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Resumo
Em alguns ensaios clínicos da síndrome da imunodeficiência adquirida (AIDS), as medições
dos ácidos ribonucleicos do vírus da imunodeficiência humana (HIV-1) são coletadas
periodicamente ao longo do tempo e muitas vezes estão sujeitas a limites de detecção
inferiores ou superiores, dependendo dos ensaios de quantificação que foram utilizados.
Assim, estas respostas podem ser censuradas à esquerda ou à direita. Na prática, dados
longitudinais provenientes de estudos de acompanhamento do HIV, podem ser modelados
utilizando modelos lineares e não-lineares de efeitos mistos censurados e também modelos
de regressão censurados com estruturas de correlação específicas sobre os erros. Uma
complicação adicional surge quando duas ou mais variáveis respostas são coletadas de
forma irregular e repetidamente em cada sujeito durante um certo período de tempo. Os
modelos lineares multivariados de efeitos mistos com respostas censuradas são ferramentas
bastante utilizadas para análise conjunta de mais de uma série de respostas de dados
longitudinais. Nesta tese desenvolvemos métodos inferenciais para lidar com dados censura-
dos com estrutura longitudinal sob uma perspectiva clássica. Como resultado, conclusões
importantes foram obtidas a partir da análise dos modelos propostos.

Palavras-chave: Modelos de regressão. Modelos de efeitos mistos. Dados censurados.
Algoritmo EM. Algoritmo SAEM. Distribuições de misturas de escala normal.



Abstract
In some acquired immunodeficiency syndrome (AIDS) clinical trials, the human immunod-
eficiency virus-1 ribonucleic acid measurements are collected irregularly over time and are
often subject to some upper and lower detection limits, depending on the quantification
assays. Hence, these responses are either left- or right-censored. In practice, longitudinal
data coming from those follow-up studies can be modelled using censored linear and non-
linear mixed-e�ects models and also censored regression models with a specific correlation
structures on the error terms. A complication arises when more than one series of responses
are repeatedly collected on each subject at irregularly occasions over a period of time. The
multivariate censored linear mixed model is a frequently used tool for a joint analysis of
more than one series of longitudinal data. In this thesis we develop a series of essays in
which di�erent models and techniques to deal with censored data are applied. As result,
we had several works to carry out censored data.

Keywords: Regression models. Mixed-e�ects models. Censored data. EM algorithm.
SAEM algorithm. Scale mixtures of normal distributions.
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Preface

The study of models in which the variable of interest is subjected to certain
threshold values below or above which the measurements are not quantifiable have been
the scope of many areas of the statistic. They have received significant attention in the
biomedical literature in recent years.

Particularly, we are interest in the study of the human immunodeficiency virus
(HIV) behaviour, where the quantification of HIV-1 RNA viral load is done using assays
with di�erent detection limits for monitoring the copy number of virus per millilitre of
plasma. In practice, longitudinal data coming from follow-up studies (e.g. acquired immune
deficiency syndrome - AIDS - studies) can be modelled using censored linear and nonlinear
mixed-e�ects models (see for example Wu, 2010, and references therein) and also censored
regression models with a specific correlation structure on the error term (Garay et al.,
2014).

The statistical modelling of viral load can be challenging. First, as mentioned,
depending on the diagnostic assays used, the viral load measures may be subjected to
upper or lower detection limits (hence, left or right censored), i.e., below and above in
which they are not quantifiable (Wu, 2002). Under non-trivial censoring proportions,
considering ad-hoc alternatives (Huang and Dagne, 2011) might lead to bias in fixed
e�ects and variance components estimates. As alternatives to these crude imputation
techniques, Vaida and Liu (2009) proposed expectation-maximization (EM) schemes
for linear and nonlinear mixed-e�ects (LME/NLME) models with censored responses
(henceforth LMEC/NLMEC). However, all these methods assume normality of the between-
subject random e�ects and within-subject errors. Even though normality is mostly a
reasonable model assumption, it may lack robustness in parameter estimation under
departures from normality, namely, presence of heavy tails and outliers (Pinheiro et al.,
2001). Secondy, censored HIV viral loads can exhibit heavy-tailed behaviour (Lachos et al.,
2011). A variety of proposals (both classical and Bayesian) exist in this direction that
uses the univariate or multivariate Student’s-t distribution (Pinheiro et al., 2001; Lin
and Lee, 2006, 2007) in the context of LME/NLME models. Some Bayesian propositions
in the context of heavy-tailed LMEC/NLMEC models include Lachos et al. (2011) who
advocated the use of the normal/independent density (Lange and Sinsheimer, 1993), while
Bandyopadhyay et al. (2012, 2015) studied the LMEC model considering both skewness
and heavy-tails. Very recently, Matos et al. (2013b) proposed a full maximum likelihood
(ML) based inference using a computationally convenient exact ECM algorithm for the
LMEC/NLMEC models using the multivariate Student’s-t distribution (henceforth, the
t-LMEC/NLMEC model).
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Finally, it happens quite commonly that more than one series of responses are
repeatedly measured on each subject across time. For analyzing the so-called multivariate
longitudinal data, the multivariate linear mixed e�ect (MLME) model proposed by Shah
et al. (1997) has become a widely used tool. Wang (2013) proposed the multivariate t
linear mixed model (tMLME), which has been shown to be a robust approach to modeling
multioutcome continuous repeated measures in the presence of outliers or heavy-tailed
noises. In the context of censored responses, Wang et al. (2015) extended the tMLME to
allow the analysis of multiple longitudinal censored outcomes and heavy-tails (tMLMEC),
where an exact EM algorithm for maximum likelihood (ML) estimation is developed based
on the mean and variance of a truncated multivariate Student-t distribution developed by
Ho et al. (2012).

This thesis is devoted to a series of chapters that use di�erent models and
techniques to deal with censored data, in particular AIDS - studies. As a result, we had
di�erent works to carried out the censored data. The organization of the thesis is as follows:

Chapter 1: We provide some background material. We review some definitions
and methodologies used throughout the thesis.

Chapter 2: We provide and presents a framework for fitting linear and non-
linear mixed-e�ects censored (LMEC/NLMEC) models with response variables recorded
at irregular intervals. To address the serial correlation among the within-subject errors, a
damped exponential correlation structure is considered in the random error and an EM-
type algorithm is developed for computing the maximum likelihood estimates, obtaining as
a byproduct the standard errors of the fixed e�ects and the likelihood value. The proposed
methods are illustrated with simulations and the analysis of two real AIDS case studies.

Chapter 3: Recently Matos et al. (2013b) proposed an exact EM-type algo-
rithm for linear and nonlinear mixed-e�ects censored (LMEC/NLMEC) models using
a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In
this work, we develop influence diagnostics for LMEC/NLMEC models using the multi-
variate Student’s-t density, based on the conditional expectation of the complete data
log-likelihood. This partially eliminates the complexity associated with the approach of
Cook (1977, 1986) for censored mixed-e�ects models. The new methodology is illustrated
via an application to a longitudinal HIV dataset. In addition, a simulation study explores
the accuracy of the proposed measures in detecting possible influential observations for
heavy-tailed censored data under di�erent perturbation and censoring schemes.

Chapter 4: We propose a robust nonlinear censored regression model based on
the scale mixtures of normal (SMN) distributions. To take into account the autocorrelation
existing among irregularly observed measures, a damped exponential correlation structure
is considered. A stochastic approximation of the EM (SAEM) algorithm is developed to
obtain the maximum likelihood estimates of the model parameters. The main advantage
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of this new procedure allows us to estimate the parameters of interest and evaluate the
log-likelihood function in an easy and fast way. Furthermore, the standard errors of the
fixed e�ects and predictions of unobservable values of the response can be obtained as
a by-product. The practical utility of the proposed method is exemplified using both
simulated and real data.

Chapter 5: The multivariate censored linear mixed model (MLEMC) is a
frequently used tool for a joint analysis of more than one series of longitudinal data.
Motivated by a concern of sensitivity to potential outliers or data with longer-than-normal
tails and possible serial correlation, we develop a robust generalization of the MLMEC
that is constructed by using the scale mixtures of normal (SMN) distributions. To take
into account the autocorrelation existing among irregularly observed measures, a damped
exponential correlation (DEC) structure is considered. For this complex longitudinal
structure, we propose an exact estimation procedure to obtain the maximum likelihood
estimates of the fixed e�ects and variance components, using a stochastic approximation
of the EM (SAEM) algorithm. This approach allow us to estimate the parameters of
interest in an easy and fast way, obtaining as a by-product the standard errors of the fixed
e�ects, predictions of unobservable values of the response and the log-likelihood function.
The methodology is illustrated through an application to a set of AIDS data and a small
simulation study.

Chapter 6: We present final remarks and further researches related to this
thesis.
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The majority of the material in this thesis is based on original publications. Below,
we give a list of the parts of the thesis based principally on those publications.

Chapter 2: Matos, L. A., L. M. Castro, and V. H. Lachos (2016). Censored
mixed-e�ects models for irregularly observed repeated measures with applications to
HIV viral loads. Test, DOI: 10.1007/s11749-016-0486-2.

Chapter 3: Matos, L. A., D. Bandyopadhyay, L. M. Castro, and V. H. Lachos
(2015). Influence assessment in censored mixed-e�ects models using the multivariate
student’s-t distribution. Journal of multivariate analysis 141, 104–117.

Chapter 4: Matos, L. A., V. H. Lachos, T.-I Lin, and L. M. Castro. Heavy-tailed
longitudinal regression models for censored data: A likelihood based perspective.
(Submitted)

Chapter 5: Lachos, V. H., L. A. Matos, L. M. Castro, and M.-H. Chen. Heavy-
tailed longitudinal linear mixed models for multiple censored responses data.

ANNEX: Matos, L. A., L. M. Castro, C. R. B. Cabral, and V. H. Lachos. Multi-
variate measurement error models based on student-t distribution under censored
responses. (Submitted)
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1 An overview

In this chapter we present some background material. We review the scale
mixtures of multivariate normal distributions and the damping exponential correlation
(DEC) structure. We also describe the algorithms for ML estimation, the EM and SAEM
algorithms, and how to compute the empirical information matrix. Finally, we describe
the motivating datasets, which will be analyzed in the course of this work.

1.1 Preliminaries

1.1.1 Scale mixtures of normal distributions (SMN)
An element of the symmetric class of scale mixtures of multivariate normal

distributions (Andrews and Mallows, 1974; Lange and Sinsheimer, 1993) is defined as the
distribution of the p-variate random vector

Y “ µ ` ŸpUq1{2Z, (1.1)

where µ is a location vector, Z is a normal random vector with mean vector 0, variance-
covariance matrix �, U is a positive random variable with cumulative distribution function
(cdf ) Hpu | ‹q and probability density function (pdf ) hpu|‹q, independent of Z, where
‹ is a scalar or parameter vector indexing the distribution of U and ŸpUq is the weight
function. Given U “ u, Y follows a multivariate normal distribution with mean vector µ

and variance-covariance matrix Ÿpuq�. Hence, the pdf of Y is

SMN
p

py | µ, �, ‹q “
ª 8

0

„
p

py; µ, Ÿpuq�qdHpu | ‹q,

where „
p

p.; µ, �q stands for the pdf of the p-variate normal distribution with mean vector
µ and covariate matrix �. By convention, we shall write Y „ SMN

p

pµ, �, ‹q. Three
members of the scale mixtures of normal class of distributions are commonly used for
robust estimation:

‚ The multivariate Student-t distribution, T
p

pµ, �, ‹q, where ‹ is called the degrees of
freedom, can be derived from the mixture model (1.1), arises when U is distributed
as Gammap‹{2, ‹{2q and Ÿpuq “ 1{u, with ‹ ° 0. The pdf of Y takes the form of

fpy | µ, �, ‹q “ �pp`‹

2

q
�p‹

2

qfip{2

‹´p{2|�|´1{2

ˆ

1 ` d

‹

˙´pp`‹q{2

, y P Rp,

where �p¨q is the standard gamma function and d “ py ´ µqJ�´1py ´ µq is the
Mahalanobis distance. When ‹ Ò 8, the Student-t distribution reduces to the normal
distribution as the limiting case.
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‚ The multivariate slash distribution, SL
p

pµ, �, ‹q, arises when Ÿpuq “ 1{u and the
distribution of U is Betap‹, 1q, with u P p0, 1q and ‹ ° 0. Its pdf is given by

fpy | µ, �, ‹q “ ‹

ª

1

0

u‹´1„
p

py; µ, u´1�qdu, y P Rp.

The slash distribution reduces to the normal distribution when ‹ Ò 8.

‚ The multivariate contaminated normal distribution, CN
p

pµ, �, ‹
1

, ‹
2

q, where ‹
1

, ‹
2

P
p0, 1q. Here, Ÿpuq “ 1{u and U is a discrete random variable taking one of two states
and has pdf given by

hpu | ‹q “ ‹
1

It‹2upuq ` p1 ´ ‹
1

qIt1upuq,

where ‹ “ p‹
1

, ‹
2

q and It·upuq is the indicator function of the set · whose value
equals one if u P · and zero elsewhere. The associated density is

fpy | µ, �, ‹q “ ‹
1

„
p

py; µ, ‹´1

2

�q ` p1 ´ ‹
1

q„
p

py; µ, �q.

The parameter ‹
1

can be interpreted as the proportion of outliers while ‹
2

may be
interpreted as a scale factor (Osorio et al., 2007). In this case, the contaminated
normal distribution reduces to the normal distribution when ‹

2

“ 1.

Table 1 – Summary of some SMN distributions.

Distribution Ÿpuq U Density function fpyq

T
p

pµ, �, ‹q 1
u

U

ind.„ Gammap‹{2, ‹{2q, �pp`‹

2

q
�p‹

2

qfip{2

‹

´p{2|�|´1{2

ˆ

1 ` d

‹

˙´pp`‹q{2

u ° 0, ‹ ° 0

SL
p

pµ, �, ‹q 1
u

U

ind.„ Betap‹, 1q,
‹

ª

1

0

u

‹´1

„

p

py; µ, u

´1

�qdu

u P p0, 1q, ‹ ° 0

CN
p

pµ, �, ‹

1

, ‹

2

q 1
u

hpu|‹q, ‹ “ p‹
1

, ‹

2

q,
‹

1

„

p

py; µ, ‹

´1

2

�q ` p1 ´ ‹

1

q„
p

py; µ, �q
u “ ‹

2

, 1 and ‹

1

, ‹

2

P p0, 1q
with d “ py ´ µqJ

�

´1py ´ µq and hpu|‹q “ ‹

1

It‹2upuq ` p1 ´ ‹

1

qIt1upuq

In this work, we will focus on the distributions described on Table 1, where
Ÿpuq “ 1{u for all distributions, then we have that

Y “ µ ` U´1{2Z. (1.2)

Remark: The multivariate normal distribution, N
p

pµ, �q, also belongs to the
scale mixtures of normal distributions. In this case, the random variable U is degenerate
in 1, i.e., P pU “ 1q “ 1.
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1.1.2 Damped exponential correlation structure (DEC)
Following Muñoz et al. (1992), the DEC (damped exponential correlation)

structure is defined as:

E
i

“ E
i

p„, t
i

q “
”

„
|t

ij

´t

ik

|„2
1

ı

, i “ 1, . . . , n, j, k “ 1, . . . , n
i

, (1.3)

where t
i

“ pt
i1

, . . . , t
in

i

q is a vector of time points for subject i and „ “ p„
1

, „
2

qJ. The
parameter „

1

describes the autocorrelation between observations separated by the absolute
length of two time points, and the parameter „

2

permits acceleration of the exponential
decay of the autocorrelation function, defining a continuous-time autoregressive model.

For practical reasons, the parameter space of „
1

and „
2

is confined within
� “ tp„

1

, „
2

q : 0 † „
1

† 1, „
2

° 0u. It is important to stress that di�erent values of the
damping parameter „

2

produce a variety of correlation structures for a given value of
„

1

° 0, as follows:

1. if „
2

“ 0, then E
i

generates the compound symmetry correlation structure (CS);

2. when 0 † „
2

† 1, then E
i

presents a decay rate between the compound symmetry
structure and the first-order AR (AR (1)) model;

3. if „
2

“ 1, then E
i

generates an AR(1) structure;

4. when „
2

° 1, E
i

presents a decay rate faster than the AR(1) structure; and

5. if „
2

Ñ 8, then E
i

represents the first-order moving average model, MA(1).

A more detailed discussion of the DEC structure presenting more complex scenarios of the
parameter space � can be found in Muñoz et al. (1992).

1.1.3 The EM/SAEM algorithm
The EM algorithm, introduced by (Dempster et al., 1977), is a powerful

frequentist approach to estimate parameters via ML when the data has missing/censored
observations and/or latent variables. The main features of EM algorithm is the ease of
implementation and the stability of monotone convergence. Let ◊ be the parameter vector
and y

c

“ pyJ, qJq be the vector of complete data, i.e., the observed data y and the
missing/censored data (or the latent variables, depending on the situation) q. The EM
algorithm consists basically of two steps: the expectation (E-step) and the maximization
(M-step). These steps are performed iteratively in the complete likelihood function, ¸

c

p◊|y
c

q,
until it reaches the convergence. Each iteration is performed as follows:

E-Step: Calculate the conditional expectation Qp◊ | p◊
pkqq “ E

”

¸
c

p◊ | y
c

q | y, p◊
pkqı

,

where p◊
pkq

is the estimate of ◊ at the k-th iteration.
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M-Step: update ◊pkq according to p◊
pk`1q “ argmax

◊

Qp◊ | p◊
pkqq.

Although the EM algorithm is a powerful tool when the analytical expressions
required by the E-steps have a closed form, it becomes a problem when the analytical
expressions cannot be evaluated. To alleviate this di�culty, Wei and Tanner (1990) proposed
the MCEM algorithm, where the E-step is replaced by a Monte Carlo approximation
based on a large number of independent simulations of the latent variables. However, a
large number of simulations are required, making the MCEM algorithm computationally
expensive.

As an alternative, Delyon et al. (1999) presented a stochastic approximation
of the EM algorithm, called the SAEM algorithm. In this procedure, at each iteration,
the latent variables are successively simulated by the conditional distribution and the
unknown parameters are updated. According to Meza et al. (2012), the SAEM algorithm
at iteration k proceeds as follows:

E-Step:

1. Simulation-step:

(a) draw qpk,lq pl “ 1, . . . , mq from the conditional distribution fpq | y, p◊
pk´1qq, or

(b) MCMC procedure: when random samples cannot be simulated directly from the
conditional distribution, draw qpk,lq pl “ 1, . . . , mq instead from the transition
probability �

p◊
pkqpqpk´1q, ¨q, the sequence qpkq is a Markov Chain with transition

kernels �
p◊

pkq .

2. Stochastic approximation: update Qp◊ | p◊
pkqq according to

Qp◊ | p◊
pkqq “ Qp◊ | p◊

pk´1qq ` ”
k

«

1
m

m

ÿ

l“1

¸
c

p◊ | qpk,lq, yq ´ Qp◊ | p◊
pk´1qq

�

, (1.4)

where ¸
c

p◊ | y
c

q “
n

ÿ

i“1

¸
i

p◊ | y
c

q is the complete log-likelihood function and ”
k

is a

smoothness parameter, i.e., a decreasing sequence of positive numbers such that
8
ÿ

k“1

”
k

“ 8 and
8
ÿ

k“1

”2

k

† 8.

M-Step:

1. Maximization: update ◊pkq according to

p◊
pk`1q “ argmax

◊

Qp◊ | p◊
pkqq.
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When we need to perform (b) in the E-Step of the SAEM algorithm, this
algorithm is called MCMC-SAEM and was proposed by Kuhn and Lavielle (2004). In this
work we will refer the MCMC-SAEM as SAEM algorithm. As proposed by Galarza et al.
(2015) we will consider the following smoothing parameter

”
k

“

$

&

%

1, if 1 § k § cW ;
1

k ´ cW
, if cW ` 1 § k § W,

(1.5)

where W is the maximum number of iterations and c is a cut point (0 § c § 1) which
determines the percentage of the initial iterations. By Equation (1.4), we have that if the
smoothing parameter ”

k

is equal to 1 for all k, the SAEM algorithm has “no memory” and
it coincides with the MCEM algorithm. While the SAEM has no memory, the algorithm
will converge quickly (convergence in distribution) to a solution neighborhood. However
when the algorithm has memory it will converge slowly (almost sure convergence) to the
ML solution.

Note that, for the SAEM algorithm, the E-Step coincides with the MCEM
algorithm, however a small number of simulations m (suggested to be m § 20) is necessary.
This is possible because unlike the traditional EM algorithm and its variants, the SAEM
algorithm uses not only the current simulation of the missing/censored/latent data at the
iteration k denoted by pqpk,lqq, l “ 1, . . . , m but some or all previous simulations, where
this “memory” property is set by the smoothing parameter ”

k

.

1.1.4 The empirical information matrix
To compute the asymptotic covariance of the ML estimates we follow Lin

(2010). According to large sample theory, the asymptotic covariance matrix of the ML
estimates can be approximated by (Meilijson, 1989)

I
e

p◊ | yq “
n

ÿ

i“1

spy
i

| ◊qsJpy
i

| ◊q ´ 1
n

Spy | ◊qSJpy | ◊q, (1.6)

where Spy | ◊q “
n

ÿ

i“1

spy
i

| ◊q and spy
i

| ◊q is the empirical score function for subject i.

According to Louis (1982), it is possible to relate the score function of the incomplete
data log-likelihood with the conditional expectation of the complete data log-likelihood
function. Therefore, the individual score can be determined as

spy
i

| ◊q “ B log fpy
i

| ◊q
B◊

“ E

ˆB¸
i

p◊ | y
c

q
B◊

| y
i

, ◊

˙

, (1.7)

where y
c

is the vector of complete data and ¸
i

p◊ | y
c

q is the complete data log-likelihood
function formed from the i-th observation. Using the ML estimates p◊, that is, Spy | p◊q “ 0,
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it follows that (1.6) can be approximated by

I
e

pp◊ | yq “
n

ÿ

i“1

ps
i

psJ
i

, (1.8)

where ps
i

“ spy
i

| p◊q.

1.2 Case studies
In this section we present the motivating datasets, which will be analysed in

this thesis.

1.2.1 UTI data
The UTI data is referred to a study of 72 perinatally HIV-infected children

(Saitoh et al., 2008). This dataset is available in the R package (R Development Core
Team, 2009) through the library lmec. Primarily due to treatment fatigue, unstructured
treatment interruptions (UTI) are common in this population. Suboptimal adherence can
lead to antiretroviral (ARV) resistance and diminished treatment options in the future.
The aim of this study was to monitor the HIV-1 viral laod (RNA) after unstructured
treatment interruption. The subjects in the study had taken ARV therapy for at least 6
months before UTI, and the medication was discontinued for more than 3 months. The
HIV viral load from the closest time points at 0, 1, 3, 6, 9, 12, 18, 24 months after UTI
were studied. The number of observations from baseline (month 0) to month 24 are 71, 62,
58, 57, 43, 34, 24, and 13, respectively. Out of 362 observations, 26 (7%) observations were
below the detection limits (50 or 400 copies/mL) and were left-censored at these values.
The individual profiles are shown in Figure 1.

1.2.2 ACTG 315 data
The ACTG 315 protocol considers 46 HIV-1 infected patients treated with

a potent antiretroviral drug cocktail based on the protease inhibitor ritonavir and two
reverse transcriptase inhibitor drugs (zidovudine and lamivudine). Before initiating the
antiretroviral therapy, all patients discontinued their own antiretroviral regimen for five
weeks as a “washout" period. The aim of this antiretroviral regimen is to show that
immunity can be partially restored in people with moderately advanced HIV disease.

The viral load was quantified on days 0, 2, 7, 10, 14, 21, 28, 56, 84, 168 and
196 after starting treatment. The dataset includes 361 observations. An immunologic
marker known as CD4+ cell count was also measured along with viral load and 72 out
of 361 (20%) CD4 values were missing due to a mismatch of the CD4 and the viral load
measurement schedules. The number of measurements per subject varied from 4 to 10.
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Figure 1 – UTI data. Individual profiles (in log
10

scale) for HIV viral load at di�erent
follow-up times. Trajectories for some censored individuals are indicated in
di�erent colors.

Viral load measurements below the detectable threshold of 100 copies/mL (40 out of 361,
11%) were considered left-censored, and the censoring process assumed independence of
the complete data. The individual profiles are shown in Figure 2.
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Figure 2 – ACTG 315 data. Individual profiles (in log
10

scale) for HIV viral load at dif-
ferent follow-up times. Trajectories for some censored individuals are indicated
in di�erent colors.
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1.2.3 AIEDRP data
This AIDS case study is from the AIEDRP program. This program, which is

a large multicenter observational study of subjects with acute and early HIV infection,
covers areas such as the evaluation of immune responses to HIV during acute infection,
the assessment of thymic function and T-cell turnover during acute HIV infection and
the assessment of transmission and prevalence of HIV resistance among treatment-naive
subjects. The aim of this study was to help design future vaccines and to learn the
implications of new anti-HIV treatments.
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Figure 3 – AIEDRP data. Individual profiles (in log
10

scale) for HIV viral load at dif-
ferent follow-up times. Trajectories for some censored individuals are indicated
in di�erent colors.

We consider 320 untreated individuals with acute HIV infection (see Vaida and
Liu (2009) for more details). Of the 830 recorded observations, 185 (22%) were above the
limit of assay quantification. This limit was between 75,000 and 500,000 copies/milliliter,
depending on the assay. The individual profiles are shown in Figure 3.

1.2.4 A5055 data
This research is from the AIDS clinical trial study – A5055 (Wang, 2013),

which involves a total of 44 infected patients with the human immunodeficiency virus type
1 (HIV-1). These patients were treated with one of the two potent antiretroviral (ARV)
therapies, namely IDV 800 mg twice daily (q12h) plus RTV 200 mg q12h (treatment
1), and IDV 400 mg q12h plus RTV 400 mg q12h (treatment 2). In AIDS research, the
number of RNA copies (viral load) in blood plasma and its evolutionary trajectories play
a prominent role in the diagnosis of HIV-1 disease progression after a treatment of ARV



Chapter 1. An overview 32

regimen (Paxton et al., 1997). Additionally, other two immunologic markers frequently
used for monitoring disease progression in AIDS studies are the cluster of di�erentiation 4
(CD4) and cluster of di�erentiation 8 (CD8) T cells.

The dataset consists of plasma viral load measurements (in copies per milliliter),
CD4 and CD8 cell counts measured roughly at days 0, 7, 14, 28, 56, 84, 112, 140, and 168
of follow-up for each patient. In this study, we focus on investigating the longitudinal tra-
jectories for RNA viral load (in log-base-10 scale), denoted by log

10

(RNA), and CD4/CD8
ratio. In this study the lower detection limit for RNA viral load is 50 copies/milliliter,
and therefore 33.5% (106 out of 316) of measurements lying below the limits of assay
quantification (left-censored). Figure 4 shows the trajectories of the two immunologic
responses along the time visit.
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Figure 4 – A5055 data. Trajectories of log
10

RNA (left panel) and CD4/CD8 ratio (right
panel) for 44 HIV-1 infected patients who were randomized in two IDV-RTV
regimens. Black lines indicate patients in under treatment 1 and red lines
indicate patients under treatment 2. Dotted line in left panel indicates the
censoring level.
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Estimation and diagnostics in multivariate
models for censored data
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2 Censored mixed-e�ects models for irregu-
larly observed repeated measures with ap-
plications to HIV viral load

2.1 Introduction
The study of acquired immunodeficiency syndrome (AIDS) and understanding

of the dynamics of the human immunodeficiency virus (HIV) have become a focus of
biomedical and biostatistical research. As mentioned by many researchers, HIV is an
extremely dynamic and variable virus having new subtypes and recombinant forms, about
which the scientific community knows little or nothing. HIV/AIDS clinical trials aim
to find new ways to prevent, detect and/or treat AIDS by determining whether a new
anti-retroviral (ARV) agent/therapy is safe and e�ective in people. Most of these clinical
trials assess the quantitative rates/changes of HIV-1 ribonucleic acid (RNA) levels in
plasma (or simply HIV-1 viral load), since this is an important surrogate marker to assess
the risk of disease progression and to monitor response to ARV therapy in routine medical
care of infected patients.

However, modeling HIV-1 viral load presents many challenges from the statisti-
cal point of view. Three are of particular importance. First, the viral load measurements
are often left or right censored (undetected) due to a lower and/or upper detection limit
of quantification. This happens because some quantification assays cannot accurately
quantify HIV-1 RNA above/below a specific level. Particularly, lower detection limits
ranging from 400 to 500 RNA copies/mL are considered for standard assays while the
range is 50 to 100 RNA copies/mL for ultra-sensitive assays. For example, the Amplicor
HIV-1 monitor test 1.5 and Nuclisens HIV-1 QT assay consider a lower detection limit of
400 copies/mL (Antunes et al., 2003), while the Roche Cobas Amplicor HIV-1 Monitor
test (versions 1 and 1.5) considers a detection limit of 50 HIV-1 RNA copies/ml and the
TaqMan assay (versions 1 and 2) considers a lower limit of quantification of 40 and 20
copies/ml respectively (see Swenson et al., 2014).

Second, as a result of unscheduled follow-up visits of patients and/or missed
visits, the viral loads are usually recorded at irregular intervals. As an example of this
situation, Ciesielski and Metler (1997) studied the duration of time between exposure and
seroconversion in healthcare workers with occupationally acquired HIV infection. In this
study, the authors mentioned that “because many of the healthcare workers had follow-up
testing at irregular intervals, with long periods between tests, it was not possible to define
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precisely when seroconversion occurred.” Another example of this situation was reported
by Azevedo et al. (2010), were a patient diagnosed with HIV-infection in 2003 during
her first pregnancy made follow-up visits at irregular intervals. In this particular case,
the antiretrovirals were given only for prophylaxis of vertical HIV-infection transmission
during pregnancy. Finally, since the viral load is measured longitudinally over time, the
between-subject and within-subject variations have to be taken into account.

Recently, some alternatives for modeling the irregular observation responses and
correlations induced by longitudinal data have been proposed in the statistical literature.
These proposals consider not only the correlation structure induced by the random e�ects
term but also by other types of correlation in the error term. Particularly, Wang (2013)
introduces the multivariate t (Student-t) linear mixed model (MtLMM) for outcome
variables recorded on irregular occasions considering a damping exponential correlation
(DEC) structure, as proposed by Muñoz et al. (1992). This correlation structure takes into
account the autocorrelation generated by the within-subject dependence among irregular
occasions. On the other hand, Lin and Wang (2013) consider a multivariate Student-t
distribution for nonlinear mixed models with multiple outcomes in the presence of missing
data. To capture the serial correlation among the observations, the authors consider a DEC
structure of the error vector. Moreover, Wang and Fan (2011) consider the multivariate
Student-t linear mixed with autoregressive of order p (AR(p)) dependence structure for
the within-subject errors in the case of multiple outcomes.

In the case of censored responses, there are several alternatives in the literature
to deal with them. For example, Arellano-Valle et al. (2012) extend the classic Tobit model
(Tobin, 1958) by considering a Student-t distribution for the error term and proposing an
EM-type algorithm for the parameter estimation. More recently, Rocha et al. (2015) put
forward an errors-in-variable Student-t censored model, obtaining the maximum likelihood
estimates (MLE) of the model through an EM algorithm, and Müller and van de Geer (2014)
study a censored linear model for high dimensional data. In the context of linear/nonlinear
mixed-e�ects (LME/NLME) models, Hughes (1999) proposes a likelihood-based Monte
Carlo EM algorithm (MCEM) for LME with censored responses (LMEC). Wu (2002)
suggests a Monte Carlo EM and a linearization procedure to estimate the parameters of a
censored NLME model. In turn, Vaida et al. (2007) and Vaida and Liu (2009) extend the
work of Hughes, proposing a more e�cient EM algorithm than Hughes’s. An extended
review of these proposals can be found in the book by Wu (2010). Recently, Matos et al.
(2013a), Matos et al. (2013b) and Matos et al. (2015) have proposed a likelihood-based
estimation and influence analysis for LMEC/NLMEC models, respectively.

Moreover, stochastic versions of EM such as Monte Carlo EM (Levine and
Casella, 2001), SAEM (Delyon et al., 1999) and many other approximations have been
proposed to deal with NLME models under censoring. In fact, Samson et al. (2006) put
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forward an extension of the SAEM algorithm to left-censored data in NLME model.
However, to the best of our knowledge, there is no work considering irregular observations,
damping exponential correlation and censored longitudinal responses simultaneously in
the context of LMEC/NLMEC models using an exact EM algorithm. Consequently, the
aim of this chapter is to study the impact of censoring and irregularly timed observed
responses under Gaussian LMEC and NLMEC models.

For this purpose, we consider the analysis of two AIDS case studies. The first
one investigated the e�ect of a highly active antiretroviral therapy (HAART) in persons
with moderately advanced HIV-1 infection. This case study presented 11% of observations
below the detection limits (left-censored). The second case study evaluated the immune
responses to HIV during acute infection, presenting about 22% of measurements lying
above the limits of assay quantification (right-censored). In both studies, the viral loads
were irregularly measured over time.

The rest of the chapter is organized as follows. Section 2.2 introduces the model
(DEC-LMEC) and the likelihood function. In Section 2.3, the related likelihood-based
inference is presented, including estimation of the random e�ects and the expected infor-
mation matrix. The method for predicting future observations is discussed in Section 2.4.
Section 2.5 describes the extension to the nonlinear case (DEC-NLMEC). The application
of the proposed method is presented in Sections 2.6 and 2.7 through a simulation study
and the analysis of two case studies of HIV viral load. Finally, Section 2.8 concludes with
a short discussion of issues raised by this study and some possible directions for future
research.

2.2 Model formulation
In the non-censored case, a Gaussian LME model is specified as follows

y
i

“ X
i

— ` Z
i

b
i

` ‘
i

, (2.1)

where b
i
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q
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i
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q, i “ 1, . . . , n; the subscript i is
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, . . . , y
in

i
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qJ; X
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ˆ 1q, is the vector of random errors; and the dispersion matrix D “ Dp–q depends on
the unknown and reduced parameters –. The correlation structure of the error vector is
assumed to be �

i

“ ‡2E
i

, where the n
i

ˆ n
i

matrix E
i

incorporates a time-dependence
structure. Consequently, to capture the serial correlation among irregularly observed
longitudinal data, such as the ACTG 315 and AIEDRP datasets, it is necessary to consider
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a parsimonious parameterization of the matrix E
i

. Following Muñoz et al. (1992), we
adopt a DEC structure for E

i

described in Section 1.1.2.

As mentioned earlier, the proposed model also considers censored observations,
i.e., we assume that the response Y

ij

is not fully observed for all i, j. Let pV
i

, C
i

q be the
observed data for the i-th subject, where V

i

represents the vector of uncensored readings
or censoring level and C

i

is the vector of censoring indicators, such that

y
ij

§ V
ij

if C
ij

“ 1,

y
ij

“ V
ij

if C
ij

“ 0. (2.2)

Note that since the observed response y
ij

is defined over the real line, extensions
to right-censored data are straightforward. In fact, the right-censored problem can be
represented by a left-censored problem by simultaneously transforming the response y

ij

and censoring level V
ij

to ´y
ij

and ´V
ij

. The model defined in (2.1)-(2.2), is henceforth
called DEC-LMEC.

