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Resumo

Com o crescimento exponencial de gravações em vídeos disponíveis online, a moderação
manual de conteúdos sensíveis, e.g, pornografia, violência e multidões, se tornou impra-
ticável, aumentando a necessidade de uma filtragem automatizada. Nesta linha, muitos
trabalhos exploraram o problema de detecção de pornografia, usando abordagens que vão
desde a detecção de pele e nudez, até o uso de características locais e sacola de pala-
vras visuais. Contudo, essas técnicas sofrem com casos ambíguos (e.g., cenas em praia,
luta livre), produzindo muitos falsos positivos. Isto está possivelmente relacionado com
o fato de que essas abordagens estão desatualizadas, e de que poucos autores usaram
a informação de movimento presente nos vídeos, que pode ser crucial para a desambi-
guação visual dos casos mencionados. Indo adiante para superar estas questões, neste
trabalho, nós exploramos soluções de aprendizado em profundidade para o problema de
detecção de pornografia em vídeos, levando em consideração tanto a informação está-
tica, quanto a informação de movimento disponível em cada vídeo em questão. Quando
combinamos as características estáticas e de movimento, o método proposto supera as
soluções existentes na literatura. Apesar de as abordagens de aprendizado em profun-
didade, mais especificamente as Redes Neurais Convolucionais (RNC), terem alcançado
resultados impressionantes em outros problemas de visão computacional, este método tão
promissor ainda não foi explorado suficientemente no problema detecção de pornografia,
principalmente no que tange à incorporação de informações de movimento presente no
vídeo. Adicionalmente, propomos novas formas de combinar as informações estáticas e de
movimento usando RNCs, que ainda não foram exploradas para detecção de pornografia,
nem em outras tarefas de reconhecimento de ações. Mais especificamente, nós exploramos
duas fontes distintas de informação de movimento: Campos de deslocamento de Fluxo
Óptico, que tem sido tradicionalmente usados para classificação de vídeos; e Vetores de
Movimento MPEG. Embora Vetores de Movimento já tenham sido utilizados pela litera-
tura na tarefa de detecção de pornografia, neste trabalho nós os adaptamos, criando uma
representação visual apropriada, antes de passá-los a uma rede neural convolucional para
aprendizado e extração de características. Embora os experimentos mostrem que as duas
fontes são equivalentes em termos de eficácia quando complementando a informação está-
tica, a técnica de Vetores de Movimento MPEG é mais vantajosa devido a sua eficiência e
também pois estar presente, por construção, nos vídeos, enquanto se decodifica os frames.

Nossa melhor abordagem proposta supera os métodos existentes na literatura em di-
ferentes datasets. Para o dataset Pornography 800, o método consegue uma acurácia de
classificação de ∼97, 9%, uma redução do erro de 64,4% quando comparado com o estado
da arte (∼94, 1% de acurácia neste dataset). Quando consideramos o dataset Pornography
2k, mais desafiador, nosso melhor método consegue um acurácia de ∼96, 4%, reduzindo o
erro de classificação em 14,3% em comparação ao estado da arte (∼95, 8%).



Abstract

With the exponential growth of video footage available online, human manual moderation
of sensitive scenes, e.g., pornography, violence and crowd, became infeasible, increasing
the necessity for automated filtering. In this vein, a great number of works has explored
the pornographic detection problem, using approaches ranging from skin and nudity de-
tection, to local features and bag of visual words. Yet, these techniques suffer from some
ambiguous cases (e.g., beach scenes, wrestling), producing too much false positives. This
is possibly related to the fact that these approaches are somewhat outdated, and that few
authors have used the motion information present in videos, which could be crucial for the
visual disambiguation of these cases. Setting forth to overcome these issues, in this work,
we explore deep learning solutions to the problem of pornography detection in videos, tak-
ing into account both the static and the motion information available for each questioned
video. When incorporating the static and motion complementary features, the proposed
method outperforms the existing solutions in the literature. Although Deep Learning ap-
proaches, more specifically Convolutional Neural Networks (CNNs), have achieved striking
results on other vision-related problems, such promising methods are still not sufficiently
explored in pornography detection while incorporating motion information. We also pro-
pose novel ways for combining the static and the motion information using CNNs, that
have not been explored in pornography detection, nor in other action recognition tasks
before. More specifically, we explore two distinct sources of motion information herein:
Optical Flow displacement fields, which have been traditionally used for video classifica-
tion; and MPEG Motion Vectors. Although Motion Vectors have already been used for
pornography detection tasks in the literature, in this work, we adapt them, by finding an
appropriate visual representation, before feeding a convolution neural network for feature
learning and extraction. Although the experiments show that both sources are equivalent
in terms of effectiveness when complementing the static information, the MPEG Motion
Vectors technique is more advantageous due to its efficiency and also because it is present,
by construction, in the video while decoding the frames. Our best approach outperforms
existing methods in the literature when considering different datasets. For the Pornogra-
phy 800 dataset, it yields a classification accuracy of ∼97.9%, an error reduction of 64.4%
when compared to the state of the art (∼94.1% in this dataset). Finally, considering the
more challenging Pornography 2k dataset, our best method yields a classification accuracy
of ∼96.4%, reducing the classification error in 14.3% when compared to the state of the
art (∼95.8% in the same dataset).
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Chapter 1

Introduction

Classification of sensitive media content (e.g., pornography, violence, crowd) has received
increased attention recently because of its applications: it can be used for detecting,
via surveillance cameras, inappropriate behavior; blocking undesired content from being
uploaded to general purpose websites (e.g., social networks, online learning platforms,
forums), or from being viewed in some environments (e.g., schools, workplaces); preventing
children from accessing adult content on personal computers, smart-phones or television;
and avoiding that improper content of someone is distributed through the phone network
by sexting, among others.

Amongst the different kinds of sensitive media filtering, one of particular interest is
pornography detection and, consequently, child pornography detection. Given its partic-
ular importance, this work focuses primarily on this problem, but the proposed methodol-
ogy is potentially adaptable to other types of sensitive content as well. A common aspect
regarding sensitive content is the subjectivity of its definitions. In this work, we choose
to consider as pornography content “any sexually explicit material with the aim of sexual
arousal or fantasy” [63].

A natural approach for pornography detection in the literature consists of first trying
to detect nudity [23, 24, 26, 77] and then defining some appropriate thresholds to further
filter the content. This type of solution commonly uses human skin features, such as
color and texture, and human geometry [39, 59, 47, 10]. These methods normally use
this information for modelling which pixel values and spatial distribution characterize a
nude person. Although these methods are intuitive, they are somewhat naïve. Scenes of
people in bath suits or sports, such as wrestling, will probably be misclassified, leading to
a high rate of false positives and low classification accuracy. Therefore, nudity by itself,
is not a reliable source of information for pornography detection. In addition, this kind
of approach is also hard to implement, because of the many ad-hoc thresholds involved
in the process, what also hinders generalization, especially when considering the diversity
of ethnicities and different aspects of illumination, which may occur during the capture
of the video.

In more recent years, other types of approaches have been explored in adult content fil-
tering [19, 36, 72, 68, 5]. Inspired by the bag of words model from text classification, some
authors have explored bags of visual words (BoVW) methods for pornography detection.
They insert an intermediary description between the low-level features extracted from

13
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the images, and the classification component. These methods normally involve choosing
some low-level feature representation, normally gradient-like information, and creating a
representative codebook. The involved steps are referred to as generating the codebook,
coding the features and pooling the codewords count. In the end, a classifier will learn,
through examples, which representations belong to the pornography class. These methods
are more robust than the skin-based, having more classification power, but still suffer from
some ambiguous cases. Choosing the codewords, the size of the codebook and which of
the many coding and pooling strategies to use are crucial tasks for the good performance
of the solutions.

Although thus far relatively underestimated for this problem, motion information
available in videos would likely help to disambiguate the most difficult cases in pornogra-
phy detection. Unfortunately, only a few works have explored spatio-temporal features or
motion information in this problem until now [36, 6]. In these cases, the spatio-temporal
feature evaluated was Space-Time Interest Points (STIP) [43] and the motion information
coming from a statistical analysis of the MPEG-4 Motion Vectors.

Given the difficulty of developing appropriate thresholds for skin-based detectors and
also the several available choices when coding low- and mid-level features, in addition
to the lack of proper motion-based features, and the recent success of Deep Learning
solutions on similar tasks, we set forth the task of designing and developing deep learning
techniques to automatically grasp static and motion-based deep representations straight
from the data that could leverage pornography classification.

Among the many machine learning techniques available, Deep Neural Networks, more
specifically Convolutional Neural Networks (CNN), are showing groundbreaking results
for image and video classification tasks [41, 64, 69, 51], such as detection of objects (e.g.
airplane, bird, tennis ball) and action recognition (e.g. archery, golf, sit). In the last
years, these networks have achieved state-of-the-art performance across different datasets
and challenges, such as ImageNet1 and UCF101 [66], outperforming, by a great margin,
the previous approaches, including BoVW-based solutions.

Of particular attention, some authors have been studying how to adapt CNNs for
human action recognition in videos, whereby the spatio-temporal information can be
explored to improve the extracted features [45, 37, 40, 64]. Different architectures are
possible, each one combining the spatial and temporal information in different ways,
leading to better or worse features for the classification task. Some authors sought to
extract the motion information implicitly by feeding a sequence of frames to the CNN [45,
37, 40], while others opted for explicitly feeding this information to the network through
a previously computed Optical Flow Displacement Fields image representation [64].

The literature on pornography detection using deep learning techniques is very scarce.
Moustafa [51] classified videos as porn or normal based on the majority voting from a
sample of frames classified with off-the-shelf CNNs architectures. No spatio-temporal or
motion information was applied in his method.

When targeting at sensitive media filtering, some interesting challenges appear for
deep learning-based solutions: how to define an appropriate architecture; the possibility
of reusing already trained architectures for related image categorization problems, thus

1http://www.image-net.org/

http://www.image-net.org/
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avoiding the need for huge amounts of training data; and how to incorporate time/motion
information, which complements the spatial/static information.

1.1 Objectives

Our main objective in this work is to design and develop deep learning-based approaches to
automatically extracting discriminative spatio-temporal characteristics for filtering sen-
sitive content in videos, e.g., pornography. As far as we know, this is the first time
convolutional neural networks, along with motion information, is applied for pornography
detection in videos. Primarily, we explore static and motion information independently,
and afterwards, investigate different ways for combining them. Also, we analyze whether
or not it is possible to transfer learning from Convolutional Neural Networks trained pre-
viously for another problem (e.g., classification of objects with the ImageNet dataset), to
our problem. Furthermore, distinct sources of motion information are explored, including
novel forms of incorporating them (e.g., image representation of MPEG Motion Vectors).

