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(Epictetos)



Abstract

This work is entirely devoted to develop an optimal sampled-data control law applied to

Markov jump linear systems, whose main usage is Networked Control Systems (NCS). In

this context, two network characteristics are simultaneously considered: the bandwidth lim-

itation addressed by the existence of sampled-data signals in the system, and the packet

dropouts modeled by a continuous-time Markov chain. In order to accomplish this goal, the

general adopted approach is broken in four steps: stability analysis and norm evaluation

based on the H2 norm; stability analysis and norm evaluation in the H∞ context; the opti-

mal sampled-data control design that minimizes a J2 performance index based on the H2

norm, which can be expressed in a convex formulation based on LMIs; the optimal sampled-

data control design that minimizes a certain J∞ performance index based on the H∞ norm,

which also admits a convex formulation based on LMIs, even though a deeper mathemat-

ical analysis is required. Each step has the same structure described in the sequel. First,

the theoretical results are mathematically developed and proved. Second, some particular

cases are derived from these theoretical results. Third, a convergent algorithm is proposed

to solve each of the mentioned cases. The convergence of the algorithms are also proved.

Finally, a numerical example illustrates the main developments in each step. The theory

developed here is new and there is no similar result in the current literature. For a practical

view of the outcomes, three practical examples are borrowed and adapted from available

works: two of them are physical systems controlled through an NCS, where one is originally

stable and the other unstable, and the third one is an economical system whose policy is

applied in a discrete-time basis.

Keywords: Control theory; Markov processes; Optimal control systems; Hybrid systems.



Resumo

Este trabalho é inteiramente dedicado ao desenvolvimento de uma lei de controle ótimo

amostrado aplicada a sistemas lineares com saltos markovianos, cujo principal uso são os

sistemas controlados através da rede (NCS - Networked Control System). Neste contexto,

duas características da rede são consideradas simultaneamente: a limitação da largura de

banda, tratada através da existência de sinais amostrados no sistema, e a perda de paco-

tes, modelada através de uma cadeia de Markov a tempo contínuo. A fim de alcançar este

objetivo, a abordagem geral adotada é dividida em quatro etapas: análise de estabilidade

e cálculo de norma no contexto da norma H2; análise de estabilidade e cálculo de norma

no contexto da norma H∞; projeto de controle amostrado ótimo que minimiza o índice de

desempenho J2 baseado na norma H2, o qual pode ser expresso em uma formulação

convexa baseada em LMIs; projeto de controle amostrado ótimo que minimiza um certo

índice de desempenho J∞ baseado na norma H∞, o qual também admite uma formulação

convexa baseada em LMI, embora uma análise matemática mais aprofundada seja neces-

sária. Cada uma destas etapas possui a mesma estrutura descrita a seguir. Primeiro, os

resultados teóricos são matematicamente desenvolvidos e provados. Segundo, alguns ca-

sos particulares são derivados a partir destes resultados teóricos. Terceiro, um algoritmo

convergente é proposto para resolver cada um dos casos mencionados. As convergências

também são provadas. Finalmente, um exemplo teórico ilustra os principais desenvolvi-

mentos em cada caso. A teoria aqui desenvolvida é nova, não havendo resultado similar

na literatura atual. Para uma visão prática dos resultados desta dissertação, três exemplos

são considerados e adaptados de trabalhos disponíveis: dois deles correspondem a sis-

temas físicos controlados através de uma rede sendo um originalmente estável e o outro

instável, e o terceiro corresponde a um sistema econômico cujas políticas de controle são

aplicadas a tempo discreto.

Palavras-chaves: Teoria de controle; Processos de Markov; Controle ótimo; Sistemas hí-

bridos.



Preface

Around a decade ago when I was finalizing my studies to achieve my mas-

ter of science degree, I was trying to control a robot that I made by myself. The main

idea was that given a structured environment with initial, final, free and forbidden cells, the

robot should travel through the defined area from the start to the final cell avoiding the for-

bidden ones (see Gabriel, Nascimento-Jr. & Yagyu (2006)). This robot, named ROMEO III

(http://www.ele.ita.br/romeo/romeoiii/, accessed in November 25th, 2015, in Portuguese),

had three embedded computational boards interconnected through a linear wired point-to-

point communication network. They were responsible for controlling the robot leading it to

follow exactly the path previously computed. The communication among all computational

boards was based on interruptions, but without any rigorous protocol to control synchro-

nization among receiving, transmitting, and processing tasks. The general structure of the

communication system of ROMEO III is presented in Figure 1. Evidently, the linear network

structure among all boards could cause communication delays between the main computer

board (Embedded Board I) and the board used to primarily control the trajectory (Embedded

Board III). This is just to name one of all communication problems it indeed had. However,

Figure 1 – ROMEO III Communication Network.

at that time, it was interesting and somewhat curious for me that sometimes the platform

did not followed the trajectory as expected! Consequently, it did not reach the final cell!



That was my first observation on the effects of communication intrinsic characteristics on

controlled systems!

The following eight years I worked in the telecommunication area developing

equipment for optical communication including, and mainly, the ones devoted to man-

age the communication process either as development engineer, designing hardware and

firmwares, or latter as a project or a product manager. During these years I surely could

experience different problems and aspects of communication process over optical fiber.

Even in this very fast environment, due to the available technology, optical fiber has also

lots of limitations such as: bandwidth limitation, finite packet length, packet dropout, interfer-

ence among signals traveling in a same fiber, finite capacity of different frequency channels

in a same fiber, scheduling necessity, among others. The most important problems were

bypassed using proprietary communication protocols.

Curiously, when I was back to the university, I started my doctorate at Networked

Control Systems (NCS), which merges concepts about Telecommunication and System

Control theories. Here, I could study mathematically the effects of the telecommunication

environment over the control process. Among all important aspects, I could face the math-

ematical difficulties to put all of them together in a same model. Evidently, the solution of

this problem is not trivial. Proof of this is the very low quantity of works devoted to imple-

ment it. That said, considering that it is mathematically challenging to treat all problems

derived from network characteristics in a same model, this work is a mathematical study

about two important aspects of NCS: bandwidth limitation and packet dropouts. In the fol-

lowing pages, it will be used a continuous-time Markov jump linear plant controlled by a

sampled-data control law to address both issues simultaneously. As many other authors, I

will use Markov Jump Linear System (MJLS) to model an imperfect network, and a hybrid

system, also known as a Hybrid Control System, to model the sampled-data control. I must

tell you that this dissertation is a very small part of the evolution of our working group in the

understanding of the NCS design.

G. W. Gabriel
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CHAPTER I

Introduction

In the last decades, a new approach has been largely studied and carefully ap-

plied to industrial, academic and commercial environments: Networked Control Systems

(NCS). This approach not only intended to reduce the operational and the installation costs

of system control structures but also to increase their flexibility and maintenance since

it allows to interconnect different processes and different controllers in a same physical

structure. Clearly, the possibility of an asynchronous structure is much more useful than

a synchronous one. As a practical example, Galloway & Hancke (2013) presented in their

paper an interesting introduction on Industrial Control Networks, which is a networked envi-

ronment to control industrial plants. In this scenario, some characteristics like reliable and

secure networks require very special attention mainly when implementing industrial safety

systems, necessary for instance in nuclear, oil, and gas plants environments. Hence, dif-

ferent protocols have been developed or adapted to be used in industrial plants like CAN,

Profibus, Foundation Fieldbus, or DeviceNet. These protocols increase reliability, flexibility

and efficiency of industrial networks, so reinforcing the development of NCS theory.

Figure I.1 shows an example of NCS, where a computer controls different actu-

ators interconnected through a network. In this example, the measured and control signals

are transmitted through the same network. It is interesting to notice that there is no spe-

cific network structure such that the system is indeed considered a NCS. In other words,

there are different possible structures and all of them are valid. Considering each kind of

topology will depend on each specific use, as written in Zhang, Gao & Kaynak (2013). This

work considers the network structure shown in Figure I.2, where a continuous-time Markov

Jump Linear System (MJLS) models the plant to be controlled, and sensors and actuators

communicate with the control device through a network.

Although it seems to be easy to use networks in a vast range of applications,

based on either classical or modern theory of control, it is not. Due to network intrinsic char-

acteristics, the signals traveling through wires, air, or even optical fibers can be irreversibly

degraded. Consequently, the stability of the controlled systems can be seriously damaged.

So, the NCS area is the union of the Control System and the Telecommunication areas

Gabriel, G.W.
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Figure I.1 – NCS where a computer controls two continuous-time systems through a network.

Figure I.2 – General structure of the NCS used throughout this work.

allowing a proper study of the influence networks have on control systems. Several works

can be found in literature about this new topic. Specifically, Hespanha, Naghshtabrizi & Xu

(2007) and Zhang, Gao & Kaynak (2013) report a general view and the state of the art of

NCS up to 2013. These two papers are very complete in the sense of listing the main in-

trinsic characteristics that networked controllers should consider. Moreover, they gather the

main techniques and offer a vast bibliography on each subject. The most relevant charac-

teristics, which produce visible effects in control systems, are listed in the sequel:

a. bandwidth limitations,

b. interference of different sources on traveling signals, and

c. transmission over finite length packet.

These issues are common to every physical network, independent of its structure or even

of the environment signals are traveling through. Add to the previous list the item:

Gabriel, G.W.
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d. packet transmission concurrence of packets sharing the same network resource, but

with different sources and/or sinks,

that is an issue of mesh networks. These items produce control design constraints, named

network induced constraints. Zhang, Gao & Kaynak (2013) synthesizes the main of them

which can degrade control signals traveling through a network:

a. packet delay;

b. packet loss ;

c. sampled-data signals;

d. node competition in data transmission process over a multiple node network; and,

e. data quantization due to the finite word length in sampling process.

As mentioned before, because of mathematical complexity of dealing with all

constraints together, usually, tractable combinations of them are found in literature. Tech-

niques to handle each constraint are described in Zhang, Gao & Kaynak (2013) and ref-

erences therein. Concerning the present dissertation, issues b and c of the latter list are

addressed, that is packet loss and sampled-data control. In order to accomplish this pur-

pose, hybrid systems theory is used to handle sampled-data control systems applied to

a continuous-time plant as in Hara, Fijioka & Kabamba (1994), Goebel, Sanfelice & Teel

(2009), and Souza, Gabriel & Geromel (2014); and Markov chain theory is used to handle

packet loss as in Farias (1998), Marcondes (2005), Seiler & Segupta (2005), and Huang

(2013).

Regarding sampled-data signals, notice that bandwidth limitation occurs due to

the maximum transmission rate of the communication channel, leading to sampled-data

signals in a feedback control system, that is a sampled-data control system. Consequently,

there is a minimum refresh interval of the variables transmitted through a network. This

characteristic is commonly interpreted as a sampling process over some transmitted signal

with the sampling period obeying

T⋆ ≤ Tk ≤ T ⋆, k ∈ N, (I.1)

where T⋆ is the minimum refresh interval of the network, and T ⋆ is the maximum sampling

period with which the system remains stable, i.e., 1/T ⋆ corresponds to the minimum admis-

sible sampling rate. It is interesting to mention that the sampled-data theory development

started with the use of digital systems applied to control systems, so it predates the study

of NCS. Sampled-data systems can be described as a continuous-time dynamical system

in which some signals are discrete-time – with constant or variable sampling period – and

others, continuous-time valued signals, Chen & Francis (1995).

Gabriel, G.W.
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Considering the historical context, one of the first approaches to deal with mixed

systems was to discretize a continuous-time plant and to design a discrete-time controller

(aggregation). Another possible, but less used, approach was to interpolate discrete-time

signals in order to have the whole feedback system as a continuous-time system (continua-

tion); nonetheless, these techniques were only good approximations used to solve specific

cases. The term approximation is used because one of both is necessary whenever us-

ing these techniques: either suppression of any signal characteristic between successive

samples of time – for aggregation – or arbitrariness of the interpolated signal – for contin-

uation – to mention a few of many problems listed by Antsaklis, Stiver & Lemmon (1993)

and Branicky (1995). Thus, these models did not reflect the exact behavior of the plant.

As a consequence, for them, there were well-known sets of control procedures that lead

to optimal theoretical results. Yet, the optimality was lost when applied to the practical sys-

tem. Particularly, the books written by Ragazzini & Franklin (1958), Chen & Francis (1995),

Franklin, Powell & Workman (1997), and the references therein address most results re-

lated to digital systems, specially when considering the optimal design problems based on

H2 and H∞ norms. For the continuous-time classical and modern control references, see

contributions from Luenberger (1979), Zhou, Doyle & Glover (1996), Geromel & Korogui

(2011), and the references therein. However, how to design an exact model to control this

kind of hybrid system?

First, and extensively used in literature, the well-established lifting technique

can be used. This technique mainly "lifts" a continuous-time signal to a discrete-time signal

preserving all norms, as H2, H∞, and others, as described in Bamieh & Pearson (1992).

A very good reference about sampled-data systems, where this technique is addressed,

is Chen & Francis (1995). Applications and uses of this technique to handle sampled-data

systems can be seen in Toivonen (1992), Bamieh & Pearson (1992), and in the recent paper

written by Ramezanifar, Mohammadpour & Grigoriadis (2014).

Next, after Witsenhausen (1966), a hybrid proposal was introduced and became

a largely studied subject in the literature nowadays. The theory of hybrid systems is a richer

approach that uses a mathematical formulation to describe the original mixed real system.

Many books and papers address hybrid systems specially Goebel, Sanfelice & Teel (2009)

shows a very useful overview on hybrid systems and an extensive stability and robustness

analysis of them. Another work, Souza (2015), analyses and synthesizes a state feedback

sampled-data control applied to deterministic continuous-time linear system. In this work,

the author uses a totally equivalent hybrid approach reaching optimal H2 and H∞ norm

based results, which are also expressed by Linear Matrix Inequalities (LMIs). The main

advantage of this technique is the mathematical simplicity, which is needed for the purpose

of the present work.

Returning to the NCS context and based on well-accepted works on the topic,

different strategies to deal with sampled-data control can be found; and all of them can

Gabriel, G.W.
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be used with both constant or variable sampling periods (Zhang, Gao & Kaynak (2013)

uses transmission interval, in the context of NCS) with widely available literature. In the

case of constant sampling intervals, stability and the H2 sampled-data control design prob-

lem are tackled in Chen (1999) and Souza (2015) using a totally equivalent discrete-time

system, leading to optimal results. On the other hand, dealing with variable transmission

intervals, more general strategies are available, according to Mazo-Jr. & Tabuada (2008),

Meng & Chen (2014) and Souza (2015). The last one uses a fixed interval where the pe-

riod can vary and is precisely the approach that will be adopted here. In addition, as stated

earlier, there is an interval where the period can vary. Defining it is essentially important

to maintain system stability. Curiously, for the deterministic systems, pathological periods

of transmission can be observed even inside a well-defined interval [T⋆, T
⋆], according to

Souza (2015).

Addressing packet dropout, network data transmission sometimes fails due to

packet losses during the transmission process, which generally has a burst behavior. Losses

in the system can be implemented in an online or an offline way. Offline techniques imple-

ment a controller previously designed that remains unchangeable during all plant execution.

A more flexible structure is the online implementation that considers the actual state of the

system to predict the best controller structure. Transmission success or failure depends on

the previous transmission state – failure or success – as seen in Marcondes (2005), which

indicates a stochastic behavior. Here, a Markov process is used because it allows good

mathematical properties. The main characteristic of a Markov process is the fact that the

probability of the future event depends only on the occurrence of the present event, that

means, all past occurrences can be abandoned.

It is relatively common to use a Markov process to model packet dropout as in

Marcondes (2005) and Xie & Xie (2009), besides it becomes better if it is possible to join

some linearity properties to it. In the next chapters, a continuous-time MJLS is used to model

packet loss, as in Farias (1998) and others. Indeed, modeling a plant as an MJLS, one mode

can be associated to transmission success and the other to transmission failure. The books

Costa, Fragoso & Marques (2005) and Costa, Fragoso & Todorov (2013) show interesting

results and techniques available up to date about using discrete-time and continuous-time

MJLS, respectively, with optimal control theory. Some basic results and definitions about

MJLS, that will be useful to develop Chapters III– VI, will be addressed in Section II.4.

At this point, considering both constraints together, sampled-data signals and

packet loss modeled by a continuous-time MJLS, a few works can be found to study the

stability and to present an optimal design procedure. All results are only sufficient. (See

Hu, Shi & Frank (2006), Gao, Wu & Shi (2009), and Mao (2013).) Hu, Shi & Frank (2006)

obtains an H2 static output feedback sampled-data control applied to MJLS, but only suf-

ficient conditions are achieved and they are not expressed in terms of LMIs. The conser-

vatism, in this case, is due to two main reasons: first, Lyapunov matrices, Pi(t), ∀i ∈ K,
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where K is a set of possible Markov modes, must satisfy a more restrictive constraint than

the conditions introduced by the Two-Point Boundary Value Problem (TPBVP) used in the

present work, in Chapters III and IV; and second, these Lyapunov matrices are of the form

Pi(t) = P0i + tP1i, ∀i ∈ K, ∀t ∈ [0, T ], for a fixed transmission period, T > 0. Simi-

larly, Gao, Wu & Shi (2009) proposes stability and robust control design, both of them ex-

pressed by sufficient conditions based on LMIs and Riccati equation. Recently, Mao (2013)

presented also sufficient conditions to the sampled-data state feedback control applied to

MJLS subject to a Brownian motion. Numerically speaking, this problem is not easy to be

solved even considering a fixed period of time, T > 0.

In this sense, the main purpose of the present work is to fill this gap provid-

ing necessary and sufficient conditions to the optimal controller design of a state feedback

control system when a continuous-time MJLS is taken into account. This project is based

on some performance index of interest. Specifically, H2 and H∞ norms will be considered.

These conditions are rewritten in a convex formulation in terms of LMIs. In order to accom-

plish these purposes, it is assumed throughout a constant sampling period Tk = T > 0 for

all k ∈ N. This dissertation is structured as follows:

Chapter II – Some basic concepts and theorems about hybrid systems, Markov jump linear

systems, and optimal control theory are presented. Specifically, the system structure

to be used is defined and some stability concepts are presented. In the framework of

optimal control, H2 and H∞ norms are defined.

Chapter III and IV – Necessary and sufficient conditions to assure stability and determine H2

and H∞ norms, respectively, of an state feedback sampled-data control system are

provided. These results will lead to optimal control design in the following chapters.

Moreover, specific algorithms to handle these norms are proposed.

Chapter V and VI – Using the previous results, the necessary and sufficient conditions are

changed to obtain the state feedback sampled-data control law that minimizes the

performances indexes based on H2 and H∞ norms, respectively. LMI conditions are

also derived. Algorithms to determine the optimal control law are proposed and proved

to be convergent.

Chapter VII – Some practical examples, borrowed from the literature, illustrate the theoretical

results obtained so far.

Finally, some conclusions are given and some topics to future works are proposed. Papers

derived from this work are also listed.
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CHAPTER II

Preliminaries

This chapter is devoted to present the notation and the system used through-

out. Besides, some fundamentals for the next developments are also presented. First of all,

some basic concepts about equilibrium point and stability of continuous-time and discrete-

time systems are reminded. Then, a hybrid control system is defined. In the sequel, a

Markov jump linear system with a sampled-data control is obtained, which leads to the

concept of a Hybrid Markov Jump Linear System (HJMLS). For these systems, the stability

definition used hereafter is presented. Optimality concepts for MJLS are also addressed.

As all results listed here can be easily found in the current literature, proofs are omitted or

only the more relevant steps are mentioned.

II.1 Notation

The notation used is standard. Upper Arabic or Greek letters represent real

matrices. Exceptions are the letter T , that represents the sampling time period, and N ,

that represents the cardinality of the countable set K = {1, · · · , N}. Small Arabic letters

represent vectors or functions, easily identified by the context. Exceptions are the matrix

dimensions n, m, r, p and q. Small Greek letters represent constant numbers. Particular

sets are represented by capital blackboard-bold letters; specially the symbols C, R, and N

are the sets of complex, real, and natural numbers, respectively. The notation A\{·} means

the complement of {·} in the set A. For any complex number, v̄ is the conjugate of v. (′)

means the transpose of a real vector or matrix, while (∼) is the conjugate transpose of a

complex vector or matrix. For symmetric matrices, (•) is each of their symmetric blocks.

Moreover, for any symmetric matrix A, A > 0 (A ≥ 0) means that A is positive (semi-

)definite; and for square matrices B ∈ Rn×n, Tr(B) =
∑n

i=1 bii is the trace of B. The

symbol |x| means the module of the vector x and ‖x‖p is a p-norm of x. For the next

chapters, consider ‖ · ‖p the stochastic p-norm associated to the Hardy spaces H2 and H∞.

The mathematical expected value operator is denoted by E [·], the conditioned mathematical

expected value operator is Eν [(·)] = E [(·) | ν], and P[·] is the probability of the event [·].
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The set of matrices P1, · · · , PN are shortly denoted as P = (P1, · · · , PN) and P > 0 (≥ 0)

indicates that P1 > 0, · · · , PN > 0 (≥ 0). The notation ξ(t−k ) for tk ≥ 0, k ∈ N, indicates the

limit of ξ(t) as t → tk from the left. A square matrix is Hurwitz stable if all eigenvalues are

inside the region Re(s) < 0, and is Schur stable if its eigenvalues are inside the open unit

circle |z| < 1 of the complex plane. The space of all random processes w : R+ → Rr such

that ‖w‖22 =
∫∞

0
E(w(t)′w(t))dt < ∞ is denoted by L2, and L∗

2 = L2 \ {0}.

II.2 Stability of Nonlinear Systems

First of all, consider a continuous-time dynamical system and a discrete-time

dynamical system, respectively defined by the field vectors fC(x(t), u(t), w(t)) for all t ∈ R+

and fD(x[k], u[k], w[k]) for all k ∈ N, such that

SC :

{

ẋ(t) = fC(x(t), u(t), w(t))

z(t) = gC(x(t), u(t), w(t))
(II.1)

is an open-loop continuous-time system, where x(t) is a continuously differentiable function;

and

SD :

{

x[k + 1] = fD(x[k], u[k], w[k])

z[k] = gD(x[k], u[k], w[k])
(II.2)

is an open-loop discrete-time system. For them,

◮ x(t) : R+ → Rn (x[k] : N → Rn) is the state vector,

◮ u(t) : R+ → Rm (u[k] : N → Rm) is the control input,

◮ w(t) : R+ → Rr (w[k] : N → Rr) is the exogenous input, and

◮ z(t) : R+ → Rp (z[k] : N → Rp) is the controlled output.

Global equilibrium points are defined as follows. (See the references Luenberger (1979),

Vidyasagar (1993), and Geromel & Korogui (2011).)

Definition II.1 xe is an equilibrium point for (II.1) if x(t) = xe for all t ≥ te ≥ 0 whenever

x(te) = xe. If, moreover, xe is unique, then xe is a global equilibrium point.

Definition II.2 xe is an equilibrium point for (II.2) if x[k] = xe for all k ≥ ke ≥ 0

whenever x[ke] = xe. If, moreover, xe is unique, then xe is a global equilibrium point.

In other words, an equilibrium point is the point xe at which the system stays

once it reaches xe. As a variation, instead of defining a point at which the system stays, it

is possible to define a region I ⊂ Rn inside which the system stays. This difference defines

the stability and asymptotic stability concepts. These definitions are stated in the sequel.
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Definition II.3 Consider a continuous-time system of the form (II.1).

1. An equilibrium point xe is stable if, for each ǫ > 0, there exists ρ > 0 such thata

‖x(te)− xe‖ < ρ implies that ‖x(t)− xe‖ < ǫ for all te < t ∈ R+.

2. An equilibrium point xe is asymptotically stable whenever it is stable and, in addi-

tion, there exists ρ > 0 such that ‖x(te) − xe‖ < ρ implies that ‖x(t) − xe‖ → 0

as t → ∞.

3. An equilibrium point xe is globally asymptotically stable whenever it is asymp-

totically stable and ‖x(t) − xe‖ → 0 as t → ∞ regardless of the initial state

x(te) ∈ Rn.

a The operator ‖ · ‖ follows from the norm definition presented later in this chapter.

Definition II.4 Consider a discrete-time system of the form (II.2).

1. An equilibrium point xe is stable if, for each ǫ > 0, there exists ρ > 0 such that

‖x[ke]− xe‖ < ρ implies that ‖x[k]− xe‖ < ǫ for all ke < k ∈ N.

2. An equilibrium point xe is asymptotically stable whenever it is stable and, in addi-

tion, there exists ρ > 0 such that ‖x[ke] − xe‖ < ρ implies that ‖x[k] − xe‖ → 0

as k → ∞.

3. An equilibrium point xe is globally asymptotically stable whenever it is asymp-

totically stable and ‖x[k] − xe‖ → 0 as k → ∞ regardless of the initial state

x[ke] ∈ Rn.

In the context of nonlinear systems, the Lyapunov direct method to assure sta-

bility plays a fundamental role since almost all the following theorems, available in the liter-

ature, are based on it. So, it is important to remember Lyapunov theory in both scenarios:

continuous-time, (II.1), and discrete-time systems, (II.2). Theorems II.1 and II.2 summarize

the Lyapunov direct method for stability.

Definition II.5 Let V (x(t), t) be a real functional of the continuous-time state x(t) de-

fined by (II.1). Then, V (x(t), t) is a Lyapunov functional if V (x(t), t) is continuously

positive definite for all t ∈ R+ around the equilibrium point. Mathematically, V (xe, t) = 0

and V (x(t), t) > 0 for x(t) 6= xe and for all t ∈ R+ with continuous partial derivatives

for all t ∈ R+. Moreover, for any t ∈ R+, V (x(t), t) is such that

d

dt
V (x(t), t) ≤ 0. (II.3)
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Definition II.6 Let V (x[k], k) be a real function of the discrete-time state x[k] defined

y (II.2). Then, V (x[k], k) is a Lyapunov functional if V (x[k], k) is positive definite for all

k ∈ N around the equilibrium point. Mathematically, V (xe, k) = 0 and V (x[k], k) > 0

for x[k] 6= xe and for all k ∈ N. Moreover, for any k ∈ N, V (x[k], k) is such that

V (x[k + 1], k + 1)− V (x[k], k) ≤ 0. (II.4)

Theorem II.1 The Lyapunov second method applied to the continuous-time system

(II.1).

1. If there is a Lyapunov functional V (x(t), t) in the sense of Definition II.5, for x(t)

satisfying (II.1), then the equilibrium point xe is stable.

2. If item 1 is satisfied and (II.3) is a strict inequality for x(t) 6= xe, then the equilib-

rium point is asymptotically stable.

3. If item 2 holds and, additionally, for all t ∈ R+, V (x(t), t) is such that

lim
x→∞

V (x, t) → ∞, (II.5)

then the equilibrium point is globally asymptotically stable.

Theorem II.2 The Lyapunov second method applied to the discrete-time system (II.2).

1. If there is a Lyapunov functional V (x[k], k) in the sense of Definition II.6, for x[k]

satisfying (II.2), then the equilibrium point xe is stable.

2. If item 1 is satisfied and (II.4) is a strict inequality for x[k] 6= xe, then the equilib-

rium point is asymptotically stable.

3. If item 2 holds and, additionally, for all k ∈ N, V (x[k], k) is such that

lim
x→∞

V (x, k) → ∞ (II.6)

then the equilibrium point is globally asymptotically stable.

For a deeper study, a further research on this topic and the detailed proofs of Theorems II.1

and II.2, see Luenberger (1979), Vidyasagar (1993), and the references therein.

II.3 Sampled-Data System as a Hybrid System

As largely studied from second half of last century, hybrid systems combine

continuous-valued and discrete-valued dynamics in a same system. In a very simple way
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and as described in many works in this area, a hybrid system can be represented by two

different dynamics in a single formulation: one of them describing the continuous-valued

part, and the other describing the discrete-valued part of the system. Different kinds of sys-

tems are well-modeled by a hybrid approach: biological systems as occurs in swarms of

fireflies, groups of crickets, ensembles of neuronal oscillators, and groups of heart mus-

cle cells; mechanical systems modeling colliding masses; and electronic systems such as

Zero-Crossing-Detector (ZCD), aircraft control, and sample-data control. As can be seen in

Goebel, Sanfelice & Teel (2009), each of them needs a specific mathematical formulation.

Considering the scope of sampled-data control systems, each of both equations

is defined inside some specific domain with proper mapping: an equation that represents

the continuity and an equation that represents the jumps. The continuous-time equation is

the dynamic flow of the system, that is, the plant dynamics. This is usually expressed as

ξ̇ = fC(ξ) for ξ ∈ A ⊂ Rn evolving from a given initial condition ξ0 ∈ A. On the other

hand, the discrete-time process describes the behavior of the jumps, which is represented

by ξ(tk+1) = fD(ξ(tk)), for ξ ∈ B ⊂ Rn and ξ0 ∈ B. In this case, the jump process

is the sampled-data control: a constant by parts control law defined by u(t) = u(tk) for

each time interval t ∈ [tk, tk+1), with k ∈ N. Notice that boundary constraints are nec-

essary to describe the domain that represents the real system with necessary complex-

ity. This is the usual formulation of hybrid systems as adopted by many authors including

Antsaklis, Stiver & Lemmon (1993), Branicky (1995), Goebel, Sanfelice & Teel (2009), as

well as Souza (2015).

