
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Jefferson Rodrigo Capovilla

Improving the Statistical Variability of Delay-based
Physical Unclonable Functions

Otimização da Variabilidade Estatística em Circuitos
Physical Unclonable Functions Baseados em Atraso

CAMPINAS
2016

Jefferson Rodrigo Capovilla

Improving the Statistical Variability of Delay-based Physical
Unclonable Functions

Otimização da Variabilidade Estatística em Circuitos Physical
Unclonable Functions Baseados em Atraso

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Guido Costa Souza de Araújo
Co-supervisor/Coorientador: Prof. Dr. Mario Lúcio Côrtes

Este exemplar corresponde à versão final da
Dissertação defendida por Jefferson Rodrigo
Capovilla e orientada pelo Prof. Dr. Guido
Costa Souza de Araújo.

CAMPINAS
2016

Agência(s) de fomento e nº(s) de processo(s): Não se aplica.

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Capovilla, Jefferson Rodrigo, 1984-
 C173i CapImproving the statistical variability of delay-based Physical Unclonable

Functions / Jefferson Rodrigo Capovilla. – Campinas, SP : [s.n.], 2016.

 CapOrientador: Guido Costa Souza de Araújo.
 CapCoorientador: Mario Lúcio Côrtes.
 CapDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Cap1. Funções físicas inclonáveis. 2. Variações do processo de fabricação. 3.

Monte Carlo, Método de. 4. Circuitos integrados digitais. 5. Circuitos integrados
- Integração em escala muito ampla. 6. Circuitos integrados - Integração em
larga escala. 7. Criptografia de dados (Computação). I. Araújo, Guido Costa
Souza de,1962-. II. Côrtes, Mario Lúcio,1950-. III. Universidade Estadual de
Campinas. Instituto de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Otimização da variabilidade estatística em circuitos Physical
Unclonable Functions baseados em atraso
Palavras-chave em inglês:
Physical unclonable functions
Manufacturing process variations
Monte Carlo method
Digital integrated circuits
Integrated circuits - Very large scale integration
Integrated circuits - Large scale integration
Data encryption (Computer science)
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Guido Costa Souza de Araújo [Orientador]
Carlos Alberto dos Reis Filho
Ricardo Pannain
Data de defesa: 18-03-2016
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Jefferson Rodrigo Capovilla

Improving the Statistical Variability of Delay-based Physical
Unclonable Functions

Otimização da Variabilidade Estatística em Circuitos Physical
Unclonable Functions Baseados em Atraso

Banca Examinadora:

• Prof. Dr. Guido Costa Souza de Araújo (Orientador)
Instituto de Computação - UNICAMP

• Prof. Dr. Carlos Alberto dos Reis Filho
Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - UFABC

• Prof. Dr. Ricardo Pannain
Instituto de Computação - UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 18 de março de 2016

Dedication

To my beloved family, Mario, Rose and Jessica. To my love, Daniela.

“Not knowing it was impossible,
he did it.”

(J. Rosseau)

Acknowledgements

I would like to first express my sincere gratitude to my research advisors, Prof. Guido
Araújo and Prof. Mario Côrtes. This work would not be possible without their profound
knowledge of VLSI design, sharp technical insights, and years after years of patient guid-
ance. I also appreciate their effort in instructing me the techniques to write a scientific
paper, and later in revising it. I can’t thank Guido and Mario enough for always being
supportive, making graduate school such a memorable adventure for me.

I’m also very grateful to Prof. Carlos Reis, Prof. Ricardo Pannain, Prof. Paulo
Centoducatte and Prof. Frank Behrens for serving on my qualifying exam and dissertation
committee. I am honoured to know that my work have been evaluated by reference
professionals in the field of VLSI design, both in analog and digital perspective. Their
sharp questions and critiques make me think deeper and in different perspectives about
the challenges from the promising simulation result to real devices. In particular, Prof.
Reis provided a deep analog analysis that should be considered when manufacturing the
devices in silicon.

I would like also to thank the ones who helped me with the simulation infrastructure.
Daniel Vidal, in setting up the simulation tools on external partition and performing some
sanity tests; IT supporters of the Institute of Computing, who are always willing to help
in my most peculiar difficulties. A special thank to LSC supporters, for working very
hard in keeping all the necessary tools and remote access available.

The condition of doing the master’s while working in a private company is a real
challenge. So I would like to thank CPqD for encouraging me in keeping following the
course, providing time for the weekly meetings, and being comprehensive on the moments
I had to put extra effort on my research and during the dissertation.

Last, but not least, I would like to thank my loved ones, Mario, Rose, Jessica and
Daniela, who have supported me throughout entire process, both by keeping me harmo-
nious and helping me putting pieces together. I will be grateful forever for your love.

Resumo

Physical Unclonable Functions (PUFs) são circuitos que exploram da variabilidade esta-
tística do processo de fabricação para criar uma identidade única para os dispositivos.
PUFs são usados na construção de primitivas criptográficas para aplicações tais como
autenticação, geração de chaves e proteção de propriedade intelectual. Devido ao seu
baixo custo e simplicidade de construção, Arbiter PUFs (APUFs) baseados em atraso são
considerados um mecanismo criptográfico em potencial para a integração em dispositivos
IoT de baixo custo (e.g. tags RFID). Embora APUFs já foram alvo de diversas pesquisas,
pouco avanço foi feito em se avaliar como melhorar a imprevisibilidade destes circuitos uti-
lizando técnicas de desenvolvimento de circuitos VLSI. Esta dissertação utiliza biblioteca
AMS 350nm e simulação Monte-Carlo em SPICE para analisar como a seleção apropri-
ada do elemento árbitro e o redimensionamento de células podem afetar a variabilidade
de atraso de APUFs. Os resultados experimentais mostram que a combinação do árbitro
apropriado e redimensionamento das células podem melhorar consideravelmente a distri-
buição do Peso de Hamming nas respostas do APUF, assim resultando em um projeto
mais confiável e menos tendencioso.

Abstract

Physical Unclonable Functions (PUFs) are circuits which exploit the statistical variability
of the fabrication process to create a unique device identity. PUFs have been used in the
design of cryptographic primitives for applications like device authentication, key gener-
ation and intellectual property protection. Due to its small cost and design simplicity,
delay-based Arbiter PUFs (APUFs) have been considered a cryptographic engine candi-
date for the integration into low-cost IoT devices (e.g. RFID tags). Although APUFs
have been extensively studied in the literature, not much work has been done in un-
derstanding how to improve its response variability using VLSI design techniques. This
dissertation uses extensive AMS 350nm SPICE-based Monte-Carlo simulation to analyze
how the proper selection of arbiter element and gate sizing can affect the delay variability
of APUFs. Experimental results show that the combination of the appropriate arbiter
and gate sizing configuration can considerably improve the Hamming Weight distribution
of the APUF response, thus resulting in more reliable and less biased designs.

List of Figures

2.1 Generic delay PUF circuit . 18
2.2 APUF mux circuit . 18
2.3 Delay PUF circuit example (Chip 1) . 19
2.4 Delay PUF circuit example (Chip 2) . 20
2.5 PUF for authentication procedure . 21
2.6 Transistor geometry [1] . 22
2.7 Inter and Intra-die Variations [2] . 23
2.8 Resistor geometry [1] . 25
2.9 Transistor corner analysis [3] . 26
2.10 Monte-Carlo Analysis [3] . 27
2.11 Hamming Weight table . 29

3.1 APUF tri-state buffer circuit . 30
3.2 RC circuit . 31
3.3 DFF internal architecture [1] . 34
3.4 (a) Unbalanced SR-Latch;(b) Balanced SR-Latch 35
3.5 NAND CMOS . 35

4.1 Cluster de simulação dos experimentos . 37
4.2 Single cell characterization circuit . 38
4.3 Transient result of the simulation . 38
4.4 Standard deviation (σg) as gate strength increases. 39
4.5 Gate delay standard deviation σgs a function of KW (KL = 1) 40
4.6 Gate delay standard deviation σgs a function of KL (KW = 1) 40
4.7 Delay variability fast cell . 40
4.8 Delay variability slow cell . 41
4.9 Setup and Hold times specification for rising-edge-triggered flip-flop 42
4.10 DFF characterization procedure [2] . 43
4.11 DFF arbiter characterization circuit . 43
4.12 Setup and Hold times specification for SR-Latch 43
4.13 SR-Latch arbiter characterization circuit 44
4.14 SR-Latch arbiter characterization - setup time simulation 44
4.15 SR-Latch arbiter characterization -hold time simulation 45
4.16 Delay network circuit in ADE . 47
4.17 Arbiter circuit in ADE . 47
4.18 Simulation Framework . 48
4.19 HWD comparison when using DFF and SR-Latch as arbiters 50
4.20 HWD comparison when using SR-Latch with different drive strength in

delay network . 50

A.1 Adding new library . 60
A.2 Technology file for new library . 60
A.3 Attach design library to technology file . 60
A.4 Create new cellview . 61
A.5 Adding a new instance of inverter gate . 62
A.6 Adding a new instance of capacitor . 62
A.7 Add pin . 63
A.8 Inverter circuit ready . 63
A.9 Create symbol from schematic . 64
A.10 Add new instance of inverter circuit . 65
A.11 Add vdd source . 65
A.12 Add vpulse source . 66
A.13 Add wire name . 66
A.14 Testbench circuit ready . 67
A.15 Setup model libraries . 68
A.16 Set simulation variables . 68
A.17 Configure plotted signals . 68
A.18 Run Monte-Carlo Simulation . 69
A.19 Monte-Carlo result . 70
A.20 Copy inv cell . 71
A.21 Copy inv cell window . 71
A.22 Inv cell added to library . 71
A.23 Original inv cell properties . 72
A.24 Inv cell properties with KL and KW . 72
A.25 Use the modified version of inv cell . 73
A.26 Define KL, KW and run the simulation . 73

List of Tables

2.1 CMOS process variation . 25
2.2 Resistance according to process variation 26
2.3 Threshold tension of transistors . 26

3.1 Truth tables . 34

4.1 Average delay and standard deviation (σg) for combinational library gates 39
4.2 Mean and standard deviation for modified combinational gates 41
4.3 Setup or Hold times for the DFF and SR-Latch 45
4.4 Full circuit configurations . 46
4.5 HW Mean and standard deviation for different configurations 51

Contents

1 Introduction 15

2 Basic concepts and related work 17
2.1 PUF definition . 17

2.1.1 Delay PUF . 18
2.2 Challenges and responses . 20
2.3 PUF properties . 21
2.4 Transistor Geometry and Process Variation 22
2.5 Process Variability Simulation . 23

2.5.1 Corner Analysis . 24
2.5.2 Monte-Carlo Analysis . 26

2.6 PUF evaluation methodology . 28

3 Techniques to Improve Delay Variability 30
3.1 Delay network design techniques . 31

3.1.1 Simplified model of transistor delay 31
3.1.2 Gate sizing . 32
3.1.3 Gate drive strength . 33

3.2 Arbiter design techniques . 33

4 Experimental Results 36
4.1 Simulation Infrastructure . 36
4.2 Delay Network Simulation . 37

4.2.1 Testbench for cell delay characterization 37
4.2.2 Selecting the gate with best σg . 38
4.2.3 Variation of σp with gate sizing (∆W and ∆L) 38

4.3 Arbiter Simulation . 41
4.3.1 Selecting the arbiter with smallest forbidden window 42

4.4 Full Circuit Simulation . 45
4.4.1 Testbench for Full Circuit Simulation 46
4.4.2 Comparing HWD for different arbiters 49
4.4.3 Improving HWD using gate sizing 50
4.4.4 Overall result . 51

5 Conclusions and Future Work 52

Bibliography 54

A Tutorial: Monte-Carlo Simulation 57
A.1 Environment Setup . 57
A.2 Monte-Carlo Simulation of a ’Inverter’ Gate 59

A.2.1 Creating new library and cellview 59
A.2.2 Circuit Design . 61
A.2.3 Testbench Design . 64
A.2.4 Running the simulation . 64

A.3 Create and modify ’L’ and ’W’ of an inverter cell 70
A.4 Ocean script . 73

B Tutorial: Monte-Carlo Simulation Framework 77

Chapter 1

Introduction

Physical Unclonable Functions (PUFs) are circuits designed to exploit the statistical vari-
ations of its fabrication process to create a unique device identity. PUFs have been used
in the design of cryptographic primitives for a variety of security applications like device
authentication [4], key generation [5], remote enabling [6], among others.

Although they can be designed using physical parameters from different domains (opti-
cal, magnetic, acoustic, etc.) [7] silicon-based PUFs have become the technology of choice,
given the maturity of its manufacturing process and the simplicity and low-cost of the
resulting devices. Many silicon-based PUFs have been proposed, which exploit circuit
parameter variations like: transistor threshold voltage (Vt) [8], voltage drop along power
lines [9], capacitance layout variations [10], among others. Nevertheless, delay-based
PUFs can still result in simple and small designs, the reason why they are the focus of
this dissertation.

Delay-based PUFs were first introduced by Gassend et al. [6] and is based in a challenge
and response behaviour. Challenge signals are applied to the input of the PUF, starting
a race among different circuit paths in a delay network. As each path has a distinct delay,
due to the statistical distribution of its resistances and capacitances, the response signals
arrive at different moments at the end of the circuit paths, and are captured by an arbiter,
which builds the PUF response output for the specific challenge. Circuit paths can be
designed by using a combination of crossbars [6, 11] and tri-state buffers [12]. Because of
the existence of an Arbiter, we will refer such PUFs as APUFs.

From a security perspective, PUFs have been under strong scrutiny as they can be
target of a number of security attacks like: reverse engineering, delay parameter modelling,
emulation and statistical modelling, side-channel attacks and machine learning [13–16].
Although there are still concerns about the overall PUF security for some applications
domains, like RFID authentication, its simplicity and low-cost are very attractive design
features [17]. PUF security rests on the difficulty to extract and model its behaviour
as it depends on the variability of the intrinsic physical parameters of the fabrication
process. For example, consider two identical PUF circuits. Although they have the
exact same circuit layout they can produce different output when the same input vector is
applied. This is due to the fact that PUFs are designed to amplify the small differences
in its electrical parameters (resistance, capacitance etc) which result from the statistical
variation of its physical parameters during the fabrication process (e.g. diffusion depth,

15

CHAPTER 1. INTRODUCTION 16

dopant concentration, wire width, etc.) [18]. As a consequence, by only replicating
its circuit layout, an attacker cannot clone a PUF. Moreover, notice also that the delay
differences between two PUFs show up only when the circuit is stimulated. Hence any
attack to a PUF aiming at capturing this difference will disturb its behavior and thus
impact its response.