1.2 Research Questions

The main research questions we address in this work are:

I) Are convolutional neural networks suitable for pornography detection in videos?

II) Is the motion information complementary to static ones?

III) If the static and motion information are complementary,

i) Which is the most promising method for extracting the motion information?

ii) How the fusion of such information should occur?

1.3 Contributions

Our main contributions in this work are:

I) A novel method for detecting pornographic videos, using convolutional neural net-
works along with static and motion information;

II) A new technique for exploring the motion information contained in the MPEG
motion vectors [58];

III) A study of different forms of combining the static and motion information extracted
from questioned videos.
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1.4 Outline

We organized the remaining of this work as follows. Chapter 2 discusses existing ap-
proaches for dealing with the pornography detection problem. Chapter 3 presents a
short summary of the necessary concepts to understanding this research proposal: Deep
Learning; Motion Information; and Local Descriptors. Chapter 4 introduces the proposed
research methodology. Chapter 5 presents the experimental setup along with the experi-
ments and validation of the proposed methods and existing counterparts in the literature.
Finally, Chapter 6 concludes the work and points out to some possible future research
directions.



Chapter 2

State of the Art - Pornography
Detection

In a relatively recent work, Short et al. [63] wrote a review of 46 articles that approached,
to some extent, internet pornography. In their work, the authors highlight the importance
of the authors to make explicit the definition of pornography used by them, since it has
direct influence on the results and issues that can be encountered further on. The defini-
tion is also relevant for comparisons between works. As an example, some works consider
the presence of genitals as being enough for classifying the content as pornography, while
other authors argue that explicit sexual acts are necessary. It is proposed that a well
formalized definition should contain the type of pornography and the reason that it is
apparently expecting to motivate the viewers. The definition we adopted in this research
was “any sexually explicit material with the aim of sexual arousal or fantasy”, and was
assembled by Short et al. [63], being a mixture of the definitions in the reviewed articles.

2.1 Skin-based techniques

Nudity detection using skin information has been extensively explored in the literature [23,
24, 25, 26, 77]. Fleck et al. [23] proposed a content-based retrieval strategy for returning
images with naked people. It consisted of two main steps. First, filtering the images
that have large areas of skin regions. To identify skin pixels, it is used thresholds on the
intensity, hue and saturation value of each pixel. These areas are grouped and analyzed
geometrically, validating if they could represent human limbs. The authors point out that
the first phase is fragile to scale and saturation, and returns false positives from scenes
with many people, or from materials with colors that are similar to human skin. The
geometrical analysis suffers from missing limbs because of occlusion, close-ups or even by
failure of the skin detector, among other reasons. These aspects lead to low precision and
recall measures, when in comparison to newer methods we shall see later, more robust to
these aspects.

Jones and Rehg [39] focused exclusively on the color information from the pixels,
building some skin-based statistical models. A histogram of 256 bins for each channel is
computed from the skin images, and another for the non-skin. These histograms model

17
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the probability of the color belonging to a skin region. With a standard likelihood ratio
approach, an RGB value can be labeled skin if above a certain threshold. A feature vector
is then created comprising features that include the number of pixels detected as skin and
the average confidence of the detected skin. A C4.5 decision tree classifier is used for the
decision-making process.

2.2 Bag-of-Visual-Words techniques

The next milestone for the pornography detection problem was reached with the Bag-
of-Visual-Words (BoVW) models. Deselaers, Pimenidis and Ney [19], aware that this
type of solution had showed good results in many image classification problems, built a
classifier for adult images using visual codebooks. Patches around interest points, with
scaling and dimensionality reduction via Principal Component Analysis (PCA), were used
as features. Codewords were selected through Gaussian mixture models, generating the
codebook. The authors employed a hard-assignment coding policy followed by sum pool-
ing. Other types of coding and pooling were proposed later on. The decision making
considered Support Vector Machines (SVM) and Log-linear classifiers. The reported re-
sults showed that their method clearly outperforms the previous methods, mainly based
on color features. In addition, the authors show that little performance is gained by
combining this solution with skin-based ones.

2.3 Classifying Videos

When it comes to video, the basic approach considers extracting the frames and applying
an image-based description and classification approach. However, these methods disregard
valuable information that videos provide, the concept of motion. Although not directly
in the field of pornography detection, the importance of temporal information for action
recognition has been assessed for many years now. Dollar et al. [21] proposed a corner
detector algorithm similar to the Harris detector [29], that seeks for “corners” in time.
The detected “motion” corners are then described with cuboids around them. With the
help of a codebook from the cuboids, the histograms of features from the short scenes
demonstrated much greater classification power than the spatial-based descriptors. Some
recent works keep the trend of exploring motion information for action recognition as
Laptev et al. [44], Wang et al. [73], and Simonyan and Zisserman [64].

Turning our attention to pornography detection, Jansohn et al. [36] were one of the
first authors to explore the time information while detecting pornography. They used
a statistical analysis of MPEG-4 motion vectors, with a bag-of-visual-words similar to
the one proposed by Deselaers, Pimenidis and Ney [19]. Different ways of combining
the motion vector information in overlapping windows of time were experimented. A
description of the video was generated by pooling these windows, generating a motion
histogram (MHIST). The decision making in the end considers an SVM classifier. The
classifier using the time information alone gave effective results and was improved upon
when combined with a BoVW-based (spatial characterization) approach.
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Avila et al. [5] proposed an extension of the bag-of-visual-words approach for the
pornographic video detection task. The improved design involved new pooling and coding
formalisms for the local descriptors. Instead of simply summing up the activations in the
pooling step, as in Deselaers, Pimenidis and Ney [19], an estimation on the distribution of
the descriptors distance to the codewords is used. For the new coding, a semi-soft scheme
was used, on which different softness parameters, based on the variation of each cluster,
are applied. The decision-making process considers an SVM classifier. Different datasets
were used to validate the extension including a pornographic benchmark available online1.

Another supplementary information provided by video, that can be used for pornog-
raphy detection, comes from audio. Rea et al. [57] proposed an audio feature extraction
approach for this problem, that consists of analyzing the periodicity from the sound. The
inspiration comes from the fact that this type of content usually has repetitive sounds.
To capture and measure the periodicity, an autocorrelation of the energy filter is applied
to the audio signal, and the area between the local maxima’s and minima’s curves is
computed. If the area is above a certain threshold, that configures a repetitive sound,
suggesting it comes from pornography. In an evaluation with diverse audio samples, not
from pornographic content, a false alarm rate of 2% was reported. But the authors high-
light that this approach alone is not robust to other periodic sounds, such as in a tennis
match, so visual features should also be present to remove ambiguities.

Although the audio information might also be useful in the intricate task of pornogra-
phy detection, in this work, we do not take audio into consideration. As a matter of fact,
we opted to solely focus on visual information.

2.4 Convolutional Neural Networks

Although Deep Learning has been responsible for most of the current breakthroughs
in image classification tasks, few explorations were made for these techniques within
the context of pornography detection in video. Moustafa [51] performed a superficial
adaptation of well-known CNN architectures for image classification to the pornographic
video classification task. He used AlexNet [41] and GoogLeNet [69] architectures directly
on selected frames for classifying them in porn or non-porn. Afterwards, the author
performs a majority voting with these frames, to classify the whole video. The author
used the weights learned from Imagenet dataset, fine-tuning only the last layer, which
corresponds to the classifier. Within this approach, no motion information was explored.

2.5 Third-party Solutions

The nudity and pornography detection problem has not been tackled only by the academia.
There exists some software, mostly commercial, aiming at solving this problem. Some
focus on blocking websites that contain this type of content (e.g., CyberPatrol, CYBER-
sitter, NetNanny, K9 Web Protection, Profil Parental Filter). Others scan the hard drive
in search of pornography (e.g., SurfRecon, Porn Detection Stick, PornSeer Pro). There is

1https://sites.google.com/site/pornographydatabase/

https://sites.google.com/site/pornographydatabase/
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even a Brazilian software, called NuDetective, developed by the Brazilian Federal Police,
that focus on detecting child pornography. These commercial solutions are mainly based
on skin detection approaches, and none explored the space-time nature of videos for aiding
the detection of pornography. Therefore, they are behind the current state of the art for
this problem.
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2.6 Summary Table

Table 2.1 presents an overview of the many related work on the pornography detection
problem and its sub-problems, skin and nudity detection.

Table 2.1: Summary of approaches on skin, nudity or pornography detection. For the
Type column, we have Nude Image (NI), Nude Video (NV), Porn Image (PI) and Porn
Video (PV).

Reference Type Method Classifier

Fleck et al. [23] NI Skin detection; geometrical analysis Threshold

Lopes et al. [49] NI BoVW model; PCA on SIFT and HueSIFT descriptors Linear SVM

Lopes et al. [48] NV BoVWmodel; PCA on SIFT and HueSIFT descriptors; vot-
ing scheme

Linear SVM

Jones and Rehg [39] PI Skin color histogram; color probabilities C4.5 decision tree

Rowley et al. [59] PI Skin color histogram; skin texture histogram; face detection RBF SVM

Zheng et al. [77] PI Skin color detection; skin region detection; shape descriptors AdaBoost with C4.5 decision
tree

Zuo et al. [79] PI Patch-based skin color detection; human body part detec-
tion

Random forest

Deselaers et al. [19] PI BoVW model; PCA on SIFT descriptors; GMM model SVM; histogram intersection
kernel

Ulges and Stahl [72] PI BoVW model; DCT in YUV color space SVM; χ2 kernel

Steel [68] PI Mask-SIFT; skin percentage Cascade classifier of three
stages

Zaidan et al. [75] PI
Bayesian method with a grouping histogram; segmentation
with back-propagation neural network

Artificial neural network

Zhuo et al. [78] PI ORB descriptors; BoVW model SVM

Nian et al. [52] PI CNN architecture CaffeNet CNN Softmax

Jansohn et al. [36] PV BoVW model; DCT in YUV color space; motion histograms SVM; late fusion

Avila et al. [5]∗ PV BoVW-based model: BossaNova; HueSIFT descriptors RBF SVM

Caetano et al. [13]∗ PV BoVW-based model: BossaNova; binary descriptors RBF SVM

Caetano et al. [14]∗ PV BoVW-based model: BossaNova; binary descriptors; multi-
ple aggregation functions

RBF SVM

Valle et al. [6]∗ PV BoVW model; STIP descriptors Linear SVM

Rea et al. [57] PV Skin color estimation; MPEG motion information; periodic
patterns detection

Threshold over periodicity
measure

Ulges et al. [71] PV
BoVW model; DCT in YUV color space; MFCC audio fea-
tures; motion histograms; skin detection

SVM; RBF and χ2 kernels;
late fusion

Moustafa [51]∗ PV CNNs on raw frames Majority Voting

∗The reported results from these works are used for comparison with our proposed approaches



Chapter 3

Related Concepts

In this chapter, we cover the main concepts necessary for understanding this manuscript.
Since Convolutional Neural Networks are the core of our proposed methodology, Sec-
tion 3.1 details Deep Learning concepts, such as basic notions of Convolutional Neural
Networks (ConvNets), filter optimization, the GoogLeNet architecture, we rely upon this
research, and the motion/temporal networks. Section 3.2 brings an explanation of the
motion information sources explored herein, Optical Flow and MPEG Motion Vectors.
Finally, Section 3.3 presents the techniques associated with local description methods that
we used for comparison with our proposed methodology.

