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Resumo

Problemas de trespasse têm sido investigados há tempos em Geometria Computaional

pois apliações para eles são enontradas em uma grande variedade de áreas. Em geral,

a entrada é formada por dois onjuntos de objetos geométrios: o onjunto, �nito ou

in�nito, L de trespassadores e o onjunto O. Uma solução viável é um subonjunto O′

de O satisfazendo uma erta propriedade estrutural π. Dado O′
, o número de trespasse

de ℓ ∈ L é a quantidade de elementos de O′
intersetados por ℓ. O número de trespasse

de O′
relativo a L é o número de trespasse máximo dentre qualquer ℓ ∈ L. O objetivo

do problema é ahar um subonjunto de O satisfazendo a propriedade π om o menor

número de trespasse possível relativo a L. Esta tese traz ontribuições tanto teórias

quanto experimentais para alguns problemas de trespasse.

Em [17, 18℄, Fekete, Lübbeke e Meijer resolveram o problema aberto a respeito da

omplexidade de enontrar uma árvore geradora om número de trespasse mínimo. Eles

também mostraram que ahar um emparelhamento perfeito om número de trespasse

mínimo é NP-difíil. Modelos de programação inteira para os problemas foram apresen-

tados. Porém, muito pouos experimentos omputaionais foram realizados.

Nesta tese, estudamos modelos de programação inteira para enontrar emparelhamen-

tos perfeitos, árvores geradoras e triangulação om número de trespasse mínimo. Com

base nestas formulações, apresentamos algoritmos exatos e heurístias Lagrangianas para

resolvê-los. Estes algoritmos mostraram que as heurístias Lagrangianas proveem boas

soluções, frequentemente ótimas, em um breve tempo omputaional.

De todos os dez problemas e variantes disutidos em [18℄, para apenas três deles a

omplexidade não foi provada: Triangulação om Número de Trespasse Mínimo, om

trespassadores paralelos aos eixos e gerais, e Triangulação om Número de Cruzamento

Mínimo, aso geral. Nesta tese, provamos que estes três problemas são NP-difíeis.
Outro problema de trespasse mínimo é apresentado em [2℄ e também estudado em [16℄.

Este problema pede por uma partição retangular om número de trespasse mínimo em

um polígono retilinear. Embora a omplexidade do problema ainda seja desonheida, em

[2℄ um algoritmo de 3-aproximação é apresentado. Em [16℄ um modelo de programação

inteira é dado e uma 2-aproximação reivindiada.

Nesta tese, fortaleemos a formulação introduzida em [16℄. Também propomos um

modelo alternativo e omparamos os dois teória e omputaionalmente. Além disso,

mostramos que o algoritmo proposto em [16℄ não provê uma 2-aproximação para o pro-

blema.



Abstrat

Stabbing problems have long been investigated in Computational Geometry sine applia-

tions for them are found in a great variety of areas. In general, the input is formed by two

sets of geometri objets: the �nite or in�nite set L of stabbers and a set O. A feasible

solution for the problem is a subset O′
ofO satisfying a given strutural property π. Given

O′
, the stabbing number of ℓ ∈ L is the number of elements of O′

that are interseted by

ℓ. The stabbing number of O′
relative to L is the maximum stabbing number of all ℓ ∈ L.

The goal of the problem is to �nd a subset of O satisfying property π and leading to the

smallest possible stabbing number relative to L. This thesis brings both theoretial and

experimental ontributions to the investigation of some stabbing problems.

The works of Fekete, Lübbeke and Meijer [17, 18℄ solved the open problem relative

to the omplexity of �nding a spanning tree with minimum stabbing number. They also

showed that �nding a perfet mathing with minimum stabbing number is NP-hard.
Integer programming formulations for the problems were also presented. However, very

few omputational experiments were performed.

In this thesis, we study integer programming formulations for the problems of �nding

perfet mathings, spanning trees and triangulations with minimum stabbing number.

Based on these formulations we present exat algorithms and Lagrangian heuristis to

solve the problems. These algorithms show that the Lagrangian heuristis yield solutions

with good quality, often optimal, in short omputation time.

Of all the ten problems and variants disussed in [18℄, for only three of them the om-

plexity was not proved: The Minimum Stabbing Triangulation, axis-parallel and general

stabbers, and The Minimum Crossing Triangulation, general ase. In this thesis, we prove

that the three problems are NP-hard.
Another problem of �nding a struture with minimum stabbing number is presented in

[2℄ and also studied in [16℄. This problem asks for a retangular partition with minimum

stabbing number in a retilinear polygon. Although the omplexity of the problem is still

unkown, in [2℄ a 3-approximation algorithm is presented. In [16℄ an integer programming

formulation is given and a 2-approximation is laimed.

In this thesis, we strengthen the formulation introdued in [16℄. We also propose

an alternative model and ompare the formulations both theoretially and omputa-

tionally. Furthermore, we show that the algorithm proposed in [16℄ an not provide a

2-approximation for the problem.



List of Figures

1.1 Problem of �nding a struture with minimum stabbing number. . . . . . . 14

2.1 Di�erent formulations for the same set of feasible solutions. . . . . . . . . . 22

2.2 A formulation with inequalities that are ative in the optimal solution. . . 24

2.3 Formulation with a frational optimal solution and a ut . . . . . . . . . . 24

2.4 Partition of the set of feasible solutions in two sets. . . . . . . . . . . . . . 25

2.5 Enumeration tree of a b&b. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Pruning of an enumeration tree by optimality. . . . . . . . . . . . . . . . . 26

2.7 Pruning of an enumeration tree by bound. . . . . . . . . . . . . . . . . . . 26

3.1 A triangulation with general (axis parallel) stabbing number 14 (9). . . . . 29

3.2 Loally minimum diagonals of a quadrilateral. . . . . . . . . . . . . . . . . 37

4.1 A triangulation with a general set of lines. . . . . . . . . . . . . . . . . . . 57

4.2 A triangulation with an axis-parallel set of lines. . . . . . . . . . . . . . . . 58

4.3 Extended retangle of a variable. . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 A variable gadget with verties added to its right. . . . . . . . . . . . . . . 62

4.5 Variable and literal gadgets with verties below. . . . . . . . . . . . . . . . 65

4.6 The onstrution for a formula instane. . . . . . . . . . . . . . . . . . . . 67

4.7 A 13× 13 modi�ed grid with a diagonal stabbing line. . . . . . . . . . . . 68

4.8 Part of the lattie ontaining variable swith and multiplier, and spaers . 72

4.9 A spaer gadget and one of its possible triangulations. . . . . . . . . . . . . 73

4.10 Part of a r-row with a rossing line. . . . . . . . . . . . . . . . . . . . . . 73

4.11 Representation of onstrution for a formula. . . . . . . . . . . . . . . . . . 76

5.1 An instane of rpst and a feasible solution. . . . . . . . . . . . . . . . . . 86

5.2 An instane of rgp and a feasible solution. . . . . . . . . . . . . . . . . . . 87

5.3 Grid for the example in Figure 5.1 ontaining 40 anonial retangles. . . . 88

5.4 Point on�gurations for inequalities Classes III, IV and VI. . . . . . . . . . 93

5.5 A re�ex vertex u and surroundings. . . . . . . . . . . . . . . . . . . . . . . 95

5.6 A Steiner vertex u and surroundings. . . . . . . . . . . . . . . . . . . . . . 95

5.7 Sliding operation on the horizontal segment e. . . . . . . . . . . . . . . . . 97

5.8 A windmill and a reverse windmill. . . . . . . . . . . . . . . . . . . . . . . 97

5.9 Retangle that is both a windmill and a rev-windmill. . . . . . . . . . . . . 98

5.10 Corner re�ex and non-orner re�ex verties. . . . . . . . . . . . . . . . . . 99

5.11 Perpendiular border and non perpendiular border vertie. . . . . . . . . 99

5.12 The two possibilities of a retangle omposed by Steiner verties only. . . . 100

5.13 Proof of Proposition 5.7: basi notation. . . . . . . . . . . . . . . . . . . . 101

5.14 Proof of Proposition 5.7: ases 1 to 6. . . . . . . . . . . . . . . . . . . . . . 101

5.15 Time of the b&b algorithms standardized by that of Rre. . . . . . . . . 108



6.1 A retilinear polygon with a retangular partition. . . . . . . . . . . . . . . 114

6.2 Instane random-20-17 with orresponding variables. . . . . . . . . . . . . 116

6.3 Instane random-20-17 with orresponding variables. . . . . . . . . . . . . 118

6.4 Steiner vertex variables values after solving linear relaxation. . . . . . . . . 119

6.5 Re�ex vertex variables values after solving linear relaxation. . . . . . . . . 120



List of Tables

3.1 Results for mspm tsp and lustered instanes. . . . . . . . . . . . . . . . . 41

3.2 Results for mspm random instanes. . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Results for mspm grid instanes. . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Results for msst tsp instanes. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Results for msst grid instanes. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Results for mstr tsp instanes. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Results for mstr grid instanes. . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Comparison of IRA and lr algorithm with tsp instanes. . . . . . . . . . 80

4.2 Comparison of IRA and lr for grid instanes. . . . . . . . . . . . . . . . . 81

5.1 Results for seg and instanes with 2, 500 verties. . . . . . . . . . . . . . . 105

5.2 Results for Sseg and instanes with 2, 500 verties. . . . . . . . . . . . . . 105

5.3 Results for re and instanes with 2, 500 verties. . . . . . . . . . . . . . . 106

5.4 Results for Rre and instanes with 2, 500 verties. . . . . . . . . . . . . . 106

5.5 Summary of results for the b&b algorithms. . . . . . . . . . . . . . . . . . 107

5.6 Average Time for Rre 20 to 600 verties. . . . . . . . . . . . . . . . . . . 108

5.7 Average Time for Rre 700 to 2,500 verties. . . . . . . . . . . . . . . . . 108

5.8 Statistis for the number of explored nodes for seg and Sseg. . . . . . . . 110

5.9 Statistis for the number of explored nodes for re and Rre. . . . . . . . 110

5.10 Summary of results for the b&b algorithms with big instanes. . . . . . . . 111

7.1 Summary of problems approahed and papers omposing the thesis. . . . . 125



Contents

1 Introdution 13

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Struture of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Basi Conepts 17

2.1 Graphs and Computational Geometry . . . . . . . . . . . . . . . . . . . . . 17

2.2 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Integer Programming and Polyhedral Combinatoris . . . . . . . . . . . . . 21

3 IP approahes for Minimum Stabbing Problems 28

3.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Integer Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 mspm Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 msst Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.3 mstr Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Conlusions and Future Diretions . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 51

4 On Triangulations with Minimum Stabbing or Crossing Number 54

4.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 The Complexity of Axis-Parallel mstr . . . . . . . . . . . . . . . . . . . . 57

4.4 The Complexity of General mstr . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 The Complexity of General mtr . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Iterated Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 83

5 Minimum Stabbing Retangular Partitions of Retilinear Polygons 85

5.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Segment Based ip Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Polyhedral Study of the Segment Based Model . . . . . . . . . . . . . . . . 90

5.3.1 Projetion of Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Transforming rpst into rgp . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3 Polyhedral results for the rpst . . . . . . . . . . . . . . . . . . . . 91



5.4 Set Partition Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Properties of the Set Partition Model for the rpst . . . . . . . . . 94

5.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Conlusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 112

6 Counterxample for the 2-approximation of rpst 113

6.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 IP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 The Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 121

7 Conlusions and Future Work 124

Bibliography 126



Chapter 1

Introdution

A problem of �nding a struture with minimum stabbing number, in general, has its input

formed by two sets of geometrial objets: the �nite or in�nite set L of stabbers and the

set O. A feasible solution for the problem is a subset O′
of O satisfying a given strutural

property π. Given O′
, the stabbing number of ℓ ∈ L, as de�ned in [17, 18℄, is the total of

elements of O′
that are interseted by ℓ. The stabbing number of O′

relative to L is the

maximum stabbing number of all ℓ ∈ L. The goal of the problem is to �nd a subset of O
satisfying property π and having the smallest possible stabbing number.

Related problems are those of �nding strutures with minimum rossing number. The

input of this kind of problem is the same as that for stabbing problems, i.e., a set L and

a set O. A feasible solution for the problem is also given by a subset O′
of O satisfying a

given strutural property π. Aording to the de�nition in [17, 18℄, given O′
, the rossing

number of ℓ ∈ L is the number of onneted omponents in the intersetion of ℓ and O′
.

And as for the stabbing number, the rossing number of O′
relative to L is the maximum

rossing number of all ℓ ∈ L, while the goal of the problem is to �nd a subset of O
satisfying property π and having the smallest possible rossing number.

Consider for instane the set of points P in Figure 1.1 (a). Let the set of stabbers L
be the set of dashed lines in that �gure and let O be the set of all line segments having

points in P as its extremities. Let the property π be: being a single onneted omponent.

Then, let O′
be the set of line segments having points of P as its extremities shown in

Figure 1.1 (b). Sine O′
satis�es π it is a valid solution for the problem with stabbing

number 7 (beause line s stabs this number of segments in O′
and no other line in L

stabs more segments than s). This solution is said to be optimal if no other solution has

a stabbing number smaller than 7.

In 2001, Mithell and O'Rourke published the �Computational Geometry Column 42�

[30℄ , ontaining a ompendium of thirty previously published open problems in ompu-

tational geometry. From this list, problem number 20 stated: �What is the omplexity of

omputing a spanning tree of a planar point set having minimum stabbing number? The

stabbing number of a tree T is the maximum number of edges of T interseted by a line.

Any set of n points in the plane has a spanning tree of stabbing number O(
√
n), and this

bound is tight in the worst ase

1

. However, nothing is known about the omplexity of

1

i.e., there are instanes for whih the stabbing number of any spanning tree is at least O(
√
n)

13



14

(a) (b)

ss

Figure 1.1: Instane of a problem of �nding a struture with minimum stabbing number.

omputing a spanning tree (or triangulation) of minimum stabbing number, exatly or

approximately.� [30℄. This list then gave birth to the Open Problems Projet [14℄, a list

of problems without known solution by the time they were inorporated to the list.

Spanning Trees with low stabbing number an be used to onstrut data strutures

that have appliations in omputational geometry, omputer graphis and virtual reality

[43, 3℄. The same is true for triangulations with low stabbing number [26, 25℄. Usually,

for these appliations, guaranteeing a stabbing number O(
√
n) or O(logn) is enough and

we are unaware of appliations that require an optimal stabbing number. Notie, however

that although stabbing problems have been known for a long time, the omplexity of

�nding a spanning tree with minimum stabbing number (msst) remained open

until reently and it was open until now for the problem of �nding a triangulation with

minimum stabbing number (mstr). Moreover, the ost measurement of a solution

for the problem, i.e., its objetive funtion, is not so usual in ombinatoris, whih makes

the problem interesting by itself. Therefore, it should be noted that our primary interest

in the problem is of a theoretial nature.

In [17, 18℄, Fekete, Lübbeke and Meijer studied problems of �nding minimum stabbing

number strutures suh as perfet mathings (mspm), spanning trees (msst) and

triangulations (mstr). They also onsidered the problems of �nding the same strutures

with minimum rossing number (respetively, mpm, mstand mtr). In those papers

they proved that �nding a perfet mathing or spanning tree with minimum stabbing or

rossing number is NP-hard in the general and axis-parallel ases. They also proved that

�nding a triangulation with minimum rossing number is NP-hard in the axis-parallel

ase. The authors also presented integer programming (ip) formulations for the problems

and a heuristi based on an iterated rounding proedure whih was onjetured to de�ne

an approximation algorithm. Some omputational experiments for the minimum stabbing

perfet mathing were also reported. While several ontributions to minimum stabbing

problems were given in [18℄, some problems were still left open, among them are the

omplexity of mstr in both axis-parallel and general ases, and the omplexity of mtr

in the general ase.

Duroher and Mehrabi studied the problem of �nding a retangular partition of a

retilinear polygon with minimum stabbing number (rpst) [16℄. The problem of �nding

a retilinear deomposition with low stabbing number was introdued in [12℄ and the

orresponding minimization problem was studied in [2℄ where a 3-approximation algorithm

was presented for the problem. The paper by Duroher and Mehrabi aught our attention
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for two reasons: �rst it was about �nding a struture with minimum stabbing number

and seond, it used integer programming to �nd an approximation algorithm for the

onforming ase of the problem whih they proved to be NP-hard (no omplexity result

was known before). In [16℄ the ip model was also extended for the general ase, however

no polyhedral study or omputational experiments were performed.

In [13℄ and [8℄ the problem of �nding a retangular partition with minimum length

(rgp) was studied. Two ip formulations for the problem were desribed and some algo-

rithms were developed for it. As it turns out, the ideas used in the models studied for the

rgp an also be applied to model the rpst. Moreover we an use the results obtained in

those papers for the rgp to ahieve similar results for rpst.

1.1 Contributions

The main ontributions of this thesis are:

• We present the �rst integer programming formulations for mstr and new formula-

tions for msst, based on the models introdued in [18℄.

• Computational results for mstr are reported for the �rst time.

• We propose and experiment with Lagrangian heuristis for mspm, msst and mstr.

• mstr is shown to be NP-hard both in the axis-parallel and general ases.

• We prove that mtr is NP-hard in the general ase.

• We present omputational results for an iterated rounding algorithm for mstr.

• We perform a polyhedral study for the existing integer programming model of rpst,

propose a new one and ompare the strengths of these alternative formulations.

• Computational results for rpst are reported for the �rst time.

• We present a ounterexample for a laimed 2-approximation algorithm for rpst

proposed earlier in the literature.

1.2 Struture of the Thesis

This doument is a ompilation of the papers published or submitted to publiation

by the author with other researhers as a result of the investigation arried out during

the dotoral program. Chapters 3, 4 and 5 orrespond to those papers, [37℄, [38℄, [35℄,

respetively. Following the rules of the graduate program of the University of Campinas,

the papers are reprodued here without modi�ation, exept for the printing format.

Chapter 6 orresponds to a tehnial note made publi through arXiv [1℄. The struture

of this hapter is the same of the ones orresponding to published or submitted artiles.

Eah one of the hapters 4 to 6 are divided into three parts. The �rst part stands for

a brief desription of the paper informing, for instane, whether the paper is published
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or submitted. The seond part is the text of the paper itself. Finally, the last part

orresponds to the referenes of the original paper.

The next hapter summarizes some of the basi theoretial onepts and tehniques

neessary to understand the rest of the doument.

Chapter 3 ontains ip models for the stabbing problems desribed in [17℄. These

models are then used to develop exat Branh-and-Bound (b&b) and Branh-and-Cut

(b&) algorithms for the problems. Next, Lagrangian Relaxation (lr) of the models are

utilized to produe heuristi algorithms whih are then ompared to the exat algorithms.

In Chapter 4, the omplexity of the Minimum Stabbing Triangulation Problem and

Minimum Crossing Triangulation Problem are studied. The axis-parallel ase of mtr

was shown to be NP-hard in [17℄, however, the omplexity of the general ase was left

open. The omplexity of mstr was still unknown both in the general and axis-parallel

ases. In this hapter we prove that these three problems are NP-hard.
The problem of �nding retangular partitions of retilinear polygons with minimum

stabbing number is the subjet of Chapter 5. In this hapter, we present ip models for

the rpst and ompare their strengths. We also show a relationship between rpst and

rgp, this relationship is used to prove properties about the polyhedron de�ned by one of

the ip models for rpst. Computational experiments are performed to ompare the b&b

algorithms derived from the di�erent formulations.

Chapter 6 is dediated to presenting a ounterexample for the approximation algorithm

proposed in [16℄ for the rpst. We analyse the proposed ip model and algorithm and show

that it annot lead to an approximation as laimed.

Finally, Chapter 7 presents some onlusions regarding the entire work and disusses

possible diretions for future work.



Chapter 2

Basi Conepts

The purpose of this hapter is to introdue basi onepts that will be neessary for the

omprehension of the rest of this thesis.

All the problems treated in this text are ombinatorial problems in graph theory and

omputational geometry. We approah these problems using integer programming and

polyhedral ombinatoris tehniques. Moreover, we analyze the omplexity of some of

these problems. In Setion 2.1 we present some de�nitions from graph theory and om-

putational geometry. In Setion 2.2 elements of omputational omplexity are introdued

and, �nally, Setion 2.3 shows some important onepts from integer programming and

polyhedral ombinatoris. Notie that it is not our intention to write an exhaustive text

on these subjets and very thorough texts an be found at [5, 7, 19, 31, 32, 40, 41, 44℄.

2.1 Graphs and Computational Geometry

Graphs are very versatile mathematial strutures for modelling. Formally speaking, a

graph G is omposed by a set of verties V (or V (G)) and a set of edges E (or E(G)),

where E ⊆ V ×V . We use the notation G = (V,E) to indiate the omponents of a graph

G.

If e = (u, v) is in E, we say that the verties u and v are adjaent or neighbours and

that u and v are the extremes of e. The degree of a vertex v is the number of verties

that are adjaent to v. The graphs used in this work are simple graphs, i.e., there are

no edges of the form (v, v) and there is at most one edge for eah pair of verties. In this

text, we are also dealing with undireted graphs, that means (v, u) = (u, v) for every

u and v in V .

A graph G = (V,E) is said to beweighted if there is a funtion w : E → R assoiating

a real number (weight) to eah edge of G.

A subgraph H of G, denoted by H ⊆ G, is a graph where V (H) ⊆ V (G), E(H) ⊆
E(G) and, sine H is also a graph, for every edge (u, v) ∈ E(H), u and v are in V (H).

Whenever (u, v) ∈ E(G) for all u 6= v ∈ V (G), we say the graph is omplete. A omplete

subgraph of a graph is alled a lique.

Given a graph G, a sequene (v0, v1, ..., vk) where v0, v1, ..., vk ∈ V (G) and for i =

0, ..., k − 1, vi and vi+1 are adjaent and v0 6= vk is alled a path. If on the other hand

17
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v0 = vk, then this sequene is alled a yle. If a graph has at least one yle we say it

is yli, otherwise it is ayli.

A graph G is said to be onneted if for every pair of distint verties u and v in

V (G), there is a path from u to v. If a graph is onneted and ayli, it is a tree.

Let G be a graph and T ⊆ G. If T is a tree and V (T ) = V (G), then T is a spanning

tree of G.

Given a graph G = (V,E) and a subset M of E where no two edges in M share a

vertex. The set M is alled a mathing in G. If a vertex v is an extremity of some edge

in M we say v is mathed. A mathing where all the verties in V (G) are mathed is

alled a perfet mathing. Obviously, a neessary ondition for a perfet mathing to

exist is that |V (G)| be even.
A geometri graph G = (V,E) is a graph where eah vertex in V is assoiated to

a point in a oordinate system. We say a geometri graph has a straight-line drawing

if its edges are represented by straight-line segments onneting the points assoiated

to the extremities of the edge. The geometri graphs disussed in Chapters 3 and 4

are geometri graphs with straight-line drawings. The eulidean distane between the

extremities of an edge is ommonly used as a weight funtion for geometri graphs with

straight-line drawings.

A polygon is a simple losed urve omposed by a �nite olletion of line segments.

A polygon with n verties (or n segments) an be represented as a sequene of points

in the plane where for i = 0, ..., n − 1 the i-th and i + 1-st points in the sequene are

the extremities of one of the segments de�ning the polygon (addition is mod n). The

sequene of segments along the losed urve de�ning a polygon P omposes the border

or boundary of P , denoted by δ(P )1.

The interior of a polygon an be partitioned into smaller polygons. A very ommon

way of partitioning is a triangulation. As the name suggests, a triangulation is the

partition of a polygon into triangles. A triangulation of a polygon P an be ahieved

by adding non-interseting diagonal segments to the interior of P . A diagonal is a line

segment onneting two verties of P and ontained in its interior. Hene, another way

of de�ning a triangulation is as a maximal non-interseting set of diagonals.

Notie that usually a triangulation is not unique. However, the number of diagonals

and the number of triangles in any triangulation for a given polygon is always the same.

A triangulation of a polygon with n verties always has n−2 triangles and n−3 diagonals.

Triangulation an also be applied to a set of points in the plane. Given a set P of

points in the plane, a triangulation of P is a maximal planar geometri graph with vertex

set P , i.e., a geometri graph where no edge an be added onneting points in P without

destroying its planarity. As in the triangulation of a polygon, a triangulation of a point

set P also has a onstant number of triangles and internal (not in the boundary) edges.

If |P | = n and the boundary of the smallest polygon ontaining P has k points in P , then

a triangulation of P has 2n− 2− k triangles and 3n− 3− k internal edges.

A partiular type of polygons are the retilinear polygons, whih are simply poly-

gons where all the segments de�ning it are either horizontal or vertial. A ommon way

1

Polygons de�ned like this are also alled simple polygons. In this doument, all the polygons are

onsidered to be simple.
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of partitioning a retilinear polygon is by dividing its interior into retangles. Unlike

triangulations though, a retangular partition does not always have the same number of

retangles.

2.2 Complexity Theory

In 1936, Alan Turing de�ned the Turing Mahine, a mathematial model for omputation.

Simply put, a Turing Mahine onsists of an in�nite tape for input and output, a ontrol

unit and a read/write head. The mahine is initialized with its head on the leftmost

symbol of the input whih is written in the tape while the remainder of the tape is empty.

The ontrol unit ontains a set of internal states, three among them are speial states

alled the initial, aeptane and rejetion states. Entering either of the latter two states

stops the omputation immediately. A on�guration of a Turing mahine is omposed

by its urrent state, position of the head and ontent of the tape. Depending on its

on�guration, a mahine an write something to the urrent position on the tape, make

a head movement to the left or to the right and hange its internal state. We all these

three ations, a step in the omputation. If the mahine stops in the aeptane state we

say the input is aepted. If, on the other hand, the mahine stops in the rejetion state,

the input is rejeted.

Although extremely simple, the Turing Mahine model is very powerful and we still

aept the Churh-Turing thesis that states that any algorithmially solvable problem

an be modelled using a Turing mahine. In other words, this thesis says that Turing

Mahines give a formal de�nition for what is an algorithm. Several other omputational

models were proposed over the years, but aording to Churh-Turing thesis, the most

powerful of these models must be omputationally equivalent to a Turing Mahine. Com-

putational equivalene means that the set of problems that an be solved by the models

are the same.

One of these models is the Non-deterministi Turing Mahine. This model is

almost idential to regular Turing Mahines, the only di�erene is that in a deterministi

(regular) model, for eah on�guration there is exatly one possible step the mahine

an take. Meanwhile, in a non-deterministi model, several steps an be taken for eah

on�guration and the mahine exeutes all of them simultaneously. This proess an

be seem as if at eah on�guration where more than one step is possible, the mahine

reates opies of itself with the new on�gurations and ontinues exeuting all the opies

in parallel.

The time omplexity of a Turing Mahine T is a funtion f : N → N where f(n)

is the maximum number of steps exeuted by T with an input of length n. Let t : N → R
+

be a funtion, then T ime(t(n)) is the time omplexity lass of all the problems that

an be solved by a Turing Mahine with time omplexity O(t(n)).

Similarly, we an de�ne the time omplexity of a Non-deterministi Turing

Mahine NT is a funtion f : N → N where f(n) is the maximum number of steps

exeuted by NT in any of its possible omputation paths with an input of length n. Let

t : N → R
+
be a funtion, then NTime(t(n)) is the time omplexity lass of all the
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problems that an be solved by a Non-deterministi Turing Mahine with time omplexity

O(t(n)).

Now, we an de�ne the lass P=
⋃

k∈N T ime(nk), i.e., P is the lass of all the problems

that an be solved by a polynomial time omplexity Turing Mahine. Likewise, NP=
⋃

k∈NNTime(nk), that is, NP is the lass of all the problems that an be solved by a

polynomial time omplexity Non-deterministi Turing Mahine. As said before, Turing

Mahines are a formal de�nition for algorithms, hene we an restate the de�nition above

as: P is the lass of problems having a polynomial time algorithm and NP is the

lass of problems that have a polynomial time non-deterministi algorithm.

Let A and B be two problems having, respetively, input (output) sets IA and IB
(OA and OB). Hene, an algorithm MA for A takes an instane a ∈ IA and produes

MA(a) ∈ OA. Likewise, an algorithm MB for B takes an instane b ∈ IB and outputs

MB(b) ∈ OB. If there is an algorithmR having IA as input set and IB as output set, where

MA(x) = MB(R(x)) for any x ∈ IA, then we say R is a redution (more preisely, a

mapping redution) from A to B. Moreover, if the time omplexity of R is polynomial, we

say that R is a polynomial time redution from A to B and that A is polynomially

reduible to B.

Redutions an be used to �transfer� properties from one problem to another. For

instane, suppose A is a problem that has no polynomial time algorithm then, if there is a

polynomial time redution from A to B, then B annot have a polynomial time algorithm

either, otherwise we get a ontradition.

We say that a problem A isNP-hard if every problem inNP is polynomially reduible

to A. And a problem A is NP-omplete if A is NP-hard and A is in NP. Originally,

the lasses NP and NP-omplete were de�ned for deision problems (problems with

yes or no outputs) however, it is ommon to see in many texts optimization problems

(problems where the solution is maximum or minimum) been said to be NP-omplete.

The idea behind the use of these terms is that an optimization problem is said to be NP-
omplete if its deision version is NP-omplete. The deision version of an optimization

problem is simply a version of the problem where instead of looking to maximize (mini-

mize) some funtion, one is interested in deiding whether its value an be, for instane,

greater or equal (less or equal) to some onstant value.

The �rst problem proven to be NP-omplete was the satis�ability problem (sat).

Its NP-ompleteness was proven by Cook in 1971 [9℄. Cook's proof shows that the

omputation of any Non-deterministi Turing Mahine an be translated to a logial

formula in onjuntive normal form in polynomial time, hene, any problem in NP is

polynomially reduible to sat. Besides, sat is in NP. The existene of an NP-omplete

problem was independently disovered by Levin in 1973 [29℄.

Knowing an NP-hard problem, made it easier to prove that other problems were NP-
hard. We simply have to show that an NP-hard problem is polynomially reduible to

other problems. Sine then, several problems have been shown to be NP-hard. One of

these problems is 3-sat, proven NP-omplete in 1972 by Karp [28℄.

The importane of the NP-hard and NP-omplete lasses is that until this day, no

deterministi polynomial time algorithm exists for solving the problems in these lasses.

However, �nding suh an algorithm for a single problem is enough to show that all the
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problems in NP are also in P, i.e., P = NP. Likewise, if it is shown that a single problem

in NP-omplete demands exponential time algorithms (every algorithm from now on is

to be onsidered deterministi unless stated otherwise), then we have P 6= NP.
3-sat is very ommonly used to prove the NP-hardness of other problems. An idea for

suh a proof is to transform eah omponent of the input of 3-sat, i.e., variables, literals

and lauses, into strutures of the target problem. These strutures are alled gadgets.

Next, we have to onnet these gadgets in order to simulate the relationship between

variables, literals and lauses. Although it may seem strange to transform the input of a

problem in logi to a problem in graphs or omputational geometry for example, it has

been shown to be an easier path for several problems. It has been done, for instane, for

the lique problem and for msst.

2.3 Integer Programming and Polyhedral

Combinatoris

The work of Dantzig, published in 1947 is often onsidered a mark on the beginning of

linear programming as a general tool for solving optimization problems [6, 10℄, although

other works have used linear programming before. Linear programming have shown its

usefulness for ountless ombinatorial optimization problems.

To model (or formulate) an optimization problem as a linear programming prob-

lem we must de�ne three things: the set of variables, the set of linear inequalities de-

sribing the restritions of the problem and a linear funtion that establishes the value of

a solution, alled the objetive funtion. Therefore, usually a linear programming model

have the following form:

z =min
n
∑

j=1

cjxj (2.1)

s.t.

n
∑

j=1

aijxj ≤ bi, i = 1, ..., m (2.2)

or in matrix notation: z = min{cx : Ax ≤ b, x ∈ R
n
+} where A is an m by n matrix, c

an n-dimensional row vetor, b an m-dimensional olumn vetor and x an n-dimensional

olumn vetor.

Even though simplex was the �rst general method presented to solve linear program-

ming problems and it is very useful in pratie, until this day, every pivoting rule proposed

for this method has a pathologial ase resulting in exponential time omplexity. The

�rst known polynomial time method presented for solving the linear programming prob-

lem was the ellipsoid method in 1979. This method was originally introdued by Yudin

and Nemirovski (1976) and Shor (1977) in the ontext of non-linear programming. But

Khahiyan proved that it ould be used to solve linear programs in polynomial time. De-

spite its polynomial time omplexity, the performane of the ellipsoid method in pratie

was worse than the simplex method. Only in 1984 a ompetitive method was presented
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by Karmarkar, the interior-point method [42℄.