2.2.1 The log-likelihood function
Following Vaida and Liu (2009), classic inference on the parameter vector

◊ “ p—J, ‡2, –J, „JqJ is based on the marginal distribution of y
i

. For complete data,
the marginal distribution of the vector y
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. The strategy followed to compute the likelihood function associated with
models (2.1) and (2.2) is to treat separately the observed and censored components of y
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.
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In this setup, the operator vecp¨q denotes the function that stacks vectors or matrices with
the same number of columns. Consequently, from the marginal-conditional decomposition of
the multivariate normal distribution, yo
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vector u. From Vaida and Liu (2009) and Matos et al. (2013a), the likelihood function for
subject i (using conditional probability arguments) is given by
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which can be easily evaluated computationally.

The log-likelihood function for the observed data, given by

¸p◊|yq “
n

ÿ

i“1

tlog L
i

p◊qu,

is used to compute di�erent model selection criteria, such as

AIC “ 2 m ´ 2 ¸
max

and BIC “ m log N ´ 2 ¸
max

,

where m is the number of model parameters, N “
n

ÿ
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n
i

and ¸
max

is the maximized

log-likelihood value.

2.3 The EM algorithm
This section describes in detail how the proposed model specified in (2.1)-(2.2)

can be fitted by using the ECM algorithm (Meng and Rubin, 1993). The EM algorithm
(proposed originally by Dempster et al., 1977) has several appealing features, such as
stability of monotone convergence with each iteration, increasing the likelihood and
simplicity of implementation. Due to the computational di�culty at the M-step, we use the
ECM algorithm (an extension of the EM algorithm), which shares the appealing features
of the EM and converges faster than the original algorithm.
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Hence, the ECM algorithm is applied to the complete data log-likelihood function
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with K being a constant that does not depend on the parameter vector ◊. Given the
current estimate ◊ “ p◊

pkq
, the E-step calculates the conditional expectation of the complete

data log-likelihood function, given by
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It is easy to see from (2.5) and (2.6) that the E-step reduces only to the
computation of
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These conditional expectations rely on the first and second moments of a multivariate
truncated normal distribution and can be determined in closed-form (for more details on
the computation of these moments, see Vaida and Liu, 2009).

The conditional maximization step (CM) conditionally maximizes Qp◊|p◊pkqq
with respect to ◊ obtaining a new estimate p◊

pk`1q
, as follows

p—
pk`1q “

˜

n

ÿ

i“1

XJ
i

pE´1pkq
i

X
i

¸´1

n

ÿ

i“1

XJ
i

pE´1pkq
i

´

py
i

pkq ´ Z
i

pb
i

pkq¯
, (2.7)

p‡2

pk`1q “ 1
N

n

ÿ

i“1

”

pa
pkq
i

´ 2p—
pk`1qJ

XJ
i

pE´1pkq
i

´

py
i

pkq ´ Z
i

pb
i

pkq¯

` p—
pk`1qJ

XJ
i

pE´1pkq
i

X
i

p—
pk`1qı

, (2.8)

pDpk`1q “ 1
n

n

ÿ

i“1

zb
i

bJ
i

pkq
, (2.9)

p„
pk`1q “ argmax

„Pp0,1qˆR`

˜

´1
2 logp|E

i

|q ´ 1

2 p‡2

pk`1q

”

pa
pkq
i

p„q

´ 2p—
pk`1qJ

XJ
i

E´1

i

´

pypkq
i

´ Z
i

pbpkq
i

¯

` p—
pk`1qJ

XJ
i

E´1

i

X
i

p—
pk`1qı¯

.

(2.10)
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2.3.1 Estimation of random e�ects and standard errors
To estimate the random e�ects, we consider the conditional mean of b

i

given
the observed data V

i

and C
i

, that is, Etb
i

| V
i

, C
i

u. Thus, for a given value of ◊ “
p—J, ‡2, –J, „JqJ, the conditional mean of b

i

given V
i

and C
i

is

pb
i

p◊q “ Etb
i

| V
i

, C
i

u “ Ï
i

ppy
i

´ X
i

—q, (2.11)

where Ï
i

“ �
i

ZJ
i

E´1

i

{‡2 and �
i

“ pD´1 ` ZJ
i

E´1

i

Z
i

{‡2q´1. Note that py
i

“ Ety
i

|V
i

, C
i

u
is given by the first moment of a multivariate truncated normal distribution. In practice,
the estimator of b

i

, pb
i

, can be obtained by substituting the ML estimate p◊ into (2.11),
leading to pb

i

“ pb
i

pp◊q. On the other hand, the conditional covariance matrix of b
i

given
V

i

and C
i

is

V artb
i

| V
i

, C
i

u “ Etb
i

bJ
i

| V
i

, C
i

u ´ pb
i

p◊qpb
i

p◊qJ “ �
i

` Ï
i

V arpy
i

| V
i

, C
i

qÏJ
i

.

Note that V arpy
i

|V
i

, C
i

q can be easily obtained as a byproduct of the proposed ECM
algorithm developed in Section 2.3.

The empirical information matrix

Following the methodology described in (1.1.4), we compute the asymptotic
covariance of the ML estimates through the empirical information matrix. So, we have
that

I
e

pp◊ | yq “
n

ÿ

i“1

ps
i

psJ
i

, (2.12)

where ps
i

“ spy
i

| p◊q “ E

ˆB¸
i

p◊ | y
c

q
B◊

| V
i

, C
i

, p◊

˙

“
´

psJ
i,—,ps

i,‡

2 ,psJ
i,–,psJ

i,„

¯J
has elements

given by

ps
i,— “ pps

i,—1 , . . . ,ps
i,—

p

qJ “ 1
p‡2

”

XJ
i

pE´1

i

´

py
i

´ Z
i

pb
i

¯

´ XJ
i

pE´1

i

X
i

p—
ı

,
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i,‡

2 “ ´ n
i

2 p‡2

` 1
2 p‡4

”
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i

´ 2p—
J

XJ
i

pE´1

i

´

py
i

´ Z
i
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i

¯

` p—
J

XJ
i

pE´1

i

X
i

p—
ı

,
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i,–1 , . . . ,ps
i,–

r

qJ,

ps
i,„ “ pps

i,„1 ,ps
i,„2qJ,

with pa
i

“ tr
´

zy
i

yJ
i

pE´1

i

´ 2zy
i

bJ
i

ZJ
i

pE´1

i
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i
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i
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i
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i

Z
i

¯
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r
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i

q
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i
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i

9E
i

psq
¯

,
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where 9Dprq “ BD
B–

r

|–“x–, r “ 1, . . . , dimp–q; and 9E
i

psq “ BE
i

B„
s

|
„“x„

, s “ 1, 2. For the
DEC structure we have that

BE
i

B„
1

“ |t
ij

´ t
ik

|„2„
|t

ij

´t

ik

|„2 ´1

1

,

BE
i

B„
2

“ |t
ij

´ t
ik

|„2 logp|t
ij

´ t
ik

|q logp„
1

q„|t
ij

´t

ik

|„2
1

.

2.4 Prediction of future observations
The problem related to the prediction of future values has a great impact on

many practical applications. Rao (1987) pointed out that the predictive accuracy of future
observations can be taken as an alternative measure of “goodness-of-fit”. In order to propose
a strategy to generate predicted values from the DEC-LMEC model, we use the approach
proposed by Wang (2013). Thus, let y

i,obs

be an observed response vector of dimension
n

i,obs

ˆ 1 for a new subject i over the first portion of time and y
i,pred

be the corresponding
n

i,pred

ˆ 1 response vector over the future portion of time. Let X̄
i

“ pX
i,obs

, X
i,pred

q be the
pn

i,obs

` n
i,pred

q ˆ p design matrix corresponding to ȳ
i

“ pyJ
i,obs

, yJ
i,pred

q.
To deal with the censored values existing in y

i,obs

, we use the imputation
procedure, by replacing the censored values by py

i

“ Ety
i

|V
i

, C
i

, p◊u obtained from the
EM algorithm. Therefore, when the censored values are imputed, a complete dataset,
denoted by y

i,obs

˚ , is obtained. The reason to use the imputation procedure is that it avoids
computing truncated conditional expectations of the multivariate normal distribution
originated by the censoring scheme. Hence, we have that

ȳ˚
i

“
`

yJ
i,obs

˚ , yJ
i,pred

˘J „ N
n

i,obs

`n

i,pred

pX
i

—, �
i

q ,

where the matrix �
i

, can be represented by �
i

“
˜

�obs

˚
,obs

˚
i

�obs

˚
,pred

i

�pred,obs

˚
i

�pred,pred

i

¸

. As mentioned

in Wang (2013), the best linear predictor of y
i,pred

with respect to the minimum mean
squared error (MSE) criterion is the conditional expectation of y

i,pred

given y
i,obs

˚ , which
is given by

py
i,pred

p◊q “ X
i,pred

— ` �pred,obs

˚
i

�obs

˚
,obs

˚´1

i

py
i,obs

˚ ´ X
i,obs

˚—q . (2.13)

Therefore, y
i,pred

can be estimated directly by substituting p◊ into (2.13), leading to
{y

i,pred

“ py
i,pred

pp◊q.

2.5 The nonlinear case
As mentioned in the Introduction, some approximations based on the EM

algorithm have been proposed in the statistical literature to deal with NLME models. In
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this context, we use an approximation of the nonlinear functions mentioned by Vaida
and Liu (2009). This approximation (2.15) was considered by Matos et al. (2013a) in
the context of censored nonlinear mixed-e�ects models. In that paper, simulation studies
revealed that the approximation can e�ciently estimate the model parameters. Recently,
Wang (2013) used this approximation to implement an ECM algorithm to carry out ML
estimation in Student-t nonlinear mixed-e�ects models for multi-outcome longitudinal
data with missing values. Consequently, we conclude that this approximation is robust,
stable, and does not produce any severe consequences in inference when applied to other
types of (censored) nonlinear models.

The NLME (without censoring) of Pinheiro and Bates (2000) is defined as

y
i

“ ÷pÂ
i

, X
i

q ` ‘
i

, Â
i

“ A
i

— ` B
i

b
i

, i “ 1, . . . , n, (2.14)

where b
i

iid„ N
q

p0, Dq and ‘
i

ind„ N
n

i

p0, ‡2E
i

q are independent; y
i

is an (n
i

ˆ 1) vector
of observed responses for subject i; ÷ is a nonlinear function of the individual random
parameter Â

i

; A
i

and B
i

are known design matrices of dimensions r ˆ p and r ˆ q,
respectively, possibly depending on some covariate values, X

i

; and — is the (p ˆ 1) vector
of fixed e�ects and b

i

is the (q ˆ 1) vector of random e�ects.

As mentioned by Vaida and Liu (2009), the linearization (L) procedure to
obtain the approximate MLE of ◊ “ p—J, ‡2, –J, „JqJ involves taking the first-order
Taylor expansion of ÷

i

around the current parameter estimate r— and the random e�ect
estimates rb

i

(empirical predictors). This procedure is equivalent to iteratively solving the
following LME model (L-step)

rY
i

“ ÄW
i

— ` rH
i

b
i

` ‘
i

, i “ 1, . . . , n, (2.15)

where b
i

iid„ N
q

p0, Dq and ‘
i

ind„ N
n

i

p0, ‡2E
i

q; and rY
i

“ Y
i

´ r÷pÂpr—, rb
i

q, X
i

q, with

rH
i

“ B÷pA
i

— ` B
i

b
i

, X
i

q
BbJ

i

|b
i

“rb
i

, ÄW
i

“ B÷pA
i

— ` B
i

b
i

, X
i

q
B—J |

—“Ä—
,

and r÷pÂpr—, rb
i

q, X
i

q “ ÷pA
i

r— ` B
i

rb
i

, X
i

q ´ rH
i

rb
i

´ ÄW
i

r—. Thus, in the censored case, the
model in (2.15) is an LME with censored data that can be fitted using the strategy
explained in Section 2.3. The model matrices in (2.15) depend on the current parameter
value, and need to be recalculated at each iteration. The algorithm iterates between the
L-, E- and CM-steps until convergence.

2.6 Analysis of case studies
This section illustrates the performance of the proposed methods with the

analysis of two HIV datasets, previously analyzed by Wu (2002) and Vaida and Liu (2009),
respectively.
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2.6.1 ACTG 315 data
Here we reanalyze the HIV viral load data from clinical trial ACTG 315 (Wu,

2002), considering four di�erent correlation structures, namely the uncorrelated structure
(UNC), damped exponential correlation (DEC), continuous-time autoregressive of order
1 (AR(1)) and compound symmetric structure (CS). As mentioned in Section 1.2, the
dataset consists of 46 HIV-1 infected patients treated with a potent ARV therapy. The
viral load was repeatedly quantified on days 0, 2, 7, 10, 14, 21, 28, 56, 84, 168, and 196
after start of treatment, with a total of 361 observations. The viral load detectable limit
is 100 copies/mL, and 40 out of 361 (11%) of all viral load measurements are below the
detection limit. Wu and Ding (1999) proposed the use of a biphasic model

V ptq “ eÏ1´Ï2t ` eÏ3´Ï4t, (2.16)

where V ptq is the viral load at time t. The parameters Ï
2

and Ï
4

are called the first
and second phase viral decay rates, which can represent the minimum turnover rate of
productively infected cells and that of latently or long-lived infected cells, respectively.
The parameters Ï

1

and Ï
3

are macro-parameters and eÏ1 ` eÏ3 is the baseline viral load
at time t “ 0.

Table 2 – ACTG 315 data. Model selection criterion for the NLMEC model under
di�erent correlation structures.

NLMEC
Criterion UNC DEC AR(1) CS

¸
max

-281.31 -255.83 -264.99 -279.33
AIC 594.61 547.66 563.97 592.66
BIC 656.83 617.66 630.08 658.77

As noted by Wu and Ding (1999), the inter-subject variation of observed viral
loads motivates the use of a NLME model. The viral load trajectories initially exhibit
rapid decay (known as first-phase decay), followed by a phase of slow decay for some
(the second phase) with the others rebounding back to the original levels (Liu and Wu,
2012). Therefore, following Wu (2002) we consider the following NLME model to reflect
the dynamics of the HIV viral load

y
ij

“ log
10

peÏ1i

´Ï2i

t

ij ` eÏ3i

´Ï4ij

t

ij q ` ‘
ij

, (2.17)
—

1ij

“ Ï
1i

“ —
1

` b
1i

, —
3ij

“ Ï
3i

“ —
3

` b
3i

, (2.18)
—

2ij

“ Ï
2i

“ —
2

` b
2i

, —
4

ij

“ Ï
4ij

“ —
4

` —
5

CD4
ij

` b
4i

, (2.19)

where y
ij

is the log
10

-transformation of the viral load for the i-th subject at time t
ij

pi “ 1, 2, . . . , n, j “ 1, 2, . . . , n
i

q and ‘
i

“ p‘
i1

, . . . , ‘
in

i

qJ represents the vector of within-
individual random errors; CD4

ij

indicates the observed CD4 values up to time t
ij

; —
ij

“
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p—
1ij

, —
2ij

, —
3ij

, —
4ij

qJ and — “ p—
1

, . . . , —
5

qJ are individual parameters for the i-th subject
at time t

ij

and population parameters, respectively and b
i

“ pb
1i

, . . . , b
4i

qJ is the random
e�ects vector for subject i.

Table 3 – ACTG 315 data. ML estimates with standard errors for the NLMEC model
under DEC structure.

Fixed e�ects Between-subject variances Within-subject variances

Parameter Estimate SE Parameter Estimate SE Parameter Estimate SE

—1 11.552 0.266 –11 0.155 0.045 ‡2
0.407 0.094

—2 31.549 0.040 –12 -0.808 0.127 „1 0.188 0.152

—3 6.861 0.325 –22 5.753 0.045 „2 0.647 0.084

—4 -0.994 0.810 –13 0.020 0.099

—5 0.612 0.195 –23 0.110 0.114

–33 0.258 0.215

–14 -0.714 0.11

–24 4.625 0.069

–34 0.598 0.121

–44 5.654 0.03

The values of ¸
max

, AIC and BIC for the four considered models are presented
in Table 2. Note that based on these criteria, the model presenting the best fit is the model
with a damped exponential correlation structure (DEC). Furthermore, the likelihood ratio
test (LRT) for the hypotheses H

0

: „
2

“ 1 and H
1

: „
2

‰ 1 is performed. The resulting LRT
statistic is 18.32 with p-value 0.00002, which is significant compared to ‰2

1,0.05

, suggesting
that the DEC structure is more appropriate than the AR(1) for modeling the dependence
among the within-subject errors. Figure 5 shows some individual profiles (in log10 scale)
for HIV viral load at di�erent follow-up times and the smoothed means of residuals from
model fits.

ML estimates corresponding to the best model are presented in Table 3. Using
these estimates, one can quantify the population decay rates and viral load parameters.
The first- and second-phase decay rates can be approximated as pÏ

2

“ 31.549 and pÏ
4

ptq “
´0.994 ` 0.612 CD4. The population viral load process can be represented as pV ptq “
expt11.552 ´ pÏ

2

ptqtu ` expt6.861 ´ pÏ
4

ptqtu. The SE values of the parameter estimates
are obtained using the empirical information matrix (Section 2.3.1). Finally, using a
bootstrap procedure, one can conclude that all the fixed e�ects considered in the model
are statistically significant at – “ 0.05.

2.6.2 AIEDRP data
The second case study is taken from the AIEDRP program, a large multicenter

observational study of subjects with acute and early HIV infection, consisting of 320
untreated individuals with acute HIV infection. Of the 830 recorded observations, 185
(22%) were above the limit of assay quantification. Therefore, in the spirit of Vaida and
Liu (2009), we consider a right-censored five-parameter NLME model (inverted S-shaped
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Figure 5 – ACT315 data. (Left panel) Individual profiles (in log10 scale) for HIV viral load at
di�erent follow-up times for some subjects. The dashed lines are the respective fitted
profile. (Right panel) Smoothed means of residuals from model fits. The residuals
from the model with autoregressive of order 1 correlation appear as points.

curve) as follows

y
ij

“ ⁄
1i

` ⁄
2

1 ` expppt
ij

´ ⁄
3

q{⁄
4

q ` ⁄
5i

pt
ij

´ 50q ` ‘
ij

, (2.20)

where y
ij

is the log
10

of the viral load for subject i at time t
ij

. The parameters ⁄
1i

and
⁄

2

represent the subject-specific set-point values and decrease from the maximum HIV-1
RNA. The location parameter ⁄

3

indicates the time point at which half of the change
in HIV-1 RNA is attained, ⁄

4

is a scale parameter modeling the rate of decline and ⁄
5i

allows increasing the HIV-1 RNA trajectory after day 50. The reparameterization given by
—

1i

“ logp⁄
1i

q “ —
1

` b
1i

; —
k

“ logp⁄
k

q, k “ 2, 3, 4, and ⁄
5i

“ —
5

` b
2i

is adopted to assure
positive values for the model parameters.

Table 4 – AIEDRP data. Model selection criterion for the NLMEC model under di�erent
correlation structures.

LMEC
Criterion UNC DEC AR(1) CS

¸
max

-783.79 -769.81 -770.10 -775.62
AIC 1585.59 1561.63 1560.19 1571.25
BIC 1628.08 1613.56 1607.41 1618.46

As in Section 2.6.1, the correlation structures UNC, DEC, AR(1) and CS
are considered. Table 4 summarizes the values of ¸

max

, AIC and BIC for all considered
models. Note that the values of ¸

max

for the DEC and AR(1) models are close. This is
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explained because the estimated values of „
1

and „
2

under the DEC model are 0.83 and
1.15 respectively. Based on this observation and the criteria, the best (most parsimonious)
fit is obtained using the continuous-time autoregressive of order 1 correlation (AR(1)). The
likelihood ratio tests (LRT) of hypothesis H

0

: „
2

“ 1 and H
1

: „
2

‰ 1 are also performed.
The resulting LRT statistic is 0.58 with p-value 0.446, which is not significant compared
to ‰2

1,0.05

, suggesting that the AR(1) structure is more appropriate than the DEC for
modeling the dependence among the within-subject errors. Moreover, the model fit of the
AR(1) (and DEC) model is slightly better than the CS model, with the smoothed mean
residual curve in Figure 6 (right panel) always being closer to zero.

Table 5 – AIEDRP data. ML estimates with standard errors for the NLMEC model
under AR(1) structure.

Fixed e�ects Between-subject variances Within-subject variances

Parameter Estimate SE Parameter Estimate SE Parameter Estimate SE

—1 1.614 0.011 –11 0.01658 0.00307 ‡2
0.308 0.024

—2 0.128 0.003 –12 0.00020 0.00016 „1 0.808 0.033

—3 3.516 0.025 –22 0.00003 0.00001

—4 1.118 0.001

—5 -0.004 0.001

The ML estimates in this model are presented in Table 5. As in the previous
case, the SE values for the parameter estimates are obtained using the empirical information
matrix. One can use the AR(1) model with reasonable confidence for predictions of viral
load. For example, at 6 months since infection, the average viral load is 4.537 log

10

units.
The individual 6-month viral load estimates vary between 1.794 and 6.469, with 5th and
95th quantiles at 3.466 and 5.549. The average slope after day 50 is negative, —

5i

“ ´0.004
log

10

HIV/day, with 95% CI(-0.006,-0.002). And, for the individual slopes –
5i

the 5th and
95th quantiles are -0.0061 and -0.0015. We performed a bootstrap procedure for hypothesis
testing of the significance of the fixed e�ects (– “ 0.05), concluding that all of them are
statistically significant (di�erent from zero).

2.7 Simulation Studies
In order to examine the performance of the proposed method, here we report

three simulation studies to investigate (a) the consequences for parameter estimation,
(b) the behavior of the prediction when the correlation structure of the error term is
misspecified, and (c) the asymptotic behavior of the parameter estimates. For this purpose
and simplicity’s sake, we consider a logistic model similar to that studied in Section 2.6.2,
with random set-points ⁄

1i

and random decline rates ⁄
4i

, as follows

y
ij

“ ⁄
1i

` ⁄
2

1 ` expppt
ij

´ ⁄
3

q{⁄
4i

q ` ‘
ij

, (2.21)
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Figure 6 – AIEDRP data. (Left panel) Individual profiles (in log10 scale) for HIV viral load
at di�erent follow-up times with the model fits. (Right panel) Smoothed means of
residuals from model fits. The residuals from the model with autoregressive of order
1 correlation appear as points.
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The parameters are set at — “ p1.6094, 0.6931, 3.8067, 2.3026qJ, ‡2 “ 0.55, and

D with elements –
11

“ 0.05 and –
22

“ 0.1.

For the first study, we simulated several datasets considering di�erent values
of the parameter „

1

under the correlation structure AR(1), with the aim to discover the
e�ect of the correlation level on the estimation. For each value of „

1

, we simulated 100
datasets. In addition, we considered 5% and 20% of censored observations for each value
of „

1

. Once the simulated datasets were generated, we fitted the proposed model assuming
the uncorrelated (UNC) and AR(1) structures. The model selection criteria (AIC and
BIC) as well as the estimates of the model parameters were stored for each simulation.
Summary statistics such as the mean estimate (MC mean), the mean of the approximate
standard error obtained through the information-based method described in Section 2.3.1
(IM SE), the empirical standard error (MC Sd) and the coverage probability at 95% (MC
CP) are presented in Tables 6 and 7.

From the results shown in these tables, it can be observed when the AR(1) is
chosen as the true model. Moreover, in general, the MC CP values are higher than those
obtained under the uncorrelated model, even when the correlation parameter „

1

is small
(0.3). It is important to remark that for some values of the correlation parameter, the MC
CP values for —

1

, —
2

and —
4

obtained under the uncorrelated structure are a bit higher than
those obtained in the AR(1) case. This situation occurs in general when the correlation
parameter takes high values (0.7, 0.8 and 0.9). Note that although the MC CP remains
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Table 6 – Simulation study (5% censored). Summary statistics based on 100 simulated
AR(1) samples.

Parameter estimates Criterion

„1 Corr. Structure —1 —2 —3 —4 ‡2
MC AIC MC BIC

0.3

UNC MC Mean 1.67 0.53 3.73 2.11 0.55 3020 3056

IM SE 0.04 0.11 0.05 0.20

MC Sd 0.02 0.07 0.03 0.15

MC CP 79% 78% 66% 89%

AR(1) MC Mean 1.61 0.71 3.83 2.27 0.55 3024 3065

IM SE 0.12 0.22 0.10 0.26

MC Sd 0.10 0.22 0.10 0.27

MC CP 84% 88% 94% 91%

0.5

UNC MC Mean 1.66 0.54 3.74 2.12 0.55 3015 3050

IM SE 0.04 0.11 0.05 0.20

MC Sd 0.02 0.07 0.03 0.16

MC CP 82% 80% 67% 91%

AR(1) MC Mean 1.60 0.71 3.83 2.27 0.55 3018 3058

IM SE 0.12 0.23 0.10 0.26

MC Sd 0.11 0.23 0.10 0.27

MC CP 84% 88% 93% 91%

0.6

UNC MC Mean 1.66 0.56 3.74 2.16 0.54 3004 3039

IM SE 0.04 0.11 0.05 0.20

MC Sd 0.02 0.08 0.03 0.17

MC CP 82% 86% 69% 92%

AR(1) MC Mean 1.60 0.71 3.83 2.27 0.55 3003 3044

IM SE 0.13 0.23 0.10 0.26

MC Sd 0.12 0.23 0.10 0.28

MC CP 84% 88% 93% 91%

0.7

UNC MC Mean 1.65 0.62 3.73 2.27 0.52 2978 30134

IM SE 0.04 0.11 0.05 0.19

MC Sd 0.02 0.09 0.03 0.18

MC CP 90% 91% 68% 94%

AR(1) MC Mean 1.59 0.72 3.84 2.27 0.55 2962 3002

IM SE 0.20 0.25 0.11 0.28

MC Sd 0.17 0.25 0.11 0.29

MC CP 84% 88% 91% 92%

0.8

UNC MC Mean 1.62 0.75 3.74 2.51 0.47 2912 2948

IM SE 0.04 0.10 0.04 0.17

MC Sd 0.03 0.08 0.05 0.17

MC CP 99% 96% 50% 76%

AR(1) MC Mean 1.60 0.72 3.84 2.27 0.55 2840 2881

IM SE 0.17 0.25 0.11 0.29

MC Sd 0.14 0.25 0.11 0.30

MC CP 84% 88% 93% 91%

0.9

UNC MC Mean 1.60 0.90 3.73 2.77 0.36 2673 2708

IM SE 0.03 0.07 0.03 0.14

MC Sd 0.04 0.09 0.06 0.16

MC CP 95% 17% 13% 12%

AR(1) MC Mean 1.61 0.70 3.83 2.26 0.53 2453 2493

IM SE 0.12 0.21 0.09 0.26

MC Sd 0.11 0.22 0.10 0.28

MC CP 83% 88% 94% 91%
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Table 7 – Simulation study (20% censored). Summary statistics based on 100 simulated
AR(1) samples.

Parameter estimates Criterion

„1 Corr. Structure —1 —2 —3 —4 ‡2
MC AIC MC BIC

0.3

UNC MC Mean 1.67 0.50 3.72 2.08 0.55 2796 2832

IM SE 0.04 0.12 0.05 0.21

MC Sd 0.02 0.07 0.03 0.16

MC CP 68% 69% 63% 87%

AR(1) MC Mean 1.59 0.72 3.84 2.28 0.55 2800 2841

IM SE 0.23 0.26 0.11 0.27

MC Sd 0.19 0.26 0.12 0.28

MC CP 87% 90% 92% 91%

0.5

UNC MC Mean 1.67 0.51 3.72 2.09 0.54 2791 2827

IM SE 0.04 0.12 0.05 0.21

MC Sd 0.02 0.07 0.03 0.16

MC CP 76% 73% 63% 87%

AR(1) MC Mean 1.60 0.71 3.83 2.27 0.55 2794 2835

IM SE 0.17 0.25 0.11 0.27

MC Sd 0.15 0.25 0.11 0.27

MC CP 87% 90% 92% 91%

0.6

UNC MC Mean 1.67 0.52 3.72 2.12 0.54 2781 2816

IM SE 0.04 0.12 0.05 0.21

MC Sd 0.02 0.08 0.03 0.18

MC CP 78% 77% 64% 88%

AR(1) MC Mean 1.60 0.71 3.83 2.27 0.55 2780 2821

IM SE 0.19 0.26 0.11 0.28

MC Sd 0.16 0.25 0.11 0.28

MC CP 87% 90% 91% 92%

0.7

UNC MC Mean 1.66 0.58 3.72 2.22 0.52 2757 2792

IM SE 0.04 0.12 0.05 0.20

MC Sd 0.02 0.09 0.04 0.20

MC CP 85% 87% 67% 92%

AR(1) MC Mean 1.59 0.72 3.83 2.27 0.55 2742 2783

IM SE 0.20 0.27 0.12 0.29

MC Sd 0.17 0.26 0.11 0.28

MC CP 86% 90% 91% 94%

0.8

UNC MC Mean 1.63 0.71 3.72 2.48 0.48 2703 2739

IM SE 0.04 0.11 0.04 0.18

MC Sd 0.03 0.09 0.06 0.21

MC CP 96% 99% 45% 80%

AR(1) MC Mean 1.62 0.68 3.82 2.24 0.55 2637 2677

IM SE 0.11 0.23 0.10 0.29

MC Sd 0.10 0.21 0.09 0.27

MC CP 86% 89% 93% 94%

0.9

UN MC Mean 1.61 0.85 3.72 2.73 0.36 2484 2520

IM SE 0.03 0.07 0.03 0.16

MC Sd 0.03 0.10 0.07 0.16

MC CP 98% 43% 24% 26%

AR(1) MC Mean 1.62 0.67 3.81 2.21 0.53 2290 2331

IM SE 0.09 0.20 0.09 0.26

MC Sd 0.08 0.20 0.09 0.25

MC CP 86% 89% 95% 94%
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constant for the AR(1) case, in the UNC case the MC CP presents a lot of variation, going
from 12% (fl “ 0.9, 5% censoring) to 99% (fl “ 0.8, 5% and 20% censoring). One possible
explanation for such phenomenon is the e�ect of the bias in the estimation, particularly
in the parameters —

1

and —
2

for high values of the correlation parameter. The biases of
fixed e�ects estimates under the AR(1) structure are lower than those obtained under
the uncorrelated structure (see Figures 7 and 8) for di�erent values of the „

1

parameter.
The model selection criterion chose the true model (AR(1)) for moderate values of the „

1

parameter (greater than 0.5) for the two levels of censoring considered.
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Figure 7 – Simulation study (5% censored). Bias of — estimates under the uncorrelated
and AR(1) models for 6 di�erent values of „

1

.

The second simulation study analyzes the performance of the prediction of
future values described in Section 2.4. For this purpose, we compared the prediction of
the NLMEC model in (2.21) under the UNC and AR(1) structures. As in the first study,
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Figure 8 – Simulation study (20% censored). Bias of — estimates under the uncorrelated
and AR(1) models for 6 di�erent values of „

1

.

we generated 100 datasets of size n “ 100 under the AR(1) structure with parameter
„

1

“ 0.9, considering two di�erent settings of censoring proportions, 5% and 20%. For
the prediction, we excluded the last two measurements of each simulated individual in
the datasets. To compare the performance of the prediction, we considered two empirical
discrepancy measures, namely the MAE (mean absolute error) and MSE (mean square
error). These measures are given by

MAE “ 1
200

ÿ

i,j

|y
ij

´ y‹
ij

| and MSE “ 1
200

ÿ

i,j

py
ij

´ y‹
ij

q2, (2.22)

where y
ij

is the original value and y‹
ij

is the predicted value, for i “ 1, . . . , 100 and
j “ 1, . . . , 2. Table 8 shows the comparison between the predicted values and real ones
under the NLMEC model considering the UNC and AR(1) structures. One can see from
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these results that the model with AR(1) structure generates predictive values close to the
real ones.

Table 8 – Simulation study. Evaluation of the prediction accuracy for the NLMEC model
with di�erent correlation structures.

5% censored 20% censored
Corr. Structure MAE MSE MAE MSE

UNC 0.5507 0.4739 0.6418 0.6746
AR(1) 0.5169 0.4299 0.6073 0.6165

Finally, we analyzed the absolute bias (Bias) and mean square error (MSE) of
the fixed e�ects and variance components estimates obtained from the DEC-LMEC model
with di�erent sample sizes. The idea of this simulation is to provide empirical evidence
about the consistency of the ML estimates. The bias and MSE measures are defined as

Bias “ 1
J

J

ÿ

j“1

|p◊pjq
i

´ ◊
i

| and MSE “ 1
J

J

ÿ

j“1

´

p◊
pjq
i

´ ◊
i

¯

2

, (2.23)

where p◊
pjq
i

is the ML estimate of the parameter ◊
i

for the j-th sample, j “ 1, . . . , J .
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Figure 9 – Simulation study (10% censored). Bias and MSE of — estimates under the
AR(1) model for di�erent sample sizes

The censoring proportion was fixed at 10% and di�erent sample sizes were
considered, namely n “ 50, 100, 200, 400 and 600. Also, we considered J “ 100, i.e., we
simulated 100 samples of size n. For this simulation, an AR (1) structure with parameter
„

1

“ 0.8 was considered.

Figures 9 and 10 show that the MSE of the parameter estimates of —, ‡2 and
– tends to zero as the sample size increases. Note that similar results are obtained after
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the analysis of the absolute bias. In conclusion, the results provide empirical evidence
about the consistency of the ML estimates of the DEC-LMEC model, even considering
the linearization procedure described in (2.15).
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Figure 10 – Simulation study (10% censored). Bias and MSE of ‡

2 and – estimates under
the AR(1) model for di�erent sample sizes

2.8 Conclusions
This chapter proposes a mixed-e�ects model with censored observations based

on the multivariate normal distribution. We adopted a DEC structure as proposed by Muñoz
et al. (1992) to model the autocorrelation existing among irregularly observed measures.
This structure is flexible, since the parameter „

1

describes the autocorrelation between
observations separated by the absolute length of two time points, and the parameter „

2

permits acceleration of the exponential decay of the autocorrelation function, defining a
continuous-time autoregressive model. An ECM algorithm to obtain the ML estimates
was developed by using the statistical properties of the multivariate truncated normal
distribution. The proposed algorithm has a closed-form expression for the E-step, based
on the first two moments of the truncated normal distribution. In this context, the DEC
structure can be easily implemented using the exact EM algorithm, making the proposed
approach easy to implement by practitioners. The R codes are available upon request. The
proposed methods were applied on two AIDS case studies and a simulation study was
performed, showing the e�ects of misspecification on the correlation structure over the
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fixed e�ects estimates. The DEC structure provided better results than the uncorrelated
structure in terms of parameter estimation and prediction.