3.1 Deep Learning

The main reason for the success of the deep neural networks (DNNs) lies on their ability
to generate features directly from raw data [9] (most notably the intensity values of the
pixels). These extracted features help overcoming the gap between the bits represent-
ing an image to its semantic value, such as objects and scenes. With this new level of
representation as input, supervised learning systems, e.g., another Neural Network or Sup-
port Vector Machines (SVM) [34], can train with this enhanced data, generating highly
discriminative models.

In this section, we discuss the: basic notions of the deep architecture explored in our
proposed methodology, Convolutional Neural Networks; optimization methods; design of
GoogLeNet [69]; and temporal approaches with ConvNets.

3.1.1 Convolutional Neural Networks

ConvNets have been designed aiming to emulate a powerful “vision” system, which is the
visual cortex [46]. This biological inspiration guided the architecture decisions that are
explained here.

Spatial correlation, that is the association of nearby information, is an important
step for vision processing [35]. ConvNets enforce this kind of correlation by sparsely
connecting the neurons on adjacent layers. That means each neuron will be connected to
just a sampling of the neurons of the layer below, where these neurons’ output are related
to regions of the signal that were somehow close to each other in the original input,
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e.g., nearby pixels in an image. Figure 3.1 depicts a visual representation of this sparse
connectivity of neurons. This way, at each layer, we aggregate information from smaller
subregions, which allows the network to generate a more accurate information from a
larger subregion than the previous layer. The sub-regions that a neuron has as input
is often called its receptive field. Thus, the stack of convolutional layers go from local
information, beginning with pixel data such as colors and brightness, to broader concepts,
including borders and corners. The key-point of success is that, through learning, these
concepts naturally evolve from corners, to high-level notions, such as eyes and noses [76].

Figure 3.1: Sparse connectivity of the neurons present in convolutional neural network
architectures, for enforcing spatial correlation.

These concepts may appear in different locations on an image, and possibly repeti-
tively. Therefore, the same type of information should be filtered on these different lo-
cations. This necessity led to the next important architecture detail of ConvNets, which
is parameter sharing among a subset of the neurons in the same layer. The collection of
parameters shared by a subset of neurons define a feature map. Due to the sparse con-
nectivity explained above, each of the neurons of this subset has a distinct combination of
inputs at the receptive field, which means that they analyze different sub-regions of the
signal, but in search of the same content because of the common parameters. Figure 3.2
depicts the weight sharing present at neurons with the same feature map.

The feature maps mentioned above are, in fact, a set of weights, composing a filter
bank. Filter banks are applied to the input signal through a mathematical operation
denominated convolution, hence the name of this network architecture. For learning the
filter weights, we normally apply gradient descent [60]. Filter optimization is a very
delicate and determinant step for the performance of the network, hence we will detail it
in the next section.

Normally, after linear filtering the input with the filter bank through convolution,
the output is added to a bias term and fed to a non-linear activation function, usually
a Rectified Linear Unit (ReLU). Subsequently to applying the feature map, some sub-
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...
...

Feature map A

Feature map B

Figure 3.2: Sharing of weights among a subset of the neurons in the convolutional neural
network architecture, enabling the repeated application of the same feature map in all
regions of the input image.

regions may be grouped by max-pooling their outputs, before being fed to the upper
layer. This downsampling step is optional, but it helps reducing the dimensionality and
allows the composition of spatial invariance information.

Hence, deep convolutional neural networks consist of basically stacking up the previ-
ously described components, commonly with more than twenty layers, and some fully-
connected layers plus a softmax layer for classification. In a nutshell, the basic convo-
lutional network structural parameters can be summarized to: 1) number of layers; 2)
number of filters in each layer; 3) size and stride of the receptive fields; 4) type of the
non-linear function; 5) size and stride of the pooling.

3.1.2 Filter Optimization

An appropriate architecture from a convolutional neural net is fundamental for effectively
extracting the best features from raw data. But if used with random weights for its filters,
they could still be far from the optimal performance. For learning filters more suitable to
a certain problem, we normally employ a Stochastic Gradient Descent technique, using
backpropagation for computing the gradients [60]. In summary, the learning consists of
optimizing an objective function, which is related to the network weights, by analyzing the
derivatives (or gradient) of this function at each layer, backpropagating the gradients from
the top layer (prediction output) to the bottom layer (data input). From its respective
gradient information, the network weights undergo small adjustments, aiming to optimize
the objective function.

Filter optimization, specially on deep networks (e.g., from twenty to more layers),
may have an undesired side-effect, also common in other machine learning approaches,
known as overfitting. Overfitting is associated with the parameters optimized during
training becoming heavily specialized to the training data, but lacking generalization for
dealing with the unseen samples while testing later on, leading to a high performance in
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training, but poor performance during testing. This anomaly happens frequently when
using DNNs, mainly because they contain a huge number of parameters for modeling
the system to the samples fed during the learning process. Fortunately there are some
countermeasures to avoid, or at least reduce, overfitting.

A natural approach for combating overfitting is to employ more data during training.
Unfortunately, it is not always possible, or feasible, to acquire more samples to a given
problem. As a workaround, what we commonly do is to synthetically generate more
samples from the existing data. This method, named data augmentation, has been applied
in many of the latest works [41, 69, 64]; and Chatfield et al. [17], for instance, evaluated
different data augmentation techniques. These tricks consist of basic manipulations on
the images to increase the number of input samples, such as resizing, cropping different
regions, flipping and color jittering.

Another method, besides data augmentation, widely used with neural networks to
overcome overfitting is Hinton et al.’s [30] technique called “Dropout”. This technique
consists of randomly dropping the output of some neurons on each training iteration,
preventing them to contribute to the forward pass and, consequently, not participating
in backpropagation. Thereby, the active neurons will have to compensate for the absence
of the other neurons, and improve the robustness of their learned features. The co-
adaptation of the neurons is therefore reduced. Neurons with more robust features to the
presence or not of other neurons, also have more robust features for the data, increasing
the generalization of the network.

Although data augmentation and dropout techniques have been developed for a sce-
nario of insufficient training data, they can still be applied anyhow, for improving even
more the performance of a given classification system.

As we have explained in this subsection, filter optimization is a tricky and important
step for achieving a more satisfactory performance during designing and development of
a deep convolutional neural network. Luckily, we can use the filters optimized from a
previous training, as a starting point for learning with new training data, even if it is
from a different, but related, problem. This technique is referred to as “fine-tuning” in the
literature. Therefore, through fine-tuning, we can transfer learning from another dataset,
or problem, that has many samples, to our task, diminishing the need for a high number
of data samples on the latter. This normally leads to a better performance than the one
achieved when training from scratch, using only the data of our problem.

In the methodology we propose herein, in Section 4, we employ directly and indirectly
these recently explained filter optimization concepts. We directly apply fine-tuning and
dropout by training the GoogLeNet [69] architecture from the weights learned from Ima-
genet 2014 on over one million images [61]. The GoogLeNet [69] model, in its turn, was
trained using data augmentation and dropout techniques, thus their indirect use.

3.1.3 GoogLeNet

Different models of deep neural networks have been proposed and evaluated over the past
years. But it was only in the 2012 edition of the Imagenet Challenge [61], with Krizhevsky
et al.’s contribution [41], that the research community really turned its attention to Deep
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Learning. The Convolutional Neural Network they built for the competition ranked first,
with a top-5 error rate of 15.30%, against 26.20% of the second-best, an unprecedented
improvement in image classification problems. Since then, there has been great improve-
ments in the CNNs architecture and training techniques. In the 2014 edition of ImageNet,
Szegedy et al. [69] designed GoogLeNet, a CNN which achieved 6.67% in the top-5 error
for the competition, a classification accuracy improvement of over 55% over Krizhevsky
et al.’s results

Architecture

The main components of the GoogLeNet [69] architecture are the inception modules.
This module performs 1×1, 3×3 and 5×5 convolutions plus a 3×3 max pooling in the
same convolutional layer, and on top of the same input, concatenating all the outputs
into a single vector afterwards. Due to computational requirements, filter banks of 1×1
are applied before the 3×3 and 5×5 convolutions, and after the 3×3 max pooling, for
dimensionality reduction of the input before these more expensive operations. Figure 3.3
depicts one inception module.

Previous Layer

1x1 Convolutions

1x1 Convolutions

1x1 Convolutions

3x3
Max Pooling

3x3 Convolutions

5x5 Convolutions

1x1 Convolutions

Output Concatenation

Figure 3.3: Representation of the Inception module present in the GoogLeNet architec-
ture. Image based on Szegedy et al. [69].

Thus, GoogLeNet [69] is assembled as a stack of the inception modules, along with
commonly found layers of convolutional neural networks, such as regular convolutions,
max-pooling, fully-connected, dropout and softmax. Rectified linear activation is used on
all convolutions, reduction and pooling projection layers. In total, it contains 27 layers (if
counting the pooling layers). The input of the network is an RGB image of dimensions
224×224 pixels.

The network also contains two auxiliary classifiers besides the final one. These clas-
sifiers were inserted in intermediate layers as a countermeasure against the vanishing
gradient problem [31], which occurred because of the elevated depth of the network. The
extra classifiers are appended on top of selected inception modules, and take shape in the
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form of smaller CNNs. They are structured with the following components and in this or-
der: 1) Average pooling layer; 2) Reduction layer of 1×1 Convolution; 3) Fully-connected
Layer; 4) Dropout layer; 5) Softmax as the classifier. Their losses are added to the final
classifier loss, but with a discount weight of 0.3 each.