To understand how an optimal solution an be found, we must �rst understand the

struture of a set of valid solutions de�ned by a linear program and its properties. For

that we need some de�nitions.

A set S is onvex if for eah pair of points x1 and x2 ∈ S every onvex ombination,

i.e., x = αx1 + (1− α)x2, ∀ 0 ≤ α ≤ 1, of x1 and x2 is also in S.

A set of points satisfying a �nite number of linear inequalities is alled a polyhedron.

Hene, it is easy to see that a linear programming model de�nes a polyhedron. A polyhe-

dron is a onvex set. We all a point x in a polyhedron P a vertex if it annot be de�ned

as a onvex ombination of other points in P \ {x}. The onvex hull of a set of points

P (onv(P )) is the smallest onvex set ontaining all points in P .

Now, onerning the values of solutions of a linear program, there is a theorem stat-

ing: if the optimal value of the objetive funtion of a linear program is �nite and the

orresponding polyhedron is non-empty, then there is always a vertex that is an optimal

solution for this linear program. If more than one vertex is an optimal solution, then

every onvex ombination of these verties is also optimal. This means that we only need

to look at the verties of the polyhedron for optimal solutions.

If we add integrality onstraints to a linear programming model we obtain what is

alled a linear (mixed) integer programming model. Notie that although linear pro-

gramming problems an be solved in polynomial time, a restrited version of the integer

programming problem have already been proven to be NP-hard by Karp in 1972 [28℄.

Notie that the set of feasible solutions for an integer programming problem an be

de�ned by in�nitely many di�erent formulations as shown in Figure 2.1. Therefore, a

natural question that arises is: how an we determine if a formulation is better than

another? To answer this question, let us analyse the following situation. Let S be the set

of valid solutions for an integer programming problem I. If a formulation for I de�nes a

polyhedron P = onv(S), then every vertex of P is a point in S. Then, it is possible to

prove that we an abandon the integrality onstraints and solve the problem as a linear

programming problem and the solution obtained is a valid optimal solution for I.

Figure 2.1: Di�erent formulations for the same set of feasible solutions.

Therefore, the idea is to obtain a formulation that de�nes a polyhedron as lose as

possible to onv(S). It is not always possible to obtain a formulation desribing the onvex

hull of the solutions set, though. Then, in order to understand how good is a formulation
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we must perform a polyhedral study. The �eld interested in the study of the inequalities

de�ning polyhedra is alled polyhedral ombinatoris. This area began with the work of

Edmonds for the perfet mathing polyhedron in 1965 [39℄.

To get a good formulation we need strong valid inequalities. An inequality is valid

if every point in a solution set S satis�es the inequality. Every inequality de�nes a fae

of a polyhedron and the strength of an inequality depends on the dimension of the

fae haraterized by it. Given a polyhedron P ⊆ R
n
and an inequality πx ≤ π0 valid

for P (where π ∈ R
n
and π0 ∈ R) the inequality is said to de�ne a fae F = P ∩ {x ∈

R
n : πx = π0}. If F 6= ∅ and F 6= P , then F is a proper fae of P . Notie that from the

de�nition of a polyhedron, F is also a polyhedron. In order to state what the dimension

of a fae (or a polyhedron) is, the de�nition of an a�nely independent set is neessary.

A set of points x1, ..., xn is a�nely independent if the only solution to

∑n
i=1 αixi = 0,

∑n
i=1 αi = 0 with αi ∈ R is α1 = α2 = ... = αn = 0.

A polyhedron P ⊆ R
n
has dimension (dim(P )) k if there are k + 1 a�nely inde-

pendent points in P . A polyhedron is said to be full-dimensional if its dimension is the

same as the one of the spae ontaining it so, in this ase, if dim(P ) = n we say P is

full-dimensional. Sine a fae F of P is also a polyhedron, it is lear that dim(F ) is

the number of a�nely independent vetors in F . If F is a proper fae of P , it is easy to

see that the greatest possible value for dim(F ) is dim(P ) − 1. If a fae have dimension

dim(P )− 1, it is alled a faet.

It is noteworthy that the number of inequalities neessary to desribe the onvex hull

of the set of solutions for an ip may be exponential. Hene, in these ases, it is impossible

to use a formulation ompletely desribing the onvex hull of the problem in an algorithm.

In this situation if we abandon the integrality onstraints and use a linear programming

algorithm the solution may not be an integral solution.

The formulation obtained from an integer program by abandoning its integrality on-

straints is alled a linear programming relaxation. Given two problems (RP )zR =

min{f(x) : x ∈ T ⊆ R
n} and (IP )z = min{c(x) : x ∈ X ⊆ R

n}, we say that (RP ) is a

relaxation of (IP ) if X ⊆ T and f(x) ≤ c(x)∀x ∈ X , then, it is easy to see that zR ≤ z.

This means that a linear programming relaxation provides a lower (dual) bound

2

for

the original ip problem.

Fortunately, we do not need the desription of the entire onvex hull to �nd an optimal

solution, we only need the inequalities that are ative in an optimal solution, see Figure 2.2.

Therefore, we an start with a weaker formulation and inlude inequalities as they are

needed. Algorithms that use this idea are alled utting plane algorithms (pa). Suh

an algorithm works as follows: given an ip problem P , at eah iteration a linear relaxation

of P is solved. If the solution is integral, it must be optimal and the algorithm stops.

Otherwise, a inequality πx ≤ π0 valid for P and violated by the solution (suh inequality

is alled a ut) is added to the problem and the proess is repeated. At eah iteration

the value of the linear relaxation obtained inreases (for a minimization problem) and

eventually it beomes integral and hene, optimal. Figure 2.3 shows a representation of

an iteration of a pa where an inequality is added to ut o� a frational solution.

2

for a maximization problem the dual bound provided by the linear programming relaxation would

be an upper bound.
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The problem of �nding a valid inequality that uts o� a frational solution is alled the

separation problem. An algorithm to solve this problem is alled a separation routine,

i.e., a separation routine looks for valid inequalities that are violated by the urrent

solution. Grötshel, Lovász and Shrijver showed the omplexity equivalene between

separation and optimization [22℄.

Figure 2.2: A formulation with inequalities that are ative in the optimal solution.

Figure 2.3: Formulation with a frational optimal solution and a ut (represented by the

dashed line).

The �rst utting plane algorithm was introdued by Gomory in 1958 [39℄. The uts

desribed by Gomory are alled Gomory's uts and although they guarantee to �nd an

optimal solution in �nite time, the original algorithm was very ine�ient in pratie.

Another ommonly used tehnique to solve ip problems isBranh-and-Bound (b&b).

The basi idea behind a b&b algorithm is to deompose the problem in smaller and eas-

ier to solve parts and afterwards, use this information to solve the original problem. For

instane, let z = min{cx : x ∈ S}, we would like to partition S in S = S1 ∪ ... ∪ SK and

we have zk = min{cx : x ∈ Sk} for k = 1, ..., K and z = min{zk : k = 1, ..., K}. Notie
that the partition an be onstruted in an iterative fashion �rst dividing the set in a

small number of subsets and then dividing these subsets and so on. Figure 2.4 depits a

representation of a partition of the set of feasible solutions.

A b&b algorithm an usually be represented by an enumeration tree. The partition

in Figure 2.5 is obtained by �xing binary variables to its possible values. It is lear from
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x1 x1

x2 x2

0 01

1 1

12

2

2

2

3 3

3 3

44 4,3

3,5

4,3

3,5(183/80, 7/2)

Figure 2.4: Partition of the set of feasible solutions in two sets. The �rst set orresponds

to the solutions satisfying x1 ≤ 2 and the seond x1 ≥ 3.

that image that a omplete enumeration would take a number of steps that is exponential

in the number of variables.

S

S S

S S S S

S S S S S S S S

0 1

0 0

000 0 0 0

0

0

1 1

1 1 1 1

1

11

1

1 10

0

11 00 01 0

X1= 0 X1= 1

X 2= 0

X3= 0

1

Figure 2.5: Enumeration tree of a b&b where the deomposition is done by �xing variables

at di�erent values. Figure extrated from [44℄

Sine a omplete enumeration is impossible in pratie, we try to make the enumer-

ation impliitly. This is done by pruning the enumeration tree using bound informa-

tion. To see why pruning is possible we just need to know the following property: let

S = S1∪...∪SK be a deomposition of S, let zk = min{cx : x ∈ Sk} for k = 1, ..., K, let z̄k

be an upper bound on zk and zk be a lower bound on zk. Then z = min{zk : k = 1, ..., K}
is a lower bound on z and z̄ = min{z̄k : k = 1, ..., K} is an upper bound on z. In other

words, onsidering a minimization problem, the minimum value among the lower bounds

of all the nodes is a lower bound for the entire tree and the minimum value among the

upper bounds in every node is an upper bound for the entire tree. Understanding this

property, we an see that there are three types of possible pruning.

The �rst type of pruning is by optimality. This happens when the lower and upper

bounds are the same in a given node. It means that the solution obtained is optimal and,

therefore there is no reason to keep looking for a better solution in that sub-tree. An

example of pruning by optimization is shown in Figure 2.6. Another type of pruning is

by bound. This pruning happens when the global upper bound is smaller than the loal

lower bound of a given node. That means that no better bound an be produed by the
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orresponding sub-tree hene, it an be ut from the enumeration. Figure 2.7 shows this

situation. The last type of pruning is by infeasibility, whih happens when there is no

feasible solution in a given node, making the entire sub-tree unfruitful.

S

S1 S2

27

13

20

20

25

15

S

S1 S2

20

25

25

15

Figure 2.6: Pruning of an enumeration tree by optimality. Figure extrated from [44℄
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Figure 2.7: Pruning of an enumeration tree by bound. Figure extrated from [44℄

When a b&b algorithm is ombined with a pa we obtain a Branh-and-Cut (b&)

algorithm. In this kind of algorithm, at eah node of the enumeration tree, a separation

routine is exeuted to �nd violated valid inequalities. Therefore, the idea of a b&

algorithm is to use the strengths (and weaknesses) of b&b and pa at the same time.

Although linear relaxation is very ommonly used, it is not the only kind of relaxation

that exists. Another kind of relaxation is the Lagrangian Relaxation. Given an ip

(IP ):

(IP ) z = min cx

Ax ≤ b, (2.3)

Dx ≤ d, (2.4)

x ∈ Z
n
+,

suppose Ax ≤ b is a set of �nie� restritions while Dx ≤ d is a set of �hard� restritions.

The terms �nie� and �hard� here mean that if we remove the inequalities in Dx ≤ d

from (IP ), the resulting problem an be more easily solved. Then, in a lr the �hard�

inequalities are dualized by adding the term λ(Dx − d) to the objetive funtion for a

given vetor λ ≥ 0. The idea is to penalize the objetive funtion whenever an inequality

is violated. The resulting problem is:
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(IP (λ)) z(λ) = min cx+ λ(Dx− d)

Ax ≤ b,

x ∈ Z
n
+,

The problem (IP (λ)) is alled the Lagrangian Primal problem and for all λ ≥ 0,

it is a relaxation of (IP ), hene z(λ) ≤ z. However, it would be interesting to obtain a

value for λ so that z(λ) is as great as possible, thus providing the best dual bound. This

an be ahieved by solving the Lagrangian Dual problem:

(LD) max{z(λ) : λ ≥ 0}

It is possible to prove that the dual bound obtained by solving the Lagrangian Dual

problem is at least as good as the one obtained from a linear relaxation. The Lagrangian

Dual problem an be solved using a Subgradient Method (sgm) as desribed in [4, 44℄.

The Lagrangian multiplier method was introdued by Everett in 1963 [27℄, but it

beame popular after the works of Held and Karp in 1970 and 1971 [23, 24℄ solving large

instanes (at the time) of the travelling salesman problem.

It is also possible that an ip problem have an exponential number of variables. In

this ase, it is learly not possible to solve the problem ontaining all the variables. So,

instead we iteratively solve a partial problem with a subset of variables and try to �nd a

variable that is not in the formulation and ould improve the value of the solution. The

problem of �nding suh variables is the priing problem. An iterative algorithm as this

is alled a olumn generation algorithm (ga).

The term redued ost of a variable is usually used to desribe how muh the obje-

tive funtion has to improve before the orresponding variable an have a positive value

in an optimal solution. Therefore, the priing algorithms look for variables with negative

redued ost.

It is not hard to see that olumn generation is very similar to utting plane algorithms.

But while in pa we have separation proedures, in ga we have priing proedures. In

fat, ga is the dual of pa. Therefore, ga an also be ombined with b&b to produe

what is named a Branh-and-Prie (b&p) algorithm. ga and b&p algorithms �rst

appeared in the 60's in [11, 20, 21℄.



Chapter 3

Integer programming approahes for

Minimum Stabbing Problems

This hapter orresponds to a paper published in Rairo-OR speial issue of the 2nd Inter-

national Symposium on Combinatorial Optimization (ISCO 2012) under DOI: 10.1051/ro/

2014008 [37℄. The original publiation is available at www.rairo-ro.org and the opyright

is owened by EDP Sienes. The paper was o-authored by Cid C. de Souza, Yuri Frota

and Luidi Simonetti. In this paper, we present integer programming exat algorithms and

lagrangian relaxation heuristis for the problems of �nding perfet mathings, trees and

triangulations with minimum stabbing number. The paper presented at ISCO 2012 that

originated the artile orresponding to this hapter is [33℄.

The problem of �nding strutures with minimum stabbing number has reeived onsid-

erable attention from researhers. Partiularly, [10℄ study the minimum stabbing number

of perfet mathings (mspm), spanning trees (msst) and triangulations (mstr) assoi-

ated to set of points in the plane. The omplexity of the mstr remains open whilst the

other two are known to be NP-hard. This paper presents integer programming (ip) for-

mulations for these three problems, that allowed us to solve them to optimality through ip

branh-and-bound (b&b) or branh-and-ut (b&) algorithms. Moreover, these models

are the basis for the development of Lagrangian heuristis. Computational tests were on-

duted with instanes taken from the literature where the performane of the Lagrangian

heuristis were ompared with that of the exat b&b and b& algorithms. The results

reveal that the Lagrangian heuristis yield solutions with minute, and often null, dual-

ity gaps for instanes with several hundreds of points in small omputation times. To

our knowledge, this is the �rst omputational study ever reported in whih these three

stabbing problems are onsidered and where provably optimal solutions are given.

3.1 Introdution

Given a set of points P in the plane, the geometri graph assoiated to P is the graph

G(P ) = (V,E) whose verties are the points in P and whose edges are the straight line

28
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segments with both extremities in P . The stabbing number of a line ℓ passing through

a geometri (sub)graph G(P ) = (V,E) is de�ned as the number of edges in E having a

non-empty intersetion with ℓ. Given a set L of straight lines, the stabbing number of

a (sub)graph G(P ) = (V,E) is the maximum number of intersetions between any line

in L and the edges in E. The problem of �nding a struture with minimum stabbing

number an be de�ned for any kind of struture, e.g. Perfet Mathings, Spanning Trees,

Triangulations et. So, for example, the problem of �nding the Minimum Stabbing Perfet

Mathing (mspm) an be desribed as follows: given a set of points P , and a set of straight

lines L, �nd a perfet mathing in the geometri graphG(P ), among every possible perfet

mathings in G(P ), having a stabbing number with minimum value. Two versions of the

problem are presented in [9, 10℄ and are related to the hoie of the set L. In the �rst

version, here referred as the general stabbing one, L is de�ned as the in�nite set formed by

all straight lines that an be drawn in the plane. In the axis parallel version, L is the, also

in�nite, set omposed solely by the vertial and horizontal lines in the plane. Figure 3.1

illustrates the two versions of the problem with a triangulation of stabbing numbers 14

and 9, respetively.

Figure 3.1: A triangulation with general (axis parallel) stabbing number 14 (9).

Motivation. Stabbing problems have reeived onsiderably attention in the Computa-

tional Geometry ommunity. In 2001 Mithell and O'Rourke published a list with thirty

open problems in the �eld [16℄, given rise to The Open Problems Projet [6℄, ontaining a

list of geometri problems whose omplexity, at that time, was unknown. The list, whih

is onstantly updated, is an invaluable soure of hallenging problems in Computational

Geometry. In [9, 10℄ general and axis parallel versions of the Minimum Stabbing Per-

fet Mathing (mspm), Minimum Stabbing Spanning Tree (msst) - problem #20 of the

aforementioned list - and Minimum Stabbing Triangulation (mstr) were disussed. For

the �rst two problems approximation algorithms were presented and NP-hardness proofs
were given for both versions of the problems. Computational results are presented for the

mspm. The omplexity status of mstr ould not be established and no algorithms were

developed or tested to solve it. Heuristis for the spanning tree, perfet mathing and

triangulation stabbing problems were investigated in [17℄. These heuristis are mostly

based on greedy and divide-and-onquer tehniques. Contrarily to the Lagrangian heuris-

tis proposed here, they are not able to provide the duality gap assoiated to the solution

they yield. In [17℄ the limited amount of information about omputational experiments

refers exlusively to the spanning tree ase. Other works related to �nding geometri
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strutures with minimum or low stabbing number inlude [4℄, [1℄, [24℄ and [26℄.

Our ontribution. This paper presents two ip formulations for the mstr based on the

ideas desribed in [9, 10, 20℄ and one formulation for the msst whih explores the results

given in [9, 10, 15℄. Later, these formulations and a variation of the one desribed in

[9, 10℄ for the mspm are used to implement exat branh-and-bound (b&b) and branh-

and-ut (b&) algorithms for the orresponding problems, whih allowed, for the �rst

time in the literature, to obtain solutions with proven optimality. Besides, Lagrangian

relaxation (lr) heuristis based on the ip models for the three problems are presented

and appropriate subgradient methods are implemented. Computational results obtained

by the Lagrangian algorithms are reported with instanes taken from the literature and

reveal that optimality or minute duality gaps are ahieved in small omputation times.

In the triangulation ase, it was of paramount importane the realization of the relation

existing between the Minimum Weight Triangulation (mwt) and the mstr. This led to

the development of strong ip models for the latter and also to the usage of e�etive

algorithms to solve the mwt. As we will see later, suh algorithms play an important

role in our Lagrangian heuristi for mstr.

Before ontinuing, we must observe that an early version of this paper appeared in the

Proeedings of ISCO 2012 [22℄. Thus, this work is to be seen as an extended and more

omplete version of that previous work.

Organization of the text. The remaining of this doument is organized as follows.

Setion 3.2 presents ip models for the problems studied. Setion 3.3 desribes how to

derive a lr heuristi for the problems from the ip models, whilst in Setion 3.4 we present

our omputational results. At last, in Setion 3.5 we draw some onlusions and indiate

future researh diretions to be pursued.

3.2 Integer Programming Models

In the urrent setion we present ip models for the three problems under onsideration

in this paper, where the model for the mspm is extrated from [9, 10℄ and the models for

the msst and mstr are based on the ideas presented in those papers. The formulations

desribed here will be used in the implementation of exat b&b and b& algorithms.

Also, in Setion 3.3, we show how to obtain lrs for eah problem using the models

introdued in this setion, and use them to produe primal and dual bounds for the true

optimum.

Stabbing Perfet Mathings. We �rst present the model for the mspm. We are given

the sets P and L of points and stabbing lines, respetively, and E denotes the set of edges

of the geometri graph G(P ). Variable k denotes the stabbing number and, therefore,
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must be minimized. Variable xij is set to 1 when the edge ij is in the solution and 0

otherwise.:

(MSPM) z = min k (3.1)

subjet to

∑

ij∈E

xij = 1, ∀ i ∈ P, (3.2)

∑

ij∈E:i,j∈S

xij ≤ (|S| − 1)/2, ∀ S ⊂ P, |S| odd, (3.3)

∑

ij∈E:ij
⋂

s 6=∅

xij ≤ k, ∀ s ∈ L. (3.4)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (3.5)

In this formulation, onstraints (3.2) and (3.3) guarantee that the solution is a perfet

mathing. The �rst enfores eah vertex to have degree one and the seond � although,

satis�ed by any integral solution and, therefore, not stritly neessary for the orretness

of the model � strengthens the linear relaxation, as proved by Edmonds [8℄. The third

lass of inequalities is formed by the stabbing inequalities and they state that the sum of

the variables orresponding to the edges interseting a given line s ∈ L must always be

smaller or equal to the stabbing number, k. Notie that, as observed in [9, 10℄, in priniple,

this formulation in not �nite sine there are in�nitely many stabbing lines. However,

onsidering the axis parallel version, when sweeping a stabbing line in a diretion d, the

stabbing number only hanges at a point of P . For this reason, we only need to look

at a linear number of stabbing lines, thus, making the model �nite. Following a similar

reasoning, when onsidering the general version, we only need to look at a quadrati

number of lines, namely, those de�ned by eah pair of points in P .

Stabbing Spanning Trees. There are a number of known ip formulations for the Min-

imum Spanning Tree Problem (mst), inluding some that de�ne the onvex hull of the

points orresponding to integer solutions. So, in order to deide whih one should be used

to build a formulation for the msst, we �rst implemented three of the strongest formu-

lations desribed in [15℄ for the mst. After a few omputational tests, we observed that

the direted ut formulation had the best pratial performane ompared to the other

alternatives. Hene, we deide to use this model as the basis for our msst formulation

desribed below.

Consider a digraph D = (P,A), where A is the set of ars onneting eah pair of

verties in P , i.e., for eah edge ij ∈ E there is a pair of ars (i, j) and (j, i). We

arbitrarily set a vertex r as the root of the tree. The notation δ+(C) refers to the utset

direted out of vertex set C and δ−(C) to the utset direted into the vertex set C. The

variable yij = 1 if the tree ontains ar (i, j) when rooted at r and xij = 1 if one of the

ars (i, j) or (j, i) is in the tree with r as root. The relationship between y and x variables
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is established by onstraint (3.9).

(MSST ) z = min k (3.6)

subjet to

∑

(i,j)∈δ+(C)

yij ≥ 1, ∀ C ⊂ V with r ∈ C (3.7)

∑

ij∈A

yij = |P | − 1, (3.8)

yij + yji = xij, ∀ij ∈ E (3.9)

∑

ij∈E:ij
⋂

s 6=∅

xij ≤ k, ∀ s ∈ L. (3.10)

yij ∈ B ∀(i, j) ∈ A (3.11)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (3.12)

As before, part of the formulation is omposed by a set of onstraints ((3.7), (3.8) and

(3.9) ) ensuring that the resulting solution is a geometri subgraph of the required type,

in this ase a spanning tree. The remaining onstraints are stabbing inequalities (3.10),

whih have the same meaning as before. Constraint (3.8) guarantees that the solution has

|P | − 1 ars, as required in a direted spanning tree. Finally, onstraints (3.7) enfores

that the solution is a direted onneted graph.

Stabbing Triangulations. Next, the ideas used in the models above and the ip models

for the mwt that an be found in [20℄ form the point of departure to build the Edge

and Triangle Stabbing models for the mstr. The �rst of these two models is simpler

and, for this reason, easier to use in a Lagrangian Relaxation algorithm. The seond,

although more ompliated, provides better bounds and, therefore, was used in a exat

b&b algorithm.

In the Edge Stabbing model (MSTE), PH is the set of verties on the onvex hull of

P ; a rossing set (Cr) is de�ned as a maximal set of edges whih are pairwise interseting

(endpoints exluded); the set of all rossing sets in G(P ) is denoted by SCr; for an edge

pq ∈ E, Cr(pq) denotes the set of edges interseting pq (again with endpoints exluded)

plus pq itself; the rest of the notation stands for the same as before. For every ij ∈ E,
xij = 1 if and only if the edge ij is in the triangulation. The variable k, one again,
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denotes the stabbing number. Then, the Edge Stabbing Model reads:

(MSTE) z = min k (3.13)

subjet to

∑

ij∈E

xij = 3|P | − |PH | − 3, (3.14)

∑

ij∈Cr

xij ≤ 1, ∀ Cr ∈ SCr, (3.15)

∑

ij∈Cr(pq)

xij ≥ 1, ∀ pq ∈ E, (3.16)

∑

ij∈E:ij
⋂

s 6=∅

xij ≤ k, ∀ s ∈ L. (3.17)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (3.18)

In this model, (3.14) guarantees that the solution has the right number of edges re-

quired for a triangulation of P . Constraint (3.15) states that only one edge in a rossing

set an be in the solution, thus, ensuring planarity. Constraint (3.16) states that, either

pq or at least one of the edges in Cr(pq) must be in the solution, therefore, enforing

maximality (reall that a triangulation is a maximal planar subgraph of G(P )). It is

noteworthy that onstraint (3.16) is not stritly neessary for the formulation. However,

as observed in [20℄, it greatly enhanes the omputational performane of the ip algo-

rithms. Constraint (3.17) states that, for eah stabbing line s in L, the number of edges

from triangulation that interset s is bounded from above by the stabbing number.

Another way to represent a triangulation using ip is to assign variables to the set

of triangles with verties in P . This idea was disussed in [5℄ and in [20℄, where it was

shown that the dual bounds generated by the relaxation of the resulting ip dominate

those produed by the previous formulation on edge variables. In the desription of the

Triangle Stabbing Model below, ∆(P ) is the set of empty triangles over P , i.e., triangles
that do not ontain any point P in their interior; L+(ij) and L−(ij) are the two half-

planes de�ned by the line ontaining ij; EH is the set of edges on the onvex hull of P .

For every triangle ijl ∈ ∆(P ), xijl = 1 if and only if the triangle ijl is in the triangulation.
The variable k has the same meaning as in the previous models.

(MSTT ) z = min k (3.19)

subjet to

∑

ijl∈∆(P ) :

ijl⊂L+(ij)

xijl =
∑

ijl∈∆(P ) :

ijl⊂L−(ij)

xijl, ∀ij ∈ E \ EH , (3.20)

∑

ijl∈∆(P )

xijl = 1, ∀ ij ∈ EH , (3.21)

∑

ijl∈∆(P ):ijl
⋂

s 6=∅

csijlxijl ≤ k, ∀ s ∈ L. (3.22)

k ∈ Z, xijl ∈ B ∀ ijl ∈ ∆(P ). (3.23)

In the model above, onstraint (3.20) states that the number of triangles ontaining an
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edge ij (whih is not in EH) must be the same in both half-planes de�ned by the line on-

taining ij. As the edges in EH are present in every planar triangulation, onstraint (3.21)

ensures that a triangle ontaining one suh edge is in the triangulation. Constraint (3.22)

states that the sum of the oe�ients csijl of the triangles ijl interseting a line s of L an

not be larger than the stabbing number. A triangle ijl interseting a line s has oe�ient

csijl = βs
ij + βs

il + βs
jl, where βs

ij = 1 if ij intersets s and is on the onvex hull, βs
ij = 0.5 if

ij intersets s but is not on the onvex hull and βs
ij = 0 if ij does not interset s.

Later we will see that both models presented in this setion for the mstr are used

in our implementations: (MSTT ) in the b&b (exat) algorithm and (MSTE) in the

Lagrangian heuristi.

3.3 Lagrangian Relaxation

Using the ip formulations from the previous setion, we now derive Lagrangian relaxation

(lr) models for the three stabbing problems. We solve the dual of this relaxation via

the subgradient method (sgm), whih allows us to obtain a lower bound for the optimal

value of the problems. Besides, at eah iteration of the sgm, we ompute the primal

Lagrangian problem whose solution is a minimum perfet mathing, spanning tree and

triangulation, respetively for the mspm, msst and mstr, and, thus, an be used to

obtain upper bounds for these problems. For the basi theory of Lagrangian relaxation

the reader is referred to [27℄.

The presentation of our lr is based on a model for a generi stabbing problem (STAB),

presented below. This model is omposed by the generi onstraints (3.25) that de�ne

the form of the subgraph of G(P ) to be found (in our ase either a perfet mathing, a

spanning tree or a triangulation) and the onstraints (3.26) whih de�ne that the stabbing

number of the subgraph is greater than or equal to the stabbing number of any line.

(STAB) z = min k (3.24)

subjet to

Ax ≤ B, (3.25)

∑

ij∈E:ij
⋂

s 6=∅

xij ≤ k, ∀ s ∈ L. (3.26)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (3.27)

To obtain the lr (STAB(u)) of problem (STAB) we simply dualize the on-

straints (3.26), penalizing them in the objetive funtion. This operation results in the

following model for the Lagrangian primal problem:
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(STAB(u)) z(u) = min k −
∑

s∈L

us(k −
∑

ij∈E:ij
⋂

s 6=∅

xij) (3.28)

subjet to

Ax ≤ B, (3.29)

k ∈ Z+, xij ∈ B ∀ ij ∈ E. (3.30)

Notie that the onstraints (3.25) that remain in the model are those that de�ne the

subgraphs of interest. Also, sine the onstraints being dualized are in the �≤� form, us is

non-negative for all s ∈ L. As a onsequene, the Lagrangian primal problem is equivalent

to the problem of �nding one suh subgraph having minimum weight (the weight of the

subgraph being de�ned as the sum of its edge weights). In the Lagrangian ase, the weight

of edge ij is given by

cij =
∑

s∈L:s
⋂

ij 6=∅

us. (3.31)

From the Lagrangian theory, we know that whenever the primal problem an be solved

in polynomial time, as is the ase for the mspm and msst, we are able to obtain a dual

bound for the original problem in short omputation times. However, when the primal

problem is NP-hard, one may wonder if the relaxation is useful after all. This is preisely

the situation with the mstr sine the mwt was proven to be NP-hard in [19℄. However,

as we shall see later in Setion 3.4, there are highly e�etive algorithms to ompute large

subsets of optimal mwt solutions. As a result, one an expet to solve instanes of the

mwt with several hundreds of points very quikly. Our approah relies on this observation

and the results reported in this paper on�rmed our expetations.

Now, as (STAB(u)) is a relaxation of (STAB), we know that z(u) ≤ z and, sine we

want to �nd the best possible bound, we must �nd the value of u that maximizes z(u),

i.e., we must solve the Lagrangian dual problem given by

(DL) vDL = max{z(u) : u ≥ 0}. (3.32)

Problem (DL) an be solved using the sgm as desribed in [27, 2℄. To this end, the

multipliers us are initialized with null values and are updated at iteration t by the formula:

ut
s = max(0, ut−1

s − µGt−1
s ). (3.33)

with µ given by

µ =
π(dist× ub− lb)
∑

s∈L(G
t−1
s )2

, (3.34)

and Gt−1
s , the s-th omponent of the subgradient of z(u) in ut−1

, given by

Gt−1
s = k −

∑

ij∈E:ij
⋂

s 6=∅

x(ut−1)ij . (3.35)

In the formulas above, ub and lb are, respetively, an upper and a lower bound for the



3.3. Lagrangian Relaxation 36

optimal value, dist is a perturbation fator (arbitrarily set to 1.05 in our experiments)

and π is the step size (in our experiments initialized at 2 and halved every 30 iterations

without improvement in the lower bound). The solution of the Lagrangian primal problem

is denoted by x(u) and the supersripts indiate the iteration at whih eah variable is

been onsidered (e.g., ut
is the Lagrangian multipliers vetor at iteration t).

Now, notie that, after dualizing onstraints (3.26), the objetive funtion of

(STAB(u)) an be rewritten as:

z(u) = min k(1−
∑

s∈L

us) +
∑

ij∈E

xij

∑

s∈L:s
⋂

ij 6=∅

us. (3.36)

Therefore, if

∑

s∈L us > 1, the �rst term of that equation would have a negative value and,

hene, the larger the value of k, the smaller the value of z(u). As a result, when optimizing

the (primal) Lagrangian problem, if the ost of variable k is negative, the lower bound

z(u) is unlimited and hene useless. Analogously, if the ost of k is non negative, the

obvious solution is to set k to zero. However, by doing so, we may waste the opportunity

to produe a better dual bound for z. To overome these situations, we proeed in the

following way. In the solution of (STAB(u)), k is set, respetively, to the best upper (ub)

or lower (lb) bound available for z depending on whether its ost is negative or not. In

fat, in our implementation, when the ost is non negative, k is set to ⌈lb⌉/2 rather than

to lb to avoid an early onvergene of the sgm. This tends to inrease the number of

iterations of the method, augmenting the hanes of the Lagrangian heuristi to obtain a

better feasible solution.

Notie that the dual bound obtained by setting k to ⌈lb⌉/2 or ub, depending on whether
(1 −∑s∈L us) is negative or non-negative, is valid. This is so beause the model for the

primal Lagrangian problem remains orret if the onstraint requiring that k belongs to

Z+ is replaed by one that fores k to be in an interval between proper lower and upper

bounds. It turns out that ⌈lb⌉/2 and ub are, respetively, valid lower and upper bounds

for k, ensuring the orretness of the omputation of the dual bounds for z(u).

