
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Ícaro Cavalcante Dourado

Bag of Textual Graphs: an accurate, efficient, and
general-purpose graph-based text representation model

Sacola de Grafos Textuais: um modelo de
representação de textos baseado em grafos, preciso,

eficiente e de propósito geral

CAMPINAS
2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296887859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ícaro Cavalcante Dourado

Bag of Textual Graphs: an accurate, efficient, and
general-purpose graph-based text representation model

Sacola de Grafos Textuais: um modelo de representação de
textos baseado em grafos, preciso, eficiente e de propósito geral

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Ricardo da Silva Torres

Este exemplar corresponde à versão final da
Dissertação defendida por Ícaro Cavalcante
Dourado e orientada pelo Prof. Dr. Ricardo
da Silva Torres.

CAMPINAS
2016

Agência(s) de fomento e nº(s) de processo(s): Não se aplica.

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Maria Fabiana Bezerra Muller - CRB 8/6162

 Dourado, Ícaro Cavalcante, 1985-
 D748b DouBag of textual graphs : an accurate, efficient, and general-purpose graph-

based text representation model / Ícaro Cavalcante Dourado. – Campinas, SP :
[s.n.], 2016.

 DouOrientador: Ricardo da Silva Torres.
 DouDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Dou1. Organização da informação. 2. Reconhecimento de padrões. 3.

Representações dos grafos. 4. Sistemas de recuperação da informação. I.
Torres, Ricardo da Silva,1977-. II. Universidade Estadual de Campinas.
Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Sacola de grafos textuais : um modelo de representação de textos
baseado em grafos, preciso, eficiente e de propósito geral
Palavras-chave em inglês:
Information organization
Pattern recognition
Representations of graphs
Information storage and retrieval systems
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Ricardo da Silva Torres [Orientador]
Marcos André Gonçalves
André Santanchè
Data de defesa: 19-12-2016
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Ícaro Cavalcante Dourado

Bag of Textual Graphs: an accurate, efficient, and
general-purpose graph-based text representation model

Sacola de Grafos Textuais: um modelo de representação de
textos baseado em grafos, preciso, eficiente e de propósito geral

Banca Examinadora:

• Prof. Dr. Ricardo da Silva Torres
Instituto de Computação - UNICAMP

• Prof. Dr. Marcos André Gonçalves
Departamento de Ciência da Computação - UFMG

• Prof. Dr. André Santanchè
Instituto de Computação - UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 19 de dezembro de 2016

Acknowledgements

I give special thanks to my advisor Dr. Ricardo Torres for the interest and support during
this research. I also thank him for his valuable words of encouragement and advice, sharing
both academic and life experience to me and all his students.

I thank my family, in special my parents, Daniel and Maria Aparecida, for their
dedication and unconditional support. I thank my wife, Ana Flávia, for standing by my
side and for the companionship and patience.

I thank Dr. Renata Galante, from Federal University of Rio Grande do Sul, for
her contributions. I also thank my colleagues from RECOD lab who helped with their
experience for useful insights and revision.

I am also grateful to DGA/UNICAMP for its support during the development of this
research.

This work was partially funded by CAPES, CNPq, FAPESP, and AMD.

Resumo

Modelos de representação de textos são o alicerce fundamental para as tarefas de Recu-
peração de Informação e Mineração de Textos. Apesar de diferentes modelos de represen-
tação de textos terem sido propostos, eles não são ao mesmo tempo eficientes, precisos
e flexíveis para serem usados em aplicações variadas. Neste projeto, apresentamos a Sa-
cola de Grafos Textuais (do inglês Bag of Textual Graphs), um modelo de representação
de textos que satisfaz esses três requisitos, ao propor uma combinação de um modelo
de representação baseado em grafos com um arcabouço genérico de síntese de grafos em
representações vetoriais. Avaliamos nosso método em experimentos considerando quatro
coleções textuais bem conhecidas: Reuters-21578, 20-newsgroups, 4-universidades e K-
series. Os resultados experimentais demonstram que o nosso modelo é genérico o bastante
para lidar com diferentes coleções, e é mais eficiente do que métodos atuais e largamente
utilizados em tarefas de classificação e recuperação de textos, sem perda de precisão.

Abstract

Text representation models are the fundamental basis for Information Retrieval and Text
Mining tasks. Despite different text models have been proposed, they are not at the
same time efficient, accurate, and flexible to be used in several applications. Here we
present Bag of Textual Graphs, a text representation model that addresses these three
requirements, by combining a graph-representation model with an generic framework
for graph-to-vector synthesis. We evaluate our method on experiments considering four
well-known text collections: Reuters-21578, 20-newsgroups, 4-universities, and K-series.
Experimental results demonstrate that our model is generic enough to handle different
collections, and is more efficient than widely-used state-of-the-art methods in textual
classification and retrieval tasks, without losing accuracy performance.

List of Figures

2.1 A text sample represented by Schenker’s standard graph model. 16
2.2 A text sample represented by Schenker’s relative-frequency model. 17
2.3 The BoG framework. Adapted from [39]. 18

3.1 Proposed pipeline for vector representation of graphs extracted from tex-
tual documents. 22

3.2 Sub-graphs from a weighted graph sample. 23
3.3 Examples of dissimilarity (d) measurements for pairs of subgraphs, based

on Algorithm 1 and considering weights 1. 25
3.4 Vocabulary creation based on attribute fusion. 26
3.5 Example of hard and soft assignment for a given point. 27

4.1 BoTG and BoW models compared by effectiveness and efficiency. 34

5.1 Results for text retrieval in Reuters-21578. 38
5.2 Results for text retrieval in 4-universities. 38
5.3 Results for text retrieval in 20-newsgroups. 39
5.4 Results for text retrieval in K-series. 39

List of Tables

3.1 Example of sum, avg, and max pooling for a graph. 28

4.1 Statistics of collections after preprocessing and graph extraction. 30
4.2 Comparisons between BoW and BoTG with Macro-F1, over the collections. 32
4.3 Comparisons between relative-frequency and BoTG with Macro-F1, over

the collections. 32
4.4 Comparisons between BoTGalt and BoW with Macro-F1, over the previous

failure cases of BoTG in Reuters-21578. 33
4.5 Comparisons between BoTGalt and BoW with Macro-F1, over the previous

failure cases of BoTG in 20-newsgroups. 33
4.6 Classification time (in milliseconds) by sample over the collections, for kNN

with the Euclidean and MCS distances. 34
4.7 Impact of different assignment and pooling functions. 35

5.1 Comparisons between BoW and BoTG with NDCG@10, over the collections. 39

Acronyms

BoG Bag of Graphs . 18

BoTG Bag of Textual Graphs . 14

BoW Bag of Words . 13

CI confidence interval . 37

DCG Discounted Cumulative Gain . 37

DIG Document Indexing Graph. .15

EMD Earth Mover’s Distance . 15

HAC Hierarchical agglomerative clustering. .15

IDCG Ideal DCG

KDTree K-Dimensional Tree . 42

kNN k-Nearest Neighbors. .16

LSH Locality-Sensitive Hashing . 42

MAP Mean Average Precision . 37

NB Naive-Bayes . 20

NDCG Normalized Discounted Cumulative Gain . 37

PCA Principal Component Analysis . 19

SNB Semi-Naive Bayes . 20

SVM Support Vector Machine . 13

VSM vector space model . 13

Contents

1 Introduction 13

2 Related Work 15
2.1 Graph-based text representation . 15
2.2 Strategies for graph embedding in vector spaces 17
2.3 Vector representation of graph-based text representation models 18
2.4 Co-occurrence-based text representation models 19

3 Bag of Textual Graphs 21
3.1 Overview . 21
3.2 Graph-based text modeling . 22
3.3 Vocabulary Creation . 23

3.3.1 Vocabulary Creation based on subset selection 23
3.3.2 Vocabulary Creation based on attribute fusion 25

3.4 Vector Representation Creation: Assignment and Pooling Functions 26

4 Validation in Textual Classification Tasks 29
4.1 Datasets and Baselines . 29
4.2 Experimental Procedures . 30
4.3 Results and Analysis . 32

4.3.1 Effectiveness Evaluation . 32
4.3.2 Efficiency Evaluation . 33
4.3.3 Parameter Evaluation . 35

5 Validation in Textual Retrieval Tasks 36
5.1 Datasets and Baselines . 36
5.2 Experimental Procedures . 36
5.3 Results and Analysis . 38

6 Conclusions 41

Chapter 1

Introduction

Text mining and information retrieval fields are of paramount importance to support
important tasks, such as knowledge discovery and document indexing. Accurate text
mining and information retrieval solutions rely on the use of text representation models
that should combine both structural and semantic information. Different text represen-
tation models have been proposed in the literature. The classic model, called Bag of
Words (BoW) [21], quantifies term occurrences within documents, assigning an impor-
tance measure to terms found in the document collection. Usually, the importance takes
into account aspects such as the term frequency in the document, and its rarity in the
collection. Documents are modeled as points in a hyper-space of n dimensions, called
vector space model (VSM) [35], where n is the number of distinct terms in the collection.
Although largely used due its simplicity and efficiency, the BoW model does not incorpo-
rate neither structural nor semantic information. Examples of useful information usually
not encoded include term locality, document structural organization (e.g., sentences or
paragraphs), and the order and proximity of terms. Typically, even markup information
available in web collections is ignored in BoW-based representations.