Figure 3.4 depicts the whole GoogLeNet architecture. For more details on why the au-
thors have made these architecture decisions, we encourage the reader to refer to Szegedy
et al.’s work [69].
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Figure 3.4: Representation of the GoogLeNet architecture. Image based on Szegedy et
al. [69].
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Training Methodology

For the Imagenet Challenge [61], the authors trained GoogLeNet [69] using an asyn-
chronous stochastic gradient descent algorithm. A momentum of 0.9, along with a step
learning decay of 4% at each 8-epoch interval, was used. Although it has been applied
some image sampling methods, the authors explain that there were not a unified pipeline
for all models generated for the Imagenet Challenge [61]. But they have later validated
a prescription with good performance that contains: distinct image crops with size rang-
ing from 8% to 100% of the original area, while maintaining an aspect ratio constrain of
[3/4,4/3]. Also, photometric distortions [33] helped combating overfit.

Under Caffe1 deep learning framework, there is a distribution for the GoogLeNet [69]
architecture and an ImageNet model. The model present within this distribution has
been trained with just some of the data-augmentation techniques, including cropping
from different regions and flipping, but not others such as relighting, scaling and varying
aspect-ratio. It used a polynomial learning rate decay policy, instead of the step policy,
because it allowed a much faster training, about 4×. It would be infeasible to train
this network from scratch using the original configurations within a viable time, given
the available computer sources at our disposal. Also, given that these weights are fine-
tuned later on for our problem of interest herein, this should not have a major impact on
performance. Therefore we opted for using the Caffe model.

3.1.4 Motion/Temporal Networks

The previous architectures described here were designed targeting at image classification.
Although they can be used for video classification in a frame-wise approach, the temporal
information will be almost completely discarded. As stated before, this type of information
should not only increase the performance, but it might also be indispensable for removing
the ambiguity on the pornography classification problem, for instance. As a matter of
fact, however, only a few authors have addressed video classification with Convolutional
Networks [40, 64] thus far offering us a whole new venue for possible original contributions.

Karpathy et al. [40] explored a variety of architectures to implicitly capture temporal
information between a sequence of frames. First of all, they set as baseline a single
frame approach, where the network model is learned from pixels in the raw frames. The
classification is done independently for each frame. The following architectures strive to
add time information, with three different types of fusion: Late Fusion, Early Fusion and
Slow Fusion. Figure 3.5 depicts Karpathy approaches. In the first, two frames, with fifteen
frames in between, are fed to two single-frame networks, with outputs being combined only
at the top layers. With the Early type, a set of frames contained in a temporal window
is fed to the first convolutional layer, where modified filters have an extra dimension on
its receptive fields, related to some temporal extent, which is essentially the number of
frames. The Slow fusion is the more complex, mixing the previous two schemes. Small and
overlapping temporal windows are defined inside a larger temporal window, whereby each
sub-set is then fed to separated paths in the network, that will be progressively combined

1http://caffe.berkeleyvision.org/

http://caffe.berkeleyvision.org/
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in each of the layers above. The reported results exhibited small performance variance
between the fusion approaches and also in comparison with the single-frame network,
with the Slow architecture performing slightly better. These initial results indicate that
Convolutional Networks have some troubles to implicitly capture the motion information
from sequential frames.

(a) Single Frame (b) Late Fusion (c) Early Fusion (d) Slow Fusion

Figure 3.5: Karpathy et al. [40] designed architectures to incorporate motion information
in a Convolutional Neural Network.

Simonyan and Zisserman [64] proposed a Two-Stream ConvNet, that uses optical flow
to supply complementary information to the classification. Inspired by the biological as-
pect of human vision, they designed an architecture related to the two-stream hypothesis,
in which the visual cortex separately recognizes objects and motion [27]. This is accom-
plished by having an architecture with two pathways, one for the frames and another
for the motion information, that is later combined by score averaging (Figure 3.6). For
the motion information, the authors used stacked optical flow displacement fields. This
stacking comprises the image representations of the vertical and horizontal components,
from the displacement vector field, of an arbitrary number of consecutive frames. This
approach achieved great improvement on previous state-of-the-art deep neural nets on
action recognition datasets such as the UCF-101 [66] and HMDB-51 [42]. In contrast to
Karpathy et al. [40], Simonyan and Zisserman explicitly provided the motion information
to the network, through optical flow image representation, and this is probably the reason
for the performance improvement, leading to a more promising approach.

3.2 Motion Information

As stated earlier, the motion information contained in a sequence of images is very valuable
for tasks of video classification. We now review two sources for this type of information
that have been used over the past years: Optical Flow and MPEG Motion Vectors.
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Figure 3.6: Simonyan and Zisserman [64] proposed a two-stream CNN architecture, de-
signed to incorporate explicit motion information in a convolutional neural network, and
combine it with static information through score fusion.

3.2.1 Optical Flow

Optical flow comes from the problem of estimating motion for each pixel between im-
ages from the same scene [32]. This estimation helps understanding the movement, from
the perspective of the viewer, of the objects contained in the scene. Although this is an
old problem in Computer Vision, there are recent works improving optical flow comput-
ing [11]. This task is intrinsically related to the image registration problem. As a result,
most approaches intend to match pixels present in both images, by analyzing their neigh-
borhood, and inserting some mechanisms to increase robustness to brightness changes and
noise, such as gradient constancy assumption. With the pixels matched, an estimation
on the gradient of the movement can be generated.

The final output for the different optical flow computation methods is a displacement
field, which contains in each pixel, the relative movement for it between the given images.
Each position in this field has a displacement vector indicating the estimation of which
direction the respective pixel has moved to and the intensity (gradient) of this movement.
Figure 3.7 depicts an example of the output. Altogether, these vectors provide us with a
relevant estimative from the motion of the objects in the scene.

3.2.2 MPEG Motion Vectors

Another source of motion information frequently used for video classification [57, 36] is
the motion vectors contained in the MPEG codification of the analyzed media. Differ-
ently from the optical flow, this motion estimation was not originally created to allow
an understanding of the movement in the scene; instead, it was designed for aiding the
compression of the video [58].

During video compressing, a frame can be decomposed into residual and predicted
parts. Actually, what happens is that a predicted frame is generated from a reference
frame, through a series of transformations and complementary information, so the dif-
ference from this prediction with the current frame results in the residual part. During
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Figure 3.7: Sequential Raw Frames (left and middle) and the respective Optical Flow
Displacement Field (right) computed from them. The regions with more movement in the
raw frames (e.g., hand, knee and foot) are also the regions with the greatest displacement
vectors in the field.

decompressing, for reconstructing the current frame, it is only needed the information
about the reference frame, the necessary transformations and the residual part.

Among the transformations and complementary information used for retrieving the
predict frame, there is a method named Motion Estimation and Compensation [58], which
in one of its steps maps the pixels movements between the current and the reference frame.
This information is what is calledMotion Vectors. Motion estimation in video compression
is performed in a block-based fashion, where pixels are grouped in macroblocks in order to
reduce computational complexity. Macroblocks are rectangular regions of M ×N pixels,
usually with M and N as 8 or 16. Motion vectors are then computed per macroblock
and contain the following information: the position (x,y) of the macroblock in the current
frame; its position (x’,y’ ) in the reference frame; and the size of the macroblock (M ×N).
Figure 3.8 illustrates an example. Note that this mapping only occurs during compression,
hence, when the video is decompressed for analysis, this information is readily available.
The gathering of the motion vectors, from a frame being reconstructed, gives us useful
information about the motion that has occurred at that time.

Although we referenciate here to the motion vectors from the MPEG codec, and this
codec is one of the most used today, this source of information is commonly present in
other codecs as well, such as Google’s VP9 [28].

3.3 Local Descriptors

Most of the existing approaches to pornography detection uses local description meth-
ods, which depend on low-level extraction of features. These methods involve engineered
methods for detection of points of interest in the image or video, and also for description
of the raw data in that point and neighborhood. Some of these methods were designed
only for images, so, although they can be applied framewise, they do not take advantage
of any time information contained in the video, therefore they are considered static. In
contrast to the static methods, some other approaches are time-aware, as they analyze
the frames not only considering their spatial information, but also the information from
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Figure 3.8: Example of a macroblock and its respective Motion Vector between the current
frame (left) and the reference frame (right).

the frames that are temporally neighbors.
In most of the cases, these low-level descriptions are still semantically far from abstract

concepts such as pornography, and an intermediary step before the decision making is
indispensable for achieving a satisfactory performance. Hence, a mid-level representation
is commonly used.

In this section, we cover the following traditional low-level local descriptors: Speeded
Up Robust Features (SURF) [8], Space-Temporal Interest Points (STIP) [43] and Dense
Trajectories (DTRACK) [73]. The first one is static and the latter two are time-aware.
We also give details on one of the best mid-level representation methods, Fisher Vec-
tors [55]. All of these techniques can be used for the pornography detection problem
without difficulty.

3.3.1 Speeded Up Robust Features (SURF)

Bay et al. [8], while developing SURF, aimed at designing a fast and efficient interest
point detector and descriptor, that was invariant to scale and rotation. For detection,
we apply the Hessian matrix using its determinant as measure for choosing both the
location and the scale. The descriptor is generated by employing Haar-wavelet filters on
the neighborhood of the interest point and describing the distribution of responses.

SURF uses concepts similar to the Scale Invariant Feature Transformation (SIFT) [50],
but reducing its complexity, achieving a much faster method. With the purpose of ac-
celerating the technique, integral images and box-type convolution filters are employed,
allowing a more efficient computation of approximate differential operators.
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3.3.2 Space-Temporal Interest Points (STIP)

Laptev [43] furthered extended upon the Harris [29] corner detector to encompass a third
dimension — the time — to the equations. The main idea behind this extension is
to identify in a frame, regions with high spatial variance, that along the consecutive
frames, have moved to other locations, indicating high temporal variance. With this
modification, it was possible to detect spatio-temporal interest points, corresponding to
interesting events in a video timeline that may be discriminative for identifying more
abstract concepts which depend on motion information.

Besides the spatio-temporal interest point detector, it is also necessary to employ a
description method that also incorporates the information from the time dimension. For
this purpose, Laptev [44] suggests using Histograms of Oriented Gradients and Histograms
of Optical Flow (a.k.a., HOG-HOF descriptions) for the description of three-dimensional
video patches, distributed along the neighborhood of the detected interest points.

