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Resumo

Os dispositivos moveis, hoje em dia, fornecem recursos semelhantes aos de um computa-
dor pessoal de uma década atras, permitindo o desenvolvimento de aplicagoes complexas.
Consequentemente, essas aplicagoes moveis podem exigir tolerar falhas em tempo de exe-
cucao. No entanto, a maioria das aplicagoes moveis de hoje sao implantados usando
configuragoes estaticas, tornando dificil tolerar falhas durante a sua execuc¢ao. NoOs pro-
pomos uma infraestrutura de implantacao auto-adaptativa para lidar com este problema.
A nossa solucao oferece um circuito autéonomo que administra o modelo de configuragao
atual da aplicagao usando um modelo de caracteristicas dinamico associado com o mo-
delo arquitetonico da mesma. Em tempo de execugao, de acordo com a sele¢ao dindmica
de caracteristicas, o modelo arquitetonico implantado na plataforma se re-configura para
fornecer uma nova solugao. Uma aplicacao Android foi implementada utilizando a solu¢ao
proposta, e durante sua execucao, a disponibilidade de servicos foi alterada, de tal forma
que sua configuracao corrente foi dinamicamente alterada para tolerar a indisponibilidade
dos servigos.



Abstract

Mobile devices, nowadays, provide similar capabilities as a personal computer of a decade
ago, allowing the development of complex applications. Consequently, these mobile appli-
cations may require tolerating failures at runtime. However, most of the today’s mobile
applications are deployed using static configurations, making difficult to tolerate failure
during their execution. We propose an adaptive deployment infrastructure to deal with
this problem. Our solution offers an autonomic loop that manages the current configura-
tion model of the application using a dynamic feature model associated with the archi-
tectural model. During runtime, according to the dynamic feature selection, the deployed
architectural model can be modified to provide a new deployment solution. An Android
application was implemented using the proposed solution, and during its execution, the
services availability was altered so that its current configuration was changed dynamically
in order to tolerate the unavailability of services.
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Chapter 1

Introduction

The increasing usage of software in current society and the whole world has prompted
the creation of more Software Engineering conferences. Being the NATO Software
Engineering Conference, sponsored by the NATO E], the first conference on software
engineering in which experts discussed diverse issues related to this field of applied research
called software engineering [114), T03].

One of the most important concepts discussed in the conference was the idea of soft-
ware crisis [114]. The software crisis is a term used to refer to the main problems
present in software development, either in the development process as also in the released
final product [47]. Therefore, problems such as when the software development takes
longer and costs more than originally estimated, or when the final released product does
not function properly are included in the software crisis [47].

One way to overcome software crisis is by using what is called software reuse [40].
The idea of software reuse is not new. In 1968, Mcilroy et al. wrote "Mass-Produced
Software Components", a seminal paper on software reuse [102} [40], and began to talk
about the concept of software reuse. Mcilroy et al. emphasised the need to investigate
mass-production techniques in software and also to consider components as if they were
black boxes [102]. Black box describes what can be done, rather than how it can be done
[145] [163].

Component-Based Software Engineering (CBSE) uses the software reuse in its process.
The CBSE is an engineering methodology that intends to build software systems by
reusable software components [87]. The interoperation, at run-time, between the binary
code modules which the CBSE support, is one of the foundation blocks of our proposed
infrastructure.

On the other hand, the Software Product Line (SPL) approach is one of the most
promising approaches to improving the reuse of software, increasing the quality, and
decreasing the time-to-market and maintenance costs [80]. In general, the basic idea of
the SPL approach is to develop software products from common parts [I18]. Also, most of
the time, this approach uses a feature model to capture the commonalities and variability
of the products. A feature model is a set of features organised along a tree-like structure
which defines logical relations (optional, mandatory, alternative) among features in a

North Atlantic Treaty Organization
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hierarchical manner [I33]. The feature model is another foundation block of our proposed
infrastructure.

Software reuse can be one of the keys to developing Self-Adaptive Software Systems
(SASSs) in a cost-effective manner because of this kind of systems have similar or equal
components. SASSs are software systems able to self-adapt their behaviour or structure
at runtime in response to changes in context [45]. Usually, a SASS uses an external
adaptation approach [130] that comprises two subsystems: (i) a managed subsystem which
provides the system domain functionality, and (ii) a managing subsystem which consists of
the adaptation logic that controls the managed subsystem. The adaptation logic involves
the implementation of an autonomic control loop, which defines how systems adapt their
behaviour to keep goals controlled [108].

The MAPE-K loop [161] is a reference model to create autonomic control loops, which
presents four modules : (i) a Monitor module that collects data from the managed ele-
ments, (ii) an Analyzer module that generates a report of the current situation, (iii) a
Planner module that specifies what actions should be taken, and (iv) an Executor mod-
ule that dispatches pre-planned actions (effectors) to modify the managed elements. The
MAPE-K loop also defines that these modules exchange knowledge and data. We highlight
that this MAPE-K loop is another foundation block of our proposed infrastructure.

There exists a significant number of approaches to achieve the self-adaptation proper-
ties in software systems [64]. The self-adapting systems, autonomous systems, agent-based
systems, the reflective middleware, the emergent systems, etc. are all samples of these
approaches. A method for developing SASSs, which borrows essential ideas from Soft-
ware product line (SPL) Engineering, is called Dynamic software product lines (DSPLs)
[49, 143]. An SPL is a set of software-intensive systems that share a common and man-
aged set of features satisfying the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way [33].

In particular, A DSPL [63] is an SPL that can be reconfigured at runtime and it
emphasises variability analysis and design at development time and variability binding
and reconfiguration at runtime. The DSPL concepts are another foundation block of our
proposed infrastructure.

1.1 The context

Mobile applications are changing the way that we see the today’s world because several of
them are useful tools for everyday activities [24]. Moreover, smartphones, nowadays, pro-
vide the same computing power and similar capabilities as personal computers of a decade
ago [24], allowing the development of sophisticated mobile applications. Consequently,
nowadays mobile applications may require several non-functional requirements [31] such
as reliability, robustness, distributed execution, and the ability to deal with variations in
services availability and computing resources.

However, most of the today’s mobile applications are not able to achieve non-functional
requirements such as the robustness and fault tolerance because most of these are unable
to tolerate or cope failures, errors or faults during their execution. Robustness [1] is a
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non-functional requirement that permits software systems to remain viable in the presence
of both disturbances from within the system itself as well as those from its environment.
Fault tolerance [12] is a non-functional requirement that requires a system to continue to
operate, even in the presence of faults.

Dynamic deployment is the process to update, patch or extend features or compo-
nents without stopping the application [122]. Software systems may use the dynamic
deployment to tolerate or cope failures, errors or faults during their execution. Never-
theless, today’s mobile applications are deployed using static configurations. A deployed
application with a static configuration is ready for an initial context and, in general, it is
not ready for changes that may occur during runtime. In contrast, dynamic deployment
allows applications to self-adapt to changes that happen in the environment.

Self-adapt to changes that occur in the environment is an essential feature of the self-
adaptive systems (SASs) and hence of the SASSs. Over the years, the academic literature
has presented a wide variety of approaches with the sole purpose of developing SASs.
Among them are [85] model-based approaches, architecture-based approaches, service-
oriented approaches, agent-based approaches, nature-inspired approaches, approaches
that use the control theory, and more. Many of these approaches also are used to de-
velop SASSs |27, 112].

However, despite the existence of many studies, building SASSs on Mobile platforms
(Android, Symbian, i0S, Blackberry, and so on) is not an easy task because the lack of
infrastructures and tools that facilitate the development of this kind of systems.

1.2 Definition of the problem

Problem - Little support that exists in mobile platforms to build
self-adaptive software

A diversity of approaches have been proposed for the development of self-adaptive
software [97| such as Rainbow, Archstudio, MUSIC, and so on. However, many of the
implementations of these methods are not applied to the development of self-adaptive
software on Android devices.

For example, implementations based on the JBoss AOP framework such as the
proposal of Shen et al. [144] are not support on the Android platform because this frame-
work does not run on this platform. Even being the JBoss AOP a Java framework [74]
for programming aspect-oriented applications [68] that can be used in any programming
environment [§].

Also, many of these implementations are complicated and hard to use and understand.
The MUSIC middleware [12§], for example, runs on an OSGi framework. An OSGi
framework is a Java framework that runs on the top of a Java environment, and it is an
implementation of the OSGi specification [93]. The OSGi specification is a collection of
standard application programming interfaces (APIs) that define a service gateway [55].

The MUSIC middleware can be executed on mobile devices. However, running an
OSGi framework on a mobile device is not an easy task because of the continuous evolution
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of the devices. Moreover, the authors of MUSIC middleware do not offer a mobile version
to facilitate the development of this kind of systems.
To conduct our study, we define the following research questions:

e Research Question 1 (RQ 1) : How can a software system achieve a
self-adaptive behaviour on the Android platform?

e Research Question 2 (RQ 2) : By getting a solution to develop self-
adaptive applications on the Android platform, what is the performance
of the proposed solution?

As far as we know, building self-adaptive software in a cost-effective and predictable
manner is a challenge [97] because the lack of tools and simple solutions to the development
of this kind of system.

1.3 General view of the proposed solution

Proposed solution - A deployment infrastructure to support the
development of self-adaptive software on the Android platform

We have proposed an infrastructure to the development of SASSs on Android plat-
forms based on queries, at runtime, to variability model and dynamic SPL architecture.
We decided to use a feature model as the variability model of the system because each
product can be differentiated from the others by means of its features and each feature is
a characteristic of a product that is visible to the end-user in some way [126].

In addition, our proposed solution follows the IBM’s MAPE-K (Monitor, Analyse,
Plan, Execute, Knowledge) reference model for autonomic control loops [71] because this
model is used (consciously or unconsciously) in some way for many academic studies.
Therefore, in the academic literature we find several infrastructures and frameworks which
use as reference the IBM’s MAPE-K Loop, including Rainbow [52], StarMX [6], ASF [57],
FUSION [45], ArCMAPE [113] and so on. Figure|l.1|shows the MAPE-K Loop proposed
by IBM in which the Autonomic Manager manages the Managed Element through the
effectors.

