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Resumo

Dispositivos móveis têm evoluído constantemente, recebendo novas funcionalidades e se
tornando cada vez mais ubíquos. Assim, eles se tornaram alvos lucrativos para criminosos.
Como Android é a plataforma líder em dispositivos móveis, ele se tornou o alvo principal de
desenvolvedores de malware. Além disso, a quantidade de apps maliciosas encontradas por
empresas de segurança que têm esse sistema operacional como alvo cresceu rapidamente
nos últimos anos.

Esta tese aborda o problema da segurança de tais dispositivos por dois lados: (i) ana-
lisando e identi�cando apps maliciosas e (ii) desenvolvendo uma política de segurança que
pode restringir a superfície de ataque disponível para código nativo. Para tanto, foi de-
senvolvido um sistema para analisar apps dinamicamente, monitorando chamadas de API
e chamadas de sistema. Destes traços de comportamento extraiu-se atributos, que são
utilizados por um algoritmo de aprendizado de máquina para classi�car apps como mali-
ciosas ou benignas. Um dos problemas principais de sistemas de análise dinâmica é que
eles possuem muitas diferenças em relação a dispositivos reais, e exemplares de malware
podem usar essas características para identi�car se estão sendo analisados, impedindo
assim que as ações maliciosas sejam observadas. Para identi�car apps maliciosas de An-
droid que evadem análises, desenvolveu-se uma técnica que compara o comportamento de
uma app em um dispositivo real e em um emulador. Identi�cou-se as ações que foram
executadas apenas no sistema real e se a divergência foi causada por caminhos de código
diferentes serem explorados ou por algum erro não relacionado. Por �m, realizou-se uma
análise em larga escala de apps que utilizam código nativo, a �m de se identi�car como
este é usado por apps legítimas e também para se criar uma política de segurança que
restrinja as ações de malware que usam este tipo de código.



Abstract

Mobile devices have been constantly evolving, receiving new functionalities and becom-
ing increasingly ubiquitous. Thus, they became lucrative targets for miscreants. Since
Android is the leading platform for mobile devices, it became the most popular choice for
malware developers. Moreover, the amount of malicious apps, found by security compa-
nies, that target this platform rapidly increased in the last few years.

This thesis approaches the security problem of such devices in two ways: (i) by ana-
lyzing and identifying malicious apps, and (ii) by developing a sandboxing policy that can
restrict the attack surface available to native code. A system was developed to dynam-
ically analyze apps, monitoring API calls and system calls. From these behavior traces
attributes were extracted, which are used by a machine learning algorithm to classify
apps as malicious or benign. One of the main problems of dynamic analysis systems
is that they have many di�erences compared to real devices, and malware can leverage
these characteristics to identify whether they are being analyzed or not, thus being able
to prevent the malicious actions from being observed. To identify Android malware that
evades analyses, a technique was developed to compare the behavior of an app on a real
device and on an emulator. Actions that were only executed in the bare metal system
were identi�ed, recognizing whether the divergence was caused by di�erent code paths
being explored or by some unrelated error. Finally, a large-scale analysis of apps that use
native code was performed, in order to identify how native code is used by benign apps
and also to generate a sandboxing policy to restrict malware that use such code.
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Chapter 1

Introduction

1.1 Motivation

Since their creation, mobile devices have been evolving steadily, acquiring new features and

more resources. This led to them being used in many di�erent activities, including areas

involving critical information, such as banking credentials and credit card information.

Because of that, mobile devices became very attractive targets. A study by Unucheck

and Chebyshev [79] shows that Kaspersky Lab detected 884,774 new malicious mobile

programs in 2015.

As Android is the mobile platform that has the highest number of users (87.6% of

market share in the second quarter of 2016, according to IDC [43]), it is also the main

target of attacks. According to PulseSecure [65], in 2014 97% of all mobile malware was

developed for the Android platform.

Malicious apps are disseminated mainly through phishing, drive-by attacks, and app

stores. Phishing messages may contain links to malicious apps and are sent over SMS or

via some messaging app, such as WhatsApp. Drive-by attacks are carried out by exploits

deployed in Web pages. When a vulnerable browser accesses it, the exploit is able to

execute code in the victim's system. To infect users through app stores, malware are

submitted to them disguising as some legitimate app, such as a game. In fact, in many

cases miscreants modify some popular app to include malicious actions while keeping the

app's main functionalities, in a process known as repackaging [97].

To protect users from these threats, there are mechanisms employed in devices and in

app stores. On the device side, users can install anti-malware software, which will search

for insecure con�gurations and also inspect other apps installed on the system to check for

known malicious patterns. Furthermore, there is a series of security mechanisms employed

by the Android operating system to restrict what apps can do. These mechanisms include,

for instance, the permission enforcement, which forces apps to declare the use of certain

functionalities in the manifest to be able to use them, and the app sandboxing, which

restricts the access of apps to the �lesystem and to the memory of other apps.

On the app store side, static and dynamic analysis is used to identify if apps contain

malicious behavior or not. Malicious apps are then removed from the store, preventing

them from infecting users. These types of analyses are also performed by security com-

panies that produce signatures for anti-malware software, in order to identify whether

12
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unknown apps are malicious or not.

Static analysis techniques work by inspecting apps without the need to execute them.

Several techniques of this type have been proposed by researchers to analyze Android

apps [9,10,14,33,35,39,40,54,56,85,88,92,94,98,99]. They obtain information about the

app by inspecting the dalvik code, the manifest and other �les deployed within apps. One

of the main weaknesses of static analysis techniques for Android apps is only being able

to handle the Java part of them. Android apps can also contain native code components

developed in C or C++, which are able to modify the Java code at runtime and may also

directly perform malicious actions. Thus, static analysis systems that only look at Java

code may miss malicious behavior of apps.

To address this issue, researchers [11,72,77] have proposed isolating native code from

Java code and applying restrictions to native code, preventing malicious actions. However,

the lack of data regarding the use of native code by benign apps makes designing security

policies that do not a�ect many benign apps a di�cult challenge. One of the contributions

of this thesis is a study on the use of native code by benign apps and the proposal of a

methodology to create a sandboxing policy to restrict this type of code, reducing the

attack surface available. To accomplish this we developed a dynamic analysis system to

analyze native code components of apps and performed a large-scale analysis of benign

Android apps. More precisely, we statically inspected 1,208,476 Android apps to see

if they use native code, then we dynamically analyzed the 446,562 that were found to

use it. We provide insights into how native code is used by real-world Android apps.

Moreover, our system can be used to create a native code sandboxing policy that allows

for normal execution of the native code behaviors observed during the dynamic analysis of

a prede�ned threshold of apps, while reducing the attack surface and thus limiting many

malicious behaviors (e.g. root exploits).

Di�erently from its static counterpart, dynamic analysis is carried out by executing

apps in a controlled environment and monitoring its behavior [18, 26, 28, 53, 75, 76, 91].

One of the main issues of this type of approach is related to malware that employ anti-

analysis features. Analysis environments have several di�erences in relation to devices

of real users, and some malware, sometimes referred to as evasive malware, exploit these

di�erences to identify if they are being analyzed. When this happens, they can simply

stop executing or perform only harmless actions, preventing the analysis system from

observing the malicious behavior.

Another contribution of this thesis is a novel technique to identify evasive Android

malware using dynamic analysis. We analyze apps in a baremetal and in an emulated

environment, identifying the actions that are only executed in baremetal. For each action

identi�ed, we identify why it was not performed in the emulated environment, di�erenti-

ating when there was an evasion and when there was an analysis problem that prevented

the app from executing all its actions. We compare our approach to existing approaches

that identify evasive Windows malware and demonstrate that ours is more appropriate to

the Android context.

Researchers have proposed several approaches to use information obtained from dy-

namic analysis, static analysis or a combination of both to identify malicious apps [9, 70,

76,88,96,98]. Improving these techniques is an important area of research to make devices
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more secure. Another contribution of this thesis is a system that analyses Android apps

dynamically and classi�es them as malicious or not, improving on known techniques.

Our system monitors the use of Android APIs and system calls, extract features from

these traces and uses machine learning for the classi�cation. We trained it with 3,780

applications and tested it using 3,740 samples, obtaining an accuracy of 96.82%.

The aforementioned contributions were included in papers published or submitted for

publication during the development of this research. Moreover, this thesis is organized as

a collection of these papers.

1.2 Objectives

The main goal of this thesis is to contribute to improving Android security. We do

this by focusing on two aspects: dynamic analysis and classi�cation of malware, and

restriction of native code. To improve the dynamic analysis and classi�cation aspect we

developed a system that obtained better results than similar systems by using di�erent

attributes in the classi�cation. We also developed a novel technique to identify if an

Android malware sample has anti-analysis features. To improve on the restriction of

native code, we performed a large-scale analysis of apps to study how they use native

code. We provide several insights on the use of native code by benign apps and we also

create a security policy to restrict it, reducing the attack surface available to malicious

code.

1.3 Contributions

The contributions of this thesis are the contributions included in the papers that comprise

it. To make this information more easily identi�able, we present all the contributions

summarized in this section.

The contributions related to the dynamic analysis and classi�cation of Android mal-

ware were presented in the paper published in 2015 in the Journal of Computer Virology

and Hacking Techniques and are the following [6]:

• We develop a dynamic analysis system to monitor Android API function calls and

system calls, in order to gather information about apps. Currently available systems

are tied to Android OS versions or to the SDK-provided emulator, whereas our

approach is independent of the emulator and more portable, as it does not modify

the Android OS;

• Our system is also able to classify apps as benign or malicious. We tested it with

thousands of apps, correctly classifying 96.66% of them. To accomplish better results

than similar systems we extract novel features, showing that those based on API

function calls greatly increase the detection rate.

The contributions related to the study and restriction of native code in Android apps

were published in 2016 at the Network and Distributed System Security Symposium and

are the following [5]:
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• We develop a tool to monitor the execution of native components in Android apps

and we use this tool to perform the largest (in terms of number of apps and detail

of information acquired) study of native code usage in Android;

• We systematically analyze the collected data, providing actionable insights into how

benign apps use native code;

• Our results show that completely eliminating permissions of native code is not ideal,

as this policy would break, as a lower bound, 3,669 of the apps in our dataset.

However, we propose that our dynamic analysis system can be used to derive a

native code sandboxing policy that limits many malicious behaviors, while allowing

the normal execution of the native code behaviors observed during the dynamic

analysis of a prede�ned threshold of apps (99.77% in our experiment).

The contributions related to the identi�cation of Android malware with anti-analysis

features were included in a paper submitted to the 2017 International Conference on

Dependable Systems and Networks and are the following:

• We present a novel technique to identify evasive Android malware by comparing

traces obtained in a baremetal environment with traces obtained in an emulated

environment. Our technique identi�es the cause of each action performed only in

baremetal, �ltering out those that were not executed due to some problem during

analysis;

• We compared our approach to the detection techniques that focus on Windows

malware, demonstrating that our technique is more appropriate for the Android

context;

• We tested our technique with 1,470 samples, identifying 192 that employ evasive

techniques, and discuss the techniques used by a subset of them to evade analysis.

1.4 Related Work

For ease of reading, we summarize in this chapter all background and related work of the

articles included in this thesis, and we also include new research published after them.

1.4.1 Android

Android is an operating system for mobile devices that uses a customized version of the

Linux kernel. To every app is assigned a unique user identi�er (uid), at installation

time, and group identi�ers (gids), according to the requested permissions. Every app is

executed in a separate Linux process, which is a child of Zygote, a process started when

the system is initialized.

Apps are written mainly in Java, then compiled to Dalvik bytecode, but they can also

contain native code components, developed in C/C++ and compiled to executable �les
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or shared libraries. The interaction between native code components and Java code is

de�ned by the Java Native Interface (JNI) speci�cation.

Besides code, apps can contain resources, such as images, information related to the

apps' certi�cates and the �le AndroidManifest.xml. The manifest de�nes several in-

formation related to the app, such as permissions needed, activities, services, broadcast

receivers, content providers, the minimum system version necessary for the app to run

properly and the shared libraries referenced by the app.

Interactions between apps are performed through Intents, which are messages de�ning

one or more receptors and possibly some data. This type of communication can also

be used intra-application. Moreover, all Intents �ow through an Android system-level

process called Binder [22].

On Android, some operations and resources are protected by permissions. Apps must

declare the permissions needed in the manifest. Before version 6, permissions had to

be authorized by the user at install time and the user only had the option to continue

with all permissions or cancel the installation. Starting on version 6, the user can revoke

speci�c groups of permissions for apps installed. Permissions are enforced app-wise using

Linux access-control mechanisms and by system services that check if the app is allowed

to access certain resources or perform some requested operation [30].

1.4.2 Malicious Android Apps

Researchers have described the key behavior characteristics of Android malware found

in the wild [31, 74, 97], which are the following: user information stealing; premium calls

and SMS messages, which generate costs to the user; SPAM SMS messages; search engine

optimization; ransom; privilege escalation; remote control of the device. Furthermore,

they identi�ed the following vectors of infection: repackaging�modifying a legitimate app

to include malicious code and redistribution of the modi�ed app to app stores; update�an

app seemingly legitimate downloads and executes malicious code; drive-by-download�

malicious Web pages can exploit the Web browser to infect the system.

To prevent analysis systems from obtaining information about them, many malicious

apps employ evasion techniques. Several works in the literature describe such tech-

niques [45,58,62,74,80]. Spreitzenbarth [74] details the analysis of two Android malware

families, namely Bmaster and FakeRegSMS, that use several anti-analysis techniques,

such as waiting for a long period before executing the malicious actions. Matenaar and

Schulz [58] present a method for an app to identify if it is executing inside Qemu, which is

the basis of the Android emulator. Vidas and Christin [80] present anti-analysis techniques

based on Android APIs, system properties, network information, Qemu characteristics,

performance, hardware components, and software components. Another similar work is

presented by Petsas et al. [62]; they demonstrate anti-analysis techniques based on An-

droid APIs, system properties, sensors, and Qemu characteristics.

Instead of manually identifying di�erences between real and emulated devices, Jing

et al. [45] developed Morpheus, a framework that automatically generates heuristics that

can identify, based on �les, system properties and Android APIs, whether a sample is

running on an emulated environment or not.
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1.4.3 Analysis and Detection of Android Malware

Researchers have proposed several systems to analyze Android malware and obtain infor-

mation about them. Enck et al. [28] propose TaintDroid, a dynamic taint analysis system,

which tracks sensitive data �ow to detect when it is sent over the network. Sun et al. [78]

propose TaintART, an approach similar to TaintDroid that works with the most recent

Android runtime, ART. DroidBox [26] builds upon TaintDroid and monitors API calls,

network data, and data leaks. Spreitzenbarth et al. presented Mobile-Sandbox, a system

that uses DroidBox and Taintdroid to track the behavior of apps, and includes the use of

ltrace tool to monitor native code [75]. Yan and Yin propose DroidScope [91], a virtual

machine introspection-based analysis system that bridges the semantic gap reconstruct-

ing OS-level and Java-level semantic views from outside the emulator. AASandbox [18]

monitors system calls using a kernel module. Harvester [67] combines program slicing

with code generation and dynamic execution to extract runtime values, such as URLs

and destination numbers of SMS messages, from obfuscated malware. Bichsel et al. [16]

present an approach for deobfuscating apps based on probabilistic learning of large code

bases. It learns a probabilistic model over thousands of non-obfuscated apps and use it

to deobfuscate new ones. TriggerScope [32] uses static analysis to detect logic bombs,

i.e., application logic that is only executed under certain (often narrow) circumstances.

TriggerScope is capable of identifying time-, location-, and SMS-related triggers.

One of the main drawbacks of dynamic analysis is only being able to observe behavior

that is actually executed. This means that the analysis system needs to provide the

correct inputs so that the malicious behavior is triggered. Researchers have proposed

systems that inspect the analyzed app in order to identify the inputs and paths that lead

to the execution of suspicious code and then provide these at runtime [15,87,95].

Other systems leverage information obtained from dynamic or static analysis to classify

apps as malicious or benign. Zhou et al. propose DroidRanger, a two-scheme system based

on signatures and heuristics [98]. The signature-based scheme relies on common permis-

sions and behavioral footprints to identify samples from known families. the heuristics-

based �ltering scheme identi�es suspicious behaviors (e.g., downloading and executing

code from the Web and dynamic loading of native code). Zheng et al. propose DroidAna-

lytics, a system to automatically collect, analyze and detect Android malware that makes

use of repackaging, code obfuscation, or dynamic payloads [96]. It disassembles apps to

obtain Android API calls. These are used within a three-level signature generation pro-

cess, which extracts malware features at the opcode level to identify variants. Elish et al.

propose a tool to determine whether unknown applications are malicious or not based on

static data dependence analysis [27], which correlates user inputs with critical function

calls. Malisa et al. [55] presents an approach to detect app impersonation attacks by

extracting user interfaces from apps and analyzing the extracted screenshots.

Researchers have proposed several systems to identify Android malware using machine

learning and di�erent feature sets. PUMA [70] uses information obtained from apps'

permissions [70]. DroidMat [88] uses clustering techniques applied to features statically

extracted from apps' manifest �le (permission, component, and intent information) and

permission-related Android API calls from apps' bytecode. Another system that uses
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features obtained statically is DREBIN [9]. It extracts features from the manifest and

dex code. Su et al. [76] present a framework that dynamically analyzes new apps to

collect two sets of features: one related to tracing 15 system calls and the other related

to network tra�c statistics. StormDroid [21] also uses dynamic analysis and combines

features related to permissions and sensitive API calls in a framework that can process

large sets of apps. Zhu and Dumitras [100] present FeatureSmith, a system that generates

a feature set by analyzing the contents of papers published in security conferences.

Since evasive malware is one of the main problems of analysis systems, independently

of the target operating system, the automatic identi�cation of this type of threat is an

important research topic. Although this topic has not been explored in the Android con-

text, systems to identify evasive Windows malware have been proposed [13,47,48,50,52].

Balzarotti et al. [13] propose a system that records the system calls executed by a sample

on a reference environment and replay the monitored system calls on an emulator to iden-

tify if the observed behavior is di�erent. Lindorfer et al. [52] analyze malware samples

in di�erent environments and identify di�erences on the observed actions, recognizing

techniques that malware apply to detect the analysis environment or analysis system.

BareCloud [48] dynamically analyzes malware in four di�erent environments, including a

baremetal one, and detects evasive samples by comparing the reports provided by these

systems in a hierarchical approach. Kolbitsch et al. [50] detects and mitigates malicious

programs that wait for some time (stall) before executing their malicious behavior. Mal-

gene [47] analyzes evasive malware and uses sequence alignment on the system call traces

obtained from a baremetal and an emulated environment to identify evasion signatures.

1.4.4 Protection mechanisms

Several approaches have been proposed to increase the security of Android, focusing on

di�erent issues. Dietz et al. [25] presents modi�cations to the Android system that allow an

app to know the complete path taken by Intents received and to encrypt data transmitted

trough Intents. To prevent apps from having to request more permissions than necessary,

just to be able to use ad libraries, Yagemann and Du [90] propose changing the logic

of access control of Intents to an app, which will work as an Intent �rewall, allowing,

blocking, or even modifying Intents. Shekhar et al. [71] present a technique to execute

libraries in a separate process, with its own set of permissions.

Portokalidis et al. [64] present a security model in which a synchronized replica of the

user's phone is executed in a server, which has much more resources and can use several

attack identi�cation techniques that would consume too much resources to be executed on

a mobile device. Batyuk et al. [14] introduce a system that looks for malicious patterns in

apps and patch them according to some policies. Rewriting bytecodes is also the approach

used by the framework presented by Davis and Chen [23]. In this case, calls to certain

methods are replaced by calls to methods inserted in the app by the framework; these

methods use security policies to restrict the behavior of apps. Xu et al. [89] present a

system that applies security policies by intercepting calls to libc.

Focused on preventing root exploits, Fedler et al. [29] propose a protection system

that prevents apps from giving execution permission for custom executable �les and by
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introducing a permission related to the use of the System class. PREC [42] tries to prevent

root exploits by learning the normal behavior of apps during an analysis phase and then

preventing deviations from the normal behavior.

Another way to protect the system is by isolating native code. The challenge of

isolating native code components used by managed languages has been studied before.

