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Resumo

A criação de um computador quântico é um projeto que guia, ao mesmo tempo, avanços tec-

nológicos e um melhor entendimento das propriedades de sistemas quânticos e da Mecânica

Quântica em geral. O teorema do limiar é derivado da teoria quântica de correção de erros e

garante que, se o ruido estocástico que e afeta os componentes de um computador quântico

encontra-se abaixo de um valor limite, podemos operar esse computador quântico con�avel-

mente. Investigamos como esse teorema é modi�cado quando consideramos uma memória

quântica (a qual usa o código de superfície para corrigir erros) acoplada a um ambiente cor-

relacionado. O limiar de erros nesse caso é relacionado à transição de fase ordem-desordem

de um sistema de spin equivalente.

Abstract

The design of a quantum computer is a project which drives, at the same time, technological

advancement and a better understanding of the properties of quantum systems and of Quantum

Mechanics in general. The threshold theorem comes from quantum error correction theory

and it guarantees that, if stochastic noise a�ecting the components of a quantum computer is

below some threshold value, we can operate this quantum computer reliably. We investigate

how this theorem is modi�ed when we consider a quantum memory (which uses the surface

code to correct errors) coupled to a correlated environment. The error threshold in this case

is related the order-disorder phase transition of an equivalent spin system.
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Chapter 1

Introduction

Quantum Information is currently in the cutting edge of physics research. It is a paradigm

change, focusing the discussion of all physical processes and characteristics from the point of

view of information. This information might be exchanged between systems or be related to

their states. Quantum Information's point of view has already permeated and enriched several

other branches of Physics, from Statistical Mechanics [1] to black holes research [2] and its

advance has undoubtedly helped us understand more deeply and thoroughly Quantum Theory.

One of the most challenging and interesting concepts in Quantum Information is the idea

of a quantum computer. This is a device implemented by a quantum mechanical system,

in contrast to a conventional or �classical� computer which is implemented by a system that

follows traditional boolean logic.

A universal quantum computer could possibly solve any computational problem and in

that aspect it is analogous to a Turing machine (classical computer). The di�erence between

them lies in the fact that some problems which are believed to be NP-complete (i.e. hard,

prohibitively time-consuming) for classical computers are believed to be solved e�ciently (i.e.

in relatively short times) by quantum computers, due to features of Quantum Mechanics like

entanglement and superposition [3].

As an example, the problem of simulating quantum systems is one of those that can not

be solved e�ciently using a classical computer. It actually was one of the original motivations

for developing quantum computers [4].

The realization of a universal quantum computer would have important consequences for

the way we do things like cryptography, which now-a-days relies on the di�culty of factoring

large numbers (these numbers constitute the cryptographic keys with which we codify infor-
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mation). On one hand, a quantum computer would be capable of factoring large numbers in

short times thereby being capable of breaking encryption as we do it today. But, on the other

hand, quantum cryptography enables cryptographic protocols that are unbreakable in principle

[3].

There are a lot of di�erent experimental candidates for a scalable architecture for a quantum

computer. Some of those implementations involve superconducting devices [5], trapped ions

[6], magnetic resonance [7], and optical phenomena [8], just to name a few. Some candidates

do not follow the architecture of a universal quantum computer, like D-Wave's quantum

annealer1 [9, 10]. Albeit some of the experimental di�culties are daunting, the quantum

information community is very positive about the prospect of constructing quantum computers

in the mid-term.

In spite of this climate of optimism, there are fundamental questions to be answered. One

of them has to do with the fact that quantum systems are very fragile, quantum coherence can

be destroyed very quickly due to the system's interaction with its surroundings. So, how can

we implement and protect a system such that we can store quantum information and compute

reliably with it?

A related question is the one of scalability. Up to now only small devices (with a handful of

few qubits), have been constructed. Thus, the physics of decoherence (loosely called quantum

noise) in a large device, with thousands or millions of qubits is an open questions. Hence, we

are bound to ask what are the limits for computation, or for storing information, within such

a large device?

These questions are partially answered by the threshold theorem from fault tolerance theory.

This theorem states that when the noise to which a quantum computer is subjected is below

some threshold, the use of quantum error correction and fault tolerance procedures provides

enough protection against the noise to allow for the computation to be very likely to succeed

[3, 11].

The threshold theorem was introduced assuming stochastic error models. These models

are customarily used to study decoherence in quantum information, in part because they are

easier to manipulate and obtain results. But stochastic error models are not adequate for a

large number of systems of interest, e.g. solid state ones [12].

1An annealer is basically a computer which solves the speci�c task of �nding the minimum of some function.
Although this may not seem interesting at �rst sight, it so happens that a lot of important and di�cult problems
can be mapped to the problem of �nding the minimum of some function.
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We are going to study the threshold theorem but using a Hamiltonian error model. We

take a phenomenological approach that let us not worry about the details of the quantum

computer's environment while still obtaining meaningful results. We only assume that the

perturbation will be weak enough so that we can model it as a bath of harmonic oscillators

which is analogous to approaches dealing with Brownian motion [13]. The advantage of our

model is that it is more generic than an stochastic error model, and more adequate because it

takes into account memory e�ects as well as temporal and spatial correlations between qubits

[14].

Following [15, 16, 17], we investigate the time evolution of a quantum memory which

uses a quantum error correction scheme known as the surface code. This problem is cast

into an statistical mechanical language and the error threshold is then related to the critical

parameters of an equivalent spin model.

In the following Chapters we review the basic concepts which we use throughout the text,

but we are aware that no text can be completely self-contained. Some notions of quantum

and statistical mechanics are assumed. In addition, some knowledge about many-body physics

and of open quantum systems would facilitate the reading but is not indispensable. We will

introduce the concepts of quantum information that we need for our work, but for a better

understanding on then we recommend Nielsen and Chuang's book [3]. Although this book

does not encompass the latest developments in the �eld of Quantum Information, it constitutes

a very comprehensive guide to its basic concepts.

The structure of this work is as follows:

• In Chapter 2 we start by introducing the fundamental concepts of Quantum Information

that we use throughout the text. We also explain here how quantum error correction

works, the details of the surface code and the original version of the threshold theorem.

• Chapter 3 deals with open quantum systems' theory: we review the system-plus-environment

approach, the famous Markovian approximation and stochastic models. Here we revisit

the threshold theorem to show how it is modi�ed by the presence of a correlated envi-

ronment.

• Chapter 4 contains our original results. Here we study the evolution of a quantum

memory coupled to a correlated environment via surface code and drive the equivalent

of our error threshold for this situation.
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• Chapter 5 has our �nal remarks and the possible directions in which our work can be

extended.

• We left some details of the calculations to Appendixes A and B.



14

Chapter 2

Quantum error correction

Quantum Error Correction Sonnet

We cannot clone, perforce; instead, we split

Coherence to protect it from that wrong

That would destroy our valued quantum bit

And make our computation take too long.

Correct a �ip and phase - that will su�ce.

If in our code another error's bred,

We simply measure it, then God plays dice,

Collapsing it to X or Y or Zed.

We start with noisy seven, nine, or �ve

And end with perfect one. To better spot

Those �aws we must avoid, we �rst must strive

To �nd which ones commute and which do not.

With group and eigenstate, we've learned to �x

Your quantum errors with our quantum tricks.

Daniel Gottesman

We established in the introduction that quantum information, and in particular quantum

computers, are compelling as a research topic and as a technology. But, as we also remarked,

environmental noise constitutes a fundamental obstacle that must be addressed. Thus the

application of quantum error correction methods is indispensable.

As its name implies, quantum error correction deals with correcting errors in the information

stored in and manipulated by quantum computers. This is essential since these systems are

very fragile, and thus information codi�ed in them is prone to errors due to the quantum

computer's interaction with its surroundings (also referred to as environment).

We leave for Chapter 3 the details of this system-environment interaction. Right now we

are going to describe the nature of the quantum information we want to store and how we

can protect it from damage.
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Figure 2.1: Bloch sphere. Glosser.ca �Bloch Sphere� August, 2016, via Wikimedia, Creative Commons

Attribution.

The basic unit of information for classical computers is the bit. A bit can take values 0 or

1. On the other hand, the basic unit of quantum information is the qubit, the di�erence with

its classical counterpart is that it can not only take values 0 or 1, but it can be in an state

which is a superposition of those basic states.

A qubit is implemented by a two-level system. We label its states as |0〉, and |1〉, using

Dirac's notation. As we said, a qubit can be in any of its reference states or in a superposition

of them, in general we can write its state as:

|ψ〉 = α|0〉+ β|1〉. (2.1)

The possible states of a qubit can be represented by the surface of a sphere called the

Bloch sphere (Figure 2.1) by making the parametrization α = cos θ
2
and β = eiφ sin θ

2
. Then

we can rewrite Equation (2.1) as:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (2.2)

This geometrical representation of a qubit is useful for our discussion since it becomes

evident how an error in a classical bit is di�erent from one in a qubit. Classical bits are only

a�ected by errors which �ip their value (take a 0 to 1 or vice versa), called bit �ips. But qubits

can have their state continuously changed by a certain error, thus quantum information needs

to be protected from bit �ips, phase �ips, and their continuous linear superpositions.

Although it seems we would need to protect the quantum information from a potentially
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in�nite number of errors, in Section 2.1.2 we show how we actually only need to account for a

�nite set of them in order to perform quantum error correction successfully. An example of this

is that by protecting the qubit from bit �ips and phase �ips, we are automatically protecting

it against linear combinations of those two kind of errors.

Here we are interested in quantum memories. Those memories are composed by a collection

of qubits such that we can store some quantum information as their state. We want to

determine under what conditions we can prepare a system (a quantum memory) in a particular

state and be sure that after an arbitrary time this state will remain unperturbed.

There exist two di�erent strategies to protect the quantum information that we store in a

quantum memory. These are the passive and active approaches. Passive approaches involve

designing a system which, due to its internal dynamics, remains in the state in which we

initialized it. Active approaches involve codifying the quantum information in a system which

we measure periodically. This measurements are such that they do not give us any details of

the information we stored but they will show us what errors have appeared in this information

so that we can correct them.

At �rst glance, passive quantum memories seem like the obvious choice. Why would we

want the overhead of measuring our system just to check for errors? Well, simply because

constructing such passive memories has proven a formidable task [18, 19]. And even using

the best passive correction schemes, we should use active correction to make sure there is no

residual decoherence that would damage the information we stored.

For more information on the topic of passive quantum memories we leave here some

references: the canonical example for passive quantum memories is Kitaev's toric code [20],

a review of current research in that �eld was done by Brown et. al. [18], and possible

implementations using superconducting qubits were reviewed by Douçot and Io�e [19].

From now on, we concentrate on the study of quantum error correction methods. As done

in the literature, the word �active� is implied here. In the next Sections we do not leave out

important formal results, but we try to approach the topic as intuitively as possible.

2.1 Quantum error correction theory

If we were to synthesize last Section, we could say that quantum error correction is a method

used to protect quantum information from the decoherence resulting of the interaction of the
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quantum system with its environment. In this Section we investigate exactly how quantum

error correction is performed. We are going to follow mainly references [3] and [11].

Each error correction scheme is called a code because it codi�es the information in a clever

way, mainly by adding redundancy. This makes the information less susceptible to errors.

Let us start by explaining how a simple classical error correction code works before going to

the quantum case. This will help us show the basics of error correction as plainly as possible.

The more straightforward classical error correction code is the repetition code. Basically,

the idea with this code is to protect the information by copying it a number of times. We

could say that an analogy to this protocol is repeating what you say in a noisy phone call, so

you interlocutor can understand what you are saying.

To implement this protocol, we start from an information bit s, which can take the values 0

or 1. Say we want to store this bit for some time and being able to read its state later1. During

this time, there is a probability ε of the bit changing its state (from 0 to 1 or the contrary).

Notice that this implies that 1− ε is the probability of the bit maintaining its original state.

To keep things as simple as possible, we use here the smallest repetition code: the three-bit

repetition code. Then we require only two copies of our bit s. The original bit and each of

its copies are called physical bits and the whole of them is the logical bit s̄. Finally, since the

original bit can take the values 0 or 1, we have:

s = 0 → s̄ = 000 (2.3)

s = 1 → s̄ = 111. (2.4)

But why is this bene�cial? To answer this, we need to compare the probability ε of the

original bit to get corrupted with the corresponding probability ε̄ for the logical qubit. To this

end we assume that the probabilities of errors in each bit are independent.

We also need to clarify now the complete error correction procedure with the repetition

code:

• encoding: we encode the original bit by making copies of it,

• storage: we store our logical bit for later use, and

1Normally these ideas are presented in terms of transmitting information, but since our focus is in quantum
memories the concept of storage of the information is more adequate.
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Logical bit state s̄ 110 010 111
Decoded state s 1 0 1

Table 2.1: Decoding step.

• decoding (majority vote): the �nal state of the bit will be determined by the state of

the majority of the physical bits, see Table 2.1.

Then, given an initial logical bit, e.g. s̄ = 000, only one of the physical bits can have

an error (bit �ip) during storage so that the logical bit is not corrupted (i.e. s = 0 will be

the state after decoding). Otherwise the information is altered at the end of the procedure.

Following our example, we would get s = 1 after decoding if two or three of the physical bits

�ipped their state.

Then there are four di�erent �nal con�gurations in which the bit's information is not

damaged: 000, 001, 010, and 100. While 000 has probability (1− ε)3 to be the �nal state,

each of the other three states have probability (1− ε)2 ε to be so. Then, the probability p of

the logical

p = (1− ε)3 + 3 (1− ε)2 ε = 1− 3ε2 + 2ε3, (2.5)

and the probability of the logical bit's original state be corrupted is

ε̄ = 1− p = 3ε2 − 2ε3. (2.6)

Notice that this expression involves terms to the power of 2 and 3, then for small error

rates ε we expect ε̄ to be even smaller. Let us check if that holds true:

ε̄ < ε =⇒ 3ε2 − 2ε3 < ε =⇒ 0 < 2ε2 − 3ε+ 1. (2.7)

This inequality is met by values ε < 1/2 or ε > 1. And, since we are dealing with

probabilities (0 ≤ ε ≤ 1), we conclude that if ε < 1/2, then ε̄ < ε. This means that, when

the probability of errors for the physical bits is below 1/2, codifying the original bit with the

repetition code actually makes it less probable that we lose information.

Now we are going to study error correction for the quantum regime. The fundamental unit

of quantum information is the qubit: it is realized by a two-state system in which each of its

states correspond to the classical states, i.e. 1 → |1〉, and 0 → |0〉. But, since now we are
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in the quantum regime, the qubit can not only be prepared in any of its two states, as it can

also be in a superposition of its states, as we wrote in Equation (2.1).

As a �rst approach we would like to see if classical codes could be used for quantum

information: can we apply the repetition code in the quantum case? The answer is no, because

it is impossible to make copies of an arbitrary quantum state through unitary transformations.

This result is known as the no-cloning theorem [3, 21] and it can be understood very simply,

by contradiction.

Imagine that it exists a unitary operation U which can make copies of arbitrary quantum

states, e.g. |ψ〉 and |φ〉. Then it follows that:

U (|ψ〉|s〉) = |ψ〉|ψ〉 (2.8)

and

U (|φ〉|s〉) = |φ〉|φ〉. (2.9)

The contradiction arises because these two equations imply that:

〈ψ|φ〉 = |〈ψ|φ〉|2 ,

which is only possible if 〈ψ|φ〉 = 0 or 〈ψ|φ〉 = 1, i.e. either |ψ〉 = |φ〉 or |ψ〉 is orthogonal to

|φ〉. Thus |ψ〉 and |φ〉 cannot be arbitrary states.

Other di�culties we need to overcome in order to create quantum error correction codes are

the fact that measurements in quantum mechanics destroy the quantum state being measured2,

and that errors are continuous (as we exempli�ed with the Bloch sphere, Figure 2.1).

Luckily for us, these aspects of quantum theory do not prevent us from being able to do

quantum error correction. Although the repetition code can not be implemented with quantum

systems, there is a very straightforward adaptation to it: it is the qubit bit-�ip code. Again

we are going to study the simplest case with three physical qubits, but the generalization to

any number of physical qubits is straightforward.