3.3.3 Dense Trajectories (DTRACK)

Wang et al. [73] explored a different approach than Laptev et al. [43] for the detection of
spatio-temporal interest points. Instead of defining a corner detector with three dimen-
sions, Wang et al. densely sample feature points from a starting frame, within different
spatial scales, and track their trajectory through optical flow on the frames ahead, and
their respective scales. These trajectories may be pruned if they are static, since the main
interest is in motion points, or if they have large and sudden displacements, which may
characterize an error during the tracking.

For each remaining feature point after pruning, a series of descriptions is gen-
erated along the spatio-temporal neighborhood of its trajectory. These descriptions
are performed with HOG-HOF descriptors [44], combined to Motion Boundary His-
tograms (MBH) [18]. For description, the spatio-temporal neighborhood around the
trajectory is subdivided by a grid, for maintaining structure information on the final
representation.

3.3.4 Fisher Vectors

The previously explained low-level features extract useful information from the raw data
contained in videos/frames. Still, they do not have enough semantic value for discrimi-
nating more abstract concepts, requiring a mid-level representation. Perronnin et al. [55]
introduced the best mid-level representation currently available, the Fisher Vector.

This was achieved by extending the Bag-of-Words (BoW) method [65]. BoW methods
involve selecting some of the low-level features as visual codewords and assembling a code-
book. The remaining features are then encoded into this codebook, and their distribution
into these codewords is used as a new description for the original data, by generating a
histogram from it.

The extension present in the Fisher Vectors consists of using more information about
the distribution of codewords. Besides using information from simply counting the code-
words, related to zero-order statistics, the Fisher Vectors method derive information from
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the mean and standard deviation of the distribution, respectively first- and second-order
statistics, through the computation of the gradient of the log-likelihood from this distri-
bution [54].



Chapter 4

Methodology

In this chapter, we present the details of our proposed methodology for exploring and
developing Deep Learning techniques, jointly with motion information, targeting at video
pornography detection.

The approaches we designed, had two major inspirations. The first one was by the work
of Simonyan and Zisserman [64], in which the motion information is explicitly provided
to the Convolutional Neural Network, and each type of information (static and motion)
is independently processed by the network. The second inspiration came from Karpathy
et al. [40], in which it was expected that the CNN extracted the motion information
implicitly contained on the frames. However, in our adaptation, we feed the spatial
information along with explicit motion information to the CNN.

Section 4.1 presents the details of our static stream of information. Afterwards, in
Section 4.2, we explain the motion stream and also the two motion sources explored in this
work: Optical Flows and MPEG Motion Vectors. Section 4.3 explains the distinct ways
we have explored for fusing the static and motion information. Finally, Section 4.4 details
the CNN architecture and training process we adopted in this work, the GoogLeNet [69].

4.1 Static Information

Figure 4.1: Pipeline for the static information. It comprises the feature extraction from a
sampling of the frames, which are average pooled for feeding a decision-making classifier
in the end.

The simplest adaptation for applying image-based techniques in videos, consists of
extracting static information directly from some sampling of the video frames, and later
combining this information somehow for classifying the whole video. In the static pipeline
we propose, which is represented in Figure 4.1, this is performed in the following manner:
a chosen sampling of the video frames (Step Frames Sampling) has its features extracted
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with a convolutional network (Step Feature Extraction); these features are average pooled
(Step Pooling) to form a single description of the whole video (there are some alternatives
to the pooling, e.g., voting, and other types of pooling, such as Max and Sum, but
throughout some prior experiments and our own experience, we opted for a standard
average pooling procedure); finally, the video description is fed to a classifier for the final
classification (Step Decision-making).

Each frame is preprocessed, being resized, maintaining the aspect ratio and having
its smaller dimension as the network input dimension (224×224 pixels). Then a center
cropping is performed, resulting in an image with the necessary shape for the convolutional
network architecture chosen.

For the static ConvNet, we explored two models of the chosen architecture: the first
one considers a trained model obtained with the ILSVRC dataset [61]; and a custom-
tailored model fine-tuned to our problem, in which we take advantage of filter optimization
techniques through back-propagation starting with the weights obtained in an ImageNet
pre-training step.

4.2 Motion Information

Figure 4.2: Pipeline for the motion information. It comprises: extraction of the motion
information from the video; generation of an image representation to this extracted in-
formation; the feature extraction with the Motion CNN (each motion source has its own
CNN model); concatenation of the horizontal (dx) and vertical (dy) descriptions; average
pooling of the descriptions; and an SVM for the final classification.

As stated previously, the motion information, at first, is analyzed independently from
the static information. The pipeline (Figure 4.2) for this type of information is somewhat
similar to the static pipeline, with differences in the input and output of the convolutional
network.

In our methodology, we evaluate two sources for the motion information: Optical Flow
Displacement Fields [32] and MPEG Motion Vectors [58]. The motion sources follow the
pipeline independently, therefore there is a specific Motion CNN model for each. Each
source requires a unique form for extracting the motion information, whose details we
shall give later on.

Differently than with the raw frames used for static analysis, the motion information
does not come ready-to-use in a CNN. It is necessary to process the extracted information
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(Step Extract Motion Information) and generate image representations (Step Generate
Image Representation), which is the data format the CNN expects. The motion infor-
mation, extracted with Optical Flows or MPEG Motion Vectors, is represented herein by
two motion maps, one for the horizontal (dx) component of the motion and another for
the vertical (dy), containing in each (x,y) position, a measure of motion in the respec-
tive direction. Negative and positive values in these maps indicate that the motion has
happened respectively up and down for dx, or left and right for dy. When transforming
these maps to images, their values are linearly rescaled to [0,255] and stored as gray-scale
images, one image for each component of the motion. Fig. 4.3 depicts examples of the
generated image representations.

With image representations at hand, the adopted convolutional network can process
the motion information for training and for feature extraction (Step Feature Extraction).
Each motion source will be processed by its own CNN model.

After feature extraction, the descriptions of the components (dx and dy) from the same
motion are concatenated (Step Concatenate dx + dy) to form a single feature vector. The
rest of the pipeline is similar to the static pipeline: the concatenated descriptions will be
pooled (Step Pooling) and fed to a classifier for decision making (Step Decision-making).
Again, each motion source will be processed by its own classifier model, giving rise to
different classifications, one for each considered motion information.

This pipeline is similar to Simonyan and Zisserman [64] temporal stream. However,
here we have opted for each motion information and each component to be separately pro-
cessed by the CNN, as in contrast to Simonyan and Zisserman [64], which have stacked
both components of the motion information from a temporal neighborhood (e.g., dis-
placement fields from an arbitrary number of consecutive frames) before feeding it to the
network.

We have decided not to stack dx and dy components so we could have more samples
for training the network, but still we bundle them, at a later stage, by concatenating
the features extracted with the Motion CNN. Regarding the motion information from a
temporal neighborhood, we found no improvement by inserting them, in distinct man-
ners, on the pipeline of previous experiments. We tried stacking them before feeding
it to the network, just like Simonyan and Zisserman [64]. We also tested feeding them
separately to the Motion CNN and concatenating its generated descriptions, similarly to
the concatenation of the components dx and dy. Given that these operations did not aid
the detection of pornography, we opted not to use motion information from a temporal
neighborhood.

4.2.1 Optical Flow

Our first source of motion information explored is the Optical Flow Displacement Fields
technique. As we explain in Section 3, there are methods that compute dense optical flow
displacement fields, which characterize the visual motion of each position (pixel) between
two images, in our case, two consecutive frames. Originally, the information at each posi-
tion would be the magnitude and the direction of the motion. However, this information
is decomposed in horizontal (dx) and vertical (dy) components, generating two motion



CHAPTER 4. METHODOLOGY 39

(a) Raw frames: Previous (left) and Next (right).

(b) Optical Flow image representation

(c) MPEG Motion Vectors image representation

Figure 4.3: Sequential Raw Frames (4.3a) and motion image representations from Optical
Flows (4.3b) and MPEG Motion Vectors (4.3c). The Horizontal (dx) component is on the
left, and Vertical (dy) on the right. The regions with more movement in the raw frames
(e.g., hand, knee and foot) are also the regions highlighted by darker or lighter shades of
gray in the motion representations of both sources.

maps with the magnitude values for each component separately. Figure 4.3b depicts an
example of the optical flow representation, generated as explained in the previous section,
from the generated motion maps.
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The Optical Flow Displacement Fields are computed using Brox et al.’s method [11],
whose GPU implementation is readily available at OpenCV 2.4.10 toolbox. For reference,
Simonyan and Zisserman [64] also used this method and toolbox, although for a completely
different problem, the action recognition problem in datasets such as the UCF-101 [66]
and HMDB-51 [42]. The frames, and their pairs, were preprocessed before extraction of
the optical flows, just as the raw frames: resize preserving the aspect ratio, then center
crop with the input dimensions of the chosen CNN.

4.2.2 MPEG Motion Vectors

Another explored source of the motion information is the Motion Vector data encoded
within the MPEG codec. In each vector for a particular frame, it is encoded the position
from a given macroblock of pixels in the current frame and its position at the reference,
where the reference could be a frame in the past or in the future, with respect to the
current frame.

Differently from previous works using these motion vectors, which performed statistical
analysis on the MPEG-4 Motion Vectors [57, 36] or created images only representing
how recently the motion occurred in that macroblock [7], in this work, we measure how
much the block from each motion vector has moved by computing the distance, in pixel
value, from the reference position to the current position in each direction separately,
horizontal and vertical. Furthermore, these distances are analogous to the magnitude of
the movement at the region contained in that macroblock, and generate two motion maps,
one for each direction, just as in the Optical Flow motion extraction.

Motion vectors are extracted using FFMPEG 2.7 API. They are extracted from the
original videos and no resizing is performed. Therefore, differently than with Optical flow,
for the motion vectors we apply the resizing operation later on, directly on the generated
image representations. Figure 4.3c illustrates an example of the image generated.

4.3 Fusion

The spatial and temporal information by itself may already be very effective for the
tackled problem and yield good results at pinpointing pornographic content. Notwith-
standing, it is likely it will fail in some situations and probably the spatial and temporal
information can lead to more effective results if their collected evidence (video telltales)
are complementary in some sense. Therefore in this section, we explore different forms of
combining the spatio-temporal collected information from a video and answer the third
research question we posed in this work (c.f., Section 1).