Thus, the hybrid system description of a sampled-data control system is com-

posed by a dynamic equation, usually expressed in state space representation, and the

jump law that, here, is a sampled-data state feedback control law. At this point, consider a

general Linear Time-Invariant (LTI) system, which depends on time-varying functions u(t)

and w(t),

ẋ(t) = Ax(t) +Bu(t) + Ew(t) (II.7)

z(t) = Cx(t) +Du(t), (II.8)

where x(t) : R+ → Rn is the state, u(t) : R+ → Rm is the control input, w(t) : R → Rr is

the exogenous input, which is defined in some set L to be determined, and z : R → Rp is

the controlled output. This system evolves from x(0) = 0. Moreover, the class of admissible

control signals is defined as

u ∈ U = {u(t) = Lx(tk), t ∈ [tk, tk+1) ∀k ∈ N}. (II.9)

The sequence {tk}k∈N is composed by successive sampling instants such that t0 = 0,

tk+1 > tk and limk→∞ tk = ∞. As mentioned before, notice that defining a control law in the

form shown in (II.9) is fundamental to rewrite the system (II.7)–(II.8) in a hybrid approach.
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Indeed, defining ξ(t)′ = [x(t)′ u(t)′]′, this system becomes

ξ̇(t) =

[

A B

0 0

]

ξ(t) +

[

E

0

]

w(t), (II.10)

z(t) =
[

C D
]

ξ(t), (II.11)

ξ(tk) =

[

I 0

L 0

]

ξ(t−k ), (II.12)

subject to initial conditions ξ(0−) = ξ0 = 0, and valid for all t ∈ [tk, tk+1), k ∈ N. This

formulation is used by Souza (2015) and other authors as a totally equivalent approach. In-

deed, the second component of (II.10) imposes ξ2(t) = ξ2(tk) constant as a consequence

of ξ̇2(t) = 0, which together with (II.12) provides ξ2(t) = Lξ1(tk). In addition, plugging

this solution in the first equation of (II.10) yields x(t) = ξ1(t), first component of ξ(t), and

consequently, u(t) = ξ2(t). Thus, the controlled output z(t) = Cx(t) + DLx(tk), for all

t ∈ [tk, tk+1), is exactly the closed-loop z(t), (II.8), controlled by the sampled-data state

feedback law (II.9). This formulation to describe sampled-data systems was firstly sug-

gested by Yamamoto (1990).

Remark II.1 For the system defined by (II.10)–(II.12), the only constraint on the length of

the sampling interval Tk is Tk ∈ R+. For the formulas described here, Tk is not required

to be a periodic interval. However, as already mentioned, it is assumed throughout that

Tk = tk+1 − tk = T > 0, k ∈ N, a constant period of time. ✷

A more general representation of this class of hybrid systems is expressed by

SH :











ξ̇(t) = Fξ(t) + Jw(t)

z(t) = Gξ(t)

ξ(tk) = Hξ(t−k )

(II.13)

evolving from arbitrary initial conditions ξ(0−) = ξ0. This model contains, as particular case,

the one given in (II.10)-(II.12), which has special matrix structures.

Remark II.2 The hybrid system (II.13) is a piecewise continuous-time linear system. As

a consequence, all definitions and theorems from Section II.2 are applicable. Intuitively,

Theorem II.1 can be used to assure stability of a hybrid system since (II.13) is defined in

the continuous set Rn+m of the augmented state ξ(t). ✷

II.4 Continuous-Time Markov Jump Linear Systems

A Markov process is, before all, a stochastic process. In such a way, consider

the following definitions to characterize it formally.
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Definition II.7 Given a set O, a σ-algebra F on O is a collection of subsets of O that

contains the empty set and is closed under countable operations of union, intersection,

and complement.

Remark II.3 The σ-algebra concept is useful for defining measures on O. ✷

Definition II.8 Using Coculescu & Nikeghbali (2007) definition, consider the complete

probability space (O,F ,P). A filtration on (O,F ,P) is an increasing family Ft≥0 of sub-

σ-algebras on O. In other words, for each t, Ft is a σ-algebra included in F and if s ≤ t,

then Fs ⊆ Ft. A probability space (O,F ,P) endowed with a filtration Ft is called a

filtered probability space.

Definition II.9 If the triple (O,F ,P) is a complete probabilistic space, then the filtration

Ft is complete if F0 contains all the P-null sets.

Definition II.10 A random variable θ = {(θ(t),Ft); t ∈ R
+}, where θ(t) : R

+ → K, is

a measurable function. The probability of θ(t) = i is expressed by

πi = P[θ(t) = i], i ∈ K. (II.14)

As mentioned before, Markov processes are used to well represent the stochas-

tic characteristic of the packet loss since they are tractable mathematical formulations.

Markov process is a random process where the prediction of the future depends only on the

information available in the present, according to Leon-Garcia (2007). The continuous-time

Markov chain main characteristic is that it makes finitely many jumps in any finite time in-

terval. The continuous variable representing the instants of time is denoted by t ∈ R+. For

arbitrary instants of time s1 < s2 < · · · < s < t, the Markov property is expressed on the

probabilities associated to the random variable θ(t), that is

P[θ(t) = j|θ(s) = i, · · · , θ(s1) = i1] = P [θ(t) = j|θ(s) = i], (II.15)

where i1, · · · , i and j are any possible element of the state space of θ(t). Additionally, the

continuous-time Markov chain is time-homogeneous if for every i, j ∈ K and s < t, in other

words

P[θ(t) = j|θ(s) = i] = P [θ(t− s) = j|θ(0) = i]. (II.16)

Hereafter, without explicitly writing, the continuous-time Markov chain used is a continuous-

time homogeneous Markov chain.
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Now, consider a generic open-loop system with more than one possible state

space representation, each of them selected from K = {1, · · · , N}, N a positive natural

number. Consider also that, at some instant of time1 t, the Markov chain jumps from state

i ∈ K to the next state j ∈ K. Then, the time-varying function θ = {(θ(t),Ft); t ∈ R+}
describes the state of the random variable, which is governed by a continuous-time Markov

process.

Due to the previous definitions, a continuous-time Markov process can be well

defined by an initial state θ(0) and a transition rate matrix {λij} = Λ ∈ RN×N . The transition

matrix Q(t), that describes the probability of jumps inside the set K, is intrinsically related

to the transition rate matrix and is given by

Q(t) = eΛt. (II.17)

This is the unique solution of the forward and backward Kolmogorov differential equations

with Q(0) = I , as described in Costa, Fragoso & Todorov (2013). The vector of probabilities

π(t) = [π1 · · · πN ]
′, where πi(t) = P[θ(t) = i] for all i ∈ K and t ∈ R

+, verifies

π(t) = Q(t)′π(0). (II.18)

This statement together with (II.17) implies that

π(t + h) = eΛ
′hπ(t). (II.19)

On the other hand, considering an arbitrarily small time interval h > 0, expanding (II.19) in

Taylor series, and using (II.15), each element of matrix Q(t) is such that

Qij(h) = P[θ(t + h) = j|θ(t) = i] =

{

1 + λijh+ o(h) , for i = j

λijh+ o(h) , for i 6= j
(II.20)

holds for all t ∈ R
+, where o(h) represents high order terms which goes to zero faster than

the others. In other words, limh→0+ o(h)/h = 0. Moreover, the elements of Λ ∈ RN×N are

such that λij ≥ 0 for all i 6= j and
∑

j∈K λij = 0 for all i ∈ K. This implies that λii ≤ 0

for all i ∈ K. Notice that this probability depends uniquely on the difference between two

consecutive jump instants t + h and t.

Finally, the first moment of the expected value of some stochastic processXθ(t)(t),

where θ(t) ∈ K and t ∈ R+, is readily calculated from

E [Xθ(t)(t)] =
∑

j∈K

πj(t)Xj(t). (II.21)

In the context of the control problems to be solved in the sequel, consider an

homogeneous continuous-time MJLS defined by

ẋ(t) = Aθ(t)x(t) + Eθ(t)w(t) (II.22)

z(t) = Cθ(t)x(t), (II.23)

1 In Chapter VII, the time interval between consecutive jumps is defined according to Leon Garcia’s proce-
dure. (See Leon-Garcia (2007).)
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which evolves from initial conditions x(0) = 0 and θ(0) = θ0, with P[θ0 = i] = πi0 > 0 for

all i ∈ K. In (II.22)–(II.23), once more, x(t) : R+ → Rn is the state, w(t) : R+ → Rr is the

exogenous input, which is defined in some set L, and z(t) : R+ → Rp is the output. For

this system, some stability results have been largely used in literature. (See Fang & Loparo

(2002), Costa, Fragoso & Todorov (2013), and references therein.) The stability definition

used throughout is stated in the sequel.

Definition II.11 Let Ft be a filtration that defines the random variable θ(t). System

(II.22)–(II.23) with w(t) ≡ 0 is Mean Square Stable (MSS) with respect to Ft if, for any

initial state x(0) = x0 and θ0,

lim
t→∞

E [‖x(t)‖2] = 0. (II.24)

Once again the stability analysis of system (II.22)–(II.23) can be based on the

Lyapunov direct method. For MJLS, it is usual to use multiple Lyapunov functions as in

Fang & Loparo (2002) and Costa, Fragoso & Todorov (2013). Thus, in Definition II.5, in-

stead of V (x(t), t), consider N Lyapunov-like functionals indexed by i ∈ K, Vi(x(t), t), each

of them associated to one Markov mode. Moreover, it has been proved that if a Continuous

Algebraic Riccati Equation (CARE) is satisfied, then the MSS is assured. Notice that, the

concept of multiple Lyapunov-like functionals is usual in the context of switched systems.

Theorem II.3 (From Costa, Fragoso & Todorov (2013).) Consider the MJLS

ẋ = Aθ(t)x(t), θ(0) = θ0, x(0) = x0, (II.25)

where x(t) ∈ Rn, θ(t) ∈ K, and t ∈ R+, with initial distribution πi0 = P[θ0 = i]. System

(II.25) is MSS if and only if, for any symmetric matrices U = (U1, · · · , UN) > 0, there

exist symmetric matrices P = (P1, · · · , PN) > 0 satisfying

A′
iPi + PiAi +

∑

j∈K

λijPj + Ui = 0, i ∈ K. (II.26)

Remark II.4 Only continuous-time systems have been presented in this section due to the

fact that this is the only case treated in this work. ✷

II.5 H2 and H∞ norms for MJLS

Certainly, an important feature of control systems is the possibility of optimizing

some specific performance index. Generally, a performance index represents some system

characteristic of interest, for instance, the length or energy of some signal, a measure of

the system uncertainty, or the signal gain from disturbances input to error outputs as well
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exposed by Zhou, Doyle & Glover (1996). These measures are in essence norms, which at-

tribute a real number to a vector or matrix, making possible the comparison among different

closed-loop systems. So, the next lines are devoted to define the performance indexes used

throughout. First of all, consider the norm, the normed space, and the Hilbert space defini-

tions. Then, the H2 and H∞ spaces can be introduced. With these tools, it will be possible

to consider the performance indexes used to guarantee the closed-loop system stability and

to design the optimal control law, which are the purposes of the following chapters.

Definition II.12 Consider a vector field V ⊂ Cq such that q ∈ N \ {0} with an one-

dimensional subspace X ⊂ V. A norm ‖ · ‖ is a function ‖ · ‖ : V → R
+ such that the

next three axioms hold for u, v ∈ V and α ∈ X.

1. Axiom of the null element: ‖v‖ ≥ 0 for all v ∈ V, and ‖v‖ = 0 if and only if v = 0.

2. Axiom of homogeneity: ‖αv‖ = |α| · ‖v‖.

3. Axiom of triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Definition II.12 is available in Vidyasagar (1993). As a consequence of the previous defini-

tion, a norm on the set V defines a metric such as d(u, v) = ‖u− v‖ induced by the norm.

Thus, a normed space is defined (see Kreyszig (1978) for reference).

Definition II.13 (Normed space, Banach space). A normed space V, also called normed

vector space or normed linear space, is a vector space with a norm defined on it. A Ba-

nach space is a complete normed space (completeness in the metric defined by the

norm). Then, the normed space just defined is denoted by (V, ‖ · ‖) or simply by V.

Some known spaces are Banach spaces, for example, Cq, or Rq, respectively

the set of complex and real vectors with dimension q ∈ N \ {0}. But, among all Banach

spaces, the Hilbert space is of particular interest. So, consider the definition of inner product,

the Hilbert Space, and the special Hardy spaces H2 and H∞ (all of them extracted from

Zhou, Doyle & Glover (1996) and Colaneri, Geromel & Locatelli (1997)).

Definition II.14 Let V be a vector space on C
q. An inner product on V is a complex

valued function 〈·, ·〉 : V× V → C such that for any u, v, y ∈ V and α, β ∈ C

1. 〈u, αv + βy〉 = α〈u, v〉+ β〈u, y〉.

2. 〈u, v〉 = 〈v, u〉.

3. 〈u, u〉 > 0 if u 6= 0.

A vector space with an inner product is called an inner product space.
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Definition II.15 A Hilbert space is a complete inner product space with the norm in-

duced by its inner product.

Consequently, the Hilbert space is also a Banach space. Rq with the usual inner

product is a Hilbert space. Obviously, many other spaces are Hilbert spaces. The next Def-

initions II.16 and II.17 stand for spaces that conduct to the H2 and H∞ norms. Specifically,

consider the transfer function from the exogenous input w to the controlled output z of the

LTI system (II.7)–(II.8) with zero control input u(t) = 0, that is

F(ζ) = C(ζI − A)−1E (II.27)

Although this transfer function of interest is strictly proper, the next definitions hold for any

transfer function.

Definition II.16 Hardy Space RH2 (here, just H2): H2 is a subspace of the Hilbert

space consisting of all matrix-valued functions F(ζ) : C → Cp×r for which the following

integral is bounded

∫ ∞

−∞

Tr(F(jω)∼F(jω))dω < ∞ (II.28)

such that F(ζ) is analytic in the open right-half plane. The inner product for this Hilbert

space is defined as

〈F,G〉 := 1

2π

∫ ∞

−∞

Tr(F(jω)∼G(jω))dω (II.29)

for F,G ∈ V and the inner product induced norm is given by ‖F‖22 := 〈F,F〉.

Definition II.17 Hardy Space RH∞ (here, just H∞): H∞ is a subspace of a Banach

space consisting of all matrix-valued functions F(ζ) : C → Cp×r with norm

‖F‖∞ := sup
ω∈R

σ̄[F(jω)] (II.30)

such that F(ζ) is analytic and bounded in the open right-half plane. The function σ̄(·) is

the largest singular value of (·).

The H2 and H∞ norms can be alternatively calculated in time domain. First,

notice that only strictly proper transfer functions satisfy the condition (II.28). Using Parseval

theorem and trace properties, the H2 norm can be rewritten as

‖F‖22 =
r
∑

l=1

‖zl‖22, (II.31)
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where

‖zl‖22 =
∫ ∞

0

‖zl(t)‖22dt (II.32)

is the norm of the entire trajectory zl(t) : R
+ → R

p and ‖zl(t)‖22 = zl(t)
′zl(t) is the Euclidian

norm evaluated at the time instant t ∈ R+. The signal zl(t) is the output of system (II.7)–

(II.8) corresponding to the exogenous impulsive input w(t) = elδ(t), where el ∈ Rr is th l-th

column of the identity matrix with compatible dimension. On the other hand, the H∞ norm

can also be determined in time domain by

‖F‖∞ = sup
w∈L∗

2

‖z‖2
‖w‖2

, (II.33)

where z(t) is the output of the system (II.7)–(II.8) corresponding to the exogenous input

w ∈ L∗
2 == L2 \ {0} where L2 is the space of all signals w(t) : R+ → Rr such that

‖w‖22 =
∫∞

0
‖w(t)‖dt < ∞ (see Colaneri, Geromel & Locatelli (1997)). Observe that the

existence of a finite H∞ norm does not require the transfer function to be strictly proper.

Obviously, these definitions are restricted to deterministic approaches. From the

stochastic point of view, for the system in (II.22)–(II.23), equivalent definitions for H2 and

H∞ norms follow from the appropriate norm of a generic trajectory as being

‖z‖22 =
∫ ∞

0

E [z(t)′z(t)]dt. (II.34)

These norm definitions are the same used in Costa, Fragoso & Todorov (2013).

At this point, consider the open-loop system represented in (II.22)–(II.23). Re-

spectively, and in such a way defined by Costa, Fragoso & Todorov (2013), the performance

indexes to be considered are

J2 =
r
∑

l=1

∫ ∞

0

E [zl(t)′zl(t)]dt (II.35)

for zl the output corresponding to the impulsive input defined previously and

J∞ = sup
w∈L2

∫ ∞

0

E [z(t)′z(t)− γ2w(t)′w(t)]dt, (II.36)

for a given γ > 0. The usual manner to evaluate the performance indexes (II.35) and (II.36)

is to consider a multiple Lyapunov functional, as mentioned before in Section II.4, together

with the Lyapunov direct method from Theorem II.1. To illustrate this approach, let the set of

quadratic Lyapunov functionals be Vi(x(t), t) = x(t)′Pi(t)x(t) associated to the i-th Markov

mode of the open-loop system (II.22)–(II.23), where θ(t) = i ∈ K. Consider x(t) = x and

w(t) = w at t ∈ R+. Consider also the set of positive definite solutions Pi(t), i ∈ K, to the

coupled Differential Riccati Equations (DRE)

Ṗi(t) + A′
iPi(t) + Pi(t)Ai + γ−2Pi(t)EiE

′
iPi(t) +

∑

j∈K

λijPj(t) + C ′
iCi = 0 (II.37)
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subject to the final boundary conditions Pi(tf) ≥ 0, i ∈ K, whose existence will be dis-

cussed later. Define the infinitesimal generator as

LwVi(x, t) = lim
h→0

E i,x,t
[

Vθ(t+h)(x(t + h), t+ h)
]

− Vi(x, t)

h
, (II.38)

in the same way proposed by Costa, Fragoso & Todorov (2013), where

E i,x,t
[

Vθ(t+h)(x(t+ h), t+ h)
]

= E i,x,t

[

∂Vθ(t+h)

∂t
(x, t)h

]

+ E i,x,t

[

∂V ′
θ(t+h)

∂x
(x, t)ẋ(t)h

]

+ E i,x,t
[

Vθ(t+h)(x, t)
]

+ o(h). (II.39)

Consequently, the definition (II.20) yields

lim
h→0

E i,x,t

[

∂Vθ(t+h)

∂t
(x, t)

]

=
∂Vi

∂t
, (II.40)

lim
h→0

E i,x,t

[

∂V ′
θ(t+h)

∂x
(x, t)ẋ(t)

]

=
∂V ′

i

∂x
ẋ(t), (II.41)

and

lim
h→0

E i,x,t
[

Vθ(t+h)(x, t)
]

− Vi(x, t)

h
=
∑

j∈K

λijVj, (II.42)

which holds for all i ∈ K. Thus, in the more general case of the H∞ norm, taking into

account the dynamic system (II.22)–(II.23), the infinitesimal generator becomes

LwVi(x, t) =
∂Vi

∂t
+

∂V ′
i

∂x
ẋ(t) +

∑

j∈K

λijVj

= x′

(

Ṗi(t) + A′
iPi(t) + Pi(t)Ai +

∑

j∈K

λijPj(t)

)

x+ 2x′Pi(t)Eiw. (II.43)

This equality together with (II.37) and the final condition Pi(tf) ≥ 0 leads to

LwVi(x, t) = −x′
(

C ′
iCi + γ−2Pi(t)EiE

′
iPi(t)

)

x+ 2x′Pi(t)Eiw

= −z(t)′z(t) + γ2w′w − γ2
∥

∥w − γ−2E ′
iPi(t)x

∥

∥

2

2
. (II.44)

Making use of Dinkyn’s formula (see Costa, Fragoso & Todorov (2013)), it follows that

Vθ0(0, 0)− Eθ0,0,0[Vθ(tf )(x(tf ), tf)] =−
∫ tf

0

Eθ0,0,0
[

LwVθ(τ)(x(τ), τ)
]

dτ

=

∫ tf

0

Eθ0,0,0
[

z(τ)′z(τ)− γ2w′w
]

dτ

+ γ2

∫ tf

0

Eθ0,0,0
[

∥

∥w − γ−2E ′
θ(τ)Pθ(τ)(τ)x

∥

∥

2

2

]

dτ.

(II.45)
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Hence,

Vθ0(0, 0)− Eθ0,0,0[Vθ(tf )(x(tf ), tf)] ≥
∫ tf

0

Eθ0,0,0
[

z(τ)′z(τ)− γ2w′w
]

dτ (II.46)

for all w ∈ L2. The equality in (II.46) holds for the worst case disturbance, which is given

by w(t) = γ−2E ′
θ(t)Pθ(t)(t)x(t). Calculating the mathematical expectation with respect to

θ0 ∈ K, then

sup
w∈L2

E
[
∫ tf

0

(z(τ)′z(τ)− γ2w′w)dτ + x(tf )
′Pθ(tf )x(tf )

]

= 0 (II.47)

due to x(0) = 0. Finally, the existence of a solution of (II.37) implies, from Theorem II.3, that

the system is MSS, then the limit of the left hand side of (II.47) as tf goes to infinity is well

defined and gives

sup
w∈L2

E
[
∫ ∞

0

(z(τ)′z(τ) − γ2w′w)dτ

]

= 0. (II.48)

As a consequence, the H∞ norm of the system (II.22)–(II.23) equals the minimum value of

γ > 0 such that the coupled DRE (II.37) becomes a coupled CARE, which admits a unique

set of positive definite stabilizing solutions corresponding to J∞ = 0.

There are two more important results. One of them concerns the fact that the

solution of the DRE (II.37) is positive semi-definite inside the time interval [0, tf ] provided

that P (tf) ≥ 0. The other, concerns the existence and uniqueness of a stationary solution

to the associated CARE.

Theorem II.4 If there exists a set of N continuous matrices Pi(t) ∈ Rn×n in the time

interval 0 ≤ t ≤ tf satisfying the coupled DRE

Ṗi(t) + A′
iPi(t) + Pi(t)Ai + γ−2Pi(t)EiE

′
iPi(t) +

∑

j∈K

λijPj(t) + C ′
iCi = 0 (II.49)

with boundary condition P (tf) ≥ 0, then P (t) ≥ 0 for all 0 ≤ t ≤ tf .

Proof: Assuming that a solution exists, it can be expressed as

Pi(t) = eĀ
′

i(tf−t)Pi(tf )e
Āi(tf−t)

+

∫ tf

t

eĀ
′

i(τ−t)

(

γ−2Pi(τ)EiE
′
iPi(τ) +

∑

j 6=i∈K

λijPj(τ) + C ′
iCi

)

eĀi(τ−t)dτ, (II.50)

where Āi = Ai+(λii/2)I for all i ∈ K. The proof follows because the backwards integration

of the integral in (II.50), from t = tf , considering a positive semi-definite final boundary

condition leads to a positive semi-definite result. �

The stationary solution obtained by setting Pi(t) ≡ Pi for all t ∈ R+ and all i ∈ K

is fully characterized by the next result due to Costa, Fragoso & Todorov (2013).
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Theorem II.5 Let γ > 0 be given such that J∞ < 0. There exists a unique set of N

positive semi-definite and stabilizing solutions P = (P1, · · · , PN), Pi ∈ Rn×n, satisfying

the coupled CAREs

A′
iPi + PiAi + γ−2PiEiE

′
iPi +

∑

j∈K

λijPj + C ′
iCi = 0 (II.51)

for each i ∈ K.

Similarly, for the H2 norm calculation, the same path can be followed to obtain

E
[
∫ ∞

0

z(τ)′z(τ)dτ

]

=E [Vθ0(x0, 0)]

=
∑

i∈K

πi0x
′
0Pix0 (II.52)

whenever (II.22)–(II.23) evolves from the initial condition x(0) = x0 and w(t) ≡ 0. Since the

system trajectory corresponding to x(0) = 0 and w(t) = elδ(t) equals the system trajectory

corresponding to x(0) = Eθ0el and w(t) ≡ 0, for each l = 1, · · · , r, then

r
∑

l=1

∫ ∞

0

E [zl(τ)
′zl(τ)] dτ =

∑

i∈K

r
∑

l=1

πi0e
′
lE

′
iPiEiel

=
∑

i∈K

πi0Tr(E ′
iPiEi), (II.53)

where the positive semi-definite matrices Pi ∈ R
n×n, i ∈ K, satisfy the coupled Lyapunov

equations obtained from the CAREs (II.51) by setting γ → ∞. Under mild assumptions, the

CAREs in (II.51) admit a set of positive definite solutions. (See Costa, Fragoso & Todorov

(2013).)

II.6 Continuous-Time Hybrid MJLS Definition

Finally, consider the MJLS defined by the state space realization

ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t) + Eθ(t)w(t) (II.54)

z(t) = Cθ(t)x(t) +Dθ(t)u(t), (II.55)

which evolves from initial conditions x(0) = 0 and θ(0) = θ0, with P[θ0 = i] = πi0 > 0 for

all i ∈ K. Once more, x(t) : R+ → Rn is the state, u(t) : R+ → Rm is the control input,

w(t) : R+ → Rr is the exogenous input, which is defined in some set L to be defined, and

z(t) : R+ → Rp is the output. Moreover, this system is subject to a sampled-data control

law u(t) defined by a set of N state feedback sampled-data control laws analogous to (II.9)

expressed by

u ∈ U = {u(t) = Lθ(tk)x(tk), t ∈ [tk, tk+1) ∀k ∈ N} (II.56)
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with θ(tk) ∈ K. As defined before, the sequence {tk}k∈N are successive sampling instants

of time and T = tk+1 − tk, k ∈ N. Thus, the hybrid system composed by (II.54)–(II.55)

subject to the control law (II.56) can be rewritten as

ξ̇(t) =

[

Aθ(t) Bθ(t)

0 0

]

ξ(t) +

[

Eθ(t)

0

]

w(t) (II.57)

z(t) =
[

Cθ(t) Dθ(t)

]

ξ(t) (II.58)

ξ(tk) =

[

I 0

Lθ(tk) 0

]

ξ(t−k ) (II.59)

evolving from initial conditions ξ(0−) = ξ0 = 0 and θ(0−) = θ(0) = θ0, valid for all t ∈
[tk, tk+1), k ∈ N. This is called a Hybrid Markov Jump Linear System (HMJLS) and the

rationale behind its definition follows the same reason as exposed in Section II.3. Again, the

second component of (II.57) imposes ξ2(t) = ξ2(tk) for all t ∈ [tk, tk+1) as a consequence

of ξ̇2(t) = 0, which together with (II.59) provides ξ2(t) = Lθ(tk)ξ1(tk). In addition, plugging

this solution in the first equation of (II.57) yields x(t) = ξ1(t). Thus, the controlled output

z(t) = Cθ(t)x(t) + Dθ(t)Lθ(tk)x(tk), which is valid for all t ∈ [tk, tk+1), k ∈ N, is exactly the

closed-loop system z(t), (II.55), controlled by the sampled-data state feedback law (II.56).

In a more general representation

SH :











ξ̇(t) = Fθ(t)ξ(t) + Jθ(t)w(t)

z(t) = Gθ(t)ξ(t)

ξ(tk) = Hθ(tk)ξ(t
−
k )

, (II.60)

which evolves from arbitrary initial conditions ξ(0−) = ξ0 and θ(0−) = θ(0) = θ0. Clearly,

this model contains, as particular case, the one given in (II.57)-(II.59).

Remark II.5 Jump and sampling processes are totally independent. Consequently there is

no relationship between the time when the system "jumps", that is a random variable with

exponential distribution (see Leon-Garcia (2007)), and the instants of time tk, k ∈ N, of the

sampling process. ✷

Stability conditions for the system (II.60) have already been determined, as men-

tioned in Chapter I. Among them, Hu, Shi & Frank (2006) obtained sufficient conditions,

based also on multiple Lyapunov-like functionals. This is a similar hypothesis as used by

Fang & Loparo (2002) and Costa, Fragoso & Todorov (2013), which encourages the usage

of an analogous approach to the problem addressed by this work.

As a final remark, notice that the same performance indexes (II.35) and (II.36)

can be adopted to the HMJLS (II.57)–(II.59) in the same way used for the MJLS (II.22)–

(II.23). So, considering the set of the state feedback gains L = (L1, · · · , LN ) in (II.56), the

main goal is to determine the optimal gains Li, i ∈ K, that minimizes the H2 performance

inf
L
J2(L) (II.61)
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subject to (II.57)–(II.59) or minimizes the H∞ performance

inf
L,γ

{

γ2 : J∞(L) < 0
}

(II.62)

subject to (II.57)–(II.59) as well. Thereby, these design problems are in the general form of

any optimal control problem. However, they have never been solved until now. The purpose

of this work is to solve these problems in the context of sampled-data control as previously

discussed. Moreover, the existence of a general design procedure allows future applications

in other problems of interest, as for instance, filtering and dynamic output feedback.
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CHAPTER III

Stability and H2 Norm Evaluation of Hybrid MJLS

This chapter is dedicated to state necessary and sufficient conditions to assure

the HMJLS mean-square stability. At the same time the exact value of the H2 norm is

determined. In order to accomplish these goals, evenly spaced sampling instants, T =

tk+1 − tk ≥ 0 for all k ∈ N, are considered. Theoretical results on the stability analysis in

the context of H2 norm are derived from a TPBVP with initial and final boundary conditions.

