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Resumo

Entender a dinâmica de interações sociais é crucial para o entendimento questões que
envolvem o comportamento humano. O surgimento de mídias sociais online, tal como
Facebook e Twitter, possibilitou o acesso a dados de relacionamentos de pessoas em larga
escala. Essas redes são orientadas à informação, com seus usuários compartilhando e
consumindo informação. Nesta dissertação, estamos interessados na presença de homofilia
por tópicos em uma rede social. Especificamente, nós exploramos como as conexões entre
indivíduos estão ligadas com a sua similaridade por tópicos, i.e., a sua proximidade em
consideração com os diferentes tipos de conteúdo que circulam pela rede. Para fazê-lo,
representamos usuários utilizando as informações de suas mensagens. Nossos resultados
demonstram que usuários, na média, estão conectados com usuários similares a eles e
que interações mais fortes estão relacionadas com uma alta similaridade por tópicos. Nós
também verificamos que, quando se considera apenas usuários dentro de um tópico, a
homofilia se manifesta diferentemente de acordo com o tópico. Nós acreditamos que esta
pesquisa, além de fornecer uma maneira de aferir similaridade por tópicos, aumenta as
evidências de homofilia entre indivíduos, contribuindo para um melhor entendimento de
como sistemas sociais complexos são estruturados.



Abstract

Understanding the dynamics of social interactions is crucial to address questions in-
volving human behavior. The emergence of online social medias, such as Facebook and
Twitter, has enabled the access to data of people relationships at a large scale. These
networks are information oriented, with users sharing and consuming information. In this
dissertation, we are interested in the presence of topical homophily in an online social
network. Specifically, we explore how individuals connections are related to their topical
similarity, i.e., their proximity regarding the different kinds of content that are shared in
the network. To do so, we represent users using the information of their messages. Our
results show that users, on average, are connected with users which are similar to them
and that stronger interactions are related to a high topical similarity. We also verified
that, when considering only users inside a topic, homophily manifests differently according
to the topic. We believe that this research, besides providing a way to assess the topical
similarity of users, deepens the evidence of homophily among individuals, contributing to
a better understanding of how complex social systems are structured.
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Chapter 1

Introduction

In this dissertation, we present our research, which uses data from Twitter to explore
the behavior of individuals connections. The emergence of this kind of online social
networking service allows testing some social hypothesis with a massive amount of data,
giving some insights that would be overwhelming to be obtained by traditional approaches
[63]. Furthermore, although the connections in an online social network are only the ties
of a specific environment, they might provide data to deepen the understanding of how
social systems are structured. Examples can be seen in the study of protests recruitment
[30], the limit in the number of friends that someone can have [29], and how individuals
tend to acquire the behavior of people they interact with [23].

Moreover, Twitter is often categorized as an information network [52], i.e., it is often a
medium for the consumption and sharing of content, which is diffused through users con-
nections. Users decide to follow others, subscribing to receive their posts, i.e., their tweets
and retweets. Users can also mention each other, which is another type of connection.
This constitution conducts to an interesting linkage between information and connections
among individuals, which is the focus of our investigation in this work.

The original purpose of this research was to explore how the evolution of the Twitter
social network – i.e., its dynamics of nodes and edges – was related to the flow of infor-
mation. In this case, nodes and edges stand for users and their follow ties, respectively.
The information flow is captured by their messages traversing the network through their
connections. Some previous works provided evidence that users are influenced by the dif-
fused content [76], but we were interested in how some patterns of information diffusion
could affect the links dynamics [54]. We had strong limitations to address this prob-
lem since it needed a large longitudinal data set of the social network, including follow
connections and messages sharing data, which have shown infeasible of being obtained
through Twitter’s public API. Therefore, we changed the focus to the research presented
in this dissertation, exploring a similar question also concerning users connections and the
information shared by them. However, it is not concerned with the flow of information,
whereas with the user’s affiliation in different topics of information. Topics of information,
here, stands for the sets of messages that have a semantic association and users associate
themselves with topics in different ways [74].

This question is explored through the lens of the homophily principle, which is the
tendency of individuals to establish ties with alike [49, 48, 55, 38]. Homophily specifies that

14
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individuals are prone to be connected according to the characteristics they have in common
and its presence has been evidenced with respect to sociodemographic characteristics such
as race, age, religion, and gender [49]. Nevertheless, in this work we propose an analysis
of topical homophily, which is the tendency of individuals to be connected with alike
according to their topical similarity. We define their topical similarity according to their
affiliation in topics of information, i.e., according to topics that they adopted while sharing
messages. Thereby, in this work we provide a method to assess users topical similarity in
Twitter, detecting topics of information in a similar fashion to Weng and Menczer [74].

In this work, we want to assess how the information shared by users can be related to
the connections of the social network. We begin by verifying the topical homophily in the
network and the different degrees that it appears. Our goal is to assure its existence and
that it can be related to stronger relationships and more interactions. Furthermore, we
also test other complex hypothesis involving the topics of information and user relation-
ships. We are able to give sound answers for some of them, however, they are left open
for future work. We further give an overview of our main results.

We show evidence of homophily among users both while following – the act of subscrib-
ing to receive another user messages – and mentioning – explicitly mentioning another
user in a message. Our results show that, on Twitter, users connected are more likely to
have a higher topical similarity than a random pair of users. Furthermore, we verified that
mentions and follow relationships tend to have a similar homophily pattern, despite the
belief that they are relationships of a different kind [31]. We also verified that connections
with strong interactions tend to be more homophilic. Our analysis could show that the
information shared by users could foster the prediction of their connections. We found
that users which have a high average similarity with their friends are predominantly con-
nected with the users most similar to them. This was achieved by a proposed mechanism
to predict user connections indicating that, for some users, most of the connections are
as high similar as possible in the network.

We also assessed the probabilities of users following and mentioning another if they
shared topics of information. Our results show that the majority of users tend to establish
relationships with users that share some topic and, when they share the topic whereof
the user has posted more tweets, the probabilities are significantly higher. Furthermore,
we show that different groups of users affiliated with different topics tend to mention and
have different levels of topical homophily.

This project is a result of a collaboration with the Spanish laboratory COSNET1,
which started in a six-month exchange program done by the student. All of our data were
captured by the Twitter public API. We intend to make this data and the developed code
public as soon as this work is published.

The remaining of the document is organized as follows. Chapter 2 presents a biblio-
graphic review of the area and related works; Chapter 3 summarizes the Twitter char-
acteristics that are relevant to us and outlines the process of data gathering; Chapter
4 describes our model to obtain the topics of information; Chapter 5 shows our results
regarding user topical homophily; Chapter 6 explores the particularities of users inside
topics with respect to their similarities and their probabilities of establishing relationships;

1http://cosnet.bifi.es/
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finally, Chapter 7 discourses on the results obtained by the analyses.



Chapter 2

Foundations and Related Work

This dissertation comprehends a social network analysis research and its core involves
investigating the relations between the information that individuals in a network share
and the structure of connections among them. Our approach is based on the homophily
hypothesis that individuals tend to be connected with alike. In this work, we are interested
in the information shared and consumed by users to define their similarity. In this chapter,
we summarize the main related works in the area and the ones that are directly related to
this dissertation. Firstly, Section 2.1 introduces works that study the structural changes
of networks over time; Section 2.2 presents works concerned with information on social
networks; Section 2.3 presents the concept and the works related to homophily.

This chapter includes the presentation of some related work concerning the previous
proposal – discussed in the introduction. We have decided to maintain them due to
their importance to the rationale that conducted us to the present proposal. They also
contribute to give a broader perspective of the current debate concerning the relation of
information and the topology of a social network.

2.1 Dynamics of Networks

Social systems are highly complex and dynamic. In this context, it is not trivial to
understand how interactions among a large group of people result in a structured social
group. When considering it as a social network, it is highly useful to represent it as
a graph, wherein nodes stand for social entities and edges for their connections [73].
This approach has been used since the first sociogram displayed by Jacob Moreno [51]
and this representation allows the usage of methods developed by the complex networks
community [55, 6, 7, 9]. Complex networks come from the abstraction of complex systems
as graphs, or networks. Complex systems encompass systems composed of components
whose interactions lead to nontrivial behaviors, such that focusing only on the isolated
components or a system’s macro view does not provide enough understanding about it
[5]. In the complex networks area, the connections between system’s components are
abstracted as the edges of a graph and this framework led to theoretical results, mostly
by the physics community [9], which benefited research initiatives about social networks
[18, 45, 30, 14, 74, 2]. Therefore, the works presented in this section are mostly results

17
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Figure 2.1: Link Prediction Example

coming from the complex networks and social networks research.
One important topic in this context is to understand how social networks change over

time. This is often addressed with online social networks data, which have interesting
evolving behaviors – e.g., they usually are mostly growing [45] and can be highly dynamic
[54], i.e., edges constantly being created and removed. Nevertheless, its evolutionary be-
havior cannot be explained only by random models as the one proposed by Erdös and
Rényi [24]. Usually research in their temporal changes concern nodes and edges behav-
ior and the simplification that relies only on the prediction of their measures have not
obtained good results [50]. Before the advent of online social services, early works of
sociology already had an interest in describing what would be the mechanisms behind the
creations of connections in social networks [73, 32]. Usually, they exhibit a power-law de-
gree distribution [9, 25], indicating that some individuals got much more connections than
others. Barabási explained that the heavy-tailed degree distributions of several networks
– usually denominated scale-free – would be the result of the preferential attachment effect
[6].It postulates that the probability of a new edge arriving at a node is proportional to
its degree. Sociologists have viewed this phenomenon as the Matthew Effect, or the “rich
gets richer”, as highly connected individuals have a higher probability of establishing new
connections [61].

Despite the preferential attachment being capable of describing the existing pattern
on the arrival of links in scale-free networks [13, 45], it is not enough to explain all the
dynamics of links’ creation in real social networks, as shown by Leskovec et al. [45].
They demonstrated that the likelihood of new links emergence is related to some network
structures, e.g., it is usual for new links to close triangles in the network, connecting
individuals that are two hops away. Furthermore, individuals behavior is also important
to determine the appearance of new connections. They showed that nodes that have
recently participated in a new edge, more probably will participate in new edges. The
importance of this work is to show the presence of a feedback loop wherein the social
network structure dictates its future structure.