Although the LMEC/NLMEC models showed great flexibility to model sym-
metric data, they can be seriously a�ected by the presence of outliers. Recently, Garay et al.
(2014) proposed a remedy to accommodate outliers using a Student-t regression model
with DEC structure. Our methods can be extended by considering the Student-t in the
context of LMEC/NLMEC models as in Matos et al. (2015), providing satisfactory results
at the expense of additional complexity in implementation. Further, it is also of interest
to develop an e�ective Markov chain Monte Carlo algorithm for the DEC-LMEC/NLMEC
in a fully Bayesian treatment.
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3 Influence assessment in censored mixed-
e�ects models using the multivariate
Student’s-t distribution

3.1 Introduction
In AIDS research, the study of the human immunodeficiency virus (HIV)

dynamics has received significant attention in the biomedical literature allowing us to
understand the pathogenesis of HIV, and assess the e�ectiveness of the anti-retroviral
(ARV) therapy. Most of the clinical trials on ARV therapy assess the rates/changes of viral
loads/HIV-1 RNA copies (the amount of actively replicating virus) collected longitudinally
over time. The viral load is considered a key primary endpoint because its monitoring is
mostly available, a failure in the treatment can be defined virologically, and a new regimen
of therapy is recommended as soon as virological rebound occurs (Ndembi et al., 2010).
Since the individual viral load trajectories yield large between-subject variations, statistical
modeling often focus in formulating the correct linear and nonlinear mixed-e�ects models
(LME/NLME) to estimate these trajectories, and quantify within- and between-subject
variations (Wu, 2005; Wu et al., 2010; Qiu and Wu, 2010).

The statistical modelling of viral load can be challenging. First, depending
on the diagnostic assays used, the viral load measures may be subjected to upper or
lower detection limits (hence, left or right censored), below and above which they are
not quantifiable (Wu, 2002). Under non-trivial censoring proportions, considering ad-hoc
alternatives (Huang and Dagne, 2011) might lead to bias in fixed e�ects and variance
components estimates. As alternatives to these crude imputation techniques, Vaida and Liu
(2009) proposed expectation-maximization (EM) schemes for LME/NLME with censored
responses (henceforth LMEC/NLMEC). However, all these methods assume normality of
the between-subject random e�ects and within-subject errors. Even though normality is
mostly a reasonable model assumption, it may lack robustness in parameter estimation
under departures from normality, namely, presence of heavy tails and outliers (Pinheiro
et al., 2001). Censored HIV viral loads do exhibit heavy-tailed behaviour (Lachos et al.,
2011). This is also revealed from the raw histogram and QQ plots of viral loads from our
motivating example (see Figure 11, panels a and b in Section 3.5.1). Although popular
data transformations (say, Box-Cox) might render normality, or close to normality with
reasonable empirical results, various issues still persist with these transformations (Lachos
et al., 2011). Hence, an appropriate theoretical but ‘robust’ framework that avoids data
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transformation is desirable. A variety of proposals (both classical and Bayesian) exist in
this direction that uses the univariate or multivariate Student’s-t distribution (Pinheiro
et al., 2001; Lin and Lee, 2006, 2007) in the context of LME/NLME models. Some Bayesian
propositions in the context of heavy-tailed LMEC/NLMEC models include Lachos et al.
(2011) who advocated the use of the normal/independent density (Lange and Sinsheimer,
1993), while Bandyopadhyay et al. (2012, 2015) studied the LMEC model considering both
skewness and heavy-tails. Very recently, Matos et al. (2013b) proposed a full maximum-
likelihood (ML) based inference using a computationally convenient exact ECM algorithm
for the LMEC/NLMEC models using the multivariate Student’s-t distribution (henceforth,
the t-LMEC/NLMEC model). Here, the E-step yields closed-form expressions, and all
parameters are updated in the M-step by considering the random components and the
censored observations as missing data.

A vast majority of model development in the literature for LMEC/NLMEC
models focus on estimating the mean function. Hence, developing influence diagnostics
is a key in assessing the e�ect of a single observation on the predicted scores for other
observations, and consequently the overall parameter estimates, all based on the mean
function. Although diagnostics for the traditional normality based LME and LMEC
(Matos et al., 2013a) models exist, those for heavy-tailed LMEC/NLMEC models are not
well developed. Influence analysis is generally conducted using two primary approaches.
The first one is the case-deletion approach (Cook, 1977) based on the well-known Cook’s
distance. Under normality assumptions for LME, Banerjee and Frees (1997), Hodges (1998),
Tan et al. (2001) focused on case-deletion diagnostics for fixed e�ects, while Christensen
et al. (1992) considered a one-step approximation to Cook’s distance for the variance
components. The other approach is the computationally attractive local influence approach
(Cook, 1986), which is a general technique used to assess the stability of the estimation
outputs with respect to the model inputs. For elliptical mixed-e�ects models, this method
had been discussed in the literature by Beckman et al. (1987); Lesa�re and Verbeke (1998);
Zhu and Lee (2001); Lee and Xu (2004); Osorio et al. (2007); Russo et al. (2009), among
others.

Developing influence diagnostics for LMEC/NLMEC models in the spirit of
Cook (1977, 1986) leads to the underlying observed log-likelihood functions involving
intractable integrals. This renders the direct application of Cook’s approach to be very
di�cult if not impossible, since the measures involve first and second derivatives of these
functions. In this context, Zhu and Lee (2001) and Zhu et al. (2001) developed an unified
approach for performing local influence and case-deletion diagnostics, respectively, for
general missing data models based on the Q-function, i.e., the conditional expectation of
the complete-data log likelihood at the E-step in the EM algorithm. This was extended
to generalized linear and NLME models by Lee and Xu (2004) and Xu et al. (2006),
respectively. This Q-function approach produces result similar to those obtained using
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the Cook’s approach. Recently, Matos et al. (2013a) used this Q-function approach
for developing influence diagnostics for LMEC/NLMEC models. Stemming from the
same di�culty with intractable integrals (for example, the pdfs of truncated multivariate
Student’s-t distributions) in implementing the Cook’s diagnostics for the t-LMEC/NLMEC
model of Matos et al. (2013b), we develop case-deletion and influence diagnostics measures
using the approach of Zhu et al. (2001) (see also Lee and Xu, 2004).

The rest of this chapter is organised as follows. Section 3.2 develops the t-LMEC
model specification and an EM-type algorithm for ML estimation. Section 3.3 presents the
global and local influence approaches for the t-LMEC model. For local influence, various
perturbation schemes for both subject- and observation-level diagnostics are considered.
In Section 3.4, the t-NLMEC model is defined. The methodology is illustrated in Section
3.5 using a motivating HIV dataset. Section 3.6 presents a simulation study evaluating the
e�ciency of our method in detecting outliers under various degrees of data perturbation
and censoring. Finally, Section 3.7 presents some concluding remarks, with some possible
directions for future research.

3.2 Censored linear mixed-e�ect model
Ignoring censoring for the moment, the t-LME model of Matos et al. (2013b)

is specified as:
y

i

“ X
i

— ` Z
i

b
i

` ‘
i

, (3.1)
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which implies that, marginally,

b
i

iid„ t
q

p0, D, ‹q and ‘
i

ind.„ t
n

i

p0, ‡2I
n

i

, ‹q, i “ 1, . . . , n, (3.2)

where t
p

pµ, �, ‹q denotes the pdf of a multivariate Student’s-t distribution with location
vector µ, scale matrix � and degrees of freedom ‹. The subscript i refers to the subject
index; I

p

denotes the p ˆ p identity matrix; y
i

“ py
i1

, . . . , y
in

i

qJ is a vector of observed
continuous responses for subject i of dimension n

i

ˆ 1; X
i

is the n
i

ˆ p design matrix
associated with the pˆ1 vector of fixed-e�ects —; Z

i

is the n
i

ˆq design matrix corresponding
to the q ˆ 1 vector of random e�ects b

i

; ‘
i

is the pn
i

ˆ 1q vector of random errors and the
random e�ects dispersion matrix D “ Dp–q depends on unknown parameters –. Following
Matos et al. (2013b), we consider the case where the response Y

ij

is not fully observed for
all i, j. Consequently, the observed data for the i-th subject is pV

i

, C
i

q, where V
i

is the
vector of censoring level and C

i

is the vector of censoring indicators such that

y
ij

§ V
ij

if C
ij

“ 1,

y
ij

“ V
ij

if C
ij

“ 0. (3.3)
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For simplicity, we assume that the data are left censored. Extensions to other arbitrary
censoring patterns are immediate.

3.2.1 The likelihood function
Classical inference on the parameter vector ◊ “ p—J, ‡2, –J, ‹qJ is based

on the marginal distribution of y
i

, y
i

„ t
n

i

pX
i

—, �
i

, ‹q, for i “ 1, . . . , n, where �
i

“
‡2I

n

i

` Z
i

DZJ
i

. For computing the likelihood function associated with model (3.1)–(3.3),
the first step is to treat separately the observed and censored components of y

i

. Let yo

i

be the no

i

-vector of observed outcomes and yc

i

be the nc

i

-vector of censored observations
for subject i with pn

i

“ no

i

` nc

i

q such that C
ij

“ 0 for all elements in yo

i

, and 1 for all
elements in yc

i

. After reordering, y
i

, V
i

, X
i

, and �
i

can be partitioned as: y
i

“ vecpyo

i

, yc

i

q,
V

i

“ vecpVo

i

, Vc

i

q, XJ
i

“ pXo

i

, Xc

i

q and �
i

“
ˆ

�oo

i

�oc

i

�co

i

�cc

i

˙

, where vecp¨q denotes the function
which stacks vectors or matrices of the same number of columns. Using properties of
multivariate Student’s-t distribution (see Arellano-Valle and Bolfarine, 1995), we have
yo

i

„ t
n

o

i

pXo

i

—, �oo

i

, ‹q, and yc

i

|yo

i

, „ t
n

c

i

pµco

i

, Sco

i

, ‹ ` no

i

q, where

µco

i

“ Xc

i

— ` �co

i

�oo´1

i

pyo

i

´ Xo

i

—q, Sco

i

“
ˆ

‹ ` Qpyo

i

q
‹ ` no

i

˙

�cc.o

i

, (3.4)

with �cc.o

i

“ �cc

i

´ �co

i

�oo´1

i

�oc

i

and Qpyo

i

q “ pyo

i

´ Xo

i

—qJ�oo´1

i

pyo

i

´ Xo

i

—q. Therefore,
the likelihood for subject i is

L
i

p◊|yq “ fpV
i

|C
i

, ◊q “ fpyc

i

§ Vc

i

|yo

i

“ Vo

i

, ◊qfpyo

i

“ Vo

i

|◊q,
“ T

n

c

i

pVc

i

|µco

i

, Sco

i

, ‹ ` no

i

qt
n

o

i

pVo

i

|Xo

i

—, �oo

i

, ‹q “ L
i

,

where T
p

p¨|µ, �, ‹q denotes the cumulative distribution function (cdf ) of the multivariate
Student’s-t distribution with parameters µ, � and ‹. The log-likelihood function for the

observed data is given by ¸p◊|yq “
n

ÿ

i“1

log L
i

, and the estimates obtained by maximizing

the log-likelihood function ¸p◊|yq are the maximum likelihood estimates (MLEs). As in
Matos et al. (2013b), we assume the degrees of freedom and the shape parameters for
Student-t to be fixed, and we use a model selection procedure based on AIC or BIC to
choose the most appropriate value of ‹. Then, we consider that the parameter vector is
◊ “ p—J, ‡2, –JqJ.

3.2.2 The EM algorithm
The observed log-likelihood function involves complex expressions, making it

very di�cult to work directly with ¸p◊|yq, either for the ML estimation, or the corresponding
influence analysis. As mentioned above, Matos et al. (2013b) developed an EM-type algo-
rithm for the t-LMEC/NLMEC models by treating y “ pyJ

1

, . . . , yJ
n

qJ, b “ pbJ
1

, . . . , bJ
n

qJ,
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and u “ pu
1

, . . . , u
n

qJ as hypothetical missing data, and augmenting those to the observed
data vector pV, Cq, where V “ vecpV

1

, . . . , V
n

q, and C “ vecpC
1

, . . . , C
n

q. Thus, the
resulting complete data is y

c

“ pCJ, VJ, yJ, bJ, uJqJ, and the EM-type algorithm is

applied to the complete data log-likelihood function ¸
c

p◊|y
c

q “
n

ÿ

i“1

¸
i

p◊|y
c

q, where

¸
i

p◊|y
c

q “ ´1
2

”

n
i

log ‡2 ` u
i

‡2

py
i

´ X
i

— ´ Z
i

b
i

qJpy
i

´ X
i

— ´ Z
i

b
i

q
` log |D| ` u

i

bJ
i

D´1b
i

‰

` hpu
i

|‹q ` C,

where C is a constant that does not depend on the vector parameter ◊ and hpu
i

|‹q is the
pdf of a Gammap‹{2, ‹{2q distribution. Given a current value p◊

pkq
of ◊, the Q function

(the conditional expectation of the complete data log-likelihood function) is given by

Qp◊|p◊pkqq “
n

ÿ

i“1

Q
i

p◊|p◊pkqq “
n

ÿ

i“1

Q
1i

p—, ‡2|p◊pkqq `
n

ÿ

i“1

Q
2i

p–|p◊pkqq, (3.5)

where

Q
1i

p—, ‡2|p◊pkqq “ ´n
i

2 log ‡2 ´ 1
2‡2

„

pa
pkq
i

´ 2p—
pkqJ

XJ
i

pxuypkq
i

´ Z
i

xub
pkq
i

q

` pu
pkq
i

p—
pkqJ

XJ
i

X
i

p—
pkqı

and

Q
2i

p–|p◊pkqq “ ´1
2 log |D| ´ 1

2tr
ˆ

yub2

i

pkq
D´1

˙

.

Here, pa
pkq
i

“ tr
´

yuy2

i

pkq
´ 2zuyb

i

pkq
ZJ

i

` yub2

i

pkq
ZJ

i

Z
i

¯

; yub2

i

pkq
“ Etu

i

b
i

bJ
i

|V
i

, C
i

, p◊
pkqu “

p‡2

pkq
p�

pkq
i

` pÏpkq
i

pyuy2

i

pkq
´ xuypkq

i

p—
pkqJ

XJ
i

´ X
i

p—
pkq

xuypkqJ
i

` pu
pkq
i

X
i

p—
pkq

p—
pkqJ

XJ
i

qpÏJ
i

; xub
pkq
i

“
Etu

i

b
i

|V
i

, C
i

, p◊
pkqu “ pÏpkq

i

pxuypkq
i

´ pu
pkq
i

X
i

p—
pkqq; zuyb

i

pkq “ Etu
i

y
i

bJ
i

|V
i

, C
i

, p◊
pkqu “

pyuy2

i

pkq
´ xuypkq

i

p—
pkqJ

XJ
i

qpÏJ
i

, with p�
pkq
i

“ p p‡2

pkq
pD´1pkq ` ZJ

i

Z
i

q´1 and pÏpkq
i

“ p�
pkq
i

ZJ
i

.

It is easy to observe that the E-step reduces to the computation of yuy2

i

“
Etu

i

y
i

yJ
i

|V
i

, C
i

, p◊u, xuy
i

“ Etu
i

y
i

|V
i

, C
i

, p◊u, and pu
i

“ Etu
i

|V
i

, C
i

, p◊u. These expected
values are available in closed form using Propositions available in Matos et al. (2013b).

Next, the conditional maximization step (CM-step) maximizes Qp◊|p◊pkqq con-
ditionally with respect to ◊ to obtain new estimates p◊

pk`1q
as follows:

p—
pk`1q “

˜

n

ÿ

i“1

pu
pkq
i

XJ
i

X
i

¸´1

n

ÿ

i“1

XJ
i

ˆ

xuypkq
i

´ Z
i

xub
pkq
i

˙

, (3.6)

p‡2

pk`1q “ 1
N

n

ÿ

i“1

„

pa
pkq
i

´ 2p—
pkqJ

XJ
i

pxuypkq
i

´ Z
i

xub
pkq
i

q ` pu
pkq
i

p—
pkqJ

XJ
i

X
i

p—
pkq
⇢

, (3.7)

pDpk`1q “ 1
n

n

ÿ

i“1

yub2

i

pkq
, (3.8)

where N “
n

ÿ

i“1

n
i

, and the scale matrix D is unstructured with – the upper triangular

elements of D. The algorithm is iterated until the distance involving two successive
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evaluations of the log-likelihood |¸pp◊
pk`1qq{¸pp◊

pkqq ´ 1| is su�ciently small. Here, we do
not focus on the ML estimation, and the interested might refer to Matos et al. (2013b) for
further details. In the following section, we derive influence diagnostic measures, given the
ML estimate p◊.

3.3 Influence analysis
Influence diagnostics are routinely used in statistical modelling to identify

aberrant observations and assess their impact on model fitting and parameter estimation.
Recognising the di�culties following the Cook (1977, 1986)’s approach (described in
Section 1), we use the Q-function of Zhu et al. (2001) to develop case-deletion measures,
leading to the influence measures for the t-LMEC model.

3.3.1 Global influence
The case-deletion approach is a commonly used scheme to study the e�ects of

deleting the ith case/observation from the data set. Henceforth, the subscript ‘ris’ will
denote the original data set with the ith case deleted. Consequently, the log-likelihood
function corresponding to the remaining data is denoted by ¸p◊|Y

crisq. In order to assess the
influence of the ith case on the ML estimate p◊, we need to compare the di�erence between
p◊ris and p◊, where p◊ris “ pp—

J
ris, p‡2ris, p–J

risqJ is the maximizer of the function Qrisp◊|p◊q “
Et¸p◊|Y

crisq|V, C, p◊u, with p◊ being the ML estimate of ◊. An observation is regarded as
influential if its deletion generates considerable influence on model estimates. In other words,
if p◊ris is fairly far from p◊, then the ith observation could considered as influential. Note
that, since the estimator p◊ris is needed for every case, this scheme requires a considerable
computational e�ort, particularly for large sample sizes. For that reason, a one-step
approximation (see Cook and Weisberg, 1982; Zhu et al., 2001) is used to reduce the
burden. This approximation follows:

p◊
1

ris “ p◊ ` t´ :Qpp◊|p◊qu´1 9Qrispp◊|p◊q, (3.9)

where 9Qrispp◊|p◊q “ BQrisp◊|p◊q
B◊

ˇ

ˇ

◊“ p◊
, and :Qpp◊|p◊q “ B2Qp◊|p◊q

B◊B◊J
ˇ

ˇ

◊“ p◊
represents the Hessian

matrix, i “ 1, . . . , n, with its elements given by

9Qris—pp◊|p◊q “ BQrispp◊|p◊q{B— “ 1
p‡2

E
1ris, (3.10)

9Qris‡2pp◊|p◊q “ BQrispp◊|p◊q{B‡2 “ ´ 1
2 p‡2

E
2ris, (3.11)

9Qris–pp◊|p◊q “ BQrispp◊|p◊q{B–, (3.12)

where E
1ris “

ÿ

j‰i

XJ
j

pxuy
j

´ Z
j

xub
j

´ pu
j

X
j

p—q and E
2ris “

ÿ

j‰i

pn
j

´ A
j

p‡2

q, with A
j

“ trpyuy2

j

´

2zuyb
j

ZJ
j

` yub2

j

ZJ
j

Z
j

q ´ 2p—
J

XJ
j

pxuy
j

´ Z
j

xub
j

q ` pu
j

p—
J

XJ
j

X
j

p—. Finally, the elements of
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9Qris–pp◊|p◊q are of the form

9Qris–
r

pp◊|p◊q “ ´1
2

ÿ

j‰i

trrD´1 9Dprq ´ D´1 9DprqD´1

yub2

j

s, r “ 1, . . . , p˚, with p˚ “ dimp–q.

It is necessary to compute the Hessian matrix :Qp◊|p◊q “
n

ÿ

i“1

B2Q
i

p◊|p◊q{B◊B◊J

to develop case-deletion, local influence and any particular perturbation schemes, following
Zhu and Lee (2001). The Hessian matrix B2Q

i

p◊|p◊q{B◊B◊J has the following elements:

B2Q
i

p◊|p◊q
B—B—J “ ´ 1

‡2

XJ
i

pu
i

X
i

,
B2Q

i

p◊|p◊q
B—B‡2

“ ´ 1
‡4

XJ
i

pxuy
i

´ Z
i

xub
i

´ pu
i

X
i

—q,

B2Q
i

p◊|p◊q
B—B–

r

“ 0,
B2Q

i

p◊|p◊q
B‡2B‡2

“ 1
2‡4

rn
i

´ 2
‡2

A
i

s,

B2Q
i

p◊|p◊q
B‡2B–

r

“ 0,
B2Q

i

p◊|p◊q
B–

s

B–
r

“ 1
2trpApsrqq ´ 1

2trpBpsrqyub2

i

q,

where Apsrq “ D´1r 9DpsqD´1 9Dprq ´ :Dps, rqs and Bpsrq “ D´1r 9DpsqD´1 9Dprq `
9DprqD´1 9Dpsq ´ :Dps, rqsD´1, with 9Dprq “ BD{B–

r

, :Dps, rq “ B2D{B–
s

B–
r

, r, s “
1, . . . , p˚, p˚ “ dimp–q and i “ 1, . . . , n. After some rearrangement and evaluating
these derivatives at ◊ “ p◊, we obtain the Hessian matrix :Qpp◊|p◊q (see Appendix A.1) as
block-diagonal of the form :Qp◊|p◊q “ diagp :Q

—

pp◊|p◊q, :Q
‡

2pp◊|p◊q, :Q
–

pp◊|p◊qq (the normal case

given in Matos et al., 2013a), where :Q
—

pp◊|p◊q “ ´ 1
p‡2

n

ÿ

i“1

XJ
i

pu
i

X
i

, :Q
‡

2pp◊|p◊q “ b{2p p‡2q2 and

:Q–pp◊|p◊q “
n

ÿ

i“1

B2Q
i

pp◊|p◊q{B–
s

B–
r

, with X “ pXJ
1

, . . . , XJ
n

qJ and b “
n

ÿ

i“1

pn
i

´ 2A
i

{ p‡2q.

Using (3.9), the next result proposes the one-step pseudo approximation of p◊ris “
pp◊

J
ris, p‡2ris, p–J

risqJ, i “ 1, . . . , n. Its proof is straightforward and is therefore omitted.

Proposição 3.1. The one-step pseudo approximation for the parameter estimates of the

t-LMEC model with the ith case deleted is given by

p—
1

ris “ p— ` p
n

ÿ

i“1

XJ
i

pu
i

X
i

q´1E
1ris

p‡2

1

ris “ p‡2

ˆ

1 ` E
2ris
b

˙

p–1

ris “ p– ` t´ :Q–pp◊|p◊qu´1 9Qris–pp◊|p◊q

where E
1ris, E

2ris and

9Qris–pp◊|p◊q are as in (3.10), (3.11) and (3.12) respectively, b “
n

ÿ

i“1

pn
i

´ 2A
i

{ p‡2q and

:Q–pp◊|p◊q “
n

ÿ

i“1

B2Q
i

pp◊|p◊q{B–
s

B–
r

.

Note that Proposition 3.1 allows a straightforward influence assessment via the
case-deletion approach for the t-LMEC model. One needs to compute the ML estimate p◊
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for the complete data, the ML estimate p◊ris with the ith case deleted, and compare both
estimates using some metric such as the Cook’s or likelihood distance. If the di�erence
between them is fairly large, then the ith case is regarded as influential. The generalized
Cook distance (Zhu and Lee, 2001) is defined as

GD
i

p◊q “ pp◊ris ´ p◊qJt´ :Qpp◊|p◊qupp◊ris ´ p◊q, i “ 1, . . . , n, (3.13)

substituting (3.9) into (3.13), we have the approximation

GD1

i

p◊q “ 9Qrispp◊qJt´ :Qpp◊|p◊qu´1 9Qrispp◊q, i “ 1, . . . , n.

Since :Qpp◊|p◊q is a diagonal matrix, this approximation can be written as GD1

i

p◊q “
p

ÿ

k“1

GD1

i

p◊
k

q, where ◊ “ p◊
1

, . . . , ◊
p

qJ (for details see Xie et al., 2007). Consequently, for

our t-LMEC model we have

GD1

i

p◊q “ GD1

i

p—q ` GD1

i

p‡2q ` GD1

i

p–q. (3.14)

3.3.2 Local Influence
In this section, we consider local influence analysis (Cook, 1986) focusing on the

following perturbation schemes: the case-weight, scale matrix and response perturbation.
Here, we consider both subject-level and observation-level diagnostics. The subject-level
diagnostics identify if a subject is considered influential or not, and is carried out considering
a perturbation function for the ith subject. However, in modelling longitudinal data, we
have two level of responses, namely, the subject-level and observation level, and intuitively,
an influential subject may/may not contain influential observations (Pan et al., 2014).
Hence, exploring atypical observations at both levels are warranted. The observation-level
diagnostics consider a perturbation in the jth observation of the ith subject.

The theoretical developments in this section proceed in the framework of
Cook (1986) and Zhu and Lee (2001). Let Ê “ pÊ

1

, . . . , Ê
g

qJ be a perturbation vector
varying in an open region � Ä Rg and ¸

c

p◊, Ê|y
c

q, the complete-data log-likelihood with
respect to the perturbed model induced by Ê. We assume there exists Ê

0

P �, such
that ¸

c

p◊, Ê
0

|y
c

q “ ¸
c

p◊|y
c

q for all ◊. The Q-displacement function f
Q

pÊq is defined
as f

Q

pÊq “ 2
”

Q
´

p◊|p◊
¯

´ Q
´

p◊pÊq|p◊
¯ı

, where p◊pÊq is the maximum of the function
Qp◊, Ê|p◊q “ Er¸

c

p◊, Ê|y
c

q|V, C, p◊s. The local behavior of the Q-displacement function
can be analyzed by using the normal curvature C

f

Q

,d of –pÊq “ pÊJ, f
Q

pÊqqJ at Ê
0

in
the direction of some unit vector d. It follows that

C
f

Q

,d “ ´2dJ :QÊ
o

d and ´ :QÊ0 “ �J
Ê0

!

´ :Qpp◊|p◊q
)´1

�Ê0 ,
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where :Qpp◊|p◊q “ B2Qp◊|p◊q
B◊B◊J |

◊“ p◊
and �Ê “ B2Qp◊, Ê|p◊q

B◊BÊJ |
◊“ p◊pÊq. For our t-LMEC model,

we consider �Ê0 “ p�J
—

, �J
‡

2 , �J
–

qJ, where �
—

“ B2Qp◊, Ê|p◊q
B—BÊJ |Ê

o

, �
‡

2 “ B2Qp◊, Ê|p◊q
B‡2BÊJ |Ê

o

and �
–

“ p�J
–1

, . . . , �J
–p

˚qJ, with �
–r

“ B2Qp◊, Ê|p◊q
B–

r

BÊJ |Ê
o

, r “ 1, . . . , p˚.

3.3.2.1 Subject-level diagnostics

Case weight perturbation

We consider an arbitrary attribution of weights for the expected value of
the complete-data log-likelihood function (perturbed Q-function), which may capture
departures in general directions, by writing

Qp◊, Ê|p◊q “ Er¸
c

p◊, Ê|y
c

q|V, C, p◊s “
n

ÿ

i“1

Ê
i

Er¸
i

p◊|y
c

q|V, C, p◊s “
n

ÿ

i“1

Ê
i

Q
i

p◊|p◊q.

Here, Ê “ pÊ
1

, . . . , Ê
n

qJ is an n ˆ 1 vector and Ê
o

“ p1, . . . , 1qJ. Note that the local
influence analysis for this perturbation scheme is equivalent to the case-deletion approach
discussed in Section 3.3.1 (see Appendix A.2). Under this perturbation scheme, we have

�
—

“ 1
‡2

XJDp‘
1

, . . . , ‘
n

q, �
‡

2 “ ´ 1
2‡2

nJ ` 1
2‡4

mJ, �
–

r

“ rBQ
1

p◊|p◊q
B–

r

, . . . ,
BQ

n

p◊|p◊q
B–

r

s
for r “ 1, . . . , p˚, where n “ pn

1

, . . . , n
n

qJ, m “ pA
1

, . . . , A
n

qJ, Dp‘
1

, . . . , ‘
n

q is a block-

diagonal matrix, with ‘
i

“ xuy
i

´ Z
i

xub
i

´ pu
i

X
i

p— and BQ
i

p◊|p◊q
B–

r

“ ´1
2trrD´1 9Dprq ´

D´1 9DprqD´1

yub2

i

s.

Scale matrix perturbation

In order to study the e�ects of perturbation on the scale matrix �
i

“
‡2I

n

i

` ZDZJ
i

, we consider DpÊ
i

q “ Ê´1

i

D, or ‡2pÊ
i

q “ Ê´1

i

‡2, for i “ 1, . . . , n. The
non-perturbed model arises when Ê

o

“ p1, . . . , 1qJ. The perturbed Q-function follows
(3.5), with DpÊ

i

q and ‡2pÊ
i

q in place of D and ‡2, respectively. Considering a perturbation
on D (matrix of random e�ects), we have �

—

“ 0, �
‡

2 “ 0 and �
–

r

“ 1
2rg

1

, . . . , g
n

s,
where g

i

“ trpD´1 9DprqD´1

yub2

i

q, r “ 1, . . . , p˚. Perturbation on ‡2 (the random error
variance) yields �

—

“ 1
‡2

XJDp‘
1

, . . . , ‘
n

q, �
‡

2 “ 1
2‡4

mJ and �– “ 0.

Response perturbation

A general way for perturbing the response variables Q
ij

, i “ 1, . . . , n, j “
1, . . . , n

i

, is introduced by considering Q
ij

pÊq “ Q
ij

` Ê
i

s
ij

, where s
ij

is a known constant.
Hence, for the t-LMEC model, the perturbed response is obtained as y

ij

pÊq § Q
ij

if
C

ij

“ 1, and y
ij

pÊq “ Q
ij

if C
ij

“ 0, where y
ij

pÊq “ y
ij

´ Ê
i

s
ij

. Again, the perturbed
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Q-function follows (3.5), with xuy
i

, yuy2

i

and zuyb
i

replaced by zuy
iÊ

“ xuy
i

´ Ê
i

s
i

pu
i

, zuy2

iÊ

“
yuy2

i

´ Ê
i

p xuy
i

sJ
i

` s
i

yuyJ
i

q ` Ê2

i

s
i

sJ
i

and {uyb
iÊ

“ zuyb
i

´ Ê
i

s
i

yubJ
i

, respectively, where
s

i

“ ps
i1

, . . . , s
in

i

qJ. The vector Ê
0

“ 0 represents no perturbation. Finally, we have
�

—

“ ´ 1
‡2

rXJ
1

pu
1

s
1

, . . . , XJ
n

xu
n

s
n

s, �
‡

2 “ ´ 1
‡4

rpyuy
1

´ Z
1

yub
1

´ pu
1

X
1

—qJs
1

, . . . , pyuy
n

´
Z

n

yub
n

´ xu
n

X
n

—qJs
n

s, and �
–

“ 0.

3.3.2.2 Observation-level diagnostics

We proceed as above considering a perturbation vector Ê “ pÊ
1

, . . . , Ê
g

qJ,

where Ê
i

“ pÊ
i1

, . . . , Ê
in

i

qJ, and noting that all the previous results for the subject-level di-
agnostics hold for the observation-level cases as well. Also, we denote u

i

“ pu
i1

, . . . , u
in

i

qJ,
v

i

“ pv
i1

, . . . , v
in

i

qJ and g
i

“ pg
i1

, . . . , g
in

i

qJ.

Case weight perturbation

In this case, we have �
—

“ 1
‡2

ru
1

, . . . , u
n

s, with u
ij

“ XJ
ij

pxuy
ij

´

Z
ij

xub
i

´ pu
i

X
ij

p—q; �
‡

2 “ ´ 1
2‡2

rv
1

, . . . , v
n

s with v
ij

“ 1 ´ 1
‡2

A
ij

and

A
ij

“ trp yuy2

ij

´ 2{uyb
ij

ZJ
ij

` yub2

i

ZJ
ij

Z
ij

q ´ 2p—
J

XJ
ij

pxuy
ij

´ Z
ij

xub
i

q ` pu
i

p—
J

XJ
ij

X
ij

p—

and �
–

r

“ ´1
2rg

1

, . . . , g
n

s, with g
ij

“ trpD´1 9DprqD´1pD ´ yub2

i

qq, r “ 1, . . . , p˚.

Scale matrix perturbation

Similar to the subject-level, we consider perturbations on D and ‡2. Con-
sequently, for D we have that �

—

“ 0, �
‡

2 “ 0 and �
–

r

“ 1
2rg

1

, . . . , g
n

s, with

g
ij

“ trpD´1 9DprqD´1

yub2

i

q, r “ 1, . . . , p˚. In addition, a perturbation on ‡2 gener-
ates �

—

“ 1
‡2

ru
1

, . . . , u
n

s, with u
ij

“ XJ
ij

pxuy
ij

´ Z
ij

xub
i

´ pu
i

X
ij

p—q; �
‡

2 “ rv
1

, . . . , v
n

s,

with v
ij

“ 1
2‡4

A
ij

and A
ij

“ trp yuy2

ij

´ 2pu
i

X
ij

p— ` yub2

i

ZJ
ij

Z
ij

q ´ 2p—
J

XJ
ij

pxuy
ij

´ Z
ij

xub
i

q `
pu

i

p—
J

XJ
ij

X
ij

p— and �
–

“ 0.

Response perturbation

Finally, for the response perturbation case, we have �
—

“ ´ 1
‡2

ru
1

, . . . , u
n

s,

with u
ij

“ XJ
ij

; �
‡

2 “ ´ 1
‡4

rv
1

, . . . , v
n

s, with v
ij

“ pxuy
ij

´Z
ij

xub
i

´ pu
i

X
ij

p—q and �
–

r

“ 0.

As the reader can note, it is impossible to give details for all perturbation
schemes that would be of interest. However, if we can find an appropriate Ê such that
the perturbed complete data log-likelihood function ¸

c

p◊, Ê|y
c

q is smooth enough and the
pertinent derivatives in the diagnostic measures are well-defined, we can conduct the local
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influence analysis without much di�culty.

In order to quantify the influence of a case in the data, we follow the method

based on the function Mp0q
l

“
r

ÿ

k“1

’̃
k

Á2

kl

, where ’̃
k

“ ’
k

{p’
1

` . . . ` ’
r

q and Á2

k

“

pÁ2

k1

, . . . , Á2

kg

qJ with tp’
k

, Á
k

q, k “ 1, . . . , gu the eigenvalue-eigenvector pairs of ´2 :QÊ0 ,
where ’

1

• . . . • ’
r

° ’
r`1

“ . . . “ 0 and the eigenvectors tÁ
k

, k “ 1, . . . , gu are orthonor-
mal (for details see Matos et al., 2013a). The lth case may be regarded as influential if
Mp0q

l

is larger than the benchmark (cut-o�).

Based on the work of Zhu and Lee (2001), we use the following conformal
normal curvature B

f

Q

,dp◊q “ C
f

Q

,dp◊q{trr´2 :QÊ0s, whose computation is quite simple
and also has the property that 0 § B

f

Q

,dp◊q § 1. Let d
l

be a basic perturbation vector
with lth entry as 1 and all other entries as zero. Zhu and Lee (2001) showed that for all
l, Mp0q

l

“ B
f

Q

,d
l

. Thus, we can obtain Mp0q
l

via B
f

Q

,d
l

. Following Lee and Xu (2004),
we consider our benchmark as Mp0q ` c˚SMp0q, where Mp0q and SMp0q are the mean
and standard error of tMp0q

l

: l “ 1, . . . , gu respectively; and c˚ is a selected constant.
The choice of c˚ is subjective. In this work, we will consider c˚ “ 4; following Russo et al.
(2009) and Zeller et al. (2010).

