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Resumo

Dados de séries temporais são facilmente encontrados em diversas áreas, incluindo monitora-
mento do meio ambiente, medicina, economia e ciências sociais, e muitas vezes apresentam
autocorrelação. Uma complicação adicional surge quando as medições de séries temporais ap-
resentam irregularidades, tais como observações submetidas a limites de detecção superiores ou
inferiores, acima e abaixo dos quais as medições não são quantificáveis, e observações faltantes.
Pesquisadores comumente desconsideram os casos censurados ou substituem estas observações
por alguma função do limite de detecção, o que muitas vezes resulta em estimativas tenden-
ciosas. Neste trabalho, nós estudamos alguns aspectos de estimação e análise de influência local
em modelos de regressão censurados com erros autorregressivos de ordem p (modelos AR(p)-
CR). As estimativas de máxima verossimilhança (ML) dos parâmetros são obtidas usando uma
aproximação estocástica do algoritmo EM (SAEM). Esta abordagem nos permite estimar os
parâmetros de interesse de forma eficiente. Como um subproduto, o algoritmo SAEM permite
previsões dos valores não observáveis da variável resposta. A matriz de informação observada
é derivada analiticamente para a obtenção dos erros padrões. Além disso, técnicas de diagnós-
tico de influência local são derivadas para modelos AR(p)-CR com base na função Q sob três
esquemas de perturbação. O desempenho dos métodos em amostras finitas é avaliado por meio
da análise de vários estudos de simulação e de aplicações em dois conjuntos de dados reais. O
algoritmo e métodos propostos são implementados no novo pacote do R ARCensReg.

Palavras-chave: Algoritmo SAEM; Dados censurados; Influência local; Limite de
detecção; Modelos autorregressivos AR(p); Observações influentes.



Abstract

Time series data are frequently encountered in diverse fields, including environmental moni-
toring, medicine, economics and social science, and they are often autocorrelated rather than
independent. An additional complication arises when time series measurements are observed
with data irregularities, such as observations subjected to upper or lower detection limits, below
and above which they are not quantifiable, and missing observations. Practitioners commonly
disregard censored data cases or replace these observations with some function of the limit of
detection, which often results in biased estimates. In this work, we study some aspects of es-
timation and local influence analysis in censored regression models with autoregressive errors
of order p (hereafter, AR(p)-CR models). The estimates of maximum likelihood (ML) of the
parameters are obtained using a stochastic approximation of the EM (SAEM) algorithm. This
approach allows for easy and fast estimation of the parameters of autoregressive models when
censoring is present. As a byproduct, the SAEM algorithm enables predictions of unobservable
values of the response variable. The observed information matrix is derived analytically to ac-
count for standard errors. Furthermore, local influence diagnostic measures are derived for the
AR(p)-CR model on the basis of the Q-function under three usual perturbation schemes. The
finite sample performance of the methods is evaluated through the analysis of several simula-
tion studies and its applications to two real datasets. The proposed algorithm and methods are
implemented in the new R package ARCensReg.

Keywords: Autoregressive AR(p) models; Censored data; Influential observations;
Limit of detection; Local influence; SAEM algorithm.
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Chapter 1

Introduction

Observations collected over time are often autocorrelated rather than independent,
so time series data analysis must deal with temporally collected observations by modeling
their autocorrelations. Autoregressive (AR) models for time series data developed by Box et al.
(1994) have been widely used as a basic approach. However, modeling AR data can present an
additional challenge, from the statistical point of view, in which the observations can be subject
to upper or lower detection limits, below and above which they are not quantifiable. For exam-
ple, environmental monitoring of different variables often involves left-censored observations
falling below the minimum limit of detection (LOD) of the instruments used to quantify them.
The concentration of a certain mineral in river water can be an important indicator about water
quality, and its fluctuations over time are often monitored in environmental studies. However,
the mineral concentration cannot be measured exactly if it falls below certain detection limits.
In these studies, the proportion of censored data may not be small, so the use of crude/ad hoc
methods, such as discarding the censored observations or substituting a threshold value or some
arbitrary point like a midpoint between zero and cutoff for detection (LOD/2), might lead to bi-
ased estimates of fixed effects related with exogenous variables and autoregressive components.
Thus the key issue in estimating the parameters of time series models with exogenous variables
based on censored data is to obtain estimates that are at least (asymptotically) unbiased and
more efficient than some of the two ad-hoc methods described above.

As an alternative to crude imputation methods, Robinson (1980) suggested imput-
ing the censored part with its conditional expectation, given the completely observed part. Since
the conditional expectation has the form of multiple incomplete integrals, his method groups the
data vector so that each subgroup includes one censored observation, and thus requires a single
integral. However, this method may not be feasible for many consecutive censored observations.
Zeger and Brookmeyer (1986) suggested a full likelihood estimation and approximate method
for an autoregressive time series model. However, the authors pointed out that the method may
not be feasible when the censoring rate is too high. Hopke et al. (2001) used multiple imputation
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based on a Bayesian approach. However, little explanation was provided about the theoretical
properties of the estimators, such as unbiasedness and efficiency. More recently, Park et al.
(2007) presented an alternative method for handling censored data in the setting of AR models.
In this method, time series data are regarded as a realization from a multivariate normal dis-
tribution, and the censored values are then imputed using the conditional multivariate normal
distribution given the observed part. Nevertheless, this method is not exactly a likelihood-based
method since the censored observations are first imputed and then any estimation procedure for
complete time-series data is used.

Even though some solutions have been proposed in the literature to deal with the
problem of censored responses in AR models, there are no studies conducting exact inferences
for censored AR models from a likelihood-based perspective. In this work, we aim to derive
a computationally efficient estimation method via the stochastic version of the expectation-
maximization (SAEM) algorithm in censored regression models with autoregressive errors of
order p (hereafter, AR(p)-CR model). The SAEM algorithm was initially proposed by De-
lyon et al. (1999) using maximum likelihood (ML) techniques as a powerful alternative to the
expectation-maximization (EM) when the E-step is intractable. The SAEM algorithm has been
proved to be more computationally efficient than the classic Monte Carlo EM (MCEM) algo-
rithm due to the recycling of simulations from one iteration to the next in the smoothing phase
of the algorithm. Moreover, as pointed out in Meza et al. (2012), the SAEM algorithm, unlike
the MCEM, converges even in a typically small simulation size.

Furthermore, in the interest of evaluating the influence of small deviations on the
data, we develop local influence diagnostic techniques for the AR(p)-CR model, following the
method proposed by Zhu and Lee (2001) to assess the local influence in a minor perturbation of
a statistical model with incomplete data, utilizing Cook’s approach to the conditional expecta-
tion of the complete-data log-likelihood function in the EM algorithm. Although there are some
works in the literature discussing influence diagnostic techniques for regression models with
autoregressive errors, to the best of our knowledge, there are no previous studies of diagnostic
analysis for censored linear regression models with autoregressive errors.

1.1 Motivation

Given the importance of correctly analysing autocorrelated censored data, our mo-
tivation is the analysis of two real datasets described next.
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1.1.1 Cloud ceiling height dataset

The first dataset is a meteorological time series of cloud ceiling height previously
analyzed by Park et al. (2007). The cloud ceiling height is defined as the distance from the
ground to the bottom of a cloud and is measured in hundreds of feet. According to Park et al.
(2007), an accurate determination of the cloud ceiling height is important mainly because it is
one of the major factors contributing to weather-related accidents and one of the major causes
of flight delays. The recording device has a detection limit of 12,000 feet, so the observed data
can be considered a right-censored time serie.

The data were originally collected by the National Center for Atmospheric Research
(NCAR) based on hourly observations in San Francisco, recorded during the month of March
1989, consisting of 716 observations. The censoring rate is 40.5%. Figure 1.1 shows the log-
transformed data whose original scale is in hundreds of feet. Considering this transformation
the limit of detection is log(120) = 4.787.
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Figure 1.1: Censored time series of log-transformed hourly cloud ceiling height in San Fran-
cisco during March 1989.

Park et al. (2007) analysed this dataset using four different approaches, the two
first being naive approaches (to discard the censored observation (a) and to treat the censored
values as observed (b)), the third being a Bayesian approach (c) and the last being the method
proposed in his paper (d): imputing the censored values by considering the time series data as
a realization from a multivariate normal distribution and then, once the augmented dataset is
obtained, estimating the parameters from autoregressive moving average (ARMA) models by
any suitable method. Table 1.1 presents the estimates for the selected ARMA model obtained
by Park et al. (2007) for the four approaches. The ARMA(p,q) model is defined as

Yt = β0 +φ1(Yt−1−β0)+ . . .+φp(Yt−p−β0)+ηt−ψ1ηt−1− . . .−ψqηt−q,
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where β0 is the mean parameter, φ1, . . . ,φp are the autoregressive parameters and ψ1, . . . ,ψq are
the moving average parameters. The error process {ηt} is assumed to be white noise with mean
0 and variance σ2.

Table 1.1: Parameter estimates and standard errors obtained by Park et al. (2007) from the
selected ARMA model for the cloud ceiling height dataset.

Approach
(a) (b) (c) (d)

Selected Model ARMA(1,1) AR(1) AR(2) AR(2)
β̂0 3.704 (0.159) 3.004 (0.147) 4.194 (0.407) 4.129 (0.236)
φ̂1 0.872 (0.024) 0.841 (0.027) 0.740 (0.049) 0.689 (0.038)
φ̂2 - - 0.159 (0.049) 0.173 (0.038)
ψ̂1 0.243 (0.046) - - -
σ̂ 0.723 0.562 1.035 0.877

Source: Park et al. (2007)

1.1.2 Total phosphorus concentration dataset

According to Wang and Chan (2016a) phosphorus is one of the two nutrients of
main concern in Iowa river water, as excessive phosphorus in river water can result in eutroph-
ication. It is known that phosphorus concentration (P) is generally correlated with the water
discharge (Q) (Schilling et al., 2010).

Phosphorus concentration data of West Fork Cedar River at Finchford, Iowa, USA,
that were collected under the ambient water quality program conducted by the Iowa Department
of Natural Resources (Iowa DNR) are available in the R package carx (R Development Core
Team, 2016; Wang and Chan, 2016b). The dataset has 15.5% of left censored observations and it
was recorded monthly from 10/1998 to 10/2013, being measured in mg/l. A gap from 09/2008
to 03/2009 in the data is due to program suspension owing to lack of funding.

Water discharge data can be obtained from the website of U.S. Geological Survey,
measured in cubic feet per second. A similar dataset was studied by Wang and Chan (2016a),
who proposed a quasi-likelihood estimation method for censored autoregressive models with
exogenous variables.

As a preliminary study, we fitted a censored regression model considering indepen-
dent errors under the normal distribution using the R package SMNCensReg (R Development
Core Team, 2016). Under this assumption we can calculate the transformation of the martingale
residuals (Garay et al., 2015), defined by

rMTt = sign(rMt )
√
−2 [rMt +δt log(δt− rMt )], t = 1, . . . ,n,
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Figure 1.2: Censored time series of phosphorus concentration (black solid line, scale shown on
the left vertical axis), water discharge (blue dashed line, scale shown on the right vertical axis)
and limit of detection (red dotted line, in the same scale as P).

where rMt = δt + log(S(yt , θ̂)) is the martingale residual proposed by Ortega et al. (2003), δt =

0,1 indicating whether the tth observation is censored or not, respectively, sign(rMt ) denotes
the sign of rMt and S(yt , θ̂) = P(Yt > yt | θ̂) representing the survival function evaluated at yt .
Figure 1.3 presents the partial autocorrelations of transformation of the martingale residuals.
It indicates that the assumption of independent errors is not valid, and hence a model with
autocorrelated errors should be considered.
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Figure 1.3: Partial autocorrelations of the transformation of the martingale residuals for the
model with independent errors for the total phosphorus concentration dataset.
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1.2 Censoring

In many practical situations we may not be able to observe the variable of interest
(Yt , t = 1, . . . ,n) directly. Instead, we may observe only an interval in which the realization of
this variable is contained. That is called censoring. Let Vt be the value that we observe at time
t. In this work, we will deal with two types of censoring, such that

Vt =

{
max(Yt ,ct), in case of left censoring,
min(Yt ,ct), in case of right censoring,

(1.2.1)

where ct is the censoring level or the detection limit at time t.