4.3.1 Early Fusion

In the early fusion method, the static and the motion information are combined at the very
beginning of the pipeline, being processed together by a special convolutional network.
This way, the features benefit from both the static and the motion information. Hence, this
approach will contain a single stream, in contrast to Simonyan and Zisserman [64], which
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processed the static and the motion information separately using two distinct streams.
Although using a single stream, as Karpathy et al. [40], there is a crucial difference: the
motion information is explicitly provided along with the static one, meanwhile Karpathy
et al. only explored static information. Figure 4.4 depicts a representation of the pipeline.

Figure 4.4: Pipeline for the early fusion. The static and motion information are combined
before feature extraction, through a custom-tailored CNN trained for extracting features
with both static and motion information.

The three color channels of the frame, along with its respective motion representa-
tions, dx and dy, are stacked together for input in the convolutional network, giving rise
to a 5-channel input data. It is also possible to generate an image containing the raw
frame information in gray scale on one of its channels and the motion information on the
other two channels, one for the horizontal component and another for the vertical. The
advantage of having a 3-channel input is custom-tailoring the network weights starting
from ImageNet weights instead of starting the weights randomly from scratch. Our ex-
perience shows that starting with some pre-trained weights for a visual problem (image
categorization) leads to better results than training from scratch if there is not enough
training data as it is often common in forensic setups. In this work, we have explored
both options.

4.3.2 Mid-level Fusion

Within this approach, the feature extracted from each type of information, and from
each independent CNN, is concatenated on a single feature vector (Step Concatenation)
before being fed to the classifier. Figure 4.5 shows a representation of the mid-level fusion
pipeline.

4.3.3 Late Fusion

In this fusion scheme, each information is processed by a separate decision-making ap-
proach (e.g., SVM classifier), generating independent classification scores that can then
be combined on a single score (Step Average Scores) for the final classification, similarly
to Simonyan and Zisserman [64] and Jansohn et al. [36]. Figure 4.6 depicts a visual
representation of this pipeline.
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Figure 4.5: Pipeline for the mid-level fusion. The fusion of static and motion information
happens after feature extraction, and before the decision making, by concatenating the
feature vectors into a single description.

Figure 4.6: Pipeline for the late fusion scheme. The information is combined at the end,
after each classifier (e.g., SVM) produces a prediction score, by averaging these scores for
the final classification.

4.4 Architecture Specs - GoogLeNet

The convolutional neural network architecture we consider for the experiments was pro-
posed in [69], and is referred to as GoogLeNet. The motivation for exploring this CNN
model as a feature extractor, comes from the fact that GoogLeNet had been the winner of
ImageNet 2014 Challenge [61]. This architecture managed to achieve 6.67% in the top-5
error for the competition. The ImageNet training dataset comprises about 1.2 million
images, containing 1,000 classes with a wide range of subjects, from plants, animals and
persons to scenes, sports and objects. Thus it is expected that GoogLeNet architecture
has the capability of learning to extract highly discriminative visual features from in-
put images. It is also expected that a model pre-trained with ImageNet 2014 dataset
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should hold a very advanced state of optimization for image feature extraction, which
may be very useful for application on pornography detection, by itself, or by generating
a custom-tailored model with weights fine-tuned to our problem.

GoogLeNet architecture and weights are available online and ready to use off-the-shelf.
We have used the distribution under Caffe [38]1 deep learning framework.

For feature extraction, we pick the output from the last layer before the final classifica-
tion, which is the last average pool layer. The output from this layer has a dimensionality
of 1,024-d. In order to adapt the weights for our particular 2-class detection problem,
taking as input the static and motion data of interest, we tweak the classification layer
filter bank from 1,000 (which is the number of classes in the ImageNet classification prob-
lem) to two (porn vs. non-porn). After that, all the network weights are fine-tuned via
backpropagation.

1http://caffe.berkeleyvision.org/

http://caffe.berkeleyvision.org/
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Experiments and Results

In this chapter, we cover the experiments performed for the evaluation of the proposed
methodology. In Section 5.1, we discuss the experimental setup including: the dataset;
evaluation metrics; training details; and details on the existing methods in the litera-
ture as well as third-party solutions. Then, in Section 5.2, we present the experiments
and obtained results also comparing the proposed method with the existing ones in the
literature, and third-party solutions.

5.1 Experimental Setup

In the next subsections, we present the experimental setup designed for the evaluation of
the proposed methods.

5.1.1 Datasets

We have decided to use two datasets for our experiments: Pornography-800 [5] and
Pornography-2k. As a matter of fact, Pornography-2k is an extension of Pornography-
800, but since it is recent, there is no published work that uses it to evaluate its methods.
Therefore, in this work, we report all the experiments with the proposed methods on
Pornography-2k, along with the methods and solutions we choose for comparing. Mean-
while, we only evaluate our best proposed approaches on Pornography-800, for direct
comparison with other works that have utilized it.

Pornography-800 dataset

This dataset1 was originally proposed in [4] and is distributed under acceptance of an user
agreement. It consists of approximately 80 hours, spanning 800 videos, 400 pornographic
and 400 non-pornographic.

The videos with pornography content were acquired from websites specialized for that
type of content, searching for samples within a wide range of genres and with actors from
distinct ethnicities (e.g, Asians, Blacks, Whites).

1https://sites.google.com/site/pornographydatabase/
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With respect to non-pornographic content, it was browsed general-public purpose
video networks2 for acquiring the videos. The dataset contains two levels of difficulty,
easy and difficult. The former comprises videos randomly selected from various websites,
while the latter considers videos gathered through textual queries containing words such
as “wrestling”, “sumo”, “swimming”, “beach”, etc. (i.e., words associated to skin exposure).

The official evaluation protocol for this dataset considers a 5-fold cross-validation (640
videos for training and 160 for testing on each fold).

Pornography-2k dataset

As stated before, Pornography-2k dataset is an extended version of the Pornography-800
dataset. The new dataset comprises nearly 140 hours of 1,000 pornographic and 1,000
non-pornographic videos, which vary from six seconds to 33 minutes long.

The non-pornographic videos were acquired similarly to Pornography-800 [4], main-
taining a concern for acquiring easy and difficult samples. Concerning the pornographic
material, unlike Pornography-800 [4], it is not restricted to pornography-specialized web-
sites. Instead, it was also explored general-public purpose video networks, in which it
was surprisingly easy to find pornographic content. As a result, the new Pornography-2K
dataset is very assorted, including both professional and amateur content. Moreover, it
depicts several genres of pornography, from cartoon to live action, with diverse behavior
and ethnicity. Figure 5.1 depicts some example frames from the Pornography-2K dataset.

Figure 5.1: Sample videos from the dataset. Image adapted from Avila et al. [5], with
added samples.

To evaluate the results of our experiments, we consider a 5×2-fold cross-validation
protocol [20]. It consists of randomly splitting the Pornography-2K dataset five times
into two folds, balanced by class. In each time, training and testing sets are switched
and consequently 10 analyzes for every model employed are conducted. We opted for this
validation protocol as it is stricter than the traditional 5-fold cross-validation one [20].

2YouTube (www.youtube.com), Vimeo (https://vimeo.com/) and Vine (https://vine.co/)

www.youtube.com
https://vimeo.com/
https://vine.co/
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5.1.2 Evaluation Metrics

The assessment of the proposed methodologies on pornography detection considers the
classification of the whole video. Thus, we report the classification accuracy (ACC) and
the F2 measure (F2), both averaged in all experimental folds.

ACC is simply the percentage of correctly classified videos. F2, in turn, is the weighted
harmonic mean of precision and recall, which gives twice the weight to recall (β = 2) than
precision. In the case of pornography filtering, the F2 measure is crucial because false
negative results are harmful, allowing one to be exposed to pornographic content. It is
thus less prejudicial to wrongly deny the access to non-pornographic material, than to
wrongly disclose pornographic content. Fβ measure is defined as:

Fβ = (1 + β2)× precision× recall

β2 × precision+ recall
, (5.1)

where β is a parameter denoting the importance of recall compared to precision.
The mean over the 5×2 folds from the evaluation metrics we have chosen, ACC and

F2, may be insufficient to certify that a specific method is better than another, due to
some large variations in the population of measures that may be hidden during averaging.
To overcome this, we employ a Wilcoxon signed-rank test [74], which is a paired difference
test that allows us to quantify how different two populations are; in this case, the popula-
tions are sampled from each fold measure from each method, without assuming a normal
distribution of the population. Therefore, we can confirm more confidently whether or not
they are statistically different from one another. Two methods are considered statistically
different if their Wilcoxon’s p-value returned is lower than 0.05 (95% confidence test).

For the Pornography-800 dataset, it will only be reported the mean video classification
accuracy and standard deviation, since the works, to which we will compare ours, do not
have reported the F2 measure. Also, we do not have the result by fold from these related
works, so we could not employ Wilcoxon signed-rank test [74].

5.1.3 Proposed Method’s Setup

The focus of the proposed methodology is to classify whole videos as porn or non-porn.
Videos are a collection of frames, but using all of them for video classification would de-
mand a great computational effort. However, this experiment can be turned more man-
ageable by using a sampling of the frames, and still maintain consistent effectiveness for
comparison between the distinct methods proposed. With this established requirements,
we opted for using a frame sampling of one frame per second (1fps) herein. For the motion
information, this frame sampling dictates from which frames this type of information will
be extracted.

The same sampling was used for both the training and test phases. During training,
they were utilized separately, for learning the Convolutional Network models, and pooled
by movie after feature extraction, for learning the classification model. During testing,
these frame/image representations pass directly to feature extraction by the trained CNN.

The training of the Convolutional Network model was performed with the Caffe frame-
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work [38]. We picked the polynomial learning rate decay policy, because GoogLeNet Im-
ageNet model we considered, from Caffe, was trained much faster using this policy. For
each type or source of information, we picked a suitable value for the base learning rate,
weight decay, polynomial power and the number of epochs to run. Table 5.1 shows the
exact values for these hyperparameters. These learning hyperparameters were selected ex-
perimenting during training. Dropout values were maintained from original GoogLeNet
Caffe architecture.

Learning Rate Weight Decay Power Max Epochs
Raw Frames 0.000009 0.005 0.5 200

Optical Flows 0.00006 0.001 0.9 200
MPEG Motion Vectors 0.0002 0.001 0.9 100

Early Fusion (Gray) 0.0002 0.001 0.9 75
Early Fusion (Color) 0.001 0.005 0.5 25

Table 5.1: Learning hyperparameters used for training the architecture used in this work.