3.4 Censored nonlinear mixed-e�ects model
In this section, we develop the censored nonlinear mixed-e�ects model under the

Student’s-t distribution (henceforth, t-NLMEC). Similar to the t-LMEC model, we denote
the number of subjects by n, and the number of measurements on the ith subject by n

i

.
Ignoring censoring for the moment, let us consider x

ij

the vector incorporating explanatory
variables (covariates), the longitudinal time component t

ij

, —
ij

“ p—
1ij

, . . . , —
sij

qJ and
— “ p—

1

, . . . , —
p

qJpp ° sq. The Student’s-t nonlinear mixed-e�ect model (t-NLME model)
can be written as:

y
i

“ ÷
i

pt
ij

, —
ij

q ` ‘
i

, —
ij

“ dpx
ij

, —, b
i

q, (3.15)

where y
i

“ py
i1

, . . . , y
in

i

qJ, with y
ij

the response for subject i at time t
ij

, ÷
i

pt
ij

, —
ij

q “
p÷pt

i1

, —
i1

qJ, . . . , ÷pt
in

i

, —
in

i

qqJ, with ÷p¨q being a nonlinear (known) but di�erentiable
function of vector-valued mixed-e�ects parameters —

ij

, ‘ “ p‘
i1

, . . . , ‘
in

i

qJ is the random
error vector, dp¨q is an s-dimensional linear function, and b

i

“ pb
1i

, . . . , b
qi

qJ is the vector
of random e�ects pq § sq. The joint distribution of pb

i

, ‘
i

q follows (3.2). From Matos et al.
(2013b), the marginal distribution is given by

fpy|◊q “
n

π

i“1

ª 8

0

ª

Rq

„
n

i

py
i

, ÷
i

pt
ij

, dpx
ij

, —, b
i

qq, u´1

i

‡2I
n

i

q„
q

pb
i

; 0, u´1

i

Dq

ˆGpu
i

|‹{2, ‹{2qdb
i

du
i

,
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where Gp¨|a, bq denotes the density of a Gammapa, bq distribution with mean a{b. The
marginal distribution fpy|◊q does not have a closed form because the model function
is not linear in the random e�ects. However, in order to use all the theory on influence
diagnostics developed above for the LMEC model, we use the following approximation
proposed by Matos et al. (2013b) which linearizes the t-NLMEC likelihood in terms of b

i

and —.

Proposição 3.2. Let

rb
i

and

r— be expansion points in the neighborhood of b
i

and —,

respectively. Then, the t-NLME model as defined in (3.2) and (3.15) has the following

t-LME form

ry
i

“ ÄW
i

— ` rH
i

b
i

` ‘
i

, i “ 1, . . . , n, (3.16)

where

ry
i

“ y
i

´ r÷
i

pr—, rb
i

q, b
i

ind„ t
q

p0, D, ‹q, ‘
i

ind.„ t
n

i

p0, ‡2I
n

i

, ‹q, rH
i

“
B÷

i

pt
ij

, dpx
ij

, r—, b
i

qq
BbJ

i

|b
i

“rb
i

, ÄW
i

“ B÷
i

pt
ij

, dpx
ij

, —, rb
i

qq
B—J

i

|
—

i

“Ä—
i

and r÷pr—, rb
i

q “

÷
i

pt
ij

, dpx
ij

, r—, rb
i

qq ´ rH
i

rb
i

´ ÄW
i

r—.

Proof : Based on the first-order Taylor expansion of the function ÷
i

around rb
i

and r—, we have that

÷
i

pt
ij

, dpx
ij

, —, b
i

qq « r÷
i

pt
ij

, dpx
ij

, r—, rb
i

qq ` rH
i

b
i

´ rH
i

rb
i

` ÄW
i

— ´ ÄW
i

r—s

with rH
i

“ B÷
i

pt
ij

, dpx
ij

, —, b
i

qq
BbJ

i

|b
i

“rb
i

and ÄW
i

“ B÷
i

pt
ij

, dpx
ij

, —, b
i

qq
B—J |

—“Ä—
. It follows that

‘
i

“ y
i

´ ÷
i

pt
ij

, dpx
ij

, —, b
i

qq
« y

i

´ r÷
i

pt
ij

, dpx
ij

, r—, rb
i

qq ` rH
i

b
i

´ rH
i

rb
i

` ÄW
i

— ´ ÄW
i

r—s
“ y

i

´ rr÷pr—, rb
i

q ` ÄW
i

— ` rH
i

b
i

s “ ry
i

´ rÄW
i

— ` rH
i

b
i

s,
which concludes the proof.

For the censored case, model (3.16) is a t-LMEC model with the same structure
as (3.1)-(3.3). The model matrices in (3.16) depend on the current parameter value, and
need to be recalculated at each iteration. The algorithm iterates between the L-, E- and
CM-steps until convergence. Moreover, the influence diagnostics for t-LMEC discussed
earlier in Section 3.3 can be incorporated along with the approximation in (3.16) to obtain
approximate influence diagnostics for t-NLMEC.

The approximation (3.16) was initially proposed in Matos et al. (2013a) in the
context of censored nonlinear mixed-e�ects models. In particular, simulation studies in that
paper revealed that this approximation can e�ciently detect outliers contaminating the
generated data. More recently, Wang and Lin (2014) used this approximation to implement
an e�cient ECM algorithm for carrying out ML estimation in Student’s-t nonlinear mixed-
e�ects models for multi-outcome longitudinal data with missing values. Consequently, we
conclude that this approximation is robust, stable, and we do not anticipate any severe
consequences in inference when applied to other types of (censored) nonlinear models.
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3.5 Application

3.5.1 AIEDRP Dataset
In this section, we consider the study from the AIEDRP program in order to

illustrate the proposed influence analysis. We consider 320 untreated individuals with
HIV infection (see Vaida and Liu, 2009, for more detalis). The dataset consists of 830
observations, with 185 (22%) lying above the limit of assay quantification. The individual
profiles are shown in Figure 3. As was proposed in Vaida and Liu (2009), we consider a
right-censored five-parameter NLMEC model as follows:

y
ij

“ ⁄
1i

` ⁄
2

1 ` expppt
ij

´ ⁄
3

q{⁄
4

q ` ⁄
5i

pt
ij

´ 50q ` ‘
ij

, (3.17)

where y
ij

is the log
10

of the viral load for subject i at time t
ij

. The parameters ⁄
1i

and ⁄
2

represent the subject-specific random setpoints value and decrease from the maximum HIV
RNA, respectively. In the absence of treatment (following acute infection), the HIV RNA
varies around a setpoint, which may di�er among individuals; hence the setpoint is chosen
to be subject specific. The location parameter ⁄

3

indicates the time point at which half of
the change in HIV RNA is attained, ⁄

4

is a scale parameter modelling the rate of decline
and ⁄

5i

allows for increasing HIV RNA trajectory after day 50. The reparameterization
given by —

1i

“ logp⁄
1i

q “ —
1

`b
1i

; —
k

“ logp⁄
k

q, k “ 2, 3, 4, and ⁄
5i

“ —
5

`b
2i

is adopted to
assure positive values for the model parameters. Figure 11 (Panels left and right) presents
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Figure 11 – AIEDRP data. Plots of raw density histogram (Left panel) and Q-Q plot
(Right panel) of viral load.

raw histogram and Q-Q plot of the log viral load measures, respectively. These plots reveal
that viral loads exhibit heavy-tail behaviour, and presence of possible outliers. Hence, to
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accommodate these features, we fit the t-NLMEC model defined in (3.15) considering the
structure given in (3.17).

3.5.2 ML estimates using EM algorithm
The model fitting uses the approximated ML method given in Proposition 3.2

and the ECM algorithm presented in Section 3.2.2. The degrees of freedom ‹ is assumed
to be known. Using the AIC criterion, we choose ‹ “ 10 which maximises the profile
log-likelihood (see, Figure 12, Left panel). This reveals that a fit using a normality-based
LMEC model might be inadequate. Further model comparison between the normal and
t-NLMEC models using the AIC/BIC criteria presented in Table 9 show that the t-NLMEC
model provided a much improved model fit than the normal one.
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Figure 12 – AIEDRP data. Plot of the profile log-likelihood versus the degrees of freedom
‹ (Left panel), and estimated weight û

i

for the t-NLMEC fit (Right panel),
with the influential observations numbered.

Because we currently focus on exploring influence diagnostics, details on the
estimation and interpretation of the parameter estimates — are omitted for brevity.
From Figure 12 (Right panel), we observe that the t-NLMEC model insulates the overall
parameter estimation by assigning smaller weights û

i

to the possible influential observations,
which are described later in more details.

3.5.3 Global influence
In order to evaluate the e�ect on the ML estimates when some observation is

deleted, we analyse the GD1

i

p◊q plot in Figure 13 (Panel a). The plot reveals that two cases
p#195, #259q are potentially influential on the parameter estimates. Figures 13 (Panels
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Table 9 – AIEDRP data. ML estimates and model comparison criteria for normal and
t-NLMEC models. SE are the estimated asymptotic standard errors.

N-NLMEC t-NLMEC
Parameter MLE SE MLE SE

—
1

1.6093 0.0137 1.6109 0.0133
—

2

0.1449 0.0953 0.1636 0.0854
—

3

3.5256 0.0237 3.5233 0.0207
—

4

1.0599 0.2666 0.9910 0.2450
—

5

-0.0035 0.0015 -0.0031 0.0015
‡2 0.2621 0.2053
–

11

0.01766 0.01611
–

12

0.00017 0.00014
–

22

0.00005 0.00005
‹ 10

log-like -783.8905 -781.8017
AIC 1585.7812 1581.6034
BIC 1628.2740 1624.0963

b-d) present plots of GD1

i

p—q, GD1

i

p‡2q and GD1

i

p–q respectively, using Proposition 3.1.
From these figures, we infer that subject #195 is influential for —, #9 and #230 are
influential for ‡2, and #259 is influential for –.

3.5.4 Local influence
Next, we focus on the local influence analysis for the dataset based on Mp0q, with

interest focussing on ◊. We study both the subject-level and observation-level diagnostics.
It is important to stress that in local influence analysis, there are no general rules so far
for selecting the benchmark (Lee and Xu, 2004). Hence, we follow the criterion suggested
by Lee and Xu (2004), i.e Mp0q

i

° Mp0q ` 3.5SMp0q, i “ 1, . . . , 320, to discriminate
whether an observation is influential or not.

3.5.4.1 Subject-level diagnostics

Figure 14 presents the index plots of Mp0q under the perturbation schemes
discussed in Section 3.3.2.1. We find that subjects #195 and #259 appears influential
under case weight perturbation scheme. Moreover, subjects #133 and #159 are potentially
influential under perturbation on D. For perturbation on ‡2, we find that observations
#166, #195 and #259 appear as influential. Finally, for response variable perturbation,
observations #174, #175 and #176 are considered as potentially influential.
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Figure 13 – AIEDRP data. Global influence. Approximate generalized Cook’s distance
GD1

i

p◊q (Panel a), GD1

i

for subset — (Panel b), GD1

i

for subset ‡2 (Panel c),
and GD1

i

for subset – (Panel d). The influential observations are numbered.

To assess the individual impact of these possible influential observations on
the ML estimates, we refitted the t-NLMEC model multiple times by removing one of
the following observations: 9, 133, 166, 174, 175, 176 ,195, 230 and 259, identified as
possibly influential, each time. Table 10 presents the % relative changes (RC) in the
parameter estimates presented in Table 9 compared to the parameter estimates obtained
after removing the influential observations. Specifically, the RC measure is defined as

RC
p

”

“
ˇ

ˇ

ˇ

ˇ

p” ´ p”ris
p”

ˇ

ˇ

ˇ

ˇ

, where ” “ —
1

, . . . , —
5

, ‡2, – and p”ris denotes the ML estimate of ” with
the ith observation removed. From Table 10, we observe that these observations generates
greater changes in the RC, in particularly for parameters —

2

, –
12

and –
22

. These findings
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Figure 14 – AIEDRP data. Index plot of Mp0q for assessing local influence on ◊ under case
weight perturbation (Panel a), perturbation on D (Panel b), perturbation on ‡

2

(Panel c), and perturbation on the response variable (Panel d). The influential
observations are numbered.

are in agreement with the results showed in Figure 13.

3.5.4.2 Observation-level diagnostics

Using the perturbation schemes described in Section 3.3.2.2, Figure 15 presents
the observation-level diagnostics for the dataset. Note that, in the case weight and ‡2

perturbation schemes, the observations #402, #403, #404, #410 (subject #174), #412
(subject #175), #422 (subject #176) and #512, #513, #514 and #515 (subject #203)
can be considered influential. For perturbation on D, we find that all observations between
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Table 10 – AIEDRP data. RC (in %).

Dropped RC

p

—1
RC

p

—2
RC

p

—3
RC

p

—4
RC

p

—5
RC

x

‡

2 RC

p–11 RC

p–12 RC

p–22

9 0.0124 0.9169 0.0170 0.9082 0.0000 2.8738 0.8690 0.0000 20.0000
133 0.1862 8.8020 0.0426 2.6438 3.2258 0.5845 3.5382 0.0000 20.0000
166 0.0062 6.6626 0.1334 3.1887 0.0000 2.4355 1.1173 0.0000 20.0000
174 0.0931 6.9071 0.1845 2.8355 0.0000 1.5100 1.1794 21.4286 0.0000
175 0.0621 1.7726 0.0993 3.0071 3.2258 0.6332 0.8070 7.1429 20.0000
176 0.1800 7.7017 0.0511 2.9162 0.0000 1.0229 1.1794 0.0000 20.0000
195 0.2421 9.4743 0.1760 2.7447 0.0000 0.2923 0.3724 0.0000 0.0000
230 0.0621 4.7066 0.0284 0.7164 0.0000 2.8251 1.0552 0.0000 0.0000
259 0.2111 7.7017 0.1306 4.0464 3.2258 1.1203 6.2073 35.7143 0.0000

#680 and #693 can be considered influential. Note, these observations correspond to
subject #259, which was considered as possibly influential using the diagnostic tools
proposed previously (see Sections 3.5.3 and 3.5.4.1). Finally, in the case of the perturbation
on the response variable, we find that observations #44 (subject #22), #182 and #186
(subject #80), #420 (subject #175), #529 (subject #208), #596 (subject #226), #604
(subject #227) and #616 (subject #229) appear as influential. All these observations with
the exception of observation #181 corresponds to the last time observed for the subjects.

3.6 Simulation studies
In order to assess the finite sample performance of the proposed diagnostic

measures for identifying outliers, we conduct a simulation study focussing on subject-level
diagnostics. We consider the nonlinear mixed-e�ects model given by

y
ij

“ —
1

` b
i1

1 ` expp´rt
ij

´ p—
2

` b
i2

qs{—
3

q ` ‘
ij

, i “ 1, . . . , 50, j “ 1, . . . , 10, (3.18)

where t
ij

“ 100, 267, 433, 600, 767, 933, 1100, 1267, 1433, 1600 for all i. The random e�ects
b

i

“ pb
i1

, b
i2

qJ, and the error term ‘
i

“ p‘
i1

, . . . , ‘
i10

qJ are non-correlated with
˜

b
i

‘
i

¸

ind.„ t
12

˜˜

0
0

¸

,

˜

D 0
0 ‡2I

10

¸

, 8
¸

, i “ 1, . . . , 15.

We set the fixed-e�ects —J “ p—
1

, —
2

, —
3

q “ p200, 700, 350q, the between-subject covariance

matrix D “
˜

4 ´2
´2 25

¸

, and the within-subject variance ‡2 “ 25. Under this model we

consider the following perturbation schemes:

(a) Replace the fixed e�ects — by 2— to generate the responses of the 1st subject y
1

,

(b) Replace — by 3— and,

(c) Replace — by 4—.
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Figure 15 – AIEDRP data. Index plot of Mp0q for assessing local influence on ◊ under case
weight perturbation (Panel a), perturbation on D (Panel b), perturbation on ‡

2

(Panel c), and perturbation on the response variable (Panel d). The influential
observations are numbered.

The diagnostic measures were computed for 500 simulated data sets under
various censoring proportions, say 0%, 5%, 10%, 20% and 30%. Table 11 reports (in
percentage) the number of times the measures correctly identifies y

1

as the most influential.

As expected, the percentage of correctly detecting atypical observations in-
creases for increasing perturbation rates (i.e., for 3— or 4—) as compared to 2—, and with
increased rate of censoring. Interestingly, the % of correct detection when the influence
analysis is focused on ‡2 is not appealing, with a lower percentage of correct detection when
the perturbation rate increases. However, higher % of correct detection when the influence
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Table 11 – Simulation study. The values in the table denotes the % of correctly identify-
ing the influential observations using case-deletion, case weight, ‡2 perturbation
and matrix D perturbation from 500 simulated datasets under the t-NLMEC
model specified in (3.18).

% of censoring
Case-deletion measure (GD

i

) 0% 5% 10% 20% 30%
Pert. 2— 66.8 66.8 74.8 75.8 81.8
Pert. 3— 83.0 83.4 85.8 91.6 94.8
Pert. 4— 93.0 93.2 94.2 97.4 98.4

Case-weight perturbation 0% 5% 10% 20% 30%
Pert. 2— 66.8 66.8 74.8 75.8 81.8
Pert. 3— 83.0 83.4 85.8 91.6 94.8
Pert. 4— 93.0 93.2 94.2 97.4 98.4

Perturbation on ‡2 0% 5% 10% 20% 30%
Pert. 2— 13.0 14.4 18.8 19.2 15.2
Pert. 3— 3.60 3.60 4.60 6.00 6.00
Pert. 4— 0.40 0.60 0.80 1.00 0.60

Perturbation on D 0% 5% 10% 20% 30%
Pert. 2— 83.8 83.6 83.2 83.0 84.8
Pert. 3— 95.0 94.6 94.0 94.8 97.4
Pert. 4— 97.2 97.8 97.6 98.8 99.0

analysis is focused on D is detected. A possible explanation for this fact is that a pertur-
bation on the fixed-e�ects of one subject contributes to increasing the between-subject
variance, but the within-subject variance remains the same.

3.7 Conclusions
This chapter proposes diagnostic tools for detecting outliers and/or influential

observations in the context of linear and nonlinear mixed-e�ects censored model where
the joint distribution of the random e�ects and random errors follow the Student’s-t
distribution. The results presented here supplement the robust likelihood-based inference
developed by Matos et al. (2013b) for LMEC/NLMEC models, appropriate for longitudinal
HIV data. Our proposed estimation method relies on the Q-function and the corresponding
ECM algorithm. The NLME formulation is mathematically (and computationally) feasible
through a linearisation. The methodology is implemented using the R software (codes
are available upon request), providing practitioners with a convenient tool for further
applications in their domain.

For ease of implementation, our current proposal considers an independent
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within-subject covariance structure, viz. ‡2I
n

i

. Nevertheless, it can be extended to di�erent
unstructured covariance matrices (such as AR(1), or ante-dependence) following the work
of Pan et al. (2014). This issue is currently under investigation, and we plan to tackle it in
a future work.
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4 Heavy-tailed longitudinal regression mod-
els for censored data: A likelihood based
perspective

4.1 Introduction
The study of models in which the variable of interest is subjected to certain

threshold values below or above which the measurements are not quantifiable has been
the scope of the biomedical and biostatistical literature in recent years. Particularly, this
situation occurs commonly in the study of the human immunodeficiency virus (HIV)
behaviour, where the quantification of HIV-1 RNA viral load is done using assays with
di�erent detection limits for monitoring the copy number of virus per millilitre of plasma.
Lower detection limits ranging from 400 to 500 RNA copies/mL are considered for standard
assays such as Amplicor HIV-1 monitor test 1.5 and Nuclisens HIV-1 QT assay (Antunes
et al., 2003), while the range is 50 to 100 RNA copies/mL for ultra-sensitive assays such
as the TaqMan assay, version 1 and 2 (Swenson et al., 2014).

In practice, longitudinal data coming from follow-up studies ( e.g. acquired
immune deficiency syndrome - AIDS - studies) can be modelled using censored linear
and nonlinear mixed-e�ects models (see for example Wu, 2010, and references therein)
and also regression models with a specific correlation structures on the error term (Garay
et al., 2014). Although it is quite common to consider a Gaussian assumption for the
random components of the model due mainly to the computational flexibility for parameter
estimation (see Vaida and Liu, 2009). From a practical viewpoint, such an assumption
may not be realistic. In this context, some recent works in censored models (Matos et al.,
2013b; Garay et al., 2014, 2015) have indicated that likelihood-based inference can be
seriously a�ected by the presence of atypical observations and/or the misspecification of
the parametric distributions for both random e�ects and errors. Consequently, in situations
where the inferential results are sensitive to the assumed distributions for the random
components of the model, it may be desirable to consider more flexible distributional
assumptions, specifically, a heavy-tailed class of distributions.

For example, Pinheiro et al. (2001) proposed the multivariate Student’s-t linear
mixed model (t-LME). Lin and Lee (2006, 2007) developed some additional tools for the
t-LME from likelihood-based and Bayesian perspectives, respectively. It is important to
stress that, from a Bayesian point of view, Rosa et al. (2003) proposed the linear mixed
model considering the normal/independent (NI) class of distributions (NI-LME). In the
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Figure 16 – AIDS studies data. Normal Q–Q plot for model residuals obtained by fitting

a censored (Gaussian) mixed-e�ect model (AIEDRP data left panel/UTI data
right panel).

case of univariate censored responses, Arellano-Valle et al. (2012) and Massuia et al. (2015)
proposed an extension of the normal censored regression (N-CR or Tobit) model to the
case where the error terms follow a univariate Student’s-t distribution. Lachos et al. (2011)
considered the use of the NI class in mixed-e�ects models for longitudinal data with
censored responses and adopted a Bayesian treatment to carry out posterior inference,
extending, in some sense, the proposals of Samson et al. (2006), Vaida et al. (2007) and
Vaida and Liu (2009).

From a likelihood-based perspective, a few alternatives have been proposed for
longitudinal models under censored responses and considering heavy-tailed distributions.
For instance, Garay et al. (2014) and Matos et al. (2013b) utilized the Student’s-t distri-
bution in the context of censored regression (t-CR) and linear and nonlinear mixed-e�ects
(t-LMEC) models for censored responses respectively. They considered exact EM algo-
rithms for maximum likelihood (ML) estimation, relying on the mean and variance of a
truncated multivariate Student’s-t distribution. However, the use of others heavy-tailed
distributions has not been explored in the context of censored longitudinal models. In this
regard, the aim of this work is to consider the multivariate scale mixtures of normal (SMN)
distributions as the distribution of the random error in the framework of the nonlinear
censored regression (SMN-NCR) model for longitudinal data. Our contribution extends
the recent works of Garay et al. (2014) and Garay et al. (2015) since they used only the
Student’s-t distribution which is a member of the SMN/NI class.

For the estimation of the model parameters, we consider an stochastic approxi-
mation of the EM algorithm, the so-called SAEM algorithm. This algorithm introduced
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by Delyon et al. (1999) is generally more e�cient than the EM (Dempster et al., 1977)
and Monte Carlo EM (MCEM) (Wei and Tanner, 1990) algorithms because it does not
need the computation of the two first moments of the truncated multivariate SMN distri-
butions, which requires high-dimensional numerical integration instead of a very intensive
computation step of Monte Carlo simulation to evaluate those complex integrals. More-
over, Jank (2006) showed that the computational burden of SAEM is much smaller and
reach the convergence in just a fraction of the simulation size when compared to MCEM.
This is because the memory e�ect persists in the SAEM method, in which the previous
simulations are considered in the computation of the posterior ones. Note that, in the case
of mixed-e�ects models, Kuhn and Lavielle (2005), Meza et al. (2012) and Lavielle and
Mbogning (2014) showed a good e�ciency of the SAEM algorithm for ML estimation.

In order to evaluate the performance of our proposal, we consider the analysis
of two AIDS case studies. The first study evaluated the immune responses to HIV during
acute infection, presenting about 22% of measurements lying above the limits of assay
quantification (right-censored). The viral loads were irregularly measured over time. The
individual profiles (in log

10

scale) of HIV viral load at di�erent follow-up times are displayed
in Figure 3. The corresponding normal quantile-quantile (QQ) plot (Figure 16 left panel) for
the HIV viral load after fitting the Gaussian nonlinear censored mixed-e�ect model suggests
that the normality assumption for the within-subject errors might be inappropriate.

The second study contains the measurements of HIV-1 RNA measures after
unstructured treatment interruption (UTI) in 72 adolescents from US. UTI was defined as
discontinuation of all antiretroviral drugs for any period of time, after which treatment was
resumed. The dataset presents about 7% of observations below the detection limits of assay
quantifications (left censored). Figure 1 presents the individual profiles of viral load at
di�erent follow-up times after UTI. In addition, a normal QQ plot for the residuals (Figure
16 right panel) obtained by fitting a normal censored mixed-e�ect model is presented.

Since the outcome variables were recorded at irregular occasions in both studies,
we consider a parsimonious damping exponential correlation (DEC) structure to address
the within-subject autocorrelation. This type of correlation structure, proposed by Muñoz
et al. (1992), takes into account the autocorrelation generated by the dependence among
irregular occasions.

The chapter is organized as follows. Section 4.2 proposes the SMN-NCR model
and shows how the ML estimates through the SAEM algorithm are computed. In Section
4.3, we formulate analytically the empirical information matrix of model parameters. The
issue concerning the prediction of future observations is also discussed. In Section 4.4, our
proposed techniques are compared with the normality-based approach using simulated
data and illustrated with the analysis of the AIDS case studies. Section 4.5 concludes with
a short discussion of issues raised by our methods and some possible directions for a future
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research.

4.2 Regression models for irregularly observed longitudinal data

4.2.1 The statistical model
Let y “ pyJ

1

, . . . , yJ
n

qJ denote the vector of observed continuous multivariate
responses. Herein, y

i

is a n
i

ˆ 1 vector containing the observations for subject i measured
at particular time points t

i

“ pt
i1

, . . . , t
in

i

q. Formally, the nonlinear regression model is
given by

y
i

“ gpÏ
i

, t
i

q ` ‘
i

,

Ï
i

“ A
i

— (4.1)

where gpÏ
i

, t
i

q is a nonlinear vector-valued di�erentiable function of the parameter Ï
i

;
A

i

is a known design matrix of dimension r ˆ p, possibly depending on some covariate
vector X

i

; — is the p ˆ 1 vector of fixed e�ects; and ‘
i

is the vector of random errors of
dimension pn

i

ˆ 1q with mean 0 and covariance matrix �
i

. Instead of the usual assumption
of normality, we replace the multivariate normal distribution by the scale mixtures of
multivariate normal distributions. Therefore, it follows that

‘
i

ind.„ SMN
n

i

p0, �
i

, ‹q, i “ 1, . . . , n. (4.2)

The correlation structure of the error vector is assumed to be �
i

“ ‡2E
i

, where
the n

i

ˆ n
i

matrix E
i

incorporates a time-dependence structure. Consequently, to capture
the serial correlation among irregularly observed longitudinal data, it is necessary to
consider a parsimonious parameterization of the matrix E

i

. Following Muñoz et al. (1992),
we adopt a DEC structure for E

i

, described in Section 1.1.2.

Using the stochastic representation (1.1), the hierarchical representation (two-
stages) of the nonlinear regression model defined in (4.1) - (4.2) is given by

y
i

| U
i

“ u
i

ind.„ N
n

i

pgpÏ
i

, t
i

q, Ÿpu
i

q�
i

q,
U

i

iid.„ hpu
i

| ‹q. (4.3)

For simplicity we will denote µ
i

p—q “ gpÏ
i

, t
i

q.
Recall that we are interested in the case where left-censored observations can

occur. That is, the observations are of the form

y
ij

§ V
ij

if C
ij

“ 1,

y
ij

“ V
ij

if C
ij

“ 0, (4.4)
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where V
ij

represents the uncensored observation or limit of quantification and C
ij

is the
censoring indicator whose value is equal to one if y

ij

is a censored observation and zero
if y

ij

is an uncensored observation. Consequently, the observed data for the i-th subject
is represented by pV

i

, C
i

q. We have chosen to work with the left censored case, but the
results are easily extended to other censoring types. The formulations defined in (4.1) –
(4.4) will be called the SMN-NCR model.

4.2.2 The likelihood function
Frequentist inference on the parameter vector ◊ “ p—J, ‡2, „J, ‹JqJ is based

on the marginal distribution for y
i

, i “ 1, . . . , n. For the SMN-NCR model with complete
data, we have that, marginally,

y
i

ind.„ SMN
n

i

pµ
i

p—q, �
i

, ‹q, i “ 1, . . . , n. (4.5)

For computing the marginal likelihood, the first step is to treat separately the observed
and censored components of y

i

. This procedure is described in Definition 4.1 below.

Definição 4.1. Let y be partitioned as y
i

“ vecpyo

i

, yc

i

q with dimpyo

i

q “ no

i

, dimpyc

i
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i

and no
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i
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i

, where vec(¨) denotes the operator which stacks vectors or matrices of

the same number of columns and C
ij

“ 0 for all elements in yo

i

, and 1 for all elements
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i

. Let V
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with µc¨o
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“ µc
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.

Following Vaida and Liu (2009), we have the following definition to calculate
the likelihood function.

Definição 4.2. Let �
n

i

pu; a, Aq and „
n

i

pu; a, Aq be the cdf (left tail) and pdf, respectively,

of N
n

i

pa, Aq computed at u. The likelihood function for the i-th subject is given by
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The log-likelihood function for the observed data is given by ¸p◊|yq “
n

ÿ

i“1

tlog L
i

u
and can be used to monitor the convergence of the SAEM algorithm. The likelihood function
for particular cases of the SMN-NCR model are given in following Proposition. The proof
is given in Appendix B.1.

Proposição 4.1. The likelihood function for special elements of the SMN class are given

by.

1. (normal) If U is degenerate in 1, i.e., P pU “ 1q “ 1, then
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Lucas (1997) carried out an interesting study on the robust aspects of the
Student’s-t M-estimator in the univariate case using influence functions. He showed that
the protection against outliers is preserved only if the degrees of freedom parameter are
fixed. In this work, we assume that the parameter ‹ is fixed. The most appropriate value
of ‹ (see Lange et al., 1989; Meza et al., 2012) are chosen on AIC or BIC. The entire
parameter vector is ◊ “ p—J, ‡2, „JqJ hereafter.

4.2.3 Maximum likelihood estimation
In this subsection, we develop the MCMC-SAEM (hereafter SAEM) algorithm

for ML estimation of the parameters in the SMN-NCR model defined previously. Consider
the model defined in (4.1) – (4.4), u “ pu

1

, . . . , u
n

qJ, V “ vecpV
1

, . . . , V
n

q, and C “
vecpC

1

, . . . , C
n

q such that we observe pV
i

, C
i

q for the i-th subject. Treating u, and y
as hypothetical missing data, and augmenting with the observed data V, C, we set
y

c

“ pCJ, VJ, yJ, uJqJ as the complete data. Therefore, the complete data log-likelihood
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function for all individuals can be written, using the representation defined in (4.3), as
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with C being a constant that does not depend on the parameter vector ◊ and
n

ÿ

i“1

n
i

“ N .

Given the current estimate (at the k-th iteration) ◊ “ p◊
pkq

, the conditional expectation of
the complete data log-likelihood function is given by:

Q
´

◊ | p◊
pkq¯ “ E

”

¸
c
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c

q | V, C, p◊
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n

ÿ
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Q
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i
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2 log |pEpkq

i
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2 p‡2

pkq

„
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´

yŸy2

i

pkq
pE´1pkq
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¯
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i
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pkqqpE´1pkq

i

xŸy
i

pkq ` pŸ
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pkqµJ
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pp—
pkqqpE´1pkq

i

µ
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pp—
pkqq
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with

yŸy2

i

pkq
“ E

”

Ÿ´1pu
i

qy
i

yJ
i

| V
i

, C
i

, p◊
pkqı

, (4.8)

xŸy
i

pkq “ E
”

Ÿ´1pu
i

qy
i

| V
i

, C
i

, p◊
pkqı

, (4.9)

pŸ
i

pkq “ E
”

Ÿ´1pu
i

q | V
i

, C
i

, p◊
pkqı

. (4.10)

Note that in this case we do not consider the computation of Erhpu
i

| ‹q | V
i

, C
i

, p◊
pkqs

because ‹ is fixed.

In the traditional EM algorithm, we evaluate the conditional expectations
given in Equations (4.8) – (4.10). As there are no closed-form expressions for them, two
intermediate steps are introduced, including the simulation and approximation steps. In
the simulation step, for the i-th subject, we generate samples from the full conditional
distributions of the latent variables pu

i

, y
i

q via the Gibbs sampler algorithm according to
the following scheme (at the k-th iteration):
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Step 1: Sample ycpk,lq
i

from fpyc

i

| Vc

i

, yo

i

, u
i

, p◊
pk´1qq, which is a truncated normal

distribution. Using Definition 4.1 and conditioning on the censored components, we
obtain

yc

i

| Vc

i

, yo

i

, u
i

, ◊ „ TN
n

c

i

pµc¨o
i

, Ÿpu
i

qS
i

;A
i

q,

with A
i

“ tyc

i

“ pyc

i1

, . . . , yc

in

c

i

qJ | yc

i1

§ V c

i1

, . . . , yc

in

c

i

§ V c

in

c

i

u, µc¨o
i

“ µc

i

p—q `
�co

i

p�oo

i

q´1pyo

i

´ µo

i

p—qq and S
i

“ �cc

i

´ �co

i

p�oo

i

q´1�oc

i

.

Then, the new observation ypk,lq
i

“ pycpk,lq
i1

, . . . , y
cpk,lq
in

c

i

, y
n

c

i

`1

, . . . , y
n

i

q is a sample
generated for the nc

i

censored cases and the observed values (uncensored cases).

Step 2: Sample u
pk,lq
i

from fpu
i

| ypk,lq
i

, p◊
pk´1qq. Let D2

‘
i

“ py
i

´ µ
i

p—qqJ�´1

i

py
i

´
µ

i

p—qq, this gives rise to

(a) Student’s-t: u
i

| y
i

, ◊ „ Gamma

ˆ

‹ ` n
i

2 ,
‹ ` D2

‘
i

2

˙

;

(b) Slash: u
i

| y
i

, ◊ „ TGamma

ˆ

‹ ` n
i

2 ,
D2

‘
i

2 ; p0, 1q
˙

, which follows a truncated

gamma distribution lying on the interval (0,1);

(c) Contaminated normal: fpu
i

| y
i

, ◊q is a discrete distribution taking values ‹
2

with probability p
1

p
1

` p
2

and 1 with probability p
2

p
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` p
2

, where

p
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“ ‹
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2
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¯
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2D2

‘
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˙

.