One of the most important features of a PUF circuit design is its ability to produce
very distinct responses in different chips when the same challenge is applied to its input.
The more distinct the responses are, the harder for an attacker to model its challenge-
response function by monitoring its input/output. Hence, it is highly desirable to tailor
the design of a PUF aiming at increasing its response variability. Nevertheless, although
PUFs have been extensively studied in the literature, not much work has been done in
understanding how gate sizing can be used to improve PUF responses. This dissertation
uses extensive AMS 350 nm SPICE-based Monte-Carlo simulation to analyze the impact
of gate sizing in the delay variability of Arbiter PUFs (APUF). It seeks to answer the
following research questions: (1) Which design techniques can be used to increase the
challenge-response variability of Arbiter PUFs? (2) And how these techniques can be
used to produce well-balanced designs (in physical and statistical terms)?

To answer such questions, this dissertation gives the following contributions: (1) It
proposes an approach which combines gate strength and channel length sizing to increase
the delay variability of the APUF delay network; (2) It shows that the adoption of sym-
metric latch designs with reduced setup-time can improve the arbiter ability to detect
small differences in the delay of the network paths.

The remainder of this dissertation is organized as follows. Section 2 discusses the
APUF designs available in the literature and the workings of a typical APUF. Section 3
makes a thorough analysis on how the statistical delay distribution of APUFs varies as
the size of its composing gates change. It also proposes an approach to use gate sizing to
increase PUFs challenge-response variability. Section 4 discusses the experimental results
that support the proposed approach. Section 5 concludes the work and describes future
research.

Chapter 2

Basic concepts and related work

This section addresses the basic concepts required to fully understand the work described
in this dissertation. It discusses PUF circuits (Section 2.1), challenge and response mech-
anisms (Section 2.2) and the required properties for a circuit to be considered a PUF
(Section 2.3). It resumes the theory involving transistor design and lists the physical /
electrical variations that occur during the manufacturing process (Section 2.4). Moreover
it discusses the tools to simulate the designed circuits under the aforementioned variations
(Section 2.5) and a method used to evaluate the results when comparing the proposed
techniques(Section 2.6).

2.1 PUF definition

According to [7], Physical Unclonable Functions (PUFs) are circuits that map challenges
to responses by exploiting intrinsic characteristics resulting from the fabrication process.
They are designed to exploit such intrinsic characteristics, so that the same circuit pro-
duces different and unique responses when manufactured in different chips . Circuit
responses can be considered an individual chip signature, which can be used for device
identification (device ID).

There exist two main types of PUFs [7]: electronic and non-electronic. The differ-
ence consists in the nature of the components that contributes to the randomness which
makes each PUF unique. Electronic components are typically used for the PUF part that
performs measurement, processing and storage of the results.

The PUF used during this work belongs to the electronic category. The circuit random-
ness is based on the propagation time of two signals throw a set of configurable balanced
paths, which are affected by variations during the manufacturing process. The path con-
figurations are defined by the challenge input bits, and for each input, one response output
bit is generated. Thus, a unique bit response can be generated by applying different chal-
lenges and grouping the response bits. The response bits that each chip produces can be
used to uniquely identify them, similar as the fingerprint in human beings.

17

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 18

Figure 2.1: Generic delay PUF circuit

2.1.1 Delay PUF

Figure 2.1 shows a general model of delay PUF circuits. The variability of the circuit is
attributed to the delay network, which exploits the variability of the different circuit paths
(defined by the challenge Ci, i = 0..n − 1) to create a signal race between the paths. In
the case of ring oscillator PUFs [4], there exists also a presence of the feedback connection.
The delay difference detection is performed by an arbiter, which uses storage elements
(e.g. flip-flops, latches) to sample the output of the stage in order to produce the PUF
response.

One of the fundamental requirements of an APUF design is to assure that all paths
of the delay stage are exactly the same, i.e. every path from the stage input to its output
is designed to have exactly the same nominal delay. Hence, the designer should work
to guarantee that every path at each stage is a combination of gates and interconnects
that produce the same nominal delay (in terms of static timing analysis). To achieve this
goal the designer must have full control not only of the logic design process, but also of
the placement and routing of the interconnects. This assures that any delay mismatch
between two paths is created only by the variations in the manufacturing process and not
by the design.

Figure 2.2: APUF mux circuit

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 19

The first APUF design was proposed by Lim et al. (Figure 2.2) [19]. Each stage of
the delay network contains a crossbar switch, designed using two multiplexers. Notice
that for this circuit, it is difficult to satisfy the aforementioned condition of having the
exactly same nominal delay in the delay network, as the cross-connections are always
longer than the straight ones. On the other hand, the architecture proposed by Ozturk
e.t. all [12] works similarly as the former, but instead of crossing the paths, each signal has
an exclusive path, and uses the variation on the delay gates as the source of randomness.
It is totally balanced, both in terms of gates and interconnections, as shown in Figures
2.3 and 2.4. For this reason, the following work used Ozturk’s architecture for basis.

Ozturk’s circuit works as follows: first, one has to set up the paths in which the input
signal will flow through the top and bottom paths. These paths are selected according
to the applied challenge bits (Section 2.2) (C0, C1, CN−1). Next, a step signal is applied
at the input, which starts the race between the paths. Given that the circuit is well-
balanced, the delay mismatch between the paths is exclusively due to the variations in
the manufacturing process (Section 2.5). Figure 2.3 presents the behavior of a chip 1
instance, in which the top path is faster than the bottom path. In this example, the top
signal arrives in port ’Data’ of the flip-flop after 10ns while the bottom signal arrives in
’Clock’ port after 12ns, causing the registered value, named response (R), to be ’1’. In
opposite, chip 2 (Figure 2.4) presents a different behavior for the same input challenge
but this time with the signal arriving earlier in ’clock’ port, causing the response to be ’0’.
The APUF’s arbiter, in Figure 2.2, is a single flip-flop which captures the race between
the two racing signals at inputs D and Clk. The order in which the signals arrive at D
and Clk will define if the response (R) to the challenge is "0" or "1".

Figure 2.3: Delay PUF circuit example (Chip 1)

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 20

Figure 2.4: Delay PUF circuit example (Chip 2)

2.2 Challenges and responses

Consider again the APUF of Figure 2.2. It receives an input challenge vector Ci, i =

0...N − 1 of N bits and generates a response bit R. Each stage of the APUF is a crossbar
switch that selects which path the two racing signals will take at that stage. Crossbar
switches can be designed using two multiplexers (MUXs) which take the challenge bit
(Ci) as selectors. When Ci = 0 (Ci = 1) the crossbar operation is pass through (crossed).
Remember that by construction the two crossbar paths should have the exact same static
delay. The race starts at the first stage (i = 0) in which the two crossbar inputs are tied
together and applied the same step signal. For example, in Figure 2.2 racing signals take
the crossed path in the first and second stages (C0,1 = 1) and the pass through path in
the last stage (CN−1 = 0).

The pair formed by an applied challenge and its respective response is named challenge-
response pair (CRP). By applying multiples challenges and gathering the responses of the
same chip instance, one builds the CRP behaviour of the instance. The CRP behaviour
is the information that can be used to uniquely authenticate each device. The length
of a CRP depends on the number of instances one intends to authenticate [19] and the
resistance to brute force (trial and error) attacks [20]. Figure 2.5 demonstrates the usage
of CRP as device authentication. The procedure, performed when the chips are already
manufactured and encapsulated, is divided in two phases: chip characterization and chip
authentication. The former is performed in a controlled ambient under safety requirements
measures in place. A defined amount of chips are stimulated with the same collection of
challenge bits, and their respective responses are stored in a common database, creating
the CRP of each chip. For instance, the CRP of chip 1 is called the Database for chip
1. The second phase occurs when the chip is assembled in an unsafe environment, being
subject to various types of security attacks. The goal is to authenticate the device by
comparing their current responses with the ones stored in its database, when the same
challenges are applied. To avoid man-in-the-middle attacks [21], each CRP should be

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 21

used only once, demanding for the database to have enough entries for the total number
of authentication operations of each chip.

Figure 2.5: PUF for authentication procedure

2.3 PUF properties

This section describes the most important properties for a device to be considered a PUF
based on the formal definition published by Maes et al in [7]. For the properties, consider
the notation Π : χ → Υ : Π(x) = y as the representation of the challenge-response
function of a determined PUF. Π represents the PUF function, χ the challenge set, Υ the
response set, x a challenge instance from set χ and y a response instance from set Υ. The
following PUF properties can then be defined based on this function. A PUF can be said
to be:

1. "Evaluatable: given Π and x, it is easy to evaluate y = Π(x)". By easy, it means
that the evaluation can be performed in polynomial time and effort, inducing little
overhead on the overall system.

2. "Unique: Π(x) contains some information about the identity of the physical entity
embedding Π." By exploring this property using a well-defined set or population
of PUF instantiations, at every challenge applied, the population is partitioned
according to the response. Consecutive responses allow for smaller and smaller
partitions until, optimally, a partition with a single PUF instantiation remains.
In this case, the considered set of challenge-response pairs (CRPs) is sufficient to
uniquely identify the PUF in the population. According to the population size, the
aforementioned procedure might or might not be possible.

3. Reproducible (or Robust): For every value y = Π(x), y = y0 is the central value
in a Gaussian probability distribution, and y 6= y0 is a small variation around y0.
For this variation, error correction code algorithms (ECC) can be applied to recover

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 22

y0. When this property is not present, it is possible that, for the same challenge,
different results can be obtained. This property could be used to build true random
number generators (TRNGs).

4. "Unclonable: given Π, it is hard to construct a procedure Γ 6= Π such that
∀x ∈ χ : Γ(x) ≈ Π(x) up to a small error." This is the core property of a PUF,
which guarantees its usability as an identification device. For a PUF to be truly
unclonable, it must be resistant to both the physical and mathematical approaches.
Physical resistance is defined as the difficulty in creating a PUF Γ 6= Π (embedded
in physically distinct entities) such that ∀x :Γ (x) ≈ Π(x). Note that the hardness
of producing a physical clone holds also for the manufacturer of the original PUF,
reason why it is also classified as manufacturer resistance. The Mathematical re-
sistance is applied if it is difficult to create an (abstract) mathematical procedure
fΓ(x) such that ∀x : fΓ(x) ≈ Π(x).

5. "Unpredictable: given only a set Q = (xi, yi = Π(xi)), i = 1...q, it is hard to
predict yc ≈ Π(xc) up to a small error, for xc a random challenge, such that (xc, .) /∈
Q." If one can correctly predict the response of a given PUF for a random challenge
by analyzing its previous CRPs, then it is possible to build a mathematical function
with the same behaviour, thus breaking the previous property of unclonability.

6. "One-way: given only y and Π, it is hard to find x ∈ χ such that Π(x) = y."
This is the same property commonly found in cryptographic hash functions. By
knowing function Π (e.g. analyzing circuit layout) and the generated response y, it
is infeasible to generate the input challenge x.

7. "Tamper evident: altering the physical entity embedding Π transforms Π → Π′

such that with high probability ∃x ∈ χ : Π(x) 6= Π′(x) not even up to a small error."
This property guarantees that if an attacker has physical access to the device, any
attempt to monitor the internal paths will change the PUF properties, and thus, its
behaviour.

2.4 Transistor Geometry and Process Variation

Figure 2.6: Transistor geometry [1]

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 23

Figure 2.6 shows a simplified model of a MOS (Metal-Oxide Semiconductor) geometry
transistor [1] in which the source and drain are represented by the n-diffusion regions,
and the gate is referenced by "SIO2 Gate Oxide" arrow. The analog designer can have
control in only two parameters related to the transistors geometry: channel length (L)
and channel width (W). After a transistor is manufactured, its behaviour can vary at a
function of different classes of process variations, as described in Boning, D.S and Nassif,
S. [22]. From all the categories listed [22], the transistor is specially sensitive to Device
Geometry Variations, which is divided in two sets:

Film thickness variations: Affects the gate oxide thickness. It is a critical variation
but can be controlled within the same die. It has more impact between wafers, dies
and lots.

Lateral dimension variations: Affects transistors lengths and widths. It is due to
three main sources: photo-lithography proximity effect; mask, lens or photo system
deviations; plasma etch dependencies.

2.5 Process Variability Simulation

With the sharp degree in feature length, process variability of integrated circuits has
become the target of several research projects. As the process geometry is continuously
shrinking, the ability to control all the parameters are becoming more and more difficult,
and its impact in the circuit behaviour increasing proportionally.

Process variability can be classified in two groups: inter-die and intra-die variation.
The inter-die variation occurs in different dies, such that for the same circuit, there are
small differences between the dies of the same wafer, from different wafers and from
different wafer lots. In the case of intra-die, the variations occur between different gates
on the same die, and are also named local variations (Figure 2.7).

Figure 2.7: Inter and Intra-die Variations [2]

In digital design, process variation delay effects are modelled using static timing analy-
sis (STA), based on three conditions: worst case, typical case and best case. The drawback
of using this approach comes from the adoption of deterministic values, in which no sta-
tistical variation is present. Although this model provides good performance estimates

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 24

for inter-dies variation, it cannot precisely model the statistical variations that occur for
within the die.

For the design of delay based PUFs, it is mandatory that the used simulation tool can
model as precise as possible the aforementioned variations. These variations need to be
applied for each gate of the circuit layout, so that each of them presents a slightly different
delay. The combination of the delay uncertainty at each gate is the source of entropy of
the circuit. To simulate this scenario, two methods are commonly available: Corner
Analysis and Monte-Carlo Analysis. The former, explained in Section 2.5.1, uses discrete
conditions while the later, explained in Section 2.5.2, is based on statistical distributions.