Klinko� et al. [49] focus on the isolation of .NET applications, whereas Robusta [72]

focuses on the isolation of native code used by Java applications. NativeGuard [77] and

NaClDroid [11] are security frameworks for Android that places native code components

in a separate app, and therefore a separate process as well.

Marforio et al. [57] propose a scheme to securely setup security indicators in the pres-

ence of malware on the users' devices. These indicators can help users identify malicious

apps that pose as legitimate ones to perform phishing attacks. Ying et al. [93] study

attacks using free �oating windows and propose a priority framework to protect users

against these threats.

1.4.5 Large Measurement Studies

Some researchers have analyzed large datasets of Android apps. Viennot et al. [81] did

a large measurement study on 1,100,000 applications crawled from the Google Play app

store. In particular, they collected meta-data and statistics taken from the Google Play

store itself. Another important measurement study has been performed by Lindorfer et

al. [53]. In their work, they analyzed over one million apps, of which 40% are malware,

and discuss the trends of Android malware behavior observed.

1.5 Thesis outline

This thesis is organized as a collection of three papers, which are presented as they

were published. The only modi�cations made to them are related to adjusting them

to the thesis format. The remainder of this thesis is organized as follows. Chapter 2

contains three sections, one for each paper. Chapter 3 summarizes the results of all

papers, facilitating their identi�cation by the reader. Finally, Chapter 4 presents the

conclusions and future work.
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Abstract

Current static analysis techniques for Android applications operate at the Java level�that

is, they analyze either the Java source code or the Dalvik bytecode. However, Android

allows developers to write code in C or C++ that is cross-compiled to multiple binary

architectures. Furthermore, the Java-written components and the native code components

(C or C++) can interact.

Native code can access all of the Android APIs that the Java code can access, as

well as alter the Dalvik Virtual Machine, thus rendering static analysis techniques for

Java unsound or misleading. In addition, malicious apps frequently hide their malicious

functionality in native code or use native code to launch kernel exploits.

It is because of these security concerns that previous research has proposed native code

sandboxing, as well as mechanisms to enforce security policies in the sandbox. However,

it is not clear whether the large-scale adoption of these mechanisms is practical: is it

possible to de�ne a meaningful security policy that can be imposed by a native code

sandbox without breaking app functionality?

In this paper, we perform an extensive analysis of the native code usage in 1.2 million

Android apps. We �rst used static analysis to identify a set of 446k apps potentially using

native code, and we then analyzed this set using dynamic analysis. This analysis demon-

strates that sandboxing native code with no permissions is not ideal, as apps' native code

components perform activities that require Android permissions. However, our analysis

provided very encouraging insights that make us believe that sandboxing native code can

be feasible and useful in practice. In fact, it was possible to automatically generate a

native code sandboxing policy, which is derived from our analysis, that limits many mali-

cious behaviors while still allowing the correct execution of the behavior witnessed during

dynamic analysis for 99.77% of the benign apps in our dataset. The usage of our system

to generate policies would reduce the attack surface available to native code and, as a

further bene�t, it would also enable more reliable static analysis of Java code.
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2.1.1 Introduction

Mobile operating systems allow third-party developers to create applications (hereafter

referred to as apps) that extend the functionality of the mobile device. Apps span across

all categories of use: banking, socializing, entertainment, news, health, sports, and travel.

Google's Android operating system currently enjoys the largest market share, currently

at 84.7%, of all current smartphone operating systems [44]. The o�cial app market for

Android, the Google Play Store, has around 1.4 million available apps [7] (according

to AppBrain, a third-party Google Play Store tracking site) with over 50 billion app

downloads [84].

Android apps are typically written in Java, and then compiled to bytecode that runs

on an Android-speci�c Java virtual machine, called the Dalvik Virtual Machine (DVM).1

These apps can interact with the �lesystem, the Android APIs (to access phone features

such as GPS location, call history, microphone, or SMS messages), and even other apps.

The wealth of information stored on smartphones attracts miscreants who want to

steal the user's information, send out premium SMS messages, or even have the user's

device join a botnet [20].

Static analysis of Android applications has been proposed by various researchers to

check the security properties of the apps that the user installs [10,14,33,35,39,40,54,56,

85,92,94,98,99].

All the proposed static analysis techniques for Android apps have operated at the

Java level�that is, these techniques process either the Java source code or the Dalvik

bytecode. However, Android apps can also contain components written in native code (C

or C++) using the Android NDK [36]. Some of the reasons why developers might use

this feature, as stated by the NDK documentation [36], are:

For certain types of apps, [native code] can be helpful so you can reuse existing

code libraries written in these languages, but most apps do not need the

Android NDK.

Typical good candidates for the NDK are CPU-intensive workloads such as

game engines, signal processing, physics simulation, and so on.

Using the NDK, the C or C++ code will be compiled and packaged with the app.

Android provides an interface (JNI) for Java code to call functions of native code and

vice versa.

While attempting to allow native code in Android apps is noble, there are serious

security implications of allowing apps to execute code outside the Java ecosystem.

The existence of native code severely complicates static analysis of Android apps.

First, to our knowledge, no static analysis of Android apps attempts to statically analyze

the native code included in the app. Thus, malware authors can include the malicious

payload/behavior in a native code component to evade detection. Furthermore, the native

1In recent versions, the bytecode is instead compiled and executed by a new runtime, called ART.
For simplicity, in the rest of the paper we will only refer to the DVM. However, everything we describe
conceptually applies to ART as well.
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code in an Android app has more capabilities than the Java code. This is because the

native code has direct access to the memory of the running process, and, because of this

access, can read and modify the Dalvik Virtual Machine and its data.2 E�ectively, this

means that the native code can completely modify and change the behavior of the Java

code�rendering all static analysis of the Java code unsound.

In light of these security problems with native code usage in Android applications,

researchers have turned to sandboxing mechanisms, which limit the interaction between

the native code and the Java code [17, 72, 77]. This follows the least-privilege principle:

The native code does not need full access to the Java code and thus should be sandboxed.

A native code sandbox should be security-relevant and usable with benign, real-world

apps. These requirements result in the following properties:

• Least-Privilege: The native code of the app should have access only to what is

strictly required, thus reducing the chances the native component could extensively

damage the system.

• Compartmentalization: The native code of the app should communicate with the

Java part only using speci�c, limited channels, so that the native component cannot

modify, interact with, or otherwise alter the Java runtime and code in unexpected

ways.

• Usability: The restrictions enforced by the sandbox must not prevent a signi�cant

portion of benign apps from functioning.

• Performance: The sandbox implementation must not impose a substantial perfor-

mance overhead on apps.

Even though previous research has focused on the mechanism of native code sandbox

enforcement [72, 77], to this point no research has focused on how to generate a security

policy that a sandbox can enforce so that the policy is both practical (i.e., it would not

break benign apps) and useful (i.e., it would limit malicious behaviors).

Sun and Tan [77], in their paper presenting the native code sandboxing mechanism

NativeGuard, state:

We decide to follow a heuristic approach and by default grant no permission

to the [sandboxed native code] in NativeGuard. The approach is motivated

by the observation that it is rare for legal native code to perform privileged

operations, as it is a �bad practice� according to the NDK.

Sun and Tan are correct that the NDK considers native code performing privileged

operations to be bad practice, however, we need data to con�rm this intuition. We must

know: what is the native code in real-world apps doing? How do real-world apps use native

code? For instance, what if native code is used to perform exactly the same actions as

Java code? In this case, it would not be possible to meaningfully constrain the permission

2Even if the Dalvik Virtual Machine memory is initially mapped as read-only, a native code component
can change the memory permission by using the mprotect syscall.
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of native code components, and enforcing the least-privilege principle would not grant any

security bene�ts. We also need clari�cation as to how tightly coupled the communication

is between the native code and the Java code. Enforcing compartmentalization might

break or negatively a�ect tightly-coupled apps.

To answer these questions, we perform a large-scale analysis of real-world Android

apps. Speci�cally, we look at how apps use native code, both statically and dynamically.

We statically analyze 1,208,476 Android apps to see if they use native code, then we

dynamically analyze the 446,562 that were determined to use native code. Our system is

able to monitor the dynamic execution of an app, while recording activities performed by

its native code components (e.g., invoked system calls, interactions between native and

Java components). From this analysis, we shed light on how real-world Android apps use

native code.

In addition, our dynamic analysis system can be used to generate a native code sand-

boxing policy that allows for normal execution of the native code behaviors observed

during the dynamic analysis of a set threshold of apps, while reducing the attack surface

and thus limiting many malicious behaviors (e.g., root exploits) of malicious apps.

The main contributions of this paper are the following:

• We develop a tool to monitor the execution of native components in Android appli-

cations and we use this tool to perform the largest (in terms of number of apps and

detail of information acquired) study of native code usage in Android.

• We systematically analyze the collected data, providing actionable insights into how

benign apps use native code. Moreover, we release the full raw data and we make

it available to the community [4].

• Our results show that completely eliminating permissions of native code is not ideal,

as this policy would break, as a lower bound, 3,669 of the apps in our dataset.

However, we propose that our dynamic analysis system can be used to derive a

native code sandboxing policy that limits many malicious behaviors, while allowing

the normal execution of the native code behaviors observed during the dynamic

analysis of a set threshold of apps (99.77% in our experiment).

2.1.2 Background

To understand the analysis that we perform on Android applications and our proposed

policy, it is necessary to review the Android security mechanisms, how native code is

used in Android, the damage that malicious native code can cause, and the previously

proposed native code sandboxing mechanisms.

Android Security Mechanisms

When apps are installed on an Android phone, they are assigned a new user (UID) and

groups (GIDs) based on the permissions requested by the app in its manifest. Every app

is executed in a separate process, which is a child of Zygote, a process started when the
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system is initialized. Moreover, inter-process communication is done using intents which

all �ow through an Android system-level process called Binder [22].

On Android, some operations and resources are protected by permissions. Apps must

declare the permissions needed in the manifest, and at installation time the requested

permissions are presented to the user, who decides to continue or cancel the installation.

Permissions are enforced app-wise using Linux access-control mechanisms and by system

services that check if the app is allowed to access certain resources or perform the requested

operation [30].

Native Code

Native code in Android apps is deployed in the app as ELF �les, either executable �les

or shared libraries. There are four ways in which the Java code of an Android app can

execute native code: Exec methods, Load methods, Native methods, and Native activity.

Exec methods. Executable �les can be called from Java by two methods, namely

Runtime.exec and ProcessBuilder.start. Hereinafter we refer to these methods as

Exec methods.

Load methods. Native code in shared libraries can be loaded by the framework when

a NativeActivity is declared in the manifest, along with its library name, or by the app

through the following Java methods, which are hereinafter referred to as Load methods:

System.load, System.loadLibrary, Runtime.load, and Runtime.loadLibrary. Native

code in shared libraries can be invoked at loading time, through calls to native meth-

ods and through callbacks in native activities. When a library is loaded, its _init and

JNI_OnLoad functions are called.

Native methods. Native methods are implemented in shared libraries and declared in

Java. When the Java method is called, the framework executes the corresponding function

in the native component. This mapping is done by the Java Native Interface (JNI) [38].

JNI also allows native code to interact with the Java part to perform actions such as

calling Java methods and modifying Java �elds.

Native activity. Native code is invoked in native activities using activities' callback

functions, (e.g., onCreate and onResume), if de�ned in a native library.

Malicious Native Code

Malicious apps can use native code to hide malicious actions from static analysis of the

Java portion of the app. These actions can be calls to methods in Java libraries, such as

sending SMS messages, or complex attacks that involve exploiting the kernel or privileged

processes to compromise the entire OS. These root exploits are possible because native

code is allowed to directly call system calls. Another possible way that attackers can

directly call system calls to execute root exploits is by exploiting vulnerabilities in native

code used by benign apps.

As previous research has shown [77], because native code shares the same memory

address space as the Dalvik Virtual Machine, it can completely modify the behavior of

the Java code, rendering static analysis of the Java code fundamentally unsound. For

instance, malicious code can use functions exported by libDVM.so to identify where the
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bytecode implementing a speci�c Java method is placed in memory. At this point, the

native code can dynamically replace the method at run time.

Native Code Sandboxing Mechanisms

Several approaches have been proposed to sandbox native code execution. For instance,

NativeGuard [77] and Robusta [72] move the execution of native code to a separate pro-

cess. Two complementary goals are obtained: (1) the native code cannot tamper with

the execution of the Java code and (2) di�erent security constraints can be applied to the

execution of the native code.

Communication between the Java code and the native code is then ensured by modi-

fying the JNI interface to make the two processes communicate through an OS-provided

communication channel (e.g., network sockets).

While moving native code to a separate process is a natural mechanism to achieve

the aforementioned goals (because it relies on OS-provided security mechanisms, such

as process memory separation or process permissions), other solutions are possible. For

instance, thread-level memory protection (as proposed in Wedge [17]). However, applying

this solution in Android would require signi�cant modi�cations to the underlying Linux

kernel.

2.1.3 Analysis Infrastructure

We designed and implemented a system that dynamically analyzes Android applications

to study how native code is used and to automatically generate a native code sandboxing

policy. Our analysis consists of an instrumented emulator, and it records all events and

operations executed from within native code, such as invoked syscalls and native-to-Java

communication. The dynamic instrumentation is completely generic, and it allows the

usage of any manual or automatic instrumentation tool. The version of the Android

system used was 4.3.

Since our goal was to obtain a comprehensive characterization of native code usage in

real world applications, we used a corpus of 1,208,476 distinct�di�erent package names

and APK hashes�free Android apps that we have continuously downloaded from the

Google Play store from May 2012�August 2014. The age of the apps varies throughout

the time-frame, as we currently do not download new versions of apps.

Static Pre�ltering

Performing dynamic analysis of all 1,208,476 apps by running each app would take a

considerable amount of time; therefore, by using static analysis, we �ltered the apps that

had some indication of using native code. The characteristics we looked for in the apps

are the following: having a native method, having a native activity, having a call to an

Exec method, having a call to a Load method, or having an ELF �le inside the APK.

We used the Androguard tool [24] as a basis for the static analysis. To identify native

methods we searched for methods declared in the Dalvik bytecode with the modi�er3

3Modi�er here is an attribute of a method, similar to public. An example Dalvik method signature
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Table 2.1: Results of the static analysis.

Apps Type

267,158 Native method
42,086 Native activity
288,493 Exec methods
242,380 Load methods
221,515 ELF �le

446,562 At least one of the above

�native.� Native activities were identi�ed by two means: (1) looking for a NativeActivity

in the manifest and (2) looking for classes declared in the Dalvik bytecode that extend

NativeActivity. Finally, calls to Exec and Load methods were identi�ed by investigating

method invocations in the bytecode.

Of the 1,208,476 apps statically analyzed, 446,562 apps (37.0%) used at least one of

the previously mentioned ways of executing native code. Table 2.1 presents the number

of apps that use each of these characteristics.

Dynamic Analysis System

Now that we have identi�ed which Android apps use native code, we now want to under-

stand how apps use native code. During the dynamic analysis we monitor several types of

actions performed by the analyzed apps, including system calls, JNI calls, Binder trans-

actions, calls to Exec methods, loading of third-party libraries, calls to native activities'

native callbacks, and calls to native methods. The system calls were captured using the

strace tool, and the other information we obtained through instrumentation.

To monitor JNI calls, calls to native methods, and library loading, we modi�ed libdvm.

However, we do not want to monitor all JNI calls, just JNI calls to the app's native code,

rather than calls to native code in the standard libraries that Android includes. To avoid

monitoring JNI calls in standard libraries and calls to native methods in standard libraries,

we modi�ed the �Method� structure to include a property indicating whether it belongs

to a third-party library or not. When a third-party library is loaded, this property is set

accordingly.

We modi�ed libbinder to track and monitor Binder transactions. We record the

class of the remote function being called and the number that identi�es the function.

To map the identi�ers to function names, we parse the AIDL (Android Interface De�-

nition Language) �les and source �les that de�ne Binder interfaces. To �nd �les that

have such de�nitions, we search for uses of the macros DECLARE_META_INTERFACE and

IMPLEMENT_META_INTERFACE and classes that extend �IInterface.� Furthermore, to match

identi�cation numbers to names, we search in �.cpp� �les for enumerations that use

IBinder::FIRST_CALL_TRANSACTION and, in �.java� �les, for variables de�ned using

IBinder.FIRST_CALL_TRANSACTION. We use the names assigned FIRST_CALL_TRANSACTION

as the functions with identi�er 1, the ones assigned FIRST_CALL_TRANSACTION + NUM as

would be: .method public native example().
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the functions with identi�er 1+NUM and, for the enumerations that only use FIRST_-

CALL_TRANSACTION to de�ne the �rst element, we consider they are increasing the iden-

ti�er one by one.

Calls to Exec methods are identi�ed by instrumenting libjavacore. Finally, to mon-

itor the use of native callbacks in native activities, we modi�ed libandroid_runtime.

We determine which actions were performed by native code and which by Java code

after the dynamic analysis. To make this determination, we observe when threads change

execution context from Java to native and from native to Java. Thus, we process all

system calls, keeping a list of threads that are executing native code. We add a thread

to this list when one of the following happens: Exec method is executed�we add the

child process, which is then used to call execve, a custom (third-party) shared library is

loaded, a native method is executed, or a callback in the native component of a native

activity is executed. When these actions are completed and the execution control changes

back to Java, the thread is removed from the list.

Figure 2.1: Possible transitions between native code and Java.

We also remove a thread from the list when one of the JNI methods in Table 2.2 is ex-

ecuted. The Call*<TYPE> functions are used to call Java methods, and the NewObject*

functions are used to create instances of classes, which results in the execution of Java

constructors. When these methods return, the thread is placed back on the list. Addi-

tionally, we remove a thread from the list when the clinit method, which is the static

initialization block of a class, is executed. Figure 2.1 presents all mentioned transitions.

To understand how isolating the native code from the Java code would impact the

performance of the apps, we also monitor the amount of data exchanged between native

and Java code. We measured the amount of data passed in parameters of calls from native
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Table 2.2: JNI methods that cause a transition from native to Java. <TYPE> can be the
following: Object; Boolean; Byte; Char; Short; Int; Long; Float; Double; Void.

Call<TYPE>Method
CallNonVirtual<TYPE>Method

Call<TYPE>MethodA
CallNonVirtual<TYPE>MethodA

Call<TYPE>MethodV
CallNonVirtual<TYPE>MethodV

CallStatic<TYPE>Method
CallStatic<TYPE>MethodA
CallStatic<TYPE>MethodV

NewObject
NewObjectV
NewObjectA

code to Java methods and vice versa, as well as the size of the returned value. We also

capture the size of data used to set �elds in Java objects. The results of this analysis are

presented in Section 2.1.5.

2.1.4 Evaluation and Insights

We ran both the static pre-�lter and dynamic analysis across numerous physical machines

and private-cloud virtual machines. In total, we used 100 cores and 444 GB of memory.

Moreover, the analysis was run in parallel.

The dynamic analysis was performed using an instrumented Android emulator (as

described in the previous section), and to keep the analysis time feasible we limited

the analysis to two minutes for each app. To dynamically exercise each application, we

followed an approach similar to what is used in Andrubis [86]: we used the Google Mon-

key [37] to stimulate the app with random events, and we then automatically generated

a series of targeted events (by means of sending properly-crafted intents) to stimulate all

activities, services, and broadcast receivers de�ned in the application.

Ideally, it would have been possible to use more sophisticated dynamic instrumentation

systems. However, the large scale of our analysis motivated our choice to use a simpler

approach, as it would have required a prohibitive amount of resources to run on hundreds

of thousand of apps. While our dynamic instrumentation system is acceptable for the

purposes of understanding the lower bound on what behaviors native code performs, the

incompleteness inherent in dynamic analysis can a�ect the native code policies generated

by our system. However, if Google or another large company were to adopt the idea of

using a dynamic analysis system to automatically generate a native code security policy,

they could use substantial resources to run the applications for longer periods of time, use

sophisticated dynamic analysis approaches [68], or even introduce the instrumentation

into the Android operating system and sample the behaviors from real-world devices.