Moreover, an algorithm based on an iterative procedure is suggested and its convergence

proved whenever the TPBVP admits a positive definite solution. A numerical example shows

that the procedure is suitable for the purpose of calculating the H2 norm of an HMJLS.

The feedback system used in this chapter is the open-loop continuous-time

MJLS (II.54)–(II.55) subject to a sampled-data state feedback control law, (II.56). However,

since no particularity of the system matrices is required, the general hybrid structure (II.60)

can conveniently be used. Hence, consider the HMJLS in the form of

SH :











ξ̇(t) = Fθ(t)ξ(t) + Jθ(t)w(t)

z(t) = Gθ(t)ξ(t)

ξ(tk) = Hθ(tk)ξ(t
−
k )

(III.1)

evolving from initial conditions ξ(0−) = ξ0 = 0 and θ(0−) = θ(0) = θ0. For this system,

ξ(t) : R+ → Rn+m is the augmented state variable, w(t) : R+ → Rr is the exogenous input,

z(t) : R+ → R
p is the controlled output, and {θ(t) ∈ K}, K = {1, · · · , N}, is a continuous-

time Markov process with a transition rate matrix {λij} = Λ ∈ RN×N . As defined in Chapter

II, the conditional probability associated to Λ depends only on the time interval h between

successive jumps of the Markov chain and is given by

Qij(h) = P[θ(t + h) = j|θ(t) = i] =

{

1 + λijh + o(h) , for i = j

λijh + o(h) , for i 6= j
, (III.2)

where o(h) is high order terms such that limh→0+ o(h)/h = 0. Moreover, the elements of

Λ ∈ R
N×N satisfy λij ≥ 0 for all i 6= j and

∑

j∈K λij = 0 for all i ∈ K. Thus, λii ≤ 0 for all

i ∈ K. Consider also that πi(0) = πi0 = P[θ0 = i] is the initial distribution of the variable

θ(t), that is, πi0 is the distribution of θ(0) = θ0.
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III.1 Theoretical Results

The main result of this section is to verify the stability of the HMJLS (III.1) at

the same time the J2 performance index is evaluated. In order to accomplish that, remem-

ber that an impulsive exogenous input is a consequence of Definition II.16. Moreover, the

system trajectory evaluated in (II.22)–(II.23) corresponding to w(t) = elδ(t), l = 1, · · · , r,

and initial state x0 = 0 is equivalent to the system trajectory corresponding to w(t) ≡ 0

and x0 = Eθ0el, l = 1, · · · , r. Remember also that the performance index J2 applied to the

MJLS (II.22)-(II.23) has been appropriately defined by

J2 =

r
∑

l=1

∫ ∞

0

E [zl(t)′zl(t)]dt. (III.3)

Then, consider the equivalent hybrid system (III.1) and observe that it is a Piecewise Con-

tinuous (PWC) MJLS since at each instant tk, k ∈ N, occurs a discontinuity imposed by the

matrices Hi, i ∈ K. The performance index (III.3) can be rewritten as

J2 =

r
∑

l=1

∑

k∈N

∫ tk+1

tk

E [zl(t)′zl(t)]dt (III.4)

subject to the system (III.1) with w(t) ≡ 0, which evolves from θ(0−) = θ(0) = θ0 and

ξ(0−) = ξ0 = Jθ0el, for each l = 1, · · · , r, where el is the l-th column of the identity matrix

with compatible dimensions.

Since multiple Lyapunov-like functionals can be used to assure the MJLS sta-

bility, consider a collection of continuous nonnegative cost-to-go functionals Vθ(t)(ξ(t), t) =

ξ(t)′Pθ(t)(t)ξ(t), where θ(t) ∈ K and t ∈ [tk, tk+1) for each k ∈ N and Pi(t) solves the

coupled Differential Lyapunov Equations (DLE)

Ṗi(t) + F ′
iPi(t) + Pi(t)Fi +

∑

j∈K

λijPj(t) +G′
iGi = 0, (III.5)

for all i ∈ K inside the time interval defined by [tk, tk+1), k ∈ N. Notice that i ∈ K is the

value of θ(t) at the instant of time t ∈ [tk, tk+1). The solution of (III.5) always exists and is

uniquely determined by

Pi(t) = eF̄
′

i (tk+1−t)Pi(t
−
k+1)e

F̄i(tk+1−t)

+

∫ tk+1

t

eF̄
′

i (τ−t)

(

G′
iGi +

∑

j 6=i∈K

λijPj(τ)

)

eF̄i(τ−t)dτ (III.6)

for all t ∈ [tk, tk+1), k ∈ N, provided a set of final boundary conditions Pi(t
−
k+1). The new

matrices F̄i are defined by F̄i = Fi+(λii/2)I for each i ∈ K. Hence, imposing Pi(t
−
k+1) ≥ 0

for all i ∈ K, a positive semi-definite solution P (t) can always be obtained since the second

right hand term of (III.6) is positive semi-definite for all t ∈ [tk, tk+1), k ∈ N, and all i ∈ K.
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Moreover, due to the time invariance of the coupled Lyapunov equations (III.5),

the solutions defined by (III.6) admit a periodic extension in any subsequent time interval

1 ≤ k ∈ N whenever the final boundary constraints remain unchanged for all k ∈ N and

each i ∈ K. Mathematically, Pi(t) = Pi(t − tk) for all i ∈ K and all t ∈ [tk, tk+1), k ∈ N.

Consequently, defining the sampling period T = tk+1 − tk > 0 and the boundary conditions

Pi(tk) = Pi(0) and Pi(t
−
k+1) = Pi(T ) for all i ∈ K and all k ∈ N, the solutions Pi(t) evaluated

at the beginning of the time interval [0, T ) are

Pi(0) = eF̄
′

iTPi(T )e
F̄iT +Ri(P, T ). (III.7)

Matrices Ri(P, T ) are positive semi-definite functions that depend on matrices Pj(t), j 6=
i ∈ K, evaluated inside the interval [0, T ) and on the sampling period T . From (III.6) and

(III.7), they are expressed as

Ri(P, T ) =

∫ T

0

eF̄
′

i τ

(

G′
iGi +

∑

j 6=i∈K

λijPj(τ)

)

eF̄iτdτ. (III.8)

As a consequence, the behavior of the system trajectory described by the hybrid

approach (III.1) can be entirely analysed by evaluating (III.5) inside the time interval [0, T )

and considering at each k ∈ N the discontinuity imposed by the third equation of (III.1).

Since this discontinuity occurs at the end of the time interval defined by two consecutive

jumps, it can be efficiently regarded in the boundary conditions of a TPBVP. This under-

standing is fundamental to state the next theorem, which is the key result to solve the H2

optimal control problem for an HMJLS in the form of (III.1).

Theorem III.1 Let T > 0 be given. If there exist matrices Si > 0, i ∈ K, satisfying

the TPBVP composed by the coupled Lyapunov equations (III.5) subject to the initial

Pi(0) < Si and final Pi(T ) > H ′
iSiHi boundary conditions for all i ∈ K, then the HMJLS

(III.1) is MSS and the performance index (III.4) satisfies

J2 <
∑

i∈K

πi0Tr(J ′
iH

′
iSiHiJi). (III.9)

Proof: In order to prove Theorem III.1, consider that there exist matrices Si > 0 for all

i ∈ K such that the TPBVP composed by the coupled differential Lyapunov equations

(III.5) and initial Pi(0) < Si and final Pi(T ) > H ′
iSiHi boundary conditions holds. Then, for

ν(t) = (ξ(t), θ(t), t), define the quadratic functional V : Rn+m ×K× R+ → R+ as

V (ν(t)) := ξ(t)′Pθ(t)(t)ξ(t) (III.10)

for each θ(t) ∈ K and all t ∈ [tk, tk+1), k ∈ N. Notice that P (t) ≥ 0 for all t ∈ [0, T ] provided

that P (T ) ≥ 0. Additionally, the possibility to reproduce the solutions of the TPBVP in a

periodic way, where T = tk+1 − tk > 0 for all k ∈ N, makes possible to do the same
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to the functional (III.10). As a consequence, the boundary conditions of the TPBVP can

be rewritten as Pi(tk) = Pi(0) < Si and Pi(t
−
k+1) = Pi(T ) > H ′

iSiHi for all i ∈ K. The

functional V (ν(t)) evaluated at the beginning of each time interval [tk, tk+1) yields

V (ν(tk)) < ξ(tk)
′Sθ(tk)ξ(tk) (III.11)

for all k ∈ N. Notice that (III.11) states an upper bound to the initial condition of (III.10)

defined inside the interval [tk, tk+1). Furthermore, due to (III.2), the stochastic process im-

poses θ(t−k+1) = θ(tk+1) with probability one (almost surely). Hence, due to the discontinuity

of the state variable ξ(t) at the time instant t−k+1 → tk+1, similarly, at the end of the time

interval [tk, tk+1)

Eν(tk)
{

V (ν(t−k+1))
}

= Eν(tk)
{

ξ(t−k+1)
′Pθ(t−

k+1)
(t−k+1)ξ(t

−
k+1)

}

= Eν(tk)
{

ξ(t−k+1)
′Pθ(tk+1)(t

−
k+1)ξ(t

−
k+1)

}

> Eν(tk)
{

ξ(t−k+1)
′H ′

θ(tk+1)
Sθ(tk+1)Hθ(tk+1)ξ(t

−
k+1)

}

= Eν(tk)
{

ξ(tk+1)
′Sθ(tk+1)ξ(tk+1)

}

, (III.12)

which provides a lower bound to the mean of the final condition of the functional V (ν(t))

inside the interval [tk, tk+1).

On the other hand, as a consequence of the Dynkin’s formula (see Section II.5) applied to

the functional V (ν(t)) and using the definition of J2, (III.4), it is possible to write

V (ν(tk))− Eν(tk)
[

V (ν(t−k+1))
]

= −Eν(tk)

[
∫ tk+1

tk

LV (ν(τ))dτ

]

= Eν(tk)

[
∫ tk+1

tk

z(τ)′z(τ)dτ

]

(III.13)

for each i ∈ K and all t ∈ [tk, tk+1), k ∈ N, where ξ(t) evolves according to (III.1) with

w(t) ≡ 0 and initial conditions θ(0−) = θ(0) = θ0 and ξ(0−) = ξ0.

Notice that E [V (ν(t))] can be considered a valid Lyapunov functional in terms of Definition

II.5 since the time-varying matrices Pi(t) are positive definite for all t ∈ [tk, tk+1). Even

though, define a new quadratic functional as v(ν(tk)) , ξ(tk)
′Sθ(tk)ξ(tk), which is valid for

all k ∈ N and depends on constant matrices Si, i ∈ K. Due to Si > 0, ∀i ∈ K, then v(ν(tk))

is positive definite and E [v(ν(tk))] can be considered a valid Lyapunov functional associated

to the discrete-time stochastic process ξ(tk) → ξ(t−k+1) → ξ(tk+1) for all k ∈ N. Plugging

v(ν(t)) into (III.11) and (III.12), and using (III.13) thus

v(ν(tk))− Eν(tk) [v(ν(tk+1))] > Eν(tk)

[
∫ tk+1

tk

z(τ)′z(τ)dτ

]

(III.14)

for all k ∈ N. Hence, two consequences can be drawn. First, due to the strict inequality in

(III.14) and by the fact that the right hand term of (III.14) is positive definite for all k ∈ N, there
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exists ε > 0 sufficiently small such that Eν(tk)[v(ν(tk+1))] ≤ (1 − ε)v(ν(tk)) for all i ∈ K.

This implies that E [v(ν(tk+1))] → 0 as k ∈ N goes to infinity. Consequently, E [‖ξ(t)‖2] → 0

as t → ∞, that is, mean square stability (see Definition II.11) holds.

In addition, (III.14) also yields

E
[
∫ ∞

0

z(t)′z(t)dt

]

= E
[

∑

k∈N

Eν(tk)

[
∫ tk+1

tk

z(t)′z(t)dt

]

]

< E
[

∑

k∈N

{

v(ν(tk))− Eν(tk)[v(ν(tk+1))]
}

]

= E [v(ν(0))]

=
∑

i∈K

πi0ξ
′
0H

′
iSiHiξ0 (III.15)

where it has been used the fact that ξ(0) = Hθ0ξ0 and πi0 = P(θ0 = i), i ∈ K. Then,

remembering that the initial condition ξ(0−) = ξ0 = Jθ(0−)el, l = 1, · · · , r, the Markov chain

model (III.2) imposes θ(0) = θ(0−) with probability one (almost surely),

J2 <
r
∑

l=1

∑

i∈K

πi0e
′
lJ

′
iH

′
iSiHiJiel =

∑

i∈K

πi0Tr(J ′
iH

′
iSiHiJi), (III.16)

completing thus the proof. �

Theorem III.1 puts in evidence that an upper bound to the quadratic cost of

interest can be evaluated by adding the contribution of the cost corresponding to each

time interval [tk, tk+1) for all k ∈ N. Notice that the key issue to state this result is the

existence of a solution to the TPBVP introduced in Theorem III.1, which is ensured by the

expression (III.6). Hence, one question remains about the possibility to calculate exactly the

J2 performance index (III.3). The following remark aims to answer this question.

Remark III.1 By the fact that the functional (III.10) encompasses all solutions of the coupled

Lyapunov equation (III.5), this choice (III.10) has a straightforward and strong consequence:

the exact value of the performance index J2, (III.3), can be obtained using Theorem III.1.

Clearly, this statement holds whenever Pi(0) → Si and Pi(T ) → H ′
iSiHi for all i ∈ K as a

consequence of the fact that, in the limit, inequality (III.14) reduces to

v(ν(tk))− Eν(tk) [v(ν(tk+1))] = Eν(tk)

[
∫ tk+1

tk

z(τ)′z(τ)dτ

]

(III.17)

for all k ∈ N. Then, the performance index is given by J2 =
∑

i∈K πi0Tr(J ′
iH

′
iSiHiJi). ✷

Even though the equality can be stated, the formulation considered in Theorem

III.1, with an upper bound to the performance index, is essential to numerically solve the
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optimal control problem. This is handled in the next chapters by means of a convex pro-

gramming formulation. Moreover, equations (III.7) induce a way to calculate iteratively the

solution of the coupled Lyapunov equations (III.5). Hence, the result from Theorem (III.1) to-

gether with (III.7) solves completely and numerically the problem of evaluating the quadratic

cost J2 for the HMJLS (III.1) whenever a sampling interval T > 0 is given.

Remark III.2 The HMJLS mean square stability depends strongly on the discontinuity im-

posed by the jump equation of (III.1) since the TPBVP admits a solution even if the continu-

ous time system defined by the first equation of (III.1) is not MSS. In other words, the effect

of closing the loop by means of the state feedback sampled-data control law (II.56) is the

discontinuity imposed by the third equation of (III.1) by means of the matrices Hi, i ∈ K. ✷

Remark III.3 From Theorem III.1, the HMJLS (III.1) is MSS whenever a solution to the

TPBVP exists. This condition implies that the infinitesimal generator (??) is negative def-

inite for all i ∈ K once Pi(t) are determined from the existence of Pi(0) < Si such that

Pi(T ) > H ′
iSiHi for all i ∈ K. This result reflects the Lyapunov theory (see Definition II.5

and Theorem II.1) adapted to the stochastic scenario. ✷

III.2 Reduction to the Pure MJLS Case

An important analysis to validate the result from Theorem III.1 is to verify what

happens when the sampling period T → 0, that is, when the HMJLS (III.1) collapses to a

mean square stable MJLS. In this case, it is expected that the result (II.53) can be recovered.

Indeed, impose Hi = I with compatible dimensions for all i ∈ K in the system (III.1).

Applying these matrices to the TPBVP introduced in Theorem III.1, the boundary conditions

of the TPBVP become Pi(0) = Pi(T ) = Si for all i ∈ K and, consequently, the solution is

expressed by

eF̄
′

iTSie
F̄iT = Si − Ri(S, T ) (III.18)

with Ri(S, T ) defined by (III.8) for all i ∈ K and a given T > 0. In fact, (III.18) is a discrete-

time Lyapunov equation, whose solution is

Si =
∑

k∈N

(

eF̄
′

iT
)k

Ri(S, T )
(

eF̄iT
)k

(III.19)

for all i ∈ K. Then, it becomes evident that the time invariant matrices Pi(t) ≡ Si solve

completely the TPBVP of Theorem III.1.

On the other hand, notice that, according to Theorem II.5, there exist matrices

Si > 0, i ∈ K, such that the coupled algebraic Lyapunov equations

F ′
iSi + SiFi +

∑

j∈K

λijSj = −G′
iGi (III.20)
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hold for all i ∈ K since matrices F̄i = Fi + (λii/2)I are Hurwitz stable. The solution of

(III.20) is

Si =

∫ ∞

0

eF̄
′

i τ

(

G′
iGi +

∑

j 6=i∈K

λijSj

)

eF̄iτdτ

=
∑

k∈N

eF̄
′

ikT

[

∫ tk+1

tk

eF̄
′

i (τ−kT )

(

G′
iGi +

∑

j 6=i∈K

λijSj

)

eF̄i(τ−kT )dτ

]

eF̄ikT

=
∑

k∈N

(

eF̄
′

iT
)k

Ri(S, T )
(

eF̄iT
)k

(III.21)

which is exactly the expression (III.18). Hence, the new matrices Hi = I , i ∈ K, represent

consistently the hypothesis of the mean square stability of the MJLS and the performance

index becomes

J2 =
∑

i∈K

πi0Tr(J ′
iSiJi). (III.22)

This is exactly the result expected from (II.53).

III.3 Iterative Procedure to Solve the TPBVP

Due to intrinsic mathematical difficulties to solve analytically the TPBVP pre-

sented in Theorem III.1, an iterative procedure is necessary. As previously stated, equa-

tions (III.7)–(III.8) suggest a way to solve that problem. Indeed, (III.7)–(III.8) together with

(III.16) completely describe the problem to calculate the J2 performance index in a convex

programming formulation easily solved by the numerical machinery available to date. In this

case, the J2 performance index can be evaluated by solving

inf
Si>0

{

∑

i∈K

πi0Tr(J ′
iH

′
iSiHiJi) :

eF̄
′

iTH ′
iSiHie

F̄iT < Si −Ri(P, T )
}

. (III.23)

This formulation is easily solved since it is expressed as N uncoupled subprob-

lems once the coupling matrices Ri(P, T ) are fixed. In order to solve (III.23), it is necessary

to consider that matrices Hie
F̄iT are Schur stable for all i ∈ K. Otherwise a solution does not

exist. The following iterative procedure converges to the exact value of the J2 performance

index, (III.3). In other words, the exact value of the H2 norm is determined.

Algorithm III.1

1. Define a constant sampling interval T > 0. Considering t ∈ [0, T ), initialize ℓ = 0,

and set Sℓ = 0 and J2ℓ = 0.
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2. Determine the solutions Piℓ(0) of the coupled Lyapunov equations

Ṗiℓ + F̄ ′
iPiℓ + PiℓF̄i +

∑

j 6=i∈K

λijPjℓ +G′
iGi = 0 (III.24)

subject to the final boundary conditions Piℓ(T ) = H ′
iSiℓHi ≥ 0 for each i ∈ K.

From (III.7), determine

Ri(Pℓ, T ) = Piℓ(0)− eF̄
′

iTPiℓ(T )e
F̄iT , (III.25)

where F̄i = Fi +
1
2
λiiI for each i ∈ K.

3. Determine S(ℓ+1) > 0 and the current value of the cost J2(ℓ+1) by solving

inf
Si(ℓ+1)>0

{

∑

i∈K

πi0Tr(J ′
iH

′
iSi(ℓ+1)HiJi) :

eF̄
′

iTH ′
iSi(ℓ+1)Hie

F̄iT < Si(ℓ+1) −Ri(Pℓ, T )
}

, (III.26)

which can be decomposed into N uncoupled convex programming subproblems

expressed by LMIs.

4. Set (ℓ+1) → ℓ and iterate until the cost variation J2(ℓ+1)−J2ℓ becomes sufficiently

small.

Consider the following remarks concerning Algorithm III.1.

Remark III.4 Since Ri(P, T ) ≥ 0 and matrices Si > 0 for all i ∈ K, problem (III.23) is

feasible if matrices Hie
F̄iT are Schur stable for all i ∈ K. These conditions are in accordance

with the strong dependence of the solution of (III.23) on the matrices Hi for all i ∈ K and

on the choice of the sampling period T > 0. Obviously, large sampling periods can cause

an unstable closed-loop system. ✷

Remark III.5 Notice that the iterative process of the Algorithm III.1 stems from the fact that,

for all i ∈ K, the matrices Ri(Pℓ, T ), (III.26), depend on the matrices Piℓ calculated in the

previous iteration. Furthermore, with Ri(Pℓ, T ) fixed for all i ∈ K, the optimal solution of each

subproblem (III.26) is arbitrarily close to the positive definite solution of the corresponding

Discrete-time Algebraic Lyapunov Equation (DALE). Clearly, in this case, a proof of the

convergence of the Algorithm III.1 to a stationary solution (S∗
i , P

∗
i (t)) for all i ∈ K and all

t ∈ [0, T ) becomes necessary. ✷

It is important to mention that similar algorithms are adopted to solve numeri-

cally optimal control problems in the context of MJLS for a fixed final condition P (T ), as in

(COSTA; FRAGOSO; TODOROV, 2013). However, the TPBVP from Theorem III.1 is con-

strained on both extremes of the interval of definition of the coupled differential Lyapunov
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equations (III.5). Notice that both boundary conditions are taken into account in problem

(III.23) since the DALE is the solution (III.6) evaluated at the closure of the time interval

[0, T ). In other words, the main difference between the present context and those usually

found in literature is that all matrices P (0) and P (T ) vary in each iteration. Next theorem

certificates the convergence of Algorithm III.1.

Theorem III.2 Assume that the TPBVP defined in Theorem III.1 has a bounded solu-

tion (S∗
i , P

∗
i (t)) for all i ∈ K and all t ∈ [0, T ). The algorithm III.1 is uniformly con-

vergent, and any two subsequent iterations are such that S∗ ≥ S(ℓ+1) ≥ Sℓ ≥ 0 and

J ∗
2 ≥ J2(ℓ+1) ≥ J2(ℓ).

Proof: First, consider that matrices Hie
F̄iT for each i ∈ K are Schur stable. Thus, problem

(III.23) is feasible, and there exist matrices S∗
i > 0 for all i ∈ K such that the TPBVP from

Theorem III.1 holds. From (III.24), in Step 2, it is possible to write that in two subsequent

iterations

∆̇i(ℓ+1) + F ′
i∆i(ℓ+1) +∆i(ℓ+1)Fi +

∑

j∈K

λij∆j(ℓ+1) = 0, (III.27)

where ∆i(ℓ+1)(t) = Pi(ℓ+1)(t)−Piℓ(t) for all i ∈ K. Assuming that Γi(ℓ+1) = Si(ℓ+1) −Siℓ ≥ 0

for all i ∈ K, then due to the final boundary conditions, ∆i(ℓ+1)(T ) = H ′
iΓi(ℓ+1)Hi ≥ 0.

Consequently, ∆i(ℓ+1)(t) ≥ 0 for all i ∈ K and all t ∈ [0, T ), which implies, from (III.8), that

Ri(Pℓ+1, T )− Ri(Pℓ, T ) =

∫ T

0

eF̄
′

i τ
(

∑

j 6=i∈K

λij∆i(ℓ+1)(τ)
)

eF̄iτdτ ≥ 0 (III.28)

for all i ∈ K. From (III.26), in Step 3 of the Algorithm III.1, together with Remark III.5, the

solutions on the border of the LMI are such that

eF̄
′

iTH ′
iΓi(ℓ+2)Hie

F̄iT − Γi(ℓ+2) + (Ri(Pℓ+1, T )− Ri(Pℓ, T )) = 0 (III.29)

for all i ∈ K. Since matrices Hie
F̄iT for each i ∈ K are Schur stable, then Γi(ℓ+2) ≥ 0

for all i ∈ K. In other words, Si(ℓ+1) ≥ Siℓ implies that Pi(ℓ+1)(t) ≥ Piℓ(t), which yields

Si(ℓ+2) ≥ Si(ℓ+1). Initializing the algorithm with ℓ = 0, the first step imposes Si0 = 0 for all

i ∈ K and J2(0) = 0. Then, the solution of (III.24) provides Pi0(0) ≥ 0 for all i ∈ K. As a

consequence, Ri(P0, T ) ≥ 0, which produces Si1 ≥ 0 in the third step for all i ∈ K. Due to

the previous property, each new iteration produces

0 = Si0 ≤ Si1 ≤ Si2 ≤ · · · (III.30)

for all i ∈ K.

On the other hand, consider the stationary solution of (III.24), characterized by (S∗
i , P

∗
i (t))

for all i ∈ K, which satisfies

eF̄
′

iTH ′
iS

∗
i Hie

F̄iT − S∗
i +Ri(P

∗
i , T ) = 0. (III.31)
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Figure III.1 – Evolution of the Algorithm III.1.

Suppose that S∗
i ≥ Siℓ > 0 for all i ∈ K. Adopting the same reasoning as before, P ∗

i (t) ≥
Piℓ(t) ≥ 0 and Ri(P

∗, T ) ≥ Ri(Pℓ, T ) ≥ 0 for all i ∈ K and all t ∈ [0, T ). As a consequence,

S∗
i ≥ Si(ℓ+1) > 0 for all i ∈ K, which is valid for all ℓ ∈ N. Due to the Si0 = 0 for all

i ∈ K, the algorithm generates a sequence of matrices {Siℓ}∞ℓ=0 bounded by S∗
i for all

i ∈ K. The hypothesis on the existence of a set of bounded solutions S∗
i for each i ∈ K is

sufficient to assure that, see the monotone convergence result (Lemma 2.17, page 24) of

Costa, Fragoso & Todorov (2013),

lim
ℓ→∞

Siℓ → S∗
i (III.32)

for all i ∈ K. This indicates that the algorithm monotonically converges to the solution of S∗
i

for all i ∈ K. Consequently, J2ℓ → J ∗
2 , concluding thus the proof. �

A characteristic of Algorithm III.1 is that at each iteration it adds a new cost

to a non decreasing sequence J ∗
2 ≥ J2(ℓ+1) ≥ J2(ℓ) for all ℓ ∈ N. This is calculated by

minimizing the same objective function in a more constrained feasible set. For this reason,

the convergence is expected to be fast. The most important aspects are illustrated by means

of the next academical example.

III.4 Illustrative Numerical Example

This numerical example illustrates the theoretical result of Theorem III.1 im-

plemented by the iterative procedure described in Algorithm III.1. The same system was

adopted in Gabriel, Souza & Geromel (2014).

Example III.1 Consider an MJLS with N = 2 modes with the system matrices given by
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Figure III.2 – Evolution of the Monte Carlo simulation.

F1 =







0 1 0

−4 0 1

0 0 0






, F2 =







0 1 0

−1 0 1

0 0 0






,

J1 = J2 =







1

1

0






, G′

1 = G′
2 =







1 0

0 0

0 1






,

and

H1 =







1 0 0

0 1 0

0.1791 −0.5561 0






, H2 =







1 0 0

0 1 0

−0.2972 −0.8691 0






.

Consider also the sampling period T = 250 [ms] and suppose that the transition rate matrix

Λ ∈ R2×2 is given by

Λ =

[

−0.5 0.5

0.2 −0.2

]

with initial probability π0 = [1 0]′. Then, the computed H2 cost is

J ∗
2 =

∫ ∞

0

E [z(t)′z(t)]dt = 2.96.

Figure III.1 shows the fast convergence of the iterative procedure proposed in Al-

gorithm III.1 that took seven iterations to converge. The gray curve (with triangular markers)

shows the convergence of the performance index J2ℓ to the true value (verified numerically
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that maxi∈K ‖S∗
i − P ∗

i (0)‖2 is sufficiently small) of the square of the H2 norm. The green

curve (with squared markers) shows the evolution of the norm maxi∈K ‖Siℓ‖2 in order to

illustrate the convergence of the sequence of matrices Siℓ to the stationary solution S∗
i . The

blue curve (with rounded markers) shows how fast the convergence occurs through the

evolution of maxi=1,2 ‖Si(ℓ+1) − Siℓ‖2.
On the other hand, using the efficient numerical procedure proposed in the ref-

erence Leon-Garcia (2007), a Monte Carlo simulation of 2, 000 samples provides the value

of J2 = 2.96 for the H2 norm. This result puts in evidence the quality of the calculated index.