The growth of complex networks is intrinsically related to the dynamics of their edges
formation, as their structure is defined by their nodes and edges composition. The specific
problem of predicting future edges in a network was formalized by Liben-Nowell and
Kleinberg as the link prediction problem [46]. Figure 2.1 illustrates it: is it possible in
time t1 to detect the creation of the edge between b and c at time t2? Initially, the
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prediction of links focused on which network structures could imply the emergence of
new connections, i.e., if exists some arrangements of nodes and edges highly correlated
with new edges creation in specific places. As mentioned before, one substructure that is
important in this process is the triadic closure, i.e., links closing triangles. Furthermore,
it is often the case that the likelihood of a link between two nodes is connected with the
number of their common neighbors as it implies a high number of triangles being closed.

The link prediction problem is important for a high variety of topics, from finding
missing links [20] to measuring nodes influence [62]. It has been explored in diverse types
of settings, e.g., in collaborative networks [46], in multidimensional networks [67]. There
are deterministic approaches [46, 67] to address the problem and it has also been treated
as a learning problem [35]. Furthermore, works have shown that some characteristics of a
pair of users increase the probability of them establishing a new connection – e.g., if they
have similar interests [2], if they have high number of common friends [46], etc.. Current
state-of-the-art approaches rely on random walks [41, 71] based algorithms that make use
of nodes and edges information to accurately obtain the most probable links to be created
[4, 34].

The link prediction is able to address the understanding of networks evolution at the
level of individual edges. Another possibility is to look for subgraphs of given topologies
which are correlated with the emergence of other subgraphs in the network evolution. The
benefit of this more general view is that it allows comprehending the network evolution
more thoroughly, considering appearance and removal of its nodes and edges. Tamm et
al. [70] also explored networks evolution via their substructures, specifically, in terms of
their motifs distribution. Motifs are subgraphs that exist in some networks with a higher
frequency than in an equivalent random graph, i.e., a graph with some equal properties
generated by a random model [9]. They conjectured that motif distributions in each
network state could affect its evolution as the entropy of some states could leave them
more stable than others. This study addresses the phenomena in abstract models and, to
the best of our knowledge, this kind of test has not been verified in real networks.

The mining of important subgraphs to investigate networks evolution is an approach
related to the techniques used in computer science. The mining of subgraphs in graphs
have already been explored in generic approaches, e.g., gSpan [77] and Gaston [58]. Bring-
mann et al. [10] proposed an approach to mine subgraphs that are frequently correlated
with the network structural changes from a collection of network snapshots . One example
is a pair of nodes two hops away that will usually close a triangle in a future state. These
frequent subgraphs can be considered patterns of evolution, expressed as GER(Graph
Evolution Rules). Figure 2.2 shows two examples of GER that the authors obtained in
their experiments. The subgraph in GER1 is highly correlated with the creation of an
edge between the still not connected nodes two hops away, and the one in GER2 with
the appearance of a new node. These mined substructures could be used to predict the
arrival of new edges and nodes in the network future graph.

Our initial proposal intended to understand the evolution of a social network taking
into account the information that is shared by its users. To achieve this, we intended to
use a subgraph pattern mining similar to the one proposed by Bringman et al. together
with data of the motifs distributions. Unfortunately, this approach required longitudinal
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Figure 2.2: Graph Evolution Rules example. The weight of the edges denotes how long they exist.
Extracted from [10].

data of nodes and edges, infeasible to be obtained. Our final work is concentrated in how
the information that traverses the network is related to the users connections without
concerning about endogenous changes in the network topology. The majority of works
tries to understand connections mechanisms in terms of network topology, as the ones
presented in this section. However, we are interested in how the information shared can
also provide knowledge about connections. This has also been explored by other works.
Thus, in the next section, we present works that explore the concept of information flow
in social networks and how it is related with the network topology.

2.2 Information in Social Networks

The study of information diffusion is orthogonal to the temporal changes of networks
structures. Human communication incorporates information, which may influence and
shape people’s behavior. Thus, sometimes it is considered analogous to the epidemic
spreading [60, 12] phenomena. An individual that adopts a behavior or idea due to an
received information is analogous to an infected individual. However, it is important to
notice that the contagion by information focuses on the spread of social behavior, which
has some specificities. For instance, the complex contagion [17] defines that people are
more likely to acquire some behavior or join a cause if they are repeatedly exposed to
whom already adopts it [16]. Romero et al. [66] explored how users adopt hashtags in
Twitter and found evidence that social theories about spreading and adoption can be
applied to online social networks. The effects of social contagion are easily seen in the
role that online social services have taken in recent mass mobilizations, mainly in the
recruitment process [30]. Based on those findings it is natural to assume that the spread
of information may influence the social network topology, which, by itself, dictates how
information flows on it. This feedback loop between topology and information is the main
focus of this section as this relation is a core concern of this dissertation.
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Figure 2.3: Dynamics of the social network structure and the flow of information. Extracted from [76].

There is no clear definition of information in a social network. In this work, we consider
it as the different kinds of content that flow in a network and may affect people. Thus,
information can be seen as a set of contents traversing individuals’ connections, which
can affect their opinions or ideas. This is analogous to the Bateson’s general definition
of information as composed of pieces that are supposed to be "a difference that makes
a difference" [28]. In the Twitter social network, Myers et al. have shown that different
kinds of information interact between themselves, cooperating or competing in the process
of contaminating users [53]. Furthermore, they have shown that the semantic similarity
of their content may indicate if they cooperate or compete with each other. Also consid-
ering Twitter, Weng and Menczer [74] proposed a method to model content as topics of
information. They built a co-occurrence graph of hashtags and used a community detec-
tion method to find topics based on the assumption that semantically similar hashtags
are likely to appear together in the same message. They found that active users attract
others by beeing focused on a small number of topics, which makes them having more
impact in the network with respect to the topics they are focused on. The importance of
their approach to model information is that it is able to capture the latent relation among
hashtags. This procedure is essential as hashtags do not have a hierarchical structure such
as of tags or labels, which makes them not appropriate to be classified in taxonomies [36].
Other approaches to model information on Twitter required a manual step to annotate
the data set [43] or needed an external ontology to do the semantic classification [44].
Therefore, this choice of using a community detection method to detect topics is also
used in our work to model the information in our Twitter data.

Some recent efforts have been directed to the study of how the information flow influ-
ences the creation of links. Weng et al. [76] discern the dynamics of the network from
the dynamics on the network. The former is the dynamics of networks structural changes,
which can be considered the network evolution covered in Section 2.1. The latter is the
information that is spread and traverses a network, i.e., the dynamics of the flow of infor-
mation. Figure 2.3 shows one example, from the work of Weng et al., in which the flow
of information affects the link creation process. A message created by user B that arrives
at user A may influence the latter to follow the former. Their work was an extension of
the work of Leskovec et al. [45] and with the addition of the information flow data they
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described the rules that defined the link formation behavior. They presented evidence
that the information flow has an important role in the process of link creation, around
12% of new edges were motivated by the information flow, indicating that the network
evolution cannot be explained merely by its topological structure. Another important
result, that is directly related to this dissertation, refers to the fact that, while some users
create connections mostly based on friendship, others are more guided by the content that
users produce and share.

The previously mentioned work of Gonzalez-Bailon et al. [30] explored the 15M Spanish
social movement and found a rapid increase in the adoption of hashtags related to the
social movement. One interesting question about this kind of phenomenon is if it is
followed by a significant change in the connections structure. This issue was explored by
Meyers et al. [54], who were interested in how the rise of abrupt changes in the information
flow dynamics influence the creation and removal of links. Their work found that in a
similar event, the “Occupy Wall Street” protest movement against income inequality, the
cascade of tweets was likely to cause follow bursts, i.e., people start to follow others with
the abrupt increase in the retweets of some contents. Actually, they could capture general
bursts and they also verified that some tweets with offensive content caused the opposite,
unfollow bursts. These unfollow and follow bursts generated a significant change in the
network and often left the users’ neighborhoods more similar to them, leading to a more
cohesive network. This verification led them to create a model to predict which bursts of
retweets created a new burst of follow connections in Twitter based on the intuition that
users tend to connect to similar users.

The main contribution of these works is to give evidence that the information flowing in
a network contributes to shaping its structure. Our initial proposal was tightly connected
to their perspective and our intention was to explore the connections and information
flow patterns to predict the future state of a social network via an approach similar to
Bringman’s et al. [11]. However, we changed the focus of the research due to difficulties
in obtaining the required data. Instead of looking to the flow of information and network
evolution, we analyzed if the cohesion of information is related to users connections, i.e.,
if connected users are generally more similar in the kinds of information they share. We
address this issue through the perspective of topical homophily, a central concept of our
research. Homophily is the subject of the next section.

2.3 Homophily

In a social system, individuals connect to each other driven by different mechanisms,
from preferential attachment to creating shortcuts for the consumption of information[6,
76]. Sociologists have long believed that individuals are likely to establish relations with
alike, what is known as the homophily tendency [42, 49, 38]. The classification and defi-
nition of homophily come in different flavors and often it manifests differently according
to the traits considered in the analysis [49] – e.g., connected individuals may be highly
similar with respect to religion and not so much with respect to sex. Furthermore, it is
necessary to assess how much individuals are expected to be similar in the considered
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environment, i.e., to assess the expected similarity among random assortments of indi-
viduals. This is crucial to determine if the similarity among connected individuals differs
significantly from the expected similarity among random pairs of individuals. The differ-
ence between these two situations is captured by the two concepts of baseline homophily
and inbreeding homophily introduced by McPherson & Smith-Lovin [49], a classification
that is used in this research.

McPherson & Smith-Lovin defined baseline homophily as the expected homophily be-
tween random pairs of individuals from a population. It captures how the population
is similar overall regarding some traits of interest. Inbreeding homophily stands for the
deviation from the level of baseline homophily when considering the similarity of dyads,
i.e., between pairs of connected individuals. By this definition, a highly homogeneous
environment will have a distinct level of baseline homophily from a heterogeneous one, as
in the former pairs of users are expected to be more similar than in the latter. Thus, it is
impossible to assess inbreeding homophily without assessing the baseline beforehand.

