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RESUMO 

O uso de formulações tópicas na cavidade oral apresenta baixa eficácia devido à 

complexidade e variabilidade da mucosa de revestimento e difícil acessibilidade aos tecidos 

profundos, como a polpa dental. Microagulhas têm sido relatadas como um eficiente e indolor 

sistema transdérmico e transmucosa de fármacos para ação local e/ou sistêmica que poderia 

melhorar ação de fármacos tópicos em Odontologia. Visando a melhora da biodisponibilidade 

de formulações tópicas, estudos de permeação in vitro são muito importantes pois podem 

permitir a previsão do comportamento destas frente à barreira utilizada. No entanto, não existe 

um modelo de barreira que mimetize as condições reais da cavidade oral.  Nesse contexto, 

este estudo teve como objetivos padronizar barreiras de tecidos espessos da cavidade oral de 

suínos, adaptar células de difusão e condições experimentais para realização de estudos de 

permeação in vitro com essas barreiras, visando o desenvolvimento de produtos tópicos em 

Odontologia. Além disso, avaliar a eficiência e aplicabilidade de microagulhas revestidas ou 

não como promotores de absorção in vitro, na metodologia desenvolvida. Artigo 1: foram 

padronizados os tecidos espessos de palato de porco (com e sem osso) como barreiras e 

condições experimentais para realização de ensaios de permeação in vitro. Em seguida, o 

sistema de microagulhas Dermaroller
®
 (0,2, 0,5 e 1 mm de comprimento) foi aplicado 

naqueles tecidos, os quais foram montados em células de difusão vertical (Franz) adaptadas. 

Foram avaliados o fluxo, quantidade total permeada e o fator de promoção de permeação (EF) 

para os anestésicos locais lidocaína e prilocaína. Os tecidos foram padronizados com sucesso 

e a célula de Franz adaptada permitiu manter as condições ao longo das 12h dos experimentos 

de permeação. A permeação dos fármacos analisados ocorreu eventualmente, demonstrando a 

resistência das barreiras à difusão de fármacos. A aplicação prévia das microagulhas nos 

tecidos aumentou a permeação das drogas-teste em relação aos grupos-controle. Artigo 

2: microagulhas de 0,7 mm foram revestidas com a droga Sulforrodamina B, aplicadas na 

superfície de mucosa jugal de suínos, seguida de ensaios de permeação (24h). Dois tipos de 

fluxo salivar (estático e dinâmico) foram simulados no compartimento doador da célula e 

comparados com a presença de umidade como controle negativo. Foram avaliados o tempo 

para início da permeação, fluxo e o EF. Ambos os tipos de fluxos salivares alteraram o perfil 

de permeação da droga modelo, aumentando a quantidade de droga permeada, em 

comparação com o controle, demonstrando a importância da saliva na realização de testes de 

permeação in vitro. Conclusões gerais:  os tecidos foram padronizados e permitiram realizar 

ensaios de permeação nas células de Franz adaptadas. O uso de microagulhas foi eficaz em 

aumentar a permeação de fármacos nas condições avaliadas. A presença de fluxo salivar 



 
 

demonstrou ser importante para simular as condições reais da cavidade oral em permeação in 

vitro, pois pode ser fundamental na dinâmica da permeação através do tecido. O presente 

estudo representa um aprimoramento na realização de experimentos de permeação in vitro 

visando a melhora de formulações tópicas e promotores de absorção para uso em 

Odontologia. 

  

Palavras-chave: Permeação. Microagulhas. Mucosa Oral. Técnicas In Vitro. 

  



 
 

ABSTRACT 

The use of topical formulations in the oral cavity presents low efficiency because 

of the complexity and variability of the mucosal lining and hard accessibility of deep tissues, 

as dental pulp. Microneedles have been reported as an efficient and painless transdermal and 

transmucosal drug systems for local and/or systemic effect that could improve action of 

topical drugs in Dentistry. Aiming at improving the bioavailability of topical formulations, in 

vitro permeation studies are very important because it may allow predicting the behavior of 

these formulations in front of the barrier used. However, there is no barrier model that mimics 

the actual conditions of the oral cavity. In this context, this study aimed to standardize thick 

tissue barriers of the oral cavity from pigs, adapt diffusion cells and experimental conditions 

for performing in vitro permeation studies with these barriers, in order to develop topical 

products in Dentistry. Moreover, to evaluate the efficiency and applicability of microneedles 

coated or not as in vitro absorption enhancers in this methodology. Article 1: pig thick palate 

tissues (with and without bone) and experimental conditions were standardized to carry out in 

vitro permeation experiment. The microneedle device Dermaroller
®
 (0.2, 0.5 and 1 mm 

length) was applied in those tissues, which were mounted in adapted Franz-type vertical 

diffusion cells. The Flux and the permeation enhancement factor (EF) of the local anesthetics 

lidocaine and prilocaine were evaluated. Tissues were successfully standardized and the 

adapted Franz cell allowed to maintain the experimental conditions through the 12h of 

permeation assay. The permeation of the analyzed drugs has occurred eventually, 

demonstrating the effectiveness of the barriers. The microneedles pretreatment on tissues 

increased the permeation flux of the tested drugs, in comparison to control groups. Article 2: 

microneedles of 0.7 mm were coated with the drug Sulforhodamine B, and applied on the 

porcine buccal mucosa surface, followed by permeation tests (24h). Two types of salivary 

flow (static and dynamic) were simulated inside the donor chamber and were compared with a 

moistened gauze as a negative control. We evaluated the onset time to permeation (Lag 

Time), flux and EF. Either of the simulated salivary flux affected the permeation profile of the 

model drug, by means of increasing drug permeation, as compared to the negative control, 

demonstrating the importance of saliva during in vitro permeation studies. General 

conclusions: tissues were standardized and allowed to perform permeation assays with 

adapted Franz cells. The use of microneedles in those barriers was effective to increase the 

permeation of drugs under the conditions evaluated. The presence of salivary flow has proved 

to be important to simulate the real conditions of the oral cavity in in vitro permeation, which 



 
 

might have an essential role on permeation dynamics across the tissue. This study represents 

an advancement to perform in vitro permeation assays, aiming at the improvement of topical 

formulations and absorption enhancers for use in Dentistry. 

 

Key words:  Permeation. Microneedles. Oral mucosa. In vitro techniques. 
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1 INTRODUÇÃO 

A busca por sistemas que sejam capazes de melhorar a absorção de fármacos 

topicamente aplicados nos tecidos como pele e mucosas, de forma indolor e de baixo custo é 

um constante desafio na área da saúde. Para isso, diversos sistemas de liberação e promotores 

de absorção vêm sedo pesquisados. Em Odontologia, pouco avanço tem sido relatado, e 

poucas formulações eficazes para aplicação tópica em mucosa oral são comercialmente 

disponíveis.  

Diversas condições que afetam a mucosa oral como mucosite, periodontite, 

estomatite aftosa recorrente, úlceras, líquen plano, herpes simples, câncer, doenças vesicolo-

bolhosas, disfunções salivares e candidíase poderiam ter o tratamento beneficiado através de 

uma formulação tópica, a qual apresenta uma abordagem atraente (Paderni et al., 2012, 

Sankar et al., 2011).   

Além dessas doenças, a ansiedade gerada pelo medo de sentir dor ainda é uma 

barreira para o atendimento odontológico (Nuttall et al., 2001). A anestesia local elimina a dor 

durante os procedimentos em odontologia, no entanto, esta etapa é um dos mais poderosos 

agentes indutores de estresse e ansiedade (Meechan, 2002). Um anestésico tópico capaz de 

eliminar a dor durante a punção e a injeção de uma solução anestésica nos tecidos orais seria 

um grande benefício à Odontologia.  As formulações tópicas atualmente disponíveis não 

garantem uma eficácia de 100%, especialmente em mucosa palatina (Franz-Montan et al., 

2012b, Meechan, 2002, Meechan et al., 2005). 

De maneira semelhante à pele, a mucosa oral é uma eficiente barreira às camadas 

profundas, o que limita a penetração de substâncias do meio externo para o meio interno 

(Squier and Hopps, 1976, Lesch et al., 1989). Apesar da permeabilidade da mucosa oral ser 

em torno de 4000 vezes maior que à da pele (Galey et al., 1976, Squier and Hall, 1985), o 

conceito de que a mucosa é altamente permeável é errôneo. Pelo contrário, a mucosa oral 

representa uma eficiente barreira e a aplicação transmucosal de fármacos ainda é um grande 

desafio em drug delivery. Outras limitações mecânicas na aplicação tópica na cavidade oral 

consistem na presença de saliva, a qual continuamente lava todas as superfícies da mucosa, 

deglutição, fala e mastigação (Paderni et al., 2012, Chinna Reddy et al., 2011). 

A mucosa oral é revestida por um epitélio escamoso estratificado, chamado de 

epitélio oral, e uma camada de tecido subjacente, chamada de lâmina própria. Essa é 

composta por fibras de colágeno (camada de suporte ao tecido conjuntivo), capilares 
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sanguíneos, terminações nervosas e músculo liso (Wertz and Squier, 1991). As principais 

funções da mucosa oral são proteção, secreção e sensorial (Squier and Brogden, 2011). A 

espessura total desta mucosa é estimada ser em torno de 500 a 800 µm, dependendo da região. 

O epitélio oral, que consiste na primeira barreira entre o ambiente intraoral e os tecidos mais 

profundos, é composto por células bem aderidas umas às outras, e dispostas em números 

distintos de camadas - 40 a 50 camadas de células, ligadas ao tecido conjuntivo (Harris and 

Robinson, 1992, Squier and Brogden, 2011). Esse epitélio pode ser dividido em dois tipos, o 

queratinizado, cobrindo áreas da mucosa mastigatória como palato duro e gengiva, e o não-

queratinizado, cobrindo regiões como bochechas, palato mole e assoalho da boca (Squier and 

Brogden, 2011). 

A mucosa oral de suíno é um modelo bastante utilizado para testes in vitro, devido 

à sua similaridade com a mucosa oral de humanos em termos de organização, composição 

lipídica, histologia e permeabilidade (Lesch et al., 1989, Wertz and Squier, 1991, de Vries et 

al., 1991a).  

Inúmeros esforços tem sido relatados em busca do desenvolvimento de novas 

tecnologias para drug delivery em aplicação tópica em mucosa oral, como pastilhas, filmes 

bioadesivos, spray, enxaguatórios bucais, géis, pastas (Hearnden et al., 2012, Paderni et al., 

2012).  Mais recentemente, microagulhas tem sido demonstradas como um sistema efetivo e 

indolor em aplicação tópica transdérmica (Gill et al., 2008). E mais recentemente, foi 

demonstrado ser um sistema promissor em aplicação tópica na mucosa oral (Wang and Wang, 

2015, Wang et al., 2015, Ma et al., 2014, Ma et al., 2015).  

Microagulhas representam uma nova abordagem na aplicação tópica 

dermatológica de fármacos, com tamanhos variados, normalmente não passando de alguns 

milímetros. A literatura relata diversos tipos de sistemas de microagulhas (Bariya et al., 

2012). O sistema mais simples é aquele no qual a microagulha é utilizada para perfurar as 

estruturas superficiais do tecido previamente à aplicação tópica de formulações. Essas 

microagulhas são normalmente  usadas em dermatologia para romper a barreira do estrato 

córneo, camada que dificulta a penetração de fármacos (Qiu et al., 2008, Li et al., 2010, 

Coulman et al., 2009, Badran et al., 2009, Duan et al., 2011). Nesse sentido, essas 

microagulhas já foram testadas para aplicação de vacinas contra o vírus H1N1 (Kim et al., 

2010), difteria (Ding et al., 2011), anestésicos locais  (Li et al., 2010, Zhang et al., 2012), 

insulina (Martanto et al., 2004) e naltroxeno (Banks et al., 2011). 
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Microagulhas revestidas com fármacos, representam uma abordagem interessante, 

uma vez que o fármaco do revestimento fica retido no tecido após sua aplicação (Ma and Gill, 

2014, Ma et al., 2014, Ma et al., 2015). No entanto, uma limitação desse sistema é a 

quantidade máxima de fármaco que pode ser colocada no revestimento, não ultrapassando 1 

mg. Esse sistema já está comercialmente disponível e aprovado para uso nos Estados Unidos 

(Solid Microneedles System
®
, 3M Drug Delivery Systems

®
), sendo composto de 300-1500 

microagulhas sólidas medindo 250 a 700 µm, revestidas com o fármaco como proteínas 

altamente potentes e vacinas. 