Notice that a left censoring structure causes a right truncation of the distribution,
since we only know that the true observation yt is less than or equal to the observed quantity
Vt . Moreover, the right censored problem can be represented by a left censored problem by
simultaneously transforming the response Yt and censoring level Vt to −Yt and −Vt . Therefore,
the methods will be presented considering left censoring.

1.3 The multivariate normal and truncated normal distribu-
tions

A random vector Y is said to have an n-variate normal distribution with mean vector
µ and variance Σ (positive definite), denoted by Y ∼ Nn(µ, Σ), if the probability density
function (pdf) of Y is given by

φn(y | µ, Σ) =
1

(2π)n/2
| Σ|−1/2 exp

{
−1

2
(y−µ)> Σ−1 (y−µ)

}
, (1.3.1)

where

µ=


E(Y1)

...
E(Yn)

 and Σ =
[
Cov(Yi,Yj)

]
, i = 1, . . . ,n; j = 1 . . . ,n.

Let Y be partitioned as Y =
(
Y>1 ,Y

>
2
)>, such that dim(Y1) = n1 and dim(Y2) =

n2 = n−n1 and let

µ=

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
be the corresponding partitions. It can be shown that

(i) Y1 ∼ Nn1 (µ1, Σ11),
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(ii) Y2 | Y1 = y1 ∼ Nn2

(
µ2 + Σ21 Σ−1

11 (y1−µ1), Σ22− Σ21 Σ−1
11 Σ12

)
.

Now, let Φn(· | µ, Σ) denote the corresponding cumulative distribution function
(cdf) and let T Nn (µ, Σ;A) denote the n-variate truncated normal distribution on the interval
A, where A = A1× . . .× An and for the right truncation case At = (−∞,ct ], t = 1, . . . ,n. A
random vector Y is said to follow an n-variate truncated normal distribution, denoted by Y ∼
T Nn (µ, Σ;A), if its pdf is given by

f (y | µ, Σ;A) =
φn(y | µ, Σ)

Φn(c | µ, Σ)
1A(y), (1.3.2)

where c = (c1, . . . ,cn)
> and 1A(y) is the indicator function such that

1A(y) =

{
1, if y ∈ A
0, otherwise

.

The multivariate normal pdf and cdf can be evaluated without much computational
burden through the routine mvtnorm() available in R (see Genz et al., 2008; R Development
Core Team, 2016). In addition, the truncated multivariate normal pdf and cdf, along with its
first and second moments, can be computed through the routine tmvtnorm(), also available in R
(see Wilhelm and G., 2015; R Development Core Team, 2016).

1.4 The autoregressive regression model of order p

Ignoring censoring for the moment, we consider the classic linear regression model
by introducing autocorrelated errors, defined as a discrete time autoregressive process. The
discrete time representation of this model for the observed response at time t is given by

Yt = x>t β+ εt , (1.4.1)

εt = φ1εt−1 + . . .+φpεt−p +ηt , ηt ∼ N(0,σ2), t = 1, . . . ,n, (1.4.2)

where Yt is the response variable, β = (β1, . . . ,βl)
> is a vector of regression parameters of

dimension l and x>t = (xt1, . . . ,xtl) is a vector of non-stochastic regressor variable values, εt is
the autoregressive error with Gaussian disturbance ηt and φ = (φ1, . . . ,φp)

> is the vector of
autoregressive coefficients. The model defined in (1.4.1)-(1.4.2) will be denoted the AR(p)-LR
model.

To ensure stationarity of the AR(p) model given in (1.4.2), the roots of

1−φ1B−φ2B2− . . .−φpBp = 0
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must lie outside the unit circle, where B is the backshift operator, such that B jεt = εt− j for
j = 0, . . . , p. The regions of φ where the process is stationary will be called the admissible
region.

Equivalently, in matrix notation, the AR(p)-LR model can be written as

y = Xβ+ε,

where y = (Y1, . . . ,Yn)
>, X is an n× l matrix of rows x>t and ε = (ε1, . . . ,εn)

> ∼ Nn(0, Σ),
where Σ = σ2Mn(φ), such that

Mn(φ) =
1

σ2


γ0 γ1 . . . γn−1

γ1 γ0 . . . γn−2
...

...
...

γn−1 γn−2 . . . γ0

 , (1.4.3)

where γ0, . . . ,γn−1 are the theoretical autocovariances of the process, and, for k = 1,2, . . ., ρk =

γk/γ0 are the theoretical autocorrelations of the process. Moreover, the coefficients φ1, . . . ,φp

satisfy the Yule-Walker equations (Barndorff-Nielsen and Schou, 1973), that can be written as
ρ1

ρ2
...

ρp

=


1 ρ1 . . . ρp−1

ρ1 1 . . . ρp−2
...

...
...

ρp−1 ρp−2 . . . 1




φ1

φ2
...

φp

 .

Besides, when k = 0 we have γ0 = φ1γ1 + . . .+ φpγp +σ2. Using the fact that γk = γ0ρk, for
k = 1,2, . . ., γ0 can be written as

γ0 =
σ2

1−φ1ρ1− . . .−φpρp
.

To ensure the admissibility of φ and stabilize the estimating procedure, we follow
Barndorff-Nielsen and Schou (1973) to reparameterize φ as

φ
(p)
p = πp,

φ
(p)
v = φ

(p−1)
v −πpφ

(p−1)
p−v , (1.4.4)

where φ
(p)
v is the vth AR parameter under the AR(p) model given in (1.4.2), and πv = φ

(v)
v is the

partial autocorrelation at lag v, for v = 1, . . . , p−1.
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This recursion can be used to define a transformation

B : (π1, . . . ,πp)→ (φ1, . . . ,φp) (1.4.5)

that is one-to-one, continuous and differentiable inside the admissible region. This parameteri-
zation has the advantage that in the π-space the admissible region is simply the p-dimensional
cube with boundary surfaces corresponding to ±1, while in the φ-space it is very complicated
(see for instance McLeod and Zhang, 2006). As an illustration, for p = 2, the transformation is
simply φ1 = π1(1−π2) and φ2 = π2. For p = 3, it can be written as φ1 = π1(1−π2)−π2π3,
φ2 = π2(1+π1π3)−π1π3 and φ3 = π3.

Following Box et al. (1994), for the model presented in (1.4.1) and (1.4.2) the exact
log-likelihood function is given by

`(θ | y) =−1
2

[
n logσ

2 +
1

σ2 (y−Xβ)>M−1
n (φ)(y−Xβ)+ log |Mn(φ)|

]
+C, (1.4.6)

where C is a constant independent of the parameter vector θ. Considering the reparameterization
given in (1.4.4) and dropping constant terms (McLeod and Zhang, 2006), the log-likelihood
function can be written as

`(θ|y) =−1
2

[
n logσ

2 +
1

σ2 S(π,β)+ loggp

]
, (1.4.7)

where π = (π1, . . . ,πp)
>, gp = |Mn(φ)|=

∣∣Mp(φ)
∣∣= p

∏
j=1

(1−π2
j )
− j and

S(π,β) = λ
>D(y,β)λ ,

with D(y,β) being the (p+ 1)× (p+ 1) matrix with the (i, j)-entry being the sum of n− (i−
1)− ( j−1) squares and lagged products, defined by

Di, j = D j,i = (Yi−x>i β)(Y j−x>j β)+ . . .+(Yn+1− j−x>n+1− jβ)(Yn+1−i−x>n+1−iβ) (1.4.8)

and λ> = (−1,φ>) = (−1,B(π)>).

The unknown model parameters can be estimated by maximizing the correspond-
ing log-likelihood function. Since ∂`(θ|y)/∂π = 0 does not have an analytic solution for π,
the procedure to obtain the maximum likelihood estimator (MLE) of θ requires numerical ap-
proximations. Following De Bastiani et al. (2014), given π, the log-likelihood function (1.4.7)
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is maximized at

β̂(π) =
(

X>M−1
n (B(π))X

)−1
X>M−1

n (B(π))y, (1.4.9)

σ̂2(π) =
1
n

S
(
π, β̂(π)

)
. (1.4.10)

Thus, substituting expressions (1.4.9)–(1.4.10) into the log-likelihood and dropping
constant terms, we obtain a concentrated log-likelihood function:

`c(π|y) =−
n
2

logS
(
π, β̂(π)

)
− 1

2
loggp, (1.4.11)

which must be maximized numerically with respect to π ∈ (−1,1)p, the p-dimensional cube
with boundary surfaces corresponding to ±1, obtaining π̂. Finally, the MLE of β and σ2 are
calculated as β̂= β̂(π̂) and σ̂2 = σ̂2(π̂). We can also obtain estimates of the original parameter
vector φ by setting φ̂= B(π̂).

These estimates can be obtained through the R function arima() (R Development
Core Team, 2016), using the argument xreg to declare the regressor variables.

1.5 Algorithms for ML estimation

In models with missing or incomplete data, the EM algorithm (Dempster et al.,
1977) is a classical approach to obtain the maximum likelihood estimates. The main idea behind
this algorithm is that, in some situations, the estimation of the parameters would be easy if the
complete data were available, while it is difficult based on the incomplete data only. Moreover, it
has many attractive features, such as numerical stability and simplicity of implementation (Cou-
vreur, 1996). Letting yc = (yc,yo) be the complete-data vector, where yc represents the missing
data and yo the observed data respectively and, `(θ|yc) be the complete-data log-likelihood
function, then the EM-algorithm proceeds in two steps:

• E-step: Let θ̂
(k)

be the current kth step estimate of θ. By using the property of conditional
expectation, we can compute the Q̂k(θ) function by

Q̂k(θ) = E
[
`(θ|yc)|yo, θ̂

(k)
]
. (1.5.1)

• M-step: Maximize Q̂k(θ) with respect to θ, obtaining θ̂
(k+1)

.

Each iteration of the EM algorithm increases the likelihood function `(θ|yo), and

the EM sequence {θ̂
(k)
} converges to a stationary point of the observed likelihood under mild

regularity conditions (for more details see Wu (1983) and Vaida (2005)).
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However, in some situations, the E-step has no analytic form or involves calcula-
tions computationally too expensive and has to be calculated using simulations. Wei and Tanner
(1990) proposed the Monte Carlo EM (MCEM) algorithm, in which the E-step is replaced by
a Monte Carlo approximation based on a large number of independent simulations of the miss-
ing data. Another alternative is to consider a stochastic approximation of the expectations, as
proposed by Delyon et al. (1999) with the so-called SAEM algorithm, which seems to be more
efficient than the MCEM algorithm because the number of required simulations is considerably
smaller. The SAEM algorithm consists, at each iteration, of successively simulating the miss-
ing data with the conditional distribution, and updating the unknown parameters of the model.
Thus, at iteration k, the SAEM method is performed as follows:

• E-Step:

� Simulation: Draw m samples of the missing data yc(k) with the conditional distribu-
tion

f (yc|yo, θ̂
(k−1)

).

� Stochastic Approximation: Update Q̂k(θ) according to

Q̂k(θ) = Q̂k−1(θ)+δk

(
1
m

m

∑
`=1

`(θ|yo,yc(k))− Q̂k−1(θ)

)
, (1.5.2)

where δk is a decreasing sequence of positive numbers such that

∞

∑
k=1

δk = ∞ and
∞

∑
k=1

δ
2
k < ∞, (1.5.3)

as presented by Kuhn and Lavielle (2004).

• M-Step:

� Maximization: Update the estimate θ̂
(k)

according to

θ̂
k+1

= argmax
θ

Q̂k(θ).

This process is iterated until some distance between two successive parameter esti-
mations, such as √(

θ̂
(k+1)

− θ̂
(k)
)>(

θ̂
(k+1)

− θ̂
(k)
)
,

becomes small enough.

If the smoothing parameter δk is equal to 1 for all k, the SAEM algorithm will have
“no memory”, and will be equivalent to the MCEM algorithm. The SAEM with no memory will
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converge quickly (convergence in distribution) to a neighborhood solution, but the algorithm
with memory will converge slowly (almost sure convergence) to the ML solution. As proposed
by Galarza et al. (2015), we will consider

δk =

{
1, if 1≤ k ≤ cW ;
1

k−cW , if cW +1≤ k ≤W,
(1.5.4)

where W is the maximum number of iterations and c is a cutoff point (0≤ c≤ 1) which deter-
mines the percentage of the initial iterations. Kuhn and Lavielle (2005) recommended choosing
the number of initial iterations between 50 and 100.

