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RESUMO 

A obesidade é caracterizada pelo excesso de tecido adiposo com aumento na infiltração de 

macrófagos, e secreção de citocinas pró-inflamatórias, levando a um estado inflamatório 

subclínico crônico. Diversos produtos têm sido avaliados na tentativa de prevenir e tratar a 

obesidade e suas complicações. Dentre os compostos estudados, destaca-se a importância dos 

fenólicos. As frutas cítricas são importante fonte de flavonoides, com destaque a casca, que 

apresenta teor mais elevado que a polpa. Assim, este estudo objetivou avaliar o potencial anti-

lipogênico e anti-inflamatório de extratos de flavonoides de cítricos. Os extratos foram obtidos 

a partir do resíduo industrial de frutas cítricas, modificados por bioprocesso fermentativo 

(extrato “Biotransformado”), e dois extratos controles, o primeiro sem processamento (“In 

Natura”), e o segundo com o processamento térmico equivalente ao sofrido pelo extrato 

fermentado (extrato “Autoclavado”). Realizaram-se estudos in vitro para determinar atividade 

antioxidante, ação na lipogênese e lipólise em células 3T3-L1, e o efeito anti-inflamatório em 

células RAW264.7 e 3T3-L1. O extrato do resíduo de cítricos obtido após a biotransformação 

apresentou-se como boa fonte de hesperitina e naringenina, flavanonas encontradas em baixa 

quantidade na natureza. O extrato “Biotransformado” apresentou menor quantidade de 

flavanonas totais, no entanto, a capacidade antioxidante foi semelhante de acordo com DPPH e 

ORAC, indicando um novo perfil fenólico com maior potencial bioativo que o original. Os 

extratos apresentaram baixa citotoxicidade nas concentrações entre 0,01-1,00 mg/mL. As 

amostras não apresentaram muita influência nos processos de diferenciação dos adipócitos a 

partir de fibroblastos, porém a adição de extrato no meio de maturação causou uma diminuição 

dose dependente na acumulação de lipídeos das células, com reduções entre 22% e 48% para 

os extratos “Biotransformado” e “In Natura”. O extrato “Biotransformado” foi o único que 

apresentou efeito na liberação de glicerol livre no sobrenadante da cultura (2,39 ± 0,17 - 5,24 ± 

0,29 mg/mL de glicerol), indicando seu papel na lipólise. A adição dos extratos em macrófagos 

(RAW264.7) causou menor secreção de indicadores inflamatórios, como TNF-α e NO, com 

melhores resultados para o extrato "Biotransformado". A adição dos extratos também causou 

menor expressão proteica do fator de transcrição NFκB. Em co-cultura de RAW264.7 e 3T3-

L1, o tratamento com 1,0 mg/mL de extratos "Biotrasformado" e "In Natura" reduziu a secreção 

de TNF-α (30,7% e 14,9%) e IL-6 (43,4% e 42,7%) em relação ao Controle sem tratamento. 

Ainda, o extrato “Biotransformado” a uma concentração de 1,0 mg/ml promoveu maior 

aumento de adiponectina em relação ao “In Natura” (66,0% e 35,3%, respectivamente). Quando 

a co-cultura recebeu estímulo com LPS, a adição do extrato reduziu a concentração de IL-6 e 



 
 

TNF-α e causou maior aumento na concentração de adiponectina. A biotransformação dos 

compostos fenólicos do extrato de resíduo de cítricos foi capaz de modificar o perfil de 

flavanonas, aumentando as agliconas. Ainda, o extrato demonstrou potencial para uso na 

indução da lipólise e atividade anti-inflamatória em cultura de macrófagos e em co-cultura de 

macrófagos/adipócitos. Assim, podemos concluir que o bioprocessamento pode contribuir para 

o desenvolvimento de um produto com potencial uso no tratamento da obesidade e da 

inflamação associada. 

 

Palavras-chave: obesidade, inflamação, cítricos, cultura de células.  



 
 

ABSTRACT 

Obesity is characterized by excess adipose tissue with increased macrophage 

infiltration and pro-inflammatory cytokines secretion, leading to a subclinical chronic 

inflammatory state. Many food products have been evaluated in an attempt to prevent and treat 

obesity and its complications. Among the compounds studied, phenolics are of great interest. 

Citrus fruits are an important source of flavonoids, especially citrus peel, which present higher 

content in relation to pulp. Thus, this study aimed to evaluate anti-lipogenic and anti-

inflammatory potential of a citrus flavonoid extract. The extracts were obtained from industrial 

residue of citrus fruits, modified by fermentative bioprocess (“Biotransformed” extract) and 

two control extracts, the first one without any processing (“In Natura”), and the second with the 

equivalent thermal process suffered by fermented extract (“Autoclaved”). For this purpose, in 

vitro assays were performed to determine their  antioxidant  activity,  lipogenesis  and  lipolysis  

activity  in  3T3-L1  cell  line, and anti-inflammatory effect on RAW264.7 and 3T3-L1.The 

citrus residue extract obtained after “Biotransformation” was a good source of hesperitin and 

naringenin, flavanones often found in low quantity in nature. Biotransformed residue presented 

smaller amount of total flavanones, however the antioxidant capacity of the extracts was similar 

according to DPPH and ORAC assays, indicating a new phenolic profile with greater bioactive 

potential than the original. The extracts showed low cytotoxicity in concentrations ranging from 

0.01-1.00 mg / mL, in the cells of interest. Samples did not have much influence in the new 

adipocytes differentiation processes from fibroblasts, on  the  other  hand,  the  addition of the 

extracts in  maturation  medium in adipocytes caused a dose-dependent decrease in lipid 

accumulation, reaching a diminution of 22% and 48% for Biotransformed and In Natura 

extracts. Biotransformed   extract  was  the  only  that  presented  some  effect  on  glycerol  

release  (2.39  ±  0.17  - 5.24 ± 0.29 mg/mL of glycerol), indicating its role in lipolysis. 

Treatment of RAW 264.7 cell with extracts caused lower secretion of inflammatory indicators, 

as TNF-α and NO, with greater results for “Biotransformed” extract. There was also lower 

protein expression of NFκB with the treatment. In RAW264.7 and 3T3-L1 co-culture, treatment 

with 1.0mg/mL of “Biotrasformed” and “In Natura” extracts reduced secretion of TNF-α 

(30.7% and 14.9%) and IL-6 (43.4% and 42.7%) compared to Control without any treatment. 

Still, Biotransformed extract at a concentration of 1.0mg/mL promoted greater increase in 

adiponectin in relation to In Natura (66.0% and 35.3% respectively). When the co-culture 

received LPS stimulus, addition of the extract reduced IL-6 and TNF-α concentration and 

caused a greater increase in adiponectin. Biotransformation of phenolic compounds from citrus 



 
 

extract residue was able to modify flavanones profile, increasing the aglicones. Still, the extract 

showed potential for use in inducing lipolysis and anti-inflammatory activity in macrophages 

culture and co-culture of macrophages with adipocytes. Thus, we can conclude that bioprocess 

can contribute to the development of a product with potential use in treatment of obesity and 

associated inflammation. 

 

Keywords: obesity, inflammation, citrus, cell culture.  
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INTRODUÇÃO 

A obesidade é uma doença caracterizada pelo excesso de tecido adiposo, e encontra-

se associada a um estado inflamatório subclínico crônico, causado pelo aumento da secreção de 

adipocinas pró-inflamatórias (BALISTRERI; CARUSO; CANDORE, 2010). Em tecidos 

adiposos aumentados, além dos adipócitos, há aumento na infiltração de macrófagos no tecido, 

contribuindo para a maior secreção de citocinas com atividade pró-inflamatória (WEISBERG 

et al., 2003). Esse aumento na circulação de adipocinas e citocinas parece ser responsável pelo 

desenvolvimento das doenças crônicas não transmissíveis associadas a obesidade, causando 

resistência a insulina, aumento de pressão arterial, alteração dos lipídios séricos, aumento da 

resposta inflamatória, e formação de trombos (GRUNDY et al., 2004).  

Além das diversas complicações associadas a obesidade, a elevada prevalência da 

doença tornaram-na um problema de saúde pública. Desta forma, diversas estratégias e produtos 

têm sido avaliados na tentativa de prevenir e tratar o excesso de gordura corporal e suas 

complicações. Dentre os compostos estudados, destaca-se a importância dos fenólicos presentes 

nos alimentos. 

Uma fonte interessante de compostos fenólicos são as frutas cítricas. Dentre os 

cítricos de maior importância comercial, destaca-se a laranja, sendo o Brasil o maior produtor 

do mundo, atingindo uma produção de 16.850 mil toneladas em 2013/2014, segundo estimativa 

da Food and Agriculture Organization (FAO). No cenário nacional, o estado de São Paulo é o 

destaque com 70% do volume produzido, seguido da Bahia e Minas Gerais. Do total produzido, 

estima-se que 85% seja destinado a indústria de suco e o restante ao consumo in natura 

(CONAB, 2013). Na produção do suco, cerca de 50% do subproduto gerado é composto por 

casca e bagaço, utilizado comumente como componente de ração animal.  

A principal classe de flavonoides de cítricos é a flavanona, possuindo também 

quantidades consideráveis de flavonas, flavonois e antocianinas (BENAVENTE-GARCÍA et 

al., 1997). Os flavonoides mais comuns em cítricos são hesperidina, naringina, narirutina, 

eriocitrina, nobiletina e tangeritina (SUN et al., 2013)  

É importante ressaltar que a casca dos cítricos possuem maior conteúdo de 

polifenois e maior atividade antioxidante em relação a polpa, indicando que o subproduto de 

cítricos é uma fonte promissora de compostos bioativos (BARROS; FERREIRA; GENOVESE, 

2012). Ainda, os efeitos positivos dos flavonoides de cítricos no tratamento da obesidade e suas 
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complicações são demonstrados em diversos estudos em cultura de células (KANG et al., 2012; 

KIM et al., 2012; YOSHIDA et al., 2010, 2013), ensaios biológicos (ALAM; KAUTER; 

BROWN, 2013; UM et al., 2013), e ensaios clínicos (DALLAS et al., 2008, 2013).  

Nas fases iniciais do desenvolvimento de novos produtos, o uso de cultura de 

células apresenta vantagens devido a necessidade de pouca amostra inicial para os testes, e o 

menor custo. Além disso, nos estudos in vitro é possível definir as vias de ação que o novo 

produto pode atuar. Nos estudos in vitro associados a obesidade, a cultura de pré-adipócito 3T3-

L1 é o modelo mais utilizado. Para mimetizar a inflamação presente no tecido adiposo durante 

a obesidade, é realizada a co-cultura de 3T3-L1 com RAW264.7, uma cultura de macrófago 

que secreta citocinas proinflamatórias (FREIWALD et al., 2013; YAMASHITA et al., 2007). 

Nesse sentido, este trabalho avaliou o potencial biológico in vitro de um extrato 

rico em compostos fenólicos, obtido por processos biotecnológicos, a partir de resíduos de 

cítricos provenientes da indústria de extração de pectina. Destaca-se que o valor agregado deste 

resíduo é muito reduzido, sendo um produto derivado de dois processos industriais 

subsequentes: o primeiro, a extração de suco de laranja; e o segundo a extração de pectina.  

Além da utilização de resíduos industriais de baixo valor agregado como fonte de 

compostos fenólicos, uma importante inovação proposta pelo trabalho foi a biotransformação 

dos polifenois dos resíduos de cítricos, pela ação do microrganismo Paecilomyces variotii em 

processo de fermentação sólida, gerando um produto com perfil de composição de polifenois 

diferente dos obtidos por simples extração. A seleção do microrganismo foi decorrente de 

resultados obtidos por estudos anteriores do grupo (BATTESTIN, PASTORE, MACEDO, 

2005; BATTESTIN & MACEDO 2007; BATTESTIN, MACEDO, FREITAS 2008). 

Desta forma, este estudo teve como objetivo avaliar um extrato de resíduo de 

cítricos biotransformado quanto a sua atividade antioxidante, antiinflamatoria, capacidade de 

reduzir a lipogênese e induzir a lipólise utilizando testes in vitro. 

O trabalho apresentado nessa tese está organizado em três capítulos, sendo o 

primeiro um artigo de revisão bibliográfica, intitulado “Citrus bioactive phenolics: role in the 

obesity treatment”, publicado na revista LWT-Food Science and Technology (Apêndice 1); o 

segundo, baseado no artigo “Biotransformation effects on anti lipogenic activity of citrus 

extracts”, publicado na revista Food Chemistry, que trata da avaliação do potencial 

antiobesogênico do extrato desenvolvido (Apêndice 2); e o terceiro baseado no artigo 
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“Biotransformed citrus extract as a source of anti-inflammatory polyphenosl: effects in 

macrophages and adipocytes”, submetido a revista Journal of Nutritional Biochemistry, que 

contém os resultados indicativos do potencial anti-inflamatório do extrato. O Apêndice 3 

contém alguns resultados não incluídos nos artigos (ensaio MTT nos adipócitos diferenciados, 

ensaio de coloração por Oil Red O em células que receberam tratamento com os extratos após 

a diferenciação, Western blot de PPAR-alfa em células 3T3-L1); o Apêndice 4 o artigo do grupo 

de trabalho intitulado “Rich bioactive phenolic extract production by microbial 

biotransformation of Brazilian citrus residues” publicado na revista Chemical Engineering 

Research and Design; o Apêndice 5 o capítulo “Hesperitin: Simple natural compound with 

multiple biological activity” publicado no livro Fruit and Pomace Extracts: Biological Activity, 

Potential Applications and Beneficial Health Effects. 
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INTRODUCTION 

Obesity is a disease characterized by excess adipose tissue and it is associated with 

a subclinical chronic inflammatory condition caused by increased secretion of pro-

inflammatory adipokines (BALISTRERI; CARUSO; CANDORE, 2010). In increased fat 

tissue, in addition to adipocytes, there is an increase in macrophage infiltration, contributing to 

enhanced secretion of cytokines with pro-inflammatory activity (WEISBERG et al., 2003). This 

rise in circulating adipokines and cytokines appears to be responsible for the development of 

chronic diseases associated with obesity, causing insulin resistance, blood pressure increase, 

change in serum lipids, increased inflammatory response and thrombus formation (GRUNDY 

et al., 2004).  

In addition to many complications associated with obesity, the increased prevalence 

of obesity made it a public health problem. Thus, various strategies and products have been 

evaluated in an attempt to prevent and treat excessive body fat and its complications. Among 

the compounds studied, it is of great importance phenolics present in food. 

An interesting source of phenolic compounds are citrus fruits. Among the most 

commercially important citrus, there is orange, with Brazil being the largest producer in the 

world, reaching a production of 16.85 million tons in 2013/2014, according to estimates of Food 

and Agriculture Organization (FAO). On national scene, the state of São Paulo is the major 

producer with 70% of the volume, followed by Bahia and Minas Gerais. From the total 

produced, it is estimated that 85% is for juice industry and the rest for in natura consumption 

(CONAB, 2013). In juice production, about 50% of the waste generated is composed of peel 

and pulp, commonly used as animal feed component. 

The main class of citrus flavonoid is flavanone, also having considerable amounts 

of flavones, flavonols and anthocyanins (BENAVENTE-GARCÍA et al., 1997). The most 

common flavonoids in citrus are hesperidin, naringin, narirutin, eriocitrin, nobiletin and 

tangeritin (SUN et al., 2013). 

It is important to emphasize that citrus peel have higher content of polyphenols and 

antioxidant activity than pulp, indicating that citrus residue is a promising source of bioactive 

compounds (BARROS; FERREIRA; GENOVESE, 2012). Also, the positive effects of citrus 

flavonoids in treatment of obesity and its complications are demonstrated in various studies in 

cell culture (KANG et al., 2012; KIM et al., 2012; YOSHIDA et al., 2010, 2013), biological 
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assays (ALAM; KAUTER; BROWN, 2013; UM et al., 2013), and clinical trials (DALLAS et 

al., 2008, 2013).  

 

In the early stages of new products development, cell culture use is advantageous 

due to the need of low quantity of sample for testing, and lower cost. Moreover, in in vitro 

studies it is possible to define the pathways of action that the new product can act. In vitro 

studies associated with obesity use 3T3-L1 pre-adipocytes as a model. To mimic the 

inflammation in adipose tissue in obesity, the assay is carried out in co-culture of 3T3-L1 and 

RAW264.7, a macrophage culture that secrets pro-inflammatory cytokines (FREIWALD et al., 

2013; YAMASHITA et al., 2007). 

Thus, this study intended to assess in vitro biological potential of an extract rich in 

phenolic compounds, obtained by biotechnological processes, from citrus waste of pectin 

extraction industry. It is noteworthy that the value of this waste is very low, being a by-product 

of two subsequent industrial processes: first, the orange juice extraction; and second pectin 

extraction. 

In addition to the use of industrial waste with low added value as a source of 

phenolic compounds, an important innovation proposed by the study was the polyphenols 

biotransformation from citrus waste, by the action of the microorganism Paecilomyces variotii 

in solid-state fermentation, resulting in a product with polyphenols composition profile 

different from those obtained by simple extraction. The microorganism selection was based on 

previous studies from the group (BATTESTIN, PASTORE, MACEDO, 2005; BATTESTIN & 

MACEDO 2007; BATTESTIN, MACEDO, FREITAS 2008). 

 Thus, this study aimed to evaluate antioxidant and anti-inflammatory activity, 

ability to reduce lipogenesis and induce lipolysis of a biotransformed citrus residue extract 

using in vitro tests.  

The work presented in this thesis is organized in three chapters, the first being an 

review article, titled "Citrus bioactive phenolics: role in the obesity treatment", published in 

LWT-Food Science and Technology journal (Appendix 1); the second, based on the article 

"Biotransformation effects on anti lipogenic activity of citrus extracts," published in the Food 

Chemistry, and presents the extract antiobesogenic potential (Appendix 2); and the third based 

on the article "Biotransformed citrus extract as a source of anti-inflammatory polyphenols: 
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effects in adipocytes and macrophages," submitted to the Journal of Functional Foods, which 

contains the results indicating the anti-inflammatory potential of the extract. Appendix 3 

contains some results that are not included in the articles (MTT assay in differentiated 

adipocytes, Oil Red O  staining in cells that were treated with the extracts after differentiation, 

Western blot of PPAR-α in 3T3-L1 cells); Appendix 4 article of the group titled "Rich bioactive 

phenolic extract production by microbial biotransformation of Brazilian citrus residues" 

published in the journal Chemical Engineering Research and Design; Appendix 5 the chapter 

"Hesperitin: Simple natural compound with multiple biological activity" published in the book 

Fruit and Pomace Extracts: Biological Activity, Potential Applications and Beneficial Health 

Effects. 
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CHAPTER 1.CITRUS BIOACTIVE PHENOLICS: ROLE IN THE 

OBESITY TREATMENT 

(REVIEW PAPER PUBLISHED BY LWT – FOOD SCIENCE AND TECHNOLOGY) 

Vânia Mayumi Nakajima, Gabriela Alves Macedo, Juliana Alves Macedo. 

 

Abstract 

Adipose tissue performs many functions in the body, being considered an endocrine 

organ due to substances secreted, called adipokines. The excess of adipose tissue is called 

obesity, and it is associated with a state of chronic subclinical inflammation. Various strategies 

and products have been evaluated in an attempt to prevent and treat obesity, standing out the 

importance of polyphenols in citrus fruits. This group of fruits is important source of bioactive 

compounds, mainly flavonoids. Therefore, this paper aims to review studies developed to 

evaluate the role of these compounds in the obesity. Despite the difficulties in the comparison 

of study results, due to the variety of methodologies and samples evaluated, some general trends 

can be highlighted. The in vitro studies indicate that citrus polyphenols could assist in the 

management of obesity, since they cause a reduction in adipocyte differentiation, lipid content 

in the cell and may also function in programmed cell death.The results of biological assays are 

not entirely consistent; however, most of them indicated a reduction in adipose tissue; increased 

expression of PPARα and its target genes, indicating a stimulus to β-oxidation; improved lipid 

profile and glycemia; as well as some evidence of improvement in inflammatory status. The 

effects on total body weight are more evident in the studies that used extracts instead of 

analytical standards, indicating a possible synergistic effect of extracts. Furthermore, the higher 

cost of analytical standards limits their use; meanwhile the extracts are generally made from 

industrial wastes of fruits, a material frequently discarded. Several clinical trials have 

demonstrated the positive effect of citrus flavonoids in the reduction of pro-inflammatory 

cytokines in humans, being beneficial to alleviate the complications present in obesity. 

However, there are few clinical trials developed to examine its role in reducing adiposity, 

indicating a research field still in expansion. 

Keywords: obesity, citrus flavonoids, in vitro assay, biological assay, clinical trial.  
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1. Introduction 

Adipose tissue has long been considered only as a site of energy storage, however 

it is now known that it performs many functions in the body. This tissue is considered an 

endocrine organ due to paracrine substances secreted, called adipokines (GRUNDY et al., 

2004). Also there are other cells present in adipose tissue, besides the adipocytes, that release 

active substances involved in metabolic pathways, such as macrophages (WEISBERG et al., 

2003). In parallel, the adipose tissue has receptors for afferent signals emitted by other 

endocrine systems, enabling a communication with the central nervous system. This network 

interactions explains the coordinating activity of adipose tissue in energy metabolism, 

neuroendocrine and immune function (KERSHAW; FLIER, 2004). 

Obesity is a disease characterized by excess body weight, associated with a state of 

chronic subclinical inflammation, caused by an increased secretion of adipokines that modulate 

certain responses in the body (BALISTRERI; CARUSO; CANDORE, 2010). Overall, the vast 

majority of adipokines studied have a role in the development of chronic diseases associated 

with obesity causing insulin resistance, increased blood pressure, abnormal blood lipids, 

increased inflammatory response, and thrombus formation (GRUNDY et al., 2004). 

In addition to many complications associated with obesity, the high prevalence of 

the disease made it a public health problem. Accordingly, various strategies and products have 

been evaluated in an attempt to prevent and treat excessive body weight. Among the compounds 

studied, stands out the importance of polyphenols in plant food. 

A source of polyphenols widely studied is citrus fruits. This group of fruits is 

important source of bioactive compounds, mainly flavonoids, being target of many studies 

concerning the adipose tissue and obesity. Therefore, this paper aims to review studies 

developed to evaluate the role of these compounds in the obesity and associated changes. 

 

2. Phenolics in citrus fruits 

Phenolic compounds refers to a group of molecules found in plants, that exert 

photoprotection function, defense against microorganisms and insects, being responsible for 

pigmentation and some food organoleptic characteristics (ESCARPA; GONZALEZ, 2001). 

Among the various classes that comprise the phenolics, flavonoids are considered important for 

human consumption due to its wide distribution in plant foods. 
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The flavonoid structure is based on the flavylium nucleus, which consists of three 

phenolic rings (Figure 1). The first benzene ring (A) is condensed with the sixth carbon of the 

third ring (C), which in the 2-position carries a phenyl group (B) as a substituent (AHERNE; 

O’BRIEN, 2002). 

 

 

Figure 1.1 General structure of food flavonoids 

 

The biochemical activities of flavonoids and their metabolites depend on their 

chemical structure, which may vary with one or more hydroxyl substituents, including 

derivatives. Flavonoids and isoflavones commonly occur as esters, ethers or derivatives 

glycosides, or a mixture of them. Except the group of leucoantocianines, other flavonoids occur 

in plants usually accompanied by carbohydrates thus receiving the name of glycosylated 

flavonoids. The glycidic substituents includes: D-glucose, L-rhamnose, glucose-rhamnose, 

galactose and arabinose (BIRT; HENDRICH; WANG, 2001). When the flavonoid is free of 

carbohydrates, the structure is called aglycone. 

Citrus fruits are rich in various nutrients, such as vitamins A and C, folic acid and 

dietary fiber. Furthermore, these fruits are source of bioactive compounds, as flavonoids, 

coumarins, limonoids and carotenoids (DING et al., 2012; TURNER; BURRI, 2013). 

Among the flavonoids, citrus present considerable amounts of flavanones, flavones, 

flavonols and anthocyanins, however the main flavonoid are the flavanones (BENAVENTE-

GARCÍA et al., 1997). In this class of compounds, the most frequent ones are hesperidin, 

narirutin, naringin and eriocitrin (GHASEMI; GHASEMI; EBRAHIMZADEH, 2009; SUN et 

al., 2013). Other phenolics often found in citrus are p-coumaric, ferulic, caffeic and sinapic 

acids (MANTHEY; GROHMANN, 2001; SUN et al., 2013). 

GATTUSO et al. (2007) reviewed the flavonoid composition of citrus, and some of 

their results are summarized at the Table 1. 
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Table 1. 1 Reviewed flavonoid composition of some citrus juices  

Flavonoid composition of C. sinensis (sweet orange) juice (mg/100 mL)  

 Mean SD Median MIN MAX 

Flavanones 

 
Didymin 1.89 0.92 1.60 0.80 3.10 

Eriocitrin 0.31 0.18 0.29 0.11 0.67 

Hesperidin 28.6 11.9 28.0 3.51 55.2 

Narirutin 5.2 3.1 4.2 0.55 14.2 

Flavones 

 
Neoeriocitrin 0.59 - - - - 

Poncirin 1.04 0.78 1.04 0.49 1.59 

6,8-di-C-Glu-Apigenin 5.72 2.02 5.00 4.15 8 

6,8-di-C-Glu-Diosmetin 0.35 0.14 0.35 0.25 0.45 

Rhoifolin 0.05 - - - - 

Isorhoifolin 0.07 - - - - 

Diosmin 0.09 - - - - 

Neodiosmin 0.08 - - - - 

Polymethoxyflavones 

 
Nobiletin 0.33 0.19 0.33 0.19 0.46 

Sinensetin 0.37 - - - - 

Tangeretin 0.04 0.04 0.04 0.01 0.07 

Flavonoid composition of C. clementina juice (mg/100 mL) 

 Mean SD Median MIN MAX 

Flavanones      

Hesperidin   39.9 29.4 34.9 5.21 86.1 

Naringin   0.08 0.03 0.08 0.05 0.12 

Narirutin   4.64 - - - - 

Flavones      

6,8-di-C-Glu-Apigenin   0.5 - - - - 

6,8-di-C-Glu-Diosmetin   0.2 - - - - 

Diosmin   1.25 0.51 1.26 0.67 2.12 

Flavonoid composition of C. limon (lemon) juice (mg/100 mL) 

Flavanones      

Eriocitrin   16.7 10.3 16.55 1.67 39.1 
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Hesperidin    20.5 12.4 18.85 3.84 41 

Flavones      

6,8-di-C-Glu-Apigenin   1.17 0.25 1.05 1 1.45 

6,8-di-C-Glu-Diosmetin    4.95 0.88 5 4.05 5.8 

7-O-Rut-Luteolin  3.93 2.14 3.5 1.5 6.5 

Diosmin   3.12 1.66 3.65 0.51 5.1 

Aglycones      

Luteolin   0.08 - - - - 

Flavonoid composition of C. paradisi (grapefruit) juice (mg/100 mL). 

Flavanones      

Didymin   0.30 0.04 0.30 0.27 0.33 

Eriocitrin   0.41 0.19 0.41 0.27 0.54 

Hesperidin   0.93 0.58 0.87 0.25 1.79 

Naringin   23.0 12.8 21.9 4.5 60.2 

Narirutin   7.60 5.80 7.70 2.50 17.0 

Neohesperidin   1.21 0.35 1.28 0.67 1.58 

Neoeriocitrin   0.32 0.02 0.32 0.30 0.33 

Poncirin   1.26 0.35 1.30 0.85 1.58 

Flavones      

Rutin   3.26 - - - - 

Rhoifolin   0.28 - - - - 

Polymethoxyflavones      

Heptamethoxyflavone   0.06 0.07 0.06 0.01 0.11 

Nobiletin   0.15 0.04 0.15 0.12 0.17 

Tangeretin   0.12 - - - - 

Aglycones      

Hesperetin   0.74 - - - - 

Naringenin   2.70 2.68 1.70 0.98 8.00 

Taxifolin   0.16 - - - - 

Quercetin   0.19 0.03 0.19 0.17 0.21 

Adapted from Gattuso et al., 2007. 

 

The genus Citrus comprises several orange species as Citrus sinensis (sweet 

orange), Citrus aurantium (sour oranges), Citrus reticulata (tangerine or mandarin) e and their 

hybrids e tangors, which are orange-tangerine hybrids, and tangelos, which are tangerine-

grapefruit or tangerine pummelo hybrids. Many of these species or hybrids can have different 

varieties (GATTUSO et al., 2007). 

In general, the data where the specific C. sinensis variety analyzed is reported show 

that different varieties present approximately the same flavonoid composition pattern. 

Commercial orange juices present a similar composition to freshly squeezed ones, with the 

appearance of some unexpected compounds. Naringin and diosmin hint at the possibility that 

some of the samples analyzed are not pure orange juices, or, as in the case of hand-squeezed 

juices, the presence of polymethoxyflavones (PMFs) in variable quantities suggests that they 
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could be essentially derived from the flavedo and confirm that the amounts of PMFs found in 

industrial juices are a consequence of the pressing process used (GATTUSO et al., 2007). 

It is also important to consider that the flavanones in citrus can be glycosylated or 

aglycone. The glycosylated forms are also divided into neohesperidosides that contain a 

neohesperidose (ramnosil-α-1 ,2 glucose) and have a bitter taste; and rutinosides that contain a 

flavanone and a disaccharide residue, and do not have taste (MACHEIX; FLEURIET; BILLOT, 

1990). Naringin, neohesperidin and neoeriocitrin are examples of neohesperidosides; while 

hesperidin, narirutin and didymin are examples of rutinosides (TRIPOLI et al., 2007). 

Naringenin and hesperetin are the most common aglycones, often found in trace concentrations. 

Concerning the quantity of the compounds, MILLER; RICE-EVANS (1997) 

detected the presence of hesperidin (141 ± 49 µmol/L) and narirutin (62 ± 16 µmol/L) in longlife 

orange juice. KLIMCZAK et al. (2007) also evaluated longlife orange juice, verifying the 

presence of some hydroycinnamic acids as caffeic (8.2 mg/L), p-coumaric (0.5 mg/L), ferulic 

(0.6 mg/L) and sinapic (0.7 mg/L). However, as mentioned above, the flavanones were found 

in greater quantity, being detected the presence of narirutin (70.2 mg/L), hesperidin (76.9 mg/L) 

and dydymin (9.9 mg/L). Of the flavanones analyzed, naringin and neohesperidin were not 

detected. 

STUETZ et al. (2010) evaluated the polyphenol content of Citrus reticulata Blanco 

cv. Sainampueng, to verify the difference between hand-pressed juice and the peeled fruit. The 

peeled fruit had low content of PMFs, while the hand-pressed juice presented high content of 

tangeritin (5.99 – 31.8 mg/L), nobiletin (5.49 – 28.2 mg/L) and sinensetin (0.30 – 2.00 mg/L). 

The authors observed that the PMFs were present in the peel of the fruit, and a simple squeezing 

can cause the transfer of these compounds from the peel to the juice. Besides this class of 

polyphenol, it was also detected the presence of the flavanones didymin (4.44 – 9.50 mg/L), 

narirutin (17.7 – 43.4 mg/L) and hesperidin (123.3 – 206.7 mg/L) in the hand-pressed juice. On 

the other side, the peeled fruit had high content of didymin (45 – 112 mg/kg), narirutin (181 – 

600 mg/ kg) and hesperidin (841 – 1898 mg/ kg). 

Some researchers also study the peels and peels extract of citrus fruits, as RAMFUL 

et al. (2010) that evaluated orange, clementine, mandarine, tangor, tangelo and pamplemousses 

peels. The flavonoids detected in this matrix were poncirin (2.49 – 18.85 mg/g FW), rhoifolin 

(4.54 – 10.39 mg/g FW), didymin (3.22 – 13.94 mg/g FW), rutin (8.16 – 42.13 mg/g FW), 
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diosmin (4.01 – 18.06 mg/g FW), isorhoifolin (1.72 – 14.14 mg/g FW), neohesperidin 3.20 – 

11.67 mg/g FW), hesperidin (83.4 – 234.1 mg/g FW), neoeriocitrin (8.8 – 34.65 mg/g FW) and 

narirutin (5.05 – 21.23 mg/g FW). Naringin (19.49 mg/g FW) was only detected in mandarine. 

LONDOÑO-LONDOÑO et al. (2010) identified using HPLC-MS the presence of 

hesperidin, neohesperidin, diosmin, nobiletin and tangeritin in orange peel; hesperidin and 

neohesperidin in tangerine peel; and hesperidin, neohesperidin and diosmin in lime peel. 

Reinforcing the information above, none of the peels presented the aglycone hesperitin in their 

compostion. 

GHASEMI; GHASEMI; EBRAHIMZADEH (2009) evaluated the total polyphenol 

and flavonoid content of peels and tissues from three varieties of Citrus sinensis, three of C. 

reticulata, three of C. unshiu, one of C. limon, one of C. paradisi and two of C. aurantium. For 

most citrus analyzed the total polyphenols content was higher in the peel (104.2 – 223.2 mg 

gallic acid equivalent/ g of extract powder) in comparison to tissue (66.5 – 396.8 2 mg gallic 

acid equivalent / g of extract powder), excepting all C. reticulate varieties, and one C. sinensis 

variety (var. Washington Navel). The total flavonoid content was also higher in the peel (0.3 – 

31.1 mg quercetin equivalent/g of extract powder) in relation to tissue (0.3 – 17.1 mg quercetin 

equivalent/g of extract powder) in most of the samples, excepting four varieties (C. sinensis 

var. Sungin, C. unshiu var. Ishikawa, C. reticulate var. Clementine, C. reticulate var. Page). 

These results indicate that considerable losses occur with the peel removal before consumption 

or in industrial process. And besides the information about the content of total polyphenol and 

flavonoid, several studies have already shown the positive effects of peel extracts in the 

treatment of chronic non-communicable diseases (DING et al., 2012; FUKUCHI et al., 2008; 

JUNG, 2011; KANG et al., 2012; KIM et al., 2012; LEE et al., 2011; RAASMAJA et al., 2013). 

A factor to consider when talking about flavonoids is whether the compound is in 

the glycosylated or aglycone form. It has been shown that in rats, after oral consumption of 

naringin, the sulfate and glucuronate conjugates forms of naringenin are found in the organism, 

indicating that for naringin absorption the glycoside needs to be released to the formation of the 

aglycone naringenin, thus depending on one glucosidase for its absorption (WANG et al., 

2006). The better absorption of the aglycone form in relation to glycosylated in citrus flavonoids 

has also been observed in humans using glycosylated forms of eriocitrin and hesperidin 

compared with the corresponding aglycones eridictiol, homoeridictiol and hesperetin 
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(MIYAKE et al., 2006). Therefore, the polyphenol structure can modify its bioavailability to 

the body. This might be the reason why many researchers chose to evaluate the aglycone 

potential, seen that this form is detected in the organism tissues and blood, and it has higher 

bioavailability. 

The flavonoids found in citrus species act as antioxidants and may protect against 

oxidative stress-related to inflammation process, thus reducing the risk of macromolecules 

damage caused by the action of reactive species, conferring protection against several 

neurodegenerative diseases and reducing the risk of developing cardiovascular disease and 

cancer (BENAVENTE-GARCÍA et al., 1997).  

 

3. Citrus phenolics effect on cell cultures models of obesity 

In vitro studies are useful to understand the mechanisms of action, and guide the 

decision of which products should be further studied in biological assays and clinical trials. 

Besides that, they are an alternative when the product is in its early development phase, a 

moment that the yield is generally low. 

Many in vitro studies are being conducted with citrus phenolics to evaluate its 

effects on obesity. One of the mechanisms proposed has been the role of these compounds in 

the adipocytes apoptosis, because it was observed that the addition of polymethoxyflavones 

analytical standard (5-hydroxy-3,6,7,8,30,40-hexamethoxyflavone (5-HxMF OH) 3 

,5,6,7,8,30,40-heptamethoxyflavone (HpMF); 5,6,7,30,40 - pentamethoxyflavone (PMTCT), 

and 30-hydroxy-5,6,7,40-tetramethoxyflavone (30 - OH-TtMF)) of citrus (100 μM) caused an 

increase in intracellular calcium, which induced the increase of calpain and caspase-12, two 

proteins associated with programmed cell death (SERGEEV et al., 2009). The reduction in the 

number of adipose cells due to apoptosis could assist in maintaining weight loss, avoiding the 

weight cycling. 

Another study evaluated the effect of nobiletin analytical standard in 3T3-L1 

adipocytes (0 – 100 μM). The treatment of these cells with the citrus phenolic reduced, in a 

dose-dependent manner, the expression of C/EBPβ and PPAR γ, transcription factors that are 

associated with differentiation of pre-adipocytes into mature adipocytes. Reinforcing this result, 

it was also observed lower lipid accumulation in cultured cells when the flavonoid was added 

(KANDA et al., 2012). 
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Nowadays, it is considered the importance of toll-like receptors (TLRs) on the 

association between obesity and other chronic non-communicable diseases, and it is recognized 

the fact that TLRs are responsible for the activation of inflammatory pathways (SABROE et 

al., 2008). In a study evaluating the treatment of pre-adipocytes, adipocytes during its 

differentiation, and differentiated 3T3-L1 cells treated with naringenin analytical standard (100 

μM), it was observed an inhibitory effect of the flavonoid on the expression of TLR 2, only 

during adipocyte differentiation (YOSHIDA et al., 2013), indicating a possible effect on the 

phase in which the individual is in the process of gaining body fat. 

