence of glycerol [6], and 

chlorinated polycyclic compounds in the presence of oils [7] and metal oxides [8, 9].  

This has intensified the amount of evidence that support the hypothesis that sucralose 

cannot be suitable for processes that involve temperatures above 120ºC up to 

conditions near pyrolisis.  

 There is therefore urge to raise questions regarding the safety of non-nutritive 

sweeteners and bring them to public attention; in past contributions, our group was 

able to present the formation of potentially health-hazardous byproducts of stevia 

(Stevia rebaudiana) when mixed in low-pH solutions [10]. In this report, we employed a 

powerful combination of differential scanning calorimetry/thermogravimetric analysis 

coupled with Fourier transform infrared spectroscopy (DSC/TGA-FTIR), hot-stage 

microscopy (HSM) and high-resolution mass spectrometry (HRMS) to evaluate the 



62 
 

 

decomposition and elucidate the chemical profile of the compounds that are formed 

when sucralose is submitted to a relatively mild temperature. Our findings expand the 

knowledge on chlorinated byproducts, providing strong evidence that the formation of 

polychlorinated aromatic hydrocarbons (PCAHs) is feasible when isolated sucralose is 

exposed to temperatures that are even lower than those previously reported in 

literature.  
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Methods 

Reagents and solvents. Technical-grade sucralose from two distinct manufacturing 

processes was purchased from local suppliers. Names of the manufacturers remain 

undisclosed due to legal and ethical issues. Both brands were sampled as follows: 1 g 

destined to MS analyses and 10 mg for DSC/TGA-FTIR analyses. All utilized solvents 

were HPLC grade, purchased from J.T. Baker (Xalostoc, Mexico), unless otherwise 

noticed. 

 

Thermal analyses. Sucralose samples were introduced into a customized DSC/TGA-

FTIR system (DSC-822e/STARe System, Mettler Toledo GmbH, Greifensee, 

Switzerland;  NicoletTM FTIR module, Thermo Electron Corporation, MA, USA), in a 

DSC cell previously calibrated using the following high purity metallic standards: 

indium (Tmelt = 156.56ºC; Hmelt = 29.13 J.g-1) and zinc (Tmelt = 419.40ºC Hmelt = 109.53 

J.g-1).Both  DSC and TGA curves were performed in a dynamic process, with 

temperatures ranging from 25°C to 250°C, in a heating program of 10°C/min for scan 

study. Data acquisition was performed both under inert atmosphere (N2 ) and synthetic 

air atmosphere, with a flow rate of 50 mL/min in both cases. Samples were deposited 

in standard aluminum pans with perforated lid, containing 10 mg of sample for 

DSC/TGA analyses. FTIR results were monitored on-line, and spectra were recorded 

all along the process, focused on endothermic peaks (DSC) and on the maximum 

mass variation (TGA). Spectral data were compared to software libraries (HR Aldrich 

Vapor and HR TGA Vapor Phase) to propose molecular identities. HSM was 

performed with a hybrid device equipped with a Zeiss Scope.A1 microscope (Carl 

Zeiss Microscopy, LLC, Thornwood, NY, USA) with polarized light as the image 

analysis system and a Mettler Toledo FP82HT electrical furnace, controlled by a 
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central processor (FP90, Mettler Toledo). Images were recorded using an AxioVision 

camera (Carl Zeiss Microscopy, LLC, Thornwood, NY, USA). The heating ramp for 

HSM was the same as the one utilized for DSC/TGA. 

 

Mass spectrometry. Samples were placed in a glass vial with a large headspace, 

capped with a gas-tight lid with silicon septum. The vial was then submerged into a 

temperature-controlled water bath, where it was allowed to raise temperature at a rate 

of 1ºC/min (from 25ºC to 98ºC – boiling temperature). After reaching the boiling 

temperature, the vial remained submerged in the bath for 15 minutes and, after this 

time, a sample of 10 mL of the air was collected from the headspace using a gas tight 

syringe (Hamilton Company, Reno, Nevada, USA). The collected air was then 

dissolved in a 50:50 MeOH/H2O solution (1 mL), through the septum of a glass vial. A 

schematic figure of this experimental setup is available as supplementary material 

(Figure S1). The final solution was then directly infused into an ESI-LTQ-XL Orbitrap 

Discovery (Thermo Scientific, Bremen, Germany) high-resolution mass spectrometer 

(30,000 FWHM). Data acquisition was performed under the following conditions: 4.5 

kV spray voltage, 285ºC capillary temperature, sheath gas at 10 arbitrary units and a 

flow rate of 15 mL/min. Negative ion mode was explored, with m/z ratios ranging from 

50 to 1000. The experiment was conducted in triplicates for both sucralose samples.  