During dynamic analysis, 33.6% (149,949) of the apps identi�ed by static analysis as

potentially having native code actually executed the native code. Table 2.3 presents the
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number of apps that executed each type of native code. These numbers constitute a lower

bound of the apps that could actually execute native code.

In order to understand, for our study, why the native code was not reached during

dynamic analysis, we manually analyzed, statically and dynamically, 20 random apps

that were statically determined to have native code. For 40% (8) of them, we established

through analysis of the decompiled code that the native code was unreachable from Java

code (also known as deadcode). The remaining applications were too complex to be

manually inspected, and we were not able to ascertain whether the native code components

were not reached due to deadcode. For this reason, we dynamically analyzed and manually

interacted with them and we did not �nd any path that led to the execution of the native

code. Thus, we believe that also in this case the native code component was not reached

due to deadcode, even if we were not able to be completely certain, due to the incomplete

nature of manual analysis.

We further investigated why there was deadcode in these apps. In each case, the native

code was deadcode in third-party libraries. In fact, in our experience, it often happens

that an app includes a third-party library, to then actively use only a (sometimes very

limited) subset of its functionality, thus leading to deadcode. Hence, we expect this to be

the case for many apps where our analysis did not reach native code. As an additional

experiment, we also manually and extensively dynamically exercised another 20 random

apps. We observed no cases of signi�cant changes in the results compared to the Google

Monkey automated analysis (neither additional native code components were reached nor

more syscalls were called).

To further understand the coverage of our dynamic analysis system we performed two

additional experiments, one measuring the Java method coverage and one measuring the

native code coverage. Section 2.1.8 discusses these experiments in depth.

Table 2.3: The number of apps that executed each type of native code.

Apps Type

72,768 Native method
19,164 Native activity
132,843 Load library

27,701
Call executable �le (27,599 standard,

148 custom and 46 both)

149,949 At least one of the above

2.1.5 Native Code Behavior�An Overview

We present in this section an overview of the actions performed by native code on Android.

We split the actions into those performed by shared libraries (including those performed

during library loading, native methods, and native activities) and those that are the result

of invoking custom, executable, and binaries through Exec methods. We also present the

actions performed using standard binaries (i.e., not created by the app), but in this case

based on their names and parameters, instead of looking at the system calls.
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Table 2.4: Overview of actions performed by custom shared libraries in native code.

Writing log messages
Performing memory management system calls, such as mmap
and mprotect

Reading �les in the application directory
Calling JNI functions
Performing general multiprocess and multithread related
system calls, such as fork, clone, setpriority, and futex

Reading common �les, such as system libraries, font �les,
and �/dev/random�
Performing other operations on �les or �le descriptors, such
as lseek, dup, and readlink

Performing operations to read information about the system,
such as uname, getrlimit, and reading special �les (e.g.,
�/proc/cpuinfo� and �/sys/devices/system/cpu/possible�)
Performing system calls to read information about the pro-
cess or the user, such as getuid32, getppid, and gettid

Performing system calls related to signal handling
Performing cacheflush or set_tls system calls or perform-
ing nanosleep system call
Reading �les under �/proc/self/� or �/proc/<PID>/�, where
PID is the process' pid
Creating directories

94.2% (125,192) of the apps that used custom shared libraries executed only a set of

common actions in native code, and Table 2.4 contains the common actions.

Table 2.5: Top �ve most common actions performed by apps in native code, through
shared libraries (SL) and custom binaries (CB). For the interested reader, we report the
full version of this table in [4].

SL CB Description

3,261 72 ioctl system call
1,929 39 Write �le in the app's directory
1,814 35 Operations on sockets
1,594 5 Create network socket
1,242 144 Terminate process or thread group

The top �ve most common actions performed by apps in native methods, native ac-

tivities, and custom binaries called through Exec are presented in Table 2.5. Table 2.6

presents the top �ve most common actions performed by the apps that used Exec to call

standard (system) binaries.

By analyzing the system calls and the Java methods called from native code, we

identi�ed 3,669 apps that perform an action requiring Android permissions from native

code. Table 2.7 presents the top �ve most popular permissions used, how many apps use

them, and how we detected its use. We used PScout [12] to compute the permissions
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Table 2.6: Top �ve most common actions performed by apps that called standard binaries
in the system. For the interested reader, we report the full version of this table in [4].

Apps Description

19,749 Read system information
3,384 Write �le in the app's directory or in the sdcard
3,362 Read logcat
1,041 List running processes
861 Read system property

Table 2.7: The �ve most common (by number of apps) actions in native code that require
Android permission. For the interested reader, we report the full version of this table
in [4].

Apps Permission Description

1,818 INTERNET Open network socket or call method
java.net.URL.openConnection

1,211 WRITE_EXTERNAL_STORAGE Write �les to the sdcard
1,211 READ_EXTERNAL_STORAGE Read �les from the sdcard
132 READ_PHONE_STATE Call methods getSubscriberId,

getDeviceSoftwareVersion,
getSimSerialNumber or
getDeviceId from class
android.telephony.TelephonyManager

or Binder transaction to call
com.android.internal.telephony.

IPhoneSubInfo.getDeviceId

79 ACCESS_NETWORK_STATE Call method android.net.

ConnectivityManager.getNetworkInfo

required by each Java method. Comparing the permissions used in native code with the

permissions requested by the app, we found that only 81 apps use, in native code, all the

permissions requested by the app.

In addition to this being the �rst concrete look into how many apps use native code

and what that native code does, we can draw two important conclusions: (1) if the native

code is separated in a di�erent process, it is necessary to give some permissions to the

native code and (2) the permissions of the native code can be more strict (less permissive)

than the permissions of the Java code.

It is interesting to note how conclusion (1) shows that the drastic measure adopted in

NativeGuard [77], which does not grant any permissions to the native code, would break

3,669 of apps. This observation reinforces even more our belief that security policies

should be generated following a data-driven approach. For instance, a reasonable tradeo�

would be to allow to the native code only the INTERNET, WRITE_EXTERNAL_STORAGE, and

READ_EXTERNAL_STORAGE permissions (the three most commonly used in native code),

thus blocking only 152 applications.
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Java�Native Code Interactions

To better understand the performance implications of separating the native code from the

Java code of the apps, we measured the number of interactions per millisecond between

Java and native code, i.e., the number of calls to JNI functions, calls to native methods,

and Binder transactions.

The mean of interactions per millisecond is 0.00142, whereas the variance is 0.00003

and the maximum value is 0.22. NativeGuard's [77] performance evaluation with the

Zlib benchmark shows a 34.36% runtime overhead for 9.81 interactions per millisecond

and 26.64% for 3.96 interactions per millisecond. Therefore, our experiment shows that

isolating native code in a di�erent process should not have a substantial performance

impact on average.

Additionally, we measure the number of bytes exchanged between the Java code and

native code per second. The mean of bytes exchanged per second is 1,956.55 (1.91 KB/s)

and the maximum value is 6,561,053.27 (6.26 MB/s). Only 11 apps exchanged more than

1 MB/s. We believe the amount of data exchanged between Java and native code would

not incur a signi�cant overhead, although it could vary greatly depending on the speci�c

app.

Usage of the su Binary

Unlike common Linux distributions, in Android, users do not have access to a super user

account and, therefore, are prevented from performing certain actions, such as uninstalling

pre-installed apps. Thus, to have greater control over the system, many users perform

a process known as �rooting,� to be able to perform actions as the �root� user. Usually,

during this process, a suid executable �le called su is installed, as well as a manager

app that restricts which apps can use this binary to perform actions as root. Because

this process is so common among users, there are many apps that provide functionality

that can only be performed by the root user, such as changing the fonts of the system or

changing the DNS con�guration.

Table 2.8: Top �ve most common types of command passed with the �-c� argument to su,
separated between the apps that mention they need root privileges in their description or
name and the ones that do not mention it. For the interested reader, we report the full
version of this table in [4].

Does not
Mention
Root

Does
Mention
Root

Description

12 10 Custom executable (e.g.,
su -c sh /data/data/com.test.etd062.ct/�les/occt.sh)

1 13 Reboot
2 12 Read system information
1 8 Change permission of �le in app's directory
1 7 Remove �le in app's directory
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Our analysis identi�ed 1,137 apps that try to run su. Surprisingly, 28.23% (321)

of these apps do not mention in their description or in their name that they need root

privileges.

Some of these apps use the �-c� argument of su to specify a command to be executed as

root. Table 2.8 presents the top �ve most common types of actions that these apps tried to

execute using su, along with the number of apps that attempt to execute that command,

and if the app mentioned that it requires root or not. This table gives insights into what

the app is trying to accomplish as root. The table shows that the most common action

used with the �-c� argument of su is calling a custom executable. Because apps cannot

use su in the emulator, these actions did not work properly during dynamic analysis, so

we cannot obtain more information on their behavior.

JNI Calls Statistics

Understanding the JNI functions called by native code can reveal how the native com-

ponents of apps interact with the app and the Android framework. Table 2.9 presents

the types of JNI functions that were used by the apps and how many apps used them.

The most relevant actions for security considerations in this table are: (1) calling Java

methods and (2) modifying �elds of objects. Calling methods in Java libraries from native

code can be used to avoid detection by static analysis. Moreover, modifying �elds of Java

objects can change the execution of the Java code in ways that static analysis cannot

foresee.

Calling Java methods, both from the Android framework and from the app can be

performed by some of the methods presented in Table 2.2, more precisely the ones whose

name starts with �Call.� As Table 2.9 shows, we identi�ed 35,231 apps that have native

code which calls Java methods. More speci�cally, 24,386 apps used these functions to call

Java methods from the app and 25,618 apps used them to call Java methods from the

framework. Table 2.10 presents what groups of methods from the framework were called,

along with the amount of apps that called methods in each group.

Binder Transactions

1.64% (2,457) of the apps that reached native code during dynamic analysis performed

Binder transactions. Table 2.11 presents the top �ve most commonly invoked classes

of the remote methods. The most common class remotely invoked by this process is

IServiceManager, which can be used to list services, add a service, and get an object to

a Binder interface. All apps that used this class obtained an object to a Binder interface

and two apps also used it to list services. This data shows that using Binder transactions

from native code is not common. From a security perspective this is good as the use

of Binder transactions represent a way in which native code can perform critical actions

while staying undetected by static analysis.
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Table 2.9: Groups of JNI calls used from native code.

Apps Description

94,543 Get class or method identi�er and class reference
71,470 Get or destroy JavaVM, and Get JNIEnv
53,219 Manipulation of String objects
49,321 Register native method
45,773 Manipulate object reference
41,892 Thread manipulation
35,231 Call Java method
19,372 Manipulate arrays
18,601 Manipulate exceptions
14,330 Create object instance
6,918 Modify �eld of an object
2,203 Manipulate direct bu�ers
47 Memory allocation
37 Enter or exit monitor

Table 2.10: Top 10 groups of Java methods from the Android framework called from
native code.

Apps Description

7,423
Get path to the Android

package associated with the context of the caller
6,896 Get class name
5,499 Manipulate data structures
4,082 Methods related to cryptography
3,817 Manipulate native types
3,769 Read system information
3,018 Audio related methods
2,070 Read app information
1,192 String manipulation and encoding
575 Input/output related methods
483 Re�ection

Table 2.11: Top �ve most common classes of the methods invoked through Binder trans-
actions. For the interested reader, we report the full version of this table in [4].

Apps Class

2,427 android.os.IServiceManager
740 android.media.IAudioFlinger
725 android.media.IAudioPolicyService
327 android.gui.IGraphicBu�erProducer
303 android.gui.SensorServer

Usage of External Libraries

Understanding the libraries used by the apps in native code can help us comprehend

their purpose. Table 2.12 presents the top 10 most used system libraries and Table 2.13
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presents the top 10 must used custom libraries by apps in native code. It demonstrates

that apart from the bitmap manipulation library, which was used by 16.6% (24,942) of

the apps that reached native code, no standard library was used by a great number of

apps. On the other hand, several custom libraries were used by more than 7.5% of the

apps that executed native code.

Table 2.12: Top 10 most used standard libraries.

Apps Name Description

24,942 libjnigraphics.so
Manipulate Java
bitmap objects

2,646 libOpenSLES.so Audio input and output

2,645 libwilhelm.so
Multimedia output
and audio input

349 libpixel�inger.so Graphics rendering
347 libGLES_android.so Graphics rendering

183 libGLESv1_enc.so
Encoder for GLES 1.1

commands

183 gralloc.gold�sh.so
Memory allocation

for graphics

182 libOpenglSystemCommon.so
Common functions
used by OpenGL

182 libGLESv2_enc.so
Encoder for GLES 2.0

commands

181 lib_renderControl_enc.so
Encoder for rendering
control commands

Table 2.13: Top 10 most used custom libraries.

Apps Name Description

19,158 libopenal.so Rendering audio
17,343 libCore.so Used by Adobe AIR
16,450 libmain.so Common name
13,556 libstlport_shared.so C++ standard libraries
11,486 libcorona.so Part of the Corona SDK,

a development platform
for mobile apps

11,480 libalmixer.so Audio API of the Corona
SDK

11,458 libmpg123.so Audio library
11,090 libmono.so Mono library, used to run

.NET on Android
10,857 liblua.so Lua interpreter
10,408 libjnlua5.1.so Lua interpreter
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2.1.6 Security Policy Generation

One step to limit the possible damage that native code can do is to isolate it from the

Java code using the native code sandboxing mechanisms discussed in Section 2.1.2. These

mechanisms prevent native code from modifying Java code, which allows static analysis of

the Java part to produce more reliable results. However, this is not enough, considering

that the app can still perform dangerous actions�that is, by interacting with the Android

framework/libraries and by using system calls to execute root exploits.

Our goal here is to reduce the attack surface available to native code, by restricting the

system calls and Java methods that native code can access. In particular, we propose to

use our dynamic analysis system to generate security policies. A security policy represents

the normal behavior, which can be seen as a sort of whitelist that represents the syscalls

and Java methods that are normally executed from within native code components of

benign applications. These policies also implicitly identify which syscalls and Java meth-

ods should be considered as unusual or suspicious (as they do not belong to the common

syscalls), such as the ones used to mount root exploits.

One aspect to be considered is what action is taken when an unusual syscall is executed.

Similar to the design choice adopted by SELinux, we envision two modes: permissive and

enforcing. In permissive mode, the system would log and report the usage of unusual

behavior, while in enforcing mode the system would block the execution of such unusual

behavior and stop the application. Depending on the context, it might make sense to

use permissive or the more aggressive enforcing mode. As an alternative, one could

selectively pick permissive or enforcing mode depending on whether the unusual syscall

is well-known to be used by root exploits. The policy generation process for syscalls is

described in Section 2.1.6, while the one for Java methods is described in Section 2.1.6.

We discuss the possibilities and the implications of this choice in Section 2.1.7.

It is worth noting that while this will not guarantee perfect protection from attacks,

by applying the security principle of least privilege to the native code, we gain the dual

security bene�ts of (1) increasing the precision of Java static analysis and (2) reducing

the impact of malicious native code.

System Calls

Based on the system calls performed by the apps in native methods, in native activities,

during libraries loading, and by programs executed by Exec methods, our system can

automatically generate a security policy of allowed system calls. To compile this list, we

�rst normalize the parameters of the system calls and later iterate over them, selecting

the ones performed by most apps, until the list of selected system calls is comprehensive

enough to allow at least a (variable threshold) percentage of the apps that executed native

code to run properly. In Android, inter-process communication is done through Binder.

Native code can directly use Binder transactions to call methods implemented by system

services. At the system call level, these calls are performed by the ioctl system call. To

consider these actions in our automatically generated whitelist, we substitute ioctl calls

to Binder with the Binder transactions performed by the apps.

To understand the possible policies that could be generated, we performed this process
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using a threshold (the percentage of apps that use native code whose dynamically-executed

behavior would function properly when enforcing this policy) of 99%. Tables 2.14, 2.15

and 2.16 present the actions obtained by this procedure. The system call arguments that

were normalized were replaced by symbols in the form <*> and * (meaning anything).

Some of the arguments that are �le descriptors were changed to a �le path representation

of it. All arguments that were not normalized represent a numeric value or a constant

value that was converted by strace to a string representation. For the system calls that

do not have the arguments next to it in the policies, the policy accepts calls with any

arguments. Table 2.17 presents more details about the symbols used.

To better understand which types of apps would be blocked by our example policy

(when in enforcing mode), we studied them and manually analyzed a subset of them. The

�ndings of this analysis are presented in Section 2.1.7.

The policies restrict the possible actions of native code, thus following the principle of

least privilege and making it harder for malicious apps to function. Previously, malicious

code could easily hide in native code to evade static analysis. With our example policies

enforced by a sandboxing mechanism, the native code does not (depending on the exact

threshold) have the ability to perform any malicious actions in native code, and therefore

attackers will have to move the malicious behavior to the Java code, where it can be

found by existing Java static analysis tools. Furthermore, the policies do not prevent

the correct execution of the dynamically-executed behavior of many benign apps. Using

the rules generated with the 99% threshold, only 1,483 apps (0.12% of the total apps

in our dataset) would be a�ected. Of course, as the dynamic analysis performed by our

system is incomplete (in that it can not execute all possible app code), this number is

a lower bound. This can be alleviated by an organization wishing to use our system in

one of two ways: (1) increase the completeness of the dynamic analysis or (2) deploying

the sandboxing enforcement mechanism in reporting mode. Both choices will reveal more

app behaviors.

Another bene�t of enforcing a native code sandboxing policy is that it would prevent

the correct execution of several root exploits. For this work, we considered the 13 root

exploits reported in Table 2.18. These exploits require native code to be successful. Our

example security policy would hinder the execution of 10 of them. This follows because the

policies attempt to reduce the attack surface of the OS for native code, while at the same

time maintaining backward compatibility. Table 2.18 presents which of the considered

exploits are successfully blocked, along with which entry of the policy they violate.

The root exploits that are prevented by our example security policy are blocked due

to rules related to four system calls, namely socket, perf_event_open, symlink, and

ioctl. More precisely, two exploits need to create sockets with PF_NETLINK domain

and NETLINK_KOBJECT_UEVENT (15) protocol, however, the rules only allow PF_NETLINK

sockets with protocol 0. One of the exploits needs the perf_event_open system call,

which is not allowed by the policy. Two exploits need to create symbolic links that target

system �les or directories, but the policy only allows symbolic links to target �USER-

PATH,� which means �les or directories in the app's directory or in the SD Card. Finally,

�ve exploits use ioctl to communicate with a device. One of the rules allows ioctl

calls to any device, namely ioctl(<NON STD FD>,SNDCTL_TMR_TIMEBASE or TCGETS,*).
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However, this rule speci�es the valid request value (the second parameter), whereas the

exploits use di�erent values, therefore they would be blocked.

The table also reports the details about the three exploits that would not be currently

blocked. In one case (CVE-2011-1149), the exploit would still work because our example

policy allows the invocation of the mprotect syscall, since it is used by benign applications.

In the two remaining cases (RATC and Zimperlinch), the exploits rely on repeatedly

invoking the fork syscall to exhaust the number of available processes. The fork syscall

is allowed by our policy as some benign applications do use it. However, note that this

kind of exploit could be blocked by a security policy that would take into account the

frequency of invocations of a given syscall: In fact, no benign application would ever

invoke the fork syscall so frequently. We believe that considering this additional aspect

of native code behavior is a very interesting direction for future work.

Although our example security policy does not block all exploits, we believe the adop-

tion of native sandboxing to be useful. In fact, it does sensibly reduce the attack surface

available to native code components, and it is able to successfully block a number of

root exploits. Similarly, we believe that useful policies can be generated by our dynamic

analysis system that will be able to block future exploits.

Java Methods

Even with the system call restrictions, native code can still perform dangerous actions

by invoking Java methods. This can be accomplished by using certain JNI functions, as

discussed in Section 2.1.3. Static analysis of the Java component of apps cannot identify

these calls, therefore, the possibility of apps calling methods in Java libraries poses a

threat to the system and can be abused by malicious apps.

We performed the same process presented in Section 2.1.6 to automatically generate

policies that restrict the use of methods in Java libraries. Table 2.19 presents these

policies, using di�erent values as the minimum percentage of allowed apps that reached

native code during dynamic analysis. We used 97%, 98%, and 99% as the values for the

minimum. The methods authorized for each threshold include the ones associated with

lower thresholds.