Graphs are employed in many different applications, such as data modeling in graph
databases, data representation of telecommunication networks, and even in the analysis
of DNA sequences [12], because they are able to represent arbitrary structures and inter-
relationships among different elements of a model. Some graph-based text representation
models have been proposed aiming to encode structural information from texts [19, 37, 44].
These representations are richer as they can be used to encode both structural and se-
mantics information. In general, such proposals define a way of representing texts as
graphs, along with a dissimilarity measure used to assess how close two graphs are. Al-
though these techniques encode contextual information successfully, they strongly depend
on the creation or adaptation of data mining or information retrieval algorithms to work
on their proposed graph models. Several popular algorithms, such as Support Vector
Machine (SVM) [11] and Random Forest [2] for example, can not be directly applied on
those graph models. Furthermore, typically used graph-based matching algorithms are
computationally costly.

Strategies for converting graphs to vector representations, also known as graph em-
bedding techniques, have been proposed recently [39, 47] to address the shortcomings of
graph representations. Their main benefits rely on their capacity of providing a resulting

13

CHAPTER 1. INTRODUCTION 14

vector representation that can be used along with existing mining and retrieval techniques
more easily and less costly. These techniques, however, are application dependent and
have to be adjusted for each domain scenario.

In this work, we propose the Bag of Textual Graphs (BoTG), an accurate graph-based
text representation model that combines term counting with also locality principles such
as proximity and the order of terms within a text, in an efficient general-purpose vector
space representation. The objective is to model textual documents as graphs and to
project them in a vector space that has lower dimensionality and higher efficiency than
the Bag-of-Words model, with comparable accuracy to the graph models but with more
general applicability. BoTG is targeted to be used in a wide range of applications.

We validate the model by performing experiments in the context of classification and
retrieval tasks, considering different textual collections. Experimental results demonstrate
that the proposed model is more efficient and more effective than the traditional Bag-of-
Words and graph-based representation models proposed in the literature. In summary,
our main contributions are: the proposal of a text document representation model that
is effective, efficient, and for general-purpose; and the extension of a recently proposed
graph embedding technique proposed in [39] for text modeling in document classification
and retrieval tasks.

This dissertation is organized as follows. Chapter 2 covers related work along with the
main concepts handled in this work. Chapter 3 presents the BoTG model and describes its
components and variants. Chapter 4 describes the experimental protocol used to validate
the model in textual classification tasks. Chapter 5 describes the experiments aiming to
validate BoTG in textual retrieval tasks. Then, in Chapter 6, we summarize and discuss
our contributions and present some possible extensions to this work.

Chapter 2

Related Work

This chapter presents the related work and introduces background concepts useful for
understanding our proposal.

2.1 Graph-based text representation

The approaches presented in this section typically model a text document (generally
called sample) as a graph, in which a vertex represents a term from the text and an edge
represent a relationship between terms.

Hammouda and Kamel [19] proposed a model for document indexing based on term’s
and sentence’s presence in texts. Along with the indexing model, called Document In-
dexing Graph (DIG), they presented a similarity metric for DIG’s that quantifies the
occurrence of common subsequences between two graphs. They apply their indexing
model for text clustering, using clustering algorithms that must rely only on pairs of
distances between samples, such as Hierarchical agglomerative clustering (HAC), as the
model does not support other measurements like centroids, means, or medians for the
samples. These measures are, however, required by many clustering algorithms, as in
K-Means or K-Medians, and this limitation restricts the applicability of the proposed
model. As the model is based on common path discovery in graphs, it is very costly. As
a positive aspect, it yields significantly better quantitative results compared to the use of
Bag of Words for text representation.

Zhang and Chow [44] propose a multi-level representation model for web pages that
segments the document in textual sections. This segmentation is done by the detection
of text excerpts which are separated by specific tags, such as <p>,</br>,, and
</td>. To avoid representing a document with too small sections, subsequent blocks
are merged such that each new block has at least 30 words. The proposed dissimilarity
measure takes into account both the comparison as in Bag of Words with TF-IDF and a
comparison by sections. The comparison of two documents by their sections is modeled
as an optimization problem using the Earth Mover’s Distance (EMD) [32]. The reasoning
in this model is to encapsulate the notion of spatial term distribution, besides considering
both global and local semantics. They validate the model in retrieval experiments over
web collections. As in [19], this model yields a good representation accuracy in comparison

15

CHAPTER 2. RELATED WORK 16

to Bag of Words, but a high cost for text modeling and dissimilarity measurement.
Schenker et al. [37] proposed graph-based text representation models for web pages.

These models have some minor differences and vary from two base models called standard
and relative-frequency. The graph models induce distinct terms of a text as labels for
vertices to the corresponding text graph, then create oriented edges for each pair of
distinct consecutive terms in the same sentence, pointing the edge from the predecessor
term to the next one. In the standard model, labels for the edges indicate the document
section in which the linked terms occurs, and these sections correspond to title (TI), link
(L), or text (TX). The relative-frequency model, on the other hand, associates weights
with the vertices and edges, usually computed as a normalized term frequency and term-
connection frequency, respectively: for each vertex v, its weight is given by f(v)/max(f(v)),
where f(v) is the number of occurrences of the label from v in the text; and each edge e
is weighted as f(e)/max(f(e), where f(e) is the number of occurrences of the pair of terms
linked by e.

Figures 2.1 and 2.2 illustrate, respectively, the standard and relative-frequency graphs
from a hypothetical web document with title “YAHOO NEWS” with a link with “MORE
NEWS HERE” and a text sentence “REUTERS NEWS SERVICE REPORTS. SERVICE
REPORTS.” To calculate the dissimilarity between two graphs, Schenker et al. [37] sug-
gest the use of one of the five discussed metrics in the research, which are well known
in the literature and are based on previous extraction of maximum common sub-graph
or minimum common supergraph [4, 6, 43, 14]. To validate the models, they perform
experiments in web collections using their own customized versions of k-Nearest Neigh-
bors (kNN) for classification and K-Means for clustering. For kNN, they precompute
a dissimilarity matrix containing the distances between each sample to the others. For
K-Means, which also requires the measurement of centroids, they propose a new function
to induce centroids from their graph models. We use the relative-frequency model in our
proposed framework.

Figure 2.1: A text sample represented by Schenker’s standard graph model.

CHAPTER 2. RELATED WORK 17

Figure 2.2: A text sample represented by Schenker’s relative-frequency model.

2.2 Strategies for graph embedding in vector spaces

The increasingly use of graph databases expanded the use of search systems and mining
techniques based on graphs. These approaches, however, deal with costly operations
in graphs such as edit distance and extraction of maximum common sub-graph, which
are NP-hard [17] operations. One common approach to handle this issue relies on the
conversion of graph models into vector spaces (graph embedding), enabling graph-based
representations to be used on larger collection and to benefit from existing mining and
retrieval techniques.

The works of Riesen et al. [31] and Bunke and Riesen [5] propose a method for mapping
graphs in multidimensional space, which heuristically selects x graphs from the collection
as training prototypes, and then maps each graph into a x-dimensional vector. Each
vector attribute corresponds to the distance between the graph to a prototype. Another
approach is to use all the training graphs as prototypes and then apply feature selection
algorithms in order to reduce dimensionality. A drawback relies on the need, for each
graph sample during the vector projection, of computing a graph distance from it to all
the x prototypes, which is still an expensive process when compared to the pure use of
graphs in a mining or retrieval task. Gibert et al. [17], in turn, propose a function that
maps graphs to vectors based on the statistics of the vertex attributes and edge attributes
from the graph. This model, however, does not take advantage of structural information
typically found in graphs, not being therefore very representative.

Zhu et al. [47] present a function to map a graph database to a multi-dimensional space,
with the advantage of preserving distance and structure characteristics. The edit distance
value between two graphs tends to be equal to the distance between their corresponding
resulting vectors in multidimensional space, and it is also preserved in this space the
distance that a new graph has to any graph from database. Although this presents a novel
theoretical step in preserving distances among graphs by using their vectors, it tends to
produce output vectors with high dimensionality and with only binary attributes.

Silva et al. [39] propose a generic framework that projects samples based on graphs
– from any given application domain – into an induced vector space. Given a graph

CHAPTER 2. RELATED WORK 18

training set, the mechanism generates a vector space in which the dimensions correspond
to words of a vocabulary, where the words (or attributes) are local patterns of training
graphs. Local patterns are sub-graphs that are extracted from the graphs based on a
previously given formal definition, so that they can be extracted from any input graph,
and a dissimilarity function must be defined or provided. This leads to the possibility
of designing a vector space, which is based on components from the input graphs, a
mechanism called Bag of Graphs (BoG), expanding the concept of Bag of Words to graph
domain. In addition to defining a vector space, the framework allows to project a new
input sample onto this space. The framework is generic because it works for any input
graphs in the sense that only a graph extractor – to induce a graph from an input sample
– and a sub-graph model coupled to a dissimilarity function need to be defined. The
vocabulary generation is made by clustering sub-graphs from training graphs, where the
training graphs can be a subset from the collection, for instance. Each resulting centroid
from this clustering defines a word in a vocabulary. For clustering, the authors suggest
the use of MeanShift [10] adapted to work with a distance matrix as input. Figure 2.3
summarizes how BoG works. We use a BoG-based encoding approach in our proposed
framework.