Note that the SAEM algorithm performs a Monte Carlo E-step like MCEM, but with
a small and fixed Monte Carlo sample size (m≤ 10), which is then combined with the previous
simulations in a “smooth” way. According to Delyon et al. (1999), when the maximization step
is much faster than the simulation step, one may set the number of simulations at m = 1.

1.5.1 Curved exponential family

Following Kuhn and Lavielle (2005), when the complete-data likelihood function
`(θ|yc) belongs to the curved exponential family the implementation of the SAEM algorithm is
more straightforward. In this case, the complete-data likelihood function can be written as

`(θ|yc) = exp
{
−Ψ(θ)+

〈
S̃(y),Φ(θ)

〉}
, (1.5.5)

where Ψ and Φ denote two functions of the unknown parameter θ, 〈·, ·〉 denotes the scalar
product and S̃(y) is known as the minimal sufficient statistics of the complete model. For this
situation, Delyon et al. (1999) pointed out that the Stochastic Approximation step reduces to the
approximation of the minimal sufficient statistics.

1.6 Diagnostic analysis

The statistical models are important tools to extract and understand essential fea-
tures of a dataset. However, the parameter estimation can be greatly affected by the presence
of influential observations in the data. In the case of correlated data, a main approach for the
detection of influential observations is local influence techniques (Cook, 1986), used to assess
the stability of the estimation outputs with respect to the model inputs.

Following the pioneering work of Cook (1986), this area of research has received
considerable attention in the recent statistical literature; see, for example Zhu and Lee (2001),
Lee and Xu (2004) and Osorio et al. (2007), amongst others. However, in many models, the
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marginal log-likelihood function is complex and direct application of Cook’s approach may
be very difficult, since these measures involve the first and second partial derivatives of this
function. The work of Zhu and Lee (2001) proposes a method to assess the local infuence in a
minor perturbation of a statistical model with incomplete data, utilizing Cook’s approach to the
conditional expectation of the complete-data log-likelihood function in the EM algorithm.

Schall and Dunne (1991) discussed diagnostics for regression-ARMA time series,
considering local influence for two types of outliers: the observation and innovation outlier.
Kim and Huggins (1998) discussed the local influence approach to linear regression model
with AR(1) errors. Nevertheless, to the best of our knowledge, there are no previous studies of
diagnostic analysis for censored linear regression models with autoregressive errors.

1.7 Work objectives

This work aims to present inferences and diagnostic analysis in censored regression
models with autoregressive errors of order p. The specific objectives are:

1. To derive a computationally efficient estimation method via the stochastic version of the
expectation-maximization (SAEM) algorithm in AR(p)-CR models;

2. To derive the standard errors of the SAEM estimates in AR(p)-CR models based on a
stochastic approximation of the observed Fisher information matrix;

3. To develop influence diagnostic techniques in AR(p)-CR models, based on local influence
approach (Cook, 1986; Zhu and Lee, 2001);

4. To implement the proposed methods in the R package ARCensReg (Schumacher et al.,
2016; R Development Core Team, 2016).

1.8 Organization of the dissertation

The results contained in this dissertation are organized into four chapters. In Chapter
2, we describe the AR(p)-CR model and the ML estimation procedure based in the SAEM
algorithm and we discuss how to obtain the standard errors and prediction. To conclude this
chapter we examine the performance of the proposed methods through simulation studies as
well as the analysis of two real datasets.

In Chapter 3, we develop influence diagnostic techniques, based on local influence
approach. The methodology is illustrated using a real dataset and we present a simulation study
evaluating the efficiency of our method in detecting influential observations under various sce-
narios.
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Finally, Chapter 4 presents some concluding remarks, the technical production that
resulted from this dissertation and some possible directions for future research.
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Chapter 2

The censored autoregressive regression
model of order p

Time series usually present autocorrelation, which refers to the correlation of a time
series with its own past and future values. In this situation, regression models with independent
errors assumption are not appropriate. Instead, we should consider modeling their autocorrela-
tion. An additional complication arises when time series measurements are observed with data
irregularities, such as observations subjected to upper or lower detection limits and missing ob-
servations, which commonly occurs in environmental monitoring, for example. In this situation,
the proportion of censored data may not be small, and so the use of crude/ad hoc methods, such
as discarding the censored observations or substituting them by a threshold value or by some
arbitrary point, like a midpoint between zero and cutoff for detection (LOD/2), might lead to
biased estimates of the parameters.

Our motivating datasets presented in Subsection 1.1.1 and 1.1.2 have 40.5% and
15.5% of censored observations, respectively. As an alternative to crude imputation methods,
Zeger and Brookmeyer (1986) suggested a full likelihood estimation and approximate method
for an autoregressive time series model. However, the authors pointed out that the method may
not be feasible when the censoring rate is very high. Some other authors, such as Robinson
(1980) and Park et al. (2007), proposed imputation methods for handling censored data in the
setting of AR models.

In this chapter we present the AR(p)-CR model and we develop a likelihood-based
approach to obtain the ML estimation based on the SAEM algorithm (Delyon et al., 1999), that
consists of replacing the E-step from the expectation-maximization (EM) algorithm (Dempster
et al., 1977) by a stochastic approximation obtained using simulated data, while the M-step re-
mains unchanged. The SAEM algorithm is a powerful alternative when the E-step is intractable
or computationally too expensive, and it has been proved to be more computationally efficient
than the classic Monte Carlo EM (MCEM) algorithm (Meza et al., 2012). We also discuss how
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to obtain standard errors and prediction. The proposed SAEM algorithm is implemented in the
R package ARCensReg (Schumacher et al., 2016).

2.1 Proposed model

The autoregressive model with exogenous variables is defined by

y = Xβ+ε, (2.1.1)

where X, β and ε are as defined in Section 1.4. Moreover, following Vaida and Liu (2009),
we assume that the response Yt is not fully observed for all t. Thus, assuming left censoring,
let the observed data at the tth time be (Vt ,Ct), where Vt represents the uncensored reading or
censoring level and Ct is the censoring indicator such that

Yt ≤Vt if Ct = 1 and Yt =Vt if Ct = 0, (2.1.2)

so that (2.1.2), along with the model given in (2.1.1), define AR(p)-CR model.

2.2 The log-likelihood function

Following Vaida and Liu (2009), classical inference on the parameter vector θ =(
β>,σ2,φ>

)>
is based on the marginal distribution of y. For complete-data, we have marginally

that y ∼ Nn(Xβ, Σ). On the other hand, for responses with censoring pattern as in (2.1.2), we
have y |V,C∼ T Nn(Xβ, Σ;A), where T Nn(·;A) denotes the truncated normal distribution on
the interval A, where A = A1× . . .×An, with At being the interval (−∞,∞) if Ct = 0, and the
interval (−∞,Vt ] if Ct = 1. To compute the likelihood function associated with model (2.1.1)-
(2.1.2), the first step is to treat separately the observed and censored components of y.

Let yo be the no-vector of observed outcomes and yc be the nc-vector of censored
observations, with n = no+nc, such that Ct = 0 for all elements in yo and Ct = 1 for all elements
in yc. After reordering, y, V, X and Σ can be partitioned as follows:

y = vec(yo,yc), V = vec(Vo,Vc), X = vec(Xo,Xc) and Σ =

(
Σoo Σoc

Σco Σcc

)
,

where vec(.) denotes the function which stacks vectors or matrices of the same number of
columns. Then we have

yo ∼ Nno(Xoβ, Σoo) and yc|yo ∼ Nnc(µ,S),
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whereµ=Xcβ+ Σco( Σoo)−1(yo−Xoβ) and S= Σcc− Σco( Σoo)−1 Σoc. Now, let Φn(u;a,A)

and φn(u;a,A) be the cdf (left tail) and pdf, respectively, of Nn(a,A) computed at vector u. From
Vaida and Liu (2009) and Matos et al. (2013), the likelihood function for the observed data is
thus given by (using conditional probability arguments)

L(θ|y) = P(yc ≤ Vc|yo = Vo,θ)P(yo = Vo|θ)

= P(yc ≤ Vc|yo,θ) f (yo|θ)

= φno(yo;Xoβ, Σoo)Φnc(Vc;µ,S), (2.2.1)

which can be evaluated without much computational burden through the routine mvtnorm()

available in R (see Genz et al., 2008; R Development Core Team, 2016). The estimates obtained
by maximizing the log-likelihood function `(θ|y) = log(L(θ|y)) are the maximum likelihood
(ML) estimates.

The log-likelihood function `(θ|y) is used to compute different model selection
criteria, such as

AIC = 2m−2`max and BIC = mlogn−2`max,

where m= p+ l+1 is the number of model parameters and `max is the maximized log-likelihood
value.

2.3 ML estimation via the SAEM algorithm

As the observed log-likelihood function involves complex expressions, such as mul-
tidimensional integrals, it is difficult to work directly with `(θ|y), either for the ML estimation
or to carry out the influence analysis. Besides, time series data commonly present missing obser-
vations and, if the response Yt were fully observed for all t, then maximum likelihood estimation
would be easy. Thus, we will discuss how to obtain the ML estimates using the SAEM algorithm
presented in Section 1.5. It is worth emphasizing that this approach enables approximation of
the standard errors and direct imputation of the censored and missing observations.

Let y = (Y1, . . . ,Yn)
>, V = (V1, . . . ,Vn)

> and C = (C1, . . . ,Cn)
>, and consider that

we observe (Vt ,Ct) at time t. Let yc = (C>,V>,y>)> be the complete dataset obtained by
augmenting the observed dataset (C>,V>,yo>)> with the censored data yc. Hence, the EM-
type algorithm (Dempster et al., 1977) is applied to the complete-data log-likelihood `(θ|yc)

which, dropping constant terms, is given by

`(θ|yc) =−
1
2

[
n logσ

2 +
1

σ2 (y−Xβ)>M−1
n (φ)(y−Xβ)+ log

∣∣Mp(φ)
∣∣] , (2.3.1)

where Mn(φ) is as defined in (1.4.3) and Mp(φ) is a p× p matrix containing the first p lines
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and p columns of Mn(φ).

Given the current estimate θ = θ̂
(k)

, the E-step calculates the conditional expecta-
tion of the complete-data log-likelihood function given by

Q̂k(θ) = E[`(θ|yc)|V,C, θ̂
(k)
] =−1

2

[
n logσ

2 + log
∣∣Mp(φ)

∣∣+ 1
σ2 γ

(k)
]
, (2.3.2)

where

γ
(k) = γ(y(k),φ,β) = tr(ŷ2(k)M−1

n (φ))−2ŷ>(k)M−1
n (φ)Xβ+β>X>M−1

n (φ)Xβ

= (ŷ(k)−Xβ)>M−1
n (φ)(ŷ(k)−Xβ)+ tr(Var{y|V,C, θ̂

(k)
}M−1

n (φ)).

It is clear that the E-step reduces only to the computation of

ŷ(k) = E{y|V,C, θ̂
(k)
} and ŷ2(k) = E{yy>|V,C, θ̂

(k)
}, (2.3.3)

that is, the first and second moments of a truncated multivariate normal distribution. Although
these can be determined in closed form as a function of multivariate normal probabilities (for
more details on the computation of these moments, one may refer to Vaida and Liu, 2009; Aris-
mendi, 2013), this calculation is computationally expensive since it requires high-dimensional
numerical integration, resulting in an impracticable time of convergence when the number of
censored observations is not small.

For this reason, we will consider the SAEM algorithm as described in Section 1.5
which, for the model defined in (2.1.1), at iteration k, is performed as follows:

• E-Step:

� Simulation: sample yc
k,l (l = 1, . . . ,m) from the truncated multivariate normal dis-

tribution T Nnc(µ,S;A), where µ = Xcβ+ Σco( Σoo)−1(yo−Xoβ), S = Σcc−
Σco( Σoo)−1 Σoc and A= {yc = (yc

1, . . . ,y
c
nc)> | yc

1 ≤V1, . . . ,yc
nc ≤Vnc};

� Stochastic Approximation: update Q̂k(θ) according to

Q̂k(θ) = Q̂k−1(θ)+δk

(
1
m

m

∑
l=1

`(θ | yk,l)− Q̂k−1(θ)

)
, (2.3.4)

where yk,l = vec(yo,yc
k,l), l = 1, . . . ,m and δk is a smoothing parameter, i.e., a de-

creasing sequence of positive numbers such that ∑
∞
k=1 δk = ∞ and ∑

∞
k=1 δ 2

k ≤ ∞.
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• M-Step:

� Maximization: update the estimate θ̂
(k)

according to

θ̂
k+1

= argmax
θ

Q̂k(θ).