Using the list of apps associated with a minimum of allowed apps of 99% (the most

permissive of our thresholds), we would block 1,414 apps (0.12%). The method

java.lang.ClassLoader.loadClass, which is allowed when using 99% as a threshold,

causes the invocation of the static initialization block (<clinit>) of a class. Therefore,

it could be used to execute the static initialization block of classes in Java libraries.

However, as far as we know, these blocks do not contain important operations that need

to be contained.

2.1.7 Impact of Security Policies

Considering both our policies�Java methods and system calls�, and the 99% threshold,

we would block 0.23% (2,730) of all the apps in our dataset. To understand what the

impact of implementing (and enforcing with the strictest enforcement mechanism) these

policies would be on users, we analyzed the popularity (lower number of installations) of
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Figure 2.2: Popularity of apps that would be blocked by enforcing our policy. X-axis is
in logarithmic scale, and the Y -axis is the percentage of apps that would be blocked.

the apps whose behavior seen during the dynamic analysis would be blocked. Figure 2.2

presents the cumulative distribution of the popularity of the apps that would be blocked.

As the �gure shows, among the applications for which our policy would block at least one

behavior that has been executed at runtime, 1.87% (51) of them have more than 1 million

installations.

Because manual analysis is very time-consuming, we did not perform it on all blocked

apps. However, we did a general investigation of the blocked apps and manually analyzed

the ones that showed traces of suspicious behavior. We identi�ed three types of suspicious

activities among these apps, and we discuss them here.

Ptrace. Overall, 280 apps used ptrace. 276 of these only call ptrace to trace itself

without checking the result. We assume that the developers do this as a defensive measure

to prevent the analysis of the app, because an app cannot be traced by another process
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if there is already a process tracing it. Therefore, for these 276 apps we believe that the

app's functionality would remain intact with our policy. Four apps, on the other hand,

create a child process, which try to attach ptrace to the parent, checking the result of

the call and changing behavior if the call failed.

Modifying Java code. We identi�ed 7 apps that modify the Java section of the app from

native code. All these apps perform this action from the library libAPKProtect.so [8].

This library is provided by an obfuscation service, thus making it harder for reverse

engineering tools to decompile the app. This functionality can also be used by malicious

apps and illustrates the importance of isolating native code.

Fork and inotify. We identi�ed 57 apps that create a child process in native code and

use inotify to monitor the apps' directory, in order to identify when they are uninstalled.

In fact, the spawned child process uses inotify to detect when the app is uninstalled and,

when this happens, it opens a survey in the browser. This behavior is not a malicious

action; however, executing code after being uninstalled is suspicious, as the user does not

expect the app to be running after being uninstalled.

2.1.8 Dynamic Coverage

Dynamic analysis is inherently incomplete, and in this section we attempt to measure the

code coverage of the dynamic analysis that we used, using function coverage of the Java

code and function coverage of the native code. Both code coverage methods have large

overhead, so we were only able to analyze a subset of the apps.

Java Method Code Coverage

To measure the code coverage based on the Java methods executed, we instrumented the

DVM. The instrumented code records the execution of every method of the app under

analysis. Since this instrumentation introduces more overhead and slows the emulator, we

did the experiment with 25,000 apps randomly selected and used a kernel driver, instead

of strace, to record the system calls executed. The code coverage obtained was 8.31%

Native Code Coverage

While code coverage of the Java methods allows us to gain insight into the high level

code coverage of our dynamic analysis system, it does not shed light on the core issue

we are interested in: how much of an app's native code is the dynamic analysis able

to execute? To answer this question, we modi�ed both the Android emulator and the

Android framework to support measuring function coverage of the native code.

One technical challenge here is that the native code coverage must understand not

only which native libraries are loaded by an app, but also which part of the native library

is actually executed. Thus we need to: (1) trace the executed native functions and (2)

statically determine the total number of native functions. This will allow us to calculate

the function coverage of the native code.

To the best of our knowledge, there is no previously released tool to trace the execution

of the native code of an app. Android Open Source Project implements a tracing mech-
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anism since version 4.4. This tracing mechanism is implemented using a kernel device

called qemutrace that is part of the gold�sh kernel. The kernel send information to assist

the emulator to trace correctly the execution, e.g., the PID of the running process each

time there is a context switch, a message that noti�es that a fork or an execve is executed,

etc. The whole tracing system signi�cantly slows down the performance of the emulator.

However, this tracing system is too general: we are interested only in the execution of the

native code of a speci�c app. We need to trace only functions of loaded libraries of the

app under analysis.

For this reason, we created two ways to limit the tracing to the interesting part only.

First, we only want to trace processes with a speci�c UID because each app in Android is

executed with it own UID. In addition, we are interested only in portions of the executable

memory where the native libraries have been loaded.

To inform the emulator about the UID of the currently executing process we leverage

the existing qemutrace device. We added the UID into the message sent for each context

switch. To send the information about the map of the memory to the emulator we cannot

use the qemutrace device, since it can only pass 32 bit integers as messages. Moreover,

we also need a mechanism to extract the libraries from the emulated system. To solve

both problems we instrumented the Android framework. We found that the function

java.lang.Runtime.doLoad is able to intercept all the loading operations. Our hook

inside the doLoad function blocks the loading (and the app) while syncing all the gathered

data to the external emulator. The mapping of the memory and the PID are read from

/proc/self/. The path of the loaded library is one of the parameters of the doLoad

function. Hence, when doLoad returns, the emulator knows the address space reserved

for the new library, and the content of the native library.

After the dynamic execution, we compute the code coverage using all the data gathered

during the execution. We use IDA Pro to �nd all functions boundaries of libraries. Then,

we use the map of the memory to translate the virtual addresses traced by the emulator.

Next, we �ag all the functions whose boundaries include at least one address of the trace.

The code coverage is then calculated.

Our tracing system slows down the execution of the apps by around 10 times. There-

fore, we only ran it on a small subset of the apps, more speci�cally, we analyzed 177. The

code coverage of most libraries is less that 1%. Some small libraries, on the other hand,

were covered by 100%. Furthermore, the average coverage was 7%. More details about

executed libraries and coverage can be seen in Figure 2.3.

2.1.9 Threats to Validity

Our study is a�ected by a few limitations, which we discuss in this section. An intrinsic

limitation of the automatically-generated security policies is that we base their automatic

generation on data and insights obtained by means of dynamic analysis, which is well-

known to be incomplete and a�ected by code coverage issues. In fact, dynamic analysis

does not ensure that all native code is exercised in the apps that actually use it, and

for those apps that used native code, dynamic analysis may not have exercised all code

paths in the native code. Consequently, the policies that our tool generated might not
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Figure 2.3: Per library coverage of executed functions. Horizontal axis contains libraries
name, vertical, instead contains the function coverage. For each bar we also show the
number of libraries that has been found in all executed applications

be complete, they might block more applications when adopted at large-scale, and the

performance overhead of isolating native code could be higher. However, using a more-
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sophisticated instrumentation tool could possibly improve the amount of native code

behavior that our system observes, or deploying the automatically generated policies in a

native sandbox with reporting mode would help to observe the behaviors that the policies

would block.

Nonetheless, we believe this work to be a signi�cant �rst step in a very important

direction. In fact, to the best of our knowledge, this work is the �rst, largest, and most

comprehensive study on how real-world applications use native code. Our results demon-

strate that it is infeasible to adopt a completely restrictive sandboxing policy. In addition,

we propose a system to automatically generate a native code sandboxing policy following

a data-driven approach. This system could be used by large organizations that are in-

terested in automatically generating a native code sandboxing policy. Furthermore, the

completeness issues could possibly be addressed by increasing the �delity of the dynamic

analysis, either through more sophisticated analysis techniques or increased resources, or

by obtaining the actual behavior of native code in the wild, by instrumenting real-world

Android devices.

Another limitation is that our approach restricts access to permissions from native

code, but it still allows the native code to invoke (some) Java methods. This aspect would

make, in principle, Java-only analysis more precise, but still not completely sound, as a

malicious application could introduce hidden execution paths by invoking a native method,

which, in turn, could invoke a Java method. However, we note that our automatically-

generated policy only allows native code to invoke a very narrow subset of Java methods

de�ned in the Android framework (Table 2.19), through which it is virtually impossible

to perform any security-sensitive operation. Thus, our policy, although not perfect, would

drastically reduce the possibility of introducing malicious behaviors.

Lastly, we consider all the apps we obtained from Google Play as benign, but we

cannot be completely certain that there are no malicious apps among them. The e�ects

of having malicious apps in our dataset vary depending on how the malware works. In

the worst case it could cause our policies to allow some malicious actions.

2.1.10 Related Work

In this section we relate our work to the vast amount of research published in the �eld of

Android security.

Large Measurement Studies. Several works have analyzed large datasets of Android

apps, but with goals that di�er from ours. Viennot et al. [81] did a large measurement

study on 1,100,000 applications crawled from the Google Play app store. In particular,

they collected meta-data and statistics taken from the Google Play store itself. As part

of their study, they measured the frequency with which Android applications make use

of native code components. Another important measurement study has been performed

by Lindorfer et al. [53]. In their work, they analyzed 1,000,000 apps, of which 40% are

malware. To perform the analysis, the authors used Andrubis, a publicly-available analysis

system for Android apps that combines static and dynamic analysis. When focusing on

native code, our work signi�cantly extends their study.

Application Analysis Systems. Several systems have been proposed to perform be-
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havioral analysis of Android applications based on dynamic analysis [26,28,64,66,69,91].

Moreover, several other works have been proposed to identify malicious Android apps [9,

19, 40]. Our analysis complements all these research e�orts by performing a large scale

study, based on dynamic analysis, speci�cally focused on native code usage.

Protection Systems. Fedler et al. [29] proposes a protection system from root exploits

by preventing apps from giving execution permission for custom executable �les and by

introducing a permission related to the use of the System class. PREC [42] is a framework

intended to protect Android systems from root exploits. PREC uses two steps, learning

and enforcement. During the learning phase, the analysis generates a model of the normal

behavior for a given app. Then, during the enforcement phase, the system makes sure

that the app does not deviate from the normal behavior. Our work has the advantage

that the generated policies can be applied to all apps, whereas PREC generates per-app

models. Hence, our results are more general. Moreover, our analysis also monitors, in

addition to system calls, JNI function calls, Binder transactions and calls from Java to

native methods.

Native Code Isolation. Another way to protect the system is by isolating native code.

The challenge of isolating native code components used by managed languages has been

extensively studied. For instance, Klinko� et al. [49] focus on the isolation of .NET ap-

plications, whereas Robusta [72] focuses on the isolation of native code used by Java

applications. Recently, NativeGuard [77] proposed a similar mechanism to isolate native

code in the context of Android. Our work is complementary to these sandboxing mech-

anisms and �lls the knowledge gap necessary to de�ne security policies on the execution

of native code in Android that are both usable in real-world applications and e�ective in

blocking malicious behavior of native components.

2.1.11 Conclusion

While allowing developers to mix Java code and native code enables developers to fully

harness the computing power of mobile devices, we believe that, in the current state,

this feature does more harm than good and that native code sandboxing is the correct

approach to properly limit its potentially malicious side-e�ects. However, a native code

sandboxing mechanism without a proper policy will never be feasible. We hope that, in

addition to shedding light on the previously unknown native code usage of Android apps,

this paper demonstrates an approach to automatically generate an e�ective and practical

native code sandboxing policy.
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Table 2.14: Allowed system calls automatically generated using a threshold of 99% apps
una�ected by the policy (part 1).

accept(*,*,*) access(<SYS-PATH>, F_OK)
access(

<SYS-PATH>,R_OK)

access(<SYS-PATH>, W_OK) access(<SYS-PATH>,X_OK)
access(

<USER-PATH>, F_OK)

access(<USER-PATH>,R_OK)
access(<USER-PATH>,
R_OK|W_OK|X_OK) bind

BINDER(
android.os.IServiceManager.

CHECK_SERVICE_
TRANSACTION)

brk cache�ush(*,*,0,*,*)

cache�ush(*,*,0,0,*) chdir chmod(<USER-PATH>,*)

clone(child_stack=*,�ags=CLONE_VM|CLONE_FS|
CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM)

connect(*,
{sa_family=AF_UNIX,
path=@"jdwp-control"},*)

connect(*,
{sa_family=

AF_INET,*,*},*)

connect(*,{sa_family=
AF_UNIX, path=

@"android:debuggerd"},*)

connect(*,
{sa_family=AF_UNIX,
path=<SYS-PATH>},*)

dup dup2

epoll_create(*) epoll_ctl(*,*,*,*) epoll_wait

execve exit(<NEG INT>) exit(0)

exit_group(<POS INT>) exit_group(0)
fcntl64(<NON STD FD>,

F_DUPFD,*)

fcntl64(<NON STD FD>
,F_GETFD)

fcntl64(*,F_GETFL)
fcntl64(<NON STD FD>,

F_SETFD,*)

fcntl64(<NON STD FD>
,F_SETFL,*)

fcntl64(<NON STD FD>,
F_SETLK,*)

fdatasync(*)

fork fstat64 fsync(*)

ftruncate(*,*) futex getcwd

getegid32 geteuid32 getgid32

getpeername getpgid(0) getpid

getppid getpriority(PRIO_PROCESS,*)
getrlimit(

RLIMIT_DATA,*)

getrlimit(RLIMIT_NOFILE,*) getrlimit(RLIMIT_STACK,*)
getrusage(

RUSAGE_CHILDREN,*)

getrusage(RUSAGE_SELF,*) getsockname
getsockopt(*,

SOL_SOCKET,
SO_ERROR,*,*)

getsockopt(*,SOL_SOCKET,
SO_PEERCRED,*,*)

getsockopt(*,
SOL_SOCKET,
SO_RCVBUF,*,*)

gettid

getuid32 ioctl(<ASHMEM-DEV>,*,*) ioctl(*,FIONBIO,*)

ioctl(<LOG-DEV>,*,*) ioctl(*,SIOCGIFADDR,*)
ioctl(*,

SIOCGIFBRDADDR,*)

ioctl(*,SIOCGIFCONF,*) ioctl(*,SIOCGIFFLAGS,*)
ioctl(*,

SIOCGIFHWADDR,*)



CHAPTER 2. PUBLISHED DOCUMENTS 48

Table 2.15: Allowed system calls automatically generated using a threshold of 99% apps
una�ected by the policy (part 2).

ioctl(*,SIOCGIFINDEX,*) ioctl(*,SIOCGIFNETMASK,*)
ioctl(<STD IN/OUT/ERR>,
SNDCTL_TMR_TIMEBASE

or TCGETS, *)

ioctl(*,
SNDCTL_TMR_TIMEBASE

or TCGETS,*)

ioctl(<URANDOM-DEV>,
SNDCTL_TMR_TIMEBASE

or TCGETS,*)
listen

lseek(*,*,SEEK_CUR) lseek(*,*,SEEK_END) lseek(*,*,SEEK_SET)

lstat64
madvise(*,*,

MADV_DONTNEED)
madvise(*,*,

MADV_NORMAL)

madvise(*,*,
MADV_RANDOM)

mkdir(<SYS-PATH>,*) mkdir(<USER-PATH>,*)

mmap2 mprotect
mremap(*,*,*,

MREMAP_MAYMOVE)

munmap nanosleep open(<SYS-PATH>,*,*)

open(<SYS-PATH>,*) open(<USER-PATH>,*,*) open(<USER-PATH>,*)

pipe poll
prctl(PR_GET_NAME,

,0,0,0)

prctl(PR_SET_NAME,
*,*,*,*)

prctl(
PR_SET_NAME,*,*,*,0)

prctl(PR_SET_NAME,
,0,0,0)

ptrace(PTRACE_TRACEME,
*,0,0)

readlink(<USER-PATH>,*,*) recvfrom

recvmsg
rename(<USER-PATH>,

<USER-PATH>)
rmdir(<USER-PATH>)

rt_sigprocmask(
SIG_BLOCK,*,*,*)

rt_sigprocmask(
SIG_SETMASK,*,*,*)

rt_sigreturn(*)

rt_sigtimedwait([QUITUSR1],
NULL, NULL, 8)

sched_getparam sched_getscheduler

sched_yield select sendmsg

sendto setitimer(ITIMER_REAL,*,*)
setpriority(PRIO_PROCESS

,*,<POS INT>)
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Table 2.16: Allowed system calls automatically generated using a threshold of 99% apps
una�ected by the policy (part 3).

setpriority(
PRIO_PROCESS,*,0)

setrlimit(RLIMIT_NOFILE,*) setsockopt(*,SOL_IP,*,*,*)

setsockopt(*,
SOL_SOCKET,*,*,*)

set_tls(*,*,*,*,*) set_tls(*,*,0,*,*)

sigaction sigprocmask(SIG_BLOCK,*,*)
sigprocmask(

SIG_SETMASK,*,*)

sigprocmask(
SIG_UNBLOCK,*,*)

sigreturn sigsuspend([])

socket(PF_INET,
SOCK_DGRAM,
IPPROTO_ICMP)

socket(PF_INET,
SOCK_DGRAM,
IPPROTO_IP)

socket(PF_INET,
SOCK_DGRAM,
IPPROTO_UDP)

socket(PF_INET,
SOCK_STREAM,
IPPROTO_IP)

socket(PF_INET,
SOCK_STREAM,
IPPROTO_TCP)

socket(PF_NETLINK,

SOCK_RAW, 0)

socket(PF_UNIX,
SOCK_STREAM, 0)

stat64 statfs64(<SYS-PATH>,*)

statfs64(<USER-PATH>,*)
symlink(<USER-PATH>,

<USER-PATH>)
tgkill(*,*,SIGTRAP)

umask uname unlink(<USER-PATH>)

utimes vfork wait4

Table 2.17: Symbols used to replace the arguments of system calls.
<USER-PATH> A �le path in the apps' directory or in the sdcard

<SYS-PATH>
A �le path di�erent than the

ones represented by <USER-PATH>
<URANDOM-DEV> �/dev/random� or �/dev/urandom�
<ASHMEM-DEV> �/dev/ashmem�

<LOG-DEV>
�/dev/log/system�, �/dev/log/main�,
�/dev/log/events� or �/dev/log/radio�

<NEG INT> A negative number
<STD IN/OUT/ERR> A �le descriptor equal 0, 1, or 2
<NON STD FD> A �le descriptor di�erent than 0, 1, or 2
<POS INT> An integer greater than 0
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Table 2.18: This table shows the list of considered root exploits, on which syscall-level
behavior they rely, and which exploits are successfully blocked by our policy.

Name / CVE Description Blocked

Exploid (CVE-2009-1185)
Needs a NETLINK socket with

NETLINK_KOBJECT_UEVENT protocol
Yes

GingerBreak (CVE-2011-1823)
Needs a NETLINK socket with

NETLINK_KOBJECT_UEVENT protocol
Yes

CVE-2013-2094 Uses perf_event_open system call Yes
Vold/ASEC [73] Creates symbolic link to a system directory Yes

RATC (CVE-2010-EASY) Relies on invoking many times the fork syscall No
CVE-2013-6124 Creates symbolic links to system �les Yes
CVE-2011-1350 ioctl call used violates our rules Yes
Zimperlinch Relies on invoking many times the fork syscall No

CVE-2011-1352 ioctl call used violates our rules Yes
CVE-2011-1149 It relies on the mprotect syscall No
CVE-2012-4220 ioctl call used violates our rules Yes
CVE-2012-4221 ioctl call used violates our rules Yes
CVE-2012-4222 ioctl call used violates our rules Yes

Table 2.19: List of allowed methods (Java methods called from native code) automatically
generated for allowing a minimum of 97%, 98% and 99% of apps that reached native code.