During the obesity development, it is known that in addition to the increase in 

adipose cells, there is an increase in the macrophages number in adipose tissue (RAMALHO; 

GUIMARÃES, 2008; WEISBERG et al., 2003). Considering this information, Yoshida et al. 

(2013) conducted a test with 3T3-L1 adipocytes and macrophages RAW 264 in co-culture. The 

co-culture showed increased expression of TLR 2, and treatment with naringenin inhibited this 

increased expression observed. Furthermore, the expression of TLR 2 was increased with TNF-

α addition to the culture of mature adipocytes, however naringenin added to this medium was 

able to inhibit TNF-α-induced TLR 2 expression by inhibiting JNK and NF-kB pathways. 

Besides, naringenin appears to reduce the expression of TLR 2 via increased activation of PPAR 

γ, a nuclear transcription factor that could cause greater differentiation of pre-adipocytes into 

mature adipocytes and increase lipid accumulation in these cells, exactly as was observed on 

the experiment (YOSHIDA et al., 2013). 

Also, YOSHIDA et al. (2010) found that in 3T3-L1 adipocytes cell culture, 

hesperetin and naringenin analytical standards showed anti-inflammatory effect by inhibiting 

the activation of NFκB through TNF-α, with a consequent reduction in the secretion of 

interleukin-6 (IL-6); and anti-lipolytic effect by inhibit ERK(extracellular signal regulated 

kinase) pathway causing a decreased activation of hormone sensitive lipase (HSL); contributing 

to reduce the insulin resistance (Figure 2). 
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Figure 1.2 Scheme proposed by Yoshida et al. (2010) for the action of hesperetin and 

naringenin on inhibition of ERK and NFκB pathways, resulting in the reduction of free fatty 

acids (FFA), and consequently improving insulin resistance. 

Other studies, one with orange peel flavonoids ethanol extract rich in hesperidin 

(13.79 mg / g), narirutin (7 mg / g) and naringin (262.5 mg / g) (JUNG, 2011), and another with 

Citrus aurantium flavonoids extract that contained naringin, hesperidin, poncirin, isosiennsetin, 

sineesytin, tetramrthnl-o-isoscutellaeein, nobiletin, heptamethoxyflavone, 3-hydoxynobiletin, 

tangeretin, hydroxypentamethoxyflavone, and hexamethoxyflavone. KIM et al. (2012), also 

observed a stimulus in lipolysis and lower triglyceride accumulation in 3T3-L1 adipocytes. 

Still, extracts caused a lower accumulation of total lipids and reduced the expression of 

C/EBPα, C/EBP β, PPAR γ, aP2 (activating protein 2) and FAS (fatty acid synthase), being the 

last two ones target genes of C/EBP β and PPAR γ (JUNG, 2011; KIM et al., 2012). The extracts 

have also generated a smaller amount of Akt (serine / threonine kinase) and phosphorylated 

GSK3β. The phosphorylated Akt, promotes the phosphorylation of GSK3β, and this 

phosphorylates C/EBP α and C/EBP β, which become activated (KIM et al., 2012), then acting 

in adipocyte differentiation. 

The orange peel flavonoids ethanol extract evaluated by JUNG (2011) also caused 

a suppressive effect on the expression of perilipin, indicating another factor that may be 

associated with the positive effect of citrus flavonoids in obesity. This is a lipid-associated 

protein secreted only in adipocytes (PERSSON et al., 2007), that controls fatty acid release 

stimulated by HSL, because it binds and stabilizes lipid droplets in adipose tissue (LE LAY; 

DUGAIL, 2009). 

The treatment of mature 3T3-L1 adipocytes with Citrus sunki peel ethanol extract 

that contained tangeritin (55.13 mg/g), nobiletin (38.83 mg/g), rutin (17.02 mg/g), hesperidin 

(17.11 mg/g), sinensetin (4.23 mg/g) induced LKB1, AMPK (AMP-activated protein kinase) 

and ACC (acetyl-CoA carboxylase) phosphorylation in a dose-dependent manner, and also 

caused an increase in mRNA levels of CPT-1a (carnitine palmitoyl transferase 1a) indicating 
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the role of this extract to increase the β-oxidation. Furthermore, lipolysis stimulation occurred 

24 hours after the extract addition to the cell culture, in a dose dependent manner. Associated 

with this result, the authors observed that the extract caused phosphorylation of PKA substrate 

(cAMP-dependent protein kinase) and HSL (KANG et al., 2012). 

Besides the effect on adipose tissue, flavonoids can also act in the management of 

obesity by interfering in the control of hunger and satiety. In this context, hesperetin analytical 

standard (0.1 – 1.0 mM) has shown to cause an increase in the secretion of cholecystokinin 

(CCK) in STC-1 cells through increase in intracellular calcium concentration by the TRP 

(transient receptor potential) and TRP 1 ankirin channels. The addition of hesperidin analytical 

standard in the same model caused no effect, indicating that only the aglycone form influences 

hormone secretion (KIM et al., 2013). The increase in CCK would be interesting because this 

hormone, secreted from endocrine cells in the small intestine, assists in the control of food 

intake (RAYBOULD, 2009). 

Some products have been developed in order to assist in the obesity prevention and 

treatment, and it could be mentioned Sinetrol, a citrus-based fruits (juice, peels, seeds) extract 

obtained by physical treatment (crushing of fruits, cold pressure of juice, extraction, 

centrifugation, filtration, spray drying) of a specific varieties of red orange (Citrus sinensis L. 

Osbeck (Blood group)), sweet orange (Citrus aurantium L. var. sinensis),bitter orange (Citrus 

aurantium L. var.amara), grapefruit(Citrus paradise) and guarana (Paulinia cupanna), which 

contained 60% of polyphenol, 16.7% of flavanones, 2% of anthocyanins and 3.6% of caffeine, 

studied by DALLAS et al.(2008). The researchers noted that this supplement (20 mg/mL) was 

able to stimulate lipolysis in human fat cells in a in vitro study, verified by the free fatty acids 

enhancement. The authors suggest that the compounds present in the supplement, especially 

naringin and cyanidin 3-glycoside, have an effect on the inhibition of cAMP-phosphodiesterase, 

and thus there is an increase in cAMP and subsequent stimulation of hormone-sensitive lipase 

(HSL), the enzyme that stimulates lipolysis in human. 

 

4. Evaluation of citric polyphenol effect in biological assay 

Despite the important information collected by in vitro assays, biological assay 

helps understand the bioactive compounds effects in the whole body, further illustrating the 

changes caused due to their consumption. 
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ALAM; KAUTER; BROWN (2013) evaluated the effect of supplementation with 

naringin analytical standard (approximately 100 mg/kg diet/day, corresponding to 0.01%) in 

male Wistar rats fed a diet rich in lipid and carbohydrate. They did not observe the effect of the 

flavonoid in weight gain. However, supplementation promoted a reduction in retroperitoneal 

abdominal fat deposition, a better serum lipid profile and oral glucose tolerance. The insulin 

concentration and pancreas wet weight in rats supplemented was similar to the control group, 

which received a standard diet, presenting lower values than the high carbohydrate, high fat 

diet-group without the flavonoid. A high carbohydrate, high fat diet promoted greater 

inflammatory cell infiltration and accumulation of fat droplets in the liver compared to the 

control group, however naringin supplementation decreased these two parameters. 

In another study, naringenin analytical standard (1%) was supplemented in mice 

fed a high fat diet, and also no effect was observed in weight gain and food consumption. 

However, the supplementation improved hyperglycemia, reduced expression of TNF-α (tumor 

necrosis factor-alpha), MCP-1 (monocyte chemotactic protein-1), and TLR 2 in adipose tissue 

(YOSHIDA et al., 2013), promoting protection against chronicle non-communicable diseases. 

In an experiment conducted with male Long-Evans adult rats fed a semi-purified 

experimental diet with 16% fat and 45.5% sucrose, supplementation with 0.012% naringenin 

analytical standard promoted less visceral fat accumulation, and lower triacylglycerol content 

in the tissue, compared to the control group that did not receive the flavonoid. However, no 

effect was observed in the total body weight. Food consumption did not differ between the 

groups. Also, the supplemented group had lower concentration of serum triglycerides, total and 

free cholesterol in plasma, and lower accumulation of triacylglycerol and cholesterol in the 

liver. The flavonoid intake caused an increased expression of PPARα, CPT1 (carnitine 

palmitoyltransferase 1) and UCP2 (uncoupling protein 2) protein, indicating the role of 

naringenin to increase lipid β-oxidation in animals (CHO et al., 2011). 

The administration of 0.05% coumarin analytical standard in C57BL/6J mice 

receiving a high fat diet also caused less accumulation of visceral fat, and yet caused reduction 

of total body weight compared to the high fat diet group without the supplement. Still, coumarin 

supplementation caused less accumulation of lipids, triacylglycerol and cholesterol in the liver; 

and reduced protein levels of SRBP-1c, FAS, ACC1, PPAR γ and C/EBPα. Histological 
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analyzes showed a minor adipocyte size by using the phenolic compound, indicating a 

contribution in the reduction of adipose tissue (UM et al., 2013). 

High fructose diets are used in animal experiments to induce hypertriglyceridemia 

and insulin resistance (BEZERRA et al., 2000; KELLEY; ALLAN; AZHAR, 2004). The 

supplementation of citrus polymethoxyflavones analytical standard (125 mg / kg body 

weight/day), mainly containing tangeritin and nobiletin, in hamsters subjected to this modified 

diet, reduced the weight gain, serum triglyceride, triglyceride in liver and heart, and improved 

adiponectin levels compared with the group receiving high-fructose diet without the flavonoid. 

Moreover, a positive effect was observed in the levels of some inflammatory cytokines, 

reducing TNFα and IFN-γ after the addition of polymethoxyflavones. In this experiment also 

occurred increased expression of hepatic PPARα and PPAR γ as the effect of supplementation, 

which according to the authors, would be a major regulatory pathway of the effects observed 

(LI et al., 2006). 

Another experiment with polymethoxyflavones was performed with Citrus 

depressa Hayata peel methanol extract that contained nobiletin and tangeritin (1,5%), in ICR 

mice consuming a high fat diet. The addition of the extract caused less weight gain, lower 

weight of white adipose tissue, reduced adipocyte size, and lower serum levels of triglycerides 

and leptin. There was also a decrease in ACC1, SCD1 (esteroil-CoA desaturase), FATP 

(transport protein fatty acid), aP2 and DAGT1 (diacylglycerol acyltransferase 1) mRNA in 

white adipose tissue. All the genes cited are involved in the synthesis of fatty acids and 

triacylglycerols. Despite the positive effects observed, there was no effect on serum adiponectin 

nor in the mRNA levels of SREBP1 (binding protein sterol regulatory element 1), FAS and 

ACC1 in the liver (LEE et al., 2011). 

In a study developed by LEE et al. (2013), the administration by gavage of 100 

mg/kg of purified nobiletin extracted from Citrus depressa peel to male C57BL/6J mice fed a 

high fat diet, caused less overall weight gain, lower weight of white adipose tissue and serum 

triglycerides. There was no effect of the extract on hepatic triacylglycerol levels and serum 

adiponectin. Controversially, there was an increase in the expression of PPAR γ and PPAR α, 

as well as their target genes SREBP-1c, FAS, SCD-1; and CPT-1, UCP2; respectively. These 

results indicate that the extract induced lipid accumulation and fatty acid oxidation at the same 

time, however with a greater catabolic effect seen the less weight gain when compared to the 
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group receiving high fat diet without the extract. The extract had the positive effect of reducing 

TNF-α and MCP-1 (LEE et al., 2013), which helps improve insulin sensitivity, as it is known 

that TNF-α causes a reduction in expression and translocation of GLUT4, the glucose transport 

protein in insulin-dependent cells (HOTAMISLIGIL; SHARGILL; SPIEGELMAN, 1993). 

The authors observed an increase in expression of IκBα after the flavonoid use, indicating that 

the anti-inflammatory effect is possibly through NFκB pathway inactivation (LEE et al., 2013). 

The addition of lemon peel polyphenol ethanol extract (0.5%), containing greater 

amounts of eriocitrin, hesperidin and narirutin; also promoted less total weight and white 

adipose tissue gain after consumption of a high fat diet in male C57BL/6J mice. Note that 

polyphenols also caused increased hepatic PPARα mRNA level, and acyl-CoA oxidase in the 

liver and white adipose tissue, indicating increased peroxisomal fatty acid oxidation 

(FUKUCHI et al., 2008). 

Another extract that showed positive effects of citrus polyphenols was Citrus 

ichangensis peel ethanol extract that contained naringin (8.12 mg/g), hesperidin (0.84 mg/g) 

and poncirin (1.33 mg/g), administered to female mice fed standard (control), and high-fat diets 

supplemented with 1% extract. The weight gain in the group that received the high-fat diet 

alone was greater than the control, and the addition of the extract in the high-fat diet caused less 

weight gain, being similar to control group. The extract caused a lower fasting glucose and 

improved glucose tolerance. Also, there was less accumulation of triacylglycerol and 

cholesterol in the liver due to the extract administration. Moreover, this has caused lower 

expression of PPAR γ mRNA and lower levels of this transcription factor target genes, 

including FAS, acyl-CoA oxidase and UCP 2 ( DING et al., 2012); in agreement with the in 

vitro studies presented previously in this paper. 

KANG et al. (2012) also tested in mice a high-fat diet supplemented by gavage with 

mature Citrus sunki peel extract (150 mg/kg body weight/day), source of the flavonoids 

tangeritin (55.13 mg/g), nobiletin (38.83 mg/g), rutin (17.02 mg/g), hesperidin (17.11 mg/g), 

sinensetin (4.23 mg/g). Likewise, the authors found that supplementation reduced weight gain 

caused by the consumption of a high-fat diet, in addition to promoting lower weight of perirenal 

and epididymal adipose tissue, as well as smaller size of adipocytes in epididymal tissue. 

Another positive effect of the supplementation can be observed in the serum levels of total 

cholesterol and triglycerides, that were lower compared to the group that received only the high-
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fat diet. Still, lipid accumulation in the liver was lower, comparable to the control group that 

received a standard diet. It was also observed increased expression of proteins related to β-

oxidation when the extract was added, along with a greater expression of adiponectin gene. 

In another study, a water and alcohol extract of Citrus grandis whole fruits 

containing 19% naringin was tested in genetically obese Zucker rats fed with high-fat/high-

cholesterol diet. No effect was observed in the body weight, however serum cholesterol and 

triglyceride were improved when 600 mg/kg of the extract was administered by intragastric 

gavage for four weeks (RAASMAJA et al., 2013). 

SALAMONE et al. (2012) evaluated the effect of Moro orange juice, rich in 

anthocyanins (85 mg / L) in mice C57BL6/J fed a high-fat diet. The juice consumption was ad 

libitum, resulting in a mean intake of 4.1 ± 0.75 mL/day and consequent anthocyanin 

consumption of about 0.34 mg per day. The group that received the juice had lower levels of 

triacylglycerol and total lipids in the liver. In addition, there was increased expression of PPAR 

α and acyl-CoA oxidase, and lower of LXR (liver X receptor), FAS, HMG-CoA reductase; 

indicating a potential effect in stimulating lipid oxidation and reduction of lipogenesis. 

A limitation in the comparison of the studies is the phenols administration form, in 

some cases the compounds are administered as a dietary ingredient and other by gavage. In 

studies in which the product is incorporated into the diet, consumption data are not always 

available, providing only the concentration in the diet; on the other hand in studies that used 

gavage, the information provided is the total quantity consumed. 

 

5. Evaluation of citric polyphenol effect in clinical trials 

Despite the evidence observed in in vitro studies and biological assays, clinical trial 

is essential to the conclusions, since it considers the influence of compounds bioavailability in 

the human body. Accordingly, AMEER et al. (1996) ascertained the bioavailability of naringin 

(500 mg) consumed pure, naringin (500 mg) administered with hesperidin (500 mg), grapefruit 

juice (1250 mL) co administered with orange juice (1250 mL) and grapefruit (1 unit) consumed 

daily for 4 weeks. The presence of the aglycone hesperetin and naringenin were detected in 

urine after the consumption of pure hesperidin and naringin, and after consuming grapefruit and 

orange juice. After 4 weeks of consuming grapefruit, naringenin was present in plasma and 

urine. The authors conclude that the aglycone forms of the flavonoid were detected, as the 
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glycoside linkages are not stable to the acidic environment of the stomach, in addition to the 

possible action of glycosides from intestinal bacteria cleaving the sugar residues.  

Another important finding of AMEER et al. (1996) was the observation that the 

consumption of hesperidin associated with naringin does not affect the urinary recovery of the 

second, indicating that it does not disturb the bioavailability of the other. Furthermore, these 

results indicate that the absorption of these two flavonoids occurs in pure form, and also when 

consumed in a food matrix in the form of juice or fresh fruit. And, as the aglycone form is found 

after the consumption, maybe its bioavailability is higher since it does not require an enzyme 

to be absorbed. However, it should be noted that this study was conducted with only 4 

volunteers, limiting extrapolation of the results to the general population, and indicating the 

need for more bioavailability studies in clinical trials. 

In addition to assessing the effect of a supplement rich in citrus polyphenols in vitro, 

DALLAS et al. (2008) conducted a double-blind placebo-controlled study evaluating the effect 

of the supplementation in overweight men, observing a greater weight and body fat loss in the 

group that consumed the supplement. However, the food habits were not controlled, being only 

mentioned that the volunteers were not supposed to modify it. 

A variation of this supplement was studied in another group of humans. This new 

product was polyphenolic rich fruit extract (red orange, grapefruit, orange sweet and guarana), 

that contained at least 90% of polyphenols, at least 20% of flavanones and between 1 and 3 % 

of natural caffeine. The authors reported a reduction in waist and hip circumferences; in markers 

of inflammation C-reactive protein and fibrinogen; and improved oxidative stress status, with 

the reduction in malondialdehyde (MDA) and increase in superoxide dismutase and glutathione 

levels. There were no adverse effects in liver and kidney. There was an increase in serum free 

fatty acids, but no change in the serum lipids levels (DALLAS et al., 2013). However, it was 

not reported in the paper what types of polyphenols and flavonoids were offered with the 

supplement, and there was no mention about the food habits of the volunteers. 

 

6. Potential of citrus flavonoids produced by biotechnology 

Bioprocessing strategies aiming the improvement of the bioaccessibility of phenolic 

compounds have been investigated in the last years. The use of α-L-rhamnosidases from 

Aspergillus aculeatus was investigated in the transformation of flavonoid rutinosides from fruit 
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juices (orange and blackcurrant) and green tea into their flavonoid glucoside counterparts in a 

reaction at 30°C for 10 hours. Aliquots of the controls and the enzyme treated samples were 

taken at different time points and flavonoids rutinosides (anthocyanins in blackcurrant juice, 

flavanones in orange in juice, and flavonols in green tea) and glucosides were identified and 

quantified. Even with the assay conditions in each beverage being different, the enzyme was 

able to remove terminal rhamnosyl groups in the three beverages. Results showed a decrease in 

the flavonoid rutinoside and an increase in their flavonoid glucoside counterparts 

(GONZÁLEZ-BARRIO et al., 2004). 

The effects on the bioavailability of hesperitin was investigated in a double-blind, 

randomized, crossover study, in human subjects. The volunteers consumed orange juice with 

natural hesperidin (hesperitin-7-O-rutinoside), orange juice treated with the enzyme 

hesperidinase and orange juice fortified to obtain 3 times more hesperidin than naturally 

present. A significant improvement in the bioavailability of the aglycone hesperetin was 

observed after enzymatic modification of the orange juice. The peak plasma concentrations of 

the aglycone when subjects consumed the juice containing hesperetin-7-glucoside, generated 

after removal of the rhamnose by the hesperidinase, were 4-fold higher compared with the 

untreated juice and 1.5-fold higher than the fortified juice (NIELSEN et al., 2006). 

A study employing orange pomace as substrate for solid-state fermentation by 

Paecilomyces variotii to produce the enzymes tannase and phytase simultaneously, also 

evaluated the phenolic content and antioxidant capacity of orange pomace during fermentation. 

The fermentation medium was prepared with the orange pomace, a saline solution and 10% 

tannic acid and, after inoculation, was incubated at 30°C for 120 hours. In addition to tannase 

and phytase production at significant levels, results showed no difference in total phenolic 

content before and after the fermentation processes. However, the antioxidant capacity of 

orange pomace, tested against the free radical ABTS, increased approximately tenfold after 

fermentation, potentially enhancing the value of this residue (MADEIRA JR; MACEDO; 

MACEDO, 2011). 

Enzymatic hydrolysis and fermentation appear to be an attractive mean to promote 

the biotransformation of phenolic glycosides and polymers and to increase the concentration of 

free phenolics in citrus fruits and agro-industrial wastes. The biotransformation of phenolics 

improved the antioxidant activity and bioaccessibility of these compounds. Further research is 
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necessary to explore new substrates, enzymes and microorganisms and to evaluate the use of 

biotransformed products as natural antioxidants and as food supplements. 

 

7. Conclusion 

Despite the difficulties in the comparison of study results, due to the variety of 

methodologies and samples evaluated, some general trends can be highlighted. 

The studies with cells culture indicate that citrus polyphenols could assist in the 

management of obesity, since they cause a reduction in adipocyte differentiation, lipid content 

in the cell and may also function in programmed cell death. 

The results of biological assays are not entirely consistent, since in some cases the 

addition of citrus fruit polyphenols caused lower weight gain, and in other studies this effect 

was not noticed. However, most of them indicated a reduction in adipose tissue; increased 

expression of PPARα and its target genes, indicating a stimulus to β-oxidation; improved lipid 

profile and glycemia; as well as some evidence of improvement in inflammatory status due to 

a reduction in the proinflammatory cytokines levels. The effects on total body weight are more 

evident in the studies that used extracts instead of analytical standards, indicating a possible 

synergistic effect among the different phenolics found when using an extract. Furthermore, the 

higher cost of analytical standards limits their use in biological assay; meanwhile the extracts 

are generally made from fruits industrial wastes, a material that would be discarded. 

Several clinical trials have demonstrated the positive effect of citrus flavonoids in 

the reduction of pro-inflammatory cytokines in humans (BERNABÉ et al., 2013; BUSCEMI et 

al., 2012; DEVARAJ et al., 2011; IWAMOTO et al., 2012; MORAND et al., 2011), being 

beneficial to alleviate the complications present in obesity. However, there are few clinical trials 

developed to examine its role in reducing adiposity, indicating a research field still in expansion. 
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Abstract 

Citrus peel is a good source of flavonoids, with higher content in relation to pulp. 

This study proposed to investigate the anti-lipogenic potential of a newly developed citrus 

flavonoids extract, obtained from citrus industrial residue, bioprocessed in order to generate a 

commercial source of some flavonoids naturally found in low quantity. The results showed that 

the citrus peel extract obtained after biotransformation was a good source of hesperitin and 

naringenin, flavonoids that has no source for production on a large scale, as in supplements or 

medicines. Still, the results showed that all extracts could be used in obesity treatment. The 

original extract, “In Natura”, would be useful to reduce new adipocytes synthesis and lipid 

accumulation, and the extract bioprocessed, “Biotransformed” extract could be used to induce 

lipolysis on fat tissue. 

 

KEYWORDS: citrus peel extract; biotransformation; hesperitin; hesperidin; naringenin; 

naringin; adipocytes; lipolysis 

 

1. Introduction 

Citrus fruits are source of many bioactive compounds, as flavonoids, coumarins, 

limonoids and carotenoids (TURNER; BURRI, 2013). The main class of citrus flavonoid are 

the flavanones, but there are also considerable amounts of flavones, flavonols and anthocyanins 

(BENAVENTE-GARCÍA et al., 1997). The most frequent types of flavonoids found in citrus  

are hesperidin, naringin, narirutin, eriocitrin, nobiletin and tangeritin (SUN et al., 2013). 

The positive effects of citrus flavonoids in obesity treatment (inducing lipolysis and 

reducing lipid accumulation), and its complications (causing anti-inflammatory response, 

reducing serum lipids, and improving blood pressure) are demonstrated in several studies in 

cell culture (KIM et al., 2012; YOSHIDA et al., 2010, 2013), biological assays (ALAM; 
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KAUTER; BROWN, 2013; UM et al., 2013) and clinical trials (DALLAS et al., 2008, 2013). 

It is noteworthy that citrus peel has higher content of polyphenols and antioxidant activity in 

comparison to pulp, indicating that citrus residues are a promising source of bioactive 

compounds (BARROS; FERREIRA; GENOVESE, 2012). 

In most of the studies, citrus peel is obtained from the fruit acquired particularly for 

the research, and we aimed to evaluate the potential of a citrus residue from industrial waste as 

a commercial source of bioactives. In this context, Brazil is the world's largest orange producer, 

according to estimates from the Food and Agriculture Organization (FAO). Of the total 

produced, it is estimated that 85% is destined for juice industry (CONAB, 2013). In juice 

production, about 50% of the waste generated is composed of peel and pomace, indicating that 

there is a rich source of this raw material. 

Still, citrus extracts commonly used in researches are rich in hesperidin and 

naringin, with low amount of aglycones. Studies developed to test the aglycones forms 

commonly use high cost analytical standards. Thus, a residue extract containing the 

biotransformed polyphenols on a unique composition with biological potential would be an 

innovation with commercial interest.  

Our research group have been studying alternatives of bioprocesses to increase the 

production of more bioactive polyphenols from these industrial arrange residues. MADEIRA 

et al. (2014) observed that the fermentation process of citrus peel resulted in an extract rich in 

flavanones aglycones, often found in low amounts in the nature. This is an advantage because 

some evidence have shown that the aglycones form have higher antioxidant capacity (HIRATA 

et al., 2005; SILVA et al., 2013), and higher bioavailability (LI et al., 2008) in comparison to 

glycosides. Besides, recent evidences are highlighting the importance of synergism among 

bioactive compounds in complex matrix with better effect than isolated compounds. 

These polyphenols from plant material are commonly extracted with methanol 

(HAYAT et al., 2010; RAMFUL et al., 2010; SINGH; SOOD, 2011). However this is a toxic 

solvent (TEPHLY, 1991), being of interest the development of a extraction procedure using a 

food grade solvent. 

Considering these, the study aimed to test a biotransformed citrus peel extract for 

its antioxidant activity in vitro, and the ability to reduce lipogenesis and induce lipolysis in 

adipocyte cell culture.  
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2. Materials and methods 

2.1. Chemicals 

Gallic acid, Folin–Ciocalteu reagent, 2,2′-azobis(2-methylpropionamidine) (97%) 

(AAPH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox®, analytical standards hesperidin, 

hesperitin, naringin and naringenin, insulin, dexamethasone (DEX), 3-isobutyl-1-

methylxanthine (IBMX), Oil Red O were purchased from Sigma–Aldrich Chemical Company 

(St. Louis, MO). Fluorescein was purchased from ECIBRA. All the other chemicals used were 

in an analytical grade. 

 

2.2. Biotransformed citrus residue 

The citrus residue was supplied by CP Kelco Industry Headquarters, from Limeira 

- SP - Brazil, specialized in pectin production. The residue was dry and contained citrus peel 

(flavedo and albedo). The material was crushed, and passed through a 10 mesh sieve (Bertel 

Metallurgical Industries LT). The residue was biotransformed by solid-state fermentation using 

the microorganism Paecilomyces variotii (Brazilian  Collection  of  Environmental and  

Industrial  Microorganisms-CBMAI 1157) according to MADEIRA et al. (2014). Briefly, the 

fermentation medium was prepared in 250 ml Erlenmeyer flasks containing 10 g of the residue 

and 10 ml of water. The medium was sterilized by autoclaving for 15 minutes at 121 °C. After 

cooling, the flasks were inoculated with 1 mL of the microorganism spore suspension (9 x 106 

spores/mL) and incubated at 30 °C with 90 % relative humidity (Climate Camera 420 CLD –

Nova Ética, SP, Brazil) for 48 hours. 

 

2.3. Preparation of polyphenols extracts from citrus residue 

The extraction of phenolic compounds was carried out according to a process 

adapted from HAYAT et al. (2010). One gram of the biotransformed material was mixed with 

25 mL 70% methanol. The solution was treated in ultrasonic bath at 30°C for 15 min, in shaker 

at 200 rpm for 15 min at room temperature, and then filtered on Whatman paper (No. 1). 

Different extraction solvents were tested instead of 70% methanol, in order to reduce costs and 

toxicity of the final extract. The tested extraction solvents were: 70% ethanol (v/v), 70% ethanol  

(v/v) acidified with 1% HCl  (v/v), 50% ethanol (v/v) and water. 
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After the definition of the extraction solution, the extracts were prepared from the 

“Biotransformed” residue and two control residues. The first control was the unfermented 

residue consisting of the product without any processing (“In Natura”), and the second control 

was the sterilized residue (“Autoclaved”). The sterilized residue was used as a control of 

process to verify the modifications that occurred in the extract after the sterilization by 

autoclaving. 

After filtration, the product obtained was concentrated on a rotary evaporator at 40 

°C to remove the organic solvent. Then the aqueous solution was frozen and freeze-dried. 

 

2.4. Extracts characterization 

2.4.1. Total phenolic content 

Total phenolic contents of the extracts were measured using the Folin–Ciocalteu 

assay according to SINGLETON; ORTHOFER; LAMUELA-RAVENTÓS (1999). Gallic acid 

was used as a standard and a calibration curve was plotted in a concentration range of 25–200 

µg/mL. All analyses were performed in triplicate and results were expressed as mg of gallic 

acid equivalents (GAE) / mL of extract or mg of lyophilized extract (LE). 

 

2.4.2. Determination of main flavanone compounds by High Performance Liquid 

Chromatography (HPLC) 

A DionexUltiMate 3000 (Germany) liquid chromatography, equipped with a C-18 

Acclaim® 120 column (Dionex, 3μm, 4.6×150 mm) maintained at 30 °C by a thermostat, was 

used. The detection was carried out using a UV/VIS (DAD-3000). The method was adapted 

from CARIDI et al. (2007), and DE MEJÍA et al. (2010). The solvents were: A (water/formic 

acid, 99.9:0.1 v/v) and B (methanol/formic acid, 99.9:0.1 v/v), with a flow rate of 0.6 mL/min. 

The spectra absorption were obtained at 190 and 480 nm, and the chromatograms were 

processed at 280 nm. The standard flavanones detected and quantified were naringin, 

naringenin, hesperidin and hesperitin. 

 

2.4.3. DPPH radical-scavenging activity 

The potential antioxidant activity of the extracts was assessed based on the 

scavenging activity of the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, as 
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described by MACEDO et al. (2011). The reaction mixtures, consisting of 50 μl of test samples 

and 150 μl of 0.2 mM DPPH in methanol, were carried out on a NovoStarMicroplate reader 

(BMG LABTECH, Germany) with absorbance filters for a wavelength of 520 nm. The 

decolorizing process was recorded after 90 min of reaction. The DPPH solution and reaction 

medium were freshly prepared and stored in the dark. The measurement was performed in 

triplicate. The antioxidant activity was calculated from the equation obtained by the linear 

regression after plotting known concentration solutions of Trolox®. Antiradical activity was 

expressed as μmol of Trolox® equivalent/mg of extracts. 

 

2.4.4. ORAC 

The ORAC (Oxygen Radical Absorbance Capacity) assay was performed using 

fluorescein (FL) as the fluorescent probe, as described by DÁVALOS; GÓMEZ-CORDOVÉS; 

BARTOLOMÉ (2004), and adapted by FERREIRA et al. (2013). Briefly, 20 µL aliquots of the 

sample, Trolox® solution or buffer (blank) were distributed in  black-walled 96-well plate, 

followed by the addition of 120 µL fluorescein sodium salt solution 0.38 μg/mL (Ecibra, São 

Paulo, Brazil) diluted in sodium phosphate buffer 75 mM (pH 7.4). The reaction was initiated 

by addition of 60 µL AAPH solution (Sigma-Aldrich, Steinheim, Germany) at a concentration 

of 108 mg/mL dissolved in sodium phosphate buffer 75 mM (pH 7.4). The fluorescence was 

monitored every 56 seconds during 75 min using a Novo Star Microplate Reader (BMG 

LABTECH, Germany) at 37 ° C with excitation filter 485 nm and emission filter 520 nm. The 

measurements were performed in triplicate. ORAC values were defined as the difference 

between the area under the FL decay curve of the samples and the blank (net AUC). Regression 

equations between net AUC and antioxidant concentration were calculated for all of the samples 

and Trolox® (control). ORAC-FL values were expressed as μmol of Trolox®/mg of extracts. 

 

2.5. Cell culture assay 

2.5.1. Cell culture 

3T3-L1 murine pre-adipocytes were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) at 37°C in a humidified atmosphere with 5% CO2. All media contained 10% 

fetal bovine serum (FBS), penicillin (100 units/ml) and streptomycin (100 µg/ml). 
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2.5.2. MTT Assay 

The 3T3-L1 cells (1.0 x 105 cells/mL) were seeded in 96-well plates and incubated 

for 24 h at 37°C in a humidified atmosphere with 5% CO2. Then the cells were treated with the 

samples (0.01 mg/mL – 1.00 mg/mL). After 24 h of incubation, all media was removed and 10 

µL of MTT solution (5 mg/mL) was added to the cell culture. The cells were further incubated 

at 37°C in a humidified atmosphere with 5% CO2 for 4 h. The MTT formazan crystals were 

dissolved in SDS 10% in HCl 0.01M for 18 hours. The optical density of formazan solution 

was measured with a microplate reader at 540 nm. The results are expressed as a % of control 

cells, that are cells without any sample treatment 

 

2.5.3. Pre-adipocytes differentiation 

The 3T3-L1 cells (2.0 x 104 cells/mL) were seeded in 24-well plates and grown 

until confluence. Two days after confluence, designated as day 0, the cells were switched to 

differentiation medium containing 10µg/mL insulin, 0.5 mM isobutylmethylxanthine (IBMX), 

and 1µM dexamethasone (DEX) in DMEM for another 3 days. Then, the cell culture medium 

was replaced with maturation medium containing 10µg/mL insulin in DMEM. The maturation 

medium was changed every 2 days, until day 12, after which mature adipocytes containing lipid 

droplets were formed.  

 

2.5.4. Oil Red O staining 

The cells were submitted to two different treatments. First, cells were exposed to 

the extracts sample (0.05 mg/mL, 0.20 mg/mL, 0.50 mg/mL, 1.00 mg/mL) in the differentiation 

medium followed by maturation medium without the samples. Using this treatment it is possible 

to see if the extracts could impair the pre-adipocytes differentiation.  

The second treatment consisted in the addition of the extracts only in the maturation 

medium. This procedure intended to verify if the extracts could reduce triglyceride 

accumulation in mature adipocytes. 

In both cases, on day 12, the 3T3-L1 mature adipocytes plated onto 24-well plates 

were washed once with formaldehyde 10% in PBS, and fixed with formaldehyde 10% in PBS 

for 60 min. After replacement of formaldehyde 10% in PBS with 60% isopropanol, the cells 

were stained for 30 min in freshly diluted Oil red O (Sigma) solution (2.1 mg/ml) with 60% 
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isopropanol. Thereafter, the cells were washed four times with water and the wells were dried 

at room temperature. Subsequently, the Oil Red O in the stained cells was eluted with 100% 

isopropanol. The absorbance was measured with a microplate reader at 492 nm. Each treatment 

was performed in triplicate. The results are expressed as a percentage of control cells, that are 

fully differentiated cells without any sample treatment, according to the equation bellow: 

% of Oil Red O staining = (Abs Sample/Abs Control) x 100 

 

2.5.5. Glycerol assay 

On day 12 of the maturation sequence, cells were treated with the samples for 18 

hours, and the supernatant was collected. The amount of glycerol in the medium was determined 

using a Glycerol Assay Kit (Cayman, CO, U.S.A.) in accordance with the manufacturer’s 

instructions. 

 

2.6. Statistical analysis 

Results were expressed as means ± standard deviation (SD). The statistical 

difference between the groups was analyzed using analysis of variance (ANOVA). Post hoc 

comparison was performed by Tukey’s test. Differences were considered significant when p ≤ 

0.05. All analyses were performed using the software GraphPad Prism 5 for Windows version 

5.00 (GraphPad Software Inc.). 

 

3. Results 

3.1. Extraction Solution Selection 

The total phenolic content of the extracts obtained by using different extraction 

solvents varied from 72.29 ± 4.83 to 90.45 ± 5.44 mg of Gallic Acid Equivalent/ml of extract 

for water and ethanol 70% HCl 1%, respectively. There was no statistical difference between 

the samples, not being possible to use this parameter to determine the best extraction solution 

(data not shown).  

The HPLC analysis showed that the extraction with 70% methanol, 70% ethanol 

acidified with 1% HCl and 50% ethanol resulted in higher content of the quantified flavanones 

(Figure 2.1). Due to the lack of difference in methanol or ethanol as extraction solvent, it is 

justified the use of solutions with ethanol, since it is a food grade solvent. Still, aiming the lower 
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solvent use, and considering the statistical similarity between the results, we selected the 

solution of 50% ethanol for extraction of flavanones from the “Biotransformed” residue. 

Despite the widespread use of Folin Ciocalteau assay, this was not a good method 

for screening the best extracting solution. There was no significant difference between the 

samples according to this analysis, even though the HPLC results clearly indicating smaller 

potential of water as an extracting solvent for this system. 

 

3.2. Characterization of “Biotransformed” residue extract obtained from the 50% ethanol 

solution 

There was no difference in the content of total polyphenols by Folin Ciocalteau 

assay between the “Biotransformed” residue and the controls (Table 2.1). 

However, once again the HPLC analysis showed difference between the samples. 

