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Resumo

Problemas de trespasse tém sido investigados h& tempos em Geometria Computacional
pois aplicacoes para eles sao encontradas em uma grande variedade de dreas. Em geral,
a entrada é formada por dois conjuntos de objetos geométricos: o conjunto, finito ou
infinito, £ de trespassadores e o conjunto . Uma solucao viavel ¢ um subconjunto O’
de O satisfazendo uma certa propriedade estrutural 7. Dado O, o niimero de trespasse
de ¢ € L é a quantidade de elementos de O’ intersectados por £. O ntimero de trespasse
de O relativo a £ é o numero de trespasse maximo dentre qualquer ¢ € £. O objetivo
do problema é achar um subconjunto de O satisfazendo a propriedade m com o menor
numero de trespasse possivel relativo a £. FEsta tese traz contribuicoes tanto teoéricas
quanto experimentais para alguns problemas de trespasse.

Em [I7, 18|, Fekete, Liibbecke e Meijer resolveram o problema aberto a respeito da
complexidade de encontrar uma arvore geradora com nimero de trespasse minimo. Eles
também mostraram que achar um emparelhamento perfeito com nimero de trespasse
minimo é NP-dificil. Modelos de programacao inteira para os problemas foram apresen-
tados. Porém, muito poucos experimentos computacionais foram realizados.

Nesta tese, estudamos modelos de programacao inteira para encontrar emparelhamen-
tos perfeitos, drvores geradoras e triangulacao com ntimero de trespasse minimo. Com
base nestas formulagoes, apresentamos algoritmos exatos e heuristicas Lagrangianas para
resolvé-los. Estes algoritmos mostraram que as heuristicas Lagrangianas proveem boas
solucoes, frequentemente 6timas, em um breve tempo computacional.

De todos os dez problemas e variantes discutidos em [I8], para apenas trés deles a
complexidade nao foi provada: Triangulacao com Numero de Trespasse Minimo, com
trespassadores paralelos aos eixos e gerais, e Triangulacao com Numero de Cruzamento
Minimo, caso geral. Nesta tese, provamos que estes trés problemas sao N P-dificeis.

Outro problema de trespasse minimo é apresentado em [2] e também estudado em [16].
Este problema pede por uma particao retangular com niimero de trespasse minimo em
um poligono retilinear. Embora a complexidade do problema ainda seja desconhecida, em
[2] um algoritmo de 3-aproximagao é apresentado. Em [I6] um modelo de programagao
inteira é dado e uma 2-aproximacao reivindicada.

Nesta tese, fortalecemos a formulagao introduzida em [I6]. Também propomos um
modelo alternativo e comparamos os dois tedrica e computacionalmente. Além disso,
mostramos que o algoritmo proposto em [16] ndo prové uma 2-aproximacao para o pro-
blema.



Abstract

Stabbing problems have long been investigated in Computational Geometry since applica-
tions for them are found in a great variety of areas. In general, the input is formed by two
sets of geometric objects: the finite or infinite set £ of stabbers and a set O. A feasible
solution for the problem is a subset O’ of O satisfying a given structural property 7. Given
(@', the stabbing number of ¢ € L is the number of elements of O’ that are intersected by
. The stabbing number of O’ relative to £ is the maximum stabbing number of all £ € L.
The goal of the problem is to find a subset of O satisfying property 7 and leading to the
smallest possible stabbing number relative to £. This thesis brings both theoretical and
experimental contributions to the investigation of some stabbing problems.

The works of Fekete, Liibbecke and Meijer [I7, 18] solved the open problem relative
to the complexity of finding a spanning tree with minimum stabbing number. They also
showed that finding a perfect matching with minimum stabbing number is N'P-hard.
Integer programming formulations for the problems were also presented. However, very
few computational experiments were performed.

In this thesis, we study integer programming formulations for the problems of finding
perfect matchings, spanning trees and triangulations with minimum stabbing number.
Based on these formulations we present exact algorithms and Lagrangian heuristics to
solve the problems. These algorithms show that the Lagrangian heuristics yield solutions
with good quality, often optimal, in short computation time.

Of all the ten problems and variants discussed in [I8], for only three of them the com-
plexity was not proved: The Minimum Stabbing Triangulation, axis-parallel and general
stabbers, and The Minimum Crossing Triangulation, general case. In this thesis, we prove
that the three problems are A/P-hard.

Another problem of finding a structure with minimum stabbing number is presented in
[2] and also studied in [I6]. This problem asks for a rectangular partition with minimum
stabbing number in a rectilinear polygon. Although the complexity of the problem is still
unkown, in [2] a 3-approximation algorithm is presented. In [16] an integer programming
formulation is given and a 2-approximation is claimed.

In this thesis, we strengthen the formulation introduced in [16]. We also propose
an alternative model and compare the formulations both theoretically and computa-
tionally. Furthermore, we show that the algorithm proposed in [I6] can not provide a
2-approximation for the problem.
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Chapter 1

Introduction

A problem of finding a structure with minimum stabbing number, in general, has its input
formed by two sets of geometrical objects: the finite or infinite set £ of stabbers and the
set O. A feasible solution for the problem is a subset O of O satisfying a given structural
property 7. Given (0, the stabbing number of ¢ € L, as defined in [I7, 18], is the total of
elements of O that are intersected by ¢. The stabbing number of O’ relative to £ is the
maximum stabbing number of all £ € L. The goal of the problem is to find a subset of O
satisfying property m and having the smallest possible stabbing number.

Related problems are those of finding structures with minimum crossing number. The
input of this kind of problem is the same as that for stabbing problems, i.e., a set £ and
a set 0. A feasible solution for the problem is also given by a subset O’ of O satisfying a
given structural property w. According to the definition in [I7, [I8], given O, the crossing
number of ¢ € L is the number of connected components in the intersection of ¢ and O'.
And as for the stabbing number, the crossing number of O’ relative to £ is the maximum
crossing number of all £ € L, while the goal of the problem is to find a subset of O
satisfying property 7m and having the smallest possible crossing number.

Consider for instance the set of points P in Figure [[LT] (a). Let the set of stabbers £
be the set of dashed lines in that figure and let O be the set of all line segments having
points in P as its extremities. Let the property 7 be: being a single connected component.
Then, let O be the set of line segments having points of P as its extremities shown in
Figure [T (b). Since O’ satisfies 7 it is a valid solution for the problem with stabbing
number 7 (because line s stabs this number of segments in O" and no other line in £
stabs more segments than s). This solution is said to be optimal if no other solution has
a stabbing number smaller than 7.

In 2001, Mitchell and O’Rourke published the “Computational Geometry Column 42”
[30] , containing a compendium of thirty previously published open problems in compu-
tational geometry. From this list, problem number 20 stated: “What is the complexity of
computing a spanning tree of a planar point set having minimum stabbing number? The
stabbing number of a tree T is the maximum number of edges of T intersected by a line.
Any set of n points in the plane has a spanning tree of stabbing number O(y/n), and this
bound is tight in the worst cas. However, nothing is known about the complexity of

li.e., there are instances for which the stabbing number of any spanning tree is at least O(y/n)

13
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Figure 1.1: Instance of a problem of finding a structure with minimum stabbing number.

computing a spanning tree (or triangulation) of minimum stabbing number, exactly or
approximately.” [30]. This list then gave birth to the Open Problems Project [14], a list
of problems without known solution by the time they were incorporated to the list.

Spanning Trees with low stabbing number can be used to construct data structures
that have applications in computational geometry, computer graphics and virtual reality
[43, B]. The same is true for triangulations with low stabbing number [26], 25]. Usually,
for these applications, guaranteeing a stabbing number O(y/n) or O(logn) is enough and
we are unaware of applications that require an optimal stabbing number. Notice, however
that although stabbing problems have been known for a long time, the complexity of
finding a spanning tree with minimum stabbing number (MSST) remained open
until recently and it was open until now for the problem of finding a triangulation with
minimum stabbing number (MSTR). Moreover, the cost measurement of a solution
for the problem, i.e., its objective function, is not so usual in combinatorics, which makes
the problem interesting by itself. Therefore, it should be noted that our primary interest
in the problem is of a theoretical nature.

In [17, 18|, Fekete, Liibbecke and Meijer studied problems of finding minimum stabbing
number structures such as perfect matchings (MSPM), spanning trees (MSST) and
triangulations (MSTR). They also considered the problems of finding the same structures
with minimum crossing number (respectively, MCPM, MCSTand MCTR). In those papers
they proved that finding a perfect matching or spanning tree with minimum stabbing or
crossing number is N'P-hard in the general and axis-parallel cases. They also proved that
finding a triangulation with minimum crossing number is A/P-hard in the axis-parallel
case. The authors also presented integer programming (I1P) formulations for the problems
and a heuristic based on an iterated rounding procedure which was conjectured to define
an approximation algorithm. Some computational experiments for the minimum stabbing
perfect matching were also reported. While several contributions to minimum stabbing
problems were given in [I8], some problems were still left open, among them are the
complexity of MSTR in both axis-parallel and general cases, and the complexity of MCTR
in the general case.

Durocher and Mehrabi studied the problem of finding a rectangular partition of a
rectilinear polygon with minimum stabbing number (RPST) [16]. The problem of finding
a rectilinear decomposition with low stabbing number was introduced in [12] and the
corresponding minimization problem was studied in [2| where a 3-approximation algorithm
was presented for the problem. The paper by Durocher and Mehrabi caught our attention
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for two reasons: first it was about finding a structure with minimum stabbing number
and second, it used integer programming to find an approximation algorithm for the
conforming case of the problem which they proved to be NP-hard (no complexity result
was known before). In [16] the 1P model was also extended for the general case, however
no polyhedral study or computational experiments were performed.

In [13] and [8] the problem of finding a rectangular partition with minimum length
(RGP) was studied. Two 1P formulations for the problem were described and some algo-
rithms were developed for it. As it turns out, the ideas used in the models studied for the
RGP can also be applied to model the RPST. Moreover we can use the results obtained in
those papers for the RGP to achieve similar results for RPST.

1.1 Contributions

The main contributions of this thesis are:

e We present the first integer programming formulations for MSTR and new formula-
tions for MSST, based on the models introduced in [18].

e Computational results for MSTR are reported for the first time.

e We propose and experiment with Lagrangian heuristics for MSPM, MSST and MSTR.
e MSTR is shown to be AN'P-hard both in the axis-parallel and general cases.

e We prove that MCTR is A/P-hard in the general case.

e We present computational results for an iterated rounding algorithm for MSTR.

e We perform a polyhedral study for the existing integer programming model of RPST,
propose a new one and compare the strengths of these alternative formulations.

e Computational results for RPST are reported for the first time.

e We present a counterexample for a claimed 2-approximation algorithm for RPST
proposed earlier in the literature.

1.2 Structure of the Thesis

This document is a compilation of the papers published or submitted to publication
by the author with other researchers as a result of the investigation carried out during
the doctoral program. Chapters B, @ and [l correspond to those papers, [37], [38], [35],
respectively. Following the rules of the graduate program of the University of Campinas,
the papers are reproduced here without modification, except for the printing format.
Chapter [6 corresponds to a technical note made public through arXiv [I]. The structure
of this chapter is the same of the ones corresponding to published or submitted articles.

Each one of the chapters [4] to [l are divided into three parts. The first part stands for
a brief description of the paper informing, for instance, whether the paper is published
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or submitted. The second part is the text of the paper itself. Finally, the last part
corresponds to the references of the original paper.

The next chapter summarizes some of the basic theoretical concepts and techniques
necessary to understand the rest of the document.

Chapter Bl contains 1P models for the stabbing problems described in [17]. These
models are then used to develop exact Branch-and-Bound (B&B) and Branch-and-Cut
(B&C) algorithms for the problems. Next, Lagrangian Relaxation (LR) of the models are
utilized to produce heuristic algorithms which are then compared to the exact algorithms.

In Chapter [, the complexity of the Minimum Stabbing Triangulation Problem and
Minimum Crossing Triangulation Problem are studied. The axis-parallel case of MCTR
was shown to be N'P-hard in [I7], however, the complexity of the general case was left
open. The complexity of MSTR was still unknown both in the general and axis-parallel
cases. In this chapter we prove that these three problems are A/P-hard.

The problem of finding rectangular partitions of rectilinear polygons with minimum
stabbing number is the subject of Chapter Bl In this chapter, we present 1P models for
the RPST and compare their strengths. We also show a relationship between RPST and
RGP, this relationship is used to prove properties about the polyhedron defined by one of
the 1P models for RPST. Computational experiments are performed to compare the B&B
algorithms derived from the different formulations.

Chapter[@is dedicated to presenting a counterexample for the approximation algorithm
proposed in [16] for the RPST. We analyse the proposed 1P model and algorithm and show
that it cannot lead to an approximation as claimed.

Finally, Chapter [ presents some conclusions regarding the entire work and discusses
possible directions for future work.



Chapter 2

Basic Concepts

The purpose of this chapter is to introduce basic concepts that will be necessary for the
comprehension of the rest of this thesis.

All the problems treated in this text are combinatorial problems in graph theory and
computational geometry. We approach these problems using integer programming and
polyhedral combinatorics techniques. Moreover, we analyze the complexity of some of
these problems. In Section 211 we present some definitions from graph theory and com-
putational geometry. In Section elements of computational complexity are introduced
and, finally, Section 2.3 shows some important concepts from integer programming and
polyhedral combinatorics. Notice that it is not our intention to write an exhaustive text
on these subjects and very thorough texts can be found at [5] [7, 19, [31], [32], 40}, (41} [44].

2.1 Graphs and Computational Geometry

Graphs are very versatile mathematical structures for modelling. Formally speaking, a
graph G is composed by a set of vertices V' (or V(G)) and a set of edges E (or E(G)),
where £ C V x V. We use the notation G = (V| F) to indicate the components of a graph
G.

If e = (u,v) is in E, we say that the vertices u and v are adjacent or neighbours and
that u and v are the extremes of e. The degree of a vertex v is the number of vertices
that are adjacent to v. The graphs used in this work are simple graphs, i.e., there are
no edges of the form (v,v) and there is at most one edge for each pair of vertices. In this
text, we are also dealing with undirected graphs, that means (v,u) = (u,v) for every
wand v in V.

A graph G = (V, E) is said to be weighted if there is a function w : E — R associating
a real number (weight) to each edge of G.

A subgraph H of G, denoted by H C G, is a graph where V(H) C V(G), E(H) C
E(G) and, since H is also a graph, for every edge (u,v) € E(H), v and v are in V(H).
Whenever (u,v) € E(G) for all u # v € V(G), we say the graph is complete. A complete
subgraph of a graph is called a clique.

Given a graph G, a sequence (vg, vy, ...,v;) where v, vy,...,v, € V(G) and for i =
0,....,k—1, v; and v;; are adjacent and vy # vy, is called a path. If on the other hand

17
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vg = Uk, then this sequence is called a cycle. If a graph has at least one cycle we say it
is cyclic, otherwise it is acyclic.

A graph G is said to be connected if for every pair of distinct vertices u and v in
V(G), there is a path from u to v. If a graph is connected and acyclic, it is a tree.

Let G be a graph and 7' C G. If T is a tree and V(T') = V(G), then T is a spanning
tree of G.

Given a graph G = (V, E) and a subset M of E where no two edges in M share a
vertex. The set M is called a matching in G. If a vertex v is an extremity of some edge
in M we say v is matched. A matching where all the vertices in V(G) are matched is
called a perfect matching. Obviously, a necessary condition for a perfect matching to
exist is that |V (G)| be even.

A geometric graph G = (V, F) is a graph where each vertex in V' is associated to
a point in a coordinate system. We say a geometric graph has a straight-line drawing
if its edges are represented by straight-line segments connecting the points associated
to the extremities of the edge. The geometric graphs discussed in Chapters Bl and [
are geometric graphs with straight-line drawings. The euclidean distance between the
extremities of an edge is commonly used as a weight function for geometric graphs with
straight-line drawings.

A polygon is a simple closed curve composed by a finite collection of line segments.
A polygon with n vertices (or n segments) can be represented as a sequence of points
in the plane where for ¢ = 0,...,n — 1 the i-th and ¢ + 1-st points in the sequence are
the extremities of one of the segments defining the polygon (addition is mod n). The
sequence of segments along the closed curve defining a polygon P composes the border
or boundary of P, denoted by 5(P).

The interior of a polygon can be partitioned into smaller polygons. A very common
way of partitioning is a triangulation. As the name suggests, a triangulation is the
partition of a polygon into triangles. A triangulation of a polygon P can be achieved
by adding non-intersecting diagonal segments to the interior of P. A diagonal is a line
segment connecting two vertices of P and contained in its interior. Hence, another way
of defining a triangulation is as a maximal non-intersecting set of diagonals.

Notice that usually a triangulation is not unique. However, the number of diagonals
and the number of triangles in any triangulation for a given polygon is always the same.
A triangulation of a polygon with n vertices always has n—2 triangles and n—3 diagonals.

Triangulation can also be applied to a set of points in the plane. Given a set P of
points in the plane, a triangulation of P is a maximal planar geometric graph with vertex
set P, i.e., a geometric graph where no edge can be added connecting points in P without
destroying its planarity. As in the triangulation of a polygon, a triangulation of a point
set P also has a constant number of triangles and internal (not in the boundary) edges.
If |P| = n and the boundary of the smallest polygon containing P has k points in P, then
a triangulation of P has 2n — 2 — k triangles and 3n — 3 — k internal edges.

A particular type of polygons are the rectilinear polygons, which are simply poly-
gons where all the segments defining it are either horizontal or vertical. A common way

'Polygons defined like this are also called simple polygons. In this document, all the polygons are
considered to be simple.
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of partitioning a rectilinear polygon is by dividing its interior into rectangles. Unlike
triangulations though, a rectangular partition does not always have the same number of
rectangles.

2.2 Complexity Theory

In 1936, Alan Turing defined the Turing Machine, a mathematical model for computation.
Simply put, a Turing Machine consists of an infinite tape for input and output, a control
unit and a read/write head. The machine is initialized with its head on the leftmost
symbol of the input which is written in the tape while the remainder of the tape is empty.
The control unit contains a set of internal states, three among them are special states
called the initial, acceptance and rejection states. Entering either of the latter two states
stops the computation immediately. A configuration of a Turing machine is composed
by its current state, position of the head and content of the tape. Depending on its
configuration, a machine can write something to the current position on the tape, make
a head movement to the left or to the right and change its internal state. We call these
three actions, a step in the computation. If the machine stops in the acceptance state we
say the input is accepted. If, on the other hand, the machine stops in the rejection state,
the input is rejected.

Although extremely simple, the Turing Machine model is very powerful and we still
accept the Church-Turing thesis that states that any algorithmically solvable problem
can be modelled using a Turing machine. In other words, this thesis says that Turing
Machines give a formal definition for what is an algorithm. Several other computational
models were proposed over the years, but according to Church-Turing thesis, the most
powerful of these models must be computationally equivalent to a Turing Machine. Com-
putational equivalence means that the set of problems that can be solved by the models
are the same.

One of these models is the Non-deterministic Turing Machine. This model is
almost identical to regular Turing Machines, the only difference is that in a deterministic
(regular) model, for each configuration there is exactly one possible step the machine
can take. Meanwhile, in a non-deterministic model, several steps can be taken for each
configuration and the machine executes all of them simultaneously. This process can
be seem as if at each configuration where more than one step is possible, the machine
creates copies of itself with the new configurations and continues executing all the copies
in parallel.

The time complexity of a Turing Machine T is a function f : N — N where f(n)
is the maximum number of steps executed by T with an input of length n. Let ¢ : N — R*
be a function, then Time(t(n)) is the time complexity class of all the problems that
can be solved by a Turing Machine with time complexity O(t(n)).

Similarly, we can define the time complexity of a Non-deterministic Turing
Machine NT is a function f : N — N where f(n) is the maximum number of steps
executed by N'T in any of its possible computation paths with an input of length n. Let
t : N = R" be a function, then NTime(t(n)) is the time complexity class of all the
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problems that can be solved by a Non-deterministic Turing Machine with time complexity
O(t(n)).

Now, we can define the class P= J, oy Time(n*), i.e., P is the class of all the problems
that can be solved by a polynomial time complexity Turing Machine. Likewise, N'P=
Uren NTime(nF), that is, NP is the class of all the problems that can be solved by a
polynomial time complexity Non-deterministic Turing Machine. As said before, Turing
Machines are a formal definition for algorithms, hence we can restate the definition above
as: P is the class of problems having a polynomial time algorithm and NP is the
class of problems that have a polynomial time non-deterministic algorithm.

Let A and B be two problems having, respectively, input (output) sets /4 and Ip
(O4 and Opg). Hence, an algorithm M, for A takes an instance a € I4 and produces
Ma(a) € O4. Likewise, an algorithm Mp for B takes an instance b € Ig and outputs
Mpg(b) € Op. If there is an algorithm R having 14 as input set and Iz as output set, where
Ma(x) = Mp(R(x)) for any © € I4, then we say R is a reduction (more precisely, a
mapping reduction) from A to B. Moreover, if the time complexity of R is polynomial, we
say that R is a polynomial time reduction from A to B and that A is polynomially
reducible to B.

Reductions can be used to “transfer” properties from one problem to another. For
instance, suppose A is a problem that has no polynomial time algorithm then, if there is a
polynomial time reduction from A to B, then B cannot have a polynomial time algorithm
either, otherwise we get a contradiction.

We say that a problem A is N"P-hard if every problem in NP is polynomially reducible
to A. And a problem A is N'P-complete if A is N'P-hard and A is in N'P. Originally,
the classes NP and N'P-complete were defined for decision problems (problems with
yes or no outputs) however, it is common to see in many texts optimization problems
(problems where the solution is maximum or minimum) been said to be N'P-complete.
The idea behind the use of these terms is that an optimization problem is said to be N/P-
complete if its decision version is AN/P-complete. The decision version of an optimization
problem is simply a version of the problem where instead of looking to maximize (mini-
mize) some function, one is interested in deciding whether its value can be, for instance,
greater or equal (less or equal) to some constant value.

The first problem proven to be NP-complete was the satisfiability problem (SAT).
Its N'P-completeness was proven by Cook in 1971 [9]. Cook’s proof shows that the
computation of any Non-deterministic Turing Machine can be translated to a logical
formula in conjunctive normal form in polynomial time, hence, any problem in NP is
polynomially reducible to SAT. Besides, SAT is in N"P. The existence of an AN'P-complete
problem was independently discovered by Levin in 1973 [29].

Knowing an N'P-hard problem, made it easier to prove that other problems were N P-
hard. We simply have to show that an AP-hard problem is polynomially reducible to
other problems. Since then, several problems have been shown to be NP-hard. One of
these problems is 3-SAT, proven N P-complete in 1972 by Karp [28].

The importance of the A"P-hard and NP-complete classes is that until this day, no
deterministic polynomial time algorithm exists for solving the problems in these classes.
However, finding such an algorithm for a single problem is enough to show that all the
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problems in NP are also in P, i.e., P = N'P. Likewise, if it is shown that a single problem
in N'P-complete demands exponential time algorithms (every algorithm from now on is
to be considered deterministic unless stated otherwise), then we have P # NP.

3-SAT is very commonly used to prove the N/P-hardness of other problems. An idea for
such a proof is to transform each component of the input of 3-SAT, i.e., variables, literals
and clauses, into structures of the target problem. These structures are called gadgets.
Next, we have to connect these gadgets in order to simulate the relationship between
variables, literals and clauses. Although it may seem strange to transform the input of a
problem in logic to a problem in graphs or computational geometry for example, it has
been shown to be an easier path for several problems. It has been done, for instance, for
the clique problem and for MSST.

2.3 Integer Programming and Polyhedral
Combinatorics

The work of Dantzig, published in 1947 is often considered a mark on the beginning of
linear programming as a general tool for solving optimization problems [6] [10], although
other works have used linear programming before. Linear programming have shown its
usefulness for countless combinatorial optimization problems.

To model (or formulate) an optimization problem as a linear programming prob-
lem we must define three things: the set of variables, the set of linear inequalities de-
scribing the restrictions of the problem and a linear function that establishes the value of
a solution, called the objective function. Therefore, usually a linear programming model
have the following form:

z :mianja:j (2.1)
j=1
s.t. Zaijxj < bz‘, 1= 1, -~ (22)
j=1

or in matrix notation: z = min{cz : Az < b,z € R’} where A is an m by n matrix, ¢
an n-dimensional row vector, b an m-dimensional column vector and z an n-dimensional
column vector.

Even though simplex was the first general method presented to solve linear program-
ming problems and it is very useful in practice, until this day, every pivoting rule proposed
for this method has a pathological case resulting in exponential time complexity. The
first known polynomial time method presented for solving the linear programming prob-
lem was the ellipsoid method in 1979. This method was originally introduced by Yudin
and Nemirovski (1976) and Shor (1977) in the context of non-linear programming. But
Khachiyan proved that it could be used to solve linear programs in polynomial time. De-
spite its polynomial time complexity, the performance of the ellipsoid method in practice
was worse than the simplex method. Only in 1984 a competitive method was presented
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by Karmarkar, the interior-point method [42].

To understand how an optimal solution can be found, we must first understand the
structure of a set of valid solutions defined by a linear program and its properties. For
that we need some definitions.

A set S is convex if for each pair of points x; and x5 € S every convex combination,
le,r=ar + (1 —a)ry,V0<a<l,of x; and z, is also in S.

A set of points satisfying a finite number of linear inequalities is called a polyhedron.
Hence, it is easy to see that a linear programming model defines a polyhedron. A polyhe-
dron is a convex set. We call a point x in a polyhedron P a vertex if it cannot be defined
as a convex combination of other points in P\ {z}. The convex hull of a set of points
P (conv(P)) is the smallest convex set containing all points in P.

Now, concerning the values of solutions of a linear program, there is a theorem stat-
ing: if the optimal value of the objective function of a linear program is finite and the
corresponding polyhedron is non-empty, then there is always a vertex that is an optimal
solution for this linear program. If more than one vertex is an optimal solution, then
every convex combination of these vertices is also optimal. This means that we only need
to look at the vertices of the polyhedron for optimal solutions.

If we add integrality constraints to a linear programming model we obtain what is
called a linear (mixed) integer programming model. Notice that although linear pro-
gramming problems can be solved in polynomial time, a restricted version of the integer
programming problem have already been proven to be N'P-hard by Karp in 1972 [28].

Notice that the set of feasible solutions for an integer programming problem can be
defined by infinitely many different formulations as shown in Figure 2.1l Therefore, a
natural question that arises is: how can we determine if a formulation is better than
another? To answer this question, let us analyse the following situation. Let S be the set
of valid solutions for an integer programming problem [. If a formulation for I defines a
polyhedron P = conv(S5), then every vertex of P is a point in S. Then, it is possible to
prove that we can abandon the integrality constraints and solve the problem as a linear
programming problem and the solution obtained is a valid optimal solution for I.

—O O & O O O— —O O O O—

Figure 2.1: Different formulations for the same set of feasible solutions.

Therefore, the idea is to obtain a formulation that defines a polyhedron as close as
possible to conv(S). It is not always possible to obtain a formulation describing the convex
hull of the solutions set, though. Then, in order to understand how good is a formulation
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we must perform a polyhedral study. The field interested in the study of the inequalities
defining polyhedra is called polyhedral combinatorics. This area began with the work of
Edmonds for the perfect matching polyhedron in 1965 [39].

To get a good formulation we need strong valid inequalities. An inequality is valid
if every point in a solution set S satisfies the inequality. Every inequality defines a face
of a polyhedron and the strength of an inequality depends on the dimension of the
face characterized by it. Given a polyhedron P C R™ and an inequality mx < my valid
for P (where 7 € R™ and 7y € R) the inequality is said to define a face ' = PN {z €
R" : e =mo}. If FF # () and F # P, then F is a proper face of P. Notice that from the
definition of a polyhedron, F' is also a polyhedron. In order to state what the dimension
of a face (or a polyhedron) is, the definition of an affinely independent set is necessary.

A set of points 1, ..., z, is affinely independent if the only solution to > ", oz; =0,
S a=0withy eRisa; =ay =... =, =0.

A polyhedron P C R” has dimension (dim(P)) k if there are k + 1 affinely inde-
pendent points in P. A polyhedron is said to be full-dimensional if its dimension is the
same as the one of the space containing it so, in this case, if dim(P) = n we say P is
full-dimensional. Since a face F' of P is also a polyhedron, it is clear that dim(F) is
the number of affinely independent vectors in F'. If I is a proper face of P, it is easy to
see that the greatest possible value for dim(F') is dim(P) — 1. If a face have dimension
dim(P) — 1, it is called a facet.

It is noteworthy that the number of inequalities necessary to describe the convex hull
of the set of solutions for an 1P may be exponential. Hence, in these cases, it is impossible
to use a formulation completely describing the convex hull of the problem in an algorithm.
In this situation if we abandon the integrality constraints and use a linear programming
algorithm the solution may not be an integral solution.

The formulation obtained from an integer program by abandoning its integrality con-
straints is called a linear programming relaxation. Given two problems (RP)z% =
min{f(x) : x € T CR"} and (IP)z = min{c(x) : x € X C R"}, we say that (RP) is a
relaxation of (IP) if X C T and f(x) < ¢(z)Vx € X, then, it is easy to see that 2% < 2.
This means that a linear programming relaxation provides a lower (dual) bound@ for
the original 1P problem.

Fortunately, we do not need the description of the entire convex hull to find an optimal
solution, we only need the inequalities that are active in an optimal solution, see Figure2.2]
Therefore, we can start with a weaker formulation and include inequalities as they are
needed. Algorithms that use this idea are called cutting plane algorithms (cpPA). Such
an algorithm works as follows: given an 1P problem P, at each iteration a linear relaxation
of P is solved. If the solution is integral, it must be optimal and the algorithm stops.
Otherwise, a inequality 7z < 7y valid for P and violated by the solution (such inequality
is called a cut) is added to the problem and the process is repeated. At each iteration
the value of the linear relaxation obtained increases (for a minimization problem) and
eventually it becomes integral and hence, optimal. Figure 2.3 shows a representation of
an iteration of a CPA where an inequality is added to cut off a fractional solution.