The termination riteria implemented in our sgm are ahieved when one of the follow-

ing situations our: the di�erene between the upper and lower bounds is smaller than

1 (one), the value of π is smaller than 0.005, or yet, a prede�ned time limit is reahed.

Lagrangian Heuristi. Eah iteration of the sgm solves a minimum weight problem

(a mwpm, a mst, or a mwt, whihever is the ase). The solution of this problem is

a subgraph of G(P ) satisfying the property of interest (i.e., it is a perfet mathing, a

spanning tree, or a triangulation) and, therefore, is also feasible for the original stabbing

problem. Thus, an upper (primal) bound for the optimal value of the stabbing problem

an be immediately obtained by omputing the stabbing number of this subgraph.

Solving the Lagrangian Primal. For the mstr, (STAB(u)) orresponds to a mwt.

As ited before, the mwt is known to be NP-hard but there are algorithms to �nd subsets
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of optimal solutions. One of these algorithms is the one to �nd a Loally Minimum Trian-

gulation Skeleton (lmt-skeleton) [7, 3℄. This algorithm is based on the loal minimality

property of line segments (edges).

Given a planar triangulation T , let ij be an edge of T that is not in the onvex hull.

Then, ij must be the side of two empty triangles ijk and ijl in T . These two triangles

together form a quadrilateral ijkl having ij and kl as its diagonals. We say that ij is

loally minimum with respet to ijkl if this quadrilateral is not onvex or, else, if the

weight of ij is smaller than the weight of kl. Figure 3.2 illustrates this de�nition. If for

i

j

k

l

i

jk l

Figure 3.2: In both ases ij is loally minimum with respet to the quadrilateral ijkl.

any pair of points {k, l} in P − {i, j} the edge ij is loally minimum with respet to the

quadrilateral ijkl, then ij is said to be loally minimum. When all the edges in a planar

triangulation are loally minimum, we say that the triangulation itself is loally minimum.

Clearly, any minimum weight triangulation is loally minimum. However, not all loally

minimum triangulations have minimum weight. The lmt-skeleton is the subset of edges

that are present in every loally minimum triangulation and, thus, is also a subset of any

minimum weight triangulation.

In [7℄ the authors proposed a polynomial algorithm to �nd a lmt-skeleton and in [3℄

the algorithm was improved. The omputational experiments performed with these algo-

rithms showed that, together with a dynami programming algorithm to �nd a mwt for

onvex polygons, it was apable to �nd the mwt of instanes with thousands of points in

quite small running times. The soure ode for this last algorithm written by Mulzer is

available online at [18℄.

Therefore, we an make use of the lmt-skeleton algorithm to solve the Lagrangian

Primal Problem through the following steps. First we determine three subsets Tm, Tp and

Tf of edges whih, respetively, are mandatory (the loally minimum ones), forbidden

(those interseted by an edge in Tm) and unertain (the remaining edges) in a optimal

solution, using a lmt-skeleton algorithm [7, 3℄. Then, we are left with a onstrained

mwt problem where all edges of Tm are fored to be in the solution, the ones in Tf are

eliminated from the solution and those in Tp are the ones for whih we have to make a

deision. Typially, after �xing the appropriate variables to one or zero, the size of the

mwt models redues dramatially. This renders the usage of an ip solver to ompute

the model via a standard b&b algorithm a viable option, even for instanes ontaining

hundreds of points. Later we will see that this proedure is apable to solve the Lagrangian

primal problems for mstr in an extremely e�etive fashion in pratie.

To onlude this setion, we reall that the Lagrangian primal problems for the mspm

and msst are, respetively, the mwpm and the mst. To solve the �rst one we use the
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Blossom V algorithm desribed in [14℄, whose soure ode is publily available. The mst

problem is solved by a simple implementation of Prim's algorithm, whih an be found in

several textbooks on Algorithms.

3.4 Computational Results

We now desribe the experiments we arried out to test the performane of the algorithms

disussed in the previous setions. As mentioned earlier, we implemented exat b&

algorithms for the mspm and msst. An implementation of an exat b&b algorithm

for the mstr was also done. All these exat algorithms were based on the ip models

disussed in Setion 3.2. We also implemented lr algorithms for all the models using the

ideas disussed in Setion 3.3. All the experiments desribed in this setion onsider the

axis parallel version of the problem.

Computational Environment. To perform the experiments, we used a omputer with

an Intel Core 2 Quad 1.60GHz, 4096 KB ahe, 4GB of RAM memory and a Ubuntu

10.04.4 OS. The programming language used was C/C++ with g 4.4.3 ompiler and every

program was ompiled with -O5 optimization �ag. We also used the XPRESS-Optimizer

64-bit v22.01.09 ip solver. The default uts, heuristis and preproessing were turned

o�. Also, the optimizer was set to use a single proessor ore.

3.4.1 mspm Experiments

In order to evaluate the performane of our algorithms for the mspm, we exeuted ex-

periments with both, the exat b& algorithm and the lr algorithm and then we tried

to ompare the results, although this kind of omparison is sometimes triky, sine the

algorithms are di�erent in nature.

For the exat b& algorithm the model was initially loaded using only the degree

inequalities (3.2) and stabbing inequalities (3.4). The heuristi proposed in [12℄ was

implemented to separate violated inequalities (3.3). Only when the heuristi fails to �nd

a utting plane, we resort to the Padberg-Rao exat algorithm desribed in [21℄. We also

use a family of onditional uts [11℄ that are not guaranteed to be valid for the problem,

but an be used as a utting plane as follows. Suppose an upper bound Ub of the problem

is available. One an note that during the searh for the optimal solution of the mspm, we

are looking for solutions of value better (lesser) than Ub. In this sense, any inequality an

be used as a utting plane, provided that is satis�ed by every feasible solution of value

less than Ub. In this vein, we onsidered the following family of onditional uts:

∑

ij∈E[V+
s ]

xij ≥
⌈ |V +

s | − Ub + 1

2

⌉

, ∀s ∈ L, (3.37)

∑

ij∈E[V−
s ]

xij ≥
⌈ |V −

s | − Ub + 1

2

⌉

, ∀s ∈ L, (3.38)
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where V +
s and V −

s are sets omposed by verties of V in the interior of one of the two

half-planes de�ned by the line s. Besides, the sets E[V +
s ] and E[V −

s ] are formed by all

the edges with both endpoints in V +
s and V −

s , respetively. It an be seen in inequalities

(3.37) that a solution of value Ub has at most Ub edges rossing s (eah one onneted

with a vertex in V +
s ). Hene, there are (|V +

s | −Ub) disonneted verties in V +
s that need

⌈(|V +
s | −Ub)/2⌉ edges in E[V +

s ] to omplete a mathing. Then, it follows that (3.37) an

be used as a onditional ut beause no solution of value Ub (or greater) is feasible in

(3.37). Similar arguments lead to an analogous onlusion for inequalities (3.38).

The utting plane strategy adds the inequalities with the highest perentage of viola-

tion, as long as this value is at least 1% (to ontrol the tailing o� e�et). No more than 50

inequalities are added per iteration. As for the branhing strategy, we selet 5 variables

whose values in the urrent linear relaxation are losest to 0.5 and use strong branhing

to selet whih variable to branh on.

The primal heuristi used in b& is based on the linear relaxation of the problem.

From a relaxed solution x, the method attempts to �nd a mathing M ⊆ E maximizing

∑

ij∈M xij . The method begins with an empty set M and builds a mathing, one edge at

a time. At eah iteration, one edge (i, j) ∈ E\M is greedily hosen aording to the value

of xij (prioritizing the highest ones) and inserted into M . The proedure is repeated until

a perfet mathing is reahed. In a seond phase, the mathing M may be improved by a

loal searh proedure. The neighborhood of the urrent solution M is de�ned as the set

of all feasible mathings obtained by exhanging pairs of edges (i, j) and (l, m) by edges

(i, l) and (j,m). The proedure iteratively replaes the urrent solution by the one with

minimum ost within its neighborhood, halting when no better solution is found in that

way. This primal heuristi is applied at every node of the searh tree.

For the lr algorithm, a Lagrangian relaxation of the model desribed for the mspm

in Setion 3.2 is obtained (see Setion 3.3). The standard subgradient method is then

exeuted to ompute the Lagrangian dual problem. As said before, the Lagrangian primal

problem is solved by an implementation of the Blossom V algorithmwhose ode is available

for download in the web. It is worth noting that this program only deals with instanes

having integer weights. However, in the usual Lagrangian sheme, the edge weights are

often not integer. To irumvent this di�ulty, we multiplied all the edge weights in the

Lagrangian primal problem by 106 before alling the routine. This is not expeted to

reate major numerial problems and, in the end, is not more harmful to omputation

than the tolerane of 10−6
that we set for the ip solver.

As we will see in the results part of this subsetion, the Lagrangian algorithm produes

good bounds with small omputation times. This suggests that it an be used together

with the exat b& algorithm to obtain better results. We used the primal bound from

the lr algorithm to warm start the b& algorithm. Our tests showed that, for the three

problems studied, the use of primal bounds from lr algorithm to warm start the exat

algorithms yielded better overall results. For this reason, we deided to use these results

and ompare them with the pure Lagrangian results.
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Instanes. For the mspm, we experimented with the same instanes tested in [9℄ (exept

for �ve tsplib instanes [23℄ that are obviously infeasible sine they have an odd number

of verties). These inlude 5 instanes from tsplib, 16 from the lustered C1 and C2

lasses of Solomon's Vehile Routing Problem benhmark [25℄, 25 regular grid instanes

(5× 5 to 20× 20 grids with 20% of its points randomly removed) and 11 instanes with

up to 100 random points in the plane.

For the three problems under investigation, a time limit of 1, 800 seonds was set for

the exeution of any algorithm. Notie, however, that in the tables 3.4 to 3.7, oasionally

the time is bigger than this limit. This happens for two reasons, �rst, the times presented

for warm started exat algorithm (wsea) are the sum of the time spent by the Lagrangian

and the b& or b&b algorithms, therefore ould go up to 3, 600. Seond, the time limit

is veri�ed at ertain points in the program odes and, it ould be that the time elapsed

between two hek-points is not negligible. This situation arises, for example, when the

model of a big instane is being uploaded by the ip solver. In our experiments an additional

timeout sript running on the operating system level was used that fores the proess to

halt after 2, 000 seonds. In ase the proess ends naturally, a bound is always produed.

On the other hand, if the proess is killed by the timeout sript, no output is produed.

The latter situation is signalized in the tables by the symbol ‡. Also, duality gaps were

omputed through the formula 100 × (ub − lb)/ub, where ub and lb denote, respetively,

the upper and lower bounds yielded by the algorithm.

Results. As we previously stated, all the wsea outperformed the old started exat

algorithms and, for this reason, we ompare the wsea against the lr algorithms. Obvi-

ously, it does not make sense to just ompare the times of these two kinds of algorithms

beause, �rst, as said before, the time of the wsea is the sum of the lr algorithm and the

b& or b&b algorithm, thus, is always greater than the lr alone. Seond, the algorithms

are di�erent in nature. So, the purpose of our omparison is to determine whether the

wsea an improve the bounds obtained by the lr algorithm, how muh and how fast.

Our analysis of the results will be done in three parts: the �rst for the tsp and lustered

instanes, the seond for the random instanes and the third for the grid instanes.

The results for the �rst set of instanes are summarized in Table 3.1. We observe

that the b& algorithm proved optimality in all the ases within the �xed time limit.

The Lagrangian sgm always onverged, proving optimality in all but one ase (berlin52),

where there is an absolute gap of one unit (25.0%). For this set of instanes the wsea

provided an average improvement of 1.19% in the relative gap with an average inreasing

of 4.48 seonds in time when ompared to the lr algorithm.

Results for the random instanes an be seen in Table 3.2. One again the lr algorithm

always onverged. However, whilst the exat algorithm proves optimality for all instanes,

the Lagrangian failed to prove optimality in four ases, where gaps of one unit remain.

The average improvement in the relative gap obtained from the wsea was 8.64% and the

average time inreasing was 1.74 seonds.

The results for the grid instanes are displayed in Table 3.3. This benhmark was the

one for whih the lr heuristi had the worst performane. The Lagrangian heuristi was
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Table 3.1: Results for mspm tsp and lustered instanes.

Instane LB UB Time GAP%

lr b& lr b& lr b& lr b&

a280 11 11 11 11 0.83 13.34 0.00 0.00

berlin52 3 4 4 4 0.86 1.23 25.00 0.00

lin318 9 9 9 9 29.17 52.43 0.00 0.00

pb442 17 17 17 17 27.71 78.79 0.00 0.00

ulysses22 2 2 2 2 0.00 0.03 0.00 0.00

101 7 7 7 7 0.05 0.41 0.00 0.00

102 7 7 7 7 0.05 0.43 0.00 0.00

103 7 7 7 7 0.05 0.41 0.00 0.00

104 7 7 7 7 0.05 0.43 0.00 0.00

105 7 7 7 7 0.06 0.43 0.00 0.00

106 7 7 7 7 0.05 0.42 0.00 0.00

107 7 7 7 7 0.05 0.43 0.00 0.00

108 7 7 7 7 0.06 0.42 0.00 0.00

201 6 6 6 6 0.08 0.55 0.00 0.00

202 6 6 6 6 0.09 0.54 0.00 0.00

203 6 6 6 6 0.09 0.55 0.00 0.00

204 6 6 6 6 0.08 0.55 0.00 0.00

205 6 6 6 6 0.09 0.55 0.00 0.00

206 6 6 6 6 0.08 0.53 0.00 0.00

207 6 6 6 6 0.08 0.53 0.00 0.00

208 4 4 4 4 1.15 1.89 0.00 0.00

unable to prove optimality in 11 out of 25 ases, leaving gaps of one unit in 10 ases and

two units in 1 ase. The exat algorithm, on the other hand, was able to prove optimality

for all of the grid instanes. The improvement in the relative gap ahieved using the exat

algorithm was 4.85% and the average inreasing of time was 8.95 seonds.

Therefore it is possible to say that the lr algorithm have a very nie performane

for these sets of instanes. Also, the prie in time neessary to prove optimality using

the warm started b& algorithm seems rather small. We reall that b& is an exat

algorithm while lr is an heuristi. So, when omparing their performanes, one has to

bear in mind that they are rather di�erent in nature.

In order to ompare our results against those presented in [9℄ we implemented the

model presented in that paper and exeuted a b& algorithm in the same omputational

environment used to test ours. This experiment showed that the algorithm using the

model from [9℄ was unable to prove optimality in six, ases among all the instanes tested

for the mspm, within a time limit of 1, 800 seonds. Considering all the test ases for the

mspm, the average time of our wsea was 5.91 seonds while the implementation of the

algorithm from [9℄ had an average time of 213.10 seonds.

3.4.2 msst Experiments

To analyze the performane of our algorithms for the msst, again we implemented an

exat b& algorithm. One more, we found that warm starting the b& algorithm with
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Table 3.2: Results for mspm random instanes.

Instane LB UB Time GAP%

lr b& lr b& lr b& lr b&

rand10a 2 2 2 2 0.00 0.00 0.00 0.00

rand10b 2 2 2 2 0.00 0.00 0.00 0.00

rand10 2 2 2 2 0.00 0.00 0.00 0.00

rand10d 2 2 2 2 0.00 0.01 0.00 0.00

rand10e 2 2 2 2 0.00 0.01 0.00 0.00

rand50a 3 3 3 3 0.15 0.67 0.00 0.00

rand50b 3 3 3 3 0.64 1.18 0.00 0.00

rand50 3 4 4 4 0.62 1.20 25.00 0.00

rand50d 3 4 4 4 0.64 1.15 25.00 0.00

rand50e 3 4 4 4 0.77 1.32 25.00 0.00

rand100a 4 5 5 5 6.40 22.85 20.00 0.00

Table 3.3: Results for mspm grid instanes.

Instane LB UB Time GAP%

lr b& lr b& lr b& lr b&

grid5a 4 4 4 4 0.00 0.01 0.00 0.00

grid5b 4 4 4 4 0.00 0.01 0.00 0.00

grid5 4 4 4 4 0.01 0.02 0.00 0.00

grid5d 4 4 4 4 0.00 0.01 0.00 0.00

grid5e 4 4 4 4 0.00 0.02 0.00 0.00

grid8a 6 6 6 6 0.10 0.15 0.00 0.00

grid8b 6 6 6 6 0.06 0.12 0.00 0.00

grid8 5 5 6 5 0.19 0.28 16.67 0.00

grid8d 6 6 6 6 0.00 0.06 0.00 0.00

grid8e 6 6 7 6 0.30 0.35 14.29 0.00

grid10a 7 7 7 7 0.22 0.43 0.00 0.00

grid10b 6 6 7 6 0.64 0.83 14.29 0.00

grid10 7 7 8 7 0.69 2.04 12.50 0.00

grid10d 7 7 7 7 0.19 0.41 0.00 0.00

grid10e 7 7 8 7 0.59 1.73 12.50 0.00

grid15a 10 10 10 10 1.59 3.61 0.00 0.00

grid15b 10 10 11 10 5.45 50.42 9.09 0.00

grid15 10 10 10 10 1.32 3.28 0.00 0.00

grid15d 10 10 10 10 2.94 4.96 0.00 0.00

grid15e 10 10 10 10 1.77 4.04 0.00 0.00

grid20a 13 13 15 13 25.65 111.31 13.33 0.00

grid20b 13 13 14 13 26.28 40.70 7.14 0.00

grid20 13 13 14 13 28.16 47.46 7.14 0.00

grid20d 13 13 14 13 24.06 39.43 7.14 0.00

grid20e 13 13 14 13 31.02 63.31 7.14 0.00
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the primal bound obtained from the Lagrangian sgm gives us better results than simply

exeuting the b&. Therefore, all omparisons in this subsetion are made between the

wsea and the lr algorithm.

For the exat algorithm we used the model desribed in Setion 3.2. Initially the model

was loaded without onstraints (3.7). In the branh-and-ut method, at eah node of the

searh tree, the linear relaxation of msst is solved. If in the optimal solution all variables

are integral, the node is pruned by optimality. Otherwise, the solution is frational and

violated valid inequalities are sought by solving a separation problem. The polynomial-

time algorithm presented in [13℄, based on the minimum edge ut problem in graphs, is

used to separate the Steiner ut inequalities (3.7).

As for the lr algorithm, the implementation was done as desribed in Setion 3.3,

with the primal Lagrangian problem been solved by a simple implementation of Prim's

algorithm for the mst.

Instanes. As a test suite we used 25 instanes from tsplib [23℄ and the 25 regular grid

instanes used in [9℄ for the Minimum Stabbing Perfet Mathing Problem. The hoie

of these instanes is based on the fat that the tsplib is a well known test library for

geometri problems and, besides, some tsplib and all grid instanes were also used in [9℄

for the mspm. The hoie of the instane sizes was made seeking tests that were hard

enough to provide meaningful omputation times, allowing a more preise omparison of

the algorithms.

Results. We divide our analysis into two parts, one for the tsp instanes and another

for the grid instanes.

The results for the tsp part are displayed in Table 3.4. One an see that the lr

algorithm onverged in all the ases within the time limit, proving optimality in 11 of

the 25 of them. The wsea was unable to yield any output within the time limit for

just one of the test instanes. Among the 24 remaining instanes, the b& algorithm

proved optimality in 16 ases. It is interesting to notie that the sgm was able to prove

optimality in one ase where the b& was unable to do so (despite the warm start), while

the opposite ourred 6 times. For this set of instanes, when ompared with the lr

algorithm, the improvement in the relative gap provided by the wsea was 2.38% and the

neessary extra time to ahieve this improvement was 857.79 seonds.

Analyzing the results for the seond group of instanes given in Table 3.5, we observe

that the performane of the lr algorithm is not as good as for the tsp instanes, sine

optimality was ahieved in fewer ases. The b& failed to delare optimality in only 3

out of the 25 grid instanes while the sgm failed in 14 other ases. In the grid instanes,

the exeution of the wsea improved the relative gap by 4.59% at the ost of 391.88 more

seonds, both in average.

The analysis of the improvement relative to the Lagrangian sgm algorithm and of

the additional time spent to obtain suh gain when using wsea points to a remarkable

performane of the lr algorithm.
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Table 3.4: Results for msst tsp instanes.

Instane LB UB Time GAP%

lr b& lr b& lr b& lr b&

berlin52 6 6 6 6 0.15 3.77 0.00 0.00

h130 7 7 8 8 12.21 1813.38 12.50 12.50

h150 8 8 9 8 19.35 161.09 11.11 0.00

eil76 8 8 8 8 1.08 1.48 0.00 0.00

gil262 11 11 12 12 83.45 1907.68 8.33 8.33

gr202 9 9 10 9 58.70 1456.22 10.00 0.00

kroA100 7 7 8 7 4.85 1177.36 12.50 0.00

kroA150 8 8 9 9 14.69 1819.08 11.11 11.11

kroA200 9 9 9 9 29.95 1154.45 0.00 0.00

kroB100 7 7 7 7 3.98 5.20 0.00 0.00

kroB150 8 8 9 9 19.81 1823.96 11.11 11.11

kroB200 9 9 10 10 45.91 1858.87 10.00 10.00

kroC100 7 7 7 7 4.21 46.09 0.00 0.00

kroD100 7 7 7 7 3.27 4.40 0.00 0.00

kroE100 7 7 7 7 2.67 3.91 0.00 0.00

lin318 16 16 18 18 36.84 1860.34 11.11 11.11

pb442 34 33 34 34 56.02 1915.33 0.00 2.94

pr124 24 24 24 24 22.47 26.06 0.00 0.00

pr136 17 17 18 17 2.75 87.52 5.56 0.00

pr144 21 21 21 21 0.50 1292.64 0.00 0.00

pr152 11 11 12 11 6.88 536.45 8.33 0.00

pr226 72 72 72 72 4.43 16.54 0.00 0.00

pr264 23 23 29 29 13.93 1821.02 20.69 20.69

rd100 7 7 8 7 4.98 247.18 12.50 0.00

rd400 11 ‡ 13 13 661.39 ‡ 15.38 ‡
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Table 3.5: Results for msst grid instanes.

Instane LB UB Time GAP%

lr b& lr b& lr b& lr b&

grid5a 7 7 7 7 0.01 0.10 0.00 0.00

grid5b 7 7 7 7 0.01 0.10 0.00 0.00

grid5 7 7 7 7 0.01 0.09 0.00 0.00

grid5d 7 7 7 7 0.01 0.09 0.00 0.00

grid5e 7 7 7 7 0.01 0.09 0.00 0.00

grid8a 10 10 10 10 0.04 1.57 0.00 0.00

grid8b 10 10 10 10 0.03 0.19 0.00 0.00

grid8 10 10 10 10 0.07 0.22 0.00 0.00

grid8d 11 11 13 11 0.15 1.10 15.38 0.00

grid8e 11 11 11 11 0.08 0.24 0.00 0.00

grid10a 13 13 14 13 0.44 4.31 7.14 0.00

grid10b 12 12 12 12 0.17 0.44 0.00 0.00

grid10 13 13 14 13 0.45 3.78 7.14 0.00

grid10d 13 13 13 13 0.18 0.48 0.00 0.00

grid10e 13 13 14 13 0.47 9.17 7.14 0.00

grid15a 18 18 20 18 2.97 117.97 10.00 0.00

grid15b 20 20 23 20 3.17 368.78 13.04 0.00

grid15 18 18 19 18 2.87 84.31 5.26 0.00

grid15d 19 19 21 19 2.35 125.61 9.52 0.00

grid15e 18 18 20 18 2.44 828.30 10.00 0.00

grid20a 24 24 27 27 15.48 1828.94 11.11 11.11

grid20b 24 24 27 27 11.16 1824.14 11.11 11.11

grid20 25 25 28 25 11.06 1415.05 10.71 0.00

grid20d 25 25 29 29 9.98 1827.44 13.79 13.79

grid20e 25 25 31 25 11.95 1430.14 19.35 0.00
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3.4.3 mstr Experiments

The �rst stage of our testing omprised a omparison of the two alternative b&b algo-

rithms that arise from the Edge and Triangle stabbing models disussed in Setion 3.2.

For the mwt, it was observed in [20℄ that the b&b algorithm performs better when it uses

an ip model with variables de�ned on triangles than with variables assoiated to edges.

Hene, a similar behavior was expeted from the orresponding models when applied to

the solution of the mstr. Indeed, this was what happened and, thus, all the b&b results

reported below were obtained using the Triangle Stabbing Model. More preisely, the

results refer to a warm started exat algorithm (wsea) using the mentioned formulation.

Regarding the lr algorithm, we implemented the subgradient method using both the

Edge Stabbing Model and the Triangle Stabbing Model. Reall that, irrespetive to whih

of the two models we onsider, when the stabbing onstraints are relaxed we are left with

an ip formulation for the mwt problem (we use the term �relaxed� to refer to these

models). However, in the subgradient proedure several suh problems have to be solved

at eah iteration. This is done in two steps. The �rst step onsists in the alulation of

the lmt-skeleton while the seond step atually solves the mwt problem in ase the �rst

step fails to do so.

Observe that the edge weights are the only di�erenes between the instanes of the

mwt problems solved in two iterations of the subgradient method. The omputation

of the lmt-skeleton only depends on the edge osts. Therefore, for the �rst step, it is

onvenient from a omputational point of view to have the problem de�ned in terms of

the Edge Stabbing Model, as it allows for a quik realulation of these osts. On the

other hand, in the seond step, when it omes to atually solve the mwt instane, we rely

on the results reported in [20℄ where it was observed that the b&b algorithm for the mwt

performs muh better with the relaxed Triangle Stabbing Model than with the relaxed

Edge Stabbing Model. Now, given two iterations of the subgradient method, the triangle

osts are the only di�erenes between the assoiated mwt instanes. These osts an be

easily omputed after the lmt-skeleton has been found in the �rst step. Some additional

details are given below.

As said in Setion 3.3, to solve the Lagrangian primal problem, we used the lmt-

skeleton ode written by Beirouti and Snoeyink and downloadable at [18℄. A few mod-

i�ations were introdued in this program to make possible the usage of arbitrary edge

weights instead of Eulidean ones. This inluded, for instane, the removal of the di-

amond test, a simple and e�etive way to determine whether an edge ould be part of

a triangulation of minimum (Eulidean) length. Suh hanges do not have signi�antly

damaged the algorithm's performane, relative to Eulidean weights, on�rming it as a

viable option for general mwts.

After running the lmt-skeleton, quite often we still do not have a triangulation. Hene,

a b&b algorithm is used to solve the onstrained mwt that remains, i.e., a mwt with sets

of mandatory and forbidden edges. Sine we use the (relaxed) Triangle Stabbing Model as

the input for the b&b algorithm, these sets of edges have to be proessed to identify the

orresponding sets of triangles. Thus, if an empty triangle ontains a forbidden edge, the

assoiated variable is set to zero while, if all the edges forming its sides are mandatory,
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this variable is set to one.

Instanes. The test suite used to analyze the performane of the mstr algorithms was

the same as in the msst ase. The reasons that support this hoie are the same as

before. Also, the time limit parameters inside the programs and in the timeout sript

remain unhanged, i.e., 1, 800 and 2, 000, respetively. One again, the symbol ‡ in the

tables with results signalizes that the proess was killed by the timeout sript and, thus,

did not produed any output.

Results. As in the msst ase, we divide our analysis into two parts, one for the tsp

instanes and the other for the grid instanes. Conerning the tsp instanes, the b&b

algorithm had its proess killed in 12 out of the 25 instanes and, when this was not the

ase, it proved optimality in all but three instanes, where there is a 3.33% gap (the gap

exists beause of the 1, 800 seonds time limit). On the other hand, the Lagrangian sgm

onverged in all ases within the imposed time limit, with an average gap of 2.57%. The

performane of the heuristi is remarkable. Optimality was proven for 7 instanes, one

of whih ould not be reahed by the exat algorithm within the time limit (the inverse

situation ourred four times). In 13 instanes the di�erene between the upper and

lower bounds was of just one unit. Using the wsea we were able to improve the bounds

provided by the lr algorithm in average by 0.97% while the time spent for this was 592.14

seonds in average. These results are summarized in Table 3.6.

The results for the grid instanes an be seen in Table 3.7. For those instanes, the

Lagrangian subgradient method was able to solve to optimality every instane. The b&b

algorithm was unable to solve 4 out of 25 grid instanes. In fat, only one of the 20× 20

grid instanes was solved within the time limit (the proesses were killed by the timeout

sript) and every other grid instane was solved to optimality. Regarding this set of

instanes, it is simply not worth exeuting a wsea, sine the lr is able to solve them

relatively easy.

3.5 Conlusions and Future Diretions

To our knowledge, this paper proposes the �rst exat approah to takle the mstr. Con-

erning the mspm, our b& algorithm is able to solve exatly all instane and runs in

smaller omputational times when ompared to the results reported in [9℄. As for the

msst, we developed an exat b& algorithm based on a stronger formulation than the

one introdued in [9, 10℄. This algorithm obtained optimal solutions for several instanes

as well as high quality primal and dual bounds for many others in short omputation

times.

Moreover, we also devised Lagrangian heuristis for the three problems and onduted

several omputational experiments with them. These tests showed that they rapidly yield

solutions with small osts, often proven optimal ones. It should be notied that, we are
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Table 3.6: Results for mstr tsp instanes.

Instane LB UB Time GAP%

lr b&b lr b&b lr b&b lr b&b

berlin52 24 24 24 24 7.70 9.11 0.00 0.00

h130 32 ‡ 33 33 165.09 ‡ 3.03 ‡
h150 34 ‡ 35 35 268.69 ‡ 2.86 ‡
eil76 32 32 33 32 112.64 178.18 3.03 0.00

gil262 49 ‡ 50 50 1779.50 ‡ 2.00 ‡
gr202 42 ‡ 42 42 615.63 ‡ 0.00 ‡
kroA100 29 29 30 30 107.21 1967.38 3.33 3.33

kroA150 35 ‡ 36 36 330.66 ‡ 2.78 ‡
kroA200 40 ‡ 41 41 736.80 ‡ 2.44 ‡
kroB100 29 29 30 30 119.87 1976.12 3.33 3.33

kroB150 34 ‡ 35 35 408.44 ‡ 2.86 ‡
kroB200 39 ‡ 40 40 705.75 ‡ 2.50 ‡
kroC100 29 29 29 29 96.18 161.44 0.00 0.00

kroD100 29 29 29 29 30.45 86.90 0.00 0.00

kroE100 29 29 30 30 98.93 1962.76 3.33 3.33

lin318 69 ‡ 71 71 1803.40 ‡ 2.82 ‡
pb442 157 ‡ 180 180 1827.53 ‡ 12.78 ‡
pr124 48 49 49 49 405.61 463.30 2.04 0.00

pr136 66 66 67 66 589.67 658.60 1.49 0.00

pr144 74 74 74 74 675.39 848.44 0.00 0.00

pr152 45 45 45 45 420.93 1015.55 0.00 0.00

pr226 141 150 150 150 1884.99 2855.06 6.00 0.00

pr264 90 ‡ 92 92 1811.44 ‡ 2.17 ‡
rd100 29 29 29 29 17.45 82.05 0.00 0.00

rd400 52 ‡ 55 55 1803.73 ‡ 5.45 ‡



3.5. Conlusions and Future Diretions 49

Table 3.7: Results for mstr grid instanes.

Instane LB UB Time GAP%

lr b&b lr b&b lr b&b lr b&b

grid5a 22 22 22 22 0.17 0.17 0.00 0.00

grid5b 21 21 21 21 0.27 0.36 0.00 0.00

grid5 21 21 21 21 0.17 0.17 0.00 0.00

grid5d 21 21 21 21 23.14 23.21 0.00 0.00

grid5e 20 20 20 20 0.18 0.18 0.00 0.00

grid8a 34 34 34 34 2.20 2.36 0.00 0.00

grid8b 34 34 34 34 3.48 3.71 0.00 0.00

grid8 34 34 34 34 1.61 1.81 0.00 0.00

grid8d 35 35 35 35 1.07 1.26 0.00 0.00

grid8e 35 35 35 35 1.11 1.35 0.00 0.00

grid10a 44 44 44 44 8.01 9.03 0.00 0.00

grid10b 42 42 42 42 3.31 3.93 0.00 0.00

grid10 47 47 47 47 9.52 10.48 0.00 0.00

grid10d 46 46 46 46 2.61 3.43 0.00 0.00

grid10e 46 46 46 46 7.05 8.10 0.00 0.00

grid15a 66 66 66 66 75.13 127.64 0.00 0.00

grid15b 68 68 68 68 13.65 70.36 0.00 0.00

grid15 64 64 64 64 20.70 67.39 0.00 0.00

grid15d 66 66 66 66 39.24 86.21 0.00 0.00

grid15e 67 67 67 67 79.53 141.38 0.00 0.00

grid20a 89 89 89 89 500.78 2491.35 0.00 0.00

grid20b 86 ‡ 86 86 73.09 ‡ 0.00 ‡
grid20 90 ‡ 90 90 1781.70 ‡ 0.00 ‡
grid20d 87 ‡ 87 87 204.77 ‡ 0.00 ‡
grid20e 90 ‡ 90 90 1213.83 ‡ 0.00 ‡
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not aware of another work in the literature whih reports on omputational results for

the mstr.