Ainda, outra abordagem relatada é o uso de microagulhas ocas, contendo o 

fármaco em seu interior, permitindo a aplicação total de até 1,5 mL de formulação na forma 

líquida (Gupta et al., 2012, Gupta et al., 2011b). Este sistema também já está disponível 

comercialmente nos Estados Unidos (Hollow Microneedles System
®
, 3M Drug Delivery 

Systems
®
). O sistema consiste em um arranjo de 18 microagulhas ocas por cm

2
, cada uma 

medindo 900 µm. 

Outro sistema mais moderno utiliza microagulhas feitas de polímeros e 

polissacarídeos contendo o fármaco em sua estrutura (Wang et al., 2015, Caffarel-Salvador et 

al., 2015, Lu et al., 2015). Essas microagulhas ficam retidas no local após a aplicação, 

degradando-se e liberando o fármaco no interior  do sítio de aplicação.  

Existem vários sistemas de microagulhas já disponíveis no mercado mundial, 

principalmente nos Estados Unidos (Bariya et al., 2012). No Brasil, atualmente, existem três 

marcas de microagulhas todas do tipo roller  registradas na ANVISA (Agência Nacional de 

Vigilância Sanitária): microagulhas Dermaroller
®
 (Dermaroller

®
, Dermaroller Deutchland 

S.A.R.L. Alemanha), alvo de um dos artigos da presente tese; Ogival (W.T.F. Trovo 

Importação & Exportação – EPP, BRASIL; e Dr. Roller (Moohan Enterpreise CO., LTD., 

Coréia do Sul).  

O Dermaroller
®
 (Figura 1) apresenta um sistema de rolagem, no qual as 

microagulhas ficam inseridas, podendo estar dispostas em 4 ou 8 fileiras. O dispositivo 

composto de 4 fileiras é comercializado com microagulhas nos tamanhos de 0,5; 1; 1,5; 2,0 ou 

2,5 mm. Já o dispositivo com 8 fileiras, está disponível nos tamanhos de 0,2; 0,5; 1; 1,5; 2,0 

ou 2,5 mm (ANVISA, 2015). No presente trabalho, os dispositivos com 8 fileiras com 

microagulhas de 0,2; 0,5 e 1 mm foram utilizados.  
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Figura 1. Imagem de um aparelho Dermaroller
®
 com microagulhas no tamanho de 1mm 

(Aumento de 1x). 

Apesar desse sistema comercialmente disponível já ter sido avaliado extensamente 

para tratamentos estéticos na área de dermatologia, até o momento ainda não foi avaliada a 

aplicabilidade desse sistema em mucosa oral.  

Estudos de permeação são fundamentais na fase pré-clínica de desenvolvimento 

de medicamentos. Estes ensaios permitem a previsão do comportamento desta formulação, 

frente à barreira utilizada, i.e., pele ou mucosa. Esses estudos são principalmente realizados 

em células de difusão vertical (Chinna Reddy et al., 2011, Nair et al., 2013, Squier, 1991), 

sendo a célula descrita por Franz na década de 70 (Franz, 1975) o modelo mais utilizado até 

os dias de hoje. 

Quando uma formulação está sendo avaliada para aplicação tópica em mucosa 

oral, o epitélio de mucosa bucal ou de esôfago são os modelos de barreira não queratinizada 

mais utilizados (Diaz Del Consuelo et al., 2005, Diaz-Del Consuelo et al., 2005, Kulkarni et 

al., 2009, Kulkarni et al., 2010, Kulkarni et al., 2011). Uma das maiores vantagens da 

utilização dessas barreiras é a similaridade com a mucosa oral de humanos em termos de 

organização, composição lipídica, histologia e permeabilidade (Lesch et al., 1989, Wertz and 

Squier, 1991, de Vries et al., 1991a). No entanto, quando o alvo do fármaco é abaixo do osso, 

como por exemplo o tecido pulpar, este modelo de barreira não representa uma condição real 

e não pode ser considerado um método viável para avaliação. 

Nesse contexto, os objetivos do presente estudo foram padronizar o preparo de 

barreiras de tecidos espessos da cavidade oral de suínos (mucosa palatina com e sem osso); 

adaptar células de difusão e condições experimentais para realização de estudos de permeação 
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in vitro com essas barreiras; e avaliar a eficiência e aplicabilidade de microagulhas revestidas 

ou não como promotores de absorção in vitro, na metodologia desenvolvida. 

Para atingir esses objetivos, a presente tese será apresentada no formato 

alternativo
*
, e será composta de 2 artigos científicos, que se encontram em fase de submissão 

para revistas científicas. 

Para uma melhor compreensão desta tese, a Figura 2 ilustra um fluxograma com o 

resumo dos artigos que serão apresentados. 

 

Figura 2 – Fluxograma com o resumo dos artigos que compõe a tese de doutorado. 

 

 

 

 

                                                           
*
 De acordo com as normas estabelecidas pela deliberação 001/2015 da Comissão Central de Pós-

Graduação da Universidade Estadual de Campinas. 



18 
 

 

2 ARTIGOS 

2.1 Artigo 1: Evaluation of full thickness oral mucosa barrier models 

for drug permeation studies. 

 

Artigo será submetido ao periódico European Journal of Pharmaceutical Sciences  
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ABSTRACT 

Permeation studies are essential during formulation development. There is a lack 

in the literature of permeation methods description using oral tissues that represents a 

challenging barrier to permeation. Therefore the objective of this study was to present a new 

model of permeation using a full thickness porcine palate mucosa with and without the 

subjacent cortical bone. In addition, ideal experimental conditions to perform in vitro 

permeation studies in adapted Franz-type vertical diffusion cells are presented. Pieces of fresh 

porcine palatal mucosa with and without bone were cut in circular shape by using surgical 

instruments and high-speed air turbine drills. Adapted Franz cells were validated in terms of 

cells dimension and volume, sealing ability, stirring and dissolution efficiency, temperature 

control during permeation experiment, and confirmation of uniaxional flux. In order to test the 

effectiveness of barriers and to evaluate permeation conditions, commercially available 

handheld devices containing microneedles (0.2, 0.5 or 1.0 mm in length) were applied on 

palatal mucosa prior to the permeation studies, acting as permeation enhancers. Imaging 

studies (optical and fluorescence microscopy) of palatal mucosa were performed to verify 

tissue integrity after microneedles use and to characterize the micro perforations created 

(number and area). In vitro permeation studies were conducted across palatal barriers with 

lidocaine and prilocaine (lidocaine hydrochloride solution, and a eutectic mixture of lidocaine 

and prilocaine). The barriers were standardized and permeation studies were successfully 

conducted. The proposed method was able to maintain the experimental conditions 

throughout 12 h of permeation. The microneedles effectively created micro pores in the 

palatal mucosa. As expected, the in vitro permeation assays demonstrated that the palatal 

mucosa with bone was more effective as a barrier.  Microneedles were able to enhance the 

permeation in the in vitro assays when palatal mucosa without bone was used as a barrier. The 

present study represents a step forward in methods to perform in vitro permeation studies 
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aiming to evaluate new topical formulations and permeation enhancers focusing on deep 

tissues of oral cavity. 

Keywords: Oral mucosa, drug delivery, Permeability, Diffusion 

  



21 
 

 

1. INTRODUCTION 

The oral cavity is an attractive site for topical formulations aiming systemic or 

local delivery. However, due to the complexity and reduced permeability of oral mucosa, few 

formulations are available for this purpose (Paderni et al., 2012, Sankar et al., 2011, Hearnden 

et al., 2012). Furthermore, some of the commercially available topical formulations designed 

for oral mucosa such as topical anesthetics, does not guarantee effectiveness, especially 

considering the palatal mucosa (Franz-Montan et al., 2012b, Meechan, 2002, Meechan et al., 

2005).   

Besides local or systemic effect, a great challenge in topical drug delivery is to 

achieve deep tissues of oral cavity, such as the dental pulp.  

Several efforts enrolling different drug delivery technologies, such as tablets, 

wafer/film, spray, mouthwash, gel, pastes, and different mucoadhesive dosage forms were 

developed in order to achieve success in transbuccal delivery, especially to treat oral diseases 

(Hearnden et al., 2012, Paderni et al., 2012). More recently, the microneedles, known as a 

minimal invasive successful transdermal drug delivery device, provided an efficient tool to 

achieve oral mucosa vaccination (Wang and Wang, 2015, Wang et al., 2015, Ma et al., 2014). 

One of the most stablished in vitro method to evaluate the feasibility and to 

determine the best formulation composition during pre-clinical stage of novel designed topical 

formulations or devices is known as buccal absorption or permeation studies performed 

mainly in vertical diffusion cells (Chinna Reddy et al., 2011, Nair et al., 2013, Squier, 1991). 

Concerning the mucosal barrier, isolated pig buccal or esophageal epithelia are the most 

widely used as non-keratinized models (Diaz Del Consuelo et al., 2005, Diaz-Del Consuelo et 

al., 2005, Kulkarni et al., 2009, Kulkarni et al., 2010, Kulkarni et al., 2011). One of the best 

advantages of those tissues is the similarity to human mucosa in terms of histological 

organization, permeability, and lipid composition (Lesch et al., 1989, Wertz and Squier, 1991, 



22 
 

 

de Vries et al., 1991a). Nevertheless, when the target site is located under the bone, i.e. the 

dental pulp, these barriers does not represent the real condition. Therefore, it could not be a 

reliable method to predict the effectiveness of topical formulations designed for deep tissues.  

In this context, the objective of the present study was to propose a new barrier 

model using porcine palatal mucosa with or without bone. In addition, it aimed to adapt the 

Franz-type vertical diffusion cells and observed the experimental conditions necessary for the 

new barriers during drug permeation studies. Additionally, the proposed method was used to 

test the in vitro efficiency and feasibility of microneedles as a physical permeation enhancer 

at oral mucosa.  
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2. MATERIALS AND METHODS 

2.1. Materials 

Lidocaine and prilocaine hydrochloride, calcein, ammonium hydroxide, and 

phosphoric acid were purchased from Sigma-Aldrich (St Louis, MO, USA). Methylene blue 

was obtained from Labsynth (Diadema, SP - Brazil), and acetonitrile and ethanol from J.T. 

Baker (Center Valley, PA, U.S.A). Conventional silicone glue was used (Cascola
®

, Henkel 

Ltda., Itapevi, SP, Brazil) was used. The commercial topical formulation used was a eutectic 

mixture of 2.5% lidocaine and 2.5% prilocaine (EMLA
®
, Astra-Zeneca, Cotia, Brazil). 

Aqueous solutions were prepared using ultrapure water obtained from a Direct-Q
®
 Water 

Purification System (Millipore Corporation, Billerica, MA, USA). 

 

2.2. Adapted Franz Type Vertical Diffusion Cells, Clamps and Experimental Procedure 

The complete apparatus of the adapted Franz-type vertical diffusion cell is 

represented in Fig. 1. It was based on the model first described by Franz (Franz, 1975). The 

vertical diffusion cells were composed of a donor and a receptor chamber maintained together 

by a specially developed metallic joint metal clamps (3 mm-thick). The receiving 

compartment contained one sampling port opened to allow manual sample collection from the 

receptor solution. The diffusion permeation area was around 0.78 cm
2
 with an acceptor 

compartment volume of 4 mL.  

To ensure a complete sealing of the system, conventional silicone glue was 

applied on the entire contact surface of the receptor compartment 24-h before experiment 

starts, in order to achieve its complete polymerization. Following that, the silicone surface 

was cut and adjusted, to allow a better contact with mucosa and bone tissues. In addition, the 

region was involved with a plastic paraffin film (Parafilm
®
, Laboratory Film. Bemis

®
. 

Neenah, WI, USA) before positioning the clamps. 
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Following the sealing procedure, the acceptor chambers were filled with degassed 

phosphate buffer saline solution (PBS containing 8 g of NaCl, 0.2 g of KCl, 1.44 g of 

Na2HPO4, 0.24 g of KH2PO4, pH 7.4.) maintained under constant magnetic stirring (1080 

rpm) (IKA
®
 do Brasil. Model RO 10PS32, Campinas, SP, Brazil). As the cells were out of the 

temperature control water jacket, they were placed into an outer bath receipt at 37 °C.  

