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Resumo

Problemas de trespasse têm sido investigados há tempos em Geometria Computa
ional

pois apli
ações para eles são en
ontradas em uma grande variedade de áreas. Em geral,

a entrada é formada por dois 
onjuntos de objetos geométri
os: o 
onjunto, �nito ou

in�nito, L de trespassadores e o 
onjunto O. Uma solução viável é um sub
onjunto O′

de O satisfazendo uma 
erta propriedade estrutural π. Dado O′
, o número de trespasse

de ℓ ∈ L é a quantidade de elementos de O′
interse
tados por ℓ. O número de trespasse

de O′
relativo a L é o número de trespasse máximo dentre qualquer ℓ ∈ L. O objetivo

do problema é a
har um sub
onjunto de O satisfazendo a propriedade π 
om o menor

número de trespasse possível relativo a L. Esta tese traz 
ontribuições tanto teóri
as

quanto experimentais para alguns problemas de trespasse.

Em [17, 18℄, Fekete, Lübbe
ke e Meijer resolveram o problema aberto a respeito da


omplexidade de en
ontrar uma árvore geradora 
om número de trespasse mínimo. Eles

também mostraram que a
har um emparelhamento perfeito 
om número de trespasse

mínimo é NP-difí
il. Modelos de programação inteira para os problemas foram apresen-

tados. Porém, muito pou
os experimentos 
omputa
ionais foram realizados.

Nesta tese, estudamos modelos de programação inteira para en
ontrar emparelhamen-

tos perfeitos, árvores geradoras e triangulação 
om número de trespasse mínimo. Com

base nestas formulações, apresentamos algoritmos exatos e heurísti
as Lagrangianas para

resolvê-los. Estes algoritmos mostraram que as heurísti
as Lagrangianas proveem boas

soluções, frequentemente ótimas, em um breve tempo 
omputa
ional.

De todos os dez problemas e variantes dis
utidos em [18℄, para apenas três deles a


omplexidade não foi provada: Triangulação 
om Número de Trespasse Mínimo, 
om

trespassadores paralelos aos eixos e gerais, e Triangulação 
om Número de Cruzamento

Mínimo, 
aso geral. Nesta tese, provamos que estes três problemas são NP-difí
eis.
Outro problema de trespasse mínimo é apresentado em [2℄ e também estudado em [16℄.

Este problema pede por uma partição retangular 
om número de trespasse mínimo em

um polígono retilinear. Embora a 
omplexidade do problema ainda seja des
onhe
ida, em

[2℄ um algoritmo de 3-aproximação é apresentado. Em [16℄ um modelo de programação

inteira é dado e uma 2-aproximação reivindi
ada.

Nesta tese, fortale
emos a formulação introduzida em [16℄. Também propomos um

modelo alternativo e 
omparamos os dois teóri
a e 
omputa
ionalmente. Além disso,

mostramos que o algoritmo proposto em [16℄ não provê uma 2-aproximação para o pro-

blema.



Abstra
t

Stabbing problems have long been investigated in Computational Geometry sin
e appli
a-

tions for them are found in a great variety of areas. In general, the input is formed by two

sets of geometri
 obje
ts: the �nite or in�nite set L of stabbers and a set O. A feasible

solution for the problem is a subset O′
ofO satisfying a given stru
tural property π. Given

O′
, the stabbing number of ℓ ∈ L is the number of elements of O′

that are interse
ted by

ℓ. The stabbing number of O′
relative to L is the maximum stabbing number of all ℓ ∈ L.

The goal of the problem is to �nd a subset of O satisfying property π and leading to the

smallest possible stabbing number relative to L. This thesis brings both theoreti
al and

experimental 
ontributions to the investigation of some stabbing problems.

The works of Fekete, Lübbe
ke and Meijer [17, 18℄ solved the open problem relative

to the 
omplexity of �nding a spanning tree with minimum stabbing number. They also

showed that �nding a perfe
t mat
hing with minimum stabbing number is NP-hard.
Integer programming formulations for the problems were also presented. However, very

few 
omputational experiments were performed.

In this thesis, we study integer programming formulations for the problems of �nding

perfe
t mat
hings, spanning trees and triangulations with minimum stabbing number.

Based on these formulations we present exa
t algorithms and Lagrangian heuristi
s to

solve the problems. These algorithms show that the Lagrangian heuristi
s yield solutions

with good quality, often optimal, in short 
omputation time.

Of all the ten problems and variants dis
ussed in [18℄, for only three of them the 
om-

plexity was not proved: The Minimum Stabbing Triangulation, axis-parallel and general

stabbers, and The Minimum Crossing Triangulation, general 
ase. In this thesis, we prove

that the three problems are NP-hard.
Another problem of �nding a stru
ture with minimum stabbing number is presented in

[2℄ and also studied in [16℄. This problem asks for a re
tangular partition with minimum

stabbing number in a re
tilinear polygon. Although the 
omplexity of the problem is still

unkown, in [2℄ a 3-approximation algorithm is presented. In [16℄ an integer programming

formulation is given and a 2-approximation is 
laimed.

In this thesis, we strengthen the formulation introdu
ed in [16℄. We also propose

an alternative model and 
ompare the formulations both theoreti
ally and 
omputa-

tionally. Furthermore, we show that the algorithm proposed in [16℄ 
an not provide a

2-approximation for the problem.
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Chapter 1

Introdu
tion

A problem of �nding a stru
ture with minimum stabbing number, in general, has its input

formed by two sets of geometri
al obje
ts: the �nite or in�nite set L of stabbers and the

set O. A feasible solution for the problem is a subset O′
of O satisfying a given stru
tural

property π. Given O′
, the stabbing number of ℓ ∈ L, as de�ned in [17, 18℄, is the total of

elements of O′
that are interse
ted by ℓ. The stabbing number of O′

relative to L is the

maximum stabbing number of all ℓ ∈ L. The goal of the problem is to �nd a subset of O
satisfying property π and having the smallest possible stabbing number.

Related problems are those of �nding stru
tures with minimum 
rossing number. The

input of this kind of problem is the same as that for stabbing problems, i.e., a set L and

a set O. A feasible solution for the problem is also given by a subset O′
of O satisfying a

given stru
tural property π. A

ording to the de�nition in [17, 18℄, given O′
, the 
rossing

number of ℓ ∈ L is the number of 
onne
ted 
omponents in the interse
tion of ℓ and O′
.

And as for the stabbing number, the 
rossing number of O′
relative to L is the maximum


rossing number of all ℓ ∈ L, while the goal of the problem is to �nd a subset of O
satisfying property π and having the smallest possible 
rossing number.

Consider for instan
e the set of points P in Figure 1.1 (a). Let the set of stabbers L
be the set of dashed lines in that �gure and let O be the set of all line segments having

points in P as its extremities. Let the property π be: being a single 
onne
ted 
omponent.

Then, let O′
be the set of line segments having points of P as its extremities shown in

Figure 1.1 (b). Sin
e O′
satis�es π it is a valid solution for the problem with stabbing

number 7 (be
ause line s stabs this number of segments in O′
and no other line in L

stabs more segments than s). This solution is said to be optimal if no other solution has

a stabbing number smaller than 7.

In 2001, Mit
hell and O'Rourke published the �Computational Geometry Column 42�

[30℄ , 
ontaining a 
ompendium of thirty previously published open problems in 
ompu-

tational geometry. From this list, problem number 20 stated: �What is the 
omplexity of


omputing a spanning tree of a planar point set having minimum stabbing number? The

stabbing number of a tree T is the maximum number of edges of T interse
ted by a line.

Any set of n points in the plane has a spanning tree of stabbing number O(
√
n), and this

bound is tight in the worst 
ase

1

. However, nothing is known about the 
omplexity of

1

i.e., there are instan
es for whi
h the stabbing number of any spanning tree is at least O(
√
n)

13



14

(a) (b)

ss

Figure 1.1: Instan
e of a problem of �nding a stru
ture with minimum stabbing number.


omputing a spanning tree (or triangulation) of minimum stabbing number, exa
tly or

approximately.� [30℄. This list then gave birth to the Open Problems Proje
t [14℄, a list

of problems without known solution by the time they were in
orporated to the list.

Spanning Trees with low stabbing number 
an be used to 
onstru
t data stru
tures

that have appli
ations in 
omputational geometry, 
omputer graphi
s and virtual reality

[43, 3℄. The same is true for triangulations with low stabbing number [26, 25℄. Usually,

for these appli
ations, guaranteeing a stabbing number O(
√
n) or O(logn) is enough and

we are unaware of appli
ations that require an optimal stabbing number. Noti
e, however

that although stabbing problems have been known for a long time, the 
omplexity of

�nding a spanning tree with minimum stabbing number (msst) remained open

until re
ently and it was open until now for the problem of �nding a triangulation with

minimum stabbing number (mstr). Moreover, the 
ost measurement of a solution

for the problem, i.e., its obje
tive fun
tion, is not so usual in 
ombinatori
s, whi
h makes

the problem interesting by itself. Therefore, it should be noted that our primary interest

in the problem is of a theoreti
al nature.

In [17, 18℄, Fekete, Lübbe
ke and Meijer studied problems of �nding minimum stabbing

number stru
tures su
h as perfe
t mat
hings (mspm), spanning trees (msst) and

triangulations (mstr). They also 
onsidered the problems of �nding the same stru
tures

with minimum 
rossing number (respe
tively, m
pm, m
stand m
tr). In those papers

they proved that �nding a perfe
t mat
hing or spanning tree with minimum stabbing or


rossing number is NP-hard in the general and axis-parallel 
ases. They also proved that

�nding a triangulation with minimum 
rossing number is NP-hard in the axis-parallel


ase. The authors also presented integer programming (ip) formulations for the problems

and a heuristi
 based on an iterated rounding pro
edure whi
h was 
onje
tured to de�ne

an approximation algorithm. Some 
omputational experiments for the minimum stabbing

perfe
t mat
hing were also reported. While several 
ontributions to minimum stabbing

problems were given in [18℄, some problems were still left open, among them are the


omplexity of mstr in both axis-parallel and general 
ases, and the 
omplexity of m
tr

in the general 
ase.

Duro
her and Mehrabi studied the problem of �nding a re
tangular partition of a

re
tilinear polygon with minimum stabbing number (rpst) [16℄. The problem of �nding

a re
tilinear de
omposition with low stabbing number was introdu
ed in [12℄ and the


orresponding minimization problem was studied in [2℄ where a 3-approximation algorithm

was presented for the problem. The paper by Duro
her and Mehrabi 
aught our attention
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for two reasons: �rst it was about �nding a stru
ture with minimum stabbing number

and se
ond, it used integer programming to �nd an approximation algorithm for the


onforming 
ase of the problem whi
h they proved to be NP-hard (no 
omplexity result

was known before). In [16℄ the ip model was also extended for the general 
ase, however

no polyhedral study or 
omputational experiments were performed.

In [13℄ and [8℄ the problem of �nding a re
tangular partition with minimum length

(rgp) was studied. Two ip formulations for the problem were des
ribed and some algo-

rithms were developed for it. As it turns out, the ideas used in the models studied for the

rgp 
an also be applied to model the rpst. Moreover we 
an use the results obtained in

those papers for the rgp to a
hieve similar results for rpst.

1.1 Contributions

The main 
ontributions of this thesis are:

• We present the �rst integer programming formulations for mstr and new formula-

tions for msst, based on the models introdu
ed in [18℄.

• Computational results for mstr are reported for the �rst time.

• We propose and experiment with Lagrangian heuristi
s for mspm, msst and mstr.

• mstr is shown to be NP-hard both in the axis-parallel and general 
ases.

• We prove that m
tr is NP-hard in the general 
ase.

• We present 
omputational results for an iterated rounding algorithm for mstr.

• We perform a polyhedral study for the existing integer programming model of rpst,

propose a new one and 
ompare the strengths of these alternative formulations.

• Computational results for rpst are reported for the �rst time.

• We present a 
ounterexample for a 
laimed 2-approximation algorithm for rpst

proposed earlier in the literature.

1.2 Stru
ture of the Thesis

This do
ument is a 
ompilation of the papers published or submitted to publi
ation

by the author with other resear
hers as a result of the investigation 
arried out during

the do
toral program. Chapters 3, 4 and 5 
orrespond to those papers, [37℄, [38℄, [35℄,

respe
tively. Following the rules of the graduate program of the University of Campinas,

the papers are reprodu
ed here without modi�
ation, ex
ept for the printing format.

Chapter 6 
orresponds to a te
hni
al note made publi
 through arXiv [1℄. The stru
ture

of this 
hapter is the same of the ones 
orresponding to published or submitted arti
les.

Ea
h one of the 
hapters 4 to 6 are divided into three parts. The �rst part stands for

a brief des
ription of the paper informing, for instan
e, whether the paper is published
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or submitted. The se
ond part is the text of the paper itself. Finally, the last part


orresponds to the referen
es of the original paper.

The next 
hapter summarizes some of the basi
 theoreti
al 
on
epts and te
hniques

ne
essary to understand the rest of the do
ument.

Chapter 3 
ontains ip models for the stabbing problems des
ribed in [17℄. These

models are then used to develop exa
t Bran
h-and-Bound (b&b) and Bran
h-and-Cut

(b&
) algorithms for the problems. Next, Lagrangian Relaxation (lr) of the models are

utilized to produ
e heuristi
 algorithms whi
h are then 
ompared to the exa
t algorithms.

In Chapter 4, the 
omplexity of the Minimum Stabbing Triangulation Problem and

Minimum Crossing Triangulation Problem are studied. The axis-parallel 
ase of m
tr

was shown to be NP-hard in [17℄, however, the 
omplexity of the general 
ase was left

open. The 
omplexity of mstr was still unknown both in the general and axis-parallel


ases. In this 
hapter we prove that these three problems are NP-hard.
The problem of �nding re
tangular partitions of re
tilinear polygons with minimum

stabbing number is the subje
t of Chapter 5. In this 
hapter, we present ip models for

the rpst and 
ompare their strengths. We also show a relationship between rpst and

rgp, this relationship is used to prove properties about the polyhedron de�ned by one of

the ip models for rpst. Computational experiments are performed to 
ompare the b&b

algorithms derived from the di�erent formulations.

Chapter 6 is dedi
ated to presenting a 
ounterexample for the approximation algorithm

proposed in [16℄ for the rpst. We analyse the proposed ip model and algorithm and show

that it 
annot lead to an approximation as 
laimed.

Finally, Chapter 7 presents some 
on
lusions regarding the entire work and dis
usses

possible dire
tions for future work.



Chapter 2

Basi
 Con
epts

The purpose of this 
hapter is to introdu
e basi
 
on
epts that will be ne
essary for the


omprehension of the rest of this thesis.

All the problems treated in this text are 
ombinatorial problems in graph theory and


omputational geometry. We approa
h these problems using integer programming and

polyhedral 
ombinatori
s te
hniques. Moreover, we analyze the 
omplexity of some of

these problems. In Se
tion 2.1 we present some de�nitions from graph theory and 
om-

putational geometry. In Se
tion 2.2 elements of 
omputational 
omplexity are introdu
ed

and, �nally, Se
tion 2.3 shows some important 
on
epts from integer programming and

polyhedral 
ombinatori
s. Noti
e that it is not our intention to write an exhaustive text

on these subje
ts and very thorough texts 
an be found at [5, 7, 19, 31, 32, 40, 41, 44℄.

2.1 Graphs and Computational Geometry

Graphs are very versatile mathemati
al stru
tures for modelling. Formally speaking, a

graph G is 
omposed by a set of verti
es V (or V (G)) and a set of edges E (or E(G)),

where E ⊆ V ×V . We use the notation G = (V,E) to indi
ate the 
omponents of a graph

G.

If e = (u, v) is in E, we say that the verti
es u and v are adja
ent or neighbours and

that u and v are the extremes of e. The degree of a vertex v is the number of verti
es

that are adja
ent to v. The graphs used in this work are simple graphs, i.e., there are

no edges of the form (v, v) and there is at most one edge for ea
h pair of verti
es. In this

text, we are also dealing with undire
ted graphs, that means (v, u) = (u, v) for every

u and v in V .

A graph G = (V,E) is said to beweighted if there is a fun
tion w : E → R asso
iating

a real number (weight) to ea
h edge of G.

A subgraph H of G, denoted by H ⊆ G, is a graph where V (H) ⊆ V (G), E(H) ⊆
E(G) and, sin
e H is also a graph, for every edge (u, v) ∈ E(H), u and v are in V (H).

Whenever (u, v) ∈ E(G) for all u 6= v ∈ V (G), we say the graph is 
omplete. A 
omplete

subgraph of a graph is 
alled a 
lique.

Given a graph G, a sequen
e (v0, v1, ..., vk) where v0, v1, ..., vk ∈ V (G) and for i =

0, ..., k − 1, vi and vi+1 are adja
ent and v0 6= vk is 
alled a path. If on the other hand

17
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v0 = vk, then this sequen
e is 
alled a 
y
le. If a graph has at least one 
y
le we say it

is 
y
li
, otherwise it is a
y
li
.

A graph G is said to be 
onne
ted if for every pair of distin
t verti
es u and v in

V (G), there is a path from u to v. If a graph is 
onne
ted and a
y
li
, it is a tree.

Let G be a graph and T ⊆ G. If T is a tree and V (T ) = V (G), then T is a spanning

tree of G.

Given a graph G = (V,E) and a subset M of E where no two edges in M share a

vertex. The set M is 
alled a mat
hing in G. If a vertex v is an extremity of some edge

in M we say v is mat
hed. A mat
hing where all the verti
es in V (G) are mat
hed is


alled a perfe
t mat
hing. Obviously, a ne
essary 
ondition for a perfe
t mat
hing to

exist is that |V (G)| be even.
A geometri
 graph G = (V,E) is a graph where ea
h vertex in V is asso
iated to

a point in a 
oordinate system. We say a geometri
 graph has a straight-line drawing

if its edges are represented by straight-line segments 
onne
ting the points asso
iated

to the extremities of the edge. The geometri
 graphs dis
ussed in Chapters 3 and 4

are geometri
 graphs with straight-line drawings. The eu
lidean distan
e between the

extremities of an edge is 
ommonly used as a weight fun
tion for geometri
 graphs with

straight-line drawings.

A polygon is a simple 
losed 
urve 
omposed by a �nite 
olle
tion of line segments.

A polygon with n verti
es (or n segments) 
an be represented as a sequen
e of points

in the plane where for i = 0, ..., n − 1 the i-th and i + 1-st points in the sequen
e are

the extremities of one of the segments de�ning the polygon (addition is mod n). The

sequen
e of segments along the 
losed 
urve de�ning a polygon P 
omposes the border

or boundary of P , denoted by δ(P )1.

The interior of a polygon 
an be partitioned into smaller polygons. A very 
ommon

way of partitioning is a triangulation. As the name suggests, a triangulation is the

partition of a polygon into triangles. A triangulation of a polygon P 
an be a
hieved

by adding non-interse
ting diagonal segments to the interior of P . A diagonal is a line

segment 
onne
ting two verti
es of P and 
ontained in its interior. Hen
e, another way

of de�ning a triangulation is as a maximal non-interse
ting set of diagonals.

Noti
e that usually a triangulation is not unique. However, the number of diagonals

and the number of triangles in any triangulation for a given polygon is always the same.

A triangulation of a polygon with n verti
es always has n−2 triangles and n−3 diagonals.

Triangulation 
an also be applied to a set of points in the plane. Given a set P of

points in the plane, a triangulation of P is a maximal planar geometri
 graph with vertex

set P , i.e., a geometri
 graph where no edge 
an be added 
onne
ting points in P without

destroying its planarity. As in the triangulation of a polygon, a triangulation of a point

set P also has a 
onstant number of triangles and internal (not in the boundary) edges.

If |P | = n and the boundary of the smallest polygon 
ontaining P has k points in P , then

a triangulation of P has 2n− 2− k triangles and 3n− 3− k internal edges.

A parti
ular type of polygons are the re
tilinear polygons, whi
h are simply poly-

gons where all the segments de�ning it are either horizontal or verti
al. A 
ommon way

1

Polygons de�ned like this are also 
alled simple polygons. In this do
ument, all the polygons are


onsidered to be simple.
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of partitioning a re
tilinear polygon is by dividing its interior into re
tangles. Unlike

triangulations though, a re
tangular partition does not always have the same number of

re
tangles.

2.2 Complexity Theory

In 1936, Alan Turing de�ned the Turing Ma
hine, a mathemati
al model for 
omputation.

Simply put, a Turing Ma
hine 
onsists of an in�nite tape for input and output, a 
ontrol

unit and a read/write head. The ma
hine is initialized with its head on the leftmost

symbol of the input whi
h is written in the tape while the remainder of the tape is empty.

The 
ontrol unit 
ontains a set of internal states, three among them are spe
ial states


alled the initial, a

eptan
e and reje
tion states. Entering either of the latter two states

stops the 
omputation immediately. A 
on�guration of a Turing ma
hine is 
omposed

by its 
urrent state, position of the head and 
ontent of the tape. Depending on its


on�guration, a ma
hine 
an write something to the 
urrent position on the tape, make

a head movement to the left or to the right and 
hange its internal state. We 
all these

three a
tions, a step in the 
omputation. If the ma
hine stops in the a

eptan
e state we

say the input is a

epted. If, on the other hand, the ma
hine stops in the reje
tion state,

the input is reje
ted.

Although extremely simple, the Turing Ma
hine model is very powerful and we still

a

ept the Chur
h-Turing thesis that states that any algorithmi
ally solvable problem


an be modelled using a Turing ma
hine. In other words, this thesis says that Turing

Ma
hines give a formal de�nition for what is an algorithm. Several other 
omputational

models were proposed over the years, but a

ording to Chur
h-Turing thesis, the most

powerful of these models must be 
omputationally equivalent to a Turing Ma
hine. Com-

putational equivalen
e means that the set of problems that 
an be solved by the models

are the same.

One of these models is the Non-deterministi
 Turing Ma
hine. This model is

almost identi
al to regular Turing Ma
hines, the only di�eren
e is that in a deterministi


(regular) model, for ea
h 
on�guration there is exa
tly one possible step the ma
hine


an take. Meanwhile, in a non-deterministi
 model, several steps 
an be taken for ea
h


on�guration and the ma
hine exe
utes all of them simultaneously. This pro
ess 
an

be seem as if at ea
h 
on�guration where more than one step is possible, the ma
hine


reates 
opies of itself with the new 
on�gurations and 
ontinues exe
uting all the 
opies

in parallel.

The time 
omplexity of a Turing Ma
hine T is a fun
tion f : N → N where f(n)

is the maximum number of steps exe
uted by T with an input of length n. Let t : N → R
+

be a fun
tion, then T ime(t(n)) is the time 
omplexity 
lass of all the problems that


an be solved by a Turing Ma
hine with time 
omplexity O(t(n)).

Similarly, we 
an de�ne the time 
omplexity of a Non-deterministi
 Turing

Ma
hine NT is a fun
tion f : N → N where f(n) is the maximum number of steps

exe
uted by NT in any of its possible 
omputation paths with an input of length n. Let

t : N → R
+
be a fun
tion, then NTime(t(n)) is the time 
omplexity 
lass of all the
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problems that 
an be solved by a Non-deterministi
 Turing Ma
hine with time 
omplexity

O(t(n)).

Now, we 
an de�ne the 
lass P=
⋃

k∈N T ime(nk), i.e., P is the 
lass of all the problems

that 
an be solved by a polynomial time 
omplexity Turing Ma
hine. Likewise, NP=
⋃

k∈NNTime(nk), that is, NP is the 
lass of all the problems that 
an be solved by a

polynomial time 
omplexity Non-deterministi
 Turing Ma
hine. As said before, Turing

Ma
hines are a formal de�nition for algorithms, hen
e we 
an restate the de�nition above

as: P is the 
lass of problems having a polynomial time algorithm and NP is the


lass of problems that have a polynomial time non-deterministi
 algorithm.

Let A and B be two problems having, respe
tively, input (output) sets IA and IB
(OA and OB). Hen
e, an algorithm MA for A takes an instan
e a ∈ IA and produ
es

MA(a) ∈ OA. Likewise, an algorithm MB for B takes an instan
e b ∈ IB and outputs

MB(b) ∈ OB. If there is an algorithmR having IA as input set and IB as output set, where

MA(x) = MB(R(x)) for any x ∈ IA, then we say R is a redu
tion (more pre
isely, a

mapping redu
tion) from A to B. Moreover, if the time 
omplexity of R is polynomial, we

say that R is a polynomial time redu
tion from A to B and that A is polynomially

redu
ible to B.

Redu
tions 
an be used to �transfer� properties from one problem to another. For

instan
e, suppose A is a problem that has no polynomial time algorithm then, if there is a

polynomial time redu
tion from A to B, then B 
annot have a polynomial time algorithm

either, otherwise we get a 
ontradi
tion.

We say that a problem A isNP-hard if every problem inNP is polynomially redu
ible

to A. And a problem A is NP-
omplete if A is NP-hard and A is in NP. Originally,

the 
lasses NP and NP-
omplete were de�ned for de
ision problems (problems with

yes or no outputs) however, it is 
ommon to see in many texts optimization problems

(problems where the solution is maximum or minimum) been said to be NP-
omplete.

The idea behind the use of these terms is that an optimization problem is said to be NP-

omplete if its de
ision version is NP-
omplete. The de
ision version of an optimization

problem is simply a version of the problem where instead of looking to maximize (mini-

mize) some fun
tion, one is interested in de
iding whether its value 
an be, for instan
e,

greater or equal (less or equal) to some 
onstant value.

The �rst problem proven to be NP-
omplete was the satis�ability problem (sat).

Its NP-
ompleteness was proven by Cook in 1971 [9℄. Cook's proof shows that the


omputation of any Non-deterministi
 Turing Ma
hine 
an be translated to a logi
al

formula in 
onjun
tive normal form in polynomial time, hen
e, any problem in NP is

polynomially redu
ible to sat. Besides, sat is in NP. The existen
e of an NP-
omplete

problem was independently dis
overed by Levin in 1973 [29℄.

Knowing an NP-hard problem, made it easier to prove that other problems were NP-
hard. We simply have to show that an NP-hard problem is polynomially redu
ible to

other problems. Sin
e then, several problems have been shown to be NP-hard. One of

these problems is 3-sat, proven NP-
omplete in 1972 by Karp [28℄.

The importan
e of the NP-hard and NP-
omplete 
lasses is that until this day, no

deterministi
 polynomial time algorithm exists for solving the problems in these 
lasses.

However, �nding su
h an algorithm for a single problem is enough to show that all the
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problems in NP are also in P, i.e., P = NP. Likewise, if it is shown that a single problem

in NP-
omplete demands exponential time algorithms (every algorithm from now on is

to be 
onsidered deterministi
 unless stated otherwise), then we have P 6= NP.
3-sat is very 
ommonly used to prove the NP-hardness of other problems. An idea for

su
h a proof is to transform ea
h 
omponent of the input of 3-sat, i.e., variables, literals

and 
lauses, into stru
tures of the target problem. These stru
tures are 
alled gadgets.

Next, we have to 
onne
t these gadgets in order to simulate the relationship between

variables, literals and 
lauses. Although it may seem strange to transform the input of a

problem in logi
 to a problem in graphs or 
omputational geometry for example, it has

been shown to be an easier path for several problems. It has been done, for instan
e, for

the 
lique problem and for msst.

2.3 Integer Programming and Polyhedral

Combinatori
s

The work of Dantzig, published in 1947 is often 
onsidered a mark on the beginning of

linear programming as a general tool for solving optimization problems [6, 10℄, although

other works have used linear programming before. Linear programming have shown its

usefulness for 
ountless 
ombinatorial optimization problems.

To model (or formulate) an optimization problem as a linear programming prob-

lem we must de�ne three things: the set of variables, the set of linear inequalities de-

s
ribing the restri
tions of the problem and a linear fun
tion that establishes the value of

a solution, 
alled the obje
tive fun
tion. Therefore, usually a linear programming model

have the following form:

z =min
n
∑

j=1

cjxj (2.1)

s.t.

n
∑

j=1

aijxj ≤ bi, i = 1, ..., m (2.2)

or in matrix notation: z = min{cx : Ax ≤ b, x ∈ R
n
+} where A is an m by n matrix, c

an n-dimensional row ve
tor, b an m-dimensional 
olumn ve
tor and x an n-dimensional


olumn ve
tor.

Even though simplex was the �rst general method presented to solve linear program-

ming problems and it is very useful in pra
ti
e, until this day, every pivoting rule proposed

for this method has a pathologi
al 
ase resulting in exponential time 
omplexity. The

�rst known polynomial time method presented for solving the linear programming prob-

lem was the ellipsoid method in 1979. This method was originally introdu
ed by Yudin

and Nemirovski (1976) and Shor (1977) in the 
ontext of non-linear programming. But

Kha
hiyan proved that it 
ould be used to solve linear programs in polynomial time. De-

spite its polynomial time 
omplexity, the performan
e of the ellipsoid method in pra
ti
e

was worse than the simplex method. Only in 1984 a 
ompetitive method was presented
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by Karmarkar, the interior-point method [42℄.

To understand how an optimal solution 
an be found, we must �rst understand the

stru
ture of a set of valid solutions de�ned by a linear program and its properties. For

that we need some de�nitions.

A set S is 
onvex if for ea
h pair of points x1 and x2 ∈ S every 
onvex 
ombination,

i.e., x = αx1 + (1− α)x2, ∀ 0 ≤ α ≤ 1, of x1 and x2 is also in S.

A set of points satisfying a �nite number of linear inequalities is 
alled a polyhedron.

Hen
e, it is easy to see that a linear programming model de�nes a polyhedron. A polyhe-

dron is a 
onvex set. We 
all a point x in a polyhedron P a vertex if it 
annot be de�ned

as a 
onvex 
ombination of other points in P \ {x}. The 
onvex hull of a set of points

P (
onv(P )) is the smallest 
onvex set 
ontaining all points in P .

Now, 
on
erning the values of solutions of a linear program, there is a theorem stat-

ing: if the optimal value of the obje
tive fun
tion of a linear program is �nite and the


orresponding polyhedron is non-empty, then there is always a vertex that is an optimal

solution for this linear program. If more than one vertex is an optimal solution, then

every 
onvex 
ombination of these verti
es is also optimal. This means that we only need

to look at the verti
es of the polyhedron for optimal solutions.

If we add integrality 
onstraints to a linear programming model we obtain what is


alled a linear (mixed) integer programming model. Noti
e that although linear pro-

gramming problems 
an be solved in polynomial time, a restri
ted version of the integer

programming problem have already been proven to be NP-hard by Karp in 1972 [28℄.

Noti
e that the set of feasible solutions for an integer programming problem 
an be

de�ned by in�nitely many di�erent formulations as shown in Figure 2.1. Therefore, a

natural question that arises is: how 
an we determine if a formulation is better than

another? To answer this question, let us analyse the following situation. Let S be the set

of valid solutions for an integer programming problem I. If a formulation for I de�nes a

polyhedron P = 
onv(S), then every vertex of P is a point in S. Then, it is possible to

prove that we 
an abandon the integrality 
onstraints and solve the problem as a linear

programming problem and the solution obtained is a valid optimal solution for I.

Figure 2.1: Di�erent formulations for the same set of feasible solutions.

Therefore, the idea is to obtain a formulation that de�nes a polyhedron as 
lose as

possible to 
onv(S). It is not always possible to obtain a formulation des
ribing the 
onvex

hull of the solutions set, though. Then, in order to understand how good is a formulation
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we must perform a polyhedral study. The �eld interested in the study of the inequalities

de�ning polyhedra is 
alled polyhedral 
ombinatori
s. This area began with the work of

Edmonds for the perfe
t mat
hing polyhedron in 1965 [39℄.

To get a good formulation we need strong valid inequalities. An inequality is valid

if every point in a solution set S satis�es the inequality. Every inequality de�nes a fa
e

of a polyhedron and the strength of an inequality depends on the dimension of the

fa
e 
hara
terized by it. Given a polyhedron P ⊆ R
n
and an inequality πx ≤ π0 valid

for P (where π ∈ R
n
and π0 ∈ R) the inequality is said to de�ne a fa
e F = P ∩ {x ∈

R
n : πx = π0}. If F 6= ∅ and F 6= P , then F is a proper fa
e of P . Noti
e that from the

de�nition of a polyhedron, F is also a polyhedron. In order to state what the dimension

of a fa
e (or a polyhedron) is, the de�nition of an a�nely independent set is ne
essary.

A set of points x1, ..., xn is a�nely independent if the only solution to

∑n
i=1 αixi = 0,

∑n
i=1 αi = 0 with αi ∈ R is α1 = α2 = ... = αn = 0.

A polyhedron P ⊆ R
n
has dimension (dim(P )) k if there are k + 1 a�nely inde-

pendent points in P . A polyhedron is said to be full-dimensional if its dimension is the

same as the one of the spa
e 
ontaining it so, in this 
ase, if dim(P ) = n we say P is

full-dimensional. Sin
e a fa
e F of P is also a polyhedron, it is 
lear that dim(F ) is

the number of a�nely independent ve
tors in F . If F is a proper fa
e of P , it is easy to

see that the greatest possible value for dim(F ) is dim(P ) − 1. If a fa
e have dimension

dim(P )− 1, it is 
alled a fa
et.

It is noteworthy that the number of inequalities ne
essary to des
ribe the 
onvex hull

of the set of solutions for an ip may be exponential. Hen
e, in these 
ases, it is impossible

to use a formulation 
ompletely des
ribing the 
onvex hull of the problem in an algorithm.

In this situation if we abandon the integrality 
onstraints and use a linear programming

algorithm the solution may not be an integral solution.

The formulation obtained from an integer program by abandoning its integrality 
on-

straints is 
alled a linear programming relaxation. Given two problems (RP )zR =

min{f(x) : x ∈ T ⊆ R
n} and (IP )z = min{c(x) : x ∈ X ⊆ R

n}, we say that (RP ) is a

relaxation of (IP ) if X ⊆ T and f(x) ≤ c(x)∀x ∈ X , then, it is easy to see that zR ≤ z.

This means that a linear programming relaxation provides a lower (dual) bound

2

for

the original ip problem.

Fortunately, we do not need the des
ription of the entire 
onvex hull to �nd an optimal

solution, we only need the inequalities that are a
tive in an optimal solution, see Figure 2.2.

Therefore, we 
an start with a weaker formulation and in
lude inequalities as they are

needed. Algorithms that use this idea are 
alled 
utting plane algorithms (
pa). Su
h

an algorithm works as follows: given an ip problem P , at ea
h iteration a linear relaxation

of P is solved. If the solution is integral, it must be optimal and the algorithm stops.