Future diretions in this researh are urrently being onsidered. This inludes improv-

ing the performane of our heuristis by adding new features to it, suh as, a proedure

for variable �xing in the traditional Lagrangian fashion and a fast loal searh to redue

primal bounds.

This researh was partially supported by Conselho Naional de Desenvolvimento Cientí�o e

Tenológio � grants #301732/2007-8, #473867/2010-9, #147619/2010-6; Fundação de Amparo

à Pesquisa do Estado de São Paulo � grant #07/52015-0, and a grant from faepex/uniamp.
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Chapter 4

On Triangulations with Minimum

Stabbing or Minimum Crossing

Number

The text presented in this hapter is o-authored with Sándor Fekete and Cid C. de Souza

and orresponds to a preprint of an artile submitted for onsideration in International

Journal of Computational Geometry & Appliations

© 2015 opyright World Sienti�

Publishing Company http://www.worldsienti�.om/loi/ijga. In this paper, we show

the omplexity of �nding a triangulation with minimum stabbing number (mstr) both in

axis-parallel and general ases, and �nding a triangulation with minimum rossing number

(mtr) in the general ase. Moreover, omputational experiments with an iterative

rounding algorithm for the mstr, using axis-parallel instanes, is presented and the results

support the onjeture that it provides an approximation for the stabbing problem.

In this paper we onsider the omputational omplexity of the Minimum Stabbing

Triangulation Problem (mstr), both in the axis-parallel and general ases, and the om-

putational omplexity of the Minimum Crossing Triangulation Problem (mtr) in the

general ase. The omplexity lass of these problems were left as open questions in [9, 10℄.

Here we prove that the three problems are NP-hard, thus answering those open questions.
In addition, we perform a omputational study based on two di�erent polynomial-time

heuristi approahes, one based on Lagrangian relaxation, the other on iterated rounding.

With respet to the pratial objetive of �nding good solutions in reasonable time, we

demonstrate that both of these algorithms yield feasible solutions that are within a few

perentage points of the optimal solutions. With respet to the theoretial objetive of

establishing a polynomial-time algorithm that gets within a onstant fator of the opti-

mum even in the worst ase, we provide evidene supporting the onjeture that iterated

rounding may be suh an approximation algorithm.

54
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4.1 Introdution

Triangulating a set of points is one of the basi problems of Computational Geometry:

given a set P of n points in the plane, onnet them by a maximal set of non-rossing

line segments. This implies that all bounded faes of the resulting planar arrangement

are triangles, while the exterior fae is the omplement of the onvex hull of P .

Triangulations are omputed and used in a large variety of ontexts, e.g., in mesh

generation, but also as a stepping stone for other tasks. While it is not hard to ompute

some triangulation, most of these tasks require triangulations with speial properties that

should be optimized. Examples inlude maximizing the minimum angle, minimizing the

total edge weight or the longest edge length.

When dealing with strutural or algorithmi properties, a relevant objetive funtion

is the stabbing number: for a given set of line segments, this is the maximum number

of segments that are enountered (in their interior or at an endpoint) by any line. If

we onsider only axis-parallel lines, we get the axis-parallel stabbing number. A losely

related measure de�ned by Matou²ek [14℄ is the rossing number, whih is the number of

onneted omponents of the intersetion of a line with the union of line segments

1

. When

onsidering strutures like triangulations, the rossing number is preisely one more than

the maximum number of triangles interseted by any one line.

Stabbing problems have been onsidered for several years. The omplexity of many

algorithms in omputational geometry is diretly dependent on the omplexity of ray

shooting; as desribed by Agarwal [1℄, the latter an be improved by making use of span-

ning trees of low stabbing number. A majority of previous work on stabbing and rossing

problems has foused on extremal properties. Settling the omplexity of Minimum Stab-

bing Number for spanning trees was one of the original 30 outstanding open problems of

omputational geometry on the list by Mithell and O'Rourke [15℄. (An up-to-date list is

maintained online by Demaine, Mithell, and O'Rourke [8℄.) In partiular, problems in

the ontext of triangulation are highly relevant. One of the theoretially best performing

data strutures for ray traing in two dimensions is based on a triangulation of the polyg-

onal sene; see Hershberger and Suri [12℄: in their �pedestrian� approah to ray shooting,

the omplexity of a query is simply the number of triangles visited, i.e., orresponds pre-

isely to the stabbing number. Held, Klosowski, and Mithell [11℄ investigate ollision

detetion in a virtual reality environment, again, based on �pedestrian� ray shooting. In

other related work, Aronov et al. [5℄ have performed an experimental study of the om-

plexity of ray traing algorithms and run-time preditors, whih inlude average number

of intersetion points for a transversal line, and depth omplexity. Agarwal, Aronov, and

Suri [2℄ investigate extremal properties of the stabbing number of triangulations in three

dimensions, where the stabbed objets are simplies; see also Aronov and Fortune [6℄ for

this problem. Shewhuk [19℄ shows that in d dimensions, a line an stab the interiors of

Θ(n⌈d/2⌉) Delaunay d-simplies. This implies, in partiular, that a Delaunay triangulation

in the plane may have linear stabbing number. Another losely related variant is studied

by de Berg and van Kreveld [7℄: the stabbing number of a deomposition of a retilin-

1

This should not be onfused with the rossing number in graph drawing, whih is the total number

of rossing line segments.
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ear polygon P into retangles is the maximum number of retangles interseted by any

axis-parallel segment that lies ompletely inside of P ; they prove that any simple reti-

linear polygon with n verties admits a deomposition with stabbing number O(logn),

and they give an example of a simple retilinear polygon for whih any deomposition

has stabbing number Ω(log n). They generalize their results to retilinear polygons with

retilinear holes. Furthermore, Tóth [20℄ showed that for any subdivision of d-dimensional

Eulidean spae, d ≥ 2, by n axis-aligned boxes, there is an axis-parallel line that stabs at

least Ω(log1/(d−1) n) boxes, whih is the best possible lower bound. A onept similar to

the rossing number was introdud by Aihholzer et al. [3℄ under a di�erent name. They

all a polygon k-onvex, if every line intersets it in at most k onneted omponents. In

the followup paper [4℄, Aurenhammer et al. studied the onept of k-onvex point sets:

does a given set P of n planar points allow a polygon that is k-onvex? Clearly, this is

losely related to deiding whether P allows a simple polygon of rossing number at most

2k.

All this makes it lear that omputing a triangulation of low stabbing or low rossing

number (for general or axis-parallel stabbing lines) are highly important problems. Three

of the four variants have been left open for many years. In [9, 18℄ it was proved that the

problem of �nding a triangulation with minimum rossing number (mtr) is NP-hard
in the axis-parallel ase. However, the more interesting ase of general orientation has

remained an open problem. Furthermore, for either version of the stabbing problem (for

axis-parallel lines or those of arbitrary orientation), no omplexity result have been estab-

lished so far. (As it turns out, [10℄ ontains an erroneous statement in the introdution

that results for the stabbing number are established in the paper. This is not the ase,

the only hardness result ontained is for the axis-parallel rossing number.)

In this paper we to show that the Minimum Stabbing Triangulation Problem (mstr)

is NP-hard both in the axis-parallel and general ases. We then present a proof that

the mtr, in the general ase, is also NP-hard. This loses all remaining gaps in the

omplexity analysis of optimal stabbing and rossing numbers for triangulations. In ad-

dition, we perform a omputational study that supports the onjeture that a heuristi

based on iterated rounding applied to an LP relaxation may provide a onstant-fator

approximation algorithm.

The paper is organized as follows: in Setion 4.2 some basi onepts are de�ned

and the problems are stated, Setion 4.3 presents an NP-hardness proof for the mstr
in the axis-parallel ase, Setion 4.4 shows a proof that mstr is NP-hard for general

orientation, while Setion 4.5 ontains a proof of NP-hardness of mtr in the general

ase. Setion 4.6 provides our omputational study, with some onludig thoughts in

Setion 4.7.

4.2 Preliminaries

Given a set of points P in the plane, the geometri graph G(P ) = (V,E) indued by P

is the omplete graph suh that the verties of V are in one-to-one orrespondene with

the points in P and E is omposed of the set of all straight line segments having one point
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of V at eah end. Now, let l be a line in the plane and G′(P ) = (V,E ′) be a subgraph

of G(P ). The stabbing number of line l relative to G′(P ) is the number of edges in

E ′
interseted by l. Moreover, given a set of lines L, the stabbing number of graph

G′(P ) relative to L is the maximum stabbing number among all lines in L.

Regarding the set of lines L, two hoies were onsidered in [9, 18℄. The �rst omprises

the set of all axis-parallel lines in the plane. The seond is formed by all lines in the plane,

independent of their diretions. From now on, the �rst hoie will be referred to as the

axis-parallel ase and the latter as the general ase.

Given a set of points P and a hoie of L, the minimum stabbing triangulation problem

asks for a subgraph G′(P ) = (V,E ′) of G(P ) = (V,E) that orresponds to a triangulation

and has the minimum stabbing number among all possible triangulations.

A di�erent but related quantity is the rossing number. The rossing number

of a line l in the plane relative to a subgraph G′(P ) = (V,E ′) of G(P ) = (V,E) is the

number of onneted omponents in the intersetion of l and G′(P ). Given a set of lines

L in the plane, the rossing number of graph G′(P ) relative to L is the maximum

rossing number among all lines in L.

From the above de�nitions, we obtain the minimum rossing triangulation problem,

in whih one seeks a subgraph G′(P ) = (V,E ′) of G(P ) = (V,E) that orresponds to a

triangulation and has the minimum rossing number among all possible triangulations.

Figure 4.1 shows a triangulation and a set of stabbing lines for the general ase.

Line l in this drawing has stabbing number 14 and rossing number 2, while line r has

both stabbing and rossing numbers equal to 8. On the other hand, Figure 4.2 shows a

triangulation and a set of stabbing lines in the axis-parallel ase. Line s has stabbing and

rossing numbers equal to 8, while line t has stabbing number 11 and rossing number 6.

r     

l     

Figure 4.1: A triangulation with a general set of lines.

4.3 The Complexity of Finding a Triangulation with

Minimum Axis-Parallel Stabbing Number

We use a terminology similar to the one presented in [9, 18℄, whih is explained below.

We onsider a set P of points (verties) in the plane and the orresponding geometri

graph G(P ) as de�ned in the previous setion.
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t   
s   

Figure 4.2: A triangulation with an axis-parallel set of lines.

Thus, given P , a horizontal line is a maximal set of verties that are ollinear in

horizontal diretion. A vertial line is a maximal set of verties whih are ollinear in

vertial diretion. A row is omposed by two horizontal lines (with no other horizontal

line in the middle) and the spae between them. A olumn is the vertial equivalent of

a row. An st-row onsists of three onseutive horizontal lines and the spaes between

them. Finally, an st-olumn is formed by three onseutive vertial lines and the spaes

between them.

The idea of the hardness proof for the axis-parallel ase of mstr is based on the

observation that in this problem, the ritial stabbers, i.e., those that have the greatest

stabbing number, are those on horizontal or vertial lines, while in the mtr, the ritial

stabbers, i.e., those that have the greatest rossing number, are the ones between hori-

zontal or vertial lines. This observation allows us to adapt the struture of the proof in

[9, 18℄ to the mstr.

Next we present three lemmas that de�ne properties that are useful for the proof of

Theorem 4.1.

Lemma 4.1. Let T be a triangulation in G(P ). Consider an st-row formed by three

horizontal lines, la, lb and lc in P , having a, b and c verties, respetively, with lb being

the middle line. If the number of edges of T in la, lb and lc are, respetively, a − ia − 1,

b − ib − 1 and c − ic − 1, then a horizontal stabber on lb has stabbing number at least

a+ 3b+ c + ia + ic − 3.

Proof. It is easy to see that a horizontal stabber on lb stabs all the edges having some

point in the spae between la and lb, whih is equal to the rossing number of a stabber

between these lines. Moreover, as stated in [10℄, Setion 1.1, � 2, the latter is equal to

the number of triangles plus one. From Lemma 4 in [10℄, this rossing number is at least

a + b + ia + ib − 1. Again, one an easily see that a horizontal stabber on lb also stabs

all the edges having some point between lb and lc. Hene, following the same reasoning

as before, we an onlude that this ontributes b + c + ib + ic − 1 units to the stabbing

number. Clearly, suh a horizontal stabber also stabs the edges on lb, whih ontributes

b− ib − 1 units to the stabbing number. There is, however, an intersetion between these

sets of edges whenever ib 6= 0. When this happens, for eah two neighboring verties u

and v in lb for whih there is no edge (u, v), exatly one edge is ounted both in the set
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between la and lb and in the set between lb and lc; in our ount of stabbing numbers,

eah missing edge in lb ontributes one unit to the set between la and lb and one unit

to the set between lb and lc. Therefore, we must subtrat ib from the stabbing ounter.

Hene, we an onlude that the stabbing number of a horizontal stabber on lb is at least

a+ b+ ia + ib − 1 + b+ c+ ib + ic − 1 + b− ib − 1− ib = a + 3b+ c+ ia + ic − 3.

Similar arguments an be used to show that the stabbing number of a vertial line lb,

whih is the middle line in an st-olumn omposed by la, lb and lc, is at least a+3b+ c+

ia + ic − 3, with a, b, c, ia, ib and ic de�ned as before.

The next lemma helps determining the stabbing number of lines rossing a struture

that is later used as a variable gadget in the proof of Theorem 4.1.

Lemma 4.2. Let T be a triangulation in G(P ). Consider an st-olumn formed by three

vertial lines, la, lb and lc in P , having a, b and c verties, respetively, with lb being

the middle line. Let the number of edges of T in la, lb and lc be, respetively, a − ia − 1,

b− ib−1 and c− ic−1. Moreover, for eah of these lines, onsider the pairs of onseutive

verties with no edges of T onneting them, say, {ua, va} in la, {ub, vb} in lb and {uc, vc}
in lc. Let ja, jb and jc be the number of horizontal edges in T between the three pairs

{ua, va}, {ub, vb} and {uc, vc}, respetively. Suppose that ja = jc > jb and every horizontal

edge rossing the spae between ub and vb also rosses the ones between ua and va and

between uc and vc. Then a vertial stabber on lb has stabbing number of at least a+ 3b+

c+ ia + ic + ja + jc − 5.

Proof. This lemma is very similar to Lemma 4.1, exept that now we have horizontal

edges rossing the spae between spei� pairs of verties, a situation that is illustrated

in Figure 4.3, in whih arrows point to lines la, lb and lc. Thus, we start by making

some hanges in the alulations of the number of triangles between la and lb in order to

onsider the ja horizontal edges rossing the spae between ua and va.

Notie that there is one triangle interseting the spae between la and lb for eah edge

in la. We denote this set of triangles by A. Besides, for eah missing edge in la, there are

at least two triangles interseting the spae between la and lb. Let Ia denote this set of

triangles. Finally, for eah horizontal edge ea between ua and va , there is one triangle

above ea and one triangle below ea; we let Ja denote this set of triangles. Similarly, we

de�ne sets B, Ib and Jb in lb.

Thus, the number of triangles in the spae between la and lb is given by the sum

of the ardinalities of the sets A, B, Ia, Ib, Ja and Jb minus the ardinality of their

intersetions. There are only four intersetions to onsider: the ones between Ja and B,

between Ja and Jb, between Ja and Ia and, �nally, between Jb and Ib. It is easy to see

that |Ja ∩ B| ≤ ja − jb, |Ja ∩ Jb| = 2jb, |Ja ∩ Ia| ≤ 2 and |Jb ∩ Ib| = 2.

The exat ardinality of Ja∩B and Ja∩Ia depends on the hoie of triangulations that

our with the extreme horizontal edges between ua and va, with, say, (xu1, xu2) being

the losest to ua and (xv1, xv2) being the losest to va. If, for instane, (xu1, xu2) forms

a triangle with ua, then |Ja ∩ B| ≤ ja − jb − 1 and |Ja ∩ Ia| ≥ 1. However, note that

|Ja ∩ B|+ |Ja ∩ Ia| = ja − jb.
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As a onsequene, the number of triangles in the spae between la and lb is equal to

|A|+ |B|+ |Ia|+ |Ib|+ |Ja|+ |Jb|− |Ja∩B|− |Ja∩ Ia|− |Ja∩Jb|− |Jb∩ Ib| ≥ (a− ia−1)+

(b− ib−1)+(2ia)+(2ib)+(2ja)+(2jb)− (ja− jb)− (2jb)−2 = a+ b+ ia+ ib+ ja+ jb−4.

We an alulate the number of triangles in the spae between lb and lc in the same

way we did for la and lb and onlude that it must be at least b+ c+ ib + ic + jb + jc − 4.

The stabbing number of a line on lb is equal to the sum of the number of triangles in

the spae between la and lb, the number of triangles in the spae between lb and lc plus

two (on eah side, a line on lb stabs one edge more than the number of triangles), plus the

number of edges in lb whih is equal to b− ib−1, minus the number of triangles that are in

both spaes. The triangles whih are in both spaes are those in sets Ib and Jb, subtrating

the intersetion between them. Therefore, the stabbing number of a line on lb is at least

(a+ b+ ia+ ib+ ja+ jb−4)+(b+ c+ ib+ ic+ jb+ jc−4)+2+(b− ib−1)− (2ib)− (2jb)+2

= a + 3b+ c+ ia + ic + ja + jc − 5.

l l la b cl l la’ b’ c’

Figure 4.3: Extended retangle of a variable and lines of the situations desribed in

Lemma 4.2 and Lemma 4.3.

Next we state a lemma that helps us to determine the stabbing number of a line on

the border of a variable gadget, whih will be useful for proving Theorem 4.1.

Lemma 4.3. Let T be a triangulation in G(P ). Consider an st-olumn formed by three

vertial lines, la, lb and lc in P , having a, b and c verties, respetively, with lb being the

middle line. Let the number of edges of T in la, lb and lc be, respetively, a−ia−1, b−ib−1

and c− ic −1. Moreover, let jc denote the number of horizontal edges in T between a pair

of verties {uc, vc} in lc that have no edges onneting them. Then a vertial stabber on lb
has stabbing number of at least (a+b+ia+ib−1)+(b+c+ib+ic+jc−4)+(b−ib−1)−ib =

a+ 3b+ c + ia + ic + jc − 6.

Proof. The situation onsidered in this lemma is shown in Figure 4.3, in whih the vertial

lines indiated by the arrows labelled la′ , lb′ and lc′ play the roles of lines la, lb and lc in

this lemma, respetively. Using the same reasoning as in the proof of Lemma 4.2, we �nd

that the stabbing number of a line on lb is equal to the number of triangles between la
and lb plus one, plus the number of edges on lb, plus the number of triangles between lb
and lc plus one minus the ardinality of the intersetion of these sets.
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The only set that di�ers from those alulated in the proof of Lemma 4.2 is the set of

triangles between lb and lc. The size of it is given by the formula |B|+ |C|+ |Ib|+ |Ic|+
|Jc| − |Jc ∩B| − |Jc ∩ Ic|, where all items are de�ned as in the proof of Lemma 4.2.

The ardinalities of the sets Jc ∩ B and Jc ∩ Ic depend on the same hoies of trian-

gulations for the extreme horizontal edges as in the ase of sets Ja ∩B and Ja ∩ Ia in the

proof of Lemma 4.2. We onlude that in this ase we have |Jc ∩ B|+ |Jc ∩ Ic| = jc + 1.

Therefore, the number of triangles between lb and lc is at least (b− ib − 1) + (c− ic −
1) + 2ib + (2ic − 2) + 2jc − (jc + 1) = b+ c+ ib + ic + jc − 5. So the stabbing number of a

line on lb is at least (a+ b+ ia+ ib−2)+1+(b+ c+ ib+ ic+ jc−5)+1+(b− ib−1)− ib =

a+ 3b+ c + ia + ic + jc − 6.

We are now ready to provide the main result of this setion. We present a redution

from 3-SAT to the mstr in the axis-parallel ase, thus proving that the latter is NP-hard.
Theorem 4.1. Finding a triangulation with minimum axis-parallel stabbing number is

NP-hard.
Proof. As stated earlier, the proof goes along the same lines as the one given in [9, 18℄ for

the NP-hardness of the problem of �nding a triangulation with minimum axis-parallel

rossing number. It is based on a redution from 3-SAT and, to failitate the under-

standing, our explanation uses the same example as in the ited paper. Thus, Figure 4.6

gives an idea of the mstr instane obtained from the 3-SAT instane B(x0, x1, x2) =

(x0 ∨ x1 ∨ x2) ∧ (x0 ∨ x1 ∨ x2) ∧ (x0 ∨ x1 ∨ x2).

In this proof we show that an instane of 3-SAT is satis�able if and only if the orre-

sponding mstr instane has an axis-parallel stabbing number of at most 5K−3 for some

value K whih, in our onstrution, is the maximum number of verties in any horizontal

or vertial line. The next de�nition is used in the arguments that follow.

We say that an st-row (st-olumn) is full if it is omposed by three horizontal (vertial)

lines having K verties eah. Similarly, we say that a row (olumn) is full, whenever its

omposing horizontal (vertial) lines have K verties eah.

The onstrution. The idea behind the onstrution is very similar to the one for the

NP-hardness of the axis-parallel rossing number. In the next paragraphs we desribe

the essential omponents of the onstrution, suh as variable gadgets, literal gadgets,

lause gadgets and how the surroundings of these gadgets should be onstruted in order

to ahieve the desired stabbing number.

Variable gadget. A variable gadget is omposed of two sets of eight verties forming

retangles with three verties on eah side. The two retangles of a variable are horizon-

tally aligned; together they represent a variable xi. The strip indued by the left retangle

is alled the xi-olumn, while the strip indued by the right retangle is the xi-olumn of

the variable. Figure 4.4 shows the variable gadget (shaded), whih is analogous to the

one in [9, 18℄.

The triangulations of both retangles are idential, exept for the middle horizontal

edge, whih is present in one of the retangles and missing in the other. The strip indued



4.3. The Complexity of Axis-Parallel mstr 62

Figure 4.4: A variable gadget with verties added to its right. Here we assume that the

number of ourrenes of the most frequent literal is t = 2.

by the retangle with the missing horizontal edge is alled the true-olumn of the variable

and the strip indued by the other retangle is the false-olumn. A setting in whih the

left olumn (xi-olumn) is the false-olumn, is the false setting, while the other possible

setting is the true setting.

The width of eah retangle must be the smallest power of two greater or equal to

four times the number of ourrenes of the most frequent literal. Therefore, the width of

a retangle is at most eight times the number of ourrenes of the most frequent literal.

This is the neessary width to aommodate all the literals and full olumns between

them as we shall see later.

Around the variables. The st-rows and st-olumns neighboring the retangles of a

variable gadget are full. Therefore, from Lemma 4.1, the edges in the onvex hull of

these retangles must be present in any triangulation with minimum stabbing number.

Suppose an edge is missing in the upper boundary of a variable's retangle. Then we

apply Lemma 4.1 and onlude that the stabbing number of the middle horizontal line

of the st-row is greater than 5K − 3, beause the st-row omposed by the horizontal line

ontaining the upper boundary and the two horizontal lines above it is full. A similar

reasoning an be used for the st-row in the lower boundary and the st-olumns surrounding

them. Hene, all the edges must be present in the onvex hull of the retangles in any

triangulation with minimum stabbing number.

At the rows above and below the retangles, the horizontal distane between the

verties within the vertial strip de�ned by the retangles is halved at eah horizontal

line farther to the horizontal lines in the boundary of the gadget. Thus, if the number of

ourrenes of the most ommon literal is t, the verties within the vertial strip will have

a horizontal distane of one unit after Θ(log t) rows. The retangle of a variable plus the

verties loated above and below it within its vertial strip, until and inluding the lines

where the horizontal distane between the verties is of one unit, ompose what we all

an extended retangle of a variable. An example of an extended retangle of a variable is

shown shaded in Figure 4.3.

In order to ensure that one of the retangles of a variable will have a missing horizontal

edge and the other will have it present, the horizontal line ontaining these verties must

have K − 1 verties, while the two horizontal lines above it and the two horizontal lines

below it must have K verties. Thus, by Lemma 4.1, there an be only one edge missing in

this middle horizontal line, otherwise the stabbing number would be greater than 5K−3.

The orret horizontal vertex ount must be guaranteed by plaing the proper number

of verties to the right of the variable gadgets and in the right side of the horizontal lines
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above and below the gadget. Let h be the height of an extended retangle of a variable.

Thus, the �rst line above the entral horizontal line will have 20 = 1 vertex missing at

the right end, the seond line above the entral horizontal line will have 20 + 2 × 21 = 5

verties missing at the right end and the yth line above the horizontal entral line will

have 1 + 2
∑y−1

i=1 2
i
verties missing at the right end, where y ≤ h/2. If y is odd, the �rst

missing vertex will be at the seond position from the right. If y is even, the �rst missing

vertex will be at the third position from the right. After line (h/2), every horizontal

line has the same number of missing verties. These missing verties appear at the right

end side of the onstrution alternating a present and a missing vertex, i. e., there is a

present vertex, than a missing vertex et., until the number of missing verties is reahed.

The same number of verties are missing at the right end of the lines below the entral

horizontal line. Figure 4.4 shows how this an be done.

Variable position. The gadget for a variable xj is positioned above and to the right of

the gadget for a variable xi where i < j. As before, a variable gadget is adjaent to full

st-rows and st-olumns, so variable gadgets are horizontally separated by st-olumns and

vertially separated by st-rows.

Literal gadget. A literal gadget is omposed by a 3 × 3 grid with the entral vertex

missing, i.e., a square omposed of eight verties. At eah side of the square, the verties

are one unit of distane apart from eah other.

The setting of a literal gadget in whih the middle horizontal edge is missing is alled

the false setting of a literal gadget, while the setting in whih the middle horizontal line

is present is alled the true setting of a literal gadget.

Clause gadget. As we start with an instane of 3-SAT, eah lause has exatly three

literals. In our onstrution the three literal gadgets of a lause are horizontally aligned.

Above and below every lause are full st-rows.

If a literal xi appears in lause cj , we plae a literal gadget in the xi-olumn. If,

however, a literal xi appears in lause cj , we plae a literal gadget in the xi-olumn. If a

literal xi appears both in lauses cj and ck, where j < k, we plae the literal xi in lause

ck below and to the right of the literal xi in lause cj. This guarantees that a vertial

line never stabs more than one literal gadget. Also, a lause ck lies below a lause cj for

k > j.

To the right of lauses. We want the stabbing number to be less than or equal to

5K − 3 if and only if the formula is satis�able. Therefore, if a lause is not satis�ed,

i.e., its three literals have false settings, it must produe a stabbing number greater than

5K−3. Beause in a false setting of a literal gadget, the middle horizontal edge is missing,

an unsatis�ed lause implies three edges missing in the middle horizontal line. Thus, if

the middle horizontal line of a lause has K − 2 verties and the rows diretly above and

below it are full, an unsatis�ed lause produes a stabbing number greater than 5K − 3

for the top and bottom horizontal lines of the lause. Conversely, if at least one literal

has a true setting, the stabbing number is less or equal to 5K − 3 for those lines.
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Hene, we must add verties to the right of lauses making the middle horizontal line

have K − 2 verties and the rows above and below them be full rows.

Below variables and literals. We add verties below variables and literals in order

to guarantee that the st-olumns around variables are full and that variables and literals

have the orret setting of missing and present middle edges.

Reall that we want to make a literal gadget have a true setting whenever its orre-

sponding olumn is the true-olumn, e.g., we want literal xi to have a true setting if the

xi-olumn of variable xi is the true-olumn, i.e., the one with the middle horizontal line

missing. Therefore, we want a literal gadget to have the middle horizontal edge present

(literal gadget true setting) if its orresponding olumn have a true setting.

Let lb be the vertial line ontaining the left side of a literal gadget xi, let lc be the

vertial line passing through the enter of the same literal gadget, i.e., the line immediately

to the right of lb and let la be the line immediately to the left of lb. Let a be the number

of verties in la and b be the number of verties in lb. Let ia and ic be the number of

missing edges onneting neighboring verties, respetively, in lines la and lc. Moreover,

let ja and jc be the number of horizontal edges rossing, respetively, lines la and lc
inside the extended xi retangle. Beause all rows ontaining points in the extended

retangle of some variable are full (exept for the two entral rows), all the horizontal

edges must be present inside the extended retangle (exept, possibly, the entral edge).

Therefore, aording to Lemma 4.2 and Lemma 4.3, the stabbing number of lb is at least

a+ 3b+ c+ ia + ic + jc − 6 if the literal is the �rst of its kind, i.e., the leftmost literal in

the xi strip, and is at least a+ 3b+ c+ ia + ic + ja + jc − 5 otherwise.

Whenever the entral horizontal edge is present in the xi variable retangle and missing

in the orresponding literal gadget, the expression for the stabbing number of a line on lb
has a stritly smaller value than when that edge is present in the gadget. Thus, we add

verties in the inferior portion of those three lines making the stabbing number equal to

5K − 3 whenever the entral edge is missing in the variable and present in the literal.

Observe that this does not prevent both middle edges from missing simultanously; the

presene of the middle horizontal edges are enfored by the verties we added to the right

of lauses and variables.

If the literal under onsideration is not the leftmost literal of its strip, Lemma 4.2 allows

us to alulate the number of verties we have to add at the bottom of the onstrution

in order to guarantee the orret stabbing number. Let h be the height of the extended

retangle in question and let ya, yb and yc be the number of verties missing in lines la, lb
and lc inside the extended retangle. Thus, we have ya = h−1, yc = h−1, a = K−(h−1),

b = K−yb, c = K−(h−1)−1, ia = 1, ib = 1, ic = 1, ja = h−1, jb = yb and jc = h−1, and

we know that the stabbing number of line on lb is at least a+3b+c+ ia+ ic+ ja+ jc−5 =

K − h+ 1+ 3K − 3yb +K − h+ 1+ 1 + h− 1 + h− 1− 5 = 5K − 3yb − 4. Therefore, in

order to guarantee that a line on lb will have a stabbing number of 5K − 3 in a minimum

triangulation, we must have 5k − 3yb − 4 + z = 5K − 3, so, z = 3yb + 1 and this is how

muh we must inrease the stabbing number of lb by adding verties at the bottom of the

onstrution.

To this end, we leave a distane of two units between the last h+ 1 lines and for eah
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line lb, add yb verties in its bottom and one vertex at the bottom of the vertial line to

its right. Eah vertex added to lb inreases the stabbing number of a line on it by three

units, and eah vertex added to the vertial line to its right adds one unit to the stabbing

number of that line, thus ahieving the desired stabbing number. Figure 4.5 gives an idea

of how to obtain suh a onstrution. Observe that as the number of verties in la, lc and

the vertial line to the right of lc are always smaller than in lb, the stabbing numbers of

stabbers on these vertial lines are not greater than 5K − 3.

In the ase of the leftmost literal in the xi strip, we an use Lemma 4.3 to onlude

that the stabbing number of a line on lb has a stabbing number of 5K − 6 in a minimum

triangulation and, therefore, we add one vertex to lb to guarantee a stabbing number of

5K − 3.

Figure 4.5: One retangle of a variable gadget, three literal gadgets and the verties added

below them.
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Satis�ability implies a stabbing number of 5K − 3. If the redution we desribed

is valid, a satis�able formula must produe an mstr instane with an optimal solution of

value no more than 5K−3, where K is the maximum number of verties in any horizontal

or vertial line.

The only parts of the onstrution that ould have a stabbing number greater than

5K − 3 are the lause gadgets, whih have horizontal stabbing number of 5K − 2 if the

three literals in the lause have false settings. However, if the formula is satis�able, there

is a setting in whih at least one literal has a true setting in every lause. By onstrution,

this implies that the stabbing number annot be greater than 5K−3. Thus, satis�ability

implies a stabbing number of at most 5K − 3.