Instead of performing the analysis using simulation tools, another option for this
study would be the usage of FPGAs. We have discarded this possibility after our own
analysis and previous works [23–25] enumerates several challenges to obtain a good per-
formance under this environment: 1)regular cell placement to achieve symmetric PUF
layout. 2)physical constraints on the FPGA fabric that forbids the designer to create
complete symmetric routing paths. 3)limited number of gate types already manufac-
tured on the FPGA, restricting the usage of geometry change technique in delay net-
work(Section 3.1.2), and providing no guarantee if the arbiter circuit (SR-latch or DFF)
is well-balanced(Section 3.2).

2.5.1 Corner Analysis

Corner analysis simulation is based on the fact that for each controlled parameter, the
value of the electrical parameter in real silicon must lie between a minimum (MIN) and
a maximum (MAX) quantity. This means that if the simulation process cover the MIN
and MAX values of each parameter and the circuit still meets the required specification,
then one can assume that the manufactured silicon will meet the specification too. The
model files can be classified as follow:

• Typical Mean (TM): Uses the typical value of each parameter.

• Worst Speed (WS): Uses the worst value of each parameter, making the circuit slow.

• Worst Power (WP): Uses the best value of each parameter, making the circuit fast,
consequently power hungry.

• Worst Zero (WZ): Consider differences between NMOS and PMOS regions, making
the circuit slow for ’zero’ transitions and fast for ’one’ transitions.

• Worst One (WZ): Consider differences between NMOS and PMOS regions, making
the circuit slow for ’one’ transitions and fast for ’zero’ transitions.

For each process technology, the nominal value and variation range of each parameter
is intensively monitored by the foundry, based on already manufactured samples. These
data are provided to the designer via the so called technology library, in a format that
can be loaded by the simulation tool.

As an example of corner analysis, consider the following example using a single resistor
(Figure 2.8). The length L is the sum L = L1 +L2 +L3 and its nominal values described
below:

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 25

• W = 2µm

• L = 400µm

• R = 267kΩ

Figure 2.8: Resistor geometry [1]

For the process technology, consider the parameters sheet resistance Rsh and effective
width when nominal W is set to 0.8 (Weff|0.8). Range values for these parameters are
shown in Table 2.1.

Min Typ Max
Rsh 1,0 1,2 1,4 kΩ/Sq.

Weff|0.8 0.5 0.6 0.7 µm

Table 2.1: CMOS process variation

To calculate the impact of the process variation in the behaviour of each element, the
technology library also contains equation models for the electrical characteristics of the
components. To illustrate this procedure, consider the example of a resistor. Resistor’s
effective resistance (Reff) is based on Eq. 2.1, being Rsh the sheet resistance, l and ∆l

respectively the length and length variation, and w and ∆w respectively the width and
width variation.

Reff = RSH ∗
l −∆l

w −∆w
(2.1)

Table 2.2 shows the computation of the resistance according to the variation param-
eters. From this example, one can see that by using the corner analysis, the effective
resistance can vary from 210kΩ to 329kΩ.

The same procedure described above is also applicable to transistor models. For the
transistor characterization shown in Table 2.3, the corner based simulation is performed
according to Figure 2.9. This analysis is often too pessimistic, because it does not con-
sider the parameter correlations. The ellipse region in Figure 2.9 delimits the effectively

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 26

Rsh ∆w ∆l Reff

WP 1, 0kΩ/Sq. 0, 1µm 0, 0µm 210kΩ
TM 1, 2kΩ/Sq. 0, 2µm 0, 0µm 267kΩ
WS 1, 4kΩ/Sq. 0, 3µm 0, 0µm 329kΩ

Table 2.2: Resistance according to process variation

manufactured silicon characteristics. Another drawback of this type of simulation is that
it does not consider the variations that occurs in a single chip between gates of the same
type. For them, the same equation, conditions and variation range are applied.

Min Typ Max
Vth0|nmos 0,4 0,5 0,6 V
Vth0|pmos -0,55 -0,65 -0,75 V

Table 2.3: Threshold tension of transistors

Figure 2.9: Transistor corner analysis [3]

2.5.2 Monte-Carlo Analysis

Researchers have shown that process variations cannot be avoided in silicon manufacturing
process [26]. These variations are mostly related to statistical variations of the physical
parameters of the materials (e.g. dopant density), equipment (e.g. lithography precision)
and process (e.g. lateral diffusion depth) used in fabrication. As a result, the same
transistor can show different performance due to variations in its final geometry (e.g.
Channel Length (L)) and electrical parameters (e.g RC delay). In order to capture the
impact of process variation in performance, statistical simulation models are applied,
which can be used by commercial SPICE simulators (e.g. Cadence SPECTRE) to perform
Monte-Carlo simulation of delay variability.

When using Monte-Carlo simulation, for each run every parameter is calculated ran-
domly according to the distribution model provided by the foundry. Commonly, lot-to-lot,

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 27

wafer-to-wafer and chip-to-chip variations are classified as "process variation", a single
pseudo-random component from the perspective of individual chips, and modelled by an
uniform distribution. Process variation is supposed to be similar for all transistors on
the same chip. On the other hand, in-chip variations are decomposed into across-chip
systematic and local random variations, which are modelled by independent Gaussian
distributions.

As an example of Monte-Carlo analysis, consider a CMOS inverter circuit. For each
transistor, the threshold voltage (VthOp) is calculated based on Eq. 2.2, that is composed of
three components: Vnominal corresponds to the nominal threshold voltage of the transistor,
delvtop represents the process variation parameters and Dvthmat corresponds to the
mismatch variations. Figure 2.10 shows the region in which Monte-Carlo simulation
estimates the parameters, and the density of probability of each region, known as Standard
Deviation (or σ variation).

VthOp = Vnominal + delvtop+ dvthmat (2.2)

Figure 2.10: Monte-Carlo Analysis [3]

As a consequence of the variation in threshold and resistance, manufacturing processes
affects the final delay of a designed cell. Ideally, the delay network circuit of Figure 2.1
should produce the same delay for any path created from the first to the last stage. As a
consequence, the two racing paths should arrive at the same instant of time at ports D
and Clk. However, due to the statistical variation of the fabrication process each of the
gates that compose the paths have slightly different delays. The cumulative delay through
all the stages will randomly change the arrival times of D and Clk, producing a desirable
random response bit R. One possible drawback occurs when the arrival time of D and
Clk do not respect the setup/hold time of the arbiter. In this case, metastability [1] can
occur and the sample response R will be unpredictable. This is an undesirable feature,
since the APUF should reproduce the same response when the same challenge in applied
(Reproducible property - Section 2.3).

Given that the Monte-Carlo simulation offers a more realistic condition in terms of
manufactured silicon chips, the rest of this work was performed using this kind of simu-
lation.

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 28

2.6 PUF evaluation methodology

To apply PUF circuits in security solutions, its responses need to be reliably reproducible
(robust) and also, unpredictable. A PUF is classified as robust when it generates similar
responses for the same challenge applied several times, even under different operating
conditions (temperature, supply voltage, noise level). The robustness of PUFs can be
measured by mean of its bit error rate (Eq. 2.3), when compares the current response
bitstring versus the bitstring obtained during the characterization process. The hamming
distance (HD) between two bitstrings, is the number of bits that are different between
each of them, and |Rref| is the length of the reference bitstring.

BER =
HD(Ri, Rref)

|Rref|
(2.3)

The unpredictability property is necessary to guarantee that an attacker cannot cre-
ate a physical or mathematical module capable of correctly computing the response of
an unknown challenge, from the knowledge of the previous responses of a given PUF. To
evaluate if PUFs responses are biased, one would calculate the Hamming Weight Distribu-
tion (HWD) of its output and to verify the independence between PUFs instances, their
Hamming Distance (HD) [16].

In this work, the experiments are performed using Spice-based simulations with de-
terministic models, which restrict the number of PUF samples and challenges due to the
long simulation time and the deterministic results. As the robustness and independence
evaluations (using HD) requires several samples and CRPs, these analysis are part of
future work, when the PUF ASIC samples will be available. The focus of this work is to
reduce the biasing in PUF responses, i.e, for the same challenge applied in different chips,
there should be a balance between response bits ’0’and ’1’, and thus it uses the Hamming
Weight to evaluate the results.

Being n number of individuals andm the bitstring length, Hamming Weight (HW) [16]
of a bitstring Xi, i = 0...n − 1 is the number of non-zero bits of Xi, i.e. HW (Xi) =∑j=m

j=0 bij, where bij is the value of bit j in the stringXi. The Hamming Weight Distribution
(HWD) is an histogram which measures the frequency distribution of HW (Xi) for all
strings Xi, i = 0..n− 1.

This measurement procedure is illustrated in the following example. In Figure 2.11(a),
the table summarizes the responses obtained for each device (chip[1..5]) when different
challenges (C[1..6]) are applied. The ’HW’ row contains the sum of the responses obtained
for each challenge, which is used to plot the HWD. Column ’C1’ shows an example of
biased ’0’ result, when every chip responded with ’0’. Column ’C2’ contains the behaviour
when the result is biased towards ’1’. Figure 2.11(b) shows the HWD of the particular
example. Note that the graph contains a Gaussian distribution centered around ’2’.

Ideally, the HWD of an APUF response should produce a Gaussian distribution [16]
centered around half the number of chips driven by the same challenge (’2.5’ in the above
example). In such situation the APUF response is well balanced, i.e. the circuit efficiently
exploits the process fabrication variability in such a way that the responses have no biasing
towards ’1’s or ’0’s, which could eventually be exploited by an attacker. The more the

CHAPTER 2. BASIC CONCEPTS AND RELATED WORK 29

HWD of a PUF approaches this scenario the better the PUF is.

Figure 2.11: Hamming Weight table

Although APUFs seem to represent a useful class of PUFs, it could become the target of
reversing engineer modeling attacks [13]. Some techniques have been proposed to address
this shortcoming, by obfuscating the PUF output, like arbiter designs based on an XOR
array and feed forward arbiters [13]. Nevertheless, there are still questions concerning its
resistance to such attacks [27]. The focus of this work is in using design techniques to
improve the response variability of PUFs. Design techniques to improve the security of
APUFs are not covered in this dissertation.

After describing the theory used in this work, the next chapters present a set of new
design techniques for APUF designs and evaluate its performance focusing on answering
the research questions presented in Section 1.

Chapter 3

Techniques to Improve Delay
Variability

There are a number of ways to design an APUF delay stage. In [6], Gassend et al. uses
a chain of cross-bar switches, built using muxes or tri-state gates, where the behaviour
of each stage is defined by a bit of the challenge (Figure 2.2). Other types of delay-
based PUFs are ring oscillators [4] and glitches [28]. Each such designs have their own
advantages and drawbacks, but all of them could benefit from the gate sizing techniques
proposed in this work. Hence, for the sake of simplicity, and without lacking generality,
we have selected Ozturk’s APUF [12] as the baseline design to discuss the techniques
proposed herein.

In Ozturk’s architecture, the delay paths at each stage (highlighted in Figure 3.1) are
exclusive, i.e. each signal flows through its own path that contains tri-state buffers and
delay gates. In order to avoid output spikes when both tri-state buffers are changing states
(enabled to high-impedance), a MUX is also used at each path. The tri-state APUF is a
good vehicle to analyze how gate sizing affects stage variability, given that it is a fully-
balanced architecture (gates and net lengths) and enables the designer to easily change
the delay gate type and configuration.

Figure 3.1: APUF tri-state buffer circuit

As described in the previous section, the APUF is a circuit which seeks to exploit, as
much as possible, the variability of the fabrication process to create a physical unclonable

30

CHAPTER 3. TECHNIQUES TO IMPROVE DELAY VARIABILITY 31

function. The goal with this is that two identically designed APUFs could produce a
different sequence of responses when the same sequence of challenges is applied.

Given that an APUF architecture is composed of two modules, a delay network and an
arbiter, the designer should develop techniques which: (a) increase the delay variability of
the delay network (Section 3.1); and (b) improve the ability of the arbiter to detect any
small difference in the delay of the network paths which arrive at its inputs (Section 3.2).
By doing so, the designer will contribute to increase the variability of the output response
of the APUF. Notice that requirement (a) is an undesirable feature in a typical circuit
design methodology. This work proposes a novel set of techniques to address these two
goals. Overall, the experimental results using such techniques (Section 4) reveal that slow
delay networks and fast arbiters tend to produce better APUF designs.

3.1 Delay network design techniques

Given that the path delay of an APUF network should expose the delay variations result-
ing from the fabrication process, the designer should focus in developing techniques that
could expose, as much as possible, the intrinsic electrical variabilities. There are some
potential ways in which a designer can achieve that, as described in Section 3.1.3 and
Section 3.1.2. Section 3.1.1 contains a simplified model of transistor delay, used as a base
to develop the design techniques. In this work the connection delay was not considered,
focusing exclusively on the gates.

3.1.1 Simplified model of transistor delay

Transistor delay model

Figure 3.2: RC circuit

To model the impact of L, W and its variations in the transistor delay (τ) [1], consider
that a circuit can be represented as an RC tree (circuit with no loops). The tree’s root is
the voltage source and the leaves are the capacitors at the end of the branches (Figure 3.2).
The circuit delay can be estimated by Elmore delay model [1] as shown in Eq. 3.1. The
resistance R is defined by Eq. 3.2 and the capacitance over the area (Ca) by Eq. 3.3.

CHAPTER 3. TECHNIQUES TO IMPROVE DELAY VARIABILITY 32

τ ∝ [R ∗ C] (3.1)

R ∝ [
L

W
] (3.2)

Ca ∝ [Cox ∗ L ∗W] (3.3)

By replacing Eq. 3.2 and Eq. 3.3 into Eq. 3.1, the circuit delay is described as shown
in Eq. 3.4. Notice there that the delay is directly affected by L, but not by W .

τ ∝ [R ∗ Ca] = [R ∗ L
W

] ∗ [Cox ∗ L ∗W] = R ∗ L2 ∗ Cox (3.4)

The analysis below describes the impact of the process variation in each one of these
delay parameters.

Transistor delay variation due to manufacturing process

To model a relative error, we consider a simple average error estimate, for example in
equation z = x ∗ y, the error is expressed as shown in Eq. 3.5.