2for a maximization problem the dual bound provided by the linear programming relaxation would
be an upper bound.
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The problem of finding a valid inequality that cuts off a fractional solution is called the
separation problem. An algorithm to solve this problem is called a separation routine,
i.e., a separation routine looks for valid inequalities that are violated by the current
solution. Grotschel, Lovasz and Schrijver showed the complexity equivalence between
separation and optimization [22].

—O O O O O O—

Figure 2.2: A formulation with inequalities that are active in the optimal solution.

—O O & O O O—

Figure 2.3: Formulation with a fractional optimal solution and a cut (represented by the
dashed line).

The first cutting plane algorithm was introduced by Gomory in 1958 [39]. The cuts
described by Gomory are called Gomory’s cuts and although they guarantee to find an
optimal solution in finite time, the original algorithm was very inefficient in practice.

Another commonly used technique to solve IP problems is Branch-and-Bound (B&B).
The basic idea behind a B&B algorithm is to decompose the problem in smaller and eas-
ier to solve parts and afterwards, use this information to solve the original problem. For
instance, let z = min{cz : € S}, we would like to partition S in § = S; U ... U Sk and
we have 2% = min{cz : v € S} for k =1,..., K and z = min{z* : k = 1,..., K}. Notice
that the partition can be constructed in an iterative fashion first dividing the set in a
small number of subsets and then dividing these subsets and so on. Figure 2.4] depicts a
representation of a partition of the set of feasible solutions.

A B&B algorithm can usually be represented by an enumeration tree. The partition
in Figure is obtained by fixing binary variables to its possible values. It is clear from
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Figure 2.4: Partition of the set of feasible solutions in two sets. The first set corresponds
to the solutions satisfying ;1 < 2 and the second z; > 3.

that image that a complete enumeration would take a number of steps that is exponential
in the number of variables.

Figure 2.5: Enumeration tree of a B&B where the decomposition is done by fixing variables
at different values. Figure extracted from [44]

Since a complete enumeration is impossible in practice, we try to make the enumer-
ation implicitly. This is done by pruning the enumeration tree using bound informa-
tion. To see why pruning is possible we just need to know the following property: let
S = S1U...USk be a decomposition of S, let 2¥ = min{cx : v € Sy} for k= 1,..., K, let z*
be an upper bound on 2* and 2* be a lower bound on 2*. Then z = min{z* : k=1,..., K}
is a lower bound on z and z = min{z* : k = 1,..., K} is an upper bound on z. In other
words, considering a minimization problem, the minimum value among the lower bounds
of all the nodes is a lower bound for the entire tree and the minimum value among the
upper bounds in every node is an upper bound for the entire tree. Understanding this
property, we can see that there are three types of possible pruning.

The first type of pruning is by optimality. This happens when the lower and upper
bounds are the same in a given node. It means that the solution obtained is optimal and,
therefore there is no reason to keep looking for a better solution in that sub-tree. An
example of pruning by optimization is shown in Figure 2.6l Another type of pruning is
by bound. This pruning happens when the global upper bound is smaller than the local
lower bound of a given node. That means that no better bound can be produced by the
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corresponding sub-tree hence, it can be cut from the enumeration. Figure 2.7 shows this
situation. The last type of pruning is by infeasibility, which happens when there is no
feasible solution in a given node, making the entire sub-tree unfruitful.

27
e 20 25 25
s s (s
20 15 15

Figure 2.6: Pruning of an enumeration tree by optimality. Figure extracted from [44]
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Figure 2.7: Pruning of an enumeration tree by bound. Figure extracted from [44]

l

l

When a B&B algorithm is combined with a CPA we obtain a Branch-and-Cut (B&C)
algorithm. In this kind of algorithm, at each node of the enumeration tree, a separation
routine is executed to find violated valid inequalities. Therefore, the idea of a B&C
algorithm is to use the strengths (and weaknesses) of B&B and CPA at the same time.

Although linear relaxation is very commonly used, it is not the only kind of relaxation
that exists. Another kind of relaxation is the Lagrangian Relaxation. Given an 1P

(IP):

(IP) z=minczx
Ax < b,
Dx <d,
r €L,

suppose Ax < b is a set of “nice” restrictions while Dz < d is a set of “hard” restrictions.
The terms “nice” and “hard” here mean that if we remove the inequalities in Dx < d
from (IP), the resulting problem can be more easily solved. Then, in a LR the “hard”
inequalities are dualized by adding the term A(Dxz — d) to the objective function for a
given vector A > 0. The idea is to penalize the objective function whenever an inequality

is violated. The resulting problem is:
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(IP(A)) z(A) =mincx + A(Dx — d)
Ax < b,
T eZl,

The problem (I P())) is called the Lagrangian Primal problem and for all A > 0,
it is a relaxation of (I P), hence z(\) < 2. However, it would be interesting to obtain a
value for \ so that z(\) is as great as possible, thus providing the best dual bound. This
can be achieved by solving the Lagrangian Dual problem:

(LD) max{z(\): A >0}

It is possible to prove that the dual bound obtained by solving the Lagrangian Dual
problem is at least as good as the one obtained from a linear relaxation. The Lagrangian
Dual problem can be solved using a Subgradient Method (SGM) as described in [4] [44].

The Lagrangian multiplier method was introduced by Everett in 1963 [27], but it
became popular after the works of Held and Karp in 1970 and 1971 |23, 24] solving large
instances (at the time) of the travelling salesman problem.

It is also possible that an 1P problem have an exponential number of variables. In
this case, it is clearly not possible to solve the problem containing all the variables. So,
instead we iteratively solve a partial problem with a subset of variables and try to find a
variable that is not in the formulation and could improve the value of the solution. The
problem of finding such variables is the pricing problem. An iterative algorithm as this
is called a column generation algorithm (cGa).

The term reduced cost of a variable is usually used to describe how much the objec-
tive function has to improve before the corresponding variable can have a positive value
in an optimal solution. Therefore, the pricing algorithms look for variables with negative
reduced cost.

It is not hard to see that column generation is very similar to cutting plane algorithms.
But while in CPA we have separation procedures, in CGA we have pricing procedures. In
fact, CGA is the dual of cPA. Therefore, CGA can also be combined with B&B to produce
what is named a Branch-and-Price (B&P) algorithm. cGA and B&P algorithms first
appeared in the 60’s in [111 20, 21].



Chapter 3

Integer programming approaches for
Minimum Stabbing Problems

This chapter corresponds to a paper published in Rairo-OR special issue of the 2nd Inter-
national Symposium on Combinatorial Optimization (ISCO 2012) under DOI: 10.1051 /ro/
2014008 [37]. The original publication is available at www.rairo-ro.org and the copyright
is owened by EDP Sciences. The paper was co-authored by Cid C. de Souza, Yuri Frota
and Luidi Simonetti. In this paper, we present integer programming exact algorithms and
lagrangian relaxation heuristics for the problems of finding perfect matchings, trees and
triangulations with minimum stabbing number. The paper presented at ISCO 2012 that
originated the article corresponding to this chapter is [33].

The problem of finding structures with minimum stabbing number has received consid-
erable attention from researchers. Particularly, [I0] study the minimum stabbing number
of perfect matchings (MSPM), spanning trees (MSST) and triangulations (MSTR) associ-
ated to set of points in the plane. The complexity of the MSTR remains open whilst the
other two are known to be A"P-hard. This paper presents integer programming (1P) for-
mulations for these three problems, that allowed us to solve them to optimality through 1P
branch-and-bound (B&B) or branch-and-cut (B&c) algorithms. Moreover, these models
are the basis for the development of Lagrangian heuristics. Computational tests were con-
ducted with instances taken from the literature where the performance of the Lagrangian
heuristics were compared with that of the exact B&B and B&C algorithms. The results
reveal that the Lagrangian heuristics yield solutions with minute, and often null, dual-
ity gaps for instances with several hundreds of points in small computation times. To
our knowledge, this is the first computational study ever reported in which these three
stabbing problems are considered and where provably optimal solutions are given.

3.1 Introduction

Given a set of points P in the plane, the geometric graph associated to P is the graph
G(P) = (V, E) whose vertices are the points in P and whose edges are the straight line

28
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segments with both extremities in P. The stabbing number of a line ¢ passing through
a geometric (sub)graph G(P) = (V, E) is defined as the number of edges in E having a
non-empty intersection with /. Given a set L of straight lines, the stabbing number of
a (sub)graph G(P) = (V, E) is the maximum number of intersections between any line
in L and the edges in E. The problem of finding a structure with minimum stabbing
number can be defined for any kind of structure, e.g. Perfect Matchings, Spanning Trees,
Triangulations etc. So, for example, the problem of finding the Minimum Stabbing Perfect
Matching (MSPM) can be described as follows: given a set of points P, and a set of straight
lines L, find a perfect matching in the geometric graph G(P), among every possible perfect
matchings in G(P), having a stabbing number with minimum value. Two versions of the
problem are presented in [9, [10] and are related to the choice of the set L. In the first
version, here referred as the general stabbing one, L is defined as the infinite set formed by
all straight lines that can be drawn in the plane. In the axis parallel version, L is the, also
infinite, set composed solely by the vertical and horizontal lines in the plane. Figure B.1]
illustrates the two versions of the problem with a triangulation of stabbing numbers 14
and 9, respectively.

Figure 3.1: A triangulation with general (axis parallel) stabbing number 14 (9).

Motivation. Stabbing problems have received considerably attention in the Computa-
tional Geometry community. In 2001 Mitchell and O’Rourke published a list with thirty
open problems in the field [16], given rise to The Open Problems Project [6], containing a
list of geometric problems whose complexity, at that time, was unknown. The list, which
is constantly updated, is an invaluable source of challenging problems in Computational
Geometry. In [9, 10] general and axis parallel versions of the Minimum Stabbing Per-
fect Matching (MSPM), Minimum Stabbing Spanning Tree (MSST) - problem #20 of the
aforementioned list - and Minimum Stabbing Triangulation (MSTR) were discussed. For
the first two problems approximation algorithms were presented and NP-hardness proofs
were given for both versions of the problems. Computational results are presented for the
MSPM. The complexity status of MSTR could not be established and no algorithms were
developed or tested to solve it. Heuristics for the spanning tree, perfect matching and
triangulation stabbing problems were investigated in [I7]. These heuristics are mostly
based on greedy and divide-and-conquer techniques. Contrarily to the Lagrangian heuris-
tics proposed here, they are not able to provide the duality gap associated to the solution
they yield. In [I7] the limited amount of information about computational experiments
refers exclusively to the spanning tree case. Other works related to finding geometric
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structures with minimum or low stabbing number include [4], [1], [24] and [26].

Our contribution. This paper presents two IP formulations for the MSTR based on the
ideas described in [9, 10}, 20] and one formulation for the MSST which explores the results
given in [9, 10, [I5]. Later, these formulations and a variation of the one described in
[9, 10] for the MSPM are used to implement exact branch-and-bound (B&B) and branch-
and-cut (B&C) algorithms for the corresponding problems, which allowed, for the first
time in the literature, to obtain solutions with proven optimality. Besides, Lagrangian
relaxation (LR) heuristics based on the 1P models for the three problems are presented
and appropriate subgradient methods are implemented. Computational results obtained
by the Lagrangian algorithms are reported with instances taken from the literature and
reveal that optimality or minute duality gaps are achieved in small computation times.

In the triangulation case, it was of paramount importance the realization of the relation
existing between the Minimum Weight Triangulation (MwT) and the MSTR. This led to
the development of strong 1P models for the latter and also to the usage of effective
algorithms to solve the MWT. As we will see later, such algorithms play an important
role in our Lagrangian heuristic for MSTR.

Before continuing, we must observe that an early version of this paper appeared in the
Proceedings of ISCO 2012 [22]. Thus, this work is to be seen as an extended and more
complete version of that previous work.

Organization of the text. The remaining of this document is organized as follows.
Section presents IP models for the problems studied. Section B.3] describes how to
derive a LR heuristic for the problems from the 1P models, whilst in Section [3.4] we present
our computational results. At last, in Section we draw some conclusions and indicate
future research directions to be pursued.

3.2 Integer Programming Models

In the current section we present IP models for the three problems under consideration
in this paper, where the model for the MSPM is extracted from [9, [10] and the models for
the MSST and MSTR are based on the ideas presented in those papers. The formulations
described here will be used in the implementation of exact B&B and B&C algorithms.
Also, in Section [3.3] we show how to obtain LRs for each problem using the models
introduced in this section, and use them to produce primal and dual bounds for the true
optimum.

Stabbing Perfect Matchings. We first present the model for the MsSPM. We are given
the sets P and L of points and stabbing lines, respectively, and E denotes the set of edges
of the geometric graph G(P). Variable k denotes the stabbing number and, therefore,



3.2. Integer Programming Models 31

must be minimized. Variable x;; is set to 1 when the edge 7j is in the solution and 0

otherwise.:
(MSPM) z = mink (3.1)
subject to
> ay = 1, VieP, (3.2)
ijeE
>y < (IS|-1)/2, VScCP/JS odd, (3.3)
ijeEti,jeS
>y < k, VselL. (3.4)
ijE€Eij () s#£0
keZ,x;; €B VijeE. (3.5)

In this formulation, constraints (3.2)) and (3.3]) guarantee that the solution is a perfect
matching. The first enforces each vertex to have degree one and the second — although,
satisfied by any integral solution and, therefore, not strictly necessary for the correctness
of the model — strengthens the linear relaxation, as proved by Edmonds [§]. The third
class of inequalities is formed by the stabbing inequalities and they state that the sum of
the variables corresponding to the edges intersecting a given line s € L must always be
smaller or equal to the stabbing number, k. Notice that, as observed in |9} 10], in principle,
this formulation in not finite since there are infinitely many stabbing lines. However,
considering the axis parallel version, when sweeping a stabbing line in a direction d, the
stabbing number only changes at a point of P. For this reason, we only need to look
at a linear number of stabbing lines, thus, making the model finite. Following a similar
reasoning, when considering the general version, we only need to look at a quadratic
number of lines, namely, those defined by each pair of points in P.

Stabbing Spanning Trees. There are a number of known 1P formulations for the Min-
imum Spanning Tree Problem (MST), including some that define the convex hull of the
points corresponding to integer solutions. So, in order to decide which one should be used
to build a formulation for the MSST, we first implemented three of the strongest formu-
lations described in [I5] for the MST. After a few computational tests, we observed that
the directed cut formulation had the best practical performance compared to the other
alternatives. Hence, we decide to use this model as the basis for our MSST formulation
described below.

Consider a digraph D = (P, A), where A is the set of arcs connecting each pair of
vertices in P, i.e., for each edge ij € FE there is a pair of arcs (i,j) and (j,7). We
arbitrarily set a vertex r as the root of the tree. The notation §*(C') refers to the cutset
directed out of vertex set C' and 6 (C) to the cutset directed into the vertex set C. The
variable y;; = 1 if the tree contains arc (¢, j) when rooted at r and x;; = 1 if one of the
arcs (i,7) or (j,4) is in the tree with r as root. The relationship between y and x variables
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is established by constraint (3.9).

(MSST) z = mink (3.6)
subject to Z Yij > 1, VCCVwithreC (3.7)
(i.5)€0H(C)
> i = Pl -1, (3.8)
ijeA
Yij + Yji = Tij, Vije E (3.9)
Sy < k, Vsel. (3.10)
ijeExij () s#0
yij €B V(i,j) € A (3.11)
keZ,zi; €B VijeE. (3.12)

As before, part of the formulation is composed by a set of constraints ((3.7), (3.8]) and
(B9) ) ensuring that the resulting solution is a geometric subgraph of the required type,
in this case a spanning tree. The remaining constraints are stabbing inequalities (310),
which have the same meaning as before. Constraint (3.8)) guarantees that the solution has
|P| — 1 arcs, as required in a directed spanning tree. Finally, constraints (3.7) enforces
that the solution is a directed connected graph.

Stabbing Triangulations. Next, the ideas used in the models above and the 1P models
for the MWT that can be found in [20] form the point of departure to build the Edge
and Triangle Stabbing models for the MSTR. The first of these two models is simpler
and, for this reason, easier to use in a Lagrangian Relaxation algorithm. The second,
although more complicated, provides better bounds and, therefore, was used in a exact
B&B algorithm.

In the Edge Stabbing model (M STE), Py is the set of vertices on the convex hull of
P; a crossing set (Cr) is defined as a maximal set of edges which are pairwise intersecting
(endpoints excluded); the set of all crossing sets in G(P) is denoted by S¢,; for an edge
pq € E, Cr(pq) denotes the set of edges intersecting pg (again with endpoints excluded)
plus pq itself; the rest of the notation stands for the same as before. For every ij € F,
x;; = 1 if and only if the edge ij is in the triangulation. The variable £, once again,
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denotes the stabbing number. Then, the Edge Stabbing Model reads:

(MSTE) z = mink (3.13)
subject to > = 3|P|—|Py| -3, (3.14)
ijeE
Z Tij < 1, VY Cr € Sey, (3.15)
ijeCr
>y > 1, VpgekE, (3.16)
ij€CT(pq)
>y < k, Vsel. (3.17)
ijeErij () s£0
keZxy;cB Vij € E. (3.18)

In this model, (B.I14]) guarantees that the solution has the right number of edges re-
quired for a triangulation of P. Constraint (3.15) states that only one edge in a crossing
set can be in the solution, thus, ensuring planarity. Constraint (3.16)) states that, either
pq or at least one of the edges in Cr(pg) must be in the solution, therefore, enforcing
maximality (recall that a triangulation is a maximal planar subgraph of G(P)). It is
noteworthy that constraint (8.I6) is not strictly necessary for the formulation. However,
as observed in [20], it greatly enhances the computational performance of the 1P algo-
rithms. Constraint (3.17) states that, for each stabbing line s in L, the number of edges
from triangulation that intersect s is bounded from above by the stabbing number.

Another way to represent a triangulation using IP is to assign variables to the set
of triangles with vertices in P. This idea was discussed in [5] and in [20], where it was
shown that the dual bounds generated by the relaxation of the resulting 1P dominate
those produced by the previous formulation on edge variables. In the description of the
Triangle Stabbing Model below, A(P) is the set of empty triangles over P, i.e., triangles
that do not contain any point P in their interior; L™ (ij) and L~ (ij) are the two half-
planes defined by the line containing ij; Ey is the set of edges on the convex hull of P.
For every triangle ijl € A(P), z;;; = 1 if and only if the triangle ijl is in the triangulation.
The variable k£ has the same meaning as in the previous models.

(MSTT) =z = mink (3.19)
subject to Z Ty = Z xij, Vije€ E\ Eg,  (3.20)
ijleA(P) : ijleA(P) :
iflC L+ (if) ijlc L= (ij)
Z il = 1, VijeEy, (3.21)
ijle A(P)
> Suzii < k, VselL. (3.22)
igleA(P):ijl () s#£0
keZ,xijieB Vijl e A(P).  (3.23)

In the model above, constraint (3.20) states that the number of triangles containing an
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edge ij (which is not in Ey) must be the same in both half-planes defined by the line con-
taining ij. As the edges in Ey are present in every planar triangulation, constraint (3.21)
ensures that a triangle containing one such edge is in the triangulation. Constraint (3.22)
states that the sum of the coefficients ¢j; of the triangles ijl intersecting a line s of L can
not be larger than the stabbing number. A triangle 75/ intersecting a line s has coefficient
¢y = Bij + B + Bj;, where 37 = 1if ij intersects s and is on the convex hull, 5;; = 0.5 if
ij intersects s but is not on the convex hull and 3;; = 0 if 75 does not intersect s.

Later we will see that both models presented in this section for the MSTR are used
in our implementations: (MSTT) in the B&B (exact) algorithm and (MSTE) in the
Lagrangian heuristic.

3.3 Lagrangian Relaxation

Using the 1P formulations from the previous section, we now derive Lagrangian relaxation
(LR) models for the three stabbing problems. We solve the dual of this relaxation via
the subgradient method (SGM), which allows us to obtain a lower bound for the optimal
value of the problems. Besides, at each iteration of the SGM, we compute the primal
Lagrangian problem whose solution is a minimum perfect matching, spanning tree and
triangulation, respectively for the MsSPM, MSST and MSTR, and, thus, can be used to
obtain upper bounds for these problems. For the basic theory of Lagrangian relaxation
the reader is referred to [27].

The presentation of our LR is based on a model for a generic stabbing problem (ST AB),
presented below. This model is composed by the generic constraints (8.25]) that define
the form of the subgraph of G(P) to be found (in our case either a perfect matching, a
spanning tree or a triangulation) and the constraints (3.26) which define that the stabbing
number of the subgraph is greater than or equal to the stabbing number of any line.

(STAB) z = mink (3.24)
subject to
Ax < B, 3.25)
Sy < k, Vsel. (3.26)
ijEEij ) s#0
keZ,zijeB Vije k. (3.27)

To obtain the LR (STAB(u)) of problem (STAB) we simply dualize the con-
straints (3.26]), penalizing them in the objective function. This operation results in the
following model for the Lagrangian primal problem:
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(STAB(u))  z(u) = mink—>» usk— > zy) (3.28)
s€L ijeE:ij ) s#£0D
subject to
Az < B, (3.29)
ke€Zi,xij€B Vij € E. (3.30)

Notice that the constraints (3.25]) that remain in the model are those that define the
subgraphs of interest. Also, since the constraints being dualized are in the “<” form, u, is
non-negative for all s € L. As a consequence, the Lagrangian primal problem is equivalent
to the problem of finding one such subgraph having minimum weight (the weight of the
subgraph being defined as the sum of its edge weights). In the Lagrangian case, the weight
of edge 77 is given by

Cij = Z Us. (3.31)
s€L:s(ij#£0D
From the Lagrangian theory, we know that whenever the primal problem can be solved
in polynomial time, as is the case for the MSPM and MSST, we are able to obtain a dual
bound for the original problem in short computation times. However, when the primal
problem is A/P-hard, one may wonder if the relaxation is useful after all. This is precisely
the situation with the MSTR since the MWT was proven to be A'P-hard in [19]. However,
as we shall see later in Section [3.4] there are highly effective algorithms to compute large
subsets of optimal MWT solutions. As a result, one can expect to solve instances of the
MWT with several hundreds of points very quickly. Our approach relies on this observation
and the results reported in this paper confirmed our expectations.
Now, as (ST AB(u)) is a relaxation of (STAB), we know that z(u) < z and, since we
want to find the best possible bound, we must find the value of u that maximizes z(u),
i.e., we must solve the Lagrangian dual problem given by

(DL) wvpr, = max{z(u) : u > 0}. (3.32)

Problem (DL) can be solved using the SGM as described in |27, 2]. To this end, the
multipliers u, are initialized with null values and are updated at iteration ¢ by the formula:

u' = maz(0,u! — pGLH). (3.33)

with p given by
_ m(dist x ub — Ib)
D YRR

and G1, the s-th component of the subgradient of z(u) in u'~!, given by

Grl=k— > au); (3.35)

ijEE:ij () s£0

(3.34)

In the formulas above, ub and [b are, respectively, an upper and a lower bound for the
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optimal value, dist is a perturbation factor (arbitrarily set to 1.05 in our experiments)
and 7 is the step size (in our experiments initialized at 2 and halved every 30 iterations
without improvement in the lower bound). The solution of the Lagrangian primal problem
is denoted by x(u) and the superscripts indicate the iteration at which each variable is
been considered (e.g., u' is the Lagrangian multipliers vector at iteration t).

Now, notice that, after dualizing constraints (B:26), the objective function of
(STAB(u)) can be rewritten as:

z(u) = min k(1 — ZUS) + Z Tij Z Us. (3.36)

seL ijeE s€L:s(ij#0

Therefore, if ) _; us > 1, the first term of that equation would have a negative value and,
hence, the larger the value of k, the smaller the value of z(u). As a result, when optimizing
the (primal) Lagrangian problem, if the cost of variable k is negative, the lower bound
z(u) is unlimited and hence useless. Analogously, if the cost of k is non negative, the
obvious solution is to set k to zero. However, by doing so, we may waste the opportunity
to produce a better dual bound for z. To overcome these situations, we proceed in the
following way. In the solution of (ST AB(u)), k is set, respectively, to the best upper (ub)
or lower (Ib) bound available for z depending on whether its cost is negative or not. In
fact, in our implementation, when the cost is non negative, k is set to [lb]/2 rather than
to [b to avoid an early convergence of the sGM. This tends to increase the number of
iterations of the method, augmenting the chances of the Lagrangian heuristic to obtain a
better feasible solution.

Notice that the dual bound obtained by setting k to [Ib] /2 or ub, depending on whether
(1 =>,cp us) is negative or non-negative, is valid. This is so because the model for the
primal Lagrangian problem remains correct if the constraint requiring that k& belongs to
Z is replaced by one that forces k to be in an interval between proper lower and upper
bounds. It turns out that [Ib]/2 and ub are, respectively, valid lower and upper bounds
for k, ensuring the correctness of the computation of the dual bounds for z(u).

The termination criteria implemented in our SGM are achieved when one of the follow-
ing situations occur: the difference between the upper and lower bounds is smaller than
1 (one), the value of 7 is smaller than 0.005, or yet, a predefined time limit is reached.

Lagrangian Heuristic. FEach iteration of the SGM solves a minimum weight problem
(a MWPM, a MST, or a MWT, whichever is the case). The solution of this problem is
a subgraph of G(P) satisfying the property of interest (i.e., it is a perfect matching, a
spanning tree, or a triangulation) and, therefore, is also feasible for the original stabbing
problem. Thus, an upper (primal) bound for the optimal value of the stabbing problem
can be immediately obtained by computing the stabbing number of this subgraph.

Solving the Lagrangian Primal. For the MSTR, (ST AB(u)) corresponds to a MWT.
As cited before, the MWT is known to be N"P-hard but there are algorithms to find subsets
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of optimal solutions. One of these algorithms is the one to find a Locally Minimum Trian-
gulation Skeleton (LMT-skeleton) [7, B]. This algorithm is based on the local minimality
property of line segments (edges).

Given a planar triangulation 7', let i7 be an edge of T' that is not in the convex hull.
Then, 75 must be the side of two empty triangles 75k and ijl in T. These two triangles
together form a quadrilateral ijkl having ¢5 and kl as its diagonals. We say that ij is
locally minimum with respect to ijkl if this quadrilateral is not convex or, else, if the
weight of 77 is smaller than the weight of kl. Figure illustrates this definition. If for

j
Figure 3.2: In both cases ¢ is locally minimum with respect to the quadrilateral ¢5kl.

any pair of points {k,l} in P — {4, j} the edge ij is locally minimum with respect to the
quadrilateral 75k, then 4j is said to be locally minimum. When all the edges in a planar
triangulation are locally minimum, we say that the triangulation itself is locally minimum.
Clearly, any minimum weight triangulation is locally minimum. However, not all locally
minimum triangulations have minimum weight. The LMT-skeleton is the subset of edges
that are present in every locally minimum triangulation and, thus, is also a subset of any
minimum weight triangulation.

In [7] the authors proposed a polynomial algorithm to find a LMT-skeleton and in [3]
the algorithm was improved. The computational experiments performed with these algo-
rithms showed that, together with a dynamic programming algorithm to find a MwWT for
convex polygons, it was capable to find the MWT of instances with thousands of points in
quite small running times. The source code for this last algorithm written by Mulzer is
available online at [18].

Therefore, we can make use of the LMT-skeleton algorithm to solve the Lagrangian
Primal Problem through the following steps. First we determine three subsets 7,,,, T}, and
Ty of edges which, respectively, are mandatory (the locally minimum ones), forbidden
(those intersected by an edge in T,,,) and uncertain (the remaining edges) in a optimal
solution, using a LMT-skeleton algorithm [7, 3]. Then, we are left with a constrained
MWT problem where all edges of T, are forced to be in the solution, the ones in 7 are
eliminated from the solution and those in 7, are the ones for which we have to make a
decision. Typically, after fixing the appropriate variables to one or zero, the size of the
MWT models reduces dramatically. This renders the usage of an 1P solver to compute
the model via a standard B&B algorithm a viable option, even for instances containing
hundreds of points. Later we will see that this procedure is capable to solve the Lagrangian
primal problems for MSTR in an extremely effective fashion in practice.

To conclude this section, we recall that the Lagrangian primal problems for the MSPM
and MSST are, respectively, the MWPM and the MST. To solve the first one we use the
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Blossom V algorithm described in [14], whose source code is publicly available. The MST
problem is solved by a simple implementation of Prim’s algorithm, which can be found in
several textbooks on Algorithms.

3.4 Computational Results

We now describe the experiments we carried out to test the performance of the algorithms
discussed in the previous sections. As mentioned earlier, we implemented exact B&C
algorithms for the MSPM and MSST. An implementation of an exact B&B algorithm
for the MSTR was also done. All these exact algorithms were based on the 1P models
discussed in Section 3.2l We also implemented LR algorithms for all the models using the
ideas discussed in Section [3.3l All the experiments described in this section consider the
axis parallel version of the problem.

Computational Environment. To perform the experiments, we used a computer with
an Intel Core 2 Quad 1.60GHz, 4096 KB cache, 4GB of RAM memory and a Ubuntu
10.04.4 OS. The programming language used was C/C++ with gcc 4.4.3 compiler and every
program was compiled with -05 optimization flag. We also used the XPRESS-Optimizer
64-bit v22.01.09 1P solver. The default cuts, heuristics and preprocessing were turned
off. Also, the optimizer was set to use a single processor core.

3.4.1 MSPM Experiments

In order to evaluate the performance of our algorithms for the MSPM, we executed ex-
periments with both, the exact B&C algorithm and the LRr algorithm and then we tried
to compare the results, although this kind of comparison is sometimes tricky, since the
algorithms are different in nature.