Figure 2.3: The BoG framework. Adapted from [39].

2.3 Vector representation of graph-based text represen-
tation models

Markov et al. [28] propose a hybrid text model representation, combining graph-based
text representation with boolean vector representation. This model is applicable to web
documents and restricted classification scenarios. The standard model from [37] is used
as the basis and the method generates vectors for the samples – modeled as graphs –
quantifying the occurrence of frequent sub-graphs. The frequent sub-graph detection
initially identifies, for training, a limited amount of frequent sub-graphs by class, and
then takes this sub-graph set as the attributes of a vector representation. For each test
sample in the form of graph, the method creates a binary vector, which assigns 1 to
each vector attribute (sub-graph) present in the graph, and 0, otherwise. The method is
evaluated in text classification under the classifiers C4.5 and Naive-Bayes.

CHAPTER 2. RELATED WORK 19

Chow et al. [8] propose a vector representation model based on graphs, applying it
in the context of text retrieval. The proposal is based on the relative-frequency graph
model from [37]. The proposed vector model is a combination of two vectors: first, a
vector using the classical Bag of Words with TF weighting; and second, a vector whose
attributes are each possible pair of neighbor terms. Each attribute value for pairs of
terms, called connection-term-frequency, is given by the weight of the edge in the original
graph that, in turn, is the frequency that the pair of terms appears in sequence in the
text from that graph. Because the number of possible combinations of neighbor terms is
high, the final dimensionality of the model is also very high. To overcome this issue, they
suggest the use of Principal Component Analysis (PCA) [13] for the vector training set,
and, at retrieval step, to apply the same PCA projection on the query samples.

Our model presents some advantages when compared to those approaches. Unlike [28],
we adopt more flexible assignment and pooling procedures, thus not restricting the model
to binary weighting schemes. Our model also is not limited to classification tasks due to
its independence of the existence of labeled train samples. Therefore our method can be
used, for instance, in other applications such as retrieval and clustering. Different from
the model of [8], which takes into account both term occurrence and term neighborhood,
our method can co-relate terms in a broader context proximity. As we will show later,
this property makes our model more accurate and more flexible than methods based on
strict term neighborhood definitions.

2.4 Co-occurrence-based text representation models

Despite the presence of graph-based models to represent textual documents, there is a vast
literature of text models based on co-occurrence of terms. They vary on their definition
of co-occurrence and some of them are specific to a certain goal.

N -grams are sequences of n adjacent words and can be used for bag representations,
called bag of n-grams. In this approach, a document is represented by a vector whose
attributes can be both singular words and n-grams up to a particular value of n. The
reasoning of n-grams is to capture common expressions. Bag of n-grams has been shown
to be more effective than BoW for n values up to 5 [40]. However, n-grams presents higher
complexity than BoW and the gains are usually either absent or marginal [1].

Skip-grams generalizes n-grams so that the words do not need to be contiguous. In-
stead, it allows words to be skipped in gaps up to a certain size k [18]. 1-skip-bi-gram,
for example, is a skip-gram model with maximum gap size k of 1 that considers all the
sequences of 2 words with 0 to 1 words as a gap between the pair. This approach over-
comes the data sparsity problem of n-grams, at a cost of producing even larger language
models.

Figueiredo et al. [15] propose the notion of compound-features for text classification
tasks, a relaxed skip-bi-gram model whose attributes are composed of words that co-occur
without restrictions on order or distance between them within the document. Further-
more, this approach leads to a very high dimensionality – 2t for a collection of t terms
– and additional noise. In fact, the proposal presents some mandatory feature selection

CHAPTER 2. RELATED WORK 20

strategies to discard irrelevant features and reduce noise. The feature selection retains
compound-features that are present in documents of a certain class but not in the oth-
ers. This model presents good effectiveness and efficiency, but it is limited to the text
classification scenario.

Although some works focus on language model generation, which can be used with
different algorithms and for different tasks, other works propose a direct algorithm mod-
ification, such as into Naive-Bayes (NB). NB is a probabilistic classifier algorithm which
assumes that each attribute is independent to one another, and applies bag principles as
in BoW. Semi-Naive Bayes (SNB) relaxes the independence assumption and incorporates
feature dependency [45], promoting more effective classification results in cases where NB
performs badly, such as collections with class imbalance, feature sparseness, and strong
relationships among attributes. SNB are not usually applied in large collections due to
their high training costs [42].

Viegas et al. [42] propose a SNB model that employs a novel lazy feature selection
strategy. That lazy strategy selects the most important features from the documents
and produces a more compact language model than those obtained from other SNB-
based initiatives, leading to gains in terms of effectiveness and efficiency. This proposal,
however, is specific to text classification and was only compared to BoW-based approaches
of kNN and SVM.

Chapter 3

Bag of Textual Graphs

This chapter introduces the proposed Bag of Textual Graphs (BoTG), a graph-based
textual representation model. Section 3.1 provides an overview of the proposed method
highlighting its main components. Sections 3.2, 3.3, and 3.4 present, respectively, how
we extract graphs from textual documents, how we create a vocabulary based on graph
representations, and how vector representations can be obtained based on the generated
vocabulary.

3.1 Overview

In order to create a model that meets the goals of efficiency, accuracy, and flexibility, we
propose a combination between a graph-based representation model [37] and a framework
for graph-to-vector space projection called Bag of Graphs (BoG) [39]. The efficiency and
flexibility of our method come from the resulting vector representation, whereas accuracy
is achieved from the graph-based model applied beforehand. Our proposed representation
model is expected to be used in a wide range of applications such as text mining or
information retrieval tasks in general (e.g., text clustering, classification, or ranking).
This dissertation focuses on textual document classification and retrieval problems.

Figure 3.1 shows the proposed pipeline employed to define vector-based representations
from graphs. Two sequences of steps are presented, one for vocabulary creation and
another for creating the representation given the created vocabulary. Given a set of
samples (referred to here as training set), we initially extract their corresponding graphs
(step 1a). Later sub-graphs within those graphs are extracted based on predefined criteria
(2a), and then are used to create a graph-based vocabulary used to define a vector space
model (3). Samples are represented by vectors created based on a projection of their
graphs onto the created vocabulary. Assignment and Pooling (4a) functions are used in
the projection. Similar steps are employed for handling novel samples. Given a novel
sample, its corresponding graph (1b) is extracted and key sub-graphs (2b) are defined.
Later, these sub-graphs are mapped to the created vocabulary in order to define its vector
representation based also on the use of specific Assignment and Pooling functions (4b).

21

CHAPTER 3. BAG OF TEXTUAL GRAPHS 22

Figure 3.1: Proposed pipeline for vector representation of graphs extracted from textual
documents.

3.2 Graph-based text modeling

The first step of our method relies on the representation of textual documents onto graphs.
In the beginning, documents are pre-processed with the objective of detecting textual
segments defined in terms of sections and sentences within the text. Next, these segments
are decomposed into a sequence of terms. Later, this sequence is refined by removing stop
words based on a publish list1 and by using the Porter’s stemming algorithm [30].

For the graph-based text modeling, we use a modified version of the relative-frequency
model proposed in [37]. Let G = (V,E) be a graph, where V is a set of vertices and E
is a set of edges. A vertex v ∈ V refers to a term of the document. Edges e ∈ E are
defined based on the co-occurrence of terms within a same textual segment. Our graph
model uses TF-IDF weighting for vertices and edges in order to incorporate information
for rarity importance as proposed in [34]. For a directed edge, TF corresponds to the
number of occurrences of its ordered pair of terms in the related document, and DF is
the number of documents in which that pair occurs.

Sub-graphs within G are defined as follows: a directed sub-graph Gt = (Vt, Et), with
Vt ⊆ V and Et ⊆ E is created for each term t. There is an edge e(i, j) ∈ Et linking terms
ti to tj if tj appears after term ti within a sequence of terms of a segment. Edges may be
defined based on the size of the segments considered. The larger the size, the more edges
are defined. A large segment allows the expansion of the term context, which may lead to
better accuracy results. In Figure 3.2, we show sub-graphs extracted from the example
shown in Figure 2.2, based on segments of size 1.

1Stop list available at http://code.google.com/p/stop-words/ (As of January 2017).

http://code.google.com/p/stop-words/

CHAPTER 3. BAG OF TEXTUAL GRAPHS 23

Figure 3.2: Sub-graphs from the weighted graph sample in Figure 2.2, based on segments
of size 1.

3.3 Vocabulary Creation

The objective of this step is the creation of a graph-based codebook on which graphs of
textual documents will be projected in order to define a vector representation. Here we
present two possible approaches for codebook creation.