∆z

z
=

∆x

x
+

∆y

y
(3.5)

Hence, from equation Eq. 3.4, the relative error is modelled by equation Eq. 3.6.

∆τ

τ
=

∆R

R
+

∆L

L
+

∆L

L
+

∆Ca

Ca

∆τ = (
∆R

R
+ 2 ∗ ∆L

L
+

∆Ca

Ca

) ∗ (R ∗ L2 ∗ Ca)

∆τ = ∆R ∗ L2 ∗ C + ∆Ca ∗R ∗ L2 + 2∆L ∗R ∗ L ∗ C

(3.6)

Given that the variation of R and Ca are very small within the same die [29], the
simplified delay equation can be modelled as in Eq. 3.7 below.

∆τ = 2∆L ∗R ∗ L ∗ C (3.7)

Therefore, in order to increase the delay variability of the transistor, the designer
should increase the transistor’s length given that the other parameters in Eq. 3.7 are not
under his/her control.

3.1.2 Gate sizing

It is well-known that variations in the manufacturing process can impact the effective
transistor geometries L and W . For example, mask variation and deposition fluctuations
can create narrower or overstretched polysilicon. Moreover, sources and drains tend to
diffuse laterally under the gate, producing a shorter effective channel length (Leff). In [22],

CHAPTER 3. TECHNIQUES TO IMPROVE DELAY VARIABILITY 33

Boning et al. show that Leff has the largest impact in the gate variability. Based on this
and the delay model described in Section 3.1.1, we expect that any change in transistor’s
W barely affect the gate delay standard deviation. On the other hand, by increasing
the size of L, the delay and the standard deviation of the gate could result in have a
considerable increase.

It is important to define the difference between variability and delay variability when
comparing the techniques on combinational gates. The variability is a function of the
models provided by the foundry about the fabrication process for several parameter, which
overall can be modelled in terms of process variation (variation between chips, wafers,
lots), and mismatch (intra-chip variability). These variations are technology-dependent
and are constant for every variation of Leff. On the other hand, delay variability is a
consequence of the manufacturing process, gate strength, and layout geometries. So, for
the same process variation model, we expect the delay variability of the original geometry
cell to be smaller when compared to the scaled in L versions.

The experiments related to gate sizing are described in Section 4.2.3.

3.1.3 Gate drive strength

Focusing on studying if the delay variability of the delay network varies accord to gate
drive strength, we studied the behaviour of the combinational library cells. From [30], one
can see that cells with high drive strength tend to produce fast rising and falling output
slope. Assuming that slow transitions of output slopes produce higher output delay mean,
we expected to see that the variation over the delay mean also increases. Thus, in theory
the best candidates to increase delay variability are the combinational gates with weak
drive strength. From them, it is also necessary to analyze which gate type/drive strength
maximizes the gate delay standard deviation (σg).

Experiments to evaluate that are described in Section 4.2.2.

3.2 Arbiter design techniques

As described in Section 1, APUF arbiters are designed using storage elements, to capture
the path delay differences resulting from the fabrication process variability. The racing
condition on the two signals of the delay network, shown in Figure 3.1, starts with logic
value ’0’ and ends with logic value ’1’ after applying a step signal. Therefore, an ar-
biter candidate needs to be either rising-edge triggered, or level-triggered with the extra
requirement of keeping the stored value when both signals are ’1’. From the aforemen-
tioned conditions, two possible arbiter candidates are the D Flip-flop (DFF) as proposed
by Gassend et al. [6] or the NAND SR-Latch, suggested by Lang et al [31]. Their
respective truth tables are shown in Table 3.1.

The arbiter element is used to record which of the racing edges arrived first, and
quantize it in a digital value. Based on Figure 2.2, the racing signals are respectively
connected to ports CLK and D of a (DFF). The value to be stored in the arbiter depends
on the relative delay of the signals, being ’1’ when it arrives first in D, and ’0’ otherwise.
In order to guarantee that the delay difference on the two paths at the inputs of an

CHAPTER 3. TECHNIQUES TO IMPROVE DELAY VARIABILITY 34

Table 3.1: Truth tables

(a) SR NAND Latch

S R Action
0 0 not allowed
0 1 Q = 1
1 0 Q = 0
1 1 No Change

(b) D flip-flop

Clock D Qnext

Rising Edge 0 0
Rising Edge 1 1
Non-Rising X Q

arbiter is due only to the fabrication process, the designer must make sure that the two
signals being compared go through similar (topologically and electrically) paths within
the arbiter.

Arbiter logic paths

All internal logic paths of an arbiter, starting at its inputs to its output, should have
the exact same delay. If there exists a tendency (bias) towards a certain value in the
arbiter across many PUF instances, uniqueness will be reduced [4]. A careful analysis
in the logic design of a typical CMOS DFF [1], shown in Figure 3.3, reveal that its
internal paths are logically unbalanced and thus the path delays D-to-Q and CLK-to-Q
are different. As the DFF inputs D and Clk have different functions, it is expected that
they will be unbalanced. Therefore, by using a DFF as an APUF arbiter one cannot
assure an unbiased evaluation of the delay differences of the paths arriving at its inputs,
as required. Contrary to the DFF, the SR-Latch is a symmetric device (Figure 3.4b), and
all its paths from input to output have the exact same delay [1], a required feature for
correct APUF arbiter.

Figure 3.3: DFF internal architecture [1]

The architecture of a typical SR-LATCH, shown in Figure 3.4a, at first glance seems to
be balanced, but a deeper analysis reveals that the feedback connections are not connected
to the exact same NAND input ports. For this reason we propose a slightly different design
in the SR-LATCH architecture, that changes the feedback connections to the same input
ports (Figure 3.4b).

This scenario is better understood from the CMOS perspective. Considering the pull
down NMOS transistors of the NAND gate (Figure 3.5), there are two parasitic capaci-
tances connected in series, named q1 and q2. Depending on the order in which the input

CHAPTER 3. TECHNIQUES TO IMPROVE DELAY VARIABILITY 35

Figure 3.4: (a) Unbalanced SR-Latch;(b) Balanced SR-Latch

signals arrive, the capacitance discharge sequence is different. When input B changes to
’1’ before A, capacitance q2 discharges while q1 is still charging. Later when A arrives and
changes to ’1’ it is only necessary to discharge q1. The second scenario occurs when input
B changes to ’1’ after A changes. In this case, only when B = 1 arrives capacitances are
discharged through transistor B which drains a charge of q1 + q2, thus making the output
signal slower .

Figure 3.5: NAND CMOS

The impact of this design decision on HWD is confirmed by the experiments in Sec-
tion 4.3.

Arbiter setup and hold times

Since the arrival times of the two signals at the arbiter inputs can be very close, metasta-
bility [1] can result at the arbiter output. In other words, given the small values for the
path delay standard deviations (σp) at the arriving paths, it is possible that the setup
and hold window restriction are not satisfied, thus resulting in an undefined value for Q.
Moreover, given an arbiter with a large setup time, the circuit could also miss the delay
difference of the two paths, producing a similar response as if they were the same, an
undesirable situation for an arbiter. Hence, decreasing the tsu of the arbiter as much as
possible is a way to assure that even small differences between the two path delays at
its inputs will be detected. Moreover, if the delay difference between two paths is small
enough and cannot satisfy the storage element hold time (th) the output transition is not
guaranteed, another situation which should be avoided by the arbiter.

Section 4.3 evaluates the impact of using DFF and SR-Latch as APUF arbiters.

Chapter 4

Experimental Results

This section describes a number of experiments aiming at evaluating the impact of de-
sign techniques in APUF’s response variability. The tri-state arbiter PUF, described in
Section 1 is used as the baseline. Section 4.1 describes the simulation infrastructure used
during the experiments. Section 4.2 describes the performed experiments focusing on
finding the best logic design for the APUF delay network. In this section we evaluate the
available cells in the standard library searching for the one that produce the largest delay
variation. Also, we experimentally evaluate the impact of gate sizing (changes in transistor
geometry - L and W) with respect to the gate delay variation. On Section 4.3 we experi-
mentally define the forbidden window (setup + hold time) of each arbiter candidate(DFF,
balanced and unbalanced SR-latch), searching for the architecture that exhibits the nar-
rowest window, so as to minimize the chance of metastability. Thus we expect that even
for small delay differences in the racing paths, the metastability problem will be reduced.

4.1 Simulation Infrastructure

Experiments used Cadence Virtuoso Analog Design Environment (ADE) with Spice-based
Monte-Carlo support, a professional tool for analog circuit design and simulation. ADE
supports a proprietary script language, named OCEAN, which gives the designer full
control over the simulation process. Standard cells and process-related information were
provided by the AMS 350nm v3.80 hitkit.

The simulations performed in this work used a cluster (Figure 4.1) composed of seven
nodes, each having a 32-cores CPU, 16GB RAM memory and individual hard-disks to
store the results and to run the simulation locally. Nodes setup was done by installing
the Cadence simulation tools natively, using a compatible operational system; no virtual
machine was required. They are connected through a high-speed local LAN for fast
result sharing. This robust infrastructure was required due to the high amount of SPICE
analog simulations necessary to have a high enough sample space to perform an adequate
statistical analysis.

36

CHAPTER 4. EXPERIMENTAL RESULTS 37

Figure 4.1: Cluster de simulação dos experimentos

4.2 Delay Network Simulation

A set of Monte-Carlo simulation experiments was performed in order to determine the best
logic design for the APUF delay network as discussed in Section 3.1. This was achieved
through a set of two experimental groups. In the first group (Section 4.2.2) the goal is to
determine, from all gates in the standard-cell library, those which have the largest gate
delay standard deviation (σg). The second group (Section 4.2.3) studies the dependence
of σp with gate sizing, i.e. when the channel Length (L) and Width (W) of the gate
transistors’ change.

4.2.1 Testbench for cell delay characterization

Figure 4.2 shows an example of a circuit using buf2 cell, used to characterize every cell
candidate for the delay network, whose results are listed in Section 4.2.2 and Section 4.2.3.
The circuit is composed by three cells of the same type and drive strengths connected in
series. The cell under characterization is located at the centre, so that the input signal
slope and output load offer real conditions.

The characterization procedure starts by applying a step signal in the input port
and measuring the delay difference between signals out1 and out2. As it is performed
using analog simulation, the output signals are rising curves. The time measurement
points used are located in 50% of V DD, in this case at 1, 65V . The cell delay mean and
standard deviation uses Monte-Carlo simulation with 400 iterations, providing 400 pairs of
(out1,out2) timestamps values, varied according to fabrication process distribution model
(Figure 4.3). The difference of each pair of values provide the cell delay for the given
Monte-Carlo iteration. These data are used to calculate cell delay mean and standard

CHAPTER 4. EXPERIMENTAL RESULTS 38

deviation. Table 4.1 shows the obtained results for each cell type.

Figure 4.2: Single cell characterization circuit

Figure 4.3: Transient result of the simulation

4.2.2 Selecting the gate with best σg
The AMS 350nm library contains a few drive strength options for each combinational gate.
The objective of this study is to validate our hypothesis, described in Section 3.1.3, that
the best candidate to increase delay variability is the one with the weakest drive strength.
For this analysis, each gate type and strength went through Monte-Carlo simulation
using 400 instances for each one. The results, shown in Figure 4.4, reveal that the σg
of the library gates increase as the gate strength decreases. Hence, the weakest gates are
those which produce the largest standard deviation over the delay mean. As shown in
Table 4.1, for all combinational gate types and strengths of Figure 4.4, the xor20 is the
best candidate for the delay network, presenting the largest σg.

4.2.3 Variation of σp with gate sizing (∆W and ∆L)

The experiment described in this section aims at analyzing the impact of gate sizing
(changes in transistor geometry parameters – L andW) on σg and evaluate its consequence
to the path delay deviation σp. The analytical model, described in Section 3.1.1, shows
that the increase of σg is directly proportional to transistor L size, and that W size has a
little impact over it.

CHAPTER 4. EXPERIMENTAL RESULTS 39

Figure 4.4: Standard deviation (σg) as gate strength increases.

Gate Type Avg. Delay Std. Dev. (σg)
buf2 2,718 0,022
dly12 3,826 0,028
inv0 6,966 0,046

nand20 5,762 0,028
nor20 7,005 0,060
xnor20 5,857 0,036
xor20 10,295 0,089

Table 4.1: Average delay and standard deviation (σg) for combinational library gates

To confirm this hypothesis, we respectively modify the original gate transistors size
(L and W) by multiplying their baseline values L0 and W0 from the smallest gate by
factors KL = L/L0 and KW = W/W0. Each version of the modified gate went through
Monte-Carlo simulation using 400 instances, and the respective σg was determined.

Figure 4.5 shows the value of σg for various strengths of the combinational gates when
KW scales the size of W from 1 to 32 times. The results show that although σg increases
only slightly for fairly small values of W , the variation is irrelevant. Thus, according to
the analytical model in Section 3.1.1, increasing W will not affect much the standard
deviation of the gate delay (σg) and therefore gates used in APUF network paths should
have the smallest possible value of W .

A similar experiment was also performed for L. As shown in Figure 4.6, σg increases
considerably with KL. Therefore, contrary to W and according to the analytical model of
Section 3.1.1, increasing the gate’s transistors channel length has a significant impact on
the gate delay standard deviation over the delay mean. Figure 4.7 shows the experimental
result of the delay variation of an inverter gate when having the original L size, and
Figure 4.8 when having it scale 32 times bigger.

The same behaviour was present in all other combinational gates of the library. There-
fore, given the considerable impact of KL in σg, channel length sizing will be used, from
the remaining of this work, as the design technique of choice to control the σp of APUF
delay network paths. Notice the reader that, contrary to a typical logic design, designing
APUFs requires an increase in L so as to improve delay variability.

CHAPTER 4. EXPERIMENTAL RESULTS 40

Figure 4.5: Gate delay standard deviation σgs a function of KW (KL = 1)

Figure 4.6: Gate delay standard deviation σgs a function of KL (KW = 1)

Figure 4.7: Delay variability fast cell

CHAPTER 4. EXPERIMENTAL RESULTS 41

Figure 4.8: Delay variability slow cell

Table 4.2 lists the values of σg for all combinational gates in the library and the smallest
(1) and the largest (32) values of KL. Given that APUF design seeks to use gates with
the largest delay variability, the best candidate in Table 4.2 is dly12.