Since the complete-data likelihood function given in 2.3.1 belongs to the exponen-
tial family, the E-step reduces to the approximation of the expressions given in (2.3.3), and the
Stochastic Approximation step, defined in (2.3.4), reduces to

ŷ2(k) = ŷ2(k−1)+δk

(
1
m

m

∑
l=1

yc
(k,l)y

c>
(k,l)− ŷ2(k−1)

)
, (2.3.5)

ŷ(k) = ŷ(k−1)+δk

(
1
m

m

∑
l=1

yc
(k,l)− ŷ(k−1)

)
, k = 1,2,3, . . . . (2.3.6)

Moreover, for the model given in (2.1.1) and (2.1.2), the conditional maximization
step becomes:

β̂
(k+1)

=

(
X>M−1

n (φ̂
(k)
)X
)−1

X>M−1
n (φ̂

(k)
)ŷ(k), (2.3.7)

σ̂2
(k+1)

=
1
n

(
tr
(

ŷ2(k)M−1
n (φ̂

(k)
)

)
−2β̂

(k)>
X>M−1

n (φ̂
(k)
)ŷ(k) (2.3.8)

+ β̂
(k)>

X>M−1
n (φ̂

(k)
)Xβ̂

(k)
)
,

π̂(k+1) = argmax
π∈(−1,1)p

{
−n

2
log

[(
−1,B(π)>

)
D
(

ŷ(k), β̂
(k)
)(

−1
B(π)

)]
(2.3.9)

− 1
2

log

[
p

∏
j=1

(
1−π

2
j
)− j
]}

,

φ̂
(k+1)

= B(π̂(k+1)). (2.3.10)

The initial values were calculated by considering the censored values as observed ones and
proceeding as discussed in Section 1.4.

In order to make the proposed algorithm easier to understand, we summarized all
the steps needed to implement the SAEM algorithm in a flow diagram, presented in Figure 2.1.

To illustrate the gain in considering the stochastic approximations of the expecta-
tions instead of the theorical calculations, we generated one sample of size 300 with 40% of
left censoring from an AR(1)-CR model, as defined in (2.1.1) and (2.1.2), and estimated the
model parameters using the algorithms EM and SAEM (m = 10, W = 400 and c = 0.18), with
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Start

precision; W; c; Data obs (V,C)
V = (V1, V2, . . . , Vn)

>

C = (C1, C2, . . . , Cn)
>

Initial Values
θ̂
o
= (β>o, σ2o, φ>o)>
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k ← 1

θ̂
∗ ← θ̂

o

Q̂0(θ)← 0

precision < criterion
and

k ≤W ?
Print θ̂

∗

End

Define
yc = (C,V,y)

`(θ | yc)

Simulation-step
Sample yc

k,l, (l = 1, . . . ,m) from TNnc (µ,S,A)

Stochastic Approximation
Update Q̂k(θ) according to

Q̂k(θ) = Q̂k−1(θ) + δk

(
1
m

∑m
l=1 log f(yc

k,l | Vc,yo, θ)− Q̂k−1(θ)
)

Maximization
Update θ̂

(k)
according to θ̂

k+1
= argmax

θ
Q̂k(θ)

θ̂
∗ ← θ̂

(k+1)

criterion ←
√(

θ̂
(k+1) − θ̂

(k)
)> (

θ̂
(k+1) − θ̂

(k)
)

k ← k + 1

no

yes

Figure 2.1: Flow diagram of the SAEM algorithm for the AR(p)-CR models.

the same initial values. The SAEM algorithm took approximately 9 minutes to converge, while
the EM algorithm took approximately 28 hours.
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2.4 Standard error and prediction

2.4.1 The observed Fisher information matrix

Let yk,l = vec(yo,yc
k,l), (l = 1, . . . ,m),

∂θ `(θ | y) =
∂`(θ | y)

∂θ
and ∂

2
θ `(θ | y) =

∂ 2`(θ | y)
∂θ∂θ>

.

Following Meza et al. (2012), the Fisher information matrix can be estimated using the fact
that the gradient and the Hessian of the log-likelihood can be obtained almost directly from
the simulated missing data yc. Thus, ∂ 2

θ
`(θ | y) can be approximated following the stochastic

approximation procedure:

∆k = ∆k−1 +δk

(
1
m

m

∑
l=1

∂θ `(θ̂
(k)
| yk,l)−∆k−1

)
,

Gk = Gk−1 +δk

(
1
m

m

∑
l=1

(
−∂

2
θ `(θ̂

(k)
| yk,l)−∂θ `(θ̂

(k)
| yk,l)∂θ `(θ̂

(k)
| yk,l)

>
)
−Gk−1

)
,

Hk = Gk−∆k∆
>
k , k = 1,2,3, . . . .

Provided the SAEM algorithm converges to a limiting value θ∗ and that `(θ | y) is
regular enough, Hk converges to the observed Fisher information matrix Io(θ

∗)=−∂ 2
θ

logL(θ∗ |
y), where L(θ | y) is as defined in (2.2.1). When logL(θ | y) is a sufficiently smooth incomplete-
data log-likelihood function, the maximum likelihood estimator is asymptotically normal and
Io(θ

∗)−1 converges to the asymptotic covariance of the estimators (Delyon et al., 1999).

In this sense, let `(θ|yc) be as defined in (1.4.6) or, equivalently, as defined in
(1.4.7). Let D = D(yc,β) be partitioned as

D =

[
D11 D>

φ1

Dφ1 Dφφ

]
, (2.4.1)

such that D11 is 1×1, Dφ1 is p×1 and Dφφ is p× p. Then, the sum of squares can be written
as

λ
>Dλ =

[
−1,φ>

][ D11 D1φ

D>1φ
Dφφ

][
−1
φ

]
= D11−2φ>Dφ1 +2φ>Dφφφ.

Therefore, we have
∂λ>Dλ

∂φ
=−2Dφ1 +2Dφφφ.

Thus, after some algebraic manipulation and letting Mn = Mn(φ) be as given in
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(1.4.3), the elements of the gradient vector are

∂`(θ|yc)

∂β
=

1
σ2

(
X>M−1

n y−X>M−1
n Xβ

)
,

∂`(θ|yc)

∂σ2 = − n
2σ2 +

1
2σ4 (y−Xβ)>M−1

n (y−Xβ) ,

∂`(θ|yc)

∂φ
= −1

2
tr
{

M−1
p

∂Mp

∂φ

}
− 1

σ2

(
−Dφ1 +Dφφφ

)
,

and the elements of the Hessian matrix are

∂ 2`(θ|yc)

∂β∂β>
= − 1

σ2 X>M−1
n X,

∂ 2`(θ|yc)

∂β∂σ2 = − 1
σ4

(
X>M−1

n y−X>M−1
n Xβ

)
,

∂ 2`(θ|yc)

∂β∂φ>
= − 1

σ2
∂ (Dφφφ−Dφ1)

∂β
,

∂ 2`(θ|yc)

∂ (σ2)2 =
n

2σ4 −
1

σ6 (y−Xβ)>M−1
n (y−Xβ) ,

∂ 2`(θ|yc)

∂φ∂σ2 =
1

σ4

(
Dφφφ−Dφ1

)
,

∂ 2`(θ|yc)

∂φ∂φ>
= − 1

σ2 Dφφ −
1
2

tr
{

∂

∂φ

(
M−1

p
∂Mp

∂φ>

)}
.

2.4.2 Prediction

The problem related to the prediction of future values has a great impact in many
practical applications. Rao et al. (1987) pointed out that the predictive accuracy of future ob-
servations can be taken as an alternative measure of “goodness of fit”. In order to propose a
strategy for generating predicted values from our AR(p)-CR model, we used the plug-in ap-
proach proposed by Wang (2013). Thus, let yobs be the observed response vector of dimension
nobs×1 and ypred the npred×1 response vector npred-step-ahead. Let X̃ =

(
Xobs,Xpred

)
be the

(nobs +npred)× p design matrix corresponding to

ỹ =

(
yobs

ypred

)
.

Replacing the censored values existing in yobs by ŷ = E{y|V,C, θ̂} obtained from
the SAEM algorithm, a complete dataset, y∗obs, is obtained. Then, we have that

ỹ∗ =
(

y∗>obs,y
>
pred

)>
∼ Nnobs+npred

(
X̃β , Σ

)
, (2.4.2)
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where

Σ =

(
Σobs∗,obs∗ Σobs∗,pred

Σpred,obs∗ Σpred,pred

)
.

Following Wang (2013), the best predictor of ypred , with respect to the minimum mean squared
error (MSE) criterion, is the conditional expectation of ypred given y∗obs, given by

ŷpred(θ) = Xpredβ + Σpred,obs∗
(

Σobs∗,obs∗
)−1

(yobs−Xobsβ ) . (2.4.3)

Therefore, the predictor of ypred can be calculated by substituting θ̂ in (2.4.3), obtaining

ŷpred = ŷpred(θ̂).

2.5 Simulation studies

Two simulation studies were conducted to examine the performance of the proposed
method, by analyzing the asymptotic properties of the SAEM estimates and prediction accuracy
based in the plug-in method proposed in Subsection 2.4.2. In all the simulation studies we con-
sider a left-censored AR(2)-CR model with one explanatory variable. Thus, the data generating
process is as follows:

Step 1: Generate the correlated errors εt from the model defined in (1.4.2), with p = 2 and xt

from a uniform distribution (U(0,1)). Then set Zt = β0 +β1xt + εt , t = 1, . . . ,n;

Step 2: Construct the censored time series Yt =V I(Zt<V )+Zt I(Zt≥V ), where V is the appropriate
sample quantile.

The initial estimates were chosen by fitting a linear regression considering the cen-
sored values (LOD) as real observed values and by calculating the sample partial autocorrela-
tions of the residuals. For the SAEM algorithm, we fixed the maximum number of iterations at
W = 600 and the cutoff point at c = 0.12 (see Kuhn and Lavielle, 2005).

2.5.1 First study

The main goal of this simulation study is to provide empirical evidence of the con-
sistency of the ML estimates, for different censoring proportions. The simulated data follow an
AR(2)-CR model, as defined in (2.1.1)–(2.1.2), with parameters set at β0 = 2, β1 = 1, σ2 = 2,
φ1 = 0.48 and φ2 = −0.2. In order to investigate the asymptotic properties of the estimates,
different censoring proportions (5%, 20% and 40%) and different samples sizes (n = 50, 100,
200, 300 and 500) were considered.

For each simulation setting, we considered 100 simulated Monte Carlo datasets.
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The ML estimates and their associate standard errors were recorded. We analyzed the mean
square error (MSE) and the mean absolute error (MAE) of the coefficient estimates obtained.
These measures for the parameter θi are defined as

MSEi =
1

100

100

∑
j=1

(
θ̂
( j)
i −θi

)2
and MAEi =

1
100

100

∑
j=1

∣∣∣θ̂ ( j)
i −θi

∣∣∣ , (2.5.1)

where θ̂
( j)
i is the ML estimate of the parameter θi for the jth sample, j = 1, . . . ,100.

Figures 2.2 and 2.3 show that the MSE and the MAE tend to zero as the sample size
increases. The respective tables are presented in the Appendix A. As a general rule, the results
indicate that the SAEM estimates of the proposed model do provide good asymptotic properties.
Note also that for simulations with higher censoring rates (p = 40%), the convergence still
behaved well. Table 2.1 presents the summary statistics for parameter estimation.

Here we also examine the consistency of the approximation method, suggested in
Subsection 2.4.1, to get the standard errors (SE) of the SAEM estimates. Considering all the
ML estimates obtained (across 100 samples), we computed:

• The Monte Carlo standard deviation of θ̂i, defined by

MC-SD =

√√√√ 1
99

[
100

∑
j=1

(
θ̂
( j)
i

)2
−100

(
θ̂i

)2
]
,

where θ̂i =
1

100
∑

100
j=1 θ̂

( j)
i ; and

• The average values of the approximate standard errors of the SAEM estimates obtained
through the method described in Subsection 2.4.1 using the empirical information matrix,
denoted by IBM-SE.

Table 2.1 reveals that the estimation method of the standard errors provides relatively close re-
sults to the empirical ones, indicating that the proposed approximate method to get the standard
errors is reliable. Moreover, the closeness improves as the sample size increases.