Additionally, we have implemented a reusable Java framework that supports the de-
velopment of SASSs using our infrastructure. We have used our framework to add self-
adaptive properties to an Android application called Buscame. Our proposed solution for
Android applications implements the IBM’ MAPE-K loop and responses to the RQ 1. We
highlight that in this work we have used the ideas behind the dynamic software product
lines (DSPLs) approach to propose and implement our infrastructure and framework.

Finally, we measured the performance of the proposed solution to response the RQ 2.

1.4 Related work

In the context of Android applications, Maly and Kriz [I00] present two implementation
details to support dynamic deployment of new functionalities on an Android application.
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Figure 1.1: IBM’s MAPE-K reference model for autonomic control loops

The first solution using the Java Reflection API to load and launch activities, and the
second using modules based on Android fragments [2]. However, these solutions just
explain how to manage user interfaces and not business logic.

Moreover, in academic literature, we found many works applying different types of
approaches and frameworks to develop SASSs. Among them, Krupitzer et al. [85] and
Macias-Escriva et al. [97] collected and organised several of these approaches. Some of
these showed approaches are the model-based approaches, architecture-based approaches,
service-oriented approaches, and so on.

Rainbow [52], ArcMAPE [113] and MoRE [2§] are solutions that also use the MAPE-K
loop [161] as our proposed solution.

1.4.1 Rainbow

Rainbow is an architecture-based platform for self-adaptation, which provides reusable
components that we can use to create other SASs [52]. Rainbow provides an external
adaption approach to self-adaptive systems and, in addition, has mechanisms for mon-
itoring a target system and its environment, detecting opportunities for improving the
system’s quality of services (QoSs), deciding the best course of adaptation based on the
state of the system, and effecting the appropriate changes through system-level effectors
[37].

In the Rainbow framework, the Model Manager component updates the architecture
model using the information observed in the system via probes [29] 52], the Strategy Ex-
ecutor component executes the chosen strategy on the running system via system-level
effectors [37,52], the Adaptation Manager component chooses a suitable adaptation strat-
egy based on current state of the system (reflected in the model) [29, 37, 52|, and the
Architecture Evaluator component evaluates a set of constraints defined on the architec-
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ture model to ensure that the system is operating within an acceptable range [29] 37, [52].
We highlight that Rainbow framework has demonstrated that the models (updated

at run-time) belong to a system can form the basis to detect and correct (at run-time)

several problems in a system [164]. We rescued this idea to strengthen our framework.

1.4.2 ArcMAPE

Nascimento et al. [I13] presents ArCMAPE, a self-adaptive infrastructure to instantiate
appropriate fault tolerance techniques at run-time in response to the context changes.
ArCMAPE used mainly three core elements [I13].

e A feature model to model the fault tolerance techniques applied to service-oriented
architectures. Service-oriented architecture (SOA) is an architectural style whose
goal is to achieve loose coupling among interacting software agents [123)].

e A product line architecture (PLA) of fault tolerance techniques also applied to
service-oriented architectures.

e The common variability language (CVL) to model the variability. CVL [I65] is
a generic variability modeling language that can be applied to models created in
any Domain Specific Language (DSL) that is defined based on Meta Object Facility
(MOF). MOF is a standard representation for meta-models and models proposed by
OMG (Object Management Group) [43], a technology consortium formed in 1989
[23].

To use this infrastructure, we firstly have to generate all the valid states (models) of
the software using the SINTEF’ tool which implement the CVL. Then at run-time in
response to the context changes the infrastructure uses an appropriate model (generated
at design time) to upload and load the bundles associated with the model using the OSGi
framework. The authors also suggested applying the FArM method (Feature-Architecture
Mapping) to improve the mapping between features and the PLA elements of the system.

This infrastructure presents two main disadvantages: (i) the infrastructure uses an
internal adaptation approach because it mixed the managed subsystem with the managing
subsystem and (ii) the infrastructure has a mocked implementation.

1.4.3 MoRE

Cetina et al. [28] presents MoRE, a model-based reconfiguration engine to implement
model management operations. MoRE uses the feature model and the OSGi framework
to implement their solution. In general, using a variability model, the context and the
Domain Specific Language model, MoRE generates a reconfiguration plan which later is
used to modify the system using the OSGi APL.

MoRE is more closely related work to our framework, because MoRE uses a feature
model as the base of the self-adaptive system and also, it uses a set of registers which the
current state of a sensor (context monitor) as in our infrastructure.
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The main disadvantages presented in MoRE is the use of the OSGi framework to
manage the bundles of the system at run-time because the OSGi framework, for now, is
not easily used on Android platforms. Many times only finding a suitable documentation
to run the OSGi framework in a particular Android platform is a nightmare.

1.4.4 Other solutions

The FUSION framework is also used to develop SASs which combine feature-orientation,
learning, and dynamic optimization [45]. FUSION mainly uses the online learning to
analyse and self-tune the adaptive behaviour of the system to unanticipated changes [45].

EUREMA is a model-driven approach used to develop self-adaptive software [I55].
EUREMA provides a domain-specific modelling language to specify the feedback loops
and also an interpreter to execute this specification [I55].

Another framework to develop SASSs is proposed in [I11]. Also, the authors present a
system integrity verification method (policy-based). Moreover, Ding et al. [42] suggested
the use of the Petri nets with neural networks to model self-adaptive software systems.

1.5 Contributions

Next, we summarise the main contributions of our research work.

e Contribution 1 - A new deployment infrastructure to support the devel-
opment of self-adaptive software

The new infrastructure and its implementation received the name of Cosmapek.
It is one of the first infrastructures that works on Android platforms. In particu-
lar, Cosmapek can be used on devices that have a Java Virtual Machine (JVM).
Cosmapek joined several ideas of different research areas such as DSPL and SAS in
order to get the expected result.

e Contribution 2 - A new self-adaptive software that runs on the Android
platform

The new self-adaptive software, called Buscame, is an Android application. It is
one of the first self-adaptive applications available to this kind of platforms. In
particular, Buscame was tested on the Lollipop platform. The app internally uses
the Cosmapek to get the self-adaptive behaviour. .

1.6 Outline

The roadmap consists of four chapters.

e Chapter |2, Background. The chapter presents the background related to our work.
We begin examining the concepts refer to the software product lines and ending
exploring concepts refer to the self-adaptive systems.
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e Chapter The Cosmapek Infrastructure. The chapter presents the Comapek
infrastructure and its framework. Also, we present a new component implementation
model called Dicosmos.

e Chapter [ The Cosmapek Infrastructure Applied to Android. The chapter presents
our self-adaptive application, which is an Android application. We also present the
details of implementation of it along with some performance tests.

e Chapter [5] Conclusions and Future work. The chapter presents the conclusions
and contributions of our work.

1.7 Final remarks

In this chapter, we have presented the problem to be solved, an overview of our proposed
solution and the related works to our solution. First, we introduced the context of our
problem. Self-adaptive software on mobile devices is our context. Second, then of presents
the issue, we proposed a solution which mixes the ideas of the SASSs, DSPLs and CBSE.
Finally, we showed the related work and the contributions of the thesis.



Chapter 2

Background

This chapter shows most of the required background to understand our work.

Our solution proposed in the Chapter |3| mainly is based on the dynamic software
product lines (DSPLs) approach. To understand better what a DSPL means, first, we
need to explain the concepts that gave rise to the DSPLs approach. Among these are the
product line, the software product line and the software product line engineering.

Our solution uses a feature model at runtime to manage the variability. To understand
better what is this model we need to know what is a variability model at design and
runtime time. Our solution also allows creating a self-adaptive software using architectural
reconfigurations. In this chapter, we review these concepts.

The self-adaptive application in Chapter |4 has a service-oriented architecture (SOA).
Besides, it is deployed on an Android platform. Therefore, we show some notions about
SOA and the Android architecture.

2.1 Software product lines

2.1.1 Product lines

A product line, also known as a product family [86] or a portfolio product [58], is a set
of similar products, which were built using common and different components [34, 127,
159, [90]. Being the components also known as assets. Figure shows an example of
a product line of devices in which each device shares common features with the other
devices.

Similarly, product lines, also known as product families or product line groupings [138],
are sets of products that share common features [154], 147]. Examples of product lines
are manifold and can be found in different domains [126]. For example, in the market for
mobile phones, we found several types of phones with shared and different features and in
various models [126]. Additionally, we can even select the external and internal features
that we want for our mobile phone, and obtain a product with this feature configuration.

22
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Figure 2.1: A product line of devices

2.1.2 Software product lines

A software product line (SPL) is a set, family or collection of software intensive systems,
software intensive products, software systems, systems, or programs that have common
and variable features [115], 148 [151], 59} (77, 129] 120]. An SPL, besides, is developed from
a common set of core assets in a prescribed way [126]. Many samples of SPL are found
in the real world. A good sample of an SPL is the set of web browsers of the market.
The browsers are software programs that share common features and theoretically can be
built from common components. Figure shows an SPL of browsers in which a set of
different components generates a different browser.

Chrome Safari Opera Firefox Internet Explorer

Ca0Q@®c
PRy

Figure 2.2: A Software Product Line of browsers

Software product lines (SPLs) are families of software systems that shares features,
built by reusing software assets abstractly represented by features [67, 35, [107].

2.1.3 Software product line architecture

The software architecture is critical among the collection of core assets that form the
basis of a family of software systems or families of software systems [115]. Core assets
often include, but are not limited to, test plans, performance models, domain models, test
cases, and so on [115]. A software product line (SPL) architecture represents the whole
software structure of all potential products that can be generated by one or more software
product lines [76]. An SPL architecture also describes the commonality and variability
[110] of the set of goods. In the literature, we can find different SPL architectures for
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diverse domains such as the SPL architecture presented by Waku et al. for data collection
domain [156]. Figure shows a component diagram (in UML 2.0 notation) of one of
the architectures of an SPL called MobileMedia [149].

<<component>> g'
ExceptionHandler

<<component>> El
MobilePhoneMgr

IAlbum

<<component>> g'

Album
IMobileResources
l IPhoto
<<component>> gl 1
MainUiMidlet <<component>> gl
Photo
IFileSystem

<<component>> gl
FileSystemMgr

Figure 2.3: Architecture of the MobileMedia SPL [149]

2.1.4 Software product line engineering

Software product line engineering (SPLE) provides concepts on how to develop software
product lines (SPLs) [2I]. In particular, the SPLE is a paradigm or approach to develop
software products [26, 94], 139] using software platforms and mass customization [124]
40, 134]. A software platform is a set of software subsystems and interfaces or generic
components that form a common structure, from which a set of software products can be
efficiently developed and produced [124], 105 46]. Mass customization is the large-scale
production of goods tailored to individual customers’ needs [124].