The next step is the Stochastic Approximation. Since the sequence pypk,lq
i

, u
pk,lq
i

q
for l “ 1, . . . , m is collected at the k-th iteration, we replace the conditional expectations
given in (4.8) –(4.10) with the following stochastic approximations:

yŸy2

i

pkq
“ yŸy2

i

pk´1q
` ”

k

«

1
m

m

ÿ
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Ÿ´1pupk,lq
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i
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i

pk´1q
�

, (4.11)

xŸy
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1
m
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ÿ
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Ÿ´1pupk,lq
i
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i

pk´1q
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, (4.12)

pŸ
i

pkq “ pŸ
i

pk´1q ` ”
k

«

1
m

m

ÿ

l“1

Ÿ´1pupk,lq
i

q ´ pŸ
i

pk´1q
�

. (4.13)

An advantage of the SAEM algorithm is that, even though it performs a MCMC
E-step, it requires a small and fixed sample size, making it much faster than MCEM.
Some authors claim that m § 10 is large enough, but to be more conservative, we chose
m “ 20. As a consequence, the MCMC samples are incorporated in a smooth way with
the previous step of the algorithm.
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Finally, the conditional maximization step is carried out and p◊
pkq

is updated
by maximizing Qp◊|p◊pkqq over p◊

pkq
, which leads to the following expressions:
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where J
i

“ Bµ
i

p—q
B—J and yŸy2

i

pkq
, xŸy

i

pkq and pŸ
i

pkq rely on minimal su�cient statistics.

It is important to stress that, since the complete likelihood function does belong
to the exponential family, the parameters estimates of this SAEM algorithm converges.
Under several conditions, Kuhn and Lavielle (2005) and Samson et al. (2006) have verified
that the estimate sequence produced by the SAEM algorithm converges towards a (local)
maximum of the likelihood function.

4.2.4 Imputation of censored components
We are also interested in the prediction of the censored components of the i-th

subject. Let yc

i

be the true unobserved response vector for the censored components. In
the implementation of the SAEM algorithm, the predictions of the censored components,
denoted by ỹcpkq

i

, are calculated as

ỹcpkq
i

“ Ety
i

| V
i

, C
i

, p◊
pkqu, i “ 1, . . . , n,

where

ỹcpkq
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“ ỹcpk´1q
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` ”
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«

1
m
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ÿ

l“1

ycpk,lq
i

´ ỹcpkq
i

�

(4.17)

and the ycpk,lq
i

’s are obtained without computational e�ort from the Step 1 of the proposed
SAEM algorithm.
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4.3 Standard errors and prediction of future observations

4.3.1 Empirical information matrix
The asymptotic covariance matrix of the ML estimates can be approximated

by 1.6. As a result, the empirical information matrix I
e
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I
e

pp◊ | yq “
n

ÿ

i“1

ps
i

psJ
i

“

¨

˚

˚

˝

ps
i,—

ps
i,‡2

ps
i,„

˛

‹

‹

‚

´

ps
i,— ps

i,‡2

ps
i,„

¯

, (4.18)
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for s “ 1, 2. For the DEC structure, we have the following partial
derivatives
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4.3.2 Prediction
For generating predicted values from the SMN-NCR model, we follow the

scheme adopted by Wang (2013) and Garay et al. (2014). Let y
i,obs

be an observed
response vector of dimension n

i,obs

ˆ 1 for a new subject i over the first portion of time and
y

i,pred

the corresponding n
i,pred

ˆ 1 response vector over the future portion of time. Let
µ

i

p—q “ pµ
i,obs

p—q, µ
i,pred

p—qqJ be the pn
i,obs

` n
i,pred

q ˆ 1 nonlinear vector corresponding
to ȳ

i

“ pyJ
i,obs

, yJ
i,pred

q.
The censored values existing in y

i,obs

are imputed by (4.17). Therefore, after
this imputation step, a complete data set, y

i,obs

˚ , is obtained. We obtain

ȳ˚
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“
`
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˚ , yJ
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; Hq ,
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where �
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“
˜
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˚
i
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˚
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¸
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namely
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Consequently, y
i,pred

can be estimated directly by substituting p◊ into (4.19).

4.4 Application
In this section, we illustrate the performance of the proposed techniques through

simulated datasets. Afterward, we apply the methods to the analysis of two HIV datasets
previously analyzed by Vaida and Liu (2009) and Matos et al. (2013b).

4.4.1 Simulation study
The main goal of this simulation study is to investigate the e�ects on the

parameter inference when the traditional normality assumption is violated. We examine
the behavior of the models under di�erent proportions of censoring and sample sizes.

We present three scenarios considering the same probability distribution and
correlation structure for the datasets. The responses follow a contaminated normal distri-
bution with parameter ‹ “ p‹

1

, ‹
2

qJ “ p0.1, 0.1qJ and DEC structure with „
1

“ 0.8 and
„

2

“ 1. The simulated data are generated following the model defined in Subsection 4.2.1,
where A

i

“
“

1
n

i

tJ
i

‰

and g
i

is the identity function, with parameters setting at —
1

“ 2
—

2

“ 1, ‡2 “ 2 and time points set as t
i

“ p1, 3, 5, 7, 10, 14q, for i “ 1, . . . , n.

Scenario 1: A censoring proportion of 10% and di�erent sample sizes, say, n “
50, 100, 200, 400 and 600. Under each setting, we fitted the N-NCR model, the T-NCR
model with 4 degrees of freedom and the SL-NCR model with ‹ “ 2. The goal in
this study is to show the asymptotic behavior of the ML estimates obtained via the
proposed SAEM algorithm.

Scenario 2: A sample of size n “ 200 and di�erent censoring proportions, say, 0, 5,
10, 20 and 30%. As in the previous case, the N-, T- and SL-NCR models are fitted.
We aim to study the behavior of the SMN-NCR models under di�erent proportions
of censoring.

Scenario 3: We consider a data set of sample size n “ 100 and a censoring level of
5% to show the convergence of the SAEM algorithm and the imputation performance
of censored values.
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Note that, for scenarios 1 and 2, there are 30 di�erent simulation settings with
100 simulated Monte Carlo datasets for each one. The ML estimates and their associate
standard errors together with the AIC and BIC values were recorded. For all the fitted
models, the initial estimates are chosen by fitting a linear regression for all the parameters
and we fixed the number maximum of iterations W “ 300 and a cut point c “ 0.25.
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Figure 17 – Simulation study - Scenario 1. Mean square error of the parameter estimates
in the SMN-NCR model under 10% of censoring level and di�erent samples sizes.
The solid line (blue) represents the T-NCR model, the dotted line (red) represents
the N-NCR model and the dotdash line (green) represents the SL-NCR model.

Scenario 1

To study the finite sample properties, we compute the absolute bias (Bias)
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and mean square error (MSE) of the regression coe�cient estimates obtained from the
SMN-NCR models under di�erent sample sizes. These measures are defined as:

Bias “ 1
100

100

ÿ

j“1

|p◊pjq
i

´ ◊
i

| and MSE “ 1
100

100

ÿ

j“1

´

p◊
pjq
i

´ ◊
i

¯

2

, (4.20)

where p◊
pjq
i

is the ML estimate of the parameter ◊
i

for the j-th sample, j “ 1, . . . , 100. The
main objective of this simulation is to provide empirical evidence about consistence of
the ML estimates. It is apparently seen in Figure 17 that the MSE tends to zero as the
sample size increases. Similar results are obtained after the analysis of the absolute bias
(see Figure 25 in Appendix B.2). In general, for all models, the SAEM algorithm provides
estimates with good asymptotic properties. In addition, Table 12 presents the summary
statistics for parameter estimation under this scenario. As expected, censored models with
heavy-tailed distributions have better performance than the normal one in recovering the
true parameter values independently of sample sizes.

Scenario 2

In this scenario, we intend to study the behavior of the SMN-NCR models under
di�erent proportions of censoring. It can be found from Table 13 that the heavy-tailed
models outperforms the normal one for all levels of censoring. In fact, those models have
smaller standard deviations. In addition, Monte Carlo means of the model comparison
criteria (MC AIC and MC BIC) strongly favor the heavy-tailed ones.

Table 13 provides the Monte Carlo standard errors of the SAEM estimates
obtained through the empirical information matrix described in Section 4.3 (IM SE).
Comparing to the Monte Carlo standard deviation (MC Sd) for the parameters of interest,
it is evident that the proposed asymptotic approximation for the variances of the param-
eters obtained through Equation (4.18) is reliable. Furthermore, it is readily seen that
the estimates of the scale parameter ‡2 obtained from the heavy-tailed models are less
sensitive to the variation in the censoring level, concluding that these models are not only
robust to model misspecification but also for di�erent levels of censoring.

Scenario 3

The aim of this last simulation study is monitor the convergence of the SAEM
algorithm as well the performance of the imputation procedure. To conduct the experimen-
tal study ,an arbitrary simulated dataset is considered, where the conditional expectation
E ry

cens

| y
obs

s of the censored values is computed using Equation (4.17). Figure 18 shows
the plot of the imputed values E ry

cens

| y
obs

s as a function of the true censored (simulated)
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Table 12 – Simulation study - Scenario 1. Results based on 100 simulated samples with 10% of
censoring proportion. MC mean and MC Sd are the respective mean estimates and standard
deviations from fitting SMN-NCR models with di�erent samples sizes. IM SE is the average
value of the approximate standard error obtained through the empirical information-based
method. MC AIC and MC BIC are the arithmetic averages of the respective model comparison
measures.

Censoring 10%

Parameters Criteria

Distribution —1 —2 ‡

2
„1 „2 MC Loglik. MC AIC MC BIC

n “ 50

T

MC Mean 2.021 0.997 2.019 0.799 1.020 -539.049 1088.098 1106.617

IM SE 0.235 0.024 0.359 0.046 0.203

MC Sd 0.200 0.022 0.351 0.038 0.188

SL

MC Mean 2.015 0.997 1.446 0.800 1.022 -540.094 1090.188 1108.707

IM SE 0.246 0.025 0.206 0.045 0.197

MC Sd 0.186 0.021 0.210 0.036 0.182

N

MC Mean 2.121 1.003 16.052 0.801 1.184 -714.865 1439.731 1458.250

IM SE 1.012 0.089 1.554 0.050 0.278

MC Sd 0.361 0.062 8.093 0.123 0.665

n “ 100

T

MC Mean 2.023 0.997 1.973 0.799 1.015 -1075.346 2160.692 2182.676

IM SE 0.163 0.017 0.242 0.031 0.139

MC Sd 0.148 0.015 0.253 0.031 0.139

SL

MC Mean 2.016 0.998 1.420 0.800 1.018 -1077.510 2165.019 2187.004

IM SE 0.171 0.017 0.139 0.030 0.134

MC Sd 0.135 0.014 0.159 0.030 0.136

N

MC Mean 2.088 1.009 16.134 0.790 1.051 -1449.267 2908.533 2930.518

IM SE 0.633 0.053 0.688 0.020 0.081

MC Sd 0.263 0.038 6.519 0.103 0.436

n “ 200

T

MC Mean 2.023 0.997 1.972 0.801 1.010 -2152.751 4315.502 4340.953

IM SE 0.114 0.012 0.169 0.022 0.096

MC Sd 0.105 0.011 0.172 0.020 0.092

SL

MC Mean 2.016 0.997 1.421 0.801 1.013 -2156.934 4323.867 4349.318

IM SE 0.120 0.012 0.097 0.021 0.093

MC Sd 0.097 0.010 0.106 0.019 0.089

N

MC Mean 2.068 1.011 16.115 0.798 1.016 -2923.747 5857.494 5882.944

IM SE 0.419 0.034 0.375 0.009 0.040

MC Sd 0.203 0.028 4.570 0.060 0.267

n “ 400

T

MC Mean 2.023 0.997 1.972 0.802 1.010 -4309.241 8628.483 8657.399

IM SE 0.081 0.008 0.119 0.015 0.068

MC Sd 0.080 0.008 0.109 0.013 0.061

SL

MC Mean 2.017 0.998 1.423 0.802 1.013 -4317.693 8645.387 8674.303

IM SE 0.084 0.009 0.068 0.015 0.065

MC Sd 0.072 0.007 0.069 0.013 0.059

N MC Mean 2.061 1.011 16.166 0.803 1.002 -5873.152 11756.305 11785.221

IM SE 0.289 0.023 0.237 0.005 0.025

MC Sd 0.145 0.020 3.125 0.038 0.180

n “ 600

T

MC Mean 2.020 0.998 1.972 0.802 1.010 -6468.005 12946.01 12976.95

IM SE 0.066 0.007 0.097 0.012 0.055

MC Sd 0.070 0.006 0.080 0.010 0.047

SL

MC Mean 2.014 0.998 1.423 0.803 1.013 -6480.928 12971.86 13002.80

IM SE 0.069 0.007 0.056 0.012 0.053

MC Sd 0.064 0.006 0.051 0.010 0.045

N

MC Mean 2.057 1.012 16.228 0.803 0.988 -8826.036 17662.07 17693.02

IM SE 0.235 0.019 0.187 0.004 0.019

MC Sd 0.126 0.016 2.459 0.028 0.147
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Table 13 – Simulation study - Scenario 2. Results based on 100 simulated samples with sample size
200. MC mean and MC Sd are the respective mean estimates and standard deviations from
fitting SMN-NCRM with di�erent settings of censoring proportions. IM SE is the average
value of the approximate standard error obtained through the information-based method.
MC AIC and MC BIC are the arithmetic averages of the respective model comparison
measures.

n “ 200

Censoring

Parameters Criteria

Fit —1 —2 ‡

2
„1 „2 MC Loglik. MC AIC MC BIC

0%

T

MC Mean 2.010 0.998 1.994 0.801 1.009 -2357.915 4725.830 4751.280

IM SE 0.111 0.012 0.168 0.021 0.093

MC Sd 0.104 0.011 0.172 0.018 0.087

SL

MC Mean 2.007 0.999 1.425 0.801 1.012 -2360.530 4731.060 4756.510

IM SE 0.116 0.012 0.095 0.020 0.090

MC Sd 0.096 0.010 0.106 0.018 0.086

N

MC Mean 2.031 0.999 22.820 0.800 1.033 -3342.554 6695.108 6720.559

IM SE 0.392 0.040 0.397 0.008 0.035

MC Sd 0.313 0.032 6.086 0.050 0.259

5%

T

MC Mean 2.011 0.998 1.988 0.802 1.013 -2221.685 4453.371 4478.821

IM SE 0.112 0.012 0.170 0.021 0.094

MC Sd 0.106 0.011 0.171 0.018 0.086

SL

MC Mean 2.008 0.998 1.425 0.803 1.016 -2224.916 4459.832 4485.282

IM SE 0.117 0.012 0.096 0.020 0.091

MC Sd 0.098 0.010 0.106 0.018 0.085

N

MC Mean 2.300 0.988 16.115 0.800 1.040 -3038.035 6086.069 6111.519

IM SE 0.413 0.034 0.350 0.008 0.038

MC Sd 0.226 0.028 4.549 0.060 0.274

10%

T

MC Mean 2.023 0.997 1.972 0.801 1.010 -2152.751 4315.502 4340.953

IM SE 0.114 0.012 0.169 0.022 0.096

MC Sd 0.105 0.011 0.172 0.020 0.092

SL

MC Mean 2.016 0.997 1.421 0.801 1.013 -2156.934 4323.867 4349.318

IM SE 0.120 0.012 0.097 0.021 0.093

MC Sd 0.097 0.010 0.106 0.019 0.089

N

MC Mean 2.068 1.011 16.115 0.798 1.016 -2923.747 5857.494 5882.944

IM SE 0.419 0.034 0.375 0.009 0.040

MC Sd 0.203 0.028 4.570 0.060 0.267

20%

T

MC Mean 2.091 0.991 1.968 0.797 1.012 -1987.323 3984.646 4010.097

IM SE 0.129 0.013 0.171 0.024 0.106

MC Sd 0.105 0.010 0.169 0.021 0.101

SL

MC Mean 2.071 0.993 1.420 0.798 1.017 -1992.863 3995.727 4021.177

IM SE 0.134 0.013 0.099 0.023 0.102

MC Sd 0.097 0.010 0.108 0.020 0.096

N

MC Mean 1.627 1.051 16.496 0.788 0.976 -2687.424 5384.848 5410.299

IM SE 0.464 0.036 0.425 0.011 0.045

MC Sd 0.202 0.030 4.783 0.061 0.256

30%

T

MC Mean 2.290 0.974 1.998 0.796 1.055 -1804.398 3618.796 3644.246

IM SE 0.158 0.015 0.176 0.027 0.124

MC Sd 0.134 0.012 0.169 0.022 0.115

SL

MC Mean 2.262 0.976 1.421 0.796 1.056 -1811.364 3632.728 3658.178

IM SE 0.165 0.016 0.100 0.026 0.119

MC Sd 0.128 0.012 0.106 0.022 0.113

N

MC Mean 1.394 1.071 16.922 0.774 0.928 -2430.493 4870.987 4896.437

IM SE 0.538 0.039 0.486 0.013 0.051

MC Sd 0.274 0.035 4.975 0.063 0.250
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Figure 18 – Simulation study - Scenario 3. Conditional expectation of the censored values
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sq evaluated by the SAEM algorithm as a function of the true censored
simulated values y.

values y. As expected, the SAEM algorithm provides a satisfactory imputation for these
censored values when heavy-tailed distributions are used.

Figures 26, 27 and 28, given in Appendix B.2, show the convergence of the
SAEM algorithm for all the parameters and SMN distributions for this simulated dataset.
Observing these figures, the estimates converge swiftly to a neighborhood of the ML
estimates during the first 75 iterations for all models. The next few iterations ensure the
almost sure convergence of the sequence to these estimates.

4.4.2 Real Data - UTI Data
The application considered in this section is referred to a study of 72 perinatally

HIV-infected children (Saitoh et al., 2008). This dataset is describe in Section 1.2.

We consider the SMN-CR models with DEC structure defined in Subsection
4.2.1 to fit this dataset. We considered five di�erent correlation structures, namely the
uncorrelated structure (UNC), continuous-time autoregressive of order 1 (AR(1)), first-order
moving average (MA(1)), compound symmetric structure (CS) and damped exponential
correlation (DEC) (without fixing parameters „

1

and „
2

). Here, y
i

“ X
i

— ` ‘
i

where y
i

is
the log

10

HIV RNA for subject i from follow-up times, with t
1

“ 0, t
2

“ 1, t
3

“ 3, t
4

“
6, t

5

“ 9, t
6

“ 12, t
7

“ 18, and t
8

“ 24; and X
i

the design matrix.

For the Student’s-t, slash and contaminated normal models, the degrees of
freedom ‹ are assumed to be unknown but fixed. According to the AIC (or BIC) values,
the appropriate values of ‹ vary under di�erent types of correlation structures. Observing
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Table 14 – UTI data. Information criteria for the SMN-CR models under di�erent
structures.

Structure

Distribution Criteria DEC AR(1) MA(1) CS UNC

T

¸

max

-363.08 -406.98 -468.31 -364.21 -473.92
AIC 748.15 833.96 956.62 748.43 965.84
BIC 790.96 872.87 995.53 787.34 1000.86

‹ 2.3 2.1 2.1 2.3 2.1

SL

¸

max

-359.72 -403.08 -470.46 -360.90 -476.12
AIC 741.44 826.15 960.92 741.79 970.24
BIC 784.25 865.07 999.84 780.71 1005.26

‹ 0.8 0.7 1.0 0.8 1.0

CN

¸

max

-351.32 -396.56 -481.87 -353.37 -487.92
AIC 724.64 813.12 983.74 726.75 993.83
BIC 767.44 852.04 1022.66 765.66 1028.86

‹ (0.2,0.1) (0.3,0.1) (0.1,0.1) (0.2,0.1) (0.1,0.1)

N

¸

max

-411.93 -463.05 -516.52 -412.06 -524.17
AIC 845.87 946.11 1053.03 844.11 1066.34
BIC 888.68 985.02 1091.95 883.03 1101.37

‹ - - - - -

Table 14, the CN-CR model with ‹ “ p0.2, 0.1q and DEC structure outperforms all
other competitors. Moreover, for these models, the estimated values of ‹ are fairly small,
indicating a lack of adequacy of the normal assumption for the UTI data.

Table 15 reports the ML estimates and standard errors for the model parameters
from the four fitted SMN models under DEC structure . Note that the estimates of —

1

, —
2

,
and —

3

(the slope parameters corresponding to time points 0, 1, and 3 months) for the
SMN models are quite close to each other and those for the time points further away, i.e.,
—

4

. . . , —
8

, are also reasonably close to each other. The standard error estimates of — are
smaller than those in the normal model, indicating that the three heavy-tailed models are
capable of producing more precise estimates. The variance components are not comparable
since they are on di�erent scales. The regression coe�cients —

j

, for j “ 1, . . . , 8, increase
gradually under these models. This signifies the negative e�ect of the antiretroviral therapy
interruption on the viral load levels. In other words, the viral load increments consistently
along the time when the antiretroviral therapy begins to be interrupted. For our best
model (CN-CR), the convergence of the estimates obtained through the SAEM algorithm
are shown in Figure 29 (Appendix B.3). As can be seen, the convergence can be achieved
very quickly.

We are also interested in investigating the performance of the prediction for
future values described in Section 4.3. Toward this, we compare the predicted values under
the four fitted models, say, T-CR, SL-CR, CN-CR and N-CR with DEC structure. We
exclude the last two measurements of each individual in the datasets with more than 6
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Table 15 – UTI data. ML estimates with standard errors for the SMN-CR models under
DEC structure.

T SL CN N

Parameter Estimative SE Estimative SE Estimative SE Estimative SE

—1 4.040 (0.096) 4.020 (0.096) 3.993 (0.097) 3.625 (0.136)

—2 4.321 (0.107) 4.312 (0.107) 4.303 (0.111) 4.185 (0.178)

—3 4.354 (0.111) 4.344 (0.115) 4.332 (0.119) 4.259 (0.212)

—4 4.533 (0.115) 4.498 (0.117) 4.487 (0.119) 4.375 (0.201)

—5 4.675 (0.130) 4.649 (0.129) 4.638 (0.122) 4.579 (0.223)

—6 4.670 (0.147) 4.646 (0.141) 4.623 (0.139) 4.582 (0.243)

—7 4.688 (0.136) 4.670 (0.140) 4.657 (0.152) 4.688 (0.218)

—8 4.871 (0.183) 4.842 (0.189) 4.791 (0.206) 4.806 (0.378)

‡2
0.544 (0.139) 0.282 (0.065) 0.543 (0.100) 1.090 (0.134)

„1 0.812 (0.040) 0.820 (0.038) 0.823 (0.038) 0.700 (0.043)

„2 0.094 (0.083) 0.096 (0.082) 0.121 (0.085) 0.028 (0.071)

observations (total of 29 individuals). To evaluate the predictive accuracy, we compute
the mean absolute error (MAE) and the mean square error (MSE), defined as

MAE “ 1
m

ÿ

i,j

|y
ij

´ y˚
ij

| and MSE “ 1
m

ÿ

i,j

py
ij

´ y˚
ij

q2, (4.21)

where y
ij

is the original value and y˚
ij

is the predicted value, for i “ 1, . . . , 29, j “ 1, 2 and
m “ 58. Table 16 shows the comparison between the predicted values and real ones under
the SMN-CR models. We can see from these results that the CN-CR model outperforms
its competitors.

Table 16 – UTI data. Evaluation of the prediction accuracy for the SMN-CR models
under DEC correlation structure.

T SL CN N

MSE 0.219 0.227 0.197 0.240

MAE 0.357 0.361 0.340 0.383

In addition, for the CN-CR model (our best model), we present in Figure 19 a
comparison between the predicted values and the real ones considering the five di�erent
correlation structures. From this figure we can see that the CN-CR model with DEC
structure has a better performance in terms of prediction than the other ones.

4.4.3 Real Data - AIEDRP study
This study is taken from the AIEDRP program describe in Section 1.2. For

this data we consider the same model of Vaida and Liu (2009) and Matos et al. (2013b)
without the random e�ects. We fit a right-censored five-parameter SMN-NCR model with
DEC structure, as follows

y
i

“ gpÏ
i

, t
i

q ` ‘
i

, (4.22)
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Figure 19 – UTI data. Evaluation of the prediction performance for three random subjects,
considering the CN-CR model under di�erent correlation structures.

where Ï
i

“ A
i

—, with A
i

“ 1
5

, — “ p—
1

, . . . , —
5

qJ, and

gpÏ
i

, t
i

q “ eÏ1 ` eÏ2

1 ` expppt
i

´ eÏ3q{eÏ4q ` eÏ5pt
i

´ 50q. (4.23)

In this study, y
ij

is the log
10

of the viral load for subject i at time t
ij

. The
parameters Ï

1

and Ï
2

represent the subject-specific set-point values and decrease from
the maximum HIV-1 RNA. The location parameter Ï

3

indicates the time point at which
half of the change in HIV-1 RNA is attained, Ï

4

is a scale parameter modeling the rate of
decline and Ï

5

allows increasing the HIV-1 RNA trajectory after day 50. We adopted the
exponential function for each model parameter to avoid negative values.

Table 17 – AIEDRP data. Model selection criterion for the NCR model under DEC
structure.

Distribution

Criterion N T SL CN

¸
max

-769.54 -762.13 -762.46 -762.60

AIC 1555.07 1540.27 1540.91 1541.19

BIC 1592.85 1578.04 1578.68 1578.961

‹ - 10 2.4 (0.1,0.3)

As in the first real data, the degrees of freedom (‹) for the Student’s-t, slash
and contaminated normal models are assumed to be unknown but fixed. According to the
AIC (or BIC) values, the appropriate values of ‹ vary under di�erent types of correlation
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structures. For all SMN distribution (N, T, SL and CN), the DEC structure fitted better
than the others correlation structures. Observing Table 17, the T-NCR model with DEC
structure and ‹ “ 10 outperforms all the other SMN competitors.

Table 18 summarizes the ML estimates and standard errors for the model
parameters from the four fitted SMN models. As in the simulation study, the SE values
for the parameter estimates are obtained using the empirical information matrix. From
this table, the standard errors under the heavy-tailed models are smaller than the normal
one, reflecting that the heavy-tailed models produces more precise estimates.

Table 18 – AIEDRP data. ML estimates with standard errors for the SMN-NCR
models under DEC structure.

N T SL CN

Parameter Estimative SE Estimative SE Estimative SE Estimative SE

—1 1.580 0.021 1.590 0.017 1.588 0.018 1.587 0.018

—2 0.387 0.155 0.327 0.119 0.338 0.123 0.349 0.128

—3 3.543 0.034 3.541 0.025 3.536 0.026 3.528 0.027

—4 1.603 0.258 1.413 0.225 1.390 0.227 1.426 0.232

—5 -0.002 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002

‡2
0.733 0.061 0.642 0.064 0.477 0.045 0.645 0.058

„1 0.841 0.028 0.872 0.026 0.875 0.025 0.876 0.025

„2 0.342 0.064 0.383 0.070 0.389 0.068 0.394 0.067

9 230
0.3

0.6

0.9

1.2

1.5

0 100 200 300

Index

κ
i

Figure 20 – AIEDRP data. Estimated weight pŸ
i

for the T-NCR fit. The influential
observations are numbered.

It is well known that outlying observations may a�ect the estimation of the
parameters under the normality assumption. If we use the heavy-tailed distributions, the
SAEM algorithm allows one to accommodate discrepant observations attributing small
weights to them in the estimation procedure. The estimated weights ( pŸ

i

, i “ 1, . . . , 320)
for the T-NCR model with DEC structure (our best model) are presented in Figure 20.
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We found that the observations #9 and #230 seems to be possible outliers receiving small
weight.

Table 19 – AIEDRP data. Evaluation of the prediction accuracy for the T-NCR model
under di�erent correlation structures.

DEC AR(1) CS MA(1) UNC

MSE 0.212 0.516 0.280 0.640 0.639

MAE 0.323 0.539 0.395 0.618 0.618

To compare the performance of the prediction for future values, we compute
the predicted values under T-NCR model with five types of correlation structures (AR(1),
MA(1), CS, UNC, and DEC). As in the first application, we exclude the last two mea-
surements of each individual in the datasets with more than 6 observations (total of 36
individuals), namely i “ 1, . . . , 36, j “ 1, 2 and m “ 72. Table 19 shows the comparison
between the predicted values and real ones under the T-NCR model. The MAE and MSE
values indicate that the T-NCR model with DEC structure outperforms its competitors.

Besides, for the T-NCR model, we present in Figure 21 a comparison between
the predicted values and the real ones considering the five di�erent correlation structures.
It is clearly seen that the T-NCR model with DEC structure has a better performance in
terms of prediction than the other ones.
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Figure 21 – AIEDRP data. Evaluation of the prediction performance for three random
subjects, considering the T-NCR model under di�erent correlation structures.
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4.5 Conclusions
In this chapter, we have introduced a robust multivariate censored regression

model for longitudinal data under the SMN class of distributions, extending the recent work
by Garay et al. (2014) and Garay et al. (2015) to a multivariate context and a nonlinear
case. For modeling the autocorrelation existing among irregularly observed measures,
a damped exponential correlation structure was adopted as proposed by Muñoz et al.
(1992). The main advantage of the proposed SMN-NCR model is that it can reduce the
negative impact of distributional misspecification and outliers in the parameters estimation.
Moreover, the SMN class admits a convenient framework for the implementation of the
SAEM algorithm, leading to an e�cient ML estimation of the parameters.

We applied our methods to two AIDS studies and undertake a simulation study
to demonstrate the superiority of SMN-NCR model on the provision of more adequate
results when the available data have censored components. Furthermore, the simulation
results reveal that our method gives very competitive performance in terms of imputation
when the DEC structure is imposed. Therefore, it is noteworthy to mention that the use
of the SMN-NCR model with DEC structure can o�er a better fit, protection against
outliers, and more precise inferences.

Future extensions of the work include the use of scale mixtures of skew-normal
distributions (Lachos et al., 2010) to accommodate both skewness and heavy-tailed feature,
or the development of some diagnostics and tests for the model adequacy. Incorporating
measurement error models within our robust framework for related HIV viral load covariates
(namely, CD4 cell counts) is also part of our future research.
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5 Heavy-tailed longitudinal linear mixed mod-
els for multiple censored responses data

5.1 Introduction
According to Alder (2001), acquired immune deficiency syndrome (AIDS) is

defined as an illness characterised by the laboratory evidence of the human immunod-
eficiency virus (HIV) infection in the human body. This type of evidence is commonly
determined by using anti-HIV tests based on antibodies to HIV (HIV antigens) and also by
detecting HIV genome sequences through the polymerase chain reaction (PCR) technique.
The PCR amplification of HIV RNA is the most accurate way to detect and quantify the
virus present in blood. Moreover, PCR amplification also provides rapid access to the HIV
genome and can lead to characterisation of an HIV isolate to strain level (Mortimer and
Loveday, 2001).

However, this sophisticated molecular technique quantifies the viral load in blood
subjected to a limit of detection. In other words, assays based on the PCR amplification
presents a threshold values below or above which the measurements of the HIV RNA are
not quantifiable. For example, and as was mentioned by Barletta et al. (2004), the Roche
Amplicor HIV-1 Monitor Test (versions 1.0 and 1.5; Roche Molecular Systems, Basel,
Switzerland) presents a range of detection from 400 to 750,000 HIV-1 RNA copies per
milliliter when using the Standard Specimen Processing Procedure (200 µL of sample),
varying from 50 to 100,000 copies per milliliter when using the Ultrasensitive Specimen
Processing Procedure (500 µL of sample centrifuged at 23,600g for 1 hour to concentrate
virions) .

From the statistical viewpoint, the situation described above deals with the
problem of censored statistical models in which the observed response lies in a restricted
interval (to the left, right or both of them). Moreover, since the HIV data is generally
obtained from follow-up studies (AIDS clinical trials), censored linear and nonlinear
mixed e�ects models (see for example Wu, 2010, and references therein) and regression
models with a specific correlation structures on the error term (see Matos et al., 2016)
are considered to study in detail the e�ects of specific antiretroviral (ARV) therapies in
infected persons.

Generally, in the statistical literature those models considered a Gaussian
assumption for the random components of the model motivated by the computational
easiness in the parameter estimation (see Vaida and Liu, 2009). However in some cases,
specifically AIDS studies, such an assumption could not be realistic because the heavy-tailed
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behaviour of the data. In particular, atypical observations and/or the misspecification of the
parametric distributions for both random e�ects errors a�ect the likelihood based inference.
Recently, Matos et al. (2013b, 2015) have considered the use of Student-t distribution in
the context of censored linear and nonlinear mixed-e�ects (tLMEC/tNLMEC) models,
including influence diagnostics with di�erent perturbation schemes. Even though the
tLMEC and tNLMEC models have been used for the analysis of longitudinal data, they
are restricted to univariate censored repeated measures data.

In longitudinal studies, it is quite commonly to observe more than one series
of responses repeatedly measured on each subject across time. This type of data is the
so-called multivariate longitudinal data, being analyzed (in general) using the multivariate
linear mixed-e�ect (MLME) model proposed by Shah et al. (1997). As an extension
of this model, Wang (2013) proposed the multivariate t linear mixed model (tMLME),
which has been considered to be a robust approach for modeling multioutcome continuous
repeated measures in the presence of outliers or heavy-tailed noises. From the censoring
viewpoint, Wang et al. (2015) extended the tMLME allowing the analysis of multiple
longitudinal censored outcomes and heavy-tails, arising the censored multivariate t linear
mixed (tMLMEC) model. For estimating the parameters of the tMLMEC, an exact EM
algorithm for maximum likelihood (ML) estimation is developed based on the mean and
variance of a truncated multivariate Student-t distribution provided by Ho et al. (2012).

It is important to stress that a drawback of those proposals is that they are
not appropriate when the probability distribution of the errors and random e�ects terms
is not the same, causing that such models do not consider di�erent levels of heaviness in
the tails of the distributions of the random e�ects and errors respectively. Consequently,
our proposed method deals with this situation by considering the use of the class of scale
mixtures of normal (SMN) distributions Andrews and Mallows (1974), assuming that the
probability distributions of the error and random e�ects terms are di�erent but belonging
to the SMN class. This approach allows us to introduce more flexibility to the current
model proposed by Wang (2013), accommodating influential and/or outlying observations
generated by the misspecification of the distributions of the errors and/or random e�ects
terms.

The motivating dataset considered here is obtained from the AIDS clinical
trial – A5055 (Wang, 2013). This dataset was described in Section 1.2 and involves a total
of 44 infected patients with the human immunodeficiency virus type 1 (HIV-1), where
each patients were treated with one of the two potent antiretroviral (ARV) therapies.
In this study, we focus on investigating the longitudinal trajectories for RNA viral load
(in log-base-10 scale), denoted by log

10

(RNA), and CD4/CD8 ratio. As was mentioned
early, in this case the lower detection limit for RNA viral load is 50 copies/milliliter,
and therefore 33.5% (106 out of 316) of measurements lying below the limits of assay
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quantification (left-censored). Figure 22 shows the trajectories of the two immunologic
responses along the time visit.
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Figure 22 – A5055 data. Individual profiles for log
10

RNA and CD4/CD8 ratio under
two treatments.

A typical algorithm for maximum likelihood (ML) estimation in censoring
models involving the class of SMN distributions is the EM-type algorithm and its variants
(see, for example, Matos et al., 2013b). However, in some cases, EM-type algorithms are
not appropriate due to the computational di�culty in the E-step, which involves the
computation of expected quantities that cannot be obtained analytically. To deal with
this problem, Delyon et al. (1999) proposed a stochastic approximation version of the
EM algorithm called SAEM algorithm. This algorithm consists of replacing the E-step
by a stochastic approximation obtained using simulated data, while the M-step remains
unchanged. Jank (2006) showed that the computational e�ort of SAEM is much smaller
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and reaches convergence in just a fraction of the simulation size when compared to Monte
Carlo EM (MCEM). In this work, we develop a full likelihood approach for a censored
linear mixed model based on the SMN distribution, including the implementation of
the SAEM algorithm for ML estimation. Our approach also consider the prediction of
unobservable values of the response and the asymptotic standard errors of the parameter
estimates.