2.5.2 Second study

The aim of this simulation study is to compare the estimation and prediction accu-
racy of the proposed method (denoted by Cens) with two naive (ad-hoc) methods commonly
used in the literature: (a) to treat the censored values as observed (denoted by Unc), and (b)
to impute the censored values by calculating the censored values divided by two (denoted by
LOD). For the naive methods estimation, we used the routine arima() available in the R software
(R Development Core Team, 2016).
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Figure 2.2: Mean square error of the parameter estimates under 5%, 20% and 40% censoring
levels and different samples sizes. The solid line (gray) represents 5% censoring, the dashed
line (blue) represents 20% and the dot-dashed line (black) represents 40%.

The simulated data follow an AR(2)-CR model, as defined in (2.1.1)–(2.1.2), with
parameters set at β0 = 10, β1 = 5, σ2 = 2, φ1 = 0.48 and φ2 = −0.2. We considered different
censoring proportions (5%, 20% and 40%), with sample size set at n = 500. The 3 latest values
were preserved with the purpose of comparing the prediction accuracy, and the remaining 497
values were used for estimation and 3-step-ahead prediction.

For each simulation setting we considered 100 simulated Monte Carlo datasets,
resulting in 300 predicted values for each method. For each method and censoring rate we ana-
lyzed the mean square prediction error (MSPE) and the mean absolute prediction error (MAPE),
defined as

MSPE =
1

300

100

∑
l=1

500

∑
j=498

(
y(l)j − ŷ(l)j

)2
and MAPE =

1
300

100

∑
l=1

500

∑
j=498

∣∣∣y(l)j − ŷ(l)j

∣∣∣ , (2.5.2)

where y(l)j is jth value of the lth sample and ŷ(l)j is its predicted value.

Table 2.2 presents the prediction accuracy measures obtained through all the sim-
ulated Monte Carlos samples. It can be seen that the SAEM approach provided more accurate
predictions than the naive methods for all censoring rates considered and this difference became
greater as the censoring rate increased.
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Figure 2.3: Mean absolute error of the parameter estimates under different censoring levels and
different samples sizes. The solid line (gray) represents 5% censoring, the dashed line (blue)
represents 20% and the dot-dashed line (black) represents 40%.

Figure 2.4 presents the boxplots of the parameter estimates for the three methods
and it shows that, on average, the SAEM algorithm produced the closest estimates to the true
values for all parameters and all censoring rates.
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Table 2.1: Results based on 100 simulated Monte Carlo samples with different sample sizes (n)
and different censoring proportions (CP). MC mean and MC SD are the mean and standard de-
viations of the estimates, respectively. IBM SE is the average value of the approximate standard
error obtained through the information-based method as described in Subsection 2.4.1.

n CP β0 = 2 β1 = 1 σ2 = 2 φ1 = 0.48 φ2 =−0.2
MC Mean 1.981 0.997 1.880 0.454 -0.233

5% IBM SE 0.409 0.627 0.394 0.141 0.142
MC SD 0.428 0.660 0.361 0.149 0.146

MC Mean 2.038 0.984 1.858 0.458 -0.223
50 20% IBM SE 0.425 0.646 0.430 0.149 0.148

MC SD 0.416 0.665 0.477 0.162 0.150
MC Mean 2.027 0.978 1.814 0.449 -0.253

40% IBM SE 0.453 0.700 0.495 0.163 0.163
MC SD 0.509 0.704 0.589 0.183 0.168

MC Mean 1.988 1.005 1.906 0.460 -0.210
5% IBM SE 0.289 0.437 0.280 0.100 0.100

MC SD 0.272 0.448 0.299 0.090 0.097
MC Mean 1.991 1.033 1.897 0.447 -0.206

100 20% IBM SE 0.299 0.455 0.311 0.105 0.104
MC SD 0.298 0.467 0.307 0.122 0.113

MC Mean 2.007 1.049 1.821 0.480 -0.220
40% IBM SE 0.325 0.482 0.350 0.116 0.114

MC SD 0.335 0.491 0.344 0.109 0.108
MC Mean 1.989 1.004 1.955 0.478 -0.196

5% IBM SE 0.208 0.308 0.203 0.070 0.070
MC SD 0.209 0.300 0.210 0.069 0.077

MC Mean 1.999 0.991 1.956 0.488 -0.212
200 20% IBM SE 0.215 0.320 0.226 0.074 0.074

MC SD 0.213 0.312 0.216 0.068 0.072
MC Mean 2.038 0.966 1.883 0.474 -0.211

40% IBM SE 0.229 0.339 0.257 0.082 0.081
MC SD 0.262 0.356 0.246 0.081 0.081

MC Mean 2.022 0.955 1.980 0.475 -0.205
5% IBM SE 0.170 0.254 0.168 0.057 0.057

MC SD 0.187 0.275 0.150 0.054 0.048
MC Mean 2.009 0.974 1.997 0.477 -0.214

300 20% IBM SE 0.175 0.264 0.189 0.060 0.060
MC SD 0.169 0.249 0.184 0.060 0.062

MC Mean 2.023 0.999 1.908 0.463 -0.198
40% IBM SE 0.188 0.279 0.213 0.067 0.066

MC SD 0.175 0.284 0.235 0.067 0.063
MC Mean 2.027 0.969 1.999 0.481 -0.211

5% IBM SE 0.131 0.196 0.131 0.044 0.044
MC SD 0.127 0.193 0.153 0.042 0.039

MC Mean 1.997 1.015 1.974 0.473 -0.200
500 20% IBM SE 0.136 0.203 0.145 0.047 0.046

MC SD 0.134 0.201 0.146 0.049 0.047
MC Mean 2.005 1.017 1.916 0.474 -0.200

40% IBM SE 0.146 0.216 0.166 0.052 0.051
MC SD 0.141 0.189 0.170 0.047 0.047
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Table 2.2: MSPE and MAPE for the 3-step-ahead prediction. The results are based on 300
predicted observations.

MSPE 5% 20% 40%
Cens 1.888 2.248 2.277
LOD 2.003 3.684 6.254
Unc 1.900 2.369 3.266

MAPE 5% 20% 40%
Cens 1.113 1.202 1.209
LOD 1.134 1.552 2.046
Unc 1.118 1.248 1.437
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Figure 2.4: Boxplot of the parameter estimates for n = 497. The dotted line indicates the true
value of the parameter. 05 cens indicates the result for the censored case with censoring level
of 5%, 05 lod indicates the result for the LOD procedure with censoring level of 5% and so on.
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2.6 Application on real datasets

2.6.1 Cloud ceiling height dataset

In this subsection we consider the analysis of the dataset described in Subsection
1.1.1. There were three missing observations and for those observations we considered the
censoring interval A j = (−∞,∞). For model selection we considered p = 1,2 and 3, fixing the
maximum number of iterations at W = 600, and the cutoff point at c = 0.12 (see Kuhn and
Lavielle, 2005). The AR(2)-CR model presented the smallest AIC value and the smallest BIC
value, and therefore it was selected.

Table 2.3: Parameter estimates of AR(p)-CR model for the log-transformed cloud ceiling height
data. Bold entries represent the best model.

p loglik AIC BIC β̂0 σ̂2 φ̂1 φ̂2 φ̂3

1 -470.7 947 961 4.069 0.872 0.808
(0.182) (0.057) (0.024)

2 -466.5 941 959 4.059 0.869 0.665 0.174
(0.215) (0.056) (0.044) (0.045)

3 -466.2 942 965 4.054 0.874 0.656 0.108 0.086
(0.232) (0.057) (0.045) (0.056) (0.046)

It is worth noting that the model select by our approach is the same that was select
by the two non-naive approaches considered by Park et al. (2007) (see Table 1.1), although the
estimates obtained differ slightly. Figure 2.5 presents the ceiling height data with the imputed
values, estimated using ŷ = E{y|V,C, θ̂} obtained from the SAEM algorithm.
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Figure 2.5: Censored time series of log-transformed hourly cloud ceiling height in San Fran-
cisco during March 1989. The dashed line represents the augmented serie based on the fitted
AR(2)-CR model.
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For the selected model (AR(2)-CR) , Figure 2.6 shows the convergence of the esti-
mates obtained through the SAEM algorithm. The dashed line indicates the iteration where the
simulations start being smoothed. It is important to note that convergence is attained quickly.
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Figure 2.6: Convergence of the SAEM parameter estimates for the AR(2)-CR model.

2.6.2 Total phosphorus concentration dataset

In this subsection we consider the analysis of the dataset described in Subsection
1.1.2. Following Wang and Chan (2016a), since the data present seasonality, we will consider
the model

log(Pt) =
4

∑
j=1

[
β1, jS j,t +β2, jS j,t log(Qt)

]
+ εt ,

where S j is a quarter indicator variable, j = 1,2,3,4, such that S j,t = 1 if the tth observation
belongs to the jth quarter and S j,t = 0 otherwise, with the first quarter comprising January to
March, the second quarter April to June, etc; and εt is as defined in (1.4.2).

For model selection we fitted an AR(p)-CR model, as defined in (2.1.1)–(2.1.2),
with p = 1,2,3 and 4. The initial estimates were chosen by considering the censored values as
real observed values. For the SAEM algorithm, we fixed the maximum number of iterations at
W = 600 and the cutoff point at c = 0.12 (see Kuhn and Lavielle, 2005). Missing observations
were handled by replacing them with their conditional expectations at each step of the SAEM
algorithm.
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Table 2.4: Criteria for model selection for the log-transformed phosphorus concentration data.
p AIC BIC loglik

1 269.263 301.248 -124.632
2 270.359 305.543 -124.180
3 272.023 310.405 -124.012
4 269.618 311.198 -121.809

Since the AIC criterion is close for p = 1 and p = 4, we fitted these two models
preserving the 12 latest observations for prediction comparison purposes and calculated the
mean square prediction error (MSPE) defined as

MSPEp =
1

12

181

∑
t=170

(
log(Pt)− ̂log(Pt)p

)2
,

where ̂log(Pt)p denotes the prediction of the tth value under the AR(p)-CR model, t = 170, . . . ,181.
Once the obtained results are MSPE1 = 0.1366 and MSPE4 = 0.1473, we selected the AR(1)-
CR model.

Table 2.5: Estimated parameters and their standard errors for the AR(1)-CR model.
Parameter Estimate SE

β1,1 -4.580 0.429
β1,2 -2.890 0.708
β1,3 -4.172 0.421
β1,4 -4.998 0.463

β2,1 0.354 0.072
β2,2 0.167 0.099
β2,3 0.365 0.071
β2,4 0.409 0.084

σ2 0.245 0.028

φ1 -0.103 0.084

The estimated parameters of the selected model (AR(1)-CR) are presented in Table
2.5 and Figure 2.8 shows their convergence. Figure 2.7 presents the log-transformed phospho-
rus concentration data with the imputed values, estimated using l̂og(P) = E{log(P)|V,C, θ̂}
obtained from the SAEM algorithm.
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Figure 2.7: Log-transformed phosphorus concentration (lP) with the augmented series based on
the fitted AR(1)-CR model (dashed blue line).
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Figure 2.8: Convergence of the SAEM parameter estimates for the AR(1)-CR model.
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2.7 Conclusions

This chapter describes a likelihood-based approach to perform inference and pre-
diction in autoregressive censored linear models. We developed a stochastic approximation of
the EM algorithm, called the SAEM algorithm, to obtain the maximum likelihood estimates of
model parameters.

For practical demonstration, the method was applied to two datasets, measured sub-
ject to detection limits of the recording device. We also used simulation to investigate the prop-
erties of predictions and parameter estimates, and the robustness of the SAEM algorithm. In this
simulation study, comparisons were made between inferences based on the censored data and
inferences based on complete-data obtained by a crude/ad hoc imputation method. We showed
that the differences in inference between the two approaches can be substantial. Moreover, the
SAEM algorithm leads to an improvement in the computation speed of the ML estimates, as
opposed to the Monte Carlo EM (MCEM) algorithms, especially when the censoring level in-
creases.
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Chapter 3

Diagnostic Analysis

In statistical modeling robustness is desired, meaning that the estimates obtained
from the proposed model are not influenceable by small deviations on the data. The interest in
diagnostic analysis has grown steadily in recent years. Influence diagnostics are widely used
in statistical modeling to identify and evaluate aberrant and influential points which may cause
unwanted effects on estimation and goodness of fit.