SPLE paradigm habitually separates the developing of software products in two pro-
cesses: the domain engineering and application engineering [124]. The domain engineering
is a process in which the commonality and the variability of the product line are defined
and realised [124]. On the other hand, the application engineering is a process in which the
products are built by reusing domain artefacts and exploiting the product line variabil-
ity [124]. Domain artefacts, also called product line artefacts, are reusable development
artefacts created in subprocesses of domain engineering. A development artefact is an out-
put of a subprocess of the domain or application engineering [124]. These development
artefacts encompass requirements, architecture, components and tests. [124].

An SPLE framework is an abstract representation of the two processes defined earlier
for developing software products along with their produced assets. An asset is a result
of the development process. It can be more tangible as data, design and software code,
or even more intangible, such as knowledge and methodologies [I40]. In the literature,
many methods and frameworks have been presented for creating software product lines
Figure 2.4 shows one of these SPLE frameworks in which we can clearly distinguish the
two processes as mentioned earlier.
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Figure 2.4: A software product line engineering framework [124]

An interesting paradigm or approach that is generating attention now is the Model-
driven Software Product Line Engineering (MD-SPLE), which combines the model-driven
software development with the SPLE [36]. The model-driven development is a develop-
ment paradigm that uses the models as a primary artefact of the development process
[22].

2.2 Software variability

Variability is the ability of a system to be changed, customised or configured so that it
fits or reuses in a particular context [I52] [48]. Variability is applied to software systems
or software artefacts (e.g., component) [48]. Thus, it allows us to adapt the structure,
behaviour, or underlying process of the software systems [48]. Variability, besides, is a
fundamental concept in software product lines and facilitates the development of different
versions of a software systems or software artefact [4§].

Mainly we found two types of variability: the dynamic variability and the static
variability. When the variability is determined at runtime, we are talking about dynamic
variability, and when the variability is decided at design or development time, we are
talking about static variability (or design-time variability) [48]. In principle, dynamic
variability is much more complicated than conventional static variability [4].

The variability in the software architecture is usually introduced through variation
points (i.e., locations where change may occur), allowing the development of a different
version of a software architecture [99]. The dynamic variability in the software architecture
is a fundamental concept that we took to propose our infrastructure (See Chapter (3))
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2.2.1 Variability models

A model is a simplified or partial representation of reality [22]. In particular, the modelling
is essential to human activity because every action is preceded by the construction implicit
or explicit of a model [25].

Variability Models are designed for modelling the variability of something. In the con-
text of software, a variability model is a model that defines the variability of a software
[84]. We found different variability models in the literature. Some of the more com-
mon variability models are [60] the goal model, the feature model, the unified modelling
language, the orthogonal variability model, the common variability model. Whereas the
orthogonal variability model and the feature model are the classic models that define the
variability of a software product line [124].

Variability languages also describe the variability of a system [73] [16]. The Kconfig
variability language, for example, was created to describe the variability of the Linux
kernel [16]. In particular, the variability models and languages define, document and
manage the commonalities and variability of reusable artefacts [135] [16] such as software
components, requirements, test cases, etc.

2.2.2 Feature model

A feature model describes the information of all possible products of a software product
line regarding features and relationships among them [I3]. In literature different feature
model variants were presented [136]. The feature model proposed by the Feature-Oriented
Design and Analysis (FODA) method is the most traditional variability model in the
academic literature and the market [10].

To analyse a feature model, we can use the proposition logic. Tools like SAT solver,
Alloy, BDD solver and SMV were created to examine an feature model using this proposi-
tion logic [13]. In the implementation of our framework, we use the SAT solver. The core
notion in feature models is the features [5] in which a feature is classified as a mandatory,
optional, OR, or XOR feature. Besides, each kind of feature defines rules.

e Mandatory feature: if the parent feature is selected, the mandatory child features
must also be selected in the feature configuration.

e Optional feature: if the parent feature is selected, the optional child feature may or
may not be selected in the feature configuration.

e OR feature: if the parent feature is selected, one or more features in the OR feature
group must be selected in the feature configuration.

e XOR feature (Alternative feature): if the parent feature is selected, one and only
one of the features in the XOR feature group must be selected in the feature con-
figuration.

A sample of a feature model (in Czarnecki-Eisenecker notation) of an SPL for the
chess domain [I57] is shown in the figure [2.5



CHAPTER 2. BACKGROUND

ChessSPL

—

Internacionalization
[it8n]

Memory

User Interface
i

(/\O

Language Loader

Consumption

Efficiency

Performance

27

LEGEND

YT OAA

Mandatory Optional Alternative OR

Not
Implemented

A

Requires

Engine
[Intelligence]

Computer Thinking Chess
Visualization Board

Size
Configuration

Redo
Move

Commit
Move

Save Game
Format

Book
Moves

Move
Computation

GamePlay

...............

Invert
Pieces

Board
Type

Pieces

(@]
Configure
Timeout

Simple with
V1 Limited Time
\ Limited 11 and
\ Time E H based on
H Book Moves

Simple Simple
based on

Book Moves

Human-
Human

Whites Blacks

Markable
Pieces

Movable
Pieces

Figure 2.5: A feature model of a SPL for chess domain [157]

2.2.3 Variability models at runtime

Software models [I5] have the potential to be used at runtime either to monitor and verify
particular aspects of runtime behaviour as well as to implement self-*capabilities (e.g.,
self-managing, self-healing). It is because software models can be used to manage all or
partially all of the possible configurations of a SASS in the same way as a variability
model.

A variability model stores information about the variability of a system. Each vari-
ability model element can be declared dynamic or static at design and runtime time. The
dynamic elements can or cannot be taken into account; however, the static elements al-
ways have to be considered. Moreover, queries, at runtime, to this kind of model assist
in achieving the self-adaptive or autonomic behaviour of a self-adaptive software system
(SASS) [28].

The management of adaptation at runtime using models at runtime is proper of the
Models@runtime approach. The Models@runtime approach [88] provides higher levels of
abstraction of both the running systems and its environment.

2.3 Self-adaptation

The self-adaptation is an essential feature of natural evolution [41] and also a property
at the top of a complex self-* taxonomy [19]. The self-* properties [131], also known as
adaptivity properties, are grouped in a hierarchy of three levels: the general level, the
major level, and the primitive level. Many of these self-* properties are similar to each
other. Figure shows the list of Self-* properties presented in [I31].

2.3.1 Self-* properties

e Self-awareness is a property which the system is capable of knowing about itself
i.e. its states and behaviours [18, [70] [131].
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Figure 2.6: Self-* properties

e Context-Awareness is a property in which the system is aware of its execution
environment and, in addition, is able to react to changes in its environment [119]
131].

e Self-monitoring is a property which the system is able to detect changing circum-
stances [70].

e Self-situated is a property which the system is aware of the current external op-
erating conditions [70].

e Openness is a property which the system should function in a heterogeneous world.
Thus, it should be portable across multiple hardware and software architectures
[119]. Additionally, it must be built on standard and open protocols and interfaces.

e Anticipatory is a property which the system should be able to anticipate, to the
extent possible, its needs and behaviours when a stimulus is manifested. Addition-
ally, it has to be able to manage itself proactively [119, [72].

e Self-protecting is a property which the system should be capable of detecting and
protecting its resources from both internal and external attack. Also, it has been
able to maintain the overall system security and integrity[119].

e Self-optimizing, also known as self-tuning or self-adjusting, is a property in which
the system manages the performance and the resource allocation to improve its
execution |70 119 I3T]. Also, it has to react to the user’s policy changes within
the system [70]. End-to-end response time, throughput, utilization, and workload
are examples of important concerns related to this property [131].
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e Self-repairing is a property in which the system focuses on recovery from errors,
faults, and failures [I31].

e Self-diagnosing is a property in which the system focuses on diagnosing errors,
faults, and failures [I31].

e Self-healing is a property in which the system has the capability of discovering,
diagnosing, and reacting to disruptions [I31], [70, 1T9]. It also monitors vital signs to
predict, avoids and prevents health problems, and the undesirable levels [131], [70].

e Self-configuring is a property in which the system is able to readjust itself auto-
matically in response to changes by installing, updating, integrating, and compos-
ing /decomposing of software entities [70, [13T].

e Self-organizing is a property in which the system is able to change their internal
structure and their function in response to external circumstances [I1].

e Self-evaluating is a property in which the system is able to evaluate their innate
characteristics [89).

e Self-control is a property in which the system is able to control their innate char-
acteristics [83].

e Self-maintenance is a property in which the system is able to repair or mainte-
nance itself in response to change in the environment [62].

e Self-governing is a property which the system has the ability to decide and im-
plement decisions for and by oneself [61].

e Self-managing is a property which the system is able to free from the details of
system operation and maintenance and, in addition, is able to provide to users with
a system that runs at peak performance 24,7 [79].

e Self-adaptiveness is the property (at the top of a complex self-* taxonomy) which
comprises the self-evaluating, self-control, self-maintenance, self-maintenance, self-
governing and self-managing properties [131].

2.3.2 Autonomic systems

An autonomic system is a collection of autonomic elements [30]. Autonomic applications
and systems are capable of managing their behaviours and their relationships with other
systems/applications by policies. Each Autonomic system can be composed of several
autonomic elements [119].