For the exact B&C algorithm the model was initially loaded using only the degree
inequalities (8:2) and stabbing inequalities (B:4]). The heuristic proposed in [12] was
implemented to separate violated inequalities (3.3). Only when the heuristic fails to find
a cutting plane, we resort to the Padberg-Rao exact algorithm described in [2T]. We also
use a family of conditional cuts [IT] that are not guaranteed to be valid for the problem,
but can be used as a cutting plane as follows. Suppose an upper bound U, of the problem
is available. One can note that during the search for the optimal solution of the MSPM, we
are looking for solutions of value better (lesser) than U,. In this sense, any inequality can
be used as a cutting plane, provided that is satisfied by every feasible solution of value
less than U,. In this vein, we considered the following family of conditional cuts:

|V = Up 417
> wy > Hf” , VselL, (3.37)
UGE[VS+]

(V| = Up+ 17
S oy H% Vsel (3.38)
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where V;© and V.~ are sets composed by vertices of V in the interior of one of the two
half-planes defined by the line s. Besides, the sets E[V,"] and E[V,7] are formed by all
the edges with both endpoints in V" and V™, respectively. It can be seen in inequalities
(B.37) that a solution of value U, has at most U, edges crossing s (each one connected
with a vertex in V7). Hence, there are (|V;7| — U,) disconnected vertices in V" that need
[(JVit] — Up) /2] edges in E[V;"] to complete a matching. Then, it follows that (3.37) can
be used as a conditional cut because no solution of value U, (or greater) is feasible in
(B3T). Similar arguments lead to an analogous conclusion for inequalities (B.38).

The cutting plane strategy adds the inequalities with the highest percentage of viola-
tion, as long as this value is at least 1% (to control the tailing off effect). No more than 50
inequalities are added per iteration. As for the branching strategy, we select 5 variables
whose values in the current linear relaxation are closest to 0.5 and use strong branching
to select which variable to branch on.

The primal heuristic used in B&C is based on the linear relaxation of the problem.
From a relaxed solution Z, the method attempts to find a matching M C F maximizing
ZijeM Z;; . The method begins with an empty set M and builds a matching, one edge at
a time. At each iteration, one edge (i,j) € F\M is greedily chosen according to the value
of T;; (prioritizing the highest ones) and inserted into M. The procedure is repeated until
a perfect matching is reached. In a second phase, the matching M may be improved by a
local search procedure. The neighborhood of the current solution M is defined as the set
of all feasible matchings obtained by exchanging pairs of edges (7, j) and (I, m) by edges
(i,1) and (j,m). The procedure iteratively replaces the current solution by the one with
minimum cost within its neighborhood, halting when no better solution is found in that
way. This primal heuristic is applied at every node of the search tree.

For the LR algorithm, a Lagrangian relaxation of the model described for the MSPM
in Section is obtained (see Section B.3). The standard subgradient method is then
executed to compute the Lagrangian dual problem. As said before, the Lagrangian primal
problem is solved by an implementation of the Blossom V algorithm whose code is available
for download in the web. It is worth noting that this program only deals with instances
having integer weights. However, in the usual Lagrangian scheme, the edge weights are
often not integer. To circumvent this difficulty, we multiplied all the edge weights in the
Lagrangian primal problem by 10° before calling the routine. This is not expected to
create major numerical problems and, in the end, is not more harmful to computation
than the tolerance of 107 that we set for the 1P solver.

As we will see in the results part of this subsection, the Lagrangian algorithm produces
good bounds with small computation times. This suggests that it can be used together
with the exact B&C algorithm to obtain better results. We used the primal bound from
the LR algorithm to warm start the B&C algorithm. Our tests showed that, for the three
problems studied, the use of primal bounds from LR algorithm to warm start the exact
algorithms yielded better overall results. For this reason, we decided to use these results
and compare them with the pure Lagrangian results.
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Instances. For the MSPM, we experimented with the same instances tested in [9] (except
for five TSPLIB instances [23] that are obviously infeasible since they have an odd number
of vertices). These include 5 instances from TSPLIB, 16 from the clustered C1 and C2
classes of Solomon’s Vehicle Routing Problem benchmark [25], 25 regular grid instances
(5 x 5 to 20 x 20 grids with 20% of its points randomly removed) and 11 instances with
up to 100 random points in the plane.

For the three problems under investigation, a time limit of 1,800 seconds was set for
the execution of any algorithm. Notice, however, that in the tables to 3.7, occasionally
the time is bigger than this limit. This happens for two reasons, first, the times presented
for warm started exact algorithm (WSEA) are the sum of the time spent by the Lagrangian
and the B&C or B&B algorithms, therefore could go up to 3,600. Second, the time limit
is verified at certain points in the program codes and, it could be that the time elapsed
between two check-points is not negligible. This situation arises, for example, when the
model of a big instance is being uploaded by the 1P solver. In our experiments an additional
timeout script running on the operating system level was used that forces the process to
halt after 2,000 seconds. In case the process ends naturally, a bound is always produced.
On the other hand, if the process is killed by the timeout script, no output is produced.
The latter situation is signalized in the tables by the symbol 1. Also, duality gaps were
computed through the formula 100 x (ub — Ib)/ub, where ub and b denote, respectively,
the upper and lower bounds yielded by the algorithm.

Results. As we previously stated, all the WSEA outperformed the cold started exact
algorithms and, for this reason, we compare the WSEA against the LR algorithms. Obvi-
ously, it does not make sense to just compare the times of these two kinds of algorithms
because, first, as said before, the time of the WSEA is the sum of the LR algorithm and the
B&C or B&B algorithm, thus, is always greater than the LR alone. Second, the algorithms
are different in nature. So, the purpose of our comparison is to determine whether the
WSEA can improve the bounds obtained by the LR algorithm, how much and how fast.

Our analysis of the results will be done in three parts: the first for the TSP and clustered
instances, the second for the random instances and the third for the grid instances.

The results for the first set of instances are summarized in Table Bl We observe
that the B&C algorithm proved optimality in all the cases within the fixed time limit.
The Lagrangian SGM always converged, proving optimality in all but one case (berlin52),
where there is an absolute gap of one unit (25.0%). For this set of instances the WSEA
provided an average improvement of 1.19% in the relative gap with an average increasing
of 4.48 seconds in time when compared to the LR algorithm.

Results for the random instances can be seen in Table Once again the LR algorithm
always converged. However, whilst the exact algorithm proves optimality for all instances,
the Lagrangian failed to prove optimality in four cases, where gaps of one unit remain.
The average improvement in the relative gap obtained from the WSEA was 8.64% and the
average time increasing was 1.74 seconds.

The results for the grid instances are displayed in Table 3.3l This benchmark was the
one for which the LR heuristic had the worst performance. The Lagrangian heuristic was
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Table 3.1: Results for MSPM TSP and clustered instances.

‘ Instance | LB | UB | Time | GAP% ‘
LR B&C LR B&C LR B&C LR B&C
a280 11 11 11 11  0.83 13.34 0.00 0.00

berlin52 3 4 4 4 086 1.23 25.00 0.00

lin318 9 9 9 9 29.17 5243 0.00 0.00
pch442 17 17 17 17 2771 7879 0.00 0.00
ulysses22 2 2 2 2 000 0.03 0.00 0.00
cl101 7 7 7 7 005 041 0.00 0.00
c102 7 7 7 7 005 043 0.00 0.00
cl103 7 7 7 7 005 041 0.00 0.00
cl04 7 7 7 7 0.05 043 0.00 0.00
c105 7 7 7 7 0.06 043 0.00 0.00
c106 7 7 7 7 0.05 042 0.00 0.00
cl07 7 7 7 7 005 043 0.00 0.00
c108 7 7 7 7 006 042 0.00 0.00
c201 6 6 6 6 008 055 0.00 0.00
c202 6 6 6 6 0.09 054 0.00 0.00
c203 6 6 6 6 009 055 0.00 0.00
c204 6 6 6 6 008 055 0.00 0.00
c205 6 6 6 6 009 055 0.00 0.00
c206 6 6 6 6 008 053 0.00 0.00
c207 6 6 6 6 008 053 0.00 0.00
c208 4 4 4 4 1.15 1.89 0.00 0.00

unable to prove optimality in 11 out of 25 cases, leaving gaps of one unit in 10 cases and
two units in 1 case. The exact algorithm, on the other hand, was able to prove optimality
for all of the grid instances. The improvement in the relative gap achieved using the exact
algorithm was 4.85% and the average increasing of time was 8.95 seconds.

Therefore it is possible to say that the LR algorithm have a very nice performance
for these sets of instances. Also, the price in time necessary to prove optimality using
the warm started B&C algorithm seems rather small. We recall that B&C is an exact
algorithm while LR is an heuristic. So, when comparing their performances, one has to
bear in mind that they are rather different in nature.

In order to compare our results against those presented in [9] we implemented the
model presented in that paper and executed a B&C algorithm in the same computational
environment used to test ours. This experiment showed that the algorithm using the
model from [9] was unable to prove optimality in six, cases among all the instances tested
for the MsPM, within a time limit of 1,800 seconds. Considering all the test cases for the
MSPM, the average time of our WSEA was 5.91 seconds while the implementation of the
algorithm from [9] had an average time of 213.10 seconds.

3.4.2 MSST Experiments

To analyze the performance of our algorithms for the MSST, again we implemented an
exact B&C algorithm. Once more, we found that warm starting the B&C algorithm with
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Table 3.2: Results for MSPM random instances.
‘ Instance LB UB Time GAP% ‘

LR B&C LR B&C LR B&C LR B&C
rand10a 2 2 2 2 0.00 0.00 0.00 0.00
rand10b 2 2 2 2 0.00 0.00 0.00 0.00
rand10c 2 2 2 2 0.00 0.00 0.00 0.00
rand10d 2 2 2 2 0.00 0.01 0.00 0.00
rand10e 2 2 2 2 0.00 0.01 0.00 0.00
rand50a 3 3 3 3 0.15 0.67 0.00 0.00
rand50b 3 3 3 3 0.64 1.18 0.00 0.00
rand50c 3 4 4 4 0.62 1.20 25.00 0.00
rand50d 3 4 4 4 0.64 1.15 25.00 0.00
randb0e 3 4 4 4 077 1.32 25.00 0.00
rand100a 4 5 5 5 6.40 22.85 20.00 0.00

Table 3.3: Results for MSPM grid instances.

‘ Instance | LB | UB | Time | GAP% ‘

LR B&C LR B&C LR B&C LR B&cC
gridba 4 4 4 4 0.00 0.01  0.00 0.00
gridbb 4 4 4 4 0.00 0.01  0.00 0.00
gridbe 4 4 4 4 0.01 0.02  0.00 0.00
gridbd 4 4 4 4 0.00 0.01  0.00 0.00
gridbe 4 4 4 4 0.00 0.02  0.00 0.00
grid8a 6 6 6 6 0.10 0.15  0.00 0.00
grid8b 6 6 6 6 0.06 0.12  0.00 0.00
grid8c 5 5 6 5 0.19 0.28 16.67  0.00
grid8d 6 6 6 6 0.00 0.06  0.00 0.00
grid8e 6 6 7 6 0.30 0.35 14.29  0.00
grid10a 7 7 7 7 0.22 0.43  0.00 0.00
grid10b 6 6 7 6 0.64 0.83 14.29  0.00
grid10c 7 7 8 7 0.69 2.04 12.50  0.00
grid10d 7 7 7 7 0.19 0.41  0.00 0.00
grid10e 7 7 8 7 0.59 1.73 1250  0.00
grid15a 10 10 10 10 1.59 3.61 0.00 0.00
grid15b 10 10 11 10 545 5042  9.09 0.00
grid15c 10 10 10 10 1.32 3.28 0.00 0.00
grid15d 10 10 10 10  2.94 4.96 0.00 0.00
grid15e 10 10 10 10 1.77 4.04 0.00 0.00
grid20a 13 13 15 13 25.65 111.31 13.33  0.00
grid20b 13 13 14 13 26.28  40.70 7.14 0.00
grid20c 13 13 14 13 28.16  47.46 7.14 0.00
grid20d 13 13 14 13 24.06 39.43 7.14 0.00
grid20e 13 13 14 13 31.02 63.31 7.14 0.00
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the primal bound obtained from the Lagrangian SGM gives us better results than simply
executing the B&C. Therefore, all comparisons in this subsection are made between the
WSEA and the LR algorithm.

For the exact algorithm we used the model described in Section[3.2l Initially the model
was loaded without constraints (8:7). In the branch-and-cut method, at each node of the
search tree, the linear relaxation of MSST is solved. If in the optimal solution all variables
are integral, the node is pruned by optimality. Otherwise, the solution is fractional and
violated valid inequalities are sought by solving a separation problem. The polynomial-
time algorithm presented in [13], based on the minimum edge cut problem in graphs, is
used to separate the Steiner cut inequalities (B.7]).

As for the LR algorithm, the implementation was done as described in Section B.3]
with the primal Lagrangian problem been solved by a simple implementation of Prim’s
algorithm for the MST.

Instances. As a test suite we used 25 instances from TSPLIB 23] and the 25 regular grid
instances used in [9] for the Minimum Stabbing Perfect Matching Problem. The choice
of these instances is based on the fact that the TSPLIB is a well known test library for
geometric problems and, besides, some TSPLIB and all grid instances were also used in [9]
for the MSPM. The choice of the instance sizes was made seeking tests that were hard
enough to provide meaningful computation times, allowing a more precise comparison of
the algorithms.

Results. We divide our analysis into two parts, one for the TSP instances and another
for the grid instances.

The results for the TSP part are displayed in Table 3.4. One can see that the LR
algorithm converged in all the cases within the time limit, proving optimality in 11 of
the 25 of them. The WSEA was unable to yield any output within the time limit for
just one of the test instances. Among the 24 remaining instances, the B&C algorithm
proved optimality in 16 cases. It is interesting to notice that the SGM was able to prove
optimality in one case where the B&C was unable to do so (despite the warm start), while
the opposite occurred 6 times. For this set of instances, when compared with the LR
algorithm, the improvement in the relative gap provided by the WSEA was 2.38% and the
necessary extra time to achieve this improvement was 857.79 seconds.

Analyzing the results for the second group of instances given in Table [3.5, we observe
that the performance of the LR algorithm is not as good as for the TSP instances, since
optimality was achieved in fewer cases. The B&C failed to declare optimality in only 3
out of the 25 grid instances while the sSGM failed in 14 other cases. In the grid instances,
the execution of the WSEA improved the relative gap by 4.59% at the cost of 391.88 more
seconds, both in average.

The analysis of the improvement relative to the Lagrangian sGM algorithm and of
the additional time spent to obtain such gain when using WSEA points to a remarkable
performance of the LR algorithm.
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Table 3.4: Results for MSST TSP instances.

| Instance | LB UB Time | GAP% |
LR B&C LR B&C LR B&C LR B&C
berlin52 6 6 6 6 0.15 3.77 0.00 0.00
ch130 7 7 8 8 12.21 1813.38 12.50 12.50
ch150 8 8 9 8 19.35 161.09 11.11  0.00
eil76 8 8 8 8 1.08 1.48 0.00 0.00
gil262 11 11 12 12 83.45 1907.68 8.33 8.33
gr202 9 9 10 9 5870 1456.22 10.00 0.00
kroA100 7 7 8 7 4.85 1177.36 12.50 0.00
kroA150 8 8 9 9 14.69 1819.08 11.11 11.11
kroA200 9 9 9 9 29.95 1154.45 0.00 0.00
kroB100 7 7 7 7 3.98 5.20 0.00 0.00
kroB150 8 8 9 9 19.81 1823.96 11.11 11.11
kroB200 9 9 10 10 45.91 1858.87 10.00 10.00
kroC100 7 7 7 7 4.21 46.09  0.00 0.00
kroD100 7 7 7 7 3.27 4.40  0.00 0.00
kroE100 7 7 7 7 2.67 3.91 0.00 0.00
lin318 16 16 18 18 36.84 1860.34 11.11 11.11
pch442 34 33 34 34  56.02 1915.33 0.00 2.94
prl24 24 24 24 24 2247 26.06 0.00 0.00
prl36 17 17 18 17 2.75 87.52 5.56  0.00
prld4 21 21 21 21 0.50 1292.64 0.00 0.00
pri52 11 11 12 11 6.88 536.45 8.33 0.00
pr226 72 72 T2 72 4.43 16.54  0.00 0.00
pr264 23 23 29 29 13.93 1821.02 20.69 20.69
rd100 7 7 8 7 4.98 247.18 12.50 0.00
rd400 11 T 13 13 661.39 T 15.38 I
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Table 3.5: Results for MSST grid instances.

‘ Instance | LB | UB | Time | GAP% ‘

LR B&C LR B&C LR B&C LR B&C
gridba 7 7 7 7 0.01 0.10  0.00  0.00
gridbb 7 7 7 7 0.01 0.10  0.00 0.00
grid5e 7 7 7 7 0.01 0.09  0.00 0.00
gridbd 7 7 7 7 0.01 0.09 0.00 0.00
gridbe 7 7 7 7 0.01 0.09 0.00 0.00
grid8a 10 10 10 10 0.04 1.57 0.00 0.00
grid8b 10 10 10 10 0.03 0.19 0.00 0.00
grid8c 10 10 10 10 0.07 0.22  0.00 0.00
grid8d 11 11 13 11 0.15 1.10 15.38 0.00
grid8e 11 11 11 11 0.08 0.24 0.00 0.00

grid10a 13 13 14 13 044 431 7.14  0.00
grid10b 12 12 12 12 0.17 0.44  0.00 0.00
grid10c 13 13 14 13 0.45 3.78 7.14  0.00
grid10d 13 13 13 13 0.18 0.48  0.00  0.00
grid10e 13 13 14 13 047 9.17 7.14  0.00
gridlba 18 18 20 18 297 11797 10.00  0.00
grid15b 20 20 23 20  3.17 368.78 13.04  0.00
grid1bc 18 18 19 18  2.87 8§4.31  5.26  0.00
grid15d 19 19 21 19 235 125,61  9.52  0.00
grid15e 18 18 20 18 244 828.30 10.00  0.00
grid20a 24 24 27 27 1548 182894 11.11 11.11
grid20b 24 24 27 27 11.16 1824.14 11.11 11.11
grid20c 25 25 28 25 11.06 1415.05 10.71  0.00
grid20d 25 25 29 29 998 1827.44 13.79 13.79
grid20e 25 25 31 25 1195 1430.14 19.35  0.00
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3.4.3 MSTR Experiments

The first stage of our testing comprised a comparison of the two alternative B&B algo-
rithms that arise from the Edge and Triangle stabbing models discussed in Section 3.2
For the MWT, it was observed in [20] that the B&B algorithm performs better when it uses
an 1P model with variables defined on triangles than with variables associated to edges.
Hence, a similar behavior was expected from the corresponding models when applied to
the solution of the MSTR. Indeed, this was what happened and, thus, all the B&B results
reported below were obtained using the Triangle Stabbing Model. More precisely, the
results refer to a warm started exact algorithm (WSEA) using the mentioned formulation.

Regarding the LR algorithm, we implemented the subgradient method using both the
Edge Stabbing Model and the Triangle Stabbing Model. Recall that, irrespective to which
of the two models we consider, when the stabbing constraints are relaxed we are left with
an 1P formulation for the MWT problem (we use the term “relaxed” to refer to these
models). However, in the subgradient procedure several such problems have to be solved
at each iteration. This is done in two steps. The first step consists in the calculation of
the LMT-skeleton while the second step actually solves the MWT problem in case the first
step fails to do so.

Observe that the edge weights are the only differences between the instances of the
MWT problems solved in two iterations of the subgradient method. The computation
of the LMT-skeleton only depends on the edge costs. Therefore, for the first step, it is
convenient from a computational point of view to have the problem defined in terms of
the Edge Stabbing Model, as it allows for a quick recalculation of these costs. On the
other hand, in the second step, when it comes to actually solve the MWT instance, we rely
on the results reported in [20] where it was observed that the B&B algorithm for the MwT
performs much better with the relaxed Triangle Stabbing Model than with the relaxed
Edge Stabbing Model. Now, given two iterations of the subgradient method, the triangle
costs are the only differences between the associated MWT instances. These costs can be
easily computed after the LMT-skeleton has been found in the first step. Some additional
details are given below.

As said in Section 3.3, to solve the Lagrangian primal problem, we used the LMT-
skeleton code written by Beirouti and Snoeyink and downloadable at [18]. A few mod-
ifications were introduced in this program to make possible the usage of arbitrary edge
weights instead of Euclidean ones. This included, for instance, the removal of the di-
amond test, a simple and effective way to determine whether an edge could be part of
a triangulation of minimum (Euclidean) length. Such changes do not have significantly
damaged the algorithm’s performance, relative to Euclidean weights, confirming it as a
viable option for general MWTs.

After running the LMT-skeleton, quite often we still do not have a triangulation. Hence,
a B&B algorithm is used to solve the constrained MWT that remains, i.e., a MWT with sets
of mandatory and forbidden edges. Since we use the (relaxed) Triangle Stabbing Model as
the input for the B&B algorithm, these sets of edges have to be processed to identify the
corresponding sets of triangles. Thus, if an empty triangle contains a forbidden edge, the
associated variable is set to zero while, if all the edges forming its sides are mandatory,
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this variable is set to one.

Instances. The test suite used to analyze the performance of the MSTR algorithms was
the same as in the MSST case. The reasons that support this choice are the same as
before. Also, the time limit parameters inside the programs and in the timeout script
remain unchanged, i.e., 1,800 and 2,000, respectively. Once again, the symbol I in the
tables with results signalizes that the process was killed by the timeout script and, thus,
did not produced any output.

Results. As in the MSST case, we divide our analysis into two parts, one for the TSP
instances and the other for the grid instances. Concerning the TSP instances, the B&B
algorithm had its process killed in 12 out of the 25 instances and, when this was not the
case, it proved optimality in all but three instances, where there is a 3.33% gap (the gap
exists because of the 1,800 seconds time limit). On the other hand, the Lagrangian sGm
converged in all cases within the imposed time limit, with an average gap of 2.57%. The
performance of the heuristic is remarkable. Optimality was proven for 7 instances, one
of which could not be reached by the exact algorithm within the time limit (the inverse
situation occurred four times). In 13 instances the difference between the upper and
lower bounds was of just one unit. Using the WSEA we were able to improve the bounds
provided by the LR algorithm in average by 0.97% while the time spent for this was 592.14
seconds in average. These results are summarized in Table [3.6]

The results for the grid instances can be seen in Table B.7l For those instances, the
Lagrangian subgradient method was able to solve to optimality every instance. The B&B
algorithm was unable to solve 4 out of 25 grid instances. In fact, only one of the 20 x 20
grid instances was solved within the time limit (the processes were killed by the timeout
script) and every other grid instance was solved to optimality. Regarding this set of
instances, it is simply not worth executing a WSEA, since the LR is able to solve them
relatively easy.

3.5 Conclusions and Future Directions

To our knowledge, this paper proposes the first exact approach to tackle the MSTR. Con-
cerning the MSPM, our B&C algorithm is able to solve exactly all instance and runs in
smaller computational times when compared to the results reported in [9]. As for the
MSST, we developed an exact B&C algorithm based on a stronger formulation than the
one introduced in [9] [10]. This algorithm obtained optimal solutions for several instances
as well as high quality primal and dual bounds for many others in short computation
times.

Moreover, we also devised Lagrangian heuristics for the three problems and conducted
several computational experiments with them. These tests showed that they rapidly yield
solutions with small costs, often proven optimal ones. It should be noticed that, we are
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Table 3.6: Results for MSTR TSP instances.

| Instance | LB UB Time | GAP% |
LR B&B LR B&B LR B&B LR B&B
berlin52 24 24 24 24 7.70 9.11 0.00 0.00
ch130 32 T 33 33  165.09 T 3.03 I
ch150 34 T 35 35  268.69 I 286 I
eil76 32 32 33 32 112.64 178.18 3.03 0.00
gil262 49 I 50 50 1779.50 T 2.00 i
gr202 42 T 42 42  615.63 T 0.00 i
kroA100 29 29 30 30 107.21 1967.38 3.33  3.33
kroA150 35 T 36 36  330.66 T 278 I
kroA200 40 I 41 41 736.80 I 2.44 I
kroB100 29 29 30 30 119.87 1976.12 3.33  3.33
kroB150 34 f 35 35 408.44 I 2.86 1
kroB200 39 T 40 40  705.75 T 250 i
kroC100 29 29 29 29 96.18 161.44  0.00  0.00
kroD100 29 29 29 29 30.45 86.90  0.00 0.00
kroE100 29 29 30 30 98.93 1962.76  3.33  3.33
1in318 69 I 71 71 1803.40 T 2.82 1
pch442 157 T 180 180 1827.53 T 12.78 i
prl24 48 49 49 49  405.61 463.30 2.04 0.00
prl36 66 66 67 66 589.67 658.60 1.49  0.00
prl44 74 74 T4 74 675.39 848.44  0.00  0.00
pri52 45 45 45 45  420.93 1015.55 0.00 0.00
pr226 141 150 150 150 1884.99 2855.06 6.00  0.00
pr264 90 I 92 92 1811.44 I 2.17 I
rd100 29 29 29 29 17.45 82.05 0.00 0.00
rd400 52 T 55 55 1803.73 T 545 I
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Table 3.7: Results for MSTR grid instances.

‘ Instance | LB | UB | Time | GAP% ‘

LR B&B LR B&B LR B&B LR B&B
gridba 22 22 22 22 0.17 0.17 0.00 0.00
grid5b 21 21 21 21 0.27 0.36  0.00 0.00
gridbc 21 21 21 21 0.17 0.17 0.00 0.00
gridbd 21 21 21 21 23.14 23.21 0.00 0.00
gridbe 20 20 20 20 0.18 0.18  0.00 0.00
grid8a 34 34 34 34 2.20 2.36  0.00 0.00
grid8b 34 34 34 34 3.48 3.71  0.00 0.00
grid8c 34 34 34 34 1.61 1.81  0.00 0.00
grid8d 35 35 35 35 1.07 1.26  0.00 0.00
grid8e 35 35 35 35 1.11 1.35  0.00 0.00
grid10a 44 44 44 44 8.01 9.03 0.00 0.00
grid10b 42 42 42 42 3.31 3.93 0.00 0.00
grid10c 47 47 47 47 9.52 10.48  0.00  0.00
grid10d 46 46 46 46 2.61 3.43  0.00 0.00
grid10e 46 46 46 46 7.05 8.10  0.00  0.00
grid15a 66 66 66 66 75.13 127.64  0.00  0.00
grid15b 68 68 68 68 13.65 70.36  0.00  0.00
grid15c 64 64 64 64 20.70 67.39 0.00 0.00
grid15d 66 66 66 66 39.24 86.21  0.00  0.00
grid15e 67 67 67 67 79.53  141.38  0.00  0.00
grid20a 89 89 &9 89  500.78 2491.35 0.00  0.00
grid20b 86 T 86 86 73.09 T 0.00 I
grid20c 90 T 90 90 1781.70 T 0.00 1
grid20d 87 T 87 87  204.77 T 0.00 I
grid20e 90 T 90 90 1213.83 T 0.00 I
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not aware of another work in the literature which reports on computational results for
the MSTR.

Future directions in this research are currently being considered. This includes improv-
ing the performance of our heuristics by adding new features to it, such as, a procedure
for variable fixing in the traditional Lagrangian fashion and a fast local search to reduce
primal bounds.

This research was partially supported by Conselho Nacional de Desenvolvimento Clientifico e
Tecnoldgico — grants #301732/2007-8, #473867/2010-9, #147619/2010-6; Fundagao de Amparo
a Pesquisa do Estado de Sao Paulo — grant #07/52015-0, and a grant from FAEPEX/UNICAMP.
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Chapter 4

On Triangulations with Minimum
Stabbing or Minimum Crossing
Number

The text presented in this chapter is co-authored with Sandor Fekete and Cid C. de Souza
and corresponds to a preprint of an article submitted for consideration in International
Journal of Computational Geometry & Applications (©) 2015 copyright World Scientific
Publishing Company http://www.worldscientific.com/loi/ijcga. In this paper, we show
the complexity of finding a triangulation with minimum stabbing number (MSTR) both in
axis-parallel and general cases, and finding a triangulation with minimum crossing number
(MCTR) in the general case. Moreover, computational experiments with an iterative
rounding algorithm for the MSTR, using axis-parallel instances, is presented and the results
support the conjecture that it provides an approximation for the stabbing problem.

In this paper we consider the computational complexity of the Minimum Stabbing
Triangulation Problem (MSTR), both in the axis-parallel and general cases, and the com-
putational complexity of the Minimum Crossing Triangulation Problem (MCTR) in the
general case. The complexity class of these problems were left as open questions in [9} 10].
Here we prove that the three problems are A/P-hard, thus answering those open questions.
In addition, we perform a computational study based on two different polynomial-time
heuristic approaches, one based on Lagrangian relaxation, the other on iterated rounding.
With respect to the practical objective of finding good solutions in reasonable time, we
demonstrate that both of these algorithms yield feasible solutions that are within a few
percentage points of the optimal solutions. With respect to the theoretical objective of
establishing a polynomial-time algorithm that gets within a constant factor of the opti-
mum even in the worst case, we provide evidence supporting the conjecture that iterated
rounding may be such an approximation algorithm.
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4.1 Introduction

Triangulating a set of points is one of the basic problems of Computational Geometry:
given a set P of n points in the plane, connect them by a maximal set of non-crossing
line segments. This implies that all bounded faces of the resulting planar arrangement
are triangles, while the exterior face is the complement of the convex hull of P.

Triangulations are computed and used in a large variety of contexts, e.g., in mesh
generation, but also as a stepping stone for other tasks. While it is not hard to compute
some triangulation, most of these tasks require triangulations with special properties that
should be optimized. Examples include maximizing the minimum angle, minimizing the
total edge weight or the longest edge length.

When dealing with structural or algorithmic properties, a relevant objective function
is the stabbing number: for a given set of line segments, this is the maximum number
of segments that are encountered (in their interior or at an endpoint) by any line. If
we consider only axis-parallel lines, we get the azis-parallel stabbing number. A closely
related measure defined by Matousek [14] is the crossing number, which is the number of
connected components of the intersection of a line with the union of line segment. When
considering structures like triangulations, the crossing number is precisely one more than
the maximum number of triangles intersected by any one line.