Gate Type Mean Std. Dev. (σg)
KL=1 32 KL=1 32

buf2 0,151 36,460 0,077 1,437
dly12 1,269 798,758 0,068 30,065
inv0 0,208 20,206 0,052 1,193

nand20 0,299 40,869 0,042 2,540
nor20 0,166 27,709 0,034 1,658
xnor20 0,349 65,242 0,041 5,295
xor20 0.300 87,854 0,059 5,077

Table 4.2: Mean and standard deviation for modified combinational gates

4.3 Arbiter Simulation

The first step a designer must take to design an APUF arbiter is to evaluate all possible
storage element candidates according to the the requirements described in Section 3.2.
As mentioned before, two possible arbiter candidates are the DFF and the SR-Latch.

As discussed in the first requirement of Section 3.2, a simple analysis of the logic of
DFF and SR-Latch shows that the DFF has unbalanced input to output paths, suggesting
that the SR-Latch is probably a better choice for an APUF arbiter. On the other hand, a
careful analysis of the setup and hold times of the DFF and SR-Latch should be performed
to evaluate the storage element which satisfies the second requirement in that section, i.e.
the smallest possible forbidden window. This is done to assure that the selected device
is the most sensitive one, capable of capturing any small path delay differences produced

CHAPTER 4. EXPERIMENTAL RESULTS 42

by the APUF network paths. Section 4.3.1 describes the used procedure and obtained
results.

4.3.1 Selecting the arbiter with smallest forbidden window

The setup time characterization process for a DFFs and SRLs is well-known [2] and follows
a straighfoward procedure which measures the delay from each input to the Q output.
For the case of the DFF, two input signals are used: Data (D) and Clock (CLK). In
each of the signals it is applied a rising edge step-function out of phase, illustrated by the
letters C and D in Figure 4.9.

Figure 4.9: Setup and Hold times specification for rising-edge-triggered flip-flop

To determine the nominal delay, the experiment is initially configured so that a long
time difference is used between the moment thatD and CLK transitions are applied. This
guarantees that the setup time is satisfied and that the clk-to-Q delay is the fastest possible
nominal delay. The next steps in the experiment consists in decreasing the application
time between D and CLK and measuring its impact in clock-to-Q. The experiment keeps
reducing the difference until the output signal stops transiting to ’1’. The setup time (Tsu)
is then defined to be in between 5% to 10% of the nominal delay clk-to-Q (industrial
standard). The hold time characterization for the DFF is not necessary for this work
because, after the transition, both signals stay stable at logic ’1’ until the next APUF
challenge is applied, which just occurs after evaluating the arbiter result. Figure 4.10
illustrates the described procedure and Figure 4.11 shows the circuit used for the DFF
arbiter characterization, which also includes a signal to reset the flip-flop to a well-known
state at the beginning of every simulation.

For the latch characterization, we defined the equivalent setup and hold time conditions
(Figure 4.12) [2]. The setup time is the minimum time that signal S needs to arrive in
NAND SR-latch before signal R. In case S arrives very close to R, the output signal
stays in a metastable value for a certain time before stabilizing to zero(Figure 4.14). This
could take as long as many nanoseconds. The hold time is the minimum time that signal
R needs to arrive in NAND SR-latch before signal S. In case R arrives very close to S, it
causes the output value to bounce to a value that can be lower than Vih1 or even flip the
output (Figure 4.15).

Figure 4.13 shows the circuit used for the SR-Latch arbiter characterization. The
experiments have shown that the setup time for the SR-Latch can be less strict than the

1Minimum input voltage guaranteed to be recognized as a logical "1".

CHAPTER 4. EXPERIMENTAL RESULTS 43

Figure 4.10: DFF characterization procedure [2]

Figure 4.11: DFF arbiter characterization circuit

Figure 4.12: Setup and Hold times specification for SR-Latch

CHAPTER 4. EXPERIMENTAL RESULTS 44

hold time because, if it is available enough time for the circuit to get stable, the registered
value is always correct. On opposite, in case of the hold time to be violated, the latch can
register an incorrect value (flip output).

Figure 4.13: SR-Latch arbiter characterization circuit

Figure 4.14: SR-Latch arbiter characterization - setup time simulation

CHAPTER 4. EXPERIMENTAL RESULTS 45

Figure 4.15: SR-Latch arbiter characterization -hold time simulation

Table 4.3 contains the experimental results with the most relevant tsu or th times for
the DFF and SR-Latch built using gates from the library. Based on the presented results,
the recommended architecture for the arbiter should be an SR-Latch using NAND28 gates,
given that it has the smallest possible th.

Arbiter Type
Setup time (DFF)

Hold time (SR-Latch)
dfc1 0,1
dfc3 0,08

latch20 balanced 0,00069
latch28 balanced 0,00052
latch20 unbalanced 0,03898
latch28 unbalanced 0,032126

Table 4.3: Setup or Hold times for the DFF and SR-Latch

4.4 Full Circuit Simulation

The goal of this set of experiments is to evaluate what is the impact of the combination
of the design techniques discussed in the previous sections, on the overall APUF response
variability (i.e. HWD). The following design techniques were evaluated: (a) balanced
versus unbalanced arbiters (DFF x Balanced SR-Latch x Unbalanced SR-Latch); (b)
high versus low gate strengths (DLY12 x XOR20); and (c) different transistor L sizes
(KL = 1, 8, 32). To this purpose, 36 APUF circuit configurations were simulated, as listed
in Table 4.4. In the following figures DFF stands for D Flip-Flop (Figure 3.3), SRL is the
balanced SR-Latch (Figure 3.4b) and USRL is the unbalanced SR-Latch (Figure 3.4a).

CHAPTER 4. EXPERIMENTAL RESULTS 46

Arbiter Delay Gate L scale factor
Type Cell Cell KL

DFF
dfc1 dly12

1, 8, 32xor20

dfc3 dly12
xor20

SRL
nand20 dly12

1, 8, 32xor20

nand28 dly12
xor20

USRL
nand20 dly12

1, 8, 32xor20

nand28 dly12
xor20

Table 4.4: Full circuit configurations

In order to measure the APUF response quality, the HWD is computed using the
methodology proposed in Katzenbeisser et al [16] and described in Section 2. Specifically,
in this dissertation the same set of N random challenges Cik, i = 0..N − 1, k = 0..M − 1

is applied to each one of the M APUF instances. For a given challenge Cik, the HWD of
the output responses Rik is computed across all 32 circuits. By using this configuration,
the ideal HWD expected, as described in Section 2.6, is centered around half the number
of chips stimulated, which in this case is 16.

Two experiments are performed to evaluate these configurations. In the first one
(Section 4.4.2), the goal is to compare the best configuration using DFF and SR-Latch, in
order to measure the impact on the HWD when using these two different types of arbiters.
In the second experiment (Section 4.4.3), the goal is to evaluate the impact of gate sizing
on HWD.

The delay network used in the experiments contains 64 stages, the same number of
stages as described by Suh and Devadas in [4]. Unfortunately, although the simulation in-
frastructure was robust, limitations in the Monte-Carlo analog simulation speed restricted
the set of experiments to M = 32 APUF circuits and N = 128 challenges per circuit. For
example, some combinations of challenge-configurations took 12 days to simulate.

4.4.1 Testbench for Full Circuit Simulation

Figure 3.1 shows the circuit used for the full simulation. Figure 4.16 shows three of
the 64 stages that compose the delay network. The signals driven in port IN1 and IN2
correspond to the step signal, used to create the racing condition between the two paths.
The SEL ports select the paths to be used as output at each stage. In ports SEL it is
set the voltage values for the corresponding challenge bits to be applied in the circuit.
For example, if the challenge’s first three bits are 101, the values in SEL ports are:
sel_0 = 3.3V , sel_1 = 0V and sel_2 = 3.3V .

CHAPTER 4. EXPERIMENTAL RESULTS 47

Figure 4.17 contains two of the three arbiter options, used for the full circuit simulation.
The top circuit corresponds to the DFF arbiter with reset, and the bottom, the balanced
SR-Latch. The unbalanced SR-Latch has the same interface as the former, but its feedback
connections are different, as shown in Figure 3.4. To use the desired arbiter, it is only
necessary to map the output signals from the delay network (D and C) to the arbiter’s
inputs. In Figure 4.17, the DFF arbiter is active while the SR-Latch is disabled.

Figure 4.16: Delay network circuit in ADE

Figure 4.17: Arbiter circuit in ADE

CHAPTER 4. EXPERIMENTAL RESULTS 48

The designed testbench required the usage of SPICE and Monte-Carlo simulation.
Its inputs and outputs only support the analog format (voltage, current, etc). For this
reason, we created a simulation framework to handle the conversions and configurations
so that the input challenges and output responses are used in digital format. Figure 4.18
shows such framework.

Figure 4.18: Simulation Framework

The framework starts by obtaining the 128 64-bit challenges from the input file, one
challenge per line, and for each line it creates a simulation configuration script in OCEAN
(Open Command Environment for Analysis). The script contains the transistor geometry
multipliers (KL and KW), number of iterations (fixed in 32 circuits), temperature and
VDD (fixed), APUF design configuration (Table 4.4) and the values in analog format of
each challenge Sel bit to be set along the delay network. For every simulation output, the
result is converted back to a digital format, which provides an output similar as shown in
Listing 4.1. For our case, only the final value next to 500us is important, because it is the
response obtained after all the internal transitions in the circuit. Each of them correspond
to the output result resulting by applying the same challenge to different circuits.

Appendix B describes in more details the procedure for the challenge inputs and circuit
simulation.

CHAPTER 4. EXPERIMENTAL RESULTS 49

Listing 4.1: Simulation output file
(monte = Task1Monte , iteration = 1)
time (s) awvAnalog2Digital(VT(" q_latch ")

1.8 0.2 0 0 "hilo") (V)
0 St0

45.4071u StX
45.4071u St1

500u St1

Set No. 2
(monte = Task2Monte , iteration = 2)
time (s) awvAnalog2Digital(VT(" q_latch ")

1.8 0.2 0 0 "hilo") (V)
0 St0
500u St0

Set No. 3
(monte = Task3Monte , iteration = 3)
time (s) awvAnalog2Digital(VT(" q_latch ")

1.8 0.2 0 0 "hilo") (V)
0 St0
500u St0

Set No. 4
(monte = Task4Monte , iteration = 4)
time (s) awvAnalog2Digital(VT(" q_latch ")

1.8 0.2 0 0 "hilo") (V)
0 St0

48.8022u StX
48.8023u St1

500u St1

4.4.2 Comparing HWD for different arbiters

The following experiment analyzes the responses of the full-circuit simulation when using
the two best arbiter options with different cells: DFF (DFC3 cell) and balanced SR-Latch
(NAND28 gates). The delay network uses DLY12 gates and KL = 1 for both cases. For
the comparison, we measured the HWD when 128 64-bit challenges are applied, give that
this is the ideal result with distribution centered around 16.

Figure 4.19 shows that the DFF HWD is centered around ’6.05’ and thus its responses
is very biased towards producing more 0s than 1s. On the other hand, the SR-Latch
distribution is centered around ’15.77’, meaning that its responses have almost the same
number of 0s and 1s. This experiment reveals that the SR-Latch is a much better arbiter

CHAPTER 4. EXPERIMENTAL RESULTS 50

than the DFF, thus validating the hypothesis put forward in Section 3 that the unsym-
metrical path delays within the DFF design could adversely affect the APUF response.

Figure 4.19: HWD comparison when using DFF and SR-Latch as arbiters

4.4.3 Improving HWD using gate sizing

This experiment aims at evaluating the impact of the increase in the gate transistor
channel length (L) on the APUF HWD, as raised in Section 3.1.2. Figure 4.20 shows the
HWD for a 64-stages APUF, with XOR20 gates in the the delay network and NAND28
gates in the SR-Latch arbiter. HWD is analyzed for KL = 1 and KL = 32 and curve
fitting is performed.

Figure 4.20 shows that both HWD exhibit a Gaussian behaviour. However, the APUF
with the largest channel length (KL = 32) is centered around ’15.51’, while the APUF
with the smallest channel length (KL = 1) is centered around ’14.02’, a response slightly
biased towards 0. This is an additional confirmation that increasing channel length can
contribute to improving the unpredictability of APUFs.

Figure 4.20: HWD comparison when using SR-Latch with different drive strength in delay
network

CHAPTER 4. EXPERIMENTAL RESULTS 51

4.4.4 Overall result

Arbiter delay gate HW mean HW std dev
type cell KL=1 8 32 KL=1 8 32

DFF
dfc1 dly12 6,11 16,28 16,01 1,27 1,16 1,31

xor20 0,88 11,05 14,71 0,38 1,11 1,65

dfc3 dly12 6,05 16,33 15,95 1,26 1,19 1,31
xor20 1,20 10,98 12,43 0,76 1,22 1,45

SRL
nand20 dly12 15,71 15,11 16,1 0,68 1,64 1,72

xor20 14,77 15,30 15,43 1,15 0,91 1,07

nand28 dly12 15,77 15,01 16 0,81 1,57 1,79
xor20 14,02 15,41 15,51 0,98 1,04 1,16

USRL
nand20 dly12 10,52 14,48 15,95 1,06 1,54 1,75

xor20 4,39 13,68 14,99 1,21 1,06 1.11

nand28 dly12 9,59 14,41 15,91 0.87 1.54 1.68
xor20 1,64 13,33 14,86 0,91 1,14 1,16

Table 4.5: HW Mean and standard deviation for different configurations

Table 4.5 contains the HW mean and standard deviation for all the full circuit simula-
tions performed. The USRL entry of the table represents the result using an unbalanced
SR-Latches. As expected, the best configuration for the APUF circuit is obtained with
balanced SR-Latch using NAND28 gates, DLY12 as delay cell and KL = 32. On the other
hand, the worst performance is obtained with DFF using DFC1 cell, XOR20 as delay gate
and KL = 1.