3.3.1 Vocabulary Creation based on subset selection

In this approach, the vocabulary creation consists of selecting a subset from the training
subgraph set. This can be done in different ways, such as randomly selecting a maximum
of subgraphs, or clustering of sub-graphs based on their dissimilarity. For large collections,
clustering of sub-graphs may be a practical limit due the large number of subgraphs, but
this issue can be addressed by prior subset sampling or approximate approaches for the
clustering. Clustering is a more costly way but usually produces better codebooks [39].
In preliminary experiments, we noticed better results by clustering selection over random
selection, so we decided to use clustering selection.

Different functions can be used for sub-graph dissimilarity measurement. There are
functions based on the maximum common sub-graph, such as MCS [6] or WGU [43].
We present in Algorithm 1 the proposed dissimilarity function, which differs from those
previously mentioned as it focuses on the contextual information defined in terms of
the edges defined by the terms (and their neighbors) being compared. We apply the
dissimilarity function in two cases: the subgraph clustering within vocabulary creation,

CHAPTER 3. BAG OF TEXTUAL GRAPHS 24

and the Assignment phase (see steps 3 and 4, in Figure 3.1). We that this proposed
function is restricted to our sub-graph definition. For understanding Algorithm 1, the
following definitions are considered:

• GA and GB are connected sub-graphs, weighted on nodes and edges, containing only
a central term tGA (or tGB), and its neighbor nodes;

• n_weight(t, G) returns the weight of the node’s term t in the graph G.

• e_weight(t1, t2, G) returns the weight of the edge linking the term t1 to t2 in G.

• neighbors(t, G) returns the neighbor terms of a given term t in G.

Given GA and GB, Algorithm 1 provides a dissimilarity in [0, 1], with 0 for equiv-
alent sub-graphs and 1 for sub-graphs with different central terms (Lines 1 to 2). dist

accumulates the node weight difference between central nodes from GA and GB plus the
edge weight differences from the sub-graphs. For edges connecting terms present in both
sub-graphs, it adds the weight difference (Lines 7 to 9), and for all other edges it adds 1
(Lines 10 to 12), which is also the limit value for both edge and node weights in our prior
graph model. numComparisons is used in the end to limit the dissimilarity in desired
interval (Line 13).

Figure 3.3 provides examples related to the use of this function, considering weights
equal to 1. Red vertices indicate different central terms between the subgraph pair, which
gives dissimilarity 1 (example e). For remaining cases, the central term’s weight difference
(0 in the examples) is added to dist, and numComparisons then starts by 1. Green
vertices indicate common term neighbors, and each common neighbor adds the edge’s
weight difference (0 in the examples) to dist, and 1 to numComparisons. Yellow vertices
indicate different term neighbors, and each one adds 1 to dist, and 1 to numComparisons.

Algorithm 1 Proposed sub-graph dissimilarity function.
1: if tGA 6= tGB then
2: return 1
3: neighborsGA← neighbors(tGA , GA)
4: neighborsGB ← neighbors(tGB , GB)
5: dist← |n_weight(tGA , GA)− n_weight(tGB , GB)|
6: numComparisons← 1
7: for all t′ ∈ neighborsGA ∩ neighborsGB do
8: dist← dist+ |e_weight(tGA , t′, GA)− e_weight(tGB , t′, GB)|
9: numComparisons← numComparisons+ 1

10: for all t′ ∈ (neighborsGA ∪ neighborsGB)− (neighborsGA ∩ neighborsGB) do
11: dist← dist+ 1
12: numComparisons← numComparisons+ 1

13: return dist/numComparisons

Different algorithms can be used for graph clustering [36, 46]. In fact, the dimension-
ality for the vocabulary produced depends on the clustering method. In this work, we use
MeanShift [10], adapted to work with a dissimilarity matrix as input. In MeanShift, the

CHAPTER 3. BAG OF TEXTUAL GRAPHS 25

(a) d = (0+0+2)/(1+2+2)=0.4 (b) d = (0+0+3)/(1+1+3)/=0.6

(c) d = (0+3)/(1+3)=0.75 (d) d = (0+4)/(1+4)=0.8

(e) d = 1

Figure 3.3: Examples of dissimilarity (d) measurements for pairs of subgraphs, based on
Algorithm 1 and considering weights 1.

number of seeds and the bandwidth used affect the final number of clusters considered in
the vocabulary. If desired, K-Medoids could be used to define a codebook with a specific
dimensionality.

3.3.2 Vocabulary Creation based on attribute fusion

Our prior formulation for vocabulary creation to graph embedding tends to generate a
vector space with less dimensions than Bag-of-Worlds’ space (typically less than 50%),
as we will show later in validation experiments. Although this provides efficiency to our
method, sometimes its codebook quality is not enough because possible relevant terms
from collection are left out in the representation model. To handle this issue, two ap-
proaches are used:

1. Induce the vocabulary generation to provide larger codebooks. This requires to
adjust the clustering parameters accordingly, if possible;

2. Generate a more restricted codebook containing only subgraphs that have edges,
and then create a hybrid vector model whose attributes are composed of both this
codebook and the terms from BoW. This will project an input graph as a con-
catenated pair of vectors, each one computed differently but composing a unique
representation.

This first approach may lead to a slower clustering selection. The idea behind the
second approach is to encode an expanded vocabulary that contains both isolated terms,

CHAPTER 3. BAG OF TEXTUAL GRAPHS 26

as in BoW, as well as some relevant contextualized terms. Contextualized terms are
encoded to the vocabulary in the form of subgraphs. This is roughly analogue to use
of n-grams [33], but with the advantage of a more concise dimensionality. This is also
similar to the strategies that some of our counterparts [8, 28]: instead of creating a new
vocabulary, we expand a preliminary one by means of some selection criteria. We will
refer to this approach as BoTGalt. Figure 3.4 illustrates how BoTGalt feature vector is
computed.

Figure 3.4: Vocabulary creation based on attribute fusion.

3.4 Vector Representation Creation: Assignment and
Pooling Functions

The creation of vector representations relies on the projection of graphs of a textual
document onto the created vocabulary. Two steps are used to guide this process: sub-
graph assignment and pooling. We investigate in Section 4.3.3 the influence of different
assignment and pooling functions over classification accuracies in our experiments.

An assignment function maps each sub-graph to a codebook cluster (also known as
word). In a hard assignment, the sub-graph is associated with the closest centroid (word)
in the space model. A soft assignment, in turn, adopts a kernel function to establish the
degree of a sub-graph belonging to different clusters. Let S be a set of sub-graphs of a
certain input graph. The hard assignment aij for the sub-graph si ∈ S to the cluster
(word) wj is given by Equation 3.1, where N is the number of clusters and D(si, wk)

computes the dissimilarity between si and wk. Equation 3.2 defines a soft assignment
that uses a Gaussian to smooth the dissimilarities [41], where K(x) = exp(− x2

2σ2
)/σ
√
2π,

and σ allows the smoothness control. Figure 3.5 shows an example of hard and soft
assignments.

aij =

1, if j = argmin
1≤y≤N

D(si, wy)

0, otherwise
(3.1)

CHAPTER 3. BAG OF TEXTUAL GRAPHS 27

aij =
K(D(si, wj))

sumN
k=1K(D(si, wk))

(3.2)

(a) hard (b) soft

Figure 3.5: Example of (a) hard and (b) soft assignment for a point p1 (red circle).
Green arrows indicate the words assigned to p1 and the corresponding assignment values.
Adapted from [29].

Pooling functions summarize into a single output vector the assignments performed
for all sample sub-graphs. For the sum pooling, each v[j] associated with the word j from
vector v[1..N] is given by the sum of all relations between the input sample sub-graphs to
j (Equation 3.3). Average (avg) pooling associates with v[j] the percentage of associations
to the word j, as shown in Equation 3.4. In the max pooling (Equation 3.5), v[j] is the
highest value associated with the word j. Table 3.1 illustrates an example of sum, avg,
and max pooling for a graph with 8 subgraphs, considering a codebook of 10 words.

vj =
N∑
i=1

aij (3.3)

vj =

∑N
i=1 aij
|S|

(3.4)

vj = max
1≤i≤S

aij (3.5)

CHAPTER 3. BAG OF TEXTUAL GRAPHS 28

Table 3.1: Example of sum, avg, and max pooling, for a graph with 8 subgraphs, a
vocabulary of 10 words and the use of soft assignment. Adapted from [29].

Words
Subgraphs w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

s1 0.02 0.30 0.10 0.00 0.00 0.00 0.00 0.58 0.00 0.00
s2 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.10
s3 0.40 0.00 0.00 0.20 0.00 0.10 0.10 0.20 0.00 0.00
s4 0.00 0.00 0.00 0.00 0.00 0.50 0.40 0.00 0.05 0.05
s5 0.05 0.05 0.00 0.10 0.00 0.00 0.00 0.00 0.80 0.00
s6 0.00 0.95 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s7 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.20 0.00 0.60
s8 0.00 0.30 0.30 0.30 0.00 0.00 0.00 0.00 0.00 0.10

sum 0.47 1.60 0.45 0.60 0.90 0.60 0.70 0.98 0.85 0.85
avg 0.06 0.20 0.06 0.08 0.11 0.08 0.09 0.12 0.11 0.11
max 0.40 0.95 0.30 0.30 0.90 0.50 0.40 0.58 0.80 0.60

Chapter 4

Validation in Textual Classification
Tasks

This chapter presents adopted experimental protocol aiming to validate the proposed
BoTG model comprising the scenario of text classification. Performed experiments con-
sider the analysis of the effectiveness and the efficiency of BoTG, as well as of baseline
methods. The main goal here is to validate the hypothesis that BoTG aggregates the
benefits from both baselines being considered, achieving comparable or even superior
efficiency and effectiveness performances.