Stabbing problems have been considered for several years. The complexity of many
algorithms in computational geometry is directly dependent on the complexity of ray
shooting; as described by Agarwal [I], the latter can be improved by making use of span-
ning trees of low stabbing number. A majority of previous work on stabbing and crossing
problems has focused on extremal properties. Settling the complexity of Minimum Stab-
bing Number for spanning trees was one of the original 30 outstanding open problems of
computational geometry on the list by Mitchell and O’Rourke [15]. (An up-to-date list is
maintained online by Demaine, Mitchell, and O’Rourke [8].) In particular, problems in
the context of triangulation are highly relevant. One of the theoretically best performing
data structures for ray tracing in two dimensions is based on a triangulation of the polyg-
onal scene; see Hershberger and Suri [12]: in their “pedestrian” approach to ray shooting,
the complexity of a query is simply the number of triangles visited, i.e., corresponds pre-
cisely to the stabbing number. Held, Klosowski, and Mitchell [I1] investigate collision
detection in a virtual reality environment, again, based on “pedestrian” ray shooting. In
other related work, Aronov et al. [5] have performed an experimental study of the com-
plexity of ray tracing algorithms and run-time predictors, which include average number
of intersection points for a transversal line, and depth complexity. Agarwal, Aronov, and
Suri [2] investigate extremal properties of the stabbing number of triangulations in three
dimensions, where the stabbed objects are simplices; see also Aronov and Fortune [6] for
this problem. Shewchuk [19] shows that in d dimensions, a line can stab the interiors of
O(n/%?1) Delaunay d-simplices. This implies, in particular, that a Delaunay triangulation
in the plane may have linear stabbing number. Another closely related variant is studied
by de Berg and van Kreveld [7]: the stabbing number of a decomposition of a rectilin-

1 This should not be confused with the crossing number in graph drawing, which is the total number
of crossing line segments.
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ear polygon P into rectangles is the maximum number of rectangles intersected by any
axis-parallel segment that lies completely inside of P; they prove that any simple recti-
linear polygon with n vertices admits a decomposition with stabbing number O(logn),
and they give an example of a simple rectilinear polygon for which any decomposition
has stabbing number Q(logn). They generalize their results to rectilinear polygons with
rectilinear holes. Furthermore, Toth [20] showed that for any subdivision of d-dimensional
Euclidean space, d > 2, by n axis-aligned boxes, there is an axis-parallel line that stabs at
least Q(logl/(d_l) n) boxes, which is the best possible lower bound. A concept similar to
the crossing number was introducd by Aichholzer et al. [3] under a different name. They
call a polygon k-conwver, if every line intersects it in at most k connected components. In
the followup paper [4], Aurenhammer et al. studied the concept of k-convex point sets:
does a given set P of n planar points allow a polygon that is k-convex? Clearly, this is
closely related to deciding whether P allows a simple polygon of crossing number at most
2k.

All this makes it clear that computing a triangulation of low stabbing or low crossing
number (for general or axis-parallel stabbing lines) are highly important problems. Three
of the four variants have been left open for many years. In [9} 18] it was proved that the
problem of finding a triangulation with minimum crossing number (MCTR) is N/P-hard
in the axis-parallel case. However, the more interesting case of general orientation has
remained an open problem. Furthermore, for either version of the stabbing problem (for
axis-parallel lines or those of arbitrary orientation), no complexity result have been estah-
lished so far. (As it turns out, [I0] contains an erroneous statement in the introduction
that results for the stabbing number are established in the paper. This is not the case,
the only hardness result contained is for the axis-parallel crossing number.)

In this paper we to show that the Minimum Stabbing Triangulation Problem (MSTR)
is NP-hard both in the axis-parallel and general cases. We then present a proof that
the MCTR, in the general case, is also NP-hard. This closes all remaining gaps in the
complexity analysis of optimal stabbing and crossing numbers for triangulations. In ad-
dition, we perform a computational study that supports the conjecture that a heuristic
based on iterated rounding applied to an LP relaxation may provide a constant-factor
approximation algorithm.

The paper is organized as follows: in Section some basic concepts are defined
and the problems are stated, Section presents an NP-hardness proof for the MSTR
in the axis-parallel case, Section shows a proof that MSTR is N'P-hard for general
orientation, while Section contains a proof of N'P-hardness of MCTR in the general
case. Section provides our computational study, with some concludig thoughts in
Section (4.7

4.2 Preliminaries

Given a set of points P in the plane, the geometric graph G(P) = (V, F) induced by P
is the complete graph such that the vertices of V' are in one-to-one correspondence with
the points in P and F is composed of the set of all straight line segments having one point
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of V' at each end. Now, let [ be a line in the plane and G'(P) = (V, E’) be a subgraph
of G(P). The stabbing number of line [ relative to G'(P) is the number of edges in
E’ intersected by [. Moreover, given a set of lines L, the stabbing number of graph
G'(P) relative to L is the maximum stabbing number among all lines in L.

Regarding the set of lines L, two choices were considered in [9, [18]. The first comprises
the set of all axis-parallel lines in the plane. The second is formed by all lines in the plane,
independent of their directions. From now on, the first choice will be referred to as the
axis-parallel case and the latter as the general case.

Given a set of points P and a choice of L, the minimum stabbing triangulation problem
asks for a subgraph G'(P) = (V, E’) of G(P) = (V, E) that corresponds to a triangulation
and has the minimum stabbing number among all possible triangulations.

A different but related quantity is the crossing number. The crossing number
of a line [ in the plane relative to a subgraph G'(P) = (V, E’) of G(P) = (V, E) is the
number of connected components in the intersection of [ and G’(P). Given a set of lines
L in the plane, the crossing number of graph G’(P) relative to L is the maximum
crossing number among all lines in L.

From the above definitions, we obtain the minimum crossing triangulation problem,
in which one seeks a subgraph G'(P) = (V, E’) of G(P) = (V, E) that corresponds to a
triangulation and has the minimum crossing number among all possible triangulations.

Figure shows a triangulation and a set of stabbing lines for the general case.
Line [ in this drawing has stabbing number 14 and crossing number 2, while line r has
both stabbing and crossing numbers equal to 8. On the other hand, Figure shows a
triangulation and a set of stabbing lines in the axis-parallel case. Line s has stabbing and
crossing numbers equal to 8, while line ¢ has stabbing number 11 and crossing number 6.

Figure 4.1: A triangulation with a general set of lines.

4.3 The Complexity of Finding a Triangulation with
Minimum Axis-Parallel Stabbing Number

We use a terminology similar to the one presented in [9] [I8], which is explained below.
We consider a set P of points (vertices) in the plane and the corresponding geometric
graph G(P) as defined in the previous section.
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Figure 4.2: A triangulation with an axis-parallel set of lines.

Thus, given P, a horizontal line is a maximal set of vertices that are collinear in
horizontal direction. A wvertical line is a maximal set of vertices which are collinear in
vertical direction. A row is composed by two horizontal lines (with no other horizontal
line in the middle) and the space between them. A column is the vertical equivalent of
a row. An st-row consists of three consecutive horizontal lines and the spaces between
them. Finally, an st-column is formed by three consecutive vertical lines and the spaces
between them.

The idea of the hardness proof for the axis-parallel case of MSTR is based on the
observation that in this problem, the critical stabbers, i.e., those that have the greatest
stabbing number, are those on horizontal or vertical lines, while in the MCTR, the critical
stabbers, i.e., those that have the greatest crossing number, are the ones between hori-
zontal or vertical lines. This observation allows us to adapt the structure of the proof in
[9, 18] to the MSTR.

Next we present three lemmas that define properties that are useful for the proof of
Theorem 411

Lemma 4.1. Let T be a triangulation in G(P). Consider an st-row formed by three
horizontal lines, l,, l, and l. in P, having a, b and c vertices, respectively, with l, being
the middle line. If the number of edges of T in l,, l, and l. are, respectively, a — i, — 1,
b—1i,—1 and c —i. — 1, then a horizontal stabber on I, has stabbing number at least
a+3b+c+i, +1i.—3.

Proof. 1t is easy to see that a horizontal stabber on [, stabs all the edges having some
point in the space between [, and [,, which is equal to the crossing number of a stabber
between these lines. Moreover, as stated in [10], Section 1.1, § 2, the latter is equal to
the number of triangles plus one. From Lemma 4 in [10], this crossing number is at least
a+ b+ i, + 1 — 1. Again, one can easily see that a horizontal stabber on [, also stabs
all the edges having some point between [, and [.. Hence, following the same reasoning
as before, we can conclude that this contributes b + ¢ 4 7, + 7. — 1 units to the stabbing
number. Clearly, such a horizontal stabber also stabs the edges on [, which contributes
b — i, — 1 units to the stabbing number. There is, however, an intersection between these
sets of edges whenever 7, # 0. When this happens, for each two neighboring vertices u
and v in [, for which there is no edge (u,v), exactly one edge is counted both in the set
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between [, and [, and in the set between [, and [.; in our count of stabbing numbers,
each missing edge in [, contributes one unit to the set between [, and [, and one unit
to the set between [, and [.. Therefore, we must subtract 7, from the stabbing counter.
Hence, we can conclude that the stabbing number of a horizontal stabber on [, is at least
a+b+ig+iy—1+b+c+iy+ic—1+b—iy—1—iy=a+3b+c+is+i.—3. O

Similar arguments can be used to show that the stabbing number of a vertical line [,
which is the middle line in an st-column composed by [,, [, and [, is at least a +3b+ ¢+
iq + 1. — 3, with a, b, ¢, i4, 7, and i, defined as before.

The next lemma helps determining the stabbing number of lines crossing a structure
that is later used as a variable gadget in the proof of Theorem 4.l

Lemma 4.2. Let T be a triangulation in G(P). Consider an st-column formed by three
vertical lines, l,, l, and l. in P, having a, b and c vertices, respectively, with [, being
the middle line. Let the number of edges of T in l,, l, and l. be, respectively, a — i, — 1,
b—iy,—1 and c—i.—1. Moreover, for each of these lines, consider the pairs of consecutive
vertices with no edges of T connecting them, say, {uq, vy} in ly, {up, v} in ly and {u., v.}
in l.. Let jq, jp and j. be the number of horizontal edges in T' between the three pairs
{ta,va}, {tp, vp} and {u.,v.}, respectively. Suppose that j, = j. > jJ» and every horizontal
edge crossing the space between w, and v, also crosses the ones between u, and v, and
between u. and v.. Then a vertical stabber on l, has stabbing number of at least a + 3b +
c+ig+ic+ jo+ Je—05.

Proof. This lemma is very similar to Lemma [£1] except that now we have horizontal
edges crossing the space between specific pairs of vertices, a situation that is illustrated
in Figure [43] in which arrows point to lines l,, [, and [.. Thus, we start by making
some changes in the calculations of the number of triangles between [, and [, in order to
consider the j, horizontal edges crossing the space between u, and v,.

Notice that there is one triangle intersecting the space between [, and [, for each edge
in [,. We denote this set of triangles by A. Besides, for each missing edge in [,, there are
at least two triangles intersecting the space between [, and [,. Let I, denote this set of
triangles. Finally, for each horizontal edge e, between u, and v, , there is one triangle
above e, and one triangle below e,; we let J, denote this set of triangles. Similarly, we
define sets B, I, and J, in [,

Thus, the number of triangles in the space between [, and [, is given by the sum
of the cardinalities of the sets A, B, I,, I, J, and J, minus the cardinality of their
intersections. There are only four intersections to consider: the ones between J, and B,
between J, and J,, between J, and I, and, finally, between J, and [,. It is easy to see
that |J, N B| < jo — Jby |Ja O Jo| = 20p, [Ja N 1| < 2 and |J, N 1| = 2.

The exact cardinality of J,NB and J,N I, depends on the choice of triangulations that
occur with the extreme horizontal edges between u, and v,, with, say, (x,1,x,2) being
the closest to u, and (x,1,2,2) being the closest to v,. If, for instance, (z,1, z,2) forms
a triangle with u,, then |J, N B| < j, — j» — 1 and |J, N I,| > 1. However, note that
|Jo N B+ |Jo N 1| = ja— Jb-
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As a consequence, the number of triangles in the space between [, and [, is equal to
[Al+ Bl + [La| + [ L] + [ Ja| + [ S| = [Ja N Bl = [Ja N La| = [Ja O S| =[S N L] = (a—iq — 1)+
(b—ip—1) +(2ia) + (206) + (2a) + (26) — (o — Jb) — (2b) =2 = a+b+io +ip+ ju + Jo — 4

We can calculate the number of triangles in the space between [, and [, in the same
way we did for [, and [, and conclude that it must be at least b+ ¢ + i, + ic + Jp + jo — 4.

The stabbing number of a line on [, is equal to the sum of the number of triangles in
the space between [, and [, the number of triangles in the space between [, and [, plus
two (on each side, a line on [, stabs one edge more than the number of triangles), plus the
number of edges in [, which is equal to b —4, — 1, minus the number of triangles that are in
both spaces. The triangles which are in both spaces are those in sets [, and .J,, subtracting
the intersection between them. Therefore, the stabbing number of a line on [, is at least
(a+b+ig+ip+jotis—4)++c+iytictip+je—4)+2+(b—ip—1) —(24,) — (27) +2

=a+3b+c+ig+ict jo+ je— 5. O
I
|a’|b’|c' |a|b|c

Figure 4.3: Extended rectangle of a variable and lines of the situations described in
Lemma and Lemma

Next we state a lemma that helps us to determine the stabbing number of a line on
the border of a variable gadget, which will be useful for proving Theorem [Tl

Lemma 4.3. Let T be a triangulation in G(P). Consider an st-column formed by three
vertical lines, l,, I, and l. in P, having a, b and c vertices, respectively, with l, being the
middle line. Let the number of edges of T in l,, l, and l. be, respectively, a—i,—1, b—1,—1
and ¢ —1i.— 1. Moreover, let j. denote the number of horizontal edges in T' between a pair
of vertices {uc,v.} in l. that have no edges connecting them. Then a vertical stabber on I,
has stabbing number of at least (a+b+i,+ip— 1)+ (b+c+ip+ic+jc—4)+(b—ip—1)—1, =
a+3b+c+ i, + i+ jo — 6.

Proof. The situation considered in this lemma is shown in Figure[4.3] in which the vertical
lines indicated by the arrows labelled [/, Iy and [. play the roles of lines [, [, and [. in
this lemma, respectively. Using the same reasoning as in the proof of Lemma [£2] we find
that the stabbing number of a line on [, is equal to the number of triangles between [,
and [, plus one, plus the number of edges on [,, plus the number of triangles between [,
and [. plus one minus the cardinality of the intersection of these sets.



4.3. The Complexity of Axis-Paralle]l MSTR. 61

The only set that differs from those calculated in the proof of Lemma is the set of
triangles between [, and [.. The size of it is given by the formula |B| + |C| + |I,| + |I.| +
|Je| = |J. N B| — |J.N 1|, where all items are defined as in the proof of Lemma [£.2]

The cardinalities of the sets J. N B and J. N I. depend on the same choices of trian-
gulations for the extreme horizontal edges as in the case of sets J, N B and J, N I, in the
proof of Lemma [£.2l We conclude that in this case we have |J.N B|+ |J. N I.| = j. + 1.

Therefore, the number of triangles between [, and [, is at least (b—id, — 1) 4+ (¢ — i, —
1)+ 2+ (26, — 2) + 2j. — (Je+ 1) = b+ c+ iy +i. + jo. — 5. So the stabbing number of a
line on [, is at least (a+b+i,+ip,—2)+ 1+ (b+c+ip+ic+j.—5)+1+(b—ip—1)—ip =
a+3b+c+ i+ i+ j.— 6. O

We are now ready to provide the main result of this section. We present a reduction
from 3-SAT to the MSTR in the axis-parallel case, thus proving that the latter is N"P-hard.

Theorem 4.1. Finding a triangulation with minimum axis-parallel stabbing number is

NP-hard.

Proof. As stated earlier, the proof goes along the same lines as the one given in [9] 18] for
the N'P-hardness of the problem of finding a triangulation with minimum axis-parallel
crossing number. It is based on a reduction from 3-SAT and, to facilitate the under-
standing, our explanation uses the same example as in the cited paper. Thus, Figure
gives an idea of the MSTR instance obtained from the 3-SAT instance B(xzg,x1,22) =
(o Va1 VTa) A (z0 VTV a2) A (To VTV Ta).

In this proof we show that an instance of 3-SAT is satisfiable if and only if the corre-
sponding MSTR instance has an axis-parallel stabbing number of at most 5K — 3 for some
value K which, in our construction, is the maximum number of vertices in any horizontal
or vertical line. The next definition is used in the arguments that follow.

We say that an st-row (st-column) is full if it is composed by three horizontal (vertical)
lines having K vertices each. Similarly, we say that a row (column) is full, whenever its
composing horizontal (vertical) lines have K vertices each.

The construction. The idea behind the construction is very similar to the one for the
NP-hardness of the axis-parallel crossing number. In the next paragraphs we describe
the essential components of the construction, such as variable gadgets, literal gadgets,
clause gadgets and how the surroundings of these gadgets should be constructed in order
to achieve the desired stabbing number.

Variable gadget. A variable gadget is composed of two sets of eight vertices forming
rectangles with three vertices on each side. The two rectangles of a variable are horizon-
tally aligned; together they represent a variable x;. The strip induced by the left rectangle
is called the x;-column, while the strip induced by the right rectangle is the Z;-column of
the variable. Figure shows the variable gadget (shaded), which is analogous to the
one in [9, [18].

The triangulations of both rectangles are identical, except for the middle horizontal
edge, which is present in one of the rectangles and missing in the other. The strip induced
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Figure 4.4: A variable gadget with vertices added to its right. Here we assume that the
number of occurrences of the most frequent literal is ¢t = 2.

by the rectangle with the missing horizontal edge is called the true-column of the variable
and the strip induced by the other rectangle is the false-column. A setting in which the
left column (z;-column) is the false-column, is the false setting, while the other possible
setting is the true setting.

The width of each rectangle must be the smallest power of two greater or equal to
four times the number of occurrences of the most frequent literal. Therefore, the width of
a rectangle is at most eight times the number of occurrences of the most frequent literal.
This is the necessary width to accommodate all the literals and full columns between
them as we shall see later.

Around the variables. The st-rows and st-columns neighboring the rectangles of a
variable gadget are full. Therefore, from Lemma (1], the edges in the convex hull of
these rectangles must be present in any triangulation with minimum stabbing number.
Suppose an edge is missing in the upper boundary of a variable’s rectangle. Then we
apply Lemma [£1] and conclude that the stabbing number of the middle horizontal line
of the st-row is greater than 5K — 3, because the st-row composed by the horizontal line
containing the upper boundary and the two horizontal lines above it is full. A similar
reasoning can be used for the st-row in the lower boundary and the st-columns surrounding
them. Hence, all the edges must be present in the convex hull of the rectangles in any
triangulation with minimum stabbing number.

At the rows above and below the rectangles, the horizontal distance between the
vertices within the vertical strip defined by the rectangles is halved at each horizontal
line farther to the horizontal lines in the boundary of the gadget. Thus, if the number of
occurrences of the most common literal is ¢, the vertices within the vertical strip will have
a horizontal distance of one unit after ©(logt) rows. The rectangle of a variable plus the
vertices located above and below it within its vertical strip, until and including the lines
where the horizontal distance between the vertices is of one unit, compose what we call
an extended rectangle of a variable. An example of an extended rectangle of a variable is
shown shaded in Figure 4.3

In order to ensure that one of the rectangles of a variable will have a missing horizontal
edge and the other will have it present, the horizontal line containing these vertices must
have K — 1 vertices, while the two horizontal lines above it and the two horizontal lines
below it must have K vertices. Thus, by Lemmal[4.1] there can be only one edge missing in
this middle horizontal line, otherwise the stabbing number would be greater than 5K — 3.

The correct horizontal vertex count must be guaranteed by placing the proper number
of vertices to the right of the variable gadgets and in the right side of the horizontal lines
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above and below the gadget. Let h be the height of an extended rectangle of a variable.
Thus, the first line above the central horizontal line will have 2° = 1 vertex missing at
the right end, the second line above the central horizontal line will have 2° 42 x 2! =5
vertices missing at the right end and the yth line above the horizontal central line will
have 1 + 2 Zf:_ll 2% vertices missing at the right end, where y < h/2. If y is odd, the first
missing vertex will be at the second position from the right. If y is even, the first missing
vertex will be at the third position from the right. After line (h/2), every horizontal
line has the same number of missing vertices. These missing vertices appear at the right
end side of the construction alternating a present and a missing vertex, i. e., there is a
present vertex, than a missing vertex etc., until the number of missing vertices is reached.
The same number of vertices are missing at the right end of the lines below the central

horizontal line. Figure shows how this can be done.

Variable position. The gadget for a variable z; is positioned above and to the right of
the gadget for a variable x; where i < j. As before, a variable gadget is adjacent to full
st-rows and st-columns, so variable gadgets are horizontally separated by st-columns and
vertically separated by st-rows.

Literal gadget. A literal gadget is composed by a 3 x 3 grid with the central vertex
missing, i.e., a square composed of eight vertices. At each side of the square, the vertices
are one unit of distance apart from each other.

The setting of a literal gadget in which the middle horizontal edge is missing is called
the false setting of a literal gadget, while the setting in which the middle horizontal line
is present is called the true setting of a literal gadget.

Clause gadget. As we start with an instance of 3-SAT, each clause has exactly three
literals. In our construction the three literal gadgets of a clause are horizontally aligned.
Above and below every clause are full st-rows.

If a literal x; appears in clause c;, we place a literal gadget in the x;-column. If,
however, a literal z; appears in clause ¢;, we place a literal gadget in the Z;-column. If a
literal z; appears both in clauses ¢; and ¢, where j < k, we place the literal z; in clause
cr below and to the right of the literal z; in clause c;. This guarantees that a vertical
line never stabs more than one literal gadget. Also, a clause ¢, lies below a clause ¢; for
k>j.

To the right of clauses. We want the stabbing number to be less than or equal to
5K — 3 if and only if the formula is satisfiable. Therefore, if a clause is not satisfied,
i.e., its three literals have false settings, it must produce a stabbing number greater than
5K —3. Because in a false setting of a literal gadget, the middle horizontal edge is missing,
an unsatisfied clause implies three edges missing in the middle horizontal line. Thus, if
the middle horizontal line of a clause has K — 2 vertices and the rows directly above and
below it are full, an unsatisfied clause produces a stabbing number greater than 5K — 3
for the top and bottom horizontal lines of the clause. Conversely, if at least one literal
has a true setting, the stabbing number is less or equal to 5K — 3 for those lines.
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Hence, we must add vertices to the right of clauses making the middle horizontal line
have K — 2 vertices and the rows above and below them be full rows.

Below variables and literals. We add vertices below variables and literals in order
to guarantee that the st-columns around variables are full and that variables and literals
have the correct setting of missing and present middle edges.

Recall that we want to make a literal gadget have a true setting whenever its corre-
sponding column is the true-column, e.g., we want literal Z; to have a true setting if the
T;-column of variable z; is the true-column, i.e., the one with the middle horizontal line
missing. Therefore, we want a literal gadget to have the middle horizontal edge present
(literal gadget true setting) if its corresponding column have a true setting.

Let [, be the vertical line containing the left side of a literal gadget x;, let [. be the
vertical line passing through the center of the same literal gadget, i.e., the line immediately
to the right of [, and let [, be the line immediately to the left of [,. Let a be the number
of vertices in [, and b be the number of vertices in [,. Let i, and 7. be the number of
missing edges connecting neighboring vertices, respectively, in lines [, and [.. Moreover,
let j, and j. be the number of horizontal edges crossing, respectively, lines [, and [,
inside the extended x; rectangle. Because all rows containing points in the extended
rectangle of some variable are full (except for the two central rows), all the horizontal
edges must be present inside the extended rectangle (except, possibly, the central edge).
Therefore, according to Lemma and Lemma [4.3] the stabbing number of [, is at least
a+3b+ c+ i, +i. + j. — 6 if the literal is the first of its kind, i.e., the leftmost literal in
the x; strip, and is at least a + 3b + ¢ + iy + ic + Jo + Jo — D otherwise.

Whenever the central horizontal edge is present in the z; variable rectangle and missing
in the corresponding literal gadget, the expression for the stabbing number of a line on [,
has a strictly smaller value than when that edge is present in the gadget. Thus, we add
vertices in the inferior portion of those three lines making the stabbing number equal to
5K — 3 whenever the central edge is missing in the variable and present in the literal.
Observe that this does not prevent both middle edges from missing simultanously; the
presence of the middle horizontal edges are enforced by the vertices we added to the right
of clauses and variables.

If the literal under consideration is not the leftmost literal of its strip, Lemmald.2] allows
us to calculate the number of vertices we have to add at the bottom of the construction
in order to guarantee the correct stabbing number. Let h be the height of the extended
rectangle in question and let y,, ¥, and y. be the number of vertices missing in lines [, [,
and [, inside the extended rectangle. Thus, we havey, = h—1,y.=h—1,a = K—(h—1),
b=K-y,c=K—(h—1)—1,i,=1,i,=1,i. =1, j, = h—1, j, = ypand j. = h—1, and
we know that the stabbing number of line on [} is at least a+3b+c+1, +1c+ Jo +Jje — D =
K-h+1+3K-3y+K—-h+1+1+h—14+h—-1—-5=5K — 3y, — 4. Therefore, in
order to guarantee that a line on [, will have a stabbing number of 5K — 3 in a minimum
triangulation, we must have bk — 3y, —4 + 2 = 5K — 3, so, 2 = 3y, + 1 and this is how
much we must increase the stabbing number of [, by adding vertices at the bottom of the
construction.

To this end, we leave a distance of two units between the last h + 1 lines and for each
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line [, add y, vertices in its bottom and one vertex at the bottom of the vertical line to
its right. Each vertex added to [, increases the stabbing number of a line on it by three
units, and each vertex added to the vertical line to its right adds one unit to the stabbing
number of that line, thus achieving the desired stabbing number. Figure gives an idea
of how to obtain such a construction. Observe that as the number of vertices in [, . and
the vertical line to the right of /. are always smaller than in [,, the stabbing numbers of
stabbers on these vertical lines are not greater than 5K — 3.

In the case of the leftmost literal in the x; strip, we can use Lemma [4.3] to conclude
that the stabbing number of a line on [, has a stabbing number of 5K — 6 in a minimum

triangulation and, therefore, we add one vertex to [, to guarantee a stabbing number of
5K — 3.

Figure 4.5: One rectangle of a variable gadget, three literal gadgets and the vertices added
below them.
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Satisfiability implies a stabbing number of 5K — 3. If the reduction we described
is valid, a satisfiable formula must produce an MSTR instance with an optimal solution of
value no more than 5K — 3, where K is the maximum number of vertices in any horizontal
or vertical line.

The only parts of the construction that could have a stabbing number greater than
5K — 3 are the clause gadgets, which have horizontal stabbing number of 5K — 2 if the
three literals in the clause have false settings. However, if the formula is satisfiable, there
is a setting in which at least one literal has a true setting in every clause. By construction,
this implies that the stabbing number cannot be greater than 5K — 3. Thus, satisfiability
implies a stabbing number of at most 5K — 3.

Unsatisfiability implies a stabbing number greater than 5K —3. For the converse
direction, assume that the the formula is not satisfiable; we establish that the resulting
MSTR instance must have an optimal solution with value greater than 5K — 3, where K
is the maximum number of vertices in any horizontal or vertical lines.

If a formula is unsatisfiable, there is no setting of variables that satisfies every clause.
Thus, for every setting of variables, there is always at least one clause that has a false
setting for all three literals. By construction, this implies that for every setting of variable
gadgets there is always a clause in which all three literal gadgets have the middle horizontal
edge missing. Therefore, the stabbing number of the horizontal lines containing the top
and bottom lines of this clause gadget is equal to 5K — 2. Hence, unsatisfiability implies
a stabbing number greater than 5K — 3.

Polynomial size of the construction. It remains to be shown that the construction
has polynomial size. As the construction is very similar to the one presented in [9] 18],
the arguments are basically the same as used in that proof, except that a rectangle
representing a variable has width of at most 8t instead of 4¢.

Let B be an instance of 3-SAT, let n be the number of variables, ¢ the number of
clauses and t the number of occurrences of the most common literal. The size of a
rectangle representing a variable is at most 8t. The number of vertices we have to add
to the right of a variable gadget is ©(t). Thus, the horizontal size of the construction is
O(nt).

Each rectangle representing a variable has a height of ©(logt). The height of clauses
is constant and equal to 2, plus that of the full st-rows between them, giving a total of 4
per clause. The number of vertices we have to add at the bottom of the construction to
achieve the desired vertical stabbing number is O(logt). Hence, the vertical size of the
construction is O(c + nlogt). Therefore, the total size of the construction is polynomial
on ¢, n and t.

O
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Figure 4.6: The construction for the formula (zq V z1 VT3) A (2o VTV 22) A (Tg VT1 V T3)
with assignments xq = false, x1 = true and xs = true. A dark shading indicates a false
setting, while a light shading indicates a true setting.

4.4 The Complexity of Finding a Triangulation with
Minimum General Stabbing Number

We now turn our attention to the problem of computing a triangulation with minimum
general stabbing number. To this end, consider a slightly changed version of the construc-
tion given in the proof of Theorem [4.1] where the second vertical line is at distance one
unit from the first vertical line, the third is at distance two units from the second vertical
line, the fourth is at distance three units from the third vertical line and, in general, the
n + 1-th vertical line is at distance n units from the n-th vertical line. We will refer to
this new construction as the modified one.

Before we proceed, we introduce some additional terminology. A diagonal stabbing
line, or simply a diagonal line, is any stabbing line that is not vertical or horizontal.
Consider a grid of Q) x () vertices with horizontal spaces, as in the modified construction,
i.e., the distance of vertical line n+ 1 to vertical line n is n units. We call a grid with this
spacing rule, a modified grid. Figure [4.7 shows an example of such a modified grid.

Consider a diagonal line [ that stabs two vertices y and z, such that the segment 7z (of
[) contains no other vertex. Denote by h the number of horizontal lines containing vertices
of the grid and intersected by [ between y and z (or, more precisely, by the segment 3z).
Analogously, define v to be the number of vertical lines containing vertices of the grid
and intersected by the segment 3z of [. We say that the stabbing distance relative to [
between y and z is equal to mazx|h,v]; if the context is clear, we may omit the line.
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Figure 4.7: A 13 x 13 modified grid with a diagonal stabbing line. The dotted lines
represent the extensions of the vertical /horizontal lines outside the grid.