The “In Natura” residue had higher content of glycosides flavanones, naringin and hesperidin, 

while the “Biotransformed” residue had higher level of the aglycone flavanones, naringenin 

and hesperitin (Figure 2.2). These results demonstrate that the fermentation process caused the 

biotransformation of the flavanones, increasing the amount of flavonoids free form.  

The results in Figure 2.2 indicate that the sterilization process by autoclaving 

degraded a certain amount of flavanones. However, this is a necessary step in the fermentation 

process to eliminate any microbial contamination present in the residue and allow only the 

reaction by the inoculated one. 

Despite the fact that the “Biotransformed” residue extract presented a much smaller 

amount of total flavanones than the controls (Figure 2.2), the antioxidant capacity of the extracts 

was similar according to DPPH and ORAC assays (Table 2.1), indicating that the flavanones 

presented in the “Biotransformed” residue had higher antioxidant potential. 

 

Table 2.1 Total polyphenols, ORAC and DPPH radical-scavenging activity of the extracts. 

Different letters in the column indicate significant differences by Tukey’s test (p ≤ 0,05).  

 Total Polyphenol 

(mg GAE/mg of LE) 

DPPH 

(μmol equivalent 

Trolox/mg of LE) 

ORAC 

(μmol equivalent 

Trolox/mg of LE) 

Biotransformed 35.04 ± 2.36a 136.77 ± 5.41a 542.93 ± 78.04a 

In Natura 36.23 ± 3.01a 130.80 ± 11.17a 666.99 ± 110.54a 

Autoclaved 33.31 ± 1.03a 129.17 ± 6.71a 658.38 ± 70.87a 
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Figure 2.1 Flavonoids of interest quantified by High Performance Liquid 

Chromatography (mg/mL of extract). Different letters indicate significant differences 

by Tukey’s test (p ≤ 0.05). 
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Figure 2.2 Flavonoids of interest quantified by High Performance Liquid Chromatography 

(mg/g of liofilized extract). Different letters indicate significant differences by Tukey’s test 

(p ≤ 0.05). 
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3.3.Cell Assays 

According to MTT assay, none of the extracts were toxic to 3T3-L1 cell line in the 

concentrations tested (Figure 2.3). Since no loss of cell viability was observed in the 

concentration range that the cells were exposed, it is considered safe to continue with the 

following cellular assays within the concentrations tested.  

 

 

Figure 2.3 Cell viability of 3T3-L1 cell line according to MTT assay. 

 

The analysis Oil Red O staining showed that when the samples were added in the 

differentiation medium, there was little effect in the total lipid accumulation (Table 2.2). The 

best result was observed with the addition of “In Natura” extract in the concentration of 0.5 

mg/mL, presenting a lipid accumulation reduction of about 19% in relation to control cells with 

no treatment.  
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Table 2.2 Oil Red O staining with samples added in the Differentiation Medium, % in relation 

to control. 

Samples 
Concentration 

0.05 mg/mL 0.20 mg/mL 0.50 mg/mL 1.00 mg/mL 

Biotransformed 101.52±10.00a 100.00±4.50a 103.21±4.55b 107.22±4.03b 

In Natura 95.59±1.52a 93.98±3.94a 80.96±4.19a 90.46±4.61a 

Autoclaved 103.45±3.71a 99.17±3.26a 96.05±2.79b 98.39±2.22a 

Different letters in the comlun indicate significant difference between the samples in the same 

concentration by Tukey’s test (p ≤ 0,05). 

 

On the other hand, the addition of the extracts in the maturation medium caused a 

decrease in the lipid accumulation (Table 2.3). This reduction was dose-dependent for all the 

samples, reaching a reduction of 22%, 38% and 48% for “Biotransformed”, “Autoclaved” and 

“In Natura” extracts, respectively. 

 

Table 2.3 Oil Red O staining with samples added in the Maintenance Medium, % in relation to 

control. 

Samples 
Concentration 

0.05 mg/mL 0.20 mg/mL 0.50 mg/mL 1.00 mg/mL 

Biotransformed 97.56±1.15b 84.67±5.37b 89.45±7.70c 78.18±6.50b 

In Natura 86.91±3.55a 65.67±4.30a 55.96±3.50a 52.89±2.04a 

Autoclaved 103.59±1.11c 88.86±2.14b 75.65±4.12b 62.66±2.93a 

Different letters in the column indicate significant difference between the samples in the same 

concentration by Tukey’s test (p ≤ 0,05). 

 

The total glycerol concentration was below the limit of detection for the cells treated 

with “In Natura” and “Autoclaved” extracts. Thus, the “Biotransformed” residue extract was 

the only that presented some effect on the amount of glycerol released, and the values observed 

presented dose dependent behavior (2.39 ± 0.17 - 5.24 ± 0.29 mg/mL of glycerol) 

 

4. Discussion 

The Folin Ciocalteu assay was not useful to distinguish the samples. It is 

noteworthy that the color reaction the Folin Ciocalteau assay is based on not only occurs due 
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to the presence of polyphenols, but can also be caused by other compounds with reducing power 

(HUANG; OU; PRIOR, 2005). 

The total amount of flavanones was statistically similar when using methanol or 

ethanol as extraction solvents. Solutions containing methanol are the most used in the extraction 

of polyphenols of solid materials (HAYAT et al., 2010; RAMFUL et al., 2010; SINGH; SOOD; 

MUTHURAMAN, 2011). However, due to its toxicity (LIESIVUORI; SAVOLAINEN, 1991; 

TEPHLY, 1991), it is interesting the development of a process using more friendly solvents. 

The results presented indicate the potential of 50% ethanol solution in extraction of the 

flavanones naringin, hesperidin, naringenin and hesperitin from fermented citrus residue. 

Thereby, this process used a solvent less harmful to health, increasing the feasibility of the 

extract in studies with cell culture, animal models and humans. Still, using ethanol instead of 

methanol takes into account economic considerations imposed by the industrial context. 

The HPLC analysis clearly showed the change in flavanones profile in 

“Biotransformed” extract. According to MADEIRA et al. (2014 ) the microorganism employed 

in this process probably uses naringin and hesperidin as source of carbon and energy during 

fermentation. In previous study of our group, it was observed that the tannase produced by 

Paecilomyces variotii strain during fermentation has the ability to catalyze the flavanones 

deglycosylation, such as hesperidin (FERREIRA et al., 2013). Also, in microbial fermentation 

the compounds like hesperitin and naringenin are transformed in other chemical particles, with 

lower molecular weight, that are used in microorganism metabolism (JUSTESEN et al., 2000). 

AGUILAR; AGUILERA-CARBO; ROBLEDO (2008) observed that the solid-state 

fermentation of creosote bush leaves and pomegranate peels transformed the tannins present in 

the substrate into lower molecular weight phenolics, confirming the fact that the fermentation 

process is able to change the phenolic profile of a product.  

Even using a citrus residue from pectin industry waste, the quantity of flavanones 

extracted was comparable to other studies. YU et al. (2014) and HO; SU; LIN (2013) performed 

the extraction of flavonoids from fruits acquired for the research, taking care in the acquisition, 

transport and storage of raw materials. The first authors were able to extract 1.278 mg/g FW 

(fresh weight) of naringin and 1.480mg/g FW of hesperidin, indicating values comparable to 

the present work for hesperidin. In the second study, the extraction was performed in nine 

different citrus fruits, and for five of them the amount of hesperidin and naringin was lower 
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than that obtained in the present study. This data reinforces the advantage of the produced 

extract, once it was obtained from low cost industrial waste residue, commonly used for animal 

feed, presenting a possibility to increase the commercial value of this product. 

Despite the lower content of total flavanones in “Biotransformed” extract, 

antioxidant activity by DPPH and ORAC was similar between the samples. The literature 

indicates that in some cases hesperitin and naringenin have higher biological potential than 

hesperidin and naringin. LONDOÑO-LONDOÑO et al. (2010) demonstrated that hesperitin 

was more active than hesperidin in reducing lipid peroxidation in hepatic microsomes, with 

lower amount of TBARS. Moreover, these authors observed that at low concentrations (10 

mg/mL) hesperitin was more effective in reducing oxidized LDL by peroxynitrite-oxidized 

LDL model. SILVA et al. (2013) biotransformed orange and lime juices by enzymatic de-

glycosylation and observed higher antioxidant activity by DPPH method and FRAP assay after 

the biotransformation, indicating the higher antioxidant activity of the aglycones obtained. 

According to the results, all extracts were able to reduce lipogenesis in vitro, 

however, the data found seem to indicate that each extract have a different mechanism of action. 

Only the “In Natura” extract showed some effect on the inhibition of pre-adipocytes 

differentiation (Table 2.2), and may have a promising application in preventing the formation 

of new mature adipocytes. KIM et al. (2012) also observed that the addition of Citrus aurantium 

Flavonoids extract inhibited 3T3-L1 differentiation with a reduction in the amount of lipid 

droplets, confirming this positive effect of flavonoids from citrus. 

When the extracts were added to the maturation medium, all samples were able to 

reduce lipid accumulation, with a greater effect of “In Natura” extract. However, only 

“Biotransformed” extract, with higher content of hesperitin and naringenin, caused induction 

of lipolysis, observed by higher amount of free glycerol on the supernatant of the culture. It is 

noteworthy that “Biotransformed” extract had lower amount of flavanones per gram of 

liofilized extract in comparison to “In Natura” extract (Figure 2), and despite this great 

difference, the “Biotransformed” extract was able to reduce lipids content in the cells as “In 

Natura” extracts, and it was the only one able to cause lipolysis. 

SUBASH-BABU; ALSHATWI (2014) studied the effects of 20 µM hesperitin 

analytical standard in immortalized human bone marrow mesenchymal stem-cell (TERT20) 

differentiated with dexamethasone, IBMX, indomethacin and insulin. Hesperitin was added in 
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two different situations: in group 1 the flavanone was administered in the differentiation 

medium; in group 2 the compound was added after the differentiation in the maintenance 

medium. In both cases, there was a reduction on lipid accumulation according to staining with 

Oil Red O, even though the effect was more pronounced in group 2, similar to our results. They 

also observed a slight stimulation of lipolysis, confirming the lipolytic activity of hesperitin.  

Some studies have been shown that hesperitin (GAMO et al., 2014) and naringenin 

(YOSHIDA et al., 2013) seems to act as PPAR γ agonist. PPARγ is a nuclear transcription 

factor that induce adipocyte differentiation (KUBOTA et al., 1999), causing greater 

differentiation of preadipocytes to mature adipocytes when it is activated. This could explain 

why the “Biotransformed” extract were not able to reduce the differentiation process. Some 

researchers have found that when these flavonoids were added to 3T3-L1 cell culture, it was 

observed a greater accumulation of lipid droplets possibly due to its agonist role (GAMO et al., 

2014; MORIKAWA et al., 2008; YOSHIDA et al., 2013). However, in our study, despite the 

possible action of hesperitin and naringenin as PPAR γ agonist, there was an expressive 

reduction in lipid accumulation, which can be explained by the lipolytic role played by these 

aglycones. Still, we must consider that the afore mentioned studies were done with analytical 

standards, evaluating each compound alone. In the present work, we used a crude extract, and 

differences in response can occur due to the synergistic effect that compounds together may 

cause. 

There are many studies indicating the potential of citrus extract in obesity treatment 

(KANG et al., 2012; KIM et al., 2012), however for the first time it is documented promising 

results with an extract rich in aglycones. The studies using aglycones usually test high cost 

analytical standards isolated, missing the synergistic effects of the natural extracts we propose. 

Still, some authors indicate other advantages of aglycone forms in obesity 

treatment. KIM et al. (2013) found that hesperitin caused higher secretion of cholecystokinin 

(CCK) in STC-1 cells in comparison to hesperidin, indicating a possible role of this aglycone 

flavanone in food intake control since CCK is an anorexigen hormone (RAYBOULD, 2009). 

Thus, these other information suggests the potential of the extract produced by 

biotransformation to other biological activities, being suitable for further studies. 
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5. Conclusions 

Ethanol can replace methanol as extraction solvent of flavanones from 

biotransformed citrus residue. The biotransformation was able to modify the flavanones profile 

of the citrus residue extract, increasing the content of hesperitin and naringenin that naturally 

occur in low quantities in citrus fruits. Still, all extracts could be used in obesity treatment, 

however aiming different targets. The “In Natura” extract would be useful to reduce new 

adipocytes synthesis and lipid accumulation, and “Biotransformed” extract could be used to 

induce lipolysis on fat tissue. 
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INFLAMMATORY POLYPHENOLS: EFFECTS IN MACROPHAGES AND 

ADIPOCYTES  
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Abstract 

In obesity, due to increased macrophage infiltration on adipose tissue, there is greater secretion 

of pro-inflammatory cytokines, contributing to development of chronic non-communicable 

diseases. We evaluated the anti-inflammatory potential of a unique phenolic extract, obtained 

from bioprocessed citrus residue, on a cellular model with RAW264.7 and 3T3-L1 cells. 

Stimulated RAW 264.7 cells treated with the extract presented lower secretion of TNF-α and 

NO and lower protein expression of NFκB. In RAW264.7 and 3T3-L1co-culture, treatment 

with 1.0mg/mL of the extract reduced secretion of TNF-α (30.7%) and IL-6 (43.4%). Still, the 

“Biotransformed” extract caused greater increase in adiponectin in relation to control extracts. 

When the co-culture received LPS stimulus, the sample at 0.2mg/mL reduced IL-6 and TNF-α 

concentration; and caused greater increase in adiponectin. The citrus extract evaluated in this 

study showed anti-inflammatory activity in macrophages and in co-culture, indicating that 

bioprocess of citrus residue can contribute to new product development with anti-inflammatory 

potential. 

 

Keywords: citrus residue extract, polyphenols, obesity, anti-inflammatory activity, cell culture 

 

1. Introduction 

Obesity is a disease characterized by excess body fat, associated with a chronic 

subclinical inflammatory condition caused by increased secretion of pro-inflammatory 

adipokines (BALISTRERI; CARUSO; CANDORE, 2010). This adipokines circulation 
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increase also appears to be responsible for the development of chronic non-communicable 

diseases associated with obesity, causing insulin resistance, blood pressure increase, change in 

serum lipids, higher inflammatory response and thrombus formation (GRUNDY et al., 2004). 

The phenolic compounds are a class of substances that has been investigated for use in 

prevention and treatment of these diseases. An interesting source of phenolic compounds is 

citrus fruits.  

Among the most commercially important citrus, there is orange, with Brazil being 

the largest producer in the world, reaching a production of 18,012,560 megatons in 2012, 

according to estimates of the Food and Agriculture Organization (FAO). However, it is 

important to observe that most of oranges are destined to juice production, and about 50% of 

the waste generated is composed of peel and pulp, commonly used as animal feed component. 

However, it is known that citrus peel has a high content of polyphenols, and several studies 

have shown the positive effects of peel extracts in the treatment of chronic non-communicable 

diseases (DING et al., 2012; KANG et al., 2012; KIM et al., 2012; RAASMAJA et al., 2013). 

Still, some studies have demonstrated the anti-inflammatory role of citrus flavonoids, mainly 

hesperetin (GIMÉNEZ-BASTIDA et al., 2016; MA; FENG; DING, 2015; REN et al., 2016) 

and naringenin (KARUPPAGOUNDER et al., 2016; YU et al., 2014). However, these studies 

often test analytical standards of high cost. 

Researches with citrus extracts commonly use samples rich in hesperidin and 

naringin, with low amount of aglycones. However, some evidence have shown that the 

aglycones form have higher antioxidant capacity (HIRATA et al., 2005; SILVA et al., 2013), 

and higher bioavailability (LI et al., 2008) in comparison to glycosides. Thus, a residue extract 

containing glycosides and aglycones polyphenols on a unique composition with biological 

potential would be an innovation with commercial interest.  

Biotransformation by fermentation process is one way to produce an extract with 

higher content of aglycones. Our research group have been studying biotransformation 

processes to increase the production of more bioactive polyphenols from these industrial 

arrange residues (FERREIRA et al., 2013; MADEIRA et al., 2014; MADEIRA JR; 

SPERANZA; MACEDO, 2012; NAKAJIMA et al., 2016). Among the extracts already 

developed, we observed that the biotransformation produced an extract with lipolitic activity in 

vitro, whereas the unprocessed control extract showed no activity (NAKAJIMA et al., 2016).  
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In the present work, we intended to determine whether the fermentative 

biotransformation of this residue could result an extract with improved biological profile. Thus, 

this study aimed to evaluate the anti-inflammatory potential on obesity scenarios of different 

citrus residue extracts in RAW 264.7 macrophages and in co-culture of RAW 264.7 

macrophages and 3T3-L1 adipocytes. 

 

2. Materials and methods 

2.1. Chemicals 

Insulin, dexamethasone (DEX), 3-isobutyl-1-methylxanthine (IBMX), 

Lipopolysaccharide (LPS) were purchased from Sigma–Aldrich Chemical Company (St. Louis, 

MO). All the other chemicals used were in an analytical grade. 

 

2.2. Biotransformed citrus residue 

The citrus residue was supplied by CP Kelco Industry Headquarters, from Limeira 

- SP - Brazil, specialized in pectin production. The residue was dry and contained citrus peel 

(flavedo and albedo). The material was crushed, and passed through a 10 mesh sieve (Bertel 

Metallurgical Industries LT). The residue was biotransformed by solid-state fermentation using 

the microorganism Paecilomyces variotii (Brazilian  Collection  of  Environmental and  

Industrial  Microorganisms-CBMAI 1157) according to MADEIRA et al. (2014). Briefly, the 

fermentation medium was prepared in 250 ml Erlenmeyer flasks containing 10 g of the residue 

and 10 ml of water. The medium was sterilized by autoclaving for 15 minutes at 121 °C. After 

cooling, the flasks were inoculated with 1 mL of the microorganism spore suspension (9 x 106 

spores/mL) and incubated at 30 °C with 90 % relative humidity (Climate Camera 420 CLD –

Nova Ética, SP, Brazil) for 48 hours. 

 

2.3. Preparation of polyphenols extracts from citrus residue 

The extraction of phenolic compounds was carried out according to a process 

adapted from HAYAT et al. (2010). One gram of the biotransformed material was mixed with 

25 mL of 50% ethanol. The solution was treated in ultrasonic bath at 30°C for 15 min, in shaker 

at 200 rpm for 15 min, and then filtered on Whatman paper (No. 1).  
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The extracts were prepared from the “Biotransformed” residue and two control 

residues. The first control was the unfermented residue consisting of the product without any 

processing (“In Natura”), and the second control was the sterilized residue (“Autoclaved”). The 

sterilized residue was used as a control of process to verify the modifications that occurred in 

the extract after the sterilization by autoclaving. 

After filtration, the product obtained was concentrated on a rotary evaporator at 40 

°C to remove the organic solvent. Then the aqueous solution was frozen and freeze-dried. 

These extracts were previously analyzed and the polyphenols profile already 

published (NAKAJIMA et al., 2016). In summary, the “Biotransformed” extract had higher 

content of the aglycones hesperetin and naringenin, the “In Natura” presented higher amount 

of the glycosides hesperidin and naringin, while the “Autoclaved” consisted in a mixture of the 

four mentioned flavonoids, however with lower concentrations of all. 

 

2.4. Cell culture assay 

2.4.1. Cell culture 

RAW 264.7 murine macrophages and 3T3-L1 murine pre-adipocytes were cultured 

in Dulbecco’s modified Eagle’s medium (DMEM) at 37°C in a humidified atmosphere with 

5% CO2. All media contained 10% fetal bovine serum (FBS), penicillin (100 units/mL) and 

streptomycin (100 µg/mL). 

 

2.4.2. MTT Assay 

RAW 264.7 cells (1.0 x 105 cells/mL) were seeded in 96-well plates and incubated 

for 24 h at 37°C in a humidified atmosphere with 5% CO2. Then the cells were treated with the 

samples (0.01 mg/mL – 1.00 mg/mL). After 24 h of incubation, all media was removed and 10 

µL of MTT solution (5 mg/mL) was added to the cell culture. The cells were further incubated 

at 37°C in a humidified atmosphere with 5% CO2 for 3 h. The MTT formazan crystals were 

dissolved in SDS 10% in HCl 0.01M for 18 hours. The optical density of formazan solution 

was measured with a microplate reader at 540 nm. The results are expressed as a % of control 

cells, that are cells without any sample treatment. 

The same protocol was used for 3T3-L1 cells. However, after addition of MTT 

solution, the cells were further incubated for 4 h. 
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2.4.3. RAW 264.7 inflammatory assay 

RAW 264.7 macrophages were grown in 24-well plates (1 × 105 cells/well) for 24 

h. Extracts (0.2 mg/mL and 1.0mg/mL) plus LPS (100 ng/ml) was added to the treatment group 

of plates, while medium or LPS alone was added to the control group of plates. After LPS-

stimulation for 24 h, the cell-free supernatants were collected and assayed for TNF-αlevels 

using the enzyme-linked immunosorbent assay (ELISA) kit Mouse TNF (Mono/Mono) ELISA 

Set (BD OptEIA™), in accordance with the manufacturer's instructions. The optical density of 

each well was read at 450 nm.  

The cell free supernatant was also used to measure nitric oxide concentration. The 

nitric oxide (NO) determination was carried out according to GREEN et al. (1982). Nitrite 

concentration was measured as an indicator of NO production using Griess reagent (1% 

sulfanilamide, 5% phosphoric acid, 0.1% N - (1-naphthyl) ethylenediamine. The absorbance 

was measured at 540 nm, and the nitrite concentration in the samples was determined by 

comparison to a standard curve of sodium nitrite (5-320 mM).  

For Western Blotting, RAW 264.7 macrophages were grown in 6-well plates (1 × 

105 cells/well) for 24 h. Extracts (0.2 mg/mL and 1.0mg/mL) plus LPS (100 ng/ml) were added 

to the treatment group of plates, while medium or LPS alone was added to the control group of 

plates. After LPS-stimulation for 18 h, the cells were washed with ice-cold PBS and then lysed 

with 150µl cell lysis buffer [100 mM Tris–HCl, 10 mM EDTA, 1% Triton X-100, 10mM 

sodium pyrophosphate, 100 mM sodium fluorete, 10 mM sodium orthovanadate, 2 mM PMSF, 

0.1 mg/ml aprotinin] per well of a six-well plate for 40 minutes. The lysate was centrifuged at 

12,000 rpm for 15 min at 4 C, and the protein quality of each sample was determined using 

Lowry protein assay. Samples of 20 µg protein were electrophoresed by SDS–PAGE and 

transferredto nitrocellulose membrane. After blocking the non specific site with blocking 

solution (5% BSA for HSP70 and 5% non-fat milk for NFκB) for 2 h, the membrane was 

incubated with antibodies (1:1000) against HPS70 and NF-κB at 4 C overnight and then 

incubated with secondary antibodies (1:2000) at room temperature for 2 h. Protein detection 

was visualized with the Amersham ECL Western Blotting Detection Reagent (GE Amersham 

Biosciences) and UVITEC Cambridge instrument (model Alliance LD2). Each band was 
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quantitatively determined using the ImageJ software and β-actin (ADI905733 - Enzo Life 

Science) was used as the loading control. The experiments were performed in triplicate. 

 

2.4.4. RAW 264.7 and 3T3-L1 co-culture assay 

2.4.4.1. Pre-adipocytes differentiation 

The 3T3-L1 cells (2.0 x 104 cells/mL) were seeded in 24-well plates and grown 

until confluence. Two days after confluence, designated as day 0, the cells were switched to 

differentiation medium containing 10 µg/mL insulin, 0.5 mM isobutylmethylxanthine (IBMX), 

and 1µM dexamethasone (DEX) in DMEM with 10%FBS for another 3 days. Then, the cell 

culture medium was replaced with maturation medium containing 10 µg/mL insulin in DMEM 

with 10%FBS. The maturation medium was changed every 2 days, until day 12, after which 

mature adipocytes containing lipid droplets were formed. 

 

2.4.4.2. Co-culture 

On day 12 of the maturation sequence, transwell inserts (0.45 µm - Millipore, 

Ireland) were placed in each well and RAW 264.7 (1 x 105 cells/well) were inoculated in the 

upper layer. After 24 hours, cells were treated with extracts (0.2 mg/mL and 1.0mg/mL) or 

extracts (0.2 mg/mL and 1.0mg/mL) plus LPS (100 ng/mL) for 24 hours, and the supernatant 

was collected. The amount of adiponectin, IL-6 and TNF-α in the medium was determined 

using a Milliplex® MAP Mouse Adipocyte Luminex assay in accordance with the 

manufacturer’s instructions. 

The cell free supernatant was also used to measure nitric oxide concentration, 

according to the protocol described above. 

 

2.5. Statistical analysis 

Results were expressed as means ± standard deviation (SD). The statistical 

difference between the groups was analyzed using analysis of variance (ANOVA). Post hoc 

comparison was performed by Dunnet’s and Tukey’s test. Differences were considered 

significant when p ≤ 0.05. All analyses were performed using the software GraphPad Prism 5 

for Windows version 5.00 (GraphPad Software, Inc.). 
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3. Results 

3.1. Inflammatory assay with RAW 264.7 stimulated by LPS 

According to MTT assay, none of the extracts were toxic to RAW 264.7 cells in 

concentrations varying from 0.01 to 1.0 mg/mLl (Figure3.1). Thus, the following tests were 

carried out using 0.2 and 1.0 mg/mL concentrations. 

 

Figure 3.1 Cell viability of RAW264.7 cell line according to MTT assay. 

 

The addition of LPS in RAW 264.7 cells caused an increase in TNF-α and NO 

concentration, indicating the occurrence of the inflammatory stimulus. The macrophages 

treatment with the extracts caused a reduction in TNF-α in comparison to control group (cells 

without any treatment), being significant only with the addition of 1.0 mg/mL. There was no 

significant difference between samples (Figure 3.2). 

The “Biotransformed” extract was the only one able to reduce the amount of NO in 

the lowest concentration tested, being significantly lower than the Positive Control. The 

addition of 1.0 mg/mL of extracts significantly reduced the NO concentration in comparison to 

Positive Control; however the best results were for “Biotransformed” and “Autoclaved” 

extracts that were significantly lower than “In Natura” (Figure 3.2). 
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All extracts were able to reduce HSP70 protein expression in the higher 

concentration tested, however there was only statistical difference for “In Natura” extract 

(Figure 3.3A). Despite the lack of statistical significance, cell treatment with 1.0 mg/mL of 

extacts presented lower NFκB protein expression in comparison to Control, with greater 

reduction with “In Natura” extract (Figure 3.3B). There was a positive significant correlation 

between TNF-α and protein expression of HSP70 and NFκB (Figure 3.3C and 3.3D). 

These results indicate that the samples were able to attenuate some parameters of 

inflammation induced by LPS addition. At the highest concentration tested, “In Natura” extract 

showed better results. 

 

 

Figure 3.2 A: TNF-α (pg/mL) and B: NO (µM) concentrations in RAW 264.7 supernatant after 

24 hours of treatment. C-: Cells without LPS stimulus or sample, C+: Cells with LPS stimulus 

without sample, B: Biotransformed, N: In Natura, A: Autoclaved. 0.2 indicates 0.2 mg/mL of 

extract and 1.0 indicates 1.0 mg/mL of extract. All cells with samples treatment received LPS 

stimulus. Asterisk indicates the statistical significant difference compared to Positive Control 

by Dunnett’s test (p ≤ 0.05). Different small letters indicate significant difference between the 

samples in the same concentration by Tukey’s test (p ≤ 0.05). 
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Figure 3.3 Extracts effect on protein expression of A: HSP70 and B: NFκB evaluated by 

Western Blot. Control: Cells with LPS stimulus without sample, B: Biotransformed, N: In 

Natura, A: Autoclaved. 0.2 indicates 0.2 mg/mL of extract and 1.0 indicates 1.0 mg/mL of 

extract. All cells with sample treatment received LPS stimulus. Different small letters indicate 

significant difference between the samples in the same concentration by Tukey’s test (p ≤ 0.05). 

Pearson Correlation between TNF-α and C: HSP (r 0.8526, p 0.0148) and D: NFκB (r 0.8503, 

p 0.0153). 

 

3.2. Inflammatory assay in 3T3-L1 and RAW 264.7 co-culture 

 

3.2.1. Inflammation induced by 3T3-L1 and RAW 264.7 co-culture 

As for RAW 264.7 cell line, according to MTT assay, none of the extracts were 

toxic to 3T3-L1 cells in concentrations varying from 0.01 to 1.0 mg/ml (data not shown). Thus, 

the following tests were carried out using 0.2 and 1.0 mg/ml concentrations. 

The increased concentration of IL-6 and NO in co-culture compared to isolated 

culture of 3T3-L1 and RAW-264.7, indicates that an inflammatory stimulus occurred when the 
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two cells shared the same environment. Moreover, the co-culture caused a reduction in 

adiponectin concentration compared to 3T3-L1 grown alone (Table 3.1).  

 

Table 3.1 Adipokines and NO concentration in isolated 3T3-L1 cell culture and in co-culture. 

 IL-6 (pg/mL) TNF-α (pg/mL) NO (µM) Adiponectin 

(pg/mL) 

3T3-L1 271.2±25.48 BLD 1.80±0.55 2610.79±771.15 

RAW 264.7 13.41±0 2886.67±1716.53 0.88±0.18 BLD 

Co-culture 2190.54±1061.05 529.29±56.48 56.67±11.30 1391.95±434.80 

BLD- Bellow limit of detection 

 

Cell treatment with all extracts increased the amount of adiponectin compared to 

Control, being significant when the cell were treated with “Autoclaved” extract (Table 3.2). 

Although the “Autoclaved” extract caused a greater increase in adiponectin 

concentration, it had no effect on IL-6 and even caused a slight increase in NO, in the two 

concentrations tested, not showing improvement in inflammatory status. On the other side, the 

addition of 1.0 mg/mL of “Biotransformed” and “In Natura” extracts reduced the concentration 

of IL-6 and TNF-α. Despite the lack of statistical significance, it is noteworthy that 

“Biotransformed” and “In Natura” reduced IL-6 concentration in relation to control by 43.4% 

and 42.7%, respectively. Evaluating TNF-α secretion, the addition of “Biotransformed” extract 

caused a reduction of 30.7%, and “In Natura” a reduction of 14.9%. These extracts also caused 

a slight reduction in NO concentration (Table 3.2). 

Since only “Biotransformed” and “In Natura” extracts at a concentration of 1.0 

mg/ml were able to reduce the secretion of pro-inflammatory cytokines, and at this 

concentration “Biotransformed” extract caused greater increase in adiponectin secretion, we 

can conclude that “Biotransformed” extract showed better anti-inflammatory activity in adipose 

tissue stimulated by the presence of macrophages. 
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Table 3.2 Cytokines and NO concentration in 3T3-L1 and RAW 264.7 co-culture without 

LPS stimulus. 

 Control Conc 

mg/mL 
Biotransformed In Natura Autoclaved 

 

Adiponectin 

(pg/mL) 

1391.95±434.80 

0.2  1937.69±312.13a 2246.59±318.04ab 2926.31±421.84*b 

1.0 2311.23±554.79a 1883.43±139.61a 2691.94±606.68*a 

      

 

IL-6 

(pg/mL) 

2190.54±1061.05 

0.2 2174.09±721.92a 2172.84±180.38a 2237.48±284.59a 

1.0 1239.58±728.43a 1255.74±189.67a 2187.16±807.58a 

      

 

TNF-α 

(pg/mL) 

529.29±56.48 

0.2 488.57±49.60a 767.87±136.78b* 680.64±113.93ab 

1.0 366.73±44.77a 450.65±95.61a 452.60±118.43a 

      

NO 

(µM) 

56.67 ± 11.30 0.2 56.93 ± 15.71 a 58.47 ± 8.54 a 61.56 ± 5.10 a 

 1.0 48.53 ± 5.32 a 48.78 ± 9.57 a 62.46 ± 3.48 a 

Asterisk indicates the statistical significant difference compared to control by Dunnett’s test (p ≤ 

0.05).Different small letters indicate significant difference between the samples in the same 

concentration by Tukey’s test (p ≤ 0.05).  

 

As expected, there was a positive correlation between NO and the proinflammatory 

cytokines IL-6 and TNF-α (Figure 3.4).  

 

Figure 3.4 Pearson Correlation between NO and IL-6 (r 0.7527, p 0.0003) and TNF-α (r 0.5327, 

p 0.0228). 

 

3.2.2. Inflammation induced by LPS stimulus in 3T3-L1 e RAW 264.7 co-culture 

The results for this co-culture assay, in which cells suffered LPS inflammatory 

stimulus, all samples were capable of increasing adiponectin concentration, however only 
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“Autoclaved” extract had a significant difference compared to Control at lower concentration 

evaluated (Table 3.3). 

At 0.2 mg/mL concentration, “Biotransformed” and “In Natura” extracts reduced 

IL-6 and TNF-α secretion compared to Control. Still, compared to “Autoclaved” extract, 

“Biotransformed” showed significant lower secretion of IL-6 and “In Natura” lower secretion 

of TNF-α. Between these two extracts, “Biotransformed” presented better anti-inflammatory 

results because also promoted increased secretion of adiponectin and lower of NO (Table 3.3). 

At the concentration of 1.0mg/mL the autoclaved extract was the most positive 

because it promoted greater reduction of IL-6, TNF-alpha and NO; also causing a significant 

increase in adiponectin concentration when compared to Control (Table 3.3). 

In this assay, there was a positive significant correlation between NO and IL-6 

(Figure 3.5).  

Table 3.3 Cytokines and NO concentration in 3T3-L1 and RAW 264.7 co-culture LPS 

stimulated. 

 Control Conc 

mg/mL 
Biotransformed In Natura Autoclaved 

 

Adiponectin 
1577.87±610.07 

0.2 2568.09±959.92a 1899.24±150.24 a 2899.52±291.63*a 

1.0 1895.89±362.28 a 2548.96±506.07 a 1912.84±525.65 a 

      

 

IL-6 
2221.71±856.35 

0.2 1343.50±231.54a 1535.98±246.89ab 2206.21±421.02b 

1.0 1154.57±241.20*a 1801.72±273.34b 818.09±235.78*a 

      

 

TNF-α 
737.86±74.02 

0.2 624.88±88.30ab 613.91±30.37a 777.11±60.12b 

1.0 608.44±73.35 a 656.79±78.73a 519.85±67.54*a 

      

NO 58.70 ± 9.46 0.2 47.64 ± 9.23 a 65.25 ± 9.21 a 55.16 ± 10.57 a 

  1.0 55.44 ± 2.66a 75.45 ± 12.95b 47.55 ± 3.78a 

Asterisk indicates the statistical significant difference compared to control by Dunnett’s test (p ≤ 

0.05).Different small letters indicate significant difference between the samples in the same 

concentration by Tukey’s test (p ≤ 0.05).  

 

 



80 
 
 

 

 

 

Figure 3.5 Pearson Correlation between NO and IL-6 (r 0.5258, p 0.025). 

 

4. Discussion 

4.1. Inflammatory assay with RAW 264.7 stimulated by LPS 

The inflammatory stimulus of RAW264.7 with LPS causes increase in TNF-α 

concentration (LICHTMAN; WANG; LEMASTERS, 1998; WULSTER-RADCLIFFE et al., 

2004). This cytokine acts in host defense, however it is also known for its pro-inflammatory 

activity (BEUTLER; CERAMI, 1986; CARSWELL et al., 1975). In some situations, such as 

sepsis, secretion of this cytokine is increased, causing an inflammatory state damaging to the 

organism, which can lead to death (KOTHARI et al., 2013; TRACEY; CERAMI, 1994). Thus, 

substances that help control this secretion could contribute to a better prognosis in these 

situations. In our study, we also observed an increase in TNF-α secretion after LPS stimulus. 

However all extracts in the higher concentration tested were able to reduce significantly its 

concentration compared to Control.  

Treatment of RAW264.7 cells with the extracts at a concentration of 1.0 mg/mL 

resulted in inhibition of NFκB protein expression. According to WULSTER-RADCLIFFE et 

al. (2004) the increased secretion of TNF-α after LPS stimulus in pig macrophages is caused 

by ERK1/2 and NFκB pathway activation. NFκB is the most known pathway of inflammation, 

and when activated, it translocates to the nucleus, stimulating the synthesis of pro-inflammatory 

cytokines such as IL-6, TNF-α e IL-1 (GILMORE, 2006). Thus, inhibition of this pathway by 

the extracts can result in inflammatory profile improvement.  

Intracellular HSP70 has anti-apoptotic and cytoprotective activity (BEERE, 2004), 

whereas the extracellular has immunomodulatory action being an endogenous TLR ligand, that 

activates the Toll/IL-1 receptor signal pathway (VABULAS et al., 2002). Thus, increased 

expression of HSP 70, with subsequent secretion of the cell may have pro-inflammatory effect. 
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GUPTA et al. (2013) studied RAW 264.7 cells and observed that the presence of LPS with 

fever increases the expression of HSP70 and its secretion in the extracellular medium, being a 

risk factor for inflammation. Hence, in presence of LPS, as in the experiment performed in the 

present study, the reduction in HSP70 expression caused by the presence of the extracts in 

highest concentration tested, can have beneficial effects on inflammatory process. 