Different traits can show different levels of the two kinds, for instance, in a given
context, age homophily showed higher levels of baseline homophily and gender showed
higher levels of inbreeding homophily [49]. The levels of inbreeding homophily may be
a product of diverse factors. Individuals may have chosen to bond by their similarity or
may have been induced by other factors. For instance, some characteristics of the social
system may affect the opportunities of connection, restricting further individuals choice to
bond with another. As the classification by McPherson & Smith-Lovin is not concerned
with describing factors which generate inbreeding homophily, it is often used in empirical
studies interested in homophily [65].

In settings where it can be verified, the classification of choice and induced homophily
[48, 65, 38] can nicely demonstrate the underlying mechanisms of connections. Choice
homophily is attributed to dyads wherein the similarity is a factor that determined the
individual choice to establish the connection, i.e., there is a causal relation between the
similarities and the individuals’ preference to bond. Induced homophily categorizes the
situations in which the similarity of the dyad is a by-product from the opportunities of
connection. Thus, the similarity between connected individuals is not a factor of choice
but induced by the social structures. For instance, suppose that in a setting boys are
be induced to make friends with other boys, thus their friendship will not be a matter of
choice. The dichotomy presented in this classification is interesting because it can quantify
how much homophilous connections are a result of individual’s psychological preferences.

Another important concept that can be considered a part of inbreeding homophily is
the believed tendency that connected individuals become more similar between themselves
over time, also known as social influence [3, 23]. Social influence theoretically defines that,
in a dyad, there is a transmission of individuals attributes that are possible to change in
the time scale of the study, for instance, political opinions or religion. As in our work we
are not focused on disentangling these three processes – namely, social influence, choice
and induced homophily – we preferred not to consider them in our analysis.

Besides the importance of studies that look for evidence demonstrating how homophily
is manifested in real scenarios [48, 49, 38, 40], homophily is also an important premise
for theoretical social models. The model proposed by Robert Axelrod to describe the
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(b) Vectors after interaction.

Figure 2.4: Illustration of the process of interaction and social influence in the Axelrod model. Vectors
interact because they have, at least, one characteristic in common. After the interaction, they become
more similar to each other.

dissemination of culture is probably the most important in this respect and it is basically
defined over two premises: choice homophily, "similarity begets friendship" and social
influence, "friendship begets similarity" [3, 15, 14]. In the Axelrod model, culture stands
for the set of attributes that characterize an individual and which are subjected to social
influence – e.g., language and religion. The model abstracts the attributes as a set of
discrete variables represented by a feature vector F , wherein each position stands for a
different attribute. Moreover, each attribute can assume a value according to the global
parameter q, which defines the number of possible traits that each characteristic can have.
Thus, the number of features |F | and the number of traits q establishes how the culture
is discretized.

In the Axelrod model, individuals interaction is defined by choice homophily, specifi-
cally, they interact with probability proportional to the number of features wherein they
have the same trait. When this interaction takes place, one attribute in which the two
differ becomes the same. Strictly speaking, the trait of one’s feature is passed to the
other, leaving the two individuals more similar as a result of social influence. The vectors
and this process are illustrated in Figure 2.4.

This process may induce one to think that the result would be a homogeneous system,
i.e., a system in which all individuals have the same culture vector. However, the number
of homogeneous regions – regions wherein all individuals have the same culture – vary
considerably according to the parameters |F | and q, indeed, the number of cultural regions
increases according to the number of traits [14]. We adopted an analogous approach to
model individuals in our study, however, our approach is not concerned with modeling
individuals according to their whole culture, we model them in respect to their affiliation
in different topics of information.

Our dissertation explores topical homophily in online social networks. Topical ho-
mophily, here, is addressed using topics of information found by the same method of
Weng and Menczer [74]. A similar work was conducted by Aiello et al. [2] in the context
of tagging social networks (Flickr, Last.fm, and aNobii) using the tags attached to items.
In these networks, the tags are used to classify resources, a different usage than hashtags
on Twitter. In their approach tags were used directly to assess users similarity and they
found that users topical similarity are related to their shortest path distance on the so-
cial graph. Moreover, the measured similarity allowed them to predict some links of the
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graph. Crandall [23] explored the extent to which the process of selecting most similar
users to establish relations leads to an even higher similarity by social influence. They
used Wikipedia and LiveJournal datasets – article and blogging based networks – and
modeled users in vectors similar to the ones proposed by Axelrod [3] using their history
of editions. This allowed them to verify that, after users interact through the selection
process the similarity among them tends to increase, which provides evidence of the social
influence principle. Ciotti [19] looked for homophily in citation networks. In their set-
ting, they analyzed articles similarity considering their bibliographies items as attributes
and their main contribution is to provide a way to assess similarities among articles and
recommend missing citations.

These works are more related to networks centered in some kind of digital artifact, e.g.,
image, article, etc. In our work, we are not interested in artifacts, but in the relationships
of individuals. Furthermore, we believe that hashtags or other features, by themselves,
are not sufficient to assess the similarity among users as they do not capture the latent
semantics present on the sharing of information. We believe that it is necessary a higher
granularity to really capture users affiliation in different kinds of content. Thus, we chose
to model the topics of information to assess users homophily. We are mainly interested
in understanding of whether it is possible to verify levels of baseline and inbreeding ho-
mophily in Twitter connections and how much users relationships are affected by the
topics that they are affiliated with. Our experiments and results are described in the next
chapters.



Chapter 3

Twitter Data

We have chosen to use Twitter as our online social network data source due to its
information-driven nature. Furthermore, its data is relatively feasible to be obtained.
In this chapter, we give a brief description of Twitter and the process of data gathering
and cleaning. In the subsequent chapters, we demonstrate how the data analysis was
conducted.

3.1 The Twitter Social Network

There is no clear definition of social media or online social network, however, there is a
general consensus that services like Twitter1 and Facebook2 are instances of social media
services [59]. One of the main characteristics of an online social network is that their
users are represented by profiles, which allow them to connect with other users or groups
of users. These connections have different meanings across the different kinds of social
medias. As our research is concerned with Twitter, we describe its types of connections
that might exist between users that are relevant to this project:

Follow: when a user decides to follow another, the former will receive all the tweets
that are shared by the latter in her ‘feed’. If a user a follows a user b, by Twitter
definition, the user a is said to be a follower of the user b, and the user b is said to
be a friend of the user a. This definition is important as the connection in Twitter
might not be reciprocal. Figure 3.1 illustrates the connections as black edges. The
orientation of the edges is according to the flow of information, i.e., messages are
created by the friend and arrive at the follower, so the edge goes from the friend to
the follower.

Mention: a user mentions another through the convention ’@ + username of the other
user’. Mentions might denote a bigger interaction between users than follow rela-
tions They might emerge from conversations (Replies), they can be an endorsement
and propagation of ideas (Retweets), and a mention is often used to grab users at-
tention. Figure 3.1 illustrates them by the red dashed edges, edges leave the node
responsible for the mention and arrives at the mentioned node.

1http://www.twitter.com, accessed in September 2016.
2http://www.facebook.com, accessed in September 2016.
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Figure 3.1: Follow and mentions connections. Follows and mentions are represented by the black and
red edges respectively.

3.1.1 Information on Twitter

Twitter is an information-driven social network and information flows in it through
short messages of 140 characters called tweets. This specificity is important as the nature
of their messages are shaped by this limitation of size. They have to be concise and they
often use tokens that refer to a specific subject. Undoubtedly, hashtags are the most
important type of token used by users on Twitter. They can categorize messages and
indicate to other users the subjects of the message or how the user is positioned about the
subject, e.g., a hashtag may make explicit the sarcasm of the message. The importance
of hashtags lies in their ability of make explicit the topics to which the message belongs.
Figure 3.2 shows a tweet example.

So nice having the sis over at the flat for the night :) #munchies #movies #spooning

Figure 3.2: Tweet containing hashtags. Extracted from our dataset.

The use of hashtags is interesting for researchers and data scientists as they may be
used as a guidance in the data collection and selection procedures while analyzing a group
of users in Twitter [31]. Specifically, the most common way of obtaining Twitter data is
by its public API3 and hashtags are often used to filter messages that belong to the topics
of interest [31]. In this work, we collected tweets without the hashtags filter, nonetheless,
we used hashtags to build topics of information as we will describe in Chapter 4.

3.2 Data Gathering and Data Filtering

This research was conducted jointly with the COSNET Spanish laboratory and our
first dataset was obtained by them in two steps. A second complementary dataset was
further collected based on the existing data. The data were obtained through the public
Streaming4 and REST APIs5 of Twitter. The process was centered around tweets from
the United Kingdom and Ireland. We describe each step in the next paragraphs and a
summary of the data is shown in Table 3.1.

Tweets Obtainment Using a geolocation filter, tweets from the United Kingdom and
Ireland were obtained trough the Twitter Streaming API. From all the users in the dataset,

3https://dev.twitter.com/rest/public, accessed in September 2016.
4https://dev.twitter.com/streaming/overview, accessed in September 2016.
5https://dev.twitter.com/rest/public, accessed in September 2016.
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ci

Figure 3.3: Illustration of the star structure of the central users.

Data Raw
Tweets 98,506,315

Tweets with Hashtags 16,935,625
Distinct Hashtags 4,320,429
Users with Tweets 1,286,816
Users with Hashtags 774,596

Central Users 9,632
Central Users’ Friends 4,190,244

Central Users in Second Crawling 6,296

Table 3.1: Crawled Data Summary

10,000 users with more than 100 tweets were selected. This was an empirical decision to
select the users that were relatively active in the social network. Furthermore, the set of
tweets of these users were complemented using the Twitter Search API (a component from
the REST API). The final dataset has 98 million tweets from January 18th to September
2nd, 2013. Of these tweets, almost 17 million contains some hashtag and there is a total
of 4 million distinct hashtags.