Notice that just like in the axis-parallel case of the MSTR, the critical stabbing lines
are the ones stabbing many vertices, as opposed to stabbing a lot of space between the
vertices. Therefore, the main idea used in Theorem is to show that diagonal stabbing
lines stab more spaces between vertices, while orthogonal stabbing lines stab more vertices.

The following lemma gives us a property regarding the number of pairs of vertices with
a given distance that can be stabbed by a given diagonal line. This property will later be
used to establish the number of vertices that can be stabbed by a diagonal stabbing line
in a @) x Q modified grid.

Lemma 4.4. In a modified grid there are at most 2x + 1 pairs of vertices with distance
x that can be stabbed by a given diagonal line [.

Proof. Let [ be a diagonal stabbing line and a its angular coefficient, where we assume a >
0. Let y and z be two vertices stabbed by [ with a distance of z between them. Moreover,
let h and v be, respectively, the number of horizontal and vertical lines containing vertices
of the grid and intersected by [ between y and z. By definition, at least one of h = x or
v = x must be true.

Consider the case in which v = z and A < x. As each column has a unique width and
every row has height one, we can say that the Euclidean distance between the horizontal
coordinates of y and z is equal to b+ (b+ 1) + ... + (b + x), where b is the width of the
first column after y. Hence, this distance is equal to b(x + 1) + z(x + 1)/2. The Euclidean
distance between the vertical coordinates of y and z is equal to A + 1. As the angular
coefficient is a, we have h + 1 = a(b(z + 1) + x(z + 1)/2). For each h € {0,1,2,...,x},
the previous equation has a unique solution for the given x. Therefore, there are at most
x+ 1 pairs of vertices (one for each possible value of h) that can be stabbed with distance
x by a diagonal line when v = x and h < z.

The other possibility is that A = x and v < x. As each column has a unique width and
every row has height one, we can say that the Euclidean distance between the horizontal
coordinates of y and z is equal to b+ (b+ 1) + ... + (b + v), where b is the width of the
first column after y. Hence, this distance is equal to b(v + 1) +v(v+1)/2. The Euclidean
distance between the vertical coordinates of y and z is equal to x + 1. As the angular
coefficient is a, we have z +1 = a(b(v + 1) + v(v +1)/2). For each v € {0,1,2,...,2 — 1},
the latter equation has a unique solution for the given x. Therefore, there are also at most
x pairs of vertices (one for each possible value of v) that can be stabbed with distance x
by a diagonal line for A = x and v < .
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Adding the values obtained in the two cases, we have 2x+1 possible pairs with distance
x. [

The proof of Lemma (4] for a < 0 is analogous and therefore omitted.

The purpose of the next lemma, is to show that the number of vertices stabbed by any
diagonal line is less than @)/4 if @) is big enough. This result is obtained by showing that
for () > 535, the function that yields the number of extended horizontal and vertical lines
stabbed in points that do not contain vertices grows faster than the function that yields
the number of vertices stabbed. Both of these functions are obtained from the relation
in Lemma This allows it to establish the central idea of the proof of Theorem by
showing that diagonal lines stab less vertices than orthogonal lines and, for this reason,
have smaller stabbing numbers.

Lemma 4.5. Any diagonal line stabs less than Q/4 vertices in the modified construction
for any @ > 535.

Proof. As the modified construction has some well-defined holes, i.e., missing vertices in
comparison with a modified grid, the stabbing number of a diagonal line in a minimum
stabbing triangulation of a () x ) modified grid is greater than or equal to that in a
minimum stabbing triangulation of the modified construction with a maximum number
of vertical or horizontal lines equal to Q.

We call an extended horizontal /vertical line, a horizontal /vertical line plus its exten-
sion outside the grid (see Figure [£7). The modified grid has @ x @ vertices, so every
diagonal stabbing line intersects exactly () extended horizontal lines and () extended
vertical lines.

As vertices only exist in the intersections of horizontal and vertical lines, stabbing ()
vertices (which is the maximum possible number of vertices stabbed) is only possible if a
diagonal line does not stab an extended horizontal /vertical line in any point other than a
vertex. This means that whenever a stabbing line intersects an extended horizontal and
an extended vertical line in points not containing vertices, one less vertex is stabbed by
that line.

Now let [ be a diagonal line and v and h be, respectively, the number of extended
vertical and horizontal lines in the grid intersected by [ in some point not containing a
vertex. Because v and h have the same value, the number of vertices intersected by [ is
equal to Q@ — (v+h)/2 or Q@ —v or Q — h.

Let p be the number of vertices stabbed by [ and let d be the sum of the stabbing
distances of each pair of consecutive vertices in [. As the stabbing distance of two vertices
is the maximum of either the number of horizontal lines or the number of vertical lines
stabbed between these two vertices, then d < v+ h. Therefore, as Q = p+ (v+ h)/2, we
have 2(Q —p)=v+h=d<2(Q —p) = Q >p+d/2.

From Lemmal[4.4] there are at most 2z+1 pairs of vertices with distance x stabbed by a
diagonal line. Remember that whenever a pair of vertices is stabbed at distance x, there
are x horizontal or vertical lines stabbed in points not containing vertices. Therefore,
to maximize the number of stabbed vertices, the pairs with smallest distance should be
stabbed. Let y be the greatest distance between two consecutive vertices (with no other
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vertex between them) stabbed by [. In this situation we have p =1+ >"Y_ 2z +1 (two
consecutive pairs of vertices share a vertex) and d = Y _Y_  x(2x 4 1). Therefore, we have
p=1+(14+2y+1)(y+1)/2) =y*+2y+2and d =2y*/3 + 3y*/2 + 5y /6.

Notice that if @) > 535, for any y = 0..10 we have p < /4 and for any y > 10, the
value of d as defined above grows faster than the value of p. Therefore, for any ) > 535,
any diagonal line in a () x @ modified grid stabs less than ()/4 vertices. O

We can now state the main result of this section. Knowing that a diagonal line in
a @ x @ modified grid stabs less than )/4 vertices, we conclude that the orthogonal
stabbing lines are the critical ones in a set of points with that spacing rule. Moreover, we
can use this information to show that a modified construction provides a reduction from
3-SAT to MSTR in the general case. The details are given below.

Theorem 4.2. Finding a Triangulation with Minimum Stabbing Number is N'P-hard.

Proof. The main idea is to modify the construction from Theorem in order to obtain
a new one in which every diagonal line has a stabbing number less than or equal to
some constant defined a priori, i.e., the minimum axis-parallel stabbing number of a
triangulation in the modified construction. Therefore, the reduction from 3-SAT to MSTR
in the axis-parallel case is also valid for the general case.

It is easy to see that the modified construction has the same properties as our original
construction and has polynomial size. Notice that the original construction has horizontal
size of ©(nt), where n is the number of variables of the 3-SAT instance and ¢ is the number
of occurrences of the most common literal. Thus, the new construction has a horizontal
size of ©(n%t?) and the same vertical size as the original construction. Therefore, it is still
polynomial.

Note that our constructions allows a triangulation in which every vertex has degree at
most seven and the axis-parallel stabbing number is 5K — 3. Hence, when a line intersects
a vertex, its stabbing number increases by at most seven (this value is overestimated in
general). On the other hand, when a vertex is not intersected, i.e., when the line stabs
horizontal and vertical lines of the grid in points having no vertex, the stabbing number
is increased by at most four. One such triangulation in the original construction can be
seem in Figure It is possible to obtain other triangulations with different stabbing
numbers for diagonal lines; however, for our purpose, it is enough to show that there is a
triangulation with the desired properties.

From Lemma we conclude that if @ > 535, then at most ()/4 vertices can be
stabbed by any diagonal line. Thus, the stabbing number of any diagonal line is at most
7(Q/4)+4(3Q/4). We want this expression to be smaller than or equal to 5K —3, which is
the stabbing number of the axis-parallel version. Because by construction, ) < K+16t—1,
we want the inequality 7/4(K + 16t — 1) + 3(K + 16t — 1) < 5K — 3 to be true, implying
that K > 304t — 7 should be true. As we can increase the value of K by an appropriate
amount, simply by adding vertical and horizontal lines to the right and bottom of the
construction without altering its properties, this relation can be satisfied for any value
of t. Therefore, there is a polynomial reduction from 3-SAT to MSTR, so the latter is
NP-hard. O
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4.5 The Complexity of Finding a Triangulation with
Minimum General Crossing Number

In this section we use a different approach to prove that the problem of computing a
triangulation with minimum general crossing number is NP-hard. The construction in the
proof of Theorem [4.2] guarantees that the stabbing numbers of horizontal and vertical lines
are greater than or equal to those of diagonal lines, thus making horizontal and vertical
lines critical for determining lines with the greatest stabbing or crossing numbers. In the
present case, in which we are interested in the general crossing number, the construction
in the proof ensures that the almost horizontal and vertical lines, i.e., those with very
big/small angular coefficients, are the critical ones.

As before the reduction is from 3-SAT. More precisely, we show that an instance of
3-SAT is satisfiable if and only if the corresponding MCTR instance has crossing number
of at most 2K — 1 for some value K, which is the maximum number of vertices in any
horizontal or vertical line.

The N'P-hardness proof uses a terminology similar to the one used in the previous
proofs. Accordingly, a horizontal line is a maximal set of vertices that are collinear in
horizontal direction. A wertical line is a maximal set of vertices that are collinear in
vertical direction. A row is composed by two horizontal lines (with no other horizontal
line in the middle) and the space between them. A column is the vertical equivalent of a
row. A cr-row consists of three consecutive horizontal lines and the spaces between them,
where each horizontal line contains at least K — 3 vertices. Finally, a cr-column is formed
by three consecutive vertical lines and the spaces between them, where each vertical line
contains at least K — 3 vertices.

Theorem 4.3. Finding a triangulation with Minimum Crossing Number is N'P-hard.

Proof. As before, we start by describing the gadgets and gving an explanation of how these
gadgets interact for an overall reduction from 3-SAT. This is followed by an argument for
the correctness of the reduction. The proof is completed by showing that the construction
is polynomial.

The construction containing the gadgets has the form of a lattice (see Figure A.8),
with lines composed by cr-rows or cr-columns. Between these lines are spacer gadgets.
Gadgets corresponding to variables, literals and clauses lie on the lines of the lattice.

Spacer gadget. A spacer is a set of points as the one depicted in Figure The
triangulation in that figure has crossing number 27, whihc is significantly less than the
crossing number of a cr-row or cr-column, which have crossing number 34, as shown in
Figure 410, The purpose of this difference is to enforce that lines intersecting spacers
(with the possible exception at extreme positions) have smaller crossing numbers than
the ones not intersecting them.

Variable switch gadget. A wvariable switch is composed by two sets of eight vertices
that form squares with three vertices at each side. Each of these squares is called a half-
variable switch. The two squares of a switch are horizontally aligned, i.e., they are in the
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Legend:

D Variable Multiplier

. Variable Switch

. Adjustment

Figure 4.8: Part of the lattice containing variable switch, variable multiplier and spacers.
At the bottom, the shaded areas indicate missing vertices to guarantee the correct crossing
number.
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Figure 4.9: A spacer gadget and one of its possible triangulations.

Figure 4.10: Part of a cr-row with a crossing line.

same horizontal line of the lattice; they also lie on neighboring vertical lines of the lattice.
The left square is called the x;-switch, while the right one is the Z;-switch of the variable.
Figure shows the variable switch gadget shadowed according to the legend.

The triangulation of both squares is identical, except for the middle horizontal edge,
which is present in one of the rectangles and missing in the other. A setting in which
the left column (x;-switch) has the horizontal edge present, is the false setting, while the
other possible one is the true setting.

Variable multiplier gadget. A variable switch gadget of a variable x; allows us to use
at most two literals z; and two literals Z; (described below). Thus, whenever we have
some literal appearing in more than two clauses, we must use a variable multiplier gadget.

Such a gadget is composed by two sets of eight vertices forming a square with three
vertices at each side. These squares are located above a variable switch gadget or a
variable gate gadget (described below). A variable multiplier gadget has one of its top
squares shifted by one unit to the right, while the other has it shifted one unit to the left
relative to a variable switch gadget or a variable gate gadget’s position. See Figure
for a variable multiplier gadget above a variable switch gadget. Note that this type of
gadget is never vertically aligned with any other gadget.

Variable gate gadget. A variable gate gadget is the gadget that connects literals to
a variable (literal gadgets are described below). The variable switch gadgets can also
function as variable gate gadgets. These gadgets have the same form as the other variable
gadgets: eight vertices forming a square with three vertices at each side. A variable
gate gadget is located to the right of one of the variable multiplier gadget’s square and
horizontally aligned with it. See Figure for a representation of an instance containing
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a variable gate gadget.

Variable gadget. A variable gadget is the composition of variable switches, multipliers
and gates that emulates the behavior of a variable. All these gadgets are called generic
variable gadgets, except when referring to a specific type of gadget.

The two lines containing the top and bottom of any variable gadget contain exactly
K vertices, while the central line contain K — 2 vertices.

Notice that when a variable multiplier m;, is above a x;-switch with a true setting
(middle horizontal edge missing), then m;, must have its middle horizontal edge present
to ensure a minimum crossing number (i.e., 2K — 1) and a variable gate g;; to the right
of m;, must have its middle horizontal edge missing, i.e., g;, must have the same setting
as the z;-switch.

This setting of switches, multipliers and gates generates a chain reaction guaranteeing
that every gate related to a particular half switch has the same setting. Therefore, we
call the x;-columns the column of the x;-switch and the column of every gate related to
this particular half switch.

Around the wvariables. Above a half-variable switch or a variable gate there can be
at most one variable multiplier, while below a half switch or a gate there can be at most
two literal gadgets. However, a variable multiplier and a literal cannot be present at the
same time.

Variable position. The gadget for a variable x; is positioned above and to the right of
the gadget for a variable z;, where ¢ < j. In the following, the gadget for a variable refers
to the set of all gadgets composing a variable, i.e., variable switch, variable multipliers
and variable gates.

Literal gadget. A literal gadget is composed of a set of eight vertices forming a square
with three vertices at each side. This square is located below a variable gate gadget (or a
variable switch gadget that plays the role of a variable gate). If the variable gate has only
one literal, then it must be vertically aligned to that gadget. If, however, the variable
gate has two literals, then the top one is shifted one unit to the left, while the other is
shifted one unit to the right relative to the horizontal position of that gadget.

A literal gadget in which the middle horizontal edge is missing is called the false setting
of the respective variable. Analogously, the setting in which the middle horizontal line is
present is called the true setting of the variable.

Clause gadget. Because our reduction proceeds from is 3-SAT), each clause has exactly
three literals. In our construction the three literals forming a clause are horizontally
aligned. The clause is the cr-row containing the literal gadgets.

If a literal z; appears in clause c;, we place a literal gadget in one of the x;-columns
with room for a literal gadget. If, however, a literal Z; appears in clause c¢;, we place
a literal gadget in one of the Z;-columns with room for a literal gadget. If a literal x;
appears both in clauses ¢; and ¢, where j < k, we place the literal z; in clause ¢, below
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and to the right of the literal z; in clause c¢;. This guarantees that a vertical or almost
vertical line never crosses more than one literal gadget. Moreover, a clause ¢ lies below
a clause c¢; for k > j.

Adjustments to the crossing number. In order to guarantee the desired crossing
number, some adjustments must be made to cr-rows and cr-columns. Adjustment to
a cr-row is only necessary when there is no gadget in the cr-row (this may happen to
obtain the same number of cr-rows and cr-columns). This is done in a region close to its
extremities by removing one vertex from its central horizontal line. The removed vertex
must not belong to a cr-column. Adjustment to a cr-column is necessary whenever there
is no gadget in the cr-column. In this case, the adjustment is done in the same way as
for the cr-rows. Another situation requiring the adjustment of a cr-column is when there
are displaced gadgets (like variable multipliers or literals). In this case, the second (from
the bottom) vertex is removed from the left vertical line of the cr-column (Figure £.8).

Satisfiability implies a crossing number of 2K — 1. If the reduction we described is
valid, then a satisfiable formula must produce a MCTR instance with an optimal solution of
value no more than 2K — 1, where K is the maximum number of vertices in any horizontal
or vertical lines.

A crossing line strictly contained in a cr-row or cr-column has a crossing number that
is less than or equal to the crossing number of any line crossing a spacer gadget, as can
be seen from Figure and Figure [£10l Therefore, the only parts of the construction
that could have a crossing number greater than 2K — 1 are the clause gadgets, which have
crossing number 2K if the three literals in the clause have false settings. However, if the
formula is satisfiable, there is a setting in which at least one literal has a true setting in
every clause. By construction, this implies that the crossing number cannot be greater
than 2K — 1. Thus, satisfiability implies a crossing number of at most 2K — 1.

Unsatisfiability implies crossing number greater than 2K — 1. If the reduction is
valid, the other direction of the proof must also be valid, i.e., if a formula is not satisfiable,
the resulting MCTR instance must have an optimal solution with value greater than 2K —1,
where K is the maximum number of vertices in any horizontal or vertical lines.

If a formula is unsatisfiable, there is no setting of variables that satisfies every clause.
Thus, for every setting of variables, there is always at least one clause that has a false
setting for all three literals. By construction, this implies that for every setting of vari-
able gadgets, there is always a clause in which all three literal gadgets have the middle
horizontal edge missing. Therefore, the crossing number of the corresponding cr-row is
equal to 2K. Hence, unsatisfiability implies a stabbing number greater than 2K — 1.

Polynomial size of the construction. Let B be an instance of 3-SAT, let n be the
number of variables, ¢ the number of clauses and ¢ the number of occurrences of the most
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e

Figure 4.11: Representation of construction for the formula (xgV 1 VT3) A (2o VIV 22) A
(xo VT VT3), and values xg = true and x; = x5 = false. The long edges represent pieces
of cr-rows and cr-columns and the empty spaces between them represent spacer gadgets.
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common literal. The number of cr-columns necessary to accommodate ¢ occurrences of
a literal is at most equal to t. The width of any variable gadget is fixed and equal to
3 and the width of a spacer gadget is equal to 17. Therefore, the horizontal size of the
construction is less than or equal to 2 x 20 x n X t + 17 = O(nt).

The number of cr-rows necessary to accommodate the variable gadgets connected to
t occurrences of a literal is at most t. The height of any variable gadget is equal to 3 and
the height of a spacer is equal to 17. Each clause uses exactly one cr-row. Therefore, the
height of the construction is less than or equal to 2 x 20 x n X t + ¢+ 17 = O(nt + ¢).

As the construction must have the same almost horizontal /vertical crossing number,
we must include new extra cr-columns or cr-rows so that their number is indeed equal.
Therefore, the width and height of the construction is the maximum of the two values
obtained for these parameters, so it is polynomial in ¢, n and t. O

4.6 Iterated Rounding

Following our proofs, we know that all variants triangulation with small stabbing or cross-
ing number are N'P-hard, making it unlikely that there is a polynomial-time algorithm
that can handle them. In the following, we study a heuristic approach for computing
solutions in polynomial time, with the hope that the resulting objective values are within
a constant factor of the optimal values.

An iterated rounding algorithm (IRA), as described in [13], proceeds by solving the
linear relaxation of a given problem, finding a variable with high fractional value, fixing
this variable to 1 and repeating the process until an integral solution is found. In [9] it was
conjectured that an TRA yields an approximation algorithm for the problem of finding a
perfect matching with minimum stabbing number (MsPM). That conjecture regarding the
worst-case performance is still open; in any case, such an algorithm provides a heuristic
for the MSPM.

As the MSTR is closely related to the MSPM, we may consider if the same IR A approach
applied to the MSTR yields an approximation for our problem. As discussed in [9], one of
the prerequisites for obtaining an approximation using an IR A is a guarantee that there
is a “heavy” variable at each iteration, i.e., a variable with high fractional value: If we can
guarantee the existence of a variable with value at least 1/k at each iteration, the hope
is to get a k-approximation.

Different from the MSPM case, no proof is known for the MSTR that a heavy variable
exists at each iteration. However, we can provide evidence for the existence by experi-
mentally determining the smallest value of all heaviest variables in all instances, say 1/p.
After that, using the lower and upper bounds obtained by the IR A and results from other
algorithms, we can check if the results are consistent with a p-approximation algorithm.

The integer programming model used in the algorithm is the triangle-based model
described in [16] and reproduced below. Here A(P) denotes the set of empty triangles
over a set of points P, L*(ij) and L~ (ij) represent the two half-planes defined by the line
containing (ij), while Ey is the set of line segments in the convex hull of P.
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(MSTT) z = mink (4.1)
subject to Z il = Z zij,  Vij € E\ Eg, (4.2)
iJlEA(P) : ijlEA(P) :
ijlC LT (i5) ijlC L= (i5)
> @i = 1, VijeEpn, (4.3)
ijlEA(P)
> Sz < k, VsecSs. (4.4)
ijleA(P):ijl () s#£0
ke€Z,zij €B Vijl € A(P). (4.5)

In the model above, for every triangle ijl € A(P), x;; = 1 if and only if the triangle iji
is in the triangulation. The variable k represents the stabbing number of the triangulation.
Constraint (£2)) states that the number of triangles containing an edge ij (which is not in
Ey) must be the same in both half-planes defined by the line containing ij. As the edges
in Ey are present in every planar triangulation, constraint (£3]) ensures that a triangle
containing one such edge is in the triangulation. Constraint (£4]) states that the sum of
the coefficients ¢j; of the triangles ijl intersecting a line s of S cannot be larger than the
stabbing number. A triangle ijl intersecting a line s has coefficient ¢, = B;; + 5 + 53,
where 7, = 1if 7j intersects s and is on the convex hull, 57; = 0.5 if ¢j intersects s, but
is not on the convex hull and §;; = 0 if 45 does not intersect s.

The experiments described in the following consider only the axis-parallel version of
the MSTR, because this allows a comparison with previous computational results described
by [16]. We focus on the instances described in that paper.

The heuristic method developed in [16] is based on Lagrangian Relaxation (LR). For
fair comparison, we used the same computational environment for both.

Computational environment. We used a computer with an Intel Core 2 Quad
1.60GHz, 4096 KB cache, 4GB of RAM memory and an Ubuntu 10.04.4 OS. The pro-
gramming language used was C/C++ with gcc 4.4.3 compiler. Every program was compiled
with the -05 optimization flag. We also used the XPRESS-Optimizer 64-bit v22.01.09
IP solver. The default cuts, heuristics and preprocessing were turned off. In addition, the
optimizer was set to use a single processor core.

Instances. As a test suite we used 25 instances from TSPLIB [17, (18] and the 25 regular
grid instances used in [9] for the Minimum Stabbing Perfect Matching Problem. The
choice of these instances is based on the fact that the TSPLIB is a well-known test library
for geometric problems. Moreover, TSPLIB and all grid instances were also used in [9]
for the MSPM. The choice of the instance sizes was made seeking tests that were hard
enough to provide meaningful computation times, allowing a more precise comparison of
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the algorithms.

A time limit of 3,600 seconds was set for the execution of the algorithms. As the
time is verified at specific checkpoints in the code and the time spent between two such
checkpoints may not be negligible, some of the times displayed in the tables are slightly
over 3,600 seconds.

Duality gaps were computed through the formula 100 x (ub — [lb])/ub, where ub and
[b denote, respectively, the upper and lower bounds yielded by the algorithm. Whenever
a value is unkown because the algorithm was interrupted, the respective value is marked
with the symbol I in the table.

Results. The first observation is that the smallest large fractional value of all instances
(that produced an output) is greater than or equal to 0.5. This means that at every
iteration of the IR A and for every instance, there was always a variable with value at least
0.5. According to the approximation conjecture, that should give us a 2-approximation
algorithm. The results obtained are consistent with this hypothesis, because no upper
bound value is more than twice a known lower bound value (including the cases in which
the upper bounds coincided with the optimal value).

In the following we divide our analysis into two parts, one for the TSP instances and
the other for the grid instances.

For the TSP instances, the TRA had its process killed in 8 out of the 25 instances,
while optimality was achieved in 10 cases. The remaining tests resulted in gaps of only
3.87% on average. The Lagrangian algorithm converged in all cases within the imposed
time limit, with an average gap of 2.30% and proven optimality in 7 cases.

Considering only the instances for which IRA was not killed, the LR algorithm was
faster in 11 situations while the IR A was faster in 6 cases. The total time spent with these
instances was 108.77 seconds bigger with the IRA. These results are shown in Table [Tl

For the grid instances, 23 out of 25 instances were solved to optimality by the IRA,
while the LR algorithm solved all problems to optimality. The total running times for the
instances solved by both of them was practically identical, except for the grid20 instances,
for which the LR was significantly faster.

4.7 Conclusions

We have resolved a number of long-standing open problems on the problem of finding
triangulations of small stabbing or crossing numbers, by proving them to be N"P-hard.
Naturally, this raises the need for the development of constant-factor approximation
algorithms. We have supplied experimental evidence that an approach based on iterated
rounding may be able to provide such an approximation algorithm. In particular, we were
able to show that the performance is comparable to the best known heuristic based on
Lagrangian relaxation, with no instance yielding an optimality gap larger than 6%.

Conjecture 1. Iterated rounding provides a constant-factor approximation algorithm for
MSTR.
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Table 4.1: Comparison of IRA and LR algorithm with TSP instances.

| Instance | min. Var. | # iters | LB | UB | Time | GAP% |

IRA IRA LR IRA 1r IRA LR IRA LR IRA
berlin52 0.50 34 23.670 23.700 24 24 7.70 2.25 0.00 0.00
eil76 0.50 54 31.561 31.564 33 33 112.58 21.19 3.03 3.03
kroD100 0.50 95 28.002 28.043 29 29 30.60  220.92 0.00 0.00
kroA100 0.50 100 28.518 28.529 30 30 107.25 20542 3.33 3.33
kroE100 0.50 89 28.221  28.220 30 29 99.17 19991 3.33 0.00
kroC100 0.50 83  28.123  28.141 29 29 96.56  186.51  0.00 0.00
kroB100 0.50 98 28.593 28.599 30 30 119.63 239.20 3.33 3.33
rd100 0.50 83 28.050  28.165 29 29 1745 213.96 0.00 0.00
pri24 0.50 40 47.612  48.122 49 52 406.34  229.14 2.04 5.77
prl36 0.67 9 65.667 65.667 67 66  589.72 67.24 1.49 0.00
ch130 0.50 132 31.904 31.920 33 34  165.06 1015.82 3.03 5.88
prld4 0.50 13 73.084 74.000 74 74 673.28 187.63 0.00 0.00
prlb2 0.50 55 44.012  45.000 45 45  420.05 795.93 0.00 0.00
kroA150 0.50 131 34411  34.405 36 35 333.77 1525.61 2.78 0.00
kroB150 0.67 163  33.632 33.645 35 35 412,90 2153.08 2.86 2.86
ch150 0.67 163 33.292  33.307 35 35 272.60 2034.03 2.86 2.86
kroB200 I 1 38.285 37.868 40 T 705.74 3607.45 2.50 i
kroA200 I 1 39.578  39.246 41 T 73741 3607.57 2.44 1
gr202 i 1 41.059 39.004 42 I 614.27 3607.65 0.00 i
pr226 0.50 56 144.239 150.000 150 150 3690.80 3005.09 3.33 0.00
pr264 1 1 89.761 91.000 92 1 3600.70 3609.20 2.17 i
gil262 i 1 48.819 34.272 50 1 1769.88 3611.15 2.00 1
lin318 I 1 68.538 49.000 70 1 3602.31 3619.89 1.43 1
pcb442 I 1 161.246 147.000 180 1 6017.10 3665.40 10.00 1
rd400 I 1 51.848 13.925 55 I 3604.68 3656.82 5.45 i
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Table 4.2: Com

parison of IRA and LR for grid instances.

| Instance | min. Var. | # iters LB | UB | Time | GAP% |

IRA IRA LR IRA wr IRA LR IRA Lr IRA
gridba 1.00 0 21.432 22.000 22 22 0.17 0.07 0.00 0.00
grid5b 0.50 1 20.029 20.500 21 21 0.27 0.07 0.00 0.00
gridbc 1.00 0 20.031 21.000 21 21 0.17 0.08 0.00 0.00
gridbd 1.00 0 21.000 21.000 21 21 23.14 0.07 0.00 0.00
gridbe 0.50 1 19.054 20.000 20 20 0.18 0.07 0.00 0.00
grid8a 0.50 4 33.004 34.000 34 34 2.2 0.16 0.00 0.00
grid8b 0.80 1 33.275 34.000 34 34 3.48 0.23 0.00 0.00
grid8c 1.00 0 33.038 34.000 34 34 1.61 0.19 0.00 0.00
grid8d 1.00 0 34.009 35.000 35 35 1.07 0.2 0.00 0.00
grid8e 0.50 3 34.071 34.500 35 35 1.11 0.24 0.00 0.00
grid10a 1.00 0 43.123 44.000 44 44 8.01 1.02 0.00 0.00
grid10b 1.00 0 41.764 42.000 42 42 3.31 0.62 0.00 0.00
grid10c 0.50 3 46.023 47.000 47 47 9.52 096 0.00 0.00
grid10d 1.00 0 45.002 46.000 46 46 2.61 0.82 0.00 0.00
grid10e 1.00 0 45.003 46.000 46 46 7.05 1.05 0.00 0.00
grid15a 0.67 2 65.166 66.000 66 66 75.13 52.3 0.00 0.00
grid15b 0.50 3 67.153 68.000 68 68 13.65 55.75 0.00 0.00
grid15c 0.50 8 63.043 64.000 64 64 20.7 46.53 0.00 0.00
grid15d 0.67 15 65.071 65.200 66 66 39.24 51.54 0.00 0.00
grid1l5e 0.80 3 66.081 67.000 67 67 79.53 60.51 0.00 0.00
grid20a 0.50 17 88.020 89.000 89 89  500.78 2357.88 0.00 0.00
grid20b i 1 85.174 85.000 86 I 73.09 3615.74 0.00 1
grid20c 0.50 13 89.016 90.000 90 90 2222.62 2517.32 1.11 0.00
grid20d i 1 86.112 87.000 87 T 204.77 3616.62 0.00 1
grid20e 0.50 13 89.078 90.000 90 90 1213.83 2015.84 0.00 0.00
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Given that there is a variety of different TP formulations, and thus different LP relax-
ations for our problems, the actual worst-case performance may depend on a specific IP
version. Given that the time for solving the involved linear programs grows very rapidly
with instance size, studying different formulations is also of practical importance.
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Chapter 5

Minimum Stabbing Rectangular
Partitions of Rectilinear Polygons

The current chapter presents the complete version of a work presented at VIII Latin-
American Algorithms, Graphs and Optimization Symposium (LAGOS 2015) as an ex-
tended abstract co-authored with Cid C. de Souza [10]. This is the text of the extended
version of that work and that was submitted for publication to a scientific journal. This
work studied rectangular partitions of rectilinear polygons with minimum stabbing num-
ber, presenting two integer programming formulations for the problem including a poly-
hedral study for one of them. Computational experiments were performed to compare
the different formulations.