Besides the citokines, nitric oxide (NO) is also implicated in cell inflammatory 

response. NO is a free radical and internal messenger that participates in vascular homeostasis 

and host defense. It is synthesized by nitric-oxide synthase (NOS). There are three isoforms of 

NOS (MARLETTA, 1993), but for macrophage bactericidal and tumoricidal activities the 

inducible NOS (iNOS) is the most important one (STUEHR; NATHAN, 1989). The excessive 

iNOS activity is associated with inflammation tissue damage (GUZIK; KORBUT; ADAMEK-

GUZIK, 2003). LPS is a potent stimulator of NO production in macrophages (WU et al., 2003), 

behavior observed in the present study (Figure 3.2B). The extracts were able to reduce the 

secretion of this compound, especially the “Biotransformed” extract that promoted the greatest 

reduction in the concentration of NO in the two concentrations tested, and in the highest 

concentration its value was close to the cells without inflammatory stimulus. The reduced 

production of NO may be beneficial to protect cell and tissue against injury induced by 

inflammation acting on oxidative stress induced by NO, or indirectly causing reduced levels of 

anti-inflammatory cytokines such as TNF-α (WU et al., 2003). 

 

4.2. Inflammatory assay in 3T3-L1 and RAW 264.7 co-culture 

In obesity, besides the increasing number and size of adipocytes, there is a 

macrophage infiltration, causing increased cytokine secretion, contributing to the subclinical 

inflammatory state present in this disease. Among the cytokines that contribute to this pro-

inflammatory condition, there are TNF-α and IL-6, that are associated with insulin resistance 

found in that situation (WEISBERG et al., 2003). Thus, compounds capable of regulating 

cytokines secretion after an inflammatory stimulus could be effective in treating certain 

conditions associated with excess weight. 

3T3-L1 and RAW264.7 co-culture is widely used to mimic this situation. The 

results presented in Table 1 show that cultivation of these two cells in the same environment 

caused changes in cytokine secretion profile, being a good model for studying the inflammatory 
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changes present in obesity. In co-culture, the inflammation was possibly initiated by TNF-α 

secreted from RAW264.7. ARAKI et al. (2006) stimulated 3T3-L1 with TNF-α and observed 

an increase in NFκB activity and in IL-6 secretion, and reduction in adiponectin concentration; 

confirming that the presence of TNF-α is capable of causing an inflammatory stimulus in 

adipocytes. 

Despite the evidence of inflammatory stimulus in co-culture, TNF-α secretion was 

lower in this assay than in isolated RAW 264.7 culture. Adiponectin from 3T3-L1 may have 

inhibited macrophage secretion. Adiponectin is an adipokine secreted by adipocytes that 

presents protective role, with anti-inflammatory activity and capacity of improving insulin 

sensitivity (AJUWON; SPURLOCK, 2005; ZOICO et al., 2009). WULSTER-RADCLIFFE et 

al. (2004) observed that pre-treatment of pig macrophages with adiponectin inhibited the 

activation of NFκB. Thus, reduction of TNF-α and IL-6 would be caused by adiponectin via 

inhibition of NFκB nuclear translocation, and ERK1/2 activity. YOKOTA et al. (2000) also 

showed that adiponectin inhibits TNF-α secretion by macrophages stimulated with LPS. 

Moreover, YEN et al. (2011) demonstrated that treatment of 3T3-L1 with TNF-α causes a 

decrease in adiponectin secretion. Thus, possibly in co-culture, adiponectin reduced TNF-

αsecretion, and TNF-α also influenced adiponectin secretion (Table 3.1). The LPS stimulation 

was only 24 hours after the macrophages were inoculated in the well with 3T3-L1, then maybe 

adiponectin from adipocytes had been a pre-treatment for macrophages, which may not have 

been converted in the most inflammatory state. If this occurred, the increased secretion of IL-6 

and NO was mainly from 3T3-L1, and not from RAW264.7; and perhaps LPS acted mainly 

stimulating 3T3-L1. 

It is noteworthy that the inflammatory stimulus with or without LPS in co-culture 

did not cause major differences in cytokines concentrations between the Control groups (Table 

3.2 and Table 3.3). However, the different responses observed when the samples were added to 

groups stimulated or not with LPS, indicates that there was possibly a different mechanism of 

action in the pro-inflammatory model. Possibly, in the co-culture, TNF-α secreted by RAW 

264.7 was the original stimulator of the inflammatory response; and in the co-culture with LPS, 

both LPS and TNF-α acted in the stimulus. 

3T3-L1 treatment with LPS stimulates ERK phosphorylation and mRNA 

expression of IL-6, TNF-α and MCP-1 (PARK; MUN, 2014). Moreover, the presence of LPS 
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stimulates higher protein expression of TLR4, MyD88 and TRAF6 (induces phosphorylation 

of IκB), resulting in increased activation of NFκB (PARK; MUN, 2014). TNF-α has its action 

mediated by TNF receptor (TNF-r). Despite this difference, it has been shown that both 

stimulate NFκB activation. However, TNF-α has rapid action with IKK activation between 10 

and 15 minutes, NFκB activation with a peak at 45 minutes and returning to pre-stimulus 

baseline levels after 90 minutes; while with LPS IKK activity is greater at 45 minutes, NFκB 

activation peak is at 105 minutes, still maintaining high activation at 120 minutes (WERNER, 

2005). These results indicate that, despite the two substances action in NFκB, the pathways to 

occur this activation are distinct. 

The results indicate that the samples at 0.2 mg/mL concentration were not effective 

in inhibiting the inflammation induced by TNF-α. On the other side, cell treatment at 1.0 mg/mL 

concentration with “Biotransformed” and “In Natura” extracts, inhibited inflammation induced 

by TNF-α (Table 3.2). “Biotransformed” extract also caused greater increase in adiponectin 

secretion. In the inflammation induced by LPS, cell treatment with “Biotransformed” and “In 

Natura” extracts in the lower concentration were able to reduce pro-inflammatory cytokines 

secretion, especially again “Biotransformed” extract because it caused increased secretion of 

adiponectin. In the higher concentration tested, “Autoclaved” extract showed the best results 

reducing all inflammatory cytokines (Table 3.3).  

YEN et al. (2011) evaluated the effect of 21 phenolic analytical standards including 

hesperidin, naringin and naringenin, in IL-6 secretion by 3T3-L1 stimulated with TNF-α. To 

achieve this purpose, the cells were pretreated for 24 hours with analytical standards and after 

that they were stimulated with 5 ng/ml TNF-α for 12 hours. The authors reported that naringenin 

was able to reduce 27% IL-6 secretion after stimulation with TNF-α, while reduction observed 

for naringin and hesperidin were 30.4% 32.6% respectively; indicating the anti-inflammatory 

role of these compounds. However, it is important to note that in this study, using extracts with 

phenolics combination, the effects on IL-6 secretion were more pronounced, achieving 

reduction of 43.4% when “Biotransformed” extract was added to co-culture without LPS 

stimulation and 48.0% in the co-culture with LPS stimulation. These results indicate positive 

synergistic effect when using an extract with phenolic mixture. 

Some researchers have shown that hesperitin (GAMO et al., 2014b) and naringenin 

(YOSHIDA et al., 2013) seems to act as PPAR γ agonist. PPARγ is a nuclear transcription 
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factor that participates in the suppression of NFκB activation and IL-6 production, and can be 

induced by adiponectin (AJUWON; SPURLOCK, 2005). So, the presence of the extracts with 

hesperitin and naringenin (“Biotransformed”) and the induction of adiponectin secretion by the 

extract could contribute to the anti-inflammatory activity via PPAR γand NFκB. 

Despite the fact that the extracts did not influenced nitrite concentration in co-

culture, there was a positive correlation between this compound and pro-inflammatory 

cytokines. This was expected because NO activates JNK and NFκB pathways, resulting in 

increased production of cytokines (NOZAKI et al., 2007). 

The citrus extracts used in this study have potential anti-inflammatory activity since 

they were able to reduce TNF-α secretion and nitric oxide in macrophages culture; in addition 

to inhibiting TNF-α, IL-6, nitric oxide secretion and increasing adiponectin concentration in 

co-cultures of adipocytes and macrophages. It is noteworthy that “Biotransformed” and 

“Autoclaved” extracts showed some advantages in certain circumstances compared to “In 

Natura”, indicating that bioprocess of citrus residue can contribute to the development of a new 

product with anti-inflammatory potential. 
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GENERAL DISCUSSION 

1. Extraction Solution Selection 

The total phenolic content of the extracts obtained by using different extraction 

solvents varied from 72.29 ± 4.83 to 90.45 ± 5.44 mg of Gallic Acid Equivalent/ml of extract 

with no statistical difference between the samples. Thus, Folin Ciocalteu assay was not useful 

to distinguish the extracts. It is noteworthy that the color reaction the Folin Ciocalteau assay is 

based on not only occurs due to the presence of polyphenols, but can also be caused by other 

compounds with reducing power (HUANG; OU; PRIOR, 2005). 

The HPLC analysis showed that the extraction with 70% methanol, 70% ethanol 

acidified with 1% HCl and 50% ethanol resulted in same content of the quantified flavanones, 

being similar when using methanol or ethanol as extraction solvents. Solutions containing 

methanol are the most used in the extraction of polyphenols of solid materials (HAYAT et al., 

2010; RAMFUL et al., 2010; SINGH; SOOD; MUTHURAMAN, 2011). However, due to its 

toxicity (LIESIVUORI; SAVOLAINEN, 1991; TEPHLY, 1991), it is interesting the 

development of a process using more friendly solvents. The results presented indicate the 

potential of 50% ethanol solution in extraction of the flavanones naringin, hesperidin, 

naringenin and hesperitin from fermented citrus residue. Thereby, this process used a solvent 

less harmful to health, increasing the feasibility of the extract in studies with cell culture, animal 

models and humans. Still, using ethanol instead of methanol takes into account economic 

considerations imposed by the industrial context. 

Despite the widespread use of Folin Ciocalteau assay, this was not a good method 

for screening the best extracting solution. There was no significant difference between the 

samples according to this analysis, even though the HPLC results clearly indicating smaller 

potential of water as an extracting solvent for this system. 

 

2. Characterization of “Biotransformed” residue extract obtained from the 50% ethanol 

solution 

There was no difference in the content of total polyphenols by Folin Ciocalteau 

assay between the “Biotransformed” residue and the controls (“In Natura” and “Autoclaved”). 

However, once again the HPLC analysis showed difference between the samples. “In Natura” 

residue had higher content of glycosides flavanones, naringin and hesperidin, while the 
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“Biotransformed” residue had higher level of the aglycone flavanones, naringenin and 

hesperitin. Thus, HPLC analysis clearly showed the change in flavanones profile in 

“Biotransformed” extract. According to MADEIRA et al. (2014) the microorganism employed 

in this biotransformation probably uses naringin and hesperidin as source of carbon and energy 

during fermentation. In previous study of our group, it was observed that the tannase produced 

by Paecilomyces variotii strain during fermentation has the ability to catalyze the flavanones 

deglycosylation, such as hesperidin (FERREIRA et al., 2013). Also, in microbial fermentation 

the compounds like hesperitin and naringenin are transformed in other substances, with lower 

molecular weight, that are used in microorganism metabolism (JUSTESEN et al., 2000).  

Even using a citrus residue from pectin industry waste, the quantity of flavanones 

extracted was comparable to other studies. YU et al. (2014) and HO; SU; LIN (2013) performed 

the extraction of flavonoids from fruits acquired for the research, taking care in the acquisition, 

transport and storage of raw materials. The first authors were able to extract 1.278 mg/g FW 

(fresh weight) of naringin and 1.480mg/g FW of hesperidin, indicating values comparable to 

the present work for hesperidin. In the second study, the extraction was performed in nine 

different citrus fruits, and for five of them the amount of hesperidin and naringin was lower 

than that obtained in the present study. These data reinforces the advantage of the produced 

extract, once it was obtained from low cost industrial waste residue, commonly used for animal 

feed, presenting a possibility to increase the commercial value of this product. 

“Biotransformed” extract presented lower amount of flavanones in comparison to controls, 

however antioxidant activity by DPPH and ORAC was similar between the samples. The 

literature indicates that in some cases hesperitin and naringenin have higher biological potential 

than hesperidin and naringin. LONDOÑO-LONDOÑO et al. (2010) demonstrated that 

hesperitin was more active than hesperidin in reducing lipid peroxidation in hepatic 

microsomes, with lower amount of TBARS. Moreover, these authors observed that at low 

concentrations (10 mg/mL) hesperitin was more effective in reducing oxidized LDL by 

peroxynitrite-oxidized LDL model.  
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3. Cell Assays 

According to MTT assay, none of the extracts were toxic to 3T3-L1 and RAW264.7 

cell lines in the concentrations tested (0.01 – 1.00 mg/mL). These results indicate that the use 

of extracts is safe in these concentrations. 

 

3.1.Lipogenesis and lipolysis assays in 3T3-L1 cell line 

All extracts were able to reduce lipogenesis in vitro, however, the data found seem 

to indicate that each extract have a different mechanism of action. Only the “In Natura” extract 

showed some effect on the inhibition of pre-adipocytes differentiation, and may have a 

promising application in preventing the formation of new mature adipocytes. KIM et al. (2012) 

also observed that the addition of Citrus aurantium flavonoids extract inhibited 3T3-L1 

differentiation with a reduction in the amount of lipid droplets, confirming this positive effect 

of flavonoids from citrus. 

When the extracts were added to the maturation medium, all samples were able to 

reduce lipid accumulation, with a greater effect of “In Natura” extract. However, only 

“Biotransformed” extract, with higher content of hesperitin and naringenin, caused induction 

of lipolysis, observed by higher amount of free glycerol on the supernatant of the culture. It is 

noteworthy that “Biotransformed” extract had lower amount of flavanones per gram of 

liofilized extract in comparison to “In Natura” extract (Figure 2.2), and despite this great 

difference, the “Biotransformed” extract was able to reduce lipids content in the cells as “In 

Natura” extracts, and it was the only one able to cause lipolysis. 

Some studies have shown that hesperitin (GAMO et al., 2014) and naringenin 

(YOSHIDA et al., 2013) seems to act as PPAR γ agonist. PPARγ is a nuclear transcription 

factor that induce adipocyte differentiation (KUBOTA et al., 1999), causing greater 

differentiation of preadipocytes to mature adipocytes when it is activated. This could explain 

why the “Biotransformed” extract were not able to reduce the differentiation process. Some 

researchers have found that when these flavonoids were added to 3T3-L1 cell culture, it was 

observed a greater accumulation of lipid droplets possibly due to its agonist role (GAMO et al., 

2014; MORIKAWA et al., 2008; YOSHIDA et al., 2013).  However, in our study, despite the 

possible action of hesperitin and naringenin as PPAR γ agonist, there was an expressive 

reduction in lipid accumulation, which can be explained by the lipolytic role played by these 
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aglycones. Still, we must consider that the afore mentioned studies were done with analytical 

standards, evaluating each compound alone. In the present work, we used a crude extract, and 

differences in response can occur due to the synergistic effect that compounds together may 

cause. 

There are many studies indicating the potential of citrus extract in obesity treatment 

(KANG et al., 2012; KIM et al., 2012), however for the first time it is documented promising 

results with an extract rich in aglycones. The studies using aglycones usually test high cost 

analytical standards isolated, missing the synergistic effects of the natural extracts we propose. 

Still, some authors indicate other advantages of aglycone forms in obesity 

treatment. KIM et al. (2013) found that hesperitin caused higher secretion of cholecystokinin 

(CCK) in STC-1 cells in comparison to hesperidin, indicating a possible role of this aglycone 

flavanone in food intake control since CCK is an anorexigen hormone (RAYBOULD, 2009). 

Thus, these other information suggests the potential of the extract produced by 

biotransformation to other biological activities, being suitable for further studies. 

 

3.2.Inflammatory assay with RAW 264.7 stimulated by LPS 

The addition of LPS in RAW 264.7 cells caused an increase in TNF-α and NO 

concentration, indicating the occurrence of the inflammatory stimulus. The macrophages 

treatment with the extracts caused a reduction in TNF-α in comparison to Control group (cells 

without any treatment), being significant with the addition of 1.0 mg/ml (Figure 3.2A). There 

was no significant difference between samples. It is evidenced that the inflammatory stimulus 

of RAW264.7 with LPS causes increase in TNF-α concentration (LICHTMAN; WANG; 

LEMASTERS, 1998; WULSTER-RADCLIFFE et al., 2004). This cytokine acts in host 

defense, however it is also known for its pro-inflammatory activity (BEUTLER; CERAMI, 

1986; CARSWELL et al., 1975). In some situations, such as sepsis, secretion of this cytokine 

is increased, causing an inflammatory state damaging to the organism, which can lead to death 

(KOTHARI et al., 2013; TRACEY; CERAMI, 1994). 

Treatment of RAW264.7 cells with the extracts at a concentration of 1.0mg/mL 

resulted in inhibition of NFκB protein expression, however with no statistical difference. 

According to WULSTER-RADCLIFFE et al. (2004) the increased secretion of TNF-α after 

LPS stimulus in pig macrophagesis caused by ERK1/2 and NFκB pathway activation. NFκB is 
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the most known pathway of inflammation, and when activated, it translocates to the nucleus, 

stimulating the synthesis of pro-inflammatory cytokines such as IL-6, TNF-α e IL-1 

(GILMORE, 2006). Thus, inhibition of this pathway by the extracts can result in inflammatory 

profile improvement.  

Intracellular HSP70 has anti-apoptotic and cytoprotective activity (BEERE, 2004), 

whereas the extracellular has immunomodulatory action being an endogenous TLR ligand, that 

activates the Toll/IL-1 receptor signal pathway (VABULAS et al., 2002). Thus, increased 

expression of HSP 70, with subsequent secretion of the cell may have pro-inflammatory effect. 

GUPTA et al. (2013) studied RAW 264.7 cells and observed that the presence of LPS with 

fever increases the expression of HSP70 and its secretion in the extracellular medium, being a 

risk factor for inflammation. Hence, in presence of LPS, as in the experiment performed in this 

study, reduction in HSP70 expression caused by the presence of the extracts in highest 

concentration tested, can have beneficial effects on inflammatory process. 

The “Biotransformed” extract was the only one able to reduce the amount of NO in 

the lowest concentration tested, being significantly lower than the Positive Control. The 

addition of 1.0 mg/ml of extracts significantly reduced the NO concentration in comparison to 

Positive Control; however the best results were for “Biotransformed” and “Autoclaved” 

extracts that were significantly lower than “In Natura”. Besides the citokines, nitric oxide (NO) 

is also implicated in cell inflammatory response. NO is a free radical and internal messenger 

that participates in vascular homeostasis and host defense. It is synthesized by nitric-oxide 

synthase (NOS). There are three isoforms of NOS (MARLETTA, 1993), but for macrophage 

bactericidal and tumoricidal activities the inducible NOS (iNOS) is the most important one 

(STUEHR; NATHAN, 1989). The excessive iNOS activity is associated with inflammation 

tissue damage (GUZIK; KORBUT; ADAMEK-GUZIK, 2003). LPS is a potent stimulator of 

NO production in macrophages (WU et al., 2003), behavior observed in the present study. The 

reduced production of NO may be beneficial to protect cell and tissue against injury induced 

by inflammation acting on oxidative stress induced by NO, or indirectly causing reduced levels 

of anti-inflammatory cytokines such as TNF-α (WU et al., 2003). 
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3.3.Inflammatory assay in 3T3-L1 and RAW 264.7 co-culture 

In obesity, besides the increasing number and size of adipocytes, there is a 

macrophage infiltration, causing increased cytokine secretion, contributing to the subclinical 

inflammatory state present in this disease. Among the cytokines that contribute to this pro-

inflammatory condition, there are TNF-α and IL-6, that are associated with insulin resistance 

found in that situation (WEISBERG et al., 2003). Thus, compounds capable of regulating 

cytokines secretion after an inflammatory stimulus could be effective in treating certain 

conditions associated with excess weight. 

3T3-L1 and RAW264.7 co-culture is widely used to mimic this situation. The 

increased concentration of IL-6 and NO in co-culture compared to isolated culture of 3T3-L1 

and RAW-264.7, indicates that an inflammatory stimulus occurred when the two cells shared 

the same environment. Moreover, the co-culture caused a reduction in adiponectin 

concentration compared to 3T3-L1 grown alone. These results indicate that cultivation of these 

two cells in the same environment caused changes in cytokine secretion profile, being a good 

model for studying the inflammatory changes present in obesity. In co-culture, the inflammation 

was possibly initiated by TNF-α secreted from RAW264.7. ARAKI et al. (2006) stimulated 

3T3-L1 with TNF-α and observed an increase in NFκB activity and in IL-6 secretion, and 

reduction in adiponectin concentration; confirming that the presence of TNF-α is capable of 

causing an inflammatory stimulus in adipocytes. 

Despite the evidence of inflammatory stimulus in co-culture, TNF-α secretion was 

lower in this assay than in isolated RAW 264.7 culture. Adiponectin from 3T3-L1 may have 

inhibited macrophage secretion. Adiponectin is an adipokine secreted by adipocytes that 

presents protective role, with anti-inflammatory activity and capacity of improving insulin 

sensitivity (AJUWON; SPURLOCK, 2005; ZOICO et al., 2009). WULSTER-RADCLIFFE et 

al. (2004) observed that pre-treatment of pig macrophages with adiponectin inhibited the 

activation of NFκB. Thus, reduction of TNF-α and IL-6 would be caused by adiponectin via 

inhibition of NFκB nuclear translocation, and ERK1/2 activity. YOKOTA et al. (2000) also 

showed that adiponectin inhibits TNF-α secretion by macrophages stimulated with LPS. 

Moreover, YEN et al. (2011) demonstrated that treatment of 3T3-L1 with TNF-α causes a 

decrease in adiponectin secretion. Thus, possibly in co-culture, adiponectin reduced TNF-α 

secretion, and TNF-α also influenced adiponectin secretion. The LPS stimulation was only 24 
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hours after the macrophages were inoculated in the well with 3T3-L1, then maybe adiponectin 

from adipocytes had been a pre-treatment for macrophages, which may not have been converted 

in the most inflammatory state. If this occurred, the increased secretion of IL-6 and NO in co-

culture was mainly from 3T3-L1, and not from RAW264.7; and perhaps LPS acted mainly 

stimulating 3T3-L1. 

It is noteworthy that the inflammatory stimulus with or without LPS in co-culture 

did not cause major differences in cytokines concentrations between the Control groups. 

However, the different responses observed when the samples were added to groups stimulated 

or not with LPS, indicates that there was possibly a different mechanism of action in the pro-

inflammatory model. Possibly, in the co-culture, TNF-α secreted by RAW 264.7 was the 

original stimulator of the inflammatory response; and in the co-culture with LPS, both LPS and 

TNF-α acted in the stimulus. 

3T3-L1 treatment with LPS stimulates ERK phosphorylation and mRNA 

expression of IL-6, TNF-α and MCP-1 (PARK; MUN, 2014). Moreover, the presence of LPS 

stimulates higher protein expression of TLR4, MyD88 and TRAF6 (induces phosphorylation 

of IκB), resulting in increased activation of NFκB (PARK; MUN, 2014). TNF-α has its action 

mediated by TNF receptor (TNF-r). Despite this difference, it has been shown that both 

stimulate NFκB activation. However, TNF-α has rapid action with IKK activation between 10 

and 15 minutes, NFκB activation with a peak at 45 minutes and returning to pre-stimulus 

baseline levels after 90 minutes; while with LPS IKK activity is greater at 45 minutes, NFκB 

activation peak is at 105 minutes, still maintaining high activation at 120 minutes (WERNER, 

2005). These results indicate that, despite the two substances action in NFκB, the pathways to 

occur this activation are distinct. 

The results indicate that the samples at 0.2 mg/mL concentration were not effective 

in inhibiting the inflammation induced by TNF-α. On the other side, “Biotransformed” and “In 

Natura” reduced IL-6 concentration in relation to control by 43.4% and 42.7%, respectively, 

however there was no statistical significance. Evaluating TNF-α secretion, the addition of 

“Biotransformed” extract caused a reduction of 30.7%, and “In Natura” a reduction of 14.9%. 

These extracts also caused a slight reduction in NO concentration. Thus, cell treatment at 1.0 

mg/ml concentration with Biotransformed and In Natura extracts, inhibited inflammation 
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induced by TNF-α. Biotransformed extract also caused greater increase in adiponectin secretion 

(Table 3.2).  

In the inflammation induced by LPS, at 0.2 mg/mL concentration, 

“Biotransformed” and “In Natura” extracts reduced IL-6 and TNF-α secretion compared to 

Control. Still, compared to “Autoclaved” extract, “Biotransformed” showed significant lower 

secretion of IL-6 and “In Natura” lower secretion of TNF-α. Between these two extracts, 

“Biotransformed” presented better anti-inflammatory results because also promoted increased 

secretion of adiponectin and lower of NO. In the higher concentration tested, “Autoclaved” 

extract showed the best results reducing all inflammatory cytokines (Table 3.3).  

YEN et al. (2011) evaluated the effect of 21 phenolic analytical standards including 

hesperidin, naringin and naringenin, in IL-6 secretion by 3T3-L1 stimulated with TNF-α. To 

achieve this purpose, the cells were pretreated for 24 hours with analytical standards and after 

that they were stimulated with 5 ng/ml TNF-α for 12 hours. The authors reported that naringenin 

was able to reduce 27% IL-6 secretion after stimulation with TNF-α, naringin 30.4% and 

hesperidin 32.6%; indicating the anti-inflammatory role of these compounds. However, it is 

important to note that in the present study, using extracts with phenolics combination, the 

effects on IL-6 secretion were more pronounced, achieving reduction of 43.4% when 

“Biotransformed” extract was added to co-culture without LPS stimulation and 48.0% in the 

co-culture with LPS stimulation. These results indicate positive synergistic effect when using 

an extract with phenolic mixture. 

As already mentioned hesperitin (GAMO et al., 2014b) and naringenin (YOSHIDA 

et al., 2013) seems to act as PPAR γ agonist, and besides acting in lipogenesis, they can also 

participate in the suppression of NFκB activation and IL-6 production (AJUWON; 

SPURLOCK, 2005). So, the presence of the extracts with hesperitin and naringenin 

(“Biotransformed”), and the induction of adiponectin secretion by the extract, could contribute 

to the anti-inflammatory activity via PPAR γand NFκB. 

Despite the fact that the extracts did not influenced NO concentration in co-culture, 

there was a positive correlation between this compound and pro-inflammatory cytokines. This 

was expected because NO activates JNK and NFκB pathways, resulting in increased production 

of cytokines (NOZAKI et al., 2007), as observed here. 
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CONCLUSÃO GERAL 

Podemos concluir que o etanol pode substituir o metanol como solvente para 

extração das flavanonas de resíduos cítricos, contribuindo para o menor uso de um solvente 

extremamente tóxico. O processo de biotransformação foi capaz de modificar o perfil de 

flavanonas do extrato de resíduo de cítricos, aumentando o teor de hesperitina e naringenina, 

compostos que são encontrados em baixas quantidades na natureza.  

De acordo com os resultados expostos, todos os extratos produzidos poderiam ser 

utilizados no tratamento da obesidade, entretanto visando objetivos diferentes. O extrato “In 

Natura” poderia ser empregado para reduzir a síntese de novos adipócitos e acumulação de 

lipídeos, e o extrato “Biotransformado” poderia ser utilizado para induzir a lipólise no tecido 

adiposo. 

Considerando que na obesidade, além do aumento no número e tamanho de 

adipócitos, há a presença de uma inflamação, os resultados indicam o promissor uso desses 

extratos devido atividade anti-inflamatória observada, uma vez que eles foram capazes de 

reduzir a secreção de TNF-α e óxido nítrico em cultura de macrófagos. Além disso, as amostras 

foram capazes de inibir a secreção de TNF-α, IL-6 e óxido nítrico; e aumentar a concentração 

de adiponectina em co-cultura de adipócitos e macrófagos. É importante considerar que o 

extrato “Biotransformado” e “Autoclavado” apresentaram algumas vantagens em determinadas 

circunstâncias em comparação ao “In Natura”, indicando que o resíduo bioprocessado de 

cítricos pode contribuir para o desenvolvimento de um novo produto com potencial uso no 

tratamento da obesidade e da inflamação associada. 
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GENERAL CONCLUSION 

We can conclude that ethanol can replace methanol as solvent for flavanones 

extraction from citrus residue, contributing to less use of a highly toxic solvent. The 

biotransformation was able to modify the flavanones profile of citrus residue extract, increasing 

the content of hesperetin and naringenin, compounds that are found in low amounts in nature. 

According to the results, all extracts produced could be used to treat obesity, 

however aiming at different goals. "In Natura" extract could be employed to reduce the new 

adipocytes synthesis and lipids accumulation, and "Biotransformed" extract could be used to 

induce lipolysis in adipose tissue. 

Considering that in obesity, in addition to increased number and size of adipocytes, 

there is the presence of inflammation, the results show promising use of the extract due to anti-

inflammatory activity observed, since they were able to reduce TNF-α and NO secretion in 

macrophages. In addition, the samples were able to inhibit TNF-α, IL-6 and nitric oxide 

secretion and increase adiponectin concentration in adipocytes and macrophages co-culture. 

"Biotransformed" and “Autoclaved” extracts showed some advantages in certain circumstances 

compared to "In Natura", indicating that the bioprocessed citrus residue may contribute to the 

development of a new product with potential use in treating obesity and associated 

inflammation. 
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SUGESTÃO PARA TRABALHOS FUTUROS 

1- A caracterização e quantificação mais precisa do extrato biotransformado desenvolvido, que 

não foi feito no presente trabalho devido a limitações financeiras para compra de padrões 

analíticos. 

2- A avaliação do potencial do extrato biotransformado na melhora da sensibilidade a insulina, 

pois há evidência que flavanonas produzidas no bioprocessamento apresentam papel agonista 

de PPAR-γ, o que contribui na redução da resistência a insulina. 

3- Realização de testes em modelos animais, a fim de verificar se os efeitos observados in vitro 

podem ser extrapolados para um modelo mais complexo. 
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a b s t r a c t

Adipose tissue performs many functions in the body, being considered an endocrine organ due to
substances secreted, called adipokines. The excess of adipose tissue is called obesity, and it is associated
with a state of chronic subclinical inflammation. Various strategies and products have been evaluated in
an attempt to prevent and treat obesity, standing out the importance of polyphenols from citrus fruits.
This paper aims to review studies developed to evaluate the role of these compounds in obesity and
some general trends can be highlighted. The in vitro studies indicate that citrus polyphenols could assist
in the management of obesity, since they cause a reduction in adipocyte differentiation, lipid content in
the cell and adipocyte apoptosis. The biological assays are not entirely consistent; however, most of them
indicated a reduction in adipose tissue; increased genes expression indicating a stimulus to b-oxidation;
improved lipid profile and glycemia; as well as some evidence of improvement in inflammatory status.
Several clinical trials have demonstrated the positive effect of citrus flavonoids in the reduction of
proinflammatory cytokines in humans, being beneficial to alleviate the complications present in obesity.
However, there are few clinical trials developed to examine its role in reducing adiposity.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Adipose tissue has long been considered only as a site of energy
storage, however it is now known that it performs many functions
in the body. This tissue is considered an endocrine organ due to
paracrine substances secreted, called adipokines (Grundy, Brewer
Jr., Cleeman, Smith, & Lenfant, 2004). Also there are other cells
present in adipose tissue, besides the adipocytes, that release active
substances involved in metabolic pathways, such as macrophages
(Weisberg et al., 2003). In parallel, the adipose tissue has receptors
for afferent signals emitted by other endocrine systems, enabling a
communication with the central nervous system. This network
interaction explains the coordinating activity of adipose tissue in
energy metabolism, neuroendocrine and immune function
(Kershaw & Flier, 2004).

Obesity is a disease characterized by excess body weight, asso-
ciated with a state of chronic subclinical inflammation, caused by
an increased secretion of adipokines that modulate certain re-
sponses in the body (Balistreri, Caruso, & Candore, 2010). Overall,
the vast majority of adipokines studied have a role in the devel-
opment of chronic diseases associated with obesity causing insulin

resistance, increased blood pressure, abnormal blood lipids,
increased inflammatory response, and thrombus formation
(Grundy et al., 2004).

In addition to many complications associated with obesity, the
high prevalence of the disease made it a public health problem.
Accordingly, various strategies and products have been evaluated in
an attempt to prevent and treat excessive body weight. Among the
compounds studied, stands out the importance of polyphenols in
plant food.

A source of polyphenols widely studied is citrus fruits. This
group of fruits is important source of bioactive compounds, mainly
flavonoids, being target of many studies concerning the adipose
tissue and obesity. Therefore, this paper aims to review studies
developed to evaluate the role of these compounds in the obesity
and associated changes.

2. Phenolics in citrus fruits

Phenolic compounds or polyphenols refers to a group of mole-
cules found in plants, that exert photoprotection function, defense
against microorganisms and insects, being responsible for
pigmentation and some food organoleptic characteristics (Escarpa
& Gonzalez, 2001). Among the various classes that comprise the
phenolics, flavonoids are considered important for human con-
sumption due to its wide distribution in plant foods.
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The flavonoid structure is based on the flavylium nucleus, which
consists of three phenolic rings (Fig. 1). The first benzene ring (A) is
condensed with the sixth carbon of the third ring (C), which in the
2-position carries a phenyl group (B) as a substituent (Aherne &
O’Brien, 2002).

The biochemical activities of flavonoids and their metabolites
depend on their chemical structure, which may vary with one or
more hydroxyl substituents, including derivatives. Flavonoids and
isoflavones commonly occur as esters, ethers or derivatives glyco-
sides, or a mixture of them. Except the group of leucoanthocyanins,
other flavonoids occur in plants usually accompanied by carbohy-
drates thus receiving the name of glycosylated flavonoids. The
glycidic substituents include: D-glucose, L-rhamnose, glucose-
rhamnose, galactose and arabinose (Birt, Hendrich, & Wang,
2001). When the flavonoid is free of carbohydrates, the structure
is called aglycone.

Citrus fruits are rich in various nutrients, such as vitamins A and
C, folic acid and dietary fiber. Furthermore, these fruits are source of
bioactive compounds, as flavonoids, coumarins, limonoids and ca-
rotenoids (Ding et al., 2012; Turner & Burri, 2013).

Among the flavonoids, citrus present considerable amounts of
flavanones, flavones, flavonols and anthocyanins, however the
main flavonoids are the flavanones (Benavente-García, Castillo,
Marin, Ortuño, & Del Río, 1997). In this class of compounds, the
most frequent ones are hesperidin, narirutin, naringin and erioci-
trin (Ghasemi, Ghasemi, & Ebrahimzadeh, 2009; Sun et al., 2013).
Other phenolics often found in citrus are p-coumaric, ferulic, caffeic
and sinapic acids (Manthey & Grohmann, 2001; Sun et al., 2013).

Gattuso, Barreca, Garguilli, Leuzzi, and Caristi (2007) reviewed
the flavonoid composition of citrus, and some of their results are
summarized at the Table 1.

The genus Citrus comprises several orange species e Citrus
sinensis (sweet orange), Citrus aurantium (sour oranges), Citrus
reticulata (tangerine or mandarin) e and their hybrids e tangors,
which are orange-tangerine hybrids, and tangelos, which are
tangerine-grapefruit or tangerine pummelo hybrids. Many of these
species or hybrids can have different varieties (Gattuso et al., 2007).

In general, the data where the specific C. sinensis variety
analyzed is reported show that different varieties present approx-
imately the same flavonoid composition pattern. Commercial or-
ange juices present a similar composition to freshly squeezed ones,
with the appearance of some unexpected compounds. Naringin and
diosmin hint at the possibility that some of the samples analyzed
are not pure orange juices, or, as in the case of hand-squeezed
juices, the presence of PMFs in variable quantities suggests that
they could be essentially derived from the flavedo and confirm that
the amounts of polymethoxyflavones found in industrial juices are
a consequence of the pressing process used (Gattuso et al., 2007).

It is also important to consider that the flavanones in citrus can
be glycosylated or aglycone. The glycosylated forms are also divided

into neohesperidosides that contain a neohesperidose (ramnosil-a-
1,2 glucose) and have a bitter taste; and rutinosides that contain a
flavanone and a disaccharide residue, and do not have taste
(Macheix, Fleuriet, & Billot, 1990). Naringin, neohesperidin and
neoeriocitrin are examples of neohesperidosides; while hesperidin,
narirutin and didymin are examples of rutinosides (Tripoli,
Guardia, Giammanco, Majo, & Giammanco, 2007). Naringenin and
hesperetin are the most common aglycones, often found in trace
concentrations.

Concerning the quantity of the compounds, Miller and Rice-
Evans (1997) detected the presence of hesperidin (141 � 49 mmol/
L) and narirutin (62 � 16 mmol/L) in longlife orange juice. Klimczak,
Ma1ecka, Szlachta, and Gliszczy�nska-�Swig1o (2007) also evaluated
longlife orange juice, verifying the presence of some hydro-
ycinnamic acids as caffeic (8.2 mg/L), p-coumaric (0.5 mg/L), ferulic
(0.6 mg/L) and sinapic (0.7 mg/L). However, as mentioned above,
the flavanones were found in greater quantity, being detected the
presence of narirutin (70.2 mg/L), hesperidin (76.9 mg/L) and
dydymin (9.9 mg/L). Of the flavanones analyzed, naringin and
neohesperidin were not detected.

Stuetz, Prapamontol, Hongsibsong, and Biesalski (2010) evalu-
ated the polyphenol content of C. reticulata Blanco cv. Sai-
nampueng, to verify the difference between hand-pressed juice
and the peeled fruit. The peeled fruit had low content of poly-
methoxyflavones, while the hand-pressed juice presented high
content of tangeritin (5.99e31.8 mg/L), nobiletin (5.49e28.2 mg/L)
and sinensetin (0.30e2.00 mg/L). The authors observed that the
polymethoxyflavones were present in the peel of the fruit, and a
simple squeezing can cause the transfer of these compounds from
the peel to the juice. Besides this class of polyphenol, it was also
detected the presence of the flavanones didymin (4.44e9.50 mg/L),
narirutin (17.7e43.4 mg/L) and hesperidin (123.3e206.7 mg/L) in
the hand-pressed juice. On the other side, the peeled fruit had high
content of didymin (45e112 mg/kg), narirutin (181e600 mg/kg)
and hesperidin (841e1898 mg/kg).