4.1 Datasets and Baselines

The experiments are performed on the following collections:

• Reuters-215781: 21,578 news from Reuters newswire, categorized according to five
different category sets: topics, places, people, orgs, and exchanges. We consider
topic classification. A few samples are unlabeled or multi-labeled. This collection
has very skewed distribution: documents per class vary from less than a dozen to
almost four thousand.

• 4-universities2: 8,282 web pages distributed into 7 classes, collected from website
departments of the universities Cornell, Texas, Washington, and Wisconsin.

• 20-newsgroups3: 20,000 messages from USENET forum, distributed in 20 classes
(called newsgroups), with one thousand samples per class. The collection contains
some multi-labeled samples.

• K-series4: 2,340 web news pages from Yahoo, distributed into 6 categories: business,
health, politics, sports, technology, and entertainment. This is a skewed collection,
with classes containing from 60 to more than one thousand documents. Some pages

1http://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection
(As of January 2017).

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data (As of January 2017).
3http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups (As of January 2017).
4http://www-users.cs.umn.edu/~boley/ftp/PDDPdata (As of January 2017).

29

http://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data
http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
http://www-users.cs.umn.edu/~boley/ftp/PDDPdata

CHAPTER 4. VALIDATION IN TEXTUAL CLASSIFICATION TASKS 30

Table 4.1: Statistics of collections after preprocessing and graph extraction.

Collection # classes # samples # terms Mean number of nodes per graph
Reuters-21578 65 8,655 19,370 41
4-universities 7 8,202 53,428 92
20-newsgroups 21 10,945 64,011 69

K-series 6 2,340 25,843 175

are distributed into sub-categories. In our experiments, we do not use sub-category
information.

In the experiments regarding classification, we discard from the collections the samples
that are unlabeled or multi-labeled, aiming simplicity but without loss of generality. The
samples with empty body text are also discarded.

Initially, in an offline stage, all collection documents are represented as graphs, as
explained in Section 3.2. The offline stage also comprises the vocabulary generation and
classification training. We call as online stage the steps involved for an input graph,
with starts by projecting it within the BoTG’s vector space (see Section 3.4), and then
– depending on the experimental scenario – either classifying the sample or using it as a
query for retrieval.

We show in Table 4.1 statistics from collections after pre-processing steps and graph
extraction. The collections vary in terms of their contents, the number of classes and
samples and also the size of their samples, what reflects on the mean number of nodes per
extracted graph. All collections presented more terms than samples, which is a common
characteristic in text collections.

We conduct experiments that compare the proposed BoTG model with the tradi-
tional Bag of Words (BoW) and with the relative-frequency graph model [37]. The same
text preprocessing procedures previously mentioned are used for BoTG and for the two
baseline models. For the use of Bag of Words, we adopt TF-IDF weighing and rescale
attribute values in the range [0, 1]. The relative-frequency model is used as baseline in
the experiments following its original proposal.

4.2 Experimental Procedures

We adopt as evaluation criteria the comparison of both the effectiveness and efficiency
performance of the methods in text document classification tasks.

We conduct a 10-fold cross-validation protocol to compare the proposed BoTG method
with the baselines. We use a stratified cross-validation to impose folds with same size and
same class distribution. At each step, one fold is used for testing and the others are used for
creating the BoTG model and training the classifier. The test samples are later classified
and we measure the fold classification effectiveness. The same process is performed for
every fold and, at the end, we compute the mean effectiveness score and the standard
deviation.

The effectiveness of evaluated methods is measured in terms of macro-F1, which is
derived from standard measures such as precision and recall. Due to the collections

CHAPTER 4. VALIDATION IN TEXTUAL CLASSIFICATION TASKS 31

used in our experiments are skewed, F1 is preferred over the use of accuracy. Let C =

{c1, c2, . . . , ck} be the classes of a certain collection. By initially computing the confusion
matrix, we get the true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) per class. Equation 4.1 presents the precision rate for class i, Equation 4.2
presents recall for class i, and Equation 4.3 indicates how F1 is measured for class i.
Macro-F1 is defined as the average of the F1 values for each class (Equation 4.4).

P (ci) =
TPi

TPi + FPi
(4.1)

R(ci) =
TPi

TPi + FNi

(4.2)

F1(ci) =
2P (ci)R(ci)

P (ci) +R(ci)
(4.3)

macro− F1 =

∑K
i=1 F1(ci)

K
(4.4)

The effectiveness comparison between models uses the mean macro-F1 from the folds
and we validate it with the Wilcoxon-signed rank test [38] paired on folds to analyze
if there is statistical significance between results from different models, considering 95%
confidence level. The efficiency evaluation is based on the mean time spent to classify a
test sample.

We apply the same process using different classifiers to compare the models under
different classification scenarios: kNN, Random Forest, and SVM. For both BoTG and
BoW, we measure F1 with the same classifiers, and for relative-frequency we adapt kNN to
work with distance matrices which are precomputed with specific graph-based functions,
such as MCS [6] or WGU [43]. The folds are created before the classification procedures
and all methods use the same folds. We adopt kNN with three different configurations,
one for each distance function used: cosine, Jaccard, and Euclidean. We use Random
Forest with 100 stamps and log2(dimensionality − 1) + 1 attributes. We use SVM with
linear kernel and adjusted for multi-class classification using one-vs-all strategy. Given the
presence of hyperparameters, we use grid search internally to the cross-validation in order
to adjust the classifier model, in a procedure known as nested cross-validation: during the
analysis on the k-th fold, the remaining k − 1 folds are used for training and evaluation,
so that a internal cross-validation finds an optimal configuration, which is then used to
train the model over the k − 1 folds, which is finally used to test the k-th fold. We vary
k from kNN in {1, 3, 5, 7, 11} and C from SVM in powers of 10 between 10−3 and 103.

Performed experiments also evaluate different parameter settings of the proposed rep-
resentation, which are the number of seeds for MeanShift, varying between 10% and
100% in steps of 10%, and the segment size during subgraph extraction, which we vary
in {1, 3, 5}.

CHAPTER 4. VALIDATION IN TEXTUAL CLASSIFICATION TASKS 32

4.3 Results and Analysis

This section presents and discusses experimental results related to the evaluation of the
proposed graph representation in comparison to baselines with regard to their effectiveness
and efficiency performances. We also discuss results related to the parameter settings
evaluation.

4.3.1 Effectiveness Evaluation

Table 4.2 shows the results obtained for the collections, using Macro-F1, comparing BoW
and BoTG. Table 4.3 compares the relative-frequency results to BoTG comprising kNN
– same classifier but with different distance functions – and SVM (overall best classifier
for BoTG). We adopt the following symbols to denote the statistical comparisons of our
method:

• Symbol N: it overcame the baseline;

• Symbol •: it was tied to baseline but with better or equal mean;

• Symbol ◦: it was tied to baseline but with lower mean;

• Symbol O: it was worse than the baseline.

Table 4.2: Comparisons between BoW and BoTG with Macro-F1, over the collections.

kNN-Euclidean kNN-cosine kNN-Jaccard Random Forest SVM
Collection BoW BoTG BoW BoTG BoW BoTG BoW BoTG BoW BoTG
Reuters-21578 68.8± 2.8 71.7± 1.9 N 88.8± 2.6 88.3± 2.4 ◦ 88.0± 2.5 88.5± 2.4 • 82.5± 3.0 85.6± 2.2 N 94.3± 1.1 93.7± 1.0 ◦
4-universities 43.5± 3.6 49.9± 3.5 N 63.2± 3.1 66.0± 3.1 N 64.3± 3.0 65.8± 2.8 N 61.4± 2.1 63.6± 2.3 N 77.3± 1.9 76.0± 1.8 ◦
20-newsgroups 57.1± 1.6 55.3± 1.9 O 85.5± 1.0 84.2± 1.2 O 84.9± 0.8 84.4± 0.9 O 78.2± 1.7 78.4± 1.1 • 86.5± 1.3 89.0± 0.9 N
K-series 64.3± 2.8 73.6± 2.5 N 91.9± 2.4 93.3± 2.2 • 92.6± 2.2 93.6± 1.8 • 71.9± 7.5 77.5± 4.0 N 99.0± 0.6 99.5± 0.6 •

Table 4.3: Comparisons between relative-frequency and BoTG with Macro-F1, over the
collections.