Otherwise, a inequality πx ≤ π0 valid for P and violated by the solution (su
h inequality

is 
alled a 
ut) is added to the problem and the pro
ess is repeated. At ea
h iteration

the value of the linear relaxation obtained in
reases (for a minimization problem) and

eventually it be
omes integral and hen
e, optimal. Figure 2.3 shows a representation of

an iteration of a 
pa where an inequality is added to 
ut o� a fra
tional solution.

2

for a maximization problem the dual bound provided by the linear programming relaxation would

be an upper bound.
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The problem of �nding a valid inequality that 
uts o� a fra
tional solution is 
alled the

separation problem. An algorithm to solve this problem is 
alled a separation routine,

i.e., a separation routine looks for valid inequalities that are violated by the 
urrent

solution. Gröts
hel, Lovász and S
hrijver showed the 
omplexity equivalen
e between

separation and optimization [22℄.

Figure 2.2: A formulation with inequalities that are a
tive in the optimal solution.

Figure 2.3: Formulation with a fra
tional optimal solution and a 
ut (represented by the

dashed line).

The �rst 
utting plane algorithm was introdu
ed by Gomory in 1958 [39℄. The 
uts

des
ribed by Gomory are 
alled Gomory's 
uts and although they guarantee to �nd an

optimal solution in �nite time, the original algorithm was very ine�
ient in pra
ti
e.

Another 
ommonly used te
hnique to solve ip problems isBran
h-and-Bound (b&b).

The basi
 idea behind a b&b algorithm is to de
ompose the problem in smaller and eas-

ier to solve parts and afterwards, use this information to solve the original problem. For

instan
e, let z = min{cx : x ∈ S}, we would like to partition S in S = S1 ∪ ... ∪ SK and

we have zk = min{cx : x ∈ Sk} for k = 1, ..., K and z = min{zk : k = 1, ..., K}. Noti
e
that the partition 
an be 
onstru
ted in an iterative fashion �rst dividing the set in a

small number of subsets and then dividing these subsets and so on. Figure 2.4 depi
ts a

representation of a partition of the set of feasible solutions.

A b&b algorithm 
an usually be represented by an enumeration tree. The partition

in Figure 2.5 is obtained by �xing binary variables to its possible values. It is 
lear from
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x1 x1

x2 x2

0 01

1 1

12

2

2

2

3 3

3 3

44 4,3

3,5

4,3

3,5(183/80, 7/2)

Figure 2.4: Partition of the set of feasible solutions in two sets. The �rst set 
orresponds

to the solutions satisfying x1 ≤ 2 and the se
ond x1 ≥ 3.

that image that a 
omplete enumeration would take a number of steps that is exponential

in the number of variables.

S

S S

S S S S

S S S S S S S S

0 1

0 0

000 0 0 0

0

0

1 1

1 1 1 1

1

11

1

1 10

0

11 00 01 0

X1= 0 X1= 1

X 2= 0

X3= 0

1

Figure 2.5: Enumeration tree of a b&b where the de
omposition is done by �xing variables

at di�erent values. Figure extra
ted from [44℄

Sin
e a 
omplete enumeration is impossible in pra
ti
e, we try to make the enumer-

ation impli
itly. This is done by pruning the enumeration tree using bound informa-

tion. To see why pruning is possible we just need to know the following property: let

S = S1∪...∪SK be a de
omposition of S, let zk = min{cx : x ∈ Sk} for k = 1, ..., K, let z̄k

be an upper bound on zk and zk be a lower bound on zk. Then z = min{zk : k = 1, ..., K}
is a lower bound on z and z̄ = min{z̄k : k = 1, ..., K} is an upper bound on z. In other

words, 
onsidering a minimization problem, the minimum value among the lower bounds

of all the nodes is a lower bound for the entire tree and the minimum value among the

upper bounds in every node is an upper bound for the entire tree. Understanding this

property, we 
an see that there are three types of possible pruning.

The �rst type of pruning is by optimality. This happens when the lower and upper

bounds are the same in a given node. It means that the solution obtained is optimal and,

therefore there is no reason to keep looking for a better solution in that sub-tree. An

example of pruning by optimization is shown in Figure 2.6. Another type of pruning is

by bound. This pruning happens when the global upper bound is smaller than the lo
al

lower bound of a given node. That means that no better bound 
an be produ
ed by the
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orresponding sub-tree hen
e, it 
an be 
ut from the enumeration. Figure 2.7 shows this

situation. The last type of pruning is by infeasibility, whi
h happens when there is no

feasible solution in a given node, making the entire sub-tree unfruitful.

S

S1 S2

27

13

20

20

25

15

S

S1 S2

20

25

25

15

Figure 2.6: Pruning of an enumeration tree by optimality. Figure extra
ted from [44℄

S

S1 S2

27

13

20

18

26

21

S

S1 S2

21

26

26

21

Figure 2.7: Pruning of an enumeration tree by bound. Figure extra
ted from [44℄

When a b&b algorithm is 
ombined with a 
pa we obtain a Bran
h-and-Cut (b&
)

algorithm. In this kind of algorithm, at ea
h node of the enumeration tree, a separation

routine is exe
uted to �nd violated valid inequalities. Therefore, the idea of a b&


algorithm is to use the strengths (and weaknesses) of b&b and 
pa at the same time.

Although linear relaxation is very 
ommonly used, it is not the only kind of relaxation

that exists. Another kind of relaxation is the Lagrangian Relaxation. Given an ip

(IP ):

(IP ) z = min cx

Ax ≤ b, (2.3)

Dx ≤ d, (2.4)

x ∈ Z
n
+,

suppose Ax ≤ b is a set of �ni
e� restri
tions while Dx ≤ d is a set of �hard� restri
tions.

The terms �ni
e� and �hard� here mean that if we remove the inequalities in Dx ≤ d

from (IP ), the resulting problem 
an be more easily solved. Then, in a lr the �hard�

inequalities are dualized by adding the term λ(Dx − d) to the obje
tive fun
tion for a

given ve
tor λ ≥ 0. The idea is to penalize the obje
tive fun
tion whenever an inequality

is violated. The resulting problem is:
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(IP (λ)) z(λ) = min cx+ λ(Dx− d)

Ax ≤ b,

x ∈ Z
n
+,

The problem (IP (λ)) is 
alled the Lagrangian Primal problem and for all λ ≥ 0,

it is a relaxation of (IP ), hen
e z(λ) ≤ z. However, it would be interesting to obtain a

value for λ so that z(λ) is as great as possible, thus providing the best dual bound. This


an be a
hieved by solving the Lagrangian Dual problem:

(LD) max{z(λ) : λ ≥ 0}

It is possible to prove that the dual bound obtained by solving the Lagrangian Dual

problem is at least as good as the one obtained from a linear relaxation. The Lagrangian

Dual problem 
an be solved using a Subgradient Method (sgm) as des
ribed in [4, 44℄.

The Lagrangian multiplier method was introdu
ed by Everett in 1963 [27℄, but it

be
ame popular after the works of Held and Karp in 1970 and 1971 [23, 24℄ solving large

instan
es (at the time) of the travelling salesman problem.

It is also possible that an ip problem have an exponential number of variables. In

this 
ase, it is 
learly not possible to solve the problem 
ontaining all the variables. So,

instead we iteratively solve a partial problem with a subset of variables and try to �nd a

variable that is not in the formulation and 
ould improve the value of the solution. The

problem of �nding su
h variables is the pri
ing problem. An iterative algorithm as this

is 
alled a 
olumn generation algorithm (
ga).

The term redu
ed 
ost of a variable is usually used to des
ribe how mu
h the obje
-

tive fun
tion has to improve before the 
orresponding variable 
an have a positive value

in an optimal solution. Therefore, the pri
ing algorithms look for variables with negative

redu
ed 
ost.

It is not hard to see that 
olumn generation is very similar to 
utting plane algorithms.

But while in 
pa we have separation pro
edures, in 
ga we have pri
ing pro
edures. In

fa
t, 
ga is the dual of 
pa. Therefore, 
ga 
an also be 
ombined with b&b to produ
e

what is named a Bran
h-and-Pri
e (b&p) algorithm. 
ga and b&p algorithms �rst

appeared in the 60's in [11, 20, 21℄.



Chapter 3

Integer programming approa
hes for

Minimum Stabbing Problems

This 
hapter 
orresponds to a paper published in Rairo-OR spe
ial issue of the 2nd Inter-

national Symposium on Combinatorial Optimization (ISCO 2012) under DOI: 10.1051/ro/

2014008 [37℄. The original publi
ation is available at www.rairo-ro.org and the 
opyright

is owened by EDP S
ien
es. The paper was 
o-authored by Cid C. de Souza, Yuri Frota

and Luidi Simonetti. In this paper, we present integer programming exa
t algorithms and

lagrangian relaxation heuristi
s for the problems of �nding perfe
t mat
hings, trees and

triangulations with minimum stabbing number. The paper presented at ISCO 2012 that

originated the arti
le 
orresponding to this 
hapter is [33℄.

The problem of �nding stru
tures with minimum stabbing number has re
eived 
onsid-

erable attention from resear
hers. Parti
ularly, [10℄ study the minimum stabbing number

of perfe
t mat
hings (mspm), spanning trees (msst) and triangulations (mstr) asso
i-

ated to set of points in the plane. The 
omplexity of the mstr remains open whilst the

other two are known to be NP-hard. This paper presents integer programming (ip) for-

mulations for these three problems, that allowed us to solve them to optimality through ip

bran
h-and-bound (b&b) or bran
h-and-
ut (b&
) algorithms. Moreover, these models

are the basis for the development of Lagrangian heuristi
s. Computational tests were 
on-

du
ted with instan
es taken from the literature where the performan
e of the Lagrangian

heuristi
s were 
ompared with that of the exa
t b&b and b&
 algorithms. The results

reveal that the Lagrangian heuristi
s yield solutions with minute, and often null, dual-

ity gaps for instan
es with several hundreds of points in small 
omputation times. To

our knowledge, this is the �rst 
omputational study ever reported in whi
h these three

stabbing problems are 
onsidered and where provably optimal solutions are given.

3.1 Introdu
tion

Given a set of points P in the plane, the geometri
 graph asso
iated to P is the graph

G(P ) = (V,E) whose verti
es are the points in P and whose edges are the straight line

28
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segments with both extremities in P . The stabbing number of a line ℓ passing through

a geometri
 (sub)graph G(P ) = (V,E) is de�ned as the number of edges in E having a

non-empty interse
tion with ℓ. Given a set L of straight lines, the stabbing number of

a (sub)graph G(P ) = (V,E) is the maximum number of interse
tions between any line

in L and the edges in E. The problem of �nding a stru
ture with minimum stabbing

number 
an be de�ned for any kind of stru
ture, e.g. Perfe
t Mat
hings, Spanning Trees,

Triangulations et
. So, for example, the problem of �nding the Minimum Stabbing Perfe
t

Mat
hing (mspm) 
an be des
ribed as follows: given a set of points P , and a set of straight

lines L, �nd a perfe
t mat
hing in the geometri
 graphG(P ), among every possible perfe
t

mat
hings in G(P ), having a stabbing number with minimum value. Two versions of the

problem are presented in [9, 10℄ and are related to the 
hoi
e of the set L. In the �rst

version, here referred as the general stabbing one, L is de�ned as the in�nite set formed by

all straight lines that 
an be drawn in the plane. In the axis parallel version, L is the, also

in�nite, set 
omposed solely by the verti
al and horizontal lines in the plane. Figure 3.1

illustrates the two versions of the problem with a triangulation of stabbing numbers 14

and 9, respe
tively.

Figure 3.1: A triangulation with general (axis parallel) stabbing number 14 (9).

Motivation. Stabbing problems have re
eived 
onsiderably attention in the Computa-

tional Geometry 
ommunity. In 2001 Mit
hell and O'Rourke published a list with thirty

open problems in the �eld [16℄, given rise to The Open Problems Proje
t [6℄, 
ontaining a

list of geometri
 problems whose 
omplexity, at that time, was unknown. The list, whi
h

is 
onstantly updated, is an invaluable sour
e of 
hallenging problems in Computational

Geometry. In [9, 10℄ general and axis parallel versions of the Minimum Stabbing Per-

fe
t Mat
hing (mspm), Minimum Stabbing Spanning Tree (msst) - problem #20 of the

aforementioned list - and Minimum Stabbing Triangulation (mstr) were dis
ussed. For

the �rst two problems approximation algorithms were presented and NP-hardness proofs
were given for both versions of the problems. Computational results are presented for the

mspm. The 
omplexity status of mstr 
ould not be established and no algorithms were

developed or tested to solve it. Heuristi
s for the spanning tree, perfe
t mat
hing and

triangulation stabbing problems were investigated in [17℄. These heuristi
s are mostly

based on greedy and divide-and-
onquer te
hniques. Contrarily to the Lagrangian heuris-

ti
s proposed here, they are not able to provide the duality gap asso
iated to the solution

they yield. In [17℄ the limited amount of information about 
omputational experiments

refers ex
lusively to the spanning tree 
ase. Other works related to �nding geometri
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stru
tures with minimum or low stabbing number in
lude [4℄, [1℄, [24℄ and [26℄.

Our 
ontribution. This paper presents two ip formulations for the mstr based on the

ideas des
ribed in [9, 10, 20℄ and one formulation for the msst whi
h explores the results

given in [9, 10, 15℄. Later, these formulations and a variation of the one des
ribed in

[9, 10℄ for the mspm are used to implement exa
t bran
h-and-bound (b&b) and bran
h-

and-
ut (b&
) algorithms for the 
orresponding problems, whi
h allowed, for the �rst

time in the literature, to obtain solutions with proven optimality. Besides, Lagrangian

relaxation (lr) heuristi
s based on the ip models for the three problems are presented

and appropriate subgradient methods are implemented. Computational results obtained

by the Lagrangian algorithms are reported with instan
es taken from the literature and

reveal that optimality or minute duality gaps are a
hieved in small 
omputation times.

In the triangulation 
ase, it was of paramount importan
e the realization of the relation

existing between the Minimum Weight Triangulation (mwt) and the mstr. This led to

the development of strong ip models for the latter and also to the usage of e�e
tive

algorithms to solve the mwt. As we will see later, su
h algorithms play an important

role in our Lagrangian heuristi
 for mstr.

Before 
ontinuing, we must observe that an early version of this paper appeared in the

Pro
eedings of ISCO 2012 [22℄. Thus, this work is to be seen as an extended and more


omplete version of that previous work.

Organization of the text. The remaining of this do
ument is organized as follows.

Se
tion 3.2 presents ip models for the problems studied. Se
tion 3.3 des
ribes how to

derive a lr heuristi
 for the problems from the ip models, whilst in Se
tion 3.4 we present

our 
omputational results. At last, in Se
tion 3.5 we draw some 
on
lusions and indi
ate

future resear
h dire
tions to be pursued.

3.2 Integer Programming Models

In the 
urrent se
tion we present ip models for the three problems under 
onsideration

in this paper, where the model for the mspm is extra
ted from [9, 10℄ and the models for

the msst and mstr are based on the ideas presented in those papers. The formulations

des
ribed here will be used in the implementation of exa
t b&b and b&
 algorithms.

Also, in Se
tion 3.3, we show how to obtain lrs for ea
h problem using the models

introdu
ed in this se
tion, and use them to produ
e primal and dual bounds for the true

optimum.

Stabbing Perfe
t Mat
hings. We �rst present the model for the mspm. We are given

the sets P and L of points and stabbing lines, respe
tively, and E denotes the set of edges

of the geometri
 graph G(P ). Variable k denotes the stabbing number and, therefore,



3.2. Integer Programming Models 31

must be minimized. Variable xij is set to 1 when the edge ij is in the solution and 0

otherwise.:

(MSPM) z = min k (3.1)

subje
t to

∑

ij∈E

xij = 1, ∀ i ∈ P, (3.2)

∑

ij∈E:i,j∈S

xij ≤ (|S| − 1)/2, ∀ S ⊂ P, |S| odd, (3.3)

∑

ij∈E:ij
⋂

s 6=∅

xij ≤ k, ∀ s ∈ L. (3.4)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (3.5)

In this formulation, 
onstraints (3.2) and (3.3) guarantee that the solution is a perfe
t

mat
hing. The �rst enfor
es ea
h vertex to have degree one and the se
ond � although,

satis�ed by any integral solution and, therefore, not stri
tly ne
essary for the 
orre
tness

of the model � strengthens the linear relaxation, as proved by Edmonds [8℄. The third


lass of inequalities is formed by the stabbing inequalities and they state that the sum of

the variables 
orresponding to the edges interse
ting a given line s ∈ L must always be

smaller or equal to the stabbing number, k. Noti
e that, as observed in [9, 10℄, in prin
iple,

this formulation in not �nite sin
e there are in�nitely many stabbing lines. However,


onsidering the axis parallel version, when sweeping a stabbing line in a dire
tion d, the

stabbing number only 
hanges at a point of P . For this reason, we only need to look

at a linear number of stabbing lines, thus, making the model �nite. Following a similar

reasoning, when 
onsidering the general version, we only need to look at a quadrati


number of lines, namely, those de�ned by ea
h pair of points in P .

Stabbing Spanning Trees. There are a number of known ip formulations for the Min-

imum Spanning Tree Problem (mst), in
luding some that de�ne the 
onvex hull of the

points 
orresponding to integer solutions. So, in order to de
ide whi
h one should be used

to build a formulation for the msst, we �rst implemented three of the strongest formu-

lations des
ribed in [15℄ for the mst. After a few 
omputational tests, we observed that

the dire
ted 
ut formulation had the best pra
ti
al performan
e 
ompared to the other

alternatives. Hen
e, we de
ide to use this model as the basis for our msst formulation

des
ribed below.

Consider a digraph D = (P,A), where A is the set of ar
s 
onne
ting ea
h pair of

verti
es in P , i.e., for ea
h edge ij ∈ E there is a pair of ar
s (i, j) and (j, i). We

arbitrarily set a vertex r as the root of the tree. The notation δ+(C) refers to the 
utset

dire
ted out of vertex set C and δ−(C) to the 
utset dire
ted into the vertex set C. The

variable yij = 1 if the tree 
ontains ar
 (i, j) when rooted at r and xij = 1 if one of the

ar
s (i, j) or (j, i) is in the tree with r as root. The relationship between y and x variables
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is established by 
onstraint (3.9).

(MSST ) z = min k (3.6)

subje
t to

∑

(i,j)∈δ+(C)

yij ≥ 1, ∀ C ⊂ V with r ∈ C (3.7)

∑

ij∈A

yij = |P | − 1, (3.8)

yij + yji = xij, ∀ij ∈ E (3.9)

∑

ij∈E:ij
⋂

s 6=∅

xij ≤ k, ∀ s ∈ L. (3.10)

yij ∈ B ∀(i, j) ∈ A (3.11)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (3.12)

As before, part of the formulation is 
omposed by a set of 
onstraints ((3.7), (3.8) and

(3.9) ) ensuring that the resulting solution is a geometri
 subgraph of the required type,

in this 
ase a spanning tree. The remaining 
onstraints are stabbing inequalities (3.10),

whi
h have the same meaning as before. Constraint (3.8) guarantees that the solution has

|P | − 1 ar
s, as required in a dire
ted spanning tree. Finally, 
onstraints (3.7) enfor
es

that the solution is a dire
ted 
onne
ted graph.

Stabbing Triangulations. Next, the ideas used in the models above and the ip models

for the mwt that 
an be found in [20℄ form the point of departure to build the Edge

and Triangle Stabbing models for the mstr. The �rst of these two models is simpler

and, for this reason, easier to use in a Lagrangian Relaxation algorithm. The se
ond,

although more 
ompli
ated, provides better bounds and, therefore, was used in a exa
t

b&b algorithm.

In the Edge Stabbing model (MSTE), PH is the set of verti
es on the 
onvex hull of

P ; a 
rossing set (Cr) is de�ned as a maximal set of edges whi
h are pairwise interse
ting

(endpoints ex
luded); the set of all 
rossing sets in G(P ) is denoted by SCr; for an edge

pq ∈ E, Cr(pq) denotes the set of edges interse
ting pq (again with endpoints ex
luded)

plus pq itself; the rest of the notation stands for the same as before. For every ij ∈ E,
xij = 1 if and only if the edge ij is in the triangulation. The variable k, on
e again,
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denotes the stabbing number. Then, the Edge Stabbing Model reads:

(MSTE) z = min k (3.13)

subje
t to

∑

ij∈E

xij = 3|P | − |PH | − 3, (3.14)

∑

ij∈Cr

xij ≤ 1, ∀ Cr ∈ SCr, (3.15)

∑

ij∈Cr(pq)

xij ≥ 1, ∀ pq ∈ E, (3.16)

∑

ij∈E:ij
⋂

s 6=∅

xij ≤ k, ∀ s ∈ L. (3.17)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (3.18)

In this model, (3.14) guarantees that the solution has the right number of edges re-

quired for a triangulation of P . Constraint (3.15) states that only one edge in a 
rossing

set 
an be in the solution, thus, ensuring planarity. Constraint (3.16) states that, either

pq or at least one of the edges in Cr(pq) must be in the solution, therefore, enfor
ing

maximality (re
all that a triangulation is a maximal planar subgraph of G(P )). It is

noteworthy that 
onstraint (3.16) is not stri
tly ne
essary for the formulation. However,

as observed in [20℄, it greatly enhan
es the 
omputational performan
e of the ip algo-

rithms. Constraint (3.17) states that, for ea
h stabbing line s in L, the number of edges

from triangulation that interse
t s is bounded from above by the stabbing number.

Another way to represent a triangulation using ip is to assign variables to the set

of triangles with verti
es in P . This idea was dis
ussed in [5℄ and in [20℄, where it was

shown that the dual bounds generated by the relaxation of the resulting ip dominate

those produ
ed by the previous formulation on edge variables. In the des
ription of the

Triangle Stabbing Model below, ∆(P ) is the set of empty triangles over P , i.e., triangles
that do not 
ontain any point P in their interior; L+(ij) and L−(ij) are the two half-

planes de�ned by the line 
ontaining ij; EH is the set of edges on the 
onvex hull of P .

For every triangle ijl ∈ ∆(P ), xijl = 1 if and only if the triangle ijl is in the triangulation.
The variable k has the same meaning as in the previous models.

(MSTT ) z = min k (3.19)

subje
t to

∑

ijl∈∆(P ) :

ijl⊂L+(ij)

xijl =
∑

ijl∈∆(P ) :

ijl⊂L−(ij)

xijl, ∀ij ∈ E \ EH , (3.20)

∑

ijl∈∆(P )

xijl = 1, ∀ ij ∈ EH , (3.21)

∑

ijl∈∆(P ):ijl
⋂

s 6=∅

csijlxijl ≤ k, ∀ s ∈ L. (3.22)

k ∈ Z, xijl ∈ B ∀ ijl ∈ ∆(P ). (3.23)

In the model above, 
onstraint (3.20) states that the number of triangles 
ontaining an
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edge ij (whi
h is not in EH) must be the same in both half-planes de�ned by the line 
on-

taining ij. As the edges in EH are present in every planar triangulation, 
onstraint (3.21)

ensures that a triangle 
ontaining one su
h edge is in the triangulation. Constraint (3.22)

states that the sum of the 
oe�
ients csijl of the triangles ijl interse
ting a line s of L 
an

not be larger than the stabbing number. A triangle ijl interse
ting a line s has 
oe�
ient

csijl = βs
ij + βs

il + βs
jl, where βs

ij = 1 if ij interse
ts s and is on the 
onvex hull, βs
ij = 0.5 if

ij interse
ts s but is not on the 
onvex hull and βs
ij = 0 if ij does not interse
t s.

Later we will see that both models presented in this se
tion for the mstr are used

in our implementations: (MSTT ) in the b&b (exa
t) algorithm and (MSTE) in the

Lagrangian heuristi
.

3.3 Lagrangian Relaxation

Using the ip formulations from the previous se
tion, we now derive Lagrangian relaxation

(lr) models for the three stabbing problems. We solve the dual of this relaxation via

the subgradient method (sgm), whi
h allows us to obtain a lower bound for the optimal

value of the problems. Besides, at ea
h iteration of the sgm, we 
ompute the primal

Lagrangian problem whose solution is a minimum perfe
t mat
hing, spanning tree and

triangulation, respe
tively for the mspm, msst and mstr, and, thus, 
an be used to

obtain upper bounds for these problems. For the basi
 theory of Lagrangian relaxation

the reader is referred to [27℄.

The presentation of our lr is based on a model for a generi
 stabbing problem (STAB),

presented below. This model is 
omposed by the generi
 
onstraints (3.25) that de�ne

the form of the subgraph of G(P ) to be found (in our 
ase either a perfe
t mat
hing, a

spanning tree or a triangulation) and the 
onstraints (3.26) whi
h de�ne that the stabbing

number of the subgraph is greater than or equal to the stabbing number of any line.

(STAB) z = min k (3.24)

subje
t to

Ax ≤ B, (3.25)

∑

ij∈E:ij
⋂

s 6=∅

xij ≤ k, ∀ s ∈ L. (3.26)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (3.27)

To obtain the lr (STAB(u)) of problem (STAB) we simply dualize the 
on-

straints (3.26), penalizing them in the obje
tive fun
tion. This operation results in the

following model for the Lagrangian primal problem:
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(STAB(u)) z(u) = min k −
∑

s∈L

us(k −
∑

ij∈E:ij
⋂

s 6=∅

xij) (3.28)

subje
t to

Ax ≤ B, (3.29)

k ∈ Z+, xij ∈ B ∀ ij ∈ E. (3.30)

Noti
e that the 
onstraints (3.25) that remain in the model are those that de�ne the

subgraphs of interest. Also, sin
e the 
onstraints being dualized are in the �≤� form, us is

non-negative for all s ∈ L. As a 
onsequen
e, the Lagrangian primal problem is equivalent

to the problem of �nding one su
h subgraph having minimum weight (the weight of the

subgraph being de�ned as the sum of its edge weights). In the Lagrangian 
ase, the weight

of edge ij is given by

cij =
∑

s∈L:s
⋂

ij 6=∅

us. (3.31)

From the Lagrangian theory, we know that whenever the primal problem 
an be solved

in polynomial time, as is the 
ase for the mspm and msst, we are able to obtain a dual

bound for the original problem in short 
omputation times. However, when the primal

problem is NP-hard, one may wonder if the relaxation is useful after all. This is pre
isely

the situation with the mstr sin
e the mwt was proven to be NP-hard in [19℄. However,

as we shall see later in Se
tion 3.4, there are highly e�e
tive algorithms to 
ompute large

subsets of optimal mwt solutions. As a result, one 
an expe
t to solve instan
es of the

mwt with several hundreds of points very qui
kly. Our approa
h relies on this observation

and the results reported in this paper 
on�rmed our expe
tations.

Now, as (STAB(u)) is a relaxation of (STAB), we know that z(u) ≤ z and, sin
e we

want to �nd the best possible bound, we must �nd the value of u that maximizes z(u),

i.e., we must solve the Lagrangian dual problem given by

(DL) vDL = max{z(u) : u ≥ 0}. (3.32)

Problem (DL) 
an be solved using the sgm as des
ribed in [27, 2℄. To this end, the

multipliers us are initialized with null values and are updated at iteration t by the formula:

ut
s = max(0, ut−1

s − µGt−1
s ). (3.33)

with µ given by

µ =
π(dist× ub− lb)
∑

s∈L(G
t−1
s )2

, (3.34)

and Gt−1
s , the s-th 
omponent of the subgradient of z(u) in ut−1

, given by

Gt−1
s = k −

∑

ij∈E:ij
⋂

s 6=∅

x(ut−1)ij . (3.35)

In the formulas above, ub and lb are, respe
tively, an upper and a lower bound for the



3.3. Lagrangian Relaxation 36

optimal value, dist is a perturbation fa
tor (arbitrarily set to 1.05 in our experiments)

and π is the step size (in our experiments initialized at 2 and halved every 30 iterations

without improvement in the lower bound). The solution of the Lagrangian primal problem

is denoted by x(u) and the supers
ripts indi
ate the iteration at whi
h ea
h variable is

been 
onsidered (e.g., ut
is the Lagrangian multipliers ve
tor at iteration t).

Now, noti
e that, after dualizing 
onstraints (3.26), the obje
tive fun
tion of

(STAB(u)) 
an be rewritten as:

z(u) = min k(1−
∑

s∈L

us) +
∑

ij∈E

xij

∑

s∈L:s
⋂

ij 6=∅

us. (3.36)

Therefore, if

∑

s∈L us > 1, the �rst term of that equation would have a negative value and,

hen
e, the larger the value of k, the smaller the value of z(u). As a result, when optimizing

the (primal) Lagrangian problem, if the 
ost of variable k is negative, the lower bound

z(u) is unlimited and hen
e useless. Analogously, if the 
ost of k is non negative, the

obvious solution is to set k to zero. However, by doing so, we may waste the opportunity

to produ
e a better dual bound for z. To over
ome these situations, we pro
eed in the

following way. In the solution of (STAB(u)), k is set, respe
tively, to the best upper (ub)

or lower (lb) bound available for z depending on whether its 
ost is negative or not. In

fa
t, in our implementation, when the 
ost is non negative, k is set to ⌈lb⌉/2 rather than

to lb to avoid an early 
onvergen
e of the sgm. This tends to in
rease the number of

iterations of the method, augmenting the 
han
es of the Lagrangian heuristi
 to obtain a

better feasible solution.

Noti
e that the dual bound obtained by setting k to ⌈lb⌉/2 or ub, depending on whether
(1 −∑s∈L us) is negative or non-negative, is valid. This is so be
ause the model for the

primal Lagrangian problem remains 
orre
t if the 
onstraint requiring that k belongs to

Z+ is repla
ed by one that for
es k to be in an interval between proper lower and upper

bounds. It turns out that ⌈lb⌉/2 and ub are, respe
tively, valid lower and upper bounds

for k, ensuring the 
orre
tness of the 
omputation of the dual bounds for z(u).

The termination 
riteria implemented in our sgm are a
hieved when one of the follow-

ing situations o

ur: the di�eren
e between the upper and lower bounds is smaller than

1 (one), the value of π is smaller than 0.005, or yet, a prede�ned time limit is rea
hed.

Lagrangian Heuristi
. Ea
h iteration of the sgm solves a minimum weight problem

(a mwpm, a mst, or a mwt, whi
hever is the 
ase). The solution of this problem is

a subgraph of G(P ) satisfying the property of interest (i.e., it is a perfe
t mat
hing, a

spanning tree, or a triangulation) and, therefore, is also feasible for the original stabbing

problem. Thus, an upper (primal) bound for the optimal value of the stabbing problem


an be immediately obtained by 
omputing the stabbing number of this subgraph.

Solving the Lagrangian Primal. For the mstr, (STAB(u)) 
orresponds to a mwt.

As 
ited before, the mwt is known to be NP-hard but there are algorithms to �nd subsets
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of optimal solutions. One of these algorithms is the one to �nd a Lo
ally Minimum Trian-

gulation Skeleton (lmt-skeleton) [7, 3℄. This algorithm is based on the lo
al minimality

property of line segments (edges).

Given a planar triangulation T , let ij be an edge of T that is not in the 
onvex hull.

Then, ij must be the side of two empty triangles ijk and ijl in T . These two triangles

together form a quadrilateral ijkl having ij and kl as its diagonals. We say that ij is

lo
ally minimum with respe
t to ijkl if this quadrilateral is not 
onvex or, else, if the

weight of ij is smaller than the weight of kl. Figure 3.2 illustrates this de�nition. If for

i

j

k

l

i

jk l

Figure 3.2: In both 
ases ij is lo
ally minimum with respe
t to the quadrilateral ijkl.

any pair of points {k, l} in P − {i, j} the edge ij is lo
ally minimum with respe
t to the

quadrilateral ijkl, then ij is said to be lo
ally minimum. When all the edges in a planar

triangulation are lo
ally minimum, we say that the triangulation itself is lo
ally minimum.

Clearly, any minimum weight triangulation is lo
ally minimum. However, not all lo
ally

minimum triangulations have minimum weight. The lmt-skeleton is the subset of edges

that are present in every lo
ally minimum triangulation and, thus, is also a subset of any

minimum weight triangulation.

In [7℄ the authors proposed a polynomial algorithm to �nd a lmt-skeleton and in [3℄

the algorithm was improved. The 
omputational experiments performed with these algo-

rithms showed that, together with a dynami
 programming algorithm to �nd a mwt for


onvex polygons, it was 
apable to �nd the mwt of instan
es with thousands of points in

quite small running times. The sour
e 
ode for this last algorithm written by Mulzer is

available online at [18℄.

Therefore, we 
an make use of the lmt-skeleton algorithm to solve the Lagrangian

Primal Problem through the following steps. First we determine three subsets Tm, Tp and

Tf of edges whi
h, respe
tively, are mandatory (the lo
ally minimum ones), forbidden

(those interse
ted by an edge in Tm) and un
ertain (the remaining edges) in a optimal

solution, using a lmt-skeleton algorithm [7, 3℄. Then, we are left with a 
onstrained

mwt problem where all edges of Tm are for
ed to be in the solution, the ones in Tf are

eliminated from the solution and those in Tp are the ones for whi
h we have to make a

de
ision. Typi
ally, after �xing the appropriate variables to one or zero, the size of the

mwt models redu
es dramati
ally. This renders the usage of an ip solver to 
ompute

the model via a standard b&b algorithm a viable option, even for instan
es 
ontaining

hundreds of points. Later we will see that this pro
edure is 
apable to solve the Lagrangian

primal problems for mstr in an extremely e�e
tive fashion in pra
ti
e.

To 
on
lude this se
tion, we re
all that the Lagrangian primal problems for the mspm

and msst are, respe
tively, the mwpm and the mst. To solve the �rst one we use the
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Blossom V algorithm des
ribed in [14℄, whose sour
e 
ode is publi
ly available. The mst

problem is solved by a simple implementation of Prim's algorithm, whi
h 
an be found in

several textbooks on Algorithms.

3.4 Computational Results

We now des
ribe the experiments we 
arried out to test the performan
e of the algorithms

dis
ussed in the previous se
tions. As mentioned earlier, we implemented exa
t b&


algorithms for the mspm and msst. An implementation of an exa
t b&b algorithm

for the mstr was also done. All these exa
t algorithms were based on the ip models

dis
ussed in Se
tion 3.2. We also implemented lr algorithms for all the models using the

ideas dis
ussed in Se
tion 3.3. All the experiments des
ribed in this se
tion 
onsider the

axis parallel version of the problem.

Computational Environment. To perform the experiments, we used a 
omputer with

an Intel Core 2 Quad 1.60GHz, 4096 KB 
a
he, 4GB of RAM memory and a Ubuntu

10.04.4 OS. The programming language used was C/C++ with g

 4.4.3 
ompiler and every

program was 
ompiled with -O5 optimization �ag. We also used the XPRESS-Optimizer

64-bit v22.01.09 ip solver. The default 
uts, heuristi
s and prepro
essing were turned

o�. Also, the optimizer was set to use a single pro
essor 
ore.