We study integer programming (1P) models for the problem of finding a rectangular
partition of a rectilinear polygon with minimum stabbing number. Strong valid inequali-
ties are introduced for an existing formulation and a new model is proposed. We compare
the dual bounds yielded by the relaxations of the two models and prove that the new one
is stronger than the old one. Computational experiments with the problem are reported
for the first time in which polygons with thousands of vertices are solved to optimality.
The (1P) branch-and-bound algorithm based on the new model is faster and more robust
than those relying on the previous formulation.

5.1 Introduction

Let P be a rectilinear polygon, and 7 be a rectangular partition of P, i.e., a partition of
the interior of P, int(P), into rectangles. Define the set L of all maximal line segments
that are axis-parallel and belong to int(P). Given a segment s of L, the stabbing number
of s relative to 7 is the number of rectangles of the partition whose interior is intersected
by s. The stabbing number of 7 is then the maximum stabbing number among all lines
in L. The Rectilinear Partition with Minimum Stabbing Number Problem (RPST) is:
given a rectilinear simple polygon, find a rectangular partition having minimum stabbing
number among all possible partitions. Figure 5.1l shows an RPST instance and a possible
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rectangular partition. If an edge e of a rectangle in a rectangular partition of P has both
of its endpoints on the boundary of P, §(P), e is said to be fully anchored. A rectangular
partition of P is called conforming if all edges of its rectangles are fully anchored.

Figure 5.1: An instance of RPST (to the left) and a feasible solution (to the right). The
segments r and s have stabbing numbers, respectively, 4 and 3.

Problems requiring the decomposition of rectilinear polygons have applications, for
example, in VLSI layout design and image processing (cf. [7]). On the other hand,
obtaining sets of objects satisfying some properties and having the lowest stabbing number
is a recurring problem in Computational Geometry. In [I1] a wide variety of applications
of that sort are mentioned including the design of efficient algorithms for simplex range
searching, ray shooting, motion planning and collision detection among others. Clearly,
the RPST merges these two types of problems and, that is probably why it attracted the
attention of many researchers.

The RPST was studied in [5], [I] and [7]. In [5], the authors show that any rectilinear
polygon with n vertices have a rectangular partition with stabbing number O(logn) for
a hole-free polygon and O(v'klogn) for a polygon with k > 1 rectilinear holes. Abam et
al. [I] present a 3-approximation polynomial time algorithm for the problem, based on
the partition of histograms. Finally, Durocher and Mehrabi [7] prove that the problem
of finding a conforming rectangular partition in a polygon with holes is N"P-hard. They
also present an integer programming (1P) formulation for the problem and develop a
2-approximation algorithm for the conforming case.

Our Contribution The first contribution of this work is a polyhedral investigation on
the model proposed in [7]. There the authors did not investigated the strength of their
formulation nor carried out any computational experiments with it. The inequalities ob-
tained in our polyhedral study were used tested computationally. These experiments show
that the new inequalities allow us to solve more instances to optimality in a reasonable
time.

A key aspect of our work is the establishment of a relation between the RPST and the
Minimum Length Rectangular Partition (RGP) previously studied in [6] and [3]. In the
RGP, we are given a rectangle R and a set T of points in its interior, called terminals. The
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goal is to use axis-parallel segments to partition R into rectangles so that every terminal
is intersected by at least one of these segments and the sum of their lengths is minimized.
For given R and T, a feasible solution for the RGP is called a rectangular partition of R
constrained by T'. Figure depicts an instance of RGP and a feasible solution.

' L. ) L

Figure 5.2: An instance of RGP (to the left) and a feasible solution (to the right). The
black points indicate the terminals.

Another contribution of this work is the specification of a new 1P formulation for
RPST. The new model describes the problem through variables that indicate if a rectangle
(instead of a segment) is in the solution. For reasons that will become clear later, we call
it the set partition model. This formulation is then proved to be stronger than the one
given in [7].

We further investigate the set partition model and establish conditions for fixing some
variables of the 1P formulation in an optimal solutions, reducing its quantity. These
properties allow to eliminate variables. Because this model is a restriction on the original
set partition formulation, it is no weaker than that model. This new formulation led to
the best running times for large instances and the results suggest that as the polygon size
increases, becomes not only faster than the competitors but also more robust.

Organization of the text The paper is organized as follows. The next section describes
1P models for the RPST and the RGP where the variables are related to segments of the
rectangular partition. Section[5.3shows the relation between these models. In Section [5.4]
we show how the RPST can be modeled as a set partition problem and some properties of
this model, while experiments are discussed in Section Finally, Section presents
some conclusions and directions for future work.

5.2 Segment Based 1P Models

In this section we present an 1P model for the RPST. In this model the variables are related
to segments of the rectangular partition. Later we show a formulation for the RGP that
is closely related to the one for RPST.
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Given a rectilinear polygon P, input of RPST, let V' (V.I') be the set of reflex (conver)
vertices of P. The grid induced by P, grid(P), is the set of all vertical and horizontal
maximal line segments in the interior of P having (at least) one vertex in VI’ as one of
its endpoints. Let V' be the set of points of int(P) located at the intersections of two
line segments in grid(P), which are called Steiner vertices. The points in 6(P) that are
endpoints of segments in grid(P) and are not in V¥ are called border vertices and form
the set V;¥'. The set of all vertices is defined by V¥ = VUV UV UV,P. We now turn
our attention to the edge set.

Suppose we traverse 6(P), the boundary of P, say, clockwisely. The segments between
two consecutive vertices of V¥ form the set E. Now, if we traverse any horizontal
(vertical) segment of grid(P) from left to right (from bottom to up), the segments between
two consecutive vertices of V¥ form the set Ef . These are called the grid segments and,
together with the segments in Ejf’, they compose the set E”, ie., E¥ = EF UEP. A
canonical rectangle in grid(P) is a rectangle where each side is a unique segment of ET.
Figure 0.3 depicts the grid for the example in Figure (]l Steiner and border vertices
are represented by gray and white vertices, respectively. From the formulation in [7] one
can deduce that there exists an optimal solution to RPST such that all rectangles in the
partition have sides lying on grid(P).

Pl

Figure 5.3: Grid for the example in Figure [5.] containing 40 canonical rectangles.

Two configurations are relevant for the description of a feasible RPST solution. A
subset E'Y of BT defines a knee in a vertex u € V¥ if there are exactly two edges in
E'F incident to u and they are orthogonal. On the other hand, if only one edge in E'F is
incident to u, we say that £'" defines an island at u. Clearly, if E’Y induces a rectangular
partition of P, it can not define a knee or an island at any point.

Now, denote by 6(ua,ub) the angle between two edges ua and ub in E¥ that are
incident to a point u € V. With these definitions, the RPST can be modeled as [7]:
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(MEPST) z = min max Z Tyw + 1 (5.1)

uv € Eg’ :

uv(s#0
s.t. Tua + Tup > 1, Vue VTP,ua,ub € Ef, (5.2)
Tua + Tup = Tyc, YV u e VE ua,ub,uc € E; : O(ua,ub) = g, (5.3)

where the binary variable ., is set to one if and only the edge uv € E;D belongs to the solution.

The set L comprises all horizontal and vertical maximal line segments fully contained in P. Thus,
the objective function minimizes the maximum of a set of |L| sums, each corresponding to the
stabbing number of a segment. Notice that, in principle, L is infinite. However, as stated in [7],
for every w € V., we only need to consider the two axis-parallel segments containing a point
along the bisector of the internal angle in w. This point is chosen so that its distance from w
is smaller than the distance between any two vertices. By doing that, we have |L| = 2|V,F’| and
the model size becomes polynomial in the size of P.

Inequalities (5.2)) guarantee that a solution does not define a knee or island in a reflex vertex.
Meanwhile, inequalities (5.3]) enforce that a solution can not contain a knee or an island in a
Steiner vertex. Durocher and Mehrabi [7] argue the correctness of the formulation with these
two sets of constraints. They also mention that there exists an optimal solution where at most
three grid segments meeting at a Steiner vertex are present. This property is expressed by the

linear inequalities

> aw <3, VueVy (5.4)
weEl
Due to the objective function, the model MZPST is not linear. Using standard techniques,

it can be linearized through the introduction of an auxiliary integer variable k to represent the
stabbing number. For each element s of L, we add a constraint requiring that k is at least as
large as the summation corresponding to s in (5.I). With the x variables defined as before, the
new model reads:

(M Ty min { ke R:w € BY, (62) — B3), Y. zw+1<k¥seLjy.  (55)

P
u'UEEg

uv ) s#£0D

This model is similar to those discussed in [§] for other stabbing problems.

As stated before, the RPST model is closely related to a RGP model. Their relationship will
become clearer in Section 5.3l For now, we restrict ourselves to present an 1P formulation for the
RGP. Prior to that, some more notation is necessary.

Given an instance I = (R, T') of the RGP, where R is a rectangle and T is a set of terminal
points in R, let grid(R,T') be the set of vertical and horizontal maximal line segments in the
interior of R intersecting a point of T'. Let T be the set of points in the intersection of segments
in grid(R,T) but not in T. Let T} be the set of points on the boundary of R intersected by
segments in grid(R,T) and let T} = T'U T U Ty,. Define S to be the set of fractions of segments
in grid(R,T) containing exactly two points in 73, both located at its extremities. The elements
of S are referred to as grid segments. The set of all grid segments induces a planar subdivision of
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the surface of R. Each inner face of this subdivision is called a canonical rectangle of grid(R,T).

As in the RPST case, some properties of feasible and optimal solutions of the RGP are useful
to model the problem as an 1P. First, the knee and an island configurations are defined as before,
but this time for points in 7} and segments in S. Both formations are obviously forbidden in any
feasible solution of the RGP. Besides, in [9] it was stated that there is always an optimal solution
for the RGP whose rectangles have sides lying on grid(R,T).

From these definitions and recalling that 6(ua, ub) is the angle between segments ua and ub,
we obtain the following model for the RGP:

(MRGP) z = min Z Ao Tuw (5.6)
uveS

s.t. Tua + Tup > 1, VuéeT ua,ub € S :0(ua,ub) = g (5.7)

Tua + Tup > Tuc, YV u € Ts,ua,ub,uc € S : (ua,ub) = g, (5.8)

where, for every uv € S, the binary variable z,,, is set to one if and only if the segment uv is
in the solution. The objective function is given by the sum of the lengths of the segments that
belong to the solution. Inequalities (B.7) and (5.8 guarantee that the solution does not define
knees and islands in points in 7" or Ty, respectively. Meneses and de Souza [6] showed that the
latter constraints describe all feasible rectangular partitions. Constraints (5.9) below enforce
that at most three of the four grid segments incident to a Steiner vertex can be in the solution:

> wuw <3, VueT, (5.9)

wvES

This property also holds for optimal RGP solutions, so the addition of these constraints to the
model causes no harm, while it may be quite helpful in computation.

Looking at models (MTGP) and (MTPST) it is possible to see that although the problems
statements are rather different, their formulations have several similarities. In the next section
we establish the relationship between the polyhedra defined by these models.

5.3 Polyhedral Study of the Segment Based Model

In this section we show how the 1P models given before are related. The goal is to utilize previous
findings about the M TSP to improve the models for the RPST. To facilitate the understanding
on how this is done, we first give some basic results on the projection of polyhedra and then
explain how an RPST instance can be transformed into an RGP instance. We finally combine

these ideas to derive facet defining inequalities for the MFPST,

5.3.1 Projection of Polyhedra

We briefly review some relevant findings of Balas and Oosten [2] relative to the projection of
polyhedra. Consider a non empty polyhedron @ = {(u,y) € RP x R? : Au+ By < b}, where
A, B and b have m rows. The projection of () onto the subspace defined by v = 0, called the
y-space, is defined as

Proj,(Q) = {y € R?: Ju € R? with (u,y) € Q}.
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Let us partition the rows of (A, B,b) into (A=, B=,b~) and (A<, B<,b<), where Au+B~y =
b= is the equality subsystem of @), i.e. the set of equations corresponding to the inequalities
satisfied at equality by every (u,y) € Q. Assume that the equality subsystem has no redundant
rows and that no equality is implied by the inequality subsystem. Let r = rank(A=,B~) =
rank(A=, B=,b~), where the last equality follows from @ # (). Moreover, let dim(X) denote the
dimension of a set X. It is well known that dim(Q) = p + ¢ — r, and that @ is full-dimensional,
ie. dim(Q) = p + q, if and only if the equality subsystem is vacuous. The first results states
that, if @) is full-dimensional so is its projection onto the y-space.

Proposition 5.1 ([2], Prop. 2.1). If dim(Q) = p + ¢, then dim(Proj,(Q)) = q.
The next result establishes necessary and sufficient conditions for an inequality defining a
facet of @ to define a facet of Proj,(Q). Let au + By < my be a valid inequality for @, and

suppose F' = {(u,y) € Q : au+fy = o} is a facet of Q. Let ( j: >u+< BB: )y: ( (b)f )

be the equality subsystem defining the polyhedron F' and, let rp = rank (( j: > , ( 5_ )) .

Notice that rp —r = 1, since dim(F') = dim(Q) — 1. Further, denote r} = rank

and r* = rank(A~). The next statement relates the facets of @ and those of Proj,(Q).

Proposition 5.2 ([[2], Cor. 3.6). Let F' be a facet of Q. Then Proj,(F) is a facet of Proj,(Q)
if and only r, = r*.

5.3.2 Transforming RPST into RGP

We now explain how to transform an instance of the RPST into an instance of the RGP. To this,
we start with the following definition.

For a given set of points S in the plane, let Zpnin (Tmax) be the minimum (maximum) -
coordinate of a point in S. Define the values of ymin and ymax analogously. The enlarged
bounding boz of S is the rectangle with vertices at (Zmin — 1, Ymin — 1) and (Zmax + 1, Ymax + 1)
and sides parallel to the axes.

Now, given the rectilinear polygon P in the RPST instance, define the external rectangle R
in the RGP instance as the enlarged bounding box of P. Also, in the later, include in the set 1" of
terminal points all the vertices of P. Clearly, any rectangular partition m of P can be extended
to a rectangular partition of R with terminals in 7. It suffices to add to P all the segments
in grid(R,T') that are not in int(P). On the other hand, let ¢ be a rectangular partition of R
constrained to 7. Consider the set S of grid segments of ¢ which are in int(P). We claim that
the subdivision induced by S in P is a feasible solution for the RPST. If not, at least one of the
faces of the subdivision defined by S in int(P), say f, is not a rectangle. So, f has a reflex vertex
u that is also a vertex of P since, otherwise, ¢ would form a knee at some point of grid(R,T)
in int(P), and consequently would not be feasible for the RGP. However, as f is the intersection
of some rectangle R’ induced by ¢ and P, this implies that w is in the interior of this rectangle.
But, as u is a terminal, ¢ could not be a solution of the RGP either.

5.3.3 Polyhedral results for the RPST

Given the RPST and the transformed RGP instance described above, denote by @ the convex
hull of feasible solutions of MTGF called the RGP polytope. Similarly, let Q* be the RPST
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polytope given by the convex hull of the integer solutions of the linear system (5.2)-(5.3). Let
s = p + g be the total number of grid segments in the RGP instance, such that @Q C R®.
In the sequel, for a vector w € R®, assume that the first p components correspond to the
segments of grid(R,T") that are not in int(P) and the last ¢ elements are associated to the
remaining grid segments. Denote the first p (last ¢) components of w by u (y). Suppose that
Q = {(u,y) € RP x R? : Au + By < b} # () and notice that @* C R?. From the previous
subsection, it is clear that @* = {y € R : Ju € R? : (u,y) € Q} = Proj,(Q), i.e. Q" is the
orthogonal projection of @ onto R?. Since the @) was proven to be full-dimensional in [6], the
results from Section 5.3.1] can be used to find the dimension of Q*.

Proposition 5.3. The polytope Q7 is full dimensional, i.e., dim(Q*) = q.
Proof. Immediate from Proposition [B.11 O

Besides, known facet defining inequalities for ) can also be facet defining for @Q*. The next
proposition gives necessary conditions for this to hold.

Proposition 5.4. Let mw = au+ By < ag be a facet defining inequality for Q@ for which o is the
null vector and F = {(u,y) € Q : au+ By = ag}. Then, for y € R, By < «p is facet defining
for Q*.

Proof. From the definition of @, let (A=, B=,b™), (AS, BS,b<) be a partition of (A, B, b) where
(A=, B=,b™) is the equality subsystem of @, let r* = rank(A~) and r}, = rcmk:(Aa:). Since @
is full dimensional, A~ is empty and r* = 0. Moreover, since a = 0, 7 = 0. Then, the result
follows from Proposition (5.2 O

Now, let Q)7 be the convex hull of the feasible solutions of M RPST j e the linearized model of
the RPST with the stabbing variable k given by (5.5]). Renaming the x variables in this model by
y, it is easy to see that Proj,(Q%) = Q. Notice that if {y*,y?,...,y"} is an affinely independent
set of vectors of QQ* representing r rectangular partitions of P and kpax is the largest stabbing

number among these partitions, the r 4+ 1 vectors {(kg);), (kmix), cl (kg;x), (kmi’iﬂ)} belong to
Q7 and are affinely independent. As a consequence, Qf is full-dimensional and any facet defining
inequality of Q* also defines a facet of QF.

Consider then a facet defining inequality for the ) whose support vector does not contain
elements associated to segments that are not in int(P). From the results seen in this section,
this inequality also defines a facet of Q* and of QF. Next we see how to use this idea to tighten
the MEPST model.

We begin describing three families of inequalities proposed in [6] that are facet-defining for
(@ and which satisfy the conditions of Proposition 5.4l These inequalities are characterized by
geometric configurations related to the location of terminal and Steiner vertices in grid(R,T).
The configurations of interest are shown in Figure 5.4 and correspond to the so-called Classes III,
IV and VI of inequalities, as defined by Meneses and de Souza in their paper. The form of the

constraints in Classes III, IV and VI are given in equations (5.10), (5.11)) and (5.12]), respectively.

Tel + T2 + Teg + Tea > 2 (510)
Tel + T + Teg + Teg > 1 (511)
Tel + Tea + Te3 + Tea + Tes + Teg + Te + Teg > 2 (512)

Notice that, as inequalities (5.7)) and (5.8]) define facets for @ [6], from Proposition [5.4], their
counterparts, inequalities (5.2) and (5.3]), also define facets for Q*.
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Figure 5.4: Point configurations for inequalities Classes III (a), IV (b) and VI (c) of an
RGP instance. Filled (empty) points are terminal (Steiner) vertices.

5.4 Set Partition Models

Besides the (M®P) model, a formulation where the variables are related to rectangles of the
rectangular partition was also studied for the RGP in [6] and [3]. With the use of these variables,
the RGP translates into a set partition problem (SPP). As we have seen in Sections and 5.3]
RGP and RPST are closely related. Hence, it is natural to formulate RPST as an SPP too with,
of course, the additional stabbing variable and constraints. The current section shows how this
can be done and also presents some properties of the new model.

Let H = {1,...,p} be a finite set and K = {K, Ka,...,K,} be a family of subsets of H.
Then, K’ C K forms a partition of H if K; N K; = () for every pair of distinct elements K; and
K; of K', and UKjeK, K; = H. If a cost ¢; is associated to each set K in K, then a partition
K’ have total cost Y K;ek’ G- The set partition problem consists in finding a partition of H
with minimum cost and it can be formulated as an 1P problem as follows:

q
(MSPP) z=min» ¢ (5.13)
j=1
q
s.t. Zai]')\]’ = 1, 1= 1, BRI (514)
j=1
)\ €B, i=1,...,q, (5.15)

where the binary variable A; is set to 1 if and only if K is in the partition. The coefficient a;;
is equal to 1 if ¢ € K; and 0 otherwise. Therefore, constraints (5.14]) ensure that every element
in H is covered by exactly one set Kj.

In order to model a given problem as set partition problem we must first define the sets H
and K. In [6] this was done for the RGP. Given an instance I = (R,T), H was defined as the set
of canonical rectangles of grid(R,T') (as defined in Section [0.2]) and K as the set of rectangles
whose sides are composed by grid segments of I and having no terminal points in their interior.
With H and K defined in that way, a;; is set to one if and only if the j-th rectangle contains
the canonical rectangle i. Also, the variable A; takes value one if and only if rectangle j is part
of the optimal rectangular partition.

To model the objective function, appropriate costs have to be assigned to each rectangle of
K. This is accomplished by assigning the cost of a rectangle to its weighted perimeter. Given a
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rectangle K; with sides composed of segments of grid(R,T), the weight of a segment is zero if
the segment lies on the border of R and 1/2 otherwise. De Meneses and de Souza proved that
with costs computed in this way, the optimum of the set partition model for the RGP is equal to
that of the MEEP . From now on, the resulting model for the RGP is denoted by Mfglgp .

Using a similar reasoning, given the polygon P at the input of the RPST, H can be defined
as the set of canonical rectangles in grid(P) (as defined in Section (.2) and K as the set of
rectangles having its sides composed by segments of EX. As before, the coefficients a;; are set
to one if and only if the j-th rectangle contains the canonical rectangle i. The variables \; are
defined as for the RGP case.

Because in the RPST the objective function is not expressed by a summation, the problem can
not be casted directly as a set partition problem. However, as we did for MPST | the stabbing
variable k£ can also be used to get a linear formulation. To this, it is enough to add the following
constraints to the model:

o N<k (5.16)

Rj€K:R;jNs#£0

where R; denotes the rectangle associated to variable A;. Obviously, the objective function asks

for the minimization of k. Although this is not a pure set partition formulation of the RPST, we

MSPP

will name the resulting model the set partition model of the problem and denote it by M.

5.4.1 Properties of the Set Partition Model for the RPST

Whenever there are two 1P formulations for a problem, it is interesting to know if one of them
dominates the other or, in other words, if the dual bound produced by the linear relaxation of
one of them is always at least as good as the one computed by the relaxation of the other. For

the RGP, it was shown in [6] that (M;?gI;P ) dominates (MTGF). Based on that, we show below

that (Mfl)];f) dominates (M®PST) i.e., the set partition model is also stronger than the segment

model for the RPST.

Proposition 5.5. Given an instance of RPST, let W be the optimal value for the linear relazation
of the (M;%I;f) and let Z be the optimal linear relaxation value of (MBPST). Then, W > Z and

the formulations are not equivalent.

Proof. Initially, for each segment s € Eé) , let T's be the set of the rectangles having one side
containing s. Notice that if s belongs to a feasible solution, there are exactly two rectangles of
this partition that have s on their boundaries. Now the variables A and x in the M,ﬁ%ff and
MPEPST models, respectively, can be related such that z, = (1/2) > ker, M- From the previous

observation, it is clear that this equality holds for any integral solution of the RPST.

MSPP

psi together with the x variables for

Suppose we add all these equalities as constraints to
all s € Ef . Of course, the set of feasible (A, k) vectors in this extended model is the same as
in the original one. However, denote by @’ the set of (\, k,z) vectors that are feasible for the
extended model and by @ the set of all (k,z) vectors satisfying the MEPST. We show below
that Proj,(Q") C @, which proves that W > Z. To this, we must show that the z vector of any
feasible solution of the extended M,?';,I;f model satisfies the constraints of MRPST

First, notice that as x; = %Zkel‘s A and every A\g > 0, then 25 > 0V s € EF. Also, as each
segment s is the side of two canonical rectangles R} and R? and, from (MSFP), 3:1 api jAj =1
and Y 9_, apz ;A = 1. Hence, zs = 5 > pcp, M < 5000 api jAj + Y29, ape jAj) < 1. Ergo,
xsglforallseEiP.
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Now, to show that a vector = defined as indicated above satisfies constraint (5.2)), consider
Figure depicting a reflex vertex with its incident segments and the three canonical rectangles
surrounding it.

Figure 5.5: A reflex vertex u with its incident segments and the three surrounding canon-
ical rectangles R!, R? and R3.

In the remaining of the proof we use the following notation. For a point u in grid(P), let
X ={1,...,p}, where p is the number of canonical rectangles in the grid having u as one of
its vertices. Let R',..., RP be these canonical rectangles. Notice that for a reflex vertex p = 3,
whereas for a Steiner vertex we have p = 4. For X’ C X, we denote by Y x the sum of the A

MSPP

variables in corresponding to rectangles containing all R’ for 7 € X’ and not containing

R forje X\ X

From the definition of vector @, zu, = (1/2)(3°; + 2 03+ 00) and xwy = (1/2)(300 +
2121 23,3), implying that Tya+zuy = 3255 +(1/2) (321 + 301 9)+(1/2) (30 3+ 225 3)- Because
Yt 1p="1and } 53+ 33 =1 are constraints from (MSPP) | we end up with x4 + 4 =
Soptl >l

Figure 5.6: A Steiner vertex u with its incident segments ub, ua, uc and ud, and its four
surrounding canonical rectangles R', R?, R® and R*.

It remains to show that z satisfies constraint (5.3]), i.e., for a given Steiner vertex u as shown
in Figure 5.6, we have z,p + Tyq — Tye > 0. From the definition of x:

zw = (1/2) Z+;+Z+Z
Tua = (1/2)( Z+Z+Z+Z
Tue = (1/2) Z+Z+Z+Z

1,2

from (MSPF) constraints relative to R® and R* we have:
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and

Therefore,

Tub T Tug — Tue = (1/2)(Z+ + +Z+Z+
1 4

1,2 34 1
DI NN NN NP PE
1,4 2 2,3 1,2 2 3 3,4

Tub+ Tua — Tue = (/22D 4D+ +> - )=
3
Tub + Tua — Tue = (1/2)2D_ 4D+ +> —1+ Y +) )=
4
Tub+ Tua — Tue = (1/2)2D 4+ -1+ +1) =

1 2,3 2,3
Tyb + Tya — Tye = Z+Z > 0.
1 2,3
So far we proved that Proj,(Q’) is contained in @. It remains to show that (MRPST) and

(MSPP) are not equivalent formulations. To this, it is sufficient to present an instance where
W > Z. Our computational experiments show that this inequality is true for the majority of
the instances tested. O

If we analyze the number of variables and constraints in (M®PST) and (MSFPF) we conclude
that (MEPST) have O(n?) variables and O(n?) restrictions, resulting in a constraint matrix of
size O(n*), where n is the number of vertices in the polygon. Meanwhile, (M%?f) have O(n?)
variables and O(n?) constraints, resulting in a O(n®) sized matrix. So, the size of (M;if;f ) could
pose an algorithmic disadvantage when compared to (M7PST).

In order to mitigate this disadvantage, we can try to reduce the number of variables in
(M f/II;PP sr) by identifying sets of variables that are unnecessary for obtaining an optimal solution.
This idea was explored in [6] to decrease the size of the (MSFF) model of RGP. The sliding
operation defined in the next paragraph is at the heart of the reduction procedures applied to
the RPST.

Let 7 a rectangular partition of P and e be a segment of grid(P) that belongs to 7. Suppose
without loss of generality that e is horizontal and that it can be slided in at least one vertical
direction, either upwards or downwards, by a small positive amount such that the resulting
partition is still feasible. If the displacement is possible both upwards and downwards, assume
that e is slided in the direction such that the number of maximal vertical segments of m with
endpoints in the interior of e is maximum (see Figure 5.7). Suppose that the sliding is done
until one of the extremities of e becomes a reflex vertex of P or part of e coincides with another
segment of the partition or the border of P. We call this operation the mazimal sliding of e.

When this sliding is performed, it is clear that the stabbing number of no horizontal line can
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increase. On the other hand, the stabbing number of a vertical line can only decrease, which
occurs for all those lines intersecting the interior of e. As a consequence, the rectangular partition
obtained from 7 after the maximal sliding of e has stabbing number no larger than that of .

Figure 5.7:  Sliding operation on the horizontal segment e. The number of vertical
segments with endpoint in int(e) above e (2) is smaller than those below e (3). The
sliding is done downwards.

The next result is instrumental for eliminating rectangles that are not needed to compute an

MSPP

optimal solution for the M "

Lemma 5.1. Any rectilinear polygon P has an optimal rectangular partition w in which every

mazimal segment of ™ has at least one reflex vertex of P as an endpoint.

Proof. Suppose that e is a maximal segment of grid(P) in an optimal partition 7 of P having
no reflex vertex of P as an endpoint. Without loss of generality, assume that e is horizontal. As
the endpoints of e can only be border or Steiner vertices of grid(P), e admits a maximal sliding.
If the sliding is interrupted because e hits a portion of §(P) of dimension one, the operation is
equivalent to erase e and all the vertical segments of 7 that collapse as e moves. Thus, the new
partition has at least one less maximal segment having no reflex vertex as one of its extremities.
The same happens when the sliding stops because one of the endpoints of e becomes a reflex
vertex of P. Therefore, if we keep repeating this operation, we must end up with a partition for

which all maximal segments have at least one of its extremes in a reflex vertex of P. U

U

! ] ]

‘g o o! 'o tg o

w. d. ] c d. L c L .
[ [
(% w
(a) (b)

Figure 5.8: A windmill (a) and a reverse windmill (b) with its adjacent maximal segments
and reflex vertices.
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Definition 5.1. Let abed be a rectangle in a rectangular partition of a polygon where a is the
left upper vertexr and its four vertices are Steiner vertices as shown in Figure [.8 If there
are four segments at, bu, cv and dw contained in the polygon (except for its endpoints) where
t,u,v,w € VP and at is above a, bu is to the right of b, cv is below ¢ and dw is to the left of d.
Then, abed is a windmall.