The Monte Carlo simulation is shown in Figure III.2, where the blue solid curve is the mean

value of the square norm ‖z(t)‖2, and the shaded area corresponds to one standard devi-

ation from the mean value curve. The convergence of all trajectories of the output towards

zero is a characteristic of a MSS system.
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CHAPTER IV

Stability and H∞ Norm Evaluation of Hybrid MJLS

This chapter is the counterpart of Chapter III for the H∞ context. Thus, it is

devoted to state necessary and sufficient conditions to assure the HMJLS mean-square

stability at the same time the exact value of the H∞ norm is determined. As before, in order

to accomplish these goals, evenly spaced sampling instants, T = tk+1−tk ≥ 0 for all k ∈ N,

are considered. Theoretical results on the stability analysis in the context of H∞ norm are

derived from a TPBVP with initial and final boundary conditions. Moreover, an algorithm

based on an iterative procedure is suggested and its convergence proved whenever the

TPBVP admits a positive definite solution. A numerical example shows that the procedure

is suitable for the purpose of calculating the H∞ norm of an HMJLS.

The H∞ analysis is a robustness study since the H∞ norm is a measure of the

influence of the worst case disturbance on the system. The disturbance is represented by

the exogenous input w(t), which must belong to the set L2 \ {0}. As before, the HMJLS is

expressed by

SH :











ξ̇(t) = Fθ(t)ξ(t) + Jθ(t)w(t)

z(t) = Gθ(t)ξ(t)

ξ(tk) = Hθ(tk)ξ(t
−
k )

(IV.1)

evolving from initial conditions ξ(0−) = ξ0 = 0 and θ(0−) = θ(0) = θ0. For this system,

ξ(t) : R+ → Rn+m is the augmented state variable, w(t) : R+ → Rr is the exogenous input,

z(t) : R+ → Rp is the controlled output, and {θ(t) ∈ K}, K = {1, · · · , N}, is a continuous-

time Markov process with a transition rate matrix {λij} = Λ ∈ RN×N . According to Chapter

II, the conditional probability associated to Λ depends only on the time interval h between

successive jumps of the Markov chain and is given by

Qij(h) = P[θ(t + h) = j|θ(t) = i] =

{

1 + λijh + o(h) , for i = j

λijh + o(h) , for i 6= j
, (IV.2)

where o(h) is high order terms such that limh→0+ o(h)/h = 0. The elements of Λ ∈ RN×N

satisfy λij ≥ 0 for all i 6= j and
∑

j∈K λij = 0 for all i ∈ K. Thus, λii ≤ 0 for all i ∈ K.
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For the purposes of this chapter, consider again that πi(0) = πi0 = P[θ0 = i] is the initial

distribution of the variable θ(t). Notice that the discontinuity introduced by the sampled-data

control law (II.55) is represented by the matrices Hi, i ∈ K, in the third equation of (IV.1).

Thus, the system (IV.1) is valid for all t ∈ R+ since all t ∈ [tk, tk+1) for each k ∈ N are

considered.

IV.1 Theoretical Results

Similar results as stated in Chapter III can be obtained for the H∞ norm context

considering the HMJLS described in (IV.1). The procedure uses also a TPBVP to guarantee

the stability of the hybrid system (III.1) and to compute the H2 norm. The main difference

is the complexity of the mathematical developments in the H∞ case. Indeed, considering

the adequate performance index J∞ allows obtaining the expected results. In this work, it

implies in a DRE, whose solution is not trivial. However, some workarounds conduct to a

solution computationally feasible. Hence, consider the performance index given by

J∞ , sup
w∈L∗

2

∫ ∞

0

E
[

z(t)′z(t)− γ2w(t)′w(t)
]

dt. (IV.3)

As before, because (IV.1) is a PWC MJLS, it is convenient to rewrite the performance index

(IV.3) as

J∞ = sup
w∈L∗

2

∑

k∈N

∫ tk+1

tk

E
[

z(t)′z(t)− γ2w(t)′w(t)
]

dt (IV.4)

subject to (IV.1).

Similarly to the H2 case, multiple Lyapunov-like functionals can be used to as-

sure the HMJLS stability. Thus, consider a collection of cost-to-go functionals of the form

Vθ(t)(ξ(t), t) = ξ(t)′Pθ(t)(t)ξ(t) with θ(t) ∈ K and t ∈ [tk, tk+1) for each k ∈ N, and Pi(t)

solves the coupled DRE

Ṗi(t) + F ′
iPi + PiFi + γ−2PiJiJ

′
iPi +

∑

j∈K

λijPj +G′
iGi = 0, (IV.5)

for all t ∈ [tk, tk+1) and all i ∈ K. Notice that i ∈ K is the value of θ(t) at the instant of

time t ∈ [tk, tk+1). Equation (IV.5) does not admit an explicit solution. However, it has been

proved the existence and uniqueness of a solution in Costa, Fragoso & Todorov (2013),

see also Wonham (1968). This result, besides the developments included in Appendix A,

suggests a way to evaluate (IV.5) using an iterative procedure. In order to obtain it, some

mathematical analysis on the solution of (IV.5) are necessary. From (A.9) of Appendix A1,

Pi(ℓ+1)(tk)− Piℓ(tk) ≥ Φiℓ(t
−
k+1)

′
(

Pi(ℓ+1)(t
−
k+1)− Piℓ(t

−
k+1)

)

Φiℓ(t
−
k+1) (IV.6)

1 Matrices Φiℓ(T ) are the solutions of Φ̇iℓ(t) = Miℓ(t)Φiℓ(t) subject to Φiℓ(0) = I for all i ∈ K and all
ℓ ∈ N evaluated at the instant of time t = T > 0. Additionally, Miℓ(t) = Fi +

1

2
λiiI + γ−2JiJ

′

iPiℓ(t).
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holds for all i ∈ K and all ℓ ∈ N. Moreover, notice that equation (A.6) is time invariant with

respect to the matrices ∆i(ℓ+1)(t) for all i ∈ K and all ℓ ∈ N. As a consequence, its solution

evaluated in the first time interval [0, T ) stays exactly the same in the subsequent intervals

[tk, tk+1) for all k ≥ 1 provided that Pi(ℓ+1)(tk) = Pi(ℓ+1)(0) and Pi(ℓ+1)(t
−
k+1) = Pi(ℓ+1)(T )

for all i ∈ K and each ℓ ∈ N. The same property that makes Pi(t) = Pi(t − tk) for all

i ∈ K and all t ∈ [tk, tk+1), k ∈ N, holds for matrices Miℓ(t) and Φiℓ(t), defined in Appendix

A, as well. Thus, reorganizing the terms of (IV.6), using the mentioned periodic extension

property, and imposing the initial Pi(ℓ+1)(0) < Si(ℓ+1) and final Pi(ℓ+1)(T ) > H ′
iSi(ℓ+1)Hi ≥ 0

boundary conditions for each i ∈ K and all ℓ ∈ N, inequality (IV.6) yields

Φiℓ(T )
′H ′

iSi(ℓ+1)HiΦiℓ(T )− Si(ℓ+1) + Piℓ(0)− Φiℓ(T )
′Piℓ(T )Φiℓ(T ) < 0 (IV.7)

for all i ∈ K and all ℓ ∈ K. Setting Riℓ(T ) = Piℓ(0)− Φiℓ(T )
′Piℓ(T )Φiℓ(T ) for all i ∈ K and

all ℓ ∈ N, equation (IV.6) produces

Φiℓ(T )
′H ′

iSi(ℓ+1)HiΦiℓ(T )− Si(ℓ+1) +Riℓ(T ) < 0 (IV.8)

for all i ∈ K and all ℓ ∈ N. Equation (IV.8) is a discrete-time algebraic Lyapunov inequality

that must be feasible for Sℓ+1 > 0 even though, in general, matrices Rℓ(T ) for some ℓ ∈ N

are not positive definite. Actually, this is a well known property that comes to light in the

context of classical H∞ theory. (See Colaneri, Geromel & Locatelli (1997).)

From the uncoupled Lyapunov inequalities (IV.8), matrices Si(ℓ+1) are deter-

mined once matrices Φiℓ(T ), Piℓ(T ), and Piℓ(0) for all i ∈ K are evaluated. This can be

done by enforcing Piℓ(T ) arbitrarily close to H ′
iSiℓHi and by considering a backward inte-

gration in (IV.5) since matrices Siℓ are known for all i ∈ K and each ℓ ∈ N. This procedure

suggests a way to iteratively determine the solution of the TPBVP composed by the DRE

(IV.5) subject to the boundary conditions Pi(T ) > H ′
iSiHi ≥ 0 and Pi(0) < Si, i ∈ K.

Once again, the possibility to analyse the behavior of the system (IV.1) perfor-

mance evaluating only the first time interval [0, T ) of equation (IV.5) that may admit (de-

pending on the value of γ > 0) a unique stabilizing solution, yields the result of the next

theorem. Moreover, the discontinuity imposed by the third equation of (IV.1) can conve-

niently be expressed through the boundary conditions of the TPBVP since the discontinuity

occurs at the end of the time interval defined by [tk, tk+1) for all k ∈ N.

Theorem IV.1 Let T > 0 and γ > 0 be given. If there exist Si > 0, i ∈ K, satisfying the

TPBVP composed by the coupled DRE (IV.5) subject to the initial Pi(0) < Si and final

Pi(T ) > H ′
iSiHi boundary conditions for each i ∈ K, then the HMJLS (IV.1) is MSS

and the performance index (IV.4) satisfies

J∞ <
∑

i∈K

πi0ξ
′
0H

′
iSiHiξ0. (IV.9)
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Proof: The proof is essentially the same as the proof of the Theorem III.1 except by the fact

that the solution of the coupled Riccati equations, (IV.5), cannot be analytically but iteratively

determined. Then, consider a set of matrices Si > 0 for all i ∈ K such that the TPBVP of

Theorem IV.1 is satisfied for a given sampling interval T > 0 and for a large enough γ > 0.

Since multiple Lyapunov-like functionals can also be used in this case, define

V (ν(t)) = ξ(t)′Pθ(t)(t)ξ(t), (IV.10)

where ν(t) = (ξ(t), θ(t), t) for all t ∈ [tk, tk+1), k ∈ N. The functional (IV.10) evaluated on

the end of the time interval [0, T ) remains valid in this case and is expressed by

V (ν(tk)) < ξ(tk)
′Sθ(tk)ξ(tk), (IV.11)

where the initial boundary conditions Pi(tk) for all i ∈ K and each k ∈ N were used. Notice

that inequality (IV.11) provides an upper bound to the functional (IV.10) at the time instant

t = tk. Analogously, for the final boundary conditions Pi(tk+1) for all i ∈ K and each k ∈ N,

Eν(tk)
{

V (ν(t−k+1))
}

= Eν(tk)
{

ξ(t−k+1)
′Pθ(t−

k+1)
(t−k+1)ξ(t

−
k+1)

}

= Eν(tk)
{

ξ(t−k+1)
′Pθ(tk+1)(t

−
k+1)ξ(t

−
k+1)

}

> Eν(tk)
{

ξ(t−k+1)
′H ′

θ(tk+1)
Sθ(tk+1)Hθ(tk+1)ξ(t

−
k+1)

}

= Eν(tk)
{

ξ(tk+1)
′Sθ(tk+1)ξ(tk+1)

}

, (IV.12)

for all k ∈ N. Furthermore, due to (IV.2), the stochastic process imposes θ(t−k+1) = θ(tk+1)

with probability one (almost surely). This determines a lower bound to the functional (IV.10)

at the time instant t = tk+1.

Using Dynkin’s formula (see Section II.5) applied to the performance index (IV.4), it follows

that

V (ν(tk))− Eν(tk)
[

V (ν(t−k+1))
]

= Eν(tk)

[
∫ tk+1

tk

[z(t)′z(t)− γ2w(t)′w(t)]dt

]

+ Eν(tk)

[
∫ tk+1

tk

‖γ−1J ′
θ(t)Pθ(t)(t)ξ(t)− γw(t)‖22dt

]

≥ Eν(tk)

[
∫ tk+1

tk

[z(t)′z(t)− γ2w(t)′w(t)]dt

]

, (IV.13)

which is valid for all t ∈ [tk, tk+1), k ∈ N, and for all w ∈ L2. Notice that, according

to Theorem II.4, the set of matrices Pi(t), satisfying the coupled DRE (IV.5), is positive

definite. Consequently, V (ν(t)) is a valid Lyapunov functional associated to the HMJLS

(IV.1). Moreover, whenever a solution exists, it is bounded and unique for each i ∈ K and

all t ∈ [tk, tk+1). On the other hand, define the quadratic function v(ν(t)) , ξ(t)′Sθ(t)ξ(t)

for all t ∈ [tk, tk+1), k ∈ N, and for each θ(t) ∈ K, which depends on constant matrices Si,
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i ∈ K. Plugging (IV.11) and (IV.12) in (IV.13), thus

v(ν(tk))− Eν(tk) [v(ν(tk+1))] > Eν(tk)

[
∫ tk+1

tk

[z(t)′z(t)− γ2w(t)′w(t)]dt

]

(IV.14)

holds for all k ∈ N and for all w ∈ L2. Because Si > 0 for all i ∈ K, v(ν(tk)) is positive

definite and E [v(ν(tk))] can be considered a valid Lyapunov functional associated to the

discrete-time stochastic process ξ(tk) → ξ(t−k+1) → ξ(tk+1) for all k ∈ N. Hence, two

consequences can be drawn. First, due to the strict inequality in (IV.14), imposing w ≡
0 ∈ L2, there exists ε > 0 sufficiently small such that E [v(ν(tk+1))|ν(tk)] ≤ (1− ε)v(ν(tk)),

which implies that E [v(ν(tk+1))] → 0 as k ∈ N goes to infinity. Consequently E [‖ξ(t)‖2] → 0

as t → ∞, that is, mean square stability holds.

In addition, another consequence of (IV.14) is that

J∞ = sup
w∈L∗

2

E
[

∑

k∈N

Eν(tk)

[
∫ tk+1

tk

[z(t)′z(t)− γ2w(t)′w(t)]dt

]

]

< E
[

∑

k∈N

{

v(ν(tk))− Eν(tk) [v(ν(tk+1))]
}

]

= E [v(ν(0))] =
∑

i∈K

πi0ξ
′
0H

′
iSiHiξ0 (IV.15)

due to ξ(0) = Hθ0ξ0 and πi0 = P(θ0 = i), i ∈ K. The proof is concluded. �

Four important comments about Theorem IV.1 are in order. First, Theorem IV.1

puts in evidence that an upper bound to the performance index of interest can be obtained

by adding the cost corresponding to each time interval [tk, tk+1), k ∈ N. Indeed, this property

can be verified by changing inequality (IV.14) to

sup
w∈L∗

2

Eν(tk)

[
∫ tk+1

tk

[z(t)′z(t)− γ2w(t)′w(t)]dt+ v(ν(tk+1))

]

< v(ν(tk)), (IV.16)

which is valid for all k ∈ N. Notice that, for this result, the discontinuity between successive

jumps of the state variable are imposed by the jump equation in (IV.1). Second, the mean

square stability of the discrete-time stochastic process ξ(tk) → ξ(tk+1), k ∈ N, is essential

for the convergence of the sum indicated in (IV.15) since only the extremes of the time

interval [tk, tk+1) are considered. Third, analysing (IV.8), the existence of a solution to the

TPBVP requires that the matrices HiΦiℓ(T ), i ∈ K, are Schur stable. This result states a

very strong relation between the possibility of solving the TPBVP presented in Theorem

IV.1 and the mean square stability of the hybrid MJLS (IV.1). Finally, due to the periodic

extension property of the coupled DRE, the solution of the TPBVP in each time interval

reduces to the solution in the first time interval. As mentioned before, the main challenge to

solve it is the mathematical complexity, which is addressed in the next sections.
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Remark IV.1 Following the proof of Theorem IV.1, enforcing Pi(0) → Si and Pi(T ) →
H ′

iSiHi for all i ∈ K, and considering that the exogenous input assumes the worst case dis-

turbance value, w(t) = γ−2J ′
θ(t)Pθ(t)(t)ξ(t) for all θ(t) ∈ K, then inequality (IV.14) becomes

v(ν(tk))− Eν(tk) [v(ν(tk+1))] = Eν(tk)

[
∫ tk+1

tk

[z(t)′z(t)− γ2w(t)′w(t)]dt

]

. (IV.17)

As a consequence, (IV.9) provides the exact value of the performance index given by

E [v(ν(0))]. Then, Theorem IV.1 encompasses all stabilizing solutions including the optimal

one as far as the H∞ norm is considered. The next corollary states this result. ✷

Corollary IV.1 Let T > 0 and γ > 0 be given. The HMJLS (IV.1) with initial condition

ξ0 = 0 is MSS and the performance index satisfies

J∞ , sup
w∈L∗

2

∫ ∞

0

E
[

z(t)′z(t)− γ2w(t)′w(t)
]

dt < 0 (IV.18)

if and only if there exists matrices Si > 0 for all i ∈ K satisfying the TPBVP of Theorem

IV.1.

Proof: Considering that the upper bound of the Theorem IV.1 can be determined by a proper

choice of the matrices that define the initial and final boundary conditions and setting ξ0 = 0,

then J∞ < 0. The claim is proved. �

Remark IV.2 Notice that the exact value of the J∞ performance index can be determined

from the choices described in Remark IV.1. However, the inequalities in Theorem IV.1 and

Corollary IV.1 are fundamental to solve the control design problem in the next chapters.

Furthermore, the necessity of Corollary IV.1 becomes evident when the equality holds. ✷

Remark IV.3 By providing different values to the parameter γ > 0 in the TPBVP, the exact

value of the H∞ norm can be easily obtained since, from Corollary IV.1, the optimal value

for the parameter γ is determined by the feasibility of (IV.5). ✷

IV.2 Reduction to the Pure MJLS Case

In order to validate the theoretical results from Section IV.1, consider the case

T → 0, that is, when the HMJLS (IV.1) collapses to a mean square stable MJLS. As before,

notice that a pure MJLS system can be defined by the first and second equations of (IV.1).

As a consequence, considering that the discontinuity in the HMJLS is imposed by matrices

Hi, i ∈ K, the pure MJLS can be conveniently characterized by Hi = I for each i ∈ K.

This means that the initial and final boundary conditions become Pi(0) = Pi(T ) = Si for
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all i ∈ K in the TPBVP of Theorem IV.1. Thus, assume that Pi(t) ≡ Si for all i ∈ K, which

satisfies the TPBVP and produces the coupled CARE

F ′
iSi + SiFi + γ−2SiJiJ

′
iSi +

∑

j∈K

λijSj +G′
iGi = 0 (IV.19)

for all i ∈ K instead of the coupled DRE (IV.5). From Theorem II.4, the existence and

uniqueness of a set of solutions Si ≥ 0 for 0 ≤ t ≤ tf and all i ∈ K satisfying (IV.19) are

assured. Then, for initial conditions ξ0 = 0 and θ0, due to Theorem IV.1, J∞ = 0. This is the

same result obtained in (II.48).

On the other hand, this choice of Pi(t) ≡ Si for all i ∈ K implies that the solution

of (IV.19) is such that

Si =

∫ ∞

0

eM
′

iτ
(

G′
iGi − γ−2SiJiJ

′
iSi +

∑

j 6=i∈K

λijSj

)

eMiτdτ

=
∑

k∈N

(eM
′

iT )kRi(T )(e
MiT )k. (IV.20)

where Mi = Fi + (λii/2) + γ−2JiJiSi for all i ∈ K. This means that Si > 0 solves the

Lyapunov equation

eM
′

iTSie
MiT = Si − Ri(T ), (IV.21)

whose solution lies on the closure of the feasible set of inequalities (IV.8) since Mi becomes

constant with respect to time, which implies that Φi(t) = eMit for i ∈ K and all t ∈ [0, T ).

These algebraic manipulations put in evidence that, for a pure MJLS, the conditions pro-

vided by Theorem IV.1 do not depend on the sampling period T > 0 and are solvable

whenever the coupled CARE (IV.19) admits a stabilizing positive definite solution. For this

reason, it is clear that no conservatism of any kind has been included in the calculations

done so far.

IV.3 Iterative Procedure to Solve the TPBVP

As mentioned before, an iterative procedure is necessary to solve the coupled

DRE (IV.5) and, therefore, to solve the TPBVP of Theorem IV.1. According to Appendix A,

the minimal feasible solution of the coupled algebraic Lyapunov inequality (IV.8) is arbitrarily

close to the solution of the uncoupled DALE

Φiℓ(T )
′H ′

iSiHiΦiℓ(T )− Si +Riℓ(T ) = 0 (IV.22)

for each i ∈ K and some ℓ ∈ N. The H∞ norm is obtained by a linear search in γ > 0. In

fact, the H∞ norm is the lowest value of γ > 0 such that equations (IV.22) admit positive

definite solutions.

Gabriel, G.W.



IV. Stability and H∞ Norm Evaluation of Hybrid MJLS 58

Then, considering the developments in Appendix A, which induce a way to it-

eratively obtain a set of solutions to the TPBVP of Theorem IV.1, the following algorithm

determines it (if one exists) by solving the uncoupled DALE (IV.22). It is important to stress

that these uncoupled DALE take into account the initial and final boundary conditions of the

TPBVP.

Algorithm IV.1

1. Define the constant sampling period T > 0 and the H∞ level γ > 0, large enough,

such that J∞ < 0. Consider the time interval t ∈ [0, T ), initialize ℓ = 0, and set

Sℓ = 0.

2. Determine the value of Pℓ(0) by solving the coupled DRE

Ṗiℓ(t) + F ′
iPiℓ + PiℓFi + γ−2PiℓJiJ

′
iPiℓ +

∑

j∈K

λijPjℓ +G′
iGi = 0 (IV.23)

subject to the final boundary condition Piℓ(T ) = H ′
iSiℓHi ≥ 0 for all i ∈ K through

a backward integration. Using a forward integration, determine the value of Φiℓ(T )

by solving the Ordinary Differential Equations (ODEs)

{

Φ̇iℓ(t) = Miℓ(t)Φiℓ(t)

Φiℓ(0) = I
(IV.24)

for each i ∈ K, where Miℓ(t) = Fi + (λii/2)I + γ−2JiJ
′
iPiℓ(t).

3. Determine Si(ℓ+1) > 0 for each i ∈ K, a feasible set of solutions to the N uncou-

pled DALE

Φiℓ(T )
′H ′

iSi(ℓ+1)HiΦiℓ(T )− Si(ℓ+1) +Riℓ(T ) = 0, (IV.25)

i ∈ K, where Riℓ(T ) = Piℓ(0)− Φiℓ(T )
′H ′

iSiℓHiΦiℓ(T ).

4. Set (ℓ+ 1) → ℓ and iterate until ‖S(ℓ+1) − Sℓ‖2 becomes sufficiently small.

Remark IV.4 In view of the previous results, if γ > 0 is chosen small enough such that

J∞ ≥ 0, then the DRE may not admit a solution in the entire time interval [0, T ) in Step 2,

or the uncoupled Lyapunov inequality may not admit a positive definite solution Si > 0 in

Step 3 due to the fact that the matrix HiΦiℓ(T ) is not Schur stable for some i ∈ K. ✷

As mentioned before, the main idea of Algorithm IV.1 is to use the value of the

previously determined matrices Sℓ > 0 to evaluate matrices Pℓ(0), Φℓ(T ), and Riℓ(T ) for

each i ∈ K. Then, matrices S(ℓ+1) are obtained by solving the equation (IV.25). Again, the

difficulty to assure the convergence of the proposed method stems from the fact that both

boundary conditions vary in each iteration, namely P (0) and P (T ). Despite this challenge

Gabriel, G.W.



IV. Stability and H∞ Norm Evaluation of Hybrid MJLS 59

and based on the developments in Appendix A, the global convergence of Algorithm IV.1 is

established in the next theorem.

Theorem IV.2 Assume that the TPBVP defined in Theorem IV.1 has a bounded solu-

tion (S∗
i , P

∗
i (t)) for all i ∈ K and all t ∈ [0, T ). Algorithm IV.1 is uniformly convergent

and any two subsequent iterations are such that S∗ ≥ S(ℓ+1) ≥ Sℓ ≥ 0.

Proof: In order to prove the global convergence, first, the sequence of {S}∞ℓ=0 is proved

to be monotonically non-decreasing. Then, due to the boundedness assumption, the con-

vergence is shown. To accomplish this purpose, initially, consider the uncoupled Lyapunov

equation (IV.22) rewritten as

Φiℓ(T )
′H ′

i(Si(ℓ+1) − Siℓ)HiΦiℓ(T ) =Si(ℓ+1) − Piℓ(0)

=(Si(ℓ+1) − Siℓ)− (Piℓ(0)− Siℓ) (IV.26)

for all i ∈ K. Consider that matrices HiΦiℓ(T ) are Schur stable for each ℓ ∈ N and all i ∈ K.

Thus, there exists matrices S∗
i > 0 for all i ∈ K such that the TPBVP from Theorem IV.1

holds. Assume also that Piℓ(0) ≥ Siℓ ≥ 0 for all i ∈ K and some ℓ ∈ N, a hypothesis that

will be discussed later. As a consequence, the second equality in (IV.26) yields Si(ℓ+1) ≥ Siℓ

for all i ∈ K, while the first equality implies that Si(ℓ+1) ≥ Piℓ(0) for all i ∈ K. Together they

lead to Si(ℓ+1) ≥ Piℓ(0) ≥ Siℓ ≥ 0 for each i ∈ K and some ℓ ∈ N.

Furthermore, equations (IV.26) together with inequalities (A.9) gives

Pi(ℓ+1)(0)− Piℓ(0) ≥ Φiℓ(T )
′H ′

i(Si(ℓ+1) − Siℓ)HiΦiℓ(T )

≥ Si(ℓ+1) − Piℓ(0) (IV.27)

for all i ∈ K and all ℓ ∈ N, which holds whenever the condition Piℓ(0) ≥ Siℓ ≥ 0 is verified

for all i ∈ K and some ℓ ∈ N. Thus, the previous relations imply that the algorithm exhibits

the interlacing property Pi(ℓ+1)(0) ≥ Si(ℓ+1) ≥ Piℓ(0) ≥ Siℓ ≥ 0. Then, consider ℓ = 0

and set Si0 = 0 for all i ∈ K as the first step of the algorithm indicates. From Step 2, due

to Theorem II.4, Pi0(t) ≥ 0. Consequently, Pi0(0) ≥ Si0 = 0 for all i ∈ K. Applying the

interlacing property successively, it follows that Si(ℓ+1) − Siℓ ≥ 0 for all ℓ ≥ 0 and all i ∈ K,

that is, the sequence {Siℓ}∞ℓ=0 is such that

0 = Si0 ≤ Si1 ≤ Si2 ≤ · · · (IV.28)

for each i ∈ K.

Since the TPBVP is solved, the stationary solution (S∗
i , P

∗
i (t)) satisfies S∗

i = P ∗
i (0) for all

i ∈ K whenever P ∗
i (T ) = H ′

iS
∗
i Hi. Assume that S∗

i ≥ Siℓ ≥ 0 for some ℓ ∈ N. Inequality

(A.9) applied to the stationary solution yields

P ∗
i (0)− Piℓ(0) ≥ Φiℓ(T )

′(P ∗
i (T )− Piℓ(T ))Φiℓ(T )

≥ Φiℓ(T )
′H ′

i(S
∗
i − Siℓ)HiΦiℓ(T ) (IV.29)
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for all i ∈ K, where the final boundary values are P ∗
i (T ) = H ′

iS
∗
i Hi and Piℓ(T ) = H ′

iSiℓHi,

ℓ ∈ N, for each i ∈ K. On the other hand, subtracting the first equality of (IV.26) from

(IV.29), then

Φiℓ(T )
′H ′

i(S
∗
i − Si(ℓ+1))HiΦiℓ(T ) ≤ P ∗

i (0)− Si(ℓ+1)

≤ S∗
i − Si(ℓ+1), (IV.30)

which implies that S∗
i ≥ Si(ℓ+1) ≥ 0 for all i ∈ K and ℓ ∈ N. Due to the fact that Si0 = 0

for all i ∈ K, the algorithm generates a sequence of matrices {Siℓ}∞ℓ=0 bounded by S∗
i for

each i ∈ K. The hypothesis on the existence of a set of bounded solutions S∗
i for all i ∈ K

is sufficient to assure that

lim
ℓ→∞

Siℓ → S∗
i (IV.31)

for all i ∈ K, which indicates that the algorithm monotonically converges to the solution of

S∗
i for all i ∈ K, concluding thus the proof. �

Remark IV.5 Even though the condition Piℓ(0) ≥ Siℓ for all i ∈ K is a result of the backward

integration in the first step of Algorithm IV.1, a feasible solution on the border of the initial

boundary condition of the TPBVP, Pi(0) < Si for all i ∈ K, is enforced in the third step of

the proposed algorithm, where a new Si(ℓ+1) ≥ Piℓ(0) for each i ∈ K is obtained. ✷

As remarked before, the parameters (γ, T ) must be chosen such that J∞ < 0.