Some researchers also study the peels and peels extract of citrus
fruits, as Ramful, Bahorun, Bourdon, Tarnus, and Aruoma (2010)
that evaluated orange, clementine, mandarine, tangor, tangelo
and pamplemousses peels. The flavonoids detected in this matrix
were poncirin (2.49e18.85 mg/g FW), rhoifolin (4.54e10.39 mg/g
FW), didymin (3.22e13.94 mg/g FW), rutin (8.16e42.13 mg/g FW),
diosmin (4.01e18.06 mg/g FW), isorhoifolin (1.72e14.14 mg/g FW),
neohesperidin (3.20e11.67mg/g FW), hesperidin (83.4e234.1mg/g
FW), neoeriocitrin (8.8e34.65 mg/g FW) and narirutin (5.05e
21.23 mg/g FW). Naringin (19.49 mg/g FW) was only detected in
mandarine.

Londoño-Londoño et al. (2010) identified using HPLC-MS the
presence of hesperidin, neohesperidin, diosmin, nobiletin and
tangeritin in orange peel; hesperidin and neohesperidin in
tangerine peel; and hesperidin, neohesperidin and diosmin in lime
peel. Reinforcing the information above, none of the peels pre-
sented the aglycone hesperitin in their composition.

Ghasemi et al. (2009) evaluated the total polyphenol and
flavonoid content of peels and tissues from three varieties of C.
sinensis, three of C. reticulata, three of Citrus unshiu, one of Citrus
limon, one of Citrus paradisi and two of C. aurantium. For most citrus
analyzed the total polyphenols content was higher in the peel
(104.2e223.2 mg gallic acid equivalent/g of extract powder) in
comparison to tissue (66.5e396.8 2 mg gallic acid equivalent/g of
extract powder), excepting all C. reticulata varieties, and one
C. sinensis variety (var. Washington Navel). The total flavonoid
content was also higher in the peel (0.3e31.1 mg quercetin equiv-
alent/g of extract powder) in relation to tissue (0.3e17.1 mg quer-
cetin equivalent/g of extract powder) in most of the samples,
excepting four varieties (C. sinensis var. Sungin, C. unshiu var.Fig. 1. General structure of food flavonoids.
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Ishikawa, C. reticulata var. Clementine, C. reticulata var. Page). These
results indicate that considerable losses occur with the peel
removal before consumption or in industrial process. And besides
the information about the content of total polyphenol and flavo-
noid, several studies have already shown the positive effects of peel
extracts in the treatment of chronic non-communicable diseases
(Ding et al., 2012; Fukuchi, Hiramitsu, Okada, Hayashi, & Nabeno,
2008; Kang et al., 2012; Kim et al., 2012; Lee et al., 2011;
Raasmaja et al., 2013).

A factor to consider when talking about flavonoids is whether
the compound is in the glycosylated or aglycone form. It has been
shown that in rats, after oral consumption of naringin, the sulfate
and glucuronate conjugates forms of naringenin are found in the
organism, indicating that for naringin absorption the glycoside
needs to be released to the formation of the aglycone naringenin,
thus depending on one glucosidase for its absorption (Wang et al.,
2006). The better absorption of the aglycone form in relation to
glycosylated in citrus flavonoids has also been observed in humans
using glycosylated forms of eriocitrin and hesperidin compared
with the corresponding aglycones eridictyol, homoeridictyol and
hesperetin (Miyake et al., 2006). Therefore, the polyphenol struc-
ture can modify its bioavailability to the body. This might be the
reason why many researchers chose to evaluate the aglycone po-
tential, seen that this form is detected in the organism tissues and
blood, and it has higher bioavailability.

The flavonoids found in citrus species act as antioxidants and
may protect against oxidative stress-related to inflammation
process, thus reducing the risk of macromolecules damage caused
by the action of reactive species, conferring protection against
several neurodegenerative diseases and reducing the risk of
developing cardiovascular disease and cancer (Benavente-García
et al., 1997).

3. Citrus phenolics effect on cell cultures models of obesity

In vitro studies are useful to understand the mechanisms of
action, and guide the decision of which products should be further
studied in biological assays and clinical trials. Besides that, they are
an alternativewhen the product is in its early development phase, a
moment that the yield is generally low.

Many in vitro studies are being conducted with citrus phenolics
to evaluate its effects on obesity. One of the mechanisms proposed
has been the role of these compounds in the adipocytes apoptosis,
because it was observed that the addition of polymethoxyflavones
analytical standard (5-hydroxy-3,6,7,8,30,40-hexamethoxyflavone
(5-HxMF OH) 3,5,6,7,8,30,40-heptamethoxyflavone (HpMF);
5,6,7,30,40-pentamethoxyflavone (PMTCT), and 30-hydroxy-
5,6,7,40-tetramethoxyflavone (30-OH-TtMF)) of citrus (100 mM)
caused an increase in intracellular calcium, which induced the in-
crease of calpain and caspase-12, two proteins associated with
programmed cell death (Sergeev, Li, Ho, Rawson, & Dushenkov,
2009). The reduction in the number of adipose cells due to
apoptosis could assist in maintaining weight loss, avoiding the
weight cycling.

Table 1
Reviewed flavonoid composition of some citrus juices.

Mean SD Median MIN MAX

Flavonoid composition of C. sinensis (sweet orange) juice (mg/100 mL)

Flavanones

Didymin 1.89 0.92 1.60 0.80 3.10
Eriocitrin 0.31 0.18 0.29 0.11 0.67
Hesperidin 28.6 11.9 28.0 3.51 55.2
Narirutin 5.2 3.1 4.2 0.55 14.2

Flavones

Neoeriocitrin 0.59 e e e e

Poncirin 1.04 0.78 1.04 0.49 1.59
6,8-di-C-Glu-Apigenin 5.72 2.02 5.00 4.15 8
6,8-di-C-Glu-Diosmetin 0.35 0.14 0.35 0.25 0.45
Rhoifolin 0.05 e e e e

Isorhoifolin 0.07 e e e e

Diosmin 0.09 e e e e

Neodiosmin 0.08 e e e e

Polymethoxyflavones

Nobiletin 0.33 0.19 0.33 0.19 0.46
Sinensetin 0.37 e e e e

Tangeretin 0.04 0.04 0.04 0.01 0.07
Flavonoid composition of C. clementina juice (mg/100 mL)
Flavanones
Hesperidin 39.9 29.4 34.9 5.21 86.1
Naringin 0.08 0.03 0.08 0.05 0.12
Narirutin 4.64 e e e e

Flavones
6,8-di-C-Glu-Apigenin 0.5 e e e e

6,8-di-C-Glu-Diosmetin 0.2 e e e e

Diosmin 1.25 0.51 1.26 0.67 2.12
Flavonoid composition of C. limon (lemon) juice (mg/100 mL)
Flavanones
Eriocitrin 16.7 10.3 16.55 1.67 39.1
Hesperidin 20.5 12.4 18.85 3.84 41
Flavones
6,8-di-C-Glu-Apigenin 1.17 0.25 1.05 1 1.45
6,8-di-C-Glu-Diosmetin 4.95 0.88 5 4.05 5.8
7-O-Rut-Luteolin 3.93 2.14 3.5 1.5 6.5
Diosmin 3.12 1.66 3.65 0.51 5.1
Aglycones
Luteolin 0.08 e e e e

Flavonoid composition of C. paradisi (grapefruit) juice (mg/100 mL)
Flavanones
Didymin 0.30 0.04 0.30 0.27 0.33
Eriocitrin 0.41 0.19 0.41 0.27 0.54
Hesperidin 0.93 0.58 0.87 0.25 1.79
Naringin 23.0 12.8 21.9 4.5 60.2
Narirutin 7.60 5.80 7.70 2.50 17.0
Neohesperidin 1.21 0.35 1.28 0.67 1.58
Neoeriocitrin 0.32 0.02 0.32 0.30 0.33
Poncirin 1.26 0.35 1.30 0.85 1.58
Flavones
Rutin 3.26 e e e e

Rhoifolin 0.28 e e e e

Polymethoxyflavones
Heptamethoxyflavone 0.06 0.07 0.06 0.01 0.11
Nobiletin 0.15 0.04 0.15 0.12 0.17

Table 1 (continued )

Mean SD Median MIN MAX

Tangeretin 0.12 e e e e

Aglycones
Hesperetin 0.74 e e e e

Naringenin 2.70 2.68 1.70 0.98 8.00
Taxifolin 0.16 e e e e

Quercetin 0.19 0.03 0.19 0.17 0.21

Adapted from Gattuso et al., 2007.
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Another study evaluated the effect of nobiletin analytical stan-
dard in 3T3-L1 adipocytes (0e100 mM). The treatment of these cells
with the citrus phenolic reduced, in a dose-dependent manner, the
expression of C/EBPb and PPARg, transcription factors that are
associated with differentiation of pre-adipocytes into mature adi-
pocytes. Reinforcing this result, it was also observed lower lipid
accumulation in cultured cells when the flavonoid was added
(Kanda et al., 2012).

Nowadays, it is considered the importance of toll-like re-
ceptors (TLRs) on the association between obesity and other
chronic non-communicable diseases, and it is recognized the fact
that TLRs are responsible for the activation of inflammatory
pathways (Sabroe, Parker, Dower, & Whyte, 2008). In a study
evaluating the treatment of pre-adipocytes, adipocytes during its
differentiation, and differentiated 3T3-L1 cells treated with nar-
ingenin analytical standard (100 mM), it was observed an inhib-
itory effect of the flavonoid on the expression of TLR 2, only
during adipocyte differentiation (Yoshida et al., 2013), indicating
a possible effect on the phase in which the individual is in the
process of gaining body fat.

During the obesity development, it is known that in addition to
the increase in adipose cells, there is an increase in the macro-
phages number in adipose tissue (Ramalho & Guimarães, 2008;
Weisberg et al., 2003). Considering this information, Yoshida et al.
(2013) conducted a test with 3T3-L1 adipocytes and macrophages
RAW 264 in co-culture. The co-culture showed increased expres-
sion of TLR 2, and treatment with naringenin inhibited this
increased expression observed. Furthermore, the expression of TLR
2 was increased with TNF-a addition to the culture of mature adi-
pocytes, however naringenin added to this medium was able to
inhibit TNF-a-induced TLR 2 expression by inhibiting JNK and NF-
kB pathways. However, naringenin appears to reduce the expres-
sion of TLR 2 via increased activation of PPARg, a nuclear tran-
scription factor that could cause greater differentiation of pre-
adipocytes into mature adipocytes and increase lipid accumula-
tion in these cells, exactly as was observed on the experiment
(Yoshida et al., 2013).

Also, Yoshida et al. (2010) found that in 3T3-L1 adipocytes cell
culture, hesperetin and naringenin analytical standards showed
anti-inflammatory effect by inhibiting the activation of NFkB
through TNF-a, with a consequent reduction in the secretion of
interleukin-6 (IL-6); and anti-lipolytic effect by inhibit ERK
(extracellular signal regulated kinase) pathway causing a decreased
activation of hormone sensitive lipase (HSL); contributing to reduce
the insulin resistance (Fig. 2).

Other studies, one with orange peel flavonoids ethanol extract
rich in hesperidin (13.79 mg/g), narirutin (7 mg/g) and naringin
(262.5 mg/g) (Jung, Jeong, Park, Park, & Hong, 2011), and another
with C. aurantium flavonoids extract that contained naringin, hes-
peridin, poncirin, isosiennsetin, sineesytin, tetramrthnl-o-
isoscutellaeein, nobiletin, heptamethoxyflavone, 3-
hydoxynobiletin, tangeretin, hydroxypentamethoxyflavone, and
hexamethoxyflavone (Kim et al., 2012), also observed a stimulus in
lipolysis and lower triglyceride accumulation in 3T3-L1 adipocytes.
Still, extracts caused a lower accumulation of total lipids and
reduced the expression of C/EBPa, C/EBPb, PPARg, aP2 (activating
protein 2) and FAS (fatty acid synthase), being the last two ones
target genes of C/EBPb and PPARg (Kim et al., 2012). The extracts
have also generated a smaller amount of Akt (serine/threonine ki-
nase) and phosphorylated GSK3b. The phosphorylated Akt, pro-
motes the phosphorylation of GSK3b, and this phosphorylates C/
EBPa and C/EBPb, which become activated (Kim et al., 2012), then
acting in adipocyte differentiation.

The orange peel flavonoids ethanol extract evaluated by Jung
(2011) also caused a suppressive effect on the expression of

perilipin, indicating another factor that may be associated with the
positive effect of citrus flavonoids in obesity. This is a lipid-
associated protein secreted only in adipocytes (Persson,
Degerman, Nilsson, & Lindholm, 2007), that controls fatty acid
release stimulated by HSL, because it binds and stabilizes lipid
droplets in adipose tissue (Le Lay & Dugail, 2009).

The treatment of mature 3T3-L1 adipocytes with Citrus sunki
peel ethanol extract that contained tangeritin (55.13 mg/g), nobi-
letin (38.83 mg/g), rutin (17.02 mg/g), hesperidin (17.11 mg/g),
sinensetin (4.23 mg/g) induced LKB1, AMPK (AMP-activated pro-
tein kinase) and ACC (acetyl-CoA carboxylase) phosphorylation in a
dose-dependent manner, and also caused an increase in mRNA
levels of CPT-1a (carnitine palmitoyltransferase 1a) indicating the
role of this extract to increase the b-oxidation. Furthermore, a
lipolysis stimulation occurred 24 h after the extract addition to the
cell culture, in a dose dependent manner. Associated with this
result, the authors observed that the extract caused phosphoryla-
tion of PKA substrate (cAMP-dependent protein kinase) and HSL
(Kang et al., 2012).

Besides the effect on adipose tissue, flavonoids can also act in
the management of obesity by interfering in the control of hun-
ger and satiety. In this context, hesperetin analytical standard
(0.1e1.0 mM) has shown to cause an increase in the secretion of
cholecystokinin (CCK) in STC-1 cells through increase in intra-
cellular calcium concentration by the TRP (transient receptor
potential) and TRP 1 ankirin channels. The addition of hesperidin
analytical standard in the same model caused no effect, indi-
cating that only the aglycone form influences hormone secretion
(Kim, Park, Kim, Lee, & Rhyu, 2013). The increase in CCK would be
interesting because this hormone, secreted from endocrine cells
in the small intestine, assists in the control of food intake
(Raybould, 2009).

Some products have been developed in order to assist in the
obesity prevention and treatment, and it could be mentioned
Sinetrol, a citrus-based fruits (juice, peels, seeds) extract obtained
by physical treatment (crushing of fruits, cold pressure of juice,
extraction, centrifugation, filtration, spray drying) of a specific
varieties of red orange (C. sinensis L. Osbeck (Blood group)), sweet
orange (C. aurantium L. var. sinensis), bitter orange (C. aurantium
L. var. amara), grapefruit (C. paradisi) and guarana (Paullinia
cupana), which contained 60% of polyphenol, 16.7% of flavanones,
2% of anthocyanins and 3.6% of caffeine, studied by Dallas, Gerbi,
Tenca, Juchaux, and Bernard (2008). The researchers noted that
this supplement (20 mg/mL) was able to stimulate lipolysis in
human fat cells in a in vitro study, verified by the free fatty acids
enhancement. The authors suggest that the compounds present
in the supplement, especially naringin and cyanidin 3-glycoside,
have an effect on the inhibition of cAMP-phosphodiesterase, and
thus there is an increase in cAMP and subsequent stimulation of
hormone-sensitive lipase (HSL), the enzyme that stimulates
lipolysis in human.

Fig. 2. Scheme proposed by Yoshida et al. (2010) for the action of hesperetin and
naringenin on inhibition of ERK and NFkB pathways, resulting in the reduction of free
fatty acids (FFA), and consequently improving insulin resistance.
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4. Evaluation of citric polyphenol effect in biological assay

Despite the important information collected by in vitro assays,
biological assay helps understand the bioactive compounds effects
in the whole body, further illustrating the changes caused due to
their consumption.

Alam, Kauter, and Brown (2013) evaluated the effect of sup-
plementation with naringin analytical standard (approximately
100mg/kg diet/day, corresponding to 0.01%) inmaleWistar rats fed
a diet rich in lipid and carbohydrate. They did not observe the effect
of the flavonoid in weight gain. However, supplementation pro-
moted a reduction in retroperitoneal abdominal fat deposition, a
better serum lipid profile and oral glucose tolerance. The insulin
concentration and pancreas wet weight in rats supplemented was
similar to the control group, which received a standard diet, pre-
senting lower values than the high carbohydrate, high fat diet-
group without the flavonoid. A high carbohydrate, high fat diet
promoted greater inflammatory cell infiltration and accumulation
of fat droplets in the liver compared to the control group, however
naringin supplementation decreased these two parameters.

In another study, naringenin analytical standard (1%) was sup-
plemented in mice fed a high fat diet, and also no effect was
observed in weight gain and food consumption. However, the
supplementation improved hyperglycemia, reduced expression of
TNF-a (tumor necrosis factor-alpha), MCP-1 (monocyte chemo-
tactic protein-1), and TLR 2 in adipose tissue (Yoshida et al., 2013),
promoting protection against chronicle non-communicable
diseases.

In an experiment conducted with male Long-Evans adult rats
fed a semi-purified experimental diet with 16% fat and 45.5% su-
crose, supplementationwith 0.012% naringenin analytical standard
promoted less visceral fat accumulation, and lower triacylglycerol
content in the tissue, compared to the control group that did not
receive the flavonoid. However, no effect was observed in the total
body weight. Food consumption did not differ between the groups.
Also, the supplemented group had lower concentration of serum
triglycerides, total and free cholesterol in plasma, and lower accu-
mulation of triacylglycerol and cholesterol in the liver. The flavo-
noid intake caused an increased expression of PPARa, CPT1
(carnitine palmitoyltransferase 1) and UCP2 (uncoupling protein 2)
protein, indicating the role of naringenin to increase lipid b-
oxidation in animals (Cho, Kim, Andrade, Burgess, & Kim, 2011).

The administration of 0.05% coumarin analytical standard in
C57BL/6J mice receiving a high fat diet also caused less accumula-
tion of visceral fat, and yet caused reduction of total body weight
compared to the high fat diet group without the supplement. Still,
coumarin supplementation caused less accumulation of lipids, tri-
acylglycerol and cholesterol in the liver; and reduced protein levels
of SRBP-1c, FAS, ACC1, PPARg and C/EBPa. Histological analyzes
showed a minor adipocyte size by using the phenolic compound,
indicating a contribution in the reduction of adipose tissue (Um,
Moon, Ahn, & Youl Ha, 2013).

High fructose diets are used in animal experiments to induce
hypertriglyceridemia and insulin resistance (Bezerra et al., 2000;
Kelley, Allan, & Azhar, 2004). The supplementation of citrus poly-
methoxyflavones analytical standard (125 mg/kg body weight/
day), mainly containing tangeritin and nobiletin, in hamsters sub-
jected to this modified diet, reduced the weight gain, serum tri-
glyceride, triglyceride in liver and heart, and improved adiponectin
levels compared with the group receiving high-fructose diet
without the flavonoid. Moreover, a positive effect was observed in
the levels of some inflammatory cytokines, reducing TNFa and IFN-
g after the addition of polymethoxyflavones. In this experiment
also occurred increased expression of hepatic PPARa and PPARg as
the effect of supplementation, which according to the authors,

would be a major regulatory pathway of the effects observed (Li
et al., 2006).

Another experiment with polymethoxyflavones was performed
with Citrus depressa Hayata peel methanol extract that contained
nobiletin and tangeritin (1.5%), in ICR mice consuming a high fat
diet. The addition of the extract caused less weight gain, lower
weight of white adipose tissue, reduced adipocyte size, and lower
serum levels of triglycerides and leptin. There was also a decrease
in ACC1, SCD1 (esteroil-CoA desaturase), FATP (transport protein
fatty acid), aP2 and DAGT1 (diacylglycerol acyltransferase 1) mRNA
in white adipose tissue. All the genes cited are involved in the
synthesis of fatty acids and triacylglycerols. Despite the positive
effects observed, there was no effect on serum adiponectin nor in
the mRNA levels of SREBP1 (binding protein sterol regulatory
element 1), FAS and ACC1 in the liver (Lee et al., 2011).

In a study developed by Lee et al. (2013), the administration by
gavage of 100mg/kg of purified nobiletin extracted from C. depressa
peel, to male C57BL/6J mice fed a high fat diet, caused less overall
weight gain, lower weight of white adipose tissue and serum tri-
glycerides. There was no effect of the extract on hepatic tri-
acylglycerol levels and serum adiponectin. Controversially, there
was an increase in the expression of PPARg and PPARa, as well as
their target genes SREBP-1c, FAS, SCD-1; and CPT-1, UCP2;
respectively. These results indicate that the extract induced lipid
accumulation and fatty acid oxidation at the same time, however
with a greater catabolic effect seen the less weight gain when
compared to the group receiving high fat diet without the extract.
The extract had the positive effect of reducing TNF-a and MCP-1
(Lee et al., 2013), which helps improve insulin sensitivity, as it is
known that TNF-a causes a reduction in expression and trans-
location of GLUT4, the glucose transport protein in insulin-
dependent cells (Hotamisligil, Shargill, & Spiegelman, 1993). The
authors observed an increase in expression of IkBa after the
flavonoid use, indicating that the anti inflammatory effect is
possibly through NFkB pathway inactivation (Lee et al., 2013).

The addition of lemon peel polyphenol ethanol extract (0.5%),
containing greater amounts of eriocitrin, hesperidin and narirutin;
also promoted less total weight and white adipose tissue gain after
consumption of a high fat diet in male C57BL/6J mice. Note that
polyphenols also caused increased hepatic PPARa mRNA level, and
acyl-CoA oxidase in the liver and white adipose tissue, indicating
increased peroxisomal fatty acid oxidation (Fukuchi et al., 2008).

Another extract that showed positive effects of citrus poly-
phenols was Citrus ichangensis peel ethanol extract that contained
naringin (8.12mg/g), hesperidin (0.84mg/g) and poncirin (1.33mg/
g), administered to female mice fed standard (control), high-fat or
high-fat diets supplementedwith 1% extract. Theweight gain in the
group that received the high-fat diet alone was greater than the
control, and the addition of the extract in the high-fat diet caused
less weight gain, being similar to control group. The extract caused
a lower fasting glucose and improved glucose tolerance. Also, there
was less accumulation of triacylglycerol and cholesterol in the liver
due to the extract administration. Moreover, this has caused lower
expression of PPARg mRNA and lower levels of this transcription
factor target genes, including FAS, acyl-CoA oxidase and UCP 2
(Ding et al., 2012); in agreement with the in vitro studies presented
previously in this paper.

Kang et al. (2012) also tested in mice a high-fat diet supple-
mented by gavage with an immature C. sunki peel extract (150 mg/
kg body weight/day), source of the flavonoids tangeritin (55.13 mg/
g), nobiletin (38.83 mg/g), rutin (17.02 mg/g), hesperidin (17.11 mg/
g), sinensetin (4.23 mg/g). Likewise, the authors found that sup-
plementation reduced weight gain caused by the consumption of a
high-fat diet, in addition to promoting lower weight of perirenal
and epididymal adipose tissue, as well as smaller size of adipocytes

V.M. Nakajima et al. / LWT - Food Science and Technology 59 (2014) 1205e1212 1209



in epididymal tissue. Another positive effect of the supplementa-
tion can be observed in the serum levels of total cholesterol and
triglycerides, that were lower compared to the group that received
only the high-fat diet. Still, lipid accumulation in the liver was
lower, comparable to the control group that received a standard
diet. It was also observed increased expression of proteins related
to b-oxidation when the extract was added, along with a greater
expression of adiponectin gene.

In another study, a water and alcohol extract of Citrus grandis
whole fruits containing 19% naringin was tested in genetically
obese Zucker rats fed with high-fat/high-cholesterol diet. No effect
was observed in the body weight, however serum cholesterol and
triglyceride were improved when 600 mg/kg of the extract was
administered by intragastric gavage for four weeks (Raasmaja et al.,
2013).

Salamone et al. (2012) evaluated the effect ofMoro orange juice,
rich in anthocyanins (85 mg/L) in mice C57BL6/J fed a high-fat diet.
The juice consumptionwas ad libitum, resulting in a mean intake of
4.1 � 0.75 mL/day and consequent anthocyanin consumption of
about 0.34 mg per day. The group that received the juice had lower
levels of triacylglycerol and total lipids in the liver. In addition,
there was increased expression of PPARa and acyl-CoA oxidase, and
lower of LXR (liver X receptor), FAS, HMG-CoA reductase; indicating
a potential effect in stimulating lipid oxidation and reduction of
lipogenesis.

A limitation in the comparison of the studies is the phenols
administration form, in some cases the compounds are adminis-
tered as a dietary ingredient and other by gavage. In studies in
which the product is incorporated into the diet, consumption data
are not always available, providing only the concentration in the
diet; on the other hand in studies that used gavage, the information
provided is the total quantity consumed.

5. Evaluation of citric polyphenol effect in clinical trials

Despite the evidence observed in in vitro studies and biological
assays, clinical trial is essential to the final conclusions, since it
considers the influence of compounds bioavailability in the human
body. Accordingly, Ameer, Weintraub, Johnson, Yost, and Rouseff
(1996) ascertained the bioavailability of naringin (500 mg)
consumed pure, naringin (500 mg) administered with hesperidin
(500 mg), grapefruit juice (1250 mL) co administered with orange
juice (1250 mL) and grapefruit (1 unit) consumed daily for 4 weeks.
The presence of the aglycone hesperetin and naringenin were
detected in urine after the consumption of pure hesperidin and
naringin, and after consuming grapefruit and orange juice. After 4
weeks of consuming grapefruit, naringenin was present in plasma
and urine. The authors conclude that the aglycone forms of the
flavonoid were detected, as the glycoside linkages are not stable to
the acidic environment of the stomach, in addition to the possible
action of glycosides from intestinal bacteria cleaving the sugar
residues.

Another important finding of Ameer et al. (1996) was the
observation that the consumption of hesperidin associated with
naringin does not affect the urinary recovery of the second, indi-
cating that it does not disturb the bioavailability of the other.
Furthermore, these results indicate that the absorption of these two
flavonoids occurs in pure form, and also when consumed in a food
matrix in the form of juice or fresh fruit. And, as the aglycone form
is found after the consumption, maybe its bioavailability is higher
since it does not require an enzyme to be absorbed. However, it
should be noted that this study was conducted with only 4 vol-
unteers, limiting extrapolation of the results to the general popu-
lation, and indicating the need for more bioavailability studies in
clinical trials.

In addition to assessing the effect of a supplement rich in citrus
polyphenols in vitro, Dallas et al. (2008) conducted a double-blind
placebo-controlled study evaluating the effect of the supplemen-
tation in overweight men, observing a greater weight and body fat
loss in the group that consumed the supplement. However, the food
habits were not controlled, being only mentioned that the volun-
teers were not supposed to modify it.

A variation of this supplement was studied in another group of
humans. This new product was polyphenolic rich fruit extract (red
orange, grapefruit, orange sweet and guarana), that contained at
least 90% of polyphenols, at least 20% of flavanones and between 1
and 3% of natural caffeine. The authors reported a reduction in
waist and hip circumferences; in markers of inflammation C-reac-
tive protein and fibrinogen; and improved oxidative stress status,
with the reduction in malondialdehyde (MDA) and increase in su-
peroxide dismutase and glutathione levels. There were no adverse
effects in liver and kidney. Therewas an increase in serum free fatty
acids, but no change in the serum lipids levels (Dallas et al., 2013).
However, it was not reported in the paper what types of poly-
phenols and flavonoids were offered with the supplement, and
there was no mention about the food habits of the volunteers.

6. Potential of citrus flavonoids produced by biotechnology

Bioprocessing strategies aiming the improvement of the bio-
accessibility of phenolic compounds have been investigated in the
last years. The use of a-L-rhamnosidases from Aspergillus aculeatus
was investigated in the transformation of flavonoid rutinosides
from fruit juices (orange and blackcurrant) and green tea into their
flavonoid glucoside counterparts in a reaction at 30 �C for 10 h.
Aliquots of the controls and the enzyme treated samples were
taken at different time points and flavonoids rutinosides (antho-
cyanins in blackcurrant juice, flavanones in orange in juice, and
flavonols in green tea) and glucosides were identified and quanti-
fied. Even with the assay conditions in each beverage being
different, the enzyme was able to remove terminal rhamnosyl
groups in the three beverages. Results showed a decrease in the
flavonoid rutinoside and an increase in their flavonoid glucoside
counterparts (González-Barrio et al., 2004).

The effects on the bioavailability of hesperitin was investigated
in a double-blind, randomized, crossover study, in human subjects.
The volunteers consumed orange juice with natural hesperidin
(hesperitin-7-O-rutinoside), orange juice treated with the enzyme
hesperidinase and orange juice fortified to obtain 3 times more
hesperidin than naturally present. A significant improvement in the
bioavailability of the aglycone hesperetin was observed after
enzymatic modification of the orange juice. The peak plasma con-
centrations of the aglycone when subjects consumed the juice
containing hesperetin-7-glucoside, generated after removal of the
rhamnose by the hesperidinase, were 4-fold higher compared with
the untreated juice and 1.5-fold higher than the fortified juice
(Nielsen et al., 2006).

A study employing orange pomace as substrate for solid-state
fermentation by Paecilomyces variotii to produce the enzymes
tannase and phytase simultaneously, also evaluated the phenolic
content and antioxidant capacity of orange pomace during
fermentation. The fermentation medium was prepared with the
orange pomace, a saline solution and 10% tannic acid and, after
inoculation, was incubated at 30 �C for 120 h. In addition to tannase
and phytase production at significant levels, results showed no
difference in total phenolic content before and after the fermen-
tation processes. However, the antioxidant capacity of orange
pomace, tested against the free radical ABTS, increased approxi-
mately tenfold after fermentation, potentially enhancing the value
of this residue (Madeira Jr., Macedo, & Macedo, 2012).
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Enzymatic hydrolysis and fermentation appear to be an attrac-
tive mean to promote the biotransformation of phenolic glycosides
and polymers and to increase the concentration of free phenolics in
citrus fruits and agro-industrial wastes. The biotransformation of
phenolics improved the antioxidant activity and bioaccessibility of
these compounds. Further research is necessary to explore new
substrates, enzymes andmicroorganisms and to evaluate the use of
biotransformed products as natural antioxidants and as food
supplements.

7. Conclusion

Despite the difficulties in the comparison of study results, due to
the variety of methodologies and samples evaluated, some general
trends can be highlighted.

The studies with cells culture indicate that citrus polyphenols
could assist in the management of obesity, since they cause a
reduction in adipocyte differentiation, lipid content in the cell and
may also function in programmed cell death.

The results of biological assays are not entirely consistent, since
in some cases the addition of citrus fruit polyphenols caused lower
weight gain, and in other studies this effect was not noticed.
However, most of them indicated a reduction in adipose tissue;
increased expression of PPARa and its target genes, indicating a
stimulus to b-oxidation; improved lipid profile and glycemia; as
well as some evidence of improvement in inflammatory status due
to a reduction in the proinflammatory cytokines levels. The effects
on total body weight are more evident in the studies that used
extracts instead of analytical standards, indicating a possible syn-
ergistic effect among the different phenolics found when using an
extract. Furthermore, the higher cost of analytical standards limits
their use in biological assay; meanwhile the extracts are generally
made from fruits industrial wastes, a material that would be
discarded.

Several clinical trials have demonstrated the positive effect of
citrus flavonoids in the reduction of proinflammatory cytokines in
humans (Bernabé et al., 2013; Buscemi et al., 2012; Devaraj, Jialal,
Rockwood, & Zak, 2011; Iwamoto, Imai, Ohta, Shirouchi, & Sato,
2012; Morand et al., 2011), being beneficial to alleviate the com-
plications present in obesity. However, there are few clinical trials
developed to examine its role in reducing adiposity, indicating a
research field still in expansion.

References

Aherne, S. A., & O’Brien, N. M. (2002). Dietary flavonols: chemistry, food content,
and metabolism. Nutrition, 18(1), 75e81.

Alam, M. A., Kauter, K., & Brown, L. (2013). Naringin improves diet-induced car-
diovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats.
Nutrients, 5(3), 637e650. http://dx.doi.org/10.3390/nu5030637.

Ameer, B., Weintraub, R. A., Johnson, J. V., Yost, R. A., & Rouseff, R. L. (1996).
Flavanone absorption after naringin, hesperidin, and citrus administration.
Clinical Pharmacology and Therapeutics, 60(1), 34e40. http://dx.doi.org/10.1016/
S0009-9236(96)90164-2.

Balistreri, C. R., Caruso, C., & Candore, G. (2010). The role of adipose tissue and
adipokines in obesity-related inflammatory diseases. Mediators of Inflammation,
2010, 1e19. http://dx.doi.org/10.1155/2010/802078.

Benavente-García, O., Castillo, J., Marin, F. R., Ortuño, A., & Del Río, J. A. (1997). Uses
and properties of citrus flavonoids. Journal of Agricultural and Food Chemistry,
45(12), 4505e4515.

Bernabé, J., Mulero, J., Cerdá, B., García-Viguera, C., Moreno, D. A., Parra, S., et al.
(2013). Effects of a citrus based juice on biomarkers of oxidative stress in
metabolic syndrome patients. Journal of Functional Foods, 5(3), 1031e1038.
http://dx.doi.org/10.1016/j.jff.2013.02.003.

Bezerra, R. M. N., Ueno, M., Silva, M. S., Tavares, D. Q., Carvalho, C. R. O., &
Saad, M. J. A. (2000). A high fructose diet affects the early steps of insulin action
in muscle and liver of rats. The Journal of Nutrition, 130, 1531e1535.

Birt, D. F., Hendrich, S., & Wang, W. (2001). Dietary agents in cancer prevention:
flavonoids and isoflavonoids. Pharmacology and Therapeutics, 90(2e3), 157e177.

Buscemi, S., Rosafio, G., Arcoleo, G., Mattina, A., Canino, B., Montana, M., et al.
(2012). Effects of red orange juice intake on endothelial function and

inflammatory markers in adult subjects with increased cardiovascular risk.
American Journal of Clinical Nutrition, 95, 1089e1095. http://dx.doi.org/10.3945/
ajcn.111.031088.Am.

Cho, K. W., Kim, Y. O., Andrade, J. E., Burgess, J. R., & Kim, Y.-C. (2011). Dietary nar-
ingenin increases hepatic peroxisome proliferators-activated receptor a protein
expression and decreases plasma triglyceride and adiposity in rats. European
Journal of Nutrition, 50(2), 81e88. http://dx.doi.org/10.1007/s00394-010-0117-8.

Dallas, C., Gerbi, A., Elbez, Y., Caillard, P., Zamaria, N., & Cloarec, M. (2013). Clinical
study to assess the efficacy and safety of a citrus polyphenolic extract of red
orange, grapefruit, and orange (Sinetrol-XPur) on weight management and
metabolic parameters in healthy overweight individuals. Phytotherapy Research,
1e7. http://dx.doi.org/10.1002/ptr.4981.

Dallas, C., Gerbi, A., Tenca, G., Juchaux, F., & Bernard, F.-X. (2008). Lipolytic effect of a
polyphenolic citrus dry extract of red orange, grapefruit, orange (SINETROL) in
human body fat adipocytes. Mechanism of action by inhibition of cAMP-
phosphodiesterase (PDE). Phytomedicine, 15, 783e792. http://dx.doi.org/
10.1016/j.phymed.2008.05.006.

Devaraj, S., Jialal, I., Rockwood, J., & Zak, D. (2011). Effect of orange juice and
beverage with phytosterols on cytokines and PAI-1 activity. Clinical Nutrition,
30(5), 668e671. http://dx.doi.org/10.1016/j.clnu.2011.03.009.

Ding, X., Fan, S., Lu, Y., Zhang, Y., Gu, M., Zhang, L., et al. (2012). Citrus ichangensis
peel extract exhibits anti-metabolic disorder effects by the inhibition of PPARg
and LXR signaling in high-fat diet-induced C57BL/6 mouse. Evidence-Based
Complementary and Alternative Medicine, 2012, 1e10. http://dx.doi.org/10.1155/
2012/678592.

Escarpa, A., & Gonzalez, M. C. (2001). An overview of analytical chemistry of
phenolic compounds in foods. Critical Reviews in Analytical Chemistry, 31(2),
57e139. http://dx.doi.org/10.1080/20014091076695.

Fukuchi, Y., Hiramitsu, M., Okada, M., Hayashi, S., & Nabeno, Y. (2008). Lemon
polyphenols suppress diet-induced obesity by up-regulating of mRNA levels of
the enzymes involved in beta-oxidation in mouse white adipose tissue. Journal
of Clinical Biochemistry and Nutrition, 43, 201e209. November.

Gattuso, G., Barreca, D., Garguilli, C., Leuzzi, U., & Caristi, C. (2007). Flavonoid
composition of citrus juices. Molecules, 12, 1641e1673.

Ghasemi, K., Ghasemi, Y., & Ebrahimzadeh, M. A. (2009). Antioxidant activity,
phenol and flavonoid contents of 13 citrus species peels and tissues. Pakistan
Journal of Pharmaceutical Sciences, 22(3), 277e281.