Let us start by clarifying that although we can not copy the state of our qubit, by adding

ancillary qubits and operating on them, we can create states such that, if |s〉 = |0〉 then
2When we measure the qubit |s〉 on the basis of its states what we get is |0〉 with probability |α|2 or |1〉

with probability |β|2.
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a) b)

Figure 2.2: a) CNOT gate. b) Quantum circuit for the three qubit bit �ip code.

|s̄〉 = |000〉, and if |s〉 = |1〉 we have |s̄〉 = |111〉3. Moreover, we can encode the state of our

qubit (Equation (2.1)) as:

|s〉 = α|0〉+ β|1〉 → |s̄〉 = α|000〉+ β|111〉. (2.10)

As we will see, this encoding results in a similar gain as we had for the classical case with

the repetition code. But before we enter in the details of why this is so, we will explain how

we can create the logical qubit |s̄〉 in Equation (2.10).

The encoding process is done through unitary operations known as gates. Gates can be

expressed as matrices, and can operate on just one or various qubits at a time.

Here we will use the controlled-NOT or CNOT gate. This gate involves applying a NOT

gate to a qubit (known as target) depending on the state of another qubit (known as control).

A NOT gate involves only one qubit, it simply applies a σx Pauli operator to the state of a

qubit, i.e. |0〉 NOT←→ |1〉.

A CNOT gate is such that when the control qubit is in the |0〉 state, it leaves the target

qubit untouched. On the other hand, if the state of the control qubit is |1〉, then a NOT gate

is applied to the target qubit. Figure (2.2-a) shows the representation of a CNOT gate where

the control qubit is |q0〉 in the state |s〉, and the target qubit is |q1〉 in the state |0〉. The

action of the CNOT gate for the case where |s〉 is given by Equation (2.2) is:

|s〉|0〉 = α|0〉|0〉+ β|1〉|0〉 CNOT01−→ α|0〉|0〉+ β|1〉|1〉 = α|00〉+ β|11〉. (2.11)

It is straightforward now to understand that the quantum circuit4 in Figure (2.10-b) takes

the state |s〉 (given again by Equation (2.2)), and encodes it as we stated in Equation (2.10).

As in the classical case we want to determine if this encoding is bene�cial for our purposes.

3Here |000〉 = |0〉|0〉|0〉 = |0〉 ⊗ |0〉 ⊗ |0〉, and similarly for |111〉.
4A quantum circuit is a graphic representation of operations done on a number of qubits. Each qubit is

represented by an horizontal line, and time runs to the right.
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To that end we review the error correction process again, adapting it to the speci�cities of the

quantum case:

• encoding: use ancillary qubits to encode our original qubit,

• storage: we leave our qubit for posterior use,

• error detection or syndrome extraction: we measure our qubit using an speci�c set of

projection operators so that we obtain information about the errors that happened to

our qubit, but we do not have information about its actual state.

• recovery: once we know what error happened to the physical qubits, we can apply the

appropriate operations (σx operators) to recover the original state. This is simply done

by �ipping back the faulty physical qubit.

The syndrome extraction is an essential part of the process and it is di�erent to the decoding

we performed in the classical case. Thus we need to expand on it now.

The projection operators we mentioned are:



P0 = |000〉〈000|+ |111〉〈111|

P1 = |100〉〈100|+ |011〉〈011|

P2 = |010〉〈010|+ |101〉〈101|

P3 = |001〉〈001|+ |110〉〈110|

(2.12)

During syndrome extraction, one of these operators will return a value 1, and the others 0.

If we measure the evolved state |s′〉 of the qubit after storage, using the projection operators,

and obtain: 〈s′|P0|s′〉 = 1, and 〈s′|Pi|s′〉 = 0 for i = 1, 2, 3, then we know that no errors

occurred. On the other hand, when P1 (P2 or P3) is the projector that has value one when

measured, we know that there was an error (bit �ip) on the �rst (second or third) physical

qubit.

Notice that the state of the qubit is unaltered by the measurement of these projection

operators. This is because for a given arbitrary state |s〉 we either have Pi|s〉 = |s〉 or

Pi|s〉 = 0 (i ∈ {0, 1, 2, 3}).

In analogy with the classical case, problems arise though if two physical qubits are �ipped.

Suppose we start with a |000〉 logical qubit. If bit �ips occurred to two of the physical qubits

during storage, we get any of the �nal states |011〉, |101〉 or |110〉. The projection operator's
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measurement leads us to interpret the �nal state as |111〉, with one physical qubit �ipped.

The recovery operation would then fail: it would �ip the remaining qubit and make |111〉 be

the �nal state.

Since this situation is analogous to the classical case, the calculus of the probability of

success and failure is the same. Assuming the probability of a bit �ip ε is independent for each

of the physical qubits, the probability of successfully correct an error will be given by Equation

(2.5), the probability of failing is given by Equation (2.6), and using this error correcting code

is advantageous when ε < 1/2.

This discussion also help us to identify one of the oversimpli�cations on several approaches

to quantum error correction. As beautifully presented by Richard Feynman in his famous

book "the Feynman's Lectures", if there are two possible quantum paths in an evolution that

could not be distinguished, then the system takes both paths. In the three qubit code initially

prepared in the state |000〉, then after evolving for a time t and a syndrome P0 is found, it

means that the normalized quantum state is |000〉 + A|111〉, where A is an amplitude that

can be related to p. Hence, the limits to the protection that a code can o�er to a system is

the amplitude of a logical error after an evolution. This subtlety is some times overlooked,

but it is in the core of the threshold for the surface code that we will discuss.

2.1.1 General framework for quantum error correction

We made some progress towards understanding quantum error correcting codes with the bit

�ip error code: we saw how to bypass the no-cloning theorem and how to measure the qubits

for errors without damaging the information they contain. But there is still one obstacle that

we mentioned before: the set of errors that can a�ect quantum information is far greater than

the one a�ecting classical information.

To see how to overcome this di�culty, we need to understand what kinds of errors can be

dealt with in general using a quantum error correcting code. In the following lines we follow

mainly [22], but we also take some ideas from [3].

Let us start with some notation. We call C the code space: this is a Hilbert space composed

by the set of logical states, it is also a sub-space of a larger Hilbert space. Logical states are

the ones we use to encode the information. They are also called codewords, e.g. |000〉 and

|111〉 are the three-qubit code's codewords.

We denote E as the set of possible errors. This errors take the form of tensor products of
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operators:

Ea =
⊗
i

Oi,a, (2.13)

where a labels di�erent errors and i labels the qubits. For example, errors in the three-qubit

code were bit �ips, i.e. σx Pauli operators acting on any of the physical bits. Then, for this

example: Oi ∈ {σxi }, i = 1, 2, 3.

Not all errors can be detected and corrected by the code. The set of correctable errors is

denoted Ec. If Ea ∈ E but Ea /∈ Ec, then Ea is an uncorrectable error.

How do we notice that an error happened? When correctable errors occur, syndrome

extraction leads to the state of the qubit being projected onto a sub-space perpendicular to

C. But when an uncorrectable error occurs the state of the qubit remains in C, thus the error

goes unnoticed.

We can exemplify this with the three-qubit code and in Figure 2.3 we show a visual

representation of correctable and uncorrectable errors related to this code. In the �gure, C is

the plane de�ned by vectors |000〉 and |111〉.

When a correctable error occurs, syndrome extraction projects the faulty state onto a plane

perpendicular to C. This plane corresponds to either of the sub-spaces de�ned by P1, P2 or

P3 (Equation (2.12)), depending on the particular error.

On the other hand, an uncorrectable error will keep the state of the system in C, i.e. the

faulty state remains in the plane de�ned by the codewords.

Now we will put this into equations. We label two di�erent codewords |i〉 and |j〉 ∈ C.

For correctable errors to be perfectly distinguishable, they have to take the codewords to

orthogonal states, as we just discussed, i.e.:

〈i|E†aEb|j〉 = 0, (2.14)

for Ea, Eb ∈ Ec.

Moreover, correctable errors need to be such that:

〈i|E†aEb|i〉 = Cab. (2.15)
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Figure 2.3: Visualization of correctable and uncorrectable errors for the three-qubit code. |000〉
and |111〉 are the codewords, and |Ψ〉 is the original state of the qubit. Correctable errors can
be detected because, when they occur, syndrome extraction projects the state of the qubit
onto a sub-space which is orthogonal to the code space. Uncorrectable errors maintain the
state of the qubit in the code space, thus being undetectable.

Also, notice that the last condition implies that

(
〈i|E†aEb|i〉

)†
= C∗ab (2.16)

and (
〈i|E†aEb|i〉

)†
= 〈i|E†bEa|i〉 = Cba. (2.17)

Thus Cab is has to be a Hermitian (Cba = C∗ab) matrix and it does not depend on the state |i〉.

This condition has to be met because otherwise we would get information about the encoded

state, and thus we would destroy it by doing syndrome extraction.

These two conditions can be summarized as:

〈i|E†aEb|j〉 = Cabδij (2.18)

Another way this is written in the literature is by using the projectors P onto C: P =∑
i |i〉〈i|, for |i〉 ∈ C. Then the error correction condition is:

PE†aEbP = CabP, (2.19)

which clearly is equivalent to Equation (2.18). This is the form which is used in [3].
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2.1.2 Discretization of errors

In this Section we show that we only need to design an error code that accounts for a �nite

number of errors to get protection against an in�nite number of arbitrary errors.

In particular, we are going to show that errors which are linear combinations of elements

of Ec are also correctable errors. I.e., if

Fj =
∑
i

mijEi, (2.20)

where the mij is a matrix of complex numbers and Ei ∈ Ec, then Fj ∈ Ec.

To prove this, we start from Equation (2.18), which characterizes correctable errors. With-

out loosing generality, we will assume that Cab is diagonal, i.e. Cab = Caaδab.

We are going to see how this condition behaves when we use errors that are linear combi-

nations of Ei, as in Equation (2.20). To that end we substitute E → F on the left hand side

of Equation (2.18), and writing to F †j =
∑

im
∗
ijE
†
i we get:

〈i|F †aFb|j〉 = 〈i|
∑
a′

m∗a′aE
†
a′

∑
b′

mb′bEb′|j〉 =
∑
a′b′

m∗a′amb′bCa′b′δa′b′δij

=
∑
a′

m∗a′aCa′a′ma′bδij = C̄abδij. (2.21)

Now we need to determine whether C̄ab =
∑

a′m
∗
a′aCa′a′ma′b is Hermitian or not. If it is,

the error correction criteria holds for the errors F , which is what we want to prove.

C̄ab is Hermitian, if C̄† = C̄, i.e. C̄∗ba = C̄ab. Let us see:

C̄∗ba =

(∑
a′

m∗a′bC
∗
a′a′ma′a

)∗
=
∑
a′

ma′bC
∗
a′a′m

∗
a′a. (2.22)

And, from the fact that Cab is Hermitian, we conclude that C̄ab is Hermitian too.

2.2 Threshold theorem

Under what conditions can we scale a quantum computer and operate it for an extended time

without errors propagating and corrupting the information? This is the question answered by

the threshold theorem and studied under the concept of fault tolerant quantum computation.

This theorem will be the focus of this thesis.
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Figure 2.4: Concatenation of three qubit code.

Here we will present the threshold theorem in the framework of stochastic error models:

in this Section we assume that errors are aleatory and independent. We devote Sections 2.4.1

and 4.2.1 and Chapter 4 to expand this theorem further and show how it is applied to other

types of error models.

Under this assumption (aleatory and independent errors), the threshold theorem guarantees

that if the error probability a�ecting individual quantum gates ε is below some threshold (the

accuracy threshold εth), then we can perform arbitrarily long quantum computations.

The key to this theorem is the concept of concatenation. It consists in encoding the

information various times over: imagine we use an error correction code once from physical

qubits, that would be level 1 concatenation. We would need n physical qubits, n depending on

the speci�c code. Level 2 concatenation then requires us to take the resulting logical qubits

from level 1 concatenation and using them as building blocks for another implementation of

the same error correction code. Notice that now we would need n2 physical quibits.

Then L levels of concatenation require nL physical qubits. For the three-qubit code, for

example, n = 3. Figure 2.4 illustrates the �rst two concatenation levels for the three-qubit

code.

We show now why concatenation is useful. Suppose there is a failure at the �rst level of

encoding, L = 1. For the three-qubit code this implies that there were errors in at least two

physical qubits. The probability of this happening being:

p1 ≈ cε2 ≈ α2ε2, (2.23)

ε here is the error per qubit per appropriate unit of time (the time to perform quantum error

correction or eventually implement a quantum gate), and α is the number of locations in the

quantum circuit where an error can a�ect a single qubit before error correction.

At level of encoding L = 2, the failure probability is
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p2 ≈ cp2
1 ≈ α2

(
α2ε2

)2
. (2.24)

Then, for L levels of encoding we have the general expression:

pL ≈ cp2
L−1 ≈

(α2ε)
2L

α2
. (2.25)

Suppose our computation takes T logical quantum gates to be performed, then we want

to compute for a time t = Tτ , τ being the time it takes to perform each gate. To accomplish

this computation with accuracy εth, we need L levels of concatenation such that:

pL ≈
(α2ε)

2L

α2
≤ εth

T
. (2.26)

If the condition ε < εth ≡ 1/α2 is met, this inequality can be solved for L:

L > L̄ ≈ log

[
log (T/α2εth)

log (1/α2ε)

]
. (2.27)

Finally, the number of qubits required is ntot = nL̄, thus:

ntot =

[
log (T/α2εth)

log (1/α2ε)

]logn

. (2.28)

As we see ntot only grows polylogarithmically (and not exponentially) with T and 1/ε,

which means that it is feasible to implement concatenation experimentally.

The downside to the concatenation is obvious, although the number of physical qubits

required does not grow exponentially with time, it does can become very large.

2.2.1 Error threshold as a phase transition

Dorit Aharonov's paper [23] is fundamental to introduce this approach. In that work, Aharonov

studied a quantum computer constituted by n qubits embedded in a d-dimensional lattices.

She noticed that the behavior of the accuracy threshold for quantum error correction reminds

one of a phase transition: there exist two regimes, one in which quantum computing is possible

(when the local noise rate ε is below the error threshold εth) and another in which the quantum

computer can be simulated e�ciently using a classical computer (local noise rate above ε1 >

εth).
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To further this analogy, Aharonov investigates the entanglement shared by spatially sep-

arated parts of the system (quantum computer), when n → ∞, using the concept of entan-

glement length. Entanglement length is the rate at which the entanglement between those

parts of system decays with the distance between them. It is also analogous to the correlation

length.

The interesting outcome of this analysis is that those two regimes related to the local noise

are also characterized by two di�erent behaviors of the entanglement length:

• below the error threshold, 0 ≤ ε < εth, the entanglement length is in�nite, i.e. there is

long range entanglement in the system;

• above a higher value for the rate of local noise, ε1 < ε ≤ 1, entanglement length is

�nite, so that entanglement decays exponentially with distance.

This results lead to the inference that there exists a phase transition in the system at a non-

trivial local noise rate εc, such that εth < εc < ε1, and the entanglement length can be used

as an order parameter to characterize this phase transition.

2.3 Stabilizer codes

We now start to specialize on the speci�c type of error correcting code that we are going to

study: the surface code. But since the surface code uses the stabilizer formalism as its basis,

we start by presenting brie�y this formalism. We follow mainly [3].

2.3.1 Stabilizer formalism

When working in the stabilizer formalism we do not focus on the state of the system, or the

codewords for quantum error correction. Instead we work with a set of operators {Si}, the

stabilizer operators, which then de�ne the set VS of possible states (or codewords) such that

Si|ψ〉 = |ψ〉. (2.29)

Let us give here an example: we will specify the codewords of the three qubit bit-�ip code

using the stabilizer formalism. This can help us better understand the abstract constructions

we will introduce later.
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Say we have the stabilizer operators:

S1 = σzσzI, and S2 = σzIσz. (2.30)

Then we can �nd states |ψ〉 such that S1|ψ〉 = |ψ〉, and S2|ψ〉 = |ψ〉. For S1 we have:

|000〉, |001〉, |110〉, and |111〉. For S2 we have: |000〉, |010〉, |101〉, and |111〉. Then the

common states for S1 and S2 are |ψ〉 = |000〉, and |ψ〉 = |111〉, which coincide with the

codewords of the three qubit code. We will come back to the three qubit code later on.