The experimental results show that the latch performs better than the Flip-Flop as
arbiter. It also shows the delay networks with larger transistor channel length (L) yields
a better Hamming Weight statistical distribution. As a matter of fact, as one increases
KL towards 32, HW mean approaches the ideal value (16), and larger values of HW
standard deviation are obtained. On the other hand, the experiments show that using
cells with higher drive strength in the SR latch did not have significant impact on overall
performance.

Chapter 5

Conclusions and Future Work

Delay-based PUFs are one of the most studied PUFs in the literature and due to its small
cost and design simplicity, could eventually be used in low-cost IoT devices. To the best
of our knowledge, there is no work that has investigated in this detailed-level, the effect of
the structural, electrical and physical characteristics of delay-based PUFs to its response’s
statistical characteristics. Our work was set out to improve the statistical variability of
APUF design by using a collection of techniques usually found on VLSI designs, but not
yet applied to PUF designs. It analyzes how the proper selection of arbiter element and
gate sizing can affect the delay variability, and how to make the best design decisions
based on experimental evaluations.

This work uses extensive Monte Carlo transistor-level SPICE simulation to evaluate
how design choices affect the unpredictability of delay-based PUFs. It shows that the
combination of the appropriate arbiter and gate size configurations can considerably im-
prove the Hamming Weight distribution of APUF responses. Specifically, it reveals that:
(a) the use of weak gates along the delay path can improve delay variability by a factor
of four; (b) increasing the transistor channel length of gates along the design path by a
factor of 32 results in a delay variability one order of magnitude greater; and (c) the use
of SR-Latch based arbiters, instead of the widely used DFF arbiter, results in significant
improvement in the Hamming Weight distribution of the PUF.

The experiments results show that there is still margin to improve the PUF charac-
teristics focusing on their project parameters.

Another important fact refers to publications that analyze and compare different PUFs
architectures (e.g. [16]) without verifying their design parameters variations. Based on our
work, this can clearly compromise the comparative results, since the project parameters
selection can significantly affect the relative performance of each architecture.

As future work, we intend to test the combination of techniques developed during this
research in real silicon implementations, thus allowing the application of a large set of
challenges in different kinds of configurations so as to confirm the results obtained by this
work.

It is also necessary to analyze the impact of the environmental changes, e.g tem-
perature, voltage variation and aging in the PUF behaviour when the set of techniques
developed in this work is applied. As example of this kind of analysis, we need to verify
if, at different temperature conditions, the PUF still delivers the same set of responses

52

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 53

when the same set of challenges are applied.
We also intend to apply this set of techniques in other delay-based PUFs to verify if

we can achieve the same kind of improvements as obtained for the Ozturk’s PUF, both
in simulation and in real silicon devices.

Bibliography

[1] N.H.E. Weste and D.M. Harris. CMOS VLSI Design: A Circuits and Systems Per-
spective. ADDISON WESLEY Publishing Company Incorporated, 2011.

[2] Savithri Sundareswaran. Statistical Characterization For Timing Sign-Off: From
Silicon to Design and Back to Silicon. PhD thesis, University of Texas, May 2009.

[3] Gernot Heiling. HIT-Kit 4.0 Training - Introduction to Analog Tutorial, June 2012.

[4] G. Edward Suh and Srinivas Devadas. Physical Unclonable Functions for Device
Authentication and Secret Key Generation. DAC ’07, New York, NY, USA, 2007.
ACM.

[5] Jae W. Lee, Daihyun Lim, Blaise Gassend, G. Edward Suh, Marten van Dijk, and
Srinivas Devadas. A Technique to Build a Secret Key in Integrated Circuits for
Identification and Authentication Application. In Proceedings of the Symposium on
VLSI Circuits, 2004.

[6] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. Silicon
Physical Random Functions. In ACM Conference on Computer and Communications
Security, New York, NY, USA, 2002. ACM Press.

[7] Roel Maes and Ingrid Verbauwhede. Physically Unclonable Functions: A Study on
the State of the Art and Future Research Directions. In Ahmad-Reza Sadeghi and
David Naccache, editors, Towards Hardware-Intrinsic Security, Information Security
and Cryptography. Springer Berlin Heidelberg, 2010.

[8] Lang Lin, Dan Holcomb, Dilip Kumar Krishnappa, Prasad Shabadi, and Wayne
Burleson. Design Optimization and Security Validation of Sub-Threshold PUFs. In
SECSI-2010, 2010.

[9] Ryan Helinski, Dhruva Acharyya, and Jim Plusquellic. A Physical Unclonable Func-
tion Defined Using Power Distribution System Equivalent Resistance Variations.
DAC ’09, New York, NY, USA, 2009. ACM.

[10] Pim Tuyls, Geert-Jan Schrijen, Boris Škorić, Jan van Geloven, Nynke Verhaegh, and
Rob Wolters. Read-Proof Hardware from Protective Coatings. CHES’06, Berlin,
Heidelberg, 2006. Springer-Verlag.

[11] Blaise Gassend. Physical Random Functions. Master’s thesis, Massachusetts Institute
of Technology, January 2003.

54

BIBLIOGRAPHY 55

[12] E. Ozturk, G. Hammouri, and B. Sunar. Physical unclonable function with tristate
buffers. ISCAS 2008.

[13] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Testing Techniques
for Hardware Security. In Test Conference, 2008. ITC 2008. IEEE International,
2008.

[14] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Techniques for De-
sign and Implementation of Secure Reconfigurable PUFs. ACM Trans. Reconfigurable
Technol. Syst., 2(1), 2009.

[15] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, and
Jürgen Schmidhuber. Modeling Attacks on Physical Unclonable Functions. In Pro-
ceedings of the 17th ACM Conference on Computer and Communications Security,
CCS ’10, pages 237–249, New York, NY, USA, 2010. ACM.

[16] Stefan Katzenbeisser, Ünal Kocabaş, Vladimir Rožić, Ahmad-Reza Sadeghi, Ingrid
Verbauwhede, and Christian Wachsmann. PUFs: Myth, Fact or Busted? A Security
Evaluation of Physically Unclonable Functions (PUFs) Cast in Silicon. CHES 2012.
2012.

[17] Leonid Bolotnyy and Gabriel Robins. Physically Unclonable Function-Based Security
and Privacy in RFID Systems. PERCOM ’07, Washington, DC, USA, 2007. IEEE
Computer Society.

[18] Ravikanth S. Pappu, Ben Recht, Jason Taylor, and Niel Gershenfeld. Physical One-
Way Functions. Science, 297, 2002.

[19] D. Lim, J.W. Lee, B. Gassend, G.E. Suh, M. van Dijk, and S. Devadas. Extracting
secret keys from integrated circuits. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 13(10):1200–1205, Oct 2005.

[20] S. Stanzione and G. Iannaccone. Silicon Physical Unclonable Function resistant to
a 1025-trial brute force attack in 90 nm CMOS. In VLSI Circuits, 2009 Symposium
on, pages 116–117, June 2009.

[21] Blaise Gassend, Marten Van Dijk, Dwaine Clarke, Emina Torlak, Srinivas Devadas,
and Pim Tuyls. Controlled Physical Random Functions and Applications. ACM
Trans. Inf. Syst. Secur., 10(4):3:1–3:22, January 2008.

[22] Duane S. Boning and Sani Nassif. Models of Process Variations in Device and Inter-
connect. In Design of High Performance Microprocessor Circuits, chapter 6. IEEE
Press, 1999.

[23] Sergey Morozov, Abhranil Maiti, and Patrick Schaumont. A comparative analysis of
delay based puf implementations on fpga. IACR ePrint tbd/2009 (submitted December
19, 2009), 2009.

BIBLIOGRAPHY 56

[24] M. Majzoobi, F. Koushanfar, and S. Devadas. FPGA PUF using programmable
delay lines. In Information Forensics and Security (WIFS), 2010 IEEE International
Workshop on, pages 1–6, Dec 2010.

[25] J.H. Anderson. A PUF design for secure FPGA-based embedded systems. In Design
Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pages 1–6,
Jan 2010.

[26] Kedar Patel. Intrinsic and Systematic Variability in Nanometer CMOS Technologies.
PhD thesis, EECS Department, University of California, Berkeley, Dec 2010.

[27] Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry Nedospasov,
Clemens Helfmeier, Christian Boit, and Helmar Dittrich. Physical Characterization
of Arbiter PUFs. CHES 2014, 2014.

[28] Daisuke Suzuki and Koichi Shimizu. The Glitch PUF: A New Delay-PUF Architec-
ture Exploiting Glitch Shapes. CHES 2010. Springer Berlin / Heidelberg, 2011.

[29] Wei Zhao, Yu Cao, F. Liu, K. Agarwal, D. Acharyya, S. Nassif, and K. Nowka.
Rigorous extraction of process variations for 65nm CMOS design. In Solid State
Device Research Conference, 2007. ESSDERC 2007. 37th European, pages 89–92,
Sept 2007.

[30] AMS AG. 0.35µm CMOS Digital Standard Cell Databook, 2012.

[31] Lang Lin, Dan Holcomb, Dilip Kumar Krishnappa, Prasad Shabadi, and Wayne
Burleson. Low-power sub-threshold design of secure physical unclonable functions.
In Low-Power Electronics and Design (ISLPED), 2010 ACM/IEEE International
Symposium on.

Appendix A

Tutorial: Monte-Carlo Simulation

In this chapter it is explained how to setup the environment and perform the Monte-Carlo
simulations described in the previous sessions. The objective is to provide the required
knowledge for the ones interested in reproduce the results using the same tools as used in
this work.

A.1 Environment Setup

In order to configure the environment variables in a linux terminal, the script showed in
Script A.1 should be present in the user home folder. As example, this script is named
as “setup.cadence”. In order to call the script in every instance of the terminal, the line
below should be added in the “.bashrc” file.

source ~/ setup.cadence

If the setup was performed correctly, the output of the command “echo $CDSHOME”
should return the equivalent result: “\tools\cadence\IC5141”. To start the design and
simulation tool, one can simply run the AMS script:

>>ams_cds -mode icfb

If asked, the technology “C35B4” should be associated to the project.

Listing A.1: Environment setup script

#!/bin/bash

export LM_LICENSE_FILE =5280 @v440 :26745 @medalha

export CADENCE_HOME =/tools/cadence

export CDS_LIC_TIMEOUT =10

export MMSIM_HOME=${CADENCE_HOME }/ MMSIM101/tools/bin
export ETSHOME=${CADENCE_HOME }/ ETS110
export CDS_ROOT=${CADENCE_HOME }/ IC5141
export CDSHOME=${CADENCE_HOME }/ IC5141

57

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 58

export CDSDIR=${CADENCE_HOME }/ IC5141
export EDIHOME=${CADENCE_HOME }/ EDI101
export ASSURA_AUTO_64BIT=NONE
export ASSURAHOME=${CADENCE_HOME }/ ASSURA /5141 USR2
export LANG=C
export MOZILLA_HOME="/usr/bin/firefox"
#export CDS_AUTO_64BIT ALL
export CDS_BIND_TMP_DD=both
export VRST_HOME=${CADENCE_HOME }/ INCISIV102
export SPECMAN_WEB_BROWSER =/usr/bin/firefox
export RC_HOME=${CADENCE_HOME }/RC111

export AMS_DIR =/ tools/techlib/hk380

export PATH="$CDSHOME/share/bin:$PATH"
export PATH="$CDSHOME/bin:$PATH"
export PATH="$CDSHOME/tools/bin:$PATH"
export PATH="$CDSHOME/tools/dfII/bin:$PATH"

export PATH="$EDIHOME/share/bin:$PATH"
export PATH="$EDIHOME/bin:$PATH"
export PATH="$EDIHOME/tools/bin:$PATH"
export PATH="$EDIHOME/tools/dfII/bin:$PATH"

export PATH="$ETSHOME/share/bin:$PATH"
export PATH="$ETSHOME/bin:$PATH"
export PATH="$ETSHOME/tools/bin:$PATH"
export PATH="$ETSHOME/tools/dfII/bin:$PATH"

export PATH="$VRST_HOME/bin:$PATH"
export PATH="$VRST_HOME/tools/bin:$PATH"
export PATH="$VRST_HOME/share/bin:$PATH"

export PATH="$RC_HOME/bin:$PATH"
export PATH="$RC_HOME/tools/bin:$PATH"
export PATH="$RC_HOME/share/bin:$PATH"

export PATH="$MMSIM_HOME /../../ share/bin:$PATH"
export PATH="$MMSIM_HOME /../ bin:$PATH"
export PATH="$MMSIM_HOME /../../ bin:$PATH"

export PATH="$AMS_DIR/artist/bin:$PATH"

export LD_LIBRARY_PATH

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 59

export LD_LIBRARY_PATH="$CDSHOME/tools/lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH="$EDIHOME/tools/lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH="$ETSHOME/tools/lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH="$MMSIM_HOME /../ lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH="$VRST_HOME/tools/

lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH="$RC_HOME/tools/lib:$LD_LIBRARY_PATH"
export LBS_CLUSTER_MASTER=$(uname -n | sed ’s/\(\..*\)*//g’)
export CDS_QUEUE_CONF_FILE =/tools/cadence/queue_config

A.2 Monte-Carlo Simulation of a ’Inverter’ Gate

When the tool starts, several windows pop-ups on the screen. The two entitled “What’s
new” windows should be closed. At this time, one should be seeing two windows, named
“icms” and “Library Manager”. The icms (integrated circuit mixed signal) is the main
window, and from there, one can open the other tools, including the Library Manager.
The Library Manager handles all the project being developed, and also loads the standard
cells and basics components provided by the foundry.

A.2.1 Creating new library and cellview

To create a new project, go to the Library Manager and selects File→ New → Library.
Figure A.22 shows the opened window, which the library name is added, in this case
MCSIM_INV_GATE. Select the prefered directory and press OK. After, the window
showed in Figure A.2 asks for the associated technology for the library. Select “Attach to
an existing techfile” and on window showed in Figure A.3 select “TECH_C35B4 ”.

To create a cellview, go to the Library Manager, selects the created library (MC-
SIM_INV_GATE), and then selects on menu File → New → CellV iew. Figure A.4
shows the opened window. The cellview name on this example is “inv_gate”.