Otherwise, the algorithm can not achieve any result because the problem to be solved

does not admit a solution. Fortunately, due to continuity, the existence of a solution Pℓ(t) to

the coupled DRE (IV.5) in the time interval t ∈ [0, T ) and a solution S(ℓ+1) > 0 lying on the

closure of the uncoupled Lyapunov inequalities (IV.8) are assured for some γ > 0 whenever

the matrices HiΦi(T ) = Hie
(Fi+(λii/2)I)T are Schur stable for all i ∈ K. In other words, under

this condition, there always exists a large enough γ > 0 assuring the existence of a solution

to the TPBVP defined in Theorem IV.1 for the given sampling period T > 0. In the particular

case corresponding to γ → +∞, the coupled DRE (IV.5) collapses to a coupled DLE, which

obviously admits an unique and bounded solution. As a consequence, Algorithm IV.1 can

be used to obtain the H2 norm by imposing γ → +∞.

IV.4 Illustrative Numerical Example

Using the same example as in Chapter III and in Gabriel, Souza & Geromel

(2014), the theoretical results of Theorem IV.1 implemented by the iterative procedure de-

scribed in Algorithm IV.1 is now illustrated.
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Figure IV.1 – Evolution of the Algorithm IV.1.

Example IV.1 Consider an MJLS with N = 2 modes with the system matrices given by

F1 =







0 1 0

−4 0 1

0 0 0






, F2 =







0 1 0

−1 0 1

0 0 0






,

J1 = J2 =







1

1

0






, G′

1 = G′
2 =







1 0

0 0

0 1






,

and

H1 =







1 0 0

0 1 0

0.1791 −0.5561 0






, H2 =







1 0 0

0 1 0

−0.2972 −0.8691 0






.

Consider also that the sampling period is T = 250 [ms] and the transition rate matrix Λ ∈
R2×2 is given by

Λ =

[

−0.5 0.5

0.2 −0.2

]

with initial probability π0 = [1 0]′. Then, running Algorithm IV.1 for decreasing values of γ > 0

until the TPBVP becomes unfeasible, the computed H∞ cost is γ = 2.12. Figure IV.1 shows

the evolution of one run of the iterative procedure from Algorithm IV.1 for γ = γopt = 2.12.

The green curve (with squared markers) shows the convergence of the algorithm through

the measure of the maximum value of ‖Siℓ‖2 for i = {1, 2}, while the blue curve (with

circular markers) shows the evolution of the stopping criterion, that is, the maximum value

of ‖Si(ℓ+1) − Siℓ‖2 for i = {1, 2}.
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Figure IV.2 – Evolution of the Monte Carlo simulation.
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Figure IV.3 – Comparison among algorithm evolutions with different γ values.

On the other hand, using the procedure proposed by Leon-Garcia (2007) and

performing a Monte Carlo simulation of 2,000 samples with a time interval of [0, 12] [s], the

value of the computed H∞ norm is 1.61. For this simulation, even though the worst pertur-

bation is not deterministic, the exogenous input of w(t) = sin(πt/3) for t ∈ [0, 2] [s] and

w(t) ≡ 0 elsewhere is considered. The frequency for the sinusoidal signal is defined in a

previous search such that the worst gain is obtained. The significant difference between

the calculated and the simulated H∞ norm allows the conclusion that the considered ex-

ogenous input is not close to the worst perturbation that, in this particular example, is not

known. Figure IV.2 shows the Monte Carlo simulation, where the solid curve in the middle

is the mean value of the index z(t)′z(t) and the shaded area corresponds to one standard

deviation from the mean value.

Additionally, Figure IV.3 shows the convergence of the algorithm for three dif-
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ferent values of γ. The convergence occurs within 6 iterations for γ = 100 > γopt, while

the optimal value is reached after 43 iterations for γ = γopt = 2.12. For γ = 2 < γopt the

algorithm diverges as expected because a bounded solution does not exist. Furthermore,

assuming γ = 1, 000, the J2 performance index evaluated through the iterative procedure

from Algorithm IV.1 is 2.95, close enough to the result obtained in Chapter III evaluated us-

ing the Algorithm III.1. This shows that Algorithm IV.1 is also suitable for the J2 performance

index evaluation by adopting a proper choice (large enough) of the parameter γ. Notice that

Algorithms III.1 and IV.1 uses different stopping criteria.
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CHAPTER V

H2 Optimal Sampled-Data Control

Since the indexes J2 and J∞ were determined in Chapters III and IV, the next

step is to obtain the optimal control law that minimizes each of these performance indexes.

In this chapter, it is considered the J2 index defined by (III.3), which is based on H2 norm.

In other words, the purpose is to solve the H2 state feedback sampled-data optimal control

applied to an MJLS with constant sampled data intervals, that is, tk+1 − tk = T > 0 for all

k ∈ N. In order to accomplish this, first, the result from Theorem III.1 is rewritten to obtain

a convex formulation for the optimal control problem based on LMIs. Then, some particular

cases are analysed and validate the results obtained so far. An algorithm similar to Algorithm

III.1 is proposed and proved to be convergent. The theoretical results are illustrated by

means of a numerical example.

Initially, recall that the continuous-time MJLS is defined by

ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t) + Eθ(t)w(t) (V.1)

z(t) = Cθ(t)x(t) +Dθ(t)u(t) (V.2)

for all t ∈ R
+ and each θ(t) ∈ K. As used before, this system evolves from x(0) = 0 and

θ(0) = θ0, where θ(t) is an homogeneous continuous-time Markov chain with initial distri-

bution πi0 and transition rate matrix Λ satisfying the definitions from Chapter II. Moreover,

system (V.1)–(V.2) is controlled by the state feedback sampled-data control law in the form

of

u(t) = Lθ(tk)x(tk) (V.3)

for all t ∈ [tk, tk+1), each k ∈ N, and all θ(t) ∈ K. The set of events {tk}∞k=0 describes

the sequence of sampling instants. Due to the sampling process, the original MJLS system

(V.1)–(V.2) controlled by (V.3) can be rewritten as an HMJLS expressed by

ξ̇(t) = Fθ(t)ξ(t) + Jθ(t)w(t) (V.4)

z(t) = Gθ(t)ξ(t) (V.5)

ξ(tk) = Hθ(tk)ξ(t
−
k ) (V.6)

Gabriel, G.W.



V. H2 Optimal Sampled-Data Control 65

for all θ(t) ∈ K and all t ∈ [tk, tk+1), k ∈ N, evolving from the initial conditions ξ(0−) = ξ0 =

0 and θ(0−) = θ(0) = θ0.

For the purposes of this chapter, the special structures of the system matrices

Fθ(t) =

[

Aθ(t) Bθ(t)

0 0

]

, (V.7)

Jθ(t) =

[

Eθ(t)

0

]

, (V.8)

Gθ(t) =
[

Cθ(t) Dθ(t)

]

, (V.9)

and

Hθ(tk) =

[

I 0

Lθ(tk) 0

]

(V.10)

for all t ∈ [tk, tk+1), k ∈ N, and θ(t) ∈ K are fundamental. Furthermore, the H2 optimization

problem is formulated as

inf
L1,··· ,LN

r
∑

l=1

∫ ∞

0

E [zl(t)
′zl(t)] dt. (V.11)

The signal zl(t) is the controlled output corresponding to each component of the exogenous

input w(t) = elδ(t
−), where el ∈ R

r is the l-th column of the identity matrix with compatible

dimensions (see Chapter II). Clearly, this is a H2 state feedback sampled-data control prob-

lem for the continuous-time MJLS (see Section II.4) that should be optimized by taking into

account the sampled-data control constraint (V.3). (See Levis, Schluete & Athans (1971).)

V.1 Theoretical Results

Due to the developments and assumptions adopted in Chapter III, according to

(III.23), the infimum problem defined by (V.11) can be rewritten by

inf
L1,··· ,LN ,Si>0

{

∑

i∈K

πi0Tr(J ′
iH

′
iSiHiJi) :

eF̄
′

iTH ′
iSiHie

F̄iT < Si −Ri(P, T )
}

, (V.12)

where F̄i = Fi + (λii/2)I for each i ∈ K. As before, matrices Ri(P, T ) ≥ 0, i ∈ K, are

fixed by construction of the iterative procedure defined in Algorithm III.1. As a consequence,

this problem is composed by N uncoupled subproblems. To solve each of them in terms of

LMIs, verify that matrices Hi, i ∈ K, change at each iteration and notice that a discrete-time

equivalent system can be obtained and used to formulate a feasibility problem since (V.12)

is a discrete-time algebraic Lyapunov inequality. Indeed, consider the realization
{

x[k + 1] = Adix[k] +Bdiu[k]

z[k] = Cdix[k] +Ddiu[k]
(V.13)
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for each i ∈ K and k ∈ N, which evolves from initial conditions x[0] ∈ Rn. Matrices Cdi and

Ddi are obtained by factorizing Ri(P, T ), i ∈ K, in the form of

Ri(P, T ) =

[

C ′
di

D′
di

]

[

Cdi Ddi

]

≥ 0. (V.14)

On the other hand, matrices Adi and Bdi are determined from

Hie
F̄iT =

[

I 0

Li 0

][

eAiT
∫ T

0
eAiτdτBi

0 I

]

e(λii/2)T =

[

I

Li

]

[

Adi Bdi

]

(V.15)

for each i ∈ K. Then, it is immediate that Adi = e(λii/2)T eAiT and Bdi = e(λii/2)T
∫ T

0
eAiτdτBi

for all i ∈ K. Finally, by partitioning matrices Si > 0, i ∈ K, such as

S−1
i =

[

Xi Yi

• Zi

]

(V.16)

where Xi ∈ Rn×n, Yi ∈ Rn×m, and Zi ∈ Rm×m, necessary and sufficient conditions can be

stated in order to assure mean square stability and to determine the optimal control law that

minimizes the performance index J2. The next theorem formalizes these results.

Theorem V.1 Problem (V.12) is feasible if and only if there exist positive definite matri-

ces Xi, Zi and matrices Yi, i ∈ K, with compatible dimensions such that

[

Xi Yi

• Zi

]

> 0 (V.17)

and

[

Xi 0

0 I

]

>

[

Adi Bdi

Cdi Ddi

][

Xi Yi

• Zi

][

Adi Bdi

Cdi Ddi

]′

(V.18)

hold for each i ∈ K. In the affirmative case, a feasible solution is given by Li = Y ′
i X

−1
i

and S−1
i of the form (V.16) for each i ∈ K.

Proof: For the sufficiency, assume that inequalities (V.17) and (V.18) hold. Calculating the

inverse of (V.16) and adopting Li = Y ′
iX

−1
i for all i ∈ K yields

Si =

[

I

0

]

X−1
i

[

I 0
]

+

[

−L′
i

I

]

(Zi − LiXiL
′
i)

−1
[

−Li I
]

(V.19)

for all i ∈ K, which implies that

[

I L′
i

]

Si

[

I

Li

]

= X−1
i (V.20)
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for all i ∈ K. On the other hand, the Schur complement applied to (V.18) leads to
[

Xi Yi

• Zi

]−1

>

[

Adi Bdi

Cdi Ddi

]′ [

X−1
i 0

0 I

][

Adi Bdi

Cdi Ddi

]

(V.21)

for all i ∈ K. By applying some algebraic manipulations, (V.21) produces
[

A′
di

B′
di

]

X−1
i

[

Adi Bdi

]

+

[

C ′
di

D′
di

]

[

Cdi Ddi

]

< Si (V.22)

for all i ∈ K. Using (V.20), thus
[

A′
di

B′
di

]

[

I L′
i

]

Si

[

I

Li

]

[

Adi Bdi

]

< Si − Ri(P, T ) (V.23)

for all i ∈ K, which combined with (V.14) and (V.15) yields

eF̄
′

iTH ′
iSiHie

F̄iT < Si − Ri(P, T ) (V.24)

for all i ∈ K and is exactly the constraint of problem (V.12), providing thus the sufficiency.

Conversely, assume that problem (V.12) is feasible for some pairs of matrices (Li, Si > 0)

for all i ∈ K. Analogously, partitioning matrices Si such as in (V.16), it is immediate from

the existence of a solution of problem (V.12) that
[

Xi Yi

• Zi

]

> 0 (V.25)

for each i ∈ K. On the other hand, from (V.12), (V.14), and (V.15), it can be verified that

[

Adi Bdi

]′
[

I

Li

]′

Si

[

I

Li

]

[

Adi Bdi

]

+

[

C ′
di

D′
di

]

[

Cdi Ddi

]

− Si < 0, (V.26)

which is valid for all i ∈ K. Calculating again the inverse of (V.16), this time, without any

assumption about matrices Li, i ∈ K, yields

0 >
[

Adi Bdi

]′
[

I

Li

]′ [

I

0

]

X−1
i

[

I 0
]

[

I

Li

]

[

Adi Bdi

]

+

[

C ′
di

D′
di

]

[

Cdi Ddi

]

− Si (V.27)

+
[

Adi Bdi

]′
(

Li − Y ′
iX

−1
i

)′ (
Zi − Y ′

i X
−1
i Yi

)−1 (
Li − Y ′

i X
−1
i

)

[

Adi Bdi

]

for all i ∈ K. Since the last term of the right hand side of (V.27) is positive definite due to

Si > 0, then
[

Adi Bdi

Cdi Ddi

]′ [

X−1
i 0

0 I

][

Adi Bdi

Cdi Ddi

]

− Si < 0 (V.28)

for all i ∈ K. Hence, using the Schur complement, equation (V.18) is recovered for any

matrices Li , i ∈ K, concluding the proof. �
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Remark V.1 From the proof of Theorem V.1 (specially inequalities (V.27)) the feasible gains

are such that Li = Y ′
iX

−1
i for each i ∈ K. In this case, the inequalities in problem (V.12) and

(V.28) become exactly the same. This is a guarantee that the optimal solution is covered by

Theorem V.1. ✷

Theorem V.1 puts in evidence that problem (V.12) is jointly convex in the decision

matrix variables Si > 0 and Li for all i ∈ K inside the feasible set for which (V.12) is defined.

Moreover, as already discussed, it determines the optimal sampled-data control law applied

to an HMJLS. In this way, problem (V.12) can be redefined in terms of the new set of

variables introduced in Theorem V.1. So, the upper bound of the performance index J2,

(III.9), can be expressed by

J2 <
∑

i∈K

πi0Tr(J ′
iH

′
iSiHiJi)

=
∑

i∈K

πi0Tr

(

E ′
i

[

I L′
i

]

Si

[

I

Li

]

Ei

)

=
∑

i∈K

πi0Tr
(

E ′
iX

−1
i Ei

)

(V.29)

since (V.20) and

HiJi =

[

I 0

Li 0

][

Ei

0

]

=

[

Ei

LiEi

]

=

[

I

Li

]

Ei (V.30)

are valid for all i ∈ K. Consequently, problem (V.12) can be rewritten as N uncoupled

subproblems defined by

inf
Xi,Yi,Zi

{

∑

i∈K

πi0Tr
(

E ′
iX

−1
i Ei

)

: (V.17) − (V.18)

}

, (V.31)

each of them associated to a specific mode of the Markov chain. In this case, the state

feedback sampled-data control law in the form of (V.3) is given by

Li = Y ′
i X

−1
i (V.32)

for each i ∈ K. An important remark can be done about the formulation (V.31).

Remark V.2 Problem (V.31) is the convex formulation of (V.12) and it can be solved by

the computational tools available to date. Additionally, the iterative procedure presented in

Chapter III can be used to solve it. In order to accomplish this task, simple modifications are

necessary, which are addressed afterwards. ✷

Finally, notice that problem (V.31) can be simplified. Indeed, suppose that (V.31)

(as a consequence, (V.12)) has a definite positive solution Si for all i ∈ K. Thus, from
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definition (V.16), it can be verified that Xi > 0 and Zi > Y ′
i X

−1
i Yi, for all i ∈ K. These

together with inequalities (V.17)–(V.18) imply that
[

Xi 0

0 I

]

>

[

Adi Bdi

Cdi Ddi

][

Xi Yi

• Y ′
iX

−1
i Yi

][

Adi Bdi

Cdi Ddi

]′

=

[

Adi Bdi

Cdi Ddi

][

Xi XiL
′
i

• LiXiL
′
i

][

Adi Bdi

Cdi Ddi

]′

=

[

Adi +BdiLi

Cdi +DdiLi

]

Xi

[

Adi +BdiLi

Cdi +DdiLi

]′

(V.33)

for all i ∈ K, where the fact that Li = Y ′
i X

−1
i for all i ∈ K has been used. Once again, the

Schur complement yields

X−1
i −

[

Adi +BdiLi

Cdi +DdiLi

]′ [

X−1
i 0

0 I

][

Adi +BdiLi

Cdi +DdiLi

]

> 0, (V.34)

which is valid for all i ∈ K. Defining a new set of matrices Vi = X−1
i for all i ∈ K, then

inequalities (V.34) become

(Adi +BdiLi)
′Vi(Adi +BdiLi)− Vi < −(Cdi +DdiLi)

′(Cdi +DdiLi) (V.35)

for all i ∈ K. Hence, the optimal solution is given by J2 =
∑

i∈K πi0Tr(E ′
iViEi), where Vi > 0

for each i ∈ K is arbitrarily close to the stabilizing solution of the Discrete-time Algebraic

Riccati Equation (DARE)

A′
diViAdi − Vi + C ′

diCdi − L′
i(B

′
diViBdi +D′

diDdi)Li = 0, (V.36)

and Li = −(B′
diViBdi +D′

diDdi)
−1(B′

diViAdi +D′
diCdi) is the optimal gain. Thus, choosing

Zi → Y ′
i X

−1
i Yi, then S−1

i > 0 is such that S−1
i → [I L′

i]
′V −1

i [I L′
i] ≥ 0 for all i ∈ K. The

alternative problem is rewritten in the form of

inf
Vi>0

{

∑

i∈K

πi0Tr (E ′
iViEi) : (V.36)

}

(V.37)

for each i ∈ K. Once again, matrices Vi and Li can be easily determined for all i ∈ K by

the computational tools available to date. This is an alternative problem to the one shown in

(V.31) since (V.35) is equivalently rewritten as (V.36).

Remark V.3 The exact value of the H2 norm is obtained according to Chapter III when

the inequality in (V.12) collapses to an equality. Here, the optimal solution is obtained by

enforcing also that matrices Zi → Y ′
i X

−1
i Yi. This means that matrices Si, i ∈ K, become

the lowest admissible values in the feasibility set. In other words, the optimal solution S∗
i

is arbitrarily close to S∗
i → [I L′

i]
′V −1

i [I L′
i] ≥ 0 for all i ∈ K. This fact allows the use of

equations (V.36) instead of inequalities (V.35). ✷
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V.2 Special Case Analysis

In this section, some particular cases derived from Theorem V.1 are discussed.

First, the mode independent case is addressed. Second, by making T → 0+ it is shown that

the result of a pure MJLS is recovered, as expected. Finally, the reduction to a deterministic

linear hybrid system is analysed. All these analysis recover results available in the current

literature, what validates the theoretical results for the H2 sampled-data optimal control

problem provided in Theorem V.1.

The mode independent case

In practical systems, the Markov modes θ(t) are frequently not available and to

implement the online measurement of this parameter is, in general, a difficult task. This

implies that the possibility to have the control law independent of the Markov mode is more

suitable for a large number of practical systems. In this work, the dependence of the Markov

mode on the control law can be ruled out by enforcing matrices Li = L for all i ∈ K, which

can be done by setting matrices Yi = Y and Xi = X for all i ∈ K. It follows that the problem

(V.31) becomes

inf
X,Y,Zi

{

∑

i∈K

πi0Tr
(

E ′
iX

−1Ei

)

:

[

X Y

• Zi

]

> 0

[

X 0

0 I

]

>

[

Adi Bdi

Cdi Ddi

][

X Y

• Zi

][

Adi Bdi

Cdi Ddi

]′}

(V.38)

for all i ∈ K. This still is a convex formulation and, thus, can be solved using the same

procedure adopted to solve the mode dependent problem. Notice that the LMI approach

in the form presented by Theorem V.1 is fundamental to implement the mode independent

case since neither Lyapunov nor Riccati equations can be derived for this case.

By doing this, only a guaranteed cost is obtained, which, in general, does not

reach the minimum value. Moreover, although problem (V.38) is convex, it cannot be decom-

posed into N uncoupled subproblems anymore. Naturally, the computational effort involved

is much higher than that spent to solve the N uncoupled subproblems from Theorem V.1.

The difference becomes more evident by increasing the number of Markov modes belong-

ing to the set K.

The limit case T → 0+

Another important analysis derived from Theorem V.1 is to make the sampling

interval arbitrarily small. This equals to analyse the limit of problem (V.31) as T > 0 goes to

zero. In this case, two consequences can be drawn:
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1) the limit solution of the TPBVP is such that Pi(0) = limT→0+ Pi(T ) for all i ∈ K. As a

consequence,

Si →
[

I

0

]

Vi

[

I 0
]

(V.39)

for each i ∈ K, where the initial Pi(0) → Si and final Pi(T ) → H ′
iSiHi boundary

conditions from Theorem III.1 and the fact that H ′
iSiHi = [I 0]′Vi[I 0] for all i ∈ K

have been used;

2) due to their definition, matrices Adi, Bdi, Cdi, and Ddi can be approximated by their

first order terms. Hence, by making T > 0 sufficiently small, (V.14) and (V.15) yield

Adi = e(λii/2)T eAiT ≈ I + ((λii/2)I + Ai)T, (V.40)

Bdi = e(λii/2)T

∫ T

0

eAiτdτBi ≈ BiT, (V.41)

and
[

C ′
di

D′
di

]

[

Cdi Ddi

]

= lim
T→0+

Ri(P, T ) ≈
(

∑

j 6=i∈K

λijSj +G′
iGi

)

T

≈
[

C ′
iCi +

∑

j 6=i∈K λijVj C ′
iDi

• D′
iDi

]

T (V.42)

for all i ∈ K, where (V.39) has been used. Plugging these approximations into equa-

tion (V.36), the first order terms produce

(Ai +BiLi)
′Vi + Vi(Ai +BiLi) +

∑

j∈K

λijVj + (Ci +DiLi)
′(Ci +DiLi) = 0 (V.43)

for all i ∈ K. Then, the optimal gain is obtained by adopting the same approximations,

which imply that

Li = − lim
T→0+

(B′
iViBiT +D′

iDi)
−1 (B′

iVi +B′
iVi((λii/2)I + Ai)T +D′

iCi)

= −(D′
iDi)

−1 (B′
iVi +D′

iCi) (V.44)

for each i ∈ K and the associated cost is such that J2 =
∑

i∈K πi0Tr(E ′
iViEi).

As expected, the sampled-data control problem addressed in this work reduces

to the pure MJLS case whenever the constant sampling interval T → 0+. For details in the

pure MJLS case, see Costa, Fragoso & Todorov (2013). Once more, this limit case validates

the results obtained so far in this chapter.
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The deterministic case

As a final analysis of the results from Theorem V.1, consider the case where

N = 1. As a consequence, K = {1}, Λ = 0, and πi0 = 1. Because Λ = 0, the TPBVP

reduces to

Ṗi + F ′
iPi + PiFi +G′

iGi = 0, (V.45)

subject to initial Pi(0) = Si and final Pi(T ) = H ′
iSiHi boundary conditions for i = 1. This

implies that, in (V.12), the inequality to be solved becomes

eF
′

iTH ′
iSiHie

FiT − Si <

∫ T

0

eF
′

i τG′
iGie

FiTdτ, (V.46)

which leads to a Ri(P, T ) constant for i = 1. This is in a complete accordance with the

results from Souza, Gabriel & Geromel (2014) and can be obtained by solving numerically

the LMIs in Theorem V.1 or the problem in (V.37). It is an alternative solution of the linear

quadratic sampled-data control problem solved in Levis, Schluete & Athans (1971).

V.3 Iterative Procedure to Solve the H2 Control Problem

As already mentioned, Algorithm III.1 can be adopted to solve problem (V.31)

or, alternatively, problem (V.37). Specifically, all necessary changes in Algorithm III.1 to

address the control problem are concentrated in Steps 2 and 3. Indeed, matrices Hi, i ∈ K,

change at each iteration. As a consequence, it is necessary to update the final boundary

condition of the TPBVP for each ℓ ∈ N. Hence, in Step 2 of the proposed algorithm, the final

boundary conditions to be considered are given by

Piℓ(T ) = H ′
iℓSiℓHiℓ ≥ 0 (V.47)

for all i ∈ K. Matrices Piℓ(T ) > 0 and the value of the gain matrices are produced in Step

3 by solving (V.31) or, equivalently, (V.37). An iterative procedure for the control problem

is summarized in the next algorithm, where problem (V.37) was considered. Again, the

convergence of the algorithm must be proved since the control law u(t) ∈ Rm is also a

variable to be determined.

Algorithm V.1

1. Define a constant sampling period T > 0. Consider t ∈ [0, T ) and initialize ℓ = 0.

Set Vℓ = 0, Lℓ = 0, and J2ℓ = 0.

2. Determine the solutions Piℓ(0) of the coupled Lyapunov equations

Ṗiℓ + F ′
iPiℓ + PiℓFi +

∑

j∈K

λijPjℓ +G′
iGi = 0 (V.48)
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for each i ∈ K, which is subject to the final boundary conditions Piℓ(T ) =

[I 0]′Vi(ℓ)[I 0] ≥ 0 for all i ∈ K, and determine Ri(Pℓ, T ) using

Ri(Pℓ, T ) = Piℓ(0)− eF̄
′

iTPiℓ(T )e
F̄iT (V.49)

for each i ∈ K, where F̄i = Fi + (λii/2)I , i ∈ K. Thus, matrices Adiℓ, Bdiℓ, Cdiℓ,

and Ddiℓ can be obtained for each i ∈ K using the relations

Ri(P, T ) =

[

C ′
diℓ

D′
diℓ

]

[

Cdiℓ Ddiℓ

]

≥ 0 (V.50)

and

[

I 0
]

eF̄iT =
[

Adiℓ Bdiℓ

]

. (V.51)

3. For each i ∈ K, determine the stabilizing solution V(ℓ+1) ≥ 0 and the gain Li(ℓ+1)

by solving the DARE

A′
diℓVi(ℓ+1)Adiℓ − Vi(ℓ+1) − L′

i(ℓ+1)(B
′
diℓVi(ℓ+1)Bdiℓ +D′

diℓDdiℓ)Li(ℓ+1)

+C ′
diℓCdiℓ = 0 (V.52)

together with

Li(ℓ+1) = −(B′
diℓVi(ℓ+1)Bdiℓ +D′

diℓDdiℓ)
−1(B′

diℓVi(ℓ+1)Adiℓ +D′
diℓCdiℓ). (V.53)

Determine the current cost J2(ℓ+1) =
∑

i∈K πi0Tr(E ′
iVi(ℓ+1)Ei).

4. Set (ℓ+ 1) → ℓ and iterate until J2(ℓ+1) −J2ℓ becomes small enough.

As mentioned before, problem (V.31) can be alternatively used in Step 3. In this

case, the variables to be determined at each iteration are Xi(ℓ+1), Yi(ℓ+1), and Zi(ℓ+1) for

each i ∈ K. As a consequence, the values of matrices Pi(ℓ+1) and Li(ℓ+1) are such that

Pi(ℓ+1)(T ) =

[

I

0

]

X−1
i(ℓ+1)

[

I 0
]

, (V.54)

Li(ℓ+1) = Y ′
i(ℓ+1)X

−1
i(ℓ+1), (V.55)

for all i ∈ K, and the performance index J2(ℓ+1) is given by

J2(ℓ+1) =
∑

i∈K

πi0Tr
(

E ′
iX

−1
i(ℓ+1)Ei

)

. (V.56)

Due to the differences between the iterative procedures in Algorithms III.1 and V.1, the

convergence of Algorithm V.1 must be proved. The next theorem addresses this issue.
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Theorem V.2 Assume that problem V.11 has a bounded solution (V ∗
i , P

∗
i (t), L

∗
i ) for all

i ∈ K and all t ∈ [0, T ). Algorithm V.1 is uniformly convergent and any two subsequent

iterations are such that V ∗ ≥ V(ℓ+1) ≥ Vℓ ≥ 0 and J ∗
2 ≥ J2(ℓ+1) ≥ J2(ℓ).

