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Resumo 

Diversas iniciativas locais e globais têm sido criadas para reduzir impactos humanos no meio 

ambiente, reduzindo a perda de habitats com a criação de unidades de conservação, e aumentando a 

área florestada por meio da restauração florestal. Podemos citar como exemplos dessas iniciativas 

acordos internacionais como “The New York Declaration on Forests”, que tem como meta restaurar 

350 milhões de hectares até 2030, e locais, como o Pacto pela Restauração da Mata Atlântica, que 

visa recuperar 15 milhões de hectares de floresta até 2050. A restauração ecológica requer que, além 

da cobertura vegetal restabelecida no reflorestamento, também seja recuperada uma comunidade 

funcional, com populações capazes de sobreviver e se adaptar a mudanças ambientais. Esses 

grandes investimentos em restauração ressaltam a importância da disponibilidade de informações 

taxonômicas, ecológicas e genéticas sobre espécies nativas. Entretanto, tanto a composição 

florística das florestas, como características ecológicas e genéticas de espécies nativas ainda são 

pouco conhecidas, especialmente em florestas tropicais. Além disso, informações sobre diversidade 

genética ainda são pouco utilizadas no planejamento de projetos de restauração. Então, este trabalho 

foi desenvolvido com o intuito de descrever o sistema reprodutivo e a diversidade genética de uma 

espécie arbórea da Mata Atlântica, comumente utilizada em projetos de restauração florestal, 

Centrolobium tomentosum, e avaliar o sucesso na recuperação da diversidade genética em áreas de 

restauração. Além disso, desenvolvemos um modelo para compreender os impactos de diferentes 

níveis de diversidade genética em populações plantadas em áreas de restauração na viabilidade 

populacional. Nossos resultados indicam que C. tomentosum é uma espécie alógama, com 

limitações na dispersão de semente e grande capacidade de dispersão de pólen. A espécie tem um 

pequeno potencial de colonização natural de novas áreas, graças à baixa probabilidade de dispersão 

de sementes a longas distâncias, mas a grande capacidade de dispersão de pólen permite que 

populações de fragmentos vizinhos sejam funcionalmente conectadas. Ao comparar populações de 

remanescentes naturais com populações de áreas de restauração, observamos que a restauração é 

capaz de recuperar diversidade genética, principalmente se as sementes usadas para o plantio forem 

coletadas de um grande número árvores, reduzindo o efeito fundador. O modelo desenvolvido 

indicou que a diversidade genética inicial tem efeito sobre a viabilidade populacional, 

principalmente quando o tamanho da área de restauração e o tamanho populacional inicial são 

pequenos. As simulações podem ser feitas com espécies com diferentes características e os 



resultados podem ser utilizados para subsidiar o planejamento de projetos de restauração ecológica.  

Os estudos genéticos realizados neste trabalho mostraram-se eficazes para obter um diagnóstico de  

populações de áreas restauradas sem planejamento quanto à diversidade genética e podem subsidiar 

o planejamento de novos projetos para a reintrodução de populações em áreas de restauração.  



Abstract 

Many local and global initiatives have been created to reduce human impacts on environment, 

reducing habitat loss with delimitation of protected areas, and increasing forest areas with forest 

restoration. International agreements as The New York Declaration on Forests that has a goal to 

restore 350 million hectares of forests by 2030, and local initiatives as The Atlantic Forest 

Restoration Pact that aims to restore 15 million hectares by 2050 are examples of these initiatives. 

Ecological restoration requires the recovery of both forest cover, which is reestablished in forest 

restoration, and a functional community, with populations able to survive and to adapt to 

environmental changes. These large investments in restoration highlights the importance of 

information about tanoxomy, ecology and genetics of native species. However, neither forest 

species composition nor ecological and genetics characteristics of native species are well known, 

especially in tropical forests. In addition, information about genetic diversity is underused in 

restoration projects planning. Thus, this study was developed to describe the mating system and 

genetic diversity of an Atlantic Forest tree species widely used for forest restoration, Centrolobium 

tomentosum, and to evaluate the success of ecological restoration to recover genetic diversity. We 

also developed a model to assess the impacts of different initial levels of genetic diversity on the 

viability of populations planted in restoration areas. Our results indicated that C. tomentosum is an 

allogamous species, with limited seed dispersal, and large capacity of pollen dispersal. This species 

has a small potential to colonize new areas, due to the low probability of long distance seed 

dispersal, but the high potential to long distance pollen dispersal enables functional connectivity of 

neighbour fragments. Comparing populations from natural remnants to populations from restoration 

areas, we observed that it is possible to recover genetic diversity with ecological restoration, 

especially if the seed pool used for the plantation were collected from a large number of seed-trees, 

reducing the founder effect. The model developed indicated that the initial genetic diversity has a 

significant effect on population viability, especially in small the restoration area and small initial 

population size. The simulations can be performed with different species and the results can be used 

to support planning of ecological restoration projects. Genetic studies presented here have been 

effective for a diagnosis of populations from areas restored without accounting for genetic diversity 

and can support  planning of new projects for the reintroduction of populations in restoration areas.  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Introduction 

Deforestation and forest fragmentation 

 Over the last 25 years, the rate of net forest loss was reduced in more than 50%, from 

0.18% in the 1990s to 0.08% over the last five years. Despite this positive result, the global forested 

area was reduced in 129 million ha from 1990 to 2015, as human populations grow and more land is 

necessary for agriculture, pasture and cities development (FAO 2015). The worst situation is 

observed in tropical regions, more drastically in South America and Africa (Fig. 1).    