Allowed
apps (%)

Method

97 java.lang.Integer.doubleValue
97 android.content.ContextWrapper.getPackageName
97 java.lang.String.getBytes
98 java.lang.Double.doubleValue
98 android.content.ContextWrapper.getClassLoader
98 android.content.ContextWrapper.getFilesDir
98 java.io.File.getPath
98 android.content.ContextWrapper.getExternalFilesDir
98 android.view.WindowManagerImpl.getDefaultDisplay
98 java.lang.String.toLowerCase
98 android.app.Activity.getWindowManager
98 java.util.ArrayList.add
98 android.view.Display.getMetrics
98 android.app.Activity.getWindow
98 android.view.View.getWindowVisibleDisplayFrame
98 java.util.Calendar.getInstance
98 android.view.View.getDrawingRect
99 java.util.Calendar.get
99 android.os.Bundle.getByteArray
99 android.content.ContextWrapper.getPackageManager
99 android.content.res.AssetManager$AssetInputStream.read
99 java.lang.Long.doubleValue
99 java.lang.ClassLoader.loadClass
99 android.app.ApplicationPackageManager.getPackageInfo
99 android.content.res.AssetManager$AssetInputStream.close
99 java.lang.Float.doubleValue
99 java.lang.Class.getClassLoader



Abstract

The constant evolution of mobile devices' resources and features turned ordinary phones

into powerful and portable computers, leading their users to perform payments, store

sensitive information and even to access other accounts on remote machines. This scenario

has contributed to the rapid rise of new malware samples targeting mobile platforms.

Given that Android is the most widespread mobile operating system and that it provides

more options regarding application markets (o�cial and alternative stores), it has been

the main target for mobile malware. As such, markets that publish Android applications

have been used as a point of infection for many users, who unknowingly download some

popular applications that are in fact disguised malware. Hence, there is an urge for

techniques to analyze and identify malicious applications before they are published and

able to harm users. In this article, we present a system to dynamically identify whether an

Android application is malicious or not, based on machine learning and features extracted

from Android API calls and system call traces. We evaluated our system with 7,520 apps,

3,780 for training and 3,740 for testing, and obtained a detection rate of 96.66%.



CHAPTER 2. PUBLISHED DOCUMENTS 52

2.2.1 Introduction

Mobile devices have been ubiquitously widespread as personal and professional tools whose

computing power is approaching that of ordinary desktop computers. Consequently,

smartphone users are able to do more complex tasks with their devices, such as produc-

ing documents and spreadsheets, making video conferences and managing their Internet

Banking accounts. These users are now storing all sorts of sensitive information on their

devices (e.g., bank credentials, corporate documents), e�ectively creating an interesting

and potentially lucrative scenario for cybercriminals. To take advantage of this situation,

attackers are ramping up the creation of malicious applications that a�ect mobile devices.

Since Android is the most widespread operating system for mobile devices [34], it is

the main target of mobile malware. According to Juniper [46], the amount of malicious

applications discovered between March 2012 and March 2013 has increased 614%, consid-

ering all mobile platforms. In addition, the same report states that 92% of every malware

that a�ects mobile devices targets the Android operating system. Users obtain Android

applications mostly from markets, including Google Play�Google's o�cial market�and

others known as �alternatives�. In order to infect users' devices, attackers submit to

markets malware that look like legitimate applications, such as games. In fact, many of

the available malware are repackaged versions of legitimate applications, i.e., applications

modi�ed to include malicious code and republished in the markets.

Some works in the literature refer to the presence of malicious applications both in

the o�cial market and in alternative ones [40, 98]. They show that the o�cial market

does a better job at �ltering out malicious applications, but nonetheless is still used as a

vector to infect users. Addressing this issue requires the development and deployment of

improved techniques to analyze and identify malicious Android applications.

To that e�ect, several approaches based on static and dynamic analysis have been

proposed to detect malicious Android applications [27, 70, 76, 96, 98], but all of them

present shortcomings regarding their detection scope or ability. Firstly, approaches that

rely on static analysis of the application's code have a hard time dealing with highly

obfuscated samples [59] and only analyze code packed with the application �le, missing

code that can be downloaded and executed at runtime [63]. Secondly, although Android

malware samples do not make use of obfuscation techniques as heavy as those a�ecting

Windows desktops, the natural evolution of Android malware will inevitably lead to the

improvement of obfuscation techniques currently used [74], turning static analysis into

a di�cult proposition. Moreover, dynamic analysis approaches usually su�er from not

being able to observe the malicious behavior of some samples due to their ever growing

awareness of the analysis environment, to the lack of appropriate stimulation under the

analysis environment or else to the inability of the malware sample under analysis to

obtain some required external data.

In general, detection techniques for Android malware use statically extracted data

from the manifest �le or from Android API function calls, as well as dynamically obtained

information from network tra�c and system call tracing. However, most articles available

in the literature whose focus lies on malware identi�cation either use small datasets or

require manual steps at some stage of the process. In this paper, we present a system
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that identi�es malicious Android applications based on a machine learning classi�er, using

dynamically obtained features. These features are extracted from Android API function

calls and system call traces. We trained our classi�er with 3,780 samples and tested it with

3,740 samples (with both datasets including malicious and benign applications), which

was then able to correctly classify 96.66% of those samples. The results obtained were

compared to the ones from other Android malware detection approaches and demonstrate

the relevance of our system. Using a larger dataset, we obtained results similar to the

state-of-the-art, including static and dynamic approaches. Furthermore, we show that

features extracted from API function calls, which, as far as we know, were not used by

other automatic and dynamic approaches, are very good for the identi�cation of malware.

The main contributions of this paper are:

• We developed an analysis system to monitor Android API function calls as well as

system calls, in order to gather information (features) required to detect malicious

behavior. Currently available systems are tied to Android OS versions (some of

them to older versions, such as 2.x) or to the SDK-provided emulator, whereas our

approach is independent of the emulator and much more portable as it does not

modify Android OS;

• From that, we developed a system that classi�es applications as benign or malicious

and tested it with thousands of apps, correctly classifying 96.66% of them. To

accomplish better training and accuracy, we extract novel features showing that

those based on API function calls greatly increase the detection rate.

The remainder of this paper is organized as follows. Section 2.2.2 provides a back-

ground about Android malware and presents related work. The developed system is

introduced in Section 2.3.5, whereas evaluation results and discussion are presented in

Section 2.2.4. Section 2.2.5 discusses some of the limitations and, in Section 2.2.6, we

conclude this paper and discuss some follow-up work.

2.2.2 Background and Related Work

Based on reports from antivirus companies, the authors of [31] describe the behavior

of 46 malware samples collected between January 2009 and June 2011. The malicious

behaviors identi�ed were the following: user information stealing; premium calls and

SMS messages4; SPAM SMS messages; novelty and amusement5; user credential stealing;

search engine optimization; and ransom.

A similar study is presented in [97], but in this case the authors analyzed the samples

manually. They used a dataset of 1,260 Android malware samples, which were collected

between August 2010 and October 2011 and were separated in 49 malware families. The

authors describe the behavior of these samples and show information regarding their

time of discovery in the o�cial market and in alternative ones. For each family, they

specify how the malware is installed, how the malicious behavior is activated and what

4These actions generate costs to the user.
5Some samples performed actions that seemed to be only useful for the amusement of the author.
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the malicious payload is. Also, the authors indicate the events monitored by the malware

and the exploits used by them for privilege escalation.

Android malware detection is a critical task towards protecting users of application

markets and improving these markets' vetting processes. However, detection is intimately

bound to analysis, since features must be extracted so as to generate signatures or behav-

ioral pro�les. There are systems proposed in the literature that aim to analyze apps from

markets in order to detect the presence of malware among them, as well as others solely

with the purpose of providing useful information about static and dynamic characteristics

of an unknown application. We discuss some of these systems in the following sections.

Android Malware Analysis

Enck et al. [28] propose TaintDroid, a dynamic taint analysis system, which tracks sen-

sitive data �ow to detect when it is sent over the network. TaintDroid instruments

the Android virtual machine interpreter and some APIs to accomplish system-wide taint

tracking, but it does not handle native code. Their results show that seemingly unsupi-

cious applications often disclose sensitive data, such as location, UUID and phone number.

Although based on permissions granted by users, the data exposure monitoring process

requires the application to be dynamically analyzed.

DroidBox [26] is a dynamic analysis system that builds upon TaintDroid and provides

API calls, network data and data leaks, besides other important information.

Andrubis [53], which has a publicly available submission interface, is a system whose

goal is to analyze Android applications using static and dynamic techniques. In the static

analysis step, Andrubis collects information about required permissions, components to

communicate with the operating system, intent-�lters and URLs found in the bytecode.

Dynamically-based information collection is accomplished through instrumentation of the

Dalvik VM, taint tracking and network tra�c capture. Andrubis is based on TaintDroid,

DroidBox and other related projects. Yan and Yin propose DroidScope [91], a virtual

machine introspection-based analysis system that bridges the semantic gap reconstructing

OS-level and Java-level semantic views from outside. They also developed additional

analysis tools to provide taint tracking and several levels of instruction tracing.

Spreitzenbarth et al. present Mobile-Sandbox, a system that combines static and dy-

namic analysis techniques to obtain Android applications' behavior [75]. Mobile-Sandbox's

static analysis includes parsing the manifest �le and the extracted bytecode, and aims to

guide the dynamic analysis process, which is based on TaintDroid and DroidBox. In

addition, Mobile-Sandbox monitors native code using the ltrace tool and analyzes net-

work tra�c captured during the application's execution. Another system that uses both

static and dynamic analysis is AASandbox [18]. During static analysis, the system de-

compiles the application to Java code and look for suspicious patterns, such as the use of

Runtime.exec() and functions related to re�ection. During the dynamic step, AASand-

box runs the application on a controlled environment and monitors system calls using a

kernel module.
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Android Malware Detection

Zhou et al. propose DroidRanger, a two-scheme system based on signatures and heuris-

tics that intends to detect Android malware [98]. On the one hand, the signature-based

scheme relies on common permissions and behavioral footprints to identify samples from

known families. On the other hand, the heuristics-based �ltering scheme identi�es sus-

picious behaviors (e.g., downloading and executing code from Web and dynamic loading

of native code). Applications identi�ed as suspicious are manually analyzed and if they

are indeed malicious, the information necessary to detect samples from the same family

in the signature-based step are manually extracted.

Zheng et al. propose DroidAnalytics, a system to automatically collect, analyze and

detect Android malware that makes use of repackaging, code obfuscation or dynamic

payloads [96]. Collection is accomplished by an extensible application crawler that receives

marketplaces (o�cial and alternatives) or URLs as input. Collected applications are then

disassembled so as to obtain Android API calls. These API calls are used within a three-

level signature generation process, which extracts malware features at the opcode level

to identify variants. The dynamic analysis step consists of running samples that present

network behavior, inside an emulator, in order to download additional pieces of code.

Sanz et al. introduce PUMA, an Android malware detection method based on machine

learning that uses information obtained from application's permissions [70]. To evaluate

their method, they collected 1,811 supposedly benign applications of several categories

from Android Market and 249 unique malicious samples from the VirusTotal database.

The features used to represent each sample are based on the set of permissions and the de-

vice's features required by the application. Using this information, the authors evaluated

eight algorithms available in the WEKA framework and concluded that RandomForest

provided the best results.

Elish et al. propose a tool to determine whether unknown applications are malicious

or not based on static data dependence analysis [27], aiming to identify software execu-

tion patterns related to the correlation of user inputs with critical function calls. They

construct a data dependence graph for each analyzed application, which can then be used

in comparisons to identify stealthy Android malware. Although their results show that

the analyzed malware samples are distinguishable from the legitimate applications, since

the former performed sensitive function calls without any user input.

Wu et al. propose DroidMat, a detection system based on clustering techniques applied

to statically extracted features from the application's manifest �le (permission, component

and intent information) and permission-related Android API call traces from the applica-

tion's bytecode [88]. The process for evaluating the system applied four combinations of

clustering and classi�cation algorithms to analyze a dataset of 1,500 benign applications

(downloaded from GooglePlay) and 238 malicious ones, and resulted in 97.87% accuracy.

Another system that performs Android malware detection using features obtained

statically is DREBIN [9]. This system uses machine learning and features extracted from

the manifest and the dex code of applications. The authors performed experiments with

123,453 benign samples and 5,560 malicious samples and the system obtained 93% of

accuracy.
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Su et al. present a smartphone dual defense protection framework to perform detection

of malicious applications, using machine learning, as they are submitted for release on

Android markets [76]. Their approach consists of dynamically analyzing a new application

to collect two sets of features: one related to system call tracing and the other related

to network tra�c statistics. A system call monitoring process makes use of the Linux's

strace tool and restricts itself to 15 (of almost 300) of them that are related to process,

memory and I/O activities. The tcpdump tool is used to capture network tra�c, from

which TCP/IP �ows are extracted. The training of the system calls classi�er involved

200 benign and 180 malicious applications, whereas the training of the network classi�er

involved 60 benign and 49 malicious applications. Both classi�ers are based on WEKA's

implementation of J.48 and RandomForest algorithms. The authors selected 70 benign

and 50 malicious applications to evaluate their classi�ers and obtained an accuracy rate

of 94.2% and 99.2% for J.48 and RandomForest, respectively.

2.2.3 System Overview

Figure 2.4 presents the system overview. To identify malicious applications, the developed

system obtains information about the application's behavior using dynamic analysis. This

process is explained in Section 2.2.3. The obtained information is comprised by Android

API function calls and system calls, and is fed to a processor, which extracts features from

the information. These features are composed by the frequency of use of API functions

and system calls, and are used by a classi�er to categorize the application as malicious or

benign. The feature extraction and classi�cation processes are explained in Section 2.2.3.

Figure 2.4: System overview

Data Extraction

To obtain its behavior, the application is �rst instrumented by APIMonitor6, a tool that

modi�es the application so that calls to certain functions are registered, along with the

parameters passed and the return value. We modi�ed the default_api_collection7

�le, used by APIMonitor, to include methods related to network access, process execu-

tion, string manipulation, �le manipulation and information reading. The instrumented

version of the application is executed for �ve minutes in the standard Android emulator�

distributed with the Android SDK.

6https://code.google.com/p/droidbox/wiki/APIMonitor.
7This �le de�nes the functions that are monitored.

https://code.google.com/p/droidbox/wiki/APIMonitor
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The analysis of Android API function calls is important because it allows the extraction

of high-level information about the behavior of applications. However, some applications

use native code instead of Android API functions. Thus, through the strace tool, we also

monitor the system calls executed by the application. Section 2.2.3 presents examples of

registered API function calls and system calls.

The advantages of our monitoring process are not needing to modify the Android

code and also being independent of the virtualization platform. Analysis systems that

use a modi�ed version of Android, such as TaintDroid [28], Andrubis [53] and Mobile-

Sandbox [75], need to be constantly updated to the newest version of the Android system,

a task that is quite time-consuming, so that they are able to analyze samples that target

that particular version of the operating system. Moreover, systems that use virtual ma-

chine introspection, such as Droidscope [91], are dependent on the virtualization platform

(e.g., Qemu) and cannot be used on a di�erent virtualization platform or on a bare-metal

one.

On the negative side, the disadvantages of our monitoring system are the use of a

monitoring tool inside the analysis environment and the modi�cation of the analyzed

sample. These actions make the system more detectable by malware, which can stop the

execution or execute benign actions when it becomes aware of the analysis. The previously

mentioned systems that use virtual machine introspection or a modi�ed version of Android

do not su�er from that. Although in these cases the monitoring tool cannot be detected,

the malware sample can still detect the virtual or emulated environment, if it is not a

bare-metal platform.

Log Examples.

Listings 2.1 and 2.2 present examples of API function calls registered by the in-

strumented application. Listing 2.1 presents a call to a function that sends an SMS

message. In this case the destination number is �7132� and the message is �846978�.

Listing 2.2 presents a call to a function the executes a process. The executed pro-

cess is /data/data/org.zenth.oughtflashrec/cache/asroot and the parameters are

/data/data/org.zenthought. flashrec/cache/explXXXXXX, /data/data/org.

zenthought.flashrec/cache/dump_image, recovery and

/mnt/sdcard/recovery-backup.img.

Listing 2.1: Call to send an SMS message

Landroid/ te lephony /SmsManager;−>sendTextMessage ( Ljava/ lang / St r ing ;=7132

| Ljava/ lang / St r ing ;= nu l l

| Ljava/ lang / St r ing ;=846978

| Landroid/app/PendingIntent ;= nu l l

| Landroid/app/PendingIntent ;= nu l l )V

Listing 2.2: Call to execute a process

Ljava/ lang /Runtime;−>exec ( [ Ljava/ lang / St r ing ;={

/data/data/ org . zenthought . f l a s h r e c / cache / asroot ,

/data/data/ org . zenthought . f l a s h r e c / cache /explXXXXXX,

/data/data/ org . zenthought . f l a s h r e c / cache /dump_image ,

recovery ,

/mnt/ sdcard / recovery−backup . img}) Ljava/ lang /Process ;=Process [ id =541]



CHAPTER 2. PUBLISHED DOCUMENTS 58

Listing 2.3 presents two calls to the execve system call. They were both used to

obtain information about the device, one focusing on CPU information and the other on

memory information.

Listing 2.3: Examples of registered system calls

execve ( ` ` / system/bin / cat ' ' , [ ` ` / system/bin / cat ' ' , ` ` / proc / cpuinfo ' ' ] ,

[ ` `ANDROID_SOCKET_zygote=9 ' ' , ` `ANDROID_BOOTLOGO=1 ' ' ,

` `EXTERNAL_STORAGE=/mnt/ sdcard ' ' , ` `ANDROID_ASSETS=/system/app ' ' ,

` `PATH=/sb in : / vendor/bin : / system/s ' ' . . . ,

` `ASEC_MOUNTPOINT=/mnt/ asec ' ' , ` `LOOP_MOUNTPOINT=/mnt/obb ' ' ,

` `BOOTCLASSPATH=/system/framework / ' ' . . . , ` `ANDROID_DATA=/data ' ' ,

` `LD_LIBRARY_PATH=/vendor/ l i b : / sys ' ' . . . , ` `ANDROID_ROOT=/system ' ' ,

` `ANDROID_PROPERTY_WORKSPACE=8 , 3 2 7 ' ' . . . ] ) = 0

execve ( ` ` / system/bin / cat ' ' , [ ` ` / system/bin / cat ' ' , ` ` / proc /meminfo ' ' ] ,

[ ` `ANDROID_SOCKET_zygote=9 ' ' , ` `ANDROID_BOOTLOGO=1 ' ' ,

` `EXTERNAL_STORAGE=/mnt/ sdcard ' ' , ` `ANDROID_ASSETS=/system/app ' ' ,

` `PATH=/sb in : / vendor/bin : / system/s ' ' . . . ,

` `ASEC_MOUNTPOINT=/mnt/ asec ' ' , ` `LOOP_MOUNTPOINT=/mnt/obb ' ' ,

` `BOOTCLASSPATH=/system/framework / ' ' . . . , ` `ANDROID_DATA=/data ' ' ,

` `LD_LIBRARY_PATH=/vendor/ l i b : / sys ' ' . . . , ` `ANDROID_ROOT=/system ' ' ,

` `ANDROID_PROPERTY_WORKSPACE=8 , 3 2 7 ' ' . . . ] ) = 0

Analysis Stimulation

Some actions of the malware are only carried out if certain events are observed or

if certain interactions with the graphic interface are performed. To stimulate these ac-

tions we automatically generate random events with the MonkeyRunner tool, which is

distributed with the Android SDK, and create some events related to phone calls, SMS

messages, geographic location and battery state, using the emulator.

As the events that interact with the graphic interface are generated randomly, they

may not lead the application to execute the malicious code. One way to solve that is

manually interacting with the applications during the analyzes, but when analyzing a

large number of applications, it becomes too time-consuming. Another way to do this is

by statically identifying which interactions are necessary to reach the relevant portions

of the code and provide these interactions during the analysis. This approach is used

by [95], but their system requires a modi�ed version of the Android OS, which may be a

problem, as discussed earlier. Another way to do this would be to identify the necessary

interactions as done by [95], but generate them without needing a modi�ed version of the

OS. We leave this as a future work.

To make the analysis system more similar to the system of a real user, making it harder

for malware to identify it is being analyzed, we changed the IMEI and phone number of

the device [83]. Moreover, we added some contact information.

Malware Identi�cation

The attributes used to classify the applications as malicious or benign are extracted from

the data obtained during dynamic analysis. More precisely, we extract the amount of
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calls to each one of the 74 monitored Android API functions and the amount of calls to

each one of 90 system calls8.