 

Structure elucidation. High resolution was the parameter of choice for the 

identification of the chlorinated species in MS analyses. The comparison between 

theoretical and experimental masses for mass accuracy are given in terms of parts per 

million (ppm) for error distribution. HRMS (m/z): [M]- calcd. for C6H5Cl2O, 162.9723 

found, 162.9729 (3.68 ppm). HRMS (m/z): [M]- calcd. for C6H10ClO5, 197.0222 found, 
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197.0227 (2.53 ppm). HRMS (m/z): [M]- calcd. for C13Cl7O, 416.7774 found, 416.7780 

(1.43 ppm). 
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Results  

Thermal Analyses.  DSC/TGA results are portrayed in figure 10, where A and B are 

the two distinct sucralose manufacturers; A1 and B1 present the mass loss observed 

in the TGA curves, which can be attributable to the loss of several moieties of the 

parent molecule. It is possible to see that the decomposition of sucralose happens 

around 125ºC (Tonset  ~124.5ºC; Tpeak ~125.5ºC) for both brands, in a 17-20% rate. 

Both experiments using N2 and synthetic air have presented the same outcome 

regarding the thermal behavior exhibited, as well as the spectroscopic profile. Figure 

11 presents the image profile of sucralose crystals obtained throughout the process of 

HSM analysis, showing that its crystalline structure is affected at the same 

temperature range as the one observed in DSC/TGA experiments (around 125ºC), in a 

fusion followed by decomposition process. A time-lapse video depicting the HSM 

process is available as supplementary material.
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Figure 10. TGA (1 and 3) and DSC (2) curves from both sucralose brands (A and B). 

It is possible to notice that the mass loss (TGA) and endothermic peak (DSC) happen 

at the same time during the heat ramp. 
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Figure 11. Images of sucralose crystals submitted to HSM analysis. (A) presents the 

crystals after heating; (B) shows the pre-melting stage and (C) shows the complete 

melting/caramelization of the crystals.
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Fourier-transform Infrared Spectroscopy. Sample spectra from coupled FTIR 

analysis are presented on figure 12. It is possible to notice that both samples from 

different manufacturers presented the same peak profile (fingerprinting). The depicted 

spectra are linked with the same runtime where DSC/TGA presented the mass loss 

curves.
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Figure 12. FTIR spectra of both sucralose brands (A and B). Spectral profiles were recorded at the same time (~11 min) for both 

cases, and present characteristic stretchings for the elucidated compounds.
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Mass Spectrometry. Aromatic chlorinated byproducts were observed in the gaseous 

phase of the thermal decomposition experiment: a chlorinated furan derivative, similar 

to hydroxymethylfurfural (HMF) at m/z 162, and a compound from the PCAH class at 

m/z 418. Furthermore, a chlorinated tetrahydropyran (equivalent to the glucopyranosyl 

moiety on the sucrose equivalent) was also observed at m/z 197. A spectral sample is 

available is available on figure 13, where identified structures are assigned to the 

observed signals.
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Figure 13. Sample mass spectrum of the air collected from the headspace after heating of sucralose. Identified structures are 

shown as [M-H]- species. Negative ion mode. 
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Discussion 

DSC curves show an endothermic peak at the same temperature, which may be 

attributable to the fusion followed by decomposition of the molecule. This is confirmed 

by HSM data: figure 11 captures the exact transition stage between solid and liquid 

state. Supplementary data provided present a short movie showing the moment of 

transition between phases (movie 1). It is possible, therefore, to see that sucralose 

decomposition occurs right after the fusion of crystals begins, in an almost-

simultaneous process. Bannach et al. (2009) [5] have postulated that sucralose 

decomposes once it reaches the melting point; indeed, in a simple physical state 

transition there would not be any mass change. Our combination of techniques of 

thermal analyses with crystal imaging, however, indicates that there is effective 

melting, even if for a very quick period, prior to decomposition. 