Proof: From the assumption of the existence of a bounded solution, there exist matrices L∗
i

and V ∗
i = X∗

i > 0 for all i ∈ K such that the TPBVP of Theorem V.1 holds. From the DLE

(V.48) in Step 2, it is possible to verify that any two subsequent iterations satisfy

∆̇i(ℓ+1) + F ′
i∆i(ℓ+1) +∆i(ℓ+1)Fi +

∑

j∈K

λij∆j(ℓ+1) = 0, (V.57)

where ∆i(ℓ+1)(t) = Pi(ℓ+1)(t)−Piℓ(t) for each i ∈ K. Assuming that Γi(ℓ+1) = Vi(ℓ+1)−Viℓ ≥
0, i ∈ K, the final boundary conditions yield

∆i(ℓ+1)(T ) = H ′
i(ℓ+1)Si(ℓ+1)Hi(ℓ+1) −H ′

iℓSiℓHiℓ

=

[

I

0

]

Γi(ℓ+1)

[

I 0
]

≥ 0 (V.58)

for each i ∈ K. As a consequence, ∆i(ℓ+1)(t) ≥ 0 for all i ∈ K and all t ∈ [0, T ), which

together with the definition of Ri(P, T ), (III.8), implies that

Ri(Pℓ+1, T )− Ri(Pℓ, T ) =

∫ T

0

eF̄
′

i τ
(

∑

j 6=i∈K

λij∆i(ℓ+1)(τ)
)

eF̄iτdτ ≥ 0 (V.59)

for all i ∈ K. On the other hand, the stabilizing solution of the DARE in Step 3 and the

discrete-time equivalent system (V.13) verify that

min
u[k]

∑

k∈N

[

x[k]

u[k]

]′

Ri(Pℓ, T )

[

x[k]

u[k]

]

= min
u[k]

∑

k∈N

z[k]′z[k]

= x[0]′Vi(ℓ+1)x[0], (V.60)

which is valid for all i ∈ K. Hence, from (V.59), Vi(ℓ+2) − Vi(ℓ+1) ≥ 0 for all i ∈ K. Thus,

initializing the algorithm with ℓ = 0, the first step imposes that Vi0 = 0 for all i ∈ K and

J2(0) = 0. Then, the solution of (V.48) provides Pi0(0) ≥ 0 for all i ∈ K. Consequently,

Ri(P0, T ) ≥ 0, which produces Vi1 ≥ 0 for all i ∈ K in the third step. Due to the previous

property, each new iteration produces, for all i ∈ K,

0 = Vi0 ≤ Vi1 ≤ Vi2 ≤ · · · . (V.61)

Once more, consider the stabilizing solution characterized by (V ∗
i , P

∗
i (t), L

∗
i ) for each i ∈

K, which satisfies

x[0]′V ∗
i x[0] = min

u[k]

∑

k∈N

[

x[k]

u[k]

]′

Ri(P
∗, T )

[

x[k]

u[k]

]

. (V.62)
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Suppose that V ∗
i ≥ Viℓ > 0 for all i ∈ K. Adopting the same reasoning as before, P ∗

i (t) ≥
Piℓ(t) ≥ 0 for all t ∈ [0, T ) and Ri(P

∗, T ) ≥ Ri(Pℓ, T ) ≥ 0 for all i ∈ K. As a consequence,

V ∗
i ≥ Vi(ℓ+1) > 0 for all i ∈ K and all ℓ ∈ N. Due to the fact that Vi0 = 0 for all i ∈ K,

the algorithm generates a sequence of matrices {Viℓ}∞ℓ=0 bounded by V ∗
i for all i ∈ K. The

hypothesis on the existence of a set of bounded solutions V ∗
i for all i ∈ K is sufficient to

assure that

lim
ℓ→∞

Viℓ → V ∗
i (V.63)

for all i ∈ K. This means that the algorithm monotonically converges to the solution of V ∗
i

for all i ∈ K and, consequently, Liℓ → L∗
i and J2ℓ → J ∗

2 , concluding thus the proof. �

Remark V.4 Due to the equivalence between problems (V.31) and (V.37), Theorem V.2

also assures the convergence of the method when (V.37) is used instead of (V.31) in Step 3

of the proposed Algorithm V.1. Moreover, all special cases from Section V.2 can be solved

using the same algorithm. The main difference is the problem to be considered in Step 3:

(V.38) for the mode independent case, (V.37) with (V.43) instead of (V.36) for the limit case

T → 0+, or (V.37) with N = 1 for the deterministic case. Notice that in the first case the

convergence may not be monotonic because all Markov modes are coupled. ✷

V.4 Illustrative Numerical Example

In order to illustrate the theoretical results of this chapter, the same numerical

example considered in Chapters III and IV is adopted, this time instead, the optimal H2

sampled-data control law is also evaluated.

Example V.1 Consider the MJLS with N = 2 with the state space realization in the form of

Example III.1 or IV.1 with the following system matrices

F1 =







0 1 0

−4 0 1

0 0 0






, F2 =







0 1 0

−1 0 1

0 0 0






,

J1 = J2 =







1

1

0






, G′

1 = G′
2 =







1 0

0 0

0 1






.

This time, matrices Hi, i ∈ {1, 2}, are unknown since they contain the gain matrices L1 and

L2 to be evaluated. Consider also the sampling period T = 250 [ms] and suppose that the

transition rate matrix Λ ∈ R2×2 is such that

Λ =

[

−0.5 0.5

0.2 −0.2

]
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Figure V.1 – Evolution of Algorithm V.1.

and the initial probability of θ0 is π0 = [1 0]′. Then, the computed minimum J ∗
2 cost equals

2.96, which is assured by the gain matrices

L∗
1 =

[

0.1787 −0.5559
]

, L∗
2 =

[

−0.2973 −0.8690
]

.

In this case, the algorithm takes seven iterations to converge. Figure V.1 shows its evolution.

The gray curve (with triangular markers) shows the convergence of the performance index

J2ℓ to the true value of the square of H2 norm. The green curve (with squared markers)

shows the convergence of Vℓ → V ∗ through the measure of the maximum value of ‖Viℓ‖2
for i = {1, 2}. The blue curve (with circular markers) shows how fast this convergence

occurs through the measure of the maximum value of ‖Vi(ℓ+1) − Viℓ‖2 for i = {1, 2}.

A Monte Carlo simulation of 2, 000 samples, which uses the Leon-Garcia’s pro-

cedure (see Leon-Garcia (2007)), considering the gain matrices L∗
1 and L∗

2 just calculated

provides J2 = 2.96. Once more, the result shows the quality of the calculated index and,

consequently, the efficiency of the proposed Algorithm V.1. Moreover, a mode independent

control law can be also designed. It is possible to determine a feasible solution correspond-

ing to T = 250 [ms]. The proposed algorithm gives the state feedback gain

L =
[

−0.1522 − 1.8695
]

,

which ensures the guaranteed J2 cost of

∫ ∞

0

E(z(t)′z(t))dt < 9.22

within six iterations. For values of the sample period greater than T = 1.76 [s], it seems that

a mode independent sampled-data control that stabilizes the MJLS does not exist. This fact

can be numerically verified.
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CHAPTER VI

H∞ Optimal Sampled-Data Control

In order to complement the theoretical results developed in previous chapters,

the present one is devoted to determine the H∞ state feedback sampled-data control ap-

plied to MJLS with fixed sampling intervals, that is, tk+1 − tk = T > 0 for all k ∈ N. The

overall process to accomplish this goal is the same adopted in Chapter V. First, the result

from Theorem IV.1 is modified to obtain a convex formulation based on LMI and a theoretical

solution is determined. Clearly, in the H∞ context, the solution of the control problem de-

pends on the existence of an iterative procedure. Second, some special cases are derived

from the results produced so far. An algorithm is proposed to solve the H∞ sampled-data

control problem, which is proved to be globally convergent. Finally, the theoretical results

are illustrated by means of a numerical example.

Once again, remember that the system to be controlled through a state feedback

sampled-data control law is the MJLS described by

ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t) + Eθ(t)w(t) (VI.1)

z(t) = Cθ(t)x(t) +Dθ(t)u(t) (VI.2)

for all t ∈ R+, where θ(t) is a stochastic parameter governed by an homogeneous continuous-

time Markov chain. The state feedback sampled-data control law is in the form of

u(t) = Lθ(tk)x(tk) (VI.3)

for all t ∈ [tk, tk+1), k ∈ N, and all θ(t) ∈ K. The set of events {tk}∞k=0 describes the

sequence of the sampling instants. Furthermore, this system evolves from initial conditions

x(0) = 0 and θ(0) = θ0 with initial distribution πi0 and transition rate matrix Λ previously

defined in Chapter II. Then, a totally equivalent hybrid system, HMJLS, can be written as

ξ̇(t) = Fθ(t)ξ(t) + Jθ(t)w(t) (VI.4)

z(t) = Gθ(t)ξ(t) (VI.5)

ξ(tk) = Hθ(tk)ξ(t
−
k ) (VI.6)
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for all θ(t) ∈ K and all t ∈ [tk, tk+1), k ∈ N, evolving from initial conditions ξ(0−) = ξ0 = 0

and θ(0−) = θ(0) = θ0. Once again, the structure of the system matrices is fundamental for

the purposes of the chapter and it is such that

Fθ(t) =

[

Aθ(t) Bθ(t)

0 0

]

, (VI.7)

Jθ(t) =

[

Eθ(t)

0

]

, (VI.8)

Gθ(t) =
[

Cθ(t) Dθ(t)

]

, (VI.9)

and

Hθ(tk) =

[

I 0

Lθ(tk) 0

]

. (VI.10)

The main goal is to solve the infimum problem described by

inf
L1,··· ,LN ,γ

{

γ2 :

∫ ∞

0

E
[

z(t)′z(t)− γ2w(t)′w(t)
]

dt < 0, ∀w ∈ L
∗
2

}

(VI.11)

subject to (VI.4)–(VI.6). Notice that this is exactly the H∞ state feedback control problem

from the continuous-time MJLS (see Section II.4) that should be solved by considering the

sampled-data control constraint (VI.3).

VI.1 Theoretical Results

Taking into account the developments in Chapter IV, the H∞ norm can be eval-

uated by solving the uncoupled Lyapunov inequalities

Φiℓ(T )
′H ′

iSiHiΦiℓ(T )− Si +Riℓ(T ) < 0 (VI.12)

with Si > 0, i ∈ K, in Step 3 of the iterative procedure defined in Algorithm IV.1. Matrices

Riℓ(T ) are defined by

Riℓ(T ) = Piℓ(0)− Φiℓ(T )
′Piℓ(T )Φiℓ(T ) (VI.13)

for each i ∈ K, where matrices Piℓ(0) are the solutions of the boundary condition problems

defined in Step 2 of the mentioned Algorithm IV.1 evaluated in the beginning of the time

interval [0, T ) for each i ∈ K and each ℓ ∈ N. Moreover, matrices Φiℓ(t) are obtained by

solving the ODEs Φ̇iℓ(t) = Miℓ(t)Φiℓ(t) with Φiℓ(0) = I and Miℓ(t) = Fiℓ + (λii/2)I +

γ−2JiJ
′
iPiℓ(t) for each i ∈ K. Then, the actual value of the H∞ norm is obtained as the

lowest value of γ > 0 for which (VI.12) admit positive definite solutions. However, in the

context the H∞ control problem, as already analysed in Chapter V for the H2 context,
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matrices Hi are also variables to be determined for each i ∈ K. In this case, inequalities

VI.12 are rewritten as

Si − Piℓ(0) > Φiℓ(T )
′(H ′

iSiHi −H ′
iℓSiℓHiℓ)Φiℓ(T ) (VI.14)

for all i ∈ K and all ℓ ∈ N. Fortunately, again these inequalities can be converted into LMIs.

For this, consider the special structures of matrices (VI.7)–(VI.10) and the decomposition of

matrices Si such that, for each i ∈ K,

Si =

[

I

0

]

Xi

[

I

0

]′

+

[

−L′
i

I

]

Z−1
i

[

−L′
i

I

]′

. (VI.15)

Notice that the decomposition (VI.15) is different from that considered in Chapter V, (V.19).

Remark VI.1 Matrices Si and Li are parameterized with three, not four, independent vari-

ables, namely, Xi, Zi, and Li for all i ∈ K. As can be seen in the proof of the next theorem,

this choice can be imposed without introducing any kind of conservatism to the solutions of

(VI.14) in the closure of feasibility, where the variables are matrices Si > 0 and Li, i ∈ K. ✷

The decomposition (VI.15) has two easily verified properties:

1) Si > 0, if and only if, Xi > 0 and Zi > 0 for all i ∈ K; and

2) considering the gain matrices L̄i for all i ∈ K, then

H ′
iSiHi =

[

I

0

]

Xi

[

I

0

]′

+

[

L′
i − L̄′

i

0

]

Z−1
i

[

L′
i − L̄′

i

0

]′

, (VI.16)

which is valid for all i ∈ K. By imposing Li = L̄i, (VI.16) is such that

H ′
iSiHi =

[

I

0

]

Xi

[

I

0

]′

≤ Si (VI.17)

for all i ∈ K.

In order to solve the control problem, initially, consider that Piℓ(0) − Siℓ ≥ 0

for all i ∈ K. Thus, by using this hypothesis and the second property of (VI.15), a similar

factorization as written for the H2 control problem in Chapter V can be defined:

0 ≤ Piℓ(0)− Siℓ ≤ Piℓ(0)−
[

I

0

]

Xiℓ

[

I

0

]′

=

[

C ′
diℓ

D′
diℓ

][

C ′
diℓ

D′
diℓ

]′

(VI.18)

for all i ∈ K and all ℓ ∈ N. Due to the structure of matrices depicted in (VI.7)–(VI.10), then

Miℓ(t) = Fi + (λii/2)I + γ−2JiJ
′
iPiℓ(t)

=

[

Ai Bi

0 0

]

+ (λii/2)I + γ−2

[

Ei

0

][

Ei

0

]′ [

P11iℓ(t) P12iℓ(t)

• P22iℓ(t)

]

=

[

Āiℓ(t) B̄iℓ(t)

0 (λii/2)I

]

(VI.19)
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for all i ∈ K and ℓ ∈ N, where matrices Piℓ, i ∈ K and ℓ ∈ N, have been decomposed

into block structures. Additionally, blocks Āiℓ(t) and B̄iℓ(t) are defined by Āiℓ(t) = Ai +

(λii/2)I + γ−2EiE
′
iP11iℓ(t) and B̄iℓ(t) = Bi + γ−2EiE

′
iP12iℓ(t) for all i ∈ K and ℓ ∈ N. As a

consequence, matrices Φℓ(T ) are given by

Φiℓ(T ) =

[

Adiℓ Bdiℓ

0 e(λii/2)T I

]

(VI.20)

for all i ∈ K and all ℓ ∈ N. From (VI.20), matrices Adiℓ ∈ Rn×n and Bdiℓ ∈ Rn×m are easily

extracted by any available computational tool and are such that

Adiℓ = e
∫ T
0 Āiℓ(τ)dτ (VI.21)

Bdiℓ =

∫ T

0

e
∫ T−η

0
Āiℓ(τ)dτ B̄iℓ(η)e

(λii/2)ηdη (VI.22)

for all i ∈ K and all ℓ ∈ N. Notice that these relations are not useful for numerical purposes

since Φiℓ(T ) are readily calculated by direct integration of the differential equation Φ̇iℓ(t) =

Miℓ(t)Φiℓ(t) with the initial condition Φiℓ(0) = I for each i ∈ K and ℓ ∈ N. Then, the next

theorem formalises the solution of the H∞ state feedback sampled-data control problem by

means of a convex formulation expressed by LMIs.

Theorem VI.1 Inequalities (VI.14) are feasible if and only if there exist symmetric ma-

trices Wi, Zi, and matrix Yi such that the LMIs













Wi 0 AiℓWi +BiℓYi BiℓZi

• I CiℓWi +DiℓYi DiℓZi

• • Wi 0

• • • Zi













> 0 (VI.23)

hold for all i ∈ K. In the affirmative case, a feasible solution is given by Li = YiW
−1
i

and Si of the form (VI.15) where Xi = Xiℓ +W−1
i for each i ∈ K and all ℓ ∈ N.

Proof: For the necessity, consider by assumption that there exist matrices Si > 0 in the form

of (VI.15) satisfying inequalities (VI.14) such that Si > Siℓ for all i ∈ K and each ℓ ∈ N.

Consider also a state feedback control law governed by the gain matrices L̄i not necessarily

equal to Li, i ∈ K. Define matrices Υi such that

Υi =

[

I 0

Li I

]

(VI.24)

for all i ∈ K. Applying Υi as a similarity transformation in the inequalities (VI.14) for all
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i ∈ K yields

Υ′
iΦiℓ(T )

′H ′
iℓSiℓHiℓΦiℓ(T )Υi =

=

[

I L′
i

0 I

][

A′
diℓ 0

B′
diℓ e(λii/2)T I

]′ [

I

0

]

Xiℓ

[

I

0

][

Adiℓ Bdiℓ

0 e(λii/2)T I

][

I 0

Li I

]

=

[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]

Xiℓ

[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]′

(VI.25)

for all i ∈ K and all ℓ ∈ N, where the identity Liℓ = L̄iℓ for all i ∈ K in the ℓ-th iteration

has been assumed. Moreover, since this hypothesis has been assumed not valid for the

subsequent iterations, then

Υ′
iΦiℓ(T )

′H ′
iSiHiΦiℓ(T )Υi

=

[

I L′
i

0 I

][

A′
diℓ

B′
diℓ

]

(

Xi + (L′
i − L̄′

i)Z
−1
i (Li − L̄i)

)

[

A′
diℓ

B′
diℓ

]′ [

I 0

Li I

]

≥
[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]

Xi

[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]′

(VI.26)

for all i ∈ K. Furthermore,

Υ′
iPiℓ(0)Υi =

[

I L′
i

0 I

]{[

C ′
diℓ

D′
diℓ

][

C ′
diℓ

D′
diℓ

]′

+

[

I

0

]

Xiℓ

[

I

0

]′}[

I 0

Li I

]

=

[

C ′
diℓ + L′

iD
′
diℓ

D′
diℓ

][

C ′
diℓ + L′

iD
′
diℓ

D′
diℓ

]′

+

[

Xiℓ 0

• 0

]

(VI.27)

and

Υ′
iSiΥi =

[

I L′
i

0 I

]′{[

I

0

]

Xi

[

I

0

]′

+

[

−L′
i

I

]

Z−1
i

[

−L′
i

I

]′}[

I 0

Li I

]

=

[

Xi 0

0 Z−1
i

]

(VI.28)

for all i ∈ K. As a consequence, plugging (VI.25)–(VI.28) into (VI.14), produces

[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]

(Xi −Xiℓ)

[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]′

≤ Υ′
iΦiℓ(T )

′ (H ′
iSiHi −H ′

iℓSiℓHiℓ)Φiℓ(T )Υi

< Si − Piℓ(0)

=

[

Xi 0

0 Z−1
i

]

−
[

C ′
diℓ + L′

iD
′
diℓ

D′
diℓ

][

C ′
diℓ + L′

iD
′
diℓ

D′
diℓ

]′

−
[

Xiℓ 0

• 0

]

(VI.29)
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for all i ∈ K and ℓ ∈ N. Finally, introducing the new variables Wi = (Xi −Xiℓ)
−1, the Schur

complement applied twice to (VI.29) gives, for all i ∈ K and all ℓ ∈ N,

[

Adiℓ +BdiℓLi Bdiℓ

Cdiℓ +DdiℓLi Ddiℓ

][

Wi 0

• Zi

][

Adiℓ +BdiℓLi Bdiℓ

Cdiℓ +DdiℓLi Ddiℓ

]′

<

[

Wi 0

• I

]

. (VI.30)

Applying the Schur complement once more, produces












Wi 0 Adiℓ +BdiℓLi Bdiℓ

• I Cdiℓ +DdiℓLi Ddiℓ

• • W−1
i 0

• • • Z−1
i













> 0 (VI.31)

for all i ∈ K and all ℓ ∈ N, which multiplied both sides by diag(I, I,Wi, Zi) becomes













Wi 0 AdiℓWi +BdiℓLiWi BdiℓZi

• I CdiℓWi +DdiℓLiWi DdiℓZi

• • Wi 0

• • • Zi













> 0 (VI.32)

for all i ∈ K and all ℓ ∈ N, which corresponds exactly to (VI.23) provided that Yi = LiWi for

all i ∈ K. Notice that, in this case, without loss of generality the assumption Li = L̄i can be

done for all i ∈ K.

Conversely, for the sufficiency, consider that there exist symmetric matrices Xi, Zi and

matrices Yi, i ∈ K, such that the LMIs (VI.23) hold for all i ∈ K and ℓ ∈ N. In this case,

Xi = Wi + Xiℓ and Li = YiW
−1
i for each i ∈ K and all ℓ ∈ N. Multiplying both sides of

(VI.23) by diag(I, I,W−1
i , Z−1

i ) and applying the Schur complement twice, (VI.23) can be

rewritten as
[

Adiℓ +BdiℓLi Bdiℓ

Cdiℓ +DdiℓLi Ddiℓ

]′ [

Xi −Xiℓ 0

• I

][

Adiℓ +BdiℓLi Bdiℓ

Cdiℓ +DdiℓLi Ddiℓ

]

<

[

Xi −Xiℓ 0

0 Z−1
i

]

(VI.33)

which is equivalent to

[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]

(Xi −Xiℓ)

[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]′

+

[

C ′
diℓ + L′

iD
′
diℓ

D′
diℓ

][

C ′
diℓ + L′

iD
′
diℓ

D′
diℓ

]′

<

[

I

0

]

Xiℓ

[

I

0

]′

+

[

Xi 0

0 Z−1
i

]

(VI.34)

for all i ∈ K and all ℓ ∈ N. Choosing Li = L̄i for all i ∈ K, (VI.25), (VI.27), and (VI.28)

remain unchanged and the inequality (VI.26) becomes an equality. Hence, inequality (VI.33)
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yields

Υ′
iΦiℓ(T )

′ (H ′
iSiHi −H ′

iℓSiℓHiℓ)Φiℓ(T )Υi

=

[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]

(Xi −Xiℓ)

[

A′
diℓ + L′

iB
′
diℓ

B′
diℓ

]′

< Υ′
i (Si − Piℓ(0))Υi (VI.35)

for all i ∈ K and all ℓ ∈ N. As a consequence, (VI.14) can be verified with matrices Si > 0,

i ∈ K, assuming the decomposition described in (VI.15), thus completing the proof. �

Remark VI.2 The hypothesis of Li = L̄i, i ∈ K, is reasonable and can be stated along the

proof of Theorem VI.1 without loss of generality. Indeed, in the proof of the necessity part,

it is also proved that since Liℓ = L̄iℓ for some ℓ ∈ K, the subsequent iteration exhibits the

same property without introducing any conservatism. This fact can be verified by substituting

matrices Si, Wi, Xi, Yi, Zi, Li, and L̄i by its correspondent matrices Si(ℓ+1), Wi(ℓ+1), Xi(ℓ+1),

Yi(ℓ+1), Zi(ℓ+1), Li(ℓ+1), and L̄i(ℓ+1) for all i ∈ K and ℓ ∈ N. Then, the property Liℓ = L̄iℓ is

valid for all ℓ ∈ N and each i ∈ K. ✷

The result of Theorem VI.1 provides a way to parametrize all feasible solutions

of a nonlinear inequality in the form of (VI.14) in terms of LMIs. This means that the original

inequality defines a convex feasible set after a proper change of variables is performed.

Moreover, a feasible solution on the border of inequality (VI.14) can be calculated by im-

posing Zi > 0 arbitrarily small for all i ∈ K. Then, applying the Schur complement in the

last two columns and rows of (VI.23) provides
[

Wi 0

• I

]

>

[

Adiℓ +BdiℓLi Biℓ

Cdiℓ +DiℓLi Diℓ

][

Wi 0

• Zi

][

Adiℓ +BdiℓLi Biℓ

Cdiℓ +DiℓLi Diℓ

]′

>

[

Adiℓ +BdiℓLi

Cdiℓ +DdiℓLi

]

Wi

[

Adiℓ +BdiℓLi

Cdiℓ +DdiℓLi

]′

(VI.36)

for all i ∈ K and all ℓ ∈ N. From the definition of the new matrix variable Vi = W−1
i > 0,

i ∈ K, inequality (VI.36) is equivalent to

(Adiℓ +BdiℓLi)
′ Vi (Adiℓ +BdiℓLi)− Vi < − (Cdiℓ +DdiℓLi)

′ (Cdiℓ +DdiℓLi) (VI.37)

for all i ∈ K and all ℓ ∈ N, that is a similar result as obtained for the H2 state feedback con-

trol problem in Chapter V. Then, by taking matrices Vi > 0 arbitrarily close to the stabilizing

solution of (VI.37), it can be rewritten as a DARE in the form of

A′
diℓViAdiℓ − Vi + C ′

diℓCdiℓ − L′
i(B

′
diℓViBdiℓ +D′

diℓDdiℓ)Li = 0, (VI.38)

where Li = −(B′
diℓViBdiℓ +D′

diℓDdiℓ)
−1(B′

diℓViAdiℓ +D′
diℓCdiℓ) for all i ∈ K and all ℓ ∈ N.

These results establishes the basis to apply a similar algorithm as implemented in Chapter

IV to solve the TPBVP defined in Theorem IV.1 in the case of the H∞ state feedback control

design problem.
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VI.2 Special Case Analysis

This section is devoted to analyse the theoretical results for the H∞ state feed-

back sampled-data control design obtained so far in order to validate the previous outcome.

First, the mode independent case is obtained. Then, the limit case T → 0+ recovers the

pure MJLS H∞ state feedback control design. Finally, the deterministic H∞ state feedback

sampled-data control case is shown to be included in the theoretical results from Section

VI.1, as expected.

The mode independent case

In the present context, the Markov chain state θ(t) must be known at each sam-

pling instant tk, k ∈ N, in order to implement the sampled-data control law (VI.3). In practice,

this necessity increases the computational burden to control the MJLS (VI.1)–(VI.2). Fortu-

nately, once more, this dependence can be ruled out by imposing the additional design

constrain Li = L for all i ∈ K, which is translated in the next corollary.

Corollary VI.1 Inequalities (VI.14) are feasible for some matrices L and Si > 0 for all

i ∈ K if there exist matrices U , Y , and symmetric matrices Wi and Zi such that the LMI













Wi 0 AdiℓU +BdiℓY BdiℓZi

• I CdiℓU +DdiℓY DdiℓZi

• • U + U ′ −Wi 0

• • • Zi













> 0 (VI.39)

hold for all i ∈ K and all ℓ ∈ N. In the affirmative case, a feasible solution is given by

L = Y U−1 and Si of the form (VI.15), where Xi = Xiℓ + W−1
i and Yi = Y for each

i ∈ K and all ℓ ∈ N.

Proof: Assume that (VI.39) hold for all i ∈ K and all ℓ ∈ N. Replace the third diagonal

element by the upper bound U ′W−1
i U ≥ U + U ′ −Wi, which is valid for all i ∈ K, that is,













Wi 0 AdiℓU +BdiℓY BdiℓZi

• I CdiℓU +DdiℓY DdiℓZi

• • U ′W−1
i U 0

• • • Zi













> 0. (VI.40)

Then, by multiplying the resultant inequalities to the right by diag{I, I, U−1Wi, I} and to the

left by its transpose, thus, (VI.23) hold for the triple (Wi, Yi, Zi) with Yi = LWi for all i ∈ K

and all ℓ ∈ N, concluding the proof. �

Once the mode independent sampled-data control design is adopted, the ne-

cessity cannot be proved anymore. This fact is due to the conservatism introduced by the
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matrices U and Y , unique for all i ∈ K. Thus, only an upper bound to the performance in-

dex is guaranteed and the optimal solution may not be reached. Moreover, the LMIs (VI.39)

remain convex, but they cannot be decomposed into N uncoupled inequalities. Clearly, the

computational effort involved is much higher than that spent to solve the N uncoupled LMIs

(VI.23). Finally, notice that this problem cannot be solved by the DARE (VI.38), which puts

in evidence the importance of the LMI result from Theorem VI.1.

The limit case T → 0+

An important analysis of the theoretical results obtained in Section VI.1 is to

determine the limit of inequalities (VI.14) when the sampling interval T > 0 goes to zero.