González-Barrio, R., Trindade, L. M., Manzanares, P., de Graaff, L. H., Tomás-
Barberán, F. A., & Espín, J. C. (2004). Production of bioavailable flavonoid glu-
cosides in fruit juices and green tea by use of fungal alpha-L-rhamnosidases.
Journal of Agricultural and Food Chemistry, 52(20), 6136e6142. http://dx.doi.org/
10.1021/jf0490807.

Grundy, S. M., Brewer, H. B., Jr., Cleeman, J. I., Smith, S. C., & Lenfant, C. (2004).
Definition of metabolic syndrome: report of the National Heart, Lung, and Blood
Institute/American Heart Association conference on scientific issues related to
definition. Circulation, 109, 433e438. http://dx.doi.org/10.1161/
01.CIR.0000111245.75752.C6.

Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of
tumor necrosis factor-alfa: direct role in obesity-linked insulin resistance. Sci-
ence, 259, 87e91. January.

Iwamoto, M., Imai, K., Ohta, H., Shirouchi, B., & Sato, M. (2012). Supplementation of
highly concentrated b-cryptoxanthin in a satsuma mandarin beverage improves
adipocytokine profiles in obese Japanese women. Lipids in Health and Disease,
11(52), 1e4. http://dx.doi.org/10.1186/1476-511X-11-52.

Jung, H. K., Jeong, Y. S., Park, C.-D., Park, C.-H., & Hong, J.-H. (2011). Inhibitory effect
of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes. Journal of the
Korean Society for Applied Biological Chemistry, 54(2), 169e176. http://dx.doi.org/
10.3839/jksabc.2011.028.

Kanda, K., Nishi, K., Kadota, A., Nishimoto, S., Liu, M.-C., & Sugahara, T. (2012).
Nobiletin suppresses adipocyte differentiation of 3T3-L1 cells by an insulin and
IBMX mixture induction. Biochimica et Biophysica Acta, 1820, 461e468. http://
dx.doi.org/10.1016/j.bbagen.2011.11.015.

Kang, S.-I., Shin, H.-S., Kim, H.-M., Hong, Y.-S., Yoon, S.-A., Kang, S.-W., et al. (2012).
Immature Citrus sunki peel extract exhibits antiobesity effects by b-oxidation
and lipolysis in high-fat diet-induced obese mice. Biological & Pharmaceutical
Bulletin, 35(2), 223e230.

Kelley, G. L., Allan, G., & Azhar, S. (2004). High dietary fructose induces a hepatic
stress response resulting in cholesterol and lipid dysregulation. Endocrinology,
145(2), 548e555. http://dx.doi.org/10.1210/en.2003-1167.

Kershaw, E. E., & Flier, J. S. (2004). Adipose tissue as an endocrine organ. The Journal
of Clinical Endocrinology & Metabolism, 89(6), 2548e2556. http://dx.doi.org/
10.1210/jc.2004-0395.

Kim, H. Y., Park, M., Kim, K., Lee, Y. M., & Rhyu, M. R. (2013). Hesperetin stimulates
cholecystokinin secretion in enteroendocrine STC-1 cells. Biomolecules & Ther-
apeutics, 21(2), 121e125.

Kim, G.-S., Park, H. J., Woo, J.-H., Kim, M.-K., Koh, P.-O., Min, W., et al. (2012). Citrus
aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in
3T3-L1 cells. BMC Complementary and Alternative Medicine, 12(31), 1e10. http://
dx.doi.org/10.1186/1472-6882-12-31.

Klimczak, I., Ma1ecka, M., Szlachta, M., & Gliszczy�nska-�Swig1o, A. (2007). Effect of
storage on the content of polyphenols, vitamin C and the antioxidant activity of
orange juices. Journal of Food Composition and Analysis, 20(3e4), 313e322.
http://dx.doi.org/10.1016/j.jfca.2006.02.012.

Lee, Y.-S., Cha, B.-Y., Choi, S.-S., Choi, B.-K., Yonezawa, T., Teruya, T., et al. (2013).
Nobiletin improves obesity and insulin resistance in high-fat diet-induced

V.M. Nakajima et al. / LWT - Food Science and Technology 59 (2014) 1205e1212 1211

http://refhub.elsevier.com/S0023-6438(14)00137-6/sref1
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref1
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref1
http://dx.doi.org/10.3390/nu5030637
http://dx.doi.org/10.1016/S0009-9236(96)90164-2
http://dx.doi.org/10.1016/S0009-9236(96)90164-2
http://dx.doi.org/10.1155/2010/802078
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref5
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref5
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref5
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref5
http://dx.doi.org/10.1016/j.jff.2013.02.003
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref7
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref7
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref7
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref7
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref8
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref8
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref8
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref8
http://dx.doi.org/10.3945/ajcn.111.031088.Am
http://dx.doi.org/10.3945/ajcn.111.031088.Am
http://dx.doi.org/10.1007/s00394-010-0117-8
http://dx.doi.org/10.1002/ptr.4981
http://dx.doi.org/10.1016/j.phymed.2008.05.006
http://dx.doi.org/10.1016/j.phymed.2008.05.006
http://dx.doi.org/10.1016/j.clnu.2011.03.009
http://dx.doi.org/10.1155/2012/678592
http://dx.doi.org/10.1155/2012/678592
http://dx.doi.org/10.1080/20014091076695
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref16
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref16
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref16
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref16
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref16
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref17
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref17
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref17
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref18
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref18
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref18
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref18
http://dx.doi.org/10.1021/jf0490807
http://dx.doi.org/10.1021/jf0490807
http://dx.doi.org/10.1161/01.CIR.0000111245.75752.C6
http://dx.doi.org/10.1161/01.CIR.0000111245.75752.C6
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref21
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref21
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref21
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref21
http://dx.doi.org/10.1186/1476-511X-11-52
http://dx.doi.org/10.3839/jksabc.2011.028
http://dx.doi.org/10.3839/jksabc.2011.028
http://dx.doi.org/10.1016/j.bbagen.2011.11.015
http://dx.doi.org/10.1016/j.bbagen.2011.11.015
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref25
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref25
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref25
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref25
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref25
http://dx.doi.org/10.1210/en.2003-1167
http://dx.doi.org/10.1210/jc.2004-0395
http://dx.doi.org/10.1210/jc.2004-0395
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref28
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref28
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref28
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref28
http://dx.doi.org/10.1186/1472-6882-12-31
http://dx.doi.org/10.1186/1472-6882-12-31
http://dx.doi.org/10.1016/j.jfca.2006.02.012


obese mice. The Journal of Nutritional Biochemistry, 24, 156e162. http://
dx.doi.org/10.1016/j.jnutbio.2012.03.014.

Lee, Y.-S., Cha, B.-Y., Saito, K., Choi, S.-S., Wang, X. X., Choi, B.-K., et al. (2011). Effects
of a Citrus depressa Hayata (shiikuwasa) extract on obesity in high-fat diet-
induced obese mice. Phytomedicine, 18, 648e654. http://dx.doi.org/10.1016/
j.phymed.2010.11.005.

Le Lay, S., & Dugail, I. (2009). Connecting lipid droplet biology and the metabolic
syndrome. Progress in Lipid Research, 48, 191e195. http://dx.doi.org/10.1016/
j.plipres.2009.03.001.

Li, R. W., Theriault, A. G., Au, K., Douglas, T. D., Casaschi, A., Kurowska, E. M., et al.
(2006). Citrus polymethoxylated flavones improve lipid and glucose homeo-
stasis and modulate adipocytokines in fructose-induced insulin resistant
hamsters. Life Sciences, 79, 365e373. http://dx.doi.org/10.1016/j.lfs.2006.01.023.

Londoño-Londoño, J., Lima, V. R. D., Lara, O., Gil, A., Pasa, T. B. C., Arango, G. J., et al.
(2010). Clean recovery of antioxidant flavonoids from citrus peel: optimizing an
aqueous ultrasound-assisted extraction method. Food Chemistry, 119(1), 81e87.
http://dx.doi.org/10.1016/j.foodchem.2009.05.075.

Macheix, J.-J., Fleuriet, A., & Billot, J. (1990). Fruit phenolics. Florida: CRC Press.
Madeira, J. V., Jr., Macedo, J. A., & Macedo, G. A. (2012). A new process for simul-

taneous production of tannase and phytase by Paecilomyces variotii in solid-
state fermentation of orange pomace. Bioprocess Biosystems Engineering, 8551,
1e7. http://dx.doi.org/10.1007/s00449-011-0587-y.

Manthey, J. A., & Grohmann, K. (2001). Phenols in citrus peel byproducts. Con-
centrations of hydroxycinnamates and polymethoxylated flavones in citrus peel
molasses. Journal of Agricultural and Food Chemistry, 49, 3268e3273.

Miller, N. J., & Rice-Evans, C. A. (1997). The relative contributions of ascorbic acid
and phenolic antioxidants to the total antioxidant activity of orange and apple
fruit juices and blackcurrant drink. Food Chemistry, 60(3), 331e337. http://
dx.doi.org/10.1016/S0308-8146(96)00339-1.

Miyake, Y., Sakurai, C., Usuda, M., Fukumoto, S., Hiramitsu, M., Sakaida, K., et al.
(2006). Difference in plasma metabolite concentration after ingestion of lemon
flavonoids and their aglycones in humans. Journal of Nutritional Science and
Vitaminology, 52, 54e60.

Morand, C., Dubray, C., Milenkovic, D., Lioger, D., Martin, J. F., Scalbert, A., et al.
(2011). Hesperidin contributes to the vascular protective effects of orange juice:
a randomized crossover study in healthy volunteers. American Journal of Clinical
Nutrition, 93, 73e80. http://dx.doi.org/10.3945/ajcn.110.004945.

Nielsen, I. L. F., Chee, W. S. S., Poulsen, L., Offord-Cavin, E., Rasmussen, S. E.,
Frederiksen, H., et al. (2006). Bioavailability is improved by enzymatic modifi-
cation of the citrus flavonoid hesperidin in humans: a randomized, double-
blind, crossover trial. The Journal of Nutrition, 136, 404e408.

Persson, J., Degerman, E., Nilsson, J., & Lindholm, M. W. (2007). Perilipin and adi-
pophilin expression in lipid loaded macrophages. Biochemical and Biophysical
Research Communications, 363, 1020e1026. http://dx.doi.org/10.1016/
j.bbrc.2007.09.074.

Raasmaja, A., Lecklin, A., Li, X. M., Zou, J., Zhu, G.-G., Laakso, I., et al. (2013). A water-
alcohol extract of Citrus grandis whole fruits has beneficial metabolic effects in
the obese Zucker rats fed with high fat/high cholesterol diet. Food Chemistry,
138, 1392e1399. http://dx.doi.org/10.1016/j.foodchem.2012.09.140.

Ramalho, R., & Guimarães, C. (2008). Papel do tecido adiposo e dos macrófagos no
estado de inflamação crónica associada à obesidade e implicações clínicas. Acta
Medica Portuguesa, 21, 489e496.

Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., & Aruoma, O. I. (2010). Bioactive
phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus
fruits: potential prophylactic ingredients for functional foods application.
Toxicology, 278(1), 75e87. http://dx.doi.org/10.1016/j.tox.2010.01.012.

Raybould, H. E. (2009). Mechanisms of CCK signaling from gut to brain. Current
Opinion in Pharmacology, 7(6), 570e574. http://dx.doi.org/10.1016/
j.coph.2007.09.006.

Sabroe, I., Parker, L., Dower, S., & Whyte, M. (2008). The role of TLR activation in
inflammation. The Journal of Pathology, 126e135. http://dx.doi.org/10.1002/path.

Salamone, F., Li Volti, G., Titta, L., Puzzo, L., Barbagallo, I., La Delia, F., et al. (2012).
Moro orange juice prevents fatty liver in mice.World Journal of Gastroenterology,
18(29), 3862e3868. http://dx.doi.org/10.3748/wjg.v18.i29.3862.

Sergeev, I. N., Li, S., Ho, C.-T., Rawson, N. E., & Dushenkov, S. (2009). Poly-
methoxyflavones activate Ca2þ-dependent apoptotic targets in adipocytes.
Journal of Agricultural and Food Chemistry, 57, 5771e5776. http://dx.doi.org/
10.1021/jf901071k.

Stuetz, W., Prapamontol, T., Hongsibsong, S., & Biesalski, H.-K. (2010). Poly-
methoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in
different cultivation types of tangerines (Citrus reticulata Blanco cv. Sai-
nampueng) from Northern Thailand. Journal of Agricultural and Food Chemistry,
58(10), 6069e6074. http://dx.doi.org/10.1021/jf904608h.

Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J., & Ye, X. (2013). Phytochemical profile and
antioxidant activity of physiological drop of citrus fruits. Journal of Food Science,
78(1), C37eC42. http://dx.doi.org/10.1111/j.1750-3841.2012.03002.x.

Tripoli, E., Guardia, M. L., Giammanco, S., Majo, D. D., & Giammanco, M. (2007).
Citrus flavonoids: molecular structure, biological activity and nutritional
properties: a review. Food Chemistry, 104, 466e479. http://dx.doi.org/10.1016/
j.foodchem.2006.11.054.

Turner, T., & Burri, B. J. (2013). Potential nutritional benefits of current citrus con-
sumption. Agriculture, 3, 170e187. http://dx.doi.org/10.3390/
agriculture3010170.

Um, M. Y., Moon, M. K., Ahn, J., & Youl Ha, T. (2013). Coumarin attenuates hepatic
steatosis by down-regulating lipogenic gene expression in mice fed a high-fat
diet. The British Journal of Nutrition, 109, 1590e1597. http://dx.doi.org/10.1017/
S0007114512005260.

Wang, M.-J., Chao, P. L., Hou, Y.-C., Hsiu, S.-L., Wen, K.-C., & Tsai, S.-Y. (2006).
Pharmacokinetics and conjugation metabolism of naringin and naringenin in
rats after single dose and multiple dose administrations. Journal of Food and
Drug Analysis, 14(3), 247e253.

Weisberg, S. P., Mccann, D., Desai, M., Rosenbaum, M., Leibel, R. L., &
Ferrante, A. W., Jr. (2003). Obesity is associated with macrophage accumulation
in adipose tissue. The Journal of Clinical Investigation, 112(12), 1796e1808. http://
dx.doi.org/10.1172/JCI200319246.

Yoshida, H., Takamura, N., Shuto, T., Ogata, K., Tokunaga, J., Kawai, K., et al. (2010).
The citrus flavonoids hesperetin and naringenin block the lipolytic actions of
TNF-alpha in mouse adipocytes. Biochemical and Biophysical Research Commu-
nications, 394, 728e732. http://dx.doi.org/10.1016/j.bbrc.2010.03.060.

Yoshida, H., Watanabe, W., Oomagari, H., Tsuruta, E., Shida, M., & Kurokawa, M.
(2013). Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. The
Journal of Nutritional Biochemistry, 24(7), 1276e1284. http://dx.doi.org/10.1016/
j.jnutbio.2012.10.003.

V.M. Nakajima et al. / LWT - Food Science and Technology 59 (2014) 1205e12121212

http://dx.doi.org/10.1016/j.jnutbio.2012.03.014
http://dx.doi.org/10.1016/j.jnutbio.2012.03.014
http://dx.doi.org/10.1016/j.phymed.2010.11.005
http://dx.doi.org/10.1016/j.phymed.2010.11.005
http://dx.doi.org/10.1016/j.plipres.2009.03.001
http://dx.doi.org/10.1016/j.plipres.2009.03.001
http://dx.doi.org/10.1016/j.lfs.2006.01.023
http://dx.doi.org/10.1016/j.foodchem.2009.05.075
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref36
http://dx.doi.org/10.1007/s00449-011-0587-y
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref38
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref38
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref38
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref38
http://dx.doi.org/10.1016/S0308-8146(96)00339-1
http://dx.doi.org/10.1016/S0308-8146(96)00339-1
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref40
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref40
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref40
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref40
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref40
http://dx.doi.org/10.3945/ajcn.110.004945
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref42
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref42
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref42
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref42
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref42
http://dx.doi.org/10.1016/j.bbrc.2007.09.074
http://dx.doi.org/10.1016/j.bbrc.2007.09.074
http://dx.doi.org/10.1016/j.foodchem.2012.09.140
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref45
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref45
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref45
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref45
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref45
http://dx.doi.org/10.1016/j.tox.2010.01.012
http://dx.doi.org/10.1016/j.coph.2007.09.006
http://dx.doi.org/10.1016/j.coph.2007.09.006
http://dx.doi.org/10.1002/path
http://dx.doi.org/10.3748/wjg.v18.i29.3862
http://dx.doi.org/10.1021/jf901071k
http://dx.doi.org/10.1021/jf901071k
http://dx.doi.org/10.1021/jf904608h
http://dx.doi.org/10.1111/j.1750-3841.2012.03002.x
http://dx.doi.org/10.1016/j.foodchem.2006.11.054
http://dx.doi.org/10.1016/j.foodchem.2006.11.054
http://dx.doi.org/10.3390/agriculture3010170
http://dx.doi.org/10.3390/agriculture3010170
http://dx.doi.org/10.1017/S0007114512005260
http://dx.doi.org/10.1017/S0007114512005260
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref56
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref56
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref56
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref56
http://refhub.elsevier.com/S0023-6438(14)00137-6/sref56
http://dx.doi.org/10.1172/JCI200319246
http://dx.doi.org/10.1172/JCI200319246
http://dx.doi.org/10.1016/j.bbrc.2010.03.060
http://dx.doi.org/10.1016/j.jnutbio.2012.10.003
http://dx.doi.org/10.1016/j.jnutbio.2012.10.003


123 
 
 

 

 

 APPENDIX 2 – Artigo original “Botransformation effects on anti lipogenic activity of citrus 

extracts”, publicado na revista Food Chemistry.



Biotransformation effects on anti lipogenic activity of citrus extracts

Vânia Mayumi Nakajima a,⇑, José Valdo Madeira Jr. b, Gabriela Alves Macedo a, Juliana Alves Macedo a

aDepartment of Food and Nutrition, Faculty of Food Engineering, State University of Campinas – UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121,
CEP 13083-862 Campinas, SP, Brazil
bDepartment of Food Engineering, Faculty of Food Engineering, State University of Campinas – UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121,
CEP 13083-862 Campinas, SP, Brazil

a r t i c l e i n f o

Article history:
Received 18 April 2015
Received in revised form 10 August 2015
Accepted 24 November 2015
Available online 25 November 2015

Chemical compounds studied in this article:
Hesperidin (PubChem CID: 3594)
Naringin (PubChem CID: 74787988)
Hesperitin (PubChem CID: 72281)
Naringenin (PubChem CID: 932)

Keywords:
Citrus peel extract
Biotransformation
Hesperitin
Hesperidin
Naringenin
Naringin
Adipocytes
Lipolysis

a b s t r a c t

Citrus peel is a good source of flavonoids, with higher content in relation to pulp. This study proposed to
investigate the anti-lipogenic potential of a newly developed citrus flavonoids extract, obtained from
citrus industrial residue, bioprocessed in order to generate a commercial source of some flavonoids nat-
urally found in low quantity. The results showed that the citrus peel extract obtained after biotransfor-
mation was a good source of hesperitin and naringenin, flavonoids that has no source for production on a
large scale, as in supplements or medicines. Still, the results showed that all extracts could be used in
obesity treatment. The original extract, ‘‘In Natura”, would be useful to reduce new adipocytes synthesis
and lipid accumulation, and the extract bioprocessed, ‘‘Biotransformed” extract could be used to induce
lipolysis on fat tissue.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Citrus fruits are source of many bioactive compounds, as flavo-
noids, coumarins, limonoids and carotenoids (Turner & Burri,
2013). The main class of citrus flavonoid are the flavanones, but
there are also considerable amounts of flavones, flavonols and
anthocyanins (Benavente-García, Castillo, Marin, Ortuño, & Del
Río, 1997). The most frequent types of flavonoids found in citrus
are hesperidin, naringin, narirutin, eriocitrin, nobiletin and tanger-
itin (Sun et al., 2013).

The positive effects of citrus flavonoids in obesity treatment
(inducing lipolysis and reducing lipid accumulation), and its com-
plications (causing anti-inflammatory response, reducing serum
lipids, and improving blood pressure) are demonstrated in several
studies in cell culture (Kang et al., 2012; Kim et al., 2012; Yoshida
et al., 2010, 2013), biological assays (Alam, Kauter, & Brown, 2013;

Um, Moon, Ahn, & Youl Ha, 2013) and clinical trials (Dallas, Gerbi,
Tenca, Juchaux, & Bernard, 2008; Dallas et al., 2013). It is notewor-
thy that citrus peel has higher content of polyphenols and antiox-
idant activity in comparison to pulp, indicating that citrus residues
are a promising source of bioactive compounds (Barros, Ferreira, &
Genovese, 2012).

In most of the studies, citrus peel is obtained from the fruit
acquired particularly for the research, and we aim to evaluate
the potential of a citrus residue from industrial waste as a commer-
cial source of bioactives. In this context, Brazil is the world’s largest
orange producer, according to estimates from the Food and Agri-
culture Organization (FAO). Of the total produced, it is estimated
that 85% is destined for juice industry. In juice production, about
50% of the waste generated is composed of peel and pomace, indi-
cating that there is a rich source of this raw material.

Still, citrus extracts commonly used in researches are rich in
hesperidin and naringin, with low amount of aglycones. Studies
developed to test the aglycones forms commonly use high cost
analytical standards. Thus, a residue extract containing the

http://dx.doi.org/10.1016/j.foodchem.2015.11.109
0308-8146/� 2015 Elsevier Ltd. All rights reserved.
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biotransformed polyphenols on a unique composition with biolog-
ical potential would be an innovation with commercial interest.

Our research group have been studying alternatives of biopro-
cesses to increase the production of more bioactive polyphenols
from these industrial arrange residues. Madeira, Nakajima,
Macedo, and Macedo (2014) observed that the fermentation pro-
cess of citrus peel resulted in an extract rich in flavanones agly-
cones, often found in low amounts in the nature. This is an
advantage because some evidence have shown that the aglycones
form have higher antioxidant capacity (Hirata, Murakami, Shoji,
Kadoma, & Fujisawa, 2005; Silva et al., 2013), and higher bioavail-
ability (Li et al., 2008) in comparison to glycosides. Besides, recent
evidences are highlighting the importance of synergism among
bioactive compounds in complex matrix with better effect than
isolated compounds.

These polyphenols from plant material are commonly extracted
with methanol (Hayat et al., 2010; Ramful, Bahorun, Bourdon,
Tarnus, & Aruoma, 2010; Singh, Sood, & Muthuraman, 2011). How-
ever this is a toxic solvent (Tephly, 1991), being of interest the
development of a extraction procedure using a food grade solvent.

Considering these, the study aimed to test a biotransformed
citrus peel extract for its antioxidant activity in vitro, and the ability
to reduce lipogenesis and induce lipolysis in adipocyte cell culture.

2. 2-Materials and methods

2.1. Chemicals

Gallic acid, Folin–Ciocalteu reagent, 2,20-azobis(2-methylpropio
namidine) (97%) (AAPH), 2,2-diphenyl-1-picrylhydrazyl (DPPH),
Trolox�, analytical standards hesperidin, hesperitin, naringin and
naringenin, insulin, dexamethasone (DEX), 3-isobutyl-1-
methylxanthine (IBMX), Oil Red O were purchased from
Sigma–Aldrich Chemical Company (St. Louis, MO). Fluorescein was
purchased from ECIBRA. All the other chemicals used were in an
analytical grade.

2.2. Biotransformed citrus residue

The citrus residue was supplied by CP Kelco Industry Headquar-
ters, from Limeira – SP – Brazil, specialized in pectin production.
The residue was dry and contained citrus peel (flavedo and albedo).
The material was crushed, and passed through a 10 mesh sieve
(Bertel Metallurgical Industries LT). The residue was biotrans-
formed by solid-state fermentation using the microorganism Pae-
cilomyces variotii (Brazilian Collection of Environmental and
Industrial Microorganisms-CBMAI 1157) according to Madeira
et al. (2014). Briefly, the fermentation medium was prepared in
250 ml Erlenmeyer flasks containing 10 g of the residue and
10 ml of water. The medium was sterilized by autoclaving for
15 min at 121 �C. After cooling, the flasks were inoculated with
1 mL of the microorganism spore suspension (9 � 106 spores/mL)
and incubated at 30 �C with 90% relative humidity (Climate Cam-
era 420 CLD – Nova Ética, SP, Brazil) for 48 h.

2.3. Preparation of polyphenols extracts from citrus residue

The extraction of phenolic compounds was carried out accord-
ing to a process adapted from Hayat et al. (2010). One gram of
the biotransformed material was mixed with 25 mL 70% methanol.
The solution was treated in ultrasonic bath at 30 �C for 15 min, in
shaker at 200 rpm for 15 min, and then filtered on Whatman paper
(No. 1). Different extraction solvents were tested instead of 70%
methanol, in order to reduce costs and toxicity of the final extract.
The tested extraction solvents were: 70% ethanol (v/v), 70% ethanol
(v/v) acidified with 1% HCl (v/v), 50% ethanol (v/v) and water.

After the definition of the extraction solution, the extracts were
prepared from the ‘‘Biotransformed” residue and two control resi-
dues. The first control was the unfermented residue consisting of
the product without any processing (‘‘In Natura”), and the second
control was the sterilized residue (‘‘Autoclaved”). The sterilized
residue was used as a control of process to verify the modifications
that occurred in the extract after the sterilization by autoclaving.

After filtration, the product obtained was concentrated on a
rotary evaporator at 40 �C to remove the organic solvent. Then
the aqueous solution was frozen and freeze-dried.

2.4. Extracts characterization

2.4.1. Total phenolic content
Total phenolic contents of the extracts were measured using the

Folin–Ciocalteu assay according to Singleton, Orthofer, and
Lamuela-Raventós (1999). Gallic acid was used as a standard and
a calibration curve was plotted in a concentration range of
25–200 lg/mL. All analyses were performed in triplicate and
results were expressed as mg of gallic acid equivalents (GAE)/mL
or mg of extract.

2.4.2. Determination of main flavanone compounds by High
Performance Liquid Chromatography (HPLC)

A DionexUltiMate 3000 (Germany) liquid chromatography,
equipped with a C-18 Acclaim� 120 column (Dionex, 3 lm,
4.6 � 150 mm) maintained at 30 �C by a thermostat, was used.
The detection was carried out using a UV/VIS (DAD-3000). The
method was adapted from Caridi et al. (2007), and De Mejía,
Song, Heck, and Ramírez-Mares (2010). The solvents were: A
(water/formic acid, 99.9:0.1 v/v) and B (methanol/formic acid,
99.9:0.1 v/v), with a flow rate of 0.6 mL/min. The spectra absorp-
tion were obtained at 190 and 480 nm, and the chromatograms
were processed at 280 nm. The standard flavanones detected and
quantified were naringin, naringenin, hesperidin and hesperitin.

2.4.3. DPPH radical-scavenging activity
The potential antioxidant activity of the extracts was assessed

based on the scavenging activity of the stable 2,2-diphenyl-1-
picrylhydrazyl (DPPH) free radical, as described by Macedo,
Battestin, Ribeiro, and Macedo (2011). The reaction mixtures, con-
sisting of 50 ll of test samples and 150 ll of 0.2 mM DPPH in
methanol, were carried out on a NovoStarMicroplate reader
(BMG LABTECH, Germany) with absorbance filters for a wave-
length of 520 nm. The decolorizing process was recorded after
90 min of reaction. The DPPH solution and reaction medium were
freshly prepared and stored in the dark. The measurement was
performed in triplicate. The antioxidant activity was calculated
from the equation obtained by the linear regression after plotting
known concentration solutions of Trolox�. Antiradical activity
was expressed as lmol of Trolox� equivalent/mg of extracts.

2.4.4. ORAC
The ORAC (Oxygen Radical Absorbance Capacity) assay was per-

formed using fluorescein (FL) as the fluorescent probe, as described
by Dávalos, Gómez-Cordovés, and Bartolomé (2004), and adapted
by Ferreira, Macedo, Ribeiro, and Macedo (2013). Briefly, 20 lL ali-
quots of the sample, Trolox� solution or buffer (blank) were dis-
tributed in black-walled 96-well plate, followed by the addition
of 120 lL fluorescein sodium salt solution 0.38 lg/mL (Ecibra,
São Paulo, Brazil) diluted in sodium phosphate buffer 75 mM (pH
7.4). The reaction was initiated by addition of 60 lL AAPH solution
(Sigma–Aldrich, Steinheim, Germany) at a concentration of
108 mg/mL dissolved in sodium phosphate buffer 75 mM (pH
7.4). The fluorescence was monitored every 56 s during 75 min
using a Novo Star Microplate Reader (BMG LABTECH, Germany)
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at 37 �C with excitation filter 485 nm and emission filter 520 nm.
The measurements were performed in triplicate. ORAC values were
defined as the difference between the area under the FL decay
curve of the samples and the blank (net AUC). Regression equations
between net AUC and antioxidant concentration were calculated
for all of the samples and Trolox� (control). ORAC-FL values were
expressed as lmol of Trolox�/mg of extracts.

2.5. Cell culture assay

2.5.1. Cell culture
3T3-L1 murine pre-adipocytes were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) at 37 �C in a humidified atmo-
sphere with 5% CO2. All media contained 10% fetal bovine serum
(FBS), penicillin (100 units/ml) and streptomycin (100 lg/ml).

2.5.2. MTT Assay
The 3T3-L1 cells (1.0 � 105 cells/mL) were seeded in 96-well

plates and incubated for 24 h at 37 �C in a humidified atmosphere
with 5% CO2. Then the cells were treated with the samples
(0.01–1.00 mg/mL). After 24 h of incubation, all media was
removed and 10 lL of MTT solution (5 mg/mL) was added to the
cell culture. The cells were further incubated at 37 �C in a humid-
ified atmosphere with 5% CO2 for 4 h. The MTT formazan crystals
were dissolved in SDS 10% in HCl 0.01 M for 18 h. The optical den-
sity of formazan solution was measured with a microplate reader
at 540 nm. The results are expressed as a% of control cells, that
are cells without any sample treatment.

2.5.3. Pre-adipocytes differentiation
The 3T3-L1 cells (2.0 � 104 cells/mL) were seeded in 24-well

plates and grown until confluence. Two days after confluence, des-
ignated as day 0, the cells were switched to differentiation medium
containing 10 lg/mL insulin, 0.5 mM isobutylmethylxanthine
(IBMX), and 1 lM dexamethasone (DEX) in DMEM for another
3 days. Then, the cell culture medium was replaced with matura-
tion medium containing 10 lg/mL insulin in DMEM. The matura-
tion medium was changed every 2 days, until day 12, after which
mature adipocytes containing lipid droplets were formed.

2.5.4. Oil Red O staining
The cells were submitted to two different treatments. First, cells

were exposed to the extracts sample in the differentiation medium
followed by maturation medium without the samples. Using this
treatment it is possible to see if the extracts could impair the
pre-adipocytes differentiation.

The second treatment consisted in the addition of the extracts
only in the maturation medium. This procedure intended to verify
if the extracts could reduce triglyceride accumulation in mature
adipocytes.

In both cases, on day 12, the 3T3-L1 mature adipocytes plated
onto 24-well plates were washed once with formaldehyde 10% in
PBS, and fixed with formaldehyde 10% in PBS for 60 min. After
replacement of formaldehyde 10% in PBS with 60% isopropanol,
the cells were stained for 30 min in freshly diluted Oil red O
(Sigma) solution (2.1 mg/ml) with 60% isopropanol. Thereafter,
the cells were washed four times with water and the wells were
dried in room temperature. Subsequently, the Oil Red O in the
stained cells was eluted with 100% isopropanol. The absorbance
was measured with a microplate reader at 492 nm. Each treatment
was performed in triplicate. The results are expressed as a percent-
age of control cells, that are fully differentiated cells without any
sample treatment, according to the equation bellow:

% of Oil Red O staining ¼ ðAbs Sample=Abs ControlÞ � 100

2.5.5. Glycerol assay
On day 12 of the maturation sequence, cells were treated with

the samples for 18 h, and the supernatant was collected. The
amount of glycerol in the medium was determined using a
Glycerol Assay Kit (Cayman, CO, U.S.A.) in accordance with the
manufacturer’s instructions.

2.6. Statistical analysis

Results were expressed as means ± standard deviation (SD). The
statistical difference between the groups was analyzed using anal-
ysis of variance (ANOVA). Post hoc comparison was performed by
Tukey’s test. Differences were considered significant when
p 6 0.05. All analyses were performed using the software GraphPad
Prism 5 for Windows version 5.00 (GraphPad Software Inc.).

3. Results

3.1. Extraction solution selection

The total phenolic content of the extracts obtained by using dif-
ferent extraction solvents varied from 72.29 ± 4.83 to
90.45 ± 5.44 mg of Gallic Acid Equivalent/ml of extract for water
and ethanol 70% HCl 1%, respectively. There was no statistical dif-
ference between the samples, not being possible to use this param-
eter to determine the best extraction solution (data not shown).

The HPLC analysis showed that the extraction with 70% metha-
nol, 70% ethanol acidified with 1% HCl and 50% ethanol resulted in
higher content of the quantified flavanones (Fig. 1). Due to the lack
of difference inmethanol or ethanol as extraction solvent, it is justi-
fied the use of solutionswith ethanol, since it is a food grade solvent.
Still, aiming the lower solvent use, and considering the statistical
similarity between the results, we selected the solution of 50% etha-
nol for extraction of flavanones from the ‘‘Biotransformed” residue.

Despite the widespread use of Folin Ciocalteu assay, this was
not a good method for screening the best extracting solution. There
was no significant difference between the samples according to
this analysis, even though the HPLC results clearly indicating smal-
ler potential of water as an extracting solvent for this system.

3.2. Characterization of ‘‘Biotransformed” residue extract obtained
from the 50% ethanol solution

There was no difference in the content of total polyphenols by
Folin Ciocalteu assay between the ‘‘Biotransformed” residue and
the controls (Table 1).

However, once again the HPLC analysis showed difference
between the samples. The ‘‘In Natura” residue had higher content
of glycosides flavanones, naringin and hesperidin, while the ‘‘Bio-
transformed” residue had higher level of the aglycone flavanones,
naringenin and hesperitin (Fig. 2). These results demonstrate that
the fermentation process caused the biotransformation of the fla-
vanones, increasing the amount of flavonoids free form.

The results in Fig. 2 indicate that the sterilization process by
autoclaving degraded a certain amount of flavanones. However,
this is a necessary step in the fermentation process to eliminate
any microbial contamination present in the residue and allow only
the reaction by the inoculated one.

Despite the fact that the ‘‘Biotransformed” residue extract pre-
sented a much smaller amount of total flavanones than the con-
trols (Fig. 2), the antioxidant capacity of the extracts was similar
according to DPPH and ORAC assays (Table 1), indicating that the
flavanones presented in the ‘‘Biotransformed” residue had higher
antioxidant potential.
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3.3. Cell assays

According to MTT assay, none of the extracts were toxic to
3T3-L1 cell line in the concentrations tested (Fig. 3). Since no loss
of cell viability was observed in the concentration range that the

cells were exposed, it is considered safe to continue with the
following cellular assays within the concentrations tested.

The analysis Oil Red O staining showed that when the samples
were added in the differentiation medium, there was little effect in
the total lipid accumulation (Table 2). The best result was observed

Fig. 1. Flavonoids of interest quantified by High Performance Liquid Chromatography (mg/mL of extract). Different letters indicate significant differences by Tukey’s test
(p 6 0.05).
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with the addition of ‘‘In Natura” extract in the concentration of
0.5 mg/mL, presenting a lipid accumulation reduction of about
19% in relation to control cells with no treatment.

On the other hand, the addition of the extracts in the matura-
tion medium caused a decrease in the lipid accumulation (Table 3).
This reduction was dose-dependent for all the samples, reaching a
reduction of 22%, 38% and 48% for ‘‘Biotransformed”, ‘‘Autoclaved”
and ‘‘In Natura” extracts, respectively.

The total glycerol concentration was below the limit of detec-
tion for the cells treated with ‘‘In Natura” and ‘‘Autoclaved”
extracts. Thus, the ‘‘Biotransformed” residue extract was the only
that presented some effect on the amount of glycerol released,
and the values observed presented dose dependent behavior
(2.39 ± 0.17–5.24 ± 0.29 mg/mL of glycerol).

4. Discussion

The Folin Ciocalteu assay was not useful to distinguish the sam-
ples. It is noteworthy that the color reaction the Folin Ciocalteu
assay is based on not only occurs due to the presence of polyphe-
nols, but can also be caused by other compounds with reducing
power (Huang, Ou, & Prior, 2005).

The total amount of flavanones was statistically similar when
using methanol or ethanol as extraction solvents. Solutions con-
taining methanol are the most used in the extraction of polyphe-
nols of solid materials (Hayat et al., 2010; Ramful et al., 2010;
Singh et al., 2011). However, due to its toxicity (Liesivuori &
Savolainen, 1991; Tephly, 1991), it is interesting the development
of a process using more friendly solvents. The results presented
indicate the potential of 50% ethanol solution in extraction of the
flavanones naringin, hesperidin, naringenin and hesperitin from
fermented citrus residue. Thereby, this process used a solvent less
harmful to health, increasing the feasibility of the extract in studies
with cell culture, animal models and humans. Still, using ethanol
instead of methanol takes into account economic considerations
imposed by the industrial context.