An autonomic element is an individual system that contains resources and delivers
services to other autonomic elements [79]. In particular, in the autonomic systems, each
autonomic element manages their internal behaviour and their relationships with others
by policies that have been established in the environment [79]. An autonomic element
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sometimes is called an autonomic system. Figure shows an autonomic element inter-
acting with other autonomic elements. We highlight that each autonomic element follows
the IBM’s MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge) reference model.
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Figure 2.7: An autonomic element interacting with other autonomic elements

In the software domain, the autonomic systems are also called autonomic software
systems. In particular, each autonomic element of the autonomic software systems is an
autonomic software system or autonomic software [8I]. In other words, an autonomic
element is an autonomic system. Some of the features that form an autonomic software
are defined by [5I]. These features, also, have a strong relation with the above self-*
properties.

e An autonomic software system needs to know itself

e An autonomic software system must configure and reconfigure itself under unpre-
dictable conditions.

e An autonomic software system looks for ways to optimise its work.

e An autonomic software system must be able to recover from events that might cause
malfunctions.

e An autonomic software system must be an expert in self-protection.

e An autonomic software system knows its environment and the context surrounding
its activity. Also, it acts accordingly.

e An autonomic software system cannot exist in a hermetic environment (and must
adhere to open standards).

e An autonomic software system has to anticipate the optimised resources needed to
meet the user’s information needs while keeping its complexity hidden.

The self-* properties frequently specify the expected behaviour of autonomic software;
these properties play a significant role in determining the target goal [132].
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2.3.3 Self-adaptive systems

The Self-Adaptive Systems (SAS) have been used and studied in different areas of research
[97, 131], including software engineering, artificial intelligence and so on. As in autonomic
software, the self-*properties [I32] frequently specifies the expected behaviour of self-
adaptive systems.

In the domain of software, these self-adaptive systems are also called self-adaptive
software systems, self-adaptive application or simply self-adaptive software [131] 39]. A
self-adaptive software is a kind of software that disposes of adaptation mechanisms that
allow continued operation when changes exist in its operating environment [146] 85]. In
other words, it is a software that modifies its behaviour in response to changes in its
environment [I17] to continue to operate.

The environment changes refer to anything observable by the software through end-
user input, external hardware device and sensors. In particular, this kind of systems
has two types of sensors: a physical sensor that is a device which responses to stimuli
by generating of processable outputs [75] and a virtual sensor that is an emulation of a
physical sensor which obtains its data using physical sensors [98].

Many approaches for developing self-adaptive systems are exhibited in scholarly lit-
erature. An overview of these approaches is presented in [85]. The Rainbow framework,
Archstudio, Architectural run-time configuration manage, and 3L approach, for exam-
ple, use an architecture-based approach for developing self-adaptive systems [85]. Dy-
namic Software product lines and MUSIC use a Model-based approach for developing
self-adaptive systems [85]. Autonomic Computing, Autonomic Communication, Control
loop UML profile, Control loop patterns, and Control theory foundation use an approach
based on control theory [85]. Moreover, all these approaches share common and different
ideas.

2.3.4 Dynamic software product lines

Dynamic Software Product Lines (DSPLs) is an approach which applies ideas developed
in the SPL community to build software that adapts dynamically at run-time [63, [64].
The variability model is the central artefact in the SPLs engineering and in the DSPLs
approach for specifying the commonalities and variability [121]. In DSPLs, the variability
model describes the potential range of variations that can be produced at run-time for a
single product [1211, [14]. Where a dynamic feature can be (de)activated at runtime while
a static feature is mandatory and cannot be deactivated at runtime [I53]. We use these
core ideas in our framework and infrastructure.

2.3.5 External/Internal adaptation

The adaptation approaches in the self-adaptive systems can be divided into two categories:
An external adaptation approach and internal adaptation approach. Figure [2.8 shows the
internal and external approaches to develop a self-adaptive software.

When a self-adaptive software system uses an internal adaptation approach, the whole
set of sensors, effectors, and adaptation processes are mixed with the application code
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Figure 2.8: Internal and external approaches for developing of self-adaptive softwares

[131]. Then this approach offers a poor scalability and maintainability [I3T]. On the
other hand, when a self-adaptive software system uses an external adaptation approach,
it splits the self-adaptive software systems in two: the adaptation engine and the adaptable
software [I55]. Then this approach is the ideal approach to follow. We use this approach
in our framework and infrastructure.

2.4 Architectural reconfiguration

An architectural configuration is a connected graph of components and connectors that
describes the architectural structure [I60]. Architectural reconfiguration consist in modi-
fying this structure by adding or removing components or connectors [95]. In particular,
components and connectors are architectural elements [125] that can be created using an
object-oriented programming language (OOPL) in a variety of ways; Even, it is possible
to build these without using an OOPL [9].

A component architecture is a description of a system in form of a collection of compo-
nents that interact with each other through connectors [44] [7]. Moreover, components are
the foundation for the software product line (SPL) development [20], the component-based
software engineering (CBSE) and the component-based development (CBD). Component-
based development [69] is a software development approach in which all aspects and phases
of the development lifecycle, including requirements analysis, design, construction, test-
ing, deployment and project management, are based on components.

To develop self-adaptive software systems (SASSs) we require adaptations at the ar-
chitectural level at runtime. Adaptations at the architectural level at run-time require of
changes, on the fly, between the components and their connectors (also known as inter-
connections) [117].
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2.4.1 OSGi

OSGi is a component framework specification that brings modularity to the environment
[158]. OSGi is not new. It has been around since the late 1990s [82], allowing us to create
dynamic architectures [56] at runtime from that time. The OSGi specification has several
implementations (Apache Felix, Knopflerfish, Eclipse Equinox, so on) that work only in
Java environments, but exists some other implementations, for example, nOsgi, which
works with C++.

The modular entity in the OSGi component framework specification is known as a
bundle. A bundle is a collection of code, resources, and configuration files which are
packaged in a Java Archive (JAR) [54]. The OSGi specification also defines that each
bundle has to be the same life cycle. Figure 2.9 shows the life cycle of a bundle in OSGi.
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Figure 2.9: A life cycle of a bundle in OSGi
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The OSGi specification defines the anatomy of a bundle. Figure [2.10] exhibits the
anatomy of a bundle in an OSGi framework. We highlight that a bundle is just a JAR
file that has a manifest file with a configuration about the bundle. In the manifest file,
we specify the dependent bundles, the private packages, and so on of the bundle.

To install and uninstall a component at run-time, we can use the API provided by
some implementation of the OSGi component framework specification. Many approaches
use these APIs, provided by some framework that implemented the OSGi specification
(i.e. Eclipse Equinox), to develop self-adaptive software systems (SASSs) using OSGi.
Therefore, several studies typically use some OSGi framework as support to its approach.

Other OSGi bundles can use an OSGi bundle from two ways [I16]: Sharing static code
and exposing an OSGi service. The former is not good because in the manifest file belong
to a bundle we statically have to declare the required bundles. On the other hand, the
latter is better because it transparently simulates a Service-Oriented Architecture (SOA)
[158].

A Bundle has to use the Services layer of the OSGi framework to use an OSGi service.
The Services layer provides the registry of all the services and all the plumbing mechanisms
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Figure 2.10: Anatomy of a bundle in OSGi

to wire these services [116]. Figure depicts a Bundle B that requires an OSGi service,
a Bundle A that implements an OSGi service, and a Bundle C that defines an OSGi service

[101].
Bundle B

Bundle A @
. g

Bundle C

Figure 2.11: Exposing an OSGi service

2.4.2 COSMOS* implementation model

The COSMOS* component implementation model is an extension of the COSMOS com-
ponent implementation model [53]. The COSMOS* implementation model defines a way
of how to implement components and connectors using a set of design patterns in object-
oriented programming languages such as Java and C++ [149]. Also, it allows reconfiguring
components and connectors at design time. Figure 2.12] shows an architectural view of
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a component that follows the COSMOS* component implementation model. Where the
CompA component shown requires an interface called 1B and provides two interfaces
called IManager and TA.

(a) —QOIManager
53— Compa 2o

CompAl
CompA.implI CompA.speq

CompA.spec.req

(b) ClassB - = ';
-1 i)
|
ComponentFactory | Manager y m'
|
} - 1> IManager
— ClassA V

Facade |- o 1|- - —|>
|

Figure 2.12: a) An architectural view of a component; b) A detailed design of a component
that follows the COSMOS* component implementation model [149]

The COSMOS* implementation model defines that each component has a set of Fa-
cades classes (one for each provided interface), an IManager Interface, a Manager class,
and a ComponentFactory class [53]. In each component, the ComponentFactory class has
to create an instance of the Manager class. Moreover, each Facade class must implements,
at least, a particular provided interface, and finally, each Manager class must manage the
required and provided objects of the component at runtime.

When some object of the component needs to use a required object defined by a
required interface, we can use the Manager object to obtain this object. We highlight
that any class in the component can use this Manager object to acquire some stored
instances that implement a required interface [53].

The COSMOS* implementation model defines that each connector must create an
Adapter class, a Manager Class and a ComponentFactory class [53]. The Adapter class
follows the Adapter design pattern [50], and then it adapts the provided and required in-
terfaces between two components. The Manager class implements the IManager Interface,
and then it has the same implementation as the IManager class of a component. And
finally, the ComponentFactory class is used to obtain a instance of the Manager class.

2.5 Android architecture

The Android architecture is an open source software platform for mobile devices [38].
Android architecture is separated into five hierarchical categories [3]: applications, ap-
plication framework, libraries, Android runtime, and Linux kernel. We highlight that
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all Android applications typically use some components of the Android architecture to
develop its functionalities. Figure [2.13]| shows the hierarchical categories of the Android
architecture with some of its principal subdivisions ( or components) [32].

APPLICATIONS
Launcher Phone Contacts Other Apps

APPLICATION FRAMEWORK

Activity Manager Package Manager Content Provider  View System and Widgets
Telephony Manager Resource Manager  Location Manager Notifications Manager
NATIVE LIBRARIES ANDROID RUNTIME
Surface Manager Media Framework Freetype

ART

Sqlite OpenGL ES WebKit LIBC
ZYGOTE

SGL SSL
LINUX KERNEL
Binder IPC Logger Wakelocks Power Management Alarm Timer

Low Memory Killer USB Driver Bluetooth Driver  Display Driver  Audio Driver

Camera Driver Wifi Driver

Figure 2.13: The Android architecture

We highlight that each Android application is packaged in a .apk archive for its future
installation [I41] in the platform. Our application mainly uses the components of the
Application Framework category of the Android architecture (version 5.0.2). In Android
5.0, the Android Runtime (ART) is the official runtime for the Android applications [32].
In prior releases, it was the Dalvik Virtual Machine (VM).