For training the Convolutional Neural Network, another sub-split of the dataset is
necessary. Each training fold from the 5×2-fold cross-validation was re-partitioned into
train and validation, with a proportion of 85/15% videos in each part.

For this problem, we did not consider data augmentation techniques as we could gather
enough training samples due to the high quantity of frames contained in the video, and
therefore properly optimize the fine-tuning procedure of the method.

We perform the final classification with a linear Support Vector Machine (SVM) clas-
sifier using LIBSVM 3.18 [15]. We apply grid search to find the best C SVM parameter
during training.

5.1.4 Comparison with Existing Methods

For a better interpretation of the performance of our proposed method, it is necessary
to compare it with relevant works in the literature. We chose well-known state-of-the-art
methods of low-level local image/video description, along with Fisher Vectors [55] for mid-
level representation, because of their effectiveness and robustness among many distinct
tasks in pattern recognition tasks, such as image classification and action recognition [70,
44, 53]. The low-level description methods we consider herein are the: Speeded Up Robust
Features (SURF) [8], Space Temporal Interest Points (STIP) [43] and Dense Trajectories
(DTRACK) [73]. Figure 5.2 depicts the framework applied with these existing methods.

As with the feature vector from the CNNs, the mid-level descriptions generated with
the Fisher Vectors method can also be temporally pooled to form a single feature vector
for the whole video. Finally, this information is fed to an SVM for label prediction.
Classification is performed by Support Vector Machines classifiers using LIBLINEAR
library [22]. We apply grid search to find the best C SVM parameter during training.
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Figure 5.2: The three-layered BoVW-based framework for video pornography detection.
The “training” and “test” phases are very similar, having the following two distinctions:
Firstly, Step 2. Codebook Construction is performed only during “training”, with the la-
beled videos, for generation of the codebook that is applied during Step 3. Coding and
Pooling of both phases; Secondly, during the steps in High-Level Classification, the SVM
learns a classification model from the labeled videos while in the “training” phase, later
applying this model at the “test” phase for classifying the videos in the Step 5. Label
Prediction.

Speeded Up Robust Features (SURF)

To provide a controlled baseline for the spatial techniques, we extract SURF descrip-
tors [8], which operate over static images only. Therefore we need to use a sampling of
the frames for extracting the features using this method. We use the same frame sampling
of our proposed methodology, one frame per second (1fps), discarding 10% of the image
borders to remove possible watermarks.

Chatfield et al. [16] demonstrated that a denser sampling of local descriptions yields a
higher accuracy, so we decided not to use SURF [8] detection, instead we extract features
from points in a dense grid, as it is represented in Step 1. video description of Figure 5.2.
For increasing the scale invariance of this method, we need to extract features at different
image scales, however, Bay et al. [8] actually perform this by employing distinct patch
sizes for description around the points present in the grid. Thus, SURF descriptors are
extracted from the sampled frames, with the borders cut, on a dense spatial grid at five
scales. More specifically, we use patch sizes of 24, 32, 48, 68 and 96 pixels, with step sizes
of 4, 6, 8, 11 and 16 pixels, respectively.

Space-Temporal Interest Points (STIP)

STIP [43] was the first local descriptor designed for analyzing the video space-time, there-
fore it can serve us as baseline of the space-temporal techniques. Although it has a
specialized detector that incorporates the time dimension present in videos, we chose to
employ it densely, as SURF, because of Chatfield et al.’s [16] recommendation for local
descriptors.

We extract the dense STIP with the source-code provided by Laptev [43], using default
values. Within these default values it also defined the density of frames sampling, since
the description blob considers also the temporal dimension. The description blob extracts
information from 11 consecutive frames, whose 6th one is the central frame. Default
dense STIP uses as the central frame, one frame every six other frames (e.g., if we have
26 frames, descriptions are generated using as central frame the 6th, 11th, 16th and 21st
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frame). This central frame sampling leads to approximately 4 frames in about 26 frames,
therefore, since most of the videos have a 25fps ratio, this results in a frame sampling
higher than the 1fps used by our proposed methods and SURF.

Dense Trajectories (DTRACK)

DTRACK [73] represents the current state of the art in the field of time-aware local
descriptors, achieving the best results in many action recognition tasks [53], such as
UCF-101 [66] and HMDB-51 [42]. This method gives us an upper bound on the previous
available methods, being essential in any kind of video analysis comparison.

This method relies on a dense sampling of descriptors, not only spatially, at feature
points in the starting frame, but also temporally, by tracking the feature points in the
subsequent frames. We extract the dense trajectories from the video files using the source-
code provided by Wang et al [73], with default values.

Fisher Vectors

Fisher Vectors are one of the best mid-level representations in the literature for computer
vision problems [16, 62]. Hence, we employ it to the mid-level stage of the comparison
framework.

We extract Fisher Vectors, using a Gaussian Mixture Model (GMM) to obtain the
visual codebook, as suggested in [55]. The model parameters are trained over 10 million
descriptions, randomly sampled (half of the descriptions sampled from positive videos, and
half from negative ones in the training set), using an expectation maximization algorithm.
By default, we use 256 Gaussians.

5.1.5 Comparison with Third-party Solutions

In addition to comparing the proposed method with the available scientific methods for
pornography detection, we also perform comparisons with some third-party solutions read-
ily accessible. We selected the most recent ones that rely on visual data: MediaDetec-
tive [1], Snitch Plus [3], PornSeer Pro [2], and NuDetective [56].

For MediaDetective and Snitch Plus, the video files are rated according to their po-
tential (i.e., probability) for pornography. In those cases, we tag a video as pornographic
if such probability is equal to or greater than 50%. NuDetective and PornSeer Pro, on the
other hand, assigns binary labels to the video: positive (i.e., the video is pornographic)
or negative (i.e., the video is non-pornographic).

Finally, MediaDetective and Snitch Plus have four predefined execution modes, which
differ mostly on the rigorousness of the skin detector. In our experiments, we opted for the
most rigorous execution mode. Regarding NuDetective and PornSeer Pro, we employed
their default settings.

Since these solutions do not demand a training phase, they are executed directly at
the dataset, without the need for training for each fold. Even so, the reported metrics are
the average over all 5× 2 folds, for fair comparison with the other methods.
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5.1.6 Comparison using Pornography-800

After evaluating our proposed approaches with Pornography-2k and comparing it with
existing methods in the literature and with third-party solutions, we employ our best
approaches at Pornography-800. We do this for comparison with the reported results
from other works that have also evaluated their methods on it: Avila et al. [4], Valle et
al. [6], Souza et al. [67], Avila et al. [5], Caetano et al. [13] and Moustafa [51].

Avila et al. [4], which is the work that introduces the Pornography-800 dataset, em-
ploys: a HueSIFT descriptor at a regular grid of interest points for obtaining the low-level
features; k-means, for construction of the codebook, with BOSSA – their proposed exten-
sion to BoVW – for the mid-level; and a non-linear SVM for the final classification. Valle
et al. [6] evaluated the spatio-temporal descriptor STIP with a standard Bag of Visual
Words, with random sampling for construction of the codebook, and a linear SVM. Souza
et al. [67] also used a traditional BoVW, with random sampling, and a linear SVM, but
with Color-STIP for low-level description. In Avila et al. [5], the authors improved their
previous work [4] by proposing an extension upon BOSSA, named BossaNova, maintain-
ing the use of HueSIFT, k-means, and a non-linear SVM. Caetano et al. [12] experimented
with Binary Descriptors, of which BinBoost16 had the best performance, replacing the
HueSIFT in the pipeline from Avila et al. [5] – BossaNova, k-means and a non-linear
SVM.

Differently from previous approaches, Moustafa [51] did not used a BoVW-based
method, instead, the author relied upon convolutional neural networks for the low- and
mid-level representations and also for classification. The classification was given by a
majority voting between the video frames classified using the CNN. Their best results
were obtained with a max fusion of scores from AlexNet [41] and GoogLeNet [69] models,
pre-trained in ImageNet and with fine-tuning of the last layer of the network using the
Pornography-800 dataset.

5.2 Experimental Results

In this section, we present and discuss the obtained results from the outlined experiments.
First, in Subsection 5.2.1, we assess the approaches we have proposed. Afterwards, in
Subsection 5.2.2, we compare our best proposed approach to methods from the literature
and third-party solutions.

5.2.1 Proposed Approaches

In Table 5.2, we show the obtained video classification accuracy (ACC) and F2 mea-
sure (F2) for each approach we have proposed in the static, motion and fusion modality.

In the Static stream, we show that the model relying on the GoogLeNet architecture
trained with ImageNet data yields a very impressive performance of 94.56% ACC and
95.13% F2. These results are further improved upon by fine-tuning the network weights
with the pornographic data, reaching 96.00% ACC and 96.12% F2, an improvement of
1.5 percentage point in ACC and 1 percentage point in F2.
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Table 5.2: Video classification accuracy (ACC) and the F2 measure (F2), averaged over the
5× 2 experimental folds, from the proposed approaches on the Pornography-2K dataset.
The methods are subdivided in Static, Motion and Fusion modality. Fusion is performed
with fine-tuning for static information and with both motion sources, Optical Flow (O.F.)
and MPEG Motion Vectors (M.V.), except Early fusion, which, due to its inferior perfor-
mance with O.F, is not employed with M.V.

Proposed Approach ACC (%) F2 (%)

Static
ImageNet 94.56 95.13
Fine-tuned∗ 96.00 96.12

Motion
Optical Flow 94.40 95.25
MPEG Motion Vectors 91.00 91.96

Fusion

Early Fusion - Gray

O
.F
. 95.46 96.01

Early Fusion - Color 90.52 90.67
Mid-level Fusion 96.33 96.75
Late Fusion∗ 96.39 96.70

Mid-level Fusion
M
.V

. 96.39 96.52
Late Fusion 96.37 96.59

ACC: accuracy — F2: F2 measure
∗Fine-tuned and Late Fusion are statistically different (p-values: ACC ≈ 0.03; F2 ≈ 0.01).

When considering the motion information, Optical Flow (O.F.) by itself obtained a
performance close to the static model. Meanwhile, the MPEG Motion Vectors (M.V.) had
a lower performance, of only 91.00% ACC and 91.96% F2. This difference in performance
between these two sources of motion information may be explained by the fact that the
M.V. represents the motion of a macroblock of pixels, which is a much lesser fine-grained
description form than O.F., which takes into account the motion information for each
pixel.