3.4.1 mspm Experiments

In order to evaluate the performan
e of our algorithms for the mspm, we exe
uted ex-

periments with both, the exa
t b&
 algorithm and the lr algorithm and then we tried

to 
ompare the results, although this kind of 
omparison is sometimes tri
ky, sin
e the

algorithms are di�erent in nature.

For the exa
t b&
 algorithm the model was initially loaded using only the degree

inequalities (3.2) and stabbing inequalities (3.4). The heuristi
 proposed in [12℄ was

implemented to separate violated inequalities (3.3). Only when the heuristi
 fails to �nd

a 
utting plane, we resort to the Padberg-Rao exa
t algorithm des
ribed in [21℄. We also

use a family of 
onditional 
uts [11℄ that are not guaranteed to be valid for the problem,

but 
an be used as a 
utting plane as follows. Suppose an upper bound Ub of the problem

is available. One 
an note that during the sear
h for the optimal solution of the mspm, we

are looking for solutions of value better (lesser) than Ub. In this sense, any inequality 
an

be used as a 
utting plane, provided that is satis�ed by every feasible solution of value

less than Ub. In this vein, we 
onsidered the following family of 
onditional 
uts:

∑

ij∈E[V+
s ]

xij ≥
⌈ |V +

s | − Ub + 1

2

⌉

, ∀s ∈ L, (3.37)

∑

ij∈E[V−
s ]

xij ≥
⌈ |V −

s | − Ub + 1

2

⌉

, ∀s ∈ L, (3.38)
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where V +
s and V −

s are sets 
omposed by verti
es of V in the interior of one of the two

half-planes de�ned by the line s. Besides, the sets E[V +
s ] and E[V −

s ] are formed by all

the edges with both endpoints in V +
s and V −

s , respe
tively. It 
an be seen in inequalities

(3.37) that a solution of value Ub has at most Ub edges 
rossing s (ea
h one 
onne
ted

with a vertex in V +
s ). Hen
e, there are (|V +

s | −Ub) dis
onne
ted verti
es in V +
s that need

⌈(|V +
s | −Ub)/2⌉ edges in E[V +

s ] to 
omplete a mat
hing. Then, it follows that (3.37) 
an

be used as a 
onditional 
ut be
ause no solution of value Ub (or greater) is feasible in

(3.37). Similar arguments lead to an analogous 
on
lusion for inequalities (3.38).

The 
utting plane strategy adds the inequalities with the highest per
entage of viola-

tion, as long as this value is at least 1% (to 
ontrol the tailing o� e�e
t). No more than 50

inequalities are added per iteration. As for the bran
hing strategy, we sele
t 5 variables

whose values in the 
urrent linear relaxation are 
losest to 0.5 and use strong bran
hing

to sele
t whi
h variable to bran
h on.

The primal heuristi
 used in b&
 is based on the linear relaxation of the problem.

From a relaxed solution x, the method attempts to �nd a mat
hing M ⊆ E maximizing

∑

ij∈M xij . The method begins with an empty set M and builds a mat
hing, one edge at

a time. At ea
h iteration, one edge (i, j) ∈ E\M is greedily 
hosen a

ording to the value

of xij (prioritizing the highest ones) and inserted into M . The pro
edure is repeated until

a perfe
t mat
hing is rea
hed. In a se
ond phase, the mat
hing M may be improved by a

lo
al sear
h pro
edure. The neighborhood of the 
urrent solution M is de�ned as the set

of all feasible mat
hings obtained by ex
hanging pairs of edges (i, j) and (l, m) by edges

(i, l) and (j,m). The pro
edure iteratively repla
es the 
urrent solution by the one with

minimum 
ost within its neighborhood, halting when no better solution is found in that

way. This primal heuristi
 is applied at every node of the sear
h tree.

For the lr algorithm, a Lagrangian relaxation of the model des
ribed for the mspm

in Se
tion 3.2 is obtained (see Se
tion 3.3). The standard subgradient method is then

exe
uted to 
ompute the Lagrangian dual problem. As said before, the Lagrangian primal

problem is solved by an implementation of the Blossom V algorithmwhose 
ode is available

for download in the web. It is worth noting that this program only deals with instan
es

having integer weights. However, in the usual Lagrangian s
heme, the edge weights are

often not integer. To 
ir
umvent this di�
ulty, we multiplied all the edge weights in the

Lagrangian primal problem by 106 before 
alling the routine. This is not expe
ted to


reate major numeri
al problems and, in the end, is not more harmful to 
omputation

than the toleran
e of 10−6
that we set for the ip solver.

As we will see in the results part of this subse
tion, the Lagrangian algorithm produ
es

good bounds with small 
omputation times. This suggests that it 
an be used together

with the exa
t b&
 algorithm to obtain better results. We used the primal bound from

the lr algorithm to warm start the b&
 algorithm. Our tests showed that, for the three

problems studied, the use of primal bounds from lr algorithm to warm start the exa
t

algorithms yielded better overall results. For this reason, we de
ided to use these results

and 
ompare them with the pure Lagrangian results.
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Instan
es. For the mspm, we experimented with the same instan
es tested in [9℄ (ex
ept

for �ve tsplib instan
es [23℄ that are obviously infeasible sin
e they have an odd number

of verti
es). These in
lude 5 instan
es from tsplib, 16 from the 
lustered C1 and C2


lasses of Solomon's Vehi
le Routing Problem ben
hmark [25℄, 25 regular grid instan
es

(5× 5 to 20× 20 grids with 20% of its points randomly removed) and 11 instan
es with

up to 100 random points in the plane.

For the three problems under investigation, a time limit of 1, 800 se
onds was set for

the exe
ution of any algorithm. Noti
e, however, that in the tables 3.4 to 3.7, o

asionally

the time is bigger than this limit. This happens for two reasons, �rst, the times presented

for warm started exa
t algorithm (wsea) are the sum of the time spent by the Lagrangian

and the b&
 or b&b algorithms, therefore 
ould go up to 3, 600. Se
ond, the time limit

is veri�ed at 
ertain points in the program 
odes and, it 
ould be that the time elapsed

between two 
he
k-points is not negligible. This situation arises, for example, when the

model of a big instan
e is being uploaded by the ip solver. In our experiments an additional

timeout s
ript running on the operating system level was used that for
es the pro
ess to

halt after 2, 000 se
onds. In 
ase the pro
ess ends naturally, a bound is always produ
ed.

On the other hand, if the pro
ess is killed by the timeout s
ript, no output is produ
ed.

The latter situation is signalized in the tables by the symbol ‡. Also, duality gaps were


omputed through the formula 100 × (ub − lb)/ub, where ub and lb denote, respe
tively,

the upper and lower bounds yielded by the algorithm.

Results. As we previously stated, all the wsea outperformed the 
old started exa
t

algorithms and, for this reason, we 
ompare the wsea against the lr algorithms. Obvi-

ously, it does not make sense to just 
ompare the times of these two kinds of algorithms

be
ause, �rst, as said before, the time of the wsea is the sum of the lr algorithm and the

b&
 or b&b algorithm, thus, is always greater than the lr alone. Se
ond, the algorithms

are di�erent in nature. So, the purpose of our 
omparison is to determine whether the

wsea 
an improve the bounds obtained by the lr algorithm, how mu
h and how fast.

Our analysis of the results will be done in three parts: the �rst for the tsp and 
lustered

instan
es, the se
ond for the random instan
es and the third for the grid instan
es.

The results for the �rst set of instan
es are summarized in Table 3.1. We observe

that the b&
 algorithm proved optimality in all the 
ases within the �xed time limit.

The Lagrangian sgm always 
onverged, proving optimality in all but one 
ase (berlin52),

where there is an absolute gap of one unit (25.0%). For this set of instan
es the wsea

provided an average improvement of 1.19% in the relative gap with an average in
reasing

of 4.48 se
onds in time when 
ompared to the lr algorithm.

Results for the random instan
es 
an be seen in Table 3.2. On
e again the lr algorithm

always 
onverged. However, whilst the exa
t algorithm proves optimality for all instan
es,

the Lagrangian failed to prove optimality in four 
ases, where gaps of one unit remain.

The average improvement in the relative gap obtained from the wsea was 8.64% and the

average time in
reasing was 1.74 se
onds.

The results for the grid instan
es are displayed in Table 3.3. This ben
hmark was the

one for whi
h the lr heuristi
 had the worst performan
e. The Lagrangian heuristi
 was
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Table 3.1: Results for mspm tsp and 
lustered instan
es.

Instan
e LB UB Time GAP%

lr b&
 lr b&
 lr b&
 lr b&


a280 11 11 11 11 0.83 13.34 0.00 0.00

berlin52 3 4 4 4 0.86 1.23 25.00 0.00

lin318 9 9 9 9 29.17 52.43 0.00 0.00

p
b442 17 17 17 17 27.71 78.79 0.00 0.00

ulysses22 2 2 2 2 0.00 0.03 0.00 0.00


101 7 7 7 7 0.05 0.41 0.00 0.00


102 7 7 7 7 0.05 0.43 0.00 0.00


103 7 7 7 7 0.05 0.41 0.00 0.00


104 7 7 7 7 0.05 0.43 0.00 0.00


105 7 7 7 7 0.06 0.43 0.00 0.00


106 7 7 7 7 0.05 0.42 0.00 0.00


107 7 7 7 7 0.05 0.43 0.00 0.00


108 7 7 7 7 0.06 0.42 0.00 0.00


201 6 6 6 6 0.08 0.55 0.00 0.00


202 6 6 6 6 0.09 0.54 0.00 0.00


203 6 6 6 6 0.09 0.55 0.00 0.00


204 6 6 6 6 0.08 0.55 0.00 0.00


205 6 6 6 6 0.09 0.55 0.00 0.00


206 6 6 6 6 0.08 0.53 0.00 0.00


207 6 6 6 6 0.08 0.53 0.00 0.00


208 4 4 4 4 1.15 1.89 0.00 0.00

unable to prove optimality in 11 out of 25 
ases, leaving gaps of one unit in 10 
ases and

two units in 1 
ase. The exa
t algorithm, on the other hand, was able to prove optimality

for all of the grid instan
es. The improvement in the relative gap a
hieved using the exa
t

algorithm was 4.85% and the average in
reasing of time was 8.95 se
onds.

Therefore it is possible to say that the lr algorithm have a very ni
e performan
e

for these sets of instan
es. Also, the pri
e in time ne
essary to prove optimality using

the warm started b&
 algorithm seems rather small. We re
all that b&
 is an exa
t

algorithm while lr is an heuristi
. So, when 
omparing their performan
es, one has to

bear in mind that they are rather di�erent in nature.

In order to 
ompare our results against those presented in [9℄ we implemented the

model presented in that paper and exe
uted a b&
 algorithm in the same 
omputational

environment used to test ours. This experiment showed that the algorithm using the

model from [9℄ was unable to prove optimality in six, 
ases among all the instan
es tested

for the mspm, within a time limit of 1, 800 se
onds. Considering all the test 
ases for the

mspm, the average time of our wsea was 5.91 se
onds while the implementation of the

algorithm from [9℄ had an average time of 213.10 se
onds.

3.4.2 msst Experiments

To analyze the performan
e of our algorithms for the msst, again we implemented an

exa
t b&
 algorithm. On
e more, we found that warm starting the b&
 algorithm with
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Table 3.2: Results for mspm random instan
es.

Instan
e LB UB Time GAP%

lr b&
 lr b&
 lr b&
 lr b&


rand10a 2 2 2 2 0.00 0.00 0.00 0.00

rand10b 2 2 2 2 0.00 0.00 0.00 0.00

rand10
 2 2 2 2 0.00 0.00 0.00 0.00

rand10d 2 2 2 2 0.00 0.01 0.00 0.00

rand10e 2 2 2 2 0.00 0.01 0.00 0.00

rand50a 3 3 3 3 0.15 0.67 0.00 0.00

rand50b 3 3 3 3 0.64 1.18 0.00 0.00

rand50
 3 4 4 4 0.62 1.20 25.00 0.00

rand50d 3 4 4 4 0.64 1.15 25.00 0.00

rand50e 3 4 4 4 0.77 1.32 25.00 0.00

rand100a 4 5 5 5 6.40 22.85 20.00 0.00

Table 3.3: Results for mspm grid instan
es.

Instan
e LB UB Time GAP%

lr b&
 lr b&
 lr b&
 lr b&


grid5a 4 4 4 4 0.00 0.01 0.00 0.00

grid5b 4 4 4 4 0.00 0.01 0.00 0.00

grid5
 4 4 4 4 0.01 0.02 0.00 0.00

grid5d 4 4 4 4 0.00 0.01 0.00 0.00

grid5e 4 4 4 4 0.00 0.02 0.00 0.00

grid8a 6 6 6 6 0.10 0.15 0.00 0.00

grid8b 6 6 6 6 0.06 0.12 0.00 0.00

grid8
 5 5 6 5 0.19 0.28 16.67 0.00

grid8d 6 6 6 6 0.00 0.06 0.00 0.00

grid8e 6 6 7 6 0.30 0.35 14.29 0.00

grid10a 7 7 7 7 0.22 0.43 0.00 0.00

grid10b 6 6 7 6 0.64 0.83 14.29 0.00

grid10
 7 7 8 7 0.69 2.04 12.50 0.00

grid10d 7 7 7 7 0.19 0.41 0.00 0.00

grid10e 7 7 8 7 0.59 1.73 12.50 0.00

grid15a 10 10 10 10 1.59 3.61 0.00 0.00

grid15b 10 10 11 10 5.45 50.42 9.09 0.00

grid15
 10 10 10 10 1.32 3.28 0.00 0.00

grid15d 10 10 10 10 2.94 4.96 0.00 0.00

grid15e 10 10 10 10 1.77 4.04 0.00 0.00

grid20a 13 13 15 13 25.65 111.31 13.33 0.00

grid20b 13 13 14 13 26.28 40.70 7.14 0.00

grid20
 13 13 14 13 28.16 47.46 7.14 0.00

grid20d 13 13 14 13 24.06 39.43 7.14 0.00

grid20e 13 13 14 13 31.02 63.31 7.14 0.00
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the primal bound obtained from the Lagrangian sgm gives us better results than simply

exe
uting the b&
. Therefore, all 
omparisons in this subse
tion are made between the

wsea and the lr algorithm.

For the exa
t algorithm we used the model des
ribed in Se
tion 3.2. Initially the model

was loaded without 
onstraints (3.7). In the bran
h-and-
ut method, at ea
h node of the

sear
h tree, the linear relaxation of msst is solved. If in the optimal solution all variables

are integral, the node is pruned by optimality. Otherwise, the solution is fra
tional and

violated valid inequalities are sought by solving a separation problem. The polynomial-

time algorithm presented in [13℄, based on the minimum edge 
ut problem in graphs, is

used to separate the Steiner 
ut inequalities (3.7).

As for the lr algorithm, the implementation was done as des
ribed in Se
tion 3.3,

with the primal Lagrangian problem been solved by a simple implementation of Prim's

algorithm for the mst.

Instan
es. As a test suite we used 25 instan
es from tsplib [23℄ and the 25 regular grid

instan
es used in [9℄ for the Minimum Stabbing Perfe
t Mat
hing Problem. The 
hoi
e

of these instan
es is based on the fa
t that the tsplib is a well known test library for

geometri
 problems and, besides, some tsplib and all grid instan
es were also used in [9℄

for the mspm. The 
hoi
e of the instan
e sizes was made seeking tests that were hard

enough to provide meaningful 
omputation times, allowing a more pre
ise 
omparison of

the algorithms.

Results. We divide our analysis into two parts, one for the tsp instan
es and another

for the grid instan
es.

The results for the tsp part are displayed in Table 3.4. One 
an see that the lr

algorithm 
onverged in all the 
ases within the time limit, proving optimality in 11 of

the 25 of them. The wsea was unable to yield any output within the time limit for

just one of the test instan
es. Among the 24 remaining instan
es, the b&
 algorithm

proved optimality in 16 
ases. It is interesting to noti
e that the sgm was able to prove

optimality in one 
ase where the b&
 was unable to do so (despite the warm start), while

the opposite o

urred 6 times. For this set of instan
es, when 
ompared with the lr

algorithm, the improvement in the relative gap provided by the wsea was 2.38% and the

ne
essary extra time to a
hieve this improvement was 857.79 se
onds.

Analyzing the results for the se
ond group of instan
es given in Table 3.5, we observe

that the performan
e of the lr algorithm is not as good as for the tsp instan
es, sin
e

optimality was a
hieved in fewer 
ases. The b&
 failed to de
lare optimality in only 3

out of the 25 grid instan
es while the sgm failed in 14 other 
ases. In the grid instan
es,

the exe
ution of the wsea improved the relative gap by 4.59% at the 
ost of 391.88 more

se
onds, both in average.

The analysis of the improvement relative to the Lagrangian sgm algorithm and of

the additional time spent to obtain su
h gain when using wsea points to a remarkable

performan
e of the lr algorithm.
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Table 3.4: Results for msst tsp instan
es.

Instan
e LB UB Time GAP%

lr b&
 lr b&
 lr b&
 lr b&


berlin52 6 6 6 6 0.15 3.77 0.00 0.00


h130 7 7 8 8 12.21 1813.38 12.50 12.50


h150 8 8 9 8 19.35 161.09 11.11 0.00

eil76 8 8 8 8 1.08 1.48 0.00 0.00

gil262 11 11 12 12 83.45 1907.68 8.33 8.33

gr202 9 9 10 9 58.70 1456.22 10.00 0.00

kroA100 7 7 8 7 4.85 1177.36 12.50 0.00

kroA150 8 8 9 9 14.69 1819.08 11.11 11.11

kroA200 9 9 9 9 29.95 1154.45 0.00 0.00

kroB100 7 7 7 7 3.98 5.20 0.00 0.00

kroB150 8 8 9 9 19.81 1823.96 11.11 11.11

kroB200 9 9 10 10 45.91 1858.87 10.00 10.00

kroC100 7 7 7 7 4.21 46.09 0.00 0.00

kroD100 7 7 7 7 3.27 4.40 0.00 0.00

kroE100 7 7 7 7 2.67 3.91 0.00 0.00

lin318 16 16 18 18 36.84 1860.34 11.11 11.11

p
b442 34 33 34 34 56.02 1915.33 0.00 2.94

pr124 24 24 24 24 22.47 26.06 0.00 0.00

pr136 17 17 18 17 2.75 87.52 5.56 0.00

pr144 21 21 21 21 0.50 1292.64 0.00 0.00

pr152 11 11 12 11 6.88 536.45 8.33 0.00

pr226 72 72 72 72 4.43 16.54 0.00 0.00

pr264 23 23 29 29 13.93 1821.02 20.69 20.69

rd100 7 7 8 7 4.98 247.18 12.50 0.00

rd400 11 ‡ 13 13 661.39 ‡ 15.38 ‡
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Table 3.5: Results for msst grid instan
es.

Instan
e LB UB Time GAP%

lr b&
 lr b&
 lr b&
 lr b&


grid5a 7 7 7 7 0.01 0.10 0.00 0.00

grid5b 7 7 7 7 0.01 0.10 0.00 0.00

grid5
 7 7 7 7 0.01 0.09 0.00 0.00

grid5d 7 7 7 7 0.01 0.09 0.00 0.00

grid5e 7 7 7 7 0.01 0.09 0.00 0.00

grid8a 10 10 10 10 0.04 1.57 0.00 0.00

grid8b 10 10 10 10 0.03 0.19 0.00 0.00

grid8
 10 10 10 10 0.07 0.22 0.00 0.00

grid8d 11 11 13 11 0.15 1.10 15.38 0.00

grid8e 11 11 11 11 0.08 0.24 0.00 0.00

grid10a 13 13 14 13 0.44 4.31 7.14 0.00

grid10b 12 12 12 12 0.17 0.44 0.00 0.00

grid10
 13 13 14 13 0.45 3.78 7.14 0.00

grid10d 13 13 13 13 0.18 0.48 0.00 0.00

grid10e 13 13 14 13 0.47 9.17 7.14 0.00

grid15a 18 18 20 18 2.97 117.97 10.00 0.00

grid15b 20 20 23 20 3.17 368.78 13.04 0.00

grid15
 18 18 19 18 2.87 84.31 5.26 0.00

grid15d 19 19 21 19 2.35 125.61 9.52 0.00

grid15e 18 18 20 18 2.44 828.30 10.00 0.00

grid20a 24 24 27 27 15.48 1828.94 11.11 11.11

grid20b 24 24 27 27 11.16 1824.14 11.11 11.11

grid20
 25 25 28 25 11.06 1415.05 10.71 0.00

grid20d 25 25 29 29 9.98 1827.44 13.79 13.79

grid20e 25 25 31 25 11.95 1430.14 19.35 0.00
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3.4.3 mstr Experiments

The �rst stage of our testing 
omprised a 
omparison of the two alternative b&b algo-

rithms that arise from the Edge and Triangle stabbing models dis
ussed in Se
tion 3.2.

For the mwt, it was observed in [20℄ that the b&b algorithm performs better when it uses

an ip model with variables de�ned on triangles than with variables asso
iated to edges.

Hen
e, a similar behavior was expe
ted from the 
orresponding models when applied to

the solution of the mstr. Indeed, this was what happened and, thus, all the b&b results

reported below were obtained using the Triangle Stabbing Model. More pre
isely, the

results refer to a warm started exa
t algorithm (wsea) using the mentioned formulation.

Regarding the lr algorithm, we implemented the subgradient method using both the

Edge Stabbing Model and the Triangle Stabbing Model. Re
all that, irrespe
tive to whi
h

of the two models we 
onsider, when the stabbing 
onstraints are relaxed we are left with

an ip formulation for the mwt problem (we use the term �relaxed� to refer to these

models). However, in the subgradient pro
edure several su
h problems have to be solved

at ea
h iteration. This is done in two steps. The �rst step 
onsists in the 
al
ulation of

the lmt-skeleton while the se
ond step a
tually solves the mwt problem in 
ase the �rst

step fails to do so.

Observe that the edge weights are the only di�eren
es between the instan
es of the

mwt problems solved in two iterations of the subgradient method. The 
omputation

of the lmt-skeleton only depends on the edge 
osts. Therefore, for the �rst step, it is


onvenient from a 
omputational point of view to have the problem de�ned in terms of

the Edge Stabbing Model, as it allows for a qui
k re
al
ulation of these 
osts. On the

other hand, in the se
ond step, when it 
omes to a
tually solve the mwt instan
e, we rely

on the results reported in [20℄ where it was observed that the b&b algorithm for the mwt

performs mu
h better with the relaxed Triangle Stabbing Model than with the relaxed

Edge Stabbing Model. Now, given two iterations of the subgradient method, the triangle


osts are the only di�eren
es between the asso
iated mwt instan
es. These 
osts 
an be

easily 
omputed after the lmt-skeleton has been found in the �rst step. Some additional

details are given below.

As said in Se
tion 3.3, to solve the Lagrangian primal problem, we used the lmt-

skeleton 
ode written by Beirouti and Snoeyink and downloadable at [18℄. A few mod-

i�
ations were introdu
ed in this program to make possible the usage of arbitrary edge

weights instead of Eu
lidean ones. This in
luded, for instan
e, the removal of the di-

amond test, a simple and e�e
tive way to determine whether an edge 
ould be part of

a triangulation of minimum (Eu
lidean) length. Su
h 
hanges do not have signi�
antly

damaged the algorithm's performan
e, relative to Eu
lidean weights, 
on�rming it as a

viable option for general mwts.

After running the lmt-skeleton, quite often we still do not have a triangulation. Hen
e,

a b&b algorithm is used to solve the 
onstrained mwt that remains, i.e., a mwt with sets

of mandatory and forbidden edges. Sin
e we use the (relaxed) Triangle Stabbing Model as

the input for the b&b algorithm, these sets of edges have to be pro
essed to identify the


orresponding sets of triangles. Thus, if an empty triangle 
ontains a forbidden edge, the

asso
iated variable is set to zero while, if all the edges forming its sides are mandatory,
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this variable is set to one.

Instan
es. The test suite used to analyze the performan
e of the mstr algorithms was

the same as in the msst 
ase. The reasons that support this 
hoi
e are the same as

before. Also, the time limit parameters inside the programs and in the timeout s
ript

remain un
hanged, i.e., 1, 800 and 2, 000, respe
tively. On
e again, the symbol ‡ in the

tables with results signalizes that the pro
ess was killed by the timeout s
ript and, thus,

did not produ
ed any output.

Results. As in the msst 
ase, we divide our analysis into two parts, one for the tsp

instan
es and the other for the grid instan
es. Con
erning the tsp instan
es, the b&b

algorithm had its pro
ess killed in 12 out of the 25 instan
es and, when this was not the


ase, it proved optimality in all but three instan
es, where there is a 3.33% gap (the gap

exists be
ause of the 1, 800 se
onds time limit). On the other hand, the Lagrangian sgm


onverged in all 
ases within the imposed time limit, with an average gap of 2.57%. The

performan
e of the heuristi
 is remarkable. Optimality was proven for 7 instan
es, one

of whi
h 
ould not be rea
hed by the exa
t algorithm within the time limit (the inverse

situation o

urred four times). In 13 instan
es the di�eren
e between the upper and

lower bounds was of just one unit. Using the wsea we were able to improve the bounds

provided by the lr algorithm in average by 0.97% while the time spent for this was 592.14

se
onds in average. These results are summarized in Table 3.6.

The results for the grid instan
es 
an be seen in Table 3.7. For those instan
es, the

Lagrangian subgradient method was able to solve to optimality every instan
e. The b&b

algorithm was unable to solve 4 out of 25 grid instan
es. In fa
t, only one of the 20× 20

grid instan
es was solved within the time limit (the pro
esses were killed by the timeout

s
ript) and every other grid instan
e was solved to optimality. Regarding this set of

instan
es, it is simply not worth exe
uting a wsea, sin
e the lr is able to solve them

relatively easy.

3.5 Con
lusions and Future Dire
tions

To our knowledge, this paper proposes the �rst exa
t approa
h to ta
kle the mstr. Con-


erning the mspm, our b&
 algorithm is able to solve exa
tly all instan
e and runs in

smaller 
omputational times when 
ompared to the results reported in [9℄. As for the

msst, we developed an exa
t b&
 algorithm based on a stronger formulation than the

one introdu
ed in [9, 10℄. This algorithm obtained optimal solutions for several instan
es

as well as high quality primal and dual bounds for many others in short 
omputation

times.

Moreover, we also devised Lagrangian heuristi
s for the three problems and 
ondu
ted

several 
omputational experiments with them. These tests showed that they rapidly yield

solutions with small 
osts, often proven optimal ones. It should be noti
ed that, we are
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Table 3.6: Results for mstr tsp instan
es.

Instan
e LB UB Time GAP%

lr b&b lr b&b lr b&b lr b&b

berlin52 24 24 24 24 7.70 9.11 0.00 0.00


h130 32 ‡ 33 33 165.09 ‡ 3.03 ‡

h150 34 ‡ 35 35 268.69 ‡ 2.86 ‡
eil76 32 32 33 32 112.64 178.18 3.03 0.00

gil262 49 ‡ 50 50 1779.50 ‡ 2.00 ‡
gr202 42 ‡ 42 42 615.63 ‡ 0.00 ‡
kroA100 29 29 30 30 107.21 1967.38 3.33 3.33

kroA150 35 ‡ 36 36 330.66 ‡ 2.78 ‡
kroA200 40 ‡ 41 41 736.80 ‡ 2.44 ‡
kroB100 29 29 30 30 119.87 1976.12 3.33 3.33

kroB150 34 ‡ 35 35 408.44 ‡ 2.86 ‡
kroB200 39 ‡ 40 40 705.75 ‡ 2.50 ‡
kroC100 29 29 29 29 96.18 161.44 0.00 0.00

kroD100 29 29 29 29 30.45 86.90 0.00 0.00

kroE100 29 29 30 30 98.93 1962.76 3.33 3.33

lin318 69 ‡ 71 71 1803.40 ‡ 2.82 ‡
p
b442 157 ‡ 180 180 1827.53 ‡ 12.78 ‡
pr124 48 49 49 49 405.61 463.30 2.04 0.00

pr136 66 66 67 66 589.67 658.60 1.49 0.00

pr144 74 74 74 74 675.39 848.44 0.00 0.00

pr152 45 45 45 45 420.93 1015.55 0.00 0.00

pr226 141 150 150 150 1884.99 2855.06 6.00 0.00

pr264 90 ‡ 92 92 1811.44 ‡ 2.17 ‡
rd100 29 29 29 29 17.45 82.05 0.00 0.00

rd400 52 ‡ 55 55 1803.73 ‡ 5.45 ‡
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Table 3.7: Results for mstr grid instan
es.

Instan
e LB UB Time GAP%

lr b&b lr b&b lr b&b lr b&b

grid5a 22 22 22 22 0.17 0.17 0.00 0.00

grid5b 21 21 21 21 0.27 0.36 0.00 0.00

grid5
 21 21 21 21 0.17 0.17 0.00 0.00

grid5d 21 21 21 21 23.14 23.21 0.00 0.00

grid5e 20 20 20 20 0.18 0.18 0.00 0.00

grid8a 34 34 34 34 2.20 2.36 0.00 0.00

grid8b 34 34 34 34 3.48 3.71 0.00 0.00

grid8
 34 34 34 34 1.61 1.81 0.00 0.00

grid8d 35 35 35 35 1.07 1.26 0.00 0.00

grid8e 35 35 35 35 1.11 1.35 0.00 0.00

grid10a 44 44 44 44 8.01 9.03 0.00 0.00

grid10b 42 42 42 42 3.31 3.93 0.00 0.00

grid10
 47 47 47 47 9.52 10.48 0.00 0.00

grid10d 46 46 46 46 2.61 3.43 0.00 0.00

grid10e 46 46 46 46 7.05 8.10 0.00 0.00

grid15a 66 66 66 66 75.13 127.64 0.00 0.00

grid15b 68 68 68 68 13.65 70.36 0.00 0.00

grid15
 64 64 64 64 20.70 67.39 0.00 0.00

grid15d 66 66 66 66 39.24 86.21 0.00 0.00

grid15e 67 67 67 67 79.53 141.38 0.00 0.00

grid20a 89 89 89 89 500.78 2491.35 0.00 0.00

grid20b 86 ‡ 86 86 73.09 ‡ 0.00 ‡
grid20
 90 ‡ 90 90 1781.70 ‡ 0.00 ‡
grid20d 87 ‡ 87 87 204.77 ‡ 0.00 ‡
grid20e 90 ‡ 90 90 1213.83 ‡ 0.00 ‡
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not aware of another work in the literature whi
h reports on 
omputational results for

the mstr.

Future dire
tions in this resear
h are 
urrently being 
onsidered. This in
ludes improv-

ing the performan
e of our heuristi
s by adding new features to it, su
h as, a pro
edure

for variable �xing in the traditional Lagrangian fashion and a fast lo
al sear
h to redu
e

primal bounds.
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ga. In this paper, we show

the 
omplexity of �nding a triangulation with minimum stabbing number (mstr) both in

axis-parallel and general 
ases, and �nding a triangulation with minimum 
rossing number

(m
tr) in the general 
ase. Moreover, 
omputational experiments with an iterative

rounding algorithm for the mstr, using axis-parallel instan
es, is presented and the results

support the 
onje
ture that it provides an approximation for the stabbing problem.

In this paper we 
onsider the 
omputational 
omplexity of the Minimum Stabbing

Triangulation Problem (mstr), both in the axis-parallel and general 
ases, and the 
om-

putational 
omplexity of the Minimum Crossing Triangulation Problem (m
tr) in the

general 
ase. The 
omplexity 
lass of these problems were left as open questions in [9, 10℄.

Here we prove that the three problems are NP-hard, thus answering those open questions.
In addition, we perform a 
omputational study based on two di�erent polynomial-time

heuristi
 approa
hes, one based on Lagrangian relaxation, the other on iterated rounding.

With respe
t to the pra
ti
al obje
tive of �nding good solutions in reasonable time, we

demonstrate that both of these algorithms yield feasible solutions that are within a few

per
entage points of the optimal solutions. With respe
t to the theoreti
al obje
tive of

establishing a polynomial-time algorithm that gets within a 
onstant fa
tor of the opti-

mum even in the worst 
ase, we provide eviden
e supporting the 
onje
ture that iterated

rounding may be su
h an approximation algorithm.

54
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4.1 Introdu
tion

Triangulating a set of points is one of the basi
 problems of Computational Geometry:

given a set P of n points in the plane, 
onne
t them by a maximal set of non-
rossing

line segments. This implies that all bounded fa
es of the resulting planar arrangement

are triangles, while the exterior fa
e is the 
omplement of the 
onvex hull of P .

Triangulations are 
omputed and used in a large variety of 
ontexts, e.g., in mesh

generation, but also as a stepping stone for other tasks. While it is not hard to 
ompute

some triangulation, most of these tasks require triangulations with spe
ial properties that

should be optimized. Examples in
lude maximizing the minimum angle, minimizing the

total edge weight or the longest edge length.

When dealing with stru
tural or algorithmi
 properties, a relevant obje
tive fun
tion

is the stabbing number: for a given set of line segments, this is the maximum number

of segments that are en
ountered (in their interior or at an endpoint) by any line. If

we 
onsider only axis-parallel lines, we get the axis-parallel stabbing number. A 
losely

related measure de�ned by Matou²ek [14℄ is the 
rossing number, whi
h is the number of


onne
ted 
omponents of the interse
tion of a line with the union of line segments

1

. When


onsidering stru
tures like triangulations, the 
rossing number is pre
isely one more than

the maximum number of triangles interse
ted by any one line.