Of course, when dealing with autocorrelated data, omission approaches are inap-
propriate. As an alternative, Cook (1986) developed a general method for assessing the local
influence of a model perturbation that uses the log-likelihood contours rather than omission
approaches. The key idea of the local influence approach is to utilize the concept of normal
curvature in differential geometry in assessing the local behavior of the likelihood displacement
function (Zhu et al., 2007).

Zhu and Lee (2001) proposed a method to assess the local infuence in a minor
perturbation of a statistical model with incomplete data, utilizing Cook’s approach to the condi-
tional expectation of the complete-data log-likelihood function in the EM algorithm. Recently,
Zhu et al. (2007) developed a perturbation manifold to select an appropriate perturbation for
statistical models without missing data. By using the results of Zhu and Lee (2001) and Zhu
et al. (2007), in this chapter we derive local influence diagnostics for the AR(p)-CR model on
the basis of the Q-function under three perturbation schemes.

3.1 Local influence

In this section, we derive the normal curvature of the local influence (Zhu and Lee,
2001; Cook, 1986) for some common perturbation schemes either in the model or the data. We
will consider the response perturbation scheme, the explanatory variable perturbation and the
matrix scale perturbation for this purpose.
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Consider a perturbation vector ω = (ω1, ...,ωg)
>, varying in an open set Ω ⊂ Rg.

Let `(θ,ω|yc) be the complete-data log-likelihood function of the model perturbed with ω,
called the perturbed model. It is assumed that there exists ω0 ∈ Ω, a g× 1 vector of no per-
turbation, such that `(θ,ω0|yc) = `(θ|yc) for all θ. Let θ̂ω denote the estimate of θ which
maximizes the function

Q̂(θ,ω) = E
[
`(θ,ω|yc) |V,C, θ̂

]
.

For ω = ω0, the conditional expectation of the complete-data log-likelihood func-
tion for the model defined in (2.1.1)–(2.1.2) is given by

Q̂(θ) =−1
2

[
n logσ

2 + log
∣∣Mp(φ)

∣∣+ 1
σ2

(
tr(ŷy>M−1

n (φ))

−2β>X>M−1
n (φ)ŷ+β>X>M−1

n (φ)Xβ
)]

,

(3.1.1)

where
ŷ = E{y|V,C, θ̂} and ŷy> = E{yy>|V,C, θ̂}

are stochastically approximated by the SAEM algorithm.

To assess the influence of minor perturbations on the maximum likelihood estimate
θ̂ for incomplete data problems, Zhu and Lee (2001) proposed to consider the Q-displacement
function

fQ(ω) = 2
[
Q̂
(
θ̂
)
− Q̂

(
θ̂ω

)]
and the associated influence graph

α(ω) =

(
ω

fQ(ω)

)
.

Following the approach of Cook (1986) and Zhu and Lee (2001), the normal curvature C fQ,d of
α(ω) at ω0 in the direction of some unit vector d can be used to summarize the local behavior
of fQ(ω). It can be shown that

C fQ,d =−2d>Q̈ωod and − Q̈ω0 = Δ>ω0

{
− ¨̂Q(θ̂)

}−1
Δω0,

where
¨̂Q(θ̂) =

∂ 2

∂θ∂θ>
{

Q̂(θ)
}∣∣∣∣
θ=θ̂

and Δω =
∂ 2

∂θ∂ω>
{

Q̂(θ,ω)
}∣∣∣∣
θ=θ̂ω

.

Following the same procedure as in Cook (1986), the quantity −Q̈ω0 is useful for
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detecting influential observations. From the spectral decomposition of a symmetric matrix

−2Q̈ω0 =
g

∑
k=1

λkeke>k , (3.1.2)

where {(λk,ek),k = 1, . . . ,g} are eigenvalue–eigenvector pairs of −2Q̈ω0 with λ1 ≥ . . .≥ λr >

λr+1 = . . .= 0 and orthonormal eigenvectors {ek,k = 1, . . . ,g}, Zhu and Lee (2001) propose to
inspect all eigenvectors corresponding to nonzero eigenvalues for capturing more information.

Following the work of Zhu and Lee (2001), we consider the following aggregated
contribution vector of all eigenvectors that correspond to nonzero eigenvalues. Let λ̃k = λk/(λ1+

. . .+λr), e2
k = (e2

k1, . . . ,e
2
kg)
> and

M(0) =
r

∑
k=1

λ̃ke2
k . (3.1.3)

The lth component of M(0), M(0)l , is equal to ∑
r
k=1 λ̃ke2

kl . The assessment of influential cases
is based on visual inspection of {M(0)l, l = 1, . . . ,g} plotted against the index l.

The lth case may be regarded as influential if M(0)l is larger than some benchmark
value. So far, there is no general rule to choose the benchmark value. Let M(0) and SM(0)
denote, respectively, the mean and standard error of {M(0)l : l = 1, . . . ,g}, where M(0) = 1/g

(Zhu and Lee, 2001). Poon and Poon (1999) propose using 2M(0) as a benchmark for M(0).
An alternative that takes into account the variation of M(0) is to take M(0) + 2SM(0) as a
benchmark (Zhu and Lee, 2001). According to Lee and Xu (2004), the exact choice of the
function of M(0) as the benchmark is subjective. Lee and Xu (2004) also propose using

M(0)+ c∗SM(0), (3.1.4)

where c∗ is a selected constant, and depending on the specific application, c∗ may be chosen
suitably.

In particular, one may be interested in assessing the influence on a subset θ1 of

θ =
(
θ>1 ,θ

>
2

)>
. For such situations, Cook (1986) showed that the curvature in the direction d

is given by

C fQ,d = 2d>Δ>ω0

({
− ¨̂Q(θ̂)

}−1
−B22

)
Δω0d, (3.1.5)

where

B22 =

 0 0

0
{
− ¨̂Q22(θ̂)

}−1


and ¨̂Q22(θ̂) is obtained from the partition of ¨̂Q(θ̂) according to the partition of θ. The influential
observations can be identified similarly to the previous case, and the respective aggregated
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contribution vector of all eigenvectors of

−2Δ>ω0

({
− ¨̂Q(θ̂)

}−1
−B22

)
Δω0

will be denoted by Mθ1
(0).

3.1.1 The Hessian matrix

In order to obtain the diagnostic measures for local influence, we need to compute
the Hessian matrix

¨̂Q(θ) =
∂ 2

∂θ∂θ>
{

Q̂(θ)
}

evaluated at θ = θ̂. Let Mn = Mn(φ) be as given in (1.4.3). Taking second derivatives of the
conditional expectation of the complete-data log-likelihood function given in (3.1.1) with re-
spect to θ, we obtain the elements of ¨̂Q(θ):

∂ 2Q̂(θ)

∂β∂β>
= − 1

σ2 X>M−1
n X,

∂ 2Q̂(θ)

∂β∂σ2 = − 1
σ4

(
X>M−1

n ŷ−X>M−1
n Xβ

)
,

∂ 2Q̂(θ)

∂φi∂β
> =

1
σ2 (ŷ−Xβ)>

∂M−1
n

∂φi
X, i = 1, . . . , p,

∂ 2Q̂(θ)

∂ (σ2)2 =
n

2σ4 −
1

σ6

(
tr
[
ŷ2M−1

n

)
−2ŷ>M−1

n Xβ+β>X>M−1
n Xβ

]
,

∂ 2Q̂(θ)

∂φi∂σ2 =
1

2σ4

[
tr
(

ŷ2 ∂M−1
n

∂φi

)
−2ŷ>

∂M−1
n

∂φi
Xβ+β>X>

∂M−1
n

∂φi
Xβ
]
, i = 1, . . . , p,

∂ 2Q̂(θ)

∂φi∂φ j
= −1

2
tr
{

∂

∂φ j

(
M−1

p
∂Mp

∂φi

)}
− 1

2σ2

[
tr
(

ŷ2 ∂ 2M−1
n

∂φi∂φ j

)
−2ŷ>

∂ 2M−1
n

∂φi∂φ j
Xβ

+ β>X>
∂ 2M−1

n
∂φi∂φ j

Xβ
]
, i = 1, . . . , p; j = 1, . . . , p.

3.2 Perturbation schemes

In this section, we will evaluate the matrix Δω0 for AR(p)-CR models under the
following perturbation schemes: perturbation of the response variable carried out on the re-
sponse values, which may indicate observations with large influence on their own predicted
values (in our case, the response variables are V′s); scale perturbation performed on the scale
matrix Σ = σ2Mn(φ), which may reveal individuals that are most influential on the scale
structure; and finally perturbation of explanatory variables.



53

3.2.1 Response perturbation

Suppose that the response vector V is perturbed according to V(ω) = V+ω, where
ω = (ω1, ...,ωn)

>. Now, substituting V for V(ω) in (2.1.2), we can write the perturbed model
as

Yt(ω)≤Vt if Ct = 1 and Yt(ω) =Vt if Ct = 0, (3.2.1)

where y(ω) = y−ω. Hence, the perturbed Q-function, Q̂(θ,ω), is as given in (3.1.1), with
ŷ and ŷy> being replaced by ŷ(ω) = ŷ−ω and ̂y(ω)y(ω)> = ŷy> − ŷω> −ωŷ> +ωω>,
respectively.
Under this perturbation scheme, the vector of no perturbation is given by ω0 = (0, . . . ,0)> and

Δω0 =


Δβ
Δσ2

Δφ


is an (l + p+1)×n matrix and has components given by

Δβ = − 1
σ̂2 X>M−1(φ̂),

Δσ2 = − 1
σ̂4

(
ŷ−Xβ̂

)>
M−1(φ̂), (3.2.2)

Δφi =
1

σ̂2

(
ŷ−Xβ̂

)> ∂M−1

∂φi
(φ̂), i = 1, . . . , p.

3.2.2 Scale matrix perturbation

In order to study the effects of perturbation of the scale matrix, we consider the
perturbation scheme of the form

Σ(ω) = D(ω) Σ = σ
2D(ω)M(φ),

where D(ω) is a n×n diagonal matrix with value ωt in tth diagonal element. Under this scheme,
the non-perturbed model is obtained whenω0 = (1, . . . ,1)>. Thus, considering this perturbation
scheme, Δω0 is an (l + p+1)×n matrix and has components given by

Δβt =
1

2σ̂2

(
−2X>d(t)M−1(φ̂)ŷ+X>

(
M−1(φ̂)d(t)+d(t)M−1(φ̂)

)
Xβ̂
)
,

Δσ2t = − 1
2σ̂4

[
tr
(

ŷ2M−1(φ̂)d(t)
)
−2ŷ>M−1(φ̂)d(t)Xβ̂+ β̂

>
X>M−1(φ̂)d(t)Xβ̂

]
,

Δφit =
1

2σ̂2

[
tr
(

ŷ2 ∂M−1

∂φi
(φ̂)d(t)

)
−2ŷ>

∂M−1

∂φi
(φ̂)d(t)Xβ̂+ β̂

>
X>

∂M−1

∂φi
(φ̂)d(t)Xβ̂

]
,
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for i = 1, . . . , p, t = 1, . . . ,n, and where d(t) is an n× n matrix with the tth diagonal element
equal to one and the others equal to zero.

3.2.3 Explanatory variable perturbation

In the interest of studying the influence that perturbation in the explanatory variables
may produce on the parameter estimates, and taking into account the interest of perturbing a
subset of the explanatory variables (commonly the subset of continuous explanatory variables),
we partitionate the matrix X as

[
Xp Xn

]
, such that Xp has dimension n× lp and contains the

columns of X that we are interested in perturbing, and Xn has dimension n× ln and contains the
remaining columns, where lp + ln = l.

Therefore, we replace X in the perturbed Q-function by

X(ω) =
[

Xp +W Xn
]
,

with W = ω1>, where ω = (ω1, . . . ,ωn)
> and 1 is a lp×1 vector of ones, thus W is an n× lp

matrix. Let 1p be an l×1 vector, such that 1p
k = 1 if the kth column of X is contained in Xp and

1p
k = 0 otherwise, k = 1, . . . , l. Thus, considering the non-perturbed vector ω0 = (0, . . . ,0)>,

Δω0 has the following elements:

Δβ =
1

σ̂2

[
1p
(

ŷ−Xβ̂
)>
−
(

1p>β
)

X>
]

M−1(φ̂),

Δσ2 = − 1
σ̂4

(
1p>β

)(
ŷ−Xβ̂

)>
M−1(φ̂),

Δφi =
1

σ̂2

(
1p>β

)(
ŷ−Xβ̂

)> ∂M−1

∂φi
(φ̂), i = 1, . . . , p.