Unsatis�ability implies a stabbing number greater than 5K−3. For the onverse

diretion, assume that the the formula is not satis�able; we establish that the resulting

mstr instane must have an optimal solution with value greater than 5K − 3, where K

is the maximum number of verties in any horizontal or vertial lines.

If a formula is unsatis�able, there is no setting of variables that satis�es every lause.

Thus, for every setting of variables, there is always at least one lause that has a false

setting for all three literals. By onstrution, this implies that for every setting of variable

gadgets there is always a lause in whih all three literal gadgets have the middle horizontal

edge missing. Therefore, the stabbing number of the horizontal lines ontaining the top

and bottom lines of this lause gadget is equal to 5K − 2. Hene, unsatis�ability implies

a stabbing number greater than 5K − 3.

Polynomial size of the onstrution. It remains to be shown that the onstrution

has polynomial size. As the onstrution is very similar to the one presented in [9, 18℄,

the arguments are basially the same as used in that proof, exept that a retangle

representing a variable has width of at most 8t instead of 4t.

Let B be an instane of 3-SAT, let n be the number of variables, c the number of

lauses and t the number of ourrenes of the most ommon literal. The size of a

retangle representing a variable is at most 8t. The number of verties we have to add

to the right of a variable gadget is Θ(t). Thus, the horizontal size of the onstrution is

Θ(nt).

Eah retangle representing a variable has a height of Θ(log t). The height of lauses

is onstant and equal to 2, plus that of the full st-rows between them, giving a total of 4

per lause. The number of verties we have to add at the bottom of the onstrution to

ahieve the desired vertial stabbing number is Θ(log t). Hene, the vertial size of the

onstrution is Θ(c + n log t). Therefore, the total size of the onstrution is polynomial

on c, n and t.
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Figure 4.6: The onstrution for the formula (x0 ∨x1∨x2)∧ (x0 ∨x1∨x2)∧ (x0 ∨x1∨x2)
with assignments x0 = false, x1 = true and x2 = true. A dark shading indiates a false

setting, while a light shading indiates a true setting.

4.4 The Complexity of Finding a Triangulation with

Minimum General Stabbing Number

We now turn our attention to the problem of omputing a triangulation with minimum

general stabbing number. To this end, onsider a slightly hanged version of the onstru-

tion given in the proof of Theorem 4.1, where the seond vertial line is at distane one

unit from the �rst vertial line, the third is at distane two units from the seond vertial

line, the fourth is at distane three units from the third vertial line and, in general, the

n + 1-th vertial line is at distane n units from the n-th vertial line. We will refer to

this new onstrution as the modi�ed one.

Before we proeed, we introdue some additional terminology. A diagonal stabbing

line, or simply a diagonal line, is any stabbing line that is not vertial or horizontal.

Consider a grid of Q×Q verties with horizontal spaes, as in the modi�ed onstrution,

i.e., the distane of vertial line n+1 to vertial line n is n units. We all a grid with this

spaing rule, a modi�ed grid. Figure 4.7 shows an example of suh a modi�ed grid.

Consider a diagonal line l that stabs two verties y and z, suh that the segment yz (of

l) ontains no other vertex. Denote by h the number of horizontal lines ontaining verties

of the grid and interseted by l between y and z (or, more preisely, by the segment yz).

Analogously, de�ne v to be the number of vertial lines ontaining verties of the grid

and interseted by the segment yz of l. We say that the stabbing distane relative to l

between y and z is equal to max[h, v]; if the ontext is lear, we may omit the line.
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Figure 4.7: A 13 × 13 modi�ed grid with a diagonal stabbing line. The dotted lines

represent the extensions of the vertial/horizontal lines outside the grid.

Notie that just like in the axis-parallel ase of the mstr, the ritial stabbing lines

are the ones stabbing many verties, as opposed to stabbing a lot of spae between the

verties. Therefore, the main idea used in Theorem 4.2 is to show that diagonal stabbing

lines stab more spaes between verties, while orthogonal stabbing lines stab more verties.

The following lemma gives us a property regarding the number of pairs of verties with

a given distane that an be stabbed by a given diagonal line. This property will later be

used to establish the number of verties that an be stabbed by a diagonal stabbing line

in a Q×Q modi�ed grid.

Lemma 4.4. In a modi�ed grid there are at most 2x + 1 pairs of verties with distane

x that an be stabbed by a given diagonal line l.

Proof. Let l be a diagonal stabbing line and a its angular oe�ient, where we assume a >

0. Let y and z be two verties stabbed by l with a distane of x between them. Moreover,

let h and v be, respetively, the number of horizontal and vertial lines ontaining verties

of the grid and interseted by l between y and z. By de�nition, at least one of h = x or

v = x must be true.

Consider the ase in whih v = x and h ≤ x. As eah olumn has a unique width and

every row has height one, we an say that the Eulidean distane between the horizontal

oordinates of y and z is equal to b + (b + 1) + ... + (b + x), where b is the width of the

�rst olumn after y. Hene, this distane is equal to b(x+1)+x(x+1)/2. The Eulidean

distane between the vertial oordinates of y and z is equal to h + 1. As the angular

oe�ient is a, we have h + 1 = a(b(x + 1) + x(x + 1)/2). For eah h ∈ {0, 1, 2, ..., x},
the previous equation has a unique solution for the given x. Therefore, there are at most

x+1 pairs of verties (one for eah possible value of h) that an be stabbed with distane

x by a diagonal line when v = x and h ≤ x.

The other possibility is that h = x and v < x. As eah olumn has a unique width and

every row has height one, we an say that the Eulidean distane between the horizontal

oordinates of y and z is equal to b + (b + 1) + ... + (b + v), where b is the width of the

�rst olumn after y. Hene, this distane is equal to b(v+1)+ v(v+1)/2. The Eulidean

distane between the vertial oordinates of y and z is equal to x + 1. As the angular

oe�ient is a, we have x+ 1 = a(b(v + 1) + v(v + 1)/2). For eah v ∈ {0, 1, 2, ..., x− 1},
the latter equation has a unique solution for the given x. Therefore, there are also at most

x pairs of verties (one for eah possible value of v) that an be stabbed with distane x

by a diagonal line for h = x and v < x.
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Adding the values obtained in the two ases, we have 2x+1 possible pairs with distane

x.

The proof of Lemma 4.4 for a < 0 is analogous and therefore omitted.

The purpose of the next lemma is to show that the number of verties stabbed by any

diagonal line is less than Q/4 if Q is big enough. This result is obtained by showing that

for Q ≥ 535, the funtion that yields the number of extended horizontal and vertial lines

stabbed in points that do not ontain verties grows faster than the funtion that yields

the number of verties stabbed. Both of these funtions are obtained from the relation

in Lemma 4.4. This allows it to establish the entral idea of the proof of Theorem 4.2 by

showing that diagonal lines stab less verties than orthogonal lines and, for this reason,

have smaller stabbing numbers.

Lemma 4.5. Any diagonal line stabs less than Q/4 verties in the modi�ed onstrution

for any Q ≥ 535.

Proof. As the modi�ed onstrution has some well-de�ned holes, i.e., missing verties in

omparison with a modi�ed grid, the stabbing number of a diagonal line in a minimum

stabbing triangulation of a Q × Q modi�ed grid is greater than or equal to that in a

minimum stabbing triangulation of the modi�ed onstrution with a maximum number

of vertial or horizontal lines equal to Q.

We all an extended horizontal/vertial line, a horizontal/vertial line plus its exten-

sion outside the grid (see Figure 4.7). The modi�ed grid has Q × Q verties, so every

diagonal stabbing line intersets exatly Q extended horizontal lines and Q extended

vertial lines.

As verties only exist in the intersetions of horizontal and vertial lines, stabbing Q

verties (whih is the maximum possible number of verties stabbed) is only possible if a

diagonal line does not stab an extended horizontal/vertial line in any point other than a

vertex. This means that whenever a stabbing line intersets an extended horizontal and

an extended vertial line in points not ontaining verties, one less vertex is stabbed by

that line.

Now let l be a diagonal line and v and h be, respetively, the number of extended

vertial and horizontal lines in the grid interseted by l in some point not ontaining a

vertex. Beause v and h have the same value, the number of verties interseted by l is

equal to Q− (v + h)/2 or Q− v or Q− h.

Let p be the number of verties stabbed by l and let d be the sum of the stabbing

distanes of eah pair of onseutive verties in l. As the stabbing distane of two verties

is the maximum of either the number of horizontal lines or the number of vertial lines

stabbed between these two verties, then d < v + h. Therefore, as Q = p+ (v + h)/2, we

have 2(Q− p) = v + h ⇒ d < 2(Q− p) ⇒ Q > p+ d/2.

From Lemma 4.4, there are at most 2x+1 pairs of verties with distane x stabbed by a

diagonal line. Remember that whenever a pair of verties is stabbed at distane x, there

are x horizontal or vertial lines stabbed in points not ontaining verties. Therefore,

to maximize the number of stabbed verties, the pairs with smallest distane should be

stabbed. Let y be the greatest distane between two onseutive verties (with no other
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vertex between them) stabbed by l. In this situation we have p = 1 +
∑y

x=0 2x+ 1 (two

onseutive pairs of verties share a vertex) and d =
∑y

x=0 x(2x+ 1). Therefore, we have

p = 1 + ((1 + (2y + 1))(y + 1)/2) = y2 + 2y + 2 and d = 2y3/3 + 3y2/2 + 5y/6.

Notie that if Q ≥ 535, for any y = 0..10 we have p < Q/4 and for any y > 10, the

value of d as de�ned above grows faster than the value of p. Therefore, for any Q ≥ 535,

any diagonal line in a Q×Q modi�ed grid stabs less than Q/4 verties.

We an now state the main result of this setion. Knowing that a diagonal line in

a Q × Q modi�ed grid stabs less than Q/4 verties, we onlude that the orthogonal

stabbing lines are the ritial ones in a set of points with that spaing rule. Moreover, we

an use this information to show that a modi�ed onstrution provides a redution from

3-SAT to mstr in the general ase. The details are given below.

Theorem 4.2. Finding a Triangulation with Minimum Stabbing Number is NP-hard.

Proof. The main idea is to modify the onstrution from Theorem 4.1 in order to obtain

a new one in whih every diagonal line has a stabbing number less than or equal to

some onstant de�ned a priori, i.e., the minimum axis-parallel stabbing number of a

triangulation in the modi�ed onstrution. Therefore, the redution from 3-SAT to mstr

in the axis-parallel ase is also valid for the general ase.

It is easy to see that the modi�ed onstrution has the same properties as our original

onstrution and has polynomial size. Notie that the original onstrution has horizontal

size of Θ(nt), where n is the number of variables of the 3-SAT instane and t is the number

of ourrenes of the most ommon literal. Thus, the new onstrution has a horizontal

size of Θ(n2t2) and the same vertial size as the original onstrution. Therefore, it is still

polynomial.

Note that our onstrutions allows a triangulation in whih every vertex has degree at

most seven and the axis-parallel stabbing number is 5K−3. Hene, when a line intersets

a vertex, its stabbing number inreases by at most seven (this value is overestimated in

general). On the other hand, when a vertex is not interseted, i.e., when the line stabs

horizontal and vertial lines of the grid in points having no vertex, the stabbing number

is inreased by at most four. One suh triangulation in the original onstrution an be

seem in Figure 4.6. It is possible to obtain other triangulations with di�erent stabbing

numbers for diagonal lines; however, for our purpose, it is enough to show that there is a

triangulation with the desired properties.

From Lemma 4.5 we onlude that if Q ≥ 535, then at most Q/4 verties an be

stabbed by any diagonal line. Thus, the stabbing number of any diagonal line is at most

7(Q/4)+4(3Q/4). We want this expression to be smaller than or equal to 5K−3, whih is

the stabbing number of the axis-parallel version. Beause by onstrution, Q ≤ K+16t−1,

we want the inequality 7/4(K + 16t− 1) + 3(K + 16t− 1) ≤ 5K − 3 to be true, implying

that K ≥ 304t− 7 should be true. As we an inrease the value of K by an appropriate

amount simply by adding vertial and horizontal lines to the right and bottom of the

onstrution without altering its properties, this relation an be satis�ed for any value

of t. Therefore, there is a polynomial redution from 3-SAT to mstr, so the latter is

NP-hard.
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4.5 The Complexity of Finding a Triangulation with

Minimum General Crossing Number

In this setion we use a di�erent approah to prove that the problem of omputing a

triangulation with minimum general rossing number isNP-hard. The onstrution in the
proof of Theorem 4.2 guarantees that the stabbing numbers of horizontal and vertial lines

are greater than or equal to those of diagonal lines, thus making horizontal and vertial

lines ritial for determining lines with the greatest stabbing or rossing numbers. In the

present ase, in whih we are interested in the general rossing number, the onstrution

in the proof ensures that the almost horizontal and vertial lines, i.e., those with very

big/small angular oe�ients, are the ritial ones.

As before the redution is from 3-SAT. More preisely, we show that an instane of

3-SAT is satis�able if and only if the orresponding mtr instane has rossing number

of at most 2K − 1 for some value K, whih is the maximum number of verties in any

horizontal or vertial line.

The NP-hardness proof uses a terminology similar to the one used in the previous

proofs. Aordingly, a horizontal line is a maximal set of verties that are ollinear in

horizontal diretion. A vertial line is a maximal set of verties that are ollinear in

vertial diretion. A row is omposed by two horizontal lines (with no other horizontal

line in the middle) and the spae between them. A olumn is the vertial equivalent of a

row. A r-row onsists of three onseutive horizontal lines and the spaes between them,

where eah horizontal line ontains at least K−3 verties. Finally, a r-olumn is formed

by three onseutive vertial lines and the spaes between them, where eah vertial line

ontains at least K − 3 verties.

Theorem 4.3. Finding a triangulation with Minimum Crossing Number is NP-hard.

Proof. As before, we start by desribing the gadgets and gving an explanation of how these

gadgets interat for an overall redution from 3-SAT. This is followed by an argument for

the orretness of the redution. The proof is ompleted by showing that the onstrution

is polynomial.

The onstrution ontaining the gadgets has the form of a lattie (see Figure 4.8),

with lines omposed by r-rows or r-olumns. Between these lines are spaer gadgets.

Gadgets orresponding to variables, literals and lauses lie on the lines of the lattie.

Spaer gadget. A spaer is a set of points as the one depited in Figure 4.9. The

triangulation in that �gure has rossing number 27, whih is signi�antly less than the

rossing number of a r-row or r-olumn, whih have rossing number 34, as shown in

Figure 4.10. The purpose of this di�erene is to enfore that lines interseting spaers

(with the possible exeption at extreme positions) have smaller rossing numbers than

the ones not interseting them.

Variable swith gadget. A variable swith is omposed by two sets of eight verties

that form squares with three verties at eah side. Eah of these squares is alled a half-

variable swith. The two squares of a swith are horizontally aligned, i.e., they are in the
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Legend:

Variable Switch                                                    

Adjustment

Variable Multiplier                                                                               

Figure 4.8: Part of the lattie ontaining variable swith, variable multiplier and spaers.

At the bottom, the shaded areas indiate missing verties to guarantee the orret rossing

number.
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Figure 4.9: A spaer gadget and one of its possible triangulations.

Figure 4.10: Part of a r-row with a rossing line.

same horizontal line of the lattie; they also lie on neighboring vertial lines of the lattie.

The left square is alled the xi-swith, while the right one is the xi-swith of the variable.

Figure 4.8 shows the variable swith gadget shadowed aording to the legend.

The triangulation of both squares is idential, exept for the middle horizontal edge,

whih is present in one of the retangles and missing in the other. A setting in whih

the left olumn (xi-swith) has the horizontal edge present, is the false setting, while the

other possible one is the true setting.

Variable multiplier gadget. A variable swith gadget of a variable xi allows us to use

at most two literals xi and two literals xi (desribed below). Thus, whenever we have

some literal appearing in more than two lauses, we must use a variable multiplier gadget.

Suh a gadget is omposed by two sets of eight verties forming a square with three

verties at eah side. These squares are loated above a variable swith gadget or a

variable gate gadget (desribed below). A variable multiplier gadget has one of its top

squares shifted by one unit to the right, while the other has it shifted one unit to the left

relative to a variable swith gadget or a variable gate gadget's position. See Figure 4.8

for a variable multiplier gadget above a variable swith gadget. Note that this type of

gadget is never vertially aligned with any other gadget.

Variable gate gadget. A variable gate gadget is the gadget that onnets literals to

a variable (literal gadgets are desribed below). The variable swith gadgets an also

funtion as variable gate gadgets. These gadgets have the same form as the other variable

gadgets: eight verties forming a square with three verties at eah side. A variable

gate gadget is loated to the right of one of the variable multiplier gadget's square and

horizontally aligned with it. See Figure 4.11 for a representation of an instane ontaining
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a variable gate gadget.

Variable gadget. A variable gadget is the omposition of variable swithes, multipliers

and gates that emulates the behavior of a variable. All these gadgets are alled generi

variable gadgets, exept when referring to a spei� type of gadget.

The two lines ontaining the top and bottom of any variable gadget ontain exatly

K verties, while the entral line ontain K − 2 verties.

Notie that when a variable multiplier mi1 is above a xi-swith with a true setting

(middle horizontal edge missing), then mi1 must have its middle horizontal edge present

to ensure a minimum rossing number (i.e., 2K − 1) and a variable gate gi1 to the right

of mi1 must have its middle horizontal edge missing, i.e., gi1 must have the same setting

as the xi-swith.

This setting of swithes, multipliers and gates generates a hain reation guaranteeing

that every gate related to a partiular half swith has the same setting. Therefore, we

all the xi-olumns the olumn of the xi-swith and the olumn of every gate related to

this partiular half swith.

Around the variables. Above a half-variable swith or a variable gate there an be

at most one variable multiplier, while below a half swith or a gate there an be at most

two literal gadgets. However, a variable multiplier and a literal annot be present at the

same time.

Variable position. The gadget for a variable xj is positioned above and to the right of

the gadget for a variable xi, where i < j. In the following, the gadget for a variable refers

to the set of all gadgets omposing a variable, i.e., variable swith, variable multipliers

and variable gates.

Literal gadget. A literal gadget is omposed of a set of eight verties forming a square

with three verties at eah side. This square is loated below a variable gate gadget (or a

variable swith gadget that plays the role of a variable gate). If the variable gate has only

one literal, then it must be vertially aligned to that gadget. If, however, the variable

gate has two literals, then the top one is shifted one unit to the left, while the other is

shifted one unit to the right relative to the horizontal position of that gadget.

A literal gadget in whih the middle horizontal edge is missing is alled the false setting

of the respetive variable. Analogously, the setting in whih the middle horizontal line is

present is alled the true setting of the variable.

Clause gadget. Beause our redution proeeds from is 3-SAT, eah lause has exatly

three literals. In our onstrution the three literals forming a lause are horizontally

aligned. The lause is the r-row ontaining the literal gadgets.

If a literal xi appears in lause cj, we plae a literal gadget in one of the xi-olumns

with room for a literal gadget. If, however, a literal xi appears in lause cj, we plae

a literal gadget in one of the xi-olumns with room for a literal gadget. If a literal xi

appears both in lauses cj and ck, where j < k, we plae the literal xi in lause ck below
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and to the right of the literal xi in lause cj . This guarantees that a vertial or almost

vertial line never rosses more than one literal gadget. Moreover, a lause ck lies below

a lause cj for k > j.

Adjustments to the rossing number. In order to guarantee the desired rossing

number, some adjustments must be made to r-rows and r-olumns. Adjustment to

a r-row is only neessary when there is no gadget in the r-row (this may happen to

obtain the same number of r-rows and r-olumns). This is done in a region lose to its

extremities by removing one vertex from its entral horizontal line. The removed vertex

must not belong to a r-olumn. Adjustment to a r-olumn is neessary whenever there

is no gadget in the r-olumn. In this ase, the adjustment is done in the same way as

for the r-rows. Another situation requiring the adjustment of a r-olumn is when there

are displaed gadgets (like variable multipliers or literals). In this ase, the seond (from

the bottom) vertex is removed from the left vertial line of the r-olumn (Figure 4.8).

Satis�ability implies a rossing number of 2K−1. If the redution we desribed is

valid, then a satis�able formula must produe a mtr instane with an optimal solution of

value no more than 2K−1, where K is the maximum number of verties in any horizontal

or vertial lines.

A rossing line stritly ontained in a r-row or r-olumn has a rossing number that

is less than or equal to the rossing number of any line rossing a spaer gadget, as an

be seen from Figure 4.9 and Figure 4.10. Therefore, the only parts of the onstrution

that ould have a rossing number greater than 2K−1 are the lause gadgets, whih have

rossing number 2K if the three literals in the lause have false settings. However, if the

formula is satis�able, there is a setting in whih at least one literal has a true setting in

every lause. By onstrution, this implies that the rossing number annot be greater

than 2K − 1. Thus, satis�ability implies a rossing number of at most 2K − 1.

Unsatis�ability implies rossing number greater than 2K−1. If the redution is

valid, the other diretion of the proof must also be valid, i.e., if a formula is not satis�able,

the resultingmtr instane must have an optimal solution with value greater than 2K−1,

where K is the maximum number of verties in any horizontal or vertial lines.

If a formula is unsatis�able, there is no setting of variables that satis�es every lause.

Thus, for every setting of variables, there is always at least one lause that has a false

setting for all three literals. By onstrution, this implies that for every setting of vari-

able gadgets, there is always a lause in whih all three literal gadgets have the middle

horizontal edge missing. Therefore, the rossing number of the orresponding r-row is

equal to 2K. Hene, unsatis�ability implies a stabbing number greater than 2K − 1.

Polynomial size of the onstrution. Let B be an instane of 3-SAT, let n be the

number of variables, c the number of lauses and t the number of ourrenes of the most



4.5. The Complexity of General mtr 76

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

Figure 4.11: Representation of onstrution for the formula (x0∨x1∨x2)∧ (x0∨x1∨x2)∧
(x0∨x1∨x2), and values x0 = true and x1 = x2 = false. The long edges represent piees
of r-rows and r-olumns and the empty spaes between them represent spaer gadgets.
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ommon literal. The number of r-olumns neessary to aommodate t ourrenes of

a literal is at most equal to t. The width of any variable gadget is �xed and equal to

3 and the width of a spaer gadget is equal to 17. Therefore, the horizontal size of the

onstrution is less than or equal to 2× 20× n× t + 17 = Θ(nt).

The number of r-rows neessary to aommodate the variable gadgets onneted to

t ourrenes of a literal is at most t. The height of any variable gadget is equal to 3 and

the height of a spaer is equal to 17. Eah lause uses exatly one r-row. Therefore, the

height of the onstrution is less than or equal to 2× 20× n× t+ c+ 17 = Θ(nt+ c).

As the onstrution must have the same almost horizontal/vertial rossing number,

we must inlude new extra r-olumns or r-rows so that their number is indeed equal.

Therefore, the width and height of the onstrution is the maximum of the two values

obtained for these parameters, so it is polynomial in c, n and t.

4.6 Iterated Rounding

Following our proofs, we know that all variants triangulation with small stabbing or ross-

ing number are NP-hard, making it unlikely that there is a polynomial-time algorithm

that an handle them. In the following, we study a heuristi approah for omputing

solutions in polynomial time, with the hope that the resulting objetive values are within

a onstant fator of the optimal values.

An iterated rounding algorithm (IRA), as desribed in [13℄, proeeds by solving the

linear relaxation of a given problem, �nding a variable with high frational value, �xing

this variable to 1 and repeating the proess until an integral solution is found. In [9℄ it was

onjetured that an IRA yields an approximation algorithm for the problem of �nding a

perfet mathing with minimum stabbing number (mspm). That onjeture regarding the

worst-ase performane is still open; in any ase, suh an algorithm provides a heuristi

for the mspm.

As the mstr is losely related to the mspm, we may onsider if the same IRA approah

applied to the mstr yields an approximation for our problem. As disussed in [9℄, one of

the prerequisites for obtaining an approximation using an IRA is a guarantee that there

is a �heavy� variable at eah iteration, i.e., a variable with high frational value: If we an

guarantee the existene of a variable with value at least 1/k at eah iteration, the hope

is to get a k-approximation.

Di�erent from the mspm ase, no proof is known for the mstr that a heavy variable

exists at eah iteration. However, we an provide evidene for the existene by experi-

mentally determining the smallest value of all heaviest variables in all instanes, say 1/p.

After that, using the lower and upper bounds obtained by the IRA and results from other

algorithms, we an hek if the results are onsistent with a p-approximation algorithm.

The integer programming model used in the algorithm is the triangle-based model

desribed in [16℄ and reprodued below. Here ∆(P ) denotes the set of empty triangles

over a set of points P , L+(ij) and L−(ij) represent the two half-planes de�ned by the line

ontaining (ij), while EH is the set of line segments in the onvex hull of P .
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(MSTT ) z = min k (4.1)

subjet to

∑

ijl∈∆(P ) :

ijl⊂L+(ij)

xijl =
∑

ijl∈∆(P ) :

ijl⊂L−(ij)

xijl, ∀ij ∈ E \EH , (4.2)

∑

ijl∈∆(P )

xijl = 1, ∀ ij ∈ EH , (4.3)

∑

ijl∈∆(P ):ijl
⋂

s 6=∅

csijlxijl ≤ k, ∀ s ∈ S. (4.4)

k ∈ Z, xijl ∈ B ∀ ijl ∈ ∆(P ). (4.5)

In the model above, for every triangle ijl ∈ ∆(P ), xijl = 1 if and only if the triangle ijl

is in the triangulation. The variable k represents the stabbing number of the triangulation.

Constraint (4.2) states that the number of triangles ontaining an edge ij (whih is not in

EH) must be the same in both half-planes de�ned by the line ontaining ij. As the edges

in EH are present in every planar triangulation, onstraint (4.3) ensures that a triangle

ontaining one suh edge is in the triangulation. Constraint (4.4) states that the sum of

the oe�ients csijl of the triangles ijl interseting a line s of S annot be larger than the

stabbing number. A triangle ijl interseting a line s has oe�ient csijl = βs
ij + βs

il + βs
jl,

where βs
ij = 1 if ij intersets s and is on the onvex hull, βs

ij = 0.5 if ij intersets s, but

is not on the onvex hull and βs
ij = 0 if ij does not interset s.

The experiments desribed in the following onsider only the axis-parallel version of

the mstr, beause this allows a omparison with previous omputational results desribed

by [16℄. We fous on the instanes desribed in that paper.

The heuristi method developed in [16℄ is based on Lagrangian Relaxation (lr). For

fair omparison, we used the same omputational environment for both.

Computational environment. We used a omputer with an Intel Core 2 Quad

1.60GHz, 4096 KB ahe, 4GB of RAM memory and an Ubuntu 10.04.4 OS. The pro-

gramming language used was C/C++ with g 4.4.3 ompiler. Every program was ompiled

with the -O5 optimization �ag. We also used the XPRESS-Optimizer 64-bit v22.01.09

ip solver. The default uts, heuristis and preproessing were turned o�. In addition, the

optimizer was set to use a single proessor ore.

Instanes. As a test suite we used 25 instanes from tsplib [17, 18℄ and the 25 regular

grid instanes used in [9℄ for the Minimum Stabbing Perfet Mathing Problem. The

hoie of these instanes is based on the fat that the tsplib is a well-known test library

for geometri problems. Moreover, tsplib and all grid instanes were also used in [9℄

for the mspm. The hoie of the instane sizes was made seeking tests that were hard

enough to provide meaningful omputation times, allowing a more preise omparison of
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the algorithms.

A time limit of 3, 600 seonds was set for the exeution of the algorithms. As the

time is veri�ed at spei� hekpoints in the ode and the time spent between two suh

hekpoints may not be negligible, some of the times displayed in the tables are slightly

over 3, 600 seonds.

Duality gaps were omputed through the formula 100× (ub− ⌈lb⌉)/ub, where ub and

lb denote, respetively, the upper and lower bounds yielded by the algorithm. Whenever

a value is unkown beause the algorithm was interrupted, the respetive value is marked

with the symbol ‡ in the table.

Results. The �rst observation is that the smallest large frational value of all instanes

(that produed an output) is greater than or equal to 0.5. This means that at every

iteration of the IRA and for every instane, there was always a variable with value at least

0.5. Aording to the approximation onjeture, that should give us a 2-approximation

algorithm. The results obtained are onsistent with this hypothesis, beause no upper

bound value is more than twie a known lower bound value (inluding the ases in whih

the upper bounds oinided with the optimal value).

In the following we divide our analysis into two parts, one for the tsp instanes and

the other for the grid instanes.

For the tsp instanes, the IRA had its proess killed in 8 out of the 25 instanes,

while optimality was ahieved in 10 ases. The remaining tests resulted in gaps of only

3.87% on average. The Lagrangian algorithm onverged in all ases within the imposed

time limit, with an average gap of 2.30% and proven optimality in 7 ases.

Considering only the instanes for whih IRA was not killed, the lr algorithm was

faster in 11 situations while the IRA was faster in 6 ases. The total time spent with these

instanes was 108.77 seonds bigger with the IRA. These results are shown in Table 4.1.

For the grid instanes, 23 out of 25 instanes were solved to optimality by the IRA,

while the lr algorithm solved all problems to optimality. The total running times for the

instanes solved by both of them was pratially idential, exept for the grid20 instanes,

for whih the lr was signi�antly faster.

4.7 Conlusions

We have resolved a number of long-standing open problems on the problem of �nding

triangulations of small stabbing or rossing numbers, by proving them to be NP-hard.
Naturally, this raises the need for the development of onstant-fator approximation

algorithms. We have supplied experimental evidene that an approah based on iterated

rounding may be able to provide suh an approximation algorithm. In partiular, we were

able to show that the performane is omparable to the best known heuristi based on

Lagrangian relaxation, with no instane yielding an optimality gap larger than 6%.

Conjeture 1. Iterated rounding provides a onstant-fator approximation algorithm for

mstr.



4.7. Conlusions 80

Table 4.1: Comparison of IRA and lr algorithm with tsp instanes.

Instane min. Var. # iters LB UB Time GAP%

IRA IRA lr IRA lr IRA lr IRA lr IRA

berlin52 0.50 34 23.670 23.700 24 24 7.70 2.25 0.00 0.00

eil76 0.50 54 31.561 31.564 33 33 112.58 21.19 3.03 3.03

kroD100 0.50 95 28.002 28.043 29 29 30.60 220.92 0.00 0.00

kroA100 0.50 100 28.518 28.529 30 30 107.25 205.42 3.33 3.33

kroE100 0.50 89 28.221 28.220 30 29 99.17 199.91 3.33 0.00

kroC100 0.50 83 28.123 28.141 29 29 96.56 186.51 0.00 0.00

kroB100 0.50 98 28.593 28.599 30 30 119.63 239.20 3.33 3.33

rd100 0.50 83 28.050 28.165 29 29 17.45 213.96 0.00 0.00

pr124 0.50 40 47.612 48.122 49 52 406.34 229.14 2.04 5.77

pr136 0.67 9 65.667 65.667 67 66 589.72 67.24 1.49 0.00

h130 0.50 132 31.904 31.920 33 34 165.06 1015.82 3.03 5.88

pr144 0.50 13 73.084 74.000 74 74 673.28 187.63 0.00 0.00

pr152 0.50 55 44.012 45.000 45 45 420.05 795.93 0.00 0.00

kroA150 0.50 131 34.411 34.405 36 35 333.77 1525.61 2.78 0.00

kroB150 0.67 163 33.632 33.645 35 35 412.90 2153.08 2.86 2.86

h150 0.67 163 33.292 33.307 35 35 272.60 2034.03 2.86 2.86

kroB200 ‡ 1 38.285 37.868 40 ‡ 705.74 3607.45 2.50 ‡
kroA200 ‡ 1 39.578 39.246 41 ‡ 737.41 3607.57 2.44 ‡
gr202 ‡ 1 41.059 39.004 42 ‡ 614.27 3607.65 0.00 ‡
pr226 0.50 56 144.239 150.000 150 150 3690.80 3005.09 3.33 0.00

pr264 ‡ 1 89.761 91.000 92 ‡ 3600.70 3609.20 2.17 ‡
gil262 ‡ 1 48.819 34.272 50 ‡ 1769.88 3611.15 2.00 ‡
lin318 ‡ 1 68.538 49.000 70 ‡ 3602.31 3619.89 1.43 ‡
pb442 ‡ 1 161.246 147.000 180 ‡ 6017.10 3665.40 10.00 ‡
rd400 ‡ 1 51.848 13.925 55 ‡ 3604.68 3656.82 5.45 ‡
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Table 4.2: Comparison of IRA and lr for grid instanes.