Stabbing problems have been 
onsidered for several years. The 
omplexity of many

algorithms in 
omputational geometry is dire
tly dependent on the 
omplexity of ray

shooting; as des
ribed by Agarwal [1℄, the latter 
an be improved by making use of span-

ning trees of low stabbing number. A majority of previous work on stabbing and 
rossing

problems has fo
used on extremal properties. Settling the 
omplexity of Minimum Stab-

bing Number for spanning trees was one of the original 30 outstanding open problems of


omputational geometry on the list by Mit
hell and O'Rourke [15℄. (An up-to-date list is

maintained online by Demaine, Mit
hell, and O'Rourke [8℄.) In parti
ular, problems in

the 
ontext of triangulation are highly relevant. One of the theoreti
ally best performing

data stru
tures for ray tra
ing in two dimensions is based on a triangulation of the polyg-

onal s
ene; see Hershberger and Suri [12℄: in their �pedestrian� approa
h to ray shooting,

the 
omplexity of a query is simply the number of triangles visited, i.e., 
orresponds pre-


isely to the stabbing number. Held, Klosowski, and Mit
hell [11℄ investigate 
ollision

dete
tion in a virtual reality environment, again, based on �pedestrian� ray shooting. In

other related work, Aronov et al. [5℄ have performed an experimental study of the 
om-

plexity of ray tra
ing algorithms and run-time predi
tors, whi
h in
lude average number

of interse
tion points for a transversal line, and depth 
omplexity. Agarwal, Aronov, and

Suri [2℄ investigate extremal properties of the stabbing number of triangulations in three

dimensions, where the stabbed obje
ts are simpli
es; see also Aronov and Fortune [6℄ for

this problem. Shew
huk [19℄ shows that in d dimensions, a line 
an stab the interiors of

Θ(n⌈d/2⌉) Delaunay d-simpli
es. This implies, in parti
ular, that a Delaunay triangulation

in the plane may have linear stabbing number. Another 
losely related variant is studied

by de Berg and van Kreveld [7℄: the stabbing number of a de
omposition of a re
tilin-

1

This should not be 
onfused with the 
rossing number in graph drawing, whi
h is the total number

of 
rossing line segments.
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ear polygon P into re
tangles is the maximum number of re
tangles interse
ted by any

axis-parallel segment that lies 
ompletely inside of P ; they prove that any simple re
ti-

linear polygon with n verti
es admits a de
omposition with stabbing number O(logn),

and they give an example of a simple re
tilinear polygon for whi
h any de
omposition

has stabbing number Ω(log n). They generalize their results to re
tilinear polygons with

re
tilinear holes. Furthermore, Tóth [20℄ showed that for any subdivision of d-dimensional

Eu
lidean spa
e, d ≥ 2, by n axis-aligned boxes, there is an axis-parallel line that stabs at

least Ω(log1/(d−1) n) boxes, whi
h is the best possible lower bound. A 
on
ept similar to

the 
rossing number was introdu
d by Ai
hholzer et al. [3℄ under a di�erent name. They


all a polygon k-
onvex, if every line interse
ts it in at most k 
onne
ted 
omponents. In

the followup paper [4℄, Aurenhammer et al. studied the 
on
ept of k-
onvex point sets:

does a given set P of n planar points allow a polygon that is k-
onvex? Clearly, this is


losely related to de
iding whether P allows a simple polygon of 
rossing number at most

2k.

All this makes it 
lear that 
omputing a triangulation of low stabbing or low 
rossing

number (for general or axis-parallel stabbing lines) are highly important problems. Three

of the four variants have been left open for many years. In [9, 18℄ it was proved that the

problem of �nding a triangulation with minimum 
rossing number (m
tr) is NP-hard
in the axis-parallel 
ase. However, the more interesting 
ase of general orientation has

remained an open problem. Furthermore, for either version of the stabbing problem (for

axis-parallel lines or those of arbitrary orientation), no 
omplexity result have been estab-

lished so far. (As it turns out, [10℄ 
ontains an erroneous statement in the introdu
tion

that results for the stabbing number are established in the paper. This is not the 
ase,

the only hardness result 
ontained is for the axis-parallel 
rossing number.)

In this paper we to show that the Minimum Stabbing Triangulation Problem (mstr)

is NP-hard both in the axis-parallel and general 
ases. We then present a proof that

the m
tr, in the general 
ase, is also NP-hard. This 
loses all remaining gaps in the


omplexity analysis of optimal stabbing and 
rossing numbers for triangulations. In ad-

dition, we perform a 
omputational study that supports the 
onje
ture that a heuristi


based on iterated rounding applied to an LP relaxation may provide a 
onstant-fa
tor

approximation algorithm.

The paper is organized as follows: in Se
tion 4.2 some basi
 
on
epts are de�ned

and the problems are stated, Se
tion 4.3 presents an NP-hardness proof for the mstr
in the axis-parallel 
ase, Se
tion 4.4 shows a proof that mstr is NP-hard for general

orientation, while Se
tion 4.5 
ontains a proof of NP-hardness of m
tr in the general


ase. Se
tion 4.6 provides our 
omputational study, with some 
on
ludig thoughts in

Se
tion 4.7.

4.2 Preliminaries

Given a set of points P in the plane, the geometri
 graph G(P ) = (V,E) indu
ed by P

is the 
omplete graph su
h that the verti
es of V are in one-to-one 
orresponden
e with

the points in P and E is 
omposed of the set of all straight line segments having one point
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of V at ea
h end. Now, let l be a line in the plane and G′(P ) = (V,E ′) be a subgraph

of G(P ). The stabbing number of line l relative to G′(P ) is the number of edges in

E ′
interse
ted by l. Moreover, given a set of lines L, the stabbing number of graph

G′(P ) relative to L is the maximum stabbing number among all lines in L.

Regarding the set of lines L, two 
hoi
es were 
onsidered in [9, 18℄. The �rst 
omprises

the set of all axis-parallel lines in the plane. The se
ond is formed by all lines in the plane,

independent of their dire
tions. From now on, the �rst 
hoi
e will be referred to as the

axis-parallel 
ase and the latter as the general 
ase.

Given a set of points P and a 
hoi
e of L, the minimum stabbing triangulation problem

asks for a subgraph G′(P ) = (V,E ′) of G(P ) = (V,E) that 
orresponds to a triangulation

and has the minimum stabbing number among all possible triangulations.

A di�erent but related quantity is the 
rossing number. The 
rossing number

of a line l in the plane relative to a subgraph G′(P ) = (V,E ′) of G(P ) = (V,E) is the

number of 
onne
ted 
omponents in the interse
tion of l and G′(P ). Given a set of lines

L in the plane, the 
rossing number of graph G′(P ) relative to L is the maximum


rossing number among all lines in L.

From the above de�nitions, we obtain the minimum 
rossing triangulation problem,

in whi
h one seeks a subgraph G′(P ) = (V,E ′) of G(P ) = (V,E) that 
orresponds to a

triangulation and has the minimum 
rossing number among all possible triangulations.

Figure 4.1 shows a triangulation and a set of stabbing lines for the general 
ase.

Line l in this drawing has stabbing number 14 and 
rossing number 2, while line r has

both stabbing and 
rossing numbers equal to 8. On the other hand, Figure 4.2 shows a

triangulation and a set of stabbing lines in the axis-parallel 
ase. Line s has stabbing and


rossing numbers equal to 8, while line t has stabbing number 11 and 
rossing number 6.

r     

l     

Figure 4.1: A triangulation with a general set of lines.

4.3 The Complexity of Finding a Triangulation with

Minimum Axis-Parallel Stabbing Number

We use a terminology similar to the one presented in [9, 18℄, whi
h is explained below.

We 
onsider a set P of points (verti
es) in the plane and the 
orresponding geometri


graph G(P ) as de�ned in the previous se
tion.
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t   
s   

Figure 4.2: A triangulation with an axis-parallel set of lines.

Thus, given P , a horizontal line is a maximal set of verti
es that are 
ollinear in

horizontal dire
tion. A verti
al line is a maximal set of verti
es whi
h are 
ollinear in

verti
al dire
tion. A row is 
omposed by two horizontal lines (with no other horizontal

line in the middle) and the spa
e between them. A 
olumn is the verti
al equivalent of

a row. An st-row 
onsists of three 
onse
utive horizontal lines and the spa
es between

them. Finally, an st-
olumn is formed by three 
onse
utive verti
al lines and the spa
es

between them.

The idea of the hardness proof for the axis-parallel 
ase of mstr is based on the

observation that in this problem, the 
riti
al stabbers, i.e., those that have the greatest

stabbing number, are those on horizontal or verti
al lines, while in the m
tr, the 
riti
al

stabbers, i.e., those that have the greatest 
rossing number, are the ones between hori-

zontal or verti
al lines. This observation allows us to adapt the stru
ture of the proof in

[9, 18℄ to the mstr.

Next we present three lemmas that de�ne properties that are useful for the proof of

Theorem 4.1.

Lemma 4.1. Let T be a triangulation in G(P ). Consider an st-row formed by three

horizontal lines, la, lb and lc in P , having a, b and c verti
es, respe
tively, with lb being

the middle line. If the number of edges of T in la, lb and lc are, respe
tively, a − ia − 1,

b − ib − 1 and c − ic − 1, then a horizontal stabber on lb has stabbing number at least

a+ 3b+ c + ia + ic − 3.

Proof. It is easy to see that a horizontal stabber on lb stabs all the edges having some

point in the spa
e between la and lb, whi
h is equal to the 
rossing number of a stabber

between these lines. Moreover, as stated in [10℄, Se
tion 1.1, � 2, the latter is equal to

the number of triangles plus one. From Lemma 4 in [10℄, this 
rossing number is at least

a + b + ia + ib − 1. Again, one 
an easily see that a horizontal stabber on lb also stabs

all the edges having some point between lb and lc. Hen
e, following the same reasoning

as before, we 
an 
on
lude that this 
ontributes b + c + ib + ic − 1 units to the stabbing

number. Clearly, su
h a horizontal stabber also stabs the edges on lb, whi
h 
ontributes

b− ib − 1 units to the stabbing number. There is, however, an interse
tion between these

sets of edges whenever ib 6= 0. When this happens, for ea
h two neighboring verti
es u

and v in lb for whi
h there is no edge (u, v), exa
tly one edge is 
ounted both in the set
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between la and lb and in the set between lb and lc; in our 
ount of stabbing numbers,

ea
h missing edge in lb 
ontributes one unit to the set between la and lb and one unit

to the set between lb and lc. Therefore, we must subtra
t ib from the stabbing 
ounter.

Hen
e, we 
an 
on
lude that the stabbing number of a horizontal stabber on lb is at least

a+ b+ ia + ib − 1 + b+ c+ ib + ic − 1 + b− ib − 1− ib = a + 3b+ c+ ia + ic − 3.

Similar arguments 
an be used to show that the stabbing number of a verti
al line lb,

whi
h is the middle line in an st-
olumn 
omposed by la, lb and lc, is at least a+3b+ c+

ia + ic − 3, with a, b, c, ia, ib and ic de�ned as before.

The next lemma helps determining the stabbing number of lines 
rossing a stru
ture

that is later used as a variable gadget in the proof of Theorem 4.1.

Lemma 4.2. Let T be a triangulation in G(P ). Consider an st-
olumn formed by three

verti
al lines, la, lb and lc in P , having a, b and c verti
es, respe
tively, with lb being

the middle line. Let the number of edges of T in la, lb and lc be, respe
tively, a − ia − 1,

b− ib−1 and c− ic−1. Moreover, for ea
h of these lines, 
onsider the pairs of 
onse
utive

verti
es with no edges of T 
onne
ting them, say, {ua, va} in la, {ub, vb} in lb and {uc, vc}
in lc. Let ja, jb and jc be the number of horizontal edges in T between the three pairs

{ua, va}, {ub, vb} and {uc, vc}, respe
tively. Suppose that ja = jc > jb and every horizontal

edge 
rossing the spa
e between ub and vb also 
rosses the ones between ua and va and

between uc and vc. Then a verti
al stabber on lb has stabbing number of at least a+ 3b+

c+ ia + ic + ja + jc − 5.

Proof. This lemma is very similar to Lemma 4.1, ex
ept that now we have horizontal

edges 
rossing the spa
e between spe
i�
 pairs of verti
es, a situation that is illustrated

in Figure 4.3, in whi
h arrows point to lines la, lb and lc. Thus, we start by making

some 
hanges in the 
al
ulations of the number of triangles between la and lb in order to


onsider the ja horizontal edges 
rossing the spa
e between ua and va.

Noti
e that there is one triangle interse
ting the spa
e between la and lb for ea
h edge

in la. We denote this set of triangles by A. Besides, for ea
h missing edge in la, there are

at least two triangles interse
ting the spa
e between la and lb. Let Ia denote this set of

triangles. Finally, for ea
h horizontal edge ea between ua and va , there is one triangle

above ea and one triangle below ea; we let Ja denote this set of triangles. Similarly, we

de�ne sets B, Ib and Jb in lb.

Thus, the number of triangles in the spa
e between la and lb is given by the sum

of the 
ardinalities of the sets A, B, Ia, Ib, Ja and Jb minus the 
ardinality of their

interse
tions. There are only four interse
tions to 
onsider: the ones between Ja and B,

between Ja and Jb, between Ja and Ia and, �nally, between Jb and Ib. It is easy to see

that |Ja ∩ B| ≤ ja − jb, |Ja ∩ Jb| = 2jb, |Ja ∩ Ia| ≤ 2 and |Jb ∩ Ib| = 2.

The exa
t 
ardinality of Ja∩B and Ja∩Ia depends on the 
hoi
e of triangulations that

o

ur with the extreme horizontal edges between ua and va, with, say, (xu1, xu2) being

the 
losest to ua and (xv1, xv2) being the 
losest to va. If, for instan
e, (xu1, xu2) forms

a triangle with ua, then |Ja ∩ B| ≤ ja − jb − 1 and |Ja ∩ Ia| ≥ 1. However, note that

|Ja ∩ B|+ |Ja ∩ Ia| = ja − jb.
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As a 
onsequen
e, the number of triangles in the spa
e between la and lb is equal to

|A|+ |B|+ |Ia|+ |Ib|+ |Ja|+ |Jb|− |Ja∩B|− |Ja∩ Ia|− |Ja∩Jb|− |Jb∩ Ib| ≥ (a− ia−1)+

(b− ib−1)+(2ia)+(2ib)+(2ja)+(2jb)− (ja− jb)− (2jb)−2 = a+ b+ ia+ ib+ ja+ jb−4.

We 
an 
al
ulate the number of triangles in the spa
e between lb and lc in the same

way we did for la and lb and 
on
lude that it must be at least b+ c+ ib + ic + jb + jc − 4.

The stabbing number of a line on lb is equal to the sum of the number of triangles in

the spa
e between la and lb, the number of triangles in the spa
e between lb and lc plus

two (on ea
h side, a line on lb stabs one edge more than the number of triangles), plus the

number of edges in lb whi
h is equal to b− ib−1, minus the number of triangles that are in

both spa
es. The triangles whi
h are in both spa
es are those in sets Ib and Jb, subtra
ting

the interse
tion between them. Therefore, the stabbing number of a line on lb is at least

(a+ b+ ia+ ib+ ja+ jb−4)+(b+ c+ ib+ ic+ jb+ jc−4)+2+(b− ib−1)− (2ib)− (2jb)+2

= a + 3b+ c+ ia + ic + ja + jc − 5.

l l la b cl l la’ b’ c’

Figure 4.3: Extended re
tangle of a variable and lines of the situations des
ribed in

Lemma 4.2 and Lemma 4.3.

Next we state a lemma that helps us to determine the stabbing number of a line on

the border of a variable gadget, whi
h will be useful for proving Theorem 4.1.

Lemma 4.3. Let T be a triangulation in G(P ). Consider an st-
olumn formed by three

verti
al lines, la, lb and lc in P , having a, b and c verti
es, respe
tively, with lb being the

middle line. Let the number of edges of T in la, lb and lc be, respe
tively, a−ia−1, b−ib−1

and c− ic −1. Moreover, let jc denote the number of horizontal edges in T between a pair

of verti
es {uc, vc} in lc that have no edges 
onne
ting them. Then a verti
al stabber on lb
has stabbing number of at least (a+b+ia+ib−1)+(b+c+ib+ic+jc−4)+(b−ib−1)−ib =

a+ 3b+ c + ia + ic + jc − 6.

Proof. The situation 
onsidered in this lemma is shown in Figure 4.3, in whi
h the verti
al

lines indi
ated by the arrows labelled la′ , lb′ and lc′ play the roles of lines la, lb and lc in

this lemma, respe
tively. Using the same reasoning as in the proof of Lemma 4.2, we �nd

that the stabbing number of a line on lb is equal to the number of triangles between la
and lb plus one, plus the number of edges on lb, plus the number of triangles between lb
and lc plus one minus the 
ardinality of the interse
tion of these sets.
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The only set that di�ers from those 
al
ulated in the proof of Lemma 4.2 is the set of

triangles between lb and lc. The size of it is given by the formula |B|+ |C|+ |Ib|+ |Ic|+
|Jc| − |Jc ∩B| − |Jc ∩ Ic|, where all items are de�ned as in the proof of Lemma 4.2.

The 
ardinalities of the sets Jc ∩ B and Jc ∩ Ic depend on the same 
hoi
es of trian-

gulations for the extreme horizontal edges as in the 
ase of sets Ja ∩B and Ja ∩ Ia in the

proof of Lemma 4.2. We 
on
lude that in this 
ase we have |Jc ∩ B|+ |Jc ∩ Ic| = jc + 1.

Therefore, the number of triangles between lb and lc is at least (b− ib − 1) + (c− ic −
1) + 2ib + (2ic − 2) + 2jc − (jc + 1) = b+ c+ ib + ic + jc − 5. So the stabbing number of a

line on lb is at least (a+ b+ ia+ ib−2)+1+(b+ c+ ib+ ic+ jc−5)+1+(b− ib−1)− ib =

a+ 3b+ c + ia + ic + jc − 6.

We are now ready to provide the main result of this se
tion. We present a redu
tion

from 3-SAT to the mstr in the axis-parallel 
ase, thus proving that the latter is NP-hard.
Theorem 4.1. Finding a triangulation with minimum axis-parallel stabbing number is

NP-hard.
Proof. As stated earlier, the proof goes along the same lines as the one given in [9, 18℄ for

the NP-hardness of the problem of �nding a triangulation with minimum axis-parallel


rossing number. It is based on a redu
tion from 3-SAT and, to fa
ilitate the under-

standing, our explanation uses the same example as in the 
ited paper. Thus, Figure 4.6

gives an idea of the mstr instan
e obtained from the 3-SAT instan
e B(x0, x1, x2) =

(x0 ∨ x1 ∨ x2) ∧ (x0 ∨ x1 ∨ x2) ∧ (x0 ∨ x1 ∨ x2).

In this proof we show that an instan
e of 3-SAT is satis�able if and only if the 
orre-

sponding mstr instan
e has an axis-parallel stabbing number of at most 5K−3 for some

value K whi
h, in our 
onstru
tion, is the maximum number of verti
es in any horizontal

or verti
al line. The next de�nition is used in the arguments that follow.

We say that an st-row (st-
olumn) is full if it is 
omposed by three horizontal (verti
al)

lines having K verti
es ea
h. Similarly, we say that a row (
olumn) is full, whenever its


omposing horizontal (verti
al) lines have K verti
es ea
h.

The 
onstru
tion. The idea behind the 
onstru
tion is very similar to the one for the

NP-hardness of the axis-parallel 
rossing number. In the next paragraphs we des
ribe

the essential 
omponents of the 
onstru
tion, su
h as variable gadgets, literal gadgets,


lause gadgets and how the surroundings of these gadgets should be 
onstru
ted in order

to a
hieve the desired stabbing number.

Variable gadget. A variable gadget is 
omposed of two sets of eight verti
es forming

re
tangles with three verti
es on ea
h side. The two re
tangles of a variable are horizon-

tally aligned; together they represent a variable xi. The strip indu
ed by the left re
tangle

is 
alled the xi-
olumn, while the strip indu
ed by the right re
tangle is the xi-
olumn of

the variable. Figure 4.4 shows the variable gadget (shaded), whi
h is analogous to the

one in [9, 18℄.

The triangulations of both re
tangles are identi
al, ex
ept for the middle horizontal

edge, whi
h is present in one of the re
tangles and missing in the other. The strip indu
ed
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Figure 4.4: A variable gadget with verti
es added to its right. Here we assume that the

number of o

urren
es of the most frequent literal is t = 2.

by the re
tangle with the missing horizontal edge is 
alled the true-
olumn of the variable

and the strip indu
ed by the other re
tangle is the false-
olumn. A setting in whi
h the

left 
olumn (xi-
olumn) is the false-
olumn, is the false setting, while the other possible

setting is the true setting.

The width of ea
h re
tangle must be the smallest power of two greater or equal to

four times the number of o

urren
es of the most frequent literal. Therefore, the width of

a re
tangle is at most eight times the number of o

urren
es of the most frequent literal.

This is the ne
essary width to a

ommodate all the literals and full 
olumns between

them as we shall see later.

Around the variables. The st-rows and st-
olumns neighboring the re
tangles of a

variable gadget are full. Therefore, from Lemma 4.1, the edges in the 
onvex hull of

these re
tangles must be present in any triangulation with minimum stabbing number.

Suppose an edge is missing in the upper boundary of a variable's re
tangle. Then we

apply Lemma 4.1 and 
on
lude that the stabbing number of the middle horizontal line

of the st-row is greater than 5K − 3, be
ause the st-row 
omposed by the horizontal line


ontaining the upper boundary and the two horizontal lines above it is full. A similar

reasoning 
an be used for the st-row in the lower boundary and the st-
olumns surrounding

them. Hen
e, all the edges must be present in the 
onvex hull of the re
tangles in any

triangulation with minimum stabbing number.

At the rows above and below the re
tangles, the horizontal distan
e between the

verti
es within the verti
al strip de�ned by the re
tangles is halved at ea
h horizontal

line farther to the horizontal lines in the boundary of the gadget. Thus, if the number of

o

urren
es of the most 
ommon literal is t, the verti
es within the verti
al strip will have

a horizontal distan
e of one unit after Θ(log t) rows. The re
tangle of a variable plus the

verti
es lo
ated above and below it within its verti
al strip, until and in
luding the lines

where the horizontal distan
e between the verti
es is of one unit, 
ompose what we 
all

an extended re
tangle of a variable. An example of an extended re
tangle of a variable is

shown shaded in Figure 4.3.

In order to ensure that one of the re
tangles of a variable will have a missing horizontal

edge and the other will have it present, the horizontal line 
ontaining these verti
es must

have K − 1 verti
es, while the two horizontal lines above it and the two horizontal lines

below it must have K verti
es. Thus, by Lemma 4.1, there 
an be only one edge missing in

this middle horizontal line, otherwise the stabbing number would be greater than 5K−3.

The 
orre
t horizontal vertex 
ount must be guaranteed by pla
ing the proper number

of verti
es to the right of the variable gadgets and in the right side of the horizontal lines
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above and below the gadget. Let h be the height of an extended re
tangle of a variable.

Thus, the �rst line above the 
entral horizontal line will have 20 = 1 vertex missing at

the right end, the se
ond line above the 
entral horizontal line will have 20 + 2 × 21 = 5

verti
es missing at the right end and the yth line above the horizontal 
entral line will

have 1 + 2
∑y−1

i=1 2
i
verti
es missing at the right end, where y ≤ h/2. If y is odd, the �rst

missing vertex will be at the se
ond position from the right. If y is even, the �rst missing

vertex will be at the third position from the right. After line (h/2), every horizontal

line has the same number of missing verti
es. These missing verti
es appear at the right

end side of the 
onstru
tion alternating a present and a missing vertex, i. e., there is a

present vertex, than a missing vertex et
., until the number of missing verti
es is rea
hed.

The same number of verti
es are missing at the right end of the lines below the 
entral

horizontal line. Figure 4.4 shows how this 
an be done.

Variable position. The gadget for a variable xj is positioned above and to the right of

the gadget for a variable xi where i < j. As before, a variable gadget is adja
ent to full

st-rows and st-
olumns, so variable gadgets are horizontally separated by st-
olumns and

verti
ally separated by st-rows.

Literal gadget. A literal gadget is 
omposed by a 3 × 3 grid with the 
entral vertex

missing, i.e., a square 
omposed of eight verti
es. At ea
h side of the square, the verti
es

are one unit of distan
e apart from ea
h other.

The setting of a literal gadget in whi
h the middle horizontal edge is missing is 
alled

the false setting of a literal gadget, while the setting in whi
h the middle horizontal line

is present is 
alled the true setting of a literal gadget.

Clause gadget. As we start with an instan
e of 3-SAT, ea
h 
lause has exa
tly three

literals. In our 
onstru
tion the three literal gadgets of a 
lause are horizontally aligned.

Above and below every 
lause are full st-rows.

If a literal xi appears in 
lause cj , we pla
e a literal gadget in the xi-
olumn. If,

however, a literal xi appears in 
lause cj , we pla
e a literal gadget in the xi-
olumn. If a

literal xi appears both in 
lauses cj and ck, where j < k, we pla
e the literal xi in 
lause

ck below and to the right of the literal xi in 
lause cj. This guarantees that a verti
al

line never stabs more than one literal gadget. Also, a 
lause ck lies below a 
lause cj for

k > j.

To the right of 
lauses. We want the stabbing number to be less than or equal to

5K − 3 if and only if the formula is satis�able. Therefore, if a 
lause is not satis�ed,

i.e., its three literals have false settings, it must produ
e a stabbing number greater than

5K−3. Be
ause in a false setting of a literal gadget, the middle horizontal edge is missing,

an unsatis�ed 
lause implies three edges missing in the middle horizontal line. Thus, if

the middle horizontal line of a 
lause has K − 2 verti
es and the rows dire
tly above and

below it are full, an unsatis�ed 
lause produ
es a stabbing number greater than 5K − 3

for the top and bottom horizontal lines of the 
lause. Conversely, if at least one literal

has a true setting, the stabbing number is less or equal to 5K − 3 for those lines.
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Hen
e, we must add verti
es to the right of 
lauses making the middle horizontal line

have K − 2 verti
es and the rows above and below them be full rows.

Below variables and literals. We add verti
es below variables and literals in order

to guarantee that the st-
olumns around variables are full and that variables and literals

have the 
orre
t setting of missing and present middle edges.

Re
all that we want to make a literal gadget have a true setting whenever its 
orre-

sponding 
olumn is the true-
olumn, e.g., we want literal xi to have a true setting if the

xi-
olumn of variable xi is the true-
olumn, i.e., the one with the middle horizontal line

missing. Therefore, we want a literal gadget to have the middle horizontal edge present

(literal gadget true setting) if its 
orresponding 
olumn have a true setting.

Let lb be the verti
al line 
ontaining the left side of a literal gadget xi, let lc be the

verti
al line passing through the 
enter of the same literal gadget, i.e., the line immediately

to the right of lb and let la be the line immediately to the left of lb. Let a be the number

of verti
es in la and b be the number of verti
es in lb. Let ia and ic be the number of

missing edges 
onne
ting neighboring verti
es, respe
tively, in lines la and lc. Moreover,

let ja and jc be the number of horizontal edges 
rossing, respe
tively, lines la and lc
inside the extended xi re
tangle. Be
ause all rows 
ontaining points in the extended

re
tangle of some variable are full (ex
ept for the two 
entral rows), all the horizontal

edges must be present inside the extended re
tangle (ex
ept, possibly, the 
entral edge).

Therefore, a

ording to Lemma 4.2 and Lemma 4.3, the stabbing number of lb is at least

a+ 3b+ c+ ia + ic + jc − 6 if the literal is the �rst of its kind, i.e., the leftmost literal in

the xi strip, and is at least a+ 3b+ c+ ia + ic + ja + jc − 5 otherwise.

Whenever the 
entral horizontal edge is present in the xi variable re
tangle and missing

in the 
orresponding literal gadget, the expression for the stabbing number of a line on lb
has a stri
tly smaller value than when that edge is present in the gadget. Thus, we add

verti
es in the inferior portion of those three lines making the stabbing number equal to

5K − 3 whenever the 
entral edge is missing in the variable and present in the literal.

Observe that this does not prevent both middle edges from missing simultanously; the

presen
e of the middle horizontal edges are enfor
ed by the verti
es we added to the right

of 
lauses and variables.

If the literal under 
onsideration is not the leftmost literal of its strip, Lemma 4.2 allows

us to 
al
ulate the number of verti
es we have to add at the bottom of the 
onstru
tion

in order to guarantee the 
orre
t stabbing number. Let h be the height of the extended

re
tangle in question and let ya, yb and yc be the number of verti
es missing in lines la, lb
and lc inside the extended re
tangle. Thus, we have ya = h−1, yc = h−1, a = K−(h−1),

b = K−yb, c = K−(h−1)−1, ia = 1, ib = 1, ic = 1, ja = h−1, jb = yb and jc = h−1, and

we know that the stabbing number of line on lb is at least a+3b+c+ ia+ ic+ ja+ jc−5 =

K − h+ 1+ 3K − 3yb +K − h+ 1+ 1 + h− 1 + h− 1− 5 = 5K − 3yb − 4. Therefore, in

order to guarantee that a line on lb will have a stabbing number of 5K − 3 in a minimum

triangulation, we must have 5k − 3yb − 4 + z = 5K − 3, so, z = 3yb + 1 and this is how

mu
h we must in
rease the stabbing number of lb by adding verti
es at the bottom of the


onstru
tion.

To this end, we leave a distan
e of two units between the last h+ 1 lines and for ea
h
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line lb, add yb verti
es in its bottom and one vertex at the bottom of the verti
al line to

its right. Ea
h vertex added to lb in
reases the stabbing number of a line on it by three

units, and ea
h vertex added to the verti
al line to its right adds one unit to the stabbing

number of that line, thus a
hieving the desired stabbing number. Figure 4.5 gives an idea

of how to obtain su
h a 
onstru
tion. Observe that as the number of verti
es in la, lc and

the verti
al line to the right of lc are always smaller than in lb, the stabbing numbers of

stabbers on these verti
al lines are not greater than 5K − 3.

In the 
ase of the leftmost literal in the xi strip, we 
an use Lemma 4.3 to 
on
lude

that the stabbing number of a line on lb has a stabbing number of 5K − 6 in a minimum

triangulation and, therefore, we add one vertex to lb to guarantee a stabbing number of

5K − 3.

Figure 4.5: One re
tangle of a variable gadget, three literal gadgets and the verti
es added

below them.
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Satis�ability implies a stabbing number of 5K − 3. If the redu
tion we des
ribed

is valid, a satis�able formula must produ
e an mstr instan
e with an optimal solution of

value no more than 5K−3, where K is the maximum number of verti
es in any horizontal

or verti
al line.

The only parts of the 
onstru
tion that 
ould have a stabbing number greater than

5K − 3 are the 
lause gadgets, whi
h have horizontal stabbing number of 5K − 2 if the

three literals in the 
lause have false settings. However, if the formula is satis�able, there

is a setting in whi
h at least one literal has a true setting in every 
lause. By 
onstru
tion,

this implies that the stabbing number 
annot be greater than 5K−3. Thus, satis�ability

implies a stabbing number of at most 5K − 3.

Unsatis�ability implies a stabbing number greater than 5K−3. For the 
onverse

dire
tion, assume that the the formula is not satis�able; we establish that the resulting

mstr instan
e must have an optimal solution with value greater than 5K − 3, where K

is the maximum number of verti
es in any horizontal or verti
al lines.

If a formula is unsatis�able, there is no setting of variables that satis�es every 
lause.

Thus, for every setting of variables, there is always at least one 
lause that has a false

setting for all three literals. By 
onstru
tion, this implies that for every setting of variable

gadgets there is always a 
lause in whi
h all three literal gadgets have the middle horizontal

edge missing. Therefore, the stabbing number of the horizontal lines 
ontaining the top

and bottom lines of this 
lause gadget is equal to 5K − 2. Hen
e, unsatis�ability implies

a stabbing number greater than 5K − 3.

Polynomial size of the 
onstru
tion. It remains to be shown that the 
onstru
tion

has polynomial size. As the 
onstru
tion is very similar to the one presented in [9, 18℄,

the arguments are basi
ally the same as used in that proof, ex
ept that a re
tangle

representing a variable has width of at most 8t instead of 4t.

Let B be an instan
e of 3-SAT, let n be the number of variables, c the number of


lauses and t the number of o

urren
es of the most 
ommon literal. The size of a

re
tangle representing a variable is at most 8t. The number of verti
es we have to add

to the right of a variable gadget is Θ(t). Thus, the horizontal size of the 
onstru
tion is

Θ(nt).

Ea
h re
tangle representing a variable has a height of Θ(log t). The height of 
lauses

is 
onstant and equal to 2, plus that of the full st-rows between them, giving a total of 4

per 
lause. The number of verti
es we have to add at the bottom of the 
onstru
tion to

a
hieve the desired verti
al stabbing number is Θ(log t). Hen
e, the verti
al size of the


onstru
tion is Θ(c + n log t). Therefore, the total size of the 
onstru
tion is polynomial

on c, n and t.
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Figure 4.6: The 
onstru
tion for the formula (x0 ∨x1∨x2)∧ (x0 ∨x1∨x2)∧ (x0 ∨x1∨x2)
with assignments x0 = false, x1 = true and x2 = true. A dark shading indi
ates a false

setting, while a light shading indi
ates a true setting.

4.4 The Complexity of Finding a Triangulation with

Minimum General Stabbing Number

We now turn our attention to the problem of 
omputing a triangulation with minimum

general stabbing number. To this end, 
onsider a slightly 
hanged version of the 
onstru
-

tion given in the proof of Theorem 4.1, where the se
ond verti
al line is at distan
e one

unit from the �rst verti
al line, the third is at distan
e two units from the se
ond verti
al

line, the fourth is at distan
e three units from the third verti
al line and, in general, the

n + 1-th verti
al line is at distan
e n units from the n-th verti
al line. We will refer to

this new 
onstru
tion as the modi�ed one.

Before we pro
eed, we introdu
e some additional terminology. A diagonal stabbing

line, or simply a diagonal line, is any stabbing line that is not verti
al or horizontal.

Consider a grid of Q×Q verti
es with horizontal spa
es, as in the modi�ed 
onstru
tion,

i.e., the distan
e of verti
al line n+1 to verti
al line n is n units. We 
all a grid with this

spa
ing rule, a modi�ed grid. Figure 4.7 shows an example of su
h a modi�ed grid.

Consider a diagonal line l that stabs two verti
es y and z, su
h that the segment yz (of

l) 
ontains no other vertex. Denote by h the number of horizontal lines 
ontaining verti
es

of the grid and interse
ted by l between y and z (or, more pre
isely, by the segment yz).

Analogously, de�ne v to be the number of verti
al lines 
ontaining verti
es of the grid

and interse
ted by the segment yz of l. We say that the stabbing distan
e relative to l

between y and z is equal to max[h, v]; if the 
ontext is 
lear, we may omit the line.
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Figure 4.7: A 13 × 13 modi�ed grid with a diagonal stabbing line. The dotted lines

represent the extensions of the verti
al/horizontal lines outside the grid.

Noti
e that just like in the axis-parallel 
ase of the mstr, the 
riti
al stabbing lines

are the ones stabbing many verti
es, as opposed to stabbing a lot of spa
e between the

verti
es. Therefore, the main idea used in Theorem 4.2 is to show that diagonal stabbing

lines stab more spa
es between verti
es, while orthogonal stabbing lines stab more verti
es.

The following lemma gives us a property regarding the number of pairs of verti
es with

a given distan
e that 
an be stabbed by a given diagonal line. This property will later be

used to establish the number of verti
es that 
an be stabbed by a diagonal stabbing line

in a Q×Q modi�ed grid.