First Crawling of Friends We denote the set of 10, 000 users selected in the last step
as the central users. Our analysis is centered around this set of users and their friends –
i.e., the users they followed – were crawled through the REST API. This resulted in a set
of star networks as illustrated by Figure 3.3. The user in the center, ci, is a central user
and the others are users that she follows. The edges follow the direction of the flow of
information. The process of crawling the friends ended on June 26th of 2013 and resulted
in a set of 4 million followed users.

Second Crawling of Friends One limitation of the original data was that it did not
have information of the reciprocity of the connections. Furthermore, it is interesting to
have information about the edges that have endured for a significant amount of time.
Hence, on February 23rd of 2016, we started a new crawling of the central users’ friends
in a similar fashion of the previous step and, in addition, we crawled also the users who
were followed by each central user friend. This lead to a total of 141 million friends
relationships and the set of central users were reduced to 6, 296 users, as some of them
were not available anymore. These set of connections were only used in the analyses
described in Sections 5.2.3 and 5.2.5.6.

6More information about the crawled follow connections are shown in Appendix B.1
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Figure 3.4: Users activity according to their tweets.

3.2.1 Selection of Users

Our work is centered around topics of information, which are composed of hashtags and
we describe the process of their construction in the next chapter. The users considered
in our analysis had, at least, one tweet with a hashtag in order to assess which topics
of information they were affiliated with. Thus, we selected the 774, 596 users from the 1
million of users with tweets.

Before starting the analysis, we removed the users that have been active for less than
one day and the ones that might not be a real person, i.e., users that might be a bot.
Here we define the users active days as the number of days between their first and last
tweet.

To uncover which users might be bots, we first looked to their number of tweets per day
and their number of active days. Considering only the users that were active for, at least,
one day, Figure 3.4 shows a scatter plot of the users’ number of active days versus their
ratio of tweets per day. This figure shows that there is a significant number of users that
have been active for only a few days, having a large number of tweets per day. Besides
them, most of the users are uniformly distributed. We decided to remove the users that
had more than 400 tweets per day, as we consider that is normally infeasible for a real
person to produce this quantity of tweets. This empirical threshold is shown by the red
line in Figure 3.4 and this process resulted in a set of 693, 953 users.

The data produced in this stage is the basis for our analysis and sufficient for the
detection of the topics of information. After the detection process, the number of users
considered in our analysis was further reduced, because the considered hashtags were
reduced. The next chapter details how the whole process was conducted.



Chapter 4

Topics of Information

This dissertation addresses how the users’ communication of different kinds of infor-
mation is related to their connections. In order to represent these different kinds of infor-
mation, we modeled them as topics based on detected communities of hashtags. Section
4.1 describes how the model works and Section 4.2 details the process of topics detection
from our Twitter data.

4.1 Model

Information in Twitter is traversed through tweets. They are short messages with a
highly dynamic vocabulary, which makes traditional text clustering techniques not suit-
able. Thus, we decided to exploit the hashtags social annotations, described in Section
3.1.1, which are present in Twitter messages. They are used by us as a guidance in the
process of collecting topics of information, which is the approach used by us to model
the information generated by Twitter communication. The formulation of topics of infor-
mation enables them to capture the latent semantics of the messages through hashtags
co-occurrence. Topics are defined via a community detection method, which we introduce
in Section 4.1.1 and subsequently we describe the model behind the topics of information
in Section 4.1.2.

4.1.1 Community Detection

Community is the most studied structure of networks because it can capture subnet-
works that present distinct properties and configurations [57, 26] and nodes inside a com-
munity are believed to share similar properties or have similar roles [26]. Communities are
dense subgraphs in relation with the whole network, i.e., nodes inside a community have a
higher proportion of edges between them than with nodes outside the community. Com-
munity detection is analogous to the to graph partitioning problem in computer science
[37], an NP-complete problem. Some of the most used methods are based on hierarchical
clustering [73] and modularity optimization [56].

We use a community detection method in our project to find coherent communities of
hashtags that we categorized as topics. More details are in Section 4.1.2. We adopted
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the OSLOM1 tool [39]. OSLOM works by the perspective that groups of densely con-
nected nodes that are just a product of random fluctuations should not be considered
as communities. To verify if this is the case, it has a fitness function to evaluate the
communities by comparing the probability of finding them in a random null model. If a
cluster is highly probable to occur in a random configuration, it should not be considered
a relevant community. It finds clusters by a method which starts from random nodes and
adds the nodes that will build the most relevant clusters. This evaluation can be also
used to verify communities detected by other algorithms and the OSLOM tool allows the
execution of the Infomap [68], Louvain [8], and Copra [33] methods as input, returning the
best detection found. Furthermore, OSLOM is a local optimization method and does not
suffer from the problems of global modularity optimization [27]. It also has the advantage
of beeing highly flexible, being possible to be executed in weighted and large graphs, and
can detect overlapping communities, which is desirable in our case.

4.1.2 Co-occurrence Graph of Hashtags and Topic Detection

In our analysis, we built topics of information considering tweets with hashtags, as they
are indicators of the tweet content. Furthermore, it is common for users to insert more
than one hashtag in a tweet, and we exploit this aspect to build a semantic mapping of
Twitter messages. We assume the existence of a semantic association between hashtags
that co-occur in tweets. This is analogous to the assumption that words are semantically
associated if they are likely to co-occur frequently [72]. The use of this assumption makes
our method focused only on the implicit semantics given by Twitter messages, i.e., it does
consider explicit semantics given by other sources . This semantic mapping is captured
by a weighted co-occurrence graph of hashtags, which we built by extracting all pair of
hashtags that co-occurred in each tweet in our dataset. In this graph an edge (hi, hj)

describes that the hashtags hi and hj co-occurred and, as the graph is weighted, w(hi, hj)
gives the number of different tweets in which they co-occurred.

The importance of the association of hashtags in the co-occurrence graph is that it
allows the extraction of higher level semantic structures. We consider that the topics
of information are sets of hashtags clustered together in the graph. Thus, we expect
that they will reflect the higher level structures that emerge from the latent semantic
association of hashtags. It is natural to see that these clusters could be captured by
a community detection method and we decided to use the OSLOM tool [39]. OSLOM
is able to capture for overlapping communities, a desirable feature considering that one
hashtag may be used in different contexts.

We also tried our execution with the Link Communities method [1], however, as our
network is very large and this method is more computationally intensive, we preferred
to use the OSLOM tool. Moreover, previous work has verified that different choices
of community detection method did not significantly impact the topical clusters found
[74, 75].

This approach of building a co-occurrence graph and using a community detection
method to find topics was also used by Weng and Menczer [74] through the Louvain

1Available at http://www.oslom.org/
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Figure 4.1: Semi logarithmic histograms of the number of hashtags and number of users in the topics.

method [8]. They assumed, based on the topical locality assumption, that semantically
similar hashtags would appear in tweets together. Despite this being close to our premises,
we do not presume that hashtags are similar, only semantically associated. Besides this
remark, our proposal to find topics of information is roughly equivalent to theirs.

4.2 Topics by Community Detection

This section presents how we modeled the topics of information. First of all, we built
a hashtag weighted co-occurrence graph to find communities as described in Section 4.1.2
using the 16, 935, 625 tweets with hashtags belonging to our dataset. As we removed hash-
tags that did not co-occur with any other, the co-occurrence graph resulted in 2, 090, 971

from the total of 4, 320, 429 distinct hashtags. In this graph, the edges represent a seman-
tic association between hashtags, however, hashtags might have co-occurred in a tweet
only by chance and without having a significant association. To reduce this noise, we
removed all the edges between pairs of hashtags that co-occurred in less than 3 tweets,
i.e., we removed the edges with a weight smaller than 3. This process led our final co-
occurrence graph with 104, 308 hashtags. As mentioned in the previous chapter, users had
to have at least one hashtag in order to be analyzed, thus, this reduction in the number
of hashtags led to a final set of 608, 899 users from the previous total of 693, 953.

With the final co-occurrence graph of hashtags, we were able to find the topics of
information with the OSLOM tool2. The application of OSLOM resulted on 2, 074 com-
munities and 14, 118 homeless nodes, hashtags that did not belong to any community. We
considered the communities and the homeless nodes as topics. Despite the latter possibly
not significantly benefiting our future procedures, we believe that a hashtag alone can also
carry information. Furthermore, increasing the topics should not affect the way we assess
topical similarity among users, as it is later shown in Section 5.1.2. Thus, we consider a
total of 16, 192 topics in our analysis. Figure 4.1a shows the histogram of the number of
hashtags in each community with a logarithmic scale on the y-axis. There is a peak near
0 that corresponds to the 14, 118 hashtags that were not assigned to any community. The

2See B.2 for more information about our execution parameters.
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other topics composed of the 2, 074 communities had an average of 46 hashtags. Figure
4.1b shows an analogous histogram for the number of users in the topics, i.e., the number
of users that had tweeted, at least, one hashtag belonging to each topic. Most of the
topics have a small number of users, probably because most of them are composed of only
one hashtag. The mean number of users in the topics is of 622.

Figure 4.2: Word clouds with the hashtags of 8 communities. Hashtags in each figure have their size
proportional to their edge degree in the subgraph corresponding to the community.

Although there is not an easy way to ground the accuracy of this approach, we be-
lieve that it is a sound method for assessing the topics of information. Its premises and
procedures are well defined over the semantic associations of hashtags. Furthermore, as
is illustrated in Figure 4.2, the content of the topics appear to have a semantic sense. It
shows hashtags clouds of eight different topics and they show the existence of consistent
semantic relations in the topics. Further analysis could better verify the precision of our
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approach.
In the next chapter, we describe how these topics are used to compute users topical

similarity, which enabled us to analyze users’ topical homophily in Twitter.



Chapter 5

Topical Homophily

Our work seeks to understand homophily regarding the topics of information that flow
in a social network. We do this by modeling users according to their affiliation to topics
and computing their similarity. This chapter verifies the existence of topical homophily
and how it can provide information about relationships in the network. It details the
process and shows the experiments and their results using a Twitter dataset. The results
indicate that ties between users are likely to show higher topical similarity, which tends to
increase with the ties strength. Section 5.1 describes how users are modeled through topics
and the method to compute their similarity; Section 5.2 shows the results of the tests of
topical homophily between users; Section 5.3 explores if a higher similarity is indicative
of a higher number of mentions between connected users; and Section 5.4 explores if the
similarity between users can indicate their connections.