3.3 Simulation studies

Two simulation studies were conducted to examine the performance of the proposed
model. In all the simulation studies we consider a left-censored AR(2)-CR model, as defined
in (2.1.1)–(2.1.2), with one explanatory variable, and parameters set at β0 = 5, β1 = 2, σ2 = 2,
φ1 = 0.48 and φ2 =−0.2. Besides, the data generating process is as described in Section 2.5.

The initial estimates were chosen by considering the censored values as real ob-
served values. For the SAEM algorithm, we fixed the maximum number of iterations at W = 400
and the cutoff point at c = 0.18 (see Kuhn and Lavielle, 2005).
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3.3.1 First simulation study

This study illustrates the proposed diagnostic measures by generating only one sam-
ple of size n = 200, censoring it in three different levels (5%, 20% and 40%) and replacing the
maximum value of each sample by ymax = ymax +3sd(y). The atypical point corresponds to the
point #54 and Figure 3.1 presents the generated dataset, the censoring limit and the replaced
value for each censoring level.

Time

y
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2
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10
12

14

54

5%
20%
40%

Figure 3.1: Generated time serie with one outlier (asterisk) and censoring limits for 5% (dash-
dot blue line), 20% (dashed light violet line) and 40% (dotted red line) of censored data.

Following the approach described in Section 3.1, Figure 3.2 depicts the index plots
of M(0) for the response perturbation, explanatory variable perturbation and scale matrix pertur-
bation, respectively, along with the Lee and Xu (2004) benchmark, given in (3.1.4), computed
for c∗ = 3.5.

The perturbed observation (#54) was detected as influential for all the schemes
and levels of censoring considered. However, it is worth noting that the response perturbation
scheme seems to be more affected by the dependence structure of the data, also detecting the
observations #52, #53 and #55 as influential for all levels of censoring.

3.3.2 Second simulation study

The second simulation study is a Monte Carlo experiment intending to evaluate the
capability of the methodology to detect atypical points. Here we simulated 100 samples of size
n = 200 and censored the samples in three different levels (5%, 20% and 40%). For each sample
and level of censoring, we generate an atypical point in three different ways: (a) substituting
max(y) by max(y)+ k ∗ sd(y), k = 1,2,3 and 5; (b) substituting the 80th response observation
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Figure 3.2: Index plot of M(0) for response perturbation (left), scale matrix perturbation (mid-
dle) and explanatory variable perturbation (right); with 5% (top), 20% (middle) and 40% (bot-
tom) of censored data.

y80 by y80 + k ∗ sd(y), k = 3,5 and 7; and (c) substituting the 80th covariate observation x80 by
x80 + k ∗ sd(x), k = 5,7 and 10.

Following the approach described in Section 3.1 and considering an observation as
influential if the respective M(0) is greater than the Lee and Xu (2004) benchmark, given in
(3.1.4), computed for c∗ = 3.5, we counted the number of times that the perturbed observation
was identified as influential and the mean number of influential observations identified, for all
samples described above.

The obtained results are presented in Tables 3.1 to 3.3. In general, the capability
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of the methodology to detect the influential points seems to be reasonable, especially when the
percentage of censoring is low, although the capability under the scale matrix perturbation does
not seem to decrease as the censoring level increases.

It is worth mentioning that, for the response perturbation scheme, the mean number
of observations classified as influential generally increases as the magnitude of the atypical
point increases, while it decreases for the other schemes considered.

Table 3.1: Percentage of times that the observation max(y) = max(y)+ k ∗ sd(y) was identified
as an influential observation and mean number of influential observations identified under re-
sponse perturbation (y), scale matrix perturbation ( Σ) and explanatory variable perturbation
(x).

% of censoring
5% 20% 40%

k y Σ x y Σ x y Σ x
% of correct identification

1 61 65 66 57 76 64 54 83 62
2 99 98 99 98 98 99 94 98 96
3 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100

mean number of observations classified as influential
1 2.53 3.12 2.69 2.46 2.77 2.7 2.37 2.64 2.87
2 2.64 2.76 2.16 2.73 2.49 2.35 2.71 2.37 2.55
3 2.95 1.97 1.66 2.79 1.91 1.8 2.76 2.03 1.96
5 3.27 1.16 1.39 3.2 1.32 1.47 2.99 1.48 1.53

Table 3.2: Percentage of times that the 80th observation was identified as an influential obser-
vation when y80 = y80 + k ∗ sd(y) and mean number of influential observations identified under
response perturbation (y), scale matrix perturbation ( Σ) and explanatory variable perturbation
(x).

% of censoring
5% 20% 40%

k y Σ x y Σ x y Σ x
% of correct identification

3 88 59 92 64 51 68 39 34 42
5 92 92 92 68 68 68 42 42 42
7 92 92 92 68 68 68 42 42 42

mean number of observations classified as influential
3 2.85 3.17 2.28 2.55 2.85 2.37 2.43 2.71 2.68
5 3.21 2.85 1.81 2.84 2.75 2.01 2.51 2.53 2.48
7 3.41 2.02 1.44 3.01 2.33 1.83 2.75 2.46 2.35
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Table 3.3: Percentage of times that the 80th observation was identified as an influential obser-
vation when x80 = x80 + k ∗ sd(x) and the average number of influential observations identified
under response perturbation (y), scale matrix perturbation ( Σ) and explanatory variable per-
turbation (x).

% of censoring
5% 20% 40%

k y Σ x y Σ x y Σ x
% of correct identification

5 37 59 59 38 67 58 28 60 50
7 87 90 91 92 93 94 95 95 95

10 100 100 100 100 100 100 100 100 100

mean number of observations classified as influential
5 2.28 2.53 2.72 2.37 2.49 2.8 2.28 2.47 2.87
7 2.55 1.87 2.39 2.44 1.72 2.38 2.54 1.83 2.55

10 1.94 1.23 1.76 1.95 1.11 1.72 1.75 1.1 1.83

3.4 Application on a real dataset: Total phosphorus concen-
tration dataset

Here we perform diagnostic analysis based on the data presented in Subsection
1.1.2 and on the model discussed in Subsection 2.6.2. Following the approach described in
Section 3.1, Figure 3.3 shows the index plots of M(0) for the response perturbation, scale matrix
perturbation and explanatory variable perturbation (for log(Q)), respectively, along with the Lee
and Xu (2004) benchmark, given in (3.1.4), computed for c∗ = 3.5.

For the considered benchmark, none of the observations was identified as influen-
tial under the response perturbation, observations #5, #62 and #66 were identified as influential
under the scale matrix perturbation and observations #5, #19 and #138 were identified as influ-
ential under the explanatory variable perturbation.

Figure 3.4 presents the log-transformed phosphorus concentration data with the im-
puted values, estimated using l̂og(P) = E{log(P)|V,C, θ̂} obtained from the SAEM algorithm,
with the detected influential points emphasized. In general, the detected observations seem to
be isolated peaks (see observation #5, for example).

In order to reveal the impact of the detected influential observations (#5, #19, #62,
#66 and #138) on the parameter estimates, we refitted the model individually considering each
of these five cases as missing observation. In Table 3.4 we show the relative changes (in per-
centage) of each parameter estimate, defined by

RCγ =

∣∣∣∣ γ̂− γ̂[t]

γ̂

∣∣∣∣ ,
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Figure 3.3: Index plot of M(0) for response perturbation (a), scale matrix perturbation (b) and
explanatory variable perturbation (c) for the total phosphorus concentration dataset.
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Figure 3.4: Log-transformed phosphorus concentration (lP) with the augmented series based on
the fitted AR(1)-CR model (dashed blue line) and detected influential points.

where γ = βk,l(k = 0,1; l = 1,2,3,4),σ2 or φ1, and γ̂[t] denotes the ML estimate of γ after the
tth observation of log(P) is considered a missing value. It can be noted that observation #19 has
a considerable impact on the estimation of the location parameters, while observation #62 has
a considerable impact on the estimation of φ1.
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Table 3.4: Relative changes (RC in %) for the total phosphorus concentration dataset.
Considered as missing

[#5] [#19] [#62] [#66] [#138]

RCβ1,1 3.07 0.02 0.24 3.34 7.98

RCβ1,2 1.84 16.39 2.70 2.13 1.70

RCβ1,3 0.15 0.07 0.34 0.02 0.26

RCβ1,4 0.07 0.03 2.47 0.03 0.30

RCβ2,1 9.07 0.03 0.64 9.44 19.77

RCβ2,2 4.47 38.01 6.37 5.01 4.00

RCβ2,3 0.35 0.11 0.66 0.01 0.46

RCβ2,4 0.46 0.02 4.86 0.28 0.62

RCσ2 8.20 2.09 1.03 6.64 4.19
RCφ1 26.52 7.62 37.06 8.80 18.04

In the interest of identifying influential observations on the regression parameters
(β) and on the parameters from the covariance matrix (σ2 and φ1) separately, Figure 3.5 shows
the plot of Mβ(0) versus Mσ2,φ1

(0) for the three perturbation schemes. In this approach, ob-
servations #5 and #114 are detected as influential for all perturbation schemes considered, and
observation #5 is the only one that seems to perturb the estimation of both subsets of parameters
simultaneously. Besides, observations #19 and #138 seem to impact only the estimation of β,
while observations #62 and #66 seem to impact the estimation of σ2 and φ1.
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Figure 3.5: Plot of Mβ (0) versus Mσ2,φ1
(0) for response perturbation (a), scale matrix perturba-

tion (b) and explanatory variable perturbation (c) for the total phosphorus concentration dataset.
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3.5 Conclusions

In this chapter we proposed influence diagnostic tools for detecting influential ob-
servations on the context of censored linear models with autoregressive errors. The diagnostic
analysis was based on local influence techniques suggested by Zhu and Lee (2001). Using the
discussed method, we analyzed a real dataset and carried out extensive simulation studies. We
observed that the capability of the methodology in detecting influential points seems to be rea-
sonable. Besides, among the three perturbation schemes considered, the response perturbation
seemed to be more affected by the dependence structure of the data.
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Chapter 4

Concluding remarks

In this work, we developed a full likelihood approach for censored linear regression
models with autoregressive erros, denoted by AR(p)-CR models. We presented the implementa-
tion of the SAEM algorithm for maximum likelihood estimation, where the likelihood function,
predictions of unobservable response values and the asymptotic standard errors are obtained as
byproducts. Next, we developed the diagnostic measures for assessing local influence of these
models.

Even though some solutions have been proposed in the literature to deal with the
problem of censored responses in AR models, to the best of our knowledge, we consider that this
work is the first attempt at exact ML estimation in the context of censored AR models. In order
to examine the performance of our proposed methods, we presented various simulation studies
and we illustrated the methods through the analysis of two real datasets. The methods developed
are implemented in the R package ARCensReg, providing practitioners with a convenient tool
for further application in their domain.

In addition, following Shi and Huang (2011), we implemented a stepwise local in-
fluence method, which intends to deal with masking effects by choosing a perturbation scheme
that perturbs only a subset of points (excluding some highly influential observations detected
in a previous step from the perturbation scheme), and allowing points that were masked to be
uncovered in the new perturbation scheme. However, for appropriate benchmark values, the ob-
tained results were very similar to those obtained by the method described in Section 3.1, and
thereby this comparison was not presented in this dissertation.
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4.1 Future research

There is a large number of possible extensions of the results obtained in this disser-
tation, such as:

• The use of scale mixtures of normal distributions to accommodate heavy-tailed features
(Lachos et al., 2011).

• To extend the proposed methods to accommodate missing values in addition to censoring
using hybrid Bayesian sampling procedures (Wang and Fan, 2012).

• To extend the proposed methods to accommodate multivariate outcomes (Wang et al.,
2015).

• To consider other correlation structures, such as ARMA models and space–time correla-
tion structures (Cesare et al., 2001).

4.2 Technical production

In this section, we describe the technical production as result of this dissertation.

4.2.1 Papers

The results from Chapter 2 originated a paper entitled “Censored regression models

with autoregressive errors: A likelihood-based perspective” that was submitted to the journal
Econometrics and Statistics.

The results presented in Chapter 3 are been organized into a paper entitled “Influ-

ence diagnostics for censored regression models with autoregressive errors” that will be sub-
mitted to a statistical journal.