2.6 Service-oriented architecture

A Service-Oriented Architecture is an architectural style that formally separates services
from service consumers [I50]. A service is some application logic that a system can provide
[137] and a service consumer is a system that needs that application logic. SOA has
three primary entities [104]: one or more service provider, one or more service consumers
(requestor), and a service registry (broker). These entities interact through standard
messaging protocols (e.g., HTTP and SOAP) that support the publishing, discovery and
binding of services [66]. A service registry is a type of repository that allows companies to
catalogue and reference the resources required to support the deployment and execution
of services [106, [7§].

Our application (See Chapter 4)) uses REST services. A REST web service is an SOA
based on the concept of "resource" (service) where the resources are stored on Uniform
Resource Identifiers (URIs) [I09]. A URI is a sequence of characters that identifies an
abstract or physical resource [17].

2.7 Final remarks

The chapter showed the background required to understand the solution.
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e Firstly, we showed several concepts relations to the dynamic software product line.

e Secondly, we showed the variability models. In particular, we presented the feature
model.

e Thirdly, we associated the autonomic and self-adaptive system along with the self-*
properties.

e Fourthly, we showed some technology to allow having architectural reconfigurations.

e Finally, we showed notions about SOA and the Android architecture to understand
how we have implemented our Android application.



Chapter 3

The Cosmapek Infrastructure

Developers require an infrastructure to develop SASSs on Android devices. This infras-
tructure must have a Managing subsystem that reconfigures, reorganises, restructures or
adapts the application (or Managed subsystem) itself at runtime. Therefore, the Manag-
ing subsystem has to manage at runtime and in some way the variability of the applica-
tion. Additionally, this managing subsystem must have a tolerable performance and not
must hinder the operations of the application. In this chapter, we present our Cosmapek
infrastructure that seeks to fulfil the above requirements, along with its framework.

First, we show the foundations of our solution including the Dycosmos implementation
model for runtime adaptations. The foundations of our solution are the adaptation space
and graph, the mapping between features and architectural elements, and the dependency
management. Second, we present the Cosmapek infrastructure with the architectural
design of its framework and finally, we show a sequence of steps to create a self-adaptive
software.

3.1 Foundations

3.1.1 Adaptation space and graph

To manage the variability at runtime, we need to know about the adaptation space and
graph because the former is the variability itself and the latter is the structure that
organises this variability.

We define an adaptation space as a conceptual space which represents all adaptations
of the self-adaptive software system. When we use a variability model to model the
variability of a system, we bound all adaptations of the modelled system. Therefore, we
are bounding the adaptation space of the self-adaptive software.

We define an adaptation graph as a directed graph which shows all transitions between
adaptions of a modelled system. In this graph, each node represents a set of adaptions,
and each edge represents the possible transitions between nodes. To consider the dynamic
or static properties (See of a variability model, we have to define also two restrictions

e Restriction 1 - We can not remove an element declared static of the variability
model. We just can eliminate elements declared dynamic.

38
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e Restriction 2 - We have to remove all child elements (dynamic or static) of the
selected element of the feature model.

The adaptation graph is generated by means a variability model. To build this graph, we
have to use the algorithm |3.1] This algorithm uses the two above restrictions.

1 Input:

2 M: A variability model

3 Output:

4 An adaptation graph

5 begin

6 res := create a new adaptation graph

7 origin := create a new node(M)

8 res.add(origin)

9 for each node n of res

10 v := n.getVariabilityModel () ;

11 for each element e of v

12 / Restriction 1

13 if(e is dynamic){

14 v2 := create a copy of v

15 //remove this element and its children (Restriction 2)
16 v2.remove(e)

17 //update dynamic and static elements

18 v2.update ()

19 if(res.exist(v2)){ //a node with this variability model
20 n2 := res.get(v2) //get the node

21 connect(n,n2,e) //n to n2 with edge e
22 telse{

23 n2 := create a new node(v2)

24 connect(n,n2,e)

25 res.add(n2)

26 }

27 }

28 end

29 return res

30 end

Algorithm 3.1: To create an adaptation graph.

Four samples of adaptation space and graph are shown in the Figures[3.1] [3.2] and
. In each figure: a) shows the feature model; b) shows the adaptation space corre-
sponding to the above feature model; and c) shows the adaptation graph corresponding
to the same feature model. Besides, each node of this graph has a feature model which
in turn has an adaptation space.

e Sample 1 — In Figure 3.1] we show a parent feature with two mandatory features.
Then, its adaptation space of this model has only one element. Applying the al-
gorithm to this feature model, we obtained an adaptation graph with one node
(See Figure c) 3.1)).

e Sample 2 — In Figure |3.2] we show a parent feature with two optional features.
Then, its adaptation space of this model has four elements. Applying the algorithm
to this feature model, we had an adaptation graph (See Figure c) 3.2 ) with four
nodes.

e Sample 3 — In Figure [3.3) we show a parent feature with two alternative features.
Then, its adaptation space of this model has two elements. Applying the algorithm
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to this feature model, we had an adaptation graph (See Figure c) [3.3] ) with
three nodes.

e Sample 4 — In Figure [3.4] we show a parent feature with two Or features. Then,
its adaptation space of this model has three element. Applying the algorithm
to this feature model, we had an adaptation graph (See Figure c) 3.4 ) with three
nodes.

static static
L2 J[ 3 |
static static static static
b)
C1={1, 2,3) [ |Feature :
——@ Mandatory |

____________________

Figure 3.1: Adaptation space and graph of a Feature Model with Mandatory features
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tatic
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| —0 Optional - - - - » Remove Feature 3 |
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Figure 3.2: Adaptation space and graph of a Feature Model with Optional features
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Figure 3.3: Adaptation space and graph of a Feature Model with Alternative features
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Figure 3.4: Adaptation space and graph of a Feature Model with Or features

3.1.2 Mapping between variability model elements and architec-
tural elements

Because a variability model at runtime can have dynamic and static elements (See Section
2.2.3)), we can also have dynamic and static architectural elements (AEs) at runtime. A
dynamic architectural element can or cannot be taken into account at runtime; however,
a static architectural element always has to be taken into account at runtime.

When a software is built using dynamic architectural elements, the upload and load
of architectural elements at runtime generate a different software or system because it
generates a different component architecture (See Section . Therefore, the use of a
different architectural configuration (See Section generates a different software or
system.

To control the variability of a SASS using a variability model, we have to consider all
the software that a SPL can generate as the adaptation states that a self-adaptive software
(SAS) can have at run-time. This previous idea is not new, the dynamic software product
lines (DSPLs) approach uses this idea as foundation of it (See Section [2.3.4).

Our infrastructure maps the variability model elements with the architectural elements
of the software product line (SPL) to control at runtime the variability of the software
using the variability model. In particular, it links the feature model elements with the
architectural elements of the SPL architecture (See Section [2.1.3). Figure shows an
example of mapping between feature model elements and sets of architectural elements
of an SPL architecture. We highlight that an item of a variability model can be linked to
an empty set. In a feature model, this item represents an abstract feature.

In particular, Figure [3.5] shows a mapping of a feature model with five features and
an architectural model with nine architectural elements. Therefore, a selection of features
of the feature model will be mapped to a set of architectural elements. For instance, if
we choose the F1, F3, and F5 features, in the architectural model we will have to choose
and join the S1, S3, and S5 sets. As a result, our chosen features will be mapped to six
architectural elements.
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Figure 3.5: Mapping between features and architectural elements (EAs)

3.1.3 Dependency management

The loading or reconfiguration of architectural elements at runtime cannot be in a random
manner because it can generate failures. Therefore, the loading or reconfiguration of
these items has to be an order such that it does not produce failures. Fortunately, the
architectural model shows the order of precedence between architectural elements.

To acquire this order of priority, we must follow two steps.

e Transform the architectural model to a directed graph.

e Apply the topology sorting algorithm to the directed graph.

We can apply the topology sorting algorithm only to directed graphs of architectural
models without loops because these graphs do not have loops. Usually, an architectural
model does not have loops, and in consequence, its representative directed graph will not
have loops. Moreover, after employing the second step, we will get the order of precedence
between architectural elements because each node with its weight represents some element
of the architectural model.

Figure (3.6 shows an architecture model with its representative directed graph. Each
component and connector of the architectural model has a representative node in the graph
and each edge of the graph represents the dependency between architectural elements.

3.1.4 Dycosmos

Adaptations at runtime require of change at runtime between components and their con-
nector. OSGI frameworks (See Section allows obtaining these changes, loading and
uploading bundles. However, managing OSGI bundles on Android platform is not an easy
task, so we decide to create another way to control adaptations at runtime.

Dycosmos is one of our contributions. Dycosmos is a dynamic component implemen-
tation model which extends the Cosmos* component implementation model (See Section
such that the resulting components and connectors are reconfigurable at runtime.
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Figure 3.6: From an architectural model to a directed graph

Dycosmos added two main modifications to the previous implementation model to get re-
configurable connectors and components at runtime. The createlnstance method of the
Component Factory now creates a singleton object of the Manager class and all methods
of the prior implementation model now are atomics. Furthermore, Dycosmos reorganises
the structure of the Cosmos™ implementation model.

Figure shows a class diagram of a dynamic component, called CompA, imple-
mented following the Dycosmos implementation model. This dynamic component shows
a provided interface called I A and a required interface called I B. The Manager class im-
plements four methods (setProvidedInterface, setRequiredInterface, getProvidedInterface
and getRequiredInterface) what manages the variability at runtime of the components
and connectors.
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Figure 3.7: Class diagram of a dynamic component following Dycosmos
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3.2 Cosmapek infrastructure

Figure presents an overview of the Cosmapek Infrastructure, representing the man-
aging subsystem and a deployed configuration of the managed subsystem. The managed
subsystem, or application logic, is oblivious to the managing subsystem. The managing
subsystem, or adaptation logic, is modularized following the MAPE-K loop (See Section
. Moreover, each one of these modules has one or more implementation components.
We highlight that each component or module shared a unique knowledge. In the follow-
ing, we detail the managing subsystem, the managed subsystem, the knowledge base, and
an adaptation scenario for tolerating a service failure.