 

Fig. 1. Diagrammatic representation of the complete apparatus of the adapted Franz-

type vertical diffusion cell used in this study. 

 

2.3. Preparation of Porcine Oral Mucosa  

Palate tissues from pigs were selected due to the easy removal of samples 

containing soft tissues and a thin layer of cortical bone, and the reproducibility of the model. 

Fresh porcine maxillae (from 5 months-old pig, weighing around 75 – 80 kg) were obtained 

immediately after the animal slaughter in a local slaughterhouse (Frigorífico Angelelli Ltda, 

Piracicaba, SP, Brazil). The maxillae were transported in ice-cold PBS buffer within 30 min.  
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The palatal mucosa site used in the present study is schematized in Fig. 2. The 

posterior region was used due to reduced palatine roughness. Mucosa samples with and 

without the subjacent bone were collected. 

 

Fig. 2. Porcine maxilla and illustrative schematization of the conditions adopted to select the 

palatal mucosa site used in the study. 

The tissues with or without bone were cut in circular shape by using a scalpel 

(Fig. 3A). Palatal mucosa without bone was separated from the underlining tissue and rinsed 

with saline. For the barrier with bone, a high-speed air turbine drill (Fig. 3B) with abundant 

water flow was used to remove the barrier from the surrounding bone. This separation was 

carefully performed in order to avoid the separation of the mucosa from the underlining bone. 

Following its separation, the excess of superficial bone was removed (Fig. 3C) to allow a 

homogenous surface and rinsed with saline. For both tissues, the epithelium was preserved 

and gently handled. Mucosa with any visual surface damage was discarded. 
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Fig. 3. Sequence of procedures performed to separate tissues of porcine palatal mucosa 

with or without bone. (A) The mucosa was cut in circular shape using scapel. (B) 

Removal of tissue from surrounding bone by high-speed air turbine drill. (C) 

Homogenization of bone surface. (D) Final view of palatal mucosa with bone.  

 

2.4. Validation of the Mechanical Elements of the Diffusion Cell 

Dimension of Permeation Area and Volume of the Receptor Compartment 

The dimension of the permeation area of all cells was evaluated by a digital 

caliper (King Tools, São Paulo, SP, Brazil). The total volume of the receptor compartment of 

each cell was evaluated by mass weight. All cells were weighted empty and when full of 

distilled and deionized water. Assuming that the density of water is 1 g/mL, the total volume 

of each cell was the difference between empty and full cells (Gratieri et al., 2010) (n=11).  

 



27 
 

 

Stirring Efficiency 

The receptor chamber was filled with buffer solution (phosphate buffer saline – 

PBS - diluted 1 time) following to the addition of a magnetic stir bar (0.5 cm) set at 1080 rpm. 

50 µL of 1% methylene blue solution (w/v) was dropped into the receptor compartment and 

the time necessary to completely dissolve the dye was assessed visually (Gratieri et al., 2010) 

(n=10).  

Temperature Control in the Different Chambers 

In order to verify the ability of the water bath to maintain a controlled temperature 

throughout the experiment, the cells were mounted with a plastic paraffin film (Parafilm
®
) 

between the compartments, which were filled with PBS buffer. The temperature was 

measured every 5 minutes in both chambers, during 50 minutes, by using a digital 

thermometer (Einstich Thermometer
®

, Testo GmbH & Co Lenzkirchen/Schwarzwald, 

Germany) (Gratieri et al., 2010) (n=10).  

Confirmation of Uniaxional Flux 

To ensure that the permeation was occurring only in the vertical direction (donor 

to receiver chamber), but not horizontally through the tissue, 1 mL of 1% (w/v) methylene 

blue solution was used in the donor compartment of the mounted cells containing the mucosa 

(“with” and “without” bone) samples, prepared according to the procedure described below. 

The cells were kept under magnetic stirring (1080 rpm) and after 24h, the cells were 

disassembled and the mucosa surface areas were examined for staining with methylene blue 

(n=10/group). 

2.5. Confirmation of Tissue Integrity and Demonstration of Microneedles Perforations 

The samples with and without bone were analyzed histologically to confirm tissue 

integrity after preparation process. In addition, the barriers were submitted to topical 

application of a commercially available handheld device containing microneedles 
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(Dermaroller
®
, Deutschland, S.A.R.L., Germany) for 4 times, according to the scheme 

observed in Fig 4A. Histological images were obtained in order to confirm micro perforations 

created. Figures 4B, C, D and E show details of microneedles with 0.2, 0.5 and 1 mm in 

length (Dermaroller
®
) used in the present study.  

Following preparation process and microneedles application, pieces of mucosa 

were fixed with 10% buffer formaldehyde solution. The samples with bone were decalcified 

in a solution of trichloroacetic acid (10%). The samples were dehydrated in successive 

ethanol series (50%, 70%, and 100%), diaphanized, and embedded in paraffin. Histological 

sections (5 μm) were obtained with a microtome Lupetec MRPO3 (Lupetec Ltd, São Carlos, 

SP, Brazil), and stained with hematoxylin and eosin. Histological sections were analyzed in 

an optical microscope (Model DMLP, Leica Microsystems GmbH, Wetzlar, Germany) 

coupled to a digital camera (Leica MPS 60) connected to an  image processing software 

(Optika View, Optika
®
, Ponteranica, BG, Italy).  

It was obtained two tissue samples of each palatal mucosa from at least three 

different animals for either “with” and “without” bone barriers (n=6/group). At least five 

slides were prepared and examined for each tissue sample. 
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Fig. 4. (A) Application method of the commercially available handheld devices containing 

microneedles used in the present study (Dermaroller
®

) (adapted from (Badran et al., 2009). 

Details of microneedles with 0.2 mm (B), 0.5 mm (C) and 1 mm (D) length – mag. 0.8x. 

Single microneedle measuring 0.2 mm (E) – mag. 5x. 

 

2.6. Analysis of Microchannels Created by Microneedles  

Two procedures were performed to confirm the creation of microchannels by the 

microneedles. In the first test, methylene blue staining was used to check for creation of 

microchannels (Kalluri et al., 2011). The number of perforations created by the microneedles 

in three different lengths (0.2, 0.5 and 1 mm) was quantified in 1 cm
2
 after the application of 

the device  for 1, 3 and 5 times, in triplicates. Following microneedle application, the pieces 

of palatal mucosa were immersed into a 1%  (w/v) methylene blue solution for 1 min, 

removed and cleaned with swabs moistened in alcohol. The samples were analyzed in a stereo 

microscope (Optech, Thame, Oxfordshire OX9, UK) coupled to a digital camera (Leica MPS 

60), connected to an image processing software (Optika View). One sample from palatal 

A B 

E D 

C 
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mucosa from at least three different animals for each microneedle length (n=5/microneedle 

length) was evaluated.  

In a second assay, we analyzed how the permeation procedures could affect the 

perforation area made by microneedles. In addition, we evaluated if the presence of bone 

attached to the mucosa could influence the microchannel area. The adapted Franz cells were 

mounted with palatal mucosa barriers (“with” and “without” bone) between donor and 

receiver compartment right after microneedles application (0.2, 0.5 and 1 mm), as described 

in Fig 4A. PBS buffer was used as receptor medium under magnetic stirring (1080 rpm) and 

37 ºC. After 12 h, the cells were dismounted, and  mucosa samples were immersed in 0.35% 

calcein solution (w/v) during 1 min, and gently cleaned with swabs embedded with alcohol 

(Kalluri et al., 2011).  

Fresh palatal mucosa barriers were submitted to microneedle application and were 

immediately analyzed (0 h) to compare perforations before (0 h) and after (12 h) permeation 

experiment. Samples were analyzed in a fluorescence microscope (Zeiss Axiovert 40 CFL 

coupled to a camera AXIO CAM MRC and a fluorescent lamp HBO 50 connected to a 

software Zen Pro 2011, Zeiss, Oberkochen, Germany). The perforation area was quantified in 

µm
2
 at the magnification of 20×. Three samples (from three different animals) were tested per 

group and a minimum of 9 perforations were analyzed per sample (n=27/group). 

 

2.7. Permeation experiments 

One first set of permeation assays was performed with 5%lidocaine hydrochloride 

solution (w/v - prepared in distilled and deionized water) as a model hydrophilic drug (Franz-

Montan et al., 2016), in order to test the efficiency of those barriers and permeation conditions 

described. For this set, the commercially available handheld device containing microneedles 
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with 1.0 mm in length (Dermaroller
®

) was applied on the palatal mucosa (“with” and 

“without” bone) as shown in Fig. 4A prior to the permeation assays.  

Permeation of lidocaine hydrochloride across the two different palatal barriers 

was carried out for 12 hours in the adapted Franz-type diffusion cells described above. The 

acceptor chambers were filled with degassed PBS solution (pH = 7.4) maintained under 

constant magnetic stirring (1080 rpm) at 37 °C. Before the experiment was started, degassed 

buffer was placed in the donor compartments and the assembled cells were allowed to 

equilibrate for 60 minutes in a water bath.  

Following the equilibration period, the buffer in the donor compartment was 

substituted by 1 mL of the lidocaine hydrochloride solution occluded with Parafilm
®

 (83.3 

mg/cm
2
 of lidocaine hydrochloride). Sink conditions were maintained during the permeation 

assays, as described elsewhere by our research group (Franz-Montan et al., 2016). Samples of 

300 µL were periodically collected from the acceptor compartment and analyzed by HPLC. 

The volume was replaced with the same amount of fresh buffer, taking account of dilution 

effects.  

In a second set of permeation assays, the in vitro ability of microneedles to act as 

a permeation enhancer at the palatal mucosa was evaluated with the barriers and conditions 

described. A commercial topical formulation composed of lidocaine and prilocaine base 

(EMLA
®

) was used. The choice of this formulation was based on its increased in vivo efficacy 

as a topical anesthetic at the palatal mucosa (Svensson and Petersen, 1992, Al-Melh and 

Andersson, 2007, Primosch and Rolland-Asensi, 2001, Franz-Montan et al., 2012a, Franz-

Montan et al., 2015). The association of EMLA cream and microneedles at the oral cavity 

could increase anesthetic penetration, improving the anesthesia effectiveness. 

The in vitro permeation experiments with EMLA were performed across the two 

different palatal mucosa barriers and conditions already described. For this set of experiments, 
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the commercially available handheld device containing microneedles with 0.2 and 0.5 mm in 

length (Dermaroller
®
) were used. The choice of microneedles size was based in their lower 

probability to promote pain in in vivo condition. Due to their smaller length, it is more 

unlikely to reach the free nerve endings located at the lamina propria, right below the 

epithelium, which presents thickness between 250-600 µm depending on the oral cavity site 

(Squier and Brogden, 2011). In addition, we observed no difference in the number of 

perforations with longer microneedles, as discussed latter.  

The experiment was conducted at the same way, with minor modifications. 

Following the equilibration period, the buffer solution in the donor compartment was 

substituted by 300 mg of EMLA cream occlusively (12.5 mg/cm
2
 of lidocaine and 12.5 

mg/cm
2 

of prilocaine). The acceptor chamber was filled with degassed PBS buffer + 30% 

ethanol to ensure sink conditions. The solubility of lidocaine and prilocaine (18.8 ± 0.11 and 

21.89 ± 0.03 mg/mL, respectively) was calculated by saturation of the local anesthetics in this 

medium, prior to undertaking the permeation assays. 

In both set of experiments, a graphic was obtained with the cumulative amount of 

lidocaine hydrochloride or lidocaine and prilocaine across the two different palatal barriers 

plotted as a function of permeation time. The slope of the linear portion of the curve provided 

the steady-state flux (Jss) of across the barrier (in µg.cm
-2

.h
-1

). 

 

2.8. Quantitative analysis  

Lidocaine and prilocaine analysis was performed by high-performance liquid 

chromatography (HPLC) (Thermo Electron Surveyor HPLC with a LC Pumps Plus, a 

UV/VIS detector and automatic injector, San Jose, CA, USA).   

Lidocaine and prilocaine were quantified simultaneously in the following 

chromatographic conditions: a mobile phase composed of a 60:40 (v:v) mixture of  
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acetonitrile and buffer (25 mM NH4OH, adjusted to pH 7.0 with H3PO4) at a flow rate of 1 

mL/min, an injection volume of 20 μL and detection wavelength of  254 nm. For the 

separation of both local anesthetics, a C18 reverse phase column (Phenomenex, Gemini, 5μ, 

150 X 4.60mm) was used. Data collection was performed using Thermo Scientific 

ChromQuest Software Platform (Thermo Scientific Inc., Pittsburgh, PA).  