4.2.2 R package

ARCensReg: Fitting Univariate Censored Linear Regression Model with Autoregressive Errors

It fits an univariate left or right censored linear regression model with autoregressive
errors under the normal distribution. It provides estimates and standard errors of the parame-
ters, prediction of future observations and it supports missing values on the dependent variable.
It also performs influence diagnostic through local influence for three possible perturbation
schemes. It is available to download for free in the website https://cran.r-project.org/
web/packages/ARCensReg/ and its two main functions are described below.

https://cran.r-project.org/web/packages/ARCensReg/
https://cran.r-project.org/web/packages/ARCensReg/
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• ARCensReg: Censored Linear Regression Model with Autoregressive Errors

Description

It fits an univariate left or right censored linear regression model with autoregressive
errors under the normal distribution using the SAEM algorithm. It provides estimates
and standard errors of the parameters, prediction of future observations and it supports
missing values on the dependent variable. It also provides convergence plots when
exists at least one censored observation.

Usage

R code

ARCensReg(cc,y,x,p=1,cens='left',x_pred=NULL,miss=NULL,
tol=0.0001,show.convergence=TRUE,M=10,perc=0.25,MaxIter=400,
pc=0.18,show_se=TRUE)

Arguments

cc Vector of censoring indicators of length n, where n is the total of
observations. For each observation: 0 if non-censored, 1 if censored.

x Matrix of covariates of dimension n x l, where l is the number of
fixed effects including the intercept, if considered (in models which
include an intercept x should contain a column of ones).

y Vector of responses of length n.

p Order of the autoregressive process. Must be a positive integer value.
For p equal to 0 we suggest to use the function CensReg.SMN from
SMNCensReg package.

cens "left" for left censoring, "right" for right censoring.

x_pred Matrix of covariates for responses to be predicted. If x_pred = NULL
no responses are predicted.

miss Vector containing the index of missing observations. miss = NULL
indicates that no observations are missing.

tol The convergence maximum error permitted.
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show.convergence
TRUE or FALSE. Indicates if convergence graphs should be built
for the parameters estimates (for the case with at least one censored
observation). The dashed line indicates the iteration of the SAEM
algorithm that simulations start being smoothed. Default=TRUE.

M Size of the Monte Carlo sample generated in each step of the SAEM
algorithm. Default=10.

perc Percentage of burn-in on the Monte Carlo sample. Default=0.25.

MaxIter The maximum number of iterations of the SAEM algorithm. De-
fault=400.

pc Percentage of initial iterations of the SAEM algorithm. It is recom-
mended that 50<MaxIter*pc<100. Default=0.18.

show_se TRUE or FALSE. Indicates if the standard errors should be estimated.
Default=TRUE.

Details

The initial values are obtained by ignoring censoring and applying maximum likeli-
hood estimation with the censored data simply replaced by their censoring limits. If
you want to fit a regression model with autoregressive errors for non-censored data,
just set "cc" as a vector of zeros and "cens" as either "right" or "left".

Value

beta Estimate of the regression parameters.

sigma2 Estimated variance of the white noise process.

phi Estimate of the autoregressive parameters.

pi1 Estimate of the first p partial autocorrelations.

theta Vector of parameters estimate (beta, sigma2, phi).

SE Vector of the standard errors of (beta, sigma2, phi).

loglik Log-likelihood value.

AIC Akaike information criterion.

BIC Bayesian information criterion.

AICcorr Corrected Akaike information criterion.

time Processing time.

pred Predicted values (if x_pred is not NULL).

criteria Attained criteria value.
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yest Augmented response variable based on the fitted model.

yyest Final estimative of E(Y%*%t(Y)).

iter Number of iterations until convergence.

Examples

R code

##simple example (p = l = 1)
#generating a sample
set.seed(23451)
n=50
x=rep(1,n)
dat = rARCens(n=n,beta=2,pit=.5,sig2=.3,x=x,

cens='left',pcens=.1)

#fitting the model (quick convergence)
fit0 = ARCensReg(dat$data$cc,dat$data$y,x,tol=0.001,

pc=.12,M=5,show_se=FALSE)

##another example (p = l = 2)
#generating a sample
n=100
x=cbind(1,runif(n))
dat = rARCens(n=n,beta=c(2,1),pit=c(.4,-.2),sig2=.5,

x=x,cens='left',pcens=.05)
#fitting the model
fit1 = ARCensReg(dat$data$cc,dat$data$y,x,p=2,

cens="left",tol=0.0001)
#plotting the augmented variable
par(mfrow=c(1,1))
plot.ts(fit1$yest,lty='dashed',col=4)
lines(dat$data$y)
#simulating missing values
miss = sample(1:n,3)
yMISS = dat$data$y
yMISS[miss] = NA
fit2 = ARCensReg(dat$data$cc,yMISS,x,p=2,miss=miss,

cens="left",tol=0.0001)
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• InfDiag: Influence Diagnostic in Censored Linear Regression Model with Autoregressive
Errors

Description

It performs influence diagnostic by a local influence approach (Cook, 1986) with three
possible perturbations schemes: response perturbation (y), scale matrix perturbation
(Sigma) or explanatory variable perturbation (x). A benchmark value is calculated
that depends on k.

Usage

R code

InfDiag(theta,yest,yyest,x,k=3,plots=T,indpar=rep(1,length(theta)),
perturbation ='y',indcolx = rep(1,ncol(x)))

Arguments

theta Vector of estimated parameters.

yest Vector of responses of length n with agmented data. Should be the
value yest of the ARCensReg function in the case that at least one
observation is censored.

yyest Should be the value yyest of the ARCensReg function in the case that
at least one observation is censored. Otherwise, must be y%*%t(y).

x Matrix of covariates of dimension n x l, where l is the number of
fixed effects including the intercept, if considered (in models which
include an intercept x should contain a column of ones).

k Constant to be used in the benchmark calculation: M0+k*sd(M0).

plots TRUE or FALSE. Indicates if a graph should be plotted.

indpar Vector of length equal to the number of parameters, with each ele-
ment 0 or 1 indicating if the respective parameter should be taking
into account in the influence calculation.

perturbation
Perturbation scheme. Possible values: "y" for response perturbation,
"Sigma" for scale matrix perturbation or "x" for explanatory variable
perturbation.
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indcolx If perturbation="x", indcolx must be a vector of length equal
to the number of columns of x, with each element 0 or 1 indicating
if the respective column of x should be perturbed. All columns are
perturbed by default.

Details

The function returns a vector of length n with the aggregated contribution (M0) of all
eigenvectors of the matrix associated with the normal curvature.

Value

M0

Examples

R code

#generating the data
set.seed(12341)
x = cbind(1,runif(100))
dat = rARCens(n=100,beta = c(1,-1),pit = c(.4,-.2),sig2=.5,

x=x,cens='left',pcens=.05)
#creating an outlier
dat$data$y[40] = 5
plot.ts(dat$data$y)

#fitting the model
fit = ARCensReg(cc=dat$data$cc,y=dat$data$y,x,p=2,cens='left',

tol=0.001,show_se=F)

#influence diagnostic
M0y = InfDiag(theta=fit$res$theta, yest=fit$yest, yyest=fit$yyest,

x=x, k = 3.5, perturbation = "y")
M0Sigma = InfDiag(theta=fit$res$theta, yest=fit$yest, yyest=fit$yyest,

x=x, k = 3.5, perturbation = "Sigma")
M0x = InfDiag(theta=fit$res$theta, yest=fit$yest, yyest=fit$yyest,

x=x, k = 3.5, perturbation = "x",indcolx =c(0,1))

#perturbation on a subset of parameters
M0y1 = InfDiag(theta=fit$res$theta, yest=fit$yest, yyest=fit$yyest,
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x=x, k = 3.5, perturbation = "y",indpar=c(1,1,0,0,0))
M0y2 = InfDiag(theta=fit$res$theta, yest=fit$yest, yyest=fit$yyest,

x=x, k = 3.5, perturbation = "y",indpar=c(0,0,1,1,1))
plot(M0y1,M0y2)
abline(v = mean(M0y1)+3.5*sd(M0y1),h = mean(M0y2)+3.5*sd(M0y2),lty=2)
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Appendix A

Additional results of Chapter 2 and
Chapter 3

A.1 Complementary results of the simulation study from Sub-
section 2.5.1

Table A.1: Mean square errors of the parameter estimates from the Simulation presented in
Subsection 2.5.1 under 5%, 20% and 40% censoring proportions (CP) and different samples
sizes (n).

CP n β0 β1 σ2 φ1 φ2

50 0.182 0.4313 0.1436 0.0225 0.0222
100 0.0735 0.1986 0.0974 0.0085 0.0095

5% 200 0.0436 0.0889 0.0458 0.0048 0.0059
300 0.035 0.0767 0.0228 0.0029 0.0023
500 0.0168 0.0377 0.0233 0.0017 0.0016

50 0.173 0.4378 0.2452 0.0266 0.0227
100 0.0878 0.2172 0.1039 0.0157 0.0127

20% 200 0.0447 0.0967 0.0483 0.0047 0.0053
300 0.0284 0.0623 0.0336 0.0035 0.004
500 0.0177 0.0403 0.0217 0.0024 0.0022

50 0.2577 0.4916 0.3784 0.0343 0.0307
100 0.1115 0.2408 0.149 0.0118 0.012

40% 200 0.0692 0.1265 0.0735 0.0066 0.0066
300 0.0308 0.0797 0.0632 0.0047 0.0039
500 0.0196 0.0357 0.0357 0.0022 0.0022



75

Table A.2: Mean absolute errors of the parameter estimates from the Simulation presented in
Subsection 2.5.1 under 5%, 20% and 40% censoring proportions (CP) and different samples
sizes (n).

CP n β0 β1 σ2 φ1 φ2

50 0.3443 0.5194 0.317 0.1197 0.1246
100 0.2158 0.3647 0.2535 0.074 0.0772

5% 200 0.1651 0.2256 0.1752 0.0557 0.0604
300 0.1534 0.2234 0.1207 0.043 0.0396
500 0.1015 0.1551 0.1254 0.0343 0.0335

50 0.333 0.5245 0.4117 0.1324 0.1195
100 0.2343 0.3755 0.2664 0.1001 0.0915

20% 200 0.1673 0.2489 0.1793 0.0554 0.0579
300 0.1357 0.2024 0.1489 0.0456 0.0512
500 0.1095 0.1556 0.118 0.0398 0.0364

50 0.3997 0.5745 0.5273 0.1499 0.1447
100 0.2749 0.4153 0.3112 0.0883 0.0873

40% 200 0.2145 0.2884 0.2288 0.0619 0.0647
300 0.1402 0.2283 0.2089 0.0561 0.0508
500 0.1077 0.1543 0.1533 0.0388 0.0381

A.2 Matrix algebra results

We present some useful matrix algebra results, which may be helpful in understand-
ing some of the results and derivations presented in this work.

Let X be a random vector with meanµ and covariance matrix Σ of dimension n×1
and let A be a non-stochastic n×n matrix, then

E
[
X>AX

]
= tr

(
E
[
X>AX

])
= E

[
tr
(

X>AX
)]

= E
[
tr
(

AXX>
)]

= tr
(

AE
[
XX>

])
= tr

(
A
(

Σ+µµ>
))

= tr(A Σ)+µ>Aµ. (A.2.1)

The proofs of the next results can be found in Graham (1981). Let x be a vector of
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dimension n×1 and let A be a constant matrix of dimension n×n, then

∂x>Ax
∂x

= Ax+A>x, (A.2.2)

∂Ax
∂x

= A>, (A.2.3)

∂x>A
∂x

= A. (A.2.4)

Now, let A be a symmetric positive definite matrix of dimension n×n and let x be
a scalar, then

∂A−1

∂x
= −A−1 ∂A

∂x
A−1, (A.2.5)

∂ tr(A)

∂x
= tr

(
∂A
∂x

)
, (A.2.6)

∂ |A|
∂x

= |A| tr
(

A−1 ∂A
∂x

)
, (A.2.7)

∂ log |A|
∂x

= tr
(

A−1 ∂A
∂x

)
. (A.2.8)

Finally, let A and B be matrices of dimension n×n and let x be a scalar, then

∂ (AB)
∂x

=

(
∂A
∂x

)
B+A

(
∂B
∂x

)
. (A.2.9)
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