In this case, the boundary conditions of the TPBVP from Theorem IV.1 becomes Pi(0) =

limT→0+ Pi(T ) for all i ∈ K, which implies that

Si → H ′
iSiHi =

[

I

0

]

Xi

[

I

0

]′

(VI.41)

for all i ∈ K once T → 0+ and since Li has been proved to be equal to L̄i for all i ∈ K. On

the other hand, the approximations of the matrices Adiℓ and Bdiℓ for T → 0+ are obtained

by taking the first order terms of the Taylor series expansion applied to (VI.21) and (VI.22),

which are, respectively,

Adiℓ ≈ I +
(

Ai + (λii/2)I + γ−2EiE
′
iXiℓ

)

T (VI.42)

and

Bdiℓ ≈ BiT (VI.43)

for all i ∈ K and all ℓ ∈ N. Analogously, matrices Cdiℓ and Ddiℓ are obtained by adopting

the same process over definition (VI.18) and are such that
[

C ′
diℓ

D′
diℓ

][

C ′
diℓ

D′
diℓ

]′

= Piℓ(0)−
[

I

0

]

Xiℓ

[

I

0

]′

(VI.44)

for all i ∈ K and all ℓ ∈ N, where

Piℓ(0) = lim
T→0+

{Piℓ(T )− Ṗiℓ(T )T} (VI.45)

for all i ∈ K and all ℓ ∈ N. The value of Ṗiℓ(T ) is calculated from the DRE (IV.5), that is,

Ṗiℓ(T ) = −
{

F ′
iPiℓ(T ) + Piℓ(T )Fi + γ−2Piℓ(T )JiJ

′
iPiℓ(T ) +

∑

j∈K

λijPjℓ(T ) +G′
iGi

}

= −
[

Qiℓ + C ′
iCi XiℓBiℓ + C ′

iDi

• D′
iDi

]

(VI.46)
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for each i ∈ K and all ℓ ∈ N, where Qiℓ = A′
iXiℓ +XiℓAi + γ−2XiℓEiE

′
iXiℓ +

∑

j∈K λijXjℓ,

i ∈ K and ℓ ∈ N. Hence,

[

C ′
diℓ

D′
diℓ

][

C ′
diℓ

D′
diℓ

]′

≈
[

Qiℓ + C ′
iCi XiℓBiℓ + C ′

iDi

• D′
iDi

]

T (VI.47)

for all i ∈ K and all ℓ ∈ N. Plugging (VI.42), (VI.43) and (VI.47) into the DARE (VI.38), it

follows that

(Ai +BiLi)
′Xi +Xi(Ai +BiLi) + (Ci +DiLi)

′(Ci +DiLi)

+γ−2XiEiE
′
iXi +

∑

j∈K

λijXj = Θiℓ (VI.48)

for all i ∈ K and all ℓ ∈ N, where matrices Θiℓ are in the form of

Θiℓ =
∑

j 6=i∈K

λij(Xi −Xiℓ) + γ−2(Xi −Xiℓ)EiE
′
i(Xi −Xiℓ) ≥ 0 (VI.49)

for all i ∈ K and all ℓ ∈ N. Provided that the initial assumption Si > Siℓ > 0 holds – it will

be proved in the next section – it implies that

Xi =

[

I

Li

]′

Si

[

I

Li

]

>

[

I

Li

]′

Siℓ

[

I

Li

]

≥ Xiℓ (VI.50)

for all i ∈ K and all ℓ ∈ N. Additionally, λij ≥ 0 for all j 6= i ∈ K. Furthermore, by applying

the same approximations to matrices Li, it follows that

Li = −(D′
iDi)

−1(B′
iXi +D′

iCi) (VI.51)

for all i ∈ K. Thus, the limit case T → 0+ recovers exactly the H∞ state feedback control

applied to MJLS, as expected. (See Costa, Fragoso & Todorov (2013).)

The deterministic case

As a final important analysis of the results from Theorem VI.1, consider the case

where N = 1. As a consequence, K = {1}, Λ = 0, and πi0 = 1. Because Λ = 0, the TPBVP

reduces to

Ṗi + F ′
iPi + PiFi + γ−2PiJiJ

′
iPi +G′

iGi = 0 (VI.52)

subject to initial Pi(0) = Si and final Pi(T ) = H ′
iSiHi boundary conditions for i = 1. In this

case, the inequality (VI.14) is such that

Φiℓ(T )
′H ′

iSiHiΦiℓ(T )− Si < Riℓ(T ) (VI.53)
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for all ℓ ∈ N and i = 1, where Φiℓ(T ) follows from the solution of the linear differential

equation Φ̇iℓ(t) = Miℓ(t)Φiℓ(t) with Φiℓ(0) = I and Miℓ(t) = Fi + γ−2JiJ
′
iPiℓ(t) for each

ℓ ∈ N and i = 1. Moreover, matrix Riℓ(T ) is defined by

Riℓ(T ) = Φiℓ(T )
′H ′

iℓSiℓHiℓΦiℓ(T )− Piℓ(0) (VI.54)

for all ℓ ∈ N and i = 1. On the other hand, (VI.52) yields

Riℓ(T ) =

∫ T

0

Φiℓ(τ)
′
(

G′
iGi − γ−2Piℓ(τ)JiJ

′
iPiℓ(τ)

)

Φiℓ(τ)dτ (VI.55)

for all ℓ ∈ N and i = 1. Hence, matrices Φiℓ(T ) and Riℓ(T ) for i = 1 and ℓ ∈ N whenever

plugged into inequality (VI.53) provide the optimal solution for the next iteration. This is an

alternative result equivalent to Souza, Gabriel & Geromel (2014), where iterations are not

necessary because, in this case, the DRE (VI.52) admits a closed-form solution. The next

algorithm can be applied to the deterministic case, but the inverse is not possible.

VI.3 Iterative Procedure to Solve the H∞ Control Problem

As before, the iterative procedure presented in Algorithm IV.1 can be used to

determine the optimal sampled-data control law applied to an MJLS in the H∞ context.

Indeed, in order to accomplish this goal, only two changes in Steps 2 and 3 of the mentioned

algorithm must be adequately modified and implemented. First, in Step 2, the final boundary

condition to the DRE (IV.23) becomes

Piℓ(T ) = H ′
iℓSiℓHiℓ =

[

I

0

]

Xiℓ

[

I

0

]′

(VI.56)

for all i ∈ K and each ℓ ∈ N, which depends only on matrices Xiℓ. Second, in Step 3,

a feasible solution to the LMIs (VI.23) or the solution to the DARE (VI.38) needs to be

determined. This solution provides the current state feedback gain matrices

Li(ℓ+1) = Li (VI.57)

and matrices

Xi(ℓ+1) = Xiℓ + Vi(ℓ+1) ≥ Xiℓ (VI.58)

for all i ∈ K. An iterative procedure to solve the H∞ state feedback sampled-data control

problem applied to an MJLS, according to the theoretical results presented in Section VI.1,

is summarized in the next algorithm, where the DARE (VI.38) has been considered.
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Algorithm VI.1

1. Define the constant sampling period T > 0 and the H∞ level γ > 0, large enough,

such that J∞ < 0. Consider t ∈ [0, T ) and initialize ℓ = 0. Set Xℓ = 0 and Liℓ = 0.

2. Determine the value of Pℓ(0) from the coupled DRE

Ṗiℓ(t) + F ′
iPiℓ + PiℓFi + γ−2PiℓJiJ

′
iPiℓ +

∑

j∈K

λijPjℓ +G′
iGi = 0 (VI.59)

subject to the final boundary condition Piℓ(T ) = [I 0]′Xiℓ[I 0] ≥ 0 for all i ∈ K

through a backward integration. Using a forward integration, determine the value

of Φiℓ(T ) by solving the ODE

{

Φ̇iℓ(t) = Miℓ(t)Φiℓ(t)

Φiℓ(0) = I
(VI.60)

for all i ∈ K, where Miℓ(t) = Fi + (λii/2)I + γ−2JiJ
′
iPiℓ(t), i ∈ K. Thus, matrices

Adiℓ, Bdiℓ, Cdiℓ, and Ddiℓ can be obtained, for each i ∈ K, from

Piℓ(0)−
[

I

0

]

Xiℓ

[

I

0

]′

=

[

C ′
diℓ

D′
diℓ

][

C ′
diℓ

D′
diℓ

]′

, (VI.61)

Φiℓ(T ) =

[

Adiℓ Bdiℓ

0 e(λii/2)T I

]

. (VI.62)

3. For each i ∈ K, determine the stabilizing solution Vi(ℓ+1) ≥ 0 and the gain Li(ℓ+1),

by solving the DARE

A′
diℓVi(ℓ+1)Adiℓ − Vi(ℓ+1) − L′

i(ℓ+1)(B
′
diℓVi(ℓ+1)Bdiℓ +D′

diℓDdiℓ)Li(ℓ+1)

+C ′
diℓCdiℓ = 0, (VI.63)

together with Li(ℓ+1) = −(B′
diℓVi(ℓ+1)Bdiℓ+D′

diℓDdiℓ)
−1(B′

diℓVi(ℓ+1)Adiℓ+D′
diℓCdiℓ).

Set the current value of Xi(ℓ+1) = Vi(ℓ+1) +Xiℓ for each i ∈ K.

4. Set (ℓ+ 1) → ℓ and iterate until ‖Vℓ‖2 becomes sufficiently small.

Remark VI.3 Once again, notice that the H∞ norm is given by the lowest value of γ > 0

such that the overall problem solved by Algorithm VI.1 remains feasible. As a consequence,

to determine the optimal solution in the H∞ context, a single search on parameter γ > 0 is

necessary in the same terms stated in Chapter IV. ✷

As already mentioned, the convex problem based on LMIs (VI.23) could con-

veniently be used instead of the DARE (VI.63). In this alternative solution, matrices Wi =

Wi(ℓ+1) and Yi = Yi(ℓ+1) should be determined in Step 3 of the previous algorithm at each
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iteration ℓ ∈ N and for all i ∈ K. Then, the current value of matrices Li and Xi would be

given by Li(ℓ+1) = Yi(ℓ+1)W
−1
i(ℓ+1) and Xi(ℓ+1) = W−1

i(ℓ+1) + Xiℓ for each i ∈ K and each

ℓ ∈ N. Both problems are asymptotically convergent to the stationary solution of the TPBVP

defined by Theorem IV.1. The following theorem is necessary to assure this convergence

since an important change is introduced in the control design problem, that is the non con-

stant characteristic of matrices Hiℓ for all i ∈ K and ℓ ∈ N.

Remark VI.4 The same iterative procedure from Algorithm VI.1 can be used for the par-

ticular cases discussed in the previous section. The main difference is the problem to be

solved, which can be expressed in terms of LMIs or in the form of a DARE. For the mode

independent case, the problem defined in Corollary VI.1 should be solved; for the limit case

T → 0+, the DARE defined in (VI.48) with matrices Li defined by (VI.51) should be con-

sidered; and for the deterministic case, the same problem defined in Theorem VI.1 but with

only one Markov mode, N = 1, should be evaluated. ✷

Theorem VI.2 Assume that problem (VI.11) has a bounded solution (X∗
i , P

∗
i (t), L

∗
i )

for all i ∈ K and all t ∈ [0, T ). Algorithm VI.1 is uniformly convergent and any two

subsequent iterations are such that X∗ ≥ X(ℓ+1) ≥ Xℓ ≥ 0.

Proof: From the assumption of the existence of a bounded solution, there exist matrices

L∗
i and X∗

i > 0 for all i ∈ K such that the TPBVP of Theorem VI.1 holds. By imposing

Piℓ(0) ≥ Siℓ, inequalities (VI.14) evaluated at its boundaries yield

Φiℓ(T )
′(H ′

i(ℓ+1)Si(ℓ+1)Hi(ℓ+1) −H ′
iℓSiℓHiℓ)Φiℓ(T ) = Si(ℓ+1) − Piℓ(0) (VI.64)

for each i ∈ K and all ℓ ∈ N. This inequality multiplied to the left by [I L′
i(ℓ+1)], ℓ ∈ N, and

to the right by its transpose leads to equation (VI.63), which can be rewritten as

(Adiℓ +BdiℓLi(ℓ+1))
′(Xi(ℓ+1) −Xiℓ)(Adiℓ +BdiℓLi(ℓ+1))− (Xi(ℓ+1) −Xiℓ)

+(Cdiℓ +DdiℓLi(ℓ+1))(Cdiℓ +DdiℓLi(ℓ+1)) = 0 (VI.65)

for all i ∈ K and all ℓ ∈ N. Then, Vi(ℓ+1) = Xi(ℓ+1) − Xiℓ ≥ 0 is the stabilizing solution for

all i ∈ K and all ℓ ∈ N. By initializing Algorithm VI.1 with Xi0 = 0 for all i ∈ K, it leads to an

interlacing property of matrices Xi for each i ∈ K:

0 = Xi0 ≤ Xi1 ≤ Xi2 ≤ · · · . (VI.66)

Additionally, consider the stabilizing solution characterized by (X∗
i , P

∗
i (t), L

∗
i ) for all i ∈ K,

which satisfies

P ∗
i (0) = S∗

i =

[

I

0

]

X∗
i

[

I

0

]′

+

[

−L∗
i

I

]

Z∗
i
−1

[

−L∗
i

I

]′

(VI.67)
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whenever P ∗
i (T ) = H∗

i
′S∗

i H
∗
i for all i ∈ K. Assume that X∗

i ≥ Xiℓ for all i ∈ K and some

ℓ ∈ N. Then, inequalities (A.9) applied to the stationary solution produces

P ∗
i (0)− Piℓ(0) ≥ Φiℓ(T )

′(P ∗
i (T )− Piℓ(T ))Φiℓ(T )

≥ Φiℓ(T )
′(H∗′

i S
∗
i H

∗
i −H ′

iℓSiℓHiℓ)Φiℓ(T ) (VI.68)

for all i ∈ K, where the final boundary values are P ∗
i (T ) = H∗

i
′S∗

i H
∗
i and Piℓ(T ) = H ′

iℓSiℓHiℓ

for all i ∈ K and each ℓ ∈ N. Inequalities (VI.68) multiplied to left by [I L∗
i
′], i ∈ K, and to

the right by its transpose produces

(Adiℓ +BdiℓL
∗
i )

′ (X∗
i −Xiℓ) (Adiℓ +BdiℓL

∗
i )− (X∗

i −Xiℓ)

+ (Cdiℓ +DdiℓL
∗
i )

′ (Cdiℓ +DdiℓL
∗
i ) ≤ 0, (VI.69)

which is valid for all i ∈ K and all ℓ ∈ N. This indicates that matrices Adiℓ+BdiℓL
∗
i are Schur

stable for all i ∈ K. On the other hand, multiplying (VI.64), once again, to left by [I L∗
i
′],

i ∈ K, and to the right by its transpose yields

(Adiℓ +BdiℓL
∗
i )

′ (Xi(ℓ+1) −Xiℓ

)

(Adiℓ +BdiℓL
∗
i )−

(

Xi(ℓ+1) −Xiℓ

)

+ (Cdiℓ +DdiℓL
∗
i )

′ (Cdiℓ +DdiℓL
∗
i )− (L∗

i − Li(ℓ+1))
′Z−1

i(ℓ+1)(L
∗
i − Li(ℓ+1)) = 0 (VI.70)

for all i ∈ K and ℓ ∈ N. Subtracting (VI.70) from (VI.69), it can be verified that

(Adiℓ +BdiℓL
∗
i )

′ (X∗
i −Xi(ℓ+1)

)

(Adiℓ +BdiℓL
∗
i )−

(

X∗
i −Xi(ℓ+1)

)

+(L∗
i − Li(ℓ+1))

′Z−1
i(ℓ+1)(L

∗
i − Li(ℓ+1)) ≤ 0 (VI.71)

for all i ∈ K and all ℓ ∈ N. Due to matrices Adiℓ + BdiℓL
∗
i are Schur stable for all i ∈

K, inequalities (VI.71)imply that X∗
i ≥ Xi(ℓ+1) for all i ∈ K. Consequently, the algorithm

generates a sequence of matrices {Xiℓ}∞ℓ=0 bounded by X∗
i for all i ∈ K and all ℓ ∈ N. The

hypothesis on the existence of a set of solutions X∗
i , bounded for all i ∈ K, is sufficient to

assure that

lim
ℓ→∞

Xiℓ → X∗
i (VI.72)

for all i ∈ K. Then, the algorithm monotonically converges to the stationary solution of

(X∗
i , P

∗
i (t), L

∗
i ) for all i ∈ K, concluding thus the proof. �

Since the proof of Algorithm VI.1 is based on the fundamental inequalities (A.9),

the convergence is assured for determining matrices Xi > 0 and the gain matrices Li,

i ∈ K, for both cases: using the DARE (VI.38) or the LMI (VI.23) for each i ∈ K in its third

step.

Remark VI.5 In the same way noticed in Algorithm V.1, and already mentioned in this sec-

tion, each of the particular cases from Section VI.2 can be solved by Algorithm VI.1 provided

that each specific problem is considered in Step 3. For all special cases, the uniform con-

vergence is also assured. ✷
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Remark VI.6 The sequence Vi(ℓ+1) − Viℓ does not exhibits a monotone behavior. Only Viℓ

has a definite signal for all i ∈ K and all ℓ ∈ N. Hence, it is only expected that Viℓ → 0 as ℓ

goes to infinity due to Xiℓ → X∗
i as ℓ goes to infinity for all i ∈ K. This property becomes

evident in the next numerical example. ✷

VI.4 Illustrative Numerical Example

The purpose of this section is to put in evidence the numerical behavior of the

proposed algorithm and the theoretical results obtained so far. To this end, consider the

example already treated in the previous chapters.

Example VI.1 Consider the MJLS with N = 2 and with the state space realization in the

form of Example IV.1. The system matrices are given by

F1 =







0 1 0

−4 0 1

0 0 0






, F2 =







0 1 0

−1 0 1

0 0 0






,

J1 = J2 =







1

1

0






, G′

1 = G′
2 =







1 0

0 0

0 1






.

Again, matrices Hi, i ∈ {1, 2}, are unknown since it contains the gain matrices L1 and L2

to be evaluated. Consider also the sampling period T = 250 [ms] and suppose that the

transition rate matrix Λ ∈ R2×2 is such that

Λ =

[

−0.5 0.5

0.2 −0.2

]

and the initial probability is π0 = [1 0]′. Then, the computed minimum γopt cost equals 2.12

and is assured by the gain matrices

L1(opt) =
[

−2.3116 −4.2210
]

, L2(opt) =
[

−2.3548 −3.7444
]

.

For this evaluation, it is necessary to consider a line search in γ > 0 as mentioned in

Remark VI.3. Figure VI.1 shows the evolution of the iterative algorithm for γ = γopt = 2.12.

The green curve (with squared markers) shows the convergence of the matrices Xiℓ to the

stationary value X∗
i represented by maxi=1,2 ‖Xiℓ‖2. The blue curve (with rounded markers)

shows the evolution of the stopping criterion maxi=1,2 ‖Vi(ℓ+1)‖2, which puts in evidence a

fast convergence rate. Notice that, in this case, the convergence of matrices Viℓ to zero are

not monotone, as expected and discussed in Remark VI.6.
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Figure VI.1 – Algorithm evolution for γopt = 2.12
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Figure VI.2 – Algorithm evolution for γ = 2, γopt = 2.12 and γ = 100

In addition, as in Chapter IV, Figure VI.2 shows the convergence of the algorithm

for three different values of γ. The convergence occurs within six iterations for γ = 100 >

γopt, while the optimal value is reached after 43 iterations for γ = γopt = 2.12. For γ =

2 < γopt, the algorithm diverges because a bounded solution does not exist, as expected.

Furthermore, for a γ large enough, the result recovers the values of the matrices Li, i = 1, 2,

and the square of H2 norm obtained by using Algorithm V.1, in Chapter V.1. Indeed, using

γ = 1, 000, Algorithm VI.1 converges to J ∗
2 = 2.95 and to the gain matrices L∗

1 = [0.1786−
0.5555] and L∗

2 = [−0.2970 − 0.8684] within six iterations. The minimal difference between

this values and those from Example V.1 is due to the difference in the stopping criteria

adopted for Algorithms V.1 and VI.1.

A Monte Carlo simulation of 2, 000 samples, which uses the Leon-Garcia’s pro-
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cedure (see Leon-Garcia (2007)), considering the gain matrices L1(opt) and L2(opt) just cal-

culated provides H∞ norm of 2.06. For this result, even though the worst perturbation is not

deterministic, the exogenous input of w(t) = sin(πt/3) for t ∈ [0, 2] [s] and w(t) ≡ 0 else-

where is considered. The frequency for the sinusoidal signal is defined in a previous search

such that the worst gain is obtained. The simulation occurs in the time interval [0, 12] [s]. The

difference between the calculated and the simulated H∞ norm indicates the quality of the

proposed method. Moreover, notice that the exogenous input is not the worst perturbation,

but the approximation is very close in this particular example. Finally, it seems that there is

not a mode independent gain matrix that stabilizes this HMJLS.
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CHAPTER VII

Practical Applications

This chapter is a relevant part of this work since it shows the results obtained in

the previous chapters in a practical sense. In order to accomplish this goal, some systems

borrowed from the literature are analysed. First, two practical systems are controlled through

an NCS, that is, an originally stable mechanical mass-spring-damper system borrowed from

the PhD dissertation written by Lutz (2014) and an originally unstable Furuta pendulum

extracted from the master’s thesis written by Oliveira (2015). Then, an example modified

from Costa, Fragoso & Todorov (2013) shows another application of HMJLS: an example

on economics.

For examples in Sections VII.1 and VII.2, the general adopted structure is pre-

sented in Figure VII.1, where the control signal flows through a network. Among all actual

characteristics of the network, packet dropout and bandwidth limitation are simultaneously

considered, as already mentioned in Chapter I. In this case, the following tools are used

to model each of these network characteristics: Markov chain and sampled-data signals,

respectively. Thus, consider the state space realization in the form of

ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t) + Eθ(t)w(t) (VII.1)

z(t) = Cθ(t)x(t) +Dθ(t)u(t) (VII.2)

evolving from initial conditions x(0−) = x(0) = 0 and θ(0−) = θ(0) = θ0. This system is

subject to the state feedback sampled-data control law u(t) expressed by

u ∈ U = {u(t) = Lθ(tk)x(tk), t ∈ [tk, tk+1) ∀k ∈ N} (VII.3)

where θ(tk) ∈ K represents each of the network states: success or fail of the transmitted

signal. The sequence of {tk}k∈N represents the successive sampling instants of time such

that T = tk+1 − tk, k ∈ N, as defined before. Thus, the HMJLS composed by (VII.1)–(VII.2)
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w(t) x(t)

u(t)

u[k]

Figure VII.1 – Closed loop structure for Examples VII.1, VII.2.

subject to the control law (VII.3) can be rewritten as

ξ̇(t) =

[

Aθ(t) Bθ(t)

0 0

]

ξ(t) +

[

Eθ(t)

0

]

w(t) (VII.4)

z(t) =
[

Cθ(t) Dθ(t)

]

ξ(t) (VII.5)

ξ(tk) =

[

I 0

Lθ(tk) 0

]

ξ(t−k ) (VII.6)

for all t ∈ [tk, tk+1), k ∈ N, and all θ(t) ∈ K, which evolves from initial conditions ξ(0−) =

ξ0 = 0 and θ(0−) = θ(0) = θ0. The time-varying function θ = {(θ(t),Ft); t ∈ R+} describes

the state of the random variable, which is governed by a continuous-time Markov process

characterized by the transition rate matrix Λ ∈ RN×N and an initial probability distribution

π0 = π(0) = [π10 · · · πN0]
′.

Additionally, it is important to notice that all the next examples, whose theoret-

ical background was developed in the previous chapters, are obtained also considering

temporal simulations. For that, the method proposed by Leon-Garcia (2007) is adopted. It

consists of a Monte Carlo simulation of a time-varying system depending on a given param-

eter θ(t) ∈ K. This parameter spends, in the mode i ∈ K, a period of time di defined by an

exponential distribution with mean 1/|λii| and jumps to another state j ∈ K according to the

probability P[θ(di+h) = j|θ(di) = i] = λij/|λii| for j 6= i and P[θ(di+h) = i|θ(di) = i] = 0

with h > 0 arbitrarily small. Additionally, for the H2 context, an impulse in the exogenous

input w(t) at time instant t = 0 is simulated by adopting an initial condition x0 6= 0. On

the other hand, for the H∞ case, even though the worst perturbation is not deterministic, a

sinusoidal signal is applied in w(t), whose frequency is defined in a previous search such

that the worst gain is obtained. The value of this cost, in general, is smaller than the actual

H∞ norm. Clearly, this signal is interrupted when the resultant controlled output z(t) starts

oscillating, which means that the transitory period has already been finished.

VII.1 Mass-spring-damper System

In this section, a mass-spring-damper system borrowed from Lutz (2014) is con-

trolled using both approaches developed in previous chapters: the H2 and H∞ optimal con-
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1− Pbg

Pbg

1− Pgb

Figure VII.2 – Gilbert model for a simple network modeling.

x1 x2

k1

k2

m1 m2f fd

b

Figure VII.3 – Mass-spring-damper system.

trol design. Additionally, a physical meaning is attributed to the results. The network used

in the next example is modeled based on a two-mode Markov chain corresponding to a

Gilbert network with data extracted from Lutz (2014). It consists of a first order Markov

process which indicates if packets are successfully received (one mode) or not (another

mode) as in Figure VII.2. The quantities Pbg and Pgb are, respectively, the probabilities of

the system jumps from mode “Bad" to “Good" and from “Good" to “Bad". This Markov chain

is represented by the set of Markov modes K = {1, 2}, where “1" stands for the “Bad"

mode and “2" for the “Good" one. The transition rate matrix Λ is computed using one of the

transition matrices Q defined in Lutz (2014). The chosen one is given by

Q =

[

1− Pbg Pbg

Pgb 1− Pgb

]

=

[

0.85 0.15

0.1 0.9

]

(VII.7)

with initial distribution such that π0 = [0.4 0.6]′ and discrete-time period of hd = 0.02[s], as

defined in the same work. Consequently, Λ is generated such that

Q = eΛhd. (VII.8)

Example VII.1 The mass-spring-damper system, shown in Figure VII.3, consists of two

friction-less cars with masses m1 = 0.5 [kg] and m2 = 1.0 [kg] connected with a damper

with b = 0.2 [Ns/m] and two springs such that κ1 = 12.0 [N/m] and κ2 = 7.0 [N/m]. The

force u(t) = f(t) is the control input acting in the second car and the force w(t) = fd(t) is
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the exogenous input acting in the first car. The dynamical equation of the system is













ẋ1(t)

ẋ2(t)

ẍ1(t)

ẍ2(t)













=













0 0 1 0

0 0 0 1

(−k2 − k1)/m1 k2/m1 −b/m1 b/m1

k2/m2 −k2/m2 b/m2 −b/m2

























x1(t)

x2(t)

ẋ1(t)

ẋ2(t)













+













0

0

0

1/m2













u(t) +













0

0

1/m1

0













w(t). (VII.9)

This mechanical system is connected through a network supposed to have packet dropouts

and bandwidth limitation. As already mentioned, a Markov chain with two modes K = {1, 2}
represent packet loss and transmission success, respectively. The transition rate matrix

is obtained from (VII.8). The effect of the bandwidth limitation implies in a sampled-data

control law given by (VII.3), which is constant inside each time interval [tk, tk+1) such that

T = tk+1 − tk = 200 [ms]. Thus, closing the loop with (VII.3), system (VII.9) is rewritten as

a hybrid system with augmented matrices Fi and Ji, i = {1, 2}, described by

F1 =

















0 0 1 0 0

0 0 0 1 0

(−k2 − k1)/m1 k2/m1 −b/m1 b/m1 0

k2/m2 −k2/m2 b/m2 −b/m2 0

0 0 0 0 0

















,

F2 =

















0 0 1 0 0

0 0 0 1 0

(−k2 − k1)/m1 k2/m1 −b/m1 b/m1 0

k2/m2 −k2/m2 b/m2 −b/m2 1/m2

0 0 0 0 0

















,

and

J1 = J2 =
[

0 0 1/m1 0 0
]′

.

Moreover, the controlled output is defined such that

z(t) = Cx(t) +Du(t) (VII.10)

for all t ∈ R+. As a consequence, matrices Gi, i = {1, 2}, are such that G1 = G2 = [C D].

Notice that the packet loos is enforced by setting the last row of the augmented dynamic

matrix to zero, F1.
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Figure VII.4 – Evolution of Algorithm V.1 to compute the stationary value J ∗
2 .

H2 optimal control design

The optimal project developed in Chapter V allows to determine a control law in

the form of (VII.3) such that the H2 norm is minimized. For a physical interpretation and to

facilitate understanding, consider Figure VII.3 and the performance index J2 that expresses

the total dissipated energy of the system, which is minimized while the closed loop system

is kept mean square stable. Then,

J2 =

∫ ∞

0

E
[

b(ẋ1 − ẋ2)
2
]

dt, (VII.11)

where the expectation is necessary since system (VII.9)–(VII.10) is controlled through an

NCS. In this case,

C =
[

0 0
√
b −

√
b
]

, D =
[

0
]

.

The minimum value of the index J2 is evaluated by running Algorithm V.1 which converges

to
√

J ∗
2 = 0.48 [J] within 23 iterations. This value is assured by the stationary gain matrices

L∗
1 and L∗

2 such that

L∗
1 =

[

−40.6913 19.3200 5.5442 −7.5072
]

,

L∗
2 =

[

−28.8234 13.6792 4.9919 −6.4295
]

.

Figure VII.4 shows the convergence of the proposed method to the optimal result. The green

curve (with squared markers) shows the convergence of the
√
J2ℓ performance index to the

stationary value
√

J ∗
2 . The blue curve (with rounded markers) shows the convergence of

the stopping criterion (J2(ℓ+1) − J2ℓ)/J2(ℓ+1). Notice that only the convergence of
√
J2ℓ is
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Figure VII.5 – Temporal evolution for the H2 optimal control.

monotone, as expected.

Additionally, implementing a Monte Carlo simulation of 500 samples with the sta-

tionary gain matrices L∗
1 and L∗

2, initial condition numerically equals to ξ0 = J1 = J2, and

exogenous input w(t) ≡ 0, the value of the computed
√
J2 performance index is 0.47 [J].