( Managing Subsystem )
Analyzer Planner
Knowledge g
- Feature Model §
°
- Architectural Model 2
- Mapping (between features and AEs)
Monitor Executor
- Sensor Status
- Executable Architectural Elements
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Figure 3.8: Overview of the Cosmapek infrastructure

3.2.1 The managing subsystem

The managing subsystem is independent of the application so that it can be reused across
different domains. It incorporates the concepts of SASSs by providing an implementation
of the MAPE-K loop. Figure (3.8 shows the main activities to perform an autonomic loop.
In particular, the sensors observe the managed subsystem and send the collected informa-
tion to the Monitor module. The Analyzer module, on the other hand, uses the data from
the Monitor module to analyse the managed subsystem. The planner module generates
architectural reconfiguration plans, selecting the most suitable architectural configura-
tion, according to the knowledge base. Finally, the Executor module runs the effectors
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to reconfigure the managed subsystem. As a result, the current deployed configuration
changes.

3.2.2 The managed subsystem

The managed subsystem has to be a DSPL where a feature model represents the vari-
ability of the DSPL. In particular, we use the adaptation space and graph to limited
the variability (See Section [3.1.1)). The feature model contains a set of features, includ-
ing static and dynamic features. Each feature linked some architectural element of the
self-adaptive software. Static features are linked to static architectural elements and dy-
namic features are linked to dynamic architectural elements (See Section [3.1.2)). The set
of selected executable components and connectors that are running composes the current
deployed architectural configuration of the managed subsystem.

From the viewpoint of Cosmapek, the managed subsystem is a client application. The
DSPL must provide information about itself to allow managing subsystem of Cosmapek to
control and to manipulate the current deployed architectural configuration of the managed
subsystem.

Figure [3.8| shows a sample of a managed subsystem. In particular, this DSPL is
developed based on services because of this separates services from service consumers. As
a result, some components are service clients. The components connected to services will
have sensors monitoring them. At runtime, the sensors will gather information about the
availability of these services and will feed the managing system. Service unavailability or
delay in response time are examples of failures detected by sensors.

When a service failure in the managed subsystem is detected, the managing sub-
system can decide to change the deployed configuration by another valid architectural
configuration using, for example, the benefits of dycosmos or OSGi. A valid architectural
configuration is generated by the managing subsystem using data from the knowledge
base.

3.2.3 The knowledge base

The models and artefacts that represent to the managed subsystem are stored in the
knowledge base, as shown in Figure [3.8] The primary function of the knowledge is to feed
the control loop in the managing subsystem. Cosmapek knowledge base is composed by:

e [eature Model — Represents the dynamic variability of the managed subsystem. It
defines, regarding features, which configurations can be applied to the managed
subsystem during its execution.

e Architectural Model — Represents the architectural model of the DSPL which the dy-
namic and static architectural elements. Also, it contains the priority order between
the architectural elements to deploy (See Section [3.1.3).

e Mapping — Represents the mapping between features and architectural elements

(See Section [3.1.2)).
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e Sensor Status — is a runtime hash table that registers the sensor status (activated
or deactivated). In particular, the sensor status represents a flag that indicates
whether there is a problem in the managed subsystem. This flag is used by managing
subsystem to define if any action is needed.

e Fxecutable Architectural Elements — are binary representations of components and
connectors of the architectural model.

3.2.4 An adaptation scenario for tolerating service failures

When an application is deployed and executed, the adaptation loop from managing sub-
system is activated. When a service used currently by the managed subsystem is not
available, the sensor associated with service will detect and inform to Monitor module
about this event. As a result, the Monitor module will save the status of the sensor in the
knowledge. On the other hand, the Analyzer module will check the sensor status, using
the knowledge, to analyse the deployed configuration of managed subsystem. The result
of the analysis will indicate that the managed subsystem needs a reconfiguration because
of one service used currently by the application is not available.

When the managed subsystem requires a reconfiguration, the Planner module is ex-
ecuted. It will prepare a new architectural configuration plan, according to the feature
model and its mapping to architectural elements. In our scenario, an architectural con-
figuration plan is composed by an architectural configuration, without the services that
currently are not working. When the Planner module finishes the design of the plan, the
Executor module begins to work. The Executor module uses this plan to execute (using
the Java reflection API) the effectors associated with each element of the plan. Conse-
quently, these effectors will reconfigure the managed subsystem and finally the application
will work in a normal way.

3.3 Architectural design of the Cosmapek framework

Figure presents a UML component diagram of the Cosmapek framework, that repre-
sents its architectural model. The model has three kinds of implementation components.

e Components that implement the functionality required by the MAPE-K loop — The
Monitor, Analyzer, Planner and Executor components.

e Components that manage the data of knowledge base — The Components, Features,
Connectors and Variability components.

e Components that support the operation of the managing subsystem — The Reader
and Controller components.

The model refers only to the managing subsystem which has two extension points
(ISensor and IExecution interfaces) for the development of the managed subsystem.
The managing subsystem also provides and two control interfaces (IController Manager
and I ReaderManager) to manages the Cosmapek.
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Figure 3.9: The architectural model of the Cosmapek infrastructure

IController Manager Interface — This interface is used by the App to specify the

lapse of time that the infrastructure will use to analyse the register of sensors.

uration files required by the Cosmapek.

the sensor status on the Monitor component.

implements this interface.

I Reader Manager Interface — This interface is used by the App to add the config-

ISensor Interface — This interface is used by the sensors to update the record of

I Execution Interface — This interface is used to connect the effectors. Each effector

The Cosmapek framework has 8655 source code lines and it was implemented using

ten customised components, following the Dycosmos implementation model (See Section

3.1.4).

3.3.1 Monitor

The Monitor component implements the Monitor module, as shown in Figure [3.9] it

is responsible for monitoring the managed subsystem using the sensors. The Monitor

component provides an interface called I.Sensor to the sensors sends information using
this interface (See Figure [3.9). Sensors are a bridge between the managed and managing

subsystem. They inform to the Monitor component some incident produced in the context

or managed subsystem using the methods activateSensor and desactivateSensor of the

ISensor interface.



CHAPTER 3. THE COSMAPEK INFRASTRUCTURE 48

3.3.2 Analyzer

The Analyzer component (Figure implements the Analyzer module and it is re-
sponsible for analysing the state of the current deployed architectural configuration. The
Analyzer component uses the information collected by the Monitor component to checks
(at runtime) the state of the managed subsystem. An invalid feature indicates that it
should be changed, and a valid feature symbolises that it can be used.

3.3.3 Planner

The Planner component (Figure implements the Plan module and it is responsible for
generating new architectural reconfiguration plans. This component performs a request to
the Analyzer component to obtain the list of invalid feature and then makes a request to
the Variability component to get a valid feature configuration at runtime which represents
a valid product (See Section [3.1.1)). The Variability component, which manages the
variability binding at runtime, uses the adaptation graph and the SAT solver tool [91]
to do the above task. In addition to this, the Planner component acquires the set of
architectural elements mapped to the feature configuration using the assets from the
knowledge base.

3.3.4 Executor

The Fxecutor component, presented in Figure implements the Executor module.
This component runs the effectors of managed subsystem, following the architectural
reconfiguration plan. The Ezecutor component uses the Java reflection API to run the
effectors. Cosmapek defines to have an effector associated with each architectural element
of the architectural model.

Effectors are sequences of compiled commands, which at runtime execute reconfigu-
ration actions on the managed subsystem without stopping the subsystem. As a result,
the managed subsystem should provide, at runtime, reconfiguration mechanics of itself.
We highlight that If some request in the managed subsystem is still being processed, the
effector must wait until to complete this process. Finally, all effectors have to implement
the I Execution interface.

3.3.5 Components

The Components component manages the updated register of components of the archi-
tectural model belong to adaptable software systems. This component allows that the
framework knows which components are executing at runtime and also which features are
associated with a particular component.

3.3.6 Connectors

The C'onnectors component manages the register of connectors of the architectural model
that the adaptable software system holds. All stored information in the record of connec-
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tors is supplied by the Reader and Variability components. Additionally, this component
allows that the framework knows which connectors are executing at runtime.

3.3.7 Features

The Features component manages the register of the features belong to the adaptable
software system. The information managed by the component is registered by the Reader
and Variability components. Also, this component allows that the framework knows
which features are executing at runtime.

3.3.8 Variability

The Variability component reads the configuration file that contains the variability of
the system. In particular, this XML configuration file contains a feature model modelled
using the featureIDE tool.

The Vartability component loads the feature model to memory. Its main function is to
provide a feature configuration without using a set of features. Moreover, the Variability
component updates the Features, Monitor, Components, Connectors components with
the result of the last query to the feature model.

3.3.9 Reader

The Reader component reads the configuration files required by the framework: the
knowledge base and setting of the Cosmapek.

Firstly, the Reader component reads an XML file with the architectural model and
the mapping (See Section. Secondly, the Reader component reads an XML file with
the variability model (feature model) of the software system. In this case, the Reader
component delegates the reading of it to the Variability component. Finally, the Reader
component reads a path to the effectors. The framework will use this path to find effectors.

3.3.10 Controller

The Controller component generates part of the control loop of the infrastructure using
the Analyser, Planner and Executer components. The period of monitoring is configured
here.

3.4 How to use the Cosmapek
Figure [3.10| shows the three inputs that our managing subsystem requires.

e An XML file- which contains a feature model with the dynamic variability of man-
aged subsystem.

e An XML file — that contains the architectural model and the mapping.

e A Path in the filesystem — where we can find the effectors of the system.
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Figure 3.10: Required inputs of the Cosmapek infrastructure

In general, we can follow the next three steps to built a self-adaptive software.

e Step 1 — To design and create the managed subsystem as a DSPL, using a feature

model to modelled the dynamic variability and a set of binary representations of

components and connectors of the component architecture.

e Step 2 -— To plan and create the effectors and sensors of the system. An effector

for each element of the architectural model.

e Step 3 — To design and create the three inputs of the Cosmapek.

e Step 4 — To execute the Cosmapek in background.