Collection relative-frequency
& kNN-MCS BoTG & kNN BoTG & SVM

Reuters-21578 88.6± 2.2 88.5± 2.4 (cosine) ◦ 93.7± 1.0 N
4-universities 62.5± 1.7 66.0± 3.1 (cosine) N 76.0± 1.8 N
20-newsgroups 86.8± 0.9 84.4± 0.9 (Jaccard) O 89.0± 0.9 N
K-series 95.6± 1.7 93.6± 1.8 (Jaccard) O 99.5± 0.6 N

In Reuters-21578, BoTG overcame BoW for the kNN-Euclidean and Random For-
est, and tied statistically considering the kNN-cosine, kNN-Jaccard, and SVM classifiers.
Compared to the relative-frequency model, no statistical differences were observed when
the kNN classifier was used. However, BoTG overcame this baseline when SVM was
used, one of several classifiers that can be applied to our model but not to the graph
model directly. The results point out that our model overcomes the restricted use of its
corresponding baseline graph model.

CHAPTER 4. VALIDATION IN TEXTUAL CLASSIFICATION TASKS 33

In 4-universities, BoTG overcame BoW for all classifiers except for SVM in which there
was a statistical tie. BoTG also overcame relative-frequency for all classifiers considered
in our study. In 20-newsgroups, BoTG performed better than BoW and relative-frequency
by its overall best F1, achieved by SVM. In this collection, relative-frequency overcame
BoW. In K-series, BoTG performed better than BoW for kNN-Euclidean and Random
Forest, and tied for the others. BoTG also overcame relative-frequency when the SVM
classifier is used (see Table 4.3).

From Table 4.2, it can be noticed that BoTG was worse than BoW for 20-newsgroups
in the three kNN variants, and tied with lower mean in Reuters-21578 for kNN-cosine and
SVM. Our model, however, presented good results for most cases. We also investigated
the use BoTGalt for these worst cases to check if a joint representation combining BoW
and BoTG would yield better results. Tables 4.4 and 4.5 present the results of BoTGalt

in these cases, respectively for Reuters-21578 and 20-newsgroups. For Reuters-21578,
BoTGalt improved the previous results in at least 1%, achieving better mean than BoW
for kNN-cosine and SVM but still presenting statistical ties. For 20-newsgroups, BoTGalt

improved the previous results between 0.6% and 2.1%, achieving better mean than BoW
for the kNN classifiers but still presenting statistical ties.

Table 4.4: Comparisons between BoTGalt and BoW with Macro-F1, over the previous
failure cases of BoTG in Reuters-21578.

Classifier BoW BoTG BoTGalt

kNN-Euclidean 68.8± 2.8 71.7± 1.9 N 69.9± 2.9 N
kNN-cosine 88.8± 2.6 88.3± 2.4 ◦ 89.3± 2.2 •
kNN-Jaccard 88.0± 2.5 88.5± 2.4 • 88.5± 2.4 •
Random Forest 82.5± 3.0 85.6± 2.2 N 84.7± 3.4 N
SVM 94.3± 1.1 93.7± 1.0 ◦ 94.8± 0.9 •

Table 4.5: Comparisons between BoTGalt and BoW with Macro-F1, over the previous
failure cases of BoTG in 20-newsgroups.

Classifier BoW BoTG BoTGalt

kNN-Euclidean 57.1± 1.6 55.3± 1.9 O 57.4± 1.2 •
kNN-cosine 85.5± 1.0 84.2± 1.2 O 86.1± 0.7 •
kNN-Jaccard 84.9± 0.8 84.4± 0.9 O 85.0± 1.0 •
Random Forest 78.2± 1.7 78.4± 1.1 • 78.2± 1.0 •
SVM 86.5± 1.3 89.0± 0.9 N 89.9± 1.2 N

4.3.2 Efficiency Evaluation

The vector samples produced by BoTG has dimensionality at least 50% less than in BoW
for the most executions performed. This result enables a fast classification time with our
method, as shown in Table 4.6. This table presents the mean time to classify one test
sample during online phase, with kNN using k=1 and the Euclidean distance (for BoW and
BoTG), and kNN with MCS distance for the relative-frequency model. The results refers

CHAPTER 4. VALIDATION IN TEXTUAL CLASSIFICATION TASKS 34

to the average of 10 runs. Despite our method requires an extra overhead to project the
test sample onto vector space, this does not compromise the benefit obtained from using
less dimensions. Besides that, our method achieved classification times usually around
10% of the scores observed for the method based on relative-frequency. We confirmed
statistical difference between BoTG’s classification time compared to the baselines, using
Wilcoxon-signed rank test paired on the 10 average results.

Figure 4.1 presents the results of BoTG and BoW regarding efficiency, as in Table 4.6,
but also reflects effectiveness from the models. In this chart, the points correspondent
to BoTG results are mainly in the superior left corner, which yields better effectiveness
levels with lower computational cost. The accuracy and efficiency levels achieved by our
model, in different collections and compared to BoW and graph-based models, shows that
BoTG promotes a good balance between efficiency, effectiveness, and applicability.

Table 4.6: Classification time (in milliseconds) by sample over the collections, for kNN
with the Euclidean and MCS distances.

BoW Relative-frequency BoTG
Collection Dimensions Time Time Dimensions Time
Reuters-21578 7241 31.0± 0.3 435.0± 7.8 3339 16.0± 0.1 N
4-universities 16150 82.0± 0.9 4104.7± 70.1 6892 42.0± 0.2 N
20-newsgroups 29860 354.7± 5.4 1768.0± 39.5 13900 187.3± 1.3 N
K-series 14358 32.0± 0.8 2088.0± 29.0 7199 30.7± 0.5 N

50 100 150 200 250 300 350

45
50

55
60

65
70

Time (ms)

M
ac

ro
−

F
1

BoTG Reuters−21578

BoTG 4−universities

BoTG 20−newsgroups

BoTG K−series

BoW Reuters−21578

BoW 4−universities

BoW 20−newsgroups

BoW K−series

Figure 4.1: BoTG and BoW models compared by effectiveness and efficiency, for four text
collections. Each collection is identified by a marker, and each model is identified by a
color.

Although the BoTG presents an overall good performance during its use, the main
effort in our model regards the offline stage, i.e. the vocabulary creation. This, however,

CHAPTER 4. VALIDATION IN TEXTUAL CLASSIFICATION TASKS 35

is performed only once, per collection. In our experiments, this step had required an
average of up to 12 hours per collection, in a regular computer with Intel Core i5-3317U
CPU @ 1.70GHz and 8 gigabytes of memory.

4.3.3 Parameter Evaluation

Comprising the parameters of the model, sum pooling and hard assignment performed
better in most cases than their alternative functions discussed earlier, as shown in Ta-
ble 4.7. This table presents the F1 values achieved for BoTG over the collections and
using different assignment and pooling functions. The use of TF-IDF weighing in the
graph extraction step was better than the use of normalized TF, which is actually an
improvement of our graph formulation compared to the original proposal. In kNN, small
values of k performed better, usually with k = 1 and k = 3. Jaccard and cosine distance
functions performed better for kNN than Euclidean distance, and this is in accordance
with results in tasks involving text collections or multidimensional data [24].

In the vocabulary creation during the offline step, the use of larger segment sizes on
subgraph extraction, such as 3 and 5, as well as the use of more seeds to MeanShift
improved the results in general up to a certain degree, because this tends to increase the
resulting dimensionality for the vector space model. Higher dimensionalities increase the
generality of the model, conducting to more representative features. It is important to
mention that not all sub-graphs from the training set need to be used for the vocabulary
creation. In fact, it is possible to select, for example, only sub-graphs whose its central
term weight is higher than a certain threshold.

Table 4.7: Impact of different assignment and pooling functions.

Hard Assignment Soft Assignment
Collection Sum Avg Max Sum Avg Max
Reuters-21578 93.7± 1.0 91.4± 1.7 93.6± 0.9 93.5± 0.9 91.4± 1.5 93.5± 0.9
4-universities 76.0± 1.8 63.5± 1.5 76.0± 1.8 75.8± 1.8 63.9± 1.6 75.8± 1.8
20-newsgroups 88.2± 1.2 88.9± 1.0 88.1± 1.1 88.1± 1.1 89.0± 0.9 88.1± 1.1
K-series 99.5± 0.6 98.1± 0.9 99.5± 0.6 99.5± 0.6 98.2± 0.8 99.5± 0.6

Chapter 5

Validation in Textual Retrieval Tasks

This chapter presents the evaluation of the proposed model in text retrieval tasks. In text
retrieval scenario, the main goal is, for a text given as a query, to return a ranked list
containing the most relevant collection documents, preferably in the first positions.

5.1 Datasets and Baselines

We adopt here the same collections of our previous validation for text classification, as
we have detailed in Section 4.1.

In real-world text retrieval tasks, efficiency is usually a crucial factor due to the need of
real-time low latency between a user’s query and the presentation of the retrieved list. In
fact, search engines perform many sorts of optimizations, such as indexing, caching, and
approximations [3] to return as fast as possible relevant results without actually composing
the ranked lists from the whole dataset in brute-force manner, for example. Because of
this practical efficiency restriction, we limit our retrieval experiments to the comparison
between BoTG and BoW, leaving graph-matching-based out in this case because they can
not be applied directly in most real-world scenarios. We will not consider aforementioned
optimizations in the protocol, although they can be used for BoTG if desired.