Despite the lower performance of motion information alone, when we combine it with
the static information from the Fine-tuned network, by Mid-level Fusion and Late Fusion,
we improve the ACC and F2 results. Both Early Fusion variations, Gray and Color, yield
a lower performance than using the fine-tuned static information by itself. Perhaps it is
better to specialize the network to a single type of information, leaving the fusion to a
higher level. Another reason may be related to the architecture considered in this work,
GoogLeNet. Maybe it is not appropriate for processing five channels or combining static
and motion right at the lowest level (e.g., raw data), demanding some customization such
as increasing the number of filters or processing each information independently at the
first layers. We believe that the better performance from the Gray variation over Color,
comes from the fact that we could fine-tune its model using the ImageNet model and that
the 3-channel input data is more appropriate for the GoogLeNet architecture. However,
we expect that if these issues were overcome (e.g., by training an appropriate architecture
with a large collection of samples), the full potential from using all color channels could
be reached, outperforming the gray-only variation of this fusion, and perhaps the other
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fusion approaches, Mid-level and Late.
Given the low performance of Early Fusion, and its costly requirements for training,

we have opted for not fusing MPEG Motion Vectors this way.
Mid-level Fusion and Late Fusion, on the other hand, apparently could combine static

and motion information better, surpassing the performance of the Fine-tuned network
alone. Surprisingly, this happened even while fusing with M.V., showing that, although it
had a worse performance when used alone, its complementarity to the static information
is still advantageous. In addition, another advantage of using the M.V.s is that they are
readily available during decoding of the video. In summary, the best method in isolation
(no fusion) was Static – Fine-tuned while the best one considering the fusion was Late
Fusion, which takes into account the information provided by the static Raw Frames and
Optical Flows simultaneously.

With these results, we are now able to answer our Research Questions, presented in
Section 1:

I) Are Convolutional Neural Networks suitable for Pornography Detection
on Videos?
Yes, CNNs demonstrated to be appropriate for detection of pornographic content
in videos, with error rates inferior to 4% when considering our best proposed ap-
proaches, Mid-level and Late Fusions taking into account Optical Flow as source of
the Motion Information.

II) Is the motion information complementary to static ones?
Yes, by correctly combining the static information with the motion ones, we man-
aged to outperform the methods using the static or the motion information alone.

III) If the static and motion information are complementary,

i) Which is the most promising method for extracting the motion in-
formation?
Both sources of motion information, Optical Flow and MPEG Motion Vectors,
demonstrated a similar performance when combined with the static informa-
tion. O.F. achieved a slightly better performance, but M.V. has the advantage
of being ready to be consumed from the encoding of the video.

ii) How the fusion of such information should occur?
Mid-level and Late fusion had a close performance, being appropriate methods
for combining the static and motion information.

5.2.2 Comparison to other solutions

For a better evaluation of the proposed approaches that obtained the best results in each
modality, we compare them with the existing methods in the literature and third-party
solutions. Table 5.3 contains the respective video classification accuracy (ACC) and F2

measure (F2) of the considered methods. As it is demonstrated, our best approaches
outperform, or compare to, the other solutions.
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Table 5.3: Results on the Pornography-2K dataset for the third-party solutions, other so-
lutions in the literature and the best approaches we have proposed in each modality (Static
– Fine-tuned; Motion – Optical Flow; Late Fusion with Optical Flow). We report the
average performance on 5× 2 folds.

Solution ACC (%) F2 (%)

Third-party

Snitch Plus [3] 66.58 46.35
MediaDetective [1] 71.85 66.54
NuDetective [56] 72.60 62.94
PornSeer Pro [2] 79.10 75.61

BoVW-based
DSURF [8] 92.38 92.56
DSTIP [43]§ 94.52 94.51
DTRACK [73]∗† 95.76 95.60

Proposed Approaches
Static – Fine-tuned† 96.00 96.12
Motion – Optical Flow§ 94.40 95.25
Late Fusion (O.F.)∗ 96.39 96.70

ACC: accuracy — F2: F2 measure
∗DTRACK and Late Fusion (O.F.) are statistically different (p-values: ACC ≈ 0.03; F2 ≈ 0.002).
†DTRACK and Static – Fine-tuned are not statistically different in ACC, but are in F2 (p-values: ACC ≈ 0.24; F2

≈ 0.04).
§Motion – Optical Flow and DSTIP are not statistically different in ACC, but are in F2 (p-values: ACC ≈ 0.51; F2

≈ 0.04).

The third-party solutions, which heavily depend on skin detection and do not take ad-
vantage of the space-time information, have demonstrated a poor performance. PornSeer
Pro [2] obtained the best ACC and F2 measures among them, with 79.10% and 75.61%

respectively, far below the performance using the solutions in the literature and our pro-
posed approaches, which have surpassed 90% in both metrics.

As stated, traditional and state-of-the-art solutions in the literature show a more
reasonable performance. Dense SURF [8] (DSURF), a traditional, but not so recent and
static method, manage to outperform PornSeer Pro [2] by more than 12 percentage points,
achieving an ACC and F2 measure around 92%. With the incorporation of temporal
features using Dense STIP [43] (DSTIP) and Dense Trajectories [73] (DTRACK), there is
a visible gain from DSURF, by two and three percentage points, respectively. As expected,
since it is the state of the art in action recognition in videos, DTRACK [73] achieved the
highest ACC (95.76%) and F2 (95.60%) measures among the literature methods.

Even so, Dense Trajectories [73] (DTRACK) was outperformed by our best approaches.
Not only by our spatio-temporal approach, Late Fusion (O.F.), with a gain over 0.5

percentage point in ACC (14.3% error reduction) and over 1.0 in F2 measure, but also by
our static stream, Fine-tuned, with a smaller margin, not being statistically different in
ACC and being in F2. Still, our best approach using motion information, with Optical
Flow, manages to beat DSURF [8] and compares to DSTIP [43].
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Table 5.4: Results on the Pornography-800 dataset for the other methods in the literature
and the best approaches we have proposed in each modality (Static – Fine-tuned; Motion
– Optical Flow; Mid-level and Late Fusion with Optical Flow). We report the average
performance (and standard deviations) on 5 folds.

Solution ACC (%)

BoVW-based

Avila et al. [4] 87.1± 2

Valle et al. [6] 91.9±−
Souza et al. [67] 91.0±−
Avila et al. [5] 89.5± 1

Caetano et al. [12] 90.9± 1

Caetano et al. [14] 92.4± 2

CNN Moustafa [51] 94.1± 2

Proposed Approaches
Static – Fine-tuned 97.0± 2

Motion – Optical Flow 95.8± 2

Mid-level Fusion (O.F.) 97.9± 0.7

Late Fusion (O.F.) 97.9± 1.5

5.2.3 Comparison using Pornography-800

In Table 5.4, we compare our best proposed approaches with the reported results from
other methods in the literature that used the Pornography-800 dataset.

The proposed approaches significantly outperform the BoVW-based works in the liter-
ature [4, 6, 67, 5, 12], by 5–11 percentage points. The proposed methods also outperform,
by almost 4 percentage points the results reported in Moustafa [51], which use Deep Learn-
ing as well. If we measure the classification error for comparison with Moustafa [51], we
managed to reduce the error from 5.9% to 2.1%, a reduction of 64.4%. Even though we
could not apply Wilcoxon’s test, given the large perceptual difference in accuracy between
the related works and our best approaches, with smaller standard deviation in some cases,
we believe that the results would probably be statistically significant.

Though Moustafa [51] employs the same architecture used herein, GoogLeNet, there
were critical differences on how he employed it, thus leading to the important difference
in performance we report herein: he only fine-tuned the network last layer, while in our
work we fine-tuned all layers; the network output, for each frame, was used in a majority
voting scheme for classifying the video, while, in turn, we have opted for using GoogLeNet
as a feature extractor, pooling the frame descriptions, then feeding them to an SVM for
the video classification; finally, Moustafa only used static information, meanwhile we used
static and motion information, and effective methods for combining them.
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Conclusions and Future Work

The designed and developed approaches we have proposed for video pornography detection
in this work confirm the superiority of Deep Learning with Motion Information over third-
party solutions [3, 1, 56, 2] and over previous state-of-the-art methods, not only for this
specific task [6, 5, 12, 51], but also the state-of-the-art methods for related tasks, such as
action recognition, when we employ it to our problem [73].

Our solution based only on the static information already yielded a competitive result
with the state-of-the-art method in action recognition, Dense Trajectories [73], reaching
an error rate of 4%, which is a considerably low error rate for a problem with a subjective
concept as this. This leads us to believe that, for further lowering the error on this
problem, it would be better to focus more on the motion information, such as adjusting
the CNN – by adapting the architecture or boosting the model with more samples for
training – or improving its fusion with the static information – by creating an architecture
more suitable for processing the three channels, from the static frame, and the two gray
channels, one from each component (dx and dy), of the motion information.

Independently of improving the classification of the whole video as pornography or not,
which may be a problem close to be saturated, given the current performance reported
here, we can employ our methods at a harder task, which is related to localization, in
the temporal dimension, of the pornographic content in the video. The main motivation
for this task is the possibility of filtering pornography in real time, which is an important
matter for situations such as streaming of videos, surveillance systems and in devices that
do not contain the whole video before reproducing it to the user.

Initially, our approaches can be used for tackling the localization problem, but with
some caveats. For instance, with the introduction of the real-time requirement, it is
necessary to take into consideration aspects such as the efficiency of the proposed ap-
proaches (e.g., test execution time and memory footprint), for filtering the content in
a reasonable time and without interfering with other applications on the same system,
specially if we target at mobile devices. However, we believe that the proposed approach
holds potential to outperform its counterparts in terms of efficiency, specially when we
think of Dense Trajectories [73] and STIP [43], widely known for their huge execution
computational time. With the efficiency requirement on the table, MPEG Motion Vec-
tors should be further explored, as it compares to Optical Flow in terms of effectiveness for
complementing the static information, and it is readily available during video decoding,

55
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being much faster to extract.
In addition to adapting our current method for the localization problem, additional

neural network-based approaches could be explored as well, e,g., Long Short TermMemory
(LSTM). LSTMs are a model of Recurrent Neural Network (RNN) that captures the
sequential information of the input data, a highly desirable feature for classification of
videos, given that they are a collection of sequential frames. The LSTM architecture could
be used to process the extracted features, using the CNN models previously described in
this work, from a fixed length number of frames, improving the real-time classification.
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