FTIR results were processed with software matching using correlation 

algorithms from spectra libraries. Spectral analysis provide absorbance bands at 

peaks with characteristic wavenumbers, inferring that, at the decomposition point 

(linked spectrum at ~11 min), it is possible to observe characteristic profiles of water 

(ranges from 4000-3200 cm-1 and 2000-1200 cm-1), carbon dioxide (main peak at 

2400-2300 cm-1), hydrogen chloride (range from 3100-2600 cm-1) and 

chloroacetaldehyde (main peak at 1850-1700 cm-1). This complements the data from 

DSC/TGA, providing the information that these low molecular weight species must be 

directly linked to the mass loss events observed in thermal analyses. Furthermore, the 

observed species are consistent with the expected behavior of a carbohydrate 

derivative under oxidative conditions (H2O and CO2 loss), with the addition of 

chlorinated species due to the presence of such atoms in the molecule.  
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 Spectral analysis of acquired data from HRMS was performed taking into 

account previous works describing degradation pathways of both sucralose[6] and 

sucrose [11] to guide the search for compounds. Spectral information on figure 13 

presents a clear cleavage of the main molecule (chlorinated disaccharide) into two 

semi-complementary [M-H]- moieties at m/z 197 and 162 – the latter being an 

advanced aromatic degradation product, which follows a hydroxymethylfurfural (HMF)-

like pathway from the modified fructose moiety, and the first being a derivative from 

the modified glucose moiety. Furthermore, at m/z 418 it was possible to find a 

characteristic profile for PCAHs, assigned to a derivative from the complete thermal 

degradation of sucralose. Interestingly, previous reports have provided information on 

polychlorinated aromatic species from sucralose[9], but those experiments were 

carried out under more sophisticated and particular conditions. Our findings are more 

closely related to a pyrolytic environment, with molecules developing a mechanism 

similar to the one that occurs with regular dissacharides, such as sucrose, under these 

conditions [12]. Since sucralose is a molecule that has three chlorine atoms replacing 

the usual hydroxyl groups in sucrose, the addition of the halogen may be the key to 

PCAH formation under considerably mild conditions; there is previous evidence [12] 

that carbohydrates that are submitted to harsh temperatures exhibit the tendency to 

rearrange into thermodynamically stable configurations, resulting in aromatic 

compounds (either simple or polycyclic).  Furthermore, the presence of chlorine 

increases the potential for reactivity due to an increase in the bond length, especially 

for the atoms bonded to non-cyclic carbons. These findings indicate, therefore, that 

potentially hazardous byproducts can effectively emerge even in conditions that can 

be considered mild, showing that degradation can occur well below the melting point. 

ADespite being a qualitative view, we found strong evidence that PCAHs are formed 
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from sucralose at boiling-water temperatures (up to 98ºC), which is the usual 

temperature reached when preparing hot beverages such as tea or coffee.  

This is the first work that reports the thermal behavior of isolated sucralose, with 

no additional compounds, encompassing a wide range of analytical approaches. Our 

findings indicate that it is mandatory that the chronic exposure of humans to these 

chlorinated derivatives be further investigated regarding health-hazardous effects. The 

use of this artificial sweetener deserves, therefore, close attention, and further 

research on other food products must be conducted. 
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Determinação de percentuais de cacau em chocolates 
comerciais brasileiros utilizando a estratégia de metabolic 

fingerprinting
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A semi-quantitative approach of catechin/epicatechin content in 

chocolates using MALDI-MSI 

 

Diogo Noin de Oliveira, Ana Carolina Bueno Camargo, Carlos Fernando Odir 

Rodrigues Melo, Rodrigo Ramos Catharino 

 

 

Abstract: Chocolate is a popular food bearing a number of different classifications, 

which differentiate the proportions of cocoa solids, milk and cocoa butter. Literature 

brings evidence that some types of chocolate contribute to good health maintenance 

due to the presence of phenolics in cocoa. Phenolics contents depend on processing 

methods, which influence the level of these substances in the final product; therefore, 

accurate strategies to measure the levels of this molecular class are key to assure 

quality aspects of this food product. Mass spectrometry is an analytical tool of high 

sensitivity and specificity that is leading the research in food analysis towards new 

directions. By using mass spectrometry imaging in direct food analysis, this 

contribution developed an effective methodology for comparatively establishing the 

levels of phenolics catechin/epicatechin as selective quality markers of cocoa content 

in commercial chocolates, rendering a useful tool for quality control and counterfeit/ 

adulteration identification in these products. 

 

Keywords: chocolate; quality; phenolic compounds; adulterations; mass spectrometry 
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Introduction 

Chocolate is a food product that is commercially classified by the cocoa content 

declared by manufacturers. This results in four main different types of product, namely 

bitter, semisweet, milk, and white, which present varying amounts of cocoa solids, 

milk, sugar and cocoa butter [1], in addition to different resulting proportions of 

carbohydrates, fat and protein contents. The consumption of cocoa and chocolate 

contributes to nutrition by providing constituents for several metabolic functions; 

chocolate fat, for instance, is a rich source of saturated triacylglycerlols, whereas 

cocoa solids provide protein, minerals and phenolic compounds [1]. 