If, however, there are four segments at, bu, cv and dw contained in the polygon (except for
its endpoints) where t,u,v,w € V. and at is to the left of a, bu is above b, cv is to the right of
¢ and dw is below d. Then, abed is a reverse windmill (rev-windmill for short).

Notice that a rectangle with four Steiner points as vertices can be simultaneously a windmill
and a rev-windmill, a windmill and not a rev-windmill (or the converse), or neither of them as

in Figure (.91

a b
c d

h 1
e

Figure 5.9: Rectangle with vertices at the Steiner points ¢, d,e and f that is both a
windmill and a rev-windmill. Rectangle with vertices at points a, b, c and d is a windmill
but not a rev-windmill. Rectangle with vertices at points e, f, 7 and k is a rev-windmill
but not a windmill. Rectangle with vertices at points f, g, h and i is neither a windmill
nor a rev-windmill.

Definition 5.2. Let R be a rectangle with vertices in V. A vertez v of R is called corner reflex
relative to R if v € VI and the bisector of the internal angle of v contains one of the diagonals
of R. If, on the other hand, v € V.I' but its bisector does not contain a diagonal of R, v is called
non-corner reflex relative to R. Figure depicts these situations.

Let VI(R) denote the set of corner reflex vertices relative to rectangle R and let VL (R)
denote the set of non-corner reflex vertices relative to rectangle R.
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(@ (b)

Figure 5.10: (a) a rectangle R with a corner reflex vertex v and (b) a rectangle R with a
non-corner reflex vertex v. The hatched area indicates the exterior face of the polygon.

Figure 5.11: Vertex vy is perpendicular border relative to v; and R and non perpendicular
border relative to v3 and R. The hatched area indicates the exterior face of the polygon.

Definition 5.3. Let R be a rectangle with vertices in VE. Let vi € VE and vy € VbP where v1v9
1s a side of R. The verter vy is called perpendicular border relative to R and vy if the border
edge containing ve s perpendicular to vivs. If, however, the border edge containing ve is not
perpendicular to vive, vo 18 called non-perpendicular border relative to R and vy.

These definitions are illustrated in Figure 511l Below we denote by VX' (R, v) (V' (R,v)) the set
of (non) perpendicular border vertices relative to R and v.
We are now ready to characterize a subset of variables that is sufficient to describe a polytope

containing optimal solutions for (M%Igf )-

Proposition 5.6. For every instance of RPST, there is always an optimal solution for (MSTT)
where each rectangle in the solution is a windmill, a reverse windmill or has a point in VI U
VP UV as a verter.

Proof. Let us consider the possibilities for an optimal solution containing a rectangle abed where
all four vertices are Steiner vertices. As the solution is a rectangular partition, there is no knee
at any vertex in the solution. Therefore, there are two possibilities for the configuration of the
edges incident to a, b, ¢ and d.

The first possibility is that there is a pair of parallel edges incident to a pair of adjacent
vertices in the rectangle, as shown in Figure (a). Suppose without loss of generality that b
and ¢ are the adjacent vertices and bu and cv are the parallel edges. However, from Lemma [5.T],
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Figure 5.12: The two possibilities of a rectangle composed by Steiner vertices only.

bc must be part of a maximal segment with a reflex vertex as an endpoint. Since b and ¢ are both
Steiner vertices, then at least one of them must have degree four. But as stated in the definition
of the RPST model, there is always an optimal solution where no Steiner vertex have degree four.
Hence, this situation can not happen.

The second possibility is that there is no pair of parallel edges incident to a pair of adjacent
vertices in the rectangle, as shown in Figure (b). Notice that from Lemma (1] every
maximal segment in the solution have a reflex vertex as an endpoint, so segment at must be
contained in a segment having a reflex vertex as an endpoint. This is also true for segments bu,
cv and dw. Hence, from definition 501, we conclude that rectangle abed must be either a windmill
or a rev-windmill. O

Definition 5.4. Let R be a rectangle with vertices in VE. If u and v are adjacent vertices of R,
the segment wv is said to be slidable if int(wv) N 6(P) is empty.

Proposition 5.7. Let R be a rectangle in 7 having vertices vi, va, v3 and vy € VE (in clockwise
order). Consider the following conditions:

(vg € VP( YUVE(R,v1)) A (T107 is slidable),
(v3 € VE(R)) A (ve € V&) A (702 A T3 are slidable),
({1}2,’[}3,’04} C VEY A (all sides of R are slidable),
A ({3,04} CVE) A (v2 € Vip(R, 01))A
all szdes ofR\ {v1v2} are slidable),
o Fy =(v1 € V7 (R)) A ({vz,va} C Vi (R, 1)) A (vz € VE UVT)A
(v2v3 and U305 are slidable),
o Fs =(v1 € V5 (R)) A (v3 € Viy (R, v2)) A{
[(va € V&) A (both sides of R incident to vo are slidable)] V
[(ve € Vip(R,v1)) A (Tzu3 is slidable)] }.

A
A\
A

If R satisfies one of the conditions above, there is an optimal solution that does not contain R.
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Proof. The proof is divided into six cases, one for each condition Fy, for k € {1...6}. In each case
we assume that we start with an optimal partition 7 that contains the rectangle R. Another
partition is obtained from 7 by sliding one of the sides of R which can be easily verified to not
increase the stabbing number. In other words, the new partition is also optimal and does not
contain R. Without loss of generality, we assume that v is the left-upper vertex of R. Besides,
for i € {1,2,3,4}, we denote by a; (b;) the horizontal (vertical) segment of E¥ incident to v;
that is external to R if it exists (see Figure B.13]).

Figure 5.13: Proof of Proposition B.7t basic notation.

The situation treated in each of the six cases is illustrated in Figure [.14]

Case 1 Case 1 Case 2 Case 3

Case 4 Case 5

Figure 5.14: Proof of Proposition 5.7t cases 1 to 6. Shaded regions are external to P and
shaded points are grid vertices of no prespecified type.

Case 1, condition Fy is satisfied. Another optimal partition without R can be obtained from 7
by sliding the segment 7702 upwards. The sliding is possible since, in this case, b; and by are
necessarily in 7 as they are part of 0(P).

In essence, by symmetry, F} shows that an optimal solution for RPST exists that has no

rectangle R with two adjacent corner reflex vertices or with a corner reflex vertex u that is
adjacent to a perpendicular vertex v with respect to R and u. The next cases consider the
situation where R has just one corner reflex vertex.
Case 2, condition Fy is satisfied. Necessarily aq, b1, ag and b3 are in w. One of the segments ao
or by must belong to 7 otherwise there would be a knee in vy. Therefore, it is possible to obtain
a new partition without R by applying the sliding operation to either T7v3 (upwards) or Tau3
(rightwards). Notice that, the same arguments hold if vy & Vé) but vq € V; . This is easily seen
applying reflection symmetry to the straight line containing the diagonal vyvs of R.
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Case 3, condition F3 is satisfied. We have that a; and by are in 7 and all sides of R are slidable.
If by is in 7, sliding U702 upwards removes R from the solution. The same holds if a4 is in 7 and
D10y is slided leftwards. On the other hand if m contains neither by nor a4, it must contain as
and by simultaneously (to avoid knees in v9 and v4). Since there can not be a knee in vg, either
as or b3 is in m and we can slide either D203 or U304 to get the new partition without R.
Case 4, condition Fy is satisfied. Since ay (a2) is necessarily in 7 then, if ag (ag) is also in the
partition, a new one not containing R is obtained by sliding 7705 (U3v3). However, if both ag
and ay4 are not in 7, bg and by must be present in the partition (to avoid knees in v3 and vy). In
this case, sliding vzv4 gives rise to a new partition not containing R.
Case 5, condition Fy is satisfied. In this case we have that aq, b1, as and by belong to w. To avoid
a knee in vs, ag or by must be in 7. In the first situation, the slide of v5v3 rightwards leads to a
partition without R. An analogous situation occurs if b3 is in 7 and we slide 304 downwards.
Case 6, condition Fg is satisfied. Necessarily a1, b1 and as belong to w. Consider first the
situation where vy € VSP . Then either as or by is in 7, otherwise there would be a knee in wvs.
So, sliding v1v2 (upwards) or Tau3 (rightwards) produces a new partition not having R.

Now, suppose that ve € Vj(R,v1) (the case where vo € V, (R, v1) was treated in Fy). This
forces as to be in 7. But, since ag is also in 7, the new partition is obtained by sliding vyv3
rightwards. The proof is complete. ]

The previous proposition treated the rectangles with at least one corner reflex vertex while
the next one considers those without such vertices.

Proposition 5.8. Let R be a rectangle having vertices vy, vo, v3 and vy € V' (in clockwise
order). Consider the following conditions:

o Fy =v; € VE(R,v2) A (v2 € VE (R, v1)) A (07103 slidable),
o [y =(v; € VE(R,v2)) A (v3 € VE (R, v2)) A (va € VE) A (T1wz and Tau3 are slidable),
o Fy =(v1 € Viy (R, v2)) A ({vz, 03} C V') A (va € Vi (R, v3))A

(all sides of R\ {v1v4} are slidable),

If R satisfies one of the conditions above, there is an optimal solution that does not contain R.

Proof. The proof is divided into six cases, one for each condition Fy, for £ € {1..3}. The
assumptions and the notation used are the same as the one in the proof of Proposition B.71
Case 1, Iy is satisfied. As vy is in Velg(R, vg) and vg is in (ve € Velg(R, v1), by and be are both
in m. Hence, a new optimal partition not containing R is obtained by sliding vyvs upwards, a
feasible operation since this segment is slidable.
Case 2, F5 is satisfied. In this case b; and ag are in 7 by definition. To avoid a knee in vs, ag or
b must be in 7. In the first situation the new optimal solution not containing R can be obtained
by sliding vov3 rightwards while, in the second, this can be done by sliding v7v5 upwards.
Case 3, F3 is satisfied. In this case by and bsg are in 7 by definition. Hence, if by (b3) also
belongs to the current partition, a new optimal one is generated if U103 (U3v4) is slided upwards
(downwards). On the other hand, if neither by nor bs is in 7, both ag and ag belong to the partition
otherwise there would be knees in v and v3. But, then, sliding 72703 rightwards produces the
desired partition.

As in the previous proof, in all cases the sliding operation yields a new partition with stabbing
number no greater than the original one containing R, hence optimal. The proof is complete. [

Notice that based on Propositions 5.6l 5.7, 5.8 we can formulate the RPST as a set partition
problem using a reduced set of variables and still have a valid formulation. Two things should
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be noticed concerning this new formulation. The first is that this formulation is a restriction of
the original set partition formulation. Therefore, the linear relaxation of the former is at least
as strong as the linear relaxation of the latter. Actually, the computational experiments show
that the relaxation of the reduced model yields lower bounds that are often strictly larger than
those computed by the original model. Second, despite our efforts, the number of variables in
the reduced model remains O(n*). Ideally this quantity should become asymptotically smaller,
however, we could neither find ways to do this nor prove that it can not be done.

5.5 Computational Results

We now discuss the results obtained from the computational experiments we performed to com-
pare four (integer programming) branch-and-bound (B&B) algorithms that resulted from the
models introduced in the previous sections. The first B&B algorithm is denoted by SEG and is
based on the (MPEPST) model. The second algorithm is a B&B that implements the stronger
model arising from adding the inequalities (5.10), (5.11) and (512) to MEPST. This algorithm
is denoted by SSEG. The third algorithm is a B&B algorithm which uses the M;gp];f model and
is named REC. At last, the B&B algorithm denoted by RREC employs the reduced Mifgf model
obtained by applying Propositions (.7 and £.8]

The experiments were performed using a computer equipped with an Intel Xeon E3-1230
v2 3.30 GHz, 8MB cache, 32GB of RAM memory and operating system Ubuntu 12.04 OS. The
programming language used was C/C++ with gcc 4.6.3 compiler and every program was compiled
with -05 optimization flag. XPRESS-Optimizer 64-bit v27.01.02 was used as the 1P solver.
The default cuts, heuristics and preprocessing were turned off as we primarily intended to verify
the strength of the formulations.

In order to compare the algorithms we execute them with random simple polygon instances
from [4], specifically from the AGP2009a set. This set contains 600 instances with polygons
varying from 20 to 2,500 vertices, 30 instances for each size. Since presenting all the results
here would be very tedious and not so useful, we restrict ourselves to display the tables relative
to the biggest instances with 2,500 vertices. However, the analysis considers the results for the
complete benchmark.

Every test was performed with a time limit of 1,800 seconds for computations. Notice,
however, that the elapsed time is checked at certain points in the program and the time between
two checks may not be negligible. For this reason, the times reported here are, sometimes,
slightly larger than 1,800 seconds.

The data gathered from the computational experiments are displayed in four tables, one
for each algorithm. In these tables, the columns with nVars and nRows headers contain,
respectively, the number of variables and constraints of each instance for the corresponding
formulation. Columns with Root LP exhibit the value of the optimal solution of the linear
relaxation at the root node of the enumeration tree. Headers LB and UB identify the columns
containing, respectively, the best lower and upper bounds found. Columns with tSetup headers
comprise the times spent in initializing and creating the integer programming problem, tRoot
indicates the time for solving the linear relaxation at the root node of the B&B tree. Finally,
tTotal headers identify the total execution time for each instance and the corresponding 1P
model. All running times are given in seconds.

Table B.I] presents some of the data obtained from the experiments performed with SEG
using the 30 instances from the set mentioned above as input. One can see that, although all
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the polygons have the same number of vertices, the number of variables in the 1P model vary
from 7,279 up to 8,159 and the number of constraints is directly proportional to the number of
variables. From the 30 instances in the table, only 3 were not solved, leaving an absolute gap
of just one unit. The average execution time of the 27 instances solved to optimality was 39.14
seconds.

Concerning the whole set of 600 instances, SEG was unable to solve 62 of them to optimality
and whenever optimality remained unproven, the gap was of only of one unit. The average
solving time for the remaining 528 instances was 17.43 seconds.

The results for SSEG with 2,500 vertices instances can be seen in Table The number of
variables and constraints in this model varies as in the previous model. This algorithm was able
to solve 28 out of the 30 biggest instances with an average time of 97.47 seconds. Considering
the complete set of 600 instances, for 574 of them the algorithm achieved optimality with an
average of 23.14 seconds spent for instance solved. For the unsolved instances, the gap left was
always of a single unit. With respect to the additional constraints used in the model, Class IV
inequalities appear in 599 of the instances, Class VI in only 33 and Class III inequalities are not
present in any of the instances tested. Although the point formation associated to the latter
inequalities is not forbidden in RPST instances, apparently it is rare. The average increase in the
number of constraints from SEG to SSEG is 2.11%.

It is worth noting that the results presented in Tables [5.1] and are inconsistent with the
ones we reported in [10]. This is because an implementation error was found in the code used in
the tests of that previous work which is now fixed.

Table [0.3] displays the results obtained by running REC on the 30 biggest instances of the
test set. This algorithm left a unitary duality gap in only 2 of the 30 instances with an average
execution time of 73.19 seconds for the instances solved to optimality. If we consider the whole
benchmark, 567 instances were solved to optimality and, once again, the ones not solved had
unitary duality gaps. The average running time for the optimally solved instances was 27.19
seconds.

Finally, Table [5.4] shows some of the data produced by RREC when executed on the set of 30
largest instances. The algorithm solved 29 of these 30 instances to optimality with an average
running time of 36.90 seconds. Turning to the complete instance set, the algorithm was able
to solve 570 instances to optimality with an average execution time of 20.90 seconds and, once
more, a gap of one unit persisted for the remaining 30 instances.

Table summarizes the main statistics of the B&B algorithms discussed above. The mean-
ing of the row headers are: Solved (n = 2,500 ): number of instances of size 2, 500 that were solved;
Unsolved (all): number of unsolved instances in the entire benchmark; Avg. Time (n = 2,500):
average time in seconds computing optimal solutions for instances of size 2,500; Awvg. Time
(all): average time in seconds computing optimal solutions in all instances of the benchmark;
and Avg. Time (solved by all): average running time considering only those instances solved to
optimality by the four B&B algorithms, 513 in total (see Table [5.8] for the totals per instance
size); The rationale behind the computation of statistics for the group of instances solved by all
algorithms is to avoid distorting some analyses. For example, suppose that algorithm A solves
just one instance more than algorithm B. It may happen that A and B take about a hundred
seconds to compute the instances they both solved to optimality but, say, A is always 10% faster
in these cases. However, suppose that the additional instance that A can handle consumes all the
1,800 seconds of computing time. In this extreme situation, if this extra instance is considered
in the calculation of A’s average computing time, we could reach the wrong conclusion that A is
“slower” than B.
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Table 5.1: Results for SEG and instances with 2, 500 vertices.
Instance nVars nRows Root LP LB TUB tSetup tRoot tTotal

random-2500-1 7,835 27,765 2.88 4 4 0.22 0.88 25.84
random-2500-2 8,001 28,512 2.93 4 4 0.22 0.94 49.20
random-2500-3 7,519 26,343 2.84 4 4 0.21 0.66 15.63
random-2500-4 8,115 29,025 2.89 4 4 0.23 0.98 27.76
random-2500-5 7,701 27,162 2.78 4 4 0.22 0.89 57.84
random-2500-6 7,645 26,910 2.86 4 4 0.21 0.79 18.59
random-2500-7 7,547 26,469 2.92 4 4 0.22 0.90 27.20
random-2500-8 7,307 25,389 2.80 4 4 0.20 0.88 30.83
random-2500-9 7,905 28,080 3.01 4 4 0.22 0.94 86.68
random-2500-10 7,579 26,613 2.88 4 4 0.20 0.83 23.28
random-2500-11 7,421 25,902 2.93 4 4 0.22 0.64 15.39
random-2500-12 7,691 27,117 2.80 4 4 0.22 0.84 45.72
random-2500-13 7,397 25,794 291 4 4 0.21 0.74 22.31
random-2500-14 7,869 27,918 2.84 3 4 0.22 1.01  1,798.05
random-2500-15 7,411 25,857 2.85 4 4 0.21 0.76 23.03
random-2500-16 7,797 27,594 2.87 4 4 0.23 0.78 51.80
random-2500-17 8,073 28,836 2.92 4 4 0.23 1.05 81.01
random-2500-18 7,577 26,604 3.00 4 4 0.21 0.82 31.97
random-2500-19 8,129 29,088 2.95 4 4 0.22 1.12 79.17
random-2500-20 8,159 29,223 2.83 4 4 0.23 1.08 48.90
random-2500-21 7,735 27,315 2.83 4 4 0.23 0.97 28.62
random-2500-22 7,501 26,262 2.98 4 4 0.22 0.67 18.15
random-2500-23 8,137 29,124 2.83 4 4 0.23 1.22 143.71
random-2500-24 7,489 26,208 2.89 4 4 0.22 0.73 18.90
random-2500-25 7,663 26,991 2.89 4 4 0.23 0.77 24.48
random-2500-26 7,739 27,333 2.90 4 4 0.21 0.73 22.96
random-2500-27 7,895 28,035 2.81 3 4 0.22 0.82 1,798.22
random-2500-28 7,709 27,198 2.92 4 4 0.22 0.90 23.63
random-2500-29 7,279 25,263 2.83 3 4 0.22 0.54  1,797.54
random-2500-30 7,485 26,190 2.97 4 4 0.22 0.60 14.30

Table 5.2: Results for SSEG and instances with 2,500 vertices.
Instance nVars nRows Root LP LB TUB tSetup tRoot tTotal

random-2500-1 7,835 28,334 2.92 4 4 0.26 0.87 72.11
random-2500-2 8,001 29,086 2.94 4 4 0.26 1.03 88.36
random-2500-3 7,519 26,918 2.82 4 4 0.26 0.86 26.14
random-2500-4 8,115 29,653 3.00 4 4 0.26 1.21 30.31
random-2500-5 7,701 27,750 2.79 4 4 0.26 1.09 62.62
random-2500-6 7,645 27,474 2.89 4 4 0.26 0.91 41.11
random-2500-7 7,547 27,020 2.95 4 4 0.25 1.06 59.51
random-2500-8 7,307 25,913 2.88 4 4 0.26 0.90 33.05
random-2500-9 7,905 28,671 3.09 4 4 0.26 0.92 27.92
random-2500-10 7,579 27,152 2.98 4 4 0.24 0.81 49.28
random-2500-11 7,421 26,450 2.94 4 4 0.25 0.75 24.93
random-2500-12 7,691 27,673 2.82 3 4 0.26 0.87  1,798.48
random-2500-13 7,397 26,336 3.02 4 4 0.25 0.97 14.79
random-2500-14 7,869 28,500 291 4 4 0.26 0.95 47.74
random-2500-15 7,411 26,398 2.89 4 4 0.25 1.00 33.60
random-2500-16 7,797 28,171 2.91 4 4 0.26 0.92 52.23
random-2500-17 8,073 29,434 2.90 4 4 0.26 1.11 77.38
random-2500-18 7,577 27,179 3.01 4 4 0.26 1.08 44.75
random-2500-19 8,129 29,673 2.97 4 4 0.26 1.46  1,405.86
random-2500-20 8,159 29,831 2.93 4 4 0.27 1.16 78.64
random-2500-21 7,735 27,865 2.85 4 4 0.26 1.17 53.56
random-2500-22 7,501 26,818 3.00 4 4 0.26 1.01 26.32
random-2500-23 8,137 29,682 2.92 4 5 0.26 1.39  1,798.83
random-2500-24 7,489 26,749 2.93 4 4 0.25 0.80 26.89
random-2500-25 7,663 27,541 2.98 4 4 0.26 0.95 63.81
random-2500-26 7,739 27,887 2.94 4 4 0.25 0.91 42.22
random-2500-27 7,895 28,601 2.90 4 4 0.26 1.09 164.57
random-2500-28 7,709 27,755 3.09 4 4 0.25 1.12 21.62
random-2500-29 7,279 25,792 2.83 4 4 0.25 0.66 21.71
random-2500-30 7,485 26,732 3.00 4 4 0.26 0.80 38.18
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Table 5.3: Results for REC and instances with 2, 500 vertices.

Instance nVars nRows Root LP LB TUB tSetup tRoot tTotal
random-2500-1 50,964 7,662 2.99 4 4 27.97 4.96 69.37
random-2500-2 52,192 7,745 3.04 4 4 28.52 6.16 51.82
random-2500-3 43,838 7,504 2.96 4 4 23.47 3.57 85.51
random-2500-4 52,745 7,802 3.01 4 4 29.17 5.69 90.72
random-2500-5 48,322 7,595 2.94 4 4 26.19 5.03 149.00
random-2500-6 47,064 7,567 3.00 4 4 25.46 4.43 106.58
random-2500-7 47,734 7,518 3.10 4 4 25.58 5.50 66.59
random-2500-8 44,771 7,398 2.96 4 4 23.82 3.97 99.13
random-2500-9 51,545 7,697 3.18 4 4 28.08 5.94 72.31
random-2500-10 47,225 7,534 2.92 4 4 25.54 3.99 56.10
random-2500-11 44,397 7,455 2.99 4 4 23.95 3.65 88.33
random-2500-12 48,752 7,590 2.99 4 4 26.23 4.17 105.01
random-2500-13 46,826 7,443 3.07 4 4 24.96 5.34 50.24
random-2500-14 50,420 7,679 2.97 4 4 27.51 4.65 55.31
random-2500-15 44,872 7,450 2.96 4 4 24.08 3.63 94.45
random-2500-16 50,343 7,643 2.95 3 4 27.19 494  1,827.53
random-2500-17 55,026 7,781 3.06 4 4 30.32 6.33 50.89
random-2500-18 46,446 7,533 3.10 4 4 24.84 4.91 51.54
random-2500-19 59,821 7,809 3.11 4 4 32.86 7.59 75.38
random-2500-20 58,305 7,824 3.03 4 4 31.86 6.83 57.29
random-2500-21 50,196 7,612 3.01 4 4 27.17 6.39 53.92
random-2500-22 45,395 7,495 3.05 4 4 24.30 4.14 58.42
random-2500-23 61,346 7,813 3.15 4 4 33.64 8.18 64.18
random-2500-24 46,485 7,489 2.98 4 4 25.05 4.17 65.51
random-2500-25 49,785 7,576 3.12 4 4 26.58 5.32 80.23
random-2500-26 49,821 7,614 3.02 4 4 26.98 5.88 57.84
random-2500-27 52,494 7,692 2.98 4 4 28.76 5.39 85.45
random-2500-28 48,326 7,599 3.11 4 4 26.13 5.55 64.79
random-2500-29 41,645 7,384 2.87 3 4 22.27 288 1,821.79
random-2500-30 44,653 7,487 3.09 4 4 24.15 4.51 43.46

Table 5.4: Results for RREC and instances with 2, 500 vertices.

Instance nVars nRows Root LP LB TUB tSetup tRoot tTotal
random-2500-1 29,559 7,662 2.99 4 4 17.27 3.10 36.30
random-2500-2 29,794 7,745 3.04 4 4 17.46 3.82 33.92
random-2500-3 25,930 7,504 2.96 4 4 14.93 2.14 27.84
random-2500-4 31,382 7,802 3.01 4 4 18.54 3.76 36.89
random-2500-5 27,328 7,595 2.94 4 4 16.34 2.67 46.73
random-2500-6 27,126 7,567 3.00 4 4 15.76 3.18 29.65
random-2500-7 27,522 7,518 3.10 4 4 16.19 3.18 29.61
random-2500-8 25,871 7,398 2.96 4 4 14.76 2.24 33.17
random-2500-9 29,351 7,697 3.18 4 4 17.13 3.50 37.27
random-2500-10 27,697 7,534 2.92 4 4 16.08 2.69 39.71
random-2500-11 25,759 7,455 2.99 4 4 14.92 2.06 30.08
random-2500-12 27,782 7,590 2.99 4 4 16.06 2.58 41.75
random-2500-13 26,803 7,443 3.09 4 4 15.32 3.24 30.64
random-2500-14 29,395 7,679 2.97 4 4 17.12 2.79 33.64
random-2500-15 26,223 7,450 2.96 4 4 15.10 2.51 33.52
random-2500-16 28,477 7,643 2.95 4 4 16.61 2.54 103.63
random-2500-17 31,010 7,781 3.06 4 4 18.35 3.63 35.97
random-2500-18 27,254 7,533 3.10 4 4 15.62 2.96 25.36
random-2500-19 32,473 7,809 3.12 4 4 19.11 4.58 39.41
random-2500-20 32,076 7,824 3.03 4 4 18.75 4.17 36.25
random-2500-21 28,507 7,612 3.01 4 4 16.54 3.87 32.24
random-2500-22 26,543 7,495 3.05 4 4 15.21 2.82 27.26
random-2500-23 32,758 7,813 3.15 4 4 19.26 4.56 41.10
random-2500-24 27,140 7,489 2.98 4 4 16.09 2.75 37.64
random-2500-25 28,018 7,576 3.12 4 4 16.04 3.01 35.63
random-2500-26 28,400 7,614 3.02 4 4 16.53 3.34 30.73
random-2500-27 29,708 7,692 2.98 4 4 17.51 2.90 41.44
random-2500-28 27,654 7,599 3.11 4 4 16.04 3.10 36.27
random-2500-29 24,329 7,384 2.87 3 4 14.00 226 1,809.19
random-2500-30 26,762 7,487 3.09 4 4 15.47 2.55 26.55
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Table 5.5: Summary of results for the B&B algorithms.

SEG SSEG REC RREC
Solved (n = 2,500) 27 28 28 29
Unsolved (all) 62 26 33 30
Avg. Time (n = 2,500) 39.14 9747 73.19 36.90
Avg. Time (all) 17.43 23.14 27.19 20.90
Avg. Time (solved by all) | 15.64 20.20 19.53 11.62

Comparing the results for SEG and SSEG, one can see that the strengthening of the segment
formulation had a positive effect on the number of instances solved to optimality. On the other
hand, the larger number of restrictions had a negative impact on the average time of solutions
solved to optimality by both algorithms (see penultimate row of Table [(.5]).

Now, REC uses a model theoretically stronger than the one in SEG, and the computational
results show that more instances were solved to optimality by the former algorithm. However,
the average running time for the instances solved to optimality by both algorithms was smaller in
SEG. When compared to SSEG, REC performed worse both in terms of the number of instances
solved to optimality and average time for the solution of the instances solved by both. But,
remarkably, the average time of REC becomes about 25% smaller than the one of SSEG when it
comes to find the optimum of 2, 500-sized instances.

Taking advantage of the results in Propositions 5.7 and 6.8] RREC uses a model with, on av-
erage (considering all instances tested), only 58.63% of the variables used by REC. This reduction
on the number of variables allowed RREC to augment the total of instances solved to optimality
and to reduce the average computing time relative to REC. Despite these improvements RREC
solved four instances less than SSEG, the most efficient of the four algorithms in this criterion,
although it was faster than SSEG in the resolution of the instances computed to optimality by
all algorithms. In this same subset of instances, when compared to SEG, the faster of the four
algorithms, the average time of RREC was greater. But, notice that SEG was by far less effective
than RREC leaving about twice as many instances unsolved.

From the discussion above, SSEG and RREC seem to emerge as the winners among the
four B&B algorithms. In spite of that, we extend our analysis a little further for a better
understanding of the situation. Initially we report in Tables and 0.7 the average times of
RREC for each instance size, considering only the ones solved to optimality by all four algorithms.
Then, Figure displays a graph of the standardized average times of SEG, SSEG and REC by
instance sizes. The standardization of the average times was done taking those of RREC as the
mean in the calculation of the standard deviation. Hence, a positive value means that the average
time was greater than the one of RREC while a negative value means the opposite.

From Figure 5.15] one can see that for n > 1,500, only SEG was a true competitor for RREC.
This observation and the fact that RREC solves more instances to optimality than any other
algorithm but SSEG, suggest that RREC scales better than the other algorithms.