5.1 Users Modeling and Similarity

5.1.1 Users Representation

In our work, individuals are Twitter users and we explore their homophily through their
topical affiliation; what we will further refer to as topical homophily. In our analysis, we
are not concerned with sociodemographic characteristics. Besides they being often not
available or having a dubious veracity, we are interested in assessing users similarity with
respect to topics of information. A user, in our model, is represented by a feature vector
u, which comprises her affiliation to all topics of information. The process of building
a user vector is illustrated in Figure 5.1. The feature ui corresponds to her affiliation
in the topic i and has its value according to the number of hashtags belonging to ti(the
set of hashtags belonging to the topic i) that were used by the user in her tweets. As
the communities obtained by OSLOM may overlap, the same hashtag may be computed
in more than one feature. In this case, each hashtag adds a proportional value to each
feature it belongs . The value of a feature ui is given by Expression 5.1.

ui ←
∑

{h∈H:h∈ti}

mU(h)

|{t ∈ T : h ∈ t}|
(5.1)

35
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{#love, #anniversary}t1 :

{#love, #emotional, #foreveralone, #catlady}t2 :

{#lunch, #foodporn, #coffee, #cake, #instadaily}t3 :

T :

U :

#love, #anniversary, #love,
#emotional, #lunch, #coffee,
#cake, #latte, #instadaily,
#foreveralone, #catlady,
#foodporn

u

2 u1

4 u2

5 u3

Figure 5.1: Building of a user feature vector.

All the hashtags used by a user are contained in a multiset U = (H,mU), wherein H is
the set of used hashtags and mU gives the number of occurrences of each one. T is the set
of topics, i.e., communities of hashtags. Strictly speaking, each element t ∈ T stands for
a topic and it is a set containing the hashtags inside one cluster built by the community
detection method. Figure 5.1 illustrates a user multiset and its transformation in the user
feature vector via Equation 5.1. As #love appears in the topics t1 and t2, it adds 1 to
their respective features.

5.1.2 Computing Similarity between Users

With the representation of users as feature vectors, we are able to compute the topical
similarity between two users using as metric the cosine of their vectors [72]. The cosine
similarity fits well to this task as it only focuses on the angle between vectors – i.e., it
does not consider their length. The cosine similarity ranges from 0 to 1; identical users
would have similarity 1; users that do not share anything in common 0. It is given by
Equation 5.2. In our preliminary analyses, we also tested Kendall’s tau, Spearman’s
rho and Jaccard similarity measures. We did not adopt them as they did not present
significant difference and improvement with respect to the cosine similarity.

simcos(u, v) =
u · v
||u||||v||

(5.2)

Our definition of users feature vector considers that all topics have the same weight,
i.e., the values of the respective features is directly derived from the number of hashtags
used. This may be not suitable for our task as some communities of popular or general use
hashtags should have a smaller weight. To overcome this, we establish that features shared
by a large percentage of the users ought to have a small weight, likewise, features possessed
by only a small percentage of users ought to have a large weight. The intuition behind this
is that features corresponding to rare topics should be more discriminative of the topical
proximity of users than features corresponding to frequent topics. Strictly speaking, we
would like to take into account the information content of the each community [22].
Expression 5.3 describes the weighting scheme, which is defined in a TF-IDF fashion [72].
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ui ← ui × log
|I|

|{v ∈ I : vi > 0}|
(5.3)

I is the set of all individuals, i.e., Twitter users. For each feature i in a user vector,
this method will weight the value according to the number of users that also used it –
e.g., a feature that is shared by all users will have its value set to 0, which is desirable
because it probably does not provide information for discerning users

5.2 Topical Homophily of Users

One of the first hypothesis verified in this work was if there was a higher similarity
between the friends of a user than between randomly chosen users. As detailed in the
previous section, similarity means topical similarity and users are represented by a feature
vector of topics wherein each position stands for a topic. In Section 4.2, we built a total
of 16,192 topics using the hashtags extracted from the tweets and, in this process, the
number of hashtags was reduced to 104,308. Therefore, some users had to be removed as
they have to have at least one hashtag belonging to a topic in order to be represented by
the vector of topics. This also reduced the number of central users and also the number
of users that were followed by each central user. We further describe three sets of users
as they are the final set of users used in the subsequent analyses:

Population: a set with 608,899 users that had tweeted, at least, one hashtag belonging
to a topic;

Followed: a set with 214,089 users that had tweeted, at least, one hashtag belonging to
a topic and were also a friend of one of the chosen central users;

Centrals: a set with 9,490 users that had tweeted, at least, one hashtag belonging to a
topic and were also a central user, details are shown in Table 3.1.

Naturally, the set Population contains the sets Followed and Centrals and its users are
the population considered in our analysis. Each individual was represented by a vector
wherein each position stands for a topic found by the method described in Section 4.2.
To reduce the value of topics that were shared by a lot of users, we weighted the users’
vectors by the process mentioned in Section 5.1.2. In this process, we weighted the topics
according to the number of users in the set Population that were affiliated with each of
them.

5.2.1 Assessing Homophily

Our hypothesis that users are less similar to random users than to the ones they are
connected will be addressed here in terms of the baseline homophily and inbreeding ho-
mophily classification introduced by McPherson & Smith-Lovin [49]. Here, we considered
baseline homophily as the expected average similarity between users and others from a
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random group of the population. Inbreeding homophily here is captured by the difference
between the baseline distribution and the distribution of averages of similarities between
the users and those with whom they form a dyad. A dyad, here, may be formed by a
follow or mention relationship. The definition of baseline and inbreeding homophily are
given by Definition 1 and 2, respectively.

Definition 1 Baseline Homophily is the distribution of averages of similarities of con-
sidered individuals with random users of the population. Each value of this distribution is
constructed as follows:

For each considered user, a random group of users from the population is selected.
This random group is of the same size as the number of relationships the considered user
has. Then the similarity between the considered user and each one of the random group
is calculated. Finally, the average of the similarities is computed.

Definition 2 Inbreeding Homophily is the deviation from the baseline homophily when
considering the similarity of the dyads. Thus, to assess the inbreeding homophily is nec-
essary to build the distribution of averages of the dyads similarities. Each value of this
distribution is constructed as follows:

For each considered user, the group of users that are in a dyad with her is selected.
Then the similarity between the considered user and each one of this group is calculated.
Finally, the average of the similarities is computed.

The deviation is captured by two tests. First, we assess the degree to which the distri-
butions differ by the Kolmogorov-Smirnov1 test. Then, the likelihood of the distribution of
dyads yielding higher (or lower) values of average similarity is captured the Mann-Whitney
U test2. For both tests, a p− value is also calculated to assure statistical significance.

5.2.2 Homophily on Follow Relationships

In this section, we initially explore the inbreeding homophily with respect to the follow
connections. Our hypothesis is that users are, on average, more similar with their friends,
i.e., we expect the inbreeding homophily to be significant. This hypothesis is explored
through Definitions 1 and 2. Strictly speaking, our hypothesis is that the distribution of
similarity averages of the individuals with their friends would be yield higher values than
the distribution of averages with randomly chosen individuals from the population. We
tested this hypothesis using the central users and their friends, we show the results in
Figure 5.2.

Figure 5.2 shows three histograms3: Friends, a distribution of averages computed for
each central user with her friends; Followed and Population, distributions wherein, for
each central user, averages have been computed with a group composed of randomly
chosen users from Followed and Population, respectively, and this group has the same
size of the set of central user friends. We also used the set Followed because users in this
set are guaranteed to be followed by someone, implying in a difference from the whole

1See A.2.
2For a brief explanation of the Mann-Whitney U test and the common language effect size, see A.3.
3The histograms with ’Density’ in the y-axis are shown in density scale, see A.1.
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Figure 5.2: Distributions of the averages of similarities between the central users and their friends and
between central users and random groups from Followed and Population

.

population. However, as will be shown, there is no significant difference. Therefore we
did not use this set in the subsequent analyses.

As can be seen, all the distributions are concentrated in low values of the cosine sim-
ilarity spectrum , i.e. [0, 1]. We consider that this effect is a result of the large quantity
of topics and does not impact our results.

There is an overlap among the distributions, mostly concentrated in lower similarities.
However, it is clear that there is a difference between both random distributions and
the friends distribution. Strictly speaking, the Kolmogorov-Smirnov statistic between the
distributions of averages with friends and with randomly selected users from Followed
and from Population is 0.27 and 0.37, respectively, and both have a p-value < 2.2−16.
We also used the Mann-Whitney U test to verify if the distribution with friends were
likely to have a higher average similarity than the two others. The results were positive
with an effect size of 0.7 when comparing with the distribution of Followed and 0.75 with
the distribution of the whole population, both with p-values < 2.2−16. Furthermore, the
medians of the distributions with Friends, Followed and Population were 0.087, 0.05 and
0.041, respectively.

This analysis shows that, on average, users tend to be connected to whom they are
more similar. Strictly speaking, the similarity between friends is higher than the baseline
similarity, what shows the presence of inbreeding homophily. This implies that a user
tends to have a stronger topical similarity with friends than with randomly chosen users.
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Figure 5.3: The distributions of similarity averages of central users with their friends from the two
crawlings

5.2.3 New Connections

As mentioned in Section 3.2, we performed a second crawling of central users friends
on 2016. We will further refer to this obtained follow relations as the new connections.
Furthermore, we also collected the users that were followed by each central user’s friend
to explore the reciprocity of connections, which is covered in Section 5.2.5. One partic-
ularity of this dataset, as the connections of Twitter are highly dynamic, is that there
might be a significant change in the connections pattern. We addressed this issue look-
ing if the distribution of average similarity with the new friends in the new connections
differed significantly from the distribution with the original friends, the result is shown in
Figure 5.3. The set of new friends comprises all central users friends present in the new
connections and which belonged to the set Population. As said in 3.2.1, the set of central
users was reduced to 6, 296 users as the others could not be obtained in the last crawling.
The two distributions almost totally overlap and the Kolmogorov-Smirnov test statistic
between them is of 0.046 with a p-value of 2.209−6, which indicates that they are roughly
the same. Thus, we conclude that, regarding the pattern of topical similarity, there is no
significant change between the original and the new connections.