Now, in general, to construct the stabilizer operators for one qubit, we use the Pauli's

group G1
5 (the subindex just indicates that this is Pauli's group for one qubit). The elements

of this group are the Pauli's matrices and the identity, and the group's operation is the matrix

product. Explicitly the elements of G1 are:

{±I, ±iI, ±σx, ±iσx, ±σy, ±iσy, ±σz, ±iσz} , (2.31)

where we include elements with −1, and i factors to ensure that G1 is in fact closed under

the matrix product.

Gn corresponds then to the Pauli's group for n qubits and its elements are simply the

tensor product of the elements of G1 (e.g. Gn's identity element is I1 ⊗ I2 . . .⊗ In).

Now we can de�ne the so-called stabilizer S. The stabilizer is a subgroup of Gn which

speci�es a set of states Vs. Vs is formed by the common eigen-states of the elements of S.

We say that Vs is the vector space stabilized by S, or that S is Vs's stabilizer, because the

elements from Vs are stable (invariant) over the action of the elements in S.

Another important concept is the one of the group's generators. We actually implicitly

used it in our example of the three qubit code. We saw that the set S ′ = {S1, S2} (Equation

(2.30)) speci�es the codewords of the three qubit bit-�ip code. But notice that the set

S = {I, S1, S2, S3}, with S3 = Iσzσz, would also work.

Here S1 and S2 are the generators of the group S. Notice that they generate the elements

of this group, since S1S1 = I, and S1S2 = S3. We will use the notation S = 〈S1, S2〉 to

denote the generators of group S.

As �nal remarks, notice that the elements in S must all commute with each other so it

5An introduction to group's theory can be found in Arfken and Weber's book [24]. For us it is su�cient
to specify that a group is a closed set of elements and an operation. Each of the elements needs to have an
inverse, the operation has to be associative, and the identity element must exist.
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exists a common set of states for them. Also −I /∈ S, since −I|ψ〉 6= |ψ〉 unless |ψ〉 is a

trivial (null) state.

2.3.2 Quantum error correction with stabilizer codes

Using the stabilizer formalism we can start de�ning error correcting codes: a stabilizer code

C (S) is de�ned by the vector space VS which is stabilized by the subgroup S of Gn. We use

the notation [n, k] to characterize C (S) meaning that it utilizes n physical qubits, encodes k

logical qubits, and its subgroup S has l = n− k generators.

Error correction conditions for stabilizer codes

Now a natural question to ask is, what kind of errors can this code correct? In general terms,

and as we saw in Section 2.1, error operators that take a state in VS to an orthogonal state (or

linear combinations of them) are the ones that can be detected with certainty and corrected.

Let us expand on this in the following lines.

Since any 2× 2 matrix can be expanded in terms of Pauli matrices and the identity [24],

then we lose no generality by considering errors E ∈ Gn. Because of this consideration, an

error E either commutes or anti-commutes with the elements of S. There are three situations

then:

• If E ∈ S, the error commutes with all elements of S and, moreover, it does not alter at

all the encoded information (Equation (2.29)), and thus there is nothing to correct.

• If E /∈ S and it does not commute with all the elements of S, then E is a correctable

error, it will anti-commute ESi = −SiE with some elements of S taking the original

state to an orthogonal one which can be detected and corrected.

• If E /∈ S but it does commute with all the elements of S, then it will take an state

inside VS to another of the states of this set. This is problematic because then E is a,

so called uncorrectable error, and thus it can not detected and corrected.

The centralizer Z (S) of S is de�ned as the set of operators that commute with the generators

Si. Using this de�nition, we can identify the correctable errors of code C (S) as the set

Ec = {Ek} for which E†jEk /∈ Z (S)− S6 holds for all j, and k.

6Notice that Z (S)− S is the set of operators which commute with the generators Si but that are not the
generators themselves.
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We have just established which errors can be corrected. We are going to use the three-

qubit code to exemplify all this, but before that we �nish the presentation of stabilizer codes

by explaining how we can detect correctable errors and correct them.

For syndrome measurement we are going to use an operator that projects the state of the

system onto the space of the generators.

P =

∏n−k
j=1 (I + Sj)

2n−k
. (2.32)

Then, when the eigenvalue of each of the generators Si is 1, we get P = 1. But if one or

more eigenvalues of Si is −1, we get P = 0.

In practice syndrome extraction is done by measuring each of the generators in a rapid

sequence. In this way, we obtain values βi = ±1 associated with each measurement, such

that EjSiEj = βiSi. In case we obtain βi = −1 for some i, we can proceed to apply the

operator E†i to correct the error that occurred. This process will become clearer when we

apply it to our canonical example of the three-qubit code below.

The last concept we will introduce is the code's distance. This distance is important since

it tells us how many errors can the code correct.

The code's distance is calculated using the error's weight |Ek|. To understand what is

the weight of an error operator we recall their de�nition, Equation (2.13): an error operator

Ek ∈ Gn is written in terms of a tensor product of operators which can be Pauli x, y, z

matrices or the identity. Then error's weight is simply the number of its factors which are not

the identity.

Finally, the code's distance is the minimum weight of one of the uncorrectable errors, i.e.

Ek ∈ Z (C)− S:

d = min
Ek∈Z(C)−S

|Ek| . (2.33)

As we said, the code's distance indicates how many errors can it correct: we need the

code's distance to be, at least, d = 2t+ 1 such that it can correct t errors [3].

Very simple example: three-qubit bit �ip code

Let us use our go-to example to illustrate the concepts we just presented.

As we said before, the stabilizer's generators in this case are S = 〈σzσzI, σzIσz〉, which
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σzσzI σzIσz Error type Action

+1 +1 no error III
+1 −1 qubit 3 �ipped IIσx

−1 +1 qubit 2 �ipped IσxI
−1 −1 qubit 1 �ipped σxII

Table 2.2: Error detection and correction. Adapted from [3].

through the condition Si|ψ〉 = |ψ〉 specify the codewords |000〉, and |111〉.

The errors in this case are constituted by x Pauli matrices, since we are working only with

bit-�ip errors. Errors then form the set:

E = {III, σxII, IσxI, IIσx, σxσxI, σxIσx, Iσxσx, σxσxσx} . (2.34)

As we saw, the correctable errors anti-commute with one or more generators. It can be

readily veri�ed that these are given by the set:

Ec = {III, σxII, IσxI, IIσx, σxσxI, σxIσx, Iσxσx} .

Uncorrectable errors are the ones that commute with generators, but are not themselves

generators (i.e. they belong to the set Z (S) − S). For the three-qubit bit-�ip code, only

σxσxσx belongs to this category.

Since we have only one uncorrectable error with weight |E| = 3, the code's distance is

d = 3, and it can correct errors in just t = 1 qubit.

Finally, to do syndrome extraction and correction we measure the generators and correct

accordingly. This actions are condensed in Table 2.2.

This analysis does not bring up anything new for this particular code, but it certainly

helps illustrate stabilizer codes. This makes introducing the surface code, an speci�c type of

stabilizer code, a more straightforward task.

2.4 Surface code

The surface code is an stabilizer code C (S) constructed on an square lattice with spins

located on its links [25, 26]. It is several important features: 1) �rst it has a very high

threshold [27, 28, 29]; 2) its two-dimensional geometry allows for an easy access to individual

qubits (by the electronic components necessary to control them); and �nally 3) it requires
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only local gates and measurements. Due to this impressive list of features, it has been actively

researched for experimental implementation[30, 31].

Having justi�ed our election for surface codes, let us now introduce their elements. The

surface code's generators, called simply stabilizer operators in the literature, are star As and

plaquette Bp operators:

As =
∏
j∈s

σxj and Bp =
∏
j∈p

σzj . (2.35)

a) b)

Figure 2.5: Surface code

Star operators are located around vertexes s, and plaquette operators are located on the

faces p of the lattice, see Figure (2.5).

It can be easily seen that all the stabilizer operators commute, as is expected:

[As, Bp] = [As, As′ ] = [Bp, Bp′ ] = 0. (2.36)

Stars commute between them trivially and the same holds for plaquettes. Stars and pla-

quettes commute between them since they share either none or two qubits.

We label n×m a lattice (Figure (2.5)) which has nm total vertical links, and (n+ 1) (m+ 1)

total horizontal links. Since there is a qubit in each link, we have

ntotal = 2mn+m+ n+ 1 (2.37)

qubits in the lattice.

On the other hand there are (n+ 1)m star operators, and n (m+ 1) plaquette operators.

This amounts to having
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k = 2nm+ n+m (2.38)

generators total. Recalling Section 2.3.2, we conclude this code supports ntotal−k = 1 logical

qubits.

More qubits can be stored in a single lattice by relaxing the stabilizer constrain. Another

approach proposed in the literature is to have �nite patches of a plane (each one encoding a

logical qubit) and when necessary attach these patches by turning on qubits and stabilizers

connecting them. As we mentioned before, the fact that the surface code has one of the

largest error thresholds (as well as its other advantages) makes it possible that these patches

could in principle be quite small.

The protected space VS is de�ned by the stabilizer formalism as the set of common eigen-

states of the stabilizer operators, i.e.:

VS = {|ψ〉 ∈ H : As|ψ〉 = |ψ〉, Bp|ψ〉 = |ψ〉 for all s, p} , (2.39)

where H is the complete Hilbert space of all the qubits of the lattice.

The surface code's codewords are:

∣∣↑̄〉 = G |Ω〉 , (2.40)∣∣↓̄〉 = X̄
∣∣↑̄〉 , (2.41)

where |Ω〉 is the ferromagnetic state (σzj |Ω〉 = + |Ω〉 for all j), G = 1√
2Ng

∏
s (1 + As), and

X̄ is a logical operator, which consists of a string of σx operators acting in physical qubits

and it goes from the top to the bottom edge of the lattice, e.g. path Γ′ from Figure 2.5-b:

X̄ =
∏
j∈Γ′

σxj . (2.42)

The other logical operator possible is Z̄, a string of σz operators which goes from one side

of the lattice to the other, e.g. path Γ from Figure 2.5-b:

Z̄ =
∏
j∈Γ

σzj . (2.43)
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Both of those logical operators, when induced by the environment, constitute uncorrectable

errors. This is because they commute with all the elements of the stabilizer and consequently

they are not detected when syndrome extraction is performed.

We recall now the concept of the code's distance (Equation (2.33)), de�ned by the weight

of the smallest uncorrectable error. Since for the surface code those errors are X̄ and Z̄, the

code's distance will correspond to the shortest path between the top and bottom or the left

and right edges of the lattice, for an n×m lattice this is d = min {n+ 1, m+ 1}. Then the

surface code can correct b(d− 1) /2c errors.

2.4.1 Surface code's error threshold

An early calculation of the surface code's error threshold is presented by Dennis et. al. in

[26]. They consider uncorrelated, stochastic errors and they map the problem of �nding the

surface code's accuracy threshold to one involving �nding the critical point of an equivalent

spin system.

They study two cases: in the �rst one it is assumed that the syndrome extraction is

perfectly performed in one time step (i.e. the errors detected correspond exactly to the errors

that happened in our system, i.e. no experimental errors intervened in our measurements). In

the second case they take into account possible experimental errors in the syndrome extraction

process, so that syndrome extraction has to be performed various times (i.e. during various

time steps).

The �rst case (perfect syndrome extraction) lead Dennis et. al. to an equivalent spin

system in two dimensions (actually a random bond Ising model), where the error threshold

pc = 0, 1094± 0, 0002 corresponds to the critical point on the Nishimori line.

The second case (imperfect syndrome extraction) lead them to an spin system in three

dimensions (a Z2 gauge theory with quenched randomness) in which the third dimension

corresponds to the time during which the various syndrome extractions occur. Again the error

threshold is related to the critical point of the model on the Nishimori line. Here they only

could obtain a lower bound of pc ≥ 0, 0114.

Some later calculations of the error threshold of the surface code were performed using

stochastic error models and mapping the problem onto an equivalent spin model [32, 33].

Another type of determination of the accuracy threshold involves developing algorithms for

determining error recovery procedure from the information obtained by the syndrome extraction
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[29, 34]. In this approach, stochastic errors happening in a quantum memory are simulated

in a computer. Then the �nal state of the simulation is passed on to an algorithm that will

determine how the recovery should be performed. The percentage of times that the algorithm

got the recovery procedure right corresponds to the accuracy threshold. These estimates lead

to lower values for the threshold, related to the di�culty of properly identifying the errors.

We leave the discussion of the accuracy threshold in relation to other kinds of error models

for Section 3.5.
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Chapter 3

Open quantum systems

Quantum systems that interact with their environment are called open quantum systems,

in contrast to closed quantum systems which are the ones that do not interact with their

surroundings. In this sense, quantum computers are indeed open quantum systems.

The study of open quantum systems began well before Quantum Information entered the

research mainstream [35, 36], but since then it has been increasingly relevant to understand

their dynamics because experimental applications depend upon this knowledge.

In the previous Chapter, we presented methods for protecting a quantum memory from

the pervasive e�ects of its interaction with the environment. We also stated that theoretical

study of those methods has traditionally assumed stochastic error models.

In this Chapter we are going to explain in more detail what these stochastic error models are

and what are their downsides. We are also going to study the system plus reservoir approach,

a broader framework for studying the dynamics of open quantum systems. We will also show

that stochastic error models constitute an special case of the system plus reservoir approach

(weak coupling).

Then we will present the spin-boson model. This model is constituted by a two level system

interacting with an in�nite set of harmonic oscillators. This model has the advantages of being

exactly solvable and presenting characteristics like non-Markovianity, which are not captured

by stochastic error models.

Finally, we revisit the threshold theorem and show how it is modi�ed when this di�erent

environmental models are taken into account.
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3.1 System plus reservoir approach

The starting point of this approach is to consider that the system of interest S (e.g. the

quantum memory) and its environment B (also called bath or reservoir)1 form closed total

system S +B. This means that this total system evolves unitarily [14, 3, 13]. We also call S

and B sub-systems of the total system.

The total system's Hilbert space is given by the tensor product of the system's and bath's

Hibert spaces, i.e. HS ⊗HB, and the total Hamiltonian as a function of time is [14]:

H (t) = HS ⊗ IB + IS ⊗HB +HI (t)

= HS +HB +HI (t) , (3.1)

where HS, HB, and HI are the Hamiltonian of the system, of the bath, and of the interaction

system-bath. IS, and IB are the identity operators in the Hilbert space of the system and of

the bath. We did not write the tensor products in the last line just to simplify the notation.

The state of a quantum system is represented in introductory approaches by its wave

function, e.g. in the coordinate space, Ψ (~r) or by its state using Dirac notation |Ψ〉. But

the most general approach to represent the state of a quantum system is through its density

matrix ρ.

When the system is in a pure state |Ψ〉, the density matrix is simply ρ = |Ψ〉〈Ψ|. But a

density matrix is equally adequate for representing an statistical mixture ρ =
∑

awa|ψa〉〈ψa|,

for some set of states {|ψa〉} and a set of weights {wa}, which meet the condition
∑

awa = 1.

More on the density matrix can be found in [14].

Since the total system is closed its evolution could be calculated in principle using the total

Hamiltonian H (t) and the standard Schrödinger and Heisenberg equations. For instance, if

the initial state (at time t0) of the total system is a pure state |ψ (t0)〉, then its time evolution

follows the Schrödinger equation:

i
d

dt
|ψ (t)〉 = H (t) |ψ (t)〉. (3.2)

The solution to this equation is given by an evolution operator U (t, t0) so that the state of

1We are going to use the names environment, bath, and reservoir interchangeably. The label B for the
bath is contingent.
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the system as a function of time is given by

|ψ (t)〉 = U (t, t0) |ψ (t0)〉. (3.3)

Thus, the explicit expression for the evolution operator is obtained by solving the equation:

i
∂

∂t
U (t, t0) = H (t)U (t, t0) . (3.4)

And the solution to this equation involves a time ordered Tt exponential:

U (t, t0) = Tte
−i

∫ t
t0
H(t′)·dt′

. (3.5)

Dyson series and Magnus expansion

The evolution operator in general is di�cult to calculate, so there are di�erent expansions,

like the Dyson series or the Magnus expansion, that can be used to obtain truncated, but

workable, expressions. We present brie�y two of these expansions here, following Chapter 1 of

[11].

The Dyson series is an in�nite sum,

U (t) = I +
∞∑
n=1

Sn (t) , (3.6)

where each of its terms involves time-ordered integrals:

Sn (t) ≡ (−i)n
∫ t

0

dt1H (t1)

∫ t1

0

dt2H (t2) . . .