The specificity of the analytical method was checked to confirm that no 

component of the pig mucosa and bone would interfere in the local anesthetics quantification. 

A calibration curve (n=3, analyzed in triplicate, on three consecutive days) was constructed 

using six different concentrations (between 5 and 200 µg/mL) prepared from a stock solution 

of lidocaine and prilocaine in mobile phase. Linearity was evaluated by linear regression of 

the peak area against the concentration of the drug (r
2
=0.99998 for lidocaine and prilocaine).  

The intraday and between-day precision and accuracy were evaluated by 

quantification of low (5 µg/mL), medium (50 µg/mL), and high (200 µg/mL) lidocaine and 

prilocaine concentrations in triplicate on three consecutive days. For lidocaine, the method 

showed precision (RSD) <4% and accuracy between 97.83% and 102.87% for the intra- and 

inter-day evaluations, and a limit of detection and quantification of 0.52 and 1.74 μg/mL, 

respectively. For prilocaine, the precision (RSD) was <3% and accuracy between 95.56% and 

102.32% for the intra- and inter-day evaluations, and the limit of detection and quantification 

were 0.19 and 0.62 μg/mL, respectively. 

 

2.9. Statistical analysis 

The number of perforations was compared by one-way analysis of variance 

(ANOVA) and Tukey- Kramer’s (post-hoc) tests. The area of perforations and in vitro flux of 

local anesthetics were compared by Kruskall Wallis and Dunn’s (post-hoc) tests or unpaired 
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Student’s t test. The statistical analysis was performed by using the GraphPad Prism
®

 package 

(GraphPad Software, Inc. La Jolla, CA, USA), being the significance level set at 5%. 
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3. RESULTS 

3.1. Validation of the Mechanical Elements of the Diffusion Cell 

The receptor compartment presented volume (mean±SD) of 4.55 ± 0.28 mL and a 

permeation area of 0.78 ± 0.10 cm
2
, which were uniform among the 11 cells analyzed. The 

time necessary to achieve complete dissolution of the stain methylene blue in the receptor 

compartment was 36.6 ± 13.1 s.   

In the receptor chamber, the time necessary to reach 37 ºC was less than 5 

minutes. However, the temperature at the donor chamber stabilized at 32 ºC after 10 minutes, 

but it never reached 37 ºC.   

Fig. 5 illustrates pieces of palatal mucosa with and without bone after a 24-h 

period of permeation assay with methylene blue stain solution at the donor compartment. 

Only the permeation area is stained in blue and the surrounding area was not dyed. The flux 

was uniaxional in the vertical way in both palatal mucosa (with or without bone), which 

demonstrates the efficacy of the adapted cells in promoting adequate sealing, with no sign of 

leakage.    

 

Fig. 5. Images of porcine palatal mucosa after a 24-h permeation experiment obtained with 

1% methylene blue solution applied at the donor compartment to illustrate uniaxional flux. 

Left image palatal mucosa without bone and right, palatal mucosa with bone (n=10/group).  

 

3.2. Confirmation of Tissue Integrity and Demonstration of Microneedles Perforations 
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Histological analyses was performed for the preparation method for the porcine 

palatal mucosa with or without bone used in the in vitro permeation studies. Fig. 6 shows 

histological sections of porcine palatal mucosa with (Fig. 6A and 6B) and without bone (Fig. 

6C and 6D). 

 

 

 

Fig. 6. Histological sections of fresh porcine palatal mucosa with or without bone. (A) palatal 

mucosa with bone (magnification of 2.5x); (B) close view on the cortical layer (mag. 5x); (C) 

palatal mucosa without bone (mag. 2.5x); (D) details of a microchannel created by 

microneedles (0.5 mm length) at the surface of the palatal mucosa (mag. 5x). EP – epithelium; 

LP – lamina propria; SM – submucosa; B – Bone; Ad – adipocytes; C – capillary; Mc – 
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microchannel; SC – stratum corneum; SG – stratum granulosum; SSp – stratum spinhosum; 

SB – stratum basale. 

The histological images revealed that the palatal mucosa with or without bone 

were successfully removed with no histological damage. Both palatal mucosa tissues 

presented intact stratified squamous epithelium with all the expected layers (stratum basale, 

spinhosum, and granulosum) with a homogeneous keratinized layer (stratum corneum), 

typical from the masticatory mucosa. The lamina propria and submucosa layers are also 

observed in both tissues, being the first consisting of a dense collagenous tissue, and the 

second rich in fat. Worthy of note, bone was present, as shown in Fig. 6A and 6B.  

Fig. 6D shows details of microchannel creation around 0.4 mm, which 

corresponds to the length of the microneedle used (0.5 mm). Disruption of stratum corneum 

layer and epithelium by microneedles is clearly demonstrated.  

 

3.3. Analysis of Microchannels Created by Microneedles  

Fig. 7 illustrates the microchannels created by the application of microneedles 

with 0.2 mm (Fig. 7A), 0.5 mm (Fig. 7B), and 1.0 mm (Fig. 7C) rolled 5 times and stained by 

1% methylene blue solution. The creation of microchannels by different microneedles length 

applied on mucosa surface is confirmed, corroborating with the details observed in Fig. 6D.  

 

 

B C 
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Fig. 7. Top view images of porcine palatal mucosa (no bone) after application of 

microneedles for 5 times over mucosa surface to illustrate the creation of microchannels. 

Microneedles lengths of 0.2 mm (A), 0.5 mm (B) and 1 mm (C). 

The number of perforations on palatal mucosa surface made by the application of 

microneedles varying in length is shown in Fig. 8. In general, as expected the number of 

microchannels per square centimeter increased proportionally to the number of application 

times. There were no statistically differences among the different microneedles lengths with 

the same times of application regarding the number of perforations (1 time, p = 0.0723; 3 

times, p = 0.6297; and 5 times, p = 0.0916). Therefore, mucosa perforations occur 

independently of the microneedle length.  

 

Fig. 8. Mean (±SD) number of perforations made on palatal mucosa without bone by different 

microneedles lengths as a function of number of passes. 
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Fig. 9 shows the pattern of perforation created by the microneedles with different 

length on the surface of porcine palatal mucosa stained by calcein. 

 

Fig. 9. Top view fluorescent images to illustrate the pattern of perforation created by the 

microneedles with different length on the surface of porcine palatal mucosa stained by 

calcein. (A) microneedles with 0.2 mm length (area 386.1 μm
2
), (B) 0.5 mm (area 1593.6 

μm
2
), and (C) 1 mm (area 2609.0 μm

2
). Mag. 20x for all figures. 
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Figure 10 shows the area of perforations created by microneedles treatment by the 

three  lentghs (0.2 mm, 0.5 mm, and 1 mm) on the surface of the palatal mucosa with and 

without bone were assessed before (0 h) and after (12 h) the permeation.  

 

 

Fig. 10. Mean (±SD) area of perforations created by microneedles treatment in 3 different 

lentghs (0.2, 0.5, and 1.0 mm) at the surface of the palatal mucosa with and without bone 

assessed before (0 h) and after (12 h) the permeation experiment.  

The presence of bone attached to the mucosa barrier did not affect the 

microchannel area created by microneedles of 0.2 mm (p = 0.2982) and 1.0 mm (p = 0.0771) 

on surface of porcine mucosa when comparing the areas prior (0h) to permeation studies. 

Except for microneedles of 0.5 mm which showed significantly larger areas in the presence of 

bone (p = 0.0136).   

* 

* 

* 

* 
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In general the permeation conditions evaluated during 12h did not promote 

significant alterations at microchannels area (p < 0.05), except when microneedle of 1 mm 

was used on palatal mucosa without bone, which presented a significant larger microchannels 

area after 12h of permeation assay (p = 0,0411). 

3.4. Permeation studies  

The efficacy of the standardized barriers and permeation conditions presented 

were confirmed, as observed in Fig. 11, which shows the permeation profile of lidocaine 

hydrochloride across porcine palatal mucosa without bone. The microneedle treated mucosa, 

slight increased the drug permeation. The steady-state flux of lidocaine hydrochloride was 

significantly higher in the microneedle treated mucosa, showing its efficacy as a permeation 

enhancer in the in vitro model (p = 0.0137) (Fig. 12).   

However it was not possible to quantify lidocaine hydrochloride permeated across 

porcine palatal mucosa with bone as its amount was under limit of detection. The presence of 

bone increased the efficacy of the barrier, since no drug was permeated during 12 h. 

Considering this, permeation parameters (Jss and Q12) was not obtained, and the linear portion 

of the permeation profile was not recognized.   
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Fig. 11. Permeation profile (mean ±SEM, n = 10-12) and steady state flux (Jss) of lidocaine 

hydrochloride across intact (No MN) or microneedle pre-treated (MN – 1 mm) porcine palatal 

mucosa without bone, obtained with 5% lidocaine hydrochloride solution under infinite dose 

condition.  Individual table’s presents mean (±SD) of the steady state flux (Jss). Q12 is the 

total amount of drug permeated in 12 h of experiment. Enhancement ratio (ER) was obtained 

between the Q12 of lidocaine hydrochloride using microneedle treated mucosa in comparison 

to passive permeation. Unpaired t-test, * p < 0.05). 

Fig. 12 shows the permeation profile of lidocaine (Fig. 12A, 12B) and prilocaine 

(Fig. 12C, 12D) from EMLA across palatal mucosa with (Fig. 12B, 12D) or without (Fig. 

12A, 12C) bone.  The in vitro ability of microneedles to enhance the permeation was 

confirmed only when the palatal mucosa without bone was used. It was observed a slight 

increasing in the permeation profile and a significant higher steady-flux of both lidocaine (p = 

0

20

40

60

80

100

0 2 4 6 8 10 12 14

L
id

o
ca

in
e 

h
y

d
ro

ch
o

ri
d

e 
p

er
m

ea
te

d
 (
μ

g
/c

m
2
) 

Time (h) 

MN - 1 mm

No MN

Group Jss (μg/cm2.h-1) Q12  (μg) ER – Q12 

MN - 1mm 13.18 (±3.79)* 62.66 (±15.34) 1,31 

No-MN 8.20 (±1.60) 47.62 (±13.04) ---- 

 



43 
 

 

0.0047) and prilocaine (p = 0.0095) across this barrier when 0.5 mm microneedle treated 

mucosa was compared with the untreated group. However, this difference was not observed 

when 0.2 mm microneedle was used (p > 0.05). Nevertheless, in accordance to the previous 

permeation study performed with lidocaine hydrochloride (Fig. 11B), the presence of bone 

reduced permeation of both drugs. It was not possible to calculate the steady-state flux, since 

a typical linear interval was not observed (Fig. 12B, 12D).   
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Fig. 12. Permeation profile (mean ± SEM, n = 10-12) and steady state flux (Jss) of lidocaine 

(A, B) and prilocaine (C, D) across intact (No MN) or microneedle pre-treated (MN – 0.2 

mm; MN – 0.5 mm) porcine palatal mucosa without (A, C) and with (B, D) bone obtained 

with EMLA
®
 cream under infinite dose condition.  Individual tables’ presents mean (±SD) of 

the steady state flux (Jss). Q12 is the total amount of drug permeated in 12 h of experiment. 

Enhancement ratio (ER) was obtained between the Q12 of lidocaine or prilocaine using 

microneedle treated mucosa in comparison to passive permeation. N.D. – not defined, 

permeated amount under limit of detection. ANOVA/Tukey–Kramer, p < 0.01. 
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4. DISCUSSION 

Some adapted models using diffusion cells were previously described in the 

literature, such as the continuous-flow chambers for the measurement of permeability of small 

tissue samples with reduced amount of formulation (Squier et al., 1997), and a modified 

Franz-cell especially designed to evaluate ocular delivery and iontophoresis technique 

through porcine cornea (Gratieri et al., 2010). In the present study, we described an adapted 

Franz type vertical diffusion cell to accomplish permeation studies with thick porcine oral 

mucosa barriers, since the commercial available cells usually limits the thickness of tissues by 

their clamps.  