Although the distributions are very alike, connections might have changed significantly
during the interval between the two crawlings. Furthermore, if the topical similarity be-
tween friends is related to their connection strength, we expect the persistence of con-
nections to be influenced by their topical similarity. We framed a hypothesis that the
distribution of similarity averages of the connections that lingered have higher values
than the connections that have not lingered. Thus, we expect that the central users’
connections that were maintained had a higher average topical similarity in the moment
of the first crawling then the ones which were not. We show the test of this hypothesis
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Figure 5.4: Distributions of averages of similarities betwen central users and their friends who were still
followed in 2016 and between the friends that were not followed anymore in 2016. The central users
considered here are the ones that had friends in the both situations, a total of 6, 157 users.

in Figure 5.4. It shows the distribution of similarity with the friends that were still fol-
lowed in 2016 and the distribution with the ones that were not followed anymore. The
Kolmogorov-Smirnov test between the two distributions yields a statistic of 0.11 with a
p-value < 2.6−05, it is visible that the two distributions have a difference, however, it
is difficult to conclude that it provides enough evidence to support our hypothesis that
persistent connections have a higher similarity.

5.2.4 Users Interactions

Users on Twitter can use the convention @username to mention another user in a
tweet. The interactions that happen through mentions are often seen as a relationship
stronger than the follow connections [66, 31]. One hypothesis that emerges from such
affirmation is that the topical similarity between mentioned users tends to be higher than
between followed users. To test this hypothesis, we verified if the distribution of similarity
averages with the mentioned users tended to be concentrated in higher values of similarity
than the distribution of similarity averages with friends. Figure 5.5 shows the distributions
obtained by the similarity averages between central users and the user mentioned by them
and between central users and their friends. The distributions are roughly the same, the
Kolmogorov-Smirnov statistic between them is 0.06 and the p-value is 2.2−15. This does
not bring enough evidence to contradict the general belief that there are stronger bonds
between users that interact, since the comparison is limited to a specific kind of similarity
(topical similarity). However, one is not able to say that the mention relations have
a significantly higher inbreeding topical homophily than the connections with followed
users.
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Figure 5.5: Distributions of similarity averages between the users followed and between users mentioned
by the central users.

Both mentions and friends histograms show that most of the averages fall into low
values of similarity and there is a positive skewness – i.e., skewed to the right – of the
two distributions, what is not evident in the distributions with random users in Figure
5.2. Given the proximity between the two distributions of Figure 5.5, one question that
emerges is if users, on average, follow and mention others in a close similarity pattern, i.e.,
if the users average similarity with friends and with mentioned users are correlated. We
verified this correlation in Figure 5.6. The Pearson correlation between the two variables
is 0.84, indicating that users that tend to follow similar users, also tend to mention similar
users.

5.2.5 Reciprocity of Relationships

Relationships in Twitter are not reciprocal, a user following another does not imply that
the other will choose to follow back. Thus, the existence of reciprocity indicates a stronger
relationship between two users as both decided to establish this bond. In the scope of this
work, the relationship strength is also viewed in terms of the topical similarity, thus, we
expect that reciprocal dyads have a higher similarity than non-reciprocal dyads. This will
be verified by both mentions and follow relationships, i.e., relationships wherein the two
users mentioned each other and relationships wherein the two follow each other. We first
present the result regarding reciprocal mentions in Figure 5.7. The two distributions differ:
the Kolmogorov-Smirnov statistic is of 0.22 with p-value < 2.2−16; the median similarity
of the distribution of nonreciprocal mentions is 0.08 and of the reciprocal mentions is 0.12.
The distribution of similarity for the reciprocal mentions is concentrated in higher values
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Figure 5.6: Scatter plot wherein each point corresponds to the average similarity between a central user
and the users she follows and the average similarity between the central user and the users mentioned by
her. . Except for a few outliers the two variables are well correlated.

of similarity, as confirmed by the Mann-Whitney U test with an effect size of 0.64 and a
p-value < 2.2−16. This indicates that reciprocal relations are more prone to have a higher
topical similarity, i.e., users have a more similar topic affiliation if they have a reciprocal
relationship.

To obtain the reciprocity of friends connections we used the new connections dataset,
i.e., the dyads crawled on February of 2016, which includes data concerning reciprocity of
connections. As previously mentioned, Twitter is highly dynamic and it is not accurate to
analyze the reciprocity of connections comparing the new friends dyads with the original
friends dyads. Thus, we decided to compare the average similarity with reciprocal friends
to the average similarity with the nonreciprocal friends from the new connections. The
comparison of these two distributions is shown in Figure 5.8. The medians of the distribu-
tions of reciprocal friends and of nonreciprocal friends are of 0.12 and 0.07, respectively.
As occurred with mentions, the distribution of reciprocal friends is more probable to have
a higher value of similarity as it is evidenced by the Mann-Whitney U test, which yielded
an effect size of 0.66 with a p-value < 2.2−16, furthermore, the Kolmogorov-Smirnov test
between the two distributions is of 0.27 with a p-value < 2.2−16.

The tests conducted in this subsection reinforce what was seen in Section 5.2.4, i.e.,
there is no significant difference between the nature of mention and follow relationships
with respect to topical similarity. The distributions of both relationships are very alike
when considering the dyads similarity, even with reciprocal relationships. This result
can be an important indicator that the motives that make users follow might not be
different than the ones that make they mention, at least with respect to topical similarity.
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Figure 5.7: The distribution of averages of similarities between central users and users they mentioned
and which mentioned them back, as well as the distribution of averages of similarities between central
users with users mentioned by them which didn’t mention them back. The analysis only concerns the
central users that had friends in both situations, a total of 8, 663 users.

Furthermore, we could verify that, in the case of reciprocal relationships, there is a higher
inbreeding topical homophily than with nonreciprocal relationships. This indicates that
users that stay connected for a sufficiently long period tend to become more similar, by
the social influence process, or, conversely, that users similarity can be a factor which
influences them to be connected for a longer period.

5.3 Mention Probability

If a central user a follows a user b, there is a dyad involving the two. All the analyses
shown until now indicate that the similarity of the dyads is concentrated mostly in low
values, relative to the possible range of values [0, 1]. Therefore, it is natural to presume
that most of the mentions done by the central users involve users which have a low
similarity value with them. We confirmed this through Figure 5.9. It shows the probability
density function of the similarity involved in the mention, i.e., the similarity between the
user that does the mention and the user mentioned. It considers all mentions done by a
central user in which the user mentioned were her friend. It can happen multiple times
for the same dyad. Specifically, for each mention there is the value of the corresponding
dyad similarity in the sample space, e.g., if a user a mentioned friend b twice, which
has a similarity of 0.2 with her, the sample space will contain the values {0.2, 0.2}. As
presumably most of the dyads have a low similarity, most of the mentions occur on dyads
that have a low similarity. However, this does not imply that users belonging to follow
dyads of lower similarity have a higher probability of being mentioned. There is just more
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Figure 5.8: The distribution of averages of similarities between central users and users they followed and
which followed them back, as well as the distribution of averages of similarities between central users
with users followed by them which didn’t follow them back. The analysis only concerns the central users
that had friends in both situations a total of 5, 872 users.

of those dyads. Actually, we expect that users in dyads with high similarity are more
likely to be mentioned.

We explored this question, i.e., if the probability of being mentioned is higher for users
with a high similarity, by looking at all dyads of friends – i.e., all pair of users wherein one
is a central user following another user from the population. We also took into account
the number of times that each friend was mentioned. Having the set of all dyads as
our sample space, we define two variables, M and S, to verify if the similarity of dyads
affected the probability of a user in it being mentioned. As the similarity of the dyads is a
continuous variable, we rounded it to two decimal places, producing the discrete variable
S. The number of times that the central users mentioned their friends is given by the
variable M . Taking k+ 1 as the minimum number of mentions that the dyad must have,
the conditional probability of a friend being mentioned by a central user more than k

times given the dyad similarity is defined by Equation 5.4.

P (M > k|S = si) =
P (M > k ∩ S = si)

P (S = si)
(5.4)

Figure 5.10 shows the conditional probabilities of a friend being mentioned by a central
user more than k = 0, 2, 5 and 10 times, given her similarity with the central user. As
expected, the probability decreases when the minimum number of mentions increases. Op-
posed to the naive interpretation of Figure 5.9, Figure 5.10 shows that friends which have
low similarity with the central user do not have a higher probability of being mentioned.
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Figure 5.9: Probability density function of similarity of all mentions in which a central user mention one
of her friends. A total of 2,010,447 mentions.

Figure 5.10: The conditional probability of a friend being mentioned more than k times by a central user,
given their rounded similarity. Analysis executed with a set of 547,346 dyads.
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Actually, users in dyads with a rounded similarity of 1 have a probability of 0.3 of being
mentioned at least once, while for dyads with a rounded similarity of 0 the probability is
significantly lower, 0.16.

It is observed a stable growth until 0.6 of similarity, after 0.6 there is a non-expected
decrease and the data become more disperse. It appears that from that point on, the
similarity is not significantly determinant. It remains an open question whether this
pattern will persist in future analysis. Overall, the pattern of conditional probabilities
appears to be the same for greater values of k, there is only in a reduction in the value of
the probability, as being mentioned more times is more challenging.

This analysis shows how the similarity gives an indication of the interactions inside
connections, at least for some values of similarity. Furthermore, even considering the loss
of stable growth after 0.6, this result can be interpreted as an evidence of homophily inside
connections, as connected users with a higher similarity, at least below the saturation
point, may have a higher probability to interact with each other.