Lemma 4.4. In a modi�ed grid there are at most 2x + 1 pairs of verti
es with distan
e

x that 
an be stabbed by a given diagonal line l.

Proof. Let l be a diagonal stabbing line and a its angular 
oe�
ient, where we assume a >

0. Let y and z be two verti
es stabbed by l with a distan
e of x between them. Moreover,

let h and v be, respe
tively, the number of horizontal and verti
al lines 
ontaining verti
es

of the grid and interse
ted by l between y and z. By de�nition, at least one of h = x or

v = x must be true.

Consider the 
ase in whi
h v = x and h ≤ x. As ea
h 
olumn has a unique width and

every row has height one, we 
an say that the Eu
lidean distan
e between the horizontal


oordinates of y and z is equal to b + (b + 1) + ... + (b + x), where b is the width of the

�rst 
olumn after y. Hen
e, this distan
e is equal to b(x+1)+x(x+1)/2. The Eu
lidean

distan
e between the verti
al 
oordinates of y and z is equal to h + 1. As the angular


oe�
ient is a, we have h + 1 = a(b(x + 1) + x(x + 1)/2). For ea
h h ∈ {0, 1, 2, ..., x},
the previous equation has a unique solution for the given x. Therefore, there are at most

x+1 pairs of verti
es (one for ea
h possible value of h) that 
an be stabbed with distan
e

x by a diagonal line when v = x and h ≤ x.

The other possibility is that h = x and v < x. As ea
h 
olumn has a unique width and

every row has height one, we 
an say that the Eu
lidean distan
e between the horizontal


oordinates of y and z is equal to b + (b + 1) + ... + (b + v), where b is the width of the

�rst 
olumn after y. Hen
e, this distan
e is equal to b(v+1)+ v(v+1)/2. The Eu
lidean

distan
e between the verti
al 
oordinates of y and z is equal to x + 1. As the angular


oe�
ient is a, we have x+ 1 = a(b(v + 1) + v(v + 1)/2). For ea
h v ∈ {0, 1, 2, ..., x− 1},
the latter equation has a unique solution for the given x. Therefore, there are also at most

x pairs of verti
es (one for ea
h possible value of v) that 
an be stabbed with distan
e x

by a diagonal line for h = x and v < x.
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Adding the values obtained in the two 
ases, we have 2x+1 possible pairs with distan
e

x.

The proof of Lemma 4.4 for a < 0 is analogous and therefore omitted.

The purpose of the next lemma is to show that the number of verti
es stabbed by any

diagonal line is less than Q/4 if Q is big enough. This result is obtained by showing that

for Q ≥ 535, the fun
tion that yields the number of extended horizontal and verti
al lines

stabbed in points that do not 
ontain verti
es grows faster than the fun
tion that yields

the number of verti
es stabbed. Both of these fun
tions are obtained from the relation

in Lemma 4.4. This allows it to establish the 
entral idea of the proof of Theorem 4.2 by

showing that diagonal lines stab less verti
es than orthogonal lines and, for this reason,

have smaller stabbing numbers.

Lemma 4.5. Any diagonal line stabs less than Q/4 verti
es in the modi�ed 
onstru
tion

for any Q ≥ 535.

Proof. As the modi�ed 
onstru
tion has some well-de�ned holes, i.e., missing verti
es in


omparison with a modi�ed grid, the stabbing number of a diagonal line in a minimum

stabbing triangulation of a Q × Q modi�ed grid is greater than or equal to that in a

minimum stabbing triangulation of the modi�ed 
onstru
tion with a maximum number

of verti
al or horizontal lines equal to Q.

We 
all an extended horizontal/verti
al line, a horizontal/verti
al line plus its exten-

sion outside the grid (see Figure 4.7). The modi�ed grid has Q × Q verti
es, so every

diagonal stabbing line interse
ts exa
tly Q extended horizontal lines and Q extended

verti
al lines.

As verti
es only exist in the interse
tions of horizontal and verti
al lines, stabbing Q

verti
es (whi
h is the maximum possible number of verti
es stabbed) is only possible if a

diagonal line does not stab an extended horizontal/verti
al line in any point other than a

vertex. This means that whenever a stabbing line interse
ts an extended horizontal and

an extended verti
al line in points not 
ontaining verti
es, one less vertex is stabbed by

that line.

Now let l be a diagonal line and v and h be, respe
tively, the number of extended

verti
al and horizontal lines in the grid interse
ted by l in some point not 
ontaining a

vertex. Be
ause v and h have the same value, the number of verti
es interse
ted by l is

equal to Q− (v + h)/2 or Q− v or Q− h.

Let p be the number of verti
es stabbed by l and let d be the sum of the stabbing

distan
es of ea
h pair of 
onse
utive verti
es in l. As the stabbing distan
e of two verti
es

is the maximum of either the number of horizontal lines or the number of verti
al lines

stabbed between these two verti
es, then d < v + h. Therefore, as Q = p+ (v + h)/2, we

have 2(Q− p) = v + h ⇒ d < 2(Q− p) ⇒ Q > p+ d/2.

From Lemma 4.4, there are at most 2x+1 pairs of verti
es with distan
e x stabbed by a

diagonal line. Remember that whenever a pair of verti
es is stabbed at distan
e x, there

are x horizontal or verti
al lines stabbed in points not 
ontaining verti
es. Therefore,

to maximize the number of stabbed verti
es, the pairs with smallest distan
e should be

stabbed. Let y be the greatest distan
e between two 
onse
utive verti
es (with no other
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vertex between them) stabbed by l. In this situation we have p = 1 +
∑y

x=0 2x+ 1 (two


onse
utive pairs of verti
es share a vertex) and d =
∑y

x=0 x(2x+ 1). Therefore, we have

p = 1 + ((1 + (2y + 1))(y + 1)/2) = y2 + 2y + 2 and d = 2y3/3 + 3y2/2 + 5y/6.

Noti
e that if Q ≥ 535, for any y = 0..10 we have p < Q/4 and for any y > 10, the

value of d as de�ned above grows faster than the value of p. Therefore, for any Q ≥ 535,

any diagonal line in a Q×Q modi�ed grid stabs less than Q/4 verti
es.

We 
an now state the main result of this se
tion. Knowing that a diagonal line in

a Q × Q modi�ed grid stabs less than Q/4 verti
es, we 
on
lude that the orthogonal

stabbing lines are the 
riti
al ones in a set of points with that spa
ing rule. Moreover, we


an use this information to show that a modi�ed 
onstru
tion provides a redu
tion from

3-SAT to mstr in the general 
ase. The details are given below.

Theorem 4.2. Finding a Triangulation with Minimum Stabbing Number is NP-hard.

Proof. The main idea is to modify the 
onstru
tion from Theorem 4.1 in order to obtain

a new one in whi
h every diagonal line has a stabbing number less than or equal to

some 
onstant de�ned a priori, i.e., the minimum axis-parallel stabbing number of a

triangulation in the modi�ed 
onstru
tion. Therefore, the redu
tion from 3-SAT to mstr

in the axis-parallel 
ase is also valid for the general 
ase.

It is easy to see that the modi�ed 
onstru
tion has the same properties as our original


onstru
tion and has polynomial size. Noti
e that the original 
onstru
tion has horizontal

size of Θ(nt), where n is the number of variables of the 3-SAT instan
e and t is the number

of o

urren
es of the most 
ommon literal. Thus, the new 
onstru
tion has a horizontal

size of Θ(n2t2) and the same verti
al size as the original 
onstru
tion. Therefore, it is still

polynomial.

Note that our 
onstru
tions allows a triangulation in whi
h every vertex has degree at

most seven and the axis-parallel stabbing number is 5K−3. Hen
e, when a line interse
ts

a vertex, its stabbing number in
reases by at most seven (this value is overestimated in

general). On the other hand, when a vertex is not interse
ted, i.e., when the line stabs

horizontal and verti
al lines of the grid in points having no vertex, the stabbing number

is in
reased by at most four. One su
h triangulation in the original 
onstru
tion 
an be

seem in Figure 4.6. It is possible to obtain other triangulations with di�erent stabbing

numbers for diagonal lines; however, for our purpose, it is enough to show that there is a

triangulation with the desired properties.

From Lemma 4.5 we 
on
lude that if Q ≥ 535, then at most Q/4 verti
es 
an be

stabbed by any diagonal line. Thus, the stabbing number of any diagonal line is at most

7(Q/4)+4(3Q/4). We want this expression to be smaller than or equal to 5K−3, whi
h is

the stabbing number of the axis-parallel version. Be
ause by 
onstru
tion, Q ≤ K+16t−1,

we want the inequality 7/4(K + 16t− 1) + 3(K + 16t− 1) ≤ 5K − 3 to be true, implying

that K ≥ 304t− 7 should be true. As we 
an in
rease the value of K by an appropriate

amount simply by adding verti
al and horizontal lines to the right and bottom of the


onstru
tion without altering its properties, this relation 
an be satis�ed for any value

of t. Therefore, there is a polynomial redu
tion from 3-SAT to mstr, so the latter is

NP-hard.
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4.5 The Complexity of Finding a Triangulation with

Minimum General Crossing Number

In this se
tion we use a di�erent approa
h to prove that the problem of 
omputing a

triangulation with minimum general 
rossing number isNP-hard. The 
onstru
tion in the
proof of Theorem 4.2 guarantees that the stabbing numbers of horizontal and verti
al lines

are greater than or equal to those of diagonal lines, thus making horizontal and verti
al

lines 
riti
al for determining lines with the greatest stabbing or 
rossing numbers. In the

present 
ase, in whi
h we are interested in the general 
rossing number, the 
onstru
tion

in the proof ensures that the almost horizontal and verti
al lines, i.e., those with very

big/small angular 
oe�
ients, are the 
riti
al ones.

As before the redu
tion is from 3-SAT. More pre
isely, we show that an instan
e of

3-SAT is satis�able if and only if the 
orresponding m
tr instan
e has 
rossing number

of at most 2K − 1 for some value K, whi
h is the maximum number of verti
es in any

horizontal or verti
al line.

The NP-hardness proof uses a terminology similar to the one used in the previous

proofs. A

ordingly, a horizontal line is a maximal set of verti
es that are 
ollinear in

horizontal dire
tion. A verti
al line is a maximal set of verti
es that are 
ollinear in

verti
al dire
tion. A row is 
omposed by two horizontal lines (with no other horizontal

line in the middle) and the spa
e between them. A 
olumn is the verti
al equivalent of a

row. A 
r-row 
onsists of three 
onse
utive horizontal lines and the spa
es between them,

where ea
h horizontal line 
ontains at least K−3 verti
es. Finally, a 
r-
olumn is formed

by three 
onse
utive verti
al lines and the spa
es between them, where ea
h verti
al line


ontains at least K − 3 verti
es.

Theorem 4.3. Finding a triangulation with Minimum Crossing Number is NP-hard.

Proof. As before, we start by des
ribing the gadgets and gving an explanation of how these

gadgets intera
t for an overall redu
tion from 3-SAT. This is followed by an argument for

the 
orre
tness of the redu
tion. The proof is 
ompleted by showing that the 
onstru
tion

is polynomial.

The 
onstru
tion 
ontaining the gadgets has the form of a latti
e (see Figure 4.8),

with lines 
omposed by 
r-rows or 
r-
olumns. Between these lines are spa
er gadgets.

Gadgets 
orresponding to variables, literals and 
lauses lie on the lines of the latti
e.

Spa
er gadget. A spa
er is a set of points as the one depi
ted in Figure 4.9. The

triangulation in that �gure has 
rossing number 27, whih
 is signi�
antly less than the


rossing number of a 
r-row or 
r-
olumn, whi
h have 
rossing number 34, as shown in

Figure 4.10. The purpose of this di�eren
e is to enfor
e that lines interse
ting spa
ers

(with the possible ex
eption at extreme positions) have smaller 
rossing numbers than

the ones not interse
ting them.

Variable swit
h gadget. A variable swit
h is 
omposed by two sets of eight verti
es

that form squares with three verti
es at ea
h side. Ea
h of these squares is 
alled a half-

variable swit
h. The two squares of a swit
h are horizontally aligned, i.e., they are in the
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Legend:

Variable Switch                                                    

Adjustment

Variable Multiplier                                                                               

Figure 4.8: Part of the latti
e 
ontaining variable swit
h, variable multiplier and spa
ers.

At the bottom, the shaded areas indi
ate missing verti
es to guarantee the 
orre
t 
rossing

number.
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Figure 4.9: A spa
er gadget and one of its possible triangulations.

Figure 4.10: Part of a 
r-row with a 
rossing line.

same horizontal line of the latti
e; they also lie on neighboring verti
al lines of the latti
e.

The left square is 
alled the xi-swit
h, while the right one is the xi-swit
h of the variable.

Figure 4.8 shows the variable swit
h gadget shadowed a

ording to the legend.

The triangulation of both squares is identi
al, ex
ept for the middle horizontal edge,

whi
h is present in one of the re
tangles and missing in the other. A setting in whi
h

the left 
olumn (xi-swit
h) has the horizontal edge present, is the false setting, while the

other possible one is the true setting.

Variable multiplier gadget. A variable swit
h gadget of a variable xi allows us to use

at most two literals xi and two literals xi (des
ribed below). Thus, whenever we have

some literal appearing in more than two 
lauses, we must use a variable multiplier gadget.

Su
h a gadget is 
omposed by two sets of eight verti
es forming a square with three

verti
es at ea
h side. These squares are lo
ated above a variable swit
h gadget or a

variable gate gadget (des
ribed below). A variable multiplier gadget has one of its top

squares shifted by one unit to the right, while the other has it shifted one unit to the left

relative to a variable swit
h gadget or a variable gate gadget's position. See Figure 4.8

for a variable multiplier gadget above a variable swit
h gadget. Note that this type of

gadget is never verti
ally aligned with any other gadget.

Variable gate gadget. A variable gate gadget is the gadget that 
onne
ts literals to

a variable (literal gadgets are des
ribed below). The variable swit
h gadgets 
an also

fun
tion as variable gate gadgets. These gadgets have the same form as the other variable

gadgets: eight verti
es forming a square with three verti
es at ea
h side. A variable

gate gadget is lo
ated to the right of one of the variable multiplier gadget's square and

horizontally aligned with it. See Figure 4.11 for a representation of an instan
e 
ontaining
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a variable gate gadget.

Variable gadget. A variable gadget is the 
omposition of variable swit
hes, multipliers

and gates that emulates the behavior of a variable. All these gadgets are 
alled generi


variable gadgets, ex
ept when referring to a spe
i�
 type of gadget.

The two lines 
ontaining the top and bottom of any variable gadget 
ontain exa
tly

K verti
es, while the 
entral line 
ontain K − 2 verti
es.

Noti
e that when a variable multiplier mi1 is above a xi-swit
h with a true setting

(middle horizontal edge missing), then mi1 must have its middle horizontal edge present

to ensure a minimum 
rossing number (i.e., 2K − 1) and a variable gate gi1 to the right

of mi1 must have its middle horizontal edge missing, i.e., gi1 must have the same setting

as the xi-swit
h.

This setting of swit
hes, multipliers and gates generates a 
hain rea
tion guaranteeing

that every gate related to a parti
ular half swit
h has the same setting. Therefore, we


all the xi-
olumns the 
olumn of the xi-swit
h and the 
olumn of every gate related to

this parti
ular half swit
h.

Around the variables. Above a half-variable swit
h or a variable gate there 
an be

at most one variable multiplier, while below a half swit
h or a gate there 
an be at most

two literal gadgets. However, a variable multiplier and a literal 
annot be present at the

same time.

Variable position. The gadget for a variable xj is positioned above and to the right of

the gadget for a variable xi, where i < j. In the following, the gadget for a variable refers

to the set of all gadgets 
omposing a variable, i.e., variable swit
h, variable multipliers

and variable gates.

Literal gadget. A literal gadget is 
omposed of a set of eight verti
es forming a square

with three verti
es at ea
h side. This square is lo
ated below a variable gate gadget (or a

variable swit
h gadget that plays the role of a variable gate). If the variable gate has only

one literal, then it must be verti
ally aligned to that gadget. If, however, the variable

gate has two literals, then the top one is shifted one unit to the left, while the other is

shifted one unit to the right relative to the horizontal position of that gadget.

A literal gadget in whi
h the middle horizontal edge is missing is 
alled the false setting

of the respe
tive variable. Analogously, the setting in whi
h the middle horizontal line is

present is 
alled the true setting of the variable.

Clause gadget. Be
ause our redu
tion pro
eeds from is 3-SAT, ea
h 
lause has exa
tly

three literals. In our 
onstru
tion the three literals forming a 
lause are horizontally

aligned. The 
lause is the 
r-row 
ontaining the literal gadgets.

If a literal xi appears in 
lause cj, we pla
e a literal gadget in one of the xi-
olumns

with room for a literal gadget. If, however, a literal xi appears in 
lause cj, we pla
e

a literal gadget in one of the xi-
olumns with room for a literal gadget. If a literal xi

appears both in 
lauses cj and ck, where j < k, we pla
e the literal xi in 
lause ck below
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and to the right of the literal xi in 
lause cj . This guarantees that a verti
al or almost

verti
al line never 
rosses more than one literal gadget. Moreover, a 
lause ck lies below

a 
lause cj for k > j.

Adjustments to the 
rossing number. In order to guarantee the desired 
rossing

number, some adjustments must be made to 
r-rows and 
r-
olumns. Adjustment to

a 
r-row is only ne
essary when there is no gadget in the 
r-row (this may happen to

obtain the same number of 
r-rows and 
r-
olumns). This is done in a region 
lose to its

extremities by removing one vertex from its 
entral horizontal line. The removed vertex

must not belong to a 
r-
olumn. Adjustment to a 
r-
olumn is ne
essary whenever there

is no gadget in the 
r-
olumn. In this 
ase, the adjustment is done in the same way as

for the 
r-rows. Another situation requiring the adjustment of a 
r-
olumn is when there

are displa
ed gadgets (like variable multipliers or literals). In this 
ase, the se
ond (from

the bottom) vertex is removed from the left verti
al line of the 
r-
olumn (Figure 4.8).

Satis�ability implies a 
rossing number of 2K−1. If the redu
tion we des
ribed is

valid, then a satis�able formula must produ
e a m
tr instan
e with an optimal solution of

value no more than 2K−1, where K is the maximum number of verti
es in any horizontal

or verti
al lines.

A 
rossing line stri
tly 
ontained in a 
r-row or 
r-
olumn has a 
rossing number that

is less than or equal to the 
rossing number of any line 
rossing a spa
er gadget, as 
an

be seen from Figure 4.9 and Figure 4.10. Therefore, the only parts of the 
onstru
tion

that 
ould have a 
rossing number greater than 2K−1 are the 
lause gadgets, whi
h have


rossing number 2K if the three literals in the 
lause have false settings. However, if the

formula is satis�able, there is a setting in whi
h at least one literal has a true setting in

every 
lause. By 
onstru
tion, this implies that the 
rossing number 
annot be greater

than 2K − 1. Thus, satis�ability implies a 
rossing number of at most 2K − 1.

Unsatis�ability implies 
rossing number greater than 2K−1. If the redu
tion is

valid, the other dire
tion of the proof must also be valid, i.e., if a formula is not satis�able,

the resultingm
tr instan
e must have an optimal solution with value greater than 2K−1,

where K is the maximum number of verti
es in any horizontal or verti
al lines.

If a formula is unsatis�able, there is no setting of variables that satis�es every 
lause.

Thus, for every setting of variables, there is always at least one 
lause that has a false

setting for all three literals. By 
onstru
tion, this implies that for every setting of vari-

able gadgets, there is always a 
lause in whi
h all three literal gadgets have the middle

horizontal edge missing. Therefore, the 
rossing number of the 
orresponding 
r-row is

equal to 2K. Hen
e, unsatis�ability implies a stabbing number greater than 2K − 1.

Polynomial size of the 
onstru
tion. Let B be an instan
e of 3-SAT, let n be the

number of variables, c the number of 
lauses and t the number of o

urren
es of the most
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Figure 4.11: Representation of 
onstru
tion for the formula (x0∨x1∨x2)∧ (x0∨x1∨x2)∧
(x0∨x1∨x2), and values x0 = true and x1 = x2 = false. The long edges represent pie
es
of 
r-rows and 
r-
olumns and the empty spa
es between them represent spa
er gadgets.
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ommon literal. The number of 
r-
olumns ne
essary to a

ommodate t o

urren
es of

a literal is at most equal to t. The width of any variable gadget is �xed and equal to

3 and the width of a spa
er gadget is equal to 17. Therefore, the horizontal size of the


onstru
tion is less than or equal to 2× 20× n× t + 17 = Θ(nt).

The number of 
r-rows ne
essary to a

ommodate the variable gadgets 
onne
ted to

t o

urren
es of a literal is at most t. The height of any variable gadget is equal to 3 and

the height of a spa
er is equal to 17. Ea
h 
lause uses exa
tly one 
r-row. Therefore, the

height of the 
onstru
tion is less than or equal to 2× 20× n× t+ c+ 17 = Θ(nt+ c).

As the 
onstru
tion must have the same almost horizontal/verti
al 
rossing number,

we must in
lude new extra 
r-
olumns or 
r-rows so that their number is indeed equal.

Therefore, the width and height of the 
onstru
tion is the maximum of the two values

obtained for these parameters, so it is polynomial in c, n and t.

4.6 Iterated Rounding

Following our proofs, we know that all variants triangulation with small stabbing or 
ross-

ing number are NP-hard, making it unlikely that there is a polynomial-time algorithm

that 
an handle them. In the following, we study a heuristi
 approa
h for 
omputing

solutions in polynomial time, with the hope that the resulting obje
tive values are within

a 
onstant fa
tor of the optimal values.

An iterated rounding algorithm (IRA), as des
ribed in [13℄, pro
eeds by solving the

linear relaxation of a given problem, �nding a variable with high fra
tional value, �xing

this variable to 1 and repeating the pro
ess until an integral solution is found. In [9℄ it was


onje
tured that an IRA yields an approximation algorithm for the problem of �nding a

perfe
t mat
hing with minimum stabbing number (mspm). That 
onje
ture regarding the

worst-
ase performan
e is still open; in any 
ase, su
h an algorithm provides a heuristi


for the mspm.

As the mstr is 
losely related to the mspm, we may 
onsider if the same IRA approa
h

applied to the mstr yields an approximation for our problem. As dis
ussed in [9℄, one of

the prerequisites for obtaining an approximation using an IRA is a guarantee that there

is a �heavy� variable at ea
h iteration, i.e., a variable with high fra
tional value: If we 
an

guarantee the existen
e of a variable with value at least 1/k at ea
h iteration, the hope

is to get a k-approximation.

Di�erent from the mspm 
ase, no proof is known for the mstr that a heavy variable

exists at ea
h iteration. However, we 
an provide eviden
e for the existen
e by experi-

mentally determining the smallest value of all heaviest variables in all instan
es, say 1/p.

After that, using the lower and upper bounds obtained by the IRA and results from other

algorithms, we 
an 
he
k if the results are 
onsistent with a p-approximation algorithm.

The integer programming model used in the algorithm is the triangle-based model

des
ribed in [16℄ and reprodu
ed below. Here ∆(P ) denotes the set of empty triangles

over a set of points P , L+(ij) and L−(ij) represent the two half-planes de�ned by the line


ontaining (ij), while EH is the set of line segments in the 
onvex hull of P .
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(MSTT ) z = min k (4.1)

subje
t to

∑

ijl∈∆(P ) :

ijl⊂L+(ij)

xijl =
∑

ijl∈∆(P ) :

ijl⊂L−(ij)

xijl, ∀ij ∈ E \EH , (4.2)

∑

ijl∈∆(P )

xijl = 1, ∀ ij ∈ EH , (4.3)

∑

ijl∈∆(P ):ijl
⋂

s 6=∅

csijlxijl ≤ k, ∀ s ∈ S. (4.4)

k ∈ Z, xijl ∈ B ∀ ijl ∈ ∆(P ). (4.5)

In the model above, for every triangle ijl ∈ ∆(P ), xijl = 1 if and only if the triangle ijl

is in the triangulation. The variable k represents the stabbing number of the triangulation.

Constraint (4.2) states that the number of triangles 
ontaining an edge ij (whi
h is not in

EH) must be the same in both half-planes de�ned by the line 
ontaining ij. As the edges

in EH are present in every planar triangulation, 
onstraint (4.3) ensures that a triangle


ontaining one su
h edge is in the triangulation. Constraint (4.4) states that the sum of

the 
oe�
ients csijl of the triangles ijl interse
ting a line s of S 
annot be larger than the

stabbing number. A triangle ijl interse
ting a line s has 
oe�
ient csijl = βs
ij + βs

il + βs
jl,

where βs
ij = 1 if ij interse
ts s and is on the 
onvex hull, βs

ij = 0.5 if ij interse
ts s, but

is not on the 
onvex hull and βs
ij = 0 if ij does not interse
t s.

The experiments des
ribed in the following 
onsider only the axis-parallel version of

the mstr, be
ause this allows a 
omparison with previous 
omputational results des
ribed

by [16℄. We fo
us on the instan
es des
ribed in that paper.

The heuristi
 method developed in [16℄ is based on Lagrangian Relaxation (lr). For

fair 
omparison, we used the same 
omputational environment for both.

Computational environment. We used a 
omputer with an Intel Core 2 Quad

1.60GHz, 4096 KB 
a
he, 4GB of RAM memory and an Ubuntu 10.04.4 OS. The pro-

gramming language used was C/C++ with g

 4.4.3 
ompiler. Every program was 
ompiled

with the -O5 optimization �ag. We also used the XPRESS-Optimizer 64-bit v22.01.09

ip solver. The default 
uts, heuristi
s and prepro
essing were turned o�. In addition, the

optimizer was set to use a single pro
essor 
ore.

Instan
es. As a test suite we used 25 instan
es from tsplib [17, 18℄ and the 25 regular

grid instan
es used in [9℄ for the Minimum Stabbing Perfe
t Mat
hing Problem. The


hoi
e of these instan
es is based on the fa
t that the tsplib is a well-known test library

for geometri
 problems. Moreover, tsplib and all grid instan
es were also used in [9℄

for the mspm. The 
hoi
e of the instan
e sizes was made seeking tests that were hard

enough to provide meaningful 
omputation times, allowing a more pre
ise 
omparison of
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the algorithms.

A time limit of 3, 600 se
onds was set for the exe
ution of the algorithms. As the

time is veri�ed at spe
i�
 
he
kpoints in the 
ode and the time spent between two su
h


he
kpoints may not be negligible, some of the times displayed in the tables are slightly

over 3, 600 se
onds.

Duality gaps were 
omputed through the formula 100× (ub− ⌈lb⌉)/ub, where ub and

lb denote, respe
tively, the upper and lower bounds yielded by the algorithm. Whenever

a value is unkown be
ause the algorithm was interrupted, the respe
tive value is marked

with the symbol ‡ in the table.

Results. The �rst observation is that the smallest large fra
tional value of all instan
es

(that produ
ed an output) is greater than or equal to 0.5. This means that at every

iteration of the IRA and for every instan
e, there was always a variable with value at least

0.5. A

ording to the approximation 
onje
ture, that should give us a 2-approximation

algorithm. The results obtained are 
onsistent with this hypothesis, be
ause no upper

bound value is more than twi
e a known lower bound value (in
luding the 
ases in whi
h

the upper bounds 
oin
ided with the optimal value).

In the following we divide our analysis into two parts, one for the tsp instan
es and

the other for the grid instan
es.

For the tsp instan
es, the IRA had its pro
ess killed in 8 out of the 25 instan
es,

while optimality was a
hieved in 10 
ases. The remaining tests resulted in gaps of only

3.87% on average. The Lagrangian algorithm 
onverged in all 
ases within the imposed

time limit, with an average gap of 2.30% and proven optimality in 7 
ases.

Considering only the instan
es for whi
h IRA was not killed, the lr algorithm was

faster in 11 situations while the IRA was faster in 6 
ases. The total time spent with these

instan
es was 108.77 se
onds bigger with the IRA. These results are shown in Table 4.1.

For the grid instan
es, 23 out of 25 instan
es were solved to optimality by the IRA,

while the lr algorithm solved all problems to optimality. The total running times for the

instan
es solved by both of them was pra
ti
ally identi
al, ex
ept for the grid20 instan
es,

for whi
h the lr was signi�
antly faster.

4.7 Con
lusions

We have resolved a number of long-standing open problems on the problem of �nding

triangulations of small stabbing or 
rossing numbers, by proving them to be NP-hard.
Naturally, this raises the need for the development of 
onstant-fa
tor approximation

algorithms. We have supplied experimental eviden
e that an approa
h based on iterated

rounding may be able to provide su
h an approximation algorithm. In parti
ular, we were

able to show that the performan
e is 
omparable to the best known heuristi
 based on

Lagrangian relaxation, with no instan
e yielding an optimality gap larger than 6%.

Conje
ture 1. Iterated rounding provides a 
onstant-fa
tor approximation algorithm for

mstr.
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Table 4.1: Comparison of IRA and lr algorithm with tsp instan
es.

Instan
e min. Var. # iters LB UB Time GAP%

IRA IRA lr IRA lr IRA lr IRA lr IRA

berlin52 0.50 34 23.670 23.700 24 24 7.70 2.25 0.00 0.00

eil76 0.50 54 31.561 31.564 33 33 112.58 21.19 3.03 3.03

kroD100 0.50 95 28.002 28.043 29 29 30.60 220.92 0.00 0.00

kroA100 0.50 100 28.518 28.529 30 30 107.25 205.42 3.33 3.33

kroE100 0.50 89 28.221 28.220 30 29 99.17 199.91 3.33 0.00

kroC100 0.50 83 28.123 28.141 29 29 96.56 186.51 0.00 0.00

kroB100 0.50 98 28.593 28.599 30 30 119.63 239.20 3.33 3.33

rd100 0.50 83 28.050 28.165 29 29 17.45 213.96 0.00 0.00

pr124 0.50 40 47.612 48.122 49 52 406.34 229.14 2.04 5.77

pr136 0.67 9 65.667 65.667 67 66 589.72 67.24 1.49 0.00


h130 0.50 132 31.904 31.920 33 34 165.06 1015.82 3.03 5.88

pr144 0.50 13 73.084 74.000 74 74 673.28 187.63 0.00 0.00

pr152 0.50 55 44.012 45.000 45 45 420.05 795.93 0.00 0.00

kroA150 0.50 131 34.411 34.405 36 35 333.77 1525.61 2.78 0.00

kroB150 0.67 163 33.632 33.645 35 35 412.90 2153.08 2.86 2.86


h150 0.67 163 33.292 33.307 35 35 272.60 2034.03 2.86 2.86

kroB200 ‡ 1 38.285 37.868 40 ‡ 705.74 3607.45 2.50 ‡
kroA200 ‡ 1 39.578 39.246 41 ‡ 737.41 3607.57 2.44 ‡
gr202 ‡ 1 41.059 39.004 42 ‡ 614.27 3607.65 0.00 ‡
pr226 0.50 56 144.239 150.000 150 150 3690.80 3005.09 3.33 0.00

pr264 ‡ 1 89.761 91.000 92 ‡ 3600.70 3609.20 2.17 ‡
gil262 ‡ 1 48.819 34.272 50 ‡ 1769.88 3611.15 2.00 ‡
lin318 ‡ 1 68.538 49.000 70 ‡ 3602.31 3619.89 1.43 ‡
p
b442 ‡ 1 161.246 147.000 180 ‡ 6017.10 3665.40 10.00 ‡
rd400 ‡ 1 51.848 13.925 55 ‡ 3604.68 3656.82 5.45 ‡
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Table 4.2: Comparison of IRA and lr for grid instan
es.

Instan
e min. Var. # iters LB UB Time GAP%

IRA IRA lr IRA lr IRA lr IRA lr IRA

grid5a 1.00 0 21.432 22.000 22 22 0.17 0.07 0.00 0.00

grid5b 0.50 1 20.029 20.500 21 21 0.27 0.07 0.00 0.00

grid5
 1.00 0 20.031 21.000 21 21 0.17 0.08 0.00 0.00

grid5d 1.00 0 21.000 21.000 21 21 23.14 0.07 0.00 0.00

grid5e 0.50 1 19.054 20.000 20 20 0.18 0.07 0.00 0.00

grid8a 0.50 4 33.004 34.000 34 34 2.2 0.16 0.00 0.00

grid8b 0.80 1 33.275 34.000 34 34 3.48 0.23 0.00 0.00

grid8
 1.00 0 33.038 34.000 34 34 1.61 0.19 0.00 0.00

grid8d 1.00 0 34.009 35.000 35 35 1.07 0.2 0.00 0.00

grid8e 0.50 3 34.071 34.500 35 35 1.11 0.24 0.00 0.00

grid10a 1.00 0 43.123 44.000 44 44 8.01 1.02 0.00 0.00

grid10b 1.00 0 41.764 42.000 42 42 3.31 0.62 0.00 0.00

grid10
 0.50 3 46.023 47.000 47 47 9.52 0.96 0.00 0.00

grid10d 1.00 0 45.002 46.000 46 46 2.61 0.82 0.00 0.00

grid10e 1.00 0 45.003 46.000 46 46 7.05 1.05 0.00 0.00

grid15a 0.67 2 65.166 66.000 66 66 75.13 52.3 0.00 0.00

grid15b 0.50 3 67.153 68.000 68 68 13.65 55.75 0.00 0.00

grid15
 0.50 8 63.043 64.000 64 64 20.7 46.53 0.00 0.00

grid15d 0.67 15 65.071 65.200 66 66 39.24 51.54 0.00 0.00

grid15e 0.80 3 66.081 67.000 67 67 79.53 60.51 0.00 0.00

grid20a 0.50 17 88.020 89.000 89 89 500.78 2357.88 0.00 0.00

grid20b ‡ 1 85.174 85.000 86 ‡ 73.09 3615.74 0.00 ‡
grid20
 0.50 13 89.016 90.000 90 90 2222.62 2517.32 1.11 0.00

grid20d ‡ 1 86.112 87.000 87 ‡ 204.77 3616.62 0.00 ‡
grid20e 0.50 13 89.078 90.000 90 90 1213.83 2015.84 0.00 0.00
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Given that there is a variety of di�erent IP formulations, and thus di�erent LP relax-

ations for our problems, the a
tual worst-
ase performan
e may depend on a spe
i�
 IP

version. Given that the time for solving the involved linear programs grows very rapidly

with instan
e size, studying di�erent formulations is also of pra
ti
al importan
e.
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Chapter 5

Minimum Stabbing Re
tangular

Partitions of Re
tilinear Polygons

The 
urrent 
hapter presents the 
omplete version of a work presented at VIII Latin-

Ameri
an Algorithms, Graphs and Optimization Symposium (LAGOS 2015) as an ex-

tended abstra
t 
o-authored with Cid C. de Souza [10℄. This is the text of the extended

version of that work and that was submitted for publi
ation to a s
ienti�
 journal. This

work studied re
tangular partitions of re
tilinear polygons with minimum stabbing num-

ber, presenting two integer programming formulations for the problem in
luding a poly-

hedral study for one of them. Computational experiments were performed to 
ompare

the di�erent formulations.