Cocoa and derived food products present, as a general rule, considerable flavonoid 

content, with highlights to flavan-3-ols, especially catechin/epicatechin [2]. The health 

benefits of these bioactive molecules in humans has been widely studied, especially a 

number of protective implications over the cardiovascular system [3] and the 

prevention of cognitive function decay with aging [4]. 

Assessing the different ingredients in chocolate for quality purposes is critical from a 

commercial point of view, as ensuring that consumers are purchasing the right product 

based on their dietary needs has transcended the economic aspect only. With 

abundant information on food products available over the internet and other sources, 

consumers are more prone to choose their products by relying on labels that contain 

ingredients or contents that meet their own criteria [5], thus making both the quality 

control and counterfeiting issues even more relevant.  

There is a variety of studies in the literature with analytical approaches that assess 

different aspects of chocolate; FTIR, for instance, has shown great potential in the 

evaluation of adulterations in fat content [6], as did GC-MS for volatile compounds [7]. 
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Quality assessment of chocolates regarding cocoa content, however, is still impaired 

by the lack of diversity and versatile methods that encompass both qualitative and 

quantitative approaches in literature. Chromatographic approaches are being widely 

used for phenolics in chocolates [8, 9] with consistent quantitative results. 

Nonetheless, alternatives aimed at saving both analysis time and solvent consumption 

are being sought, which ultimately presented MALDI mass spectrometry as a potential 

suitable method for assessing cocoa content and quality through phenolics [10].  

Developing analytical strategies that are able to provide quali-quantitative approaches 

are therefore a growing trend in determining the quality of commercial chocolates 

through cocoa content. 

In this sense, mass spectrometry imaging (MSI) has been emerging as a preponderant 

analytical tool that is robust enough to provide not only qualitative, but also quantitative 

aspects in solid-state samples, with minimal preparation requirements [11, 12]. 

Additionally, the careful choice for a suitable and selective quality marker, such as 

phenolic compounds that are specific for chocolate, plays a major role at assisting in a 

thorough and accurate analysis for quality control purposes. The aim of this 

contribution, therefore, was to explore this feature in actual chocolate samples, 

assessing cocoa content by the relative quantification of catechin/epicatechin, which 

were also understood as quality parameters. 

 

Materials and methods 

Chocolate samples 

Commercially available samples of chocolate at five different declared percentages of 

cocoa content in the label were purchased from a Brazilian manufacturer. The 

percentages used for this study were 28%, 41%, 55%, 70% and 85%. Cocoa liquor, 
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obtained from the same manufacturer, was used as the 100% standard for comparison 

purposes. 

 

Sample preparation 

Samples were imprinted onto a silica plate (Merck, Darmstadt, Germany), covered 

with a 10-mg/mL solution of MALDI matrix α-cyanohydroxycinnamic acid (Sigma-

Aldrich, St. Louis, MO) in MeOH:AcN (1:1), and sent for direct analysis, in a similar 

approach as developed by de Oliveira, Ferreira [11]. A general scheme of the workflow 

is depicted in Figure 14. Samples were prepared in quintuplicates for each cocoa 

percentage. 

 

MALDI-MSI analyses 

The phenolic species catechin/epicatechin were elected as the selective quality 

markers for cocoa content. An LTQ-XL MALDI instrument (Thermo Scientific, San 

Jose, CA) was used to monitor the [M+H]+ ion at m/z 291 after characterization 

through MS/MS reactions, compared to the fragments from a catechin standard 

(Sigma-Aldrich, St. Louis, MO) and calculated collision-induced dissociation products 

using the Mass Frontier software (Thermo Scientific, San Jose, CA). Chemical images 

with 600 square pixels were generated through selection of desired areas in the silica 

plate in the software prior to analyses. Images were then processed in grayscale using 

the ImageQuest software (Thermo Scientific, San Jose, CA), and ultimately cropped 

and submitted for relative quantification using the open-source software ImageJ (US-

NIH, Bethesda, MD), in an adaptation of de Oliveira, de Bona Sartor [13].  
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Figure 14. A simplified workflow for the preparation of chocolate samples followed by 
MALDI-MSI analyses. 