The most traditional model to evaluate in vitro transbuccal permeability of topical 

drugs is the Franz-type vertical diffusion cells (Chinna Reddy et al., 2011, Nair et al., 2013, 

Squier, 1991). This cell design was first reported by Franz in the 70’s for transdermal studies 

(Franz, 1975). Even though the diffusion cell model evaluated in the present study is very 

similar to the Franz’s described cell in terms of design, volume and permeation area, we 

proposed some changes in methodology, which required validation. The diffusion cell 

evaluated here does not present a water circulation jacket, thus the ability to control the 

temperature throughout the experiment should be confirmed in both compartments. Our 

system reached a stable temperature in 5 min, and it was able to maintain it, despite the 

difference of 5 °C between donor and receiver chamber. Meanwhile, a delay in 15 min to 

achieve the experimental temperature and only about 1 °C of difference between the 

chambers was observed (Gratieri et al., 2010). These variations could be attributed to the 

differences in design and volume of cells, and to the thicker thickness associated to the 

samples used in this study, that could interfere with the heat exchanges between the chambers. 

Although in most of the transbuccal permeation studies the temperature is set at 37 °C to 

resemble the in vivo condition, it is worth noticing that the temperature at the surface of 
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palatal mucosa (~28 °C) is usually lower than the body temperature (~37 °C) (Pallagatti et al., 

2012). Thus the reduced temperature found at the donor chamber could better mimetic the in 

vivo condition. 

An additional concern was if the metal clamps were able to promote an adequate 

sealing of the system, due to the irregularity and thickness of the tissue, especially in the 

presence of bone. The use of especial designed metal clamps and silicon glue were able to 

prevent leakage between the chambers, as confirmed by the uniaxional flux. Moreover, it was 

demonstrated that the modified cells proposed here presented uniformity of its components 

(permeation area and volume) and they were useful, robust and easy to perform permeations 

assays across the mucosal barriers.   

Even though the permeability across the oral mucosa is higher than across skin, 

there is a misconception that this surface is highly permeable. The high impermeability of oral 

mucosa is usually attributed to its epithelium. The masticatory mucosa regions (such as palate 

and gingiva), which are covered by a keratinized and stratified squamous epithelium, are 

considered to be the least permeable regions (Harris and Robinson, 1992, Lesch et al., 1989). 

The lower permeability is related to the lipid composition (sphingomyelin, glucosylceramides, 

ceramides, and other nonpolar lipids organized in a lamellar phase) of its intercellular material 

derived from the membrane-coating granules (Squier et al., 1991, Squier, 1984, Squier and 

Hopps, 1976, Squier and Hall, 1984) and also attributed to the basal layer (Alfano et al., 1977, 

de Vries et al., 1991a). In the present study, microcopy images confirmed the presence of an 

intact epithelium from all the oral mucosa palatal samples prepared, demonstrating the 

presence of the main permeation barrier. Moreover, an undamaged connective tissue and bone 

were also observed (Fig. 7).  

Despite most of transbuccal studies are performed only with the porcine 

esophageal or buccal epithelium barrier, there was a lack of a stricter barrier model to test the 
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in vitro permeation of topical formulations designed to act across bone structures. The present 

study was the first attempt to demonstrate preparation methods of porcine palatal mucosa with 

a consider thickness (~2.5-3.5 mm) and high barrier efficacy to be used during pre-clinical 

studies with such formulations. A similar study was conducted by Kulkarni and colleagues 

(Kulkarni et al., 2009), who demonstrated the importance of the connective tissue to the 

buccal epithelium barrier, as a non-keratinized model.  

In the present study, a masticatory mucosa with the presence of connective tissue 

and bone was presented as a keratinized and relatively impermeable model.  The presence of a 

thick connective tissue with or without bone conferred a more efficient barrier to permeation. 

This was confirmed by a steady state flux of lidocaine hydrochloride almost 5 times lower 

across pig palatal mucosa without bone (~8 μg/cm
2
.h

-1
) than pig palatal epithelium (~37 

μg/cm
2
.h

-1
) previously obtained in similar experimental conditions (Franz-Montan et al., 

2016). Moreover, it was not possible to calculate lidocaine flux across the palatal mucosa with 

bone as permeated amount of lidocaine was under the limit of detection. As expected, the 

presence of bone conferred more resistance to the drug permeation. 

Microneedles have been extensively used to disrupt the epithelium barrier and 

increase drug absorption across skin. Different types of microneedles systems have been 

described, and we decided to test a metal commercially available handheld device 

(Dermaroller
®
), which is extensively used for esthetical treatment in Dermatology 

(Doddaballapur, 2009), and in transdermal drug delivery (Kalluri et al., 2011, Badran et al., 

2009).  

Although the literature have demonstrated the in vivo effectiveness of metal 

microneedles as drug delivery device in oral mucosa (Wang and Wang, 2015, Wang et al., 

2015, Ma et al., 2014, Ma et al., 2015), to our knowledge in vitro studies involving 

microneedles and oral mucosa was not performed so far. In the present study, histological, 
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fluorescent and dye evaluation with methylene blue confirmed that microneedles were able to 

perforate the stratum corneum barrier and create microchannels at oral mucosa as observed in 

Figs 7D, 8, 10. Similar results were obtained when the same commercially available handheld 

device was applied in vitro at the skin (Kalluri et al., 2011).  

The number of perforations promoted by microneedle application at the mucosa 

surface was proportional to the number of passes of the microneedle device. Similar results 

were reported at the skin surface (Kalluri et al., 2011). In addition, we observed that the 

number of perforations was not dependent of microneedles length. Based on these results, a 

0.2 mm microneedle device could be considered an  appropriate system for intra oral use, 

since it is more unlikely to reach the free nerve endings at the lamina propria considering the 

mean thickness of palatal epithelium (~250 µm) (Squier and Brogden, 2011).  

Moreover we decided to verify if the in vitro permeation conditions could affect 

the microchannels throughout the 12-h of experiment, since skin usually recovers its barrier 

function around 4 to 5 h after microneedles application in the in vivo assay (Kalluri et al., 

2011). In general, the microchannels remained constant during the in vitro conditions 

evaluated here, as observed by fluorescent images and evaluation of the pore areas. However, 

it is possible that the microchannels closure are more likely to occur in the in vivo conditions 

as a result of healing process (Kalluri et al., 2011).  

As expected, the permeation enhancement due to the use of microneedles in the in 

vitro assay was confirmed in the adapted diffusion cell. As observed in Figs. 12 and 13, the 

mucosa pre-treated by microneedles had increased permeation profile, independently of the 

microneedles length (0.2, 0.5 and 1.0 mm). Similar results were obtained when skin pre-

treated with microneedles showed increased permeation of lidocaine (Nayak and Sudha, 

2006), calcein (Oh et al., 2008) and docetaxel (Qiu et al., 2008) .  
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The increased permeation profile and steady-state flux was more evident for the 

local anesthetics in its base form (EMLA) (Fig. 13) than for lidocaine hydrochloride (Fig. 12). 

This was probably associated to their lipophilic nature, which can help to permeate across a 

fat-rich tissue, evidenced in Fig. 6B, mostly through the paracellular route (Senel and Hincal, 

2001), rich of non-polar lipids. 

A statistically difference between the steady state flux of mucosa pre-treated with 

0.2 mm or 0.5 mm microneedles was not observed. Besides, no difference regarding the 

number of perforations was observed when comparing different microneedle lengths (Fig. 9). 

It seems that the permeation enhancement ability is more likely to be associated with 

microchannels presence and not with their depth. 

 

5. CONCLUSIONS 

Histological and permeability evaluation suggest that porcine palatal mucosa with 

or without bone are reliable and adequate model barriers in order to perform in vitro 

permeation studies when targeting deep tissues at oral cavity. The adapted Franz diffusion cell 

is a valid model when thick barriers are used. 

Microneedles were efficient and feasible to physically enhance the drug 

permeation through oral mucosa, independently of the microneedle length.  

The present study represents a step forward in methods to perform in vitro 

permeation studies to evaluate new designed topical formulations and permeation enhancers 

focusing on deep tissues of oral cavity. 
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2.2 Artigo 2: Influence of salivary washout on drug delivery to the oral 

cavity using coated microneedles: an in vitro evaluation 
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Abstract 

Purpose: To determine whether in buccal tissues, after insertion and removal of coated 

microneedles, the presence of saliva over the insertion site can lead to loss of the deposited 

drug, and saliva can influence its in vitro permeation across the tissue. 

Methods: Microneedles were coated with sulforhodamine (SRD), which was used as a model 

drug, and inserted in to porcine buccal mucosa in vitro. Fluorescence microscopy was used to 

study microneedle coating quality and the diffusion of SRD through the mucosa. Permeation 

experiments were conducted for simulated dynamic or static salivary flow by adding 100 

µL/h or 100, 200 or 300 µL of phosphate buffered saline (PBS) in the donor compartment of 

the Franz diffusion cells, into which buccal tissue after insertion of SRD-coated microneedles 

was placed.  

Results: Microscopy showed that microneedles were uniformly coated with SRD and that 

SRD was successfully delivered in to the mucosa. Some SRD remained in the tissue even 

after 24 h, despite presence of PBS on top of the coated microneedle insertion site.  Either of 

the simulated salivary flow conditions (dynamic and static) affected the permeation 

parameters by means of increasing drug permeation, increasing lag time, and increasing drug 

loss to the donor chamber, as compared to when the mucosal surface was just kept moist. 

Conclusion: Salivary washout can result in loss of drug that has been deposited in oral cavity 

mucosal tissues using coated microneedles, and presence of fluid over the coated microneedle 

insertion site can increase flux across the tissue. Thus, it is advisable to include salivary flow 

during in vitro studies related to the use of coated microneedles for drug delivery to the oral 

cavity in order to not obtain misleading results.  
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ABBREVIATIONS 

Dyn-Flow - dynamic-simulated salivary flow  

ER - enhancement ratio between steady-state flux of St-100, St-200, St-300, and Dyn-Flow in 

comparison to Moist condition 

Jss – flux of SRD across buccal mucosa 

Q24 - total amount of SRD permeated after 24 h of experiment    

SRD – sulforhodamine 

St-100 - static-simulated salivary flow with 100 µL  

St-200 - static-simulated salivary flow with 200 µL  

St-300 - static-simulated salivary flow with 300 µL  

TL – Lag time 
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INTRODUCTION 

The oral cavity mucosa has been noted as an interesting site for drug delivery of 

topically applied formulations. The transmucosal route offers several advantages such as fast 

onset of action (increased blood supply); absence of drug degradation as seen in the 

gastrointestinal tract; absence of hepatic first pass metabolism; reduced dose and toxicity; and  

potential to achieve local or systemic therapeutic effects (Hassan et al., 2010, Patel et al., 

2011).   

Despite the higher permeability of the oral mucosa in comparison to that of the skin 

(Squier et al., 1991, Lesch et al., 1989), it’s outermost layer, the stratified squamous 

epithelium, represents a significant challenge in drug delivery because it acts as an important 

barrier to drug penetration. Microneedles represent a new approach for topical drug delivery 

for either local or systemic effects. This system consists of micron-scaled needles, designed to 

penetrate the barrier and enhance drug delivery in a minimally invasive and painless manner 

(Gill et al., 2008). Coated microneedles have typically been reported in the literature for drug 

delivery through the skin (Gill and Prausnitz, 2007a, Gill and Prausnitz, 2007b, Ma and Gill, 

2014). However, recently, coated microneedles have also been used to successfully deliver 

drug across the oral cavity mucosal barrier for different  purposes such as immunization (Ma 

et al., 2014, Zhen et al., 2015, Wang et al., 2015) and oral cancer treatment (Ma et al., 2015). 

Besides the presence of an effective barrier to penetration, the oral cavity is a moist 

environment with a salivary flux, which constantly washes the oral mucosa, dilutes the drug, 

and can reduce the contact of a topically applied formulation and its bioavailability, a 

phenomenon known as “saliva wash out” (Patel et al., 2011, Paderni et al., 2012, Chinna 

Reddy et al., 2011). Thus, keeping the formulation on its application site for longer duration, 

and minimizing its loss due to salivary flow, is a great challenge. 
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In spite of the presence of saliva in the oral cavity, the efficiency of coated 

microneedles for drug delivery in to oral cavity tissues has been reported to be comparable to 

that in the skin, which is a dry surface. Ma et al. have reported delivery efficiencies of 

63.9% ± 6.9% and 91.2% ± 1.6% into the lip and tongue of a rabbit, respectively (Ma et al., 

2014). However, McNeilly et al. have reported a much lower delivery efficiency of 31.7 ± 

3.7% into the mouse buccal tissue (McNeilly et al., 2014). While these studies have quantified 

the amount of drug delivered into the mucosa using coated microneedles, it remains unclear 

whether the drug that is deposited into the tissues can be backwashed due to saliva that bathes 

the insertion site, and whether presence of saliva can affect the diffusion of the deposited drug 

deeper into the tissue. 