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 60

Figure A.1: Adding new library

Figure A.2: Technology file for new library

Figure A.3: Attach design library to technology file

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 61

Figure A.4: Create new cellview

A.2.2 Circuit Design

The designed circuit showed in this chapter were used in the experiments described in
Section 3.1, to rank the available cells according to their delay variability. The circuit
is composed of three cells of the same type, connected in a chain, in which the middle
cell is analyzed. This technique makes the input rising edge and the output load being
simulated in real conditions. From the schematic window, to add a new instance, as
showed in Figure A.5, one can click on button “instance” on the left bar, or press “i ”.
On library, select “CORELIB ”, cell “INV0 ”, and view “symbol ”, than just click on an
empty space of the schematic window to add the instance. To add an capacitor, one
should perform the same procedure but use the library “analogLib”, cell “cap”, and on
“Capacitance” field, put “cap_val ”. The aforementioned parameter is a variable that will
be defined on the next steps. It is also necessary to add the input and output pins for
the circuit, as showed in Figure A.7. Finally, to connect all the instances, select the “wire
(narrow)” button, or press “w ”, to select the wire tool. Connect all the elements to have
a final circuit as showed in Figure A.8. To verify if the circuit is correct, and also save it,
click in “Check and Save” or press “x ”.

From the designed circuit, it is necessary to create the symbol view, so that the designed
cell can be further added in the testbench to be evaluated. For that, select Design →
CreateCellview → FromCellview, as showed in Figure A.9, and press OK.

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 62

Figure A.5: Adding a new instance of inverter gate

Figure A.6: Adding a new instance of capacitor

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 63

Figure A.7: Add pin

Figure A.8: Inverter circuit ready

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 64

Figure A.9: Create symbol from schematic

A.2.3 Testbench Design

To create the testbench for the circuit previously designed, one should create a new
cellview, in this case named “inv_gate_tb”. To add the “inv_gate” instance, click on
“instance” and select, as showed in Figure A.10, library “MCSIM_INV_GATE ”, cell
“inv_gate”, and view “symbol ”, than just click on an empty space of the schematic window
to add the instance. After, it is necessary to add the source voltage and the signal input
of the circuit. First, select from the analogLib the instance “vdd ” and “gnd ”, than add to
the project the instance “vdc”. For the DC voltage field, add variable name “vdd_val ”, as
showed in Figure A.11.

To stimulate the circuit, it is used a rising edge signal, which is generated by the
“vpulse” instance, also available in analogLib. The configuration of this instance is present
in Figure A.12. Finally, it is necessary to add a name in the nets to be plotted during
the simulation. As showed in Figure A.13, one should click on “wire name”, and fill the
“Names” with the wire name, in this case named “IN ”. Then, click on the wire that should
receive the name.

From the previous explanation, perform the next steps in order to have the full test-
bench circuit as showed in Figure A.14. To verify if the circuit is correct, and also save
it, click in “Check and Save” or press “x ”.

A.2.4 Running the simulation

At this moment, all the required circuits are ready to be simulated. From the testbench
schematic window, select Tools→ Analog Environment to open the simulation environ-
ment. After, it is necessary to configure the used libraries for the simulation. As default,

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 65

Figure A.10: Add new instance of inverter circuit

Figure A.11: Add vdd source

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 66

Figure A.12: Add vpulse source

Figure A.13: Add wire name

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 67

Figure A.14: Testbench circuit ready

the loaded libraries are used to run the circuit in typical conditions. To change it to get
the Monte-Carlo parameters, in the Analog Environment window, select Setup→ Model
Libraries. In each of the loaded libraries, change the “Section” from *tm to *mc, e.g.,
cmostm to cmosmc, as showed in Figure A.15.

In section Section A.2.2 and Section A.2.3, two variables were defined and in Fig-
ure A.16 it is showed how to set their values. To open the “editing design variables”
window, select V ariables→ Edit. The variables “vdd_val ” should be set to “3.3 ” and
“cap_val ” to “0.01f ”. The units of each variable is automatically defined by the tool.

It is necessary to configure which ports or nets will be evaluated and plotted in the
result graph. For that, select Outputs→ Setup and configure the fields as showed in
Figure A.17. Note that /OUT1 corresponds to the wire name, and not the inv_gate
output port.

Finnaly, select Tools→ Monte Carlo to open the window as showed in Figure A.18. In
the field "Number of Runs" select the number of iterations for the Monte-Carlo simulation.
In this work, each iteration is considered a different chip instance. In "Analysis Variation"
there exist three options: "Process Only", "Mismatch Only" and "Process & Mismatch".
The first represents the imperfections that happen due to the manufacturing process and
only affect different instances. The second represents the local variations that may happen
at the same instance of a chip, causing different transistors to have slightly different
behaviours. The third represents the union between the first two models. At the same
window, check the box "Save Data Between Runs to Allow Family Plots" and then select
Simulation→ Run. After the simulation, the results will be plotted in the graph as
showed in Figure A.19.

Simulation -> run

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 68

Figure A.15: Setup model libraries

Figure A.16: Set simulation variables

Figure A.17: Configure plotted signals

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 69

Figure A.18: Run Monte-Carlo Simulation

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 70

Figure A.19: Monte-Carlo result

A.3 Create and modify ’L’ and ’W’ of an inverter cell

In Section A.2 it was described the complete flow to perform a Monte-Carlo simulation
using an existent "inverter" gate. In this section, it is explained how to copy an existent
cell from the library provided by the foundry, perform geometric modifications in L and
W, and verify the impact in terms of delay on the generated result.

First, it is necessary to copy the cell to be modified from the “CORELIB ” library pro-
vided by the foundry to “MCSIM_INV_GATE ”. For that, selects the cell CORELIB →
INV 0, as showed in Figure A.20, left-click on it and than selects “copy”. In the opened
window, configure the destination library as showed in Figure A.21 and press “OK”. Than,
a “INV0 ” cell should be available in the “MCSIM_INV_GATE ” library. On this library,
as showed in “Figure A.22”, double-click the “cmos_sch” view to open the window. Than,
open the cell properties, which should show the configured as showed in Figure A.23.
Change the parameters related to L and W , keeping the same original values and adding
the multipliers KL and KW , as showed in Figure A.24. Click OK and now the new gate
is ready to be instantiated in the original project described in Section A.2. Open again
the window showed in Figure A.8 and modify the instance properties to use the modified
INV 0 gate, as showed in Figure A.25. Perform this task for the three gates and than
click in check and save to verify if there exists any errors during this task.

Finally, open the simulation window showed in Figure A.26, configure the new variables
KL and KW , and perform the simulation again. Note that now, one is able to modify the
geometric values of the cells from the simulation window.

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 71

Figure A.20: Copy inv cell

Figure A.21: Copy inv cell window

Figure A.22: Inv cell added to library

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 72

Figure A.23: Original inv cell properties

Figure A.24: Inv cell properties with KL and KW

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 73

Figure A.25: Use the modified version of inv cell

Figure A.26: Define KL, KW and run the simulation

A.4 Ocean script

In Section A.2 and Section A.3 it was described the complete flow to perform a Monte-
Carlo simulation using the graphical interface. After the circuit is simulated for the
first time, the next simulations can be performed using the SKILL script language sup-
ported by Cadence, that runs in Ocean (Open Command Environment for Analysis). The
Script A.2 shows how to run the Monte-Carlo through the usage of scripts. There exists
many advantages in the usage of scripts for the simulation, in this case an extra level of
control, not found in the graphical interface, can be performed. It comes to the definition
of the “seed ” parameter, described below:

“This is the optional starting seed for the random number generator. By
always specifying the same seed, you can reproduce a previous experiment.
If you do not specify a seed, then each time that you run the analysis, you
get different results; that is, a different stream of pseudorandom numbers is
generated. If you do not specify a seed, the Spectre simulator uses the Spectre
process id (PID) as a seed.”

So, as it is required to always generate the same instances of chips during the sim-
ulations, this parameter is very important for the validity of the analysis. The other
parameters are described as comments in the script.

Listing A.2: Ocean script to run inv simulation

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 74

ocnWaveformTool(’wavescan)
simulator(’spectre)

;model libraries
modelFile(

’("/tools/techlib/hk380/spectre/c35/cmos53.scs"
"cmosmc")

’("/tools/techlib/hk380/spectre/c35/res.scs" "resmc")
’("/tools/techlib/hk380/spectre/c35/cap.scs" "capmc")
’("/tools/techlib/hk380/spectre/c35/bip.scs" "bipmc")
’("/tools/techlib/hk380/spectre/c35/ind.scs" "indmc")

)

;geometry design multipliers
kl = 16
kw = 1

;load inv_gate_tb project
design("../ cds_tutorial/Sim/inv_gate_tb/spectre/

schematic/netlist/netlist")
resultsDir("../ cds_tutorial/Sim/inv_gate_tb/

spectre/schematic")
analysis(’tran ?stop "200n")
desVar("vdd_val" 3.3)
desVar("cap_val" 0.01f)
desVar("kl" kl)
desVar("kw" kw)
envOption(
’paramRangeCheckFile "/tools/techlib/hk380/

spectre/ams_range.lmts")
temp(27)

;Set MonteCarlo Configurations
monteCarlo(?numIters "200" ?startIter "1" ?seed "1234"

?analysisVariation ’processAndMismatch
?sweptParam "None"

?sweptParamVals "27" ?saveData t
?nomRun "yes" ?append nil
?saveProcessParams t

)

;Run MonteCarlo Simulation
monteRun ()

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 75

;select result
selectResults(’tran)

;Plot waveform object
newWindow ()
addTitle("INV0_CELL_CHARACTERIZER_kW =1")
;plot(v("IN"))
plot(v("OUT1"))
plot(v("OUT2"))

;Insert horizontal markers
awvPlaceYMarker(currentWindow () 1.65)

; exit

As it was necessary to perform several simulations during the full circuit simulation,
the OCEAN script also supports to run several simulations at the same machine, using
all cores, or even using a cluster. The Script A.3 contain the necessary modification to
perform the “distributed ” simulation mode.

Listing A.3: Ocean script to run distributed inv simulation

ocnWaveformTool(’wavescan)
simulator(’spectre)
hostMode("distributed")
design("../ cds_tutorial/Sim/inv_gate_tb/spectre/schematic/

netlist/netlist")
resultsDir("../ cds_tutorial/Sim/inv_gate_tb/spectre/

schematic")
modelFile(

’("/tools/techlib/hk380/spectre/c35/cmos53.scs"
"cmosmc")

’("/tools/techlib/hk380/spectre/c35/res.scs" "resmc")
’("/tools/techlib/hk380/spectre/c35/cap.scs" "capmc")
’("/tools/techlib/hk380/spectre/c35/bip.scs" "bipmc")
’("/tools/techlib/hk380/spectre/c35/ind.scs" "indmc")

)
; initialize jobList to nil
jobList = nil

;design constants
kl = 16

APPENDIX A. TUTORIAL: MONTE-CARLO SIMULATION 76

kw = 1

analysis(’tran ?stop "200u")
desVar("cap_val" 0.01f)
desVar("kl" kl)
desVar("kw" kw)
desVar("vdd_val" 3.3)
envOption(
’paramRangeCheckFile "/tools/techlib/hk380/

spectre/ams_range.lmts"
)
temp(27)

;Set MonteCarlo Configurations
monteCarlo(?numIters "200" ?startIter "1" ?seed "1234"

?analysisVariation ’processAndMismatch
?sweptParam "None"
?sweptParamVals "27" ?saveData t
?nomRun "yes" ?append nil
?saveProcessParams t

)
;Run MonteCarlo Simulation
;monteRun ()
job1 = monteRun (?queue "fast")
; wait for the job to finish
wait(job1)
openResults(job1)
;select result
selectResults(’tran)

;get corresponding values in text mode
ocnPrint (? output "../../ cds_tutorial/final_results/

inv_gate/kl16/result_inv_gate_000" v("OUT2"))

;Analog to digital conversion
;OUT2
out_dig_out2=awvAnalog2Digital(VT("OUT2") 1.8 0.2 0 0

"hilo")
ocnPrint(out_dig_out2)
ocnPrint (? output "../../ cds_tutorial/final_results/

inv_gate/kl16/result_dig_inv_gate_000" out_dig_out2)

exit

Appendix B

Tutorial: Monte-Carlo Simulation
Framework

In this chapter it is explained the framework created to manage all the necessary simula-
tions, whose results are described in the previous sessions. The objective is to provide the
required knowledge for the ones interested in reproduce the environment using the same
tools as used in this work.

The tree below shows the directory structure that contains the necessary scripts for
the process. The ocean scripts, available in folder “ocean_scripts”, are generated pro-
portional to each line in file “stimulus0.in”. In this example, there exists two challenges
in “stimulus0.in”, generating output files ”apuf64_dfc1_xor20_tb_kL32_000_000.ocn“
and ”apuf64_dfc1_xor20_tb_kL32_001_000.ocn“.

The content of “stimulus0.in” in this example is shown below.

1110001101000101110001010001101001011101010001010100001010011100
1110001101000101110001010001101001011101010001010100001010011101

input_challenge
gen_challenge.py
stimulus0.in

ocean_scripts
apuf64_dfc1_xor20_tb_kL32_000_000.ocn
apuf64_dfc1_xor20_tb_kL32_001_000.ocn

src
gen_ocean_script

gen_ocean_main.py
main.py
run_ocean

run_ocean_main.py
The Script B.1 is the main script of the framework. In it, one will configure the (a) number
of instances (“numIters”), (b) number of the first instance to be simulated (“startIter ”),
(c) source of entropy (“seed ”) , (d) simulation temperature (“temp”), (e) path of the
netlist (“sim_pathname”), (f) path where result will be stored (“result_pathname”), (g)

77

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 78

KL multiplier (“kl ”), (h) KW multiplier (“kw ”) and (i) number of simulation to be run in
parallel, usually the number of cores in the computer’s processor (“n_paralel_sim”).