The relative difference of about 3% indicates that the quality of the result obtained by us-

ing the proposed method in Chapter V. Figure VII.5 shows the behavior of the temporal

evolution of the mass-spring-damper system1. At this point, changing the gain matrices to

L1 =
[

−5.0620 6.7414 −0.5561 −2.6060
]

,

L2 =
[

−3.7921 5.4461 −0.3098 −2.5537
]

for comparison purposes, which also keep the system stability, the temporal simulation gives

a total
√
J2 of 0.86 [J]. This value is greater than the value obtained by using the optimal

gain matrices, that is, it confirms that the minimum is obtained for the gain matrices L∗
1 and

L∗
2, as expected. Moreover, for the mode independent case, the algorithm converges within

21 iterations and the gain matrix L = [−17.2167 7.0669 3.5009 − 7.0507] assures the

guaranteed cost of
√
J2 = 0.65 [J]. This result shows the conservatism associated to the

fact that the Markov mode is unknown during the system simulation. By running Algorithm

III.1, the
√
J2 performance index of a system given the feedback control gain matrices

L1 = L2 = L for the mode independent case is 0.51 [J], for which the value of 0.65 [J] still

is an upper bound.

H∞ optimal control design

On the other hand, consider the H∞ scenario. The H∞ norm can be physi-

cally interpreted as a measure of the robustness of the system regarding to an exogenous

1 One standard deviation above and bellow the mean trajectory is shown even though the quantity z(t)′z(t)
is obviously nonnegative for all t ≥ 0.
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Figure VII.6 – Algorithm VI.1 evolution for γ = γopt and γ > γopt.

input (see the references Zhou, Doyle & Glover (1996) and Colaneri, Geromel & Locatelli

(1997)). Hence, consider an exogenous input w(t) ∈ L∗
2 applied to the system in the form

of the additional force w(t) = fd(t) on mass m2 (see Figure VII.3). As a consequence, the

H∞ project determines the gain matrices L1 and L2 such that the minimum disturbance due

to force fd is "felt" by the system. Thus, by considering matrices C and D such as

C =







0 0 1 0

0 0 0 1

0 0 0 0






, D =







0

0

1







and performing a line search in parameter γ, Algorithm VI.1 together with system (VII.9)–

(VII.10) produces the H∞ norm γopt = 3.29 which is ensured by the stationary gain matrices

L∗
1 =

[

−0.4643 0.5180 0.0772 −0.6386
]

,

L∗
2 =

[

−0.4097 0.5978 0.1429 −1.0802
]

.

Figure VII.6 shows the convergence of Algorithm VI.1 for a given γ in terms of the measure

of matrices Xiℓ, i ∈ K, since the H∞ control problem designed in Chapter VI is a feasibility

problem and no performance index is evaluated. The green curve (with squared markers)

shows the convergence of matrices Xiℓ, i = {1, 2}, to the stationary value through the

measure of maxi={1,2} ‖Xiℓ‖2 for γ = γopt, which corresponds to the lowest γ such that

the DAREs (VI.63) are feasible. The blue curve (with rounded markers) shows also the

convergence of maxi={1,2} ‖Xiℓ‖2 but this time for γ = 10. The algorithm takes 299 iterations

to converge for γ = γopt and 61 iterations for γ = 10 > γopt. Clearly, the closer to the

feasibility limit the algorithm runs, the slower it becomes in its performance.

Additionally, consider the case of the mass-spring-damper system being con-

trolled in the classical sense, that is, without the need of a network, which can be enforced

by doing K = {1} and T → 0. In practice, consider the period T = 0.001 [s]. Thus, the
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value of H∞ norm computed by a linear search is γ = 2.88 with the associated gain matrix

L = [1.5079 − 0.5546 0.3633 − 1.1910]. Using the Matlab R©function norm to compute the

H∞ norm, this value is 2.87, which verifies the possibility to use the proposed Algorithm

VI.1 to compute the classical H∞ norm. Moreover, this number makes possible to compare

the robustness of the mass-spring-damper system controlled through an NCS or without it.

As expected, the system controlled through an NCS is less robust than the same system

controlled in a classical way.

Finally, by imposing γ → ∞, the quadratic term of the DRE of Theorem IV.1

vanishes and the TPBVP must solve a DLE instead. In this case, it should be possible to

recover the H2 result. Indeed, by setting γ = 100 and matrices C and D as in the H2

analysis, the computed squared value of

∫ ∞

0

E [z(t)′z(t)] dt =
∑

i∈{1,2}

πi0Tr(J ′
iH

′
iXiHiJi) (VII.12)

is 0.48 [J], which is very close to the same value previously calculated using Algorithm V.1.

Remark VII.1 From Example VII.1, an interesting property of the H2 optimal control prob-

lem is confirmed. Indeed, the H2 optimal gain L∗
i , i ∈ K, associated to the packet dropout

mode is not null because the final cost depends on this gain through the matrix Hi present

in the initial condition, which is used to reflect the impulsive exogenous input. This fact is

not observed in the H∞ optimal control problem because the initial condition is zero. ✷

VII.2 Furuta Pendulum

Due to the existence of a damper in the previous example, the system mass-

spring-damper is originally stable. In order to analyse the possibility to control an originally

unstable system using the controllers designed by the methods proposed in this work, con-

sider a Furuta Pendulum. It is a rotary inverted pendulum borrowed from Oliveira (2015).

Once more, both contexts are considered: the H2 and the H∞ state-feedback sampled-

data control projects developed in Chapters V and VI. As mentioned before, the Markov

chain and the sampled-data control are used to model the network characteristics of packet

dropouts and bandwidth limitation, respectively and simultaneously.

The network considered in Oliveira (2015) is a Gilbert-Elliot network, which is

a 4-state Markov chain. In this case, for each state of the network transmission, “Good" or

“Bad", there are two different associated probabilities: one indicating a “Successful" trans-

mission and the other a “Failed" transmission. This model implies that packet dropouts may

occur even in a “Good" state. The Gilbert-Elliot model is represented by Figure VII.7, where

Pgb is the probability of the transition from the “Good" state to the “Bad" state and Pbg is the

transition from the “Bad" state to the “Good" state. In the same way, Pfg and Pfb are the
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1− Pbg

Pbg

1− Pgb

Pgb

Pfb

1− Pfb Pfg

1− pfg

Figure VII.7 – Gilbert-Elliot Model for a simple Network modeling.

probabilities of a “Failed" transmission in the “Good" and in the “Bad" state, respectively.

Thus, the Gilbert-Elliot transmission model is such that K = {1, 2, 3, 4}, where “1" stands

for the “Good" state with a “Failed” transmission, “2" for the “Good" state with “Successful"

transmission, “3" for the “Bad" state with “Failed" transmission, and “4" for the “Bad" state

with “Successful" transmission. Thus, the probability transition matrix Q defined in Oliveira

(2015) is given by

Q =













(1− Pgb)Pfg (1− Pgb)(1− Pfg) PgbPfb Pgb(1− Pfb)

(1− Pgb)Pfg (1− Pgb)(1− Pfg) PgbPfb Pgb(1− Pfb)

PbgPfg Pbg(1− Pfg) (1− Pbg)Pfb (1− Pbg)(1− Pfb)

PbgPfg Pbg(1− Pfg) (1− Pbg)Pfb (1− Pbg)(1− Pfb)













=













0.0348 0.8352 0.0377 0.0923

0.0348 0.8352 0.0377 0.0923

0.0100 0.2400 0.2175 0.5325

0.0100 0.2400 0.2175 0.5325













. (VII.13)

The initial distribution is such that π0 = [0.0263 0.6316 0.0992 0.2429]′ and the discrete-time

period hd = 0.02[s], as defined in the same work. The relationship (VII.8) does not provide

the transition rate matrix Λ because matrix Q has two null eigenvalues. For this reason, the

first order approximation Λ = (Q− I)/hd has been adopted in this case.

Example VII.2 This system consists of one motor connected to a rotational rod, which is

connected to a pendulum. Thus, the overall system has two degrees of freedom, that is,

the angles α and φ. This means that this system is sub-actuated. The main objective of the

control action is to take the pendulum to the open-loop unstable equilibrium point. Figure

VII.8 shows the pendulum system. According to Oliveira (2015), the dynamic equation for

this system is
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DC motor

Rotational rod

Pendulum

α

φ

Figure VII.8 – The Furuta pendulum and state variables.

ẋ(t) =













0 0 1 0

0 0 0 1

0 34.16 −18.62 −0.035

0 76.74 −17.96 −0.079













x(t) +













0

0

18.31

17.65













u(t), (VII.14)

where x = [φ α φ̇ α̇]′ and u(t) is the voltage applied to the DC motor. In order to prevent

the nonlinear behavior of the motor saturation, the matrices of the controlled output and the

initial condition have been empirically defined by Oliveira (2015) such as

z(t) =







5 0 0 0

0 1 0 0

0 0 0 0






x(t) +







0

0

1.2






u(t)

x0 =
[

0.0175 0.2618 0 0
]′

, (VII.15)

where the initial condition physically corresponds to α = 15◦ and φ = 1◦.

H2 optimal control design

For the H2 context, consider matrix E equals to the initial condition x0. The

sampling period adopted is T = hd = 0.02 [s]. Hence, running the Algorithm V.1, the

computed J2 performance index is 10.09 and the stationary gain matrices are such that

L∗
1 =

[

1.5947 −16.1510 1.6824 −2.2731
]

,

L∗
2 =

[

3.5069 −34.6228 3.6148 −4.8762
]

,
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Figure VII.9 – Evolution of Algorithm V.1 to compute the stationary value J ∗
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Figure VII.10 – Temporal evolution for the H2 optimal control.

L∗
3 =

[

1.4452 −15.2949 1.5871 −2.1501
]

,

and

L∗
4 =

[

3.5244 −37.2767 3.8685 −5.2402
]

.

Algorithm V.1 has taken 23 iterations to converge and its evolution is shown in Figure VII.9.

The green curve (with squared markers) shows the convergence of the
√
J2ℓ performance

index to the stationary value
√

J ∗
2 . The blue curve (with rounded markers) shows the con-

vergence of the stopping criterion (J2(ℓ+1)−J2ℓ)/J2(ℓ+1). Using matrices L∗
i , i = {1, 2, 3, 4}

to implement a Monte Carlo simulation with 500 samples, the computed J2 index is 10.46,

which confirms the result just calculated. Figure VII.10 shows the temporal evolution.
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Figure VII.11 – Algorithm VI.1 evolution for γ = γopt and γ > γopt.

H∞ optimal control design

The purpose of the H∞ analysis is to obtain the optimal sampled-data control

law that minimizes the maximum energy gain from the exogenous input w(t) to the con-

trolled output z(t). For this purpose, the matrices Ei from the dynamic equation (VII.1),

i ∈ {1, 2, 3, 4}, are chosen in order to introduce the perturbation on the control input u(t) in

the same way defined by Oliveira (2015). This means doing Ei = Bi for all i ∈ {1, 2, 3, 4}.

The initial condition is x0 = 0. Running Algorithm VI.1 with T = 0.02 [s], the H∞ norm is

γopt = 1.69 assured by the gain matrices

L∗
1 =

[

3.7286 −58.1047 5.8662 −8.1004
]

,

L∗
2 =

[

5.1835 −77.7485 7.8677 −10.8466
]

,

L∗
3 =

[

4.2276 −71.0665 7.1438 −9.8941
]

,

L∗
4 =

[

5.4428 −92.1684 9.2612 −12.8303
]

.

Figure VII.11 shows the algorithm evolution for the H∞ analysis. The graphic shows the

convergence of the matrices Xiℓ to the stationary value X∗
i through the measure of the

maximum value of ‖Xiℓ‖2 for i = {1, 2, 3, 4}. The green curve (with squared markers)

corresponds to the evolution for the optimal γ = γopt = 1.69, which takes 200 iterations

to converge. The blue curve (with rounded markers) shows the same evolution for a larger

parameter γ = 10 > γopt, which takes 41 iterations to reach the stationary gain.

Implementing a Monte Carlo simulation of 500 samples gives the H∞ norm of

1.52. Notice that the exogenous input is set as the sinusoidal signal w(t) = sin(ωt) with

frequency ω = π/3 [rad/s] determined by simple inspection, which is applied to the system

during 2 [s]. The effect of turning off the exogenous perturbation at t = 2 [s] is clearly seen in

Figure VII.12. The value of the H∞ norm obtained in both cases are not exactly the same,

which means that w(t) is not the worst exogenous perturbation. However, it can provide
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Figure VII.12 – Temporal evolution of pendulum system for the H∞ optimal control.

a good felling about the real value of the simulated performance index. As expected, the

associated H∞ cost is bound above by γopt = 1.69 in this case.

VII.3 Economics

It is interesting to notice that the theory developed in the previous chapters is

a general result in the sense that it can be applied to other contexts. This is the case,

for example, of the macroeconomic model of the U.S.A. national economy as described

by Blair & Sworder (1975) and used by Costa, Fragoso & Todorov (2013). Due to many

economic variables are subject constantly to exogenous variations, the continuous-time

model is more suitable to define this kind of systems than the discrete-time ones even

though the measured data is sampled, as pointed out by Blair & Sworder (1975). In this

sense, in the referred work, the authors developed a continuous-time Markov jump model

for economic systems and applied it to the Samuelson’s multiplier-accelerator model. After

that, Costa, Fragoso & Todorov (2013) have used it in a continuous-time MJLS. The next

example uses data borrowed from the last work. Clearly, a sampled-data control design is

suitable for that example since the decision and monetary policy on this kind of model and

data is not continuous-time changed, as mentioned also by Blair & Sworder (1975).

Example VII.3 The system is a 3-mode Markov chain, where “1" corresponds to the “nor-

mal" operation, “2" to the “boom" operation, and “3" to the “slump" operation. The system

matrices are given in Costa, Fragoso & Todorov (2013). Matrices Ai and Bi are

A1 =







0 0 0

0 −0.545 0.626

0 −1.570 1.465






, B1 =







0

−0.283

0.333






,
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A2 =







0 0 0

0 −0.106 0.087

0 −3.810 3.861






, B2 =







0

0

0.087






,

and

A3 =







1.80 −0.3925 4.52

3.14 0.100 −0.28

−19.06 −0.148 1.56






, B3 =







−0.064

0.195

−0.080






.

Notice that the subsystems 1 and 2 are not stabilizable. Moreover, subsystem 3 is open-loop

unstable. The output and input matrices Ci, Di, and Ei are

C1 = C2 = C3 =













1 0 0

0 1 0

0 0 1

0 0 0













, D1 = D2 = D3 =













0

0

0

1













,

and

E1 = E2 = E3 =







1 0 0

0 1 0

0 0 1






,

which indicates equal importance of each state in the composition of the final cost. The

initial distribution π0 and the transition rate matrix Λ are, respectively, π0 = [1/3 1/3 1/3]′

and

Λ =







−0.53 0.32 0.21

0.50 −0.88 0.38

0.40 0.13 −0.53






.

Moreover, the time basis of this system is annual according to Blair & Sworder (1975).

H2 optimal control design

The H2 optimal control design determined by applying Algorithm V.1 is such

that, for a monthly sampling interval T = tk+1 − tk = 1/(12) [year], it takes 15 iterations to

obtain the stationary value of the performance index
√

J ∗
2 = 56.51, assured by the optimal

gain matrices

L∗
1 =

[

0.6496 11.2134 −17.3529
]

,

L∗
2 =

[

−0.7714 65.0687 −70.2546
]

,

L∗
3 =

[

61.5123 −10.0325 22.2275
]

.
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Figure VII.13 – Evolution of Algorithm V.1 to compute the stationary value J ∗
2 .
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Figure VII.14 – Temporal evolution for the H2 optimal control.

Figure VII.13 shows the fast convergence of the algorithm for this system. The green curve

(with squared markers) is the convergence of the
√
J2ℓ index with the iteration ℓ. The blue

curve (with rounded markers) shows how fast this convergence occurs. For the temporal

simulation, the initial state ξ0 =
∑

l={1,2,3}[E
′
iel 0]

′ = [1 1 1 0]′ for each i = {1, 2, 3} is con-

sidered. Figure VII.14 shows the Monte Carlo simulation with 500 samples performed inside

the time interval [0, 15] [year]. The blue curve is the mean value of the index z(t)′z(t) and

the shaded area corresponds to one standard deviation. The value of the computed
√

J ∗
2

performance index in this case is 46.32. This value is smaller than the theoretical optimal

one because the simulation horizon considered is not enough for complete stabilization.

Due to the two first closed-loop unstable subsystems a large scattering around the mean

value is found until the system actually converges. In other words, this implies that the eco-

nomical system under consideration is very susceptible to variations when a white noise is

introduced.

Considering a minute-to-minute sampling period, that is T = 1/(12× 30× 24×
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Figure VII.15 – Algorithm evolution for γopt = 199.45.

60) [year], the result from Costa, Fragoso & Todorov (2013) is recovered since the optimal

cost
√

J ∗
2 = 48.50 and the optimal gain matrices

L∗
1 =

[

2.0349 14.5189 −23.5896
]

,

L∗
2 =

[

1.0192 73.0969 −78.7585
]

,

L∗
3 =

[

93.6574 −11.4896 11.6732
]

are recovered. This fact illustrates that the method developed so far reproduces the pure

MJLS as a particular case. This important aspect has been pointed out in Section V.2.

H∞ optimal control design

Using again the period of T = 1/12 [year], running Algorithm VI.1, and perform-

ing a line search in the parameter γ, the H∞ norm is 199.45. This norm is assured by the

stationary optimal gain matrices

L∗
1 =

[

0.9739 11.1716 −17.5518
]

,

L∗
2 =

[

−0.9938 65.5330 −70.8408
]

,

L∗
3 =

[

65.4855 −10.0509 23.4405
]

.

Figure VII.15 shows the convergence of Algorithm VI.1. The green curve (with squared

markers) shows the convergence of the matrices Xiℓ to the stationary value X∗
i through

the measure of maxi=1,2,3 ‖Xiℓ‖2. The blue curve (with circular markers) shows the evo-

lution of the stopping criterion maxi=1,2,3 ‖Vi(ℓ+1)‖2, which puts in evidence a fast conver-

gence rate. The algorithm takes 67 iterations to converge. In complement of reference

Costa, Fragoso & Todorov (2013), the minimum value of the H∞ norm allows to determine
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an upper bound to the parametric uncertainty, namely ‖∆‖∞ < 1/γopt ≈ 0.0050, such that

w = ∆z preserves the closed-loop system mean square stability. As commented before,

this calculation makes clear that this macroeconomic model is extremely sensitive to pa-

rameter variations.

These practical applications show that the developed methods are suitable and

useful to sampled-data control design in the context of Markov jump linear systems. The

comparison with other similar results is limited due to the lack in the current literature on

this topic. However, it has been possible to validate the proposed procedures by comparing

the results obtained here with those obtained using other methods in some particular cases.
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Conclusions

This work was motivated by networked control systems. In this case the network

was imperfect environment that took into account bandwidth limitations and transmission

losses due to packet dropout. These characteristics have been modelled by an adequate

Markov chain and sampled-data signals. The theory necessary to handle these mathemat-

ical models that generalizes the ones of classical Markov jump and sampled-data control

systems was developed. Hence, this work has determined optimal control laws in the spe-

cific context of a sampled-data control applied to Markov jump linear systems. The optimality

lies on the possibility of rewriting the original system in a very specific hybrid formulation as

well as on the possibility of deriving necessary and sufficient conditions to obtain the exact

value of some considered performance index, which can lead to the exact value of the as-

sociated norm. In this case, H2 and H∞ norms have been considered. The necessary and

sufficient conditions are based on a TPBVP composed by coupled differential Lyapunov or

Riccati equations depending on the context considered: H2 or H∞ norms, respectively.

Moreover, it has been also determined the optimal sampled-data control law for

each of the mentioned cases. In order to emphasize the feasibility of the theoretical results,

algorithms have been proposed and proved to be globally convergent. Moreover, all numer-

ical and practical examples show that the proposed method is suitable for any MJLS subject

to a state feedback sampled-data control. Additionally, the convergence of these algorithms

leads to a complex in building but fast in running method. Although the proposed theory

has been developed in a very specific context, many other outcomes can be derived from

this work. This is the case, for instance, of expanding the idea to the nonlinear case since

all TPBVP addressed here are based on the Hamilton-Jacobi-Bellman equation. Certainly,

a much deeper mathematical analysis should be performed. This opens many possibilities

to develop sampled-data control for MJLS, for deterministic systems, or even for nonlinear

systems since all cases can be enclosed by the last one. Future reserach effort will also

deal with topics related to filtering and dynamic output feedback design.

Another important point is concerned about the hybrid approach to model the

feedback system. This formulation is essential for the existence of the optimal control. Anal-

ogously, it seems to be possible to derive a complete filter, also optimal, for which most

probably the separation principle holds. Furthermore, it is important to notice that the results

from the sampled-data control applied to MJLS enclose the deterministic sampled-data op-
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timal control, as shown in the examples throughout this dissertation. This is also the case

of the pure MJLS and the mode independent control law. The last one is possible due to

the convex formulation developed in Chapters V and VI, which are expressed by LMIs and

consequently can be solved by the computational tools available to date.

Finally, some papers derived from this work are listed in the sequel. All of them

addresses the state feedback sampled-data control design problem with uniform transmis-

sion interval.

1) J. C. Geromel, and G. W. Gabriel, “Optimal H2 State Feedback Sampled-data Control

Design of Markov Jump Linear Systems”, Automatica, vol. 54, pp. 182–188, 2014.

2) G. W. Gabriel, M. Souza, e J. C. Geromel, “Controle H2 Amostrado de Sistemas

Lineares com Saltos Markovianos via Realimentação de Estados”, Anais do XX Con-

gresso Brasileiro de Automática, pp. 739–746, 2014.

3) G. W. Gabriel, M. Souza, and J. C. Geromel, “H2 State Feedback Sampled-Data

Control for Markov Jump Linear Systems”, Proceedings of the 53rd IEEE Conference

on Decision and Control, pp. 4355–4360, 2014.

4) G. W. Gabriel, J. C. Geromel, and K. M. Grigoriadis, “Optimal H∞ State Feedback

Sampled-data Control Design for Markov Jump Linear Systems”, submitted, 2015.

5) G. W. Gabriel, J. C. Geromel, and K. M. Grigoriadis, “Optimal H∞ State Feedback

Sampled-Data Control of Markov Jump Linear Systems”, 2016 European Control Con-

ference, pp. 2489–2494, 2016.

6) G. W. Gabriel, e J. C. Geromel, “Teoria Unificada de Sistemas de Controle Amostra-

do”, submitted, 2016.

7) G. W. Gabriel, and J. C. Geromel, “Unified Approach of Sampled-Data Control Sys-

tems”, submitted, 2016.
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APPENDIX A

Mathematical Analysis of the Coupled DRE

This appendix is devoted to present some mathematical analysis related to the coupled

DRE in the form of

Ṗi(t) + F ′
iPi(t) + Pi(t)Fi + γ−2Pi(t)JiJ

′
iPi(t) +

∑

j∈K

λijPj(t) +G′
iGi = 0, (A.1)

which is defined in the time interval [0, T ) with a given final condition Pi(T ) ≥ 0 for each i ∈ K. The

main reason behind this is to solve the TPBVP of Theorem IV.1 to obtain the value of H∞ norm by

means of the Algorithm IV.1. Notice that the coupled DREs in (A.1) are different (with a minus signal

in the quadratic term) from those studied in Wonham (1968) and Costa, Fragoso & Todorov (2013),

for which the existence and uniqueness of a bounded solution Pi(t) ≥ 0 is assured for all i ∈ K. On

the other hand, only results from Theorem II.4 are available for the coupled DRE (A.1), what justifies

the next analysis.

First of all, assume that γ > 0 is sufficiently large in order to assure that a unique

solution such that 0 ≤ Pi(t) ≤ cI for all i ∈ K, all t ∈ [0, T ), and some finite scalar c > 0 exists.

Indeed, due to the continuity of the solution with respect to γ > 0, this hypothesis is enough to

assure the existence of a positive semi-definite solution of (A.1) because for γ large enough the

coupled DRE becomes a coupled DLE, already solved in Chapter III.

Since equations (A.1) do not admit an explicit solution, an iterative procedure becomes

necessary to solve it. For the purpose of constructing such a procedure, define the sequence of

matrices Piℓ(t) such that

Ṗiℓ + F ′
iPiℓ + PiℓFi + γ−2Pi(ℓ−1)JiJ

′
iPiℓ + γ−2PiℓJiJ

′
iPi(ℓ−1)

−γ−2Pi(ℓ−1)JiJ
′
iPi(ℓ−1) +

∑

j∈K

λijPjℓ +G′
iGi = 0 (A.2)

subject to the final boundary condition Piℓ(T ) = Pi(T ) ≥ 0 for all i ∈ K. Notice that the fixed point

of these sequences provides the exact solution of (A.1). Moreover, if the sequence {Piℓ(t)}∞ℓ=0 is

bounded and monotonically non-decreasing from the initial iteration Pi0(t) ≡ 0 for all i ∈ K, then it

can be concluded that it converges to the fixed-point limℓ→∞ Pℓ(t) = P ∗(t), see Lemma 2.17, page

24 of reference Costa, Fragoso & Todorov (2013).
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Indeed, consider the identity

Pi(ℓ−1)JiJ
′
iPi(ℓ−1) = PiℓJiJ

′
iPiℓ − PiℓJiJ

′
i(Piℓ − Pi(ℓ−1))

− (Piℓ − Pi(ℓ−1))JiJ
′
iPiℓ + (Piℓ − Pi(ℓ−1))JiJ

′
i(Piℓ − Pi(ℓ−1)) (A.3)

and plug this result into (A.2). Then,

Ṗiℓ + F ′
iPiℓ + PiℓFi + γ−2PiℓJiJ

′
iPiℓ − γ−2(Piℓ − Pi(ℓ−1))JiJ

′
i(Piℓ − Pi(ℓ−1))

+
∑

j∈K

λijPjℓ +G′
iGi = 0 (A.4)

for all i ∈ K and all ℓ ∈ N. Subtracting the ℓ-th iteration of (A.4) from the (ℓ+ 1)-th iteration of (A.2)

and defining ∆i(ℓ+1)(t) = Pi(ℓ+1)(t)− Piℓ(t) and

Miℓ(t) = Fi +
1

2
λiiI + γ−2JiJ

′
iPiℓ(t) (A.5)

for each i ∈ K, each (ℓ) ∈ N, and all t ∈ [0, T ) yields

∆̇i(ℓ+1) +M ′
iℓ∆i(ℓ+1) +∆i(ℓ+1)Miℓ +

∑

j 6=i∈K

λij∆j(ℓ+1) + γ−2∆iℓJiJ
′
i∆iℓ = 0. (A.6)

Equation (A.6) is a coupled DLE valid for all i ∈ K, all ℓ ∈ N, and all t ∈ [0, T ) and it is subject

to final boundary conditions ∆i(ℓ+1)(T ) = Pi(ℓ+1)(T ) − Piℓ(T ) = 0 for all i ∈ K and ℓ ∈ N. Its

solution is such that ∆i(ℓ+1)(t) ≥ 0 for all i ∈ K, all t ∈ [0, T ), and each ℓ ∈ N due to Theorem

II.4. This implies that Pi(ℓ+1)(t) ≥ Piℓ(t) ≥ 0 for all i ∈ K, all ℓ ∈ N, and all t ∈ [0, T ). Moreover,

adopting ∆∗
i (t) = P ∗

i (t)− Piℓ(t) and the same algebraic manipulations as before, it can be verified

that P ∗
i (t) ≥ Piℓ(t) ≥ 0 for all i ∈ K, all t ∈ [0, T ), and all ℓ ∈ N. This indicates that this matrix

sequence converges to the positive semi-definite solution of (A.1), if one exists.

Now, another situation of interest is revisited. Suppose that Pi(ℓ+1)(T ) ≥ Piℓ(T ) ≥ 0

holds for two subsequent iterations. Evaluating the solution of (A.6) at the beginning of the time

interval [0, T ), yields

∆i(ℓ+1)(0) = Φiℓ(T )
′∆i(ℓ+1)(T )Φiℓ(T ) + Uiℓ(T ), (A.7)

where Uiℓ(T ) is a positive semi-definite functional defined by

Ui(ℓ+1)(T ) =

∫ T

0
Φiℓ(τ)

′
(

∑

j 6=i∈K

λij∆j(ℓ+1)(τ) + γ−2∆iℓ(τ)JiJ
′
i∆iℓ(τ)

)

Φiℓ(τ)dτ (A.8)

for all i ∈ K, all ℓ ∈ N, and all t ∈ [0, T ). Matrices Φiℓ(t) are the fundamental matrices associated to

Miℓ(t) evaluated at the end of the time interval. Mathematically, Φiℓ(T ) are the solutions of Φ̇iℓ(t) =

Miℓ(t)Φiℓ(t) subject to Φiℓ(0) = I for all i ∈ K and all ℓ ∈ N evaluated at the instant of time

t = T > 0. Taking into account that ∆i(ℓ+1)(t) ≥ 0 the function Ui(ℓ+1)(T ) is positive semi-definite.

As a consequence,

Pi(ℓ+1)(0)− Piℓ(0) ≥ Φiℓ(T )
′
(

Pi(ℓ+1)(T )− Piℓ(T )
)

Φiℓ(T ) (A.9)

for all i ∈ K and all ℓ ∈ N. This inequality is essential for the study of HMJLS in the H∞ context.

Remark A.1 Since the last term of equation (A.6) is nonnegative definite, it can be verified that

∆i(t) = 0 defines a minimal solution in (A.9). This means that the stationary solution, if one exists,

leads to the equality in (A.9). ✷
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