Instane min. Var. # iters LB UB Time GAP%

IRA IRA lr IRA lr IRA lr IRA lr IRA

grid5a 1.00 0 21.432 22.000 22 22 0.17 0.07 0.00 0.00

grid5b 0.50 1 20.029 20.500 21 21 0.27 0.07 0.00 0.00

grid5 1.00 0 20.031 21.000 21 21 0.17 0.08 0.00 0.00

grid5d 1.00 0 21.000 21.000 21 21 23.14 0.07 0.00 0.00

grid5e 0.50 1 19.054 20.000 20 20 0.18 0.07 0.00 0.00

grid8a 0.50 4 33.004 34.000 34 34 2.2 0.16 0.00 0.00

grid8b 0.80 1 33.275 34.000 34 34 3.48 0.23 0.00 0.00

grid8 1.00 0 33.038 34.000 34 34 1.61 0.19 0.00 0.00

grid8d 1.00 0 34.009 35.000 35 35 1.07 0.2 0.00 0.00

grid8e 0.50 3 34.071 34.500 35 35 1.11 0.24 0.00 0.00

grid10a 1.00 0 43.123 44.000 44 44 8.01 1.02 0.00 0.00

grid10b 1.00 0 41.764 42.000 42 42 3.31 0.62 0.00 0.00

grid10 0.50 3 46.023 47.000 47 47 9.52 0.96 0.00 0.00

grid10d 1.00 0 45.002 46.000 46 46 2.61 0.82 0.00 0.00

grid10e 1.00 0 45.003 46.000 46 46 7.05 1.05 0.00 0.00

grid15a 0.67 2 65.166 66.000 66 66 75.13 52.3 0.00 0.00

grid15b 0.50 3 67.153 68.000 68 68 13.65 55.75 0.00 0.00

grid15 0.50 8 63.043 64.000 64 64 20.7 46.53 0.00 0.00

grid15d 0.67 15 65.071 65.200 66 66 39.24 51.54 0.00 0.00

grid15e 0.80 3 66.081 67.000 67 67 79.53 60.51 0.00 0.00

grid20a 0.50 17 88.020 89.000 89 89 500.78 2357.88 0.00 0.00

grid20b ‡ 1 85.174 85.000 86 ‡ 73.09 3615.74 0.00 ‡
grid20 0.50 13 89.016 90.000 90 90 2222.62 2517.32 1.11 0.00

grid20d ‡ 1 86.112 87.000 87 ‡ 204.77 3616.62 0.00 ‡
grid20e 0.50 13 89.078 90.000 90 90 1213.83 2015.84 0.00 0.00
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Given that there is a variety of di�erent IP formulations, and thus di�erent LP relax-

ations for our problems, the atual worst-ase performane may depend on a spei� IP

version. Given that the time for solving the involved linear programs grows very rapidly

with instane size, studying di�erent formulations is also of pratial importane.
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Chapter 5

Minimum Stabbing Retangular

Partitions of Retilinear Polygons

The urrent hapter presents the omplete version of a work presented at VIII Latin-

Amerian Algorithms, Graphs and Optimization Symposium (LAGOS 2015) as an ex-

tended abstrat o-authored with Cid C. de Souza [10℄. This is the text of the extended

version of that work and that was submitted for publiation to a sienti� journal. This

work studied retangular partitions of retilinear polygons with minimum stabbing num-

ber, presenting two integer programming formulations for the problem inluding a poly-

hedral study for one of them. Computational experiments were performed to ompare

the di�erent formulations.

We study integer programming (ip) models for the problem of �nding a retangular

partition of a retilinear polygon with minimum stabbing number. Strong valid inequali-

ties are introdued for an existing formulation and a new model is proposed. We ompare

the dual bounds yielded by the relaxations of the two models and prove that the new one

is stronger than the old one. Computational experiments with the problem are reported

for the �rst time in whih polygons with thousands of verties are solved to optimality.

The (ip) branh-and-bound algorithm based on the new model is faster and more robust

than those relying on the previous formulation.

5.1 Introdution

Let P be a retilinear polygon, and π be a retangular partition of P , i.e., a partition of

the interior of P , int(P ), into retangles. De�ne the set L of all maximal line segments

that are axis-parallel and belong to int(P ). Given a segment s of L, the stabbing number

of s relative to π is the number of retangles of the partition whose interior is interseted

by s. The stabbing number of π is then the maximum stabbing number among all lines

in L. The Retilinear Partition with Minimum Stabbing Number Problem (rpst) is:

given a retilinear simple polygon, �nd a retangular partition having minimum stabbing

number among all possible partitions. Figure 5.1 shows an rpst instane and a possible
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retangular partition. If an edge e of a retangle in a retangular partition of P has both

of its endpoints on the boundary of P , δ(P ), e is said to be fully anhored. A retangular

partition of P is alled onforming if all edges of its retangles are fully anhored.

s

r

Figure 5.1: An instane of rpst (to the left) and a feasible solution (to the right). The

segments r and s have stabbing numbers, respetively, 4 and 3.

Problems requiring the deomposition of retilinear polygons have appliations, for

example, in VLSI layout design and image proessing (f. [7℄). On the other hand,

obtaining sets of objets satisfying some properties and having the lowest stabbing number

is a reurring problem in Computational Geometry. In [11℄ a wide variety of appliations

of that sort are mentioned inluding the design of e�ient algorithms for simplex range

searhing, ray shooting, motion planning and ollision detetion among others. Clearly,

the rpst merges these two types of problems and, that is probably why it attrated the

attention of many researhers.

The rpst was studied in [5℄, [1℄ and [7℄. In [5℄, the authors show that any retilinear

polygon with n verties have a retangular partition with stabbing number O(logn) for

a hole-free polygon and O(
√
k logn) for a polygon with k ≥ 1 retilinear holes. Abam et

al. [1℄ present a 3-approximation polynomial time algorithm for the problem, based on

the partition of histograms. Finally, Duroher and Mehrabi [7℄ prove that the problem

of �nding a onforming retangular partition in a polygon with holes is NP-hard. They
also present an integer programming (ip) formulation for the problem and develop a

2-approximation algorithm for the onforming ase.

Our Contribution The �rst ontribution of this work is a polyhedral investigation on

the model proposed in [7℄. There the authors did not investigated the strength of their

formulation nor arried out any omputational experiments with it. The inequalities ob-

tained in our polyhedral study were used tested omputationally. These experiments show

that the new inequalities allow us to solve more instanes to optimality in a reasonable

time.

A key aspet of our work is the establishment of a relation between the rpst and the

Minimum Length Retangular Partition (rgp) previously studied in [6℄ and [3℄. In the

rgp, we are given a retangle R and a set T of points in its interior, alled terminals. The
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goal is to use axis-parallel segments to partition R into retangles so that every terminal

is interseted by at least one of these segments and the sum of their lengths is minimized.

For given R and T , a feasible solution for the rgp is alled a retangular partition of R

onstrained by T . Figure 5.2 depits an instane of rgp and a feasible solution.

Figure 5.2: An instane of rgp (to the left) and a feasible solution (to the right). The

blak points indiate the terminals.

Another ontribution of this work is the spei�ation of a new ip formulation for

rpst. The new model desribes the problem through variables that indiate if a retangle

(instead of a segment) is in the solution. For reasons that will beome lear later, we all

it the set partition model. This formulation is then proved to be stronger than the one

given in [7℄.

We further investigate the set partition model and establish onditions for �xing some

variables of the ip formulation in an optimal solutions, reduing its quantity. These

properties allow to eliminate variables. Beause this model is a restrition on the original

set partition formulation, it is no weaker than that model. This new formulation led to

the best running times for large instanes and the results suggest that as the polygon size

inreases, beomes not only faster than the ompetitors but also more robust.

Organization of the text The paper is organized as follows. The next setion desribes

ip models for the rpst and the rgp where the variables are related to segments of the

retangular partition. Setion 5.3 shows the relation between these models. In Setion 5.4,

we show how the rpst an be modeled as a set partition problem and some properties of

this model, while experiments are disussed in Setion 5.5. Finally, Setion 5.6 presents

some onlusions and diretions for future work.

5.2 Segment Based ip Models

In this setion we present an ip model for the rpst. In this model the variables are related

to segments of the retangular partition. Later we show a formulation for the rgp that

is losely related to the one for rpst.
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Given a retilinear polygon P , input of rpst, let V P
r (V P

c ) be the set of re�ex (onvex)

verties of P . The grid indued by P , grid(P ), is the set of all vertial and horizontal

maximal line segments in the interior of P having (at least) one vertex in V P
r as one of

its endpoints. Let V P
s be the set of points of int(P ) loated at the intersetions of two

line segments in grid(P ), whih are alled Steiner verties. The points in δ(P ) that are

endpoints of segments in grid(P ) and are not in V P
r are alled border verties and form

the set V P
b . The set of all verties is de�ned by V P = V P

c ∪ V P
r ∪ V P

s ∪ V P
b . We now turn

our attention to the edge set.

Suppose we traverse δ(P ), the boundary of P , say, lokwisely. The segments between

two onseutive verties of V P
form the set EP

h . Now, if we traverse any horizontal

(vertial) segment of grid(P ) from left to right (from bottom to up), the segments between

two onseutive verties of V P
form the set EP

g . These are alled the grid segments and,

together with the segments in EP
h , they ompose the set EP

, i.e., EP = EP
h ∪ EP

g . A

anonial retangle in grid(P ) is a retangle where eah side is a unique segment of EP
.

Figure 5.3 depits the grid for the example in Figure 5.1. Steiner and border verties

are represented by gray and white verties, respetively. From the formulation in [7℄ one

an dedue that there exists an optimal solution to rpst suh that all retangles in the

partition have sides lying on grid(P ).

Figure 5.3: Grid for the example in Figure 5.1 ontaining 40 anonial retangles.

Two on�gurations are relevant for the desription of a feasible rpst solution. A

subset E ′P
of EP

de�nes a knee in a vertex u ∈ V P
if there are exatly two edges in

E ′P
inident to u and they are orthogonal. On the other hand, if only one edge in E ′P

is

inident to u, we say that E ′P
de�nes an island at u. Clearly, if E ′P

indues a retangular

partition of P , it an not de�ne a knee or an island at any point.

Now, denote by θ(ua, ub) the angle between two edges ua and ub in EP
that are

inident to a point u ∈ V P
. With these de�nitions, the rpst an be modeled as [7℄:
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(MRPST
sum ) z = minmax

s∈L

∑

uv ∈ EP
g :

uv
⋂

s 6= ∅

xuv + 1 (5.1)

s.t. xua + xub ≥ 1, ∀ u ∈ V P
r , ua, ub ∈ EP

g , (5.2)

xua + xub ≥ xuc, ∀ u ∈ V P
s , ua, ub, uc ∈ EP

g : θ(ua, ub) =
π

2
, (5.3)

where the binary variable xuv is set to one if and only the edge uv ∈ EP
g belongs to the solution.

The set L omprises all horizontal and vertial maximal line segments fully ontained in P . Thus,

the objetive funtion minimizes the maximum of a set of |L| sums, eah orresponding to the

stabbing number of a segment. Notie that, in priniple, L is in�nite. However, as stated in [7℄,

for every w ∈ V P
r , we only need to onsider the two axis-parallel segments ontaining a point

along the bisetor of the internal angle in w. This point is hosen so that its distane from w

is smaller than the distane between any two verties. By doing that, we have |L| = 2|V P
r | and

the model size beomes polynomial in the size of P .

Inequalities (5.2) guarantee that a solution does not de�ne a knee or island in a re�ex vertex.

Meanwhile, inequalities (5.3) enfore that a solution an not ontain a knee or an island in a

Steiner vertex. Duroher and Mehrabi [7℄ argue the orretness of the formulation with these

two sets of onstraints. They also mention that there exists an optimal solution where at most

three grid segments meeting at a Steiner vertex are present. This property is expressed by the

linear inequalities

∑

uv∈EP
g

xuv ≤ 3, ∀ u ∈ V P
s . (5.4)

Due to the objetive funtion, the model MRPST
sum is not linear. Using standard tehniques,

it an be linearized through the introdution of an auxiliary integer variable k to represent the

stabbing number. For eah element s of L, we add a onstraint requiring that k is at least as

large as the summation orresponding to s in (5.1). With the x variables de�ned as before, the

new model reads:

(MRPST )min



















k ∈ R : x ∈ B
EP

g , (5.2)− (5.3),
∑

uv∈EP
g

uv
⋂

s 6=∅

xuv + 1 ≤ k,∀s ∈ L



















. (5.5)

This model is similar to those disussed in [8℄ for other stabbing problems.

As stated before, the rpst model is losely related to a rgp model. Their relationship will

beome learer in Setion 5.3. For now, we restrit ourselves to present an ip formulation for the

rgp. Prior to that, some more notation is neessary.

Given an instane I = (R,T ) of the rgp, where R is a retangle and T is a set of terminal

points in R, let grid(R,T ) be the set of vertial and horizontal maximal line segments in the

interior of R interseting a point of T . Let Ts be the set of points in the intersetion of segments

in grid(R,T ) but not in T . Let Tb be the set of points on the boundary of R interseted by

segments in grid(R,T ) and let Tt = T ∪ Ts ∪ Tb. De�ne S to be the set of frations of segments

in grid(R,T ) ontaining exatly two points in Tt, both loated at its extremities. The elements

of S are referred to as grid segments. The set of all grid segments indues a planar subdivision of
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the surfae of R. Eah inner fae of this subdivision is alled a anonial retangle of grid(R,T ).

As in the rpst ase, some properties of feasible and optimal solutions of the rgp are useful

to model the problem as an ip. First, the knee and an island on�gurations are de�ned as before,

but this time for points in Tt and segments in S. Both formations are obviously forbidden in any

feasible solution of the rgp. Besides, in [9℄ it was stated that there is always an optimal solution

for the rgp whose retangles have sides lying on grid(R,T ).

From these de�nitions and realling that θ(ua, ub) is the angle between segments ua and ub,

we obtain the following model for the rgp:

(MRGP ) z = min
∑

uv∈S

duvxuv (5.6)

s.t. xua + xub ≥ 1, ∀ u ∈ T, ua, ub ∈ S : θ(ua, ub) =
π

2
(5.7)

xua + xub ≥ xuc, ∀ u ∈ Ts, ua, ub, uc ∈ S : θ(ua, ub) =
π

2
, (5.8)

where, for every uv ∈ S, the binary variable xuv is set to one if and only if the segment uv is

in the solution. The objetive funtion is given by the sum of the lengths of the segments that

belong to the solution. Inequalities (5.7) and (5.8) guarantee that the solution does not de�ne

knees and islands in points in T or Ts, respetively. Meneses and de Souza [6℄ showed that the

latter onstraints desribe all feasible retangular partitions. Constraints (5.9) below enfore

that at most three of the four grid segments inident to a Steiner vertex an be in the solution:

∑

uv∈S

xuv ≤ 3, ∀ u ∈ Ts. (5.9)

This property also holds for optimal rgp solutions, so the addition of these onstraints to the

model auses no harm, while it may be quite helpful in omputation.

Looking at models (MRGP ) and (MRPST ) it is possible to see that although the problems

statements are rather di�erent, their formulations have several similarities. In the next setion

we establish the relationship between the polyhedra de�ned by these models.

5.3 Polyhedral Study of the Segment Based Model

In this setion we show how the ip models given before are related. The goal is to utilize previous

�ndings about the MRGP
to improve the models for the rpst. To failitate the understanding

on how this is done, we �rst give some basi results on the projetion of polyhedra and then

explain how an rpst instane an be transformed into an rgp instane. We �nally ombine

these ideas to derive faet de�ning inequalities for the MRPST
.

5.3.1 Projetion of Polyhedra

We brie�y review some relevant �ndings of Balas and Oosten [2℄ relative to the projetion of

polyhedra. Consider a non empty polyhedron Q = {(u, y) ∈ R
p × R

q : Au + By ≤ b}, where
A, B and b have m rows. The projetion of Q onto the subspae de�ned by u = 0, alled the

y-spae, is de�ned as

Projy(Q) = {y ∈ R
q : ∃u ∈ R

p
with (u, y) ∈ Q}.
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Let us partition the rows of (A,B, b) into (A=, B=, b=) and (A<, B<, b<), where A=u+B=y =

b= is the equality subsystem of Q, i.e. the set of equations orresponding to the inequalities

satis�ed at equality by every (u, y) ∈ Q. Assume that the equality subsystem has no redundant

rows and that no equality is implied by the inequality subsystem. Let r = rank(A=, B=) =

rank(A=, B=, b=), where the last equality follows from Q 6= ∅. Moreover, let dim(X) denote the

dimension of a set X. It is well known that dim(Q) = p+ q − r, and that Q is full-dimensional,

i.e. dim(Q) = p + q, if and only if the equality subsystem is vauous. The �rst results states

that, if Q is full-dimensional so is its projetion onto the y-spae.

Proposition 5.1 ([2℄, Prop. 2.1). If dim(Q) = p+ q, then dim(Projy(Q)) = q.

The next result establishes neessary and su�ient onditions for an inequality de�ning a

faet of Q to de�ne a faet of Projy(Q). Let αu + βy ≤ π0 be a valid inequality for Q, and

suppose F = {(u, y) ∈ Q : αu+βy = α0} is a faet of Q. Let
(

α

A=

)

u+

(

β

B=

)

y =

(

α0

b=

)

be the equality subsystem de�ning the polyhedron F and, let rF = rank

((

α

A=

)

,

(

β

B=

))

.

Notie that rF − r = 1, sine dim(F ) = dim(Q) − 1. Further, denote r∗F = rank

((

α

A=

))

and r∗ = rank(A=). The next statement relates the faets of Q and those of Projy(Q).

Proposition 5.2 ([[2℄, Cor. 3.6). Let F be a faet of Q. Then Projy(F ) is a faet of Projy(Q)

if and only r∗F = r∗.

5.3.2 Transforming rpst into rgp

We now explain how to transform an instane of the rpst into an instane of the rgp. To this,

we start with the following de�nition.

For a given set of points S in the plane, let xmin (xmax) be the minimum (maximum) x-

oordinate of a point in S. De�ne the values of ymin and ymax analogously. The enlarged

bounding box of S is the retangle with verties at (xmin − 1, ymin − 1) and (xmax + 1, ymax + 1)

and sides parallel to the axes.

Now, given the retilinear polygon P in the rpst instane, de�ne the external retangle R

in the rgp instane as the enlarged bounding box of P . Also, in the later, inlude in the set T of

terminal points all the verties of P . Clearly, any retangular partition π of P an be extended

to a retangular partition of R with terminals in T . It su�es to add to P all the segments

in grid(R,T ) that are not in int(P ). On the other hand, let φ be a retangular partition of R

onstrained to T . Consider the set S of grid segments of φ whih are in int(P ). We laim that

the subdivision indued by S in P is a feasible solution for the rpst. If not, at least one of the

faes of the subdivision de�ned by S in int(P ), say f , is not a retangle. So, f has a re�ex vertex

u that is also a vertex of P sine, otherwise, φ would form a knee at some point of grid(R,T )

in int(P ), and onsequently would not be feasible for the rgp. However, as f is the intersetion

of some retangle R′
indued by φ and P , this implies that u is in the interior of this retangle.

But, as u is a terminal, φ ould not be a solution of the rgp either.

5.3.3 Polyhedral results for the rpst

Given the rpst and the transformed rgp instane desribed above, denote by Q the onvex

hull of feasible solutions of MRGP
alled the rgp polytope. Similarly, let Qx

be the rpst
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polytope given by the onvex hull of the integer solutions of the linear system (5.2)-(5.3). Let

s = p + q be the total number of grid segments in the rgp instane, suh that Q ⊂ R
s
.

In the sequel, for a vetor w ∈ R
s
, assume that the �rst p omponents orrespond to the

segments of grid(R,T ) that are not in int(P ) and the last q elements are assoiated to the

remaining grid segments. Denote the �rst p (last q) omponents of w by u (y). Suppose that

Q = {(u, y) ∈ R
p × R

q : Au + By ≤ b} 6= ∅ and notie that Qx ⊂ R
q
. From the previous

subsetion, it is lear that Qx = {y ∈ R
q : ∃u ∈ R

p : (u, y) ∈ Q} = Projy(Q), i.e. Qx
is the

orthogonal projetion of Q onto R
q
. Sine the Q was proven to be full-dimensional in [6℄, the

results from Setion 5.3.1 an be used to �nd the dimension of Qx
.

Proposition 5.3. The polytope Qx
is full dimensional, i.e., dim(Qx) = q.

Proof. Immediate from Proposition 5.1.

Besides, known faet de�ning inequalities for Q an also be faet de�ning for Qx
. The next

proposition gives neessary onditions for this to hold.

Proposition 5.4. Let πw = αu+βy ≤ α0 be a faet de�ning inequality for Q for whih α is the

null vetor and F = {(u, y) ∈ Q : αu + βy = α0}. Then, for y ∈ R
q
, βy ≤ α0 is faet de�ning

for Qx
.

Proof. From the de�nition of Q, let (A=, B=, b=), (A≤, B≤, b≤) be a partition of (A,B, b) where

(A=, B=, b=) is the equality subsystem of Q, let r∗ = rank(A=) and r∗F = rank
( α
A=

)

. Sine Q

is full dimensional, A=
is empty and r∗ = 0. Moreover, sine α = 0, r∗F = 0. Then, the result

follows from Proposition 5.2.

Now, let Qx
k be the onvex hull of the feasible solutions ofM

RPST
, i.e., the linearized model of

the rpst with the stabbing variable k given by (5.5). Renaming the x variables in this model by

y, it is easy to see that Projy(Q
x
k) = Qx

. Notie that if {y1, y2, . . . , yr} is an a�nely independent

set of vetors of Qx
representing r retangular partitions of P and kmax is the largest stabbing

number among these partitions, the r+1 vetors
{

( y1

kmax

)

,
( y2

kmax

)

, . . . ,
( yr

kmax

)

,
( y1

kmax+1

)

}

belong to

Qx
k and are a�nely independent. As a onsequene, Qx

k is full-dimensional and any faet de�ning

inequality of Qx
also de�nes a faet of Qx

k.

Consider then a faet de�ning inequality for the Q whose support vetor does not ontain

elements assoiated to segments that are not in int(P ). From the results seen in this setion,

this inequality also de�nes a faet of Qx
and of Qx

k. Next we see how to use this idea to tighten

the MRPST
model.

We begin desribing three families of inequalities proposed in [6℄ that are faet-de�ning for

Q and whih satisfy the onditions of Proposition 5.4. These inequalities are haraterized by

geometri on�gurations related to the loation of terminal and Steiner verties in grid(R,T ).

The on�gurations of interest are shown in Figure 5.4 and orrespond to the so-alled Classes III,

IV and VI of inequalities, as de�ned by Meneses and de Souza in their paper. The form of the

onstraints in Classes III, IV and VI are given in equations (5.10), (5.11) and (5.12), respetively.

xe1 + xe2 + xe3 + xe4 ≥ 2 (5.10)

xe1 + xe2 + xe3 + xe4 ≥ 1 (5.11)

xe1 + xe2 + xe3 + xe4 + xe5 + xe6 + xe7 + xe8 ≥ 2 (5.12)

Notie that, as inequalities (5.7) and (5.8) de�ne faets for Q [6℄, from Proposition 5.4, their

ounterparts, inequalities (5.2) and (5.3), also de�ne faets for Qx
.
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e1
e2

e3

e4

e5

e6

e7

e8

e1
e1 e2

e3

e4

e4

e3
e2

(b)(a) (c)

Figure 5.4: Point on�gurations for inequalities Classes III (a), IV (b) and VI () of an

rgp instane. Filled (empty) points are terminal (Steiner) verties.

5.4 Set Partition Models

Besides the (MRGP ) model, a formulation where the variables are related to retangles of the

retangular partition was also studied for the rgp in [6℄ and [3℄. With the use of these variables,

the rgp translates into a set partition problem (spp). As we have seen in Setions 5.2 and 5.3,

rgp and rpst are losely related. Hene, it is natural to formulate rpst as an spp too with,

of ourse, the additional stabbing variable and onstraints. The urrent setion shows how this

an be done and also presents some properties of the new model.

Let H = {1, . . . , p} be a �nite set and K = {K1,K2, . . . ,Kq} be a family of subsets of H.

Then, K ′ ⊆ K forms a partition of H if Ki ∩Kj = ∅ for every pair of distint elements Ki and

Kj of K
′
, and

⋃

Kj∈K ′ Kj = H. If a ost cj is assoiated to eah set Kj in K, then a partition

K ′
have total ost

∑

Kj∈K ′ cj . The set partition problem onsists in �nding a partition of H

with minimum ost and it an be formulated as an ip problem as follows:

(MSPP ) z = min

q
∑

j=1

cjλj (5.13)

s.t.

q
∑

j=1

aijλj = 1, i = 1, . . . , p , (5.14)

λj ∈ B, j = 1, . . . , q , (5.15)

where the binary variable λj is set to 1 if and only if Kj is in the partition. The oe�ient aij
is equal to 1 if i ∈ Kj and 0 otherwise. Therefore, onstraints (5.14) ensure that every element

in H is overed by exatly one set Kj .

In order to model a given problem as set partition problem we must �rst de�ne the sets H

and K. In [6℄ this was done for the rgp. Given an instane I = (R,T ), H was de�ned as the set

of anonial retangles of grid(R,T ) (as de�ned in Setion 5.2) and K as the set of retangles

whose sides are omposed by grid segments of I and having no terminal points in their interior.

With H and K de�ned in that way, aij is set to one if and only if the j-th retangle ontains

the anonial retangle i. Also, the variable λj takes value one if and only if retangle j is part

of the optimal retangular partition.

To model the objetive funtion, appropriate osts have to be assigned to eah retangle of

K. This is aomplished by assigning the ost of a retangle to its weighted perimeter. Given a
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retangle Kj with sides omposed of segments of grid(R,T ), the weight of a segment is zero if

the segment lies on the border of R and 1/2 otherwise. De Meneses and de Souza proved that

with osts omputed in this way, the optimum of the set partition model for the rgp is equal to

that of the MRGP
. From now on, the resulting model for the rgp is denoted by MSPP

rgp .

Using a similar reasoning, given the polygon P at the input of the rpst, H an be de�ned

as the set of anonial retangles in grid(P ) (as de�ned in Setion 5.2) and K as the set of

retangles having its sides omposed by segments of EP
. As before, the oe�ients aij are set

to one if and only if the j-th retangle ontains the anonial retangle i. The variables λj are

de�ned as for the rgp ase.

Beause in the rpst the objetive funtion is not expressed by a summation, the problem an

not be asted diretly as a set partition problem. However, as we did for MRPST
, the stabbing

variable k an also be used to get a linear formulation. To this, it is enough to add the following

onstraints to the model:

∑

Rj∈K:Rj∩s 6=∅

λj ≤ k, (5.16)

where Rj denotes the retangle assoiated to variable λj . Obviously, the objetive funtion asks

for the minimization of k. Although this is not a pure set partition formulation of the rpst, we

will name the resulting model the set partition model of the problem and denote it by MSPP
rpst .

5.4.1 Properties of the Set Partition Model for the rpst

Whenever there are two ip formulations for a problem, it is interesting to know if one of them

dominates the other or, in other words, if the dual bound produed by the linear relaxation of

one of them is always at least as good as the one omputed by the relaxation of the other. For

the rgp, it was shown in [6℄ that (MSPP
rgp ) dominates (MRGP ). Based on that, we show below

that (MSPP
rpst ) dominates (MRPST ), i.e., the set partition model is also stronger than the segment

model for the rpst.

Proposition 5.5. Given an instane of rpst, let W be the optimal value for the linear relaxation

of the (MSPP
rpst ) and let Z be the optimal linear relaxation value of (MRPST ). Then, W ≥ Z and

the formulations are not equivalent.

Proof. Initially, for eah segment s ∈ EP
g , let Γs be the set of the retangles having one side

ontaining s. Notie that if s belongs to a feasible solution, there are exatly two retangles of

this partition that have s on their boundaries. Now the variables λ and x in the MSPP
rpst and

MRPST
models, respetively, an be related suh that xs = (1/2)

∑

k∈Γs
λk. From the previous

observation, it is lear that this equality holds for any integral solution of the rpst.

Suppose we add all these equalities as onstraints to MSPP
rpst together with the x variables for

all s ∈ EP
g . Of ourse, the set of feasible (λ, k) vetors in this extended model is the same as

in the original one. However, denote by Q′
the set of (λ, k, x) vetors that are feasible for the

extended model and by Q the set of all (k, x) vetors satisfying the MRPST
. We show below

that Projx(Q
′) ⊆ Q, whih proves that W ≥ Z. To this, we must show that the x vetor of any

feasible solution of the extended MSPP
rpst model satis�es the onstraints of MRPST

.

First, notie that as xs =
1
2

∑

k∈Γs
λk and every λk ≥ 0, then xs ≥ 0 ∀ s ∈ EP

i . Also, as eah

segment s is the side of two anonial retangles R1
s and R2

s and, from (MSPP ),
∑q

j=1 aR1
s ,j

λj = 1

and

∑q
j=1 aR2

s ,j
λj = 1. Hene, xs = 1

2

∑

k∈Γs
λk ≤ 1

2(
∑q

j=1 aR1
s ,j

λj +
∑q

j=1 aR2
s ,j

λj) ≤ 1. Ergo,

xs ≤ 1 for all s ∈ EP
i .
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Now, to show that a vetor x de�ned as indiated above satis�es onstraint (5.2), onsider

Figure 5.5 depiting a re�ex vertex with its inident segments and the three anonial retangles

surrounding it.

1R

R3 R2

a

b

u

Figure 5.5: A re�ex vertex u with its inident segments and the three surrounding anon-

ial retangles R1
, R2

and R3
.

In the remaining of the proof we use the following notation. For a point u in grid(P ), let

X = {1, . . . , p}, where p is the number of anonial retangles in the grid having u as one of

its verties. Let R1, . . . , Rp
be these anonial retangles. Notie that for a re�ex vertex p = 3,

whereas for a Steiner vertex we have p = 4. For X ′ ⊆ X, we denote by ΣX′
the sum of the λ

variables in MSPP
orresponding to retangles ontaining all Rj

for j ∈ X ′
and not ontaining

Rj
for j ∈ X \X ′

.

From the de�nition of vetor x, xua = (1/2)(
∑

1 +
∑

2,3+
∑

2,2) and xub = (1/2)(
∑

2,2+
∑

1,2+
∑

3,3), implying that xua+xub =
∑

2,2+(1/2)(
∑

1 +
∑

1,2)+(1/2)(
∑

2,3+
∑

3,3). Beause
∑

1+
∑

1,2 = 1 and

∑

2,3+
∑

3,3 = 1 are onstraints from (MSPP ), we end up with xua + xub =
∑

2,2+1 ≥ 1.

u

1RR4

R3 R2

b

a

c

d

Figure 5.6: A Steiner vertex u with its inident segments ub, ua, uc and ud, and its four

surrounding anonial retangles R1
, R2

, R3
and R4

.

It remains to show that x satis�es onstraint (5.3), i.e., for a given Steiner vertex u as shown

in Figure 5.6, we have xub + xua − xuc ≥ 0. From the de�nition of x:

xub = (1/2)(
∑

1

+
∑

1,2

+
∑

3,4

+
∑

4

)

xua = (1/2)(
∑

1

+
∑

1,4

+
∑

2

+
∑

2,3

)

xuc = (1/2)(
∑

1,2

+
∑

2

+
∑

3

+
∑

3,4

)

from (MSPP ) onstraints relative to R3
and R4

we have:
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∑

1,2,3,4

+
∑

2,3

+
∑

3

+
∑

3,4

= 1 ⇒ 1−
∑

1,2,3,4

−
∑

2,3

−
∑

3,4

=
∑

3

and

∑

1,4

+
∑

1,2,3,4

+
∑

3,4

+
∑

4

= 1

Therefore,

xub + xua − xuc = (1/2)(
∑

1

+
∑

1,2

+
∑

3,4

+
∑

4

+
∑

1

+

+
∑

1,4

+
∑

2

+
∑

2,3

−
∑

1,2

−
∑

2

−
∑

3

−
∑

3,4

) ⇒

xub + xua − xuc = (1/2)(2
∑

1

+
∑

1,4

+
∑

2,3

+
∑

4

−
∑

3

) ⇒

xub + xua − xuc = (1/2)(2
∑

1

+
∑

1,4

+
∑

2,3

+
∑

4

−1 +
∑

1,2,3,4

+
∑

2,3

+
∑

3,4

) ⇒

xub + xua − xuc = (1/2)(2
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+1) ⇒
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∑

1

+
∑

2,3

≥ 0.