∫ tn−1

0

dtnH (tn) . (3.7)

Notice that time ordered here means that the earlier time integral is at the utmost right,

and later times follow to its left sequentially.

If the Hamiltonian is time-independent each of these terms become Sn (t) = (−iHt)n /n!,

then the evolution operator takes the familiar form U (t) = e−iHt.

On the other hand, the Magnus expansion at a time t is an operator series

Ω (t) ≡
∞∑
n=1

Ωn (t) ,
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where Ωn (t) is nth order in the Hamiltonian H (t) and we write the lowest orders explicitly

below.

In the evolution operator this series appears in the exponential, though, U (t) = eΩ(t). In

this case we have an interesting property: if we take a �xed time T , then we can de�ne an

e�ective time-independent Hamiltonian Heff = i
T

Ω (T ) which generates an equivalent time

evolution to the one generated by the time-dependent Hamiltonian.

The terms of the Magnus expansion do not have a simple closed formula like the Dyson

series' ones. In general they can be obtained using a recursive formula. Here we write the �rst

three terms of the Magnus expansion:

Ω1 (t) = −i
∫ t

0

dt1H (t1) , (3.8)

Ω2 (t) = −1

2

∫ t

0

dt1

∫ t1

0

dt2 [H (t1) , H (t2)] , (3.9)

Ω3 (t) = −1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 ([H (t1) , [H (t2) , H (t3)]] + [H (t3) , [H (t2) , H (t1)]]) .

(3.10)

Although generating terms of arbitrary order is easy with the Dyson series and its conver-

gence is granted if H is a bounded operator for all t, a truncation of the series does not leads

to an unitary operator.

The Magnus expansion converges if
∫ t

0
dt′ ‖H (t′)‖ < π, but it may not do it otherwise.

As we said its terms do not have a general form, but this expansion is unitary order by orders.

Hence a truncation of the series will produce an unitary operator.

Reduced density matrix

Although the evolution operator will be a key ingredient for our later analysis, the evolution of

the S+B system as a whole is not actually what we are interested in: we want to investigate

what is the e�ect of the bath on the system of interest. To that end we use the concept of

reduced density matrix.

In order to obtain the reduced density matrix of a sub-system, we �trace out� the other

system's degrees of freedom [11, 3]. So if {|φB,i〉}, i = 1, 2, ..., nB, is the complete set of

the bath's states, then ρS = trBρ =
∑nB

i=1〈φB,i|ρ|φB,i〉 is the reduced density matrix of the
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system of interest. Then the time evolution of the system of interest is given by [14]:

ρS (t) = trB
{
U (t, t0) ρ (t0)U † (t, t0)

}
, (3.11)

We can also be interested in calculating the mean value of some observable represented

by the operator O. An operator in the space of the system of interest takes the form OS =

OS ⊗ IB, and its mean value can be calculated in the following way:

〈O〉 = trS {OρS (t)} . (3.12)

Calculating this density matrices, and manipulating operators is by no means a trivial task.

That is why there are multiple methods to deal with the speci�c features of open quantum

systems. The Feynman-Vernon path integral approach [12, 13], master equations [14], and

stochastic error models [14, 15].

In the following Section, we introduce the master equations approach, which involves mak-

ing the Born-Markov approximation that limits it to weak couplings between the environment

and the system of interest. We also describe brie�y what stochastic error models are.

We want to emphasize that master equations and stochastic error models are very use-

ful for studying a particular and important case. Also they are advantageous because their

mathematical manipulation is relatively easier than other methods. Finally, a lot of important

results, like the traditional form of the threshold theorem, have derived from their study. But

if we want to prove a little further the topic of open quantum systems we will need to go

beyond the master equations and stochastic error models.

3.2 Weak coupling

A widely used method for dealing with this regime is the one involving quantum master

equations [11, 14]. The goal here is obtaining �rst-order linear di�erential equations that

describe the dynamics of an open quantum system, in the same spirit of the Schrödinger

equation. Quantum master equations propagate density matrices to density matrices, though,

not pure states to pure states like the Schrödinger equation does.

In the following lines we describe how the derivation of the Markovian quantum master

equation is done. This is a master equation which involves the Born-Markov approximation and
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it is time local (it only depends on the density operator at present time, without retarded terms).

From these approximations follow the main Markovian master equation's main advantages

which are that the resulting equation is numerically and analytically tractable. But also they

constitute the main limitation of this approach: its applicability is limited to the speci�c

conditions we mentioned.

There are various ways to get to the Markovian master equation, we are going to follow

Breuer and Petruccione's microscopic derivation of the equation [14] (Chapter 3).

We write the total Hamiltonian as we did before, Equation (3.1): H = HS + HB + HI .

And we start from the von Neumann equation in the interaction picture:

d

dt
ρ (t) = −i

[
ĤI (t) , ρ (t)

]
, (3.13)

and its integral form ρ (t) = ρ (0)− i
∫ t

0
ds
[
ĤI (s) , ρ (s)

]
.

Inserting the integral equation into the von Neumann equation and taking the trace over

the bath we get:
d

dt
ρS (t) = −i

∫ t

0

dstrB
[
ĤI

[
ĤI (s) , ρ (s)

]]
, (3.14)

assuming trB
[
ĤI (s) , ρ (0)

]
= 0, since we are only interested in �rst-order terms in this

approach.

Now we start with the approximations, the �rst one we perform is the Born approximation.

We assume that the density matrix of the environment is negligibly a�ected by the interaction

with the system, i.e. ρ (t) ≈ ρS (t)⊗ ρB. Then the von Neumann equation becomes:

d

dt
ρS (t) = −i

∫ t

0

dstrB
[
ĤI (t)

[
ĤI (s) , ρS (t)⊗ ρB

]]
. (3.15)

This is the so called Red�eld equation. It is local in time but it is not a Markovian

master equation yet since it still depends upon the initial conditions. In order to solve this

inconvenience, we make one more manipulation: we substitute s by t−s in the integral and let

the upper limit of the integral go to in�nity. It is possible to do this if the integrand disappears

su�ciently fast for s � τB, where τB is the time scale over which the reservoir correlation

functions decay. Thus the Markov approximation is justi�ed for τR � τB, i.e. the time scale

over which the state of the systems varies appreciably τR is far greater than the relevant time

scale for the bath's correlation functions τB.
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Performing this substitution, we �nally obtain the Markovian quantum master equation:

d

dt
ρS (t) = −i

∫ ∞
0

dstrB
[
ĤI (t)

[
ĤI (t− s) , ρS (t)⊗ ρB

]]
(3.16)

Notice that this approximation implies that the correlation time τB is not resolved, thus

we say the that the time axis is coarse-grained. This is the Born-Markov approximation.

It is also desirable to work a little bit more on this equation so it de�nes the generator of

a dynamical semigroup. This guarantees that the evolution will be completely positive and

trace preserving.

To accomplish this, we perform the rotating wave approximation. This involves averaging

over the rapidly oscillating terms in the master equation. But �rst we need to write some of

the equation's terms in a di�erent manner. The Schrödinger picture interaction Hamiltonian

can be written in its more general form in the following way:

HI =
∑
α

Aα ⊗Bα,

where A†α = Aα and B†α = Bα. And it can rewritten as:

HI =
∑
α,ω

Aα (ω)⊗Bα =
∑
α,ω

A†α (ω)⊗B†α,

where ω = ε− ε′, and ε and ε′are energy eigenvalues of the system.

Using this, and through some manipulation [14], we get to the equation:

d

dt
ρS (t) = −i [HLS, ρS (t)] +D (ρS (t)) . (3.17)

The Hamiltonian contribution to the dynamics is given by the Hermitian operator

HLS =
∑
ω

∑
α,β

Sαβ (ω)A†α (ω)Aβ (ω) , (3.18)

and the dissipator is

D (ρS) =
∑
ω

∑
α,β

γαβ (ω)

(
Aβ (ω) ρSA

†
α (ω)− 1

2

{
A†α (ω)Aβ (ω) , ρS

})
. (3.19)
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Diagonalizing γαβ we obtain the Lindblad form. γαβ (ω) and Sαβ (ω) are the real and

imaginary parts of the Fourier transform of the bath correlation function:

Γαβ (ω) =
1

2
γαβ (ω) + iSαβ (ω) ≡

∫ ∞
0

ds · eiωs
〈
B†α (t)Bβ (t− s)

〉
. (3.20)

Let us sum up the weak-coupling limit in the following lines. The weak-coupling assump-

tion lets us expand the exact equation of motion for the density matrix to �rst order. This

assumption also suggests that the system and the bath's density matrices are approximately

separable and the bath is almost not a�ected, i.e. ρ (t) ≈ ρS (t)⊗ ρB. These two conditions

make up the Born approximation to the master equation.

The quantum master equation is made local in time by replacing the density matrix ρS (s) at

the retarded time s with the one at the present time ρS (t). This is the Markov approximation.

The integration limit is pushed to in�nity to get the Born-Markov approximation of the

master equation and the relevant physical condition for this approximation is that the bath

correlation time τB is small compared to the relaxation time of the system, i.e. τB � τR.

One last common approximation is done by neglecting rapidly oscillating terms proportional

to ei(ω
′−ω)t for ω′ 6= ω. This is the rotating wave approximation, and it leads to the master

equation in the Lindblad form. This amounts to the inverse frequency di�erences involved in the

problem being small compared to the relaxation time of the system, i.e. τS ∼ |ω′ − ω|−1 � τR.

3.3 Stochastic error models

This is the last kind of model for the description of open quantum systems we are going to

touch on. As we have been stating, it is also widely used in the quantum error correction

literature due to its simplicity [11, 3]. The basic ingredient for this models is a basic set of

errors, represented by operators {Ei} which multiply the state of system |ψ〉 → Ei|ψ〉. If this

operators are not unitary, the state of the system needs to be normalized after the action of

an error operator.

It is also assumed that this errors occur at some �xed rate ri, as a Poisson process. Then

the probability of an error Ei occurring in a time interval ∆t is pi = ri∆t. For the case of

quantum error correction it is needed that ri is small, as we saw in Chapter 2.

Depolarizing noise is a typical example of this kind of model used in quantum error correc-

tion. Here each qubit is multiplied by the Pauli operators σx, σy, and σz. If the rates of each
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error is the same, r/3, then after a time ∆t depolarizing noise takes the initial density matrix

ρ for one qubit to [3]:

ρ (E) = (1− p) ρ+
p

3
(σxρσx + σyρσy + σzρσz) , (3.21)

where p = r∆t.

After this brief presentation we just want to mention two results which are the most relevant

for us. Their proof is beyond the scope of this work, for it we recommend the interested reader

to Chapter 1 of [11]. First, discrete-time stochastic error models can be equivalent to some

CPTP (completely positive trace-preserving) maps. And when we consider continuous time,

the noise can be described by Markovian master equations.

This last result we want to emphasize, it means that stochastic error models are subject

to the same validity conditions that we mentioned before.

3.4 Spin-boson model

Now that we established that the general system-plus-environment approach is the more ad-

equate for the task of studying the dynamics of an open quantum system, and by extension

of a quantum memory, we are going to concern ourselves on describing what exactly will our

environment be.

A model for the environment should be simple enough so that analytical and numerical

calculations are feasible but which captures the fundamental aspects of a real environment. The

spin-boson model then �ts nicely here: it meets our requirements and it has been extensively

studied inside and outside the context of quantum information [13, 37].

In the spin-boson model the tunneling between states of a two-level quantum system is

studied, e.g. an spin-1/2 particle, when it is coupled to a bath of harmonic oscillators. This

kind of environment is justi�ed by its spectral function [35], which lets us compare theoretical

and experimental results.

At T = 0, it is possible to assume that the harmonic oscillator's bath is coupled linearly

to the spin of the particle when the latter a�ects only weakly the former. Although this was

not its original purpose, this model is particularly relevant for our analysis since it lets us

investigate the e�ect of the environment on a qubit.

One important comment must be made before we move on studying this model, it has
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Figure 3.1: Two-wells separated by a potential barrier. ~ωl and ~ωr are the energy di�erences
between the lowest and the �rst exited states of the left and right wells, respectively. ε is the
energy di�erence between the lowest state of the left and the right side.

to do with the two-level system. This system can be intrinsically limited to this two levels,

like an spin-1/2 particle. But it can also be that we have a system in which there are only

two relevant energy states because all others are not accessible by excitations due to thermal

perturbations, for example. In this case we have a truncated two-level system.

The canonical truncated system is one which has one continuous degree of freedom q

(e.g. a particle moving in one spatial dimension) and it is constrained by two potential wells

separated by a potential barrier V0, Figure 3.1.

There are some conditions that a truncated two-level system needs to meet. De�ning a

frequency ω0 which is of the same order of magnitude as ωl and ωr, we write those conditions:

V0 � ~ω0, the potential barrier is much larger than the energy di�erence between the lowest

and �rst excited energy states.

kBT � ~ω0, the thermal energy is much smaller than the energy di�erence between the

lowest and �rst excited energy states (kB is Boltzmann constant and T is the

temperature). This implies that thermal energy can not take the system to an

excited state.

One important consequence of the fact that V0 � ~ω0 for this truncated system is that

the matrix element of the tunneling process between the wells, ~∆0, is exponentially small

compared to ~ω0. Thus the tunneling do not mix the ground states with the excited states.

Now we are going to present formally the spin-boson model. First we are going to study

the classical version of the model, as is customary in the literature [12, 13, 36]. The quantum

version, which is obtained in an straightforward manner from the classical one, is presented

after that.
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Let us start introducing the classical case by considering only the two-level system, i.e.

isolated from its environment. Later on we will introduce the coupling between them, but for

now the Hamiltonian of the system is:

HTSS = −1

2
~∆0σ

x +
1

2
εσz, (3.22)

where σx and σy are the Pauli matrices, as usual. We chose a basis for the states of the

system in which the eigenvalues of the σz matrix coincide with the system's position. Then if

the system is localized on the right-hand side, the correspondent eigenvalue is +1, and when

it is localized on the left-hand side the eigenvalue is −1.

The dynamics of the system are given then by oscillations between the ground states

of the left and right-hand wells. To illustrate this behavior we can look at the probability

P (t) = Pr (t) − Pl (t), where Pr and Pl are the probabilities of the system be on the right-

hand or left-hand side well. Assuming P (0) = 1, we have:

P (t) = cos

[√
ε2 + (~∆0)2 · t

]
. (3.23)

Now we consider the full system, system of interest plus environment. We have the

contribution of the isolated system, the one from the harmonic oscillators, and the one coming

from the interaction system-environment:

H = HTSS +HHO + V

= −~∆σx

2
+
εσz

2
+
∑
α

(
mαω

2
αx

2
α

2
+

p2
α

2mα

)
+
q0σ

z

2

∑
α

Cαxα, (3.24)

this is the spin-boson Hamiltonian. HTSS was de�ned in Equation (3.22),HHO =
∑

α

(
mαω2

αx
2
α

2

+ p2
α

2mα

)
is the harmonic oscillators' Hamiltonian, and V = q0σz

2

∑
αCαxα is the interaction

term. Here ∆ is analogous to ∆0 but renormalized for high-frequency e�ects. The variables

pα, mα, xα, and ωα are the momentum, mass, position, and frequency of the α-th harmonic

oscillator of the bath. ±q0/2 are the positions of the minimum of the potential well (see Figure

3.1). Cα is the coupling of the system to the α-th harmonic oscillator.

If we assume thermal equilibrium as the initial condition, we can codify the complete

information about the environment in an spectral function J (ω), de�ned by the expression:
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J (ω) ≡ π

2

∑
α

C2
α

mαωα
δ (ω − ωα) . (3.25)

This spectral function has a high-frequency cuto�, given by frequency ωc. This cuto� can

be introduced in various forms, one of them is integrating over frequency from ω = 0 to ω = ωc

instead of integrating to ω →∞. Thus we avoid divergences coming from integrating over all

frequencies. Another way to introduce the cuto� is taking the case where the spectral density

behaves as a power law of the frequency and multiplying it by a function which decreases

exponentially with the frequency too, as to avoid high-frequency contributions:

J (ω) = Aωs
′
e−ω/ωc . (3.26)

Here we use s′ instead of just plain s to di�erentiate it from the parameter s that will appear

in the Hamiltonian used in Chapter 4, which is not the same.