The rest of the chapter is organized as follows. The censored linear mixed-
e�ects model using the SMN class of distributions and the ML estimation procedure based
in the SAEM algorithm are described in Section 5.2. In Section 5.3, the estimation of
the likelihood function as well the computation of the approximated standard errors is
discussed. To examine the performance of our proposed methods, we present a small
simulation study in Section 5.4. Section 5.5 is devoted to the analysis of a the AIDS clinical
trial A5055. Finally, Section 5.6 closes the chapter with a short discussion of issues raised
by our study and some possible directions for a future research.

5.2 Linear mixed models for multiple censored responses data

5.2.1 The statistical model
In this section we introduce the SMN multivariate linear mixed model for

censored responses (the SMN-MLMEC model). Following Wang et al. (2015), suppose that
r outcome variables of interest together with several covariates are repeatedly measured
for each of n subjects at irregularly occasions over a period of time. For the ith subject
pi “ 1, . . . , nq, let Y

i

“ ry
i1

: . . . : y
ir

s be a n
i

ˆ r outcome matrix, where each column
vector y

ij

“ py
ij1

, . . . , y
ijn

i

qJ is a n
i

ˆ 1 vector of the jth outcome pj “ 1, . . . , rq over
occasion k pk “ 1, . . . , n

i

q. Let X
ij

be a n
i

ˆp
j

design matrix for fixed e�ects corresponding
to the jth outcome of the ith subject. Further, let Z

ij

, which is generally a subset of
X

ij

, be a n
i

ˆ q
j

design matrix for random e�ects. In a block-diagonal matrix form, we
write X

i

“ diagtX
i1

, . . . , X
ir

u, Z
i

“ diagtZ
i1

, . . . , Z
ir

u and E
i

“ r‘
i1

: . . . : ‘
ir

s, which is
a n

i

ˆ r matrix of within-subject errors, where the jth column ‘
ij

corresponds to the error
for the jth outcome y

ij

.

For writing the model we ignore the censoring scheme for the moment, using
the vecp¨q operator to stack all columns of a matrix vertically. Then, y

i

“ vecpY
i

q “
pyJ

i1

, . . . , yJ
ir

qJ, and ‘
i

“ vecpE
i

q “ p‘J
i1

, . . . , ‘J
ir

qJ, which are of dimension s
i

“ n
i

ˆ r. The
linear mixed-e�ect model for the ith subject can be written as

y
i

“ X
i

— ` Z
i

b
i

` ‘
i

, i “ 1, . . . , n, (5.1)

where — “ p—J
1

, . . . , —J
r

qJ is the p ˆ 1 vector of fixed e�ects associated with the design
matrix X

i

and b
i

“ pbJ
i1

, . . . , bJ
ir

qJ is the q ˆ 1 vector of random e�ects associated with
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the design matrix Z
i

, with p “
r

ÿ

j“1

p
j

and q “
r

ÿ

j“1

q
j

.

Instead of the usual assumption of normality for the errors and random e�ects,
we replace the multivariate normal distribution by the multivariate SMN distributions.
Therefore, the model can be expressed as

y
i

| b
i

ind.„ SMN
s

i

pX
i

— ` Z
i

b
i

, R
i

; H
1

q,
b

i

ind.„ SMN
q

p0, D; H
2

q, i “ 1, . . . , n. (5.2)

Using the stochastic representation (1.1), the hierarchical representation (four-stages) to
the model defined in (5.1) – (5.2) is given by

y
i

| b
i

, Ÿ
i

ind.„ N
s

i

pX
i

— ` Z
i

b
i

, Ÿ´1

i

R
i

q,
b

i

| ·
i

ind.„ N
q

p0, ·´1

i

Dq,
Ÿ

i

ind.„ H
1

p‹q
·

i

ind.„ H
2

p÷q, i “ 1, . . . , n, (5.3)

where D “ Dp–q “ rD
jj

1s is a q ˆ q dispersion matrix that depends on the unknown and
reduced parameters –, with D

jj

1 being a partition matrix, in particular for j “ j1, D
jj

is a covariance structure of random e�ects for the jth outcome, and for j ‰ j1, D
jj

1 is
the covariance for a pair of outcome variables. The variables Ÿ

i

and ·
i

are assumed to be
mutually independent, in which H

1

“ H
1

p¨, ‹q and H
2

“ H
2

p¨, ÷q are the cdf generator
that determines the specific SMN model that are chosen. We also assume that the within-
subject errors for the response at di�erent time points have serial correlation described by
the n

i

ˆ n
i

autocorrelation matrix �
i

“ �
i

p„; t
i

q. This matrix presents a parsimonious
dependence structure involving only parameter „ and measurement time t

i

of subject i,
and that for the multiple responses at a particular occasion are correlated with an r ˆ r

variance-covariance matrix � “ r‡2

jj

1s. Accordingly, R
i

“ � b �
i

, where b denotes the
Kronecker product.

Now, we include the censoring scheme, focusing on the left-censored case.
Specifically, we assume that the observations are of the form

y
ijk

§ V
ijk

if C
ijk

“ 1,

y
ijk

“ V
ijk

if C
ijk

“ 0, (5.4)

where V
ijk

represents the uncensored observation or limit of quantification and C
ijk

is
the censoring indicator whose value equals to one if censored observation and zero if
uncensored observation. The observed data for the i-th subject is represented by pV

i

, C
i

q,
where V

i

“ vecpV
i1

, . . . , V
ir

q is a s
i

vector and C
i

“ vecpC
i1

, . . . , C
ir

q is a s
i

ˆ 1 vector,
with V

ij

“ pV
ij1

, . . . , V
ijn

i

qJ and C
ij

“ pC
ij1

, . . . , C
ijn

i

qJ.
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For modelling the correlation structure between the observations of a specific
subject, we follow Muñoz et al. (1992) adopting a DEC (damped exponential correlation)
structure for �

i

defined in (1.3).

5.2.2 Maximum likelihood estimation
This section is devoted to the SAEM algorithm for ML estimation of the

parameter ◊ “ p—J, ‡J, –J, „J, ‹J, ÷JqJ in the SMN-MLMEC model defined previously.
In this case, – is the upper triangular parameters of D and ‡ is the upper triangular
parameters of �.

Consider the model defined in (5.1) – (5.4), Ÿ “ pŸ
1

, . . . , Ÿ
n

qJ, · “ p·
1

, . . . , ·
n

qJ,
V “ vecpV

1

, . . . , V
n

q, and C “ vecpC
1

, . . . , C
n

q such that we observe pV
i

, C
i

q for the i-th
subject. Treating y, b, Ÿ and · as missing data, and augmenting with the observed data
V, C, we set y

c

“ pVJ, CJ, yJ, bJ, ŸJ, · JqJ as the complete data. Therefore, the complete
data log-likelihood function for all subjects can be written, using the representation defined

in (5.3), as ¸
c

p◊|y
c

q “
n

ÿ

i“1

¸
i

p◊|y
c

q,

¸
c

p◊|y
c

q “
n

ÿ

i“1

rlog fpy
i

|b
i

, Ÿ
i

q ` log fpb
i

|·
i

q ` log h
1

pŸ
i

|‹q ` log h
2

p·
i

|÷qs

“ ´1
2

n

ÿ

i“1

log |R
i

| ´ 1
2

n

ÿ

i“1

Ÿ
i

py
i

´ X
i

— ´ Z
i

b
i

qJR´1

i

py
i

´ X
i

— ´ Z
i

b
i

q

´ 1
2

n

ÿ

i“1

log |D| ´ 1
2

n

ÿ

i“1

·
i

bJ
i

D´1b
i

`
n

ÿ

i“1

log h
1

pŸ
i

|‹q `
n

ÿ

i“1

log h
2

p·
i

|÷q ` K,

with K being a constant that does not depend on the parameter vector ◊ and
n

ÿ

i“1

n
i

“ N .

Given the current estimate (at the k-th iteration) ◊ “ p◊
pkq

, the conditional expectation of
the complete log-likelihood function is given by:

Q
´

◊|p◊pkq¯ “ E
”

¸
c

p◊|y
c

q|V, C, p◊
pkqı “

n

ÿ

i“1

Q
i

p◊|p◊pkqq,

where

Q
i

´

◊|p◊pkq¯ “ E
”

log h
1

pŸ
i

|‹q|V
i

, C
i

, p◊
pkqı ` E

”

log h
2

p·
i

|÷q|V
i

, C
i

, p◊
pkqı

´ 1
2 log | pDpkq| ´ 1

2E
”

·
i

bJ
i

R´1

i

b
i

|V
i

, C
i

, p◊
pkqı ´ 1

2

n

ÿ

i“1

log | pRpkq
i

|

´ 1
2E

”

Ÿ
i

py
i

´ X
i

— ´ Z
i

b
i

qJR´1

i

py
i

´ X
i

— ´ Z
i

b
i

q|V
i

, C
i

, p◊
pkqı
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“ y¸h
1i

pkq ` y¸h
2i

pkq ´ 1
2 log | pDpkq| ´ 1

2tr
´

y·b2

i

pkq
pD´1pkq

i

¯

´ 1
2

n

ÿ

i“1

log | pRpkq
i

|

´ 1
2

„

tr
´

yŸy2

i

pkq
pR´1pkq

i

¯

´ 2p—
pkqJ

XJ
i

pR´1pkq
i

xŸy
i

pkq ` 2p—
pkqJ

XJ
i

pR´1pkq
i

Z
i

yŸb
i

pkq

´ 2tr
´

ZJ
i

pR´1pkq
i

zŸyb
i

pkq¯ ` tr
´

ZJ
i

pR´1pkq
i

Z
i

yŸb2

i

pkq¯
` pŸ

i

pkq
p—

pkqJ
XJ

i

pR´1pkq
i

X
i

p—
pkq
⇢

,

with

y¸h
1i

pkq “ E
”

log h
1

pŸ
i

|‹q|V
i

, C
i

, p◊
pkqı

, y¸h
2i

pkq “ E
”

log h
2

p·
i

|÷q|V
i

, C
i

, p◊
pkqı

yŸy2

i

pkq
“ E

”

Ÿ
i

y
i

yJ
i

|V
i

, C
i

, p◊
pkqı

, xŸy
i

pkq “ E
”

Ÿ
i

y
i

|V
i

, C
i

, p◊
pkqı

,

yŸb2

i

pkq
“ E

”

Ÿ
i

b
i

bJ
i

|V
i

, C
i

, p◊
pkqı

, yŸb
i

pkq “ E
”

Ÿ
i

b
i

|V
i

, C
i

, p◊
pkqı

,

y·b2

i

pkq
“ E

”

·
i

b
i

bJ
i

|V
i

, C
i

, p◊
pkqı

, zŸyb
i

pkq “ E
”

Ÿ
i

y
i

bJ
i

|V
i

, C
i

, p◊
pkqı

,

pŸ
i

pkq “ E
”

Ÿ
i

|V
i

, C
i

, p◊
pkqı

.

(5.5)

Note that the conditional expectations proposed above do not have a closed
form. Consequently, we need to consider two intermediate steps, namely the simulation (S)
and approximation (A) steps. In this context, for the i-th subject, a Gibbs sampler step
is considered for generating samples from the full conditional distributions of the latent
variables py

i

, b
i

, Ÿ
i

, ·
i

q:
Step S1: Generate ycpk,lq

i

from fpyc

i

|Vc

i

, yo

i

, bpk,l´1q
i

, Ÿ
pk,l´1q
i

, ·
pk,l´1q
i

, p◊
pkqq considering a

partition of y
i

given by y
i

“ vecpyo

i

, yc

i

q with dimpyo

i

q “ so

i

, dimpyc

i

q “ sc

i

and so

i

` sc

i

“ s
i

,
where C

ijk

“ 0 for all elements in yo

i

, and 1 for all elements in yc

i

. In addition, let
V

i

, X
i

, Z
i

and R
i

also be partitioned as follows: V
i

“ vecpVo

i

, Vc

i

q, XJ
i

“ pXo

i

, Xc

i

q,

ZJ
i

“ pZo

i

, Zc

i

q, and R
i

“
˜

Roo

i

Roc

i

Rco

i

Rcc

i

¸

. Then, we have y
i

| b
i

, Ÿ
i

” y
i

| b
i

, Ÿ
i

, ·
i

, in

which y
i

| b
i

, Ÿ
i

„ N
s

i

pX
i

— ` Z
i

b
i

, Ÿ´1

i

R
i

q, where

yo

i

| b
i

, Ÿ
i

„ N
s

o

i

pXo

i

— ` Zo

i

b
i

, Ÿ´1

i

Roo

i

q and yc

i

| yo

i

, b
i

, Ÿ
i

„ N
s

c

i

pµ
i

, Ÿ´1

i

S
i

q, (5.6)

with µ
i

“ pXc

i

— ` Zc

i

b
i

q ` Rco

i

pRoo

i

q´1pyo

i

´ Xo

i

— ´ Zo

i

b
i

q and S
i

“ Rcc

i

´ Rco

i

pRoo

i

q´1Roc

i

.

Conditioning on the censoring information, we have that

fpyc

i

|Vc

i

, yo

i

, b
i

, Ÿ
i

, ·
i

q “ TN
s

c

i

pµ
i

, Ÿ´1

i

S
i

;A
i

q,

which is a truncated normal distribution with A
i

“ tyc

i

“ pyc

i1

, . . . , yc

is

c

i

qJ | yc

i1

§
V c

i1

, . . . , yc

is

c

i

§ V c

is

c

i

u. The observation ypk,lq
i

“ py
i1

, . . . , y
is

o

i

, y
cpk,lq
is

o

i

`1

, . . . , y
cpk,lq
is

i

q is a sam-
ple generated from a truncated normal distribution for the sc

i

censored cases and the
observed values (uncensored cases).

Step S2: Generate bpk,lq
i

from fpb
i

|ypk,lq
i

, Ÿ
pk,l´1q
i

, ·
pk,l´1q
i

, p◊
pkqq using the fact that

fpb
i

|y
i

, Ÿ
i

, ·
i

q “ N
q

p�
i

ZJ
i

R´1

i

Ÿ
i

py
i

´ X
i

—q, �
i

q,
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where �
i

“ pŸ
i

ZJ
i

R´1

i

Z
i

` ·
i

D´1q´1.

Step S3: Generate Ÿ
pk,lq
i

from fpŸ
i

|ypk,lq
i

, bpk,lq
i

, ·
pk,l´1q
i

, p◊
pkqq.

Step S4: Generate ·
pk,lq
i

from fp·
i

|ypk,lq
i

, bpk,lq
i

, Ÿ
pk,lq
i

, p◊
pkqq.

Remark: Note that, given y
i

| b
i

independent of ·
i

; b
i

independent of Ÿ
i

; and Ÿ
i

and ·
i

mutually independent, then we have that fpŸ
i

|y
i

, b
i

, ·
i

q9fpy
i

|b
i

, Ÿ
i

qfpŸ
i

q and
fp·

i

|y
i

, b
i

, Ÿ
i

q9fpb
i

|·
i

qfp·
i

q. Thus, for some particular cases it is possible to compute the
full conditional distributions of pŸ

i

|y
i

, b
i

, ·
i

q and p·
i

|y
i

, b
i

, Ÿ
i

q (see Tables 25 and 26 given
in Appendix C.1).

The Stochastic Approximation step is performed considering the sequence
pypk,lq

i

, bpk,lq
i

, Ÿ
pk,lq
i

, ·
pk,lq
i

q, l “ 1, . . . , m, at the k-th iteration, and replacing the conditional
expectations given in (5.5) by their corresponding stochastic approximations.

Step A:

yŸy2

i

pkq
“ yŸy2

i

pk´1q
` ”

k

˜

1
m

m

ÿ

l“1

Ÿ
pk,lq
i

ypk,lq
i

ypk,lqJ
i

´ yŸy2

i

pk´1q
¸

,

xŸy
i

pkq “ xŸy
i

pk´1q ` ”
k

˜

1
m

m

ÿ

l“1

Ÿ
pk,lq
i

ypk,lq
i

´ xŸy
i

pk´1q
¸

,

yŸb2

i

pkq
“ yŸb2

i

pk´1q
` ”

k

˜

1
m

m

ÿ

l“1

Ÿ
pk,lq
i

bpk,lq
i

bpk,lqJ
i

´ yŸb2

i

pk´1q
¸

,

yŸb
i

pkq “ yŸb
i

pk´1q ` ”
k

˜

1
m

m

ÿ

l“1

Ÿ
pk,lq
i

bpk,lq
i

´ yŸb
i

pk´1q
¸

,

zŸyb
i

pkq “ zŸyb
i

pk´1q ` ”
k

˜

1
m

m

ÿ

l“1

Ÿ
pk,lq
i

ypk,lq
i

bpk,lqJ
i

´ zŸyb
i

pk´1q
¸

,

y·b2

i

pkq
“ y·b2

i

pk´1q
` ”

k

˜

1
m

m

ÿ

l“1

·
pk,lq
i

bpk,lq
i

bpk,lqJ
i

´ y·y2

i

pk´1q
¸

,

pŸ
i

pkq “ pŸ
i

pk´1q ` ”
k

˜

1
m

m

ÿ

l“1

Ÿ
pk,lq
i

´ pŸ
i

pk´1q
¸

,

y¸h
1i

pkq “ y¸h
1i

pk´1q ` ”
k

˜

1
m

m

ÿ

l“1

log h
1

pŸpk,lq
i

|‹q ´ y¸h
1i

pk´1q
¸

,

y¸h
2i

pkq “ y¸h
2i

pk´1q ` ”
k

˜

1
m

m

ÿ

l“1

log h
2

p· pk,lq
i

|÷q ´ y¸h
2i

pk´1q
¸

.

As was mentioned earlier, an advantage of the SAEM algorithm is that, even
though it performs a MCMC E-step, it requires a small and fixed sample size, making it
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much faster than MCEM algorithm. Although some authors claim that m § 10 is large
enough we consider m “ 20 for being more conservative.

The conditional maximization step leads to the update of p◊
pkq

as follows:

p—
pk`1q “

˜

n

ÿ

i“1

pŸ
i

pkqXJ
i

pR´1pkq
i

X
i

¸´1

n

ÿ

i“1

XJ
i

pR´1pkq
i

ˆ

xŸy
i

pkq ´ Z
i

yŸb
i

pkq
˙

,

x‡2

jl

pk`1q
“

$

’

’

’

&

’

’

’

%

p
n

ÿ

i“1

n
i

q´1

n

ÿ

i“1

tr
´

p�´1pkq
i

xŸ‘pkq
ijl

¯

for j “ l,

p2
n

ÿ

i“1

n
i

q´1

n

ÿ

i“1

tr
”

p�´1pkq
i

´

xŸ‘pkq
ijl

` xŸ‘pkq
ilj

¯ı

for j ‰ l,

p„
pk`1q “ argmax

„Pp0,1qˆR`

"

´ r

2

n

ÿ

i“1

log |�
i

p„, t
i

q|12
n

ÿ

i“1

tr
„

´

p�pkq b �
i

p„, t
i

q
¯´1

yŸE
i

⇢*

,

pDpk`1q “ 1
n

n

ÿ

i“1

y·b2

i

pkq
,

p‹pk`1q “ argmax
‹

n

ÿ

i“1

y¸h
1i

pkqp‹q,

p÷pk`1q “ argmax
÷

n

ÿ

i“1

y¸h
2i

pkqp÷q,

where

yŸE
i

“ yŸy2

i

pkq
´ 2X

i

— xŸy
i

pkqJ ´ 2Z
i

zŸyb
i

pkqJ ` pŸ
i

pkqX
i

——JXJ
i

` 2X
i

—yŸb
i

pkqJ
ZJ

i

` pŸ
i

pkqX
i

——JXJ
i

` Z
i

yŸb2

i

pkq
ZJ

il

,

and for j, l “ 1, . . . , r,

xŸ‘pkq
ijl

“ yŸy2

i

pkq
rj:ls ´ xŸypkq

ij

—JXJ
il

´ yŸyb
pkq
irj:lsZJ

il

´ X
ij

—xŸypkqJ
il

` pŸ
pkq
ij

X
ij

——JXJ
il

` X
ij

—xŸb
pkqJ
il

ZJ
il

´ Z
ij

zŸyb
i

pkqJ
rl:js ` Z

ij

xŸb
pkq
ij

—JXJ
il

` Z
ij

yŸb2

i

pkq
rj:lsZJ

il

,

with xŸypkq
ij

being a n
i

ˆ1 subvector consisting of ppj ´1qn
i

`1qth to pjn
i

qth entries of xŸypkq
i

;
xŸb

pkq
ij

being a q
j

ˆ 1 subvector consisting of p
ÿ

v§pj´1q
q

v

` 1qth to
ÿ

v§j

q
v

th entries of xŸb
pkq
i

;

yŸy2

i

pkq
rj:ls being a n

i

ˆ n
i

submatrix consisting of the ppj ´ 1qn
i

` 1qth to pjn
i

qth rows and

the ppl ´ 1qs
i

` 1qth to pls
i

qth columns of yŸy2

i

pkq
; yŸyb

pkq
irj:ls is a s

i

ˆ q
l

submatrix consisting
of the ppj ´ 1qs

i

` 1qth to pjs
i

qth rows and the p
ÿ

v§pl´1q
q

v

` 1qth to
ÿ

v§l

q
v

th columns of

yŸyb
pkq
i

; and yŸb2

i

pkq
rj:ls is a q

j

ˆ q
l

submatrix consisting of p
ÿ

v§pj´1q
q

v

` 1qth to
ÿ

v§j

q
v

th rows

and p
ÿ

v§pl´1q
q

v

` 1qth to
ÿ

v§l

q
v

th columns of y·b2

i

pkq
.

Depending on the distribution for the conditional response vector and for
the random e�ects, we have close expressions for the parameters estimates p‹ and p÷. In
Appendix C.2 we present these expressions.
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Remark: If we consider that the parameters ‹ and ÷ associated with the mixture
variables Ÿ

i

and ·
i

respectively are known, we have that yŸy2

i

pkq
, xŸy

i

pkq and pŸ
i

pkq depend
on the minimal su�cient statistics, since the complete likelihood function belongs to the
exponential family. Therefore, the parameters estimates of the SAEM algorithm converges
as was mentioned by Kuhn and Lavielle (2005) and Samson et al. (2006). However, in this
work we consider these parameters to be unknown. Then yŸy2

i

pkq
, xŸy

i

pkq and pŸ
i

pkq do not
depend on minimal su�cient statistics and we can not guarantee the convergence of the
parameters estimates. To deal with this problem, we conduct a simulation study to show
the well behaviour of the SAEM algorithm.

5.2.3 Imputation of censored components
Let yc

i

be the true unobserved response vector for the censored components.
Now, as a by-product of the SAEM algorithm, the prediction of the censored components
is

ỹcpkq
i

“ ỹcpk´1q
i

` ”
k

˜

1
m

m

ÿ

l“1

ycpk,lq
i

´ ỹcpkq
i

¸

.

Note that ycpk,lq
i

is obtained from the Step S1 of the proposed SAEM algorithm.

5.3 Estimation of the likelihood and standard errors

5.3.1 Likelihood estimation
The likelihood function for the observed data can be computed as

L
o

p◊; yobsq “
n

π

i“1

ª

„

ª 8

0

fpy
i

|b
i

, Ÿ
i

; ◊qh
1

pŸ
i

|‹qdŸ
i

⇢

fpb
i

|◊qdb
i

.

Partitioning y
i

as in (5.6), and we have that

L
o

p◊; yobsq “
n

π

i“1

ª

„

ª 8

0

„
s

o

i

pyo

i

; Xc

i

— ´ Zc

i

b
i

, Ÿ´1

i

Roo

i

q�
s

c

i

pVc

i

; µ
i

, Ÿ´1

i

S
i

qh
1

pŸ
i

|‹qdŸ
i

⇢

ˆ fpb
i

|◊qdb
i

“
n

π

i“1

ª

gpy
i

|b
i

, Ÿ
i

; ◊qfpb
i

|◊qdb
i

(5.7)

where gpy
i

|b
i

, Ÿ
i

; ◊q “
ª 8

0

„
s

o

i

pyo

i

; Xc

i

— ´ Zc

i

b
i

, Ÿ´1

i

Roo

i

q�
s

c

i

pVc

i

; µ
i

, Ÿ´1

i

S
i

qh
1

pŸ
i

|‹qdŸ
i

.

The integral involved in (5.7) can be compute using a importance sampling
strategy for any continuous distribution f ‹. In fact, we have that

L
o

p◊; yobsq “
n

π

i“1

ª

gpy
i

|b
i

, Ÿ
i

; ◊q fpb
i

|◊q
f ‹pb

i

|◊qdb
i

,
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where the distribution f ‹ is the importance distribution. Consequently, L
o

p◊; yobs

i

q is
estimated through the following approximation

L
o

p◊; yobsq “
n

π

i“1

«

1
M

M

ÿ

m“1

gpy
i

|b
im

, Ÿ
i

; ◊q fpb
im

|◊q
f ‹pb

im

|◊q

�

,

with b
i1

, . . . , b
im

being draw from f ‹pb
i

|◊q.

5.3.2 Model selection criteria
Follow the idea of Zhang et al. (2014), our goal is to assess the contribution of

using the joint model, i.e, the model with multiple outcome. In this context, the model
selection criteria used in this work are

AIC “ 2 m ´ 2 ¸
max

and BIC “ m log N ´ 2 ¸
max

,

where m is the number of model parameters, N “
n

ÿ

i“1

n
i

and ¸
max

is the maximized

log-likelihood value.

To assess the contribution of using the joint model, we need to decompose both
model selection criteria into two parts. Let y‹

i1

“ pyJ
i1

, . . . , yJ
ir

‹qJ and y‹
i2

“ pyJ
ir

‹`1

, . . . , yJ
ir

qJ,
where y

i

“ py‹J
i1

, y‹J
i2

qJ and r‹ P t1, . . . , ru. Also let fpy‹
i1

; ◊‹
1

q be the marginal density of
y‹

i1

and fpy‹
i2

|y‹
i1

; ◊‹
2

; ◊‹
1

q be the conditional density of the partition y‹
i2

given y‹
i1

, where
¸p◊‹

1

; y
i

q and ¸p◊‹
2

; y
i

q are the log-likelihood function of y‹
i2

|y‹
i1

and y‹
i1

respectively (see
Appendix C.3 for more details about these conditional distributions). Then the AIC and
BIC has the following decomposition

AIC “ AICy‹
1

` AICy‹
2|y‹

1
and BIC “ BICy‹

1
` BICy‹

2|y‹
1
,

where AICy‹
1

“ 2 dimp◊‹
1

q ´ 2
n

ÿ

i“1

¸p p◊‹
1

; y
i

q, AICy‹
2|y‹

1
“ 2 dimp◊‹

2

q ´ 2
n

ÿ

i“1

¸p p◊‹
2

; y
i

q, BICy‹
1

“

dimp◊‹
1

q log N ´ 2
n

ÿ

i“1

¸p p◊‹
1

; y
i

q, BICy‹
2|y‹

1
“ dimp◊‹

2

q log N ´ 2
n

ÿ

i“1

¸p p◊‹
2

; y
i

q, and p◊‹
1

and p◊‹
2

are the estimates of ◊. Following Zhang et al. (2014), dimp◊‹
2

q “ dimp◊q ´ dimp◊‹
1

q.
Finally, we define the model assessment criteria

�AIC “ AICy‹
2,0

´ AICy‹
2|y‹

1
and �BIC “ BICy‹

2,0
´ BICy‹

2|y‹
1
, (5.8)

where AICy‹
2,0

and BICy‹
2,0

are calculated considering only y‹
2

. In this case, greater the
�AIC and �BIC better the model.

5.3.3 Empirical information matrix
The individual score can be determined as

spy
i

| ◊q “ B log fpy
i

| ◊q
B◊

“ E

ˆB¸
i

p◊ | y
c

q
B◊

| V
i

, C
i

, ◊

˙

,
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where ¸
i

p◊ | y
c

q is the complete data log-likelihood function formed from the i-th ob-
servation of y

c

(see Louis, 1982). Then, the empirical information matrix is given by

I
e

pp◊ | yq “
n

ÿ

i“1

ps
i

psJ
i

, (5.9)

where

ps
i

“ pps
i,—1 , . . . ,ps

i,—

p

,ps
i,‡

2
1
, . . . ,ps

i,‡

2
r˚ ,ps

i,–1 , . . . ,ps
i,–

q˚ ,ps
i,„1 ,ps

i,„2 ,ps
i,‹

,ps
i,÷

qJ. (5.10)

The elements of ps
i

are given in Appendix C.4.

5.4 Simulation study
In this section, we conduct an extensive simulation scheme to study the empirical

performance of the parameter estimates. We consider three types of models, namely, M1,
M2 and M3, where M1 is the model with the parameters ‹ and ÷ considered to be
unknown; M2 is the model considering ‹ and ÷ fixed at the true values and M3 is the
model considering ‹ and ÷ fixed at di�erent values than the true ones. Our goal in this
study is to compare how a�ected are the estimates when the parameters associated with
the mixture variables are either estimated or considered as fixed.

We generated 570 simulated data sets from a bivariate longitudinal model
with censored responses, considering the Slash distribution as the distribution of the
error term and random e�ect. Each data set includes the information of n “ 50 sub-
jects. The time points t

ij

’s at which the longitudinal measures were taken, were fixed at
p0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10q. On one hand, the design matrix of fixed e�ects for each outcome
X

ij

contains the intercept and time point t
ij

. On the other hand, the design matrix of
random e�ects Z

ij

contains only the intercept component. Therefore, X
i

“ I
2

b X
ij

and
Z

i

“ I
2

b Z
ij

, with I
2

being the identity matrix of dimension 2 ˆ 2. For the simulation, we
considered the following values of the model parameters:

— “

¨

˚

˚

˚

˚

˝

6
´0.2

4
´0.1

˛

‹

‹

‹

‹

‚

, � “
˜

4 2
2 4

¸

, D “
˜

2 1
1 2

¸

, �
i

“ �
i

pp0.8, 1q, t
i

q, ‹ “ 3 and ÷ “ 3.

Note that, the specification of �
i

generates an AR(1) structure. Additionally,
we considered two di�erent schemes of left censoring proportions, say, 10% and 20% in
each data set. In the case of the SAEM algorithm, the maximum number of iterations was
W “ 300 and a cut point c “ 0.25 was considered.

The model selection criteria (AIC and BIC) as well as the estimates of the
model parameters were registered for each simulation. Summary statistics such as the
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Monte Carlo mean estimate (MC mean), the mean of the approximate standard error
obtained through the information-based method described in Section 5.3.3 (IM SE) and
the Monte Carlo empirical standard error (MC Sd) are presented in Table 20. It can be
observed from Table 20 that, in all models, the fixed e�ects the estimates are closer to
the real values. Moreover, in general, the estimates of the variance components are over
estimated under the model M3. In fact, these estimates are always greater than those
obtained under models M1 and M2. A possible explanation for this fact is that model
M3 considers the parameters ‹ “ 8 and ÷ “ 8 fixed at di�erent values than the true ones.
Finally, after observe the Monte Carlo standard deviation (MC Sd) for the parameters of
interest, it can be concluded that the proposed asymptotic approximation for the variances
of the parameters obtained through Equation (5.9) generates similar results.

Table 20 – Simulation study. Parameter estimates based on 570 simulated samples. MC
mean, MC SD are the respective mean estimates and standard deviations. IM
SE is the average value of the approximate standard error obtained through the
information-based method. MC AIC and MC BIC are the arithmetic averages
of the respective model comparison measures.

M1 M2 M3

Parameters MC Mean IM SE MC SD MC Mean IM SE MC SD MC Mean IM SE MC SD

Censoring 10%

—10 (6.0) 5.922 0.497 0.419 5.927 0.483 0.420 5.937 0.493 0.426

—11 (-0.2) -0.193 0.055 0.054 -0.193 0.054 0.054 -0.193 0.056 0.054

—20 (4.0) 4.012 0.495 0.454 4.015 0.481 0.456 4.021 0.490 0.460

—21 (-0.1) -0.101 0.055 0.056 -0.101 0.054 0.056 -0.102 0.055 0.056

‡11 (4.0) 3.999 0.987 0.815 3.909 0.875 0.752 4.814 1.052 0.950

‡12 (2.0) 1.987 0.536 0.430 1.942 0.480 0.393 2.394 0.582 0.495

‡22 (4.0) 3.986 0.985 0.789 3.899 0.876 0.730 4.803 1.057 0.928

–11 (2.0) 2.099 3.727 1.039 2.002 1.185 0.928 2.590 1.517 1.249

–12 (1.0) 1.097 2.100 0.789 1.038 0.833 0.705 1.334 1.060 0.952

–22 (2.0) 2.109 3.723 0.974 1.993 1.178 0.829 2.563 1.498 1.132

„1 (0.8) 0.789 0.044 0.039 0.790 0.043 0.039 0.790 0.043 0.039

‹ (3.0) 3.684

÷ (3.0) 4.101

MC AIC 3505.619 3502.972 3511.686

MC BIC 3569.420 3556.957 3565.671

Censoring 20%

—10 (6.0) 5.925 0.484 0.442 5.929 0.470 0.442 5.944 0.479 0.447

—11 (-0.2) -0.191 0.055 0.047 -0.191 0.054 0.047 -0.191 0.055 0.048

—20 (4.0) 3.988 0.486 0.432 3.992 0.472 0.431 4.005 0.482 0.438

—21 (-0.1) -0.097 0.054 0.050 -0.097 0.053 0.050 -0.098 0.055 0.050

‡11 (4.0) 3.952 0.984 0.808 3.823 0.860 0.695 4.697 1.022 0.867

‡12 (2.0) 1.957 0.530 0.428 1.893 0.469 0.373 2.327 0.561 0.466

‡22 (4.0) 3.952 0.981 0.779 3.823 0.856 0.663 4.699 1.019 0.837

–11 (2.0) 2.036 3.575 0.962 1.860 1.140 0.828 2.378 1.439 1.095

–12 (1.0) 1.024 1.931 0.698 0.942 0.799 0.631 1.193 1.011 0.839

–22 (2.0) 2.129 3.703 0.975 1.950 1.150 0.847 2.490 1.451 1.128

„1 (0.8) 0.787 0.045 0.036 0.787 0.043 0.036 0.787 0.043 0.036

‹ (3.0) 4.003

÷ (3.0) 4.433

MC AIC 3381.656 3379.021 3386.550

MC BIC 3445.457 3433.007 3440.535

We also analyzed the absolute bias (Bias) and mean square error (MSE) of the
fixed e�ects and variance components estimates obtained from the models under study. In
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this case, our aim is to compare the Bias and MSE of the ML estimates from all models,
showing that they are the same when the parameters ‹ and ÷ (those parameters associated
with the mixture variables) are either estimated or considered as fixed. The Bias and MSE
measures are defined as

Bias “ 1
J

J

ÿ

j“1

|p◊pjq
i

´ ◊
i

| and MSE “ 1
J

J

ÿ

j“1

´

p◊
pjq
i

´ ◊
i

¯

2

, (5.11)

where p◊
pjq
i

is the ML estimate of the parameter ◊
i

for the j-th sample, j “ 1, . . . , J .