So far we proved that Projx(Q
′) is ontained in Q. It remains to show that (MRPST ) and

(MSPP ) are not equivalent formulations. To this, it is su�ient to present an instane where

W > Z. Our omputational experiments show that this inequality is true for the majority of

the instanes tested.

If we analyze the number of variables and onstraints in (MRPST ) and (MSPP ) we onlude

that (MRPST ) have O(n2) variables and O(n2) restritions, resulting in a onstraint matrix of

size O(n4), where n is the number of verties in the polygon. Meanwhile, (MSPP
rpst ) have O(n4)

variables and O(n2) onstraints, resulting in a O(n6) sized matrix. So, the size of (MSPP
rpst ) ould

pose an algorithmi disadvantage when ompared to (MRPST ).

In order to mitigate this disadvantage, we an try to redue the number of variables in

(MSPP
MRPST ) by identifying sets of variables that are unneessary for obtaining an optimal solution.

This idea was explored in [6℄ to derease the size of the (MSPP ) model of rgp. The sliding

operation de�ned in the next paragraph is at the heart of the redution proedures applied to

the rpst.

Let π a retangular partition of P and e be a segment of grid(P ) that belongs to π. Suppose

without loss of generality that e is horizontal and that it an be slided in at least one vertial

diretion, either upwards or downwards, by a small positive amount suh that the resulting

partition is still feasible. If the displaement is possible both upwards and downwards, assume

that e is slided in the diretion suh that the number of maximal vertial segments of π with

endpoints in the interior of e is maximum (see Figure 5.7). Suppose that the sliding is done

until one of the extremities of e beomes a re�ex vertex of P or part of e oinides with another

segment of the partition or the border of P . We all this operation the maximal sliding of e.

When this sliding is performed, it is lear that the stabbing number of no horizontal line an
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inrease. On the other hand, the stabbing number of a vertial line an only derease, whih

ours for all those lines interseting the interior of e. As a onsequene, the retangular partition

obtained from π after the maximal sliding of e has stabbing number no larger than that of π.
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Figure 5.7: Sliding operation on the horizontal segment e. The number of vertial

segments with endpoint in int(e) above e (2) is smaller than those below e (3). The

sliding is done downwards.

The next result is instrumental for eliminating retangles that are not needed to ompute an

optimal solution for the MSPP
rpst .

Lemma 5.1. Any retilinear polygon P has an optimal retangular partition π in whih every

maximal segment of π has at least one re�ex vertex of P as an endpoint.

Proof. Suppose that e is a maximal segment of grid(P ) in an optimal partition π of P having

no re�ex vertex of P as an endpoint. Without loss of generality, assume that e is horizontal. As

the endpoints of e an only be border or Steiner verties of grid(P ), e admits a maximal sliding.

If the sliding is interrupted beause e hits a portion of δ(P ) of dimension one, the operation is

equivalent to erase e and all the vertial segments of π that ollapse as e moves. Thus, the new

partition has at least one less maximal segment having no re�ex vertex as one of its extremities.

The same happens when the sliding stops beause one of the endpoints of e beomes a re�ex

vertex of P . Therefore, if we keep repeating this operation, we must end up with a partition for

whih all maximal segments have at least one of its extremes in a re�ex vertex of P .

(a) (b)

w

w
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Figure 5.8: A windmill (a) and a reverse windmill (b) with its adjaent maximal segments

and re�ex verties.
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De�nition 5.1. Let abcd be a retangle in a retangular partition of a polygon where a is the

left upper vertex and its four verties are Steiner verties as shown in Figure 5.8. If there

are four segments at, bu, cv and dw ontained in the polygon (exept for its endpoints) where

t, u, v, w ∈ V P
r and at is above a, bu is to the right of b, cv is below c and dw is to the left of d.

Then, abcd is a windmill.

If, however, there are four segments at, bu, cv and dw ontained in the polygon (exept for

its endpoints) where t, u, v, w ∈ V P
r and at is to the left of a, bu is above b, cv is to the right of

c and dw is below d. Then, abcd is a reverse windmill (rev-windmill for short).

Notie that a retangle with four Steiner points as verties an be simultaneously a windmill

and a rev-windmill, a windmill and not a rev-windmill (or the onverse), or neither of them as

in Figure 5.9.
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Figure 5.9: Retangle with verties at the Steiner points c, d, e and f that is both a

windmill and a rev-windmill. Retangle with verties at points a, b, c and d is a windmill

but not a rev-windmill. Retangle with verties at points e, f, j and k is a rev-windmill

but not a windmill. Retangle with verties at points f, g, h and i is neither a windmill

nor a rev-windmill.

De�nition 5.2. Let R be a retangle with verties in V P
. A vertex v of R is alled orner re�ex

relative to R if v ∈ V P
r and the bisetor of the internal angle of v ontains one of the diagonals

of R. If, on the other hand, v ∈ V P
r but its bisetor does not ontain a diagonal of R, v is alled

non-orner re�ex relative to R. Figure 5.10 depits these situations.

Let V P
cr (R) denote the set of orner re�ex verties relative to retangle R and let V P

cr (R)

denote the set of non-orner re�ex verties relative to retangle R.
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Figure 5.10: (a) a retangle R with a orner re�ex vertex v and (b) a retangle R with a

non-orner re�ex vertex v. The hathed area indiates the exterior fae of the polygon.
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Figure 5.11: Vertex v2 is perpendiular border relative to v1 and R and non perpendiular

border relative to v3 and R. The hathed area indiates the exterior fae of the polygon.

De�nition 5.3. Let R be a retangle with verties in V P
. Let v1 ∈ V P

and v2 ∈ V P
b where v1v2

is a side of R. The vertex v2 is alled perpendiular border relative to R and v1 if the border

edge ontaining v2 is perpendiular to v1v2. If, however, the border edge ontaining v2 is not

perpendiular to v1v2, v2 is alled non-perpendiular border relative to R and v1.

These de�nitions are illustrated in Figure 5.11. Below we denote by V P
eb (R, v) (V P

ib (R, v)) the set

of (non) perpendiular border verties relative to R and v.

We are now ready to haraterize a subset of variables that is su�ient to desribe a polytope

ontaining optimal solutions for (MSPP
rpst ).

Proposition 5.6. For every instane of rpst, there is always an optimal solution for (MSPP )

where eah retangle in the solution is a windmill, a reverse windmill or has a point in V P
c ∪

V P
r ∪ V P

b as a vertex.

Proof. Let us onsider the possibilities for an optimal solution ontaining a retangle abcd where

all four verties are Steiner verties. As the solution is a retangular partition, there is no knee

at any vertex in the solution. Therefore, there are two possibilities for the on�guration of the

edges inident to a, b, c and d.

The �rst possibility is that there is a pair of parallel edges inident to a pair of adjaent

verties in the retangle, as shown in Figure 5.12 (a). Suppose without loss of generality that b

and c are the adjaent verties and bu and cv are the parallel edges. However, from Lemma 5.1,
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Figure 5.12: The two possibilities of a retangle omposed by Steiner verties only.

bc must be part of a maximal segment with a re�ex vertex as an endpoint. Sine b and c are both

Steiner verties, then at least one of them must have degree four. But as stated in the de�nition

of the rpst model, there is always an optimal solution where no Steiner vertex have degree four.

Hene, this situation an not happen.

The seond possibility is that there is no pair of parallel edges inident to a pair of adjaent

verties in the retangle, as shown in Figure 5.12 (b). Notie that from Lemma 5.1, every

maximal segment in the solution have a re�ex vertex as an endpoint, so segment at must be

ontained in a segment having a re�ex vertex as an endpoint. This is also true for segments bu,

cv and dw. Hene, from de�nition 5.1, we onlude that retangle abcd must be either a windmill

or a rev-windmill.

De�nition 5.4. Let R be a retangle with verties in V P
. If u and v are adjaent verties of R,

the segment uv is said to be slidable if int(uv) ∩ δ(P ) is empty.

Proposition 5.7. Let R be a retangle in π having verties v1, v2, v3 and v4 ∈ V P
(in lokwise

order). Consider the following onditions:

• F1 =(v1 ∈ V P

cr (R)) ∧ (v2 ∈ V P

cr (R) ∪ V P

eb (R, v1)) ∧ (v1v2 is slidable),

• F2 =(v1 ∈ V P

cr (R)) ∧ (v3 ∈ V P

cr (R)) ∧ (v2 ∈ V P

S ) ∧ (v1v2 ∧ v2v3 are slidable),

• F3 =(v1 ∈ V P

cr (R)) ∧ ({v2, v3, v4} ⊆ V P

S ) ∧ (all sides of R are slidable),

• F4 =(v1 ∈ V P

cr (R)) ∧ ({v3, v4} ⊆ V P

S ) ∧ (v2 ∈ Vib(R, v1))∧
(all sides of R \ {v1v2} are slidable),

• F5 =(v1 ∈ V P

cr (R)) ∧ ({v2, v4} ⊆ V P

ib (R, v1)) ∧ (v3 ∈ V P

S ∪ V P

b )∧
(v2v3 and v3v4 are slidable),

• F6 =(v1 ∈ V P

cr (R)) ∧ (v3 ∈ V P

eb (R, v2)) ∧ {
[(v2 ∈ V P

S ) ∧ (both sides of R inident to v2 are slidable)] ∨
[(v2 ∈ Vib(R, v1)) ∧ (v2v3 is slidable)] }.

If R satis�es one of the onditions above, there is an optimal solution that does not ontain R.
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Proof. The proof is divided into six ases, one for eah ondition Fk, for k ∈ {1...6}. In eah ase

we assume that we start with an optimal partition π that ontains the retangle R. Another

partition is obtained from π by sliding one of the sides of R whih an be easily veri�ed to not

inrease the stabbing number. In other words, the new partition is also optimal and does not

ontain R. Without loss of generality, we assume that v1 is the left-upper vertex of R. Besides,

for i ∈ {1, 2, 3, 4}, we denote by ai (bi) the horizontal (vertial) segment of EP
inident to vi

that is external to R if it exists (see Figure 5.13).
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Figure 5.13: Proof of Proposition 5.7: basi notation.

The situation treated in eah of the six ases is illustrated in Figure 5.14.

Case 1 Case 1 Case 2 Case 3

Case 4 Case 6Case 5
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Figure 5.14: Proof of Proposition 5.7: ases 1 to 6. Shaded regions are external to P and

shaded points are grid verties of no prespei�ed type.

Case 1, ondition F1 is satis�ed. Another optimal partition without R an be obtained from π

by sliding the segment v1v2 upwards. The sliding is possible sine, in this ase, b1 and b2 are

neessarily in π as they are part of δ(P ).

In essene, by symmetry, F1 shows that an optimal solution for rpst exists that has no

retangle R with two adjaent orner re�ex verties or with a orner re�ex vertex u that is

adjaent to a perpendiular vertex v with respet to R and u. The next ases onsider the

situation where R has just one orner re�ex vertex.

Case 2, ondition F2 is satis�ed. Neessarily a1, b1, a3 and b3 are in π. One of the segments a2
or b2 must belong to π otherwise there would be a knee in v2. Therefore, it is possible to obtain

a new partition without R by applying the sliding operation to either v1v2 (upwards) or v2v3
(rightwards). Notie that, the same arguments hold if v2 6∈ V P

S but v4 ∈ V P
S . This is easily seen

applying re�etion symmetry to the straight line ontaining the diagonal v1v3 of R.
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Case 3, ondition F3 is satis�ed. We have that a1 and b1 are in π and all sides of R are slidable.

If b2 is in π, sliding v1v2 upwards removes R from the solution. The same holds if a4 is in π and

v1v4 is slided leftwards. On the other hand if π ontains neither b2 nor a4, it must ontain a2
and b4 simultaneously (to avoid knees in v2 and v4). Sine there an not be a knee in v3, either

a3 or b3 is in π and we an slide either v2v3 or v3v4 to get the new partition without R.

Case 4, ondition F4 is satis�ed. Sine a1 (a2) is neessarily in π then, if a4 (a3) is also in the

partition, a new one not ontaining R is obtained by sliding v1v4 (v2v3). However, if both a3
and a4 are not in π, b3 and b4 must be present in the partition (to avoid knees in v3 and v4). In

this ase, sliding v3v4 gives rise to a new partition not ontaining R.

Case 5, ondition F5 is satis�ed. In this ase we have that a1, b1, a2 and b4 belong to π. To avoid

a knee in v3, a3 or b3 must be in π. In the �rst situation, the slide of v2v3 rightwards leads to a

partition without R. An analogous situation ours if b3 is in π and we slide v3v4 downwards.

Case 6, ondition F6 is satis�ed. Neessarily a1, b1 and a3 belong to π. Consider �rst the

situation where v2 ∈ V P
S . Then either a2 or b2 is in π, otherwise there would be a knee in v2.

So, sliding v1v2 (upwards) or v2v3 (rightwards) produes a new partition not having R.

Now, suppose that v2 ∈ Vib(R, v1) (the ase where v2 ∈ Veb(R, v1) was treated in F1). This

fores a2 to be in π. But, sine a3 is also in π, the new partition is obtained by sliding v2v3
rightwards. The proof is omplete.

The previous proposition treated the retangles with at least one orner re�ex vertex while

the next one onsiders those without suh verties.

Proposition 5.8. Let R be a retangle having verties v1, v2, v3 and v4 ∈ V P
(in lokwise

order). Consider the following onditions:

• F1 =v1 ∈ V P

eb (R, v2) ∧ (v2 ∈ V P

eb (R, v1)) ∧ (v1v2 slidable),

• F2 =(v1 ∈ V P

eb (R, v2)) ∧ (v3 ∈ V P

eb (R, v2)) ∧ (v2 ∈ V P

S ) ∧ (v1v2 and v2v3 are slidable),

• F3 =(v1 ∈ V P

eb (R, v2)) ∧ ({v2, v3} ⊆ V P

S ) ∧ (v4 ∈ V P

eb (R, v3))∧
(all sides of R \ {v1v4} are slidable),

If R satis�es one of the onditions above, there is an optimal solution that does not ontain R.

Proof. The proof is divided into six ases, one for eah ondition Fk, for k ∈ {1...3}. The

assumptions and the notation used are the same as the one in the proof of Proposition 5.7.

Case 1, F1 is satis�ed. As v1 is in V P
eb (R, v2) and v2 is in (v2 ∈ V P

eb (R, v1), b1 and b2 are both

in π. Hene, a new optimal partition not ontaining R is obtained by sliding v1v2 upwards, a

feasible operation sine this segment is slidable.

Case 2, F2 is satis�ed. In this ase b1 and a3 are in π by de�nition. To avoid a knee in v2, a2 or

b2 must be in π. In the �rst situation the new optimal solution not ontaining R an be obtained

by sliding v2v3 rightwards while, in the seond, this an be done by sliding v1v2 upwards.

Case 3, F3 is satis�ed. In this ase b1 and b3 are in π by de�nition. Hene, if b2 (b3) also

belongs to the urrent partition, a new optimal one is generated if v1v2 (v3v4) is slided upwards

(downwards). On the other hand, if neither b2 nor b3 is in π, both a2 and a3 belong to the partition

otherwise there would be knees in v2 and v3. But, then, sliding v2v3 rightwards produes the

desired partition.

As in the previous proof, in all ases the sliding operation yields a new partition with stabbing

number no greater than the original one ontaining R, hene optimal. The proof is omplete.

Notie that based on Propositions 5.6, 5.7, 5.8 we an formulate the rpst as a set partition

problem using a redued set of variables and still have a valid formulation. Two things should
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be notied onerning this new formulation. The �rst is that this formulation is a restrition of

the original set partition formulation. Therefore, the linear relaxation of the former is at least

as strong as the linear relaxation of the latter. Atually, the omputational experiments show

that the relaxation of the redued model yields lower bounds that are often stritly larger than

those omputed by the original model. Seond, despite our e�orts, the number of variables in

the redued model remains O(n4). Ideally this quantity should beome asymptotially smaller,

however, we ould neither �nd ways to do this nor prove that it an not be done.

5.5 Computational Results

We now disuss the results obtained from the omputational experiments we performed to om-

pare four (integer programming) branh-and-bound (b&b) algorithms that resulted from the

models introdued in the previous setions. The �rst b&b algorithm is denoted by seg and is

based on the (MRPST ) model. The seond algorithm is a b&b that implements the stronger

model arising from adding the inequalities (5.10), (5.11) and (5.12) to MRPST
. This algorithm

is denoted by Sseg. The third algorithm is a b&b algorithm whih uses the MSPP
rpst model and

is named re. At last, the b&b algorithm denoted by Rre employs the redued MSPP
rpst model

obtained by applying Propositions 5.7 and 5.8.

The experiments were performed using a omputer equipped with an Intel Xeon E3-1230

v2 3.30 GHz, 8MB ahe, 32GB of RAM memory and operating system Ubuntu 12.04 OS. The

programming language used was C/C++ with g 4.6.3 ompiler and every program was ompiled

with -O5 optimization �ag. XPRESS-Optimizer 64-bit v27.01.02 was used as the ip solver.

The default uts, heuristis and preproessing were turned o� as we primarily intended to verify

the strength of the formulations.

In order to ompare the algorithms we exeute them with random simple polygon instanes

from [4℄, spei�ally from the AGP2009a set. This set ontains 600 instanes with polygons

varying from 20 to 2, 500 verties, 30 instanes for eah size. Sine presenting all the results

here would be very tedious and not so useful, we restrit ourselves to display the tables relative

to the biggest instanes with 2, 500 verties. However, the analysis onsiders the results for the

omplete benhmark.

Every test was performed with a time limit of 1, 800 seonds for omputations. Notie,

however, that the elapsed time is heked at ertain points in the program and the time between

two heks may not be negligible. For this reason, the times reported here are, sometimes,

slightly larger than 1, 800 seonds.

The data gathered from the omputational experiments are displayed in four tables, one

for eah algorithm. In these tables, the olumns with nVars and nRows headers ontain,

respetively, the number of variables and onstraints of eah instane for the orresponding

formulation. Columns with Root LP exhibit the value of the optimal solution of the linear

relaxation at the root node of the enumeration tree. Headers LB and UB identify the olumns

ontaining, respetively, the best lower and upper bounds found. Columns with tSetup headers

omprise the times spent in initializing and reating the integer programming problem, tRoot

indiates the time for solving the linear relaxation at the root node of the b&b tree. Finally,

tTotal headers identify the total exeution time for eah instane and the orresponding ip

model. All running times are given in seonds.

Table 5.1 presents some of the data obtained from the experiments performed with seg

using the 30 instanes from the set mentioned above as input. One an see that, although all
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the polygons have the same number of verties, the number of variables in the ip model vary

from 7, 279 up to 8, 159 and the number of onstraints is diretly proportional to the number of

variables. From the 30 instanes in the table, only 3 were not solved, leaving an absolute gap

of just one unit. The average exeution time of the 27 instanes solved to optimality was 39.14

seonds.

Conerning the whole set of 600 instanes, seg was unable to solve 62 of them to optimality

and whenever optimality remained unproven, the gap was of only of one unit. The average

solving time for the remaining 528 instanes was 17.43 seonds.

The results for Sseg with 2, 500 verties instanes an be seen in Table 5.2. The number of

variables and onstraints in this model varies as in the previous model. This algorithm was able

to solve 28 out of the 30 biggest instanes with an average time of 97.47 seonds. Considering

the omplete set of 600 instanes, for 574 of them the algorithm ahieved optimality with an

average of 23.14 seonds spent for instane solved. For the unsolved instanes, the gap left was

always of a single unit. With respet to the additional onstraints used in the model, Class IV

inequalities appear in 599 of the instanes, Class VI in only 33 and Class III inequalities are not

present in any of the instanes tested. Although the point formation assoiated to the latter

inequalities is not forbidden in rpst instanes, apparently it is rare. The average inrease in the

number of onstraints from seg to Sseg is 2.11%.

It is worth noting that the results presented in Tables 5.1 and 5.2 are inonsistent with the

ones we reported in [10℄. This is beause an implementation error was found in the ode used in

the tests of that previous work whih is now �xed.

Table 5.3 displays the results obtained by running re on the 30 biggest instanes of the

test set. This algorithm left a unitary duality gap in only 2 of the 30 instanes with an average

exeution time of 73.19 seonds for the instanes solved to optimality. If we onsider the whole

benhmark, 567 instanes were solved to optimality and, one again, the ones not solved had

unitary duality gaps. The average running time for the optimally solved instanes was 27.19

seonds.

Finally, Table 5.4 shows some of the data produed by Rre when exeuted on the set of 30

largest instanes. The algorithm solved 29 of these 30 instanes to optimality with an average

running time of 36.90 seonds. Turning to the omplete instane set, the algorithm was able

to solve 570 instanes to optimality with an average exeution time of 20.90 seonds and, one

more, a gap of one unit persisted for the remaining 30 instanes.

Table 5.5 summarizes the main statistis of the b&b algorithms disussed above. The mean-

ing of the row headers are: Solved (n = 2, 500): number of instanes of size 2, 500 that were solved;

Unsolved (all): number of unsolved instanes in the entire benhmark; Avg. Time (n = 2, 500):

average time in seonds omputing optimal solutions for instanes of size 2, 500; Avg. Time

(all): average time in seonds omputing optimal solutions in all instanes of the benhmark;

and Avg. Time (solved by all): average running time onsidering only those instanes solved to

optimality by the four b&b algorithms, 513 in total (see Table 5.8 for the totals per instane

size); The rationale behind the omputation of statistis for the group of instanes solved by all

algorithms is to avoid distorting some analyses. For example, suppose that algorithm A solves

just one instane more than algorithm B. It may happen that A and B take about a hundred

seonds to ompute the instanes they both solved to optimality but, say, A is always 10% faster

in these ases. However, suppose that the additional instane that A an handle onsumes all the

1, 800 seonds of omputing time. In this extreme situation, if this extra instane is onsidered

in the alulation of A's average omputing time, we ould reah the wrong onlusion that A is

�slower� than B.
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Table 5.1: Results for seg and instanes with 2, 500 verties.

Instane nVars nRows Root LP LB UB tSetup tRoot tTotal

random-2500-1 7,835 27,765 2.88 4 4 0.22 0.88 25.84

random-2500-2 8,001 28,512 2.93 4 4 0.22 0.94 49.20

random-2500-3 7,519 26,343 2.84 4 4 0.21 0.66 15.63

random-2500-4 8,115 29,025 2.89 4 4 0.23 0.98 27.76

random-2500-5 7,701 27,162 2.78 4 4 0.22 0.89 57.84

random-2500-6 7,645 26,910 2.86 4 4 0.21 0.79 18.59

random-2500-7 7,547 26,469 2.92 4 4 0.22 0.90 27.20

random-2500-8 7,307 25,389 2.80 4 4 0.20 0.88 30.83

random-2500-9 7,905 28,080 3.01 4 4 0.22 0.94 86.68

random-2500-10 7,579 26,613 2.88 4 4 0.20 0.83 23.28

random-2500-11 7,421 25,902 2.93 4 4 0.22 0.64 15.39

random-2500-12 7,691 27,117 2.80 4 4 0.22 0.84 45.72

random-2500-13 7,397 25,794 2.91 4 4 0.21 0.74 22.31

random-2500-14 7,869 27,918 2.84 3 4 0.22 1.01 1,798.05

random-2500-15 7,411 25,857 2.85 4 4 0.21 0.76 23.03

random-2500-16 7,797 27,594 2.87 4 4 0.23 0.78 51.80

random-2500-17 8,073 28,836 2.92 4 4 0.23 1.05 81.01

random-2500-18 7,577 26,604 3.00 4 4 0.21 0.82 31.97

random-2500-19 8,129 29,088 2.95 4 4 0.22 1.12 79.17

random-2500-20 8,159 29,223 2.83 4 4 0.23 1.08 48.90

random-2500-21 7,735 27,315 2.83 4 4 0.23 0.97 28.62

random-2500-22 7,501 26,262 2.98 4 4 0.22 0.67 18.15

random-2500-23 8,137 29,124 2.83 4 4 0.23 1.22 143.71

random-2500-24 7,489 26,208 2.89 4 4 0.22 0.73 18.90

random-2500-25 7,663 26,991 2.89 4 4 0.23 0.77 24.48

random-2500-26 7,739 27,333 2.90 4 4 0.21 0.73 22.96

random-2500-27 7,895 28,035 2.81 3 4 0.22 0.82 1,798.22

random-2500-28 7,709 27,198 2.92 4 4 0.22 0.90 23.63

random-2500-29 7,279 25,263 2.83 3 4 0.22 0.54 1,797.54

random-2500-30 7,485 26,190 2.97 4 4 0.22 0.60 14.30

Table 5.2: Results for Sseg and instanes with 2, 500 verties.

Instane nVars nRows Root LP LB UB tSetup tRoot tTotal

random-2500-1 7,835 28,334 2.92 4 4 0.26 0.87 72.11

random-2500-2 8,001 29,086 2.94 4 4 0.26 1.03 88.36

random-2500-3 7,519 26,918 2.82 4 4 0.26 0.86 26.14

random-2500-4 8,115 29,653 3.00 4 4 0.26 1.21 30.31

random-2500-5 7,701 27,750 2.79 4 4 0.26 1.09 62.62

random-2500-6 7,645 27,474 2.89 4 4 0.26 0.91 41.11

random-2500-7 7,547 27,020 2.95 4 4 0.25 1.06 59.51

random-2500-8 7,307 25,913 2.88 4 4 0.26 0.90 33.05

random-2500-9 7,905 28,671 3.09 4 4 0.26 0.92 27.92

random-2500-10 7,579 27,152 2.98 4 4 0.24 0.81 49.28

random-2500-11 7,421 26,450 2.94 4 4 0.25 0.75 24.93

random-2500-12 7,691 27,673 2.82 3 4 0.26 0.87 1,798.48

random-2500-13 7,397 26,336 3.02 4 4 0.25 0.97 14.79

random-2500-14 7,869 28,500 2.91 4 4 0.26 0.95 47.74

random-2500-15 7,411 26,398 2.89 4 4 0.25 1.00 33.60

random-2500-16 7,797 28,171 2.91 4 4 0.26 0.92 52.23

random-2500-17 8,073 29,434 2.90 4 4 0.26 1.11 77.38

random-2500-18 7,577 27,179 3.01 4 4 0.26 1.08 44.75

random-2500-19 8,129 29,673 2.97 4 4 0.26 1.46 1,405.86

random-2500-20 8,159 29,831 2.93 4 4 0.27 1.16 78.64

random-2500-21 7,735 27,865 2.85 4 4 0.26 1.17 53.56

random-2500-22 7,501 26,818 3.00 4 4 0.26 1.01 26.32

random-2500-23 8,137 29,682 2.92 4 5 0.26 1.39 1,798.83

random-2500-24 7,489 26,749 2.93 4 4 0.25 0.80 26.89

random-2500-25 7,663 27,541 2.98 4 4 0.26 0.95 63.81

random-2500-26 7,739 27,887 2.94 4 4 0.25 0.91 42.22

random-2500-27 7,895 28,601 2.90 4 4 0.26 1.09 164.57

random-2500-28 7,709 27,755 3.09 4 4 0.25 1.12 21.62

random-2500-29 7,279 25,792 2.83 4 4 0.25 0.66 21.71

random-2500-30 7,485 26,732 3.00 4 4 0.26 0.80 38.18
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Table 5.3: Results for re and instanes with 2, 500 verties.

Instane nVars nRows Root LP LB UB tSetup tRoot tTotal

random-2500-1 50,964 7,662 2.99 4 4 27.97 4.96 69.37

random-2500-2 52,192 7,745 3.04 4 4 28.52 6.16 51.82

random-2500-3 43,838 7,504 2.96 4 4 23.47 3.57 85.51

random-2500-4 52,745 7,802 3.01 4 4 29.17 5.69 90.72

random-2500-5 48,322 7,595 2.94 4 4 26.19 5.03 149.00

random-2500-6 47,064 7,567 3.00 4 4 25.46 4.43 106.58

random-2500-7 47,734 7,518 3.10 4 4 25.58 5.50 66.59

random-2500-8 44,771 7,398 2.96 4 4 23.82 3.97 99.13

random-2500-9 51,545 7,697 3.18 4 4 28.08 5.94 72.31

random-2500-10 47,225 7,534 2.92 4 4 25.54 3.99 56.10

random-2500-11 44,397 7,455 2.99 4 4 23.95 3.65 88.33

random-2500-12 48,752 7,590 2.99 4 4 26.23 4.17 105.01

random-2500-13 46,826 7,443 3.07 4 4 24.96 5.34 50.24

random-2500-14 50,420 7,679 2.97 4 4 27.51 4.65 55.31

random-2500-15 44,872 7,450 2.96 4 4 24.08 3.63 94.45

random-2500-16 50,343 7,643 2.95 3 4 27.19 4.94 1,827.53

random-2500-17 55,026 7,781 3.06 4 4 30.32 6.33 50.89

random-2500-18 46,446 7,533 3.10 4 4 24.84 4.91 51.54

random-2500-19 59,821 7,809 3.11 4 4 32.86 7.59 75.38

random-2500-20 58,305 7,824 3.03 4 4 31.86 6.83 57.29

random-2500-21 50,196 7,612 3.01 4 4 27.17 6.39 53.92

random-2500-22 45,395 7,495 3.05 4 4 24.30 4.14 58.42

random-2500-23 61,346 7,813 3.15 4 4 33.64 8.18 64.18

random-2500-24 46,485 7,489 2.98 4 4 25.05 4.17 65.51

random-2500-25 49,785 7,576 3.12 4 4 26.58 5.32 80.23

random-2500-26 49,821 7,614 3.02 4 4 26.98 5.88 57.84

random-2500-27 52,494 7,692 2.98 4 4 28.76 5.39 85.45

random-2500-28 48,326 7,599 3.11 4 4 26.13 5.55 64.79

random-2500-29 41,645 7,384 2.87 3 4 22.27 2.88 1,821.79

random-2500-30 44,653 7,487 3.09 4 4 24.15 4.51 43.46

Table 5.4: Results for Rre and instanes with 2, 500 verties.

Instane nVars nRows Root LP LB UB tSetup tRoot tTotal

random-2500-1 29,559 7,662 2.99 4 4 17.27 3.10 36.30

random-2500-2 29,794 7,745 3.04 4 4 17.46 3.82 33.92

random-2500-3 25,930 7,504 2.96 4 4 14.93 2.14 27.84

random-2500-4 31,382 7,802 3.01 4 4 18.54 3.76 36.89

random-2500-5 27,328 7,595 2.94 4 4 16.34 2.67 46.73

random-2500-6 27,126 7,567 3.00 4 4 15.76 3.18 29.65

random-2500-7 27,522 7,518 3.10 4 4 16.19 3.18 29.61

random-2500-8 25,871 7,398 2.96 4 4 14.76 2.24 33.17

random-2500-9 29,351 7,697 3.18 4 4 17.13 3.50 37.27

random-2500-10 27,697 7,534 2.92 4 4 16.08 2.69 39.71

random-2500-11 25,759 7,455 2.99 4 4 14.92 2.06 30.08

random-2500-12 27,782 7,590 2.99 4 4 16.06 2.58 41.75

random-2500-13 26,803 7,443 3.09 4 4 15.32 3.24 30.64

random-2500-14 29,395 7,679 2.97 4 4 17.12 2.79 33.64

random-2500-15 26,223 7,450 2.96 4 4 15.10 2.51 33.52

random-2500-16 28,477 7,643 2.95 4 4 16.61 2.54 103.63

random-2500-17 31,010 7,781 3.06 4 4 18.35 3.63 35.97

random-2500-18 27,254 7,533 3.10 4 4 15.62 2.96 25.36

random-2500-19 32,473 7,809 3.12 4 4 19.11 4.58 39.41

random-2500-20 32,076 7,824 3.03 4 4 18.75 4.17 36.25

random-2500-21 28,507 7,612 3.01 4 4 16.54 3.87 32.24

random-2500-22 26,543 7,495 3.05 4 4 15.21 2.82 27.26

random-2500-23 32,758 7,813 3.15 4 4 19.26 4.56 41.10

random-2500-24 27,140 7,489 2.98 4 4 16.09 2.75 37.64

random-2500-25 28,018 7,576 3.12 4 4 16.04 3.01 35.63

random-2500-26 28,400 7,614 3.02 4 4 16.53 3.34 30.73

random-2500-27 29,708 7,692 2.98 4 4 17.51 2.90 41.44

random-2500-28 27,654 7,599 3.11 4 4 16.04 3.10 36.27

random-2500-29 24,329 7,384 2.87 3 4 14.00 2.26 1,809.19

random-2500-30 26,762 7,487 3.09 4 4 15.47 2.55 26.55
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Table 5.5: Summary of results for the b&b algorithms.

seg Sseg re Rre

Solved (n = 2, 500) 27 28 28 29

Unsolved (all) 62 26 33 30

Avg. Time (n = 2, 500) 39.14 97.47 73.19 36.90

Avg. Time (all) 17.43 23.14 27.19 20.90

Avg. Time (solved by all) 15.64 20.20 19.53 11.62

Comparing the results for seg and Sseg, one an see that the strengthening of the segment

formulation had a positive e�et on the number of instanes solved to optimality. On the other

hand, the larger number of restritions had a negative impat on the average time of solutions

solved to optimality by both algorithms (see penultimate row of Table 5.5).