5.2 Experimental Procedures

In our proposed experimental protocol, which uses labeled collections, we use text doc-
uments as queries and we consider a retrieved document as relevant to the query if it
belongs to the same class of the query document, i.e., relevancy in the experiments are
either 1 for relevant or 0 for irrelevant. In practice, relevancy can be measured according
to a limited numerical range, but our condition here does not affect the applicability of
our model.

In order to produce a ranked list for an input text, we measure its distance against the
collection documents, and then return a sorted list varying from the closest documents
to the farthest. This approach relies on which text representation model and distance
function are being applied, but the general procedure is the same while evaluating different
representation models regardless these two conditions.

36

CHAPTER 5. VALIDATION IN TEXTUAL RETRIEVAL TASKS 37

For the compared use of BoTG and BoW in retrieval tasks, we adopt one different
vector-based distance function at a time: cosine, Jaccard, and Euclidean. The comparison
by the use of the same distance function guarantees that only representations models are
actually being compared.

For a given distance function, we compare the results from the two models using
Normalized Discounted Cumulative Gain (NDCG) [25] for different ranked list sizes.
NDCG@k denotes the measurement obtained for size k. NDCG is a well-known metric
for ranking quality evaluation and was chosen here because it presents some advantages
over other commonly used metrics such as Precision or Mean Average Precision (MAP).
NDCG rewards relevant documents in the top ranked results more heavily than those
ranked lower and allows graded degrees of relevance, not only binary relevance.

NDCG is a normalized version of Discounted Cumulative Gain (DCG) (Equation 5.1),
to avoid that different ranked list sizes affect the comparisons (Equation 5.2). DCG is
measured for the query q analyzing its ranked list up to the position k. In Equation 5.1,
rel(q, i) measures the relevance of the i-th element for q. In Equation 5.2, Ideal DCG
(IDCG) is the maximum possible DCG for query q comprising all possible results to it,
which is theoretically obtained if we sort its ranked list placing the most relevant results
first.

DCG(q, k) =
k∑
i=1

2rel(q,i) − 1

log2(i+ 1)
(5.1)

NDCG(q, k) =
DCG(q, k)

IDCG(q)
(5.2)

NDCG is measured for each query, so we compare the mean NDCG of each represen-
tation model. We also perform statistical tests using Wilcoxon-signed rank test paired by
query. However, because p-value tends to zero for a large amount of paired samples [9],
we also analyze confidence interval (CI): given D the difference between two population
means, CI is the interval such that there is statistical difference when D is out of CI,
considering a confidence level of 95%. We say that there is statistical difference when
these two conditions occurs.

For the codebook construction in BoTG for these experiments, we trained the model
taking the collection as training and using the parameter values that performed better in
classification experiments.

We also performed experiments with BoTGalt for retrieval tasks, as we did in the
classification experiments. The results, however, were not better than those observed
for BoTG. We believe that higher dimensionalities produced by BoTGalt affected the
effectiveness of the method negatively due to the curse of dimensionality [26]. We plan
to investigate dimensionality reduction approaches and their effects for BoTGalt in future
work.

CHAPTER 5. VALIDATION IN TEXTUAL RETRIEVAL TASKS 38

5.3 Results and Analysis

We computed NDCG for ranked lists of size k varying in 10, 20, 30, 40, and 50 to
analyze how the results vary comparatively for BoTG and BoW as more documents are
retrieved. Figures 5.1, 5.2, 5.3 and 5.4 present the mean NDCG results for the two models
over different list sizes, for cosine, Jaccard, and Euclidean distances, respectively, for
Reuters-21578, 4-universities, 20-newsgroups, and K-series. The results naturally decrease
as more results are retrieved because the first positions tend to get the most relevant
documents. In Reuters-21578, BoTG outperformed BoW for cosine and Jaccard distances.
In 4-universities and K-series, BoTG outperformed BoW for the three distances. In 20-
newsgroups, BoTG outperformed BoW for Euclidean distance but was worse for the other
two distance measures.

●

●

●

●

●

10 20 30 40 50

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

K

N
D

C
G

● BoTG BoW

(a) NDCG for cosine.

●

●

●

●

●

10 20 30 40 50

0.
80

0.
82

0.
84

0.
86

0.
88

K

N
D

C
G

● BoTG BoW

(b) NDCG for Jaccard.

●

●

●

●

●

10 20 30 40 50

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

K

N
D

C
G

● BoTG BoW

(c) NDCG for Euclidean.

Figure 5.1: Results for text retrieval in Reuters-21578.

●

●

●

●

●

10 20 30 40 50

0.
55

0.
60

0.
65

0.
70

K

N
D

C
G

● BoTG BoW

(a) NDCG for cosine.

●

●

●

●

●

10 20 30 40 50

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

0.
70

K

N
D

C
G

● BoTG BoW

(b) NDCG for Jaccard.

●

●

●

●

●

10 20 30 40 50

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

K

N
D

C
G

● BoTG BoW

(c) NDCG for Euclidean.

Figure 5.2: Results for text retrieval in 4-universities.

Although the comparison of NDCG curves from the models gives us a good overview,
this is insufficient for detailed analysis, such as to check for statistical ties. Furthermore,
due to retrieval concerns more about a relatively small number of retrieved documents,
we generally fix a rank size limit, like 5, 10 or 20, to compare retrieval methods. Table 5.1

CHAPTER 5. VALIDATION IN TEXTUAL RETRIEVAL TASKS 39

●

●

●

●

●

10 20 30 40 50

0.
60

0.
65

0.
70

0.
75

0.
80

K

N
D

C
G

● BoTG BoW

(a) NDCG for cosine.

●

●

●

●

●

10 20 30 40 50

0.
60

0.
65

0.
70

0.
75

0.
80

K
N

D
C

G

● BoTG BoW

(b) NDCG for Jaccard.

●

●

●

●

●

10 20 30 40 50

0.
20

0.
25

0.
30

0.
35

0.
40

K

N
D

C
G

● BoTG BoW

(c) NDCG for Euclidean.

Figure 5.3: Results for text retrieval in 20-newsgroups.

●

●

●

●

●

10 20 30 40 50

0.
89

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

K

N
D

C
G

● BoTG BoW

(a) NDCG for cosine.

●

●

●

●

●

10 20 30 40 50

0.
91

0.
92

0.
93

0.
94

0.
95

K

N
D

C
G

● BoTG BoW

(b) NDCG for Jaccard.

●

●

●

●

●

10 20 30 40 50

0.
55

0.
60

0.
65

0.
70

K

N
D

C
G

● BoTG BoW

(c) NDCG for Euclidean.

Figure 5.4: Results for text retrieval in K-series.

summarizes NDCG@10 and the presence or absence of statistical difference considering
Wilcoxon-signed rank paired by query and confidence intervals.

Table 5.1: Comparisons between BoW and BoTG with NDCG@10, over the collections.

cosine Jaccard Euclidean
Collection BoW BoTG BoW BoTG BoW BoTG
Reuters-21578 84.89 89.09 N 88.72 88.78 • 51.03 68.40 N
4-universities 63.59 71.24 N 68.58 71.01 N 39.95 57.53 N
20-newsgroups 82.87 78.60 O 82.40 78.28 O 39.44 42.25 N
K-series 94.33 95.29 N 94.60 95.33 N 68.36 73.62 N

In both retrieval and classification experiments, BoTG results seemed particularly
worse than the baselines for the 20-newsgroups collection, as in some other minor cases.
This collection has a larger proportion of less formal text than the others, based on
news or documents from universities. This imposes lack of punctuation, typos etc, which
compromises some premises from our model and other graph-based representation models.
This reflects in a weaker BoTG vocabulary. We noticed that the best results had codebook
attributes – subgraphs – with higher proportion of edges on them, which means more

CHAPTER 5. VALIDATION IN TEXTUAL RETRIEVAL TASKS 40

informative attributes. We also noticed that higher averages of DF values from the edges
(pairs of terms) within the codebook promoted better results. On the other hand, none
of these two aspects are directly aimed in our model. We plan to address these findings
in future research.

Chapter 6

Conclusions

This research has introduced the Bag of Textual Graphs, a novel approach for text rep-
resentation, which encodes textual document graph representations into vectors. The
proposed approach formulates a graph-based representation model combined with a frame-
work to project graphs into a vector space. Our objective is to combine the effectiveness
of graph models to encode local contextual information with the efficiency of vector rep-
resentations.

Performed experiments considering four datasets and three classifiers demonstrate
that the proposed method is effective for different scenarios, which was demonstrated in
document classification and retrieval tasks, yielding comparable or superior performance
than baselines. The proposed method is also efficient as it is not dependent on expensive
graph-matching procedures on its use during online stage.

In all datasets considered, our model showed promising results in both effectiveness
and efficiency aspects. We also presented an alternative formulation for the codebook
generation, as an extension of BoW, which consistently overcame this model for the
few cases in which BoTG performed worse than BoW, at a cost of producing larger
dimensionalities for the vector space. We emphasize that this hybrid approach remains
more efficient than graph representation models.