Assuming this spectral density and strictly one spin interacting with the bosonic bath, we

can identify three regimes related to the value of s:

0 < s′ < 1, sub-ohmic case: for T = 0 the system is localized in the ground state of one of the

wells and for T 6= 0 the system relaxes (becomes localized) at a rate proportional

to exp
[
− (T0/T )1−s′

]
, T0 is a constant related to the parameters of the model.

s′ = 1, ohmic case: here we rede�ne the spectral density as J (ω) = ηωe−ω/ωc . In this

case, depending on the value of α ≡ ηq2
0/2π~, there exist various behaviors:

α > 1, T = 0 where the system is localized, and α = 1/2 and any T , there is an

exponential decay with π∆2/2ωc.

s′ > 1, super-ohmic case: the system shows damped oscillations.

It is usually convenient to introduce creation aα and annihilation a†α operators for the bosons.

They follow the usual harmonic oscillator commutation relations, i.e.,
[
aα, a

†
α′

]
= δαα′ . We

can write then the momentum and position of the bosons in terms of these new operators as:

xα =

√
~

2mαωα

(
aα + a†α

)
, and pα =

√
~mαωα

2

(
aα − a†α

)
. (3.27)

And we can rewrite Equation (3.24) as:
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H = HTSS +
∑
α

~ωαa†αaα +
~
2
σz
∑
α

fα. (3.28)

Here HTSS does not change (Equation (3.22)),
∑

α ~ωαa†αaα = HHO where we have dropped

the zero-point energy, and ~
2
σz
∑

α fα = V where the function fα codi�es the e�ects of the

environment:

fα = λα
(
a†α + aα

)
. (3.29)

The function λα is related to the spectral function as Cα was previously:

G (ω) =
∑
α

λ2
αδ (ω − ωα) =

q2
0

2~
∑
α

C2
α

mαωα
δ (ω − ωα) . (3.30)

As it can easily be seen, this spectral density G (ω) is related to the spectral density of the

continuous model: G (ω) = (q2
0/π~) J (ω).

3.5 Accuracy threshold and correlated environments

In the present Chapter, we introduced di�erent approaches to tackle the problem of modeling

the interaction of quantum systems with their environment. We gave some arguments to

illustrate why stochastic error models, which are standard in the study of quantum error

correction, are only valid for weak coupling between the system and its environment.

For these reasons, we are going to focus on the remaining of this work on performing a

more appropriate determination accuracy threshold (introduced in Sections 2.2 and 2.4.1), by

starting from a phenomenological model similar to the spin-boson model, to account for the

environment of the quantum memory. We also call this kind of environmental models correlated

since errors are not independent, as in stochastic models, but they show correlations between

them.

This Section tries to build a bridge between the stochastic and the correlated approaches

to the error threshold, following Novais, Mucciolo and Baranger's (NMB) work (Chapter 25

of [11]).

At the heart of this problem lies the fact that it is not possible to de�ne local error probabili-

ties from correlated models [15]. Sometimes operator norms are used to characterize correlated

environments [38], but they are not good parameters since some interacting Hamiltonians can
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have large norms although the system-environment coupling is not strong.

NMB assume a general interaction term with the following form:

V =
∑
x

∑
α={x,y,z}

λα
2
fα (x)σα (x) . (3.31)

Notice it is similar to the spin-boson Hamiltonian's (Equation (3.28)) interaction term, but

there is a sum over all Pauli matrices.

The environment is assumed to be described by a free �eld theory, i.e. �uctuations are

Gaussian and Wick's theorem can be used to calculate high-order correlation functions. Here

two-point correlation functions decay as power laws:

〈Ψenv|fα (x1, t1) fβ (x2, t2) |Ψenv〉 ∼ O

(
1

|x2 − x1|2δ
,

1

|t2 − t1|2δ/z

)
, (3.32)

where δ is called scaling dimension and z is called dynamical exponent.

With this basis NMB perform a calculation of the probability of a particular history of

syndromes through a Dyson series. They �nd that the relevant correlation function for the

bath is

〈Fα (xi, ti)Fα (xj, tj)〉 ∼ O

(
1

|xi − xj|4δα
,

1

|ti − tj|4δα/z

)
, (3.33)

where Fα is a function of fα. Also the condition

D + z − 2δα < 0 =⇒ δα >
D + z

2
, (3.34)

where D is the dimension of the bath, is required for the perturbative expansion to converge.

What this implies is that when this condition (Equation (3.34)) is met, it is possible to

assign probabilities to the errors, as in stochastic models, thus the traditional version of the

threshold theorem applies.

On the other hand, for δα > (D + z) /2 we cannot assert that quantum error correction

is impossible. What can happen is that a non-perturbative version of the threshold theorem

is possible up to some point where correlations are so strong that they now start to make it

impossible to store and compute with quantum information.

NMB also associate this results to phase transition theory: Equation (3.34) de�nes what is

know as upper critical dimension of the model and a phase diagram of the quantum computer
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Figure 3.2: Phase diagram of a quantum computer running quantum error correction. Taken
from [39].

can be drawn where one axis is given by the local error probability and the other is the scaling

dimension of the environment. All this is summed up by Figure 3.2.

Following a similar approach, Khoon and Preskill obtained the same results in a later work

[40].

3.5.1 Surface code's accuracy threshold and correlated environ-

ments

Novais, Mucciolo and collaborators have been working towards understanding the surface code

when it is coupled to a correlated environment [16, 17, 41]. Up to now, they have investigated

its time evolution over one error correction cycle.

In [16, 17, 41] they assume an interaction Hamiltonian which only induces bit-�ips, i.e. it

is similar to Equation (3.31) but only involving σx terms. Using this model, the �delity of the

evolved state of the quantum memory with respect to its initial state is calculated.

The accuracy threshold is then calculated by mapping the problem to the order-disorder

phase transition of an equivalent spin system, similarly to the works that we described in

Section 2.4.1 which used stochastic error models. The presence of this threshold is con�rmed

by the fact that the �delity can be made one by augmenting the size of the system, provided

the coupling is below its critical value.

In the present case, it was also found that the critical temperature is inversely proportional

to the coupling strength between the quantum memory and the environment and that the

the threshold value is diminished to p ∼ 0, 06 even in the case of nearest neighbors e�ective

interactions in an Ohmic environment.

In a later paper [17], a di�erent interaction Hamiltonian is used. Here only some e�ective



3.5. ACCURACY THRESHOLD AND CORRELATED ENVIRONMENTS 52

interaction is assumed, without specifying its details:

He� ({σx}) =
∑
i

hiσ
x
i +

∑
i 6=j

Ji,jσ
x
i σ

x
j , (3.35)

where hi and Ji codify the environmental details and can be real or imaginary numbers.

The method for solving the problem is again mapping the calculation of the �delity (of

the evolved state of the quantum memory with respect to the initial one) to the statistical

mechanics problem of �nding the phase transition of an equivalent spin system. The critical

parameters were calculated analytically when the only �rst neighbors interactions are considered

in the analogous spin system and numerically for greater correlations.

In this context, we can look at the next Chapter as an extension of these results, when a

time evolution encompassing multiple quantum error correction cycles, instead of just one, is

considered.
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Chapter 4

Surface code in a correlated

environment

Here we start putting together all the theory we presented in the previous Chapters. We study

the time evolution of a quantum memory under the protection of the surface code (Chapter

2). To benchmark the protection, we calculate the �delity of the evolved state of the memory,

after N error correction cycles, with respect to its initial state. The �delity is a measure of

the projection of an state |ψ〉 onto some reference state |ψ0〉:

F =
〈ψ|ψ0〉〈ψ0|ψ〉
〈ψ|ψ〉

. (4.1)

It is easy see that 0 ≤ F ≤ 1 and to interpret this measure:

• if F = 1 then |ψ〉 = |ψ0〉, for us this means that the evolved state is the same as the

one we encoded in the quantum memory, no information was lost, and

• if F = 0 then |ψ〉 is orthogonal to |ψ0〉, and the information we encoded is nowhere to

be found.

Then, if |ψ0〉 is the initial state of the system (memory plus environment) and |ψ〉 is its

evolved state, it is evident that the closest we can keep the �delity to one using quantum

error correction, the more likely it is that our information can be maintained and successfully

decoded.

We model the memory's interaction with its environment using a bosonic bath, as is done

in the spin-boson model (Chapter 3). We consider the case of an environment initially at zero
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temperature, T = 0, which is the regime where quantum correlations are more important.

Since the �nal goal here is to determine the error threshold of this memory (Chapter 2),

we are going to assume the most favorable evolution possible for the success of the quantum

error correction, i.e. we assume that all syndrome measurements return non-error values. This

means that only uncorrectable errors could have occurred.

The accuracy threshold is calculated by mapping our dynamical problem onto a statistical

mechanics one. As we have shown throughout this text, this is common-place.

4.1 Fidelity

The �delity gives us an idea of �how far� one state is from another [3]. In this Section we

are going to start calculating the �delity of the evolved state of the system with respect to

the initial state of our quantum memory |↑̄〉〈↑̄| ⊗ Ienvironment. This calculation will give us

information about whether the state of our memory stays near its initial value or if it deviates

substantially from it, in which case we could lose the quantum information codi�ed in the

memory.

For the initial state of the system, we assume that the quantum memory is not entangled

with its environment, i.e. the total state is separable. This is a sound assumption since we

should expect to be able to initialize the memory in any state we desire, otherwise it would not

be useful as a computing device [3]. We also assume that the logical up state |↑̄〉 (Equation

(2.40)) is encoded onto the memory:

|ψ0〉 = |↑̄〉 ⊗ |0〉. (4.2)

With this initial state, the �delity becomes:

F =
〈ψ|
(
|↑̄〉〈↑̄| ⊗ Ienvironment

)
|ψ〉

〈ψ|ψ〉
, (4.3)

and from now on we are not going to write explicitly Ienvironment.
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4.1.1 Characterization of the environment

Since we are using the system plus reservoir approach and the environment is composed by

bosons (or harmonic oscillators), the total Hamiltonian of the system plus the environment is:

H = H0 + V =
∑
k

ωka
†
kak + λ

∑
r

f (r, t)σxr , (4.4)

where:

H0 = Hmem +Hbath =
∑
k

ωka
†
kak, (4.5)

Hmem = 0 is the memory's Hamiltonian (we assume the qubits do not interact between them)

and Hbath =
∑

k ωka
†
kak is the bath's Hamiltonian. The interaction term of the Hamiltonian

is:

V = λ
∑
r

f (r, t)σxr . (4.6)

where λ is a parameter determines the coupling strength between the bath and the system

and f (r, t) is the bosonic operator:

f (r, t) =
(v/ω0)D/2+s

LD/2

∑
k 6=0

|k|s
(
e+ik·r+iωkta†k + e−ik·r−iωktak

)
, (4.7)

where ω0 is a characteristic microscopic frequency scale, v is the propagation speed of exci-

tations, and D is the number of spatial dimensions of the environment. Here the creation

and annihilation operators again follow the usual harmonic oscillator commutation relations,[
ak, a

†
k′

]
= δkk′ . Also notice that s here is not the same parameter that appears in the

spin-boson model, and that is why we used s′ instead of s when we presented it in Chapter 3.

The spectral function of this environment (see Chapter 3) can give us valuable information

as to which concrete physical system our phenomenological model applies. We rewrite its

expression here:

J (ω) ≡ π

2

∑
k

C2
k

mkωk
δ (ω − ωk) , (4.8)

where Ck comes from the interaction term of the Hamiltonian:

V = q0σz
∑
k

Ckqk. (4.9)
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In order to calculate the spectral function for our model, we need to identify the ex-

pression for Ck. This is done by using Equations (4.6) and (4.7), and the relationship

qk =
√
~/2mkωk

(
ak + a†k

)
. Also assuming ωk = v |k|, we get:

C2
k = 2λ2 (v/ω0)D+2s

q2
0L

D
mkvk

2s+1. (4.10)

Now we calculate the spectral density. We do this by inserting C2
k into Equation (4.8)

and taking the continuum limit for k (
∑

k →
LD

(2π)D

∫
dDk). We also assume that the bath is

two-dimensional (i.e. D = 2, which is the same dimensionality of the surface code lattice):

J (ω) =
λ2π

(2π)2

(v/ω0)2+2s

q2
0

∫
kdk · dθ · k2sδ (ω − ωk)

=
2λ2

q2
0ω

2+2s
0

ω2s+1, (4.11)

where we used the property δ (ω − vk) = δ
(
k − ω

v

)
/v.

4.1.2 Time evolution of the system

Now that we established the basic elements of our system, let us start constructing the quan-

tities 〈ψ|↑̄〉 and 〈ψ|ψ〉 in order to calculate the �delity.

The key here is the evolved state |ψ〉, this state is the result of alternating free evolutions

(corresponding to the time between syndrome extractions) and projections (corresponding to

the actual syndrome extractions):

|ψ〉 = P0U (N − 1)P0U (N − 2) . . .P0U (2)P0U (1)P0U (0) |↑̄〉|0〉. (4.12)

Notice that we are assuming that we can instantaneously measure error syndromes at the end

of each error correction cycle and that the total evolution is not unitary due to the presence

of the projection operators.

In the last expression there are two important quantities: the free-evolution operator U (n)

and the projection operator at the end of each cycle P0. Let us start writing the free-evolution

operator. It is calculated using Equation (3.5) and the total Hamiltonian we have just written

(Equation (4.4)). We also label each cycle of duration ∆ with an integer n ∈ [1, N ], so that
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it starts at time (n− 1) ∆ and ends at time n∆. All these facts lead us to:

U (n) = Tte
−iλ

∫ n∆
(n−1)∆ dt

∑
r f(r,t)σxr . (4.13)

On the other hand, the projection operator at the end of each error correction cycle is

simply:

P0 =
∏
P

(1 +BP ) = |↑̄〉〈↑̄|+ |↓̄〉〈↓̄| = |↑̄〉〈↑̄|+ X̄|↑̄〉〈↑̄|X̄, (4.14)

this operator projects the state onto the positive stars'1 Hilbert space. We do not need to

include the projector over the plaquettes, since our interaction couples the physical qubits only

to σx operators (bit �ips), so no phase errors are induced by the environment. This certainly

constitutes a simpli�cation but it permits us to obtain analytic results. Also notice that since

plaquettes are the dual of stars, our approach here is actually equivalent to a model which

only takes into account phase errors under a duality transformation.

Working on the numerator of the �delity and using the expression for the projection oper-

ator, we get:

〈ψ|
(
|↑̄〉〈↑̄|

)
|ψ〉 =

∑
KJ

〈0|
0∏

i=N−1

〈↑̄|KiU † (i)Ki+1|↑̄〉
N−1∏
i=0

〈↑̄|Ji+1U (i)Ji|↑̄〉|0〉, (4.15)

where J0 = K0 = JN = KN = I,
∑
KJ =

∑
K1,...KN−1

∑
J1...JN , and Ji 6=0,N = Ki 6=0,N ={

I, X̄
}
. We leave the details of the manipulations to Appendix A.1, because they are some-

what lengthy and add very little to our present discussion.

The denominator of the �delity can be written in a similar way:

〈ψ|ψ〉 =
∑
KJ

〈0|
0∏

i=N−1

〈↑̄|KiU † (i)Ki+1|↑̄〉
N−1∏
i=0

〈↑̄|Ji+1U (i)Ji|↑̄〉|0〉, (4.16)

where J0 = K0 = I, KN = JN ,
∑
KJ =

∑
K1,...KN

∑
J1...JN , and Ji 6=0 = Ki 6=0 =

{
I, X̄

}
.

Again we skip the details here and we leave them to Appendix A.2.

Next we write the spin variables in the x basis. Then instead of using | ↑〉i states we use

|+〉i and |−〉i ones. These new states are such that σxi |±〉i = σi|±〉i, where σi = ±1. Then

1Stars or star operators are one of the surface code's stabilizer operators. See Section (2.4).
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Figure 4.1: Keldysh contour.

we can re-write the ferromagnetic state as

|Ω〉 =
∏
i

| ↑〉i =
∏
i

(
|+〉i + |−〉i√

2

)
(4.17)

and the logical up state (Equation (2.40)) as

|↑̄〉 = G|Ω〉 = G
∑
σ

|σ〉,

where we used the notation |σ〉 = |σ1 . . . σN〉. The same reasoning applies to the τ variables.

We also assume that U is diagonal in that basis, so that UG = GU .