The HPLC analysis clearly showed the change in flavanones pro-
file in ‘‘Biotransformed” extract. According to Madeira et al. (2014)
themicroorganism employed in this process probably uses naringin
and hesperidin as source of carbon and energy during fermentation.
In previous study of our group, itwas observed that the tannase pro-
duced by P. variotii strain during fermentation has the ability to cat-
alyze the flavanones deglycosylation, such as hesperidin (Ferreira
et al., 2013). Also, in microbial fermentation the compounds like
hesperitin and naringenin are transformed in other chemical parti-
cles, with lower molecular weight, that are used in microorganism
metabolism (Justesen, Arrigoni, Larsen, & Amado, 2000). Aguilar,
Aguilera-carbo, and Robledo (2008) observed that the solid-state
fermentation of creosote bush leaves and pomegranate peels trans-
formed the tannins present in the substrate into lower molecular
weight phenolics, confirming the fact that the fermentation process
is able to change the phenolic profile of a product.

Even using a citrus residue from pectin industry waste, the
quantity of flavanones extracted was comparable to other studies.
Yu et al. (2014) and Ho, Su, and Lin (2013) performed the extrac-
tion of flavonoids from fruits acquired for the research, taking care

in the acquisition, transport and storage of raw materials. The first
authors were able to extract 1.278 mg/g FW of naringin and
1.480 mg/g FW of hesperidin, indicating values comparable to
the present work for hesperidin. In the second study, the extraction
was performed in nine different citrus fruits, and for five of them
the amount of hesperidin and naringin was lower than that
obtained in the present study. This data reinforces the advantage
of the produced extract, once it was obtained from low cost indus-
trial waste residue, commonly used for animal feed, presenting a
possibility to increase the commercial value of this product.

Despite the lower content of total flavanones in ‘‘Biotrans-
formed” extract, antioxidant activity by DPPH and ORAC was sim-
ilar between the samples. The literature indicates that in some
cases hesperitin and naringenin have higher biological potential
than hesperidin and naringin. Londoño-Londoño et al. (2010)
demonstrated that hesperitin was more active than hesperidin in
reducing lipid peroxidation in hepatic microsomes, with lower
amount of TBARS. Moreover, these authors observed that at low
concentrations (10 mg/mL) hesperitin was more effective in reduc-
ing oxidized LDL by peroxynitrite-oxidized LDL model. Silva et al.
(2013) biotransformed orange and lime juices by enzymatic de-
glycosylation and observed higher antioxidant activity by DPPH
method and FRAP assay after the biotransformation, indicating
the higher antioxidant activity of the aglycones obtained.

According to the results, all extracts were able to reduce lipogen-
esis in vitro, however, the data found seem to indicate that each
extract have a different mechanism of action. Only the ‘‘In Natura”
extract showed someeffect on the inhibition of pre-adipocytes differ-
entiation (Fig. 3), andmayhave a promising application inpreventing
the formation of new mature adipocytes. Kim et al. (2012) also
observed that the addition of Citrus aurantium Flavonoids extract
inhibited 3T3-L1 differentiation with a reduction in the amount of
lipiddroplets, confirming this positive effect of flavonoids fromcitrus.

When the extracts were added to the maturation medium, all
samples were able to reduce lipid accumulation, with a greater
effect of ‘‘In Natura” extract. However, only ‘‘Biotransformed”
extract, with higher content of hesperitin and naringenin, caused
induction of lipolysis, observed by higher amount of free glycerol
on the supernatant of the culture. It is noteworthy that ‘‘Biotrans-
formed” extract had lower amount of flavanones per gram of liofil-
ized extract in comparison to ‘‘In Natura” extract (Fig. 2), and
despite this great difference, the ‘‘Biotransformed” extract was able
to reduce lipids content in the cells as ‘‘In Natura” extracts, and it
was the only one able to cause lipolysis.

Subash-Babu and Alshatwi (2014) studied the effects of 20 lM
hesperitin analytical standard in immortalized human bone mar-
row mesenchymal stem-cell (TERT20) differentiated with dexam-
ethasone, IBMX, indomethacin and insulin. Hesperitin was added
in two different situations: in group 1 the flavanone was adminis-
tered in the differentiation medium; in group 2 the compound was
added after the differentiation in the maintenance medium. In both
cases, there was a reduction on lipid accumulation according to
staining with Oil Red O, even though the effect was more
pronounced in group 2, similar to our results. They also observed
a slight stimulation of lipolysis, confirming the lipolytic activity
of hesperitin.

Table 1
Total polyphenols, ORAC and DPPH radical-scavenging activity of the extracts.

Total polyphenol (mg gallic acid
equivalent/mg of liofilized extract)

DPPH (lmol equivalent
Trolox/mg of liofilized extract)

ORAC (lmol equivalent
Trolox/mg of liofilized extract)

Biotransformed 35.04 ± 2.36a 136.77 ± 5.41a 542.93 ± 78.04a

In Natura 36.23 ± 3.01a 130.80 ± 11.17a 666.99 ± 110.54a

Autoclaved 33.31 ± 1.03a 129.17 ± 6.71a 658.38 ± 70.87a

Different letters in the column indicate significant differences by Tukey’s test (p 6 0.05).
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Some studies have been shown that hesperitin (Gamo, Shiraki,
Matsuura, & Miyachi, 2014) and naringenin (Yoshida et al., 2013)
seems to act as PPAR c agonist. PPARc is a nuclear transcription
factor that induce adipocyte differentiation (Kubota et al., 1999),

causing greater differentiation of preadipocytes to mature adipo-
cytes when it is activated. This could explain why the ‘‘Biotrans-
formed” extract were not able to reduce the differentiation
process. Some researchers have found that when these flavonoids

Fig. 2. Flavonoids of interest quantified by High Performance Liquid Chromatography (mg/g of liofilized extract). Different letters indicate significant differences by Tukey’s
test (p 6 0.05).
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were added to 3T3-L1 cell culture, it was observed a greater accu-
mulation of lipid droplets possibly due to its agonist role (Gamo
et al., 2014; Morikawa et al., 2008; Yoshida et al., 2013). However,
in our study, despite the possible action of hesperitin and narin-
genin as PPAR c agonist, there was an expressive reduction in lipid
accumulation, which can be explained by the lipolytic role played
by these aglycones. Still, wemust consider that the aforementioned
studies were done with analytical standards, evaluating each com-
pound alone. In the present work, we used a crude extract, and dif-
ferences in response can occur due to the synergistic effect that
compounds together may cause.

There are many studies indicating the potential of citrus extract
in obesity treatment (Kang et al., 2012; Kim et al., 2012), however
for the first time it is documented promising results with an
extract rich in aglycones. The studies using aglycones usually test
high cost analytical standards isolated, missing the synergistic
effects of the natural extracts we propose.

Still, some authors indicate other advantages of aglycone forms
in obesity treatment. Kim, Park, Kim, Lee, and Rhyu (2013) found

that hesperitin caused higher secretion of cholecystokinin (CCK)
in STC-1 cells in comparison to hesperidin, indicating a possible
role of this aglycone flavanone in food intake control since CCK is
an anorexigen hormone (Raybould, 2009). Thus, these other infor-
mation suggests the potential of the extract produced by biotrans-
formation to other biological activities, being suitable for further
studies.

5. Conclusions

Ethanol can replace methanol as extraction solvent of fla-
vanones from biotransformed citrus residue. The biotransforma-
tion was able to modify the flavanones profile of the citrus
residue extract, increasing the content of hesperitin and naringenin
that naturally occur in low quantities in citrus fruits. Still, all
extracts could be used in obesity treatment, however aiming dif-
ferent targets. The ‘‘In Natura” extract would be useful to reduce
new adipocytes synthesis and lipid accumulation, and ‘‘Biotrans-
formed” extract could be used to induce lipolysis on fat tissue.

Fig. 3. Cell viability of 3T3-L1 cell line according to MTT assay.

Table 2
Oil Red O staining with samples added in the differentiation medium, % in relation to control.

Samples Concentration

0.05 mg/mL 0.20 mg/mL 0.50 mg/mL 1.00 mg/mL

Biotransformed 101.52 ± 10.00a 100.00 ± 4.50a 103.21 ± 4.55b 107.22 ± 4.03b

In Natura 95.59 ± 1.52a 93.98 ± 3.94a 80.96 ± 4.19a 90.46 ± 4.61a

Autoclaved 103.45 ± 3.71a 99.17 ± 3.26a 96.05 ± 2.79b 98.39 ± 2.22a

Different letters in the column indicate significant difference between the samples in the same concentration by Tukey’s test (p 6 0.05).

Table 3
Oil Red O staining with samples added in the maintenance medium, % in relation to control.

Samples Concentration

0.05 mg/mL 0.20 mg/mL 0.50 mg/mL 1.00 mg/mL

Biotransformed 97.56 ± 1.15b 84.67 ± 5.37b 89.45 ± 7.70c 78.18 ± 6.50b

In Natura 86.91 ± 3.55a 65.67 ± 4.30a 55.96 ± 3.50a 52.89 ± 2.04a

Autoclaved 103.59 ± 1.11c 88.86 ± 2.14b 75.65 ± 4.12b 62.66 ± 2.93a

Different letters in the column indicate significant difference between the samples in the same concentration by Tukey’s test (p 6 0.05).
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APPENDIX 3 - Resultados não incluídos nos artigos. 

Os resultados a seguir apresentados não foram incluídos nos artigos 

publicados/submetidos, entretanto serão apresentados para indicar a execução dos ensaios. 

Na figura abaixo está apresentado o resultado de citotoxicidade por MTT nos 

adipócitos pós-diferenciação. Esse ensaio foi realizado a fim de definir se as amostras, além de 

não serem tóxicas para os pré-adipócitos, também não seriam para os adipócitos formados. 

Pelos valores de porcentagem em relação ao controle, podemos observar que nenhum dos 

extratos foi tóxico para as células, pois em todas as concentrações testadas o valor foi muito 

próximo ou superior a 100% do controle, que não recebeu nenhum tratamento. Desta forma, 

comprova-se que os efeitos na redução da concentração de lipídeos pela coloração com Oil Red 

O realmente se deve a menor quantidade de gordura, e não a morte celular. Esse resultado não 

foi incluído no artigo original 1 pois o teste foi realizado após a publicação do mesmo. 

 

 

Ensaio de MTT nos adipócitos pós-diferenciação 

 

Na tentativa de verificar se os extratos eram capazes de reduzir a quantidade de 

lipídeo nos adipócitos após a diferenciação completa, ou seja, induzir a lipólise em adipócito 

maduro, testou-se a adição dos extratos no décimo dia após a diferenciação. Como pode ser 

observado na tabela a seguir, a adição dos extratos não apresentou influência na concentração 

de lipídeo pela coloração com Oil Red O. Entretanto, como as células nesse estágio desgrudam 
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com facilidade (característica do adipócito maduro), não foi possível realizar o tratamento de 

oito dias, como planejado inicialmente, sendo feito apenas por 4 dias. Esse curto tempo de 

tratamento pode ter atrapalhado a possível visualização de algum efeito, já que a coloração por 

Oil Red O não é método muito sensível para detectar pequenas diferenças.  

 

Ensaio de coloração por Oil Red O em células 3T3-L1 que receberam tratamento com os 

extratos após diferenciação (% em relação ao Controle) 

 Concentração Biotransformado In Natura Autoclavado 

Sem insulina 
1,0 mg/mL 119,35±7,44 117,16±4,51 105,60±2,85 

0,2 mg/mL 113,24±5,43 119,49±7,27 109,31±458 

Com insulina 
1,0 mg/mL 117,67±11,17 116,82±1,74 106,98±7,20 

0,2 mg/mL 108,83±11,65 112,77±6,87 113,96±5,48 

 

A figura a seguir ilustra os resultados obtidos na análise de expressão proteica de 

PPAR-α na células 3T3-L1 após tratamento com o extratos adicionados ao meio de maturação. 

Como pode ser observado, a adição dos extratos houve menor expressão de PPAR-α em relação 

ao controle, entretanto sem diferença significativa. Isso indica o potencial papel da amostra na 

indução a lipólise, visto a importância dessa proteína para esse processo. Esse resultado não foi 

incluído no Artigo Original 1 pois a análise foi realizada após a publicação do mesmo, e isso 

ocorreu devido a limitações financeiras para a compra dos anticorpos no período de análises do 

primeiro artigo. 

 

 

Western blot de PPAR-α em células 3T3-L1.  
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a  b s  t  r  a  c  t

Flavanones in Citrus are molecules that play an important role in antioxidant activities in nutraceutical products.

Recent studies indicate that molecules of the simplest classes of phenolics have higher biological activity and absorp-

tion  capacity. However, the molecules that have been shown to be very important bioactive compounds of Citrus, such

as  hesperetin, naringenin and ellagic acid, are found in trace concentrations in the fruit. An interesting environmen-

tally friendly alternative that deserves attention regarding phenolic compound obtaining is the biotransformation

of  these molecules. The aim of this study was to develop a process of biotransformation of phenolics from Brazilian

Citrus  residues by solid-state fermentation with the microorganism Paecilomyces variotii.  The optimized fermentation

conditions were 10 g of Citrus residues (2.0 mm of substrate particle size), 20 mL distilled water, at 32 ◦C after 48 h of

incubation. The development of this process has generated, simultaneously, an increase of 900, 1400 and 1330% of

hesperetin, naringenin and ellagic acid concentration, respectively, and an increase of 73% of the antioxidant capac-

ity.  These results give strong evidence that microbial biotransformation does not only produce phenolic compounds

but  also compounds with high biological activity, such as hesperetin and naringenin.

©  2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Keywords: Agro-industrial residues; Solid-state fermentation; Tannase; Paecilomyces variotii;  Flavanones; Antioxidant

1.  Introduction

In recent years, Citrus flavonoids have gained much inter-
est due to their chemoprotective effects. Citrus flavonoids
exhibit antioxidant, antimicrobial, anticarcinogenic, antivi-
ral, anti-allergic and anti-inflammatory activities. Through
these benefits, there is interest in replacing synthetic food
antioxidant substances with natural ones, which has fostered
research on vegetable sources and the screening of waste
materials aimed at identifying new and/or better antioxidant

∗ Corresponding author. Tel.: +55 19 3521 2175; fax: +55 19 3521 1513.
E-mail address: madeira jr@hotmail.com (J.V. Madeira Jr.).
Available online 29 July 2014

sources (Ferreres et al., 2012; Lin et al., 2012; Sergent et al.,
2012; Tripoli et al., 2007).

There are many  classes of flavonoids, flavanones being
the most abundant group in Citrus fruits (Barros et al., 2012;
Ferreira et al., 2013). Flavanones are highly present in plant
species from the genus Citrus,  abundant in the by-products,
mostly in peels and pectinolytic material, accounting for
4–12% of the dry weight (Marín et al., 2007). The most prevalent
flavanones in tissues and peels of Citrus fruits are naringin and
hesperidin. Naringin exhibits many  health benefits, including

http://dx.doi.org/10.1016/j.cherd.2014.07.014
0263-8762/© 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/02638762
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an ability to prevent cancer by suppression of carcinogenesis
and inducing cell apoptosis (Meiyanto et al., 2012). Hesperidin
has also been reported to reduce the proliferation of many
cancer cells and also possesses an anti-inflammatory effect
(Ferreira et al., 2013; Nazari et al., 2011; Park et al., 2008). The
glycoside and aglycone forms of flavanones possess several
different biological functions. Several studies have revealed
that aglycones are superior to glycosides in various bioactivi-
ties, due to their effective absorption (Murakami et al., 2008).
Only free flavonoids without a sugar molecule were thought
to be able to pass through the intestine wall. Hydrolysis only
occurs in the colon by microorganisms, which at the same
time degrade flavonoids (Hollman and Katan, 1997). Accord-
ing to Nielsen et al. (2006) and Ohguchi et al. (2006), when free
phenolics (hesperetin and naringenin) in Citrus residues are
released from their glycosides (hesperidin and naringin), the
photoprotective functionality of these phytochemicals can be
improved.

Other important compounds found in Citrus fruits are
hydroxybenzoic acids, however in lower concentrations than
flavanones. Ellagic acid is a very important compound from
this category and has a variety of benefits for anti-mutagenic,
antimicrobial and antioxidant properties, as well as being an
inhibitor of human immunodeficiency viruses (Nutan et al.,
2013; Martins et al., 2011; Sepúlveda et al., 2011). The pres-
ence of ellagic acid in various functional commercial products
is observed. Improving ellagic acid content in Citrus residues
could provide an interesting source of this compound for
the industry. Microbial degradation of tannins is highly docu-
mented, and most works report that the selective hydrolysis
of galloyl groups from ellagitannins was catalyzed by tannase
(Prasad et al., 2012).

Currently, phenolic compounds are obtained by chemi-
cal synthesis or extraction. An interesting environmentally
friendly alternative that deserves attention regarding phe-
nolic compound production is the solid-state fermentation
(Madeira et al., 2013; Banerjee et al., 2012; Martins et al.,
2011). The current bioprocess (SSF) has many  advantages,
such as high concentration, product stability and growth of
microorganisms in non-water soluble substrates, the process
is usually cheaper with higher productivity than submerged
fermentation (Barrios-González, 2012). The SSF on Citrus
residue using the Paecilomyces variotii strain was initially devel-
oped by this research group for the production of tannase
enzyme. The potential of this enzyme to produce more  bioac-
tive forms of the polyphenol molecule extract from vegetables
was studied in previous works (Madeira et al., 2012). Georgetti
et al. (2009) evaluated the biotransformation of polyphenol
glycosides from soybeans to form non-glycosides through
solid-state fermentation by Aspergillus awamori. The conver-
sion of the glycoside to the form of phenolic non-glycoside
was accompanied by production of the enzyme �-glucosidase.
The non-glycoside form presents a greater number of free
hydroxyl groups in regard to glycoside, thus increasing their
biological activity. The microbial biotransformation of phe-
nolic compounds seems to be a promising way to increase
the concentration of phenolics with high biological poten-
tial.

The present work aimed to optimize some important
parameters of this fermentation process in order to pro-
duce some phenolic compounds with high bioactivity, such as
naringenin, hesperetin and ellagic acid, from Citrus residue.
These have no viable source of extraction so far, being present
in very low concentration in vegetables; however, literature

shows their functional potential is increasing more  and more
every day.

2.  Materials  and  methods

2.1.  Materials

Hesperidin, hesperetin, naringin, naringenin, ellagic acid, 2,2′-
azobis(2-methylpropionamidine) (97%) (AAPH), 2,2-diphenyl-
1-picrylhydrazyl (DPPH) and Potato Dextrose Agar (PDA) were
purchased from Sigma–Aldrich Co. Fluorescein was purchased
from ECIBRA, and Trolox® (97%) was purchased from ACROS
Organics. Citrus residue (from 5 different cultivars: Citrus
latifolia, Citrus sinensis Hamlin, Valencia, Pera riu and Pera
Natal) was kindly donated by CP Kelco industry headquarters
(Limeira, SP, Brazil) from juice and pectin extraction, giving
origin to a residue of low quality and commercial value.

2.2.  Microorganism  and  inoculum  preparation

The P. variotii strain was isolated and selected to be the tannase
producer and grew on different agro-industrial residues such
as castor bean cake, wheat bran and Citrus residue (Battestin
and Macedo, 2004; Madeira et al., 2011, 2012). The fungus strain
was deposited at the Brazilian Collection of Environmental
and Industrial Microorganisms (CBMAI) under the number
1157. The P. variotii was preserved in PDA medium slants and
refrigerated at 4 ◦C with Vaseline. For sporulation, the fun-
gal strain was inoculated on plates containing PDA medium
and incubated at 30 ◦C for 3 days. The spores were suspended
in distilled water at a concentration of 9 × 106 spores/mL
(Madeira et al., 2011).

2.3.  Culture  condition  for  phenolic  compound
production

Citrus residue was donated by CP Kelco industry headquarters
(Limeira, SP, Brazil) as a dried residue. The residue was ground
in a knife mill (Philips, RI 1725) and separated in a sieve shaker
(Mesh 10, particle size under 1.86 mm).

The initial fermentation medium established in a previous
work (Madeira et al., 2012) for tannase production consisted
of the following: 250 mL  Erlenmeyer flasks, in which 10 g of
the Citrus residue was added to 10 mL  of distilled water. After
sterilization in an autoclave, the flasks were inoculated with
1 mL  of spore suspension (9 × 106) and incubated at 30 ◦C at
90% relative humidity (Climate Chamber 420 CLD – Nova Etica,
SP, Brazil) for up to 120 h.

After the incubation period, the tannase extraction was
performed by adding 50 mL  of acetate buffer (pH 5.5, 0.02 M)
to 5 g of fermented substrate. The solution was shaken at
200 rpm for 1 h, and filtered and centrifuged at 10,070 × g for
30 min  at 4 ◦C (Centrifuge Beckman J2-21, Beckman-Coulter,
Inc., Fullerton, CA, USA). The supernatant was assayed for
tannase activity. The phenolic compound extraction was per-
formed by adding 25 mL  of methanol 70%, to 1 g of fermented
residue. The solution was treated in ultrasonic (Unique Ultra-
Sonic Cleaner model USC-1800A) at 40 kHz for 30 min, after
being shaken at 200 rpm for 30 min  and then passed through
a 0.45 �m filter. The filtered extract was assayed for identifica-
tion and quantification of phenolic compounds by HPLC-DAD
(High Pressure Liquid Chromatography-Diode Array Detector).
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2.4.  Tannase  activity  assay

Tannase activity was evaluated according to Sharma et al.
(2000), adapted using tannic acid as substrate. One unit of
activity was defined as the amount of enzyme that released
1 �mol/min of gallic acid. Enzyme activity was expressed as
total units (U) per g of dry substrate (gds) of dry solid medium
(based on initial mass).

2.5.  Identification  and  quantification  of  phenolic  by
HPLC-DAD  analysis

HPLC phenolic analysis of the extracts was performed on a
Dionex – Ultimate 3000 equipped with a 150 mm × 4.6 mm i.d.
reversed phase C18 column (Waters, Massachusetts); detec-
tion was carried out at 260, 280 and 330 nm using a diode array
detector. The solvents were A, H2O (0.1% formic acid); and B,
Methanol (0.1% formic acid). The gradient elution was as fol-
lows: 90% A (0–5 min), 20% A (5–80 min), 90% A (80–85 min),
and 90% A at a flow rate of 0.6 mL/min. All HPLC analyses
were performed at 30 ◦C. The Chromeleon software (version
6.8) was used for the data processing. Compounds were iden-
tified according to retention time and UV–vis spectra (260 nm
of wavelength). A series of standards (hesperidin, hesperetin,
naringin, naringenin, ellagic and gallic acid) solutions were
used for the calibration curves and quantification of these
phenolics on samples, the quantification was carried out at
280 nm using a diode array detector (Ferreira et al., 2013).

2.6.  Fermentation  parameter  optimization  for  target
phenolic  production

Phenolic compounds and tannase production by P. variotii were
observed for 120 h. The time of peak products was determined
for the experimental design study.

The fermentation parameters that had the greatest
influence on phenolic production were evaluated using
the CCD (Central Composite Design) methodology. The
independent variables were: particle size substrate (mm),
water:substrate ratio (v:w) and temperature of incubation (◦C).
The water:substrate ratio was determined according to the
maximum moisture absorption capacity of the Citrus residue.
The variables were coded, according to Eq. (1):

xi = Xi − X0

�Xi
(1)

Here, xi is the coded variable, Xi is the natural variable of
the nutrient factor, X0 is the value of the natural variable at the
center point, and �Xi is the step change value. The variables
and levels are shown in Table 1.

The experimental design was defined as a full CCD method-
ology for 3 factors (23), consisting of 8 cubic points, 6 star points
and 3 replicates at the center point, which served to estimate
experimental error and to investigate the suitability of the pro-
posed model, the details of which are presented in Table 1. The
experimental results were fitted to a second-order polynomial
function, and the Student’s t-test allowed for checking of the
statistical significance of the regression coefficients. Analy-
sis of variance (ANOVA) was performed on the experimental
data to evaluate the statistical significance of the model. The
response model was expressed in terms of coded variables,
ignoring the statistically non-significant terms. Therefore, the
optimum conditions of fermentation process were performed

to evaluate the productivity of phenolic compounds obtained
(hesperetin, naringenin and ellagic acid) in Eq. (2).

Y =
[

PCf − PCi

PCi

]
× 100% (2)

Here, Y is the yield of final product, PCf is the final phenolic
concentration, PCi is the initial phenolic concentration (the
data were obtained from Table 3).

2.7.  Antioxidant  potential

2.7.1.  ORAC  assay
ORAC (Oxygen Radical Absorbance Capacity) assays were
performed using fluorescein (FL) as the fluorescent probe,
as described by Macedo et al. (2011). The automated ORAC
assay was carried out on a NovoStar Microplate reader (BMG
LABTECH, Germany) with fluorescence filters for an excitation
wavelength of 485 nm and an emission wavelength of 520 nm.
The measurements were made in a COSTAR 96 plate. The reac-
tion was performed at 37 ◦C, having been started by thermal
decomposition of AAPH in a 75 mM phosphate buffer (pH 7.4)
due to the sensitivity of FL to pH. The measurements were
performed in triplicate. ORAC values were defined as the dif-
ference between the area under the FL decay curve and the
blank (net AUC). Regression equations between net AUC and
antioxidant concentration were calculated for all of the sam-
ples. A tannase control was performed, and the ORAC value
obtained was subtracted from the samples treated with the
enzyme. ORAC-FL values were expressed as �mol  of Trolox/g
of the standards or mL  of extracts.

2.7.2.  DPPH  assay
According to Macedo et al. (2011), the antioxidant capacity
of standard and biotransformed hesperidin was assessed on
the basis of the scavenging activity of the stable 1,1-diphenyl-
2-picrylhydrazyl (DPPH) free radical. The reaction mixtures,
consisting of 50 �l of test samples and 150 �l of 0.2 mM DPPH
in methanol, were carried out on a NovoStar Microplate reader
(BMG LABTECH, Germany) with absorbance filters for a wave-
length of 520 nm.  The decolorizing process was recorded after
90 min  of reaction and compared with a blank control, instead
of DPPH. The DPPH solution and reaction medium were freshly
prepared and stored in the dark. The measurement was per-
formed in triplicate. Antiradical activity was calculated from
the equation determined from the linear regression after plot-
ting known solutions of Trolox with various concentrations.
Antiradical activity was expressed as �Mol of Trolox equiva-
lent/g of standards or mL of extracts.

2.8.  Statistical  analysis

A Statistica 7.0 software (Statsoft, Inc., Tulsa, USA) package
was used, and all values reported in the biotransformation of
Citrus residue represent the mean from three replicates and
standard deviation. Significant differences (p < 0.05) in times
of fermentation for phenolic production were determined by
t-tests.
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Table 1 – Coded levels and actual values (in parentheses) for the experimental design and results of the CCD.

Run Independent variablesa Response (��g/g substrate)b

Substrate particle size (mm)  Water:substrate ratio (v:w) Temperature (◦C) Hesperetin Naringenin Ellagic acid

1 −1 (1.2) −1 (0.8:1) −1 (30.0) 21.0 42.0 2320
2 1 (2.8) −1 (0.8:1) −1 (30.0) 25.0 42.0 7160
3 −1 (1.2) 1 (1.7:1) −1(30.0) 50.0 57.0 8950
4 1 (2.8) 1 (1.7:1) −1  (30.0) 33.0 46.0 13,230
5 −1 (1.2) −1  (0.8:1) 1  (34.0) 23.0 44.0 2910
6 1 (2.8) −1 (0.8:1) 1 (34.0) 26.0 47.0 4510
7 −1 (1.2) 1 (1.7:1) 1 (34.0) 38.0 57.0 6710
8 1 (2.8) 1 (1.7:1) 1 (34.0) 35.0 6.0 9000
9 −  ̨ (0.7) 0 (1.3:1) 0 (32.0) 68.0 72.0 6030

10  ̨ (3.4) 0 (1.3:1) 0 (32.0) 33.0 31.0 14,540
11 0 (2.0) −  ̨ (0.5:1) 0 (32.0) 9.0 33.0 2120
12 0 (2.0)  ̨ (2.0:1) 0 (32.0) 54.0 70.0 16,570
13 0 (2.0) 0 (1.3:1) −  ̨ (28.5) 30.0 41.0 8220
14 0 (2.0) 0 (1.3:1)  ̨ (35.5) 32.0 36.0 6280
15 0 (2.0) 0 (1.3:1) 0 (32.0) 37.0 54.0 10,610
16 0 (2.0) 0 (1.3:1) 0 (32.0) 44.0 60.0 11,800
17 0 (2.0) 0 (1.3:1) 0 (32.0) 45.0 58.0 11,270

a Independents variables: substrate particle size (mm); water:substrate rate (v:w); temperature of incubation (◦C).
b Response of phenolic compounds production between 0 and 48 h of incubation (�g phenolic/g substrate).

3.  Results  and  discussion

3.1.  Fermentation  parameter  optimization

The wild P. variotii strain was able to grow in Brazilian Cit-
rus residue by solid-state fermentation, which resulted in the
production of the extracellular enzyme tannase and phenolic
compounds such as hesperetin, naringenin and ellagic acid
(Fig. 1). The maximum concentrations of these phenolic com-
pounds occurred after 48 h of fermentation; and the maximum
enzymatic activity of tannase was obtained after 96 h of fer-
mentation.

According to the results obtained, the total amount of hes-
peridin and naringin in the Citrus residue extract decreased 50
and 100% after 120 h of incubation, respectively. On the other
hand, the initial concentration of hesperetin, naringenin and
ellagic acid in the Citrus residue were below the detection limit
of the method, a practical zero. The three reached their high-
est value of 100% within 48 h and after that, decreased to 20,
0 and 0% at 120 h of incubation, respectively.

The microorganism probably used hesperidin, naringin
and ellagitannins as sources of carbon and energy during

Fig. 1 – Kinetics of fermentation of the Citrus residue by
Paecilomyces variotii: evaluating the tannase production and
concentration of hesperidin, hesperetin, naringin,
naringenin and ellagic acid.

the fermentation. In the initial phase of this process, a par-
tial cleavage or change in the phenolic glycosides took place
in association with the microbial enzymatic breakdown of
the plant cell wall, and hence the aglycones were released
(Starzynska-Janiszewska et al., 2008; Vattem and Shetty, 2003).
The tannase from P. variotii was proven to have the ability
to catalyze the deglycosylation of flavanones, such as hes-
peridin (Ferreira et al., 2013). In this manner, tannase is likely
an important enzyme synthesized by P. variotii,  with the ability
of hydrolyzing polyphenolic compounds into their aglycone
forms as a first step for the microbial consumption of this
compound as an energy source. Although the maximum tan-
nase activity occurs after 96 h, from the beginning of the
fermentation process it is possible to observe tannase activity,
justifying the early hydrolysis of the hesperidin, naringin and
ellagitannins, generating hesperetin, naringenin and ellagic
acid, respectively. Numerous studies have been conducted on
biodegradation of tannins and on the degradation mecha-
nism of some simple tannins, such as gallotannin. There is
less knowledge about the pathways and enzymes involved
in breaking down complex tannins, especially regarding the
accumulation mechanism of the microorganism for some
intermediates. However, some studies have indicated that
tannase participates in ellagic acid obtainment from ellagitan-
nins (Prasad et al., 2012). Shi et al. (2005) reported the ellagic
acid accumulation by fungal fermentation of valonea (Quercus
aegilops) tannins. The results showed simultaneous increase
in tannase activity, accumulation of ellagic acid and decrease
in ellagitannins during fermentation.

Consequently, as observed in Fig. 1, the concentration of
hesperetin, naringenin and ellagic acid increased during fer-
mentation. After 48 h of incubation, the concentration of these
phenolics achieved its maximum and started to decrease. This
decrease happened even in the presence of a significantly
high concentration of the antecedent hesperidin, naringin and
tannase activity. This fact led to the belief that the biotrans-
formation from hesperidin and naringin to hesperetin and
naringenin was still happening. However, the microorganism,
at this point, probably had its metabolic arsenal ready to con-
sume the hesperetin and naringenin molecules.
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Justesen et al. (2000) also evaluated the microbial fermen-
tation of hesperidin and hesperetin, and the results observed
seem to corroborate our hypothesis. The results showed simi-
lar effects, in which degradation of hesperidin occurred during
72 h of incubation, with high hydrolysis values at 24 h. How-
ever, the hesperetin was also used as a substrate by the
microorganisms after 24 h, being stored for 24 h and then
degraded within 72 h. The hesperetin degradation showed
some possible products after 48 h, and this showed that the C
ring of the compound was hydrolyzed, releasing compounds
such as 4-hydroxyphenyl-propionic acid and 3-hydroxy-4-
methoxyphenyl-acetic acid.

After the time-course assay, a CCD was designed to deter-
mine the optimal particle substrate size (mm),  water:substrate
ratio (v:w) and temperature of incubation (◦C) for solid-state
fermentation, and the results are shown in Table 1. According
to previous analyses, in which some conditions were tested in
fermentation, these three variables were the most significant;
therefore, they were used in the CCD.

The quadratic models used to calculate the hesperetin (Ya),
naringenin (Yb) and ellagic acid (Yc) after eliminating the sta-
tistically insignificant terms are follows (x1: particle size; x2:
moisture; x3: temperature of incubation):

Ya = 44.0 − 5.0x1 + 10.0x2 − 6.0x2
2 − 6.0x2

3

Yb = 54.0 − 5.0x1 + 8.0x2 − 5.0x2
3

Yc = 10,  300 + 2000x1 + 3300x2 − 900x2
2 − 1600x2

3

The analyses of variance were reproduced and are shown
in Table 2. The Fisher F-statistic for hesperetin, naringenin and
ellagic acid concentrations were higher than the Ft and p-value
of <0.01, demonstrating that this regression model was statis-
tically significant at a 90% confidence level. Additionally, the
R2 values obtained for the models were 0.77, 0.70 and 0.83,
respectively.

The highest hesperetin, naringenin and ellagic acid con-
centrations obtained in the experimental design tests were
50.0, 60.0 and 10,000 �g/g substrate, under the conditions: 2:1
water:substrate, 32 ◦C incubation temperature and 1.20 mm
particle size substrate (Fig. 2).

Higher temperatures significantly decreased the release of
phenolic compounds. The higher amount of phenolic com-
pounds found in the Citrus residue fermented by P. variotii
can be attributed to the ability of this species to hydrolyze
structural carbohydrates pectin, cellulose, hemicelluloses and
lignin (polyphenolic macromolecule closely bound to cel-
lulose and hemicellulose in cell walls of plants) by way
of various glycoside hydrolases (cellulases, hemicellulases).
Also, polyphenol compounds such as hesperidin, naringin
and ellagitannins can be hydrolyzed by active esterases (�-
glucosidase, tannase) present in its metabolism. The higher
enzymatic activity arsenal probably occurred at its optimum
temperature (32 ◦C) (Ferreira et al., 2013; Holopainen-Mantila
et al., 2013; Pistarino et al., 2013).

The substrate particle size was studied in phenolic com-
pounds obtainment. For ellagic acid, the highest production
was obtained with increasing particle size. Increased produc-
tion for hesperetin and naringenin occurred with decreasing
particle size. However, this variable showed less interference
in obtaining the latter two phenolics. These effects might
be due to the higher superficial area of contact between the
substrate and the microorganism. Substrates with intermedi-
ate particle size provide a considerable contact area between
the fungus and the substrate, favoring its growth; whereas

very small particles are more  susceptible to compaction and
the formation of agglomerates, resulting in decreased oxy-
gen transfer, affecting respiration and fungal development.
For some substrates, larger particles had higher porosity
than smaller particles; however, particles with larger diam-
eter also presented higher surface area. Despite the larger
surface area and pore volume, smaller particles had pores
that did not exceed 7 nm.  Since the diameter of the fun-
gal hyphae is usually greater than 10 nm,  the microorganism
would likely grow on the outside of the particles (Schmidt
and Furlong, 2012; Membrillo et al., 2011). The more  porous
particles benefited from aeration, dissipation of gases and
heat produced during microbial growth. During the filamen-
tous fungi growth on solid substrates, it is generally accepted
that there is a limitation in oxygen supply to the cells that
are in close contact with the substrate or that penetrate
the substrate (Schmidt and Furlong, 2012; Membrillo et al.,
2011).

Higher phenolic compound production was obtained at a
maximal water:substrate ratio. Lower production of phenolic
compounds at a lower water:substrate ratio might also be due
to reduced water availability for biomass growth or reduced
mobility of the substrate during solid-state fermentation. Dur-
ing the bioprocess, the water content available to the substrate
is extremely important, especially if the substrate has hemi-
cellulose and pectin, which can absorb more  water, potentially
leading to an increase in microbial growth in the substrate
and, consequently, the release of bioactive aglycone phenolic
compounds (Madeira et al., 2013).

Thus, in accordance with the optimal conditions of tem-
perature, particle substrate size and water: substrate ratio, the
bioprocess obtained an increase of 900, 1400 and 1330% of hes-
peretin, naringenin and ellagic acid concentration, after 48 h
of fermentation, respectively. These results shown in Table 3
are the mean values, where the experimental design was car-
ried out in triplicate. This process used residues from various
Citrus species (cited in item 2.1), which allows microbial bio-
transformation to obtain phenolic compounds using any type
of Citrus as substrate.