Now, re uses a model theoretially stronger than the one in seg, and the omputational

results show that more instanes were solved to optimality by the former algorithm. However,

the average running time for the instanes solved to optimality by both algorithms was smaller in

seg. When ompared to Sseg, re performed worse both in terms of the number of instanes

solved to optimality and average time for the solution of the instanes solved by both. But,

remarkably, the average time of re beomes about 25% smaller than the one of Sseg when it

omes to �nd the optimum of 2, 500-sized instanes.

Taking advantage of the results in Propositions 5.7 and 5.8, Rre uses a model with, on av-

erage (onsidering all instanes tested), only 58.63% of the variables used by re. This redution

on the number of variables allowed Rre to augment the total of instanes solved to optimality

and to redue the average omputing time relative to re. Despite these improvements Rre

solved four instanes less than Sseg, the most e�ient of the four algorithms in this riterion,

although it was faster than Sseg in the resolution of the instanes omputed to optimality by

all algorithms. In this same subset of instanes, when ompared to seg, the faster of the four

algorithms, the average time of Rre was greater. But, notie that seg was by far less e�etive

than Rre leaving about twie as many instanes unsolved.

From the disussion above, Sseg and Rre seem to emerge as the winners among the

four b&b algorithms. In spite of that, we extend our analysis a little further for a better

understanding of the situation. Initially we report in Tables 5.6 and 5.7 the average times of

Rre for eah instane size, onsidering only the ones solved to optimality by all four algorithms.

Then, Figure 5.15 displays a graph of the standardized average times of seg, Sseg and re by

instane sizes. The standardization of the average times was done taking those of Rre as the

mean in the alulation of the standard deviation. Hene, a positive value means that the average

time was greater than the one of Rre while a negative value means the opposite.

From Figure 5.15, one an see that for n ≥ 1, 500, only seg was a true ompetitor for Rre.

This observation and the fat that Rre solves more instanes to optimality than any other

algorithm but Sseg, suggest that Rre sales better than the other algorithms.

Another aspet we onsider was the strength of the di�erent formulations. Tables 5.8 and

5.9 display statistis onerning the number of nodes explored in the b&b searh for the four

algorithms. Eah line in these tables ontains the data for a group of instanes with the same

number of verties, indiated by n. The number of instanes of a given size onsidered for

the statistis is shown in olumn #. Columns with headers avg, med and stdev ontains,

respetively the average, median and standard deviation for the number of explored nodes of the

algorithm identi�ed in the header. The smallest average value among the four algorithms for
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Table 5.6: Average Time for Rre 20 to

600 verties.

#verties time

20 0.08

40 0.17

60 0.24

80 0.51

100 0.56

200 1.51

300 1.98

400 2.56

500 4.40

600 8.22

Table 5.7: Average Time for Rre 700 to

2,500 verties.

#verties time

700 76.85

800 6.51

900 7.79

1,000 8.69

1,250 12.25

1,500 16.49

1,750 19.10

2,000 24.80

2,250 31.94

2,500 33.70
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eah n is presented in bold fae.

The data in Tables 5.8 and 5.9 show that Rre, on average, explores less nodes than the

other algorithms for most polygon sizes. When this is not the ase, its standard deviation is

large whih, together with the median, suggests that the high average is aused by few outliers.

The smaller number of nodes explored evine the strength of the model used by Rre when

ompared to the others.

As a �nal test, we deide to experiment with larger instanes. The new set of instanes

ontains polygons with 3, 000 up to 5, 000 verties with inrements of 500. Thirty polygons of

eah size were generated totalizing 150 new instanes. In the analysis of Figure 5.15 we saw that

seg and Rre present the best average running times for instanes with 1, 500+ verties and

these values are very lose to eah other. Hene, the two algorithms were exeuted for these large

instanes. The results of these experiments are summarized in Table 5.10. The row headers have

the same meaning as in Table 5.5.

The average running time of Rre onsidering all the large instanes solved by the two

algorithms is 22.87% smaller than that of seg. If we onsider only the biggest instanes (n =

5, 000) this improvement goes up to 36.05%. This suggests that Rre beomes muh faster than

seg as size inreases. The absolute gap for the instanes not solved to optimality was always of

one unit for both algorithms. As before, more instanes were solved to optimality by Rre than

by seg.

These omputational results orroborate with the theoretial result in Proposition 5.5 rel-

ative to the strength of the MSPP
rpst formulations. This fat is also notieable through the LP

values at the root nodes. Rre had an average 3.54% improvement on this value ompared to

seg, onsidering the instanes solved to optimality by both algorithms (in the original instane

set). When ompared to re, the LP value of Rre only presented an improvement in few

ases. However the smaller number of variables of Rre led to faster omputations of the linear

relaxation, as expeted. Also, although the number of variables is potentially muh greater than

the one in the formulation used in seg, for the instanes tested, this drawbak was handily o�set

by the stronger bounds yielded by the MSPP
rpst model.

5.6 Conlusions and Future Work

In this paper, we investigated the rpst from many di�erent aspets. We performed the �rst

polyhedral study about the MRPST
formulation presented by Duroher and Mehrabi [7℄. New

strong valid inequalities were obtained that e�etively improve the lower bound of MRPST
in

pratie. We also proposed an alternative integer programming formulation for rpst based on the

set partition problem, named MSPP
rpst , whose relaxation was proved to yield better dual bounds

than MRPST
. Through geometri arguments, we devised proedures that an substantially

derease the number of variables in MSPP
rpst , making it a viable alternative to solve the rpst.

As far as we know, we arried out the �rst omputational experiments with the problem, where

the di�erent branh-and-bound algorithms arising from the ip formulations were ompared. The

experiments showed that it is possible to ompute the optimum of polygons having thousands

of verties in a reasonable time. Besides, it was observed that the �ndings in this work lead to

a faster and more robust algorithm.

However, we notied that the instanes that ould not be solved to optimality are not the

largest instanes. This suggests that the hardness of an instane ould be more dependent

on some geometri harateristi than on its size. The identi�ation of this harateristi is a
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Table 5.8: Statistis for the number of explored nodes for seg and Sseg algorithms.

seg Sseg

n # avg med stdev avg med stdev

20 30 7.57 7.00 2.97 7.10 6.00 3.67

40 30 110.91 14.00 17.88 27.37 19.00 20.34

60 30 109.89 17.00 31.26 22.97 15.00 24.64

80 30 87.69 23.00 53.48 47.77 42.00 33.03

100 30 163.55 36.50 179.20 64.83 46.00 68.03

200 30 121.98 63.50 378.28 1,457.33 97.50 5,617.95

300 28 1,253.93 99.50 5,160.31 433.96 111.00 902.18

400 25 735.28 126.50 1,160.99 2,819.72 73.50 11,398.99

500 23 4,875.13 95.50 15,921.29 718.83 61.00 2,196.21

600 27 17,818.11 163.50 58,034.07 437.04 88.00 1,077.49

700 21 242.24 80.50 222.90 222.05 138.50 183.91

800 22 911.95 109.00 2,088.59 1,478.05 87.00 3,505.54

900 23 8,386.78 87.00 33,194.26 236.61 150.00 187.12

1,000 22 703.55 123.00 1,550.10 272.00 93.50 240.35

1,250 26 2,929.96 104.00 12,989.26 5,108.08 233.00 20,371.21

1,500 19 291.53 121.50 206.45 574.58 324.00 460.26

1,750 23 581.00 257.00 873.49 675.87 300.50 574.02

2,000 25 385.76 322.50 224.58 1,819.20 599.00 3,245.71

2,250 25 479.20 326.00 352.30 5,121.16 888.00 8,659.97

2,500 24 669.92 203.00 798.66 3,475.29 639.50 10,182.65

Table 5.9: Statistis for the number of explored nodes for re and Rre algorithms.

re Rre

n # avg med stdev avg med stdev

20 30 7.53 6.00 4.58 5.13 4.00 2.62

40 30 25.27 20.00 20.57 18.07 15.00 13.75

60 30 43.33 23.00 39.96 24.47 18.00 20.65

80 30 65.23 58.00 60.71 45.90 34.50 30.75

100 30 263.87 40.00 897.11 47.80 25.00 47.23

200 30 3,200.77 30.50 16,578.03 239.17 29.00 1,115.98

300 28 379.57 53.00 1,586.30 99.93 43.50 203.05

400 25 924.24 54.00 3,512.56 69.20 41.00 52.46

500 23 185.39 36.00 522.68 93.96 32.50 100.03

600 27 384.37 52.50 1,295.10 732.33 47.50 3,295.29

700 21 182.38 40.50 292.04 18,994.43 31.50 72,523.59

800 22 272.50 33.50 801.60 109.73 30.00 190.71

900 23 198.39 41.00 538.25 54.09 32.00 56.65

1000 22 497.86 33.50 1,595.90 81.45 35.00 97.41

1250 26 489.77 63.50 1,883.51 53.85 44.50 36.76

1500 19 92.42 54.00 61.57 57.16 36.50 34.31

1750 23 75.96 62.00 43.82 51.26 38.00 30.82

2000 25 72.72 56.00 39.72 58.12 42.50 36.93

2250 25 84.92 75.50 43.41 66.52 61.00 34.91

2500 24 96.79 68.00 68.15 63.42 42.00 46.59
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Table 5.10: Summary of results for the b&b algorithms with big instanes.

seg Rre

Solved (n = 5, 000) 30 30

Unsolved (all) 9 6

Avg. Time (n = 5, 000) 170.17 108.82

Avg. Time (all) 105.56 81.37

Avg. Time (solved by all) 105.94 81.71

possible line of investigation to be pursued that may result in stronger ip models for rpst. But

future researh diretions should also inlude the determination of the problem's omplexity.
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Chapter 6

Counterexample for the

2-approximation of �nding partitions of

retilinear polygons with minimum

stabbing number

Here a tehnial note made publi on the arXiv website [3℄ is reprodued. This note

o-authored with Cid C. de Souza exhibits a ounterexample to the laim given in [2℄

that an algorithm proposed in that paper provides a 2-approximation for rpst. A similar

result was published afterwards in [1℄.

This paper presents a ounterexample to the approximation algorithm proposed by

Duroher and Mehrabi [2℄ for the general problem of �nding a retangular partition of a

retilinear polygon with minimum stabbing number.

6.1 Introdution

Given a retilinear polygon P and a retangular partition R of P , a segment is said to

be retilinear relative to P if it is parallel to one of P 's sides. Let s be a maximal

retilinear line segment inside P . The stabbing number of s relative to R is de�ned as

the number of retangles of R that s intersets. The stabbing number of R is the largest

stabbing number of a maximal retilinear line segment inside P . The Minimum Stabbing

Retangular Partition Problem (rpst) onsists in �nding a retangular partition R of P

having the smallest possible stabbing number. Figure 6.1 illustrates these de�nitions.

Variants of the problem arise from restriting the set of retangular partitions that

are onsidered to be valid. One of these variants is alled the onforming ase, in whih

every edge in the solution must be maximal, i.e., both of its endpoints must touh the

border of the polygon. For this problem, in [2℄, Duroher et al. propose an integer

programming model for the onforming ase where there are exatly two edges (that an

be in the solution) having eah re�ex vertex as endpoint. Thus, there are also preisely

113
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two variables assoiated to eah re�ex vertex.

random−20−17

r

s

Figure 6.1: A retilinear polygon with a retangular partition of stabbing number 4. The
dashed lines represent maximal retilinear line segments inside the polygon. Segment r
has stabbing number 4 while segment s has stabbing number 3.

In [2℄ a 2-approximation algorithm is presented for the onforming ase of partitions

of retilinear polygons with minimum stabbing number. That approximation algorithm is

based in a rounding of the variables. In the setion named Generalizing the Approximation

Algorithm of the artile, it is stated that the algorithm ould be extended for the general

ase using a formulation desribed informally and the same rounding rules used in the

onforming ase.

In this paper we show that the algorithm as desribed in [2℄ annot give a 2-approxi-

mation for the general ase of the (rpst). This is done by means of a ounterexample to

the referred algorithm.

6.2 IP Models

The rpst an be modelled via integer programming in a number of di�erent ways. In

this setion we present two suh models for the general ase of rpst in an attempt to

formalize the desription given in [2℄. But �rst, we need some de�nitions.

Let P be a retilinear polygon, input of the rpst. De�ne as V P
r the set of re�ex

verties of P , i.e., those having internal angles equal to 3π/2. Let V P
c be the set of

verties of P that are not re�ex. Denote by grid(P ), the set of all maximal retilinear line

segments in the interior of P having a vertex in V P
r as one of its endpoints. Let V P

s be

the set of points in the intersetion of two segments in grid(P ). We refer to these points

as Steiner Verties. The points that are not in V P
r or V P

c and are in the intersetion



6.2. IP Models 115

of a segment in grid(P ) and the border of P ompose the set V P
b . Denote by V P

the set

resulting from the union of all the point sets de�ned before, i.e., V P = V P
r ∪V P

c ∪V P
s ∪V P

b .

De�ne EP
h as the set of line segments in the border of P having only two points in

V P
whih are its extremities. Any fragment of a segment in grid(P ) ontaining exatly

two verties in V P
is alled an internal edge. The set of all internal edges is EP

i and

the set of all edges in P is EP = EP
h ∪ EP

i . A subset E ′P
of EP

de�nes a knee in a

vertex u ∈ V P
s ∪ V P

r if exatly two edges in E ′P
have u as an endpoint and these edges

are orthogonal. A subset E ′P
of EP

is said to de�ne an island in a vertex u ∈ V P
r if only

one edge of E ′P
have u as an endpoint. At last, if ua and ub are two edges in EP

having

a ommon endpoint u, we denote the angle between ua and ub by θ(ua, ub).

Now, we an formalize the model desribed in [2℄ as follows:

(RPST ) z = min k (6.1)

subjet to xua + xub ≥ 1, ∀ u ∈ V P
r ∧ ua, ub ∈ EP

i , (6.2)

xua + xub − xuc ≥ 0, ∀ u ∈ V P
s ,∀ ua, ub, uc ∈ EP

i

with θ(ua, ub) = π/2, (6.3)

∑

uv∈EP
i

uv
⋂

s 6=∅

xuv ≤ k − 1, ∀ s ∈ L, (6.4)

xuv ∈ B ∀ uv ∈ EP
i , (6.5)

k ∈ Z. (6.6)

In the model above, we have one binary variable xuv for eah internal edge uv in P

whih is set to 1 if and only if the orresponding edge is in the retangular partition

of P . Constraints (6.2) ensure that the solution does not ontain a knee in a re�ex

vertex. Inequalities (6.3) impose that the solution does not form a knee or an island in a

Steiner vertex. Inequalities (6.4) relate the x variables with variable k, whih represents

the stabbing number of the solution. As a onsequene, the objetive funtion (6.1) is to

minimize k. Finally, (6.5) and (6.6) are integrality restritions for the variables. Figure 6.2

shows an instane of the rpst (alled random-20-17) with 62 internal edges and their

orresponding variables.

As stated before, the (RPST ) model above is not the only model for the problem and

next we show another way of modelling it. However, to guarantee the orretness of the

model we must �rst prove a property of optimal solutions for the rpst. The following

proposition is a generalization of Observation 1 in [2℄.

Proposition 6.1. Any retilinear polygon P has an optimal retangular partition R in

whih every maximal segment of R has at least one re�ex vertex of P as an endpoint.

Proof. Let R be a retangular partition of a retilinear polygon P . Let e be a maximal

segment in R having a and b as its endpoints. Suppose neither a nor b are re�ex verties.

Sine e is maximal and R is a retangular partition, both endpoints of e must lie in

segments perpendiular to e.
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random−20−17

x1

x22x37

x3x31x30

x6

x7

x19

x17

x46

x43x51x50

x45x9

x55x28

x42x41x49x48x54x27 x62 x16

x24

x13

x58x39x11

x8

x33 x5 x25

x34 x32 x35 x4

x10 x52 x44 x56 x36

x57 x53 x47 x61 x40 x2 x26 x15

x59x60x38x12x20x21x23

x18 x29 x14

Figure 6.2: Instane random-20-17 with 62 internal edges and the orresponding vari-

ables.

Now, sine R is a retangular partition, e de�ne two minimal retangles (eah one

possibly ontaining other retangles) having e as one of its sides, let us denote them by

r1 and r2. There are three ases to onsider.

The �rst ase onsists of r1 and r2 been empty retangles, i.e., neither r1 nor r2 ontain

other retangles. Therefore, the removal of e unite these retangles, omposing a single

retangle. Therefore, R \ e is still a retangular partition. It is lear that removing a

segment annot inrease the stabbing number of the solution. Thus, if R is an optimal

solution, so is R \ e.
The seond ase to onsider is when only one of r1 or r2 ontains other retangles.

Suppose without loss of generality that r1 is the one ontaining other retangles. Now,

we an drag e towards r1, shrinking any segment with an endpoint in e, until e meets

a re�ex vertex or the border of P . In the latter ase, e is merged to the border of P .

It is easy to see that the result of this dragging operation is also a retangular partition

besides, the only stabbing segments a�eted by this operation are the ones parallel to e

and their stabbing number annot inrease. Therefore, as R is optimal, so must be the

new solution.

At last, we must onsider the ase where both r1 and r2 ontain other retangles.

Suppose without loss of generality that the number of segments in r1 having an endpoint

in e (thus, perpendiular to it) is greater or equal than the number of segments with these

harateristis in r2. Then, again, we an drag e towards r1, shrinking any segment with

an endpoint in e, until e meets either a segment parallel to e or a re�ex vertex or the

border of P . If a parallel segment is met, e is merged to it and the proess is repeated

until a re�ex vertex or the border of P is met. In ase the border of P is met, e eases to

exist together with the segments in the spae between e and the border. One again, the
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dragging operation results in a retangular partition of P and the only stabbing segments

a�eted by this operation are parallel to e. But, as the number of segments in r1 is greater

or equal than the number of segments in r2, one an see that the stabbing number of the

new retangular partition annot be greater than that of R.

Ergo, there is always an optimal retangular partition where every maximal segment

has at least one re�ex vertex of P as an endpoint.

In the next model, given the same de�nitions as before, we onsider the set EP
e of

retilinear segments uv where u ∈ V P
r and v ∈ V P

. Notie that a segment of EP
e an

be omprised of several onseutive segments of EP
i . Hene, we all EP

e the extended

edge set. In the formulation below, we have a variable xuv for eah edge in EP
e and from

Proposition 6.1 it is easy to notie that this set of variables is su�ient to provide optimal

retangular partitions.

(RPST2) z = min k (6.7)

subjet to

∑

ua∈EP
e

xua ≥ 1, ∀ u ∈ V P
r (6.8)

xab + xuv ≤ 1, ∀ ab, uv : ab ∩ uv 6= ∅ ∧
∧ ab ∩ uv 6= a, b, u or v (6.9)

∑

θ(uv,ab)=π/2 ∧
∧ b∈uv ∧ b6=u ∧ b6=v

xuv − xab ≥ 0, ∀ a ∈ V P
r , b ∈ V P

s (6.10)

∑

uv∈EP
e :uv

⋂
s 6=∅

xuv ≤ k − 1, ∀ s ∈ L (6.11)

xuv ∈ B ∀ uv ∈ EP
e . (6.12)

k ∈ Z (6.13)

In this model, inequalities (6.8) guarantee that the solution does not ontain a knee in

a re�ex vertex. Constraints (6.9) enfore planarity (two segments of the partition an only

interset at their extremes). Constraints (6.10) prevent the existene of knees and islands

in a Steiner vertex. Finally, (6.11) are the stabbing onstraints and (6.12) and (6.13) are

integrality onstraints. Figure 6.3 shows instane random-20-17 with 42 internal edges

and the orresponding variables.

6.3 The Counterexample

Before disussing the ounterexample, we �rst present the rounding sheme proposed in [2℄

for the onforming ase. One the optimum of the linear relaxation is omputed, the rules

for rounding variables in the onforming ase are really simple: a variable orresponding

to a horizontal segment is rounded down to zero if its value is smaller than or equal to

0.5 and is rounded up to one if its value is greater than 0.5. A variable orresponding to
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x20=(v5, v24)
x21=(v5, v37)
x22=(v5, v44)
x23=(v5, v45)
x24=(v5, v46)
x25=(v5, v47)

x19=(v5, v23)
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v56
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v23

v21
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random−20−17

x2=(v1, v36)

x4=(v1, v47)
x5=(v1, v50)
x6=(v1, v53)
x7=(v1, v55)
x8=(v1, v57)
x9=(v1, v59)

x1=(v1, v35)

x11=(v3, v22)
x12=(v3, v37)
x13=(v3, v38)
x14=(v3, v39)
x15=(v3, v40)
x16=(v3, v41)
x17=(v3, v42)
x18=(v3, v43)

x10=(v3, v21)

x61=(v18, v58)
x60=(v18, v56)
x59=(v18, v52)
x58=(v18, v49)
x57=(v18, v46)
x56=(v18, v42)
x55=(v18, v34)
x54=(v18, v33)

x62=(v18, v59)
x53=(v15, v58)
x52=(v15, v54)
x51=(v15, v32)
x50=(v15, v31)

x48=(v13, v56)
x47=(v13, v55)
x46=(v13, v54)
x45=(v13, v51)
x44=(v13, v41)
x43=(v13, v39)
x42=(v13, v30)
x41=(v13, v29)

x49=(v13, v57)

x27=(v8, v26)
x28=(v8, v38)
x29=(v8, v44)
x30=(v8, v48)
x31=(v8, v49)
x32=(v8, v50)

x26=(v8, v25)

x34=(v10, v28)
x35=(v10, v40)
x36=(v10, v45)
x37=(v10, v48)
x38=(v10, v51)
x39=(v10, v52)
x40=(v10, v53)

x33=(v10, v27)

x3=(v1, v43)

Figure 6.3: Instane random-20-17 with its extended edges and orresponding variables.
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a vertial segment is rounded down to zero if its value is smaller than 0.5 and is rounded

up to one if its value is greater than or equal to 0.5.

In the Generalizing the Approximation Algorithm setion of [2℄, a model for the general

(non-onforming) ase is desribed informally. From the disussion, apparently suh model

is equivalent to the (RPST ) formulation given in Setion 6.2. Aording to the authors,

the same rounding rules used in the onforming ase provide a 2-approximation for the

general ase.

The rounding rules do not mention what should be done for Steiner verties, and no

guarantee is given that applying them diretly in these situations will avoid the formation

of a knee or an island. In fat, the instane displayed in Figure 6.4 shows that this

annot always be done without sari�ing feasibility. In this �gure, the optimal values of

the variables orresponding to edges inident to Steiner vertex v38 (see Figure 6.3) after

solving the linear relaxation assoiated to instane random-20-17 are given. As only the

variable orresponding to one vertial edge inident to that vertex has value greater than

0.5 and the other three are smaller than 0.5, rounding aording to that rule would result

in an island at v38. Therefore, the set of edges obtaining after rounding does not form a

retangular partition.

random−20−17

0.82

0.49

0.330.33

Figure 6.4: Values of variables orresponding to edges inident to a Steiner vertex after

solving linear relaxation. The values are rounded with two digits after the deimal point.

It is however possible that we misinterpreted the model the authors were thinking

of (although there is evidene in ontrary) and the idea is atually to de�ne variables

orresponding to all edges having a re�ex vertex as one of its endpoints. If so, the

formulation would look like (RPST2) model in the previous setion. In this alternative

formulation, rounding the variables using that rule does not ause the same problem as

before sine every variable orrespond to an edge having a re�ex vertex as endpoint.
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Contrary to what happens in the onforming ase, however, the re�ex verties here

have more than two inident edges. Therefore, it is possible that the solution of the linear

relaxation result in values smaller than 0.5 for all the variables orresponding to the edges

inident to a ertain re�ex vertex. Thus, the rounding of suh solution would result in a

partition having a knee in a re�ex vertex.

The situation desribed above ours in pratie with instane random-20-17, as

shown in Figure 6.5. Consider the edges inident to vertex v3. All the assoiated variables

inident to this vertex have value smaller than 0.5. As onsequene, they will be rounded

to zero, resulting in the formation of a knee at v3 and, therefore, in an infeasible solution.

random−20−17

0.16

0.29

0.28

0.28

Figure 6.5: Values of variables orresponding to edges inident to a re�ex vertex after

solving linear relaxation. Variables with value zero are omitted. The values are rounded

with two digits after the deimal point.

6.4 Conlusion

From the ounterexample presented in Setion 6.3, we onlude that it remains open

whether a 2-approximation for the rpst in the general ase exists. It is, however, note-

worthy that many other ontributions are presented in [2℄ and none of them are diminished

by this ounterexample.
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Appendix

File name: random-20-17.ret

Model: RPST

Vertex number: 59

Edge number: 62

Reading Problem stab

Problem Statistis

231 ( 0 spare) rows

63 ( 0 spare) strutural olumns

752 ( 0 spare) non-zero elements

Global Statistis

63 entities 0 sets 0 set members

Minimizing MILP stab

Original problem has:

231 rows 63 ols 752 elements 63 globals

Will try to keep branh and bound tree memory usage below 6.1Gb

Its Obj Value S Ninf Nneg Sum Dual Inf Time

0 .000000 D 24 0 .000000 0

87 2.411765 D 0 0 .000000 0

Optimal solution found

121
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*** Searh unfinished *** Time: 0 Nodes: 0

Number of integer feasible solutions found is 0

Best bound is 2.411765

Solution:

x1 = 0.568627 x2 = 0.431373 x3 = 0.274510 x4 = 0.725490

x5 = 0.470588 x6 = 0.529412 x7 = 0.000000 x8 = 1.000000

x9 = 0.555556 x10 = 0.444444 x11 = 0.686275 x12 = 0.313725

x13 = 0.705882 x14 = 0.294118 x15 = 0.294118 x16 = 0.705882

x17 = 0.326797 x18 = 0.686275 x19 = 0.183007 x20 = -0.000000

x21 = -0.000000 x22 = 0.156863 x23 = 0.098039 x24 = -0.000000

x25 = 0.124183 x26 = -0.000000 x27 = 0.000000 x28 = 0.346405

x29 = 0.431373 x30 = 0.326797 x31 = 0.326797 x32 = 0.143791

x33 = 0.816993 x34 = 0.490196 x35 = 0.052288 x36 = 0.568627

x37 = 0.156863 x38 = 0.274510 x39 = 0.411765 x40 = 0.274510

x41 = 0.000000 x42 = 0.274510 x43 = 0.294118 x44 = 0.000000

x45 = 0.209150 x46 = 0.209150 x47 = 0.000000 x48 = -0.000000

x49 = 0.000000 x50 = 0.346405 x51 = 0.346405 x52 = 0.346405

x53 = 0.000000 x54 = 0.000000 x55 = 0.346405 x56 = 0.052288

x57 = 0.098039 x58 = -0.000000 x59 = 0.294118 x60 = 0.431373

x61 = 0.313725 x62 = 0.705882 x63 = 2.411765

******************************************************************

File name: random-20-17.ret

Model: RPST2

Vertex number: 59

Edge number: 62

Reading Problem stab

Problem Statistis

336 ( 0 spare) rows

63 ( 0 spare) strutural olumns

996 ( 0 spare) non-zero elements

Global Statistis

63 entities 0 sets 0 set members

Minimizing MILP stab

Original problem has:

336 rows 63 ols 996 elements 63 globals

Crash basis ontaining 13 strutural olumns reated

Its Obj Value S Ninf Nneg Sum Inf Time

0 .000000 D 1 0 24.000000 0
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82 2.413793 D 0 0 .000000 0

Optimal solution found

*** Searh unfinished *** Time: 0

Number of integer feasible solutions found is 0

Best bound is 2.413793

Solution:

x1 = 0.293103 x2 = 0.431034 x3 = 0.275862 x4 = -0.000000

x5 = -0.000000 x6 = -0.000000 x7 = -0.000000 x8 = -0.000000

x9 = -0.000000 x10 = 0.275862 x11 = 0.275862 x12 = -0.000000

x13 = -0.000000 x14 = -0.000000 x15 = 0.155172 x16 = -0.000000

x17 = -0.000000 x18 = 0.293103 x19 = 0.241379 x20 = -0.000000

x21 = 0.275862 x22 = 0.293103 x23 = 0.051724 x24 = -0.000000

x25 = 0.137931 x26 = -0.000000 x27 = -0.000000 x28 = 0.275862

x29 = 0.241379 x30 = 0.189655 x31 = -0.000000 x32 = 0.293103

x33 = 0.155172 x34 = 0.103448 x35 = -0.000000 x36 = 0.137931

x37 = 0.293103 x38 = 0.017241 x39 = 0.000000 x40 = 0.293103

x41 = 0.000000 x42 = 0.017241 x43 = -0.000000 x44 = 0.275862

x45 = -0.000000 x46 = 0.293103 x47 = 0.120690 x48 = 0.000000

x49 = 0.293103 x50 = 0.706897 x51 = -0.000000 x52 = -0.000000

x53 = 0.293103 x54 = -0.000000 x55 = 0.293103 x56 = 0.275862

x57 = 0.000000 x58 = -0.000000 x59 = -0.000000 x60 = -0.000000

x61 = 0.000000 x62 = 0.431034 x63 = 2.413793



Chapter 7

Conlusions and Future Work

In this work we studied problems of �nding geometri strutures with minimum stab-

bing number. Integer programming tehniques were used to reate algorithms for all the

problems and omputational results were reported.

The omplexity lasses of mstr and mtr were proved and now we know that unless

P=NP, there is no polynomial time algorithm to solve these problems. Moreover, besides

the exat algorithm and omputational results presented for mstr, we also proposed a

Lagrangian heuristi and reported experiments with an iterated rounding algorithm. The

results show empirially that it is possible that IRA provides an approximation for mstr.

For the rpst, a polyhedral study was also performed through a relationship with rgp,

and we showed that the additional inequalities are useful in omputation. A set partition

formulation was also presented and ompared with the segment based model both theo-

retially and omputationally. We showed that the set partition model is stronger than a

basi segment based model. Computationally, the segment based model with additional

inequalities is omparable to the set partition model.

Moreover, we gave a ounterexample to the laim in [16℄ regarding an approximation

algorithm for rpst. Later, the authors of the paper also published an erratum on�rming

the mistake [15℄.

Obviously, there is still a lot of work to be done on this subjet. From the integer

programming perspetive, we ould onsider di�erent formulations for stabbing problems.

For instane, in a formulation with one variable for eah stabbing line it is possible to

onsider the relationship between the stabbing numbers of di�erent lines.

A very interesting question still unanswered is whether the iterated rounding algo-

rithms provide approximations for the stabbing problems if we an guarantee the existene

of a highly valued frational variable in the linear programming relaxation.

The omplexity of rpst is still an open problem both for polygons with and without

holes. If the problem turns out to be NP-hard, an obvious question is if the existing

approximation fator an be improved.

To onlude, in Table 7.1 we summarize the problems that were treated and the

artiles that originated in the thesis. The meaning of the headers are: Problem: name

of the problem treated in the paper; Artile: itation to the paper; Status: the status of

the paper, i.e., published in a journal or onferene proeedings, submitted to a journal or

released on-line; Type: full paper/abstrat/tehnial note; and Contribution: the type of

124
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ontribution presented in the paper for that problem.

Table 7.1: Summary of problems approahed and papers omposing the thesis.

Problem Artile Status Type Contribution

mspm

[37℄ published full paper

algorithms and

(axis parallel) experiments

msst

[37℄ published full paper

algorithms and

(axis parallel) experiments

mstr

[33, 37℄ published full paper

algorithms and

(axis parallel) experiments

mstr

[38℄ submitted full paper

NP-hardness proof
(axis parallel) and experiments

mstr

[38℄ submitted full paper

NP-hardness proof
(general) and experiments

mtr

[38℄ submitted full paper NP-hardness proof
(general)

rpst [36℄ published

extended ip model+algorithms

abstrat and experiments

rpst [34℄ released tehnial note ounterexample

rpst [35℄ submitted full paper

ip models+algorithms

and experiments
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