 

 

Results and discussion 

MALDI-MSI was utilized in the MS/MS mode, i.e. only the selective ion at m/z 291 

[M+H]+ was monitored during the analyses, after characterization. The main transitions 

observed in MS/MS were m/z 275, 247 and 197, which matched those calculated 

using Mass Frontier (data not shown). This strategy was performed to increase the 

levels of specificity for the target ions; as the instrument is set to acquire only the 

desired species, there is little or no interference of the other existing species in the 

sample, which is consistent with a method that is intended and designed to provide 

accurate results in cocoa content. As chocolate is a complex sample that is comprised 

of several molecular classes, the monitoring of a single ion may pose a challenge due 

to ionization issues, ion suppression, etc., which are eliminated by this feature.  

To explore the semi-quantitative aspect of MSI, ImageJ software assigns non-

dimensional values to images, similarly to the area under the curve (AUC) values 

obtained with chromatographic approaches. Comparatively, the higher the amount in a 

sample that undergoes chromatography, the higher will be the AUC value; in contrast, 

ImageJ provides higher values for darker pixels, indicating that this intensity variation 

is directly proportional to the amount of the selected ion in that particular sample. 

Values were then used to build an analytical curve, as per Table 4. The dataset from 



83 
 

 

each percentile was analyzed, which revealed a normal distribution according to the 

Kolmogorov-Smirnov test; a linear profile with a Pearson r-value of 0.962 and a two-

tailed p-value of 0.002 was obtained from the relative quantification of samples, as 

provided in Figure 15. 

 

Table 4. Mean values obtained from the quintuplicates of the non-dimensional values 

derived from the measurements with ImageJ software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Analytical curve discriminating the percentage of catechin/epicatechin in 
commercial chocolate samples, as determined by the relative quantification with 
MALDI-MSI. The bars represent the standard errors of the means (SEM). 
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Significant intra-sample variation was observed, i.e. the results obtained from the 

areas were not uniform in all analyses, evidenced by high values of relative standard 

deviation, as per Table 4. This finding is quite interesting from an analytical point of 

view and can be explained by the intrinsic variation in the MALDI ionization. Although 

the quantification strategy is largely based on the same premise as that used in high 

performance liquid chromatography (HPLC), where the generated peaks are 

integrated and the area under the curve is used as a parameter directly proportional to 

the analyte concentration in the sample, in the case of MSI, two predominant factors 

directly influence the result of the analyses: (i) the fact that the sample is in the solid 

phase, which makes it difficult to obtain a degree of uniformity as high as in the liquid 

phase, and (ii) the fact that the "detector", a mass spectrometer as opposed to a diode 

array detector, is coupled to a laser pulsed ionization system (MALDI). These factors, 

together, determine that, despite the good results found, there are still technical 

impairments that may lead to fluctuations in results. Despite this, the MALDI-MSI 

technique proved extremely promising in a practical application precisely because of 

its simplicity of execution and relative ease in the preparation of samples. 

Observed results ultimately showed that there is a linear trend behavior regarding the 

amount of cocoa present in commercial chocolates, and the amount of 

catechin/epicatechin is directly proportional to the amount of cocoa in chocolate. This 

is an important aspect for the proposed strategy, as MALDI-MSI is being consolidated 

as a versatile and accurate strategy, simple enough to be implemented with ease in 

process and quality controls for fast assessment of samples from the whole productive 

chain. Finally, as previous contributions have stated [14], there is an actual 

correspondence between the declared cocoa content in the label and the actual values 
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for selected manufacturers; this tool, therefore, emerges as a viable and reliable 

alternative for both quality and counterfeit detection purposes in chocolates. 
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ANEXO I 
 

Considerações finais 
 

 
As metodologias analíticas propostas por este trabalho de doutorado, baseadas 

em plataformas “ômicas”, apresentam uma alternativa real e viável para serem 

implementadas em análises de alimentos. Seja em rotinas de alta performance 

e em monitoramento industrial, ou mesmo em pesquisa e desenvolvimento, a 

rapidez e simplicidade das estratégias desenvolvidas são características-chave 

que fundamentam sua aplicabilidade.  

O escopo da utilização da espectrometria de massas em análise de alimentos 

deve, portanto, englobar desde análises de processo produtivo, estudos de 

estabilidade e shelf-life de produtos, processos de engenharia reversa 

(deformulação) e identificação de fraudes, além de estudos de compatibilidade 

entre ingredientes. Isso coloca a espectrometria de massas como uma 

ferramenta extremamente versátil e com alto poder de resolução de problemas 

relacionados à qualidade dos alimentos. Isso não somente auxilia resultando 

em menores perdas financeiras relacionadas a problemas industriais e 

incompatibilidades, como também garante a segurança alimentar do 

consumidor, contribuindo ainda para melhor entendimento de mecanismos 

envolvidos em toxicidade alimentar. 