For example, after an analysis, if the API function calls log produced the results il-

lustrated in Listings 2.1 and 2.2, and the system call trace produced Listing 2.3, the

attributes of the evaluated sample would be the following array:

1,1,0,...,0,2,0,...,0, in which the �rst two �1� refer to the android/telephony/

SmsManager;-> sendTextMessage and the java/lang/Runtime;->exec API function

calls, and the following �zeroes� refer to the frequency of the other API function calls,

whereas the �2� refer to the execve system call, followed by a sequence of �zeroes� related

to the remaining system calls' frequencies.

To create the classi�er we �rst evaluated several algorithms, using the Weka [41]

framework, and the one that performed best was RandomForest (with 100 trees). This

experiment is detailed in Section 2.2.4.

2.2.4 Evaluation

This section describes the datasets used in the evaluations, the comparison of algorithms

performed to select which one would compose the classi�er and the test carried out to

evaluate the classi�cation system, including a comparison with other systems.

Datasets

The malicious application dataset is composed by samples from the �Malgenome Project� [97]

and from a torrent �le acquired from VirusShare

(http://tracker.virusshare.com:6969/), totalling 4,552 samples. To compose the be-

nign dataset we developed a crawler to collect applications from the AndroidPIT market

(http://www.androidpit.com/). Through it, we gathered 3,831 applications to compose

the benign dataset. These applications were submitted to VirusTotal, a system that uses

more than 40 antivirus systems to scan the submitted �le, and the ones that were de-

tected by at least one antivirus were removed. Hence, the benign dataset contains 2,968

applications. In order to compose the training and testing datasets, we randomly split

the malicious and benign datasets. Table 2.20 shows the amount of malicious and benign

samples in the training and testing datasets9.

Evaluation of classi�cation algorithms

In order to identify which algorithm to use in the classi�er, we compared the results

obtained using several machine learning algorithms (the same ones used in [70]). For this

test we used the training dataset mentioned before. Table 2.21 presents the algorithms

and con�gurations used in the comparison. Furthermore, Table 2.22 presents the accuracy

yielded by the 10-fold validation performed using each algorithm. The accuracy was

8The lists of API functions and system calls used are presented in http://pastebin.com/T7Yfbksq

and http://pastebin.com/5Xyjh8GS.
9The lists with the SHA-1 hash values of the samples used can be found at http://pastebin.com/

0K9Xxj7U (training/malicious), http://pastebin.com/FCp9pCsK (training/benign), http://pastebin.
com/ZwLnDPJd (testing/malicious) and http://pastebin.com/apV32ywX (testing/benign)

http://tracker.virusshare.com:6969/
http://www.androidpit.com/
http://pastebin.com/T7Yfbksq
http://pastebin.com/5Xyjh8GS
http://pastebin.com/0K9Xxj7U
http://pastebin.com/0K9Xxj7U
http://pastebin.com/FCp9pCsK
http://pastebin.com/ZwLnDPJd
http://pastebin.com/ZwLnDPJd
http://pastebin.com/apV32ywX
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Table 2.20: The amount of malicious and benign samples in the training and testing
datasets

Training Testing Total
Malicious 2,295 2,257 4,552
Benign 1,485 1,483 2,968
Total 3,780 3,740 7,520

calculated as Accuracy = (TP+TN)
(TP+TN+FP+FN)

, with FP being false-positive, FN being false-

negative, TP being true-positive and TN being true-negative. The algorithm that achieved

th best results was RandomForest with 100 trees. The RandomForest algorithm generates

several decision trees and chooses the one with the best results.

Table 2.21: The algorithms and con�gurations used in the evaluation to select the algo-
rithm to be used by our classi�er

Algorithm Con�gurations
RandomForest Number of trees {10, 50, 100}

J.48 Default
SimpleLogistic Default
NaiveBayes Default
BayesNet Search algorithm {K2, TAN}

SMO
Kernel {PolyKernel,

NormalizedPolyKernel}
IBk Value of k {1, 3, 5, 10}

Table 2.22: Comparison of the detection using several classi�cation algorithms over the
training dataset with 10-fold validation

Algorithm Accuracy (%)
RandomForest 10 93.20
RandomForest 50 95.65
RandomForest 100 95.96

J.48 93.04
NaiveBayes 82.39

SimpleLogistic 67.92
BayesNet TAN 74.53
BayesNet K2 89.92

SMO PolyKernel 75.03
SMO NPolyKernel 85.45

IBk 1 89.92
IBk 3 87.60
IBk 5 86.85
IBk 10 83.70
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Detection evaluation

As the RandomForest algorithm (with 100 trees) yielded the best results in the previous

experiment, we used it to evaluate our detection system. We trained the classi�er us-

ing the training dataset and used it to classify the testing dataset. Table 2.23 presents

the confusion matrix with the results of this test. From the 2,257 malicious applications

used for testing, 2,168 were correctly classi�ed and 89 were false-negatives, i.e., malicious

applications classi�ed as benign. From the 1,483 benign applications, 1,447 were classi-

�ed as such, whereas 36 were considered malicious, comprising the false-positives. The

values of false-positive, false-negative, true-positive, true-negative, accuracy (A), recall

(R), precision (P), harmonic mean (F-measure) and the amount of correctly classi�ed

samples are shown in Table 2.27. The recall was calculated as Recall = (TP )
(TP+FN)

, the

precision was calculated as Precision = (TP )
(TP+FP )

and the harmonic mean was calculated

as F −measure = (2∗R∗P )
(R+P )

.

Table 2.23: Confusion matrix with the detection results using the RandomForest (100)
algorithm

Correct class
Malicious Benign Total

Results
Malicious 2,168 36 2,204
Benign 89 1,447 1,536

Total 2,257 1,483 3,740

Table 2.24: Values of false-positive (FP), false-negative (FN), true-positive (TP), true-
negative (TN), accuracy (A), recall (R), precision (P), harmonic mean (F-measure) and
correctly classi�ed samples (CC) obtained in the system evaluation
FP FN TP TN A R P F-measure CC

2.43% 3.94% 96.06% 97.57% 96.82% 96.06% 97.53% 96.79% 96.66%

Discussion

Table 2.25 presents the comparison of the results obtained by our system with the results

presented in [70], [76], [9] and [88]. The PUMA [70], DREBIN [9] and DroidMat [88]

systems statically extract features, whereas our system and the one presented in [76] do

it dynamically. Though the results obtained by DroidMat are a little better than ours,

systems that rely on static analysis to obtain information from the code may fail when

dealing with highly obfuscated samples and samples that download and execute code at

runtime, as mentioned before. Moreover, our evaluation used a signi�cantly larger number

of malicious samples than PUMA and DroidMat.

The features used by our system and the one presented by Su et al. [76] have some

elements in common. Their system uses the frequency of use of 15 system calls and 9

features from network tra�c, whereas our system uses the frequency of use of 90 system



CHAPTER 2. PUBLISHED DOCUMENTS 62

calls and also the frequency of use of 74 Android API functions. We argue that the API

calls provide important information for the classi�cation. To corroborate that assertion,

we performed another experiment, using the same datasets presented before, for training

and testing, but this time we used three additional sets of features: the frequency of the

15 syscalls used by Su et al.; the frequency of the 15 syscalls used by Su et al. plus the

frequency of API calls; the frequency of API calls. The results of this test along with the

detection rate obtained by the previous test (the evaluation of our system) are presented

in Table 2.26 and show that using the features related to API calls greatly improved the

detection rate.

Besides the classi�cation using 15 system calls, the system presented by Su et al. has

also a classi�er that uses features extracted from network tra�c. This classi�er is used

to detect malicious samples that were not identi�ed by the �rst classi�er and that match

a certain heuristic. From the 191 malicious samples incorrectly labeled by the classi�er

that used 15 system calls, 150 matched the heuristic used in their work. Considering the

best scenario, in which these 150 samples are correctly identi�ed using their classi�er that

uses network features, the accuracy would be 93.02%, which is still considerably lower

than the value of 96.82% obtained by our system. This is another evidence of the bene�ts

obtained using the features related to Android API function calls. A possible reason for

the accuracy obtained by Su et al. being greater in the evaluation test presented in their

work is the use of too few samples.

Table 2.25: Comparison of the results obtained by our system with the results presented
in related work, showing the number of malicious and benign samples used in the evalu-
ation test, the accuracy obtained and whether the system extracts features statically or
dynamically

System
Samples

(Mal./Ben.)
Accuracy Type

DroidMat [88] 238 / 1,500 97.87% static
PUMA [70] 249 / 1,811 86.41% static
DREBIN [9] 5,560 / 123,453 a 93% static
Su et al. [76] 50 / 70 99,20% dynamic
Our system 2,257 / 1,483 96,82% dynamic

aThis is the total dataset used by them, including testing and training. They randomly
split the dataset into training (66%) and testing (33%), 10 times, and average the

results.

2.2.5 Limitations

The main limitations of the developed system are related to shortcomings inherent to

dynamic analysis approaches. The analysis system may fail to observe the malicious be-

havior of samples in some situations, due to problems when gathering resources, to the

lack of the necessary stimulation or to the detection of the analysis environment. If, for

example, the malware tries to obtain some piece of code from the Internet or tries to

connect to a command and control server to get instructions, but the connection fails,
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Table 2.26: Comparison of the features used by our system with the features used by Su
et al. [76]

Feature set FP FN Accuracy
Freq. of API function calls +

Freq. of system calls
36 89 96.82%

Freq. of API function calls +
Freq. of 15 system calls

39 93 96.62%

Freq. of 15 system calls 180 191 89.70%
Freq. of API function calls 73 190 93.33%

the sample may stop executing without performing malicious actions. In addition, the

malware sample may execute malicious actions only when certain interactions with the

user interface are performed or when certain events, such as receiving an SMS message,

occur. If the system fails to simulate these events, the malicious behavior will not be

shown. Lastly, malware may detect the analysis environment and stop executing or ex-

ecute innocuous actions, so the system will not obtain information about them. This

detection can be carried out by the identi�cation of virtualized or emulated environment,

or the identi�cation of monitoring tools.

2.2.6 Conclusions and Future Work

In this paper we presented a system that uses machine learning to classify Android appli-

cations as malicious or benign using information about the use of Android API functions

and system calls. To gather the information needed by the detection system, we imple-

mented a dynamic analysis system. To evaluate the capabilities of the detection system,

we trained it with 3,780 applications and tested it using 3,740 samples, obtaining an accu-

racy of 96.82%. This result was compared to other detection systems, which demonstrated

the relevance of our approach.

Future work includes the following: using attributes obtained from the network tra�c

and attributes obtained statically to enhance the detection capabilities of our system;

detecting the evasion of sensitive information using signatures; making a public submission

interface available to other researchers and common users, so they can check whether a

given application is malicious; developing a non-random way to stimulate the malware

using information obtained from the code without the need to modify the Android OS.
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Abstract

Dynamic analysis of Android malware su�ers from anti-analysis techniques that iden-

tify the analysis environment and prevents the malicious behavior from being observed.

Researchers have proposed systems that identify evasive malware that a�ect Windows.

However, due to di�erences between Windows and Android, applying these techniques

directly to Android malware does not yield results just as good. In this paper, we present

a novel technique to identify evasive Android malware. Our technique compares the exe-

cution of malware in baremetal and emulated environments, taking into account problems

of dynamic analysis that are more common in Android and leveraging information more

easily obtained in Android. We analyzed 1,470 samples using our approach, detecting 192

as evasive. Furthermore, we compared our results with the existing approaches using a

subset of these samples and obtained better results. We also discuss which information is

used by some of the detected samples to evade analysis.
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2.3.1 Introduction

Mobile devices are increasingly becoming prevalent and being used to store several types

of sensitive data, such as banking credentials and corporate information. This scenario

makes attacks against users of such devices more rewarding. Therefore, more malicious

applications (hereafter referred to as apps) that a�ect mobile devices are created and

spread. Moreover, to overcome defense measures, these threats are constantly being

improved.

Since Android is the most widespread operating system for mobile devices [43], it

became the main target of mobile malware. According to PulseSecure [65], in 2014 97%

of all mobile malware was developed for the Android platform. Furthermore, a study by

Unucheck and Chebyshev [79] shows that Kaspersky Lab detected 884,774 new malicious

mobile programs in 2015.

In order to identify the actions that apps may execute in infected systems, they need

to be analyzed. The results of such analysis can be used to vet apps from app stores, as

input to defense mechanisms or for incident response e�orts. Several approaches have been

proposed to analyze Android apps, obtaining information about them ( [40, 53, 69, 75])

and classifying them as malicious or benign ( [9, 27, 70,76,88,96,98]).

Analysis techniques can be static or dynamic. Approaches that rely on static analysis

of code become less e�ective when dealing with highly obfuscated samples [59] or samples

that obtain and execute code at run time [63]. Dynamic approaches, on the one hand,

usually do not present problems when analyzing samples with obfuscated code, because

they observe the actions performed during execution, which is not a�ected by the obfus-

cation. On the other hand, dynamic analysis may fail to observe the malicious actions

of samples that employ anti-analysis techniques. These techniques are used by malware

to identify when they are being analyzed, changing their behavior to prevent analysis

systems from obtaining information about them.

Researchers have identi�ed several anti-analysis techniques that can be employed by

Android apps to di�erentiate between a real and an emulated environment ( [45, 58, 62,

74,80]), which is used by most dynamic analysis systems as its base due to its scalability

advantage. One possible alternative to analyze apps without being evaded by most anti-

analysis techniques is to use a real device instead of the emulator (such technique is

used by BareDroid [60]). However, identifying which apps have evasive features is also

useful: by studying these samples researchers may identify ways to make systems that

use emulation more resilient against evasive malware.

In this paper, we present a technique to identify Android malware that exhibit evasive

behavior. To do so, we compare the behavior of samples in an actual mobile device as

well as in an emulator. Moreover, we use information obtained from the Android runtime,

such as what methods were executed, and information from system call traces. Systems

that identify evasive Windows malware by comparing their behavior in real systems and

in emulated environments have been proposed in the literature [48, 52]. To accomplish

this, these systems use information obtained from system call traces. However, di�erences

between Windows and Android make a simple direct application of these techniques to

the Android context less likely to succeed. To demonstrate this, we created detectors
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based on the techniques used by Disarm [52] and Barecloud [48], and compared their

results with our approach. Our technique obtained better results, demonstrating that it

is more appropriate for this context.

We analyzed 1,470 Android malware samples selected from di�erent families and iden-

ti�ed 192 samples with evasive behavior among them. We manually inspected a subset

of the detected ones in order to identify how they evade dynamic analysis systems. The

comparison with other techniques was performed using 50 randomly selected samples, all

from di�erent families. We performed manual analysis of these to validate the results of

our approach.

The main contributions of our work are the following:

• We present a novel technique to identify evasive Android malware by comparing the

results obtained from a baremetal system and an emulated system;

• We compared our approach to the detection techniques that focus on Windows

malware, demonstrating that our technique is more appropriate for the Android

context;

• We tested our technique with 1,470 samples, identifying 192 that employ evasive

techniques, and discuss the techniques used by a subset of them to evade analysis.

The remainder of this paper is organized as follows: Section 2.3.2 presents the mo-

tivation and an overview of our technique.;Section 2.3.3 describes how we represent the

behavior of apps; Section 2.3.4 presents our approach to identify evasive Android malware;

Section 2.3.5 presents the system we developed to dynamically analyze apps and moni-

tor their behavior; Section 2.3.6 presents the experiments we performed to demonstrate

the e�ectiveness of our technique; Section 2.3.7 explains the limitations of our system

and our technique; Section 2.3.8 presents related work and �nally, Section 2.3.9 presents

conclusions and future work.

2.3.2 Motivation and approach

Approaches to detect evasive malware through the comparison of their behavior in em-

ulated and real environments have already been proposed in the literature about �tradi-

tional� systems [52] [48]. Disarm [52] analyses samples in real and emulated environments,

and compare their behavior pro�le to calculate an evasion score based on the Jaccard in-

dex. Barecloud [48] is a similar approach, but it organizes the observed behavior in a

hierarchical structure, which is used to compute the similarity of samples in di�erent

levels of abstraction. These systems use as input data obtained from system call traces

and focus on Windows malware. We believe that simply applying the same techniques

for Android apps does not yield just as good results, because of di�erences between the

operating systems and di�erences among malware that a�ect each system.

Android malware in general execute much fewer actions than Windows malware. Dis-

arm [52] uses 150 actions as the minimum to consider a sample executed a normal amount

of actions. In our experiments, however, Android malware executed on average less than

10 actions. Furthermore, many Android malware are repackaged apps, which include
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benign behavior. Therefore, depending on the malware family, the actions protected

by anti-analysis features in Android malware can be a very small subset of all possible

behaviors, but might just as well comprise most of the app's behavior.

Another important di�erence is that Android is more event-driven, so failure to provide

exactly the same events to both emulated and real environments may result in very

di�erent traces. One possible cause of the di�erence in event generation is the emulator

being much slower than real devices. For instance, an Intent may take too long to be sent

to its destination and the analysis may end before the Intent can cause its e�ects. It is

also possible that some unforeseen event a�ects the real device, such as the Wi� network

getting disconnected and reconnected. Another possible source of divergence is the �App

Not Responding� veri�cation of Android. A sample may execute successfully in a real

device and during its execution on the emulator, Android may kill the sample's process

and present the �App Not Responding� message, causing the behavior to di�er between

the emulated and baremetal environments.

Because of the presented reasons, we believe approaches that work by comparing the

amount of actions executed in the baremetal and in the emulated environments, without

considering that the di�erent behavior may be due to reasons other than anti-analysis

features, are less likely to succeed in identifying Android malware. To verify this, we

compared our technique with the techniques presented by Disarm [52] and Barecloud [48],

and our approach yielded better results. This comparison is presented in Section 2.3.6.

To overcome the aforementioned problems, we try to identify the cause of each of

the di�erent actions observed. This is accomplished by leveraging information that is

easily obtained in Android, but not for Windows programs. More precisely, we track the

methods of the app under analysis that are executed, the methods from the framework

called by them, the system calls used by the app and the interaction of apps with func-

tionalities that create threads or indirectly change their execution �ow. We also monitor

information provided by the system regarding events that stop the execution of apps and

information about external stimuli used. With all this information, we can trace back the

call sequence that led to the behavior that was only observed in baremetal, identifying the

entry point that originated this sequence and possibly the external stimulus that caused

it. By comparing the sequence obtained from the baremetal system to the behavior ob-

served in the emulator we can identify if the divergence happened due to some event not

being generated, due to a di�erence in some method's execution, due to the analysis time

ending in one of the environments, or due to the system stopping the app.

2.3.3 Behavior representation

We represent the behavior of a sample in a given analysis environment as a set of actions

observed during its execution. Each action is a tuple and is represented as follows.

a = (action_type, operation, argument).

action_type is one of {Network, File, Intent, Exec, Phone, Dex, Billing, Multimedia}.

Each action type and the associated operations and arguments are presented below.

Network. For network related actions, operation is one of {INET, UNIX, NETLINK,

BLUETOOTH}. INET operations represent TCP and UDP connections and argument is
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the destination that the sample connected to. Since multiple resolutions of the same DNS

name may result in di�erent IP addresses, we consider two actions the same if they use

the same IP address or the same DNS name as destination. UNIX operations represent

connections to UNIX sockets and the argument is the �lesystem path used by the socket.

BLUETOOTH operations represent the use of the Bluetooth device and the argument,

in this case, is the operation performed with this device. Lastly, NETLINK operations

represent connections using NETLINK sockets and the argument used is the protocol

parameter passed to the socket.

File. The monitored operations on �les are WRITE and DELETE, and the argument

of both operations is the �le path.

Intent. The operations related to Intents are ACTIVITY, SERVICE, BROADCAST

and ALARM. The argument for all these operations is the �action� argument of the

Intent or the destination class of the Intent. ALARM operations refer to the use of

AlarmManager to send Intents.

Exec. This action type represent the use of the execve system call, which is used by

the API methods ProcessBuilder.start and Runtime.exec. The argument used is the name

of the executable �le being called.

Phone. This action represents the use of phone capabilities. We currently only

consider one operation of this type, namely sending SMS messages and the argument is

the destination number of the message.

Dex. This action type represents the use of dynamic code loading and its argument

is the path of the �le being loaded.