We study integer programming (ip) models for the problem of �nding a re
tangular

partition of a re
tilinear polygon with minimum stabbing number. Strong valid inequali-

ties are introdu
ed for an existing formulation and a new model is proposed. We 
ompare

the dual bounds yielded by the relaxations of the two models and prove that the new one

is stronger than the old one. Computational experiments with the problem are reported

for the �rst time in whi
h polygons with thousands of verti
es are solved to optimality.

The (ip) bran
h-and-bound algorithm based on the new model is faster and more robust

than those relying on the previous formulation.

5.1 Introdu
tion

Let P be a re
tilinear polygon, and π be a re
tangular partition of P , i.e., a partition of

the interior of P , int(P ), into re
tangles. De�ne the set L of all maximal line segments

that are axis-parallel and belong to int(P ). Given a segment s of L, the stabbing number

of s relative to π is the number of re
tangles of the partition whose interior is interse
ted

by s. The stabbing number of π is then the maximum stabbing number among all lines

in L. The Re
tilinear Partition with Minimum Stabbing Number Problem (rpst) is:

given a re
tilinear simple polygon, �nd a re
tangular partition having minimum stabbing

number among all possible partitions. Figure 5.1 shows an rpst instan
e and a possible

85
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re
tangular partition. If an edge e of a re
tangle in a re
tangular partition of P has both

of its endpoints on the boundary of P , δ(P ), e is said to be fully an
hored. A re
tangular

partition of P is 
alled 
onforming if all edges of its re
tangles are fully an
hored.

s

r

Figure 5.1: An instan
e of rpst (to the left) and a feasible solution (to the right). The

segments r and s have stabbing numbers, respe
tively, 4 and 3.

Problems requiring the de
omposition of re
tilinear polygons have appli
ations, for

example, in VLSI layout design and image pro
essing (
f. [7℄). On the other hand,

obtaining sets of obje
ts satisfying some properties and having the lowest stabbing number

is a re
urring problem in Computational Geometry. In [11℄ a wide variety of appli
ations

of that sort are mentioned in
luding the design of e�
ient algorithms for simplex range

sear
hing, ray shooting, motion planning and 
ollision dete
tion among others. Clearly,

the rpst merges these two types of problems and, that is probably why it attra
ted the

attention of many resear
hers.

The rpst was studied in [5℄, [1℄ and [7℄. In [5℄, the authors show that any re
tilinear

polygon with n verti
es have a re
tangular partition with stabbing number O(logn) for

a hole-free polygon and O(
√
k logn) for a polygon with k ≥ 1 re
tilinear holes. Abam et

al. [1℄ present a 3-approximation polynomial time algorithm for the problem, based on

the partition of histograms. Finally, Duro
her and Mehrabi [7℄ prove that the problem

of �nding a 
onforming re
tangular partition in a polygon with holes is NP-hard. They
also present an integer programming (ip) formulation for the problem and develop a

2-approximation algorithm for the 
onforming 
ase.

Our Contribution The �rst 
ontribution of this work is a polyhedral investigation on

the model proposed in [7℄. There the authors did not investigated the strength of their

formulation nor 
arried out any 
omputational experiments with it. The inequalities ob-

tained in our polyhedral study were used tested 
omputationally. These experiments show

that the new inequalities allow us to solve more instan
es to optimality in a reasonable

time.

A key aspe
t of our work is the establishment of a relation between the rpst and the

Minimum Length Re
tangular Partition (rgp) previously studied in [6℄ and [3℄. In the

rgp, we are given a re
tangle R and a set T of points in its interior, 
alled terminals. The
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goal is to use axis-parallel segments to partition R into re
tangles so that every terminal

is interse
ted by at least one of these segments and the sum of their lengths is minimized.

For given R and T , a feasible solution for the rgp is 
alled a re
tangular partition of R


onstrained by T . Figure 5.2 depi
ts an instan
e of rgp and a feasible solution.

Figure 5.2: An instan
e of rgp (to the left) and a feasible solution (to the right). The

bla
k points indi
ate the terminals.

Another 
ontribution of this work is the spe
i�
ation of a new ip formulation for

rpst. The new model des
ribes the problem through variables that indi
ate if a re
tangle

(instead of a segment) is in the solution. For reasons that will be
ome 
lear later, we 
all

it the set partition model. This formulation is then proved to be stronger than the one

given in [7℄.

We further investigate the set partition model and establish 
onditions for �xing some

variables of the ip formulation in an optimal solutions, redu
ing its quantity. These

properties allow to eliminate variables. Be
ause this model is a restri
tion on the original

set partition formulation, it is no weaker than that model. This new formulation led to

the best running times for large instan
es and the results suggest that as the polygon size

in
reases, be
omes not only faster than the 
ompetitors but also more robust.

Organization of the text The paper is organized as follows. The next se
tion des
ribes

ip models for the rpst and the rgp where the variables are related to segments of the

re
tangular partition. Se
tion 5.3 shows the relation between these models. In Se
tion 5.4,

we show how the rpst 
an be modeled as a set partition problem and some properties of

this model, while experiments are dis
ussed in Se
tion 5.5. Finally, Se
tion 5.6 presents

some 
on
lusions and dire
tions for future work.

5.2 Segment Based ip Models

In this se
tion we present an ip model for the rpst. In this model the variables are related

to segments of the re
tangular partition. Later we show a formulation for the rgp that

is 
losely related to the one for rpst.
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Given a re
tilinear polygon P , input of rpst, let V P
r (V P

c ) be the set of re�ex (
onvex)

verti
es of P . The grid indu
ed by P , grid(P ), is the set of all verti
al and horizontal

maximal line segments in the interior of P having (at least) one vertex in V P
r as one of

its endpoints. Let V P
s be the set of points of int(P ) lo
ated at the interse
tions of two

line segments in grid(P ), whi
h are 
alled Steiner verti
es. The points in δ(P ) that are

endpoints of segments in grid(P ) and are not in V P
r are 
alled border verti
es and form

the set V P
b . The set of all verti
es is de�ned by V P = V P

c ∪ V P
r ∪ V P

s ∪ V P
b . We now turn

our attention to the edge set.

Suppose we traverse δ(P ), the boundary of P , say, 
lo
kwisely. The segments between

two 
onse
utive verti
es of V P
form the set EP

h . Now, if we traverse any horizontal

(verti
al) segment of grid(P ) from left to right (from bottom to up), the segments between

two 
onse
utive verti
es of V P
form the set EP

g . These are 
alled the grid segments and,

together with the segments in EP
h , they 
ompose the set EP

, i.e., EP = EP
h ∪ EP

g . A


anoni
al re
tangle in grid(P ) is a re
tangle where ea
h side is a unique segment of EP
.

Figure 5.3 depi
ts the grid for the example in Figure 5.1. Steiner and border verti
es

are represented by gray and white verti
es, respe
tively. From the formulation in [7℄ one


an dedu
e that there exists an optimal solution to rpst su
h that all re
tangles in the

partition have sides lying on grid(P ).

Figure 5.3: Grid for the example in Figure 5.1 
ontaining 40 
anoni
al re
tangles.

Two 
on�gurations are relevant for the des
ription of a feasible rpst solution. A

subset E ′P
of EP

de�nes a knee in a vertex u ∈ V P
if there are exa
tly two edges in

E ′P
in
ident to u and they are orthogonal. On the other hand, if only one edge in E ′P

is

in
ident to u, we say that E ′P
de�nes an island at u. Clearly, if E ′P

indu
es a re
tangular

partition of P , it 
an not de�ne a knee or an island at any point.

Now, denote by θ(ua, ub) the angle between two edges ua and ub in EP
that are

in
ident to a point u ∈ V P
. With these de�nitions, the rpst 
an be modeled as [7℄:
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(MRPST
sum ) z = minmax

s∈L

∑

uv ∈ EP
g :

uv
⋂

s 6= ∅

xuv + 1 (5.1)

s.t. xua + xub ≥ 1, ∀ u ∈ V P
r , ua, ub ∈ EP

g , (5.2)

xua + xub ≥ xuc, ∀ u ∈ V P
s , ua, ub, uc ∈ EP

g : θ(ua, ub) =
π

2
, (5.3)

where the binary variable xuv is set to one if and only the edge uv ∈ EP
g belongs to the solution.

The set L 
omprises all horizontal and verti
al maximal line segments fully 
ontained in P . Thus,

the obje
tive fun
tion minimizes the maximum of a set of |L| sums, ea
h 
orresponding to the

stabbing number of a segment. Noti
e that, in prin
iple, L is in�nite. However, as stated in [7℄,

for every w ∈ V P
r , we only need to 
onsider the two axis-parallel segments 
ontaining a point

along the bise
tor of the internal angle in w. This point is 
hosen so that its distan
e from w

is smaller than the distan
e between any two verti
es. By doing that, we have |L| = 2|V P
r | and

the model size be
omes polynomial in the size of P .

Inequalities (5.2) guarantee that a solution does not de�ne a knee or island in a re�ex vertex.

Meanwhile, inequalities (5.3) enfor
e that a solution 
an not 
ontain a knee or an island in a

Steiner vertex. Duro
her and Mehrabi [7℄ argue the 
orre
tness of the formulation with these

two sets of 
onstraints. They also mention that there exists an optimal solution where at most

three grid segments meeting at a Steiner vertex are present. This property is expressed by the

linear inequalities

∑

uv∈EP
g

xuv ≤ 3, ∀ u ∈ V P
s . (5.4)

Due to the obje
tive fun
tion, the model MRPST
sum is not linear. Using standard te
hniques,

it 
an be linearized through the introdu
tion of an auxiliary integer variable k to represent the

stabbing number. For ea
h element s of L, we add a 
onstraint requiring that k is at least as

large as the summation 
orresponding to s in (5.1). With the x variables de�ned as before, the

new model reads:

(MRPST )min



















k ∈ R : x ∈ B
EP

g , (5.2)− (5.3),
∑

uv∈EP
g

uv
⋂

s 6=∅

xuv + 1 ≤ k,∀s ∈ L



















. (5.5)

This model is similar to those dis
ussed in [8℄ for other stabbing problems.

As stated before, the rpst model is 
losely related to a rgp model. Their relationship will

be
ome 
learer in Se
tion 5.3. For now, we restri
t ourselves to present an ip formulation for the

rgp. Prior to that, some more notation is ne
essary.

Given an instan
e I = (R,T ) of the rgp, where R is a re
tangle and T is a set of terminal

points in R, let grid(R,T ) be the set of verti
al and horizontal maximal line segments in the

interior of R interse
ting a point of T . Let Ts be the set of points in the interse
tion of segments

in grid(R,T ) but not in T . Let Tb be the set of points on the boundary of R interse
ted by

segments in grid(R,T ) and let Tt = T ∪ Ts ∪ Tb. De�ne S to be the set of fra
tions of segments

in grid(R,T ) 
ontaining exa
tly two points in Tt, both lo
ated at its extremities. The elements

of S are referred to as grid segments. The set of all grid segments indu
es a planar subdivision of
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the surfa
e of R. Ea
h inner fa
e of this subdivision is 
alled a 
anoni
al re
tangle of grid(R,T ).

As in the rpst 
ase, some properties of feasible and optimal solutions of the rgp are useful

to model the problem as an ip. First, the knee and an island 
on�gurations are de�ned as before,

but this time for points in Tt and segments in S. Both formations are obviously forbidden in any

feasible solution of the rgp. Besides, in [9℄ it was stated that there is always an optimal solution

for the rgp whose re
tangles have sides lying on grid(R,T ).

From these de�nitions and re
alling that θ(ua, ub) is the angle between segments ua and ub,

we obtain the following model for the rgp:

(MRGP ) z = min
∑

uv∈S

duvxuv (5.6)

s.t. xua + xub ≥ 1, ∀ u ∈ T, ua, ub ∈ S : θ(ua, ub) =
π

2
(5.7)

xua + xub ≥ xuc, ∀ u ∈ Ts, ua, ub, uc ∈ S : θ(ua, ub) =
π

2
, (5.8)

where, for every uv ∈ S, the binary variable xuv is set to one if and only if the segment uv is

in the solution. The obje
tive fun
tion is given by the sum of the lengths of the segments that

belong to the solution. Inequalities (5.7) and (5.8) guarantee that the solution does not de�ne

knees and islands in points in T or Ts, respe
tively. Meneses and de Souza [6℄ showed that the

latter 
onstraints des
ribe all feasible re
tangular partitions. Constraints (5.9) below enfor
e

that at most three of the four grid segments in
ident to a Steiner vertex 
an be in the solution:

∑

uv∈S

xuv ≤ 3, ∀ u ∈ Ts. (5.9)

This property also holds for optimal rgp solutions, so the addition of these 
onstraints to the

model 
auses no harm, while it may be quite helpful in 
omputation.

Looking at models (MRGP ) and (MRPST ) it is possible to see that although the problems

statements are rather di�erent, their formulations have several similarities. In the next se
tion

we establish the relationship between the polyhedra de�ned by these models.

5.3 Polyhedral Study of the Segment Based Model

In this se
tion we show how the ip models given before are related. The goal is to utilize previous

�ndings about the MRGP
to improve the models for the rpst. To fa
ilitate the understanding

on how this is done, we �rst give some basi
 results on the proje
tion of polyhedra and then

explain how an rpst instan
e 
an be transformed into an rgp instan
e. We �nally 
ombine

these ideas to derive fa
et de�ning inequalities for the MRPST
.

5.3.1 Proje
tion of Polyhedra

We brie�y review some relevant �ndings of Balas and Oosten [2℄ relative to the proje
tion of

polyhedra. Consider a non empty polyhedron Q = {(u, y) ∈ R
p × R

q : Au + By ≤ b}, where
A, B and b have m rows. The proje
tion of Q onto the subspa
e de�ned by u = 0, 
alled the

y-spa
e, is de�ned as

Projy(Q) = {y ∈ R
q : ∃u ∈ R

p
with (u, y) ∈ Q}.
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Let us partition the rows of (A,B, b) into (A=, B=, b=) and (A<, B<, b<), where A=u+B=y =

b= is the equality subsystem of Q, i.e. the set of equations 
orresponding to the inequalities

satis�ed at equality by every (u, y) ∈ Q. Assume that the equality subsystem has no redundant

rows and that no equality is implied by the inequality subsystem. Let r = rank(A=, B=) =

rank(A=, B=, b=), where the last equality follows from Q 6= ∅. Moreover, let dim(X) denote the

dimension of a set X. It is well known that dim(Q) = p+ q − r, and that Q is full-dimensional,

i.e. dim(Q) = p + q, if and only if the equality subsystem is va
uous. The �rst results states

that, if Q is full-dimensional so is its proje
tion onto the y-spa
e.

Proposition 5.1 ([2℄, Prop. 2.1). If dim(Q) = p+ q, then dim(Projy(Q)) = q.

The next result establishes ne
essary and su�
ient 
onditions for an inequality de�ning a

fa
et of Q to de�ne a fa
et of Projy(Q). Let αu + βy ≤ π0 be a valid inequality for Q, and

suppose F = {(u, y) ∈ Q : αu+βy = α0} is a fa
et of Q. Let
(

α

A=

)

u+

(

β

B=

)

y =

(

α0

b=

)

be the equality subsystem de�ning the polyhedron F and, let rF = rank

((

α

A=

)

,

(

β

B=

))

.

Noti
e that rF − r = 1, sin
e dim(F ) = dim(Q) − 1. Further, denote r∗F = rank

((

α

A=

))

and r∗ = rank(A=). The next statement relates the fa
ets of Q and those of Projy(Q).

Proposition 5.2 ([[2℄, Cor. 3.6). Let F be a fa
et of Q. Then Projy(F ) is a fa
et of Projy(Q)

if and only r∗F = r∗.

5.3.2 Transforming rpst into rgp

We now explain how to transform an instan
e of the rpst into an instan
e of the rgp. To this,

we start with the following de�nition.

For a given set of points S in the plane, let xmin (xmax) be the minimum (maximum) x-


oordinate of a point in S. De�ne the values of ymin and ymax analogously. The enlarged

bounding box of S is the re
tangle with verti
es at (xmin − 1, ymin − 1) and (xmax + 1, ymax + 1)

and sides parallel to the axes.

Now, given the re
tilinear polygon P in the rpst instan
e, de�ne the external re
tangle R

in the rgp instan
e as the enlarged bounding box of P . Also, in the later, in
lude in the set T of

terminal points all the verti
es of P . Clearly, any re
tangular partition π of P 
an be extended

to a re
tangular partition of R with terminals in T . It su�
es to add to P all the segments

in grid(R,T ) that are not in int(P ). On the other hand, let φ be a re
tangular partition of R


onstrained to T . Consider the set S of grid segments of φ whi
h are in int(P ). We 
laim that

the subdivision indu
ed by S in P is a feasible solution for the rpst. If not, at least one of the

fa
es of the subdivision de�ned by S in int(P ), say f , is not a re
tangle. So, f has a re�ex vertex

u that is also a vertex of P sin
e, otherwise, φ would form a knee at some point of grid(R,T )

in int(P ), and 
onsequently would not be feasible for the rgp. However, as f is the interse
tion

of some re
tangle R′
indu
ed by φ and P , this implies that u is in the interior of this re
tangle.

But, as u is a terminal, φ 
ould not be a solution of the rgp either.

5.3.3 Polyhedral results for the rpst

Given the rpst and the transformed rgp instan
e des
ribed above, denote by Q the 
onvex

hull of feasible solutions of MRGP

alled the rgp polytope. Similarly, let Qx

be the rpst
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polytope given by the 
onvex hull of the integer solutions of the linear system (5.2)-(5.3). Let

s = p + q be the total number of grid segments in the rgp instan
e, su
h that Q ⊂ R
s
.

In the sequel, for a ve
tor w ∈ R
s
, assume that the �rst p 
omponents 
orrespond to the

segments of grid(R,T ) that are not in int(P ) and the last q elements are asso
iated to the

remaining grid segments. Denote the �rst p (last q) 
omponents of w by u (y). Suppose that

Q = {(u, y) ∈ R
p × R

q : Au + By ≤ b} 6= ∅ and noti
e that Qx ⊂ R
q
. From the previous

subse
tion, it is 
lear that Qx = {y ∈ R
q : ∃u ∈ R

p : (u, y) ∈ Q} = Projy(Q), i.e. Qx
is the

orthogonal proje
tion of Q onto R
q
. Sin
e the Q was proven to be full-dimensional in [6℄, the

results from Se
tion 5.3.1 
an be used to �nd the dimension of Qx
.

Proposition 5.3. The polytope Qx
is full dimensional, i.e., dim(Qx) = q.

Proof. Immediate from Proposition 5.1.

Besides, known fa
et de�ning inequalities for Q 
an also be fa
et de�ning for Qx
. The next

proposition gives ne
essary 
onditions for this to hold.

Proposition 5.4. Let πw = αu+βy ≤ α0 be a fa
et de�ning inequality for Q for whi
h α is the

null ve
tor and F = {(u, y) ∈ Q : αu + βy = α0}. Then, for y ∈ R
q
, βy ≤ α0 is fa
et de�ning

for Qx
.

Proof. From the de�nition of Q, let (A=, B=, b=), (A≤, B≤, b≤) be a partition of (A,B, b) where

(A=, B=, b=) is the equality subsystem of Q, let r∗ = rank(A=) and r∗F = rank
( α
A=

)

. Sin
e Q

is full dimensional, A=
is empty and r∗ = 0. Moreover, sin
e α = 0, r∗F = 0. Then, the result

follows from Proposition 5.2.

Now, let Qx
k be the 
onvex hull of the feasible solutions ofM

RPST
, i.e., the linearized model of

the rpst with the stabbing variable k given by (5.5). Renaming the x variables in this model by

y, it is easy to see that Projy(Q
x
k) = Qx

. Noti
e that if {y1, y2, . . . , yr} is an a�nely independent

set of ve
tors of Qx
representing r re
tangular partitions of P and kmax is the largest stabbing

number among these partitions, the r+1 ve
tors
{

( y1

kmax

)

,
( y2

kmax

)

, . . . ,
( yr

kmax

)

,
( y1

kmax+1

)

}

belong to

Qx
k and are a�nely independent. As a 
onsequen
e, Qx

k is full-dimensional and any fa
et de�ning

inequality of Qx
also de�nes a fa
et of Qx

k.

Consider then a fa
et de�ning inequality for the Q whose support ve
tor does not 
ontain

elements asso
iated to segments that are not in int(P ). From the results seen in this se
tion,

this inequality also de�nes a fa
et of Qx
and of Qx

k. Next we see how to use this idea to tighten

the MRPST
model.

We begin des
ribing three families of inequalities proposed in [6℄ that are fa
et-de�ning for

Q and whi
h satisfy the 
onditions of Proposition 5.4. These inequalities are 
hara
terized by

geometri
 
on�gurations related to the lo
ation of terminal and Steiner verti
es in grid(R,T ).

The 
on�gurations of interest are shown in Figure 5.4 and 
orrespond to the so-
alled Classes III,

IV and VI of inequalities, as de�ned by Meneses and de Souza in their paper. The form of the


onstraints in Classes III, IV and VI are given in equations (5.10), (5.11) and (5.12), respe
tively.

xe1 + xe2 + xe3 + xe4 ≥ 2 (5.10)

xe1 + xe2 + xe3 + xe4 ≥ 1 (5.11)

xe1 + xe2 + xe3 + xe4 + xe5 + xe6 + xe7 + xe8 ≥ 2 (5.12)

Noti
e that, as inequalities (5.7) and (5.8) de�ne fa
ets for Q [6℄, from Proposition 5.4, their


ounterparts, inequalities (5.2) and (5.3), also de�ne fa
ets for Qx
.
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e1
e2

e3

e4

e5

e6

e7

e8

e1
e1 e2

e3

e4

e4

e3
e2

(b)(a) (c)

Figure 5.4: Point 
on�gurations for inequalities Classes III (a), IV (b) and VI (
) of an

rgp instan
e. Filled (empty) points are terminal (Steiner) verti
es.

5.4 Set Partition Models

Besides the (MRGP ) model, a formulation where the variables are related to re
tangles of the

re
tangular partition was also studied for the rgp in [6℄ and [3℄. With the use of these variables,

the rgp translates into a set partition problem (spp). As we have seen in Se
tions 5.2 and 5.3,

rgp and rpst are 
losely related. Hen
e, it is natural to formulate rpst as an spp too with,

of 
ourse, the additional stabbing variable and 
onstraints. The 
urrent se
tion shows how this


an be done and also presents some properties of the new model.

Let H = {1, . . . , p} be a �nite set and K = {K1,K2, . . . ,Kq} be a family of subsets of H.

Then, K ′ ⊆ K forms a partition of H if Ki ∩Kj = ∅ for every pair of distin
t elements Ki and

Kj of K
′
, and

⋃

Kj∈K ′ Kj = H. If a 
ost cj is asso
iated to ea
h set Kj in K, then a partition

K ′
have total 
ost

∑

Kj∈K ′ cj . The set partition problem 
onsists in �nding a partition of H

with minimum 
ost and it 
an be formulated as an ip problem as follows:

(MSPP ) z = min

q
∑

j=1

cjλj (5.13)

s.t.

q
∑

j=1

aijλj = 1, i = 1, . . . , p , (5.14)

λj ∈ B, j = 1, . . . , q , (5.15)

where the binary variable λj is set to 1 if and only if Kj is in the partition. The 
oe�
ient aij
is equal to 1 if i ∈ Kj and 0 otherwise. Therefore, 
onstraints (5.14) ensure that every element

in H is 
overed by exa
tly one set Kj .

In order to model a given problem as set partition problem we must �rst de�ne the sets H

and K. In [6℄ this was done for the rgp. Given an instan
e I = (R,T ), H was de�ned as the set

of 
anoni
al re
tangles of grid(R,T ) (as de�ned in Se
tion 5.2) and K as the set of re
tangles

whose sides are 
omposed by grid segments of I and having no terminal points in their interior.

With H and K de�ned in that way, aij is set to one if and only if the j-th re
tangle 
ontains

the 
anoni
al re
tangle i. Also, the variable λj takes value one if and only if re
tangle j is part

of the optimal re
tangular partition.

To model the obje
tive fun
tion, appropriate 
osts have to be assigned to ea
h re
tangle of

K. This is a

omplished by assigning the 
ost of a re
tangle to its weighted perimeter. Given a
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re
tangle Kj with sides 
omposed of segments of grid(R,T ), the weight of a segment is zero if

the segment lies on the border of R and 1/2 otherwise. De Meneses and de Souza proved that

with 
osts 
omputed in this way, the optimum of the set partition model for the rgp is equal to

that of the MRGP
. From now on, the resulting model for the rgp is denoted by MSPP

rgp .

Using a similar reasoning, given the polygon P at the input of the rpst, H 
an be de�ned

as the set of 
anoni
al re
tangles in grid(P ) (as de�ned in Se
tion 5.2) and K as the set of

re
tangles having its sides 
omposed by segments of EP
. As before, the 
oe�
ients aij are set

to one if and only if the j-th re
tangle 
ontains the 
anoni
al re
tangle i. The variables λj are

de�ned as for the rgp 
ase.

Be
ause in the rpst the obje
tive fun
tion is not expressed by a summation, the problem 
an

not be 
asted dire
tly as a set partition problem. However, as we did for MRPST
, the stabbing

variable k 
an also be used to get a linear formulation. To this, it is enough to add the following


onstraints to the model:

∑

Rj∈K:Rj∩s 6=∅

λj ≤ k, (5.16)

where Rj denotes the re
tangle asso
iated to variable λj . Obviously, the obje
tive fun
tion asks

for the minimization of k. Although this is not a pure set partition formulation of the rpst, we

will name the resulting model the set partition model of the problem and denote it by MSPP
rpst .

5.4.1 Properties of the Set Partition Model for the rpst

Whenever there are two ip formulations for a problem, it is interesting to know if one of them

dominates the other or, in other words, if the dual bound produ
ed by the linear relaxation of

one of them is always at least as good as the one 
omputed by the relaxation of the other. For

the rgp, it was shown in [6℄ that (MSPP
rgp ) dominates (MRGP ). Based on that, we show below

that (MSPP
rpst ) dominates (MRPST ), i.e., the set partition model is also stronger than the segment

model for the rpst.

Proposition 5.5. Given an instan
e of rpst, let W be the optimal value for the linear relaxation

of the (MSPP
rpst ) and let Z be the optimal linear relaxation value of (MRPST ). Then, W ≥ Z and

the formulations are not equivalent.

Proof. Initially, for ea
h segment s ∈ EP
g , let Γs be the set of the re
tangles having one side


ontaining s. Noti
e that if s belongs to a feasible solution, there are exa
tly two re
tangles of

this partition that have s on their boundaries. Now the variables λ and x in the MSPP
rpst and

MRPST
models, respe
tively, 
an be related su
h that xs = (1/2)

∑

k∈Γs
λk. From the previous

observation, it is 
lear that this equality holds for any integral solution of the rpst.

Suppose we add all these equalities as 
onstraints to MSPP
rpst together with the x variables for

all s ∈ EP
g . Of 
ourse, the set of feasible (λ, k) ve
tors in this extended model is the same as

in the original one. However, denote by Q′
the set of (λ, k, x) ve
tors that are feasible for the

extended model and by Q the set of all (k, x) ve
tors satisfying the MRPST
. We show below

that Projx(Q
′) ⊆ Q, whi
h proves that W ≥ Z. To this, we must show that the x ve
tor of any

feasible solution of the extended MSPP
rpst model satis�es the 
onstraints of MRPST

.

First, noti
e that as xs =
1
2

∑

k∈Γs
λk and every λk ≥ 0, then xs ≥ 0 ∀ s ∈ EP

i . Also, as ea
h

segment s is the side of two 
anoni
al re
tangles R1
s and R2

s and, from (MSPP ),
∑q

j=1 aR1
s ,j

λj = 1

and

∑q
j=1 aR2

s ,j
λj = 1. Hen
e, xs = 1

2

∑

k∈Γs
λk ≤ 1

2(
∑q

j=1 aR1
s ,j

λj +
∑q

j=1 aR2
s ,j

λj) ≤ 1. Ergo,

xs ≤ 1 for all s ∈ EP
i .
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Now, to show that a ve
tor x de�ned as indi
ated above satis�es 
onstraint (5.2), 
onsider

Figure 5.5 depi
ting a re�ex vertex with its in
ident segments and the three 
anoni
al re
tangles

surrounding it.

1R

R3 R2

a

b

u

Figure 5.5: A re�ex vertex u with its in
ident segments and the three surrounding 
anon-

i
al re
tangles R1
, R2

and R3
.

In the remaining of the proof we use the following notation. For a point u in grid(P ), let

X = {1, . . . , p}, where p is the number of 
anoni
al re
tangles in the grid having u as one of

its verti
es. Let R1, . . . , Rp
be these 
anoni
al re
tangles. Noti
e that for a re�ex vertex p = 3,

whereas for a Steiner vertex we have p = 4. For X ′ ⊆ X, we denote by ΣX′
the sum of the λ

variables in MSPP

orresponding to re
tangles 
ontaining all Rj

for j ∈ X ′
and not 
ontaining

Rj
for j ∈ X \X ′

.

From the de�nition of ve
tor x, xua = (1/2)(
∑

1 +
∑

2,3+
∑

2,2) and xub = (1/2)(
∑

2,2+
∑

1,2+
∑

3,3), implying that xua+xub =
∑

2,2+(1/2)(
∑

1 +
∑

1,2)+(1/2)(
∑

2,3+
∑

3,3). Be
ause
∑

1+
∑

1,2 = 1 and

∑

2,3+
∑

3,3 = 1 are 
onstraints from (MSPP ), we end up with xua + xub =
∑

2,2+1 ≥ 1.

u

1RR4

R3 R2

b

a

c

d

Figure 5.6: A Steiner vertex u with its in
ident segments ub, ua, uc and ud, and its four

surrounding 
anoni
al re
tangles R1
, R2

, R3
and R4

.

It remains to show that x satis�es 
onstraint (5.3), i.e., for a given Steiner vertex u as shown

in Figure 5.6, we have xub + xua − xuc ≥ 0. From the de�nition of x:

xub = (1/2)(
∑

1

+
∑

1,2

+
∑

3,4

+
∑

4

)

xua = (1/2)(
∑

1

+
∑

1,4

+
∑

2

+
∑

2,3

)

xuc = (1/2)(
∑

1,2

+
∑

2

+
∑

3

+
∑

3,4

)

from (MSPP ) 
onstraints relative to R3
and R4

we have:
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∑

1,2,3,4

+
∑

2,3

+
∑

3

+
∑

3,4

= 1 ⇒ 1−
∑

1,2,3,4

−
∑

2,3

−
∑

3,4

=
∑

3

and

∑

1,4

+
∑

1,2,3,4

+
∑

3,4

+
∑

4

= 1

Therefore,

xub + xua − xuc = (1/2)(
∑

1

+
∑

1,2

+
∑

3,4

+
∑

4

+
∑

1

+

+
∑

1,4

+
∑

2

+
∑

2,3

−
∑

1,2

−
∑

2

−
∑

3

−
∑

3,4

) ⇒

xub + xua − xuc = (1/2)(2
∑

1

+
∑

1,4

+
∑

2,3

+
∑

4

−
∑

3

) ⇒

xub + xua − xuc = (1/2)(2
∑

1

+
∑

1,4

+
∑

2,3

+
∑

4

−1 +
∑

1,2,3,4

+
∑

2,3

+
∑

3,4

) ⇒

xub + xua − xuc = (1/2)(2
∑

1

+
∑

2,3

−1 +
∑

2,3

+1) ⇒

xub + xua − xuc =
∑

1

+
∑

2,3

≥ 0.

So far we proved that Projx(Q
′) is 
ontained in Q. It remains to show that (MRPST ) and

(MSPP ) are not equivalent formulations. To this, it is su�
ient to present an instan
e where

W > Z. Our 
omputational experiments show that this inequality is true for the majority of

the instan
es tested.

If we analyze the number of variables and 
onstraints in (MRPST ) and (MSPP ) we 
on
lude

that (MRPST ) have O(n2) variables and O(n2) restri
tions, resulting in a 
onstraint matrix of

size O(n4), where n is the number of verti
es in the polygon. Meanwhile, (MSPP
rpst ) have O(n4)

variables and O(n2) 
onstraints, resulting in a O(n6) sized matrix. So, the size of (MSPP
rpst ) 
ould

pose an algorithmi
 disadvantage when 
ompared to (MRPST ).

In order to mitigate this disadvantage, we 
an try to redu
e the number of variables in

(MSPP
MRPST ) by identifying sets of variables that are unne
essary for obtaining an optimal solution.

This idea was explored in [6℄ to de
rease the size of the (MSPP ) model of rgp. The sliding

operation de�ned in the next paragraph is at the heart of the redu
tion pro
edures applied to

the rpst.

Let π a re
tangular partition of P and e be a segment of grid(P ) that belongs to π. Suppose

without loss of generality that e is horizontal and that it 
an be slided in at least one verti
al

dire
tion, either upwards or downwards, by a small positive amount su
h that the resulting

partition is still feasible. If the displa
ement is possible both upwards and downwards, assume

that e is slided in the dire
tion su
h that the number of maximal verti
al segments of π with

endpoints in the interior of e is maximum (see Figure 5.7). Suppose that the sliding is done

until one of the extremities of e be
omes a re�ex vertex of P or part of e 
oin
ides with another

segment of the partition or the border of P . We 
all this operation the maximal sliding of e.

When this sliding is performed, it is 
lear that the stabbing number of no horizontal line 
an
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in
rease. On the other hand, the stabbing number of a verti
al line 
an only de
rease, whi
h

o

urs for all those lines interse
ting the interior of e. As a 
onsequen
e, the re
tangular partition

obtained from π after the maximal sliding of e has stabbing number no larger than that of π.

PSfrag repla
ements

u v

Figure 5.7: Sliding operation on the horizontal segment e. The number of verti
al

segments with endpoint in int(e) above e (2) is smaller than those below e (3). The

sliding is done downwards.

The next result is instrumental for eliminating re
tangles that are not needed to 
ompute an

optimal solution for the MSPP
rpst .

Lemma 5.1. Any re
tilinear polygon P has an optimal re
tangular partition π in whi
h every

maximal segment of π has at least one re�ex vertex of P as an endpoint.

Proof. Suppose that e is a maximal segment of grid(P ) in an optimal partition π of P having

no re�ex vertex of P as an endpoint. Without loss of generality, assume that e is horizontal. As

the endpoints of e 
an only be border or Steiner verti
es of grid(P ), e admits a maximal sliding.