Thus, we were motivated to determine the effect of saliva on the drug that is deposited 

into the oral cavity tissues via coated microneedles. In vivo studies to determine this effect can 

be complicated and tough to interpret. This is because drug lost, if any, from salivary flow 

will be ingested by the animal, and thus cannot be quantified directly. Thus, we simulated the 

salivary flux condition in vitro using a Franz diffusion setup. The Franz diffusion is a classical 

experiment that is widely used to evaluate drug release and permeation across different 

barriers such as the skin or other different mucosal tissues including the oral buccal tissues. 

Usually, both pig buccal mucosa and skin are used to simulate the respective human tissues 

due to their high similarities in terms of permeability, structure and composition (Lesch et al., 

1989). Typically, in vitro permeability studies using a Franz diffusion setup involve addition 

of a buffer or a formulation containing the drug over the tissue, in conjunction with either a 

permeability enhancing agent added to the formulation or after pretreatment of the tissue to 

increase its permeability. However, coated microneedles are unique because they directly 

deposit the drug into the tissues. Thus, further assessment of diffusion of this deposited drug 

across the tissue should not involve addition of fluid in the donor chamber in the case of skin. 
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On the contrary, for oral cavity tissues, saliva should be simulated in the donor chamber. 

Nonetheless, to our knowledge, there are no studies that have examined in vitro permeability 

across either the oral cavity mucosa or the skin for drug that has been deposited in the tissues 

using coated microneedles.  

Therefore, the objective of the present study was to test the hypothesis that it is 

possible to perform an in vitro permeation study in a Franz-type vertical diffusion cell with 

porcine buccal mucosa into which drug has been delivered using coated microneedles, and, to 

simulate salivary flow in vitro to evaluate the influence that saliva has on drug loss and drug 

permeation across the buccal tissue. 

MATERIALS AND METHODS 

Microneedles  

According to a previously described method (Ma and Gill, 2014, Ma et al., 2014), a 

wet etch process was used to fabricate 2D microneedle patches comprising of 57 

microneedles (700-µm long and 200-µm wide) from a 50 μm-thick stainless sheet (SS304). 

As described previously (Gill and Prausnitz, 2007a), each microneedle of the 2D patch was 

bent “out of plane” manually under a microscope.  

Microneedles were coated using a micro-precision dip coating process (Gill and 

Prausnitz, 2007a, Ma et al., 2015, Ma et al., 2014). Briefly, an automated x-y linear computer-

controlled device on which microneedle arrays were positioned, was used to dip microneedles 

into the coating solution. The coating solution was composed of 1% (w/v) of 

carboxymethylcellulose sodium salt (low viscosity, USP grade, CarboMer, San Diego, CA, 

USA), 0.5% (w/v) Lutrol F-68 NF (BASF, Mt. Olive, NJ, USA) and 0.25% (w/v) 

sulforhodamine (SRD) (Molecular Probes, Eugene, OR, USA) (Ma et al., 2014).  

Preparation of porcine buccal mucosa  
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Porcine buccal mucosa was obtained from Innovative Research (Novi, MI, USA). The 

excess of underlying tissue was manually removed with scalpels and scissors, until the 

samples had about ~ 1.5 mm thickness, which was measured with a caliper. After preparation, 

the samples were kept frozen (- 80 °C) for no longer than 3 weeks. 

Before all experiments, to ensure tissue integrity, electrical impedance across mucosa 

was measured using a LCR Meter (LCR200, EXTECH Instruments, Nashua, NH, USA). First 

the mucosal tissue was cut to size and mounted on the Franz diffusion cell with phosphate 

buffered saline (PBS) in the donor and in the acceptor chambers. Next the two electrodes 

were placed in the donor and acceptor chambers, respectively. Mucosa was considered 

reliable with resistivity higher than 2 kohm.cm
2
. This resistivity value was obtained based on 

a previous study by de Vries et. al (de Vries et al., 1991b), which we verified through pilot 

studies. In our pilot studies, porcine buccal mucosa were prepared and punctured with 

hypodermic needles. Impedance values of these tissues before and after puncture were 

measured. Resistivity values of non-punctured tissues were greater than 2 kohm.cm
2
, while 

the punctured tissues had lower values. 

Characterization of coated microneedles and delivery into porcine buccal mucosa in 

vitro 

Fluorescence stereomicroscope (Olympus SZX16 fitted with DP73 CCD camera, 

Olympus America Inc fitted) was used to visually inspect uniformity of coatings on the 

microneedle surface and to inspect microneedles before and after insertion into the porcine 

buccal mucosa. For insertion, microneedles coated with SRD were manually pressed into the 

porcine buccal mucosa and held in place for 5 min. After a 5-min period, microneedles were 

removed and inspected under a fluorescent stereomicroscope. The surface of the porcine 

buccal mucosa after insertion was also visualized under the microscope. The porcine buccal 
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mucosa was next placed in OCT compound (Tissue-Tech, 4583, Sakura Finetek, Torrance, 

CA, USA), and frozen (-80°C). The samples were sliced into 10-µm thick sections using a 

cryostat (CM 1950, Lec, Buffalo grove, IL, USA). Fluorescence microscopy images were 

obtained for these sections using an inverted fluorescent microscope (Nikon Ti eclipse 

fluorescent microscope) fitted with a CCD camera (Andor DR-328G-c10-SIL, Andor 

Technology, South Windsor, CT, USA). 

Determination of delivery efficiency of coated microneedles 

Transmucosal delivery efficiency (DE) of coated microneedles was determined 

according to a previously described methodology (Gill and Prausnitz, 2007a, Ma et al., 2014, 

Ma et al., 2015). The amount of drug delivered into the mucosa was calculated by subtracting 

SRD that remained on microneedles after mucosal insertion (C2 – in µg/mL) and SRD that 

remained on top of the mucosal surface (C3 – in µg/mL) from the total amount of SRD that 

was coated on microneedles (C1– in µg/mL), and DE was found according to the equation: 

𝐷𝐸 =
𝐶1 − (𝐶2 + 𝐶3)

𝐶1
 𝑥 100 

For all these measurements freshly prepared SRD-coated microneedles were used. 

Briefly, an unused patch of SRD-coated microneedles was inserted in 1 mL of deionized 

water to quantify the amount of SRD on the coating (C1). Next, another set of coated 

microneedles were applied on top of the mucosal surface for 5 min, and SRD that remained 

on microneedles was obtained by placing the used patch in 1 mL of deionized water to 

determine C2. The amount of drug left on the tissue surface was gently removed with a 

moistened swab followed by its immersion in 500 µL of deionized water to quantify C3. 

Samples were analyzed using a fluorescence spectrophotometer (Cary Eclipse, Agilent 
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Technologies, Santa Clara, CA, USA) at the excitation and emission wavelengths of 565 and 

586 nm, respectively, together with a standard curve of SRD. 

 

Permeation set up 

Permeation experiments were performed in jacketed Franz-type vertical diffusion cells 

(PermeGear, Inc., Hellertown, PA, USA) with a permeation area of 1.77 cm
2
 and receptor 

chambers with a volume of 7 ml. The jacket was coupled to a water bath (Fisher Scientific
®

) 

at 37 °C. Buccal mucosa was submitted to the application of coated microneedles for 5 min 

and mounted in the diffusion cells. PBS was used both as a receptor medium and as 

simulated-saliva in the donor chamber. The donor chamber was covered with parafilm 

(Parafilm “M”. Laboratory Film. Bemis
®
. Neenah, WI, USA) to minimize water loss. 

Histological verification of SRD-presence in the buccal mucosa 

After inserting SRD-coated microneedle arrays into a porcine buccal mucosa for 5 

min, it was mounted in the Franz diffusion cells as described above, and 100 µL PBS was 

added in the donor compartment and 7 mL in the receptor compartment. Mucosa was 

removed after 0.5, 1, 3, 6, 9, or 24 h, gently rinsed in PBS, padded dry with paper towels, 

embedded in OCT, sectioned into 10 µm-thick slices using a cryostat, and imaged using an 

inverted fluorescent microscope as described above.  

SRD permeation study using simulated saliva conditions 

For flux measurement studies, SRD-coated microneedles were inserted into the 

mucosa for 5 min. Following removal of the microneedle patch, the tissues were mounted in 

the diffusion cells between the donor and the receptor chambers. The water jackets of the 

diffusion cells were warmed to 37 °C at least 30 min before mounting the mucosa. Dynamic 
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and static conditions of salivary flow as described below were implemented on the donor side. 

To measure permeation of SRD across the buccal mucosa into the receptor chamber, a volume 

of 300 µL was collected from the receptor chamber at 0.5, 1, 2, 3, 4, 6, 9, 12 and 24 h, and 

replaced with the same volume of fresh buffer solution. 

 

Dynamic condition 

The dynamic-simulated salivary flow (Dyn-Flow) used was 100 µL/h, which was 

created by replacing the total volume (100 µL) of PBS buffer from the donor chamber every 

hour, during a 24 h experiment.  

Static conditions  

For comparison, we also used the static conditions of simulated saliva. These 

conditions were: 100 µL (St-100), 200 µL (St-200) and 300 µL (St-300), wherein the stated 

volume of PBS was added into the donor compartment and allowed to remain there for the 

entire duration of the study time point. 

Moist condition 

To study the influence of saliva, a ‘Moist’ condition was created on top of the buccal 

mucosa in the donor chamber. To create this moist and high humidity environment, a 

moistened gauze was placed in close proximity of the mucosal surface (without physical 

contact) in the donor chamber, and the free space inside the donor chamber was 

simultaneously reduced. This was done by cutting the barrel of a syringe to the required 

length so that when hung inside the donor chamber using the flange of the barrel as a stopper, 

it would hang about 3 mm above the buccal surface (Fig. 1). A 10 mL syringe-barrel (BD
®

, 

Inc. Franklin Lakes, NJ, USA) was found to closely fit the inside of the donor chamber. The 
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hollow lumen of the syringe barrel was stuffed with gauze, which was then moistened and 

saturated with water (no dripping). This assembly was hung inside the donor chamber, and the 

top was sealed with parafilm in order to prevent water evaporation. Altogether, this system 

allowed us to keep the top of the buccal mucosa mounted in the Franz cell in a moist state.  

  

Fig 1. ‘Moist case’: Modification of a vertical Franz-diffusion cell to minimize free space in 

the donor chamber and to increase humidity above the buccal tissue. (A) A syringe barrel was 

cut to size so that the barrel hangs leaving about 3 mm from the bottom of the donor chamber. 

(B) A gauze was rolled and stuffed into the barrel. (C) The extra gauze on the top was cut and 

the barrel was hung in the donor chamber using the flanges on the barrel. (D) Final assembly 

of the Franz diffusion cells. Water was added to saturate the gauze and the top of the donor 

chamber was wrapped with parafilm to seal it. 

Data analysis 

SRD was quantified in the sample collected from the receptor chambers by 

fluorescence spectrophotometry as described above in the delivery efficiency measurement 

section. The dilution effect caused by addition of fresh buffer during sample collection was 

accounted for in the calculations. The cumulative amount of SRD that permeated across the 

buccal mucosa was expressed on a per unit area basis of the buccal surface as ng/cm
2
, and 

was plotted as a function of time. The linear portion of this curve was fitted with a linear 

regression. The steady-state flux (Jss) was obtained from the slope of this line (ng/cm
2
/h), 

while the lag time (TL) was determined as the x-intercept of this regression fit. 

A B D

~ 3mm

Gauze 
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The buffer from the donor chamber (simulating saliva) was also analyzed in order to 

verify bidirectional flux of the model drug and to calculate drug loss into the simulated saliva. 

In the static conditions, the amount of SRD was quantified at the end of the experiment, and 

in the dynamic flow, the total amount of SRD in the donor was the sum of SRD detected at all 

collection times.  

Statistical Analysis  

Statistical analysis of data were performed using the GraphPad Prism
®
 package 

(GraphPad Software, Inc. La Jolla, CA, USA.), using parametric tests (ANOVA – Tukey) and 

non-parametric tests (Kruskall Wallis – Dunn) with significance level set to less than 0.05. 