5.4 Predictor

In Figure 5.6 we verified that there is a correlation between users average similarity
with friends and with mentioned users. It indicates that users, on average, follow and
mention other users in a similar fashion with respect to topical similarity. Furthermore,
the distribution of similarity averages is a right-skewed distribution. However, until now,
we did not provide a way to verify if the similarity between users is intrinsically related
to their connections as a cause of an effect. Specifically, we did not look if the topical
similarity between users can indicate users connections. Here, we evaluate the similarity
according to its relative importance, since even a user with a small average similarity
with friends might be connected with some who are the most similar to her. There-
fore, the topical similarity between users might be an effective variable to estimate their
connections.

We approached this issue as a prediction problem. Our question in this section is: Is
it possible to predict friends of users only looking at their topical similarity with other
users? We tested this question via a predictor that tries to predict users friends from
a group of users. Strictly speaking, we tested if the users most similar to the central
ones could be predicted as their friends from users pools of different sizes. A pool always
contains all the central user friends mixed with other candidates randomly selected. As
previously mentioned, there is a difference between users similarity averages, which indi-
cates a different pattern of friends. Thus, we separated the results according to different
similarity averages, i.e., we grouped users by their average similarity with their friends.
Namely, we rounded users average similarity to one decimal place and grouped them in
groups of averages 0, 0.2, 0.4 and 0.6. We did not use groups of average 0.8 and 1 as there
was a small number of central users with those averages. The results are shown in Figure
5.11.

We tested the predictor with different pool sizes, using the multiplicative constant k,
shown in the x-axis of Figure 5.11. For each k, a pool is created for each user. The size
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Figure 5.11: Average PPV of the predictor execution for each pool of size fr(a)× k.

of a pool is given by k × |fr(u)| for each user u, wherein fr(u) is a function that returns
the set of friends of user u. The predictor computes the similarity of each central user
with the users in the pool and returns a set of predicted friends, which always has size
|fr(u)|, containing the users that were most similar to the central user. In the y-axis is
shown the average PPV(positive predictive values) of the prediction, i.e., the average of
the fraction of friends that were correctly predicted. Each line shows the averages for each
group of users. The blue line with squares shows the average PPV considering all users
together, i.e., users of all averages. The red line with crosses shows the average PPV if
the predicted friends were only chosen randomly, also considering all users. For all the
groups of users, the prediction was better than only choosing users randomly, indicating
that similarity is an elemental feature of users connections.

It is worth mentioning the result observed for users with a average similarity of 0.4 and
0.6. There is a steady PPV as the constant k increases. This can be understood as: even
with an increasing set of users to choose from, the predictor keeps correctly returning
a significant fraction of their friends and this only happens because they continue to be
the most similarly available in the whole pool. This may indicate that there is a local
concentration of similarity among some connected users, i.e., the similarities of some
central users with their friends have values that are not achieved with other users. We
believe that this outcome is created because the individual affiliation pattern in the topics
is considerably unique among some connected users, thus the majority of other users in
the pools cannot have a greater similarity than the similarity of the friends.

The results regarding all users are not so impressive. Nonetheless, it is important to
notice that the method applied here does not take into consideration the social network
structure, which is probably the main factor responsible for determining the connections
in a network. Our focus is to explore the relation between information and users relation-
ships, not to provide a complete algorithm for link prediction or link recommendation.
Nonetheless, we believe that we provide evidence that users affiliation in topics of infor-
mation can be an important feature to be taken into account in methods interested in the
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precision of the prediction.
The results obtained in these last sections corroborate the theories which advocate

that relationships among individuals are fundamentally related to their similarity. In
this chapter, we were able to show how those theories apply regarding topical similarity
in the context of an information network. Besides connected users being more likely
to have a higher similarity, the reciprocity of their connections and the probability of
their interactions are also related to their affiliation in topics. Moreover, we verified that
similarity alone gives a good indication of some users friends, which show how important
information is with respect to users relationships. In the next chapter, we further explore
the importance of topics in users relations.



Chapter 6

Users’ Behavior according to Topics

Until now we have explored how the topical similarity is related to individuals rela-
tionships on Twitter. In the previous analyses, topical homophily was based on a single
measure composed of the similarity between users vectors representing their affiliation in
the topics. We have not analyzed how social relationships are affected by the presence
of topics. This chapter focuses on the direct relations between users affiliation in topics
and their behavior. We consider that a user is affiliated with a topic if she has tweeted,
at least, one hashtag belonging to this topic, i.e., a user, represented by a feature vector
u, has to have the value of the feature ui > 0 in order to be affiliated with the topic i.
Section 6.1 is concerned with the likelihood of users having a relationship when they share
topics; Section 6.2 explores changes of homophily in groups of users affiliated in different
topics.

6.1 Homophily on Shared Topics

In this section, we explore if users are more probable to be following or mentioning a
user according to the topics they share. We consider that a topic is shared by two users
if both are affiliated with it, i.e., both have in their vectors ui > 0 for the topic i. We
tested two hypothesis, the first is if a central user is more likely to be following or have
mentioned another when they share some topic. It is represented in the Inequalities 6.1
and 6.2. In those inequalities, P (Fc) and P (Mc) stand for the probability that a user is
being followed and have been mentioned by the central user c, respectively. P (Tc) is the
probability that a user is sharing a topic with the central user c.

P (Fc|Tc) > P (Fc) (6.1)

P (Mc|Tc) > P (Mc) (6.2)

Our second hypothesis is if a central user is more likely to have mentioned or to be
following another user when this user shares the topic wherein the central user was most
active. We consider the most active topic of a user as the topic whereof she had tweeted
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Figure 6.1: Proportion of users wherein each inequality held true or false.

hashtags more times, considering our whole dataset. The test with respect to following
another user is represented in Inequality 6.3 and with respect to mentioning in Inequality
6.4. In both tests, P (Maxc) is the probability that a user shares the topic wherein the
central user c has been most active.

P (Fc|Maxc) > P (Fc) (6.3)

P (Mc|Maxc) > P (Mc) (6.4)

The calculation of the conditional probabilities are straightforward. Here we only
demonstrate in Equation 6.5 the calculation of P (Fc|Tc), which is required for Inequality
6.1.

P (Fc|Tc) =
P (Fc ∩ Tc)
P (Tc)

(6.5)

In our dataset, there are users which have not followed and mentioned any user in
some of the presented probabilities. For instance, a central user c might not have followed
someone in the topic wherein she has been most active. In this case, P (Fc ∩Maxc) = 0,
which leads to P (Fc|Maxc) = 0. These cases are also considered in our analysis.

The number of times that each inequality was true or false is shown in Figure 6.1. It
shows that for the high majority of central users all the inequalities hold true. It indicates
that most users are more likely to be following and have mentioned users that share some
topic with them. We expected that the fraction would be larger for users that share
the topic wherein the central user was more active, however, the proportion is smaller.
Though, as shows Figure 6.2, the mean probability of have been mentioned and are being
followed in this case are notably larger than all the other cases.

This result contributes to the idea that individuals tend to have a dyad with the ones
that they have interests in common. Differently from the previous chapter, this analysis
verified the presence of homophily when two users share a characteristic, in this case, a
topic. The results hold for follow and mention relations and indicate that, either users
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Figure 6.2: Means the probabilities of a user being followed and mentioned.

tend to select their relationships according to topics or their topic affiliations are influenced
by their relationships. However, it is important to notice a limitation of these results. As
shown in Figure 6.2, despite the means of the conditional probabilities been higher in all
cases, the values of all probabilities are very low. This is likely caused by a large number
of users in all samples, which led to the fraction of users followed and mentioned by any
user being small all cases. Nonetheless, their values imply that these results cannot be
used alone to indicate the mechanisms of users relationships.

6.2 Behavior in topics

In the previous analysis, we have shown that the sharing of topics is related to users
relationships. However, we were not concerned about how users behave differently ac-
cording to the topics they are affiliated. Our hypothesis is that users inserted in different
topics behave in different ways regarding their relationships. Furthermore, if this hypoth-
esis is confirmed, is interesting to know what could be the reasonings behind this process.
We analyzed if this difference exists by two approaches: firstly, we estimated the level of
inbreeding homophily considering only the users affiliated in each topic and, secondly, we
looked at the probabilities of interaction inside different topics. These two approaches are
detailed in the following subsections.

6.2.1 Different Levels of Inbreeding Homophily

In this work, we detect the inbreeding homophily by assessing the difference between
the average similarity with friends and the average similarity with random users, as was
done in Section 5.2. Here we tested if there were significant differences between the in-
breeding homophily of topics. Strictly speaking, considering only the users affiliated with
each topic, we calculated the difference between the distribution of average similarities
of central users with friends and with randomly chosen users. As detailed in Section
5.2.1, we assume that the level of inbreeding homophily can be measured through the
Kolmogorov-Smirnov statistic.

To assure that we had sufficient statistics, we computed the Kolmogorov-Smirnov statis-
tic for each topic that had more than 1, 000 users in the population and more than 30
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Figure 6.3: Histogram of the values of the Kolmogorov-Smirnov statistic between the distribution with
friends and the one with random users.

Figure 6.4: Topics wherein the KS statistic was bigger.

central users. Furthermore, we did not consider the topics in which the KS test had a
p-value > 0.001, to assure that the distributions did not only differ by chance.

The statistics for these topics are summarized on Figure 6.3. The level of inbreeding
homophily is distributed in the ranges between 0 and 0.6. We manually verified some
of the topics wherein the test has yielded the highest and lowest values and, in a first
glance, it appears that exists some pattern. We show in Figure 6.4 two topics that had
a high value of the KS statistic, 0.52 and 0.53. These topics contain hashtags related
to sports competitions and it is possible to believe that the distributions differ as there
might be opposing groups of users which have interest in the competition, but differing
in the majority of other aspects. On the other hand, we show in Figure 6.5 topics with
a low KS statistic, 0.21 and 0.19, which indicates that the distributions are more similar.
The hypothesis that emerges from these images is that some sets of hashtags may be part
of a dialect used by a group of users that are highly homogeneous among them. This
analysis may guide questions for future research, however, they are outside of the scope
of this work.

6.2.2 Mentions in Topics

We have shown that there are different values of inbreeding homophily according to the
topics. In this subsection, we focus on users interactions inside topics. Strictly speaking,
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Figure 6.5: Topics wherein the KS statistic was smaller.