Our attention returns now to the free-evolution operator. We are going to use the time-

loop formalism, also known as the Keldysh formalism [11, 42, 43], in order to continue with

our calculation. We think of the ket as moving forward in time (since it contains the operators

of the form U (n)) and the bra moving backwards in time (since it contains the operators of

the form U † (n)), as in the loop shown in Figure 4.1. In this approach, we need to use a

di�erent label for the spin variables for the forward and backward evolutions. We use the label

σ for the ket and τ for the bra.

Using the notation ui (τ) = 〈s|U (i) |s〉, where s = σ, τ , the �delity's numerator becomes:

〈ψ|
(
|↑̄〉〈↑̄|

)
|ψ〉 =

∑
τ,σ

∑
KJ

〈0|

[
0∏

i=N−1

u†i (τ)
N−1∏
i=0

ui (σ)

]
|0〉

×
0∏

i=N−1

〈τ |KiKi+1G|τ〉
N−1∏
i=0

〈σ|Ji+1JiG|σ〉, (4.18)
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where J0 = K0 = JN = KN = I, and Ji 6=0,N = Ki 6=0,N =
{
I, X̄

}
. And its denominator is:

〈ψ|ψ〉 =
∑
τ,σ

∑
KJ

〈0|

[
0∏

i=N−1

u†i (τ)
N−1∏
i=0

ui (σ)

]
|0〉

0∏
i=N−1

〈τ |KiKi+1G|τ〉
N−1∏
i=0

〈σ|Ji+1JiG|σ〉,

(4.19)

where J0 = K0 = I and Ji 6=0 = Ki 6=0 =
{
I, X̄

}
.

4.1.3 Normal ordering

Instead of doing the time ordering, we will write the evolution operator in normal order. This

will help us advance with our calculation.

We start performing the Magnus expansion (see Section 3.1) of the evolution operator,

Eq. (4.13). This expansion is comprised mainly of commutators of the interaction potential.

In our case, it stops at second order, since the �rst commutator is a c-number and not an

operator. Applying this procedure, the evolution operator becomes:

u (n) = e
1
2

∫ n∆
(n−1)∆ dt1

∫ t1
(n−1)∆

dt2[−iλ
∑

r f(r,t1)σxr ,−iλ
∑

r′ f(r′,t2)σxs ]e−iλ
∫ n∆
(n−1)∆ dt

∑
r f(r,t)σxr . (4.20)

Then we can use commutation relations to rewrite the last equation's second exponential:

e−iλ
∫ n∆
(n−1)∆ dt

∑
r f(r,t)σxr = e−

λ2(v/ω0)D+2s

LD

∫ n∆
(n−1)∆ dt

∫ n∆
(n−1)∆ dt1

∑
r,r′

∑
k 6=0|k|

2seik·(r−r′)+iωk(t−t1)σxr σ
x
r′ ×

: e−iλ
∫ n∆
(n−1)∆ dt

∑
r f(r,t)σxr : (4.21)

We can now rearrange the terms and de�ne the Green's functions α and G to rewrite the

evolution operator as:

u (k, n) =
∏
k

e−G(k,∆,0)e−iα(k,n)a†ke−iα
∗(k,n)ak , (4.22)

where

α (k, n) =
λ (v/ω0)D/2+s

LD/2

∫ ∆n

∆(n−1)

dt
∑
r

|k|s σxr,ne+ik·r+iωkt

=
2λ (v/ω0)D/2+s

LD/2

∑
r

|k|s

ωk
σxr,ne

ik·r+iωk∆(n− 1
2) sin

[
ωk∆

2

]
, (4.23)
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and

G (k, n) =
λ2 (v/ω0)D+2s

LD

∫ ∆n

∆(n−1)

dt1

∫ t1

∆(n−1)

dt2
∑
r,r′

|k|2s e−ik·(r−r′)−iωk(t1−t2)σxr,nσ
x
r′,n.

(4.24)

For the reverse evolution we rename the Green's functions α→ β, and, as we stated before,

we use the spin variable σ → τ to distinguish the two branches of the Keldysh diagram. So

we write:

u† (k, n) =
∏
k

e−G
∗(k,∆,0)eiβ(k,n)a†keiβ

∗(k,n)ak , (4.25)

where

β (k, n) =
λ (v/ω0)D/2+s

LD/2

∫ ∆n

∆(n−1)

dt
∑
r

|k|s τxr,ne+ik·r+iωkt. (4.26)

We need to normal order the products of evolution operators through quantum error cor-

rection cycles. First we have the forward evolution operator:

uN−1 (σ) . . . u0 (σ) =
∏
k

e−
∑N−1
i=0 G(k,i)e−

∑N−1
n=1

∑n−1
m=0 α

∗(k,n)α(k,m) ×

e−iα(k,N−1)a†k . . . e−iα(k,0)a†ke−iα
∗(k,N−1)ak . . . e−iα

∗(k,0)ak , (4.27)

and then the backwards evolution operator:

u†0 (τ) . . . u†N−1 (τ) =
∏
k

e−
∑N−1
i=0 G

∗(k,i)e−
∑N−1
n=0 β∗(k,n)

∑N−1
m=n+1 β(k,m) ×

eiβ(k,N−1)a†k . . . eiβ(k,0)a†keiβ
∗(k,N−1)ak . . . eiβ

∗(k,0)ak . (4.28)

Putting the last two equations together and doing the global time ordering, we �nd that

the total evolution operator is:

u†0 (τ) . . . u†N−1 (τ)uN−1 (σ) . . . u0 (σ) =∏
k

e−
∑N−1
i=0 [G∗(k,i)+G(k,i)]e−

∑N−1
n=0

∑N−1
m=n+1 β

∗(k,n)β(k,m)e−
∑N−1
n=1

∑n−1
m=0 α

∗(k,n)α(k,m)e
∑N−1
n=0

∑N−1
m=0 α(k,n)β∗(k,m)×

e−i[α(k,N−1)−β(k,N−1)]a†k . . . e−i[α(k,0)−β(k,0)]a†ke−i[α
∗(k,N−1)−β∗(k,N−1)]ak . . . e−i[α∗(k,0)−β∗(k,0)]ak

(4.29)
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Now we separate the sum over indexes of the same time slice from those of di�erent time

slices, i.e.
N−1∑
n=0

N−1∑
m=0

=
∑
n

+
∑
n6=m

, (4.30)

where we wrote
∑

n =
∑

n=m =
∑N−1

n=0 and
∑

n 6=m =
∑N−1

n=0

∑N−1
m=0,m 6=n. By doing this we

get:

u†0 (τ) . . . u†N−1 (τ)uN−1 (σ) . . . u0 (σ) =
∏
k

e−
∑
n S(k,n)e−

∑
n6=m C(k,n)

× e−i
∑
n[α(k,n)−β(k,n)]a†ke−i

∑
n[α∗(k,n)−β∗(k,n)]ak , (4.31)

where

S (k, n) = G∗ (k, n) + G (k, n)− α (k, n) β∗ (k, n) (4.32)

is the sum of terms of the same time slice, and

C (k, n) = α∗ (k, n)α (k,m) + β∗ (k, n) β (k,m)− α (k, n) β∗ (k,m)− α (k,m) β∗ (k, n)

(4.33)

is the sum of terms of di�erent time slices. It is straightforward now to write the expectation

value of the vacuum state of the bath:

〈0|u†0 (τ) . . . u†N−1 (τ)uN−1 (σ) . . . u0 (σ) |0〉 =
∏
k

e−
∑N−1
n=0 S(k,n)e−

∑
n

∑
m C(k,n). (4.34)

We need to sum the terms of the same slice S (k, n) over the bath modes k. To that end,

we suppose that ωk is isotropic in space. In this way we get:

∑
k

S (k) =
∑
r,r′

[F (r− r′) (τxr − σxr ) (τxr′ − σxr′) + iΦ1 (r− r′) (τxr − σxr ) (τxr′ + σxr′)]

(4.35)

And for terms at di�erent time slices, we sum C (k, n) over the bath modes to get:

∑
k 6=0

C (k, n) =
∑
r,r′

{[Fc (r− r′, n−m)− Φ2,s (r− r′, n−m)] (τr,n − σr,n) (τr′,m − σr′,m)

+i [Φ2,c (r− r′, n−m) + Fs (r− r′, n−m)] (τr,n − σr,n) (τr′,m + σr′,m)} (4.36)
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In the last two equations, F (r− r′), Φ1 (r− r′), Φ2 (r− r′), Fc (r− r′, n−m), Φ2,s(r−

r′, n−m), Φ2,c(r−r′, n−m), and Fs (r− r′, n−m) are all derived from the original Green's

functions (G (k, n), α (k, n), and β (k, n)). They are also integrated over time and summed

over the bath modes. Their expressions are detailed in Appendix B.

Putting all these pieces together and taking the expectation value with the ground state

of the bath, we �nd the following expression for the product of the evolution operators:

〈0|u†0 (τ) . . . u†N−1 (τ)uN−1 (σ) . . . u0 (σ) |0〉 = e−H, (4.37)

where

H = H (τ, σ) =
∑
n

∑
k 6=0

S (k, n) +
∑
n6=m

∑
k 6=0

C (k, n,m) . (4.38)

Notice that this product looks like a partition function, but it is not as straightforward to

calculate since the complete expectation values have the constrains that come from syndrome

extraction after each quantum error correction cycle.

4.1.4 Fidelity's numerator, and denominator

Returning to the original problem, we proceed to examine the two expectation values involved

in the �delity. Its numerator (Equation (4.18)), which we can now write as:

〈ψ|
(
|↑̄〉〈↑̄|

)
|ψ〉 =

∑
S,Q

∑
KJ

e−H
N−1∏
i=0

〈τ |KiKi+1G|τ〉
0∏

j=N−1

〈σ|Jj+1JjG|σ〉, (4.39)

where J0 = K0 = JN = KN = I, and Ji 6=0,N = Ki 6=0,N =
{
I, X̄

}
, as before. And its

denominator (Equation (4.19)), which takes the same form:

〈ψ|ψ〉 =
∑
S,Q

∑
KJ

e−H
N−1∏
i=0

〈τ |KiKi+1G|τ〉
0∏

j=N−1

〈σ|Jj+1JjG|σ〉, (4.40)

but with di�erent restrictions, namely J0 = K0 = I, KN = JN , and Ji 6=0 = Ki 6=0 =
{
I, X̄

}
.

Until now everything has been done exactly, but to be able to get some results we need to

make simpli�cations. The �rst one is that if ωk is isotropic, then both Φ2,c (r, n), and Fs (r, n)

go to zero because we are integrating odd functions over all k (see Appendix B). Then we can
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rewrite H as:

H =
∑
r,r′

{∑
n6=m

[Fc (r− r′, n−m)− Φ2,s (r− r′, n−m)] (τr,n − σr,n) (τr′,m − σr′,m)

+

[
F (r− r′)

∑
n

(τr,n − σr,n) (τr′,n − σr′,n) + iΦ1 (r− r′)
∑
n

(τr,n − σr,n) (τr′,n + σr′,n)

]}
(4.41)

It is also useful to separate the sum with r = r′, and the rest. Since Φ2,s (0, n) = 0

(Appendix B), H becomes:

H =
∑
r

{∑
n6=m

Fc (0, n−m) (τr,n − σr,n) (τr,m − σr,m)

+

[
F (0)

∑
n

(τr,n − σr,n) (τr′,n − σr′,n) + iΦ1 (0)
∑
n

(τr,n − σr,n) (τr,n + σr,n)

]}

+
∑
r6=r′

{∑
n6=m

[Fc (r− r′, n−m)− Φ2,s (r− r′, n−m)] (τr,n − σr,n) (τr′,m − σr′,m)

+

[
F (r− r′)

∑
n

(τr,n − σr,n) (τr′,n − σr′,n) + iΦ1 (r− r′)
∑
n

(τr,n − σr,n) (τr′,n + σr′,n)

]}
(4.42)

We separate now the real and imaginary parts and use the fact that

sin

[∑
n

∑
r6=r′

Φ1 (r− r′) (τr,n − σr,n) (τr′,n + σr′,n)

]
= 0,

so that the expectation value in the numerator of the �delity can be written as:

〈ψ|
(
|↑̄〉〈↑̄|

)
|ψ〉 =

∑
S,Q

∑
KJ

e−H cos

[
Φ1 (0)

∑
n

∑
r

(τr,n − σr,n) (τr,n + σr,n)

]
×

cos

[∑
n

∑
r6=r′

Φ1 (r− r′) (τr,n − σr,n) (τr′,n + σr′,n)

]
N−1∏
i=0

〈τ |KiKi+1G|τ〉
0∏

j=N−1

〈σ|Jj+1JjG|σ〉

(4.43)
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with Ki, and Ji again following the prescriptions we gave before (Equation (4.15)), and

H =
∑
r

F (r− r′)
∑
n

(τr,n − σr,n) (τr′,n − σr′,n)+
∑
n 6=m

∑
r

Fc (0, n−m) (τr,n − σr,n) (τr,m − σr,m)

+
∑
n6=m

∑
r6=r′

[Fc (r− r′, n−m)− Φ2,s (r− r′, n−m)] (τr,n − σr,n) (τr′,m − σr′,m) . (4.44)

Also note that the expectation value in the denominator has the same form, with prescrip-

tions for Ki, and Ji speci�ed in Equation (4.16).

Now we will separate the term n = m:

H = Fc (0, 0)
∑
n

∑
r

(τr,n − σr,n) (τr,n − σr,n)

+
∑
r6=r′

∑
n

Fc (r− r′, 0) (τr,n − σr,n) (τr′,n − σr′,n)+
∑
n6=m

∑
r

Fc (0, n−m) (τr,n − σr,n) (τr,m − σr,m)

+
∑
n6=m

∑
r6=r′

[Fc (r− r′, n−m)− Φ2,s (r− r′, n−m)] (τr,n − σr,n) (τr′,m − σr′,m) . (4.45)

We took into account that Φ2,s (r, 0) = λ2

LD

∑
k 6=0 |k|

2s sin (k · r) sin (0) 1−cos[ωk∆]

ω2
k

= 0,

F (r− r′) = Fc (r− r′, 0), and that F (0) = Fc (0, 0) (details of this in Appendix B).

One more simpli�cation can be done. Notice that the sum over space and time of the spin

variables in the �rst cosine adds up to zero:

N−1∑
n=0

∑
r

(τr,n − σr,n) (τr,n + σr,n) =
N−1∑
n=0

∑
r

(τr,nτr,n − σr,nσr,n) = NsN −NsN = 0.

(4.46)

Then the expectation value in the numerator is:

〈ψ|
(
|↑̄〉〈↑̄|

)
|ψ〉 =

∑
S,Q

∑
KJ

e−H cos

[∑
n

∑
r6=r′

Φ1 (r− r′) (τr,n − σr,n) (τr′,n + σr′,n)

]
×

N−1∏
i=0

〈τ |KiKi+1G|τ〉
0∏

j=N−1

〈σ|Jj+1JjG|σ〉 (4.47)
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with

H = Fc (0, 0)
∑
n

∑
r

(τr,n − σr,n) (τr,n − σr,n)

+
∑
n

∑
r6=r′

Fc (r− r′, 0) (τr,n − σr,n) (τr′,n − σr′,n)+
∑
n6=m

∑
r

Fc (0, n−m) (τr,n − σr,n) (τr,m − σr,m)

+
∑
n6=m

∑
r6=r′

[Fc (r− r′, n−m)− Φ2,s (r− r′, n−m)] (τr,n − σr,n) (τr′,m − σr′,m) , (4.48)

and the restrictions we already stated for K, and J (Equation (4.15)).

4.2 Super-ohmic dissipation

From now on we investigate the super-ohmic regime. This special case has the property that

correlations decay very rapidly through spatial dimensions. In particular, we show in Appendix B

that, for s = 1/2, the ratio of coupling constants to �rst neighbors to the coupling constants

that come from self-interactions goes to zero as the high-frequency cut-o� Λ2 of the bath

diverges:
Fc (z, 0)

Fc (0, 0)
∼ Fc (z, 1)

Fc (0, 0)
∼ Fc (z, 0)

Fc (0, 1)
∼ Fc (z, 1)

Fc (0, 1)
∼ 1

Λ
(4.49)

and

Φ1 (z)

Fc (0, 0)
∼ Φ1 (z)

Fc (0, 1)
∼ 1

Λ1/2
, (4.50)

where z = a/v∆ is a dimensionless parameter which involves the lattice constant a, the

propagation velocity of excitations v, and the quantum error correction period ∆.