3.4.1 Implementing a sensor

Sensors can be different software systems. However, to facilitate the develop of a self-
adaptive software we described the sensors as components. Figure [3.11] shows how a

sensor component can communicate something to Cosmapek framework. Additionally,

these sensors must run on a different thread.
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Figure 3.11: Sensors using the Cosmapek framework
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3.4.2 Implementing an effector using Dycosmos

In general, we must create an effector using Dycosmos for each architectural element of the
architectural model. Effectors that make reference to components should have commands
that acquire the instance of the Manager object of the component (these commands also
initialize the component). On the other hand, effectors that make reference to connectors
(see figure should have commands that initialize three architectural elements: the
component that provided the required interface, the component that required the provided
interface, and the connector of these two components. Besides, we must put commands
that register the provided objects from first to the second component.

public class Conn_ localizationB company implements IExecution
IInterfaceTags {

private unicamp.buscame.localizationB .prov.IManager m_locaB;

private unicamp.buscame.localizationB .prov.ILocalizationManager i_locaB;
private unicamp.buscame.conn localizationB company.prov.IManager m_ conn;
private unicamp.buscame.company.prov.IManager m_compa;

%@Override
public synchronized void execute() {
'/ Acquire the instance
m_locaB = unicamp.buscame.localizationB .impl.ComponentFactory.
createlnstance () ;
Get the provided object
i locaB = (unicamp.buscame.localizationB .prov.ILocalizationManager)
m_locaB.getProvidedInterface (ILocalizationManagerTag) ;
/Acquire the instance
m_conn = unicamp.buscame.conn localizationB company.impl.
ComponentFactory. createlnstance () ;
//Set the provided object
m_conn. setRequiredInterface (ILocalizationManagerTag , i locaB);
'/ Acquire the instance
m_compa = unicamp .buscame.company.impl.ComponentFactory.createlnstance
0
Set the provided object
m_compa. setRequiredInterface (ILocalizationManagerTag , m_conn.
getProvidedInterface (ILocalizationManagerTag)) ;
}

Figure 3.12: An effector that makes reference to a connector

3.5 Final remarks

The chapter showed the foundation of our proposed solution and the Cosmapek infrastruc-
ture generated using the solution. Our adaptive deployment infrastructure uses techniques
of SASS as a means to achieve the dynamic deployment.

The chapter also showed Dycosmos. Dycosmos is a new component implementation
model that can be used to implement reconfigurable components and connectors at run-
time.
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Finally, the chapter showed the architectural design along with guidelines of how to
use our solution.



Chapter 4

The Cosmapek Infrastructure Applied
to Android

This chapter shows an Android application which is a self-adaptive application that follows
our infrastructure and uses our framework.

We decided to implement our self-adaptive software system (SASS) on the Android
platform instead of using other platforms (e.g. the desktop platform) because the number
of Android applications in the world has grown exponentially [65]. In particular, the
Android applications are written using the Java programming language, and many of
these usually use the APIs that the Android software development kit (SDK) provides to
the application developers [142].

First, the chapter shows the two general modules of the application: the client side
and the server side. Specifically, we added the Cosmapek framework as a dependency
of the client-side module without any modification. However, it had to be initialized
and executed each time the application is initialized. Second, the chapter illustrates the
sequence of steps that we took to add the self-adaptive behaviour to our application.
Finally, we define and show the experiments and results.

4.1 The Buscame application

Our Android application allows that a user can search companies close to a location,
using the latitude and longitude coordinates of Google Maps. Buscame has two general
modules: the first one contains several REST API servers that are used by the application
and the second one contains the Android application itself. The Cosmapek framework
is located on the Android platform. We separated the application logic in REST servers
to manipulate (turning on and off servers) the android application externally. Figure
shows the overview of the self-adaptive application. The application internally sends
requests to REST API servers and receives responses from these servers.

4.1.1 The client side

This module contains our Android application (around 9320 source code line) together
the Cosmapek infrastructure. Our application has seven main components, five alternate

23
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Figure 4.1: Modules of the Buscame application

components and eight components that work as sensors. Besides, all the components of
this module were implemented following the DyCosmos implementation model.

e Main components: the Controller, Ul, Company, Client, Product, Location and
Configuration components

e Alternate components: The ProductB, ProductC, LocationB, LocationC and Con-
figurationB components

e Sensor components: The ProductSensor, ProductBSensor, ProductCSensor, Local-
izationSensor, LocalizationBSensor, LocalizationCSensor, ConfigurationSensor and
ConfigurationBSensor components

The Product, Configuration, Location components and alternates components per-
form requests to the REST API serves to obtain the information that needed the com-
ponents to implement the provided interfaces by these. In particular, each one of these
components has associated a different REST API server. Figure shows the architec-
tural model associated to our Buscame. Also, we highlight that this architectural model
is also the architectural model of a DSPL.

4.1.2 Components:

e Controller component is the component that manages all the functionality asso-
ciated with the Android application. Additionally, this component uses the provided
interfaces by the UI, Client and Company components to do its work.

e Ul component is the component that manages the interfaces of users of the An-
droid Application. Additionally, this component uses the provided interfaces by the
Company and Client components to acquire the required information to generate
and display the user interfaces.

e Company component is the component that manages everything related to a
company. Additionally, this component uses the provided interfaces by Product,
Localization and Configuration components to do its work.
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e Client component is the component that manages everything related to a client.
Additionally, this component uses the sensors of location belong to the Android
device to do its work.

e Product component is the component that manages everything related to a prod-
uct. Additionally, this component sends REST requests to a REST API Server to
obtain the required information about the products.

e ProductB component has the same functionality that the Product component.
However, this element uses one different REST API Server to obtain the required
information about the products.

e ProductC component has the same functionality that the Product component.
However, this element uses one different REST API Server to obtain the required
information about the products.

e Localization component is the component that manages the locations. Addi-
tionally, this component sends REST requests to a REST API Server to obtain the
required information using a location.

e LocalizationB component has the same functionality as the Localization com-
ponent. However, this element uses one different REST API Server to acquire the
required information using a location.

e LocalizationC component has the same functionality as the Localization com-
ponent. However, this element uses one different REST API Server to obtain the
required information using a location.
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e Configuration component is the component that manages everything related to
a product configuration. Additionally, this component sends REST requests to a
REST API Server to obtain the required information necessary for implementing
its provided interfaces.

e ConfigurationB component performs the same task that the Configuration com-
ponent performs, but using a different server.

e ProductSensor component is a sensor that monitors the Product component.
Every certain period it uses the provided interfaces belong to Product component
to query something.

When the Product component throws some exception, the ProductSensor compo-
nent catches this exception and register it in the framework. Specifically, the Prod-
uctSensor component records that the Product component at that moment is not
working properly using the I SensorUpdater provided interface.

e ProductBSensor component is a sensor that monitors the ProductB component.
And also it performs the same functionality as the ProductSensor Component.

e ProductCSensor component is a sensor that monitors the ProductC component.
And also it performs the same functionality as the ProductSensor Component

e LocalizationSensor component is a sensor that monitors the Localization com-
ponent. And also it performs the same functionality as the ProductSensor Compo-
nent

e LocalizationBSensor component is a sensor that monitors the LocalizationB
component And also it performs the same functionality as the ProductSensor Com-
ponent

e LocalizationCSensor component is a sensor that monitors the LocalizationC
component. And also it performs the same functionality as the ProductSensor
Component

e ConfigurationSensor component is a sensor that monitors the Configuration
component. And also it performs the same functionality as the ProductSensor
Component

e ConfigurationBSensor component is a sensor that monitors the ConfigurationB
component. Also, it performs the same functionality as the ProductSensor Compo-
nent

4.1.3 User interface

Figure shows the user interface (UI) of our Android application.
Our Android application has a menu (Menu UI) with two items: the Localization
button and the Search button. When the user selects the localization button, our Android



CHAPTER 4. THE COSMAPEK INFRASTRUCTURE APPLIED TO ANDROID 57

&= % 00O @ °° 4 G@13:32 CRK 90O ¥ °C 411333 R Q0 © W °° 4 &1335

FreeMain § FreeResultDetails

6:0 5:50

Q ™ e A

W Localization Search Bicdictoescription

Buwscame ot
- /|

press and hold ProductDescription

anywhere on the screen
to start

(a) Initial UT (b) Menu UI (¢) Products Ul
== e Q0 ®O ¥ °° 441333 & ; 90 ©O W C 441334
FreeLocalization : FreeResult

3 C & $) CompanyName 4
L%@ e CompanyDescription 4
< CompanyName 5
v W{ CompanyDescription 5
)

d

O ~ CompanyName 6
>< CompanyDescription 6
TRIO

sssss

(d) Location UI (e) Companies Ul

Figure 4.3: User interfaces of Buscame

application shows the Location UI. And when the user selects the Search button, our
application shows the Companies Ul with the twenty companies closest to the current
location of the user.

Moreover, when the user selects a location in the Location U, the Android application
shows the twenty companies closest to this new location (Companies UI). And then when
the user selects a business in the Companies Ul, the Android application shows the set of
products that this company offers (Products UI).

4.1.4 Stages to adding self-adaptive behaviour

To add self-adaptive behaviour to some application (Android or Desktop), we mainly
require the configurations files that our Cosmapek framework needs (See Section .
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Developers of the SASS should design these setting files at design time.

e Firstly, we need to prepare the variability model using a feature model. We used the
FeatureIDE plug-in to develop the feature model and then to generate the XML file
associated with this model. Figure [1.4] shows the variability model of our Android
application.

Configuration

| Buscame Localization

. Product
Static features

r— — — 1

| ‘ Mandatoryl

l AAlternative l
L .

Figure 4.4: Feature model of the Buscame

e Secondly, we need to prepare the set of effectors and sensors of the system (See

Sections [3.4.1 and [3.4.2)). We created a set of classes (one for each element of

the architectural model) to works as the effectors. These classes implement the
I Execution interface of the framework and as a consequence, these implement the
execute method of the I Execution interface.

e In third place, we need to create an XML file with the architectural model along
with the configurations of the system.

e Finally, we need to add the prepared data to the Cosmapek framework and execute it
on a different thread. To insert the input of the system, we use the IReadingManager
interface of the framework and to run the framework we use the IControllerManager
interface of the framework. From this moment forward Buscame is a self-adaptive
software.

4.1.5 The server side

We have eight REST API servers with around 3202 source code lines. All our servers
have the same functionality, the same stored information, and almost the same code.
Each server provides a REST API on a different port and uses a separate database to
store the information of the Buscame. Specifically, we use the Orient DB, NoSQL database
management system, to manage the databases of the application.