There are relevant future work that can be addressed:

• Investigate other graph representation models as the initial component for BoTG,
such as hierarchical representations or more discriminative models in general, which
considers HTML markups or the presence of common sub-sentences between texts,
for example [44];

• Explore the use of the proposed method in other applications such as multimodal
representation of multimedia data, text clustering and text summarization. Our
text representation model can be combined to image or video descriptors, composing
multimodal representation models [7];

• Analyze different approaches for creating graph vocabularies, such as the use of
other clustering algorithms like K-Medoids, or the use of graph clustering techniques
directly [36, 46];

41

CHAPTER 6. CONCLUSIONS 42

• Evaluate BoTG effectiveness for larger collections, such as Reuters Corpus Volume 1
(RCV1) [27] or MEDLINE [23], given that the vocabulary creation needs to process
in an offline stage, over thousands of training samples. These scenarios may require
us to restrict the codebook selection to a random subset, or to use approximate
clustering techniques [22];

• Evaluate efficiency for BoTG in retrieval tasks, including the use of indexing and
other optimization techniques, such as Locality-Sensitive Hashing (LSH) [20] or K-
Dimensional Tree (KDTree) [16], to be used together with our method. This is
important due to the requirement of low response time in these tasks.

Bibliography

[1] Ron Bekkerman and James Allan. Using bigrams in text categorization. Technical
report, Technical Report IR-408, Center of Intelligent Information Retrieval, UMass
Amherst, 2004.

[2] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[3] Sergey Brin and Lawrence Page. Reprint of: The anatomy of a large-scale hypertex-
tual web search engine. Computer networks, 56(18):3825–3833, 2012.

[4] H. Bunke. On a relation between graph edit distance and maximum common sub-
graph. Pattern Recognition Letters, 18(8):689 – 694, 1997.

[5] H. Bunke and K. Riesen. Improving vector space embedding of graphs through
feature selection algorithms. Pattern Recognition, 44(9):1928–1940, 2011.

[6] Horst Bunke and Kim Shearer. A graph distance metric based on the maximal
common subgraph. Pattern Recognition Letters, 19(3):255–259, 1998.

[7] Rodrigo Tripodi Calumby, Ricardo da Silva Torres, and Marcos André Gonçalves.
Multimodal retrieval with relevance feedback based on genetic programming. Multi-
media tools and applications, 69(3):991–1019, 2014.

[8] Tommy W S Chow, Haijun Zhang, and M. K M Rahman. A new document repre-
sentation using term frequency and vectorized graph connectionists with application
to document retrieval. Expert Systems with Applications, 36(10):12023–12035, 2009.

[9] J Cohen. Statistical power analysis for the behavioral sciences, 1988. ISSN 01621459.

[10] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24
(5):603–619, 2002.

[11] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[12] Narsingh Deo. Graph theory with applications to engineering and computer science.
Prentice-Hall series in automatic computation. Prentice-Hall, Englewood Cliffs, N.J.,
1974. ISBN 0-13-363473-6.

[13] G.H. Dunteman. Principal components analysis. Number 69. Sage, 1989.

43

BIBLIOGRAPHY 44

[14] Mirtha-Lina Fernández and G. Valiente. A graph distance metric combining max-
imum common subgraph and minimum common supergraph. Pattern Recognition
Letters, 22(6):753–758, 2001.

[15] F. Figueiredo, L. Rocha, T. Couto, T. Salles, M. A. Gonçalves, and W. Meira. Word
co-occurrence features for text classification. Information Systems, 36(5):843–858,
2011. ISSN 03064379. doi: 10.1016/j.is.2011.02.002.

[16] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Transactions on Mathe-
matical Software (TOMS), 3(3):209–226, 1977.

[17] J. Gibert, E. Valveny, and H. Bunke. Graph embedding in vector spaces by node
attribute statistics. Pattern Recognition, 45(9):3072–3083, 2012.

[18] David Guthrie, Ben Allison, Wei Liu, Louise Guthrie, and Yorick Wilks. A closer
look at skip-gram modelling. In Proceedings of the 5th international Conference on
Language Resources and Evaluation (LREC-2006), pages 1–4, 2006.

[19] K.M. Hammouda and M.S. Kamel. Efficient phrase-based document indexing for
Web document clustering. IEEE Transactions on Knowledge and Data Engineering,
16(10):1279–1296, 2004.

[20] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor:
Towards removing the curse of dimensionality. Theory of computing, 8(1):321–350,
2012.

[21] Zellig S. Harris. Distributional structure. Word, 10(23):146–162, 1954.

[22] Mohamed Hefeeda, Fei Gao, and Wael Abd-Almageed. Distributed approximate
spectral clustering for large-scale datasets. In Proceedings of the 21st International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’12,
pages 223–234, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-0805-2.

[23] William Hersh, Chris Buckley, TJ Leone, and David Hickam. Ohsumed: an inter-
active retrieval evaluation and new large test collection for research. In SIGIR’94,
pages 192–201. Springer, 1994.

[24] Anna Huang. Similarity measures for text document clustering. In Proceedings of
the sixth new zealand computer science research student conference (NZCSRSC2008),
pages 49–56, Christchurch, New Zealand, 2008.

[25] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[26] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In Encyclopedia of
Machine Learning, pages 257–258. Springer, 2011.

BIBLIOGRAPHY 45

[27] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark
collection for text categorization research. Journal of machine learning research, 5
(Apr):361–397, 2004.

[28] A. Markov, M. Last, and A. Kandel. The hybrid representation model for web
document classification. International Journal of Intelligent Systems, 23(6):654–679,
2008.

[29] Otávio A. B. Penatti. Image and Video Representations based on Visual Dictionaries.
PhD thesis, University of Campinas, 2012.

[30] M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[31] K. Riesen, M. Neuhaus, and H. Bunke. Graph embedding in vector spaces by means
of prototype selection. In Graph-Based Representations in Pattern Recognition, pages
383–393. Springer-Verlag, 2007.

[32] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as
a metric for image retrieval. International journal of computer vision, 40(2):99–121,
2000.

[33] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 3rd edition, 2010.

[34] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513–523, 1988.

[35] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, November 1975.

[36] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[37] Adam Schenker, Horst Bunke, Mark Last, and Abraham Kandel. Graph-Theoretic
Techniques for Web Content Mining. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2005.

[38] Sidney Siegel. Nonparametric statistics for the behavioral sciences. McGraw-hill,
1956.

[39] Fernanda B. Silva, Salvatore Tabbone, and Ricardo da S. Torres. Bog: A new ap-
proach for graph matching. In Proceedings of the 2014 22nd International Conference
on Pattern Recognition, ICPR ’14, pages 82–87. IEEE, 2014.

[40] Chade-Meng Tan, Yuan-Fang Wang, and Chan-Do Lee. The use of bigrams to en-
hance text categorization. Information processing & management, 38(4):529–546,
2002.

[41] Jan C Van Gemert, Cor J Veenman, Arnold WM Smeulders, and Jan-Mark Geuse-
broek. Visual word ambiguity. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(7):1271–1283, 2010.

BIBLIOGRAPHY 46

[42] F. Viegas, M. A. Gonçalves, W. Martins, and L. Rocha. Parallel lazy semi-naive bayes
strategies for effective and efficient document classification. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management,
pages 1071–1080. ACM, 2015.

[43] W.D. Wallis, P. Shoubridge, M. Kraetz, and D. Ray. Graph distances using graph
union. Pattern Recognition Letters, 22(6):701–704, 2001.

[44] Haijun Zhang and Tommy W.S. Chow. A multi-level matching method with hybrid
similarity for document retrieval. Expert Systems with Applications, 39(3):2710–2719,
2012.

[45] Fei Zheng and Geoffrey I Webb. A comparative study of semi-naive bayes meth-
ods in classification learning. In Proceedings of the fourth Australasian data mining
conference (AusDM05), pages 141–156, 2005.

[46] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph clustering based on struc-
tural/attribute similarities. Proceedings of the VLDB Endowment, 2(1):718–729,
2009.

[47] Yuanyuan Zhu, Jeffrey Xu Yu, and Lu Qin. Leveraging graph dimensions in online
graph search. Proceedings of the VLDB Endowment, 8(1):85–96, 2014.

	Introduction
	Related Work
	Graph-based text representation
	Strategies for graph embedding in vector spaces
	Vector representation of graph-based text representation models
	Co-occurrence-based text representation models

	Bag of Textual Graphs
	Overview
	Graph-based text modeling
	Vocabulary Creation
	Vocabulary Creation based on subset selection
	Vocabulary Creation based on attribute fusion

	Vector Representation Creation: Assignment and Pooling Functions

	Validation in Textual Classification Tasks
	Datasets and Baselines
	Experimental Procedures
	Results and Analysis
	Effectiveness Evaluation
	Efficiency Evaluation
	Parameter Evaluation

	Validation in Textual Retrieval Tasks
	Datasets and Baselines
	Experimental Procedures
	Results and Analysis

	Conclusions