If the sliding is interrupted be
ause e hits a portion of δ(P ) of dimension one, the operation is

equivalent to erase e and all the verti
al segments of π that 
ollapse as e moves. Thus, the new

partition has at least one less maximal segment having no re�ex vertex as one of its extremities.

The same happens when the sliding stops be
ause one of the endpoints of e be
omes a re�ex

vertex of P . Therefore, if we keep repeating this operation, we must end up with a partition for

whi
h all maximal segments have at least one of its extremes in a re�ex vertex of P .

(a) (b)

w

w

PSfrag repla
ements
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Figure 5.8: A windmill (a) and a reverse windmill (b) with its adja
ent maximal segments

and re�ex verti
es.
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De�nition 5.1. Let abcd be a re
tangle in a re
tangular partition of a polygon where a is the

left upper vertex and its four verti
es are Steiner verti
es as shown in Figure 5.8. If there

are four segments at, bu, cv and dw 
ontained in the polygon (ex
ept for its endpoints) where

t, u, v, w ∈ V P
r and at is above a, bu is to the right of b, cv is below c and dw is to the left of d.

Then, abcd is a windmill.

If, however, there are four segments at, bu, cv and dw 
ontained in the polygon (ex
ept for

its endpoints) where t, u, v, w ∈ V P
r and at is to the left of a, bu is above b, cv is to the right of

c and dw is below d. Then, abcd is a reverse windmill (rev-windmill for short).

Noti
e that a re
tangle with four Steiner points as verti
es 
an be simultaneously a windmill

and a rev-windmill, a windmill and not a rev-windmill (or the 
onverse), or neither of them as

in Figure 5.9.
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Figure 5.9: Re
tangle with verti
es at the Steiner points c, d, e and f that is both a

windmill and a rev-windmill. Re
tangle with verti
es at points a, b, c and d is a windmill

but not a rev-windmill. Re
tangle with verti
es at points e, f, j and k is a rev-windmill

but not a windmill. Re
tangle with verti
es at points f, g, h and i is neither a windmill

nor a rev-windmill.

De�nition 5.2. Let R be a re
tangle with verti
es in V P
. A vertex v of R is 
alled 
orner re�ex

relative to R if v ∈ V P
r and the bise
tor of the internal angle of v 
ontains one of the diagonals

of R. If, on the other hand, v ∈ V P
r but its bise
tor does not 
ontain a diagonal of R, v is 
alled

non-
orner re�ex relative to R. Figure 5.10 depi
ts these situations.

Let V P
cr (R) denote the set of 
orner re�ex verti
es relative to re
tangle R and let V P

cr (R)

denote the set of non-
orner re�ex verti
es relative to re
tangle R.
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Figure 5.10: (a) a re
tangle R with a 
orner re�ex vertex v and (b) a re
tangle R with a

non-
orner re�ex vertex v. The hat
hed area indi
ates the exterior fa
e of the polygon.
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Figure 5.11: Vertex v2 is perpendi
ular border relative to v1 and R and non perpendi
ular

border relative to v3 and R. The hat
hed area indi
ates the exterior fa
e of the polygon.

De�nition 5.3. Let R be a re
tangle with verti
es in V P
. Let v1 ∈ V P

and v2 ∈ V P
b where v1v2

is a side of R. The vertex v2 is 
alled perpendi
ular border relative to R and v1 if the border

edge 
ontaining v2 is perpendi
ular to v1v2. If, however, the border edge 
ontaining v2 is not

perpendi
ular to v1v2, v2 is 
alled non-perpendi
ular border relative to R and v1.

These de�nitions are illustrated in Figure 5.11. Below we denote by V P
eb (R, v) (V P

ib (R, v)) the set

of (non) perpendi
ular border verti
es relative to R and v.

We are now ready to 
hara
terize a subset of variables that is su�
ient to des
ribe a polytope


ontaining optimal solutions for (MSPP
rpst ).

Proposition 5.6. For every instan
e of rpst, there is always an optimal solution for (MSPP )

where ea
h re
tangle in the solution is a windmill, a reverse windmill or has a point in V P
c ∪

V P
r ∪ V P

b as a vertex.

Proof. Let us 
onsider the possibilities for an optimal solution 
ontaining a re
tangle abcd where

all four verti
es are Steiner verti
es. As the solution is a re
tangular partition, there is no knee

at any vertex in the solution. Therefore, there are two possibilities for the 
on�guration of the

edges in
ident to a, b, c and d.

The �rst possibility is that there is a pair of parallel edges in
ident to a pair of adja
ent

verti
es in the re
tangle, as shown in Figure 5.12 (a). Suppose without loss of generality that b

and c are the adja
ent verti
es and bu and cv are the parallel edges. However, from Lemma 5.1,
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Figure 5.12: The two possibilities of a re
tangle 
omposed by Steiner verti
es only.

bc must be part of a maximal segment with a re�ex vertex as an endpoint. Sin
e b and c are both

Steiner verti
es, then at least one of them must have degree four. But as stated in the de�nition

of the rpst model, there is always an optimal solution where no Steiner vertex have degree four.

Hen
e, this situation 
an not happen.

The se
ond possibility is that there is no pair of parallel edges in
ident to a pair of adja
ent

verti
es in the re
tangle, as shown in Figure 5.12 (b). Noti
e that from Lemma 5.1, every

maximal segment in the solution have a re�ex vertex as an endpoint, so segment at must be


ontained in a segment having a re�ex vertex as an endpoint. This is also true for segments bu,

cv and dw. Hen
e, from de�nition 5.1, we 
on
lude that re
tangle abcd must be either a windmill

or a rev-windmill.

De�nition 5.4. Let R be a re
tangle with verti
es in V P
. If u and v are adja
ent verti
es of R,

the segment uv is said to be slidable if int(uv) ∩ δ(P ) is empty.

Proposition 5.7. Let R be a re
tangle in π having verti
es v1, v2, v3 and v4 ∈ V P
(in 
lo
kwise

order). Consider the following 
onditions:

• F1 =(v1 ∈ V P

cr (R)) ∧ (v2 ∈ V P

cr (R) ∪ V P

eb (R, v1)) ∧ (v1v2 is slidable),

• F2 =(v1 ∈ V P

cr (R)) ∧ (v3 ∈ V P

cr (R)) ∧ (v2 ∈ V P

S ) ∧ (v1v2 ∧ v2v3 are slidable),

• F3 =(v1 ∈ V P

cr (R)) ∧ ({v2, v3, v4} ⊆ V P

S ) ∧ (all sides of R are slidable),

• F4 =(v1 ∈ V P

cr (R)) ∧ ({v3, v4} ⊆ V P

S ) ∧ (v2 ∈ Vib(R, v1))∧
(all sides of R \ {v1v2} are slidable),

• F5 =(v1 ∈ V P

cr (R)) ∧ ({v2, v4} ⊆ V P

ib (R, v1)) ∧ (v3 ∈ V P

S ∪ V P

b )∧
(v2v3 and v3v4 are slidable),

• F6 =(v1 ∈ V P

cr (R)) ∧ (v3 ∈ V P

eb (R, v2)) ∧ {
[(v2 ∈ V P

S ) ∧ (both sides of R in
ident to v2 are slidable)] ∨
[(v2 ∈ Vib(R, v1)) ∧ (v2v3 is slidable)] }.

If R satis�es one of the 
onditions above, there is an optimal solution that does not 
ontain R.
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Proof. The proof is divided into six 
ases, one for ea
h 
ondition Fk, for k ∈ {1...6}. In ea
h 
ase

we assume that we start with an optimal partition π that 
ontains the re
tangle R. Another

partition is obtained from π by sliding one of the sides of R whi
h 
an be easily veri�ed to not

in
rease the stabbing number. In other words, the new partition is also optimal and does not


ontain R. Without loss of generality, we assume that v1 is the left-upper vertex of R. Besides,

for i ∈ {1, 2, 3, 4}, we denote by ai (bi) the horizontal (verti
al) segment of EP
in
ident to vi

that is external to R if it exists (see Figure 5.13).
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Figure 5.13: Proof of Proposition 5.7: basi
 notation.

The situation treated in ea
h of the six 
ases is illustrated in Figure 5.14.

Case 1 Case 1 Case 2 Case 3

Case 4 Case 6Case 5
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Figure 5.14: Proof of Proposition 5.7: 
ases 1 to 6. Shaded regions are external to P and

shaded points are grid verti
es of no prespe
i�ed type.

Case 1, 
ondition F1 is satis�ed. Another optimal partition without R 
an be obtained from π

by sliding the segment v1v2 upwards. The sliding is possible sin
e, in this 
ase, b1 and b2 are

ne
essarily in π as they are part of δ(P ).

In essen
e, by symmetry, F1 shows that an optimal solution for rpst exists that has no

re
tangle R with two adja
ent 
orner re�ex verti
es or with a 
orner re�ex vertex u that is

adja
ent to a perpendi
ular vertex v with respe
t to R and u. The next 
ases 
onsider the

situation where R has just one 
orner re�ex vertex.

Case 2, 
ondition F2 is satis�ed. Ne
essarily a1, b1, a3 and b3 are in π. One of the segments a2
or b2 must belong to π otherwise there would be a knee in v2. Therefore, it is possible to obtain

a new partition without R by applying the sliding operation to either v1v2 (upwards) or v2v3
(rightwards). Noti
e that, the same arguments hold if v2 6∈ V P

S but v4 ∈ V P
S . This is easily seen

applying re�e
tion symmetry to the straight line 
ontaining the diagonal v1v3 of R.



5.4. Set Partition Models 102

Case 3, 
ondition F3 is satis�ed. We have that a1 and b1 are in π and all sides of R are slidable.

If b2 is in π, sliding v1v2 upwards removes R from the solution. The same holds if a4 is in π and

v1v4 is slided leftwards. On the other hand if π 
ontains neither b2 nor a4, it must 
ontain a2
and b4 simultaneously (to avoid knees in v2 and v4). Sin
e there 
an not be a knee in v3, either

a3 or b3 is in π and we 
an slide either v2v3 or v3v4 to get the new partition without R.

Case 4, 
ondition F4 is satis�ed. Sin
e a1 (a2) is ne
essarily in π then, if a4 (a3) is also in the

partition, a new one not 
ontaining R is obtained by sliding v1v4 (v2v3). However, if both a3
and a4 are not in π, b3 and b4 must be present in the partition (to avoid knees in v3 and v4). In

this 
ase, sliding v3v4 gives rise to a new partition not 
ontaining R.

Case 5, 
ondition F5 is satis�ed. In this 
ase we have that a1, b1, a2 and b4 belong to π. To avoid

a knee in v3, a3 or b3 must be in π. In the �rst situation, the slide of v2v3 rightwards leads to a

partition without R. An analogous situation o

urs if b3 is in π and we slide v3v4 downwards.

Case 6, 
ondition F6 is satis�ed. Ne
essarily a1, b1 and a3 belong to π. Consider �rst the

situation where v2 ∈ V P
S . Then either a2 or b2 is in π, otherwise there would be a knee in v2.

So, sliding v1v2 (upwards) or v2v3 (rightwards) produ
es a new partition not having R.

Now, suppose that v2 ∈ Vib(R, v1) (the 
ase where v2 ∈ Veb(R, v1) was treated in F1). This

for
es a2 to be in π. But, sin
e a3 is also in π, the new partition is obtained by sliding v2v3
rightwards. The proof is 
omplete.

The previous proposition treated the re
tangles with at least one 
orner re�ex vertex while

the next one 
onsiders those without su
h verti
es.

Proposition 5.8. Let R be a re
tangle having verti
es v1, v2, v3 and v4 ∈ V P
(in 
lo
kwise

order). Consider the following 
onditions:

• F1 =v1 ∈ V P

eb (R, v2) ∧ (v2 ∈ V P

eb (R, v1)) ∧ (v1v2 slidable),

• F2 =(v1 ∈ V P

eb (R, v2)) ∧ (v3 ∈ V P

eb (R, v2)) ∧ (v2 ∈ V P

S ) ∧ (v1v2 and v2v3 are slidable),

• F3 =(v1 ∈ V P

eb (R, v2)) ∧ ({v2, v3} ⊆ V P

S ) ∧ (v4 ∈ V P

eb (R, v3))∧
(all sides of R \ {v1v4} are slidable),

If R satis�es one of the 
onditions above, there is an optimal solution that does not 
ontain R.

Proof. The proof is divided into six 
ases, one for ea
h 
ondition Fk, for k ∈ {1...3}. The

assumptions and the notation used are the same as the one in the proof of Proposition 5.7.

Case 1, F1 is satis�ed. As v1 is in V P
eb (R, v2) and v2 is in (v2 ∈ V P

eb (R, v1), b1 and b2 are both

in π. Hen
e, a new optimal partition not 
ontaining R is obtained by sliding v1v2 upwards, a

feasible operation sin
e this segment is slidable.

Case 2, F2 is satis�ed. In this 
ase b1 and a3 are in π by de�nition. To avoid a knee in v2, a2 or

b2 must be in π. In the �rst situation the new optimal solution not 
ontaining R 
an be obtained

by sliding v2v3 rightwards while, in the se
ond, this 
an be done by sliding v1v2 upwards.

Case 3, F3 is satis�ed. In this 
ase b1 and b3 are in π by de�nition. Hen
e, if b2 (b3) also

belongs to the 
urrent partition, a new optimal one is generated if v1v2 (v3v4) is slided upwards

(downwards). On the other hand, if neither b2 nor b3 is in π, both a2 and a3 belong to the partition

otherwise there would be knees in v2 and v3. But, then, sliding v2v3 rightwards produ
es the

desired partition.

As in the previous proof, in all 
ases the sliding operation yields a new partition with stabbing

number no greater than the original one 
ontaining R, hen
e optimal. The proof is 
omplete.

Noti
e that based on Propositions 5.6, 5.7, 5.8 we 
an formulate the rpst as a set partition

problem using a redu
ed set of variables and still have a valid formulation. Two things should
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be noti
ed 
on
erning this new formulation. The �rst is that this formulation is a restri
tion of

the original set partition formulation. Therefore, the linear relaxation of the former is at least

as strong as the linear relaxation of the latter. A
tually, the 
omputational experiments show

that the relaxation of the redu
ed model yields lower bounds that are often stri
tly larger than

those 
omputed by the original model. Se
ond, despite our e�orts, the number of variables in

the redu
ed model remains O(n4). Ideally this quantity should be
ome asymptoti
ally smaller,

however, we 
ould neither �nd ways to do this nor prove that it 
an not be done.

5.5 Computational Results

We now dis
uss the results obtained from the 
omputational experiments we performed to 
om-

pare four (integer programming) bran
h-and-bound (b&b) algorithms that resulted from the

models introdu
ed in the previous se
tions. The �rst b&b algorithm is denoted by seg and is

based on the (MRPST ) model. The se
ond algorithm is a b&b that implements the stronger

model arising from adding the inequalities (5.10), (5.11) and (5.12) to MRPST
. This algorithm

is denoted by Sseg. The third algorithm is a b&b algorithm whi
h uses the MSPP
rpst model and

is named re
. At last, the b&b algorithm denoted by Rre
 employs the redu
ed MSPP
rpst model

obtained by applying Propositions 5.7 and 5.8.

The experiments were performed using a 
omputer equipped with an Intel Xeon E3-1230

v2 3.30 GHz, 8MB 
a
he, 32GB of RAM memory and operating system Ubuntu 12.04 OS. The

programming language used was C/C++ with g

 4.6.3 
ompiler and every program was 
ompiled

with -O5 optimization �ag. XPRESS-Optimizer 64-bit v27.01.02 was used as the ip solver.

The default 
uts, heuristi
s and prepro
essing were turned o� as we primarily intended to verify

the strength of the formulations.

In order to 
ompare the algorithms we exe
ute them with random simple polygon instan
es

from [4℄, spe
i�
ally from the AGP2009a set. This set 
ontains 600 instan
es with polygons

varying from 20 to 2, 500 verti
es, 30 instan
es for ea
h size. Sin
e presenting all the results

here would be very tedious and not so useful, we restri
t ourselves to display the tables relative

to the biggest instan
es with 2, 500 verti
es. However, the analysis 
onsiders the results for the


omplete ben
hmark.

Every test was performed with a time limit of 1, 800 se
onds for 
omputations. Noti
e,

however, that the elapsed time is 
he
ked at 
ertain points in the program and the time between

two 
he
ks may not be negligible. For this reason, the times reported here are, sometimes,

slightly larger than 1, 800 se
onds.

The data gathered from the 
omputational experiments are displayed in four tables, one

for ea
h algorithm. In these tables, the 
olumns with nVars and nRows headers 
ontain,

respe
tively, the number of variables and 
onstraints of ea
h instan
e for the 
orresponding

formulation. Columns with Root LP exhibit the value of the optimal solution of the linear

relaxation at the root node of the enumeration tree. Headers LB and UB identify the 
olumns


ontaining, respe
tively, the best lower and upper bounds found. Columns with tSetup headers


omprise the times spent in initializing and 
reating the integer programming problem, tRoot

indi
ates the time for solving the linear relaxation at the root node of the b&b tree. Finally,

tTotal headers identify the total exe
ution time for ea
h instan
e and the 
orresponding ip

model. All running times are given in se
onds.

Table 5.1 presents some of the data obtained from the experiments performed with seg

using the 30 instan
es from the set mentioned above as input. One 
an see that, although all
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the polygons have the same number of verti
es, the number of variables in the ip model vary

from 7, 279 up to 8, 159 and the number of 
onstraints is dire
tly proportional to the number of

variables. From the 30 instan
es in the table, only 3 were not solved, leaving an absolute gap

of just one unit. The average exe
ution time of the 27 instan
es solved to optimality was 39.14

se
onds.

Con
erning the whole set of 600 instan
es, seg was unable to solve 62 of them to optimality

and whenever optimality remained unproven, the gap was of only of one unit. The average

solving time for the remaining 528 instan
es was 17.43 se
onds.

The results for Sseg with 2, 500 verti
es instan
es 
an be seen in Table 5.2. The number of

variables and 
onstraints in this model varies as in the previous model. This algorithm was able

to solve 28 out of the 30 biggest instan
es with an average time of 97.47 se
onds. Considering

the 
omplete set of 600 instan
es, for 574 of them the algorithm a
hieved optimality with an

average of 23.14 se
onds spent for instan
e solved. For the unsolved instan
es, the gap left was

always of a single unit. With respe
t to the additional 
onstraints used in the model, Class IV

inequalities appear in 599 of the instan
es, Class VI in only 33 and Class III inequalities are not

present in any of the instan
es tested. Although the point formation asso
iated to the latter

inequalities is not forbidden in rpst instan
es, apparently it is rare. The average in
rease in the

number of 
onstraints from seg to Sseg is 2.11%.

It is worth noting that the results presented in Tables 5.1 and 5.2 are in
onsistent with the

ones we reported in [10℄. This is be
ause an implementation error was found in the 
ode used in

the tests of that previous work whi
h is now �xed.

Table 5.3 displays the results obtained by running re
 on the 30 biggest instan
es of the

test set. This algorithm left a unitary duality gap in only 2 of the 30 instan
es with an average

exe
ution time of 73.19 se
onds for the instan
es solved to optimality. If we 
onsider the whole

ben
hmark, 567 instan
es were solved to optimality and, on
e again, the ones not solved had

unitary duality gaps. The average running time for the optimally solved instan
es was 27.19

se
onds.

Finally, Table 5.4 shows some of the data produ
ed by Rre
 when exe
uted on the set of 30

largest instan
es. The algorithm solved 29 of these 30 instan
es to optimality with an average

running time of 36.90 se
onds. Turning to the 
omplete instan
e set, the algorithm was able

to solve 570 instan
es to optimality with an average exe
ution time of 20.90 se
onds and, on
e

more, a gap of one unit persisted for the remaining 30 instan
es.

Table 5.5 summarizes the main statisti
s of the b&b algorithms dis
ussed above. The mean-

ing of the row headers are: Solved (n = 2, 500): number of instan
es of size 2, 500 that were solved;

Unsolved (all): number of unsolved instan
es in the entire ben
hmark; Avg. Time (n = 2, 500):

average time in se
onds 
omputing optimal solutions for instan
es of size 2, 500; Avg. Time

(all): average time in se
onds 
omputing optimal solutions in all instan
es of the ben
hmark;

and Avg. Time (solved by all): average running time 
onsidering only those instan
es solved to

optimality by the four b&b algorithms, 513 in total (see Table 5.8 for the totals per instan
e

size); The rationale behind the 
omputation of statisti
s for the group of instan
es solved by all

algorithms is to avoid distorting some analyses. For example, suppose that algorithm A solves

just one instan
e more than algorithm B. It may happen that A and B take about a hundred

se
onds to 
ompute the instan
es they both solved to optimality but, say, A is always 10% faster

in these 
ases. However, suppose that the additional instan
e that A 
an handle 
onsumes all the

1, 800 se
onds of 
omputing time. In this extreme situation, if this extra instan
e is 
onsidered

in the 
al
ulation of A's average 
omputing time, we 
ould rea
h the wrong 
on
lusion that A is

�slower� than B.
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Table 5.1: Results for seg and instan
es with 2, 500 verti
es.

Instan
e nVars nRows Root LP LB UB tSetup tRoot tTotal

random-2500-1 7,835 27,765 2.88 4 4 0.22 0.88 25.84

random-2500-2 8,001 28,512 2.93 4 4 0.22 0.94 49.20

random-2500-3 7,519 26,343 2.84 4 4 0.21 0.66 15.63

random-2500-4 8,115 29,025 2.89 4 4 0.23 0.98 27.76

random-2500-5 7,701 27,162 2.78 4 4 0.22 0.89 57.84

random-2500-6 7,645 26,910 2.86 4 4 0.21 0.79 18.59

random-2500-7 7,547 26,469 2.92 4 4 0.22 0.90 27.20

random-2500-8 7,307 25,389 2.80 4 4 0.20 0.88 30.83

random-2500-9 7,905 28,080 3.01 4 4 0.22 0.94 86.68

random-2500-10 7,579 26,613 2.88 4 4 0.20 0.83 23.28

random-2500-11 7,421 25,902 2.93 4 4 0.22 0.64 15.39

random-2500-12 7,691 27,117 2.80 4 4 0.22 0.84 45.72

random-2500-13 7,397 25,794 2.91 4 4 0.21 0.74 22.31

random-2500-14 7,869 27,918 2.84 3 4 0.22 1.01 1,798.05

random-2500-15 7,411 25,857 2.85 4 4 0.21 0.76 23.03

random-2500-16 7,797 27,594 2.87 4 4 0.23 0.78 51.80

random-2500-17 8,073 28,836 2.92 4 4 0.23 1.05 81.01

random-2500-18 7,577 26,604 3.00 4 4 0.21 0.82 31.97

random-2500-19 8,129 29,088 2.95 4 4 0.22 1.12 79.17

random-2500-20 8,159 29,223 2.83 4 4 0.23 1.08 48.90

random-2500-21 7,735 27,315 2.83 4 4 0.23 0.97 28.62

random-2500-22 7,501 26,262 2.98 4 4 0.22 0.67 18.15

random-2500-23 8,137 29,124 2.83 4 4 0.23 1.22 143.71

random-2500-24 7,489 26,208 2.89 4 4 0.22 0.73 18.90

random-2500-25 7,663 26,991 2.89 4 4 0.23 0.77 24.48

random-2500-26 7,739 27,333 2.90 4 4 0.21 0.73 22.96

random-2500-27 7,895 28,035 2.81 3 4 0.22 0.82 1,798.22

random-2500-28 7,709 27,198 2.92 4 4 0.22 0.90 23.63

random-2500-29 7,279 25,263 2.83 3 4 0.22 0.54 1,797.54

random-2500-30 7,485 26,190 2.97 4 4 0.22 0.60 14.30

Table 5.2: Results for Sseg and instan
es with 2, 500 verti
es.

Instan
e nVars nRows Root LP LB UB tSetup tRoot tTotal

random-2500-1 7,835 28,334 2.92 4 4 0.26 0.87 72.11

random-2500-2 8,001 29,086 2.94 4 4 0.26 1.03 88.36

random-2500-3 7,519 26,918 2.82 4 4 0.26 0.86 26.14

random-2500-4 8,115 29,653 3.00 4 4 0.26 1.21 30.31

random-2500-5 7,701 27,750 2.79 4 4 0.26 1.09 62.62

random-2500-6 7,645 27,474 2.89 4 4 0.26 0.91 41.11

random-2500-7 7,547 27,020 2.95 4 4 0.25 1.06 59.51

random-2500-8 7,307 25,913 2.88 4 4 0.26 0.90 33.05

random-2500-9 7,905 28,671 3.09 4 4 0.26 0.92 27.92

random-2500-10 7,579 27,152 2.98 4 4 0.24 0.81 49.28

random-2500-11 7,421 26,450 2.94 4 4 0.25 0.75 24.93

random-2500-12 7,691 27,673 2.82 3 4 0.26 0.87 1,798.48

random-2500-13 7,397 26,336 3.02 4 4 0.25 0.97 14.79

random-2500-14 7,869 28,500 2.91 4 4 0.26 0.95 47.74

random-2500-15 7,411 26,398 2.89 4 4 0.25 1.00 33.60

random-2500-16 7,797 28,171 2.91 4 4 0.26 0.92 52.23

random-2500-17 8,073 29,434 2.90 4 4 0.26 1.11 77.38

random-2500-18 7,577 27,179 3.01 4 4 0.26 1.08 44.75

random-2500-19 8,129 29,673 2.97 4 4 0.26 1.46 1,405.86

random-2500-20 8,159 29,831 2.93 4 4 0.27 1.16 78.64

random-2500-21 7,735 27,865 2.85 4 4 0.26 1.17 53.56

random-2500-22 7,501 26,818 3.00 4 4 0.26 1.01 26.32

random-2500-23 8,137 29,682 2.92 4 5 0.26 1.39 1,798.83

random-2500-24 7,489 26,749 2.93 4 4 0.25 0.80 26.89

random-2500-25 7,663 27,541 2.98 4 4 0.26 0.95 63.81

random-2500-26 7,739 27,887 2.94 4 4 0.25 0.91 42.22

random-2500-27 7,895 28,601 2.90 4 4 0.26 1.09 164.57

random-2500-28 7,709 27,755 3.09 4 4 0.25 1.12 21.62

random-2500-29 7,279 25,792 2.83 4 4 0.25 0.66 21.71

random-2500-30 7,485 26,732 3.00 4 4 0.26 0.80 38.18
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Table 5.3: Results for re
 and instan
es with 2, 500 verti
es.

Instan
e nVars nRows Root LP LB UB tSetup tRoot tTotal

random-2500-1 50,964 7,662 2.99 4 4 27.97 4.96 69.37

random-2500-2 52,192 7,745 3.04 4 4 28.52 6.16 51.82

random-2500-3 43,838 7,504 2.96 4 4 23.47 3.57 85.51

random-2500-4 52,745 7,802 3.01 4 4 29.17 5.69 90.72

random-2500-5 48,322 7,595 2.94 4 4 26.19 5.03 149.00

random-2500-6 47,064 7,567 3.00 4 4 25.46 4.43 106.58

random-2500-7 47,734 7,518 3.10 4 4 25.58 5.50 66.59

random-2500-8 44,771 7,398 2.96 4 4 23.82 3.97 99.13

random-2500-9 51,545 7,697 3.18 4 4 28.08 5.94 72.31

random-2500-10 47,225 7,534 2.92 4 4 25.54 3.99 56.10

random-2500-11 44,397 7,455 2.99 4 4 23.95 3.65 88.33

random-2500-12 48,752 7,590 2.99 4 4 26.23 4.17 105.01

random-2500-13 46,826 7,443 3.07 4 4 24.96 5.34 50.24

random-2500-14 50,420 7,679 2.97 4 4 27.51 4.65 55.31

random-2500-15 44,872 7,450 2.96 4 4 24.08 3.63 94.45

random-2500-16 50,343 7,643 2.95 3 4 27.19 4.94 1,827.53

random-2500-17 55,026 7,781 3.06 4 4 30.32 6.33 50.89

random-2500-18 46,446 7,533 3.10 4 4 24.84 4.91 51.54

random-2500-19 59,821 7,809 3.11 4 4 32.86 7.59 75.38

random-2500-20 58,305 7,824 3.03 4 4 31.86 6.83 57.29

random-2500-21 50,196 7,612 3.01 4 4 27.17 6.39 53.92

random-2500-22 45,395 7,495 3.05 4 4 24.30 4.14 58.42

random-2500-23 61,346 7,813 3.15 4 4 33.64 8.18 64.18

random-2500-24 46,485 7,489 2.98 4 4 25.05 4.17 65.51

random-2500-25 49,785 7,576 3.12 4 4 26.58 5.32 80.23

random-2500-26 49,821 7,614 3.02 4 4 26.98 5.88 57.84

random-2500-27 52,494 7,692 2.98 4 4 28.76 5.39 85.45

random-2500-28 48,326 7,599 3.11 4 4 26.13 5.55 64.79

random-2500-29 41,645 7,384 2.87 3 4 22.27 2.88 1,821.79

random-2500-30 44,653 7,487 3.09 4 4 24.15 4.51 43.46

Table 5.4: Results for Rre
 and instan
es with 2, 500 verti
es.

Instan
e nVars nRows Root LP LB UB tSetup tRoot tTotal

random-2500-1 29,559 7,662 2.99 4 4 17.27 3.10 36.30

random-2500-2 29,794 7,745 3.04 4 4 17.46 3.82 33.92

random-2500-3 25,930 7,504 2.96 4 4 14.93 2.14 27.84

random-2500-4 31,382 7,802 3.01 4 4 18.54 3.76 36.89

random-2500-5 27,328 7,595 2.94 4 4 16.34 2.67 46.73

random-2500-6 27,126 7,567 3.00 4 4 15.76 3.18 29.65

random-2500-7 27,522 7,518 3.10 4 4 16.19 3.18 29.61

random-2500-8 25,871 7,398 2.96 4 4 14.76 2.24 33.17

random-2500-9 29,351 7,697 3.18 4 4 17.13 3.50 37.27

random-2500-10 27,697 7,534 2.92 4 4 16.08 2.69 39.71

random-2500-11 25,759 7,455 2.99 4 4 14.92 2.06 30.08

random-2500-12 27,782 7,590 2.99 4 4 16.06 2.58 41.75

random-2500-13 26,803 7,443 3.09 4 4 15.32 3.24 30.64

random-2500-14 29,395 7,679 2.97 4 4 17.12 2.79 33.64

random-2500-15 26,223 7,450 2.96 4 4 15.10 2.51 33.52

random-2500-16 28,477 7,643 2.95 4 4 16.61 2.54 103.63

random-2500-17 31,010 7,781 3.06 4 4 18.35 3.63 35.97

random-2500-18 27,254 7,533 3.10 4 4 15.62 2.96 25.36

random-2500-19 32,473 7,809 3.12 4 4 19.11 4.58 39.41

random-2500-20 32,076 7,824 3.03 4 4 18.75 4.17 36.25

random-2500-21 28,507 7,612 3.01 4 4 16.54 3.87 32.24

random-2500-22 26,543 7,495 3.05 4 4 15.21 2.82 27.26

random-2500-23 32,758 7,813 3.15 4 4 19.26 4.56 41.10

random-2500-24 27,140 7,489 2.98 4 4 16.09 2.75 37.64

random-2500-25 28,018 7,576 3.12 4 4 16.04 3.01 35.63

random-2500-26 28,400 7,614 3.02 4 4 16.53 3.34 30.73

random-2500-27 29,708 7,692 2.98 4 4 17.51 2.90 41.44

random-2500-28 27,654 7,599 3.11 4 4 16.04 3.10 36.27

random-2500-29 24,329 7,384 2.87 3 4 14.00 2.26 1,809.19

random-2500-30 26,762 7,487 3.09 4 4 15.47 2.55 26.55
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Table 5.5: Summary of results for the b&b algorithms.

seg Sseg re
 Rre


Solved (n = 2, 500) 27 28 28 29

Unsolved (all) 62 26 33 30

Avg. Time (n = 2, 500) 39.14 97.47 73.19 36.90

Avg. Time (all) 17.43 23.14 27.19 20.90

Avg. Time (solved by all) 15.64 20.20 19.53 11.62

Comparing the results for seg and Sseg, one 
an see that the strengthening of the segment

formulation had a positive e�e
t on the number of instan
es solved to optimality. On the other

hand, the larger number of restri
tions had a negative impa
t on the average time of solutions

solved to optimality by both algorithms (see penultimate row of Table 5.5).

Now, re
 uses a model theoreti
ally stronger than the one in seg, and the 
omputational

results show that more instan
es were solved to optimality by the former algorithm. However,

the average running time for the instan
es solved to optimality by both algorithms was smaller in

seg. When 
ompared to Sseg, re
 performed worse both in terms of the number of instan
es

solved to optimality and average time for the solution of the instan
es solved by both. But,

remarkably, the average time of re
 be
omes about 25% smaller than the one of Sseg when it


omes to �nd the optimum of 2, 500-sized instan
es.

Taking advantage of the results in Propositions 5.7 and 5.8, Rre
 uses a model with, on av-

erage (
onsidering all instan
es tested), only 58.63% of the variables used by re
. This redu
tion

on the number of variables allowed Rre
 to augment the total of instan
es solved to optimality

and to redu
e the average 
omputing time relative to re
. Despite these improvements Rre


solved four instan
es less than Sseg, the most e�
ient of the four algorithms in this 
riterion,

although it was faster than Sseg in the resolution of the instan
es 
omputed to optimality by

all algorithms. In this same subset of instan
es, when 
ompared to seg, the faster of the four

algorithms, the average time of Rre
 was greater. But, noti
e that seg was by far less e�e
tive

than Rre
 leaving about twi
e as many instan
es unsolved.

From the dis
ussion above, Sseg and Rre
 seem to emerge as the winners among the

four b&b algorithms. In spite of that, we extend our analysis a little further for a better

understanding of the situation. Initially we report in Tables 5.6 and 5.7 the average times of

Rre
 for ea
h instan
e size, 
onsidering only the ones solved to optimality by all four algorithms.

Then, Figure 5.15 displays a graph of the standardized average times of seg, Sseg and re
 by

instan
e sizes. The standardization of the average times was done taking those of Rre
 as the

mean in the 
al
ulation of the standard deviation. Hen
e, a positive value means that the average

time was greater than the one of Rre
 while a negative value means the opposite.

From Figure 5.15, one 
an see that for n ≥ 1, 500, only seg was a true 
ompetitor for Rre
.

This observation and the fa
t that Rre
 solves more instan
es to optimality than any other

algorithm but Sseg, suggest that Rre
 s
ales better than the other algorithms.