RESULTS 

Microneedle coatings and delivery efficiency into porcine buccal mucosa 

The images obtained of coated microneedles (Figs. 2A and 2B) show that all the 

microneedles of the patch were coated with SRD, and that the coating on each microneedle 

was uniform. After microneedle insertion into buccal mucosa, it was observed that almost no 

coating was left on the microneedle surface (Fig. 2C). Observation of the microneedle 

insertion site showed that all microneedles penetrated and delivered their coatings in to the 

tissue (Fig. 2D). This is evident from the 57 fluorescent dots that can be seen on the surface of 

the buccal mucosa, and their arrangement, which recreates the pattern of the 57 microneedles 

on the patch. Slicing up the buccal mucosa into thin sections, and examining them under a 

fluorescent microscope showed that SRD was deposited into the tissue, and it was not merely 

superficially located (Fig. 2E).  



70 
 

 

  

Fig 2. Fluorescence micrographs of microneedles and tissue sections. (A) A microneedle 

patch uniformly coated with SRD. (B) An individual microneedle of the patch demonstrating 

coating uniformity. (C) An individual microneedle of the patch after insertion into porcine 

buccal tissue. (D) Tissue surface after microneedle insertion. (E) A histological cross-section 

of buccal mucosa after application of the microneedle patch. 

 

After visual confirmation of SRD delivery, we next quantified the amount of SRD that 

was delivered into the buccal mucosa. Quantification of the amount of SRD coated on 

microneedle patches showed that each microneedle patch was coated with 15.0 ± 2.2 μg of 

SRD. The transmucosal delivery efficiency of SRD into buccal mucosa was almost 75%, 

while 14% and 11% remained on the mucosal surface and microneedles, respectively (Fig. 3). 
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This result corroborates with the image of microneedle obtained immediately after its 

insertion (Fig. 2C) where it is seen that almost no SRD can be observed on its surface.   

  

Fig. 3. Delivery efficiency of SRD-coated microneedles into porcine buccal mucosa. Mean ± 

SD; n = 6 for Unused MN; n = 8 for delivery efficiency insertions. 

Detection of SRD in buccal mucosa 24 h post insertion 

Prior to initiating flux measurement studies, we wanted to first establish that SRD that 

is deposited into buccal mucosa does not get completely backwashed into PBS placed in the 

donor chamber. Therefore, we histologically confirmed presence of SRD in buccal mucosa 

after allowing it to remain in contact with PBS for different periods of time, up to 24 h. SRD 

fluorescence could be detected at microneedle insertion sites up to 24 h (Fig. 4), suggesting 

that despite presence of fluid on top of the insertion site, all of the deposited SRD is not lost 

into the donor chamber. 
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Fig. 4. Fluorescence micrographs of histological sections of porcine buccal mucosa after 

insertion of SRD coated microneedles, and allowing the treated site to remain in contact with 

100 μL PBS for 0.5, 1, 3, 6, 9 or 24 h. Images represent studies done in triplicate. 

 

Permeation Studies  

In vitro permeation of drug deposited into porcine buccal mucosa using SRD-coated 

microneedles was successfully performed in the Franz-type vertical diffusion cells. Moreover, 

permeability of the model drug, SRD, was compared under different saliva flow conditions in 

order to evaluate whether or not the presence of saliva could alter its permeation. Permeation 

profiles of SRD under static (100, 200 and 300 µL of saliva) and dynamic flow (100 µL.h
-1

) 

can be seen in Figs. 5A and 5B, respectively. The transport of SRD across buccal mucosa was 

clearly increased when either of the saliva flow – static or dynamic was simulated, as 

compared to the ‘moist’ condition. 

Table 1 shows permeation parameters: steady-state flux, lag time, and the cumulative 

amount of SRD permeated per cm
2
 of buccal mucosa after 24 h for the different saliva flow 

100 μm

0.5 h 1 h 3 h

6 h 9 h 24 h
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conditions. The steady state permeation fluxes and lag times were calculated using the linear 

portion of the graphs of the cumulative amount of SRD  permeated through buccal mucosa 

(ng/cm
2
) plotted against time (h). The linear intervals were between 6 and 24 h for St-100 and 

Dyn-Flow, and between 4 and 24 for Moist, St-200 and St-300. The values of the regression 

coefficients for all the individual curves exceeded 0.96. 

  

Fig. 5. Permeation profiles of SRD across porcine buccal mucosa obtained after application of 

SRD-coated microneedles: (A) under different static simulated salivary flow groups 

(mean±SEM, n=6-9); (B) under dynamic simulated salivary flow group (mean ± SEM, n = 6-

9). 
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Table 1. Calculated lag time (TL), steady-state flux (Jss), enhancement ratios (ER) and 

cumulative amount of SRD permeated per cm
2
 of buccal mucosa after 24 h (Q24) for 

permeation of SRD across porcine buccal mucosa under static and dynamic saliva flow 

conditions (n=6-9). 

 

TL (h) Jss (ng/cm
2
/h) 

Jss 

(IQR) 

ER* Q24 (ng) Q24 (IQR) 

St-100 5.02 ± 1.92
a
 43.47 (16.08 – 68.13)

a
 52.06 14.63 1367.60 (491.95 – 2456.08)

a
 1964.13 

St-200 3.36 ± 1.00
ab

 46.18 (30.50 – 52.83)
a
 22.33 15.54 1752.56 (1063.97 – 1992.74)

a
 928.77 

St-300 3.32 ± 1.24
ab

 19.55 (10.45 – 26.77)
ab

 16.32 6.58 891.03 (350.97 – 1041.74)
ab

 690.77 

Moist 1.74 ± 1.20
b
 2.97 (2.19 – 4.74)

b
 2.55 ------- 115.82 (90.83 – 180.13)

b
 89.30 

Dyn-Flow 3.40 ± 1.93
ab

 33.68 (18.14 – 45.36)
a
 27.22 11.34 1293.60 (636.70 – 1881.69)

a
 1224.99 

ANOVA/ Tukey-Kramer for TL – data presented in mean ± SD. Kruskall-Wallis/Dunn for Jss and Q24 - data 

presented in median (minimum – maximum), IQR – interquartile range. Alphabets ‘a’ and ‘b’ signify statistical 

differences among the groups in the column only if the alphabets differ (p < 0.05). For example, for TL, St-100 

and St-200 each differ from the Moist case. Each permeation parameter was analyzed separately. *Enhancement 

ratio between steady-state flux of St-100, St-200, St-300, and Dyn-Flow in comparison to Moist.  

In general, the presence of PBS under static or dynamic conditions increased the lag 

time, however only the static condition with 100 μL PBS as simulated saliva (St-100) 

presented a statistically longer lag time when compared with the ‘Moist’ group 

(ANOVA/Tukey, p = 0.0321).  

A higher steady-state flux for all the saliva-simulated groups was observed in 

comparison to the negative control group (Moist) (Kruskal Wallis/Dunn, p = 0.0003), except 

for the static condition with 300 µL PBS, which although had a higher steady state flux than 

the ‘Moist’ control, but the two were not statistically different (Kruskal Wallis/Dunn, p > 
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0.05). The flux in the presence of PBS as simulated saliva was at least 6.58 fold higher than 

the ‘Moist’ group for St-300, and this increase was almost 15 fold for St-100 and St-200 

simulated saliva cases.  

Similar results were observed for cumulative amount of SRD permeated per cm
2
 of 

buccal mucosa after 24 h, where all the saliva simulated groups presented a higher amount of 

SRD permeation as compared to the negative group (Moist) (Kruskal Wallis/Dunn, p = 

0.0008), except for the static condition with 300 µL PBS, which although higher, was not 

statistically different from the ‘Moist’ group (Kruskal Wallis/Dunn, p > 0.05). 

To assess the loss of SRD out of the mucosa due to simulated salivary conditions, the 

amount of SRD in the donor chamber was quantified. Fig. 6A shows the amount of SRD 

collected from the donor chamber at the end of 24 h of the experiments for St-100, St-200 and 

St-300. For the dynamic group the amount of SRD at the end of 24 h was the sum of SRD 

amount from every hourly collection.  

The static-simulated saliva flow with 100 µL PBS (St-100) presented the smallest loss 

of SRD to the donor chamber in comparison to all groups (Kruskall-Wallis/Dunn, p < 0.05), 

except when compared to the static condition with 200 µL PBS (St-200), which although was 

higher than St-100, but it was not statistically different (Kruskall-Wallis/Dunn, p > 0.05). The 

dynamic condition (Dyn-Flow) presented the highest loss of SRD to the donor when 

compared to all the other groups (Kruskall-Wallis/Dunn, p < 0.001), except when compared 

to the static condition with 300 µL PBS (St-300), which although was lower than Dyn-Flow, 

but it was not statistically different (Kruskall-Wallis/Dunn, p > 0.05).  

Fig. 6B summarizes the relationship between the total amount of SRD that got 

permeated into the receptor chamber, was lost to the donor chamber, and was retained in the 

mucosa at the end of 24 h of the experiment. Increasing the volume of saliva in the static 
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condition led to an increase in the amount of SRD lost to the donor chamber (St-100 ~14%; 

St-200 ~36%; St-300 ~37%), reduced the amount of SRD retained in the mucosa (St-100 

~75%; St-200 ~53%; St-300 ~57%), and reduced the amount that permeated into the receptor 

chamber (St-100 ~12%; St-200 ~11%; St-300 ~6). The simulation of salivary flow (Dyn-

Flow) demonstrated that almost 90% of SRD was lost to the donor chamber, about 9% 

permeated across, and less than 1% was retained in the mucosa.  

  

Fig. 6. Salivary washout effect as determined by measuring loss of SRD into donor chamber. 

(A) Amount of SRD collected from donor chamber after 24 h of permeation experiment under 

different static or dynamic simulated salivary flow groups. (ANOVA/Tukey, *p < 0.05, **p < 

0.001). Mean ± SD (n = 8-9). (B) Total amount of SRD that permeated across the buccal 

mucosa in 24 h (Permeated), retained in the mucosa (Retained), or lost to the donor chamber 
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(Donor) under different simulated saliva conditions (St-100, St-200, St-300 and Dyn-Flow). 

Mean ± SD (n = 8-9). 

 

 

DISCUSSION 

Previously, in an in vivo experiment in a rabbit, we have shown that despite the moist 

environment in the oral cavity, coated microneedles can deliver the coated drug with high 

efficiency into the lip and tongue of rabbits (Ma et al., 2014). This delivery efficiency was 

comparable to the delivery efficiency seen in the skin, which is a dry surface. However, 

unlike the skin, in the oral cavity tissues, after the drug has been deposited using coated 

microneedles, it is possible that due to salivary flow, the drug deposited in the tissues may 

diffuse out into the saliva resulting in drug-loss. There is a lack of studies evaluating the 

influence of saliva on permeation using coated microneedles. Thus, in this experiment, we 

were motivated to establish how presence of saliva affects diffusion of the deposited drug into 

deeper parts of the mucosal tissue, and whether deposited drug is susceptible to salivary 

washout. To our knowledge this is the first study examining this effect for coated 

microneedles. 

The choice of SRD as a model drug was based on its good water solubility (0.1 g/mL). 

This is because, drugs that have good water solubility can be more easily removed from their 

deposition site into the saliva, while poorly water soluble drugs would have low solubility in 

saliva, and would thus not be readily washed away in the saliva. Furthermore, SRD has 

previously been evaluated in the context of coated microneedles for in vitro transdermal 

delivery (Gill and Prausnitz, 2007a, Gill and Prausnitz, 2007b) and in vivo oral transmucosal 

delivery in rabbits (Ma et al., 2014).  
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For transbuccal permeation studies that involve evaluation of novel formulations, 

porcine buccal mucosa in the thickness range of 200 to 500 μm is often used (Kulkarni et al., 

2009). However, because our goal was to use microneedles measuring 700 μm long to 

directly deposit drug in to the buccal tissue, we used thicker tissues measuring about 1.5 mm 

in thickness for our studies. Use of tissues measuring 500 μm or lower in thickness, would 

have resulted in microneedle perforations spanning their entire thickness, and would have 

caused abnormally high flux rates. 

As expected, the quality of the microneedle coatings obtained here were similar to 

those reported previously (Ma et al., 2015, Gill and Prausnitz, 2007b, Ma et al., 2014), which 

also used stainless steel microneedle arrays, and the same coating method and model drug. 