Listing B.1: main.py
’’’
Created on Oct 27, 2013

@author: jrodrigo
’’’
import <other_scritps >
import gen_ocean_script.gen_ocean_main
import run_ocean.run_ocean_main

Run all procedures to perform MonteCarlo Simulation in
Analog Environment

#Configurations
config = {

’numIters ’ : ’32’,
’startIter ’ : ’1’,
’seed’ : ’1234’,
’temp’ : ’27’,
’sim_pathname ’ : ’apuf64_dfc1_xor20_tb ’, #name of working

#directory where the netlist was generated
’result_pathname ’ : ’apuf_final_results/

apuf64_dfc1_xor20_results/kl32’, #name
#of directory where results will be
#stored "ex: mc_results/apuf64"

’kl’ : ’32’, #multiplier of transistors in L
’kw’ : ’1’, #multiplier of transistors in W
’n_paralel_sim ’ : ’32’

}

#1- Generate ocean scripts based on challenges given in
#"input_challenge"
path = ’../’
gen_ocean_script.gen_ocean_main.gen_ocean(path , config)

#2- Perform MonteCarlo simulation for every ocean script
created.
path = ’../’
run_ocean.run_ocean_main.run_ocean(path , config)

The Script B.2 implements the process of converting the challenges from the digital format

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 79

(0’s and 1’s) to the representation in analog voltage. Taking as example an APUF circuit
with 3 stages, and the challenge is “1011”, the analog conversion and line to be in ocean
script is described below. Plus, it also configure the remaining of every ocean script with
the parameters defined in “main.py”.

desVar ("sel_0" 3.3)
desVar ("sel_1" 0)
desVar ("sel_2" 3.3)
desVar ("sel_3" 3.3)

Listing B.2: gen_ocean_main.py
’’’
Created on Oct 27, 2013

@author: jrodrigo
’’’
#!/usr/bin/python
#
Author: Jefferson Rodrigo Capovilla (jefcap@gmail.com)
#
Description: Generate ocean scripts according to number of
challenges passed as input
#
Date: 2013 -10 -27
#
License: Attribution -NonCommercial -ShareAlike 3.0 Unported
(CC BY-NC -SA 3.0)
#===

import os,sys
import string
import copy
from glob import glob

def write_header (file_handler , config):
header_info = []
string = """

ocnWaveformTool(’wavescan)
simulator(’spectre)
hostMode("distributed")
design("../../ cds_tutorial/Sim/%(sim_pathname)s/spectre/

schematic/netlist/netlist ")
resultsDir("../../ cds_tutorial/Sim/%(sim_pathname)s/spectre/

schematic")

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 80

modelFile(
’("/tools/techlib/hk380/spectre/c35/mcparams.scs" "")
’("/tools/techlib/hk380/spectre/c35/cmos53.scs" "cmosmc ")
’("/tools/techlib/hk380/spectre/c35/res.scs" "resmc")
’("/tools/techlib/hk380/spectre/c35/cap.scs" "capmc")
’("/tools/techlib/hk380/spectre/c35/bip.scs" "bipmc")
’("/tools/techlib/hk380/spectre/c35/ind.scs" "indmc")

)
; initialize jobList to nil
jobList = nil

;design constants
kl = %(kl)s
kw = %(kw)s

analysis(’tran ?stop "500u")
desVar("cap_val" 1f)
desVar("kl" kl)
desVar("kw" kw)
desVar("vdd_val" 3.3)
"""

string_filled=string %{’sim_pathname ’:config[’sim_pathname ’],
’kl’: config[’kl’], ’kw’: config[’kw’],}

#header_info.append(string)
#header_info_str = ’’.join(header_info)
file_handler.write(string_filled)

def write_challenge(file_handler , stim):
challenge_info = []
for i in range(0,len(stim)-1):
bit = stim[i]
if bit == ’1’:
vcc_val = ’ 3.3 ’

else:
vcc_val = ’ 0 ’

string = ’desVar("sel_’+ str(i) +’" ’+vcc_val+’)\n’
challenge_info.append(string)

challenge_info_str = ’’.join(challenge_info)
file_handler.write(challenge_info_str)
pass

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 81

def write_tail(file_handler , file_number , config ,
subgroup_number):

tail_info = []
string = """

;saveOption(?outputParamInfo t)
;saveOption(?elementInfo t)
;saveOption(?modelParamInfo t)
;saveOption(?saveahdlvars "all")
;saveOption(’useprobes "yes")
;saveOption(’currents "all")
;saveOption(’pwr "all")
;saveOption(’save "all")
envOption(
’paramRangeCheckFile "/ tools/techlib/hk380/spectre/

ams_range.lmts"
)
temp(%(temp)s)

;Set MonteCarlo Configurations
monteCarlo(?numIters "%(numIters)s"

?startIter "%(startIter)s" ?seed "%(seed)s"
?analysisVariation ’processAndMismatch ?sweptParam "None"
?sweptParamVals "%(temp)s" ?saveData t
?nomRun "yes" ?append nil
?saveProcessParams t

)

;Run MonteCarlo Simulation
;monteRun ()
job1 = monteRun (?queue "fast")

; wait for the job to finish
wait(job1)
openResults(job1)

;select result
selectResults(’tran)

;Plot waveform object
;plot(v("IN"))
;plot(v("D"))
;plot(v("C"))
;plot(v(" q_latch "))

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 82

;get corresponding values in text mode
;ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_in %(file_number)s_%(subgroup_number)s" v("IN"))
;ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_d %(file_number)s_%(subgroup_number)s" v("D"))
;ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_c %(file_number)s_%(subgroup_number)s" v("C"))
;ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_out_ff %(file_number)s_%(subgroup_number)s"

v(" out_ff "))
;ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_out_latch %(file_number)s_%(subgroup_number)s"

v(" q_latch "))

;Analog to digital conversion
;IN
out_dig_in=awvAnalog2Digital(VT("IN") 1.8 0.2 0 0 "hilo")
ocnPrint(out_dig_in)
ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_dig_in %(file_number)s_%(subgroup_number)s" out_dig_in)
;D
out_dig_d=awvAnalog2Digital(VT("D") 1.8 0.2 0 0 "hilo")
ocnPrint(out_dig_d)
ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_dig_d %(file_number)s_%(subgroup_number)s" out_dig_d)
;C
out_dig_c=awvAnalog2Digital(VT("C") 1.8 0.2 0 0 "hilo")
ocnPrint(out_dig_c)
ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_dig_c %(file_number)s_%(subgroup_number)s" out_dig_c)
;OUT_FF
;out_dig_out_ff=awvAnalog2Digital(VT(" out_ff ")

1.8 0.2 0 0 "hilo")
;ocnPrint(out_dig_out_ff)
;ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_dig_out_ff %(file_number)s_%(subgroup_number)s"

out_dig_out_ff)
;Q_LATCH
out_dig_out_latch=awvAnalog2Digital(VT(" q_latch ")

1.8 0.2 0 0 "hilo")
ocnPrint(out_dig_out_latch)
ocnPrint (? output "../../ cds_tutorial /%(result_pathname)s/
result_dig_out_latch %(file_number)s_%(subgroup_number)s"

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 83

out_dig_out_latch)

exit
"""

string_filled = string %{’temp’:config[’temp’],
’numIters ’:config[’numIters ’],
’result_pathname ’:config[’result_pathname ’],
’startIter ’:config[’startIter ’],
’seed’:config[’seed’],
’file_number ’:str(file_number). rjust(3,’0’),
’subgroup_number ’: str(subgroup_number)

.rjust(3,’0’)}

file_handler.write(string_filled)

def gen_ocean(path , config):

print ("Generating Ocean Scripts ...")

filename = path + "input_challenge/stimulus0.in"
try:
stimulus = open(filename , "r")

except AssertionError:
print("Stimulus0.in file not found in

../../ input_challenge/")
sys.exit("ValueError")

#read stimulus vectors from input file
stimulus_list = []
for line in stimulus:

stimulus_list.append(line)
stimulus.close()

#evaluate stimulus_size (same as APUF size)
apuf_size = len(stimulus_list [0]) -1

#generate ocean script files
file_number = 0 #challenge number
original_config = copy.deepcopy(config)
for stim in stimulus_list:

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 84

#generating subgroups of scripts according to
#’n_paralel_sim ’
subgroup_config = {} # dictionary to store config of

each subgroup

if (int(original_config[’numIters ’]) %
int(original_config[’n_paralel_sim ’]) == 0):

#number of subgroups files to be generate do
#accord n_parallel_sim
n_of_subgroups = int(original_config[’numIters ’]) /

int(original_config[’n_paralel_sim ’])

for i in range (0, int(n_of_subgroups)):
config[’numIters ’] = original_config[’n_paralel_sim ’]
config[’startIter ’] = i *

int(original_config[’n_paralel_sim ’]) + 1
subgroup_config[i] = copy.deepcopy(config)

else:
n_of_subgroups = (int(original_config[’numIters ’]) /

int(original_config[’n_paralel_sim ’])) + 1
for i in range (0, int(n_of_subgroups)-1):
config[’numIters ’] = original_config[’n_paralel_sim ’]
config[’startIter ’] = i *

int(original_config[’n_paralel_sim ’]) + 1
subgroup_config[i] = copy.deepcopy(config)

config[’numIters ’] = int(original_config[’numIters ’])
% int(original_config[’n_paralel_sim ’])

config[’startIter ’] = (i+1) *
int(original_config[’n_paralel_sim ’]) + 1

subgroup_config[i+1] = copy.deepcopy(config)

subgroup_number = 0
for config_number in subgroup_config:
#filename = path + "ocean_scripts/MonteCarlo_apuf"
#+str(apuf_size)+" _stages "+str(file_number).rjust(3,’0’)+
#"_"+str(subgroup_number). rjust (3,’0’)+".ocn"
filename = path + "ocean_scripts/"+config[’sim_pathname ’]+
"_"+"kL"+config[’kl’]+"_"+str(file_number).rjust(3,’0’)+
"_"+str(subgroup_number). rjust(3,’0’)+".ocn"

ocean_file = open(filename , "w")

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 85

#Write header
write_header(ocean_file , subgroup_config[config_number])

#write challenge values
write_challenge(ocean_file , stim)

#write tail
write_tail(ocean_file , file_number ,

subgroup_config[config_number], subgroup_number)

#close ocean file
ocean_file.close ()

subgroup_number = subgroup_number +1

file_number = file_number + 1

print ("Done!")

if __name__ == "__main__":

#Set filepath
path = ’../../ ’

#Configurations
config = {
’numIters ’ : ’257’,
’startIter ’ : ’1’,
’seed’ : ’1234’,
’temp’ : ’27’,
’n_paralel_sim ’ : ’32’

}

#call function
gen_ocean(path , config)

In Script B.3 it is listed all the ocean files generated by gen_ocean_main.py, and an
bash script is created. For the same example, supposing only two challenges, the bash
script generated is showed below. The advantage of using a bash script for running the
simulations is that it is very easy to continue the process if, for some reason, the simulation
has stopped. To continue, one just needs to check the last result stored in the output

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 86

folder, and restart the simulation from that point, by commenting the previous lines in
the bash script.

#!/ bin/bash
time ocean -restore apuf64_dfc1_xor20_tb_kL32_000_000.ocn;
rm -rf ../../ cds_tutorial/Sim/apuf64_dfc1_xor20_tb/spectre/

schematic/monteCarlo/job*
time ocean -restore apuf64_dfc1_xor20_tb_kL32_001_000.ocn;
rm -rf ../../ cds_tutorial/Sim/apuf64_dfc1_xor20_tb/spectre/

schematic/monteCarlo/job*

Listing B.3: run_ocean_main.py
’’’
Created on Oct 28, 2013

@author: jrodrigo
’’’
#!/usr/bin/python
#
Author: Jefferson Rodrigo Capovilla (jefcap@gmail.com)
#
Description: Run ocean scripts on folder ’ocean_scripts ’
#
Date: 2013 -10 -27
#
License: Attribution -NonCommercial -ShareAlike 3.0 Unported
(CC BY-NC -SA 3.0)
#===

import os,sys
from subprocess import *
from glob import glob
import shutil

def run_ocean(path , config):
print ("Running Ocean Scripts ...")

#listing all ocean scripts:
path = os.path.dirname(__file__)
print (path)
files = sys.argv [1:]
if not files:
files = glob(os.path.join(path ,’../../ ocean_scripts ’,

’*.ocn’))

APPENDIX B. TUTORIAL: MONTE-CARLO SIMULATION FRAMEWORK 87

files.sort()
#extract .ocn filenames
filename_list = []
for ocean_file in files:
filename_list.append(os.path.split(ocean_file)[-1])

#generate bash_script to run all ocean scripts
print("----------------------------")
print("#!/bin/bash")
for filename in filename_list:
print ("time ocean -restore " + filename +"; ")
string = "rm -rf ../../ cds_tutorial/Sim/%(sim_pathname)s/

spectre/schematic/monteCarlo/job*"
string_filled = string %{’sim_pathname ’:

config[’sim_pathname ’]}

print (string_filled)

print ("echo Done!")

if __name__ == "__main__":

#Set filepath
path = ’../../ ’

#call function
run_ocean(path)

	Introduction
	Basic concepts and related work
	PUF definition
	Delay PUF

	Challenges and responses
	PUF properties
	 Transistor Geometry and Process Variation
	 Process Variability Simulation
	Corner Analysis
	Monte-Carlo Analysis

	PUF evaluation methodology

	Techniques to Improve Delay Variability
	Delay network design techniques
	Simplified model of transistor delay
	Gate sizing
	Gate drive strength

	Arbiter design techniques

	Experimental Results
	Simulation Infrastructure
	Delay Network Simulation
	Testbench for cell delay characterization
	Selecting the gate with best g
	Variation of p with gate sizing (W and L)

	Arbiter Simulation
	Selecting the arbiter with smallest forbidden window

	Full Circuit Simulation
	Testbench for Full Circuit Simulation
	Comparing HWD for different arbiters
	Improving HWD using gate sizing
	Overall result

	Conclusions and Future Work
	Bibliography
	Tutorial: Monte-Carlo Simulation
	Environment Setup
	Monte-Carlo Simulation of a 'Inverter' Gate
	Creating new library and cellview
	Circuit Design
	Testbench Design
	Running the simulation

	Create and modify 'L' and 'W' of an inverter cell
	Ocean script

	Tutorial: Monte-Carlo Simulation Framework