Table 21 show the bias and MSE of the parameter estimates. It can be seen
that these measures are similar in the case of the fixed e�ects for all models under study.
However, the Bias and MSE seem to be higher in the case of the variance components,
specifically in model M3. This fact could reveal the e�ect of the misspecification related
to parameters ‹ and ÷. It important to note that similar results are obtained for the two
levels of censoring proportions considered in the study.

Table 21 – Simulation study. Bias and MSE of the parameter estimates.

Censoring 10% Censoring 20%

Bias MSE Bias MSE

Parameters M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

—1 0.338 0.337 0.339 0.181 0.180 0.184 0.364 0.363 0.366 0.201 0.200 0.203

—2 0.044 0.044 0.044 0.003 0.003 0.003 0.039 0.039 0.039 0.002 0.002 0.002

—3 0.368 0.372 0.372 0.205 0.207 0.210 0.350 0.350 0.353 0.186 0.186 0.191

—4 0.044 0.044 0.044 0.003 0.003 0.003 0.040 0.040 0.040 0.002 0.002 0.003

‡11 0.643 0.612 0.997 0.659 0.570 1.559 0.648 0.588 0.888 0.655 0.514 1.237

‡12 0.332 0.311 0.506 0.184 0.156 0.399 0.343 0.317 0.450 0.185 0.150 0.324

‡22 0.630 0.596 0.989 0.618 0.539 1.500 0.619 0.559 0.869 0.608 0.470 1.188

–11 0.850 0.767 1.096 1.082 0.854 1.897 0.775 0.686 0.887 0.925 0.704 1.340

–12 0.627 0.563 0.789 0.627 0.494 1.011 0.545 0.500 0.656 0.487 0.400 0.740

–22 0.775 0.682 0.991 0.953 0.681 1.589 0.774 0.676 0.948 0.965 0.719 1.511

„1 0.032 0.032 0.032 0.002 0.002 0.002 0.030 0.030 0.030 0.001 0.001 0.001

Finally, Figure 23 shows the box plots corresponding to the parameter estimates
over the 570 simulated datasets. Note that, the estimates for the three models under study
are, in general, equivalents. However, the estimates of variance components obtained from
models M1 and M2 seem to be more close to the true values than those obtained under
model M3. Similar results are obtained after the analysis of the data with 10% of censoring
(see Figure 30 in Appendix C.5).
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Figure 23 – Simulation study: (20% censored). Boxplots of the parameter estimates.
Dotted lines indicate the true parameter value.
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5.5 Analysis of A5055 clinical trial
This section illustrates the performance of the proposed methods with the

analysis of a HIV dataset, previously analyzed by (Wang, 2013). Specifically, we study the
HIV viral load data from clinical trial study A5055, considering two di�erent correlation
structures, namely the uncorrelated structure (UNC) and damped exponential correlation
(DEC); and di�erent distributions belonging to the SMN class. As was mentioned in the
Introduction, the dataset consists of 44 HIV-1 infected patients treated with two potent
antiretroviral therapies (treatment 1 and treatment 2). The viral load was quantified on
days 0, 7, 14, 28, 56, 84, 112, 140, and 168 of follow-up for each patient, the immunologic
marker CD4 and CD8 were also measured. The dataset includes 316 observations, where
the viral load detectable limit is 50 copies/mL, and 106 out of 316 (33 %) of all viral load
measurements are below the detection limit.
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Figure 24 – A5055 data. Histogram of the CD4/CD8 ratio (left panel) and histogram of
the log CD4/CD8 (right panel).

Before fitting the model, we applied a log transformation to the ratio CD4/CD8
in order to generate a positively skewed distribution. Figure 24 shows the histogram for
the variable CD4/CD8 and log transformation of CD4/CD8.

Let y
i1k

and y
i2k

be log
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(RNA) and log(CD4/CD8), respectively, for subject i

(i “ 1, . . . , 44) measured roughly at day
ik

. The model considered for modeling the A5055
dataset is given bt

y

i1k
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, (5.12)
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“ —
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i

ˆ t
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` b
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, (5.13)

where t
ik

“ day
ik

{7 (week), for k “ 1, . . . , s
i

, treat
i

is a treatment indicator (“ 0 for
treatment 1; “ 1 for treatment 2), t0.5

ik

is the square root at time t
ik

, and b
ij0

and b
ij1

are
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the random intercept and random slope, respectively, for y
ijk

, j “ 1, 2.

Table 22 – A5055 data. Information criteria for the SMN-MLMEC models under DEC
structure.

Distribution ‘ / Distribution b

N/N SL/N T/N N/SL N/T SL/SL SL/T T/SL T/T
AIC 789.85 742.18 739.59 791.98 792.29 744.47 744.54 741.85 741.51
BIC 896.62 853.41 850.81 903.20 903.51 860.14 860.21 857.52 857.19

To specify the distribution of the error term and the random e�ects, we have
considered many combinations of possibles distributions. Table 22 shows the AIC and
BIC values obtained for these combinations. From this table, we conclude that the best
model is the model considering the Student-t (T) distribution for the error and Normal
(N) distribution for the random e�ects.

Table 23 – A5055 data. ML estimates with standard errors for the SMN-LMMC model
under the Student-t/Normal distribution.

Fixed e�ects Between-subject variances Within-subject variances

Structure Parameters Estimate SE Parameters Estimate SE Parameters Estimate SE

DEC

—10 3.743 0.134 d11 0.1446 0.0829 ‡11 0.409 0.076

—11 0.130 0.026 d21 0.0011 0.0133 ‡21 -0.039 0.020

—12 -0.005 0.067 d22 -0.0884 0.1182 ‡22 0.050 0.011

—13 -0.957 0.098 d31 -0.0011 0.0033 „1 0.704 0.065

—14 -0.007 0.025 d32 0.0034 0.0027 „2 0.632 0.131

—20 -1.284 0.077 d33 -0.0122 0.0116 ‹ 4.737 0.003

—21 0.005 0.005 d41 -0.0004 0.0004

—22 0.252 0.084 d42 0.2727 0.0861

—23 -0.003 0.007 d43 0.0008 0.0015

d44 0.0001 0.0001

loglik -344.79 AIC 739.59 BIC 850.81

UNC

—10 3.718 0.135 d11 0.4089 0.1463 ‡11 0.263 0.053

—11 0.129 0.026 d21 -0.0112 0.0153 ‡21 -0.024 0.012

—12 0.003 0.091 d22 -0.0964 0.1251 ‡22 0.028 0.005

—13 -0.955 0.075 d31 0.0002 0.0030 ‹ 4.340 0.004

—14 -0.008 0.027 d32 0.0054 0.0029

—20 -1.278 0.076 d33 -0.0132 0.0116

—21 0.005 0.004 d41 -0.0006 0.0004

—22 0.286 0.081 d42 0.2953 0.0785

—23 -0.006 0.006 d43 0.0002 0.0015

d44 0.0001 0.0001

loglik -357.97 AIC 761.94 BIC 864.26

Table 23 presents the ML estimates of the parameters of interest under the
best model, considering two di�erent correlation structure namely, the uncorrelated (UNC)
and DEC structure. This table also presents the corresponding standard errors of the
parameters estimates. It can be observed that, according to the AIC or BIC values, the
model with DEC structure provides a much improved model fit overcoming the one under
the UNC structure. In fact, the maximum log-likelihood was -357.97 for the UNC and
-344.79 for the DEC structure, which gives a likelihood ratio statistic of 26.36 (p-value
† 0.0001). Consequently, the model with DEC structure fits the data substantially better
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than the model with UNC structure. Moreover, for those models, the estimated values of ‹

are fairly small, indicating a lack of adequacy of the normal assumption for the error term.

Note that, for the best model (T/N-MLMEC with DEC structure), the estimates
of —

11

and —
21

(0.130, 0.005) reveal that RNA viral loads and the log(CD4/CD8) change
over the time. From the estimate of —

22

(0.252) we conclude that patients receiving di�erent
treatment have di�erence on baseline log(CD4/CD8), while from the estimate -0.005 of
—

12

we do not have significant di�erence on baseline RNA viral loads. From the estimates
of treatment and time iteration (—

14

, —
23

), the patients receiving treatment 2 exhibit
little decaying quantities on log

10

RNA than those receiving treatment 1 by an expected
0.007 unit per week, and less growing quantities on log(CD4/CD8) than those receiving
treatment 2 by an expected 0.003 unit per week. For our best model, the convergence of
the estimates obtained through the SAEM algorithm are shown in Appendix C.6 (Figures
31, 32 and 33). As can be seen, the convergence can be achieved very quickly.

Table 24 – A5055 data. Decomposition of AIC and BIC for the best SMN-MLMEC

model.

AIC 739.59 BIC 850.81
AICy‹

2|y‹
1

92.65 BICy‹
2|y‹

1
158.80

AICy‹
2,0

125.26 BICy‹
2,0

166.58

�AIC 32.61 �BIC 7.77

Table 24 shows the AIC and BIC decomposition described in Subsection 5.3.2.
We can see from these measures (�AIC and �BIC) that the contribution of considering a
joint model (log(CD4/CD8) with RNA viral load) is significative.

5.6 Conclusions
In this work, we have introduced a robust multivariate linear mixed model for

multiple censored responses based on the class of SMN distributions, extending the recent
work proposed by Wang et al. (2015). For modeling the autocorrelation existing among
irregularly observed measures, a damped exponential correlation structure was adopted as
proposed by Muñoz et al. (1992). The main advantage of the proposed SMN-MLMEC

model is that it can reduce the negative impact of distributional misspecification and
outliers in the parameters estimation. Moreover, the SMN class admits a convenient
framework for the implementation of the SAEM algorithm, leading to an e�cient ML
estimation of the parameters. An additional characteristic of our proposed model is that
it allows to consider di�erent distributions for the error terms, thereby overcoming the
foregoing limitation of the MLMEC model and broadening the scope of censored mixed
models. Based in Zhang et al. (2014), we also propose a decomposition of the AIC and BIC
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criteria, which was shown to be very e�ective to assess the e�ect of the joint modelling of
censored outcomes. The computing code is available from the authors upon request.

Although the SMN-MLMEC considered here has shown great flexibility for
modeling symmetric data, its robustness against outliers can be seriously a�ected by
the presence of skewness. Recently, Bandyopadhyay et al. (2012) proposed a remedy to
accommodate skewness and heavy- tails simultaneously in the context of LMEC models
by using scale mixtures of skew-normal (SMSN) distributions. We conjecture that our
methods can be used under MLMEC models and should yield satisfactory results at the
expense of additional complexity in the implementation. An in-depth investigation of such
extensions is beyond the scope of the present work, but it is an interesting topic for further
research.
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6 Final Considerations

In this thesis, we discuss a frequentist approach to model censored responses
under the class SMN distributions, which is a generalization of the works by Matos et al.
(2013a), Matos et al. (2013b), Garay et al. (2014), Wang et al. (2015), among others. The
class of SMN distributions, proposed by Andrews and Mallows (1974), is attractive since
it has a stochastic representation for easy implementation of ML algorithms and it also
facilitates the study of many useful properties. This extension result in a flexible class
of models for robust estimation since it contains distributions such as the normal, the
Student- t, slash and contaminated normal distribution.

The EM algorithm (Dempster et al., 1977) and a stochastic approximation of
the EM (SAEM) algorithm (Delyon et al., 1999) was developed to obtain the maximum
likelihood estimates for the parameters of the models. Furthermore, the standard errors of
the fixed e�ects and predictions of unobservable values of the response are obtained as a
by-product. We also applied our methods to four AIDS real data and undertake several
simulation studies to demonstrate the proposed methods.

The proposed methods and techniques can be extended to another general
framework, such as measurement error models, semiparametric regression models, spatial
models, spatial and temporal models, among many others. An in-depth investigation of
such extensions is certainly an interesting topic for future research. Although all models
considered in this thesis has shown great flexibility for modelling symmetric data, it can
be seriously a�ected by the presence of skewness. Recently, Bandyopadhyay et al. (2012)
proposed a remedy to accommodate skewness and heavy-tailedness simultaneously in
the context of LMEC models by using scale mixtures of skew-normal distributions. The
models presented in this thesis can be extended to incorporate this class of distributions
and become interesting topics of future researches.
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APPENDIX A – Supplementary Material for
Chapter 3

A.1 :Qpp◊|p◊q is a block-diagonal matrix
From the EM-algorithm, we have BQpp◊|p◊q{B◊
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and hence, the matrix :Qpp◊|p◊q is block-diagonal.

A.2 Equivalence of GD1
i and the local influence based on the case

weights scheme

For the i-th subject, the normal curvature is given by C
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Hence, from GD1

i

p◊q “ 9Qrispp◊qJt´ :Qpp◊|p◊qu´1 9Qrispp◊q, i “ 1, . . . , n, we have that C
i

“
2GD1

i

, and consequently GD1

i

is equivalent to the local influence based on the case weights
scheme.



129

APPENDIX B – Supplementary Material for
Chapter 4

B.1 Proof of Proposition 4.1

Proof. Let Ÿpu
i
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1
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i
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i
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(a) For the multivariate normal distribution:
The proof is straightforward since U is degenerated in 1.

(b) For the multivariate Student’s-t distribution:
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It follows from Lemma 1 of Prates et al. (2014) that

L
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(c) For the multivariate contaminated normal distribution:
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B.2 Complementary results of simulation study

Scenario 1: Absolute bias of parameter estimates in the SMN-CR model
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Figure 25 – Simulation study - Scenario 1. Absolute bias of the parameter estimates in the
SMN-CR model under 10% of censoring and di�erent samples sizes. The solid line
(blue) represents the T-CR model, the dotted line (red) represents the N-CR model
and the dotdashed line (green) represents the SL-CR model.
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Scenario 3: Convergence of the parameters estimates
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Figure 26 – Simulation study - Scenario 3. Convergence of the SAEM parameters estimates
for the T-CR model.
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Figure 27 – Simulation study - Scenario 3. Convergence of the parameters estimates for the
SL-CR model.
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Figure 28 – Simulation study - Scenario 3. Convergence of the SAEM parameters estimates
for the N-CR model.
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B.3 Complementary results of the UTI data: convergence of the
parameters estimates
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Figure 29 – UTI data. Convergence of the SAEM parameters estimates.
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C.1 Full conditional distributions
Table 25 – Full conditional distributions of Ÿ

i

|y
i
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i
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i

.

Distribution of ‘
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Distribution of Ÿ
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T
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Table 26 – Full conditional distributions of ·
i
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Distribution of b
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C.2 Maximum likelihood estimation
In this section, we propose the derivation of the parameters estimates, p‹ and

p÷, for the some particular distributions. To find the estimates of p‹ and p÷, we just need to
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solve
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We replace the conditional expectations, pŸ
i

, zlog Ÿ
i

, p·
i

and zlog ·
i

, by the stochastic
approximations described in Section 5.3.
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C.3 AIC and BIC decomposition
Let y‹
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C.4 Empirical information matrix
The elements of ps
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in Equation (5.10) are given by
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As was showed in Appendix C.2, for computing ps
i,‹

and ps
i,÷

, we need to
define the distribution of the error term and random e�ect. For the Student-t and Slash
distribution, we have that:
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‚ If the response vector have Student-t distribution,
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;

‚ If the random e�ects have Slash distribution,
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.
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C.5 Complementary results of the simulation study
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Figure 30 – Simulation study: Boxplots of the parameter estimates. Dotted lines indicate
the true parameter value. The censoring proportion considered is 10%.
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C.6 Complementary results of the aplpication: convergence of the
parameters estimates
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ANNEX A – Multivariate Measurement
Error Models Based on Student-t Distribution

under Censored Responses

Abstract

Measurement error models constitute a wide class of models, that include linear and
nonlinear regression models. They are very useful to model many real life phenomena,
particularly in the medical and biological areas. The great advantage of these models
is that, in some sense, they can be represented as mixed e�ects models, allowing to us
the implementation of well-known techniques, like the EM-algorithm for the parameter
estimation. In this work, we consider a class of multivariate measurement error models
where the observed response and/or covariate are not fully observed, i.e., the observations
are subject to certain threshold values below or above which the measurements are not
quantifiable. Consequently, these observations are considered censored. We assume a
Student-t distribution for the unobserved true values of the mismeasured covariate and
the error term of the model, providing a robust alternative for parameter estimation. Our
approach relies on a likelihood-based inference using the EM-algorithm. The proposed
method is illustrated through simulation studies and the analysis of a dataset consisting
on the measurements of the testicular volume of 42 adolescents.

A.1 Introduction
Measurement error – hereafter ME – models (also known as error-in-variables

models) are defined as regression models where the covariates cannot be measured/observed
directly, or are measured with a substantial error. From a practical point of view, such
models are very useful because they take into account some notions of randomness inherent
to the covariates. For example, in AIDS studies, linear and nonlinear mixed-e�ects models
are typically considered to study the relationship between the viral load (HIV-1 RNA)
measures and CD4 (T-cells) cell count. However, as pointed out by many authors (see
for instance Wu (2010); Bandyopadhyay et al. (2015), among others), this covariate is
measured (in general) with substantial error. This is because, in most HIV clinical trials,
cell counts are measured periodically with a substantial amount of variability.

A wide variety of proposals exist in the statistical literature trying to deal with
the presence of ME in multivariate data. For example, Carroll et al. (1997) proposed a
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generalized linear mixed ME model and Buonaccorsi et al. (2000) (see also Dumitrescu
(2010)) studied estimation of the variance components in a linear mixed-e�ect model
with ME in a time varying covariate. Zhang et al. (2011) introduced a multivariate ME
model including the presence of zero inflation. Recently, Abarin et al. (2014) proposed a
method of moments for the parameter estimation in the linear mixed-e�ect with ME model.
Moreover, Cabral et al. (2014) studied a multivariate ME model using finite mixtures of
skew Student-t distributions. A comprehensive review of ME models can be found in the
books of Fuller (1987), Cheng and Van Ness (1999), Carroll et al. (2006) and Buonaccorsi
(2010).

Although many models for multivariate data consider the existence of mis-
measured covariates, many of them do not consider censored observations or detection
limits for the response variable. This aspect is relevant, since in many studies the observed
response is subject to maximum/minimum detection limits. For that reason, clearly there
is a need for a new methodology that takes into account censored responses in multivariate
data and mismeasured covariates at the same time. We propose an approach where the
random observational errors and the unobserved latent variable are jointly modeled by
a Student-t distribution, which has heavier tails than the normal one. Besides this, our
estimation approach relies on an exact EM-type algorithm, providing explicit expressions
for the E and M steps, obtaining as byproduct the asymptotic covariance of the maximum
likelihood estimates. To illustrate the applicability of the method, we analyze a real dataset
consisting of measurements of the testicular volume of 42 adolescents using five di�erent
techniques.

The work is organized as follows. Section A.2 presents some results about the
multivariate Student-t distribution, focusing on its truncated version. Section A.3 proposes
the ME model for censored multivariate responses under the Student-t distribution. Sections
A.4 and A.5 present the likelihood-based estimation and standard errors of the parameter
estimates in the proposed model via an EM-type algorithm, respectively. The analysis of
a real dataset is presented in Section A.6. Section A.7 presents the results of simulation
studies conducted to examine the performance of the proposed method with respect to the
asymptotic properties of the ML estimates, and the consequences of the inappropriateness
of the normality assumption. Finally, the work closes with some conclusions in Section A.8

A.2 The multivariate Student-t distribution and truncated related
ones

We say that the random vector Y : p ˆ 1 has a Student-t distribution with
location vector µ, dispersion matrix � and ‹ degrees of freedom, when its probability
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density function (pdf ) is given by

t
p

py|µ, �, ‹q “ �pp`‹

2

q
�p‹

2

qfip{2

‹´p{2|�|´1{2

ˆ

1 ` d�py, µq
‹

˙´pp`‹q{2

, (A.1)

where �p¨q is the standard gamma function and

d�py, µq “ py ´ µqJ�´1py ´ µq,

is the Mahalanobis distance. The cumulative distribution function (cdf ) of Y is denoted
by T

p

p¨ | µ, �, ‹q. If ‹ ° 1, µ is the mean of Y, and if ‹ ° 2, ‹p‹ ´ 2q´1� is its covariance
matrix. We use the notation Y „ t

p

pµ, �, ‹q.
It is possible to show that Y admits the stochastic representation

Y “ µ ` U´1{2Z, Z „ N
p

p0, �q, U „ Gammap‹{2, ‹{2q, (A.2)

where Z and U are independent, and Gammapa, bq denotes the gamma distribution with
mean a{b. As ‹ tends to infinity, U converges to one with probability one and Y is
approximately distributed as a N

p

pµ, �q distribution. From this representation we can
easily deduce that an a�ne transformation AY`b has a t

q

pAµ`b, A�AJ, ‹q distribution,
where A is a q ˆ p matrix and b is a q´dimensional vector. For a reference with extensive
material regarding the multivariate Student-t distribution, see Kotz and Nadarajah (2004).

The following result shows that the Student-t family of distributions is closed
under marginalization and conditioning. The proof can be found in (Matos et al., 2013b,
Prop. 1).

Proposição A.1. Let Y „ t
p

pµ, �, ‹q. Consider the partition Y “ pYJ
1

, YJ
2

qJ
, with

Y
1

: p
1

ˆ 1 and Y
2

: p
2

ˆ 1. Accordingly, consider the partitions µ “ pµJ
1

, µJ
2

qJ
and

� “ p�
ij

q, i, j “ 1, 2. Then

(i) Y
1

„ t
p1pµ

1

, �
11

, ‹q,

(ii) Y
2

|Y
1

“ y
1

„ t
p2pµ

2.1

, r�
22.1

, ‹ ` p
1

q,

where

µ
2.1

“ µ
2

` �
21

�´1

11

py
1

´ µ
1

q, r�
22.1

“ ‹ ` d�11py
1

, µ
1

q
‹ ` p

1

�
22.1

, and

�
22.1

“ �
22

´ �
21

�´1

11

�
12

.

Let Y „ t
p

pµ, �, ‹q and D be a Borel set in Rp. We say that the random
vector Z has a truncated Student-t distribution on D when Z has the same distribution as
Y|pY P Dq. In this case, the pdf of Z is given by

Tt
p

pZ|µ, �, ‹;Dq “ t
p

pZ|µ, �, ‹q
P pY P Dq IDpZq,
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where IDp¨q is the indicator function of D, that is, IDpZq “ 1 if Z P D and IDpZq “ 0
otherwise. We use the notation Z „ Tt

p

pµ, �, ‹;Dq. If D has the form

D “ tpx
1

, . . . , x
p

q P Rp; x
1

§ d
1

, . . . , x
p

§ d
p

u, (A.3)

then we use the notation pY P Dq “ pY § dq, where d “ pd
1

, . . . , d
p

qJ. In this case,
P pY § dq “ T

p

pd|µ, �, ‹q. Notice that we can have d
i

“ `8, i “ 1, . . . , p.

The following propositions are crucial to obtain the expectations in the E step
of the EM type algorithm, which will be used to compute maximum likelihood estimates of
the parameters in the model proposed in this work. Proofs can be found in (Matos et al.,
2013b, Prop. 2 and 3). We will use the notations Zp0q “ 1, Zp1q “ Z and Zp2q “ ZZJ.

Proposição A.2. Let Z „ Tt
p

pµ, �, ‹;Dq, where D is as in (A.3). Then, for k “ 0, 1, 2,

E
„ˆ

‹ ` p

‹ ` d�pZ, µq

˙

r

Zpkq
⇢

“ c
p

p‹, rqT
p

pd|µ, �˚, ‹ ` 2rq
T

p

pd|µ, �, ‹q ErYpkqs, (A.4)

where ‹ ` 2r ° 0 and

Y „ Tt
p

pµ, �˚, ‹ ` 2r;Dq, (A.5)

�˚ “ ‹

‹ ` 2r
�,

c
p

p‹, rq “
´‹ ` p

‹

¯

r

ˆ

�ppp ` ‹q{2q�pp‹ ` 2rq{2q
�p‹{2q�ppp ` ‹ ` 2rq{2q

˙

.

Observe that the computation of the expectation on the left side of (A.4) is
reduced to the computation of the moments of the truncated Student-t distribution in (A.5).
These moments are available in closed form in Ho et al. (2012) and the implementations
were done using the R package TTmoment(), available on CRAN.

Proposição A.3. Let Z „ Tt
p

pµ, �, ‹;Dq, where D is as in (A.3). Consider the partition

Z “ pZJ
1

, ZJ
2

qJ
, with Z

1

: p
1

ˆ 1 and Z
2

: p
2

ˆ 1. Accordingly, consider the partitions

µ “ pµJ
1

, µJ
2

qJ
and � “ p�

ij

q, i, j “ 1, 2. Then ,

E
„ˆ

‹ ` p

‹ ` d�pZ, µq

˙

r

Zpkq
2

ˇ

ˇZ
1

“ Z
1

⇢

“ h
p

pp
1

, ‹, rq
p‹ ` d�11pZ

1

, µ
1

qqr

ˆ T
p2pd

2

|µ
2.1

, r�˚
22.1

, ‹ ` p
1

` 2rq
T

p2pd
2

|µ
2.1

, r�
22.1

, ‹ ` p
1

q
ErYpkqs,

where ‹ ` p
1

` 2r ° 0, d
2

“ pd
p1`1

, . . . , d
p

qJ
,

Y „ Tt
p2pµ

2.1

, r�˚
22.1

, ‹ ` p
1

` 2r;D
2

q,
D

2

“ tpx
p1`1

, . . . , x
p

q P Rp2 ; x
p1`1

§ d
p1`1

, . . . , x
p

§ d
p

u,

r�˚
22.1

“ ‹ ` d�11pZ
1

, µ
1

q
‹ ` p

1

` 2r
�

22.1

,

h
p

pp
1

, ‹, rq “ p‹ ` pqr

ˆ

�ppp ` ‹q{2q�ppp
1

` ‹ ` 2rq{2q
�ppp

1

` ‹q{2q�ppp ` ‹ ` 2rq{2q

˙

,

µ
2.1

, �
22.1

and

r�
22.1

are given in Proposition A.1.
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A.3 Model specification
Let Y

i

“ pY
i1

, . . . , Y
ir

qJ be the vector of responses for the ith experimental
unit, where Y

ij

is the jth observed response of unit i (for i “ 1, . . . , n and j “ 1, . . . , r).
Let X

i

be the ith observed value of the covariate and x
i

be the unobserved (true) covariate
value for unit i. Following Barnett (1969), the multivariate ME model is formulated as

X
i

“ x
i

` ›
i

(A.6)

and
Y

i

“ – ` —x
i

` e
i

, (A.7)

where e
i

“ pe
i1

, . . . , e
ir

qJ is a vector of measurement errors, – “ p–
1

, . . . , –
r

qJ and
— “ p—

1

, . . . , —
r

qJ are vectors with regression parameters. Let ‘
i

“ p›
i

, eJ
i

qJ and Z
i

“
pX

i

, YJ
i

qJ “ pZ
i1

, . . . , Z
ip

qJ. Then, equations (A.6) and (A.7) imply

Z
i

“ a ` bx
i

` ‘
i

“ a ` Br
i

, i “ 1, . . . , n, (A.8)

where a “ p0, –JqJ and b “ p1, —JqJ are p ˆ 1 vectors, with p “ r ` 1, B “ rb; I
p

s is a
p ˆ pp ` 1q matrix and r

i

“ px
i

, ‘J
i

qJ. Thus, from equation (A.8), the distribution of Z
i

becomes specified once the distribution of r
i

is specified. Usually, a normality assumption
is made, such that

r
i

iid.„ N
1`p

˜˜

µ
x

0
p

¸

,

˜

‡2

x

0J
p

0
p

�

¸¸

, i “ 1, . . . , n, (A.9)

where 0
p

“ p0, . . . , 0qJ : p ˆ 1, � “ diagpÊ2

1

, . . . , Ê2

p

q and iid.„ denotes independent and
identically distributed random vectors. Marginally, we have that x

i

iid.„ Npµ
x

, ‡2q and
‘

i

iid.„ N
r

p0, �q are independent for all i “ 1, . . . , n. For more details see, for example,
(Fuller, 1987, Sec. 4.1).

In order to obtain robust estimation of the parameters in the model, we propose
to replace assumption (A.9) by

r
i

“
«

x
i

‘
i

�

iid.„ t
1`p

˜˜

µ
x

0
p

¸

,

˜

‡2

x

0J
p

0
p

�

¸

, ‹

¸

, i “ 1, . . . , n. (A.10)

By (A.2), this formulation implies
«

x
i

‘
i

�

| U
i

“ u
i

„ N
1`p

˜˜

µ
x

0
p

¸

, u´1

i

˜

‡2

x

0J
p

0
p

�

¸¸

,

U
i

„ Gamma
´‹

2 ,
‹

2

¯

,

for i “ 1, . . . , n. Consequently,

x
i

| U
i

“ u
i

ind.„ Npµ
x

, u´1

i

‡2

x

q and, (A.11)

‘
i

| U
i

“ u
i

ind.„ N
p

p0
p

, u´1

i

�q. (A.12)
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Besides this, ‘
i

and x
i

have Student-t marginal distributions, with ‘
i

„ t
p

p0, �, ‹q and
x

i

„ tpµ
x

, ‡2

x

, ‹q.
Since for each i, ‘

i

and x
i

are indexed by the same scale mixing factor U
i

, they
are not independent in general. The independence corresponds to the case where U

i

“ 1
(normal case). However, conditional on U

i

, ‘
i

and x
i

are independent for each i “ 1, . . . , n,
which implies that ‘

i

and x
i

are not correlated, since Covp‘
i

, x
i

q “ Er‘
i

x
i

|U
i

s “ 0. By
(A.8), Z

i

is an a�ne transformation of r
i

. Thus, its distribution is given by

Z
i

„ t
p

pµ
z

, �
z

, ‹q, i “ 1, . . . , n, (A.13)

where
µ

z

“ a ` bµ
x

and �
z

“ ‡2

x

bbJ ` �. (A.14)

As mentioned earlier, our model considers censored observations. Following
Matos et al. (2013b), we consider the case in which the response Z

ij

is not fully observed
for all i, j. What we truly observe, for each i “ 1, . . . , n, is the random vector V

i

“
pV

i1

, . . . , V
ip

qJ, such that V
ij

“ maxtZ
ij

, Ÿ
ij

u, where Ÿ
ij

is a censoring level, that is,

V
ij

“
#

Z
ij

if Z
ij

° Ÿ
ij

Ÿ
ij

if Z
ij

§ Ÿ
ij

.
(A.15)

The model defined by Equations (A.6), (A.7) along with (A.10) and (A.15) is named the

Student-t Censored Measurement Error Model – hereafter t-MEC model.

A.3.1 The likelihood function
In this section we present the likelihood function, which will be used in the

model selection computations to compare fitted models.

First, let us partition Z
i

into the observed and censored components, namely,
Z

i

“ vecpZo

i

, Zc

i

q, where Zo

i

: p
o

ˆ 1 corresponds to the former case, Zc

i

: p
c

ˆ 1 corresponds
to the latter and vecp¨q denotes the function which stacks vectors or matrices of the same
number of columns. Accordingly, let us consider V

i

“ vecpVo

i

, Vc

i

q and, recalling that

Z
i

„ t
p

pµ
z

, �
z

, ‹q, see (A.13), µ
z

“ vecpµo

z

, µc

z

q and �
z

“
ˆ

�oo

z

�oc

z

�co

z

�cc

z

˙

. Ÿc

i

is the vector
with the corresponding censoring levels for Zc

i

. By Proposition A.1, we have

Zo

i

„ t
p

o

pµo

z

, �oo

z

, ‹q and Zc

i

|Zo

i

“ Zo

i

, „ t
p

c

pµco

z

, Sco

z

, ‹ ` p
o

q, (A.16)

where

µco

z

“ µc

z

` �co

z

p�oo

z

q´1pZo

i

´ µo

z

q, (A.17)

Sco

z

“
ˆ

‹ ` d�oo

z

pZo

i

, µo

z

q
‹ ` po

˙

�cc.o

z

, (A.18)

�cc.o

z

“ �cc

z

´ �co

z

�oo´1

z

�oc

z

. (A.19)
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The observed sample for the experimental unit i is tZo

i

, Ÿc

i

u. The associated
likelihood is

L
i

p◊q “ P pVc

i

“ Ÿc

i

|Zo

i

“ Zo

i

qfpZo

i

q,
where fp¨q is the marginal density of Zo

i

. But Vc

i

“ Ÿc

i

if and only if Zc

i

§ Ÿc

i

. By (A.16),
we obtain

L
i

p◊q “ T
p

c

pŸc

i

|µco

z

, Sco

z

, ‹ ` p
o

qt
p

o

pZo

i

|µo

z

, �oo

z

, ‹q.
The log-likelihood associated with the whole sample is

¸p◊q “
n

ÿ

i“1

log L
i

p◊q. (A.20)

A.4 The ECM algorithm
In this section, we describe how the t-MEC model can be fitted by using the

ECM algorithm (Meng and Rubin (1993)). This algorithm considers a simple modification
of the traditional EM algorithm initially proposed by Dempster et al. (1977) and is an
e�cient tool to obtain the maximum likelihood estimates under a missing data framework.

The t-MEC model can be formulated in a flexible hierarchical representation
that is useful for theoretical derivations. It is easily obtained through Equations (A.8),
(A.11) and (A.12) and is given by

Z
i

| x
i

, U
i

“ u
i

ind.„ N
p

pa ` bx
i

, u´1

i

�q, (A.21)

x
i

| U
i

“ u
i

ind.„ Npµ
x

, u´1

i

‡2

x

q, (A.22)

U
i

iid.„ Gamma p‹{2, ‹{2q , i “ 1, . . . , n. (A.23)

Following the suggestions of Lange et al. (1989) and Lucas (1997), who pointed
out di�culties in estimating ‹ due to problems of unbounded and local maxima in the
likelihood function, we consider the value of ‹ to be known.

Now, we enunciate two important results that will be useful in the E step of
the EM algorithm.

Proposição A.4. Consider the hierarchical representation of the t-MEC model given in

(A.21)–(A.23). Then,

x
i

|U
i

“ u
i

, Z
i

“ Z
i

„ N
ˆ

µ
x

` ‡2

x

b1�´1pZ
i

´ aq
1 ` ‡2

x

b1�´1b ,
‡2

x

u
i

p1 ` ‡2

x

b1�´1bq

˙

.

The proof follows directly from the relation fpx
i

|u
i

, Z
i

q9fpZ
i

|x
i

, u
i

qfpx
i

|u
i

q,
where fp¨q denotes a generic pdf.

Proposição A.5. For the t-MEC model,

EpU
i

|Z
i

“ Z
i

q “ p ` ‹

d�
z

pZ
i

, µ
z

q ` ‹
.
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To prove this result, recall that Z
i

„ t
p

pµ
z

, �
z

, ‹q, which implies Z
i

|U
i

“ u
i

„
N

p

pµ
z

, u´1

i

�
z

q and U
i

„ Gammap‹{2, ‹{2q – see (A.2). Using the relation

fpu
i

|Z
i

q9fpZ
i

|u
i

qfpu
i

q,

we can prove that U
i

|Z
i

“ Z
i

„ Gamma
ˆ

p ` ‹

2 ,
1
2 pd�

z

pZ
i

, µ
z

q ` ‹q
˙

, and the result
follows.