Another aspect we consider was the strength of the different formulations. Tables B.8 and
6.9 display statistics concerning the number of nodes explored in the B&B search for the four
algorithms. Each line in these tables contains the data for a group of instances with the same
number of vertices, indicated by n. The number of instances of a given size considered for
the statistics is shown in column #. Columns with headers avg, med and stdev contains,
respectively the average, median and standard deviation for the number of explored nodes of the
algorithm identified in the header. The smallest average value among the four algorithms for
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Table 5.6: Average Time for RREC 20 to  Table 5.7: Average Time for RREC 700 to

600 vertices. 2,500 vertices.
#vertices | time #vertices | time
20 0.08 700 76.85
40 0.17 800 6.51
60 0.24 900 7.79
80 0.51 1,000 8.69
100 0.56 1,250 12.25
200 1.51 1,500 16.49
300 1.98 1,750 19.10
400 2.56 2,000 24.80
500 4.40 2,250 31.94
600 8.22 2,500 33.70
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Figure 5.15: Standardized Average Time of the algorithms having RREC as the mean for
calculating standard deviation.
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each n is presented in bold face.

The data in Tables B.8 and 0.9 show that RREC, on average, explores less nodes than the
other algorithms for most polygon sizes. When this is not the case, its standard deviation is
large which, together with the median, suggests that the high average is caused by few outliers.
The smaller number of nodes explored evince the strength of the model used by RREC when
compared to the others.

As a final test, we decide to experiment with larger instances. The new set of instances
contains polygons with 3,000 up to 5,000 vertices with increments of 500. Thirty polygons of
each size were generated totalizing 150 new instances. In the analysis of Figure [0.15] we saw that
SEG and RREC present the best average running times for instances with 1,500+ vertices and
these values are very close to each other. Hence, the two algorithms were executed for these large
instances. The results of these experiments are summarized in Table 5.10. The row headers have
the same meaning as in Table (5.5l

The average running time of RREC considering all the large instances solved by the two
algorithms is 22.87% smaller than that of SEG. If we consider only the biggest instances (n =
5,000) this improvement goes up to 36.05%. This suggests that RREC becomes much faster than
SEG as size increases. The absolute gap for the instances not solved to optimality was always of
one unit for both algorithms. As before, more instances were solved to optimality by RREC than
by SEG.

These computational results corroborate with the theoretical result in Proposition rel-
ative to the strength of the M,?';,I;f formulations. This fact is also noticeable through the LP
values at the root nodes. RREC had an average 3.54% improvement on this value compared to
SEG, considering the instances solved to optimality by both algorithms (in the original instance
set). When compared to REC, the LP value of RREC only presented an improvement in few
cases. However the smaller number of variables of RREC led to faster computations of the linear
relaxation, as expected. Also, although the number of variables is potentially much greater than

the one in the formulation used in SEG, for the instances tested, this drawback was handily offset

MSPP

pst model.

by the stronger bounds yielded by the

5.6 Conclusions and Future Work

In this paper, we investigated the RPST from many different aspects. We performed the first
polyhedral study about the M%PST formulation presented by Durocher and Mehrabi [7]. New
strong valid inequalities were obtained that effectively improve the lower bound of MEPST in
practice. We also proposed an alternative integer programming formulation for RPST based on the

set partition problem, named MSEPP

s » Whose relaxation was proved to yield better dual bounds

than MPTPST Through geometric arguments, we devised procedures that can substantially

decrease the number of variables in MS5LF

psi » making it a viable alternative to solve the RPST.

As far as we know, we carried out the first computational experiments with the problem, where
the different branch-and-bound algorithms arising from the 1P formulations were compared. The
experiments showed that it is possible to compute the optimum of polygons having thousands
of vertices in a reasonable time. Besides, it was observed that the findings in this work lead to
a faster and more robust algorithm.

However, we noticed that the instances that could not be solved to optimality are not the
largest instances. This suggests that the hardness of an instance could be more dependent
on some geometric characteristic than on its size. The identification of this characteristic is a
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Table 5.8: Statistics for the number of explored nodes for SEG and SSEG algorithms.

SEG SSEG
n # avg med stdev avg med stdev
20 30 7.57 7.00 2.97 7.10 6.00 3.67
40 30 11091  14.00 17.88 27.37  19.00 20.34
60 30 109.89  17.00 31.26 22.97 15.00 24.64
80 30 87.69  23.00 53.48 4777 42.00 33.03
100 30 163.55  36.50 179.20 64.83  46.00 68.03
200 30 121.98 63.50 378.28 1,457.33  97.50  5,617.95
300 28  1,253.93  99.50 5,160.31 433.96 111.00 902.18
400 25 735.28 126.50 1,160.99 2,819.72 73.50 11,398.99
500 23 4,875.13  95.50 15,921.29 718.83  61.00 2,196.21
600 27 17,818.11 163.50 58,034.07  437.04 88.00 1,077.49
700 21 242.24  80.50 222.90 222.05 138.50 183.91
800 22 911.95 109.00 2,088.59 1,478.05 87.00  3,505.54
900 23 8,386.78  87.00 33,194.26 236.61 150.00 187.12
1,000 22 703.55 123.00  1,550.10 272.00  93.50 240.35
1,250 26  2,929.96 104.00 12,989.26 5,108.08 233.00 20,371.21
1,500 19 291.53 121.50 206.45 574.58 324.00 460.26
1,750 23 581.00 257.00 873.49 675.87 300.50 574.02
2,000 25 385.76  322.50 224.58 1,819.20 599.00  3,245.71
2,250 25 479.20 326.00 352.30 5,121.16 888.00  8,659.97
2,500 24 669.92 203.00 798.66 3,475.29 639.50 10,182.65

Table 5.9: Statistics for the number of explored nodes for REC and RREC algorithms.

REC RREC
n # avg med stdev avg med stdev
20 30 7.53  6.00 4.58 5.13 4.00 2.62
40 30 25.27 20.00 20.57 18.07 15.00 13.75
60 30 43.33  23.00 39.96 24.47 18.00 20.65
80 30 65.23 58.00 60.71 45.90 34.50 30.75
100 30 263.87 40.00 897.11 47.80 25.00 47.23
200 30 3,200.77 30.50 16,578.03 239.17 29.00 1,115.98
300 28 379.57 53.00 1,586.30 99.93 43.50 203.05
400 25 924.24 54.00  3,512.56 69.20 41.00 52.46
000 23 185.39 36.00 522.68 93.96 32.50 100.03
600 27 384.37 5250 1,295.10 732.33 47.50  3,295.29
700 21 182.38 40.50 292.04 18,994.43 31.50 72,523.59
800 22 272.50 33.50 801.60 109.73 30.00 190.71
900 23 198.39 41.00 538.25 54.09 32.00 56.65
1000 22 497.86 33.50  1,595.90 81.45 35.00 97.41
1250 26 489.77 63.50  1,883.51 53.85 44.50 36.76
1500 19 92.42 54.00 61.57 57.16 36.50 34.31
1750 23 75.96 62.00 43.82 51.26 38.00 30.82
2000 25 72.72  56.00 39.72 58.12 42.50 36.93
2250 25 84.92 75.50 43.41 66.52 61.00 34.91
2500 24 96.79 68.00 68.15 63.42 42.00 46.59
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Table 5.10: Summary of results for the B&B algorithms with big instances.

SEG RREC
Solved (n = 5,000) 30 30
Unsolved (all) 9 6
Avg. Time (n = 5,000) 170.17 108.82
Avg. Time (all) 105.56  81.37
Avg. Time (solved by all) | 105.94  81.71

possible line of investigation to be pursued that may result in stronger 1P models for RPST. But
future research directions should also include the determination of the problem’s complexity.
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Chapter 6

Counterexample for the
2-approximation of finding partitions of
rectilinear polygons with minimum
stabbing number

Here a technical note made public on the arXiv website [3]| is reproduced. This note
co-authored with Cid C. de Souza exhibits a counterexample to the claim given in [2]
that an algorithm proposed in that paper provides a 2-approximation for RPST. A similar
result was published afterwards in [I].

This paper presents a counterexample to the approximation algorithm proposed by
Durocher and Mehrabi 2] for the general problem of finding a rectangular partition of a
rectilinear polygon with minimum stabbing number.

6.1 Introduction

Given a rectilinear polygon P and a rectangular partition R of P, a segment is said to
be rectilinear relative to P if it is parallel to one of P’s sides. Let s be a maximal
rectilinear line segment inside P. The stabbing number of s relative to R is defined as
the number of rectangles of R that s intersects. The stabbing number of R is the largest
stabbing number of a maximal rectilinear line segment inside P. The Minimum Stabbing
Rectangular Partition Problem (RPST) consists in finding a rectangular partition R of P
having the smallest possible stabbing number. Figure illustrates these definitions.
Variants of the problem arise from restricting the set of rectangular partitions that
are considered to be valid. One of these variants is called the conforming case, in which
every edge in the solution must be maximal, i.e., both of its endpoints must touch the
border of the polygon. For this problem, in [2], Durocher et al. propose an integer
programming model for the conforming case where there are exactly two edges (that can
be in the solution) having each reflex vertex as endpoint. Thus, there are also precisely

113
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two variables associated to each reflex vertex.

random-20-17

Figure 6.1: A rectilinear polygon with a rectangular partition of stabbing number 4. The
dashed lines represent maximal rectilinear line segments inside the polygon. Segment r
has stabbing number 4 while segment s has stabbing number 3.

In 2] a 2-approximation algorithm is presented for the conforming case of partitions
of rectilinear polygons with minimum stabbing number. That approximation algorithm is
based in a rounding of the variables. In the section named Generalizing the Approximation
Algorithm of the article, it is stated that the algorithm could be extended for the general
case using a formulation described informally and the same rounding rules used in the
conforming case.

In this paper we show that the algorithm as described in [2] cannot give a 2-approxi-
mation for the general case of the (RPST). This is done by means of a counterexample to
the referred algorithm.

6.2 IP Models

The RPST can be modelled via integer programming in a number of different ways. In
this section we present two such models for the general case of RPST in an attempt to
formalize the description given in [2]. But first, we need some definitions.

Let P be a rectilinear polygon, input of the RPST. Define as VI the set of reflex
vertices of P, i.e., those having internal angles equal to 37/2. Let V. be the set of
vertices of P that are not reflex. Denote by grid(P), the set of all maximal rectilinear line
segments in the interior of P having a vertex in VI’ as one of its endpoints. Let V. be
the set of points in the intersection of two segments in grid(P). We refer to these points
as Steiner Vertices. The points that are not in V¥ or VI’ and are in the intersection
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of a segment in grid(P) and the border of P compose the set V;”. Denote by V* the set
resulting from the union of all the point sets defined before, i.e., VF = VEUVZUVIUVE.

Define B} as the set of line segments in the border of P having only two points in
VP which are its extremities. Any fragment of a segment in grid(P) containing exactly
two vertices in V7 is called an internal edge. The set of all internal edges is E}” and
the set of all edges in P is E¥ = EF U EF. A subset E'" of ET defines a knee in a
vertex u € VE UV if exactly two edges in E'” have u as an endpoint and these edges
are orthogonal. A subset E' of ET is said to define an island in a vertex u € VI if only
one edge of E'F have u as an endpoint. At last, if ua and ub are two edges in EF having
a common endpoint u, we denote the angle between ua and ub by 0(ua, ub).

Now, we can formalize the model described in [2] as follows:

(RPST) z = mink (6.1)
subject to Tua + Tup > 1, Vuc€ V,,P Aua,ub € EZ-P, (6.2)
Tya + Typ — Tye > 0, VuGVSP,Vua,ub,uceEf
with 0(ua,ub) = 7/2, (6.3)
> aw<k—1, Vsel, (6.4)
weE]
wv () 570
Tuw € B Y uv € EiP,
keZ.

In the model above, we have one binary variable x,, for each internal edge uv in P
which is set to 1 if and only if the corresponding edge is in the rectangular partition
of P. Constraints (6.2) ensure that the solution does not contain a knee in a reflex
vertex. Inequalities (6.3]) impose that the solution does not form a knee or an island in a
Steiner vertex. Inequalities (6.4) relate the x variables with variable k, which represents
the stabbing number of the solution. As a consequence, the objective function (61 is to
minimize k. Finally, (65) and (6:0) are integrality restrictions for the variables. Figure[6.2]
shows an instance of the RPST (called random-20-17) with 62 internal edges and their
corresponding variables.

As stated before, the (RPST) model above is not the only model for the problem and
next we show another way of modelling it. However, to guarantee the correctness of the
model we must first prove a property of optimal solutions for the RPST. The following
proposition is a generalization of Observation 1 in [2].

Proposition 6.1. Any rectilinear polygon P has an optimal rectangular partition R in
which every mazimal segment of R has at least one reflex vertex of P as an endpoint.

Proof. Let R be a rectangular partition of a rectilinear polygon P. Let e be a maximal
segment in R having a and b as its endpoints. Suppose neither a nor b are reflex vertices.
Since e is maximal and R is a rectangular partition, both endpoints of e must lie in
segments perpendicular to e.
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random-20-17

r—9
X7
x8
x19O X6 ¢
x33 | x5
x17 x30L x31l
x34 | x32
| X9 | x45[ x46l
x10 | x52 | x44
x28l x55[ x50l x51
x57 | x53 | x47
X27) X541 x48| x49
x23 |x21 |[x20

Figure 6.2: Instance random-20-17 with 62 internal edges and the corresponding vari-
ables.

Now, since R is a rectangular partition, e define two minimal rectangles (each one
possibly containing other rectangles) having e as one of its sides, let us denote them by
r1 and r5. There are three cases to consider.

The first case consists of r; and ry been empty rectangles, i.e., neither 71 nor r5 contain
other rectangles. Therefore, the removal of e unite these rectangles, composing a single
rectangle. Therefore, R \ e is still a rectangular partition. It is clear that removing a
segment cannot increase the stabbing number of the solution. Thus, if R is an optimal
solution, so is R\ e.

The second case to consider is when only one of r; or r, contains other rectangles.
Suppose without loss of generality that r; is the one containing other rectangles. Now,
we can drag e towards r;, shrinking any segment with an endpoint in e, until e meets
a reflex vertex or the border of P. In the latter case, e is merged to the border of P.
It is easy to see that the result of this dragging operation is also a rectangular partition
besides, the only stabbing segments affected by this operation are the ones parallel to e
and their stabbing number cannot increase. Therefore, as R is optimal, so must be the
new solution.

At last, we must consider the case where both r; and 7, contain other rectangles.
Suppose without loss of generality that the number of segments in r; having an endpoint
in e (thus, perpendicular to it) is greater or equal than the number of segments with these
characteristics in r5. Then, again, we can drag e towards rq, shrinking any segment with
an endpoint in e, until e meets either a segment parallel to e or a reflex vertex or the
border of P. If a parallel segment is met, e is merged to it and the process is repeated
until a reflex vertex or the border of P is met. In case the border of P is met, e ceases to
exist together with the segments in the space between e and the border. Once again, the
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dragging operation results in a rectangular partition of P and the only stabbing segments
affected by this operation are parallel to e. But, as the number of segments in r; is greater
or equal than the number of segments in 75, one can see that the stabbing number of the
new rectangular partition cannot be greater than that of R.

Ergo, there is always an optimal rectangular partition where every maximal segment
has at least one reflex vertex of P as an endpoint. O

In the next model, given the same definitions as before, we consider the set E of
rectilinear segments uv where u € V¥ and v € VF. Notice that a segment of EX can
be comprised of several consecutive segments of EF. Hence, we call EF the extended
edge set. In the formulation below, we have a variable x,, for each edge in EX and from
Proposition [6.1]it is easy to notice that this set of variables is sufficient to provide optimal
rectangular partitions.

(RPST2) =z = mink (6.7)
subject to
Z Tyq > 1, VueVrP (6.8)
ua€EL
Tab + Typ < 1, YV ab,uv : abNuv # 0 A
AabNuv # a,b,u or v (6.9)
> Tuy —Tay >0, VaecVPbeVl (6.10)

0(uv,ab)=m/2 A
A bEuv A b#u N b#v

> Tuw <k —1, Vsel (6.11)
weEEP v (M s#£0
Tyy € B Y uv € EF. (6.12)
kel (6.13)

In this model, inequalities (6.8) guarantee that the solution does not contain a knee in
a reflex vertex. Constraints (6.9) enforce planarity (two segments of the partition can only
intersect at their extremes). Constraints (6.10) prevent the existence of knees and islands
in a Steiner vertex. Finally, (6.11]) are the stabbing constraints and (6.12) and (6.13) are
integrality constraints. Figure shows instance random-20-17 with 42 internal edges
and the corresponding variables.

6.3 The Counterexample

Before discussing the counterexample, we first present the rounding scheme proposed in [2]
for the conforming case. Once the optimum of the linear relaxation is computed, the rules
for rounding variables in the conforming case are really simple: a variable corresponding
to a horizontal segment is rounded down to zero if its value is smaller than or equal to
0.5 and is rounded up to one if its value is greater than 0.5. A variable corresponding to
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random-20-17

x32=(v8, v50)
x31=(v8, v49)

x30=(v8, v48)
x29=(v8, v44)
x28=(v8, v38)
x27=(v8, v26)
x26=(v8, v25)

v7

x25=(v5, v47)
x24=(v5, v46)
x23=(v5, v45)
x22=(v5, v44)
x21=(v5, v37)

x18=(v3, v43)
x17=(v3, v42)
x16=(v3, v41)
x15=(v3, v40)
x14=(v3, v39)

x20=(v5, v24) o” 9=(v1, V59
x13=(v3, v38) X9=(v1, v59)
X195, v23) (5703 \a7) A8=(V1. vST)

vo V8
v25 x11=(v3, v22) x7=(v1, v55)

x40=(v10, v53)

x39=(v10, v52) x10=(v3, v21) X6=(v1, v53)
x38=(v10, v51) v23 v5 v30 v4 x5=(v1, v50)
x37=(v10, v48) x4=(v1, v47)
x36=(v10, v45 vi w2 x3=(v1, v43)
x35=(v10, v40) v21 o x2=(v1, v36)
x34=(v10, v28) x1=(v1, v35)
x33=(v10, v27) y11 V10 v V27/

va7
) ) ) 0 o)

vl v32 v34 v20

v35

v46

v33 o o o o o©

v18

v29\

x54=(v18, v33)
x55=(v18, v34)
x56=(v18, v42)
x57=(v18, v46)
x58=(v18, v49)
x59=(v18, v52)

v19

v24
v13

v12

x41=(v13, v29) v3l
x42=(v13, v30) V14
x43=(v13, v39)
x44=(v13, v41)
x45=(v13, v51)

v15

x50=(v15, v31)
X51=(v15, v32) V16 vl

x46=(v13, v54)
x47=(v13, v55)
x48=(v13, v56)
x49=(v13, v57)

x52=(v15, v54)
x53=(v15, v58)

x60=(v18, v56)
x61=(v18, v58)
x62=(v18, v59)

Figure 6.3: Instance random-20-17 with its extended edges and corresponding variables.



6.3. The Counterexample 119

a vertical segment is rounded down to zero if its value is smaller than 0.5 and is rounded
up to one if its value is greater than or equal to 0.5.

In the Generalizing the Approzimation Algorithm section of [2], a model for the general
(non-conforming) case is described informally. From the discussion, apparently such model
is equivalent to the (RPST) formulation given in Section [£.2l According to the authors,
the same rounding rules used in the conforming case provide a 2-approximation for the
general case.

The rounding rules do not mention what should be done for Steiner vertices, and no
guarantee is given that applying them directly in these situations will avoid the formation
of a knee or an island. In fact, the instance displayed in Figure shows that this
cannot always be done without sacrificing feasibility. In this figure, the optimal values of
the variables corresponding to edges incident to Steiner vertex v38 (see Figure [6.3) after
solving the linear relaxation associated to instance random-20-17 are given. As only the
variable corresponding to one vertical edge incident to that vertex has value greater than
0.5 and the other three are smaller than 0.5, rounding according to that rule would result
in an island at v38. Therefore, the set of edges obtaining after rounding does not form a
rectangular partition.

random-20-17

Figure 6.4: Values of variables corresponding to edges incident to a Steiner vertex after
solving linear relaxation. The values are rounded with two digits after the decimal point.

It is however possible that we misinterpreted the model the authors were thinking
of (although there is evidence in contrary) and the idea is actually to define variables
corresponding to all edges having a reflex vertex as one of its endpoints. If so, the
formulation would look like (RP.ST2) model in the previous section. In this alternative
formulation, rounding the variables using that rule does not cause the same problem as
before since every variable correspond to an edge having a reflex vertex as endpoint.
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Contrary to what happens in the conforming case, however, the reflex vertices here
have more than two incident edges. Therefore, it is possible that the solution of the linear
relaxation result in values smaller than 0.5 for all the variables corresponding to the edges
incident to a certain reflex vertex. Thus, the rounding of such solution would result in a
partition having a knee in a reflex vertex.

The situation described above occurs in practice with instance random-20-17, as
shown in Figure[6.5l Consider the edges incident to vertex v3. All the associated variables
incident to this vertex have value smaller than 0.5. As consequence, they will be rounded
to zero, resulting in the formation of a knee at v3 and, therefore, in an infeasible solution.

random-20-17

Figure 6.5: Values of variables corresponding to edges incident to a reflex vertex after
solving linear relaxation. Variables with value zero are omitted. The values are rounded
with two digits after the decimal point.

6.4 Conclusion

From the counterexample presented in Section [6.3, we conclude that it remains open
whether a 2-approximation for the RPST in the general case exists. It is, however, note-
worthy that many other contributions are presented in [2] and none of them are diminished
by this counterexample.



Bibliography

[1] S. Durocher and S. Mehrabi. Erratum to: Computing partitions of rectilinear
polygons with minimum stabbing number. Available online (accessed June 2015).
http://http://www.cs.umanitoba.ca/~durocher/research/pubs/cocoonErr
atum.pdf.

[2] Stephane Durocher and Saeed Mehrabi. Computing partitions of rectilinear polygons
with minimum stabbing number. In J. Gudmundsson, J. Mestre, and T. Viglas,
editors, Computing and Combinatorics, volume 7434 of Lecture Notes in Computer
Science, pages 228—-239. Springer Berlin Heidelberg, 2012.

[3] B. Piva and C. de Souza. Counterexample for the 2-approximation of finding partitions
of rectilinear polygons with minimum stabbing number. CoRR, abs/1506.03865, 2015.

Appendix

File name: random-20-17.rect
Model: RPST

Vertex number: 59

Edge number: 62

Reading Problem stab
Problem Statistics

231 ( 0 spare) rows
63 ( 0 spare) structural columns
752 ( 0 spare) non-zero elements
Global Statistics
63 entities 0 sets 0 set members

Minimizing MILP stab
Original problem has:

231 rows 63 cols 752 elements 63 globals
Will try to keep branch and bound tree memory usage below 6.1Gb

Its Obj Value S Ninf Nneg  Sum Dual Inf Time
0 .000000 D 24 0 .000000 0
87 2.411765 D 0 0 .000000 0

Optimal solution found
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¥k Search unfinished x*x*x Time: 0 Nodes: 0
Number of integer feasible solutions found is 0
Best bound is 2.411765
Solution:
x1 = 0.568627 x2 = 0.431373 x3 = 0.274510 x4 = 0.725490
x6 = 0.470588 x6 = 0.529412 x7 = 0.000000 x8 = 1.000000
x9 = 0.555566 x10 = 0.444444 x11 = 0.686275 x12 = 0.313725
x13 = 0.705882 x14 = 0.294118 x15 = 0.294118 x16 = 0.705882
x17 = 0.326797 x18 = 0.686275 x19 = 0.183007 x20 = -0.000000
x21 = -0.000000 x22 = 0.156863 x23 = 0.098039 x24 = -0.000000
x256 = 0.124183 x26 = -0.000000 x27 = 0.000000 =x28 = 0.346405
x29 = 0.431373 x30 = 0.326797 x31 = 0.326797 x32 = 0.143791
x33 = 0.816993 x34 = 0.490196 x35 = 0.052288 x36 = 0.568627
x37 = 0.156863 x38 = 0.274510 x39 = 0.411765 x40 = 0.274510
x41 = 0.000000 x42 = 0.274510 =x43 = 0.294118 x44 = 0.000000
x45 = 0.209150 x46 = 0.209150 x47 = 0.000000 =x48 = -0.000000
x49 = 0.000000 x50 = 0.346405 =x51 = 0.346405 x52 = 0.346405
x53 = 0.000000 x54 = 0.000000 =x55 = 0.346405 x56 = 0.052288
x57 = 0.098039 x58 = -0.000000 x59 = 0.294118 =x60 = 0.431373
x61 = 0.313725 x62 = 0.705882 =x63 = 2.411765

K5k >k >k >k 3k 3k 3k 3k 3k 3k 5k 3k ok ok >k ok ok ok ok >k %k %k 5k 5k 5k 3k 3k 3k 3k ok ok 5k K >k 3k 5k 5k 3k 5k 5k 5k 5k >k %k %k %k 3k 5k 3k 5k 5k ok ok ok %k %k %k %k %k k ok ok k ok ok

File name: random-20-17.rect
Model: RPST2

Vertex number: 59

Edge number: 62

Reading Problem stab
Problem Statistics

336 ( 0 spare) rows
63 ( 0 spare) structural columns
996 ( 0 spare) non-zero elements
Global Statistics
63 entities 0 sets 0 set members

Minimizing MILP stab
Original problem has:

336 rows 63 cols 996 elements 63 globals
Crash basis containing 13 structural columns created

Its Obj Value S Ninf Nneg Sum Inf Time
0 .000000 D 1 0 24.000000 0
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82

Optimal solution found

*xx Search unfinished **x*

2.413793

D

Time: O

Number of integer feasible solutions found

Best bound is

Solution:
x1 = 0.
x5 = -0.
x9 = -0.
x13 = -0.
x17 = -0.
x21 = 0
x26 = 0
x29 = 0.
x33 = 0
x37 = 0
x41 = 0
x45 = -0.
x49 = 0
x63 = 0
x57 = 0.
x61 = 0

293103
000000
000000
000000
000000

.275862
.137931

241379

.1565172
.293103
.000000

000000

.293103
.293103

000000

.000000

2.413793
x2 = 0
x6 = -0
x10 = 0
x14 = -0
x18 = 0
x22 = 0
x26 = -0
x30 = 0
x34 = 0
x38 = 0
x42 = 0
x46 = 0
x60 = 0
x64 = -0
xb8 = -0
x62 = 0

.431034
.000000
.275862
.000000
.293103
.293103
.000000
.189655
.103448
.017241
.017241
.293103
. 706897
.000000
.000000
.431034

x3

x7

x11
x15
x19
x23
x27
x31
x35
x39
x43
x47
x51
x55
x59
x63

is O

.275862
.000000
.275862
.1656172
.241379
.051724
.000000
.000000
.000000
.000000
.000000
.120690
.000000
.293103
.000000
.413793

.000000
x4 = -0
x8 = -0
x12 = -0
x16 = -0
x20 = -0
x24 = -0
x28 = 0
x32 = 0
x36 = 0
x40 = 0
x44 = 0
x48 = 0
x62 = -0
x66 = 0
x60 = -0

0

.000000
.000000
.000000
.000000
.000000
.000000
.275862
.293103
.137931
.293103
.275862
.000000
.000000
.275862
.000000
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Chapter 7

Conclusions and Future Work

In this work we studied problems of finding geometric structures with minimum stab-
bing number. Integer programming techniques were used to create algorithms for all the
problems and computational results were reported.

The complexity classes of MSTR and MCTR were proved and now we know that unless
P=NP, there is no polynomial time algorithm to solve these problems. Moreover, besides
the exact algorithm and computational results presented for MSTR, we also proposed a
Lagrangian heuristic and reported experiments with an iterated rounding algorithm. The
results show empirically that it is possible that IRA provides an approximation for MSTR.

For the RPST, a polyhedral study was also performed through a relationship with RGP,
and we showed that the additional inequalities are useful in computation. A set partition
formulation was also presented and compared with the segment based model both theo-
retically and computationally. We showed that the set partition model is stronger than a
basic segment based model. Computationally, the segment based model with additional
inequalities is comparable to the set partition model.

Moreover, we gave a counterexample to the claim in [I6] regarding an approximation
algorithm for RPST. Later, the authors of the paper also published an erratum confirming
the mistake [15].

Obviously, there is still a lot of work to be done on this subject. From the integer
programming perspective, we could consider different formulations for stabbing problems.
For instance, in a formulation with one variable for each stabbing line it is possible to
consider the relationship between the stabbing numbers of different lines.

A very interesting question still unanswered is whether the iterated rounding algo-
rithms provide approximations for the stabbing problems if we can guarantee the existence
of a highly valued fractional variable in the linear programming relaxation.

The complexity of RPST is still an open problem both for polygons with and without
holes. If the problem turns out to be NP-hard, an obvious question is if the existing
approximation factor can be improved.

To conclude, in Table [ZI] we summarize the problems that were treated and the
articles that originated in the thesis. The meaning of the headers are: Problem: name
of the problem treated in the paper; Article: citation to the paper; Status: the status of
the paper, i.e., published in a journal or conference proceedings, submitted to a journal or
released on-line; Type: full paper/abstract/technical note; and Contribution: the type of
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contribution presented in the paper for that problem.
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Table 7.1: Summary of problems approached and papers composing the thesis.

Problem Article Status Type Contribution
MSPM . algorithms and
(axis parallel) 1371 published full paper experiments
MSST . algorithms and
(axis parallel) 1371 published full paper experiments
MSTR . algorithms and
(axis parallel) [33,B87] | published full paper experiments
MSTR . NP-hardness proof
(axis parallel) [38] | submitted | full paper and experiments
MSTR . NP-hardness proof
(general) 1381 submitted full paper and experiments
1(\/;;21?;&1) 138] submitted full paper NP-hardness proof

. extended 1P model+algorithms
RPST 3] published abstract and experiments
RPST [34] released | technical note - r%%‘éféﬁ%ieé( 1r(r)1Ipll5 s
RPST [35] | submitted | full paper &

and experiments
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