Doing this approximation, our exponent becomes:

H ≈ Fc (0, 0)
N−1∑
n=0

(τr,n − σr,n) (τr,n − σr,n)+
∑
n6=m

∑
r

Fc (0, n−m) (τr,n − σr,n) (τr,m − σr,m) .

(4.51)

This approximation simpli�es greatly our problem because we can restrict our attention

only to auto-correlations and, at the same time, lets us make a correspondence of our phe-

nomenological model with a concrete type of environment.

2Λ is the highest frequency the bosonic modes of the bath have. It appears when we take the continuum

limit and integrate:
∑
k →

(2π)2

L2

∑
k →

∫
d2k =

∫ Λ

0
kdk

∫ 2π

0
dθ.
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Figure 4.2: Equivalent spin lattice: each 2D slice corresponds to the time of each syndrome
extraction, time runs in the vertical axis.

4.2.1 Error threshold as a phase transition

In this Section we return to the ideas we presented in Section 3.5, which suggests us that

the error threshold can be thought of as a quantum phase transition. To accomplish this we

identify a parameter in the bath that we can vary, and �nd two di�erent regimes. In one of

them the �delity has value one (successful error correction), and another in which the �delity

decays to small values (loss of information): these regimes correspond to two phases of a

statistical model analog (Figure 4.2) to our quantum computer with dissipation. Then the

critical value of this parameter, would determine the error threshold.

To �nd this critical behavior, it is convenient to start by rewriting the �delity, Equation

(4.3), in terms of two quantities A, and B as:

F =
〈ψ|
(
|↑̄〉〈↑̄|

)
|ψ〉

〈ψ|ψ〉
=

A
A+ B

. (4.52)

What we gain here is that the behavior of the �delity will depend on B. When B = 0 the

�delity has value 1, and for B 6= 0 the �delity will always be less than 1. Thus from now on

we can restrict our attention to this new function B.

To �nd an expression for B, we �rst note that trivially that A = 〈ψ|↑̄〉〈↑̄|ψ〉. Then, after

some manipulation detailed in Appendix A.3, we get the expression:

B = 〈ψ|ψ〉 − A

=
∑
σ,τ

∑ ′′

{K},{J }

e−H
N−1∏
i=0

〈τ |KiKi+1G|τ〉
0∏

j=N−1

〈σ|Jj+1JjG|σ〉, (4.53)

where the sum
∑′′ has the restrictions J0 = K0 = I, JN = KN = X̄, and Ji 6=0,N = Ki 6=0,N ={

I, X̄
}
. Notice that B has the form of a partition function, with H being the Hamiltonian,

but it has the positive plaquette restrictions due to the projection operators at the end of each
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error correction cycle.

4.2.2 Physical meaning of the restrictions in the expectation val-

ues

We are going to expand the sum
∑ ′′

{K},{J }, which involves mainly the factors 〈τ |KiKi+1G|τ〉

and 〈σ|Ji+1JiG|σ〉.

Firstly we will see that, due to the presence of the projection operators, if the initial state

of our memory is in the logical up (down) state, the form of the projector forces it to propagate

through time.

We can show this in the following manner. Let us look at the product

. . . PUPU |ψ0〉, (4.54)

where the projection operator in the basis of the logical qubit is:

P = |↑̄〉〈↑̄|+ X̄|↑̄〉〈↑̄|X̄ = |↑̄〉〈↑̄|+ |↓̄〉〈↓̄| (4.55)

So, if |ψ0〉 = |↑̄〉:

PU |ψ0〉 ∝ P |↑̄〉 = |↑̄〉〈↑̄|↑̄〉, (4.56)

and if |ψ0〉 = |↓̄〉 = X̄|↑̄〉:

PU |ψ0〉 ∝ P |↓̄〉 = |↓̄〉〈↓̄|↓̄〉. (4.57)

We will use this fact to write a simpli�ed version of the restrictions. But �rst we need to

remember that since we are working in the x basis, then instead of up and down states we use

+ and − states (see Equation (4.17)). Those states are related by a Z̄ operator. For the σ

variables we write
{
|σ+
i 〉
}
, and

{
|σ−i 〉

}
, where:

|σ+
i 〉 =

∏
j

B�j |Fx〉i, and |σ−i 〉 = Z̄γ
i |σ+

i 〉. (4.58)

Then the restrictions in this basis are:
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〈σ+
i |X̄G|σ+

i 〉 = +〈σ+
i |G|σ+

i 〉, (4.59)

and

〈σ−i |X̄G|σ−i 〉 = 〈σ+
i |Z̄X̄Z̄G|σ+

i 〉 = −〈σ−i |G|σ−i 〉. (4.60)

In the last line we used the fact that Z̄ anti-commutes with X̄, and Z̄Z̄ = 1.

We will use the shorthand notation 〈σαi |G|σαi 〉 = G (σαi ), where α = +, −. Notice that

the τ variable follows the same structure.

Then, using this notation and the fact that the form of the initial state propagates through

quantum error correction cycles, B has can be written as:

B ≈
∑
σ,τ

e−H
N−1∏
i=0

N−1∏
j=0

[
G
(
τ+
i

)
G
(
σ+
j

)
+G

(
τ−i
)
G
(
σ−j
)
−G

(
τ+
i

)
G
(
σ−j
)
−G

(
τ−i
)
G
(
σ+
j

)]
,

(4.61)

where we use the approximate sign because of all the assumptions we have made until here.

4.2.3 S = 1 Ising chain

For some insight in the time structure of our model, we notice that although we have restric-

tions G
(
τ±i
)
and G

(
σ±j
)
for each of the time slices, the couplings on the vertical (time) axis

are free of restrictions. Then, by making the change of variables:

Sr,m = τr,m − σr,m, (4.62)

we see that our Hamilitonian H is analogous to a collection of spin 1 chains with couplings in

the time direction:

H =
∑
r

Hr =
∑
r

D N−1∑
n=0

S2
r,n − J

∑
〈n,m〉

Sr,nSr,m

 , (4.63)

where

Hr = D

N−1∑
n=0

S2
r,n − J

∑
〈n,m〉

Sr,nSr,m,
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D = 5
4
Fc (0, 0), and J = −Fc (0, 1).

Capel [44] studied a similar Hamiltonian:

H = −D
∑
i

(
1− S2

zi

)
− J

∑
〈i,j〉

SziSzj − µH
∑
i

Szi, (4.64)

where D is �zero-�eld splitting, i.e. the separation between singlet and doublet�, and J is the

exchange parameter.

Our model only di�er from Capel's in that our model has no external magnetic �eld, and

lacks the constant −D
∑

i 1 = −DN , where N is the number of spins. But Capel studies the

case with no magnetic �eld, and the constant DN does not intervene in the dynamics.

Then the important result for us is that for H = 0, there is no magnetic order for D > 1
2
zJ

(z is the number of nearest neighbors).

In Appendix B, we evaluated Fc (0, 0) and F (0, 1) for 2s − 1 = 0 or s = 1/2. Then, we

know that:

Fc (0, 0) ≈ λ2v

2πω3
0

Λ, (4.65)

and

Fc (z = 0, 1) ≈ − λ2v

2πω3
0

Λ

2
, (4.66)

so that Fc (0, 1) = −Fc(0,0)
2

. From this relation, and since D = Fc (0, 0), and J = −Fc (0, 1)

we get J = 1
2
D. This implies that D > J , which means that our model does not present

phase transitions and it will remain in its disordered phase.

What we need to remember is that we have the restrictions G
(
τ+
i

)
, Ḡ
(
τ+
i

)
, etc., which

constrain the possible con�gurations inside each of the time slices. This makes so that we

can have order in each of the slices, although there is no order in the time direction. Then we

need only to solve a 2D problem to �nd the critical temperature.

For this reasons we now only need to study the expression:
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B′ ≈
∑
σ,τ

e−H1
[
G
(
τ+
)
G
(
σ+
)

+G
(
τ−
)
G
(
σ−
)
−G

(
τ+
)
G
(
σ−
)
−G

(
τ−
)
G
(
σ+
)]
,

(4.67)

with H1 = Fc (0, 0)
∑

r (τr − σr)2. Notice that this model has the same critical temperature

as Eq. (4.61).

4.2.4 Critical temperature

Let us rewrite the Hamiltonian H1 of our equivalent model:

H1 = Fc (0, 0)

(
Ns −

∑
r

τrσr

)
, (4.68)

here Ns is the number of spins. Now we can de�ne the mass �elds µ for σ, and ν for τ .

Mass �elds are variables located at the center of each plaquette [17]. They take the values

+1 or −1, and they are arranged so that any spin inside the surface code can be written as

the product of its two nearest mass �elds. For example, in Fig. 4.3,

σr = µxµy. (4.69)

Notice that the same structure is valid for the τ variable, i.e. τr = νxνy.

Mass �elds are useful for us because, in writing our Hamiltonian in terms of them, the

restrictions for positive stars are automatically met. This can be easily seen: the mass �elds

appearing in a star operator AS repeat themselves twice from the product of adjacent spin

variables. Since, for any x we have µx = ±1, then µxµx = 1, and thus AS = 1 for all lattice

positions.

Nevertheless, at the top and bottom boundaries of our lattice we have a complication:

stars located there are formed by only three qubits, and moreover qubits at those boundaries

have only one adjacent mass �eld. In the Figure 4.3, we have the example of the operator

AS = σr′σr′′σr′′′ .

Let us start studying this situation by noticing that σr′′′ = µx′µx′′ , because the qubit at r′′′

is in the bulk. And since all star operators must have positive eigenvalues, AS = σr′σr′′σr′′′ = 1.

Using this two equations we get µx′µx′′σr′σr′′ = 1. Now we multiply µx′′σr′′ at both sides of

last equation to get:
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Figure 4.3: Example of mass �elds in the bulk, and in the boundary for the σ variable.

µx′σr′ = µx′′σr′′ := α, (4.70)

where α is a constant with value +1 or −1. We can follow the same procedure with all spins

at each boundary. Although the constant α we de�ned can assume two values it has to be

the same for all spins at one boundary.

Using Equations (4.69), and (4.70), we get:

H1 = Fc (0, 0)

Ns −
∑

〈x,y〉∈bulk

νxνyµxµy −
∑

x∈bound

αxνxµx

 , (4.71)

which still appears to have a complicated form.

Finally, we de�ne a new spin variable sr = νrµr, sr = ±1. Then our equivalent Hamiltonian

has a more familiar form:

H1 = Fc (0, 0)

Ns −
∑

〈x,y〉∈bulk

sxsy −
∑

x∈bound

αxsx

 . (4.72)

This is now simply an Ising model with a magnetic �eld at the boundary. This model

without a boundary magnetic �eld, was �rst studied by Onsager [45]. The boundary magnetic

�elds do not a�ect the phase transition value of the model, and then the transition temperature

of the system corresponds to the bulk's temperature. Then the critical temperature is such

that:

1

βcJ
=

2

ln
(
1 +
√

2
) ≈ 2, 26918531421. (4.73)

From Equation (4.72), we know that βcJ = Fc (0, 0) and, as we show in Appendix B,

Fc (0, 0) ≈ λ2Λv/2πω3
0. This leads to two important results.

Firstly, using these relations and Equation (4.73), we obtain the threshold condition:
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2πω3
0

Λv

1

(λc)
2 =

2

ln
(
1 +
√

2
) =⇒ λc =

√
πω3

0 ln
(
1 +
√

2
)

vΛ
, (4.74)

where λc corresponds to the critical (or threshold) value of the coupling constant. This is the

equivalent of the accuracy threshold for our model. Then for couplings below λc the quantum

information can be stored reliably and for couplings larger than λc the contrary is true.

Secondly, we can use these equations and the fact that βc = 1/kTc to relate the coupling

constant of the original model to the temperature of the equivalent model:

Tc ∝ 1/ (λc)
2 . (4.75)

This relation lets us identify the phases of the model to the error correction regimes. The

disordered phase of the spin system corresponds to T > Tc and thus to λ < λc which is

the regime in which quantum information can be stored reliably. The ordered phase of the

equivalent spin system (T < Tc) then corresponds to the regime in which quantum information

is lost due to the e�ect of the environment (λ > λc).
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Chapter 5

Conclusions

Our analysis was centered around the threshold theorem, an important result of quantum

error correction theory. The threshold theorem's validity is fundamental in order to guarantee

the possibility of future implementation of quantum computers that can solve meaningful

problems.

In order to study more adequately the interaction between the quantum computer and

its environment, we went beyond the traditional approach used in quantum error correction

theory, which employs stochastic error models.

The phenomenological model we used for the environment can account for correlations,

memory e�ects, and variable coupling strength of the environment with the system of interest.

With all this in mind, we studied the time evolution of a quantum memory to which

its performed quantum error correction periodically using the surface code. We followed the

approach that Novais, Mucciolo and collaborators have developed. But, while they investigated

the time evolution for one error correction cycle, here we consideredN quantum error correction

cycles and we speci�cally solved the case of super-ohmic dissipation.

This dynamical problem was mapped onto an statistical mechanical one, similarly to what

has been done in previous works. We established that, for the super-ohmic dissipation regime,

this the equivalent spin model is such that even the �rst-neighbors' couplings (i.e. proportional

to σr,nσr±a,n or σr,nσr,n±1) are negligible in comparison to the on-site (proportional to σr,nσr,n)

contributions to the Hamiltonian.

Because of this locality, the critical behavior of our model is de�ned by the positive star

restriction enforced by the projection operators inside each of the horizontal planes, and not

due to couplings between spins in the vertical (time) direction. This leads us to conclude that,
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for the super-ohmic case, (1) one or many error correction cycles lead to the same value of

the accuracy threshold, and that (2) our environment does not have memory and its e�ect is

equivalent to that of an stochastic model.

The threshold value for the coupling constant λ∗ was found be inversely proportional to

the ultra-violet cuto� Λ of the environment and to the propagation velocity of the excitations

v.

Also, we found that the temperature of the equivalent spin model is inversely proportional

to the coupling constant of the original model, T ∝ λ−2. Thus λ < λ∗ corresponds to the

regime were quantum information can be stored reliably and to the disordered phase of the

equivalent spin system, and λ > λ∗ corresponds to the regime were quantum information is

lost to the environment and to the ordered phase of the equivalent model.

Our work can be continued in various directions. Correlations in the Ohmic and sub-Ohmic

regimes make them more di�cult to tackle, but nonetheless it is very important to study them

in order to characterize completely the threshold theorem for a quantum memory coupled to

a correlated environment.

What we can state for sure about those two regimes is that the contribution of the couplings

between di�erent spins in the equivalent model will become relevant. Actually we could not

from obtain information about the threshold for this regimes because the integrals involved in

calculating the coupling constants are very convoluted to calculate analytically and sometimes

they even diverge.

Also the value of the threshold is probably only going to decrease, since correlation between

qubits is likely to accelerate the decoherence process and it may lead to a greater probability

of high-order errors (long chains of σx operators in our case).

Numerical calculations were also outside the scope of this work. They would help �nd con-

crete values for the threshold and establish probabilities of errors where the scaling dimension

allows it.

Our results could also be applied to realistic systems that could be or are implemented

in the laboratory. Since the �nal goal is to implement a quantum computer, this is a very

desirable objective for the near future.
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Appendix A

Fidelity

A.1 Numerator 〈ψ|↑̄〉〈↑̄|ψ〉

We start by working with the second factor of this product: 〈↑̄|ψ〉. To calculate this, we need

to expand our evolved state |ψ〉 in terms of the alternating free evolutions U (i) and syndrome

extractions P0. For N quantum error correction cycles, we have:

〈↑̄|ψ〉 = 〈↑̄|P0U (N − 1) . . .P0U (2)P0U (1)P0U (0) |↑̄〉|0〉 (A.1)

The next step is to substitute the explicit form of the projector and simplify. We know

that the projection operator can be written as P0 = |↑̄〉〈↑̄| + X̄|↑̄〉〈↑̄|X̄, but we can write it

in a more convenient way:

P0 =
∑
J

J |↑̄〉〈↑̄|J , (A.2)

where J = 1, X̄. Then we have:

〈↑̄|ψ〉 = 〈↑̄|

(∑
J

JN |↑̄〉〈↑̄|JN

)
U (N − 1) . . .