Overall, the microneedle coatings prepared in this study were without gaps or structural 

damage.  

The in vitro delivery efficiency of SRD into porcine buccal mucosa after a 5-min 

application was 75%. This result corroborates with our previous in vivo delivery test in 

rabbits, which demonstrated a delivery efficiency of 63.9% for the inner lip and 91.2% for the 

dorsum of the tongue after a 2-min application (Ma et al., 2014). These results were expected 

because even though we used a porcine buccal tissue in vitro and an application time of 5 

min, in both studies the type of microneedle, coating method, solution and drug (SRD) were 

the same. A similar deliver efficiency (85.6%) was demonstrated for doxorubicin coated-

microneedles after a 5 min application time in porcine buccal mucosa in vitro , using the same 

microneedle device and coating method (Ma et al., 2015). 

The permeability of oral mucosa has been studied in humans (Lesch et al., 1989), pigs 

(Squier et al., 1991, Vries et al., 1991) and other species (Squier and Hopps, 1976). The 

similarities in permeability between pig and human oral tissues (Lesch et al., 1989) make the 
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porcine model acceptable for evaluating in vitro permeation of newly-designed drug delivery 

systems. The main permeability barrier of the oral cavity mucosa is the epithelium due its 

lipid composition, i.e. ceramides for keratinized tissues and glycosylceramides for non-

keratinized tissues (Squier et al., 1991). The ability of coated microneedles to physically 

penetrate this barrier and deposit the drug into the mucosal tissue to improve the drug 

effectives has already been demonstrated in vivo (Ma et al., 2014).  

The salivary flow rate can be divided in to two types, stimulated and unstimulated. 

The stimuli can be physical or sensorial and the maximum stimulated flow rate is up to 7 

mL/min (Humphrey and Williamson, 2001). The average unstimulated salivary flow is about 

0.3 mL/min during awake periods, but near to zero during sleeping time (Humphrey and 

Williamson, 2001). The presence of a constant salivary flow in the oral cavity, in conjunction 

with a largely water-like property of saliva (> 99% water with dissolved electrolytes and 

proteins) (Humphrey and Williamson, 2001), creates a favorable environment in the oral 

cavity to wash hydrophilic drugs, such as SRD, away from its application site. In the present 

study, the simulated dynamic salivary flow was 100 µL/h, i.e. 1.66 μL/min. Collins and 

Dawes in 1987 reported a similar salivary flow rate. They demonstrated that the total area of 

the human oral mucosa was about 220 cm
2
, and considering an unstimulated salivary flow of 

0.3 mL/min, the salivary flow would then be 2.4 μL/min for an area measuring 1.77 cm
2 

(area 

of oral mucosa used in the present study) (Collins and Dawes, 1987). In this study we also 

compared how static salivary volume maintained over the buccal tissue compares to the 

dynamic flow. We observed that the dynamic flow of saliva causes significant backwash of 

drug (Fig. 6), with about 90% of SRD being lost into the PBS of the donor chamber. In 

contrast, although increasing the static volume of PBS in the donor chamber from 100 μL to 

300 μL led to an increase in loss from 14% to 37%, it was significantly lower than the 

dynamic flow case. This data thus suggests that even with the use of coated microneedles, 
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which can deposit drug with high efficiency into the oral cavity mucosal tissues, it may be 

important to still cover the insertion site with a protective mucoadhesive covering or patch to 

reduce drug loss due to salivary washout. The molecular weight of the drug may also affect 

back-diffusion from the tissue into the saliva, thus larger hydrophilic drugs molecules such as 

proteins also need to be investigated. 

With respect to diffusion of SRD across the buccal tissue, we observed that presence 

of fluid on top of the buccal tissue actually increased the flux as compared to the Moist case 

when the buccal surface was just kept moist. Addition of 100 μL PBS into the donor chamber 

led to about 15 fold higher flux as compared to the ‘Moist’ case. This effect could be 

explained by considering that coated microneedles deposit the drug into the tissue when the 

coating is delaminated from the microneedle surface. Presence of a small amount of moisture 

can help achieve this delamination, however, the material left behind in the tissue may only be 

partially solubilized and could be in a highly concentrated state. Addition of liquid on top of 

the insertion site could help provide fluid to solubilize the drug and enhance its diffusion, as 

was seen in St-100, St-200, St-300, and Dyn-Flow cases. 

The lag time increased in the presence of saliva. As observed in Table 1, there was an 

overall tendency for the lag time to increase when simulated salivary conditions were used as 

compared to the Moist condition. In the Moist case, a high solute (SRD) concentration in the 

tissue at initial stages could have caused the diffusion to be faster resulting in a lower lag 

time, but then due to limited availability of moisture in the tissue the solute mobility could 

have reduced resulting in a low cumulative flux. In contrast, for simulated saliva cases, the 

presence of liquid on top of the mucosa could have partially removed the drug and reduced 

the solute concentration in the tissue causing lower diffusion rate (higher lag times) than the 

Moist case, but by providing a continuous solvent phase for solute diffusion, the presence of 

simulated-saliva could have led to a greater cumulative diffusion of the solute in 24 h. 
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In an in vivo situation, the effect of saliva washout could be even more severe due to 

the daily activities such as swallowing, chewing, and speaking (Paderni et al., 2012). 

However, in vivo, micropores created by the microneedles could close after microneedle 

removal due to tissue elasticity and healing process, which might help to protect the inserted 

drug from the washing effect. It is well established in the literature that in vivo pore-lifetime is 

short for the skin, and the pores reseal in about 2 h (Brogden et al., 2012, Milewski et al., 

2010, Gupta et al., 2011a) after removal of microneedles from the skin. However, the closure 

time of micropores in the oral cavity mucosa after microneedle insertion and removal has not 

yet been evaluated.   

The literature already demonstrates a strong correlation between in vitro permeation 

parameters of semi-solid formulations across pig epithelium mucosa and in vivo topical 

anesthetic efficacy in human volunteers (Franz-Montan et al., 2013, Franz-Montan et al., 

2015), suggesting that in vitro permeation studies can help to predict in vivo efficacy. 

Likewise, studies with coated microneedles involving in vitro permeation in the presence of 

salivary flow could provide insight into in vivo pharmacokinetics from delivery to the oral 

cavity, and could provide guidelines for better design of the delivery system. However, 

additional studies are necessary to select the best in vitro condition of salivary flow that can 

more reliably predict permeation parameters to simulate in vivo results. For example, a 

continuously flowing fluid stream atop the buccal mucosa could be used to better simulate the 

salivary flow. However, care would have to be taken to not only simulate the salivary flow 

rate, but also the thickness of the saliva film over mucosal tissues. 
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CONCLUSION 

This is the first study to demonstrate in vitro the effect of salivary washout on drug 

delivered to the oral cavity using coated microneedles. Using Franz-diffusion cells we 

investigated the effect of saliva on drug washout into the donor chamber and drug permeation 

across porcine buccal tissue into the receptor chamber. It was found that salivary flow 

(dynamic and static cases) affects permeation dynamics by means of increasing drug 

permeation, and increasing lag time as compared to the control group (“Moist”). Salivary flow 

also resulted in an increase in drug loss to the donor chamber, i.e. it promoted a bidirectional 

flux. Future studies are necessary to choose a better optimized in vitro salivary flow 

simulation so that a more suitable in vitro permeation model can be developed to better reflect 

in vivo pharmacokinetics of drugs delivered to the oral cavity mucosa using coated 

microneedles. 
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3 DISCUSSÃO 

Estudos de permeação representam uma importante ferramenta para o 

desenvolvimento de novas formulações tópicas durante a fase pré-clínica. No entanto, as 

barreiras comumente utilizadas (epitélio de mucosa bucal e esôfago) não representam 

modelos aplicáveis aos fármacos de interesse odontológico, especialmente em decorrência da 

grande variabilidade estrutural da mucosa oral. Esses modelos são bastante utilizados quando 

novas formulações tópicas em desenvolvimento objetivam efeito sistêmico. 

Recentemente, nosso grupo de pesquisa validou o preparo e armazenamento do 

epitélio dos diferentes tipos de mucosa oral: mucosa mastigatória (gengiva e palato), de 

revestimento (bucal) e especializada (língua) visando o auxílio no desenvolvimento de novas 

formulações tópicas de interesse em efeito local (Franz-Montan et al., 2016). No entanto, este 

modelo é de pouca aplicabilidade quando a formulação deve penetrar profundamente em 

tecidos como a polpa dental. 

O presente estudo padronizou o método de preparo de dois tipos de barreira de 

mucosa palatina de porcos, com ou sem osso subjacente. Este modelo de barreira terá enorme 

aplicabilidade quando formulações em desenvolvimento visando efeito na polpa dental como 

antibióticos, anti-inflamatórios, analgésicos e anestésicos locais forem testadas in vitro. Além 

disso, foi padronizado as condições experimentais para realização de permeação in vitro com 

essas barreiras uma vez que a espessura dos tecidos poderia por exemplo, promover 

vazamentos e impedir o controle adequado de temperatura ao longo tempo de 

experimentação. 

A fim de se testar a eficiência desta barreira, decidimos avaliar a aplicabilidade de 

microagulhas como promotores de absorção, uma vez que seu uso em Dermatologia já está 

bastante avançado (Doddaballapur, 2009), e sua aplicabilidade em mucosa oral é bastante 

restrita (Ma and Gill, 2014, Ma et al., 2014, Ma et al., 2015, Wang et al., 2015). Além disso, 

não há, do nosso conhecimento, nenhum relato de avaliação in vitro com microagulhas em 

mucosa oral. Conforme já esperado, o pré-tratamento da mucosa com esse sistema foi 

eficiente em aumentar a permeação in vitro de anestésicos locais contidos em uma formulação 

comercial (EMLA
®
), utilizando o modelo de barreira e célula adaptada descrita no presente 

trabalho.  

Nesse contexto, decidimos também avaliar a possibilidade de realização de 

estudos de permeação in vitro com microagulhas revestidas, uma vez que os relatos de uso 
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desse sistema em mucosa oral, foram avaliados diretamente em estudos in vivo (Ma and Gill, 

2014, Ma et al., 2014, Ma et al., 2015, Wang et al., 2015). Para isso, foi necessário padronizar 

as condições experimentais uma vez que a reduzida quantidade de fármaco representa um 

fator limitante desse sistema.  

Poucos estudos utilizam saliva (artificial ou natural) em estudos de permeação 

através da mucosa oral (Giannola et al., 2007b, Giannola et al., 2007a) apesar de ser 

conhecida a sua influência em drug delivery utilizando microagulhas (Ma et al., 2014). No 

entanto, não existem relatos que avaliaram a influência da saliva em ensaios de permeação in 

vitro com microagulhas revestidas. De uma maneira geral, o presente estudo demonstrou um 

aumento do fluxo e do time lag da droga modelo na presença de fluxo salivar, demonstrando 

sua importância em simular as condições reais da cavidade oral em permeação in vitro. Desta 

forma, o presente estudo sugeriu pela primeira vez condições experimentais para testes de 

permeação com microagulhas revestidas, bem como sua eficiência em aumentar a difusão 

através de mucosa oral in vitro.  

A presente tese propõe metodologias com grande aplicabilidade para realização de 

estudos in vitro visando o melhoramento de formulações tópicas para mucosa oral, bem como 

a redução do uso de animais em pesquisa. 
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4 CONCLUSÃO 

 O preparo de barreiras de mucosa palatina de porco com ou sem osso, bem 

como a célula adaptada foram padronizados e permitiram a realização de experimento de 

permeação in vitro, demonstrando a viabilidade do método.  O uso de microagulhas nessas 

barreiras foi eficaz em aumentar a permeação de drogas modelo nas condições avaliadas, 

demonstrando que o pré- tratamento da mucosa oral com microagulhas pode ser eficiente em 

melhorar a ação de fármacos aplicados topicamente na cavidade oral e pode representar um 

avanço em drug delivery. A presença de fluxo salivar demonstrou ser importante para simular 

as condições reais da cavidade oral na avaliação da permeação in vitro de microagulhas 

revestidas, pois pode ter um papel importante na retirada do fármaco de seu sítio de aplicação. 

Nesse contexto o presente estudo representa um aprimoramento na realização de 

experimentos de permeação in vitro visando a melhora de formulações tópicas e promotores 

de absorção para uso em Odontologia. 
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