Our servers were implemented using the Restlet framework. Being it a framework
which maps the REST concepts to Java classes [96]. We emphasise that the Restlet
framework can be used to implement any RESTful system [92].
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We use a Quadtree structure to query companies closer to a location of Google Maps.
In particular, we use a range query (or epsilon query). Also, all information, even the
images, sent by the server to the client applications is stored in a JSON.

Moreover, when a request of "companies closer to a location" arrives at the server,
the server (using the provided location) queries to the quadtree structure to obtain this
information. Then the set of companies closest to the location obtained by the quadtree
is ordered from minor to major. Finally, the server sends the first twenty companies.

The figure shows the REST API servers of Buscame interacting with the compo-
nents of our Android application.
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Figure 4.5: Servers of the Buscame application

4.2 Proof of concept of the Solution

Our target is to verify if our infrastructure really works on the Android platform. As a
result, we designed and executed two exploratory experiments. In each experiment, the
application and the Cosmapek infrastructure ran on Motorola Moto G (2nd Gen) with an
Android platform (API 21 Lollipop). On the other hand, the servers and scripts ran on a
Toshiba Laptop computer with a processor Intel(R) Core(TM) i7 CPU Q 720 @ 1.60GHz
and a RAM memory of 4.00 GB.



CHAPTER 4. THE COSMAPEK INFRASTRUCTURE APPLIED TO ANDROID 60

4.2.1 Experiment 1 — Testing the Buscame application in excep-
tional scenarios

The target of the first experiment was to examine if the Buscame application using the
Cosmapek infrastructure copes exceptional scenarios. To get our purpose, we designed
two activities which aleatory applied during three hours.

e Activity A — In this activity, we turn off some currently used server, wait for the
application reacts to this event and finally use some functionality.

e Activity B — In this activity, we only turn on some shutdown server and wait for
the application responds to this event.

Besides, to know what is happening at runtime in the experiment, we added some
position flags in the sensors and at the beginning and end of the Analyzer, Planner and
Executor components of the framework.

When we run the experiment, we noticed using the position flags that the Buscame ap-
plication changed several times its current architectural configuration in order to cope the
incidents. Besides, we noticed that the sensors had a delay in detecting the disturbances.
However, after detecting the incident, the Analyzer, Planner and Executor components
of the managing subsystem had an acceptable performance. In Android applications, an
acceptable performance means two to three seconds.

4.2.2 Experiment 2 — Testing the performance of the Cosmapek
infrastructure

We executed a second experiment that consisted of measuring the performance of the
Cosmapek. To simulate different environments in this experiment, we created scripts in
Shell and Java that shut down and open up periodically, in a controlled manner, the servers
of our self-adaptive application. Specifically, this experiment was of the type controlled
because each simulated environment was aleatory built to have at least a solution. The
time interval which our script generated a new environment was of the order of 5 minutes
and 30 seconds.

In this experiment, we analysed and collected data (during four hours) of the infras-
tructure performance, in particular of the Analyser, Planner and Executor components
in the Android platform. To obtain this information, we added position and time flags in
these components.

Performance of the Analyser component

According to the data collected, the Analyser component analysed the system more of
3000 times because the control loop configuration of the Cosmapek was set to 5 seconds.
Figure shows exactly the points placed in the control loop where we took the initial
and final time.

The obtained result shows that the time interval to perform an analysis of the system
at runtime takes milliseconds, which is acceptable in some Android applications. Figure
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4.7 shows this result. In this figure, the peaks are possibly generated by interference of
the sensors. We highlight that this result did not include the time required for a sensor
of the system to be activated or deactivated and the time needed for a sensor registers its
current situation in the framework.
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Figure 4.7: Time intervals obtained to perform an analysis of the system at runtime

Performance of the Planner component

According to the data collected, the Planner component executed 38 reconfiguration plans
because the framework just allows creating a plan when a failure appear in some architec-
tural element used at runtime. Figure 4.8 shows exactly the points placed in the control
loop where we took the initial and final time.

The result obtained shows that the time interval to design a reconfiguration plan at
runtime takes milliseconds which is acceptable in Android applications. The time varies
depending on to the size and number of combinations of the FM. The FM of this App has
18 combinations. Figure [4.9] shows the results obtained of the experiment. We highlight
that the queries to the FM to acquire a new valid features configuration of the SPL takes
a considerable time because it was implemented using the Sat4j Java library.
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Performance of the Executor component

According to the data collected, the Executor component executed 38 architectural re-
configuration plans because the framework just allows running an architectural reconfig-
uration when some architectural plan was prepared before. Figure shows exactly the
points in the control loop where we took the initial and final time.
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The result obtained by applying the experiment indicated that the time interval to
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perform an architectural reconfiguration at runtime, using the underlying properties of
the Dycosmos implementation model in our application, takes milliseconds, which is ac-
ceptable in some Android applications. Figure shows this result.
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Figure 4.11: Time intervals obtained to perform an architectural reconfiguration at run-

time

The above result indicates that the Dycosmos implementation model can replace the
use of traditional OSGI frameworks.

Performance of the framework

The experiment collected 38 adaptations. However, some of these adaptations belong to
the same scenario because our implemented sensors have a delay to detect a change in
the environment and in some occasions these sensors are activated sequentially. In other
words, n adaptation collected belong to the same scenario instead of different scenarios.
Figure [4.12] shows exactly the points in the control loop where we took the initial and

final time.
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Figure 4.12: Initial and final points taken in the experiment to measure the Planner and
Executor components

The result obtained by applying the experiment reveals that the time interval to
perform an adaptation at runtime without regard to the time required to performance
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the analysis of the system takes milliseconds. This time is acceptable in the Android
applications. Figure |4.13|shows the result.
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Figure 4.13: Time intervals obtained to perform an adaption at runtime

4.3 Final remarks

The chapter showed our self-adaptive software with their modules: client-side and server-
side. In particular, the client-side module contains the Cosmapek framework, and the
server-side module comprises the REST servers. The self-adaptive Android application
tolerated the service unavailability by changing services at runtime.

Furthermore, the chapter showed two exploratory experiments to measure the perfor-
mance and reliability of our solution.

e The first experiment showed that is possible achieve a self-adaptive behaviour on
the Android platform which answers to the RQ1.

e The results of the second test showed that our solution has an acceptable perfor-
mance, which solves to the RQ2. However, these results are depending on the
application.

Finally, We highlight that our solution is one of the first solutions that works on
Android platforms. Other works (See Section only operating in desktop platforms.
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Conclusions and Future work

Our research generated a new infrastructure to the developing of self-adaptive software
which facilitates the developing of this kind of systems on Android platforms. As a result,
the research produced a new implementation model called Dycosmos.

Unlike other solutions (See Section , our solution was implemented to work on
Android platforms. Besides, we provided a framework (implemented in Java) to support
the use of our solution. According to our proof of concept, our solution has an acceptable
performance in the Android world. Other works as the ArcMAPE and MoRE do not
show an acceptable performance.

This chapter adds Dycosmos to the contributions of the study and besides it shows
the conclusions and future work of our research.

5.1 Conclusions

e Managing architectural elements at runtime is the key to developing self-adaptive
systems (SASs) in the software domain. This work has shown that is possible to
construct a reconfigurable software (at runtime) using an object-oriented program-
ming language (OOPL). Mainly, to implement the components and connectors of
our reconfigurable software, we have used the Java programming language.

e Our new dynamic component implementation model, called Dycosmos, is a guide
to code reconfigurable architectural elements at runtime. Our self-adaptive software
was constructed following this new implementation model and had an acceptable
performance when reconfiguring the system. Nonetheless, this new model added
repetitive code to the software because of its design.

e A good software architecture is a key to facilitating the creation of software prod-
uct lines and also the creation of dynamic software product lines. In this work,
our application showed that a component-oriented architecture is ideal for creating
DSPLs.

e Our proposed solution, presented in this work, places the control loop in the manag-
ing subsystem. The solution allowed creating a self-adaptive software on an Android

65
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platform and favoured the creation of a new infrastructure to the developing of self-
adaptive software.

e This work presented a new self-adaptive Android application called Buscame which
coped failures that occur at runtime. Changing the use of services according to
context, Buscame tolerated the service unavailability successfully. However, we had
a poor performance detecting variations in the environment using our sensors (See

Section 4.2.1)).

5.2 New contributions
We add one new contribution to the mentioned in section

Contribution - A new dynamic component implementation model
called Dycosmos

As has already been mentioned in Section [3.1.4] Dycosmos is a extension of the Cosmos™
component implementation model such that now the resulting components and connectors
are reconfigurable at runtime.

5.3 Future work

Researchers can take some of the ideas presented here to continue this research.

e Idea 1 - Replicate the study with a complete and new application

Our presented application is a small application. We need to build new applications,
using a larger architecture and feature model, to better understand the behaviour
of ou framework on these new self-adaptive systems.

e Idea 2 - Add new functionality to our framework

Our framework can be updated to support distributed self-adaptive software sys-
tems. Thus, the new structure might be used to develop this kind of self-adaptive
software. The work of Weyns et al. [162] can help to generate some new ideas to
update our framework due to the fact it shows some patterns for a decentralised
control.

e Idea 3 - Create a new tool to create self-adaptive software systems using
our infrastructure

We need to create a new tool to model software architectures and variability models.
This new software must generate the architectural code of the architectural model
using some dynamic component implementation model (e.g., Dycosmos) that allows
built reconfigurable components and connectors at runtime. Also, this tool must
generate the inputs required by the Cosmapek framework.
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The tool has to be simple and without dependencies. Building an Eclipse plug-
in using the Eclipse platform is not recommendable because this platform changes
every year.

e Idea 4 - Implement other variability models in our framework

For now, we are using the feature model to manage the variability of the self-adaptive
software and, also, as the brain of this software. However, our implementation is
not efficient and in a self-adaptive software with millions of features, we will need
a new implementation or some new implementation of some variability model that
can select at runtime the suitable features to some given context in a quick way.

e Idea 5 - Apply new dynamic component implementation models

We have implemented our application using the Dycosmos component implementa-
tion model. However, other component implementation models can be applied. We
propose to investigate or create new models similar to the Dycosmos implementation
model to test our framework with these new models.

5.4 Final remarks

This chapter showed a new contribution of our list of contributions. Besides, it showed
the conclusions and some new ideas to future works.
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