Another aspe
t we 
onsider was the strength of the di�erent formulations. Tables 5.8 and

5.9 display statisti
s 
on
erning the number of nodes explored in the b&b sear
h for the four

algorithms. Ea
h line in these tables 
ontains the data for a group of instan
es with the same

number of verti
es, indi
ated by n. The number of instan
es of a given size 
onsidered for

the statisti
s is shown in 
olumn #. Columns with headers avg, med and stdev 
ontains,

respe
tively the average, median and standard deviation for the number of explored nodes of the

algorithm identi�ed in the header. The smallest average value among the four algorithms for



5.5. Computational Results 108

Table 5.6: Average Time for Rre
 20 to

600 verti
es.

#verti
es time

20 0.08

40 0.17

60 0.24

80 0.51

100 0.56

200 1.51

300 1.98

400 2.56

500 4.40

600 8.22

Table 5.7: Average Time for Rre
 700 to

2,500 verti
es.

#verti
es time

700 76.85

800 6.51

900 7.79

1,000 8.69

1,250 12.25

1,500 16.49

1,750 19.10

2,000 24.80

2,250 31.94

2,500 33.70
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ea
h n is presented in bold fa
e.

The data in Tables 5.8 and 5.9 show that Rre
, on average, explores less nodes than the

other algorithms for most polygon sizes. When this is not the 
ase, its standard deviation is

large whi
h, together with the median, suggests that the high average is 
aused by few outliers.

The smaller number of nodes explored evin
e the strength of the model used by Rre
 when


ompared to the others.

As a �nal test, we de
ide to experiment with larger instan
es. The new set of instan
es


ontains polygons with 3, 000 up to 5, 000 verti
es with in
rements of 500. Thirty polygons of

ea
h size were generated totalizing 150 new instan
es. In the analysis of Figure 5.15 we saw that

seg and Rre
 present the best average running times for instan
es with 1, 500+ verti
es and

these values are very 
lose to ea
h other. Hen
e, the two algorithms were exe
uted for these large

instan
es. The results of these experiments are summarized in Table 5.10. The row headers have

the same meaning as in Table 5.5.

The average running time of Rre
 
onsidering all the large instan
es solved by the two

algorithms is 22.87% smaller than that of seg. If we 
onsider only the biggest instan
es (n =

5, 000) this improvement goes up to 36.05%. This suggests that Rre
 be
omes mu
h faster than

seg as size in
reases. The absolute gap for the instan
es not solved to optimality was always of

one unit for both algorithms. As before, more instan
es were solved to optimality by Rre
 than

by seg.

These 
omputational results 
orroborate with the theoreti
al result in Proposition 5.5 rel-

ative to the strength of the MSPP
rpst formulations. This fa
t is also noti
eable through the LP

values at the root nodes. Rre
 had an average 3.54% improvement on this value 
ompared to

seg, 
onsidering the instan
es solved to optimality by both algorithms (in the original instan
e

set). When 
ompared to re
, the LP value of Rre
 only presented an improvement in few


ases. However the smaller number of variables of Rre
 led to faster 
omputations of the linear

relaxation, as expe
ted. Also, although the number of variables is potentially mu
h greater than

the one in the formulation used in seg, for the instan
es tested, this drawba
k was handily o�set

by the stronger bounds yielded by the MSPP
rpst model.

5.6 Con
lusions and Future Work

In this paper, we investigated the rpst from many di�erent aspe
ts. We performed the �rst

polyhedral study about the MRPST
formulation presented by Duro
her and Mehrabi [7℄. New

strong valid inequalities were obtained that e�e
tively improve the lower bound of MRPST
in

pra
ti
e. We also proposed an alternative integer programming formulation for rpst based on the

set partition problem, named MSPP
rpst , whose relaxation was proved to yield better dual bounds

than MRPST
. Through geometri
 arguments, we devised pro
edures that 
an substantially

de
rease the number of variables in MSPP
rpst , making it a viable alternative to solve the rpst.

As far as we know, we 
arried out the �rst 
omputational experiments with the problem, where

the di�erent bran
h-and-bound algorithms arising from the ip formulations were 
ompared. The

experiments showed that it is possible to 
ompute the optimum of polygons having thousands

of verti
es in a reasonable time. Besides, it was observed that the �ndings in this work lead to

a faster and more robust algorithm.

However, we noti
ed that the instan
es that 
ould not be solved to optimality are not the

largest instan
es. This suggests that the hardness of an instan
e 
ould be more dependent

on some geometri
 
hara
teristi
 than on its size. The identi�
ation of this 
hara
teristi
 is a
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Table 5.8: Statisti
s for the number of explored nodes for seg and Sseg algorithms.

seg Sseg

n # avg med stdev avg med stdev

20 30 7.57 7.00 2.97 7.10 6.00 3.67

40 30 110.91 14.00 17.88 27.37 19.00 20.34

60 30 109.89 17.00 31.26 22.97 15.00 24.64

80 30 87.69 23.00 53.48 47.77 42.00 33.03

100 30 163.55 36.50 179.20 64.83 46.00 68.03

200 30 121.98 63.50 378.28 1,457.33 97.50 5,617.95

300 28 1,253.93 99.50 5,160.31 433.96 111.00 902.18

400 25 735.28 126.50 1,160.99 2,819.72 73.50 11,398.99

500 23 4,875.13 95.50 15,921.29 718.83 61.00 2,196.21

600 27 17,818.11 163.50 58,034.07 437.04 88.00 1,077.49

700 21 242.24 80.50 222.90 222.05 138.50 183.91

800 22 911.95 109.00 2,088.59 1,478.05 87.00 3,505.54

900 23 8,386.78 87.00 33,194.26 236.61 150.00 187.12

1,000 22 703.55 123.00 1,550.10 272.00 93.50 240.35

1,250 26 2,929.96 104.00 12,989.26 5,108.08 233.00 20,371.21

1,500 19 291.53 121.50 206.45 574.58 324.00 460.26

1,750 23 581.00 257.00 873.49 675.87 300.50 574.02

2,000 25 385.76 322.50 224.58 1,819.20 599.00 3,245.71

2,250 25 479.20 326.00 352.30 5,121.16 888.00 8,659.97

2,500 24 669.92 203.00 798.66 3,475.29 639.50 10,182.65

Table 5.9: Statisti
s for the number of explored nodes for re
 and Rre
 algorithms.

re
 Rre


n # avg med stdev avg med stdev

20 30 7.53 6.00 4.58 5.13 4.00 2.62

40 30 25.27 20.00 20.57 18.07 15.00 13.75

60 30 43.33 23.00 39.96 24.47 18.00 20.65

80 30 65.23 58.00 60.71 45.90 34.50 30.75

100 30 263.87 40.00 897.11 47.80 25.00 47.23

200 30 3,200.77 30.50 16,578.03 239.17 29.00 1,115.98

300 28 379.57 53.00 1,586.30 99.93 43.50 203.05

400 25 924.24 54.00 3,512.56 69.20 41.00 52.46

500 23 185.39 36.00 522.68 93.96 32.50 100.03

600 27 384.37 52.50 1,295.10 732.33 47.50 3,295.29

700 21 182.38 40.50 292.04 18,994.43 31.50 72,523.59

800 22 272.50 33.50 801.60 109.73 30.00 190.71

900 23 198.39 41.00 538.25 54.09 32.00 56.65

1000 22 497.86 33.50 1,595.90 81.45 35.00 97.41

1250 26 489.77 63.50 1,883.51 53.85 44.50 36.76

1500 19 92.42 54.00 61.57 57.16 36.50 34.31

1750 23 75.96 62.00 43.82 51.26 38.00 30.82

2000 25 72.72 56.00 39.72 58.12 42.50 36.93

2250 25 84.92 75.50 43.41 66.52 61.00 34.91

2500 24 96.79 68.00 68.15 63.42 42.00 46.59
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Table 5.10: Summary of results for the b&b algorithms with big instan
es.

seg Rre


Solved (n = 5, 000) 30 30

Unsolved (all) 9 6

Avg. Time (n = 5, 000) 170.17 108.82

Avg. Time (all) 105.56 81.37

Avg. Time (solved by all) 105.94 81.71

possible line of investigation to be pursued that may result in stronger ip models for rpst. But

future resear
h dire
tions should also in
lude the determination of the problem's 
omplexity.



Bibliography

[1℄ M. Abam, B. Aronov, M. De Berg, and A. Khosravi. Approximation algorithms for 
om-

puting partitions with minimum stabbing number of re
tilinear and simple polygons. In

Pro
eedings of the Twenty-seventh Annual Symposium on Computational Geometry, SoCG

'11, pages 407�416, New York, NY, USA, 2011. ACM.

[2℄ E. Balas and M. Oosten. On the dimension of proje
ted polyhedra. Dis
rete Applied

Mathemati
s, 87(1-3):1�9, 1998.

[3℄ F. Calheiros, A. Lu
ena, and C. de Souza. Optimal re
tangular partitions. Networks,

41(1):51�67, 2003.

[4℄ M. Couto, P. de Rezende, and C. de Souza. Instan
es for the Art Gallery Problem, 2009.

(a

essed in September, 2015).

[5℄ M. de Berg and M. van Kreveld. Re
tilinear de
ompositions with low stabbing number.

Information Pro
essing Letters, 52(4):215 � 221, 1994.

[6℄ C. de Meneses and C. de Souza. Exa
t solutions of re
tangular partitions via integer pro-

gramming. International Journal of Computational Geometry & Appli
ations, 10(05):477�

522, 2000.

[7℄ S. Duro
her and S. Mehrabi. Computing partitions of re
tilinear polygons with minimum

stabbing number. In Joa
him Gudmundsson, Julián Mestre, and Taso Viglas, editors, Com-

puting and Combinatori
s, volume 7434 of Le
ture Notes in Computer S
ien
e, pages 228�

239. Springer Berlin Heidelberg, 2012.

[8℄ S. Fekete, M. Lübbe
ke, and H. Meijer. Minimizing the stabbing number of mat
hings,

trees, and triangulations. Dis
rete & Computational Geometry, 40(4):595�621, 2008.

[9℄ A. Lingas, R. Pinter, R. Rivest, and A. Shamir. Minimum edge-length partitioning of

re
tilinear polygons. In H. V. Poor and W. K. Jenkins, editors, Pro
eedings 20th Annual

Allerton Conferen
e on Communi
ation, Control, and Computing, pages 53�63. University

of Illinois (Urbana, Illinois), Department of Ele
tri
al Engineering and Coordinated S
ien
e

Laboratory, 1982.

[10℄ B. Piva and C. de Souza. Partitions of re
tilinear polygons with minimum stabbing number.

In Pro
eedings of the VIII Latin-Ameri
an Algorithms, Graphs and Optimization Sympo-

sium, Lagos'15, pages 1�6, 2015. (to appear in Eletroni
 Notes in Dis
rete Mathemati
s).

[11℄ C. D. Tóth. Orthogonal subdivisions with low stabbing numbers. volume 3608 of Le
ture

Notes in Computer S
ien
e, pages 256�268. Springer Berlin / Heidelberg, 2005.

112



Chapter 6

Counterexample for the

2-approximation of �nding partitions of

re
tilinear polygons with minimum

stabbing number

Here a te
hni
al note made publi
 on the arXiv website [3℄ is reprodu
ed. This note


o-authored with Cid C. de Souza exhibits a 
ounterexample to the 
laim given in [2℄

that an algorithm proposed in that paper provides a 2-approximation for rpst. A similar

result was published afterwards in [1℄.

This paper presents a 
ounterexample to the approximation algorithm proposed by

Duro
her and Mehrabi [2℄ for the general problem of �nding a re
tangular partition of a

re
tilinear polygon with minimum stabbing number.

6.1 Introdu
tion

Given a re
tilinear polygon P and a re
tangular partition R of P , a segment is said to

be re
tilinear relative to P if it is parallel to one of P 's sides. Let s be a maximal

re
tilinear line segment inside P . The stabbing number of s relative to R is de�ned as

the number of re
tangles of R that s interse
ts. The stabbing number of R is the largest

stabbing number of a maximal re
tilinear line segment inside P . The Minimum Stabbing

Re
tangular Partition Problem (rpst) 
onsists in �nding a re
tangular partition R of P

having the smallest possible stabbing number. Figure 6.1 illustrates these de�nitions.

Variants of the problem arise from restri
ting the set of re
tangular partitions that

are 
onsidered to be valid. One of these variants is 
alled the 
onforming 
ase, in whi
h

every edge in the solution must be maximal, i.e., both of its endpoints must tou
h the

border of the polygon. For this problem, in [2℄, Duro
her et al. propose an integer

programming model for the 
onforming 
ase where there are exa
tly two edges (that 
an

be in the solution) having ea
h re�ex vertex as endpoint. Thus, there are also pre
isely

113
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two variables asso
iated to ea
h re�ex vertex.

random−20−17

r

s

Figure 6.1: A re
tilinear polygon with a re
tangular partition of stabbing number 4. The
dashed lines represent maximal re
tilinear line segments inside the polygon. Segment r
has stabbing number 4 while segment s has stabbing number 3.

In [2℄ a 2-approximation algorithm is presented for the 
onforming 
ase of partitions

of re
tilinear polygons with minimum stabbing number. That approximation algorithm is

based in a rounding of the variables. In the se
tion named Generalizing the Approximation

Algorithm of the arti
le, it is stated that the algorithm 
ould be extended for the general


ase using a formulation des
ribed informally and the same rounding rules used in the


onforming 
ase.

In this paper we show that the algorithm as des
ribed in [2℄ 
annot give a 2-approxi-

mation for the general 
ase of the (rpst). This is done by means of a 
ounterexample to

the referred algorithm.

6.2 IP Models

The rpst 
an be modelled via integer programming in a number of di�erent ways. In

this se
tion we present two su
h models for the general 
ase of rpst in an attempt to

formalize the des
ription given in [2℄. But �rst, we need some de�nitions.

Let P be a re
tilinear polygon, input of the rpst. De�ne as V P
r the set of re�ex

verti
es of P , i.e., those having internal angles equal to 3π/2. Let V P
c be the set of

verti
es of P that are not re�ex. Denote by grid(P ), the set of all maximal re
tilinear line

segments in the interior of P having a vertex in V P
r as one of its endpoints. Let V P

s be

the set of points in the interse
tion of two segments in grid(P ). We refer to these points

as Steiner Verti
es. The points that are not in V P
r or V P

c and are in the interse
tion
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of a segment in grid(P ) and the border of P 
ompose the set V P
b . Denote by V P

the set

resulting from the union of all the point sets de�ned before, i.e., V P = V P
r ∪V P

c ∪V P
s ∪V P

b .

De�ne EP
h as the set of line segments in the border of P having only two points in

V P
whi
h are its extremities. Any fragment of a segment in grid(P ) 
ontaining exa
tly

two verti
es in V P
is 
alled an internal edge. The set of all internal edges is EP

i and

the set of all edges in P is EP = EP
h ∪ EP

i . A subset E ′P
of EP

de�nes a knee in a

vertex u ∈ V P
s ∪ V P

r if exa
tly two edges in E ′P
have u as an endpoint and these edges

are orthogonal. A subset E ′P
of EP

is said to de�ne an island in a vertex u ∈ V P
r if only

one edge of E ′P
have u as an endpoint. At last, if ua and ub are two edges in EP

having

a 
ommon endpoint u, we denote the angle between ua and ub by θ(ua, ub).

Now, we 
an formalize the model des
ribed in [2℄ as follows:

(RPST ) z = min k (6.1)

subje
t to xua + xub ≥ 1, ∀ u ∈ V P
r ∧ ua, ub ∈ EP

i , (6.2)

xua + xub − xuc ≥ 0, ∀ u ∈ V P
s ,∀ ua, ub, uc ∈ EP

i

with θ(ua, ub) = π/2, (6.3)

∑

uv∈EP
i

uv
⋂

s 6=∅

xuv ≤ k − 1, ∀ s ∈ L, (6.4)

xuv ∈ B ∀ uv ∈ EP
i , (6.5)

k ∈ Z. (6.6)

In the model above, we have one binary variable xuv for ea
h internal edge uv in P

whi
h is set to 1 if and only if the 
orresponding edge is in the re
tangular partition

of P . Constraints (6.2) ensure that the solution does not 
ontain a knee in a re�ex

vertex. Inequalities (6.3) impose that the solution does not form a knee or an island in a

Steiner vertex. Inequalities (6.4) relate the x variables with variable k, whi
h represents

the stabbing number of the solution. As a 
onsequen
e, the obje
tive fun
tion (6.1) is to

minimize k. Finally, (6.5) and (6.6) are integrality restri
tions for the variables. Figure 6.2

shows an instan
e of the rpst (
alled random-20-17) with 62 internal edges and their


orresponding variables.

As stated before, the (RPST ) model above is not the only model for the problem and

next we show another way of modelling it. However, to guarantee the 
orre
tness of the

model we must �rst prove a property of optimal solutions for the rpst. The following

proposition is a generalization of Observation 1 in [2℄.

Proposition 6.1. Any re
tilinear polygon P has an optimal re
tangular partition R in

whi
h every maximal segment of R has at least one re�ex vertex of P as an endpoint.

Proof. Let R be a re
tangular partition of a re
tilinear polygon P . Let e be a maximal

segment in R having a and b as its endpoints. Suppose neither a nor b are re�ex verti
es.

Sin
e e is maximal and R is a re
tangular partition, both endpoints of e must lie in

segments perpendi
ular to e.
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random−20−17

x1

x22x37

x3x31x30

x6

x7

x19

x17

x46

x43x51x50

x45x9

x55x28

x42x41x49x48x54x27 x62 x16

x24

x13

x58x39x11

x8

x33 x5 x25

x34 x32 x35 x4

x10 x52 x44 x56 x36

x57 x53 x47 x61 x40 x2 x26 x15

x59x60x38x12x20x21x23

x18 x29 x14

Figure 6.2: Instan
e random-20-17 with 62 internal edges and the 
orresponding vari-

ables.

Now, sin
e R is a re
tangular partition, e de�ne two minimal re
tangles (ea
h one

possibly 
ontaining other re
tangles) having e as one of its sides, let us denote them by

r1 and r2. There are three 
ases to 
onsider.

The �rst 
ase 
onsists of r1 and r2 been empty re
tangles, i.e., neither r1 nor r2 
ontain

other re
tangles. Therefore, the removal of e unite these re
tangles, 
omposing a single

re
tangle. Therefore, R \ e is still a re
tangular partition. It is 
lear that removing a

segment 
annot in
rease the stabbing number of the solution. Thus, if R is an optimal

solution, so is R \ e.
The se
ond 
ase to 
onsider is when only one of r1 or r2 
ontains other re
tangles.

Suppose without loss of generality that r1 is the one 
ontaining other re
tangles. Now,

we 
an drag e towards r1, shrinking any segment with an endpoint in e, until e meets

a re�ex vertex or the border of P . In the latter 
ase, e is merged to the border of P .

It is easy to see that the result of this dragging operation is also a re
tangular partition

besides, the only stabbing segments a�e
ted by this operation are the ones parallel to e

and their stabbing number 
annot in
rease. Therefore, as R is optimal, so must be the

new solution.

At last, we must 
onsider the 
ase where both r1 and r2 
ontain other re
tangles.

Suppose without loss of generality that the number of segments in r1 having an endpoint

in e (thus, perpendi
ular to it) is greater or equal than the number of segments with these


hara
teristi
s in r2. Then, again, we 
an drag e towards r1, shrinking any segment with

an endpoint in e, until e meets either a segment parallel to e or a re�ex vertex or the

border of P . If a parallel segment is met, e is merged to it and the pro
ess is repeated

until a re�ex vertex or the border of P is met. In 
ase the border of P is met, e 
eases to

exist together with the segments in the spa
e between e and the border. On
e again, the
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dragging operation results in a re
tangular partition of P and the only stabbing segments

a�e
ted by this operation are parallel to e. But, as the number of segments in r1 is greater

or equal than the number of segments in r2, one 
an see that the stabbing number of the

new re
tangular partition 
annot be greater than that of R.

Ergo, there is always an optimal re
tangular partition where every maximal segment

has at least one re�ex vertex of P as an endpoint.

In the next model, given the same de�nitions as before, we 
onsider the set EP
e of

re
tilinear segments uv where u ∈ V P
r and v ∈ V P

. Noti
e that a segment of EP
e 
an

be 
omprised of several 
onse
utive segments of EP
i . Hen
e, we 
all EP

e the extended

edge set. In the formulation below, we have a variable xuv for ea
h edge in EP
e and from

Proposition 6.1 it is easy to noti
e that this set of variables is su�
ient to provide optimal

re
tangular partitions.

(RPST2) z = min k (6.7)

subje
t to

∑

ua∈EP
e

xua ≥ 1, ∀ u ∈ V P
r (6.8)

xab + xuv ≤ 1, ∀ ab, uv : ab ∩ uv 6= ∅ ∧
∧ ab ∩ uv 6= a, b, u or v (6.9)

∑

θ(uv,ab)=π/2 ∧
∧ b∈uv ∧ b6=u ∧ b6=v

xuv − xab ≥ 0, ∀ a ∈ V P
r , b ∈ V P

s (6.10)

∑

uv∈EP
e :uv

⋂
s 6=∅

xuv ≤ k − 1, ∀ s ∈ L (6.11)

xuv ∈ B ∀ uv ∈ EP
e . (6.12)

k ∈ Z (6.13)

In this model, inequalities (6.8) guarantee that the solution does not 
ontain a knee in

a re�ex vertex. Constraints (6.9) enfor
e planarity (two segments of the partition 
an only

interse
t at their extremes). Constraints (6.10) prevent the existen
e of knees and islands

in a Steiner vertex. Finally, (6.11) are the stabbing 
onstraints and (6.12) and (6.13) are

integrality 
onstraints. Figure 6.3 shows instan
e random-20-17 with 42 internal edges

and the 
orresponding variables.

6.3 The Counterexample

Before dis
ussing the 
ounterexample, we �rst present the rounding s
heme proposed in [2℄

for the 
onforming 
ase. On
e the optimum of the linear relaxation is 
omputed, the rules

for rounding variables in the 
onforming 
ase are really simple: a variable 
orresponding

to a horizontal segment is rounded down to zero if its value is smaller than or equal to

0.5 and is rounded up to one if its value is greater than 0.5. A variable 
orresponding to
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x20=(v5, v24)
x21=(v5, v37)
x22=(v5, v44)
x23=(v5, v45)
x24=(v5, v46)
x25=(v5, v47)

x19=(v5, v23)
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v55

v56
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v23

v21
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random−20−17

x2=(v1, v36)

x4=(v1, v47)
x5=(v1, v50)
x6=(v1, v53)
x7=(v1, v55)
x8=(v1, v57)
x9=(v1, v59)

x1=(v1, v35)

x11=(v3, v22)
x12=(v3, v37)
x13=(v3, v38)
x14=(v3, v39)
x15=(v3, v40)
x16=(v3, v41)
x17=(v3, v42)
x18=(v3, v43)

x10=(v3, v21)

x61=(v18, v58)
x60=(v18, v56)
x59=(v18, v52)
x58=(v18, v49)
x57=(v18, v46)
x56=(v18, v42)
x55=(v18, v34)
x54=(v18, v33)

x62=(v18, v59)
x53=(v15, v58)
x52=(v15, v54)
x51=(v15, v32)
x50=(v15, v31)

x48=(v13, v56)
x47=(v13, v55)
x46=(v13, v54)
x45=(v13, v51)
x44=(v13, v41)
x43=(v13, v39)
x42=(v13, v30)
x41=(v13, v29)

x49=(v13, v57)

x27=(v8, v26)
x28=(v8, v38)
x29=(v8, v44)
x30=(v8, v48)
x31=(v8, v49)
x32=(v8, v50)

x26=(v8, v25)

x34=(v10, v28)
x35=(v10, v40)
x36=(v10, v45)
x37=(v10, v48)
x38=(v10, v51)
x39=(v10, v52)
x40=(v10, v53)

x33=(v10, v27)

x3=(v1, v43)

Figure 6.3: Instan
e random-20-17 with its extended edges and 
orresponding variables.



6.3. The Counterexample 119

a verti
al segment is rounded down to zero if its value is smaller than 0.5 and is rounded

up to one if its value is greater than or equal to 0.5.

In the Generalizing the Approximation Algorithm se
tion of [2℄, a model for the general

(non-
onforming) 
ase is des
ribed informally. From the dis
ussion, apparently su
h model

is equivalent to the (RPST ) formulation given in Se
tion 6.2. A

ording to the authors,

the same rounding rules used in the 
onforming 
ase provide a 2-approximation for the

general 
ase.

The rounding rules do not mention what should be done for Steiner verti
es, and no

guarantee is given that applying them dire
tly in these situations will avoid the formation

of a knee or an island. In fa
t, the instan
e displayed in Figure 6.4 shows that this


annot always be done without sa
ri�
ing feasibility. In this �gure, the optimal values of

the variables 
orresponding to edges in
ident to Steiner vertex v38 (see Figure 6.3) after

solving the linear relaxation asso
iated to instan
e random-20-17 are given. As only the

variable 
orresponding to one verti
al edge in
ident to that vertex has value greater than

0.5 and the other three are smaller than 0.5, rounding a

ording to that rule would result

in an island at v38. Therefore, the set of edges obtaining after rounding does not form a

re
tangular partition.

random−20−17

0.82

0.49

0.330.33

Figure 6.4: Values of variables 
orresponding to edges in
ident to a Steiner vertex after

solving linear relaxation. The values are rounded with two digits after the de
imal point.

It is however possible that we misinterpreted the model the authors were thinking

of (although there is eviden
e in 
ontrary) and the idea is a
tually to de�ne variables


orresponding to all edges having a re�ex vertex as one of its endpoints. If so, the

formulation would look like (RPST2) model in the previous se
tion. In this alternative

formulation, rounding the variables using that rule does not 
ause the same problem as

before sin
e every variable 
orrespond to an edge having a re�ex vertex as endpoint.
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Contrary to what happens in the 
onforming 
ase, however, the re�ex verti
es here

have more than two in
ident edges. Therefore, it is possible that the solution of the linear

relaxation result in values smaller than 0.5 for all the variables 
orresponding to the edges

in
ident to a 
ertain re�ex vertex. Thus, the rounding of su
h solution would result in a

partition having a knee in a re�ex vertex.

The situation des
ribed above o

urs in pra
ti
e with instan
e random-20-17, as

shown in Figure 6.5. Consider the edges in
ident to vertex v3. All the asso
iated variables

in
ident to this vertex have value smaller than 0.5. As 
onsequen
e, they will be rounded

to zero, resulting in the formation of a knee at v3 and, therefore, in an infeasible solution.

random−20−17

0.16

0.29

0.28

0.28

Figure 6.5: Values of variables 
orresponding to edges in
ident to a re�ex vertex after

solving linear relaxation. Variables with value zero are omitted. The values are rounded

with two digits after the de
imal point.

6.4 Con
lusion

From the 
ounterexample presented in Se
tion 6.3, we 
on
lude that it remains open

whether a 2-approximation for the rpst in the general 
ase exists. It is, however, note-

worthy that many other 
ontributions are presented in [2℄ and none of them are diminished

by this 
ounterexample.
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Appendix

File name: random-20-17.re
t

Model: RPST

Vertex number: 59

Edge number: 62

Reading Problem stab

Problem Statisti
s

231 ( 0 spare) rows

63 ( 0 spare) stru
tural 
olumns

752 ( 0 spare) non-zero elements

Global Statisti
s

63 entities 0 sets 0 set members

Minimizing MILP stab

Original problem has:

231 rows 63 
ols 752 elements 63 globals

Will try to keep bran
h and bound tree memory usage below 6.1Gb

Its Obj Value S Ninf Nneg Sum Dual Inf Time

0 .000000 D 24 0 .000000 0

87 2.411765 D 0 0 .000000 0

Optimal solution found

121
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*** Sear
h unfinished *** Time: 0 Nodes: 0

Number of integer feasible solutions found is 0

Best bound is 2.411765

Solution:

x1 = 0.568627 x2 = 0.431373 x3 = 0.274510 x4 = 0.725490

x5 = 0.470588 x6 = 0.529412 x7 = 0.000000 x8 = 1.000000

x9 = 0.555556 x10 = 0.444444 x11 = 0.686275 x12 = 0.313725

x13 = 0.705882 x14 = 0.294118 x15 = 0.294118 x16 = 0.705882

x17 = 0.326797 x18 = 0.686275 x19 = 0.183007 x20 = -0.000000

x21 = -0.000000 x22 = 0.156863 x23 = 0.098039 x24 = -0.000000

x25 = 0.124183 x26 = -0.000000 x27 = 0.000000 x28 = 0.346405

x29 = 0.431373 x30 = 0.326797 x31 = 0.326797 x32 = 0.143791

x33 = 0.816993 x34 = 0.490196 x35 = 0.052288 x36 = 0.568627

x37 = 0.156863 x38 = 0.274510 x39 = 0.411765 x40 = 0.274510

x41 = 0.000000 x42 = 0.274510 x43 = 0.294118 x44 = 0.000000

x45 = 0.209150 x46 = 0.209150 x47 = 0.000000 x48 = -0.000000

x49 = 0.000000 x50 = 0.346405 x51 = 0.346405 x52 = 0.346405

x53 = 0.000000 x54 = 0.000000 x55 = 0.346405 x56 = 0.052288

x57 = 0.098039 x58 = -0.000000 x59 = 0.294118 x60 = 0.431373

x61 = 0.313725 x62 = 0.705882 x63 = 2.411765

******************************************************************

File name: random-20-17.re
t

Model: RPST2

Vertex number: 59

Edge number: 62

Reading Problem stab

Problem Statisti
s

336 ( 0 spare) rows

63 ( 0 spare) stru
tural 
olumns

996 ( 0 spare) non-zero elements

Global Statisti
s

63 entities 0 sets 0 set members

Minimizing MILP stab

Original problem has:

336 rows 63 
ols 996 elements 63 globals

Crash basis 
ontaining 13 stru
tural 
olumns 
reated

Its Obj Value S Ninf Nneg Sum Inf Time

0 .000000 D 1 0 24.000000 0
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82 2.413793 D 0 0 .000000 0

Optimal solution found

*** Sear
h unfinished *** Time: 0

Number of integer feasible solutions found is 0

Best bound is 2.413793

Solution:

x1 = 0.293103 x2 = 0.431034 x3 = 0.275862 x4 = -0.000000

x5 = -0.000000 x6 = -0.000000 x7 = -0.000000 x8 = -0.000000

x9 = -0.000000 x10 = 0.275862 x11 = 0.275862 x12 = -0.000000

x13 = -0.000000 x14 = -0.000000 x15 = 0.155172 x16 = -0.000000

x17 = -0.000000 x18 = 0.293103 x19 = 0.241379 x20 = -0.000000

x21 = 0.275862 x22 = 0.293103 x23 = 0.051724 x24 = -0.000000

x25 = 0.137931 x26 = -0.000000 x27 = -0.000000 x28 = 0.275862

x29 = 0.241379 x30 = 0.189655 x31 = -0.000000 x32 = 0.293103

x33 = 0.155172 x34 = 0.103448 x35 = -0.000000 x36 = 0.137931

x37 = 0.293103 x38 = 0.017241 x39 = 0.000000 x40 = 0.293103

x41 = 0.000000 x42 = 0.017241 x43 = -0.000000 x44 = 0.275862

x45 = -0.000000 x46 = 0.293103 x47 = 0.120690 x48 = 0.000000

x49 = 0.293103 x50 = 0.706897 x51 = -0.000000 x52 = -0.000000

x53 = 0.293103 x54 = -0.000000 x55 = 0.293103 x56 = 0.275862

x57 = 0.000000 x58 = -0.000000 x59 = -0.000000 x60 = -0.000000

x61 = 0.000000 x62 = 0.431034 x63 = 2.413793



Chapter 7

Con
lusions and Future Work

In this work we studied problems of �nding geometri
 stru
tures with minimum stab-

bing number. Integer programming te
hniques were used to 
reate algorithms for all the

problems and 
omputational results were reported.

The 
omplexity 
lasses of mstr and m
tr were proved and now we know that unless

P=NP, there is no polynomial time algorithm to solve these problems. Moreover, besides

the exa
t algorithm and 
omputational results presented for mstr, we also proposed a

Lagrangian heuristi
 and reported experiments with an iterated rounding algorithm. The

results show empiri
ally that it is possible that IRA provides an approximation for mstr.

For the rpst, a polyhedral study was also performed through a relationship with rgp,

and we showed that the additional inequalities are useful in 
omputation. A set partition

formulation was also presented and 
ompared with the segment based model both theo-

reti
ally and 
omputationally. We showed that the set partition model is stronger than a

basi
 segment based model. Computationally, the segment based model with additional

inequalities is 
omparable to the set partition model.

Moreover, we gave a 
ounterexample to the 
laim in [16℄ regarding an approximation

algorithm for rpst. Later, the authors of the paper also published an erratum 
on�rming

the mistake [15℄.

Obviously, there is still a lot of work to be done on this subje
t. From the integer

programming perspe
tive, we 
ould 
onsider di�erent formulations for stabbing problems.

For instan
e, in a formulation with one variable for ea
h stabbing line it is possible to


onsider the relationship between the stabbing numbers of di�erent lines.

A very interesting question still unanswered is whether the iterated rounding algo-

rithms provide approximations for the stabbing problems if we 
an guarantee the existen
e

of a highly valued fra
tional variable in the linear programming relaxation.

The 
omplexity of rpst is still an open problem both for polygons with and without

holes. If the problem turns out to be NP-hard, an obvious question is if the existing

approximation fa
tor 
an be improved.

To 
on
lude, in Table 7.1 we summarize the problems that were treated and the

arti
les that originated in the thesis. The meaning of the headers are: Problem: name

of the problem treated in the paper; Arti
le: 
itation to the paper; Status: the status of

the paper, i.e., published in a journal or 
onferen
e pro
eedings, submitted to a journal or

released on-line; Type: full paper/abstra
t/te
hni
al note; and Contribution: the type of

124
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ontribution presented in the paper for that problem.

Table 7.1: Summary of problems approa
hed and papers 
omposing the thesis.

Problem Arti
le Status Type Contribution

mspm

[37℄ published full paper

algorithms and

(axis parallel) experiments

msst

[37℄ published full paper

algorithms and

(axis parallel) experiments

mstr

[33, 37℄ published full paper

algorithms and

(axis parallel) experiments

mstr

[38℄ submitted full paper

NP-hardness proof
(axis parallel) and experiments

mstr

[38℄ submitted full paper

NP-hardness proof
(general) and experiments

m
tr

[38℄ submitted full paper NP-hardness proof
(general)

rpst [36℄ published

extended ip model+algorithms

abstra
t and experiments

rpst [34℄ released te
hni
al note 
ounterexample

rpst [35℄ submitted full paper

ip models+algorithms

and experiments
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