Table 3 also shows the decrease in concentration of hes-
peridin and naringin after fermentation. According to the
data, there was a decrease of 45 and 81% of the concentra-
tion of naringin and hesperidin, respectively. What leads one
to think that the total amount of these glycosylated flavanones
were transformed into the aglycone forms, hesperetin and
naringenin. However, this affirmation cannot be validated,
because in all microbial fermentation, the compounds present
in the medium are transformed into different chemical
structures that participate in the metabolism of the microor-
ganism. Justesen et al. (2000) concluded that the microbial
metabolism of hesperetin included several other compounds
of lower molecular weight. Thus, P. variotii hydrolyzed naringin
and hesperidin into naringenin and hesperetin, respectively,
probably, part of these aglycone forms were hydrolyzed to
compounds of lower molecular weights, which also have great
biological potential.

Therefore, the fermentation showed not only the release
of the expected phenolic compounds, but also obtaining phe-
nolic compounds of lower molecular weight which may have
greater antioxidant potential in relation to the glycosylated.
There are no published studies on hesperetin, naringenin
and ellagic acid production by solid-state fermentation or
any other biotechnological process. As such, the purpose of
this study is to provide extracts with high concentration of
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Table 2 – Analysis of variance and regression analyses for the response of the central composite design of phenolic
compounds obtainment.

Response Source of variation Sum of squares Degrees of freedom Mean squares Ftest/Ftab p-Value/R2

Hesperetin Regression 2.373 4 0.59 9.8/2.5 0.001/0.77
Residual 0.730 12 0.06

Naringenin Regression 1.623 3 0.54 9.0/2.6 0.003/0.69
Residual 0.746 13 0.06

Ellagic
acid

Regression 240,393 4 60,098 14.8/2.5 0.0001/0.83
Residual 48,877 12 4073

Fig. 2 – A response surface representative of hesperetin, naringenin and ellagic acid production as a function of temperature
vs. water:substrate ratio vs. particle substrate size, according to the CCD.

the bioactive phenolic compounds of interest, which can be
obtained by extraction from natural sources.

3.2.  Antioxidant  potential

The results in Table 4 show an increase of 73% in the
antioxidant capacity, by the ORAC method, of the residue
against the free radical APPH after the fermentation pro-
cess. One possible reason for this increase is that during
the solid-state fermentation process, the biotransformation
transformed the phenolics presented in substrate into agly-
cone phenolic molecules with higher antioxidant capacity.

According to many  recent studies, the aglycone form of
hesperidin and naringin molecules have more  important
effects of bioactivity and higher bioavailability than glycoside
(Nielsen et al., 2006).

In order to verify if these affirmations would apply to
the product of the tannase extract from P. variotii catalyza-
tions, commercial isolated hesperidin and naringin were
reacted with the tannase extract, and the products of the
reactions were assayed for antioxidant capacity. The results
obtained for the ORAC and DPPH assays are described in
Table 5 and are expressed as a concentration equivalent of
Trolox®.

Table 3 – Phenolic compounds productivity in solid-state fermentation.

Sample Phenolic compounds

Hesperidin Hesperetin Naringin Naringenin Ellagic acid Gallic acid

Orange residue (�g/g)a 3745 5.0 451.0 4.0 700.0 2462
Fermented orange residue (�g/g)a 2055 50.0 85.0 60.0 10,000 0.0
Increase of the product (%)b −45 900 −81 1400 1330 –

a Mean values of phenolic compounds concentration carried out in triplicate.
b Relation between initial and final concentration of compound.
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Table 4 – Trolox equivalents and linearity ranges for the ORAC (net AUC vs.  concentration) and DPPH assay performed on
the extract optimal medium samples before and after fermentation.

Sample ORAC DPPH

Trolox
equivalents
(�mol/mL extract)

Sample
concentration
range (mL  extract)

Slope Intercept r2 Trolox
equivalents
(�mol/mL extract)

Pre-fermented Citrus residue 6538
± 1253a

0.031–0.25 1378 7.4 0.99 260
± 6a

Fermented Citrus residue (48 h) 11,287
± 869b

0.016–0.063 2935 4.4 0.99 266
± 9a

a,b Results are presented as the mean (n = 3) ± SD, and those with different letters are significantly different, with p < 0.05.

Table 5 – Trolox equivalents and linearity ranges for the ORAC (net AUC vs.  concentration) and DPPH assay performed on
the phenolic standards.

Sample ORAC DPPH

Trolox
equivalents
(�mol/g standard)

Sample
concentration
range (mg/mL)

Slope Intercept r2 Trolox
equivalents
(�mol/g standard)

Hesperidin 2333 ± 202a 0.04–0.08 68.5 1.3 0.99 55 ± 3a

Hesperetin 6552 ± 1250b 0.04–0.08 110.9 8.1 0.96 865 ± 91b

Naringin 7958 ± 610a 0.04–0.08 247.5 3.6 0.95 67 ± 2a

Naringenin 9955 ± 887b 0.04–0.08 293.4 5.4 0.99 428 ± 10b

Ellagic acid 1246 ± 226c 0.05–0.50 1170.6 0.9 0.99 192 ± 27c

a,b,c Results are presented as the mean (n = 3) ± SD, and those with different letters are significantly different, with p < 0.05.

The hesperidin and naringin conversion led to an increase
of 180 and 115% in antioxidant activity by the ORAC
method, respectively. For the DPPH method, the same con-
version led to an increase near 1400 and 540%, respectively
(Table 5).

The ellagic acid showed antioxidant potential of 1246 and
192 �mol/g Trolox equivalent by ORAC and DPPH methods,
respectively, which is a significant antioxidant potential.

Therefore, it can be assumed that part of the increased
antioxidant activity of the fermented extract was associated
with the increase of phenolic compounds of lower molecular
weight, such as hesperetin, naringenin and ellagic acid.

Additionally, the concentration of phenolics and antiox-
idant potential showed no relationship before and after
microbial biotransformation of the residue of Citrus.  The
values were around 1000% increase in phenolic aglycones
(Table 3) and only 73% of the antioxidant activity of Citrus
residue fermented (Table 4). Other compounds with significant
antioxidant capacity, were possibly degraded during fermen-
tation, such as gallic acid (Table 3), and thus diminished
protection against oxidative compounds.

Either way, the process of microbial biotransformation pro-
duced compounds that are difficult to obtain (hesperetin and
naringenin) and have high biological potential.

Madeira et al. (2012) described the fermentation of Cit-
rus residue by P. variotii for tannase production. After 120 h
of incubation, the fermented substrate showed antioxidant
activity 10 times greater than the unfermented substrate by
the TEAC method. These results strongly indicate that the
citrus residue fermented by P. variotii was improved in antiox-
idant compounds, and the amounts of hesperetin, naringenin
and ellagic acid are likely responsible for this response.

Barros et al. (2012) studied the antioxidant capacity of
pulps and peels of Citrus from Brazil. In general, the peels
demonstrated higher contents of all phenolic compounds
than the pulps. For pulps, the highest value of antioxidant
capacity measured using the DPPH assay was 0.46 �mol of
Trolox equivalent/g of sample, and for the peels, 0.75 �mol
of Trolox equivalent/g of sample. Therefore, the use of the
residue for production of antioxidant phenolic compounds
seems to provide a major advantage over pulp extraction.

Aguilar et al. (2008) studied the accumulation of antiox-
idant phenolic compounds by biodegradation of tannins
present in creosote bush leaves and pomegranate peels. He
observed that the biotransformation during the solid-state fer-
mentation process (by fungal tannase producers) transformed
the phenolics present in his substrate into lower molecular
weight phenolic molecules with higher antioxidant capacity.

These results show strong evidence that microbial
biotransformation is not only able to produce phenolic com-
pounds but compounds with high biological activity, such as
hesperetin and naringenin, as well.

4.  Conclusion

The Citrus residue solid-state fermentation is a clean and
viable biotechnology with great potential for application in
the obtainment of phenolic resources. The utilization of agro-
industrial Citrus residues is particularly interesting because
of its availability, low cost and features that allow obtaining
different bioactive phenolic compounds. The process stud-
ied was low cost and used an abundant source of hesperidin
and naringin. It provided an interesting commercial source
of hesperetin, naringenin and ellagic acid. These molecules
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have no commercial source to be extracted from and have
been demonstrating much more  important bioactivity poten-
tial than their glycosylate forms. Also demonstrated was the
usefulness of biotechnology on natural food molecules to
improve their nutraceutical potential and provide a commer-
cial source of these compounds.
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ABSTRACT 
 

Bioactive compounds are extra nutritional constituents that naturally occur in small 

quantities in plant and food products. Most common bioactive compounds include 

secondary metabolites, such as antibiotics, mycotoxins, alkaloids, food grade pigments, 

plant growth factors, and phenolic compounds. Flavonoids constitute the largest group of 

plant phenolics, accounting for over half of the eight thousand naturally occurring phenolic 

compounds. Currently, flavanones are obtained by chemical synthesis or extraction from 

plants, and these processes are only produced in the glycosylated form. However, there are 

environmentally friendly bioprocesses that deserve attention regarding phenolic compound 

production, especially in aglycon forms. One of these flavonoids is the hesperetin, that has 

recently been recognized for their influence on human metabolism, acting in the prevention 

of some chronic diseases, as well as proving to be an important antioxidant in food. In the 

last few years, great attention has been paid to bioactive phenolic compounds due to their 

ability to promote benefits for human health. Hesperetin is reported to be a powerful radical 

scavenger and a promoter of cellular antioxidant defense-related enzyme activities. This 

compound exhibited anti-inflammatory activity by inhibiting of LPS-induced expression 

of the COX-2 gene in RAW 264.7 macrophages. Hesperetin is a potent chemopreventive 

agent; its supplementation during the initiation, post-initiation, and entire period stages of 

colon carcinogenesis in the male rat model in vivo significantly reversed these activities. 

In addition, the aglycon flavanone presents activity against parasites from tropical diseases. 

Considering the folk claims, several medicinal compounds (including hesperetin) have 
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been evaluated for this antifilarial activity. Recent studies showed that hesperetin inhibited 

(>60%) the adult worms growth (Wuchereria bancrofti) at 7.8 and 31.2 μg/ml 

concentration. The bioactive aglycon phenolic compound demonstrates antiviral activity. 

Experimental tests showed hesperetin presents inhibition activities of genotype 2 (DENV-

2) virus replication. This flavonoid seems to be usefull also in the treatment of some non-

communicable diseases, such as cardiac diseases, diabetes, hypertension. A hesperetin 

suspension administered in adult male C57BL/6 mice inhibited cardiac hypertrophy, 

fibrosis, oxidative stress and myocytes apoptosis induced by pressure overload and 

protected against cardiac dysfunction. In another study, hesperetin enhanced ApoA-I-

mediated cholesterol efflux in THP-1 macrophages, which was accompanied by an 

induction of the ABCA1 gene, which is critical for cholesterol metabolism. The effect of 

hesperetin on ABCA1-dependent cholesterol efflux may be explained by its potency of 

activation of LXRα and PPARγ enhancers. In a study conducted with Streptozotocin 

induced diabetic rats, hesperitin reduced vascular leakage, dilatation of retinal vessels and 

basement membrane thickening. In another study also with Streptozotocin induced diabetic 

rats, hesperitin treatment rescued retinal neuroinflammation, oxidative stress, apoptosis 

and oedema as a result of chronic uncontrolled hyperglycaemic state. These studies indicate 

that hesperitin can be used for the prevention of induced neurovascular complications 

caused by descompansated diabetes. Intravenous administration of hesperetin-7-O-b-D-

glucuronide decreased blood pressure in anesthetized spontaneously hypertensive rat. 

Furthermore, it enhanced endothelium-dependent vasodilation in response to 

acetylcholine, decreased hydrogen peroxide-induced intracellular adhesion molecule-1 and 

monocyte chemoattractant protein-1 mRNA expression in rat aortic endothelial cells. 

Hesperitin can also be used in management of obesity due to its influence in the control of 

hunger and satiety. In this context, the flavanone aglycone caused an increase in the 

secretion of cholecystokinin (CCK) in STC-1 cells through increase in intracellular calcium 

concentration by the TRP (transient receptor potential) and TRP 1 ankirin channels. The 

addition of hesperidin analytical standard in the same model caused no effect. The increase 

in CCK would be interesting because this hormone assists in the control of food intake. 

The purpose of this chapter is to provide an overview of the study of obtainment and 

biological properties of hesperetin. 

 

 

1. INTRODUCTION 
 

Flavonoids correspond to an important group of plant-derived heterocyclic organic 

compounds. They are divide into 14 different subgroups [1], based on their chemical nature 

and position of substituents on the A, B and C rings. Their relavance are due to many biological 

properties that have been reported, including antimicrobial, antioxidant and vascular activities 

[2]. Flavonoids are usually found in the form of glycosides in foods of plant origin, in particular 

in vegetables, beverages and citrus fruits [3].  

The therapeutical effects of flavonoids are due to their hydrogen-donating antioxidant 

activity and their capability to complex the divalent transition metal cations involved in 

processes forming radicals. These compounds have two aromatic rings enclosing a heterocyclic 

six-membered ring with oxygen. Different classes of flavonoids are based on modifications of 

this central C-ring: flavones, flavonols, flavanones, isoflavonoids, anthocyanins, flavanols, 

chalconoids, dihydrochalcones and aurones [4]. 

This chapter is divided into three parts: sources of hesperetin; methods of 

extraction/obtantion; and biological potential. 
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2. SOURCES OF HESPIRITIN 
 

Hesperetin (4′-methoxy-3′,5,7-trihydroxyflavanone), which is a bioactive plant flavonoid 

belonging to the chemical class ‘flavanone’ (abundantly present in citrus fruits), is rapidly 

emerging as an especially attractive therapeutic agent with an enormous spectrum of activities. 

This flavonoid corresponds to the aglycone form of hesperidin. Although hesperetin can be 

considered much more biologically active, firstly hesperidin is obtained, which is the natural 

form of these compounds.  

Hesperidin (6''-O-(α-L-rahmnopyranosyl)-D-glucose flavonoid) consists of the hesperetin 

bound at the C-7 position (on ring A) to rutinose (C12H22O10), a disaccharide composed of one 

molecule of rhamnose and one of glucose. However, one important drawback is the limited 

bioavailability of many flavonoids, and in fact the sugar moiety has been proposed as the major 

determinant of the absorption of dietary flavonoids in humans, whereas the rutinoside moiety 

is poorly absorbed in comparison with the aglycone and glucoside forms [5]. Within this 

context, the enzymatic de-glycosylation of flavonoids has been reported as a good alternative 

for increasing antioxidant activity of these compounds [6]. 

Hesperidin is the predominant flavanone glycoside of sweet oranges and is extracted from 

citrus peel [7] and applied in pharmaceutical industries for its therapeutic importance to many 

diseased capillary conditions [8]. Orange peel flavedo and albedo are interesting sources of 

phenolic compounds, more especifically flavonoids including hesperidin and hesperetin. 

Furthermore, orange peel is the primary waste fraction in the production of orange juice, and 

therefore it has been used as a source of hesperidin because of its high concentration in this 

material [9]. 

Taking into account flavonoids are mainly abundant in plant species from the genus Citrus, 

they present significant impact on nearly every aspect of citrus fruit production and processing. 

They are responsible for some unpleasant characteristics of fruit juices, such as turbidity and 

bitterness [9] and particularly hesperidin clogs the steel pipes of the citrus juice plants. In 

addition, they are abundant in the by-products, mostly in peels (albedo + flavedo), accounting 

for 4–12% of the dry weight [10]. Its recovery from citrus industry by-products is attractive 

because of two main reasons: its bioactive properties and the reduction of the amount of 

residues. Moreover, worldwide industrial wastes may be estimated at more than 1.5 × 106 tons, 

as the amount of residue obtained from the fruits accounts for 50% of the original whole fruit 

mass [11]. 

From citrus flavonoids, hesperidin is the most abundant in lemons, limes, sweet oranges, 

tangors and tangelos (∼15 mg/100 g edible fruit) [12]. Owing to the importance of hesperidin 

for food and pharmaceutical industries, several efforts have been made for its extraction and 

purification.  

In the paper of Di Mauro et al. [13] a procedure for recovering hesperidin from the waste 

water of orange juice processing by concentration of diluted extracts on 

styrene−divinylbenzene resin was reported, resulting in high concentration of hesperidin in 

selected fractions (10−78 g/L). On the other side, in the work of Ma et al. [14] hesperidin was 

extratced from penggan (Citrus reticulata) peels by ultrasound-assisted extraction, with 

interestng results. 

Kanaze et al. [15] investigated orange peel (Citrus sinensis) cultivated in Greece–Crete as 

an a new commercial source of hesperidin. The flavonoid content of several methanolic extract 
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fractions of Navel orange peel (flavedo and albedo of Citrus sinensis) cultivated in Greece was 

first analysed phytochemically and then assessed for its antioxidant activity in vitro. The main 

flavonoid groups found within the fractions examined were polymethoxylated flavones, O-

glycosylated flavones, C-glycosylated flavones, O-glycosylated flavonols, O-glycosylated 

flavanones and phenolic acids along with their ester derivatives. Furthermore, the quantitative 

HPLC analysis confirmed that hesperidin is the major flavonoid glycoside found in the orange 

peel. The authors concluded that quantity of hesperidin at 48 mg/g of dry peel permits the 

commercial use of orange peel as a source for the production of this compound. 

Although the main source of hesperidin is citrus peel, literature reports other different 

sources of hesperidin, such as Cyclopia species (Fabaceae) [16] and Rosemary (Rosmarinus 

officinalis, Lamiaceae) [17]. 

 

 

3. METHODS OF EXTRACTION/OBTAINTION 
 

The solvent extraction is the most used method for phenolic compounds obtainment from 

plant tissue. The main factor is the phenolics solubility, which depends on its chemical 

structure. Plant materials may contain different concentrations of phenolic acids, 

phenylpropanoids, anthocyanins and tannins. It is possible to occur interactions between 

phenolics and other plant components, such as carbohydrates and proteins which form 

complexes responsible for insolubility. Besides that, the polarity of solvent affects the solubility 

and therefore, it is considered difficult to develop a extraction method suitable for all plant 

phenolics [18]. 

Ethanol and methanol are the most used solvents for the citrus flavonoids extraction, as 

hesperidin, narigenin, narirutin and neohesperidin. It is usually extracted from byproducts 

residues [19, 20, 21]. Nevertheless, the two solvents present some limitations, such as low 

efficiency recovery, long extraction time and degradation of unsaturated compounds [21]. To 

solve this, many technologies have been studied to improve solvent extraction. 

Some new “green” extraction techniques, aimed at sparing energy and reducing costs, such 

as solid state and submerse fermentation, enzymatic, microwave- or ultrasound-assisted 

extraction, ultrafiltration, flash distillation and controlled pressure drop processing [22, 23] 

have been studied to improve solvent extraction. 

For phenolics extraction it is first necessary to release it from the vegetable matrix. Most 

of the technologies cited above are used aiming to improve release of phenolics from other 

compounds complexes as pectin and cellulose; and diffusion of the specific composites into 

extraction solvent. 

 

 

3.1. Subcritical Water 
 

Subcritical water has been used to flavonoids extraction, such as citrus flavanones with 

selectivity capacity modelled by temperature solubility dependence of the phenolics [24, 21]. 

The subcritical water extraction (SWE) is based on solubility enhacement of phenolics 

compounds in high temperature water (100-374ºC). To keep the liquid state of water, a high 

pressure is applied (>40 atm) [25, 21]. With high temperatures it is possible to change the water 
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polarity, which permits the solubility of not so polar molecules [26, 21]. The performance of 

SWE in hesperidin extraction from Citrus unshiu peel was evaluated by Cheigh et al. [21]. 

Varying the extraction temperature (110–200 °C) and time (5–20 min) under high pressure (100 

± 10 atm), they obtained almost 99% of extraction yield in 10 minutes at 170ºC. When 

compared with ethanol, methanol and hot water, the extraction yield of SWE was 1.9-, 3.2-, 

and 34.2-fold higher, respectively. 

 

 

3.2. Ultrasound 
 

Plant material extraction using ultrasound technique in a laboratory scale has been widely 

used. Review papers were published dealing with the extraction of plant origin metabolites [27, 

28], food flavonoids with different solvents [29, 28] and bioactives from herbs [30, 28]. The 

ultrasonic technology in food processing has attracted widely attentions nowadays [31] and 

also many papers had described the ultrasonic extraction of flavonoids from citrus peel [31, 32, 

33].  

Ultrasound generates energy throught a sound wave which is transferred to the medium 

resulting in a continuous wave type motion with longitudinal waves creating alternative 

compression and rarefaction of the medium [34, 35]. This wave type motion forms cavitation 

bubbles and are classified in two types of cavitation: a stable one with increasing and decreasing 

size behavior giving rise to the so-called “stable cavitation” generating a micro-agitation of the 

medium. The second one called “transient cavitation” can also grow and collapse generating 

very high local temperatures (5000 K) and pressures (1000 atm) with high energy shear waves 

and turbulence in the cavitation zone [36, 37]. The effects of ultrasound depends on the 

frequency used and the sound wave amplitude applied contributing to a diverse number of 

physical, chemical and biochemical effects observed, which permits a variety of applications. 

Shock waves are generated due to cavitation, which are contributed to the ultrasound effect. 

Formation and behaviour of the bubble of cavitation upon the propagation of the acoustic waves 

constitute the essential events which induce the majority of the acoustic effects [38, 39, 36, 40, 

35], including the catalysis of solvent extraction, considering that the diffusion through the cell 

walls and washing out (rinsing) the cell contents are the two types of physical phenomena 

involved on extraction mechanism. Both phenomena are significantly affected by ultrasonic 

irradiation [30]. 

 

 

3.3. Microwaves 
 

The Microwave-assisted extraction (MAE) is another technology used to improve solvent 

extraction of bioactive compounds with high efficiency in extraction time and environmental-

friendliness [41, 42]. The mechanism is based on heating dipolar compounds by microwave-

irradiation generating a cell wall destruction, release of compounds and diffusion into 

extraction solvent. Microwaves are transmitted as waves, defunding into biomatrices and 

interact with polar molecules, such as water in the biomaterials to create heat. Consequently, 

microwaves can heat a whole material to penetration depth simultaneously. This behavior 

makes the effect of microwave energy strongly dependent on the dielectric susceptibility of 
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both solvent and solid plant matrix[41]. The vantages of MAE are the prevention of extracted 

materials decomposition, reduction in heating period and in volume of solvent demand [42].  

MAE is considered a potential technology to improve traditional solid–liquid extraction 

for the metabolites extraction from plants. Many advantages for MAE application for 

nutraceuticals includes reduced extraction time, reduced solvent utilization generating 

improved extraction yield. MAE is also comparable to other modern extraction techniques such 

as supercritical fluid extraction due to its process simplicity and low cost. By considering 

economical and practical aspects, MAE is a strong novel extraction technique for the extraction 

of nutraceuticals. Nevertheless, MAE when compared to SFE, requires an additional filtration 

or centrifugation to remove the solid residue during MAE. Moreover, the efficiency of 

microwaves depends on target compounds solvent polarity decreasing its efficiency on 

bioactive compounds extraction [41]. 

Previously, [43] employed MAE for extraction of hesperidin from pericarpium citri 

reticulate (dried pericarp of the ripe fruit of C. reticulata), by using 70% aqueous methanol as 

a solvent, and showed that MAE is a fast, efficient and energy-saving extraction method [42]. 

In another published study [44] compared MAE, ultrasound and rotary methods to extract 

phenolic acids from citrus mandarin peels. They concluded that MAE is a better approach 

showing many advantages, such as shorter time, less solvent, higher extraction rate, savings of 

energy and better products with lower cost. 

 

 

3.4. Microbial Transformation 
 

Microbial fermentation has appeared as a biotechnology alternative for biomaterial pre-

treat and for obtaining bioproducts metabolized by microorganism. Enzymes present in 

microbial fermentation are responsible for hydrolysis of glucosidic phenolics, increasing the 

release with increased solubility.  

Comparing with other processes that use high temperatures and therefore generate high 

energy costs, this could be a great advantage. This difference in clearance of phenolic 

compounds is due to the metabolic activity of each microorganism. This case is related to 

various types of microbial enzymes and their activities [45, 46]. 

Georgetti et al. [47] evaluated the biotransformation of polyphenol glycosides from 

soybeans to form aglycones through Aspergillus awamori solid-state fermentation. This result 

was direct correlated with β-glucosidase enzyme production. The greater number of free 

hydroxyl groups present in the non-glycoside form is responsible for the increae on biological 

activity. The microbial biotransformation of phenolic compounds seems to be a promising way 

to increase the concentration of phenolics with high biological potential [45]. 

Madeira et al. [45] developed a bioprocess for phenolics obtainment from Brazilian Citrus 

residues by Paecilomyces variotii solid-state fermentation. Using 10g of Citrus residues (2.0 

mm of substrate particle size), 20mL distilled water, at 32 ºC after 48h of incubation were the 

optimum conditions which generated, simultaneously, an increase of 900, 1400 and 1330% of 

hesperetin, naringenin and ellagic acid concentration, respectively, and an increase of 73% of 

the antioxidant capacity. 
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3.5. Enzymatic Extraction 
 

Enzyme-assisted extraction has been reported for extraction of carotenoids from marigold 

flower [48], vanillin from vanilla green pods [49], oil from coconut or seeds [48, 50] and 

phenols from black currant and herb [51, 52]. The enzyme-assisted extraction mechanism is 

based on cell wall degrading capacity of enzymes glucanases and pectinases which can weaken 

or break down the cell wall permitting the intracellular materials release and more accessible 

for extraction. 

The β -glucosidase (β-D-glucoside glucohydrolase, EC 3.2.1.21) catalyzes the hydrolysis 

of disaccharide glycosides and conjugates from the non-reducing end. It has several 

applications in the pharmaceutical industries with hydrolysis of cellobiose to glucose. The β-

glucosidase enzyme has numerous applications in the food and pharmaceutical industries, 

working in the hydrolysis of cellobiose to glucose, cellulose to glucose in combination with 

other cellulolytic enzymes, and the release of aroma compounds in fruit juices and wine. This 

enzyme is also used in the hydrolysis of cyanogenic compounds present in plants for hormone 

replacement therapy [53, 54, 46]. 

Li et al., [20] studied the enzymatic treatment for aqueous extraction of the total phenolic 

contents of five citrus peels (Yen Ben lemon, Meyer lemon, grapefruit, mandarin and orange). 

The highest recovery using Celluzyme MX (cellulase) in the enzyme-assisted extraction 

process was up to 65.5% (about 87.9% of the solvent extraction).  

The phenolics in grapefruit peels had the highest total antioxidant activity, followed by 

Yen Ben lemon, mandarin, orange and Meyer lemon according to the total antioxidant activity 

(FRAP).  

Moreover, Mandalari et al. [55] evaluated the effect of pectinases and cellulases on 

hydrolysis of hesperidin in Bergamot (Citrus bergamia Risso) peel and obtained more than 

90% of glycosidic cleavage generating the aglycone form (hesperetin). 

 

 

4. BIOLOGICAL POTENTIAL 
 

Hesperetin has a variety of biological effects in numerous mammalian cell systems, in vitro 

as well as in vivo. They have been shown to exert antimicrobial, antiviral, antiulcerogenic, 

cytotoxic, antineoplastic, mutagenic, anti-inflammatory, antioxidant, antihepatotoxic, 

antihipertensive, hypolipidemic and antiplatelet activities. The next topic will discuss the 

biological potential of hesperetin: combating tropical diseases, anti-tumor, obesity, diabetes 

and cardiovascular diseases. 

Filariasis is an endemic disease in tropical and sub-tropical regions of Asia, Africa, Central, 

South America and Pacific Island nations. Lymphatic Filariasis is caused by the worms 

Wuchereria bancrofti, Brugia malayi, and Brugia timori, which occupy the lymphatic system 

and in chronic cases lead to the disease Elephantiasis. Flavonoids like naringenin, hesperetin, 

and naringin were evaluated against the human lymphatic filarial parasite, using an in vitro 

motility assay with adult worms and microfilariae. Naringenin and hesperetin killed the adult 

worms and inhibited (>60%) at 7.8 and 31.2 μg/ml concentration, Microfilariae (mf) were 

killed at 250–500 μg/ml. Thus hesperetin may provide a lead for the design and development 

of new antifilarial agent [56]. 
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Hesperetin is reported to be a powerful radical scavenger and a promoter of cellular 

antioxidant defense-related enzyme activities. This compound exhibited anti-inflammatory 

activity by inhibiting of LPS-induced expression of the COX-2 gene in RAW 264.7 

macrophages. Hesperetin is a potent chemopreventive agent; its supplementation during the 

initiation, post-initiation, and entire period stages of colon carcinogenesis in the male rat model 

in vivo significantly reversed these activities. Administration of hesperetin to 1,2-

dimethylhydrazine (DMH)-treated rats decreased the tumor incidence and the number of 

aberrant crypt foci with simultaneous enhancement of tissue lipid peroxidation, glutathione S-

transferase (GST), GPx, SOD, and CAT activities. Hesperetin induced Notch homolog 1 

(NOTCH1) expression in human gastrointestinal carcinoid (BON) cells, subsequently 

suppressing tumor cell proliferation and bioactive hormone production. Furthermore, results of 

anti-carcinogenesis experiments indicated that hesperetin inhibited aflatoxin B1-induced 

carcinogenesis and that hesperetin caused cytotoxicity and apoptosis via a transient induction 

of caspase-3 activity in HL60 cells. Additionally, it exhibited strong antiproliferative activity 

in various cancer cells, and its treatment dose showed no toxic effect on normal cells [56, 57]. 

There are also some evidence that this flavonoid might be usefull in the treatment of some 

other non-communicable diseases, such as cardiac diseases, diabetes, hypertension. 

Considering hypertension, hesperetin and hesperetin-7-O-β-D-glucuronide (HPT7G) 

enhanced nitric oxide (NO) release by inhibiting NADPH oxidase (nicotinamide adenine 

dinucleotide phosphate-oxidase) activity in human umbilical vein endothelial cell culture, 

indicating that hesperetin metabolites in plasma can improve vasodilatation in the vascular 

system. In the same work, the authors treated women with cold sensitivity, and a single dose of 

water-dispersible hesperetin was effective on peripheral vasodilatation. These results strongly 

suggest that hesperetin exert a potential vasodilatation effect by the endothelial action of its 

plasma metabolites [58]. 

Another group of researchers investigated the effects of HPT7G and hesperetin-30-O- β-

D-glucuronide (HPT30G), which are the predominant hesperetin metabolites in rat plasma, on 

blood pressure and endothelial function. Intravenous administration of hesperetin and HPT7G 

(5 mg/kg) decreased blood pressure in spontaneously hypertensive rats (SHRs) compared to 

the control group. HPT7G enhanced endothelium-dependent vasodilation in response to 

acetylcholine, but had no effect on endothelium independent vasodilation in response to sodium 

nitroprusside (SNP) in aortas isolated from SHRs. HPT7G and hesperetin decreased ICAM-1 

(intracellular adhesion molecule-1) and MCP-1 (monocyte chemoattractant protein-1) mRNA 

expression induced by hydrogen peroxide in rat aortic endothelial cells. In contrast, HPT30G 

had little effect on these parameters. In conclusion, HPT7G exerted hypotensive, vasodilatory 

and anti-inflammatory activities, similar to hesperetin, indicating that this flavanone could 

improve hypertension and endothelial dysfunction [59]. 

A hesperetin [(95 %) from Sigma-Aldrich] suspension was administered for adult male 

C57BL/6 mice (8–10 weeks old) at a constant volume of 1 ml/100 g body weight by oral gavage 

once a day. The animals were submitted to aortic banding leading to cardiac remodeling 

induced by pressure overload. The results indicate that hesperetin inhibited cardiac hypertrophy 

and myocite cross-sectional area. In response to pressure overload, it was observed the 

activation of PKCα/βπ, Akt, GSK3β, mTOR, FOXO3a, CaN, GATA4 and JNK. However, 

hesperetin supplementation almost completely blocked the activation of these factors. Also, 

aortic banding caused perivascular and intersticial fibrosis that was remarkably reduced in 

hesperetin-fed mice. mRNA levels of the fibrotic mediators TGFβ1 (transforming growth 
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factor-β1), CTGF (connective tissue growth factor) and collagen I were high in animals 

submitted to aortic banding, but hesperetin consumption significantly reduced their expression. 

The flavanone also attenuated oxidative stress acting in the reduction of NADPH oxidase 

activity and recovery of SOD1 and SOD2 mRNA expression [60]. 

In another study, hesperetin enhanced ApoA-I-mediated cholesterol efflux in THP-1 

macrophages, probably due to a greater transcription of ABCA1 gene, which is critical for 

cholesterol metabolism. The effect of hesperetin on ABCA1-dependent cholesterol efflux may 

be explained in part by its LXRα and PPARγ agonist action. These results indicates the potential 

of this flavonoid in the prevention and treatment of atherosclerosis [61].  

In a study conducted with Streptozotocin induced diabetic rats, hesperetin (200mg/kg body 

weight by oral gavage) reduced vascular leakage, dilatation of retinal vessels and retinae 

basement membrane thickening. Diabetic rats treated with hesperetin had lower values of 

VEGF and PKC-β (angiogenic factors), when compared to untreated diabetic rats. These results 

indicate that retinal vasoprotective effects of hesperetin are due to its anti-angiogenic 

properties, preventing early or late stage micro-vasculopathy [62]. In another study developed 

by the same group also in Streptozotocin induced diabetic rats, hesperetin treatment reduced 

retinal neuroinflammation with lower levels of TNF-α and IL-1β; reduced oxidative stress with 

higher levels of glutathione, superoxide dismutase and catalase; inhibited apoptosis via 

caspase-3 and reduced edema [63]. In both studies, hesperetin treatment in diabetic rats caused 

a glycaemia reduction, however the glucose levels remained high. These results indicate that 

hesperetin can be used for the prevention of induced neurovascular complications caused by 

decompensated diabetes. 

Another complication observed in diabetes is the synthesis of advanced glycation 

endproducts, such as pentosidine. These compounds contribute to the lesions characteristic of 

microvascular complications and alter glomerular permeselectivity to proteins in diabetes. In a 

collagen advanced glycation in vitro study, hesperetin treatment (250µmol/L in 2% ethanol) 

inhibited 60% pentosidine formation in collagen incubated with glucose. Aminoguanidine and 

pyridoxamine, known glycoxidation inhibitors, prevented pentosidine formation by 86% and 

89% respectively. These results indicate the promising potential of hesperetin in glycoxidation 

treatment [64]. 

Hesperetin can also be used in management of obesity due to its influence in the control of 

hunger and satiety. In this context, hesperetin analytical standard (0.1 – 1.0 mM) has shown the 

increase of secretion of cholecystokinin (CCK) in STC-1 cells. This phenomenon was caused 

by higher intracellular calcium concentration due to the TRP (transient receptor potential) and 

TRP 1 ankirin channels work. The addition of hesperidin analytical standard in the same model 

caused no effect, indicating that only the aglycone form influences hormone secretion [65]. The 

increase in CCK would be interesting because this hormone, secreted from endocrine cells in 

the small intestine, assists in the control of food intake [66]. 

Also, Yoshida et al. [67] observed that 3T3-L1 adipocytes cell culture treatment with 

hesperetin and naringenin analytical standards showed anti-inflammatory effect. NFκB 

activation through TNF-α was inhibited with a consequent reduction in the secretion of 

interleukin-6 (IL-6). There was also observed an inhibition of ERK (extracellular signal 

regulated kinase) pathway causing a decreased activation of hormone sensitive lipase (HSL); 

contributing to reduce the insulin resistance.  

Subash-Babu et al [68] studied the effects of hesperetin in immortalized human bone 

marrow mesenchymal stem-cell (TERT20) differentiated with dexamethasone, IBMX, 
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indomethacin and insulin. Hesperetin was added in two different situations: in group 1 the 

flavanone was administered in the differentiation medium; in group 2 the compound was added 

after the differentiation in the maintenance medium.  

In both cases there were a reduction on lipid accumulation by staining with Oil Red O, 

even though the effect was more pronounced in group 2, with almost 50% reduction. The 

glycerol release results shows that the less amount of lipid could be caused by stimulation of 

lipolysis. Hesperetin treatment also reduced triglyceride levels and GPDH activity, enzyme 

essential for glycerol-3phosphate synthesis, precursor of triacylglycerol. Only in group 1 there 

was a reduction in protein expression of PPAR-γ and C / EBPα, transcription factors necessary 

for the differentiation of pre-adipocytes into mature adipocytes. Adiponectin levels reduced 

after cell differentiation; however, treatment with hesperetin increased the mRNA expression 

of this adipokine. Resisitn, TNF-α and LPL mRNA expression reduced with hesperetin 

treatment. In addition, there was an increase in Bax, Bcl and p21 mRNA expression with 

hesperetin, especially in group 2, indicating the possible action of the flavanone in programmed 

cell death of differentiated adipocytes. For the authors, hesperetin could inhibit pre-adipocyte 

differentiation. 

 

 

CONCLUSION 
 

Hesperetin belongs to one of the largest group of plant phenolics, accounting for over half 

of the eight thousand naturally occurring phenolic compounds. Currently, most of phenolic 

compounds are obtained by chemical synthesis or extraction from plants, and these processes 

are only produced in the glycosylated form. However, there are environmentally friendly 

bioprocesses that deserve attention regarding phenolic compound production, especially in 

aglycon forms. These bioprocesses are clean technologies with great potential for obtaining 

biologically active compounds from natural sources, such as hesperetin.  

The studies performed both in vitro and in vivo have shown that hesperetin play an 

important role in the prevention of degenerative and infective diseases, which is related to 

particular chemical structures. Hesperetin belongs to flavanones, which is a widely distributed 

group of polyphenolic compounds, called “nutraceutical substances”, with anticancer, anti-

atherogenic, antimicrobial and anti-inflammatory properties. 
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