(∑
J

J2|↑̄〉〈↑̄|J2

)
U (1)

(∑
J

J1|↑̄〉〈↑̄|J1

)
U (0)J0|↑̄〉|0〉.

(A.3)

We label the J to keep track of terms through quantum error correction cycles, and we

also we need to impose J0 = I. Now, since 〈↑̄|X̄|↑̄〉 = 0:
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〈↑̄|

(∑
J

JN |↑̄〉〈↑̄|JN

)
U (N − 1) = 〈↑̄|I|↑̄〉〈↑̄|IU (N − 1)

= 〈↑̄|U (N − 1) .

Also, if we constrain JN = I we can rewrite this expression as:

〈↑̄|ψ〉 =
N−1∏
i=0

∑
{J }

〈↑̄|Ji+1U (i)Ji|↑̄〉|0〉

The other factor in the numerator is simply last equation's complex conjugate. The only

extra detail is that we need to label di�erently the variables from the backwards evolution:

〈ψ|↑̄〉 =
∑
KJ

〈0|
0∏

i=N−1

〈↑̄|KiU † (i)Ki+1|↑̄〉

Putting these equations together, we get:

〈ψ|↑̄〉〈↑̄|ψ〉 =
∑
KJ

N−1∏
i=0

〈0|〈↑̄|KiU † (i)Ki+1|↑̄〉
0∏

j=N−1

〈↑̄|Jj+1U (j)Jj|↑̄〉|0〉, (A.4)

where we have the restrictions K1 = KN = J0 = JN = I and
∑
KJ =

∑
K1,...KN−1

∑
J1...JN .

A.2 Denominator 〈ψ|ψ〉

As before, we expand |ψ〉 for N quantum error correction cycles:

〈ψ|ψ〉 = 〈0|〈↑̄|U † (0)P0 . . . U
† (N − 1)P0U (N − 1) . . .P0U (0) |↑̄〉|0〉, (A.5)

where we used the fact that P2
0 = P0. Now we use the explicit form of the projector and

Equation (A.2).
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〈ψ|ψ〉 = 〈0|〈↑̄|U † (0)

(∑
K1

K1|↑̄〉〈↑̄|K1

)
. . . U † (N − 1)

(∑
JN

JN |↑̄〉〈↑̄|JN

)
U (N − 1) . . .(A.6)(∑

J1

J1|↑̄〉〈↑̄|J1

)
U (0) |↑̄〉|0〉

To abbreviate this expression, we impose the restriction J0 = K0 = I. Also, just for the

sake of notation, we write
∑
JN JN |↑̄〉〈↑̄|JN =

∑
JN KN |↑̄〉〈↑̄|JN , KN = JN . We get:

〈ψ|ψ〉 = 〈0|〈↑̄|K0U
† (0)

∑
K1

K1|↑̄〉〈↑̄|K1 . . . U
† (N − 1)

∑
JN

KN |↑̄〉

〈↑̄|JNU (N − 1) . . .
∑
J1

J1|↑̄〉〈↑̄|J1U (0)J0|↑̄〉|0〉. (A.7)

In this way, we �nd an expression similar to the numerator's one, but with di�erent restric-

tions:

〈ψ|ψ〉 =
∑
KJ

〈0|
N−1∏
i=0

〈↑̄|KiU † (i)Ki+1|↑̄〉
0∏

j=N−1

〈↑̄|Jj+1U (j)Jj|↑̄〉|0〉, (A.8)

where J0 = K0 = I, KN = JN , and
∑
KJ =

∑
K1,...KN

∑
J1...JN .

A.3 A and B

We need to write the �delity as a function of two quantities, A and B:

F =
〈ψ|↑̄〉〈↑̄|ψ〉
〈ψ|ψ〉

=
A
A+ B

. (A.9)

Then we know that:

B = 〈ψ|ψ〉 − A. (A.10)

We also know the expression for A (Appendix A.1), since it coincides with the numerator

of the �delity A = 〈ψ|↑̄〉〈↑̄|ψ〉.

We will now write it in terms of free evolution operators U (i) and projection operators P0:
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A = 〈↑̄|U † (0)P0 . . . U
† (N − 1)P0|↑̄〉〈↑̄|P0U (N − 1) . . .P0U (0) |↑̄〉|0〉 (A.11)

Now we write the denominator of the �delity and expand the projection operator P0 =

|↑̄〉〈↑̄|+ X̄|↑̄〉〈↑̄|X̄ at its center:

〈ψ|ψ〉 = 〈0|〈↑̄|U † (0)P0 . . . U
† (N − 1)P0U (N − 1) . . .P0U (0) |↑̄〉|0〉

= 〈0|〈↑̄|U † (0)P0 . . . U
† (N − 1)

(
|↑̄〉〈↑̄|+ X̄|↑̄〉〈↑̄|X̄

)
U (N − 1) . . .P0U (0) |↑̄〉|0〉(A.12)

Distributing the terms in the projection operator and identifying A, from Equation (A.11),

we get:

〈ψ|ψ〉 = A+ 〈0|〈↑̄|U † (0)P0 . . . U
† (N − 1) X̄|↑̄〉〈↑̄|X̄U (N − 1) . . .P0U (0) |↑̄〉|0〉. (A.13)

Comparing this last equation to Equation (A.10) we �nd the expression for B, which can

be abbreviated as:

B =
∑
σ,τ

∑
{K},{J }

′′
e−H

′
1e−H2

N−1∏
i=0

〈τ |KiKi+1G|τ〉 ×
0∏

i=N−1

〈σ|Ji+1JiG|σ〉, (A.14)

where the sum
∑′′ has the restrictions J0 = K0 = I, JN = KN = X̄, and Ji 6=0,N = Ki 6=0,N ={

I, X̄
}
.



84

Appendix B

Green's Functions

We now want to compare the Green's functions involving auto-correlations with the ones that

involve spatial and/or temporal correlations, To this end, so we evaluate our functions up to

nearest neighbors. For the super-ohmic case, we will show that the ratio of Green's functions

between nearest neighbors to Green's functions corresponding to auto-interaction goes to zero

as the ultra-violet cuto� of the bath Λ diverges.

Green's functions dealing with auto-correlations are the ones with r = r′ and n = m.

When our functions involve spatial correlations we take r − r′ = a, where a is the lattice

parameter. Finally, temporal correlations correspond to n−m = 1.

The Green functions with auto-correlations are:

Fc (0, 0) =
λ2 (v/ω0)D+2s

LD

∑
k 6=0

|k|2s cos (k · [r− r′]) cos ([n−m]ωk∆)
1− cos (ωk∆)

ω2
k

=
λ2 (v/ω0)D+2s

LD

∑
k 6=0

|k|2s 1− cos (ωk∆)

ω2
k

(B.1)

And for �rst-neighbors spatially and in time:

Fc (0, n−m = 1) =
λ2 (v/ω0)D+2s

LD

∑
k 6=0

|k|2s cos ([n−m]ωk∆)
1− cos (ωk∆)

ω2
k

=
λ2 (v/ω0)D+2s

LD

∑
k 6=0

|k|2s cos (ωk∆)
1− cos (ωk∆)

ω2
k

, (B.2)
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Fc (r− r′, 0) =
λ2 (v/ω0)D+2s

LD

∑
k 6=0

|k|2s cos (k · [r− r′]) cos ([n−m]ωk∆)
1− cos [ωk∆]

ω2
k

=
λ2 (v/ω0)D+2s

LD

∑
k 6=0

|k|2s cos (k · a)
1− cos [ωk∆]

ω2
k

, (B.3)

Fc (r− r′, n−m) =
λ2 (v/ω0)D+2s

LD

∑
k6=0

|k|2s cos (k · [r− r′]) cos ([n−m]ωk∆)
1− cos [ωk∆]

ω2
k

=
λ2 (v/ω0)D+2s

LD

∑
k6=0

|k|2s cos (k · a) cos (ωk∆)
1− cos [ωk∆]

ω2
k

, (B.4)

Φ2,s (r− r′, n−m) =
λ2 (v/ω0)D+2s

LD

∑
k 6=0

|k|2s sin (k · [r− r′]) sin ([n−m]ωk∆)
1− cos [ωk∆]

ω2
k

=
λ2 (v/ω0)D+2s

LD

∑
k 6=0

|k|2s sin (k · a) sin (ωk∆)
1− cos [ωk∆]

ω2
k

, (B.5)

Φ1 (r− r′) =
λ2 (v/ω0)D+2s

LD

∑
k

|k|2s cos [k · (r− r′)]
ωk∆ + sin (ωk∆)

ω2
k

=
λ2 (v/ω0)D+2s

LD

∑
k

|k|2s cos (k · a)
ωk∆− sin (ωk∆)

ω2
k

. (B.6)

We will assume a dispersion relation:

ωk = v |k| , (B.7)

which is adequate for small energies.

We assume also a two-dimensional bath. Then in the continuum limit, k → ρ, we have
(2π)2

L2

∑
k →

∫ Λ

0
ρdρ

∫ 2π

0
dθ.

Let us start by writing expressions for Fc (r− r′, n−m), Φ2,s (r− r′, n−m), and Φ1 (r− r′):
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Fc (a, 1) =
λ2 (v/ω0)2+2s

(2π)2

∫ Λ

0

ρdρ

∫ 2π

0

dθρ2s cos (ρa cos θ) cos (vρ∆)
1− cos (vρ∆)

v2ρ2

=
λ2 (v/ω0)2+2s

(2π)2 v2

∫ Λ

0

dρρ2s−1 cos (vρ∆) [1− cos (vρ∆)]

∫ 2π

0

dθ cos (ρa cos θ)(B.8)

Φ2,s (a, 1) =
λ2 (v/ω0)2+2s

(2π)2

∫ Λ

0

ρdρ

∫ 2π

0

dθρ2s sin (ρa cos θ) sin (vρ∆)
1− cos (vρ∆)

v2ρ2

=
λ2 (v/ω0)2+2s

(2π)2 v2

∫ Λ

0

dρρ2s−1 sin (vρ∆) [1− cos (vρ∆)]

∫ 2π

0

dθ sin (ρa cos θ)(B.9)

Φ1 (a) =
λ2 (v/ω0)2+2s

(2π)2 v2

∫ Λ

0

dρρ2s−1 [vρ∆− sin (vρ∆)]×
∫ 2π

0

dθ cos (ρa cos θ) (B.10)

Now we change to the variables:

x = v∆ρ =⇒ ρ =
x

v∆
(B.11)

dρ =
dx

v∆
(B.12)

z =
|a|
v∆

=⇒ a = v∆z (B.13)

Then we get:

Fc (a, 1) =
λ2 (v/ω0)2+2s

(2π)2 v2

∫ v∆Λ

0

dx

v∆

( x

v∆

)2s−1

cosx (1− cosx)

∫ 2π

0

dθ cos
( x

v∆
v∆z cos θ

)
=

λ2 (v/ω0)2+2s

(2π)2 v2s+2∆2s

∫ v∆Λ

0

dx · x2s−1 cosx (1− cosx)

∫ 2π

0

dθ cos (xz cos θ) (B.14)

Φ2,s (z, 1) =
λ2 (v/ω0)2+2s

(2π)2 v2s+2∆2s

∫ v∆Λ

0

dx · x2s−1 sinx (1− cosx)

∫ 2π

0

dθ sin (xz cos θ) (B.15)
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Φ1 (z) =
λ2 (v/ω0)2+2s

(2π)2 v2s+2∆2s

∫ v∆Λ

0

dx · x2s−1 (x− sinx)

∫ 2π

0

dθ cos (xz cos θ) (B.16)

The angular part can be expressed as a Bessel function1:

∫ 2π

0

dθ cos (xz cos θ) = 2πJ0 (xz) (B.17)

On the other hand, Φ2,s's angular integral is

∫ 2π

0

dθ sin (xz cos θ) = 0 (B.18)

So:

Fc (a, 1) =
λ2 (v/ω0)2+2s

2πv2s+2∆2s

∫ v∆Λ

0

dx · x2s−1 cosx (1− cosx) J0 (xz) (B.19)

Φ2,s (z, 1) = 0 (B.20)

Φ1 (z) =
λ2 (v/ω0)2+2s

2πv2s+2∆2s

∫ v∆Λ

0

dx · x2s−1 (x− sinx) J0 (xz) (B.21)

The ohmic case is de�ned by the logarithmic divergence:

2s− 1 = −1, (B.22)

so that s = 0 corresponds to the ohmic case, s > 0 is super-ohmic, and s < 0 is sub-ohmic.

Let us now evaluate the super-ohmic case.

2s− 1 = 0 or s = 1/2.

We need to evaluate: Fc (0, 0), F (0, 1), Fc (r− r′, 0), Fc (r− r′, n−m), and Φ1 (r− r′).

We have s = 1
2

=⇒ 2s− 1 = 0 =⇒ 2s = 1, and 2s+ 2 = 3.

1Equation 11.30, [24]
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Fc (0, 0) =
λ2 (v/ω0)3

2πv3∆

∫ v∆Λ

0

dx (1− cosx)

≈ λ2v

2πω3
0

Λ (B.23)

Fc (z = 0, 1) =
λ2 (v/ω0)3

2πv3∆

∫ v∆Λ

0

dx cosx (1− cosx)

=
λ2 (v/ω0)3

2πv3∆

[
sin (v∆Λ)− v∆Λ + sin (2v∆Λ)

2

]
≈ − λ2v

2πω3
0

Λ

2
(B.24)

Fc

(
z =

a

v∆
, 0
)

=
λ2 (v/ω0)3

2πv3∆

∫ v∆Λ

0

dx · (1− cosx) J0

( xa
v∆

)
=

λ2

2πω3
0∆

∫ v∆Λ

0

dx ·
[
J0

( xa
v∆

)
− cosx · J0

( xa
v∆

)]
(B.25)

Here the relevant integrals are:

∫ ∞
0

dxJ0 (zx) =
1

z
(B.26)

and

∫ ∞
0

dx cosx · J0 (zx) =


1√
z2−1

, 1 < z

∞, z = 1

0, 0 < z < 1

(B.27)

Then, for z > 1,

Fc

(
z =

a

v∆
, 0
)

=
λ2 (v/ω0)3

2πv3∆

(
1

z
+

1√
z2 − 1

)
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Fc

(
z =

a

v∆
, 1
)

=
λ2 (v/ω0)3

2πv3∆

∫ v∆Λ

0

dx · cosx (1− cosx) J0

( xa
v∆

)
=

λ2

2πω3
0∆

∫ v∆Λ

0

dx
[
cosx · J0

( xa
v∆

)
− cos2 x · J0

( xa
v∆

)]
(B.28)

Now the relevant integrals are B.27, and:

∫ ∞
0

dx cos2 x · J0 (xz) =


1
2z

+ 1
2
√
z2−4

, 2 < z

1
2z
, 0 < z < 2

(B.29)

Now for z > 2:

Fc

(
z =

a

v∆
, 1
)

=
λ2

2πv3∆

(
1√

z2 − 1
− 1

2z
− 1

2
√
z2 − 4

)
(B.30)

Φ1

(
z =

a

v∆

)
=

λ2

2πv3∆

∫ v∆Λ

0

dx · (x− sinx) J0

( xa
v∆

)
=

λ2

2πv3∆

∫ v∆Λ

0

dx ·
[
xJ0

( xa
v∆

)
− sinx · J0

( xa
v∆

)]
(B.31)

Now the relevant integrals are:

∫ v∆Λ

0

dx · xJ0 (zx) = xJ1 (x)|v∆Λ
0 ≈ v∆Λ

√
2

πv∆Λ

=

√
2

π
v∆Λ (B.32)

and

∫ ∞
0

dx sinxJ0 (zx) =

0, 1 < z

1√
1−z2 , 0 < z < 1

(B.33)

For z > 1:

Φ1

(
z =

a

v∆

)
≈ λ2 (v/ω0)3

2πv3∆

√
2

π
v∆Λ ≈ λ2 (v/ω0)3

√
2π3v5∆

Λ1/2 (B.34)
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Putting everything together:

Fc (z, 0)

Fc (0, 0)
∼ Fc (z, 1)

Fc (0, 0)
∼ Fc (z, 0)

Fc (0, 1)
∼ Fc (z, 1)

Fc (0, 1)
∼ 1

Λ
(B.35)

and

Φ1 (z)

Fc (0, 0)
∼ Φ1 (z)

Fc (0, 1)
∼ 1

Λ1/2
. (B.36)
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