Billing. This action represents the use of the billing functionality; the argument is

the type of action performed.

Multimedia. The operations included in this action type are CAMERA, AUDIO

and WAKELOCK. The argument in these cases is the type of action being performed,

which includes taking pictures, recording videos, recording audio and acquiring wake locks,

which allow the app to keep the CPU running and the screen on.

Behavior normalization

File names written by apps may be randomly generated, making that multiple executions

of the same sample may incorrectly result in di�erent behavior pro�les. To overcome this

problem we take the same approach used by Disarm [52]. For each sandbox, which can

be emulated or baremetal, we identify �les that were written in only one instance of this

sandbox. We consider these as possibly random �les. Possibly random �les in multiple

instances of a sandbox that have the same directory and extension are considered as

random. We keep the directory name and extension of these actions but replace the �le

name by <RANDOM>. We also normalize �le paths related to the sdcard, as it can be

accessed in di�erent ways.

Malware may randomly select contacts registered in the system as destinations of SMS

messages. Therefore, we inspect actions related to sending SMS messages and, if some

destination is a contact registered in the system, we replace it by <CONTACT>. This

also prevents the list of actions from growing as large as the list of contacts if the malware
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sends messages to all of them.

We also remove simple actions that are common to most apps, such as writing to the

shared memory device or to the logging device. Another group of actions we �lter is

related to Webview. Because of libraries available solely in the baremetal system, when

Webview is used, some actions are only performed in the baremetal system. To avoid this

problem, we trace the source of these actions and, if the Webview library is their source

and they were executed by a speci�c method used in Webview's initialization, we �lter

them. It is worth to notice that we do not �lter every action performed by Webview,

which would also include important actions for understanding the app's behavior. We

only �lter few actions that are always performed when Webview is loaded, and only if the

action was generated from a speci�c method.

One common problem that systems face when running analyses multiple times is

that unless one runs them all in a small time frame, it is possible that the hosts accessed

through the network are not available for all executions (they may be down due to incident

reporting, for example). This may lead to certain network behavior only being observed

in some of the analyses. To avoid this problem, when some host is accessed in baremetal

and the same DNS name is requested in the emulated context, but this request fails, we

also add it to the emulated analysis.

2.3.4 Evasive behavior identi�cation

Overview

To identify whether an app is evasive or not, we analyze it in a baremetal environment

and in an emulated environment, and then compare the monitored behavior to identify

di�erences. If they are di�erent, we identify the root cause of the divergence, which can be

a variation in the code path executed or something that prevented the app from continue

executing in the emulated environment. If we identify a divergence in the code path

executed, we consider it as an evasive sample. To increase the amount of code executed

during dynamic analysis, we generate stimuli in the form of GUI interactions and Intents,

which can be used to start activities or receivers. We provide the same stimuli for both

baremetal and emulated environments. Moreover, to identify non-deterministic behavior

we execute each sample three times in each environment.

Let Bi and Ej be the set of actions monitored in the baremetal environment for the

ith time and in the emulated environment for the jth time, respectively, with 1 ≤ i ≤ 3

and 1 ≤ j ≤ 3. Also, let B =
3⋃

i=1
Bi and E =

3⋃
j=1

Ej be the set of all actions executed in

baremetal and in emulated environments, respectively. Since we are interested in �nding

apps that hide their actions when being analyzed, we �rst select the set A of actions that

were only executed in a real device. Thus, A = B −B ∩ E.

For each action ak in A, we construct Rk, a set with the instances of baremetal analysis

that contain this action. We compare each Bl in Rk to every Ej to identify why ak was

not executed in the emulated analyses.

Since we track when methods begin and end, we can identify the app's method that

executed the action we are interested in. We trace back the sequence of method calls that
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Figure 2.5: Algorithm to determine if a sample is evasive.

led to this action, going back until an external stimulus is found, such as calling the main

Activity of the app or until we �nd an entry point whose origin we cannot determine. We

track the use of Intents and thread related API methods, such as Timer.schedule, so we

can identify indirect calls for the most common entry points of Android classes, such as

onCreate, run and handleMessage. The process to reconstruct call sequences is explained

in more detail in Section 2.3.4.

At this point, we know the main entry point for a baremetal analysis instance Bl�

called from now on of Mk�that led to the execution of action ak, and possibly the

external stimulus that caused it. We �nd the occurrences of Mk in Ej. If we know the

stimulus that originated it, we only consider the Mk instances that were also caused by

the same stimulus, otherwise we consider all executions of it. For each Mk instance in

Ej, we compare it with the Bl call sequence that led to ak. With this comparison we

identify where the path that should lead the emulated system to also execute the action

diverged. More precisely, we identify which of the following is the cause of the divergence:

di�erent execution path; app not responding; analysis ended; fatal exception; entry point

not reached. If the reason for the diversion is a di�erent code path being executed, we

consider this as an evasive sample, otherwise we consider the divergence as an execution

problem. Figure 2.5 illustrates the entire process. The algorithm could return after setting

evasive as true for the �rst time, reducing the time that it takes for the algorithm to run.

However, the comparison also reveals information that is useful for an analyst to identify

where in the app the divergence happens, thus we do not stop the comparisons when the

�rst sign of evasion is found.

For the samples considered evasive, we are not able to automatically identify precisely

why di�erent code paths were taken in the emulated and baremetal systems. For instance,
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the divergence can be caused by a veri�cation of the IMEI value or because of some

information not available in the emulated environment. The identi�cation of the precise

information that caused the divergence can be performed through taint analysis, as done

by TaintDroid [28] and Malgene [47], and we leave it as future work. However, our results

can assist analysts in manually locating the cause of the divergence, because we identify

in which method and after which method calls the divergence happened

Call sequence reconstruction

Since we record when each thread of the analyzed app enters and leaves its methods, we

can identify which method performed a given action. We also log the methods called, so

we can look back in the analysis trace, starting from the method that executed the action,

and identify the sequence of method calls that led to this action.

This is enough to track the execution back to an entry point, but it cannot go fur-

ther. As the Android framework is responsible for calling these methods, we will not be

able to observe any direct calls to them. Android classes may have several entry points,

which may be executed because of several reasons, the most common being related to cre-

ating activities (e.g., onCreate), starting services (e.g., onStart), starting receivers (e.g.,

onReceive), running tasks (e.g., run) and handling received messages (e.g., handleMes-

sage). One possibility would be to compare all executions of the entry point method in

the baremetal and emulated systems, but this could lead to wrong results, due to the

previously mentioned uncertainty. This can happen, for instance, if an activity handles

di�erent functionalities, all executed through the same entry point. Thus, we try to iden-

tify the source methods from which the execution changed to the entry points, in order

to have a more precise comparison of the executions. To accomplish this, we investigate

Intents sent by the app, the use of several methods that cause indirect changes in the

execution �ow and the use of external stimuli.

To identify Intents that may have resulted in a speci�c entry point method being exe-

cuted, we look for Intents sent by the app that match this speci�c method. For instance,

if the method we are analyzing is ClassA.onStartCommand(Intent, int, int), we assume

ClassA is a service, since onStartCommand(Intent, int, int) is one of the entry points of

the class android.app.Service that can be overwritten. As the Android documentation

states, this method is called by the system when a client explicitly starts the service by

calling startService(Intent). Thus, to �nd the source that directed the execution to this

method we look for actions that start services using ClassA as an argument. Finding

sources of entry points to activities is similar to services. To �nd the sources that led to

the execution of receivers, however, we need to inspect the intent �lters used by the class

and �nd out which Intents sent match it. More details about how we monitor Intents are

presented in Section 2.3.5.

Another source of control �ow changes that are performed by the framework is the

use of the following groups of methods: methods that schedule a class to be invoked

after some delay or periodically, such as Timer.schedule and ScheduledThreadPoolExecu-

tor.schedule, which result in the execution of the method run() or the method call()

of the destination class; methods that send messages to its UI thread, such as Han-
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dler.sendMessageDelayed, which result in the execution of handleMessage(Message); and

methods that start a new thread, such as Thread.start(), which result in the execution

of run() and AsyncTask.execute(Params...), which in turn may result in the execution of

di�erent methods, the main one being doInBackground(Params...). In order to be able to

track these control �ow changes, we instrument the Android framework to assign labels

to the messages or tasks sent or to the threads created. We log them when the source

method is executed and also when the destination methods are executed. More details on

the implementation of this process are presented in Section 2.3.5. With this information,

we can track the source call of any of these methods. It works even in cases when there are

several destination methods, such as the source methods that invoke a class periodically,

because they have only one source and we are tracking the sequence call backwards.

The last type of interaction that can cause the execution of entry points is external

stimuli. As we mentioned before, these are important to increase the code coverage of

the analyzed apps. To be able to correlate their use with the behavior of the app, we

instrument the tools used to create the stimuli, identifying when Intents are sent, when

keys are pressed and when GUI interactions are performed. These Intents are identi�ed

as the source of some entry point in the same way we do for Intents sent by the app,

which we explained before. Key pressing and GUI interactions are handled in a similar

way, but they are source of di�erent entry points. Some of the entry points executed by

key strokes are onKey(DialogInterface, int, KeyEvent) and onKeyDown(int, KeyEvent).

For GUI interactions, some common entry points executed are onClick(DialogInterface,

int), onTouchEvent(MotionEvent) and onItemClick(AdapterView, View, int, long).

When tracing the sequence of calls that led to some action, we create a list of sub-

sequences. The �rst subsequence goes from an external stimulus or from an entry point

whose source we did not identify, until the call that created the next subsequence. Each

one of the following subsequences represent the call sequence from one entry point until

the call that resulted in the creation of the next one, while the last subsequence ends in

the execution of the action. Along with each subsequence we keep the time of the call

that created the next subsequence or that executed the action.

Comparing sequences

After identifying the list of subsequences of method calls that led to the execution of

some action in the baremetal environment, we need to compare this with the results of

the emulated system to identify the cause of divergence. We hereafter refer to this list of

subsequences as BareSeq and to this instance of results from the emulated environment

as ResEmu.

We iterate over each subsequence SubBarei of BareSeq, comparing it to its counterpart

in ResEmu. For each iteration, suppose action_time is the time when the call that created

the next subsequence was executed or the time when the action was performed. Also, let

EPi be the entry point of SubBarei. We �nd all occurrences of EPi in ResEmu that have

the same origin as in BareSeq. We then proceed to compare EPi from BareSeq with each

instance of EPi identi�ed in the emulated results.

Given two entry point methods, we �nd where they begin and where they end, obtain-
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Figure 2.6: Algorithm to compare a call sequence obtained in baremetal to its equivalent
obtained from the emulated system.

ing the call sequence in this interval. We align these two sequences, one from BareSeq and

the other from ResEmu, using a global alignment algorithm described in Section 2.3.4.

If SubBarei is the last subsequence of BareSeq, we compare the aligned sequences to

determine the divergence that prevented ResEmu from reaching the call at action_time.

Otherwise, let CallNext be the method call in SubBarei that created the next subse-

quence of BareSeq. If the app did not reach CallNext in ResEmu, we compare the aligned

sequences to determine the divergence that prevented ResEmu from reaching CallNext.

However, if the app did reach CallNext in ResEmu, we get the next subsequence of

BareSeq, with entry point EPi+1, and �nd this entry point in ResEmu, by checking for

possible destinations of CallNext in ResEmu. If we are not able to �nd an equivalent

of EPi+1 in ResEmu, it is likely that the execution was interrupted before the call per-

formed at CallNext could take e�ect, so we do not consider that an evasion happened.

This algorithm is presented in Figure 2.6.

When comparing two aligned sequences, we want to identify the reason for their di-

vergence in regards to some action executed at time ti. This action is either a behavior

only observed in BareSeq or some call that created the next subsequence of BareSeq and

that was not executed in ResEmu.

We iterate over the calls in the aligned sequences and when we are past ti, considering

the time of the baremetal calls, we check what was the last call in the emulated sequence.

There are three possibilities: i) a tag indicating the analysis process ended; ii) a tag
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[78] BARE: 'com.adobe.�ashplayer_.AdobeFlashCore.onCreate()' −> 'com.adobe.�ashplayer_.
AdobeFlashCore.writeCon�g(java.lang.String, java.lang.String)'
EMU: 'com.adobe.�ashplayer_.AdobeFlashCore.onCreate()' −> 'com.adobe.�ashplayer_.

AdobeFlashCore.writeCon�g(java.lang.String, java.lang.String)'
...
[85] BARE: 'com.adobe.�ashplayer_.AdobeFlashCore.onCreate()' −> 'java.lang.String.indexOf(java.

lang.String)'
EMU: 'com.adobe.�ashplayer_.AdobeFlashCore.onCreate()' −> 'java.lang.String.indexOf(java.

lang.String)'
[86] BARE: 'None'

EMU: 'com.adobe.�ashplayer_.AdobeFlashCore.onCreate()' −> 'java.lang.System.exit(int)'
[87] BARE: 'com.adobe.�ashplayer_.AdobeFlashCore.onCreate()' −> 'com.adobe.�ashplayer_.

AdobeFlashCore.isOnline()'
EMU: 'None'

...
[102] BARE: 'com.adobe.�ashplayer_.AdobeFlashCore.onCreate()' −> 'com.adobe.�ashplayer_.

FlashVars.<init>()'
EMU: 'None'

Listing 2.4: Excerpt of the alignment of an evasive sample.

indicating the system killed the app for not responding or for some other error; iii) a call

to some method of the app or the framework.

If we identify case iii, we consider that there was a divergence in code path taken and,

therefore, that we found an evasive behavior. We print the aligned sequences, in order

to help an analyst that needs to manually identify what caused the executions to follow

di�erent code paths. Conversely, if the last identi�ed call matches cases i or ii, we consider

that there was an execution error and not an evasion. Listing 2.4 presents an excerpt of the

output generated for one sample that is evasive. This example shows that during the ex-

ecution of method AdobeFlashCore.onCreate, the app called AdobeFlashCore.writeCon�g

and String.indexOf in both analysis systems. Then, in the emulated system the app

called System.exit, whereas in the baremetal it called AdobeFlashCore.isOnline. An an-

alyst can use this information to locate the exact location in the malware code where

the evasion happens and what information is used. This information is presented in List-

ing 2.5. Invocations in lines 4 and 6 are the ones that were executed by both systems.

The conditional instruction in line 9 is responsible for redirecting the execution �ow if an

analysis system is not detected, while the information used for this detection is the result

of calling String.indexOf, which was used to verify if the device id contains the string

�000000000000000�.

Sequence alignment

To perform sequence alignment, we use the global alignment algorithm provided by

the swalign10 library. We chose a global alignment algorithm because we need to have a

global understanding of the sequences, as our analysis depends on the alignment reaching

the point in the baremetal sequence where the target action happened. If the aligned

sequence does not reach this point, we are unable to identify the cause of divergence.

We only modi�ed the code of swalign to work with the same data structure as our

scripts, instead of the default, which is a string where each char is an element. We provide

10https://github.com/mbreese/swalign/

https://github.com/mbreese/swalign/


CHAPTER 2. PUBLISHED DOCUMENTS 76

1 invoke−virtual/range {v17 .. v17}, Landroid/telephony/TelephonyManager;−>getDeviceId()Ljava/lang
/String;

2 move−result−object v7
3 ...
4 invoke−direct {v0, v1, v15}, Lcom/adobe/�ashplayer_/AdobeFlashCore;−>writeCon�g(Ljava/lang/

String;Ljava/lang/String;)V
5 const−string v1, ``000000000000000''
6 invoke−virtual {v7, v1}, Ljava/lang/String;−>indexOf(Ljava/lang/String;)I
7 move−result v1
8 const/4 v2, −0x1
9 if−eq v1, v2, :cond_5
10 const/4 v1, 0x0
11 invoke−static {v1}, Ljava/lang/System;−>exit(I)V
12 :cond_5
13 invoke−virtual/range {p0 .. p0}, Lcom/adobe/�ashplayer_/AdobeFlashCore;−>isOnline()Z

Listing 2.5: Excerpt of the disassembled app where the evasion happens.

our own scoring method to swalign. The scoring method is responsible for comparing two

elements and identifying if they match or not. Our method matches calls that are equal

but also any call to special tags that represent special events. These events include the

end of the analysis and the app being killed by the system.

Selecting the arguments is an important step in using alignment algorithms. The

arguments we need to de�ne are the following:

• m for matches, with m > 0;

• mi for mismatches, with mi < 0;

• go for opening gaps, with go < 0;

• ge for extending gaps, with ge < 0.

We do not want any mismatches, as they may mislead the analysis, so we used a high

value for |mismatch|. We also believe that beginnings and endings of methods of the

analyzed app are more important in the alignment than other types of calls, so we assign

2 ∗m for matches of this type. Furthermore, since we are investigating evasive behavior,

we want to prioritize gap extensions over gap openings, so |go| > |ge|. In the end, we have

the following inequality to guide the de�nition of arguments:

|mismatch| > m > |go| > |ge|.

2.3.5 Monitoring system

Behavior monitoring

To track the behavior of the analyzed apps, we monitor which apps' methods were exe-

cuted, which methods were called from them and which system calls were executed.

To monitor system calls, we used a kernel driver that intercepts them. When a system

call is executed, the driver registers its arguments and calls the original system call. In
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order to obtain information related to the use of Intents, the driver inspects ioctl calls that

target the Binder device. If the operation performed is a BC_TRANSACTION, we log

the destination class, method id and arguments passed. To identify which actual method

is represented by the method id, we examine the corresponding AIDL �le in the Android

source code.

To monitor the executed methods, we leverage the �method trace� functionality of the

Android runtime (ART) and instrument libart. Every time the execution goes in and out

of a method, we register it. Also, when some method is called, we log the source and

destination of such action. This allows us to also identify Java methods called from native

code. To avoid registering too much information, we focus on new UIDs, so we do not

track apps that are already installed in the system when it is in a clean state.

When trying to identify the method call that resulted in the execution of some receiver,

we need to identify which intent �lters are used by this receiver and look for broadcasts

sent that match them. Parsing the app's manifest is not enough to obtain all intent �lters

that were used, since the app can register others at runtime. To overcome this limitation,

we also track all calls to android.content.Context.registerReceiver.

As mentioned in Section 2.3.4, the use of threads, tasks and message passing be-

tween them introduces a level of indirection that prevents us from tracking the execution

�ow by just looking at method invocations. To be able to reconstruct the call sequence

even in these cases, we track the use of threads, tasks and messages by assigning (and

logging) a randomly generated number to them when they are created, scheduled or

sent. We also log this identi�er when they are actually used or executed, allowing a

parser to match each use or execution of these types to their creation. This matching

allows us to track the call sequence in these cases. So, for instance, when the method

java.util.Timer.schedule(TimerTask task, long delay, long period), which schedules a task

for repeated �xed-delay execution, is executed, the system generates a random number,

logs it and assigns it to the task. Every time this task is executed, the identi�cation

number is logged.

In order to correlate the external stimuli, like clicks and broadcasts, with the behavior

of the app, we need to know the time at which each stimulus was provided. To achieve

this, we instrument both tools used to create these actions, which are am and input.

Analysis environments

When analyzing malware, it is important to make sure that the environment is not infected

before each analysis. Performing an analysis in an infected system may result in wrong

results, as one malware can in�uence the behavior of others analyzed afterwards. To

analyze samples in the emulator, we take advantage of the snapshot functionality, which

allows us to restore the system to a clean state after every analysis and avoid waiting the

time of booting the system. Analyzing malware in real devices, though, is a rather more

complicated task, as they do not have an easy snapshot functionality in the same way as

the emulator does. One possible way to overcome this problem is to restore the state of

the device's partitions after every analysis, as in the Baredroid's approach [60]. However,

this is very time consuming, as the system needs to reboot every time it is restored.
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We chose a di�erent approach to maintain the system clean after each analysis. In

Android, apps can only write to a very limited set of directories, which includes mainly

the app's dir (/data/data/<PACKAGE-NAME>/) and the sdcard. By uninstalling every

app after it is analyzed, its own directory is removed by the framework. Files written to

the sdcard can a�ect the behavior of other apps that interact with such �les. Because of

that, we delete every �le from the sdcard after every analysis. To be able to overcome the

system's restrictions and modify important �les, some malware exploit vulnerabilities in

the kernel or privileged processes, obtaining root privileges. However, since the /system

partition is mounted as read only by default, even apps that are able to obtain root

privilege �rst need to remount this partition. To prevent this from happening, our kernel

driver blocks all system calls that try to remount the /system partition in a mode that

allows writing. This protection can be bypassed if the malware manages to access the

original mount system call. However, we only used the system to test our proposed

technique to identify evasive malware. If one wants to use a similar system to receive

submissions or analyze apps that could potentially target the system, a better protection

or restoration process would be necessary. Furthermore, during our experiments our driver

did not actually have to block any calls to mount, so we believe this was not a problem.