Figure 6.6: Histogram of probabilities of a user inside a topic being mentioned by any central user.

we are concerned with the probabilities of a user being mentioned inside each topic. We
define P (Mi) as the probability of a user being mentioned by any central user, with
respect to all the users affiliated with the topic i. Figure 6.6 shows the histogram of
probabilities calculated for those topics having at least 30 central users affiliated. Our
first idea was to apply a similar procedure of Section 6.2.1, i.e., to verify if could be a
semantic interpretation behind the probability values. However, in a manual verification,
we did not find any interpretation.

We then tried to see if the result could be a consequence of a more fundamental variable,
which could be correlated with the number of users affiliated with the topic. Figure 6.7
shows a log-log scatter plot of the probability by the number of users. It indicates that
the probability of a user being mentioned has an inverse power relationship with the size
of the topic.

On the other hand, Figure 6.8 shows that there is not a reduction in the numbers of
mentions of the topics as their numbers of users grow. The number of mentions of a
topic is the number of mentions done by a central user, such that she and the mentioned
user were affiliated with the topic. We interpret the probability decrease as a possible
result of two phenomena not necessarily unrelated. The first supposes that smaller topics
have a higher concentration of people alike. Thus, their users might be closer and, by
the homophily principle, might be more prone to interact than users from bigger topics,
which contain a broader variety of users. The second interpretation is based on the
preferential attachment effect. As the size of the group increases, the mentions tend to
be more concentrated around a smaller number of users with high degree, reducing the
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Figure 6.7: Probability of a user being mentioned in each topic by the number of users in it. A log-log
regression of the two variables gives α = 0.0021 and β = −0.31 for a function y = αxβ .

total fraction of users mentioned. Further analysis might give a thorough explanation of
this phenomena.

Figure 6.8: The total number of mentions in each topic by the number of users in it.

This result demonstrates that, despite homophily being significant in people relation-
ships, other properties and the arrangement of users relationships can affect their behavior.
This indicates the necessity of more research in homophily taking into account the social
network structure.



Chapter 7

Conclusion

In today’s world, online social networks as Twitter provide a laboratory where infor-
mation and users connections are available for study. This dissertation is concerned with
how the structure of a social network is related to the information shared in it. The con-
nections in a social network are the substrate over which information flows, which makes
their flow partially dictated by the network structure. However, information flow cannot
be seen as an independent phenomenon; it encapsulates contents that can affect how in-
dividuals behave. For instance, people might be inclined to bound to others according to
their affinity concerning the information they share. On the other hand, depending on
the information one advocates, some might prefer to not bond with her. We explored this
relation using the Twitter data and we found that individuals which have a relationship
tend to be similar regarding the information they share.

One of the premises to investigate how information is coupled with social connections is
to design a model which captures its desired characteristics. We achieve this by modeling
information as semantic topics of hashtags as Weng et al. [74]. These topics encompass
contents of information shared among users. We computed users participation in topics
to characterize individuals interests and preferences on Twitter. This characterization
served as a basis for the exploration of topical similarity between individuals and we
found that, on average, individuals tend to have a relationship with users more similar
to them than with a random group of users. The dyads of some users might experience
a greater influence of the topical similarity. This is so profound to some users, that they
are essentially connected to the users most similar them in the network, what suggests an
effective way to predict friends, at least, for some users.

We verified if the influence of the topical similarity between individuals differed in
mentions and follows relations. Our results show a consistency across the two types of
relationships, showing no significant difference between them. This was also verified when
considering reciprocal relationships, which, in both cases, showed a higher level similarity
than in a non-reciprocal relationship.

Modeling users according to their affiliation in topics also allowed us to verify how their
adoption of topics is associated with their relationships. Our results show that groups of
users affiliated with different topics show different levels of inbreeding homophily and we
suggest that this can be caused by the topic nature. Groups of users in different topics
also mention each other with different probabilities, what appears to be a result of the
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size of the topic and the preferential attachment effect. Furthermore, we verified that the
majority of users are more likely to mention others that share topics with them than the
others who don’t share.

The approach presented in this work uses hashtags to build the topics of information. It
limited our results to only users that used hashtags, what significantly reduced our sample.
Moreover, as we did not have the whole Twitter network structure, our hypothesis was
restricted to a set of dyads and could not explore questions involving network measures
such as distance and centrality. Nonetheless, we believe that our sample provides a
significant support to understand some relationships among users. Another limitation
is our method to build topics, which ignores the temporal behavior of hashtags. The
moment in which the hashtags co-occur might contain specificities that we are not able to
capture. However, even with these limitations, we could verify that the topics detected
have a semantic sense and our set of users were sufficient to achieve relevant results.

Our work provides evidence of a greater topical similarity between connected individu-
als, which may be seen as an evidence of inbreeding homophily, as defined by McPherson
& Smith-Lovin [49]. We also deepen the understanding of how the information that
traverses individuals connections can affect their behavior.

This is a significant achievement involving social hypothesis using Twitter Data, but
our contributions include providing a feasible computational way to compute the similar-
ity between users and assess homophily in a social network. This can be further enhanced
to improve the understanding of the mechanisms by which users are connected analyzing
the whole social network structure, which was not available in our work. Furthermore,
it is necessary further investigation of how the flow of information is related to the net-
work dynamics. The results that we obtained with topics also leave open opportunities to
explore how their semantics affect the behaviors of users who adopt them. Other possi-
bilities lie in using our methods in applications for friendship recommendation or finding
missing links in a social network.
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Appendix A

Statistics

Some basic concepts are presented in this appendix for this dissertation to be more
self-contained. A more detailed explanation may be found in the references.

A.1 Probability Density Function

A probability density function, f(x), of a continous variable X is defined such that
f(x) ≥ 0 for an event x ∈ X and

∫ −∞
∞ f(x)dx = 1. The probability of an event on the

interval [a, b] is given by:

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx

Some histograms in this work are shown in density scale and their bins have the same
width. Thus, the probability of an outcome is given by:

P (x) = f(x)× width

For more information on probability density function, see [64].

A.2 Kolmogorov-Smirnov Test

The Two-sample Kolmogorov-Smirnov samples test is a nonparametric statistical test
used for comparing two continuous probability distributions. As it is a nonparametric
test, it does not assume anything about the distributions, e.g., if the data are normally
distributed. The test check if two samples come from the same distribution looking at
their empirical distribution function. It returns a statistic D which is the supremum
difference between the two empirical distribution functions at any given point. See more
on Conover [21] and Sheskin [69].
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A.3 Mann-Whitney U Test

The Mann-Whitney U Test, also known as Wilcoxon rank sum test is a non-parametric
test analog to the t-test (which assumes normality of the distributions). It assumes that
the data of the distributions are in an ordinal format, i.e., their values represent a score of
the observations on an arbitrary scale. It is often used to compare if two samples, which
do not follow a normal distribution, come from the same population or if one of them is
more likely to have higher scores than the other [69].

When comparing two distributions of size m and n, firstly, the values of the two dis-
tributions are joined and put in rank order, i.e., the smallest values will have rank 1,
the second smallest rank 2, ..., the highest will have rank m + n. After that, each pair
mi, nj is compared to see which is the higher, resulting on m× n comparisons. The test
has as result the statistic U , which is the number of favorable pairs that supports the
hypothesis. The hypothesis cannot be rejected when the number of favorable pairs is
higher than the number of unfavorable pairs. There are other mathematically equivalent
ways to compute the test statistic U . We preferred this approach as we believe it is the
most intuitive. Detailed definitions can be found on Rice [64] and Conover [21].

In the Mann-Whitney U tests done in this work, we have chosen to use the common
language effect size [47] as an indicator of the strength of the result. The common language
effect size is the proportion of favorable pairs, U , over all pairs. Thus, if the effect size is
0.5, the result is insignificant, as half of the comparisons are favorable to the hypothesis
and half are unfavorable. As far as the effect size is further away from 0.5, more impactful
is the result.



Appendix B

Supplementary Information

B.1 Dataset Statistics

We crawled the follow connections of users in 2013 and 2016. This process had as focus
the users that were followed by a set of users denominated central users. In Figure B.1a
and Figure B.1b we show the out-degrees of the central users and the in-degrees of all
users that are followed by them. In 2016 we also crawled the connections of the users
followed by the central users. Figure B.2a shows the out-degree and Figure B.2b shows
the in-degree of all users. It is visible that all distributions follow a power law like degree
distribution.

B.2 Community Detection

The topics of information used in our analysis are clusters of hashtags. These clusters
are built through the OSLOM community detection tool [39]. One of the reasons for the
use of OSLOM is its efficiency given that the hashtags co-occurrence graph is relatively
big. Its computational complexity is hard to be assessed and has not been specified by
the authors. However, they their tests on artificial benchmarks have shown that the time
for the execution of the method scales almost linearly with the graph number of nodes.

OSLOM can detect a hierarchical structure of the clusters and, as it is an optimization
algorithm, it takes as parameters the number of runs for the first and for the other
hierarchical levels. We executed 100 runs in all levels. Furthermore, OSLOM can take
as input parameters other efficient community detection algorithms that are executed
priorly. The partitions found by them are used as initial conditions. The tool then assess
and chooses the best-found modules. Our execution used 10 runs of the Infomap [68],
Copra [33] and Louvain [8] methods. The total time of execution with our considered
dataset was of approximately one day.

We adopted the first level in the dendogram of communities for our analyses. One
could argue that it would be a good choice to use a higher level in this dendrogram, i.e.,
a higher hierarchical level, as it would reduce the number of communities. This would
be good for our analysis if there was a better semantic mapping in a higher hierarchical
level. However, in our executions the higher hierarchical levels just group together the
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(a) Out-degree distribution of the central users .

(b) In-degree distribution of all users.

Figure B.1: In/out-degree distributions considering the first crawling of follow connections.
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(a) Out-degree distribution of all users.

(b) In-degree distribution of all users.

Figure B.2: In/out-degree distributions considering the second crawling of follow connections.
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biggest communities, resulting in a more skewed distribution of the communities sizes.
We believe that this worsens the quality of the topics of information.
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