A.4.1 The E Step
Let Z “ pZJ

1

, . . . , ZJ
n

qJ, X “ px
1

, . . . , x
n

qJ and u “ pu
1

, . . . , u
n

qJ. Let ◊ be the
vector with all the parameters in the model. Apart from constants which do not depend on
◊, the complete log-likelihood associated with the complete data Z

c

“ tZ, x, uu is given by

¸
c

p◊|Z
c

q “ ´n

2

p

ÿ

i“1

log Ê2

j

´ 1
2

n

ÿ

i“1

u
i

pZ
i

´ a ´ bx
i

qJ�´1pZ
i

´ a ´ bx
i

q

´ n

2 log ‡2

x

´ 1
2‡2

x

n

ÿ

i“1

u
i

px
i

´ µ
x

q2.

Suppose that at the kth stage of the algorithm we obtain an estimate p◊
pkq

of ◊.
The E step consists of the computation of the conditional expectation

Qp◊|p◊pkqq “ E
p◊

pkq r¸
c

p◊|Z
c

q|Vs ,

where E
p◊

pkq means that the expectation is being a�ected using p◊
pkq

as the true parameter

value and V “ pVJ
1

, . . . , VJ
n

qJ. The M step consists of maximizing Qp¨|p◊pkqq in ◊. To do
so, first observe that the function Qp¨|p◊pkqq can be decomposed into

Q
´

◊|p◊pkq¯ “ Q
1

´

–, —, Ê|p◊pkq¯ ` Q
2

´

µ
x

, ‡2

x

|p◊pkq¯
, (A.24)

where Ê “ pÊ2

1

, . . . , Ê2

p

qJ,

Q
1

´

–, —, Ê|p◊pkq¯ “

E
p◊

pkq

«

´n

2

p

ÿ

i“1

log Ê2

j

´ 1
2

n

ÿ

i“1

u
i

pZ
i

´ a ´ bx
i

qJ�´1pZ
i

´ a ´ bx
i

q|V
�

and (A.25)

Q
2

´

µ
x

, ‡2

x

|p◊pkq¯ “ E
p◊

pkq

«

´n

2 log ‡2

x

´ 1
2‡2

x

n

ÿ

i“1

u
i

px
i

´ µ
x

q2|V,

�

.

Given this decomposition, we can reduce the problem to the maximization of two in-
dependent functions, searching for critical points of Q

1

p¨|p◊pkqq and Q
2

p¨|p◊pkqq separately.
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Expanding the expressions of Q
1

p¨|p◊pkqq and Q
2

p¨|p◊pkqq and taking expectations, it follows
that

Q
1

´

–, —, Ê|p◊pkq¯ “ ´n

2

p

ÿ

i“1

log Ê2

j

´ 1
2

#

n

ÿ

i“1

´

trt�´1

yuZ2

i

u ´ 2aJ�´1

yuZ
i

´2zuxZ
i

�´1b ` aJ�´1a pu
i

` 2aJ�´1b xux
i

` bJ�´1byux2

i

¯)

,

Q
2

pµ
x

, ‡2

x

|p◊pkqq “ ´n

2 log ‡2

x

´ 1
2‡2

x

#

n

ÿ

i“1

´

yux2

i

´ 2µ
x

xux
i

` µ2

x

pu
i

¯

+

,

where trp¨q denotes the trace of a matrix,
yuZ2

i

“ ErU
i

Z
i

ZJ
i

|V
i

s, yuZ
i

“ ErU
i

Z
i

|V
i

s,
pu

i

“ ErU
i

|V
i

s, zuxZ
i

“ ErU
i

x
i

ZJ
i

|V
i

s,
xux

i

“ ErU
i

x
i

|V
i

s, yux2

i

“ ErU
i

x2

i

|V
i

s,

and we have omitted the subscript p◊
pkq

to simplify the notation. To obtain expressions for
these expectations, we will use a result from probability theory called the tower property of

conditional expectation: if X andY are arbitrary random vectors and fp¨q is a measurable
function, then ErEpX|Yq|fpYqs “ ErX|fpYqs. For a proof, see (Ash, 2000, Theo. 5.5.10).
Now, observe that, by (A.15), V

i

is a function of Z
i

. Then, by this property, we can write
yuZ2

i

“ EtErU
i

Z
i

ZJ
i

|Z
i

s|V
i

su, yuZ
i

“ EtErU
i

Z
i

|Z
i

s|V
i

su, and pu
i

“ EtErU
i

|Z
i

s|V
i

u.

(A.26)

Proposition A.5 gives the conditional expectation ErU
i

|Z
i

s and, from this result
and formulas (A.26) we obtain the following expressions for pu

i

, yuZ
i

and yuZ2

i

(as we will see
soon, all expectations involved in the E step are written as functions of these), considering
three di�erent cases:

(i) Individual i does not have censored components. In this case, V
i

“ Z
i

– see Equation
(A.15) –. Thus,

pu
i

“ p ` ‹

d�
z

pZ
i

, µ
z

q ` ‹
, yuZ

i

“ p ` ‹

d�
z

pZ
i

, µ
z

q ` ‹
Z

i

, and yuZ2

i

“ p ` ‹

d�
z

pZ
i

, µ
z

q ` ‹
Z

i

ZJ
i

.

(ii) Individual i has only censored components. By Equation (A.15), this fact occurs if
and only if Z

i

§ Ÿ
i

, where Ÿ
i

is the vector with the censoring levels for individual i.
Thus,

pu
i

“ EtErU
i

|Z
i

s|Z
i

§ Ÿ
i

u “ E
„

p ` ‹

d�
z

pZ
i

, µ
z

q ` ‹

ˇ

ˇZ
i

§ Ÿ
i

⇢

.

By (A.13) and the definition of a truncated Student-t distribution, we have that
Z

i

|pZ
i

§ Ÿ
i

q „ Tt
p

pµ
z

, �
z

, ‹;D
i

q, where D
i

is like in (A.3) with d “ Ÿ
i

. Using r “ 1
and k “ 0 in Proposition A.2, we get

pu
i

“ T
p

pŸ
i

|µ
z

, �˚
z

, ‹ ` 2rq
T

p

pŸ
i

|µ
z

, �
z

, ‹q ,
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where �˚
z

“ p‹{p‹ ` 2qq�
z

. Using r “ 1 and k “ 1 in Proposition A.2, we obtain

yuZ
i

“ T
p

pŸ
i

|µ
z

, �˚
z

, ‹ ` 2rq
T

p

pŸ
i

|µ
z

, �
z

, ‹q ErY
i

s,

where Y
i

„ Tt
p

pµ
z

, �˚
z

, ‹ ` 2;D
i

q. Finally, r “ 1 and k “ 2 in Proposition A.2 imply

yuZ2

i

“ T
p

pŸ
i

|µ
z

, �˚
z

, ‹ ` 2rq
T

p

pŸ
i

|µ
z

, �
z

, ‹q ErY
i

YJ
i

s.

(iii) Individual i has censored and uncensored components. As we commented before in
Section A.3.1, in this case, we decompose the vector V

i

into two subvectors, Zo

i

and Ÿc

i

,
corresponding to the uncensored observations and the censoring levels, respectively.
Accordingly, we partition the vector Z

i

as Z
i

“ vecpZo

i

, Zc

i

q. The components are
censored if and only if Zc

i

§ Ÿc

i

. Thus,

pu
i

“ EtErU
i

|Z
i

s|Zo

i

“ Zo
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, Zc
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i

u “ E
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p ` ‹
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z
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ˇ
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, Zc
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i

⇢

.

In this case, we have that Z
i

|pZc

i

§ Ÿc

i

q „ Tt
p

pµ
z

, �
z

, ‹;Dc

i

q, with

Dc

i

“ tpx
1

, . . . , x
p

q P Rp; x
i

§ Ÿc

i

, i P Cu, (A.27)

where C is the set of indices for the censored components. Consequently, we make
d

i

“ `8 for i R C in (A.3). Thus, pu
i

can be calculated using Proposition A.3, with
Zo

i

and Zc

i

playing the role of Z
1

and Z
2

, respectively, taking r “ 1 and k “ 0. Then,
we get
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“ po ` ‹
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z
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q
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where po and pc are the dimensions of the vectors Zo

i

and Zc

i

, respectively, ‹ `po `2 °
0,
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“ ‹ ` d�oo
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and �cc.o

z

are given in (A.17), (A.18) and (A.19), respectively. Regarding
yuZ

i

, we have that
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i
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where
Y

i

„ Tt
p

cpµco

z

, rSco

z

, ‹ ` po ` 2;Dc

i

q. (A.28)
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Finally, to compute yuZ2

i

, observe that
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q ` ‹
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¸

,

where Y
i

is as in (A.28).

Regarding the remaining expectations, we have

Erx
i

U
i
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s “
º

x
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u
i

fipx
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i
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i
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i
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i
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i
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i

s. (A.29)

By the tower property, we have
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q|U
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Consequently,
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“ µ
x

pu
i

` ÏpyuZ
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x
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1 ` ‡2

x

bJ�´1b (A.31)

and the equality in (A.30) is obtained by proving that ErZ
i

|U
i

, V
i

sErU
i

|V
i

s “ ErU
i

Z
i

|V
i
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yuZ
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, which can be done following the same paths that led to (A.29), replacing x
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i

.

In a similar fashion, we get
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� “ ‡2

x

1 ` ‡2

x

bJ�´1b . (A.32)
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A.4.2 The CM Step
Given the current estimate ◊ “ p◊

pkq
at the kth stage, the CM-step of the

ECM algorithm (Meng and Rubin (1993)) consists of the conditional maximization of
the Q function given in (A.24). More precisely, ECM replaces each M-step of the EM
algorithm of Dempster et al. (1977) by a sequence of S conditional maximization steps,
called CM-steps, each of which maximizes the Q function over ◊ but with some vector
function of ◊, pg

1

p◊q, . . . , g
S

p◊qq say, fixed at its previous value. In our case, for example,
we first maximize conditionally the function Q

1

´

–, —, Ê|p◊pkq¯
in (A.25) over – fixing the

values — “ p—
pkq

and Ê “ pÊpkq. Then we maximize Q
1

´

–, —, Ê|p◊pkq¯
over — fixing the

values – “ p–pk`1q and Ê “ pÊpkq and so on. We get the following closed expressions:
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where zpkq
u

“
∞

n

i“1

xuz
i

‹pkq
∞

n

i“1

pu
pkq
i

, xpkq
u

“
∞

n

i“1

xux
pkq
i

∞

n

i“1

pu
pkq
i

and pupkq “ 1
n

n

ÿ

i“1

pu
pkq
i

, with xuz
i

‹pkq “

p xuz
i

2

, . . . , xuz
i

p

qJ and zuxz
i

‹pkq “ pzuxz
i

2
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p
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A.4.3 Imputation of censored components
Let Zpcq

i

be the true (partially or completely unobserved) response vector for
the censored components of the ith unit. We define a predictor for Zpcq

i

as

rZpcq
i

“ ErZ
i

|V
i

“ v
i

s.

We have the following particular cases:

1. If unit i has only censored components then, if we make r “ 0 and k “ 1 in
Proposition A.2, we get

rZpcq
i

“ ErY
i

s, with Y
i

„ Tt
p

ppµ
z

, p�
z

, ‹;D
i

q,
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pµ
z

and p�
z

are the EM estimates of µ
z

and �
z

, respectively, and D
i

is as in (A.3)
with d “ Ÿ

i

, where Ÿ
i

is the vector with censoring levels for unit i.

2. Unit i has uncensored and censored components. In this case, we partition the vector
Z

i

as Z
i

“ vecpZo

i

, Zc

i

q. Components are censored if and only if Zc

i

§ Ÿc

i

, such that
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i
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i

q|Zo

i
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i
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i

, pyc
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q,

where, by Proposition A.3 with r “ 0 and k “ 1,

pyc
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“ ErY
i

s, with Y
i

„ Tt
p

cpµco

z

, Sco

z

, ‹ ` po;Dc

i

q, (A.33)

where µco

z

and Sco

z

are given in (A.17) and (A.18), respectively, and Dc

i

is given in
(A.27).

A.4.4 Estimation of x
i

Following Lin and Lee (2006), Ho et al. (2012) and recently Castro et al. (2015),
we consider the conditional mean to estimate the unobserved latent covariate. Using the
tower property and Proposition A.4, we have that an estimator for x

i

can be obtained
through

px
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“ Erx
i
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s “ ErEpx
i
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, Z
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q|V
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´ a ´ bµ
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q, (A.34)

where Ï is given in (A.31) and pZ
i

“ ErZ
i

|V
i

s. Observe that, if individual i does not have
censored components, then pZ

i

is the first moment of a t
p

pµ
z

, �
z

, ‹q distribution. If all
its components are censored, then ErZ

i

|V
i

s “ ErZ
i

|Z
i

§ Ÿ
i

s, which can be computed
using Proposition A.2 with r “ 0 and k “ 1. Finally, if it has censored and uncensored
components, then ErZ

i

|V
i

s “ vecpZo

i

, pyc

i

q, see (A.33). The parameter values in (A.34) must
be replaced with the respective EM estimates.

Moreover, the conditional covariance matrix of x
i

given V
i

is
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i

|V
i

s ´ pErx
i

|V
i

sq2.

By the tower property and Proposition A.4, we have

Erx2

i

|V
i

s “ EtErEpx2

i

|U
i

, Z
i

q|Z
i

s|V
i

u

“ E
"

E
„

‡2

x

U
i

p1 ` ‡2

x

b1�´1bq |Z
i

⇢

ˇ

ˇV
i

*

` E
«

ˆ

µ
x

` ‡2

x

b1�´1pZ
i

´ aq
1 ` ‡2

x

b1�´1b

˙

2

ˇ

ˇV
i

�

.
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It is easy to show that ErU´1

i

|Z
i

s “ pd�
z

pZ
i

, µ
z

q ` ‹q{pp ` ‹ ´ 2q – recall that U
i

|Z
i

“
Z

i

„ Gamma
ˆ

p ` ‹

2 ,
1
2 pd�

z

pZ
i

, µ
z

q ` ‹q
˙

–, see the result after Proposition A.5. After
some lengthy algebra, we can prove that

Varrx
i

|V
i

s “ �E
„

d�
z

pZ
i

, µ
z

q ` ‹

p ` ‹ ´ 2
ˇ

ˇV
i

⇢

` �2b1�´1VarrZ
i

ˇ

ˇV
i

s�´1b, (A.35)

where � is given in (A.32) and

VarrZ
i

ˇ

ˇV
i

s “ ErZ
i

ZJ
i

ˇ

ˇV
i

s ´ ErZ
i

ˇ

ˇV
i

sErZ
i

ˇ

ˇV
i

sJ.

If individual i has only uncensored components, then expression (A.35) can
be computed using the moments of the t

p

pµ
z

, �
z

, ‹q distribution using Proposition A.2:
it is enough to make d

1

“ ¨ ¨ ¨ “ d
p

“ `8, r “ 1 and k “ 0 to obtain the first
expectation in (A.35) and r “ 0, k “ 1 (k “ 2) to obtain the other one. If the components
are all censored, we again use Proposition A.2, but now considering the moments of a
Tt

p

pµ, �, ‹;D
i

q distribution. Finally, if there are censored and uncensored components,
then the expectations can be computed through Proposition A.3, using the partition
Z

i

“ vecpZo

i

, Zc

i

q. Besides this, the parameter values in (A.35) must be replaced with the
respective EM estimates.

A.5 The observed information matrix
Under some general regularity conditions, we follow Lin (2010) to provide an

information-based method to obtain the asymptotic covariance of ML estimates of the
t-MEC model’s parameters. As defined by Meilijson (1989), the empirical information
matrix can be computed as

I
e

p◊|Zq “
n

ÿ

i“1

spZ
i

| ◊qsJpZ
i

| ◊q ´ 1
n

SpZ
i

| ◊qSJpZ
i

| ◊q,

where SpZ
i

| ◊q “
n

ÿ

i“1

spZ
i

| ◊q and spZ
i

| ◊q is the empirical score function for the ith

unit. According to Louis (1982) it is possible to relate the score function of the incomplete
data log-likelihood with the conditional expectation of the complete data log-likelihood
function. Therefore, the individual score can be determined as

spZ
i

| ◊q “ B log fpZ
i

| ◊q
B◊

“ E
„B¸

ic

p◊ | Zc

i

q
B◊

| V
i

, C
i

, ◊

⇢

, (A.36)

where ¸
ic

p◊ | Zc

i

q is the complete data log-likelihood formed from the single observation
Z

i

, i “ 1, . . . , n. Using the EM estimates p◊, SpZ
i

| p◊q “ 0, and then (A.36) is given by

I
e

pp◊ | Zq “
n

ÿ

i“1

ps
i

psJ
i

, (A.37)
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where ps
i

“ pps
i,–,ps

i,—,ps
i,Ê,ps

i,µ

x

,ps
i,‡

2
x

qJ is a 3p-dimensional vector, with components given
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with Ippq “ r0, I
p´1

spp´1qˆp

, 1
p

“ p1, . . . , 1qJ
pˆ1

and pa
i

“ yuz2

i

´2 xuz
i

paJ´2zuxz
i

pbJ`2 xux
i

papbJ`
pu

i

papaJ ` yux2

i

pbpbJ.

A.6 Testicular volume data
We illustrate the proposed method with a dataset from Chipkevitch et al.

(1996). The data consist of measurements of the testicular volume of 42 adolescents by
using five di�erent techniques: ultrasound (US), graphical method proposed by the authors
(I), dimensional measurement (II), Prader orchidometer (III), and ring orchidometer (IV).
The ultrasound approach was assumed to be the reference measurement device. Galea-
Rojas et al. (2002) analyzed the same dataset by fitting the usual normal ME model and
recommended considering a data transformation in order to obtain normality. Lachos et al.
(2010) also analyzed this dataset with the aim of providing a better fit, attempting to
avoid possibly unnecessary data transformation. In fact, they considered a joint model of
the latent variable and observational errors by using the scale mixtures of skew-normal
(SMSN) class of distributions. They also showed evidence of the heavy-tailed behavior of
the data (see also, Cabral et al. (2014)).

To apply our method to this dataset, we censored (randomly) 10% (21 observa-
tions) of the data. As a consequence, the detection limit Ÿ

ij

was fixed at 4.4 for all i and
j. Table 27 shows the testicular volume data with the true value in parentheses for the
censored observations. We fitted the t-MEC (with ‹ “ 6) and N-MEC models. The EM
estimates for the parameters of the two model, as well as their corresponding standard
errors (SE) obtained via the empirical information matrix are reported in Table 28. This
table shows that the estimates of —, –, Ê for the t-MEC and N-MEC models are close.
However, the standard errors (SE) of the t-MEC are smaller than those of the N-MEC
model, indicating that the our robust model seem to produce more precise estimates.

Table 29 compares the fit of the two models using the model selection criteria
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Table 27 – Chipkevitch data. Testicular volume data (in ml).

Methods Methods

i US I II III IV i US I II III IV

1 5.0 7.5 5.9 8.0 9.0 22 16.5 10.0 15.3 15.0 15.0

2 5.7 5.0 4.8 6.0 10.0 23 4.5 4.4 (3.5) 4.4 (3.9) 6.0 7.0

3 7.4 5.0 6.8 9.0 12.0 24 5.6 5.0 4.5 4.5 6.0

4 4.4 (2.6) 4.4 (3.5) 4.4 (3.1) 4.4 (4.0) 4.4 (4.0) 25 11.0 7.5 9.7 9.0 11.0

5 5.7 5.0 5.0 6.0 7.0 26 9.2 10.0 11.3 12.0 13.5

6 6.1 5.0 4.4 (4.4) 7.0 8.0 27 8.5 7.5 8.8 12.0 12.0

7 6.2 5.0 6.0 8.0 9.0 28 5.4 5.0 6.1 8.0 8.0

8 10.4 10.0 8.8 10.0 10.0 29 6.7 7.5 7.2 10.0 8.0

9 9.1 7.5 7.9 10.0 11.0 30 5.3 5.0 5.9 8.0 10.0

10 14.8 10.0 13.0 12.0 15.0 31 20.0 20.0 16.3 25.0 22.5

11 16.4 12.5 10.3 17.5 17.5 32 18.8 15.0 16.3 20.0 25.0

12 9.6 7.5 8.2 10.0 11.0 33 13.9 12.5 12.2 15.0 17.5

13 15.7 15.0 19.8 20.0 20.0 34 9.4 10.0 10.3 12.0 13.5

14 4.4 (3.0) 4.4 (2.0) 4.4 (2.0) 4.4 (3.0) 4.4 (4.0) 35 9.1 7.5 10.8 12.0 12.0

15 16.4 15.0 17.3 20.0 20.0 36 14.1 15.0 13.0 13.5 15.0

16 17.6 15.0 17.3 20.0 22.5 37 9.3 10.0 8.4 10.0 10.0

17 10.0 7.5 7.9 12.0 12.0 38 20.9 20.0 22.1 25.0 25.0

18 4.4 (4.1) 4.4 (3.5) 4.4 (4.4) 4.4 (4.0) 6.0 39 11.5 10.0 10.6 15.0 13.5

19 12.7 10.0 11.4 12.0 12.0 40 9.7 10.0 9.7 11.0 12.0

20 4.4 (2.7) 4.4 (3.5) 4.4 (4.1) 4.4 (2.5) 6.0 41 13.7 12.5 11.6 17.5 15.0

21 10.2 10.0 11.1 12.0 13.5 42 8.9 10.0 8.1 12.0 12.0

Table 28 – Chipkevitch data. ML and SE for parameter estimates.

t-MEC N-MEC

Estimate SE Estimate SE

–1 -0.0510 1.1501 -0.0584 1.0995
–2 -0.6674 0.9077 -0.4205 1.2257
–3 0.2815 0.9361 0.1172 0.9931
–4 1.9037 0.9853 1.8075 1.0288
—1 0.9067 0.1166 0.8959 0.0997
—2 1.0214 0.0809 0.9792 0.0848
—3 1.1400 0.1017 1.1371 0.0951
—4 1.0645 0.1038 1.0619 0.0954
µ

x

9.1089 0.8979 9.9222 1.0681
‡

2
x

18.4174 0.0168 25.0263 0.0124
Ê1 1.1068 0.6503 1.4442 0.8227
Ê2 1.1179 0.4447 1.4313 0.5369
Ê3 1.1339 0.3945 1.9156 0.6718
Ê4 0.9437 0.4708 1.1390 0.5460
Ê5 1.1536 0.4261 1.5493 0.5580

Table 29 – Chipkevitch data. Model comparison criteria.

t-MEC N-MEC

Log-likelihood -398.4389 -401.4635
AIC 826.8777 832.9269
BIC 877.0843 883.1336

(AIC and BIC) discussed in Subsection A.7.2. Note that, as expected, the t-MEC model
outperform the normal one.
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A.7 Simulation studies
In order to study the performance of our proposed method, we present three

simulation studies. The first one shows the asymptotic behavior of the EM estimates for
the proposed model. The second one investigates the consequences on parameter inference
when the normality assumption is inappropriate. Finally, the third one is designed to
investigate the e�ect of including the censoring component in the model.

A.7.1 Asymptotic properties
In this simulation study, we analyze the absolute bias (BIAS) and mean square

error (MSE) of the regression coe�cient estimates obtained from the t-MEC model for
six di�erent sample sizes n, namely 50, 100, 200, 300, 400 and 600. These measures are
defined by

BIAS
k

“ 1
M

M

ÿ

j“1

|p◊pjq
k

´ ◊
k

| and MSE
k

“ 1
M

M

ÿ

j“1

´

p◊
pjq
k

´ ◊
k

¯

2

, (A.38)

where p◊
pjq
k

is the EM estimate of the parameter ◊
k

, k “ 1, . . . , 3p, for the j-th sample. The
key idea of this simulation is to provide empirical evidence about consistency of the EM
estimators under the proposed t-MEC model. For each sample size, we generate M “ 100
datasets with 10% censoring proportion. Using the ECM algorithm, the absolute bias
and mean squared error for each parameter over the 100 datasets were computed. The
parameter setup (see Section A.3), is

– “ p3, 2, 1, 2qJ, — “ p1.5, 1, 1.5, 1qJ, µ
x

“ 4, ‡2

x

“ 2 and � “ diagp0.5, 0.5, 0.5, 0.5, 0.5q.
(A.39)

The degrees of freedom were fixed at the value ‹ “ 5.

The results are presented in Figure 34. From this figure we can see that the
MSE tends to zero as the sample size increases. Similar results were obtained after the
analysis of the absolute bias (BIAS) as can be seen from Figure 37 in the Appendix A.9.
As expected, the proposed ECM algorithm provides ML estimates with good asymptotic
properties for the t-MEC model.

A.7.2 Parameter inference
In this study we investigate the consequences on parameter inference when the

normality assumption is inappropriate, as well the ability of some model choice criteria
(AIC and BIC) to select the correct model. In addition, we study the e�ect of di�erent
censoring proportions on the EM estimates. For this purpose, we consider a heavy-tail
distribution for the random errors. In this context, we generate M “ 100 datasets coming
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Figure 34 – Simulation study A.7.1. MSE of parameter estimates under the t-MEC
model considering 10% censoring.

from a slash distribution with parameter ‹ “ 1.5 and censoring proportions 0%, 10%, 20%
and 30%. The slash distribution arises when we change the distribution of U in (A.2) to
U „ Betap‹, 1q, with pdf fpu|‹q “ ‹u‹´1, u P p0, 1q, and ‹ ° 0. See Wang and Genton
(2006) for details. The parameter values are set as in the previous experimental study.

For each simulated dataset we fitted the t-MEC (with ‹ “ 5 degrees of freedom)
and the N-MEC models. The model selection criteria AIC and BIC as well as the estimates
of the model parameters were recorded at each simulation. Summary statistics such as
the Monte Carlo mean estimate (MC mean), coverage probability (MC CP) and the
approximate standard error obtained through the information-based method (IM SE),
discussed in Section 5, for the parameter estimates are presented in Table 30.

From these results we can observe that for all considered levels of censoring,
the t-MEC model is chosen as the correct model. Under the t-MEC model, the MC CP
for – and — are stable, but the MC CP of µ

x

is lower than the nominal level (95%). In
general, the MC CP values are higher than those obtained under the normal model. Figure
35 shows the MSE for some parameter estimates (the biases are presented in Figure 39
in the Appendix A.9). Note that, the MSE under the t-MEC model is lower than the
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Table 30 – Simulation study A.7.2. Summary statistics based on 100 simulated samples
from the slash distribution for di�erent levels of censoring (0%, 10%, 20%,
30%).

Simulated data

Censoring Fit –1 –2 –3 –4 —1 —2 —3 —4 µ

x

‡

2
x

0% Normal MC Mean 3.096 2.457 1.274 2.238 1.482 0.933 1.466 0.988 3.463 212.602

IM SE 0.332 0.243 0.343 0.302 0.038 0.029 0.045 0.038 4.783 0.002

MC CP 100% 24% 97% 100% 100% 24% 100% 100% 100%

Student-t MC Mean 2.712 1.853 0.964 1.894 1.542 1.022 1.521 1.022 4.586 9.299

IM SE 0.375 0.245 0.331 0.258 0.066 0.044 0.060 0.046 0.404 0.022

MC CP 100% 100% 100% 100% 100% 100% 100% 100% 79%

10% Normal MC Mean 2.440 1.570 0.887 1.701 1.608 1.097 1.535 1.090 4.797 31.343

IM SE 0.345 0.328 0.456 0.405 0.044 0.051 0.072 0.062 0.847 0.010

MC CP 43% 61% 100% 61% 71% 68% 100% 100% 100%

Student-t MC Mean 2.612 1.626 0.880 1.849 1.565 1.069 1.540 1.031 4.539 7.927

IM SE 0.415 0.312 0.397 0.294 0.073 0.058 0.072 0.053 0.351 0.026

MC CP 100% 100% 100% 100% 100% 100% 100% 100% 75%

20% Normal MC Mean 2.435 1.539 0.905 1.600 1.610 1.103 1.533 1.103 4.754 32.254

IM SE 0.415 0.417 0.532 0.492 0.051 0.063 0.081 0.076 0.832 0.010

MC CP 55% 61% 100% 61% 83% 85% 100% 98% 100%

Student-t MC Mean 2.506 1.605 0.816 1.783 1.580 1.073 1.549 1.041 4.576 7.599

IM SE 0.503 0.399 0.494 0.357 0.084 0.070 0.084 0.061 0.350 0.027

MC CP 99% 100% 100% 100% 100% 100% 100% 100% 64%

30% Normal MC Mean 2.511 1.490 0.999 1.532 1.608 1.112 1.528 1.114 4.703 32.890

IM SE 0.521 0.543 0.662 0.606 0.061 0.077 0.096 0.093 0.841 0.011

MC CP 61% 61% 100% 61% 87% 89% 100% 88% 100%

Student-t MC Mean 2.522 1.578 0.864 1.840 1.580 1.080 1.545 1.034 4.554 7.211

IM SE 0.622 0.506 0.641 0.433 0.096 0.082 0.099 0.069 0.352 0.029

MC CP 100% 100% 100% 100% 100% 99% 100% 100% 84%

0
.0

0
5

0
.0

1
0

0
.0

1
5

censoring in %

m
s
e

0.0 0.1 0.2 0.3

β1

Student−t
Normal

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

censoring in %

m
s
e

0.0 0.1 0.2 0.3

β2

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

censoring in %

m
s
e

0.0 0.1 0.2 0.3

β3

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

censoring in %

m
s
e

0.0 0.1 0.2 0.3

β4

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

censoring in %

m
s
e

0.0 0.1 0.2 0.3

µx

Student−t
Normal

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

0
.4

0

censoring in %

m
s
e

0.0 0.1 0.2 0.3

α1

Student−t
Normal

0
.1

0
.2

0
.3

0
.4

0
.5

censoring in %

m
s
e

0.0 0.1 0.2 0.3

α2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

0
.1

6

censoring in %

m
s
e

0.0 0.1 0.2 0.3

α3

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

censoring in %

m
s
e

0.0 0.1 0.2 0.3

α4

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

censoring in %

m
s
e

0.0 0.1 0.2 0.3

σx
2

Student−t
Normal

Figure 35 – Simulation study A.7.2. MSE of —, –, µ
x

, ‡2

x

estimates under normal and
Student-t models for di�erent levels of censoring (0%, 10%, 20%, 30%).

obtained under the normal, for di�erent levels of censoring.

Regarding the model choice, the t-MEC model was chosen as the best by the
two criteria for all samples.
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A.7.3 Censored model
In this section, the main goal is to study the e�ect of taking into account

censored data on the parameter estimates. We generated M “ 100 samples from the
t-MEC model with ‹ “ 5, setting the censoring level at 20%. The other parameter values
are set as in (A.39). For each dataset, we fitted two models: in case 1 we use a naive
model, where censored responses are not taken into account. In case 2 we fit a t-MEC
model.
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Figure 36 – Simulation study A.7.3. Boxplots of the parameter estimates. Dotted lines
indicate the true parameter value.

Figure 36 shows the box plots corresponding to each parameter estimate
considering the M “ 100 datasets. Note that, the estimates in case 2 are, in general,
more precise than those obtained in case 1. It is also possible to note that, in case 2, the
variability observed in the estimations is smaller than in case 1, except for some dispersion
parameters. We point out that it is important to consider the e�ect of censoring in data
modeling, avoiding ad-hoc methods.
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A.8 Conclusions
In this work, we introduce the multivariate ME model with censored responses

based on the Student-t distribution, the so-called t-MEC model. This model considers the
possibility of censoring in the surrogate covariate and the response. Moreover, we assume
that the latent unobserved covariate and random observational errors follow a multivariate
Student-t distribution, which provides a robust alternative to the usual Gaussian model.
For the parameter estimation, an ECM algorithm based on some statistical properties of
the multivariate truncated Student-t distribution is developed to obtain ML estimates.
Some simulation studies revealed that our proposed method generates less biased estimates
of model parameters than the case when the censoring scheme is not taken into account.
Moreover, we showed that the use of the Student-t distribution generates better results
than the normal one, in the context of the censored ME models.

Of course, further extensions of the current work are possible. For example, the
proposed method can be naturally extended by considering the family of scale mixtures of
normal (SMN) and skew-normal (SMSN) distributions. An e�cient estimation procedure
to obtain ML estimates of model parameters can be implemented by using a stochastic
approximation of the traditional EM (SAEM) algorithm. Other extensions include, a
Bayesian treatment via Markov chain Monte Carlo (MCMC) sampling methods in the
context of SMN-MEC and SMSN-MEC models (Lachos et al. (2010)).

A.9 Appendix
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Figure 37 – Simulation A.7.1. Bias of parameter estimates under the t-MEC model
considering 10% of censoring.
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Figure 38 – Simulation A.7.2. MSE of parameter estimates under the t-MEC model
considering 10% of censoring.
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Figure 39 – Simulation A.7.2. Bias of parameter estimates under the t-MEC model
considering di�erent levels of censoring .


	First page
	Title page
	Cataloguing data
	Approval
	Dedication
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Preface
	Background Material
	An overview
	Preliminaries
	Scale mixtures of normal distributions (SMN)
	Damped exponential correlation structure (DEC)
	The EM/SAEM algorithm
	The empirical information matrix

	Case studies
	UTI data
	ACTG 315 data
	AIEDRP data
	A5055 data



	Estimation and diagnostics in multivariate models for censored data
	Censored mixed-effects models for irregularly observed repeated measures
	Introduction
	Model formulation
	The log-likelihood function

	The EM algorithm
	Estimation of random effects and standard errors

	Prediction of future observations
	The nonlinear case
	Analysis of case studies
	ACTG 315 data
	AIEDRP data

	Simulation Studies
	Conclusions

	Influence assessment in censored mixed-effects models using the t distribution
	Introduction
	Censored linear mixed-effect model
	The likelihood function
	The EM algorithm

	Influence analysis
	Global influence
	Local Influence
	Subject-level diagnostics
	Observation-level diagnostics


	Censored nonlinear mixed-effects model
	Application
	AIEDRP Dataset
	ML estimates using EM algorithm
	Global influence
	Local influence
	Subject-level diagnostics
	Observation-level diagnostics


	Simulation studies
	Conclusions

	Heavy-tailed longitudinal and censored regression models
	Introduction
	Regression models for irregularly observed longitudinal data
	The statistical model
	The likelihood function
	Maximum likelihood estimation 
	Imputation of censored components

	Standard errors and prediction of future observations
	Empirical information matrix
	Prediction

	Application
	Simulation study
	Real Data - UTI Data
	Real Data - AIEDRP study

	Conclusions

	Heavy-tailed longitudinal linear mixed models for multiple censored responses data
	Introduction
	Linear mixed models for multiple censored responses data
	The statistical model
	Maximum likelihood estimation
	Imputation of censored components

	Estimation of the likelihood and standard errors
	Likelihood estimation
	Model selection criteria
	Empirical information matrix

	Simulation study
	Analysis of A5055 clinical trial
	Conclusions


	Final Considerations
	Bibliography
	Supplementary Material
	Chapter 3
	Chapter 4
	Chapter 5

	Annex
	Multivariate Measurement Error Models Based on Student-t Distribution
	Introduction
	The multivariate Student-t distribution and truncated related ones
	Model specification
	The likelihood function

	The ECM algorithm
	The E Step
	The CM Step
	Imputation of censored components
	Estimation of xi

	The observed information matrix
	Testicular volume data
	Simulation studies
	Asymptotic properties
	Parameter inference
	Censored model

	Conclusions
	Appendix