For our experiments we used the standard Android emulator deployed with the sdk

and an LG G2Mini device. Both systems had our modi�ed version of Android 5.1. Each

analysis in the baremetal environment was executed for at most 3 minutes. As for the

emulated environment, since it is much slower, we executed each analysis for at most 10

minutes. In small experiments we found that this time was necessary for the emulator

to execute in a similar way as the baremetal in 3 minutes. Since we can identify when

a divergence in behavior is caused by one analysis system �nishing before the other, this

di�erence in execution time does not negatively a�ects our technique.

When dynamically analyzing Android apps, it is important to provide GUI interactions

and to cause activities, services and receivers to execute in order to increase code coverage.

However, as we are comparing multiple executions of apps, it is also important that we

provide exactly the same interactions, so the same code paths are exercised, at least until

evasive code is reached or some problem stops the app execution. In order to accomplish

this, we use the Droidbot [51] tool to interact with apps. Droidbot generates random

events, including GUI interactions, broadcasts and speci�c activities. It also registers

the exact events generated and is able to replay them from a �le instead of randomly

generating them. Thus, in our �rst baremetal execution of each sample, we randomly

generate events and save them to a �le. In the following baremetal executions and in the

emulated analyses, we make Droidbot read the events from the saved �le.

One way that malware can identify the analysis environment is by checking which apps

are installed on the system. The lack of the Google Play app, for instance, is a strong

indication that it is not a real device. Therefore, we installed in the baremetal environment

Open GAPPS [2], a set of basic apps present in all Android systems. Furthermore, we

also installed a few very popular apps and created fake contact information. These apps

and contact information make the baremetal and emulated systems di�erent, which could,

therefore, cause some apps to behave di�erently, but not because they intend to evade

analysis systems. This could possibly lead our technique to identify such samples as
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evasive, increasing the number of false-positives. However, not doing so may result in

false-negatives since, as we mentioned, the baremetal system could also be detected as

an analysis system. We chose to use these techniques and risk increasing false-positives

instead of risking increasing false-negatives.

2.3.6 Experiments

To evaluate our technique, we used our dynamic analysis system to analyze a subset of the

samples in our malware dataset, which consists of samples obtained from VirusShare [82],

Malgenome [97], contagio mobile [61], AndroMalShare [1] and Drebin [9]. To select this

subset we �rst obtained their detection by antivirus software, using Virustotal [3]. We

separated them by families, using the results of the ESET-NOD32 antivirus, and selected

at most 5 samples from each family, resulting in a set of 1,470 samples.

We analyzed these samples with our system to obtain their behavior and used our

proposed technique to identify which ones have evasive behavior. Since we do not have a

ground truth with information about all these samples, we randomly selected 50 samples,

all from di�erent families, and manually inspected their results to identify possible false-

negatives and false-positives.

Our technique detected 7 out of 50 samples in the subset as evasive. Using manual anal-

ysis we identi�ed no false-negatives and 3 false-positives. We consider as false-negatives

the samples that did evade analysis but our approach did not identify them as evasive, and

we consider as false-positives the ones that we considered evasive in cases the diverging

behavior is similar to some action performed in the emulated environment and it does

not stem from an identi�cation of the analysis system. Note that we consider evasive

those samples that execute some action only in the baremetal system, without executing

some similar action in the emulated system, even if this divergence is not caused by a

clear identi�cation of the analysis system. For instance, if some sample tries to send SMS

messages to contacts stored in the phone and it only shows this behavior in the baremetal

because there is no contact registered in the emulated environment, we consider it as

evasive. We do this because, despite not being a clear sign of anti-analysis behavior, it is

successful in preventing some action from being observed in the emulator and so could be

employed as an anti-analysis technique.

We discuss below the samples that our technique identi�ed as evasive, explaining why

we consider them as a true-positive or false-positive. For the true-positive ones, we discuss

which extra behavior was observed due to the diversion and what di�erence between the

baremetal and emulated environments was its cause.

Sample 1. It changes its behavior if /system/xbin/busybox, /system/bin/busybox or

/bin/busybox is present in the system. This deviation resulted in the malware writing to

the �le shared_prefs/con�g.xml and many �les in the dir /sdcard/LuckyPatcher/. This

may not have been intended as an anti-analysis technique, since most user systems do

not have these �les. However, it does prevent some of the malware behavior from being

observed in the emulated environment, so we consider this as a true-positive.

Sample 2. It Identi�es if the phone number starts with �15555�, if the value of IMEI

starts with �00000000� or if the value of IMSI starts with �31026�. Upon detection, this
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sample calls System.exit(0). This is a clear case of evasive malware, so we consider it

as a true-positive. The behavior resulting from the divergence is composed of starting a

service and starting two alarms that send Intents.

Sample 3. It copies the icons of the apps installed in the system to the dir /data/-

data/com.pintudog/�les/icons/. Since the list of apps installed in the emulator and in

the baremetal environments is not the same, the monitored actions ended up being dif-

ferent. However, at a higher level it is still the same behavior, so we consider this as a

false-positive.

Sample 4. It veri�es if the IMEI contains the string �000000000000000�. If so, the

malware calls System.exit(0). Similarly to Sample 2, this is a clear example of anti-

analysis, so we consider it as a true-positive. The actions resulting from the divergence

are the following: starting a service, creating a wake lock and connecting to the dnsproxyd

device to make a DNS request.

Sample 5. The di�erent actions in the behavior of this sample are related to a �le

associated with the graphical interface. This happened because the graphical libraries

used in the baremetal and emulated systems are di�erent. Since this is not actually

related to the behavior of the malware, we considered this sample as a false-positive.

Sample 6. During its execution this sample veri�es which Wi� networks are available

to the device. In the emulated system it does not identify any Wi� network, so it takes a

di�erent execution path. The behavior that is executed only in baremetal, as a result of

this di�erence, is writing a �le in the sdcard. Since this behavior is related to the malware

execution and cannot be observed in the emulator unless some update is made to it, we

consider this sample as a true-positive.

Sample 7. This sample randomly chooses the domain name to access from a list of

prede�ned names. This resulted in one domain used in baremetal not being used in the

emulated analysis. Except for the domain di�erence, their behavior is the same, so we

consider this as a false-positive.

Comparison

To test our intuition that the existing techniques to identify evasive Windows malware

would not present as good results if applied to Android malware, we implemented detectors

based on the techniques proposed by Disarm [52] and Barecloud [48]. Since the behavior

of Android and Windows malware are di�erent in various aspects, we used our behavior

model when implementing these techniques. To make the comparison fairer, we used the

threshold that would yield the best results to each of these techniques, instead of the

threshold they found for Windows malware. Table 2.27 presents the comparison of our

results with the results obtained from the other approaches. Our technique performed

better than the others, demonstrating that it is more appropriate to this context.

Other evasion techniques

Out of the complete dataset of 1,470 samples, our technique identi�ed 192 as evasive. We

manually inspected the results of some of these samples to understand how they evade
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Table 2.27: Comparison with other approaches to identify evasive malware
TP TN FP FN A

Our approach 100% 93.5% 6.5% 0.0% 96.7%
Disarm (t=0.12) 100% 78.3% 21.7% 0.0% 89.1%

Barecloud (t=0.36) 100% 67.4% 32.6% 0.0% 83.7%

analysis. Bellow we describe the anti-analysis techniques we identi�ed that are di�erent

from the ones explained before.

GSF package. Malware can verify if the package com.google.android.gsf is installed

in the system. This package provides Google Service Framework and is present in most

Android devices, but not in the emulator.

Location updates. When using the method LocationManager.requestLocationUpdates

in the emulator, an exception is generated, which can change the execution path of the

sample. This type of evasion is harder to recognize statically, because there is not a clear

if-then-else situation.

GCM. Samples can use the Google Cloud Messaging (GCM) service to identify the

emulator. For instance, apps can try to register an id, which will fail because the emulator

does not have a registered Google account.

Build properties. Apps can verify the value of the following properties of the

android.os.Build class: if Build.PRODUCT or Build.MODEL equals �google_sdk�; if

Build.BRAND or Build.DEVICE starts with �generic�; if Build.HARDWARE equals �gold-

�sh�.

App store. Apps can try to use Google Play by starting an activity with the category

android.intent.category.APP_MARKET. Since the Google Play app is not installed in the

emulator, this causes an exception, which can change the app execution path.

su binary. Samples that target rooted devices can try to execute �su�, which allows

for the execution of actions with root privileges. Since the emulator does not have such

�le, this action fails and the execution path changes.

2.3.7 Limitations

Our detection approach relies on identifying di�erences between the execution of samples

in a baremetal and in an emulated environment. Therefore, if we are not able to reach the

code that has anti-analysis functionalities or some sample is able to detect the baremetal

environment as an analysis system, we will not be able to observe the di�erences. Not

reaching the desired code path is a problem with all dynamic analysis systems, as they

can only observe behavior that is actually executed. To exploit this, malware can wait

for a period of time longer than the analysis is executed for, before activating the ma-

licious behavior, or can only execute it after a series of complex GUI interactions that

automatic interaction tools are unlikely to reach. Some malware may be able to detect

both environments as analysis systems, because despite the baremetal environment being

more similar to a real device, there are still di�erences that can be exploited, such as

information about the user's behavior, e.g., browsing history and SMS history.

When tracing back the origin of some behavior executed in baremetal, we may �nd
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some entry point whose source we cannot identify. In these cases we compare it with

all instances of the same entry point in the emulated environment. In some cases this

may lead to wrong conclusions. Furthermore, di�erences in the systems may lead to the

execution of di�erent actions that are not related to evading analysis or to the execution of

equivalent actions in both systems, but that are considered di�erent in our behavior model.

This is the general problem that resulted in our technique incorrectly detecting Sample 3

and Sample 5 as evasive. Also, sources of non-determinism that we do not currently

handle may lead to the execution of the same high-level behavior, but di�erent actions

according to our model. This is the problem that resulted in our technique misidentifying

Sample 7 as evasive. This malware randomly selects the domain name to access from a

prede�ned list, so the domain accessed in baremetal and emulator were di�erent, but the

same code path was executed in both cases.

2.3.8 Related work

Android malware analysis

Researchers have proposed several systems to analyze Android malware, obtaining infor-

mation about them. Enck et al. [28] propose TaintDroid, a dynamic taint analysis system,

which tracks sensitive data �ow to detect when it is sent over the network. Sun et al. [78]

propose TaintART, an approach similar to TaintDroid that works with the most recent

Android runtime, ART. DroidBox [26] builds upon TaintDroid and adds tracking of API

calls and network data. Spreitzenbarth et al. [75] present Mobile-Sandbox, a system that

uses DroidBox and Taintdroid and also includes the use of the ltrace tool to monitor native

code. Yan and Yin [91] propose DroidScope, a virtual machine introspection-based analy-

sis system that bridges the semantic gap reconstructing OS-level and Java-level semantic

views from outside the emulator. AASandbox [18] monitors system calls using a kernel

module. Harvester [67] combines program slicing with code generation and dynamic exe-

cution to extract runtime values, such as URLs and destination numbers of SMS messages,

from obfuscated malware. Bichsel et al. [16] present an approach for deobfuscating apps

based on probabilistic learning of large code bases. It learns a probabilistic model over

thousands of non-obfuscated apps and use it to deobfuscate new ones. TriggerScope [32]

uses static analysis to detect logic bombs, i.e., application logic that is only executed

under certain (often narrow) circumstances. TriggerScope is capable of identifying time-,

location- and SMS-related triggers.

One of the main drawbacks of dynamic analysis is only being able to observe behavior

that is actually executed. This means that the analysis system needs to provide the

correct inputs so that the malicious behavior is triggered. Researchers have proposed

systems that inspect the analyzed app in order to identify the inputs and paths that lead

to the execution of suspicious code and then provide these at runtime [15,87,95].

Anti-analysis techniques for Android

Researchers [45,58,62,74,80] have presented several techniques that may be used by An-

droid malware to evade detection by making static analysis harder or by evading dynamic
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analysis. Spreitzenbarth [74] details the analysis of two Android malware families, namely

Bmaster and FakeRegSMS, that use several anti-analysis techniques, such as waiting some

time before executing the malicious actions. Matenaar and Schulz [58] present a method

for an app to identify if it is executing inside Qemu, which is the basis of the Android em-

ulator. Vidas and Christin [80] present anti-analysis techniques based on Android APIs,

system properties, network information, Qemu characteristics, performance, hardware

and software components. Another similar work is presented by Petsas et al. [62]: they

demonstrate anti-analysis techniques based on Android APIs, system properties, sensors

and Qemu characteristics. Instead of manually identifying di�erences between real and

emulated devices, Jing et al. [45] developed Morpheus, a framework that automatically

generates heuristics that can identify, based on �les, system properties and Android APIs,

whether a sample is running in an emulated environment or not.

Detection of evasive malware

Systems that automatically identify malware samples that employ anti-analysis techniques

have been developed for the Windows context [13, 47, 48, 50, 52]. Balzarotti et al. [13]

propose a system that records the system calls executed by a sample on a reference envi-

ronment and replay the monitored system calls on an emulator to identify if the observed

behavior is di�erent. Lindorfer et al. [52] analyze malware samples in di�erent envi-

ronments and identify di�erences on the observed actions, recognizing techniques that

malware apply to detect the analysis environment or analysis tools. Barecloud [48] is

a system that dynamically analyzes malware in four di�erent environments, including a

baremetal one, and detects evasive malware by comparing the reports provided by these

systems in a hierarchical approach. Kolbitsch et al. [50] detect and mitigate malicious

programs that wait for some time (stall) before executing their malicious behavior. Mal-

gene [47] combines sequence alignment of system call traces, obtained from a baremetal

and an emulated environment, with taint tracking to identify evasion signatures of evasive

malware.

2.3.9 Conclusions

In this paper we presented a novel approach to identify evasive Android malware by

comparing its execution on a baremetal analysis system and on an emulated analysis

system. For each action executed only in baremetal, we identi�ed the reason why it

was not successfully performed in the emulated environment, di�erentiating the cases

in which there was evasion from the cases in which there was some analysis problem.

Our experiments showed that our approach provides promising results and is more suited

for detecting Android malware with anti-analysis features than trying to directly apply

existing approaches used to detect evasive Windows malware. We analyzed 1,470 malware

samples, from which our technique identi�ed 192 as evasive. We manually analyzed some

of the detected ones and discuss the information used by them to evade analysis.

Future work to reduce the false-positive rate includes improving the identi�cation

of non-deterministic actions, such as the use of randomly selected domain names. In

addition, to automatically identify which information is used to evade analysis, we plan on
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applying taint-analysis techniques. Code related to anti-analysis might only be triggered

right before the malicious actions are executed. Being able to reach this code path will

therefore increase our chances of detecting evasive behavior. Finally, we plan on applying

some of the techniques proposed in the literature to force apps to follow code paths that

lead to suspicious actions, further improving the identi�cation of more types of evasive

mobile malware.
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Discussion

The security of Android users is in�uenced by several layers of protection, which are

employed in devices and in app stores. In this thesis we present three papers that demon-

strate advances to two di�erent aspects of Android security, namely, malware analysis

and native code restriction, contributing to the overall improvement of the users' security.

In this chapter we summarize the results presented by these papers, making it easier for

the reader to �nd this information.

In Android, native code components are executed in the same process as the Java part.

As such, they can modify at runtime the code that was developed in Java, rendering the

results of most static analysis tools for Android unsound, as they can only inspect the

original code. Moreover, native code has more capabilities, since it has direct access to

system calls, and can be used to launch privilege escalation attacks against the kernel

or other processes. To address this problem researchers have proposed separating native

code components in a di�erent process and applying restrictions to it. However, the lack

of data on the use of native code by benign apps makes the creation of policies that can

block attacks but not a�ect many benign apps a di�cult challenge.

To overcome this problem we developed a system capable of monitoring the behavior of

native code components deployed in Android apps. We use this system to perform a large-

scale analysis of apps and provide several insights on how real-world apps use native code.

These insights can help other researchers guide their decisions in regards to restricting

native code. For instance, we show that the approach taken by NativeGuard [77] to

remove all permissions from native code would negatively a�ect at least 3,669 apps in our

dataset. Furthermore, we provide an approach to automatically generate a native code

sandboxing policy in a way that is e�ective and practical. The policy generated by our

approach a�ects at most a prede�ned threshold of apps (1% in our experiments), while

at the same time blocking actions used by several known root exploits. These results

were published in the Network and Distributed System Security Symposium 2016 and

presented in Section 2.1 of this thesis.

Another important problem that a�ects Android security is how to e�ectively analyze

and identify malware. App stores, antivirus companies and security researchers need to

analyze large amounts of apps, extracting information about their behavior and identifying

the malicious ones. This can be used to vet apps submitted to app stores, to create

signatures that can detect malware and to build better analysis tools.
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In the paper published in 2015 in the Journal of Computer Virology and Hacking Tech-

niques, Section 2.2 of this thesis, we present a system developed by us that dynamically

analyzes Android apps to obtain API function and system calls. Currently available sys-

tems are tied to a speci�c Android OS version or to the SDK-provided emulator, whereas

our approach is independent of the emulator and much more portable as it does not

modify the Android OS. By using the information gathered from dynamic analysis, our

system is able to extract features related to the frequency of use of each API function

and each system call, using machine learning to classify apps as malicious or benign. In

our experiments, we obtained an accuracy of 96.82%. By comparing our approach to the

system presented by Su et al. [76], the most similar in the literature, we demonstrate that

the frequency of API calls are good features to detect malicious Android apps.

Dynamic malware analysis systems are typically developed on top of an emulator,

because it provides scalability and ease in restoring the analysis environment to a clean

state. Consequently, these systems have many di�erences as compared to real devices;

these discrepancies, in turn, may be leveraged by malware to identify when they are

being analyzed and prevent the malicious behavior from being observed. One of the main

challenges of dynamic analysis is how to create analysis systems transparent to these

malware; one important step in doing so is to identify them and the techniques used for

their evasion.

In the paper submitted to the International Conference on Dependable Systems and

Networks 2017, Section 2.3 of this thesis, we present a novel approach to identify evasive

Android malware. We achieve this by comparing the analysis results of a sample in

a baremetal environment and in an emulated environment. For each action executed

only in the baremetal system, we identify if it was not executed in the emulator due

to evasive behavior or due to some analysis problem. We compare our technique with

existing approaches that identify evasive Windows malware, demonstrating that ours is

more appropriate to the Android context. Moreover, we analyzed 1,470 samples with our

technique, identifying 192 with evasive behavior. We manually inspected a subset of them

and discuss how they identify the analysis environment.
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Conclusions

The security of Android users is in�uenced by several layers of protection, which are em-

ployed in devices and in app stores. In this thesis we present advances to three di�erent

aspects, which overall contribute to improving Android security. Our study on native code

use, presented in Section 2.1, can help systems that restrict native code to make devices

more robust against malware. Our system to analyze and detect Android malware, pre-

sented in Section 2.2, can aid app stores and antivirus companies in identifying malicious

apps. Finally, our technique to identify evasive malware, presented in Section 2.3, can

help security researchers identify malicious apps that use anti-analysis features.

Future work related to the native code analysis includes expanding the policy to con-

sider the number of calls to certain system calls and providing a way to enforce the policy,

which could be done by constructing a new system or by integrating the policy to an

existing mechanism, such as SELinux. For the identi�cation of malicious apps, an inter-

esting follow up is to include in the classi�cation network related and statically obtained

features. Finally, the identi�cation of evasive malware might bene�t from improving

the identi�cation of non-deterministic behavior and using taint analysis to automatically

identify which information is used by malware to identify that they are being analyzed.
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