Figure 1. Anual net change in forest area by region. Adapted from FAO 2010.  

 Both deforestation and forest fragmentation have negative effects on remnant populations. 

The reduction on forest area leads to decrease in population sizes of most species and fragmentation 

promotes isolation of remnant populations. The smaller and more isolated is the remnant fragment, 

stronger are the negative impacts on viability and higher is the probability of local extinction 

(Matthies et al. 2004). In addition to forest cover loss, there is also the loss of  environmental 

services, such as soil and water protection, and support for biodiversity and ecological processes, 

besides cultural, religious and recreational services (Dobsonet et al. 2006). 

 One way to slow down deforestation or forest conversion is to conserve and protect remnant 

forests. It is essential for maintenance of biodiversity in many different levels, such as communities, 

species interactions, species and genes. However, if deforestation and fragmentation levels are 
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already high, only conservation of remnant fragments may not be enough to preserve viable 

populations on the long term. One important complement to forest conservation is forest restoration 

(Huxel & Hastings 1999).   

Forest restoration 

 Forest restoration has an increasing role on the total forest cover worldwide. Since 1990, 

planted forest areas had an increment of over 110 million ha, and account for 7% of the world’s 

forest area (FAO 2015). These forest plantations comprise both areas restored for biodiversity 

recovery, production, and other multiple-uses. Ecological restoration, on the other hand, is the 

“process of assisting the recovery of an ecosystem that is damaged, degraded, or destroyed” (SER 

2004). In this context, recovered or restored ecosystems have biotic and abiotic resources to persist 

and develop without additional human assistance. This requires that the restored area support a 

functional community, with appropriate species interactions; that the ecosystem is resilient to 

natural environmental changes and stress; and that there is interaction with surrounding ecosystems 

in the landscape in terms of both abiotic and biotic flow (SER 2004). 

 Ecological restoration has many advantages compared to reforestation with monocultures 

and mixed-species plantings. Restoration plantings are more efficient in carbon biomass storage 

than monocultures and mixed-species plantations (Kanowski & Catterall 2010). The high species 

diversity used in ecological restoration projects is associated with resistance to disturbances from 

pests and pathogens and the self-sustainable environment obtained reduces the dependence on 

fertilizers and pesticides (Aerts & Honnay 2011).  

 Forest restoration has been acknowledged as a Clean Development Mechanism of the Kyoto 

Protocol and, more recently, the United Nations have created mechanisms based on funding and 

crediting for reducing emissions from deforestation and forest degradation (REDD+). This 

mechanisms embraces conservation, sustainable management of forests and enhancement of forest 

carbon stocks in developing countries (Alexander et al. 2011). In addition to incentive policies, 

there are worldwide commitments for forest restoration, such as The New York Declaration on 

Forests  that sets a goal of 350 million hectares restored by 2030, the Green Belt Movement in 

Kenya that aims to restore millions of hectares of agricultural land (Latawiec et al. 2015), and The 
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Atlantic Forest Restoration Pact that aims to recover 15 million ha of the Brazilian Atlantic Forest 

by 2050 (Rodrigues et al. 2011). 

  These large-scale projects and investments in forest restoration, especially those that focus 

on restoration of biodiversity and resilience require taxonomic, ecological and genetic information 

about native species. For decades, both researchers and restoration practitioners have acknowledged 

the importance of using mostly native species in restoration projects. More recently, the concern 

with restoration of ecological processes simulating ecological succession has grown, increasing the 

focus on the forest ability to self-maintain. On the last decade, there is also the effort to recover 

populations with high genetic diversity, to enhance resilience, i.e., the potential to recover from 

environmental changes (Rodrigues et al. 2009b; Thomas et al. 2014; Suding et al. 2015).   

Genetic Diversity 

 Adaptation to changing conditions, such as climate change, arrival of new predators or 

competitors, and reduction of resources availability, depends on the existence of variability in the 

population, usually at genetic level (Mills 2013). Populations with high genetic diversity have more 

raw material for natural selection to act and consequently higher probability to contain individuals 

fitted to the new condition (Young et al. 1996).  

 This issue is especially important in small and isolated populations, that are more threatened 

of decline and extinction, because they are more susceptible to effects of genetic drift, i.e., they lose 

genetic diversity more quickly than larger populations (Ellstrand & Elam 1993; Frankham 2005). In 

general terms, it is necessary a minimum effective population size (Ne) of 100 to avoid genetic drift 

effects and inbreeding depression in a short term (5 generations) and Ne of at least 1000 for 

retaining evolutionary potential for fitness in perpetuity (Frankham et al. 2014).  

 Deforestation and fragmentation usually lead to population reduction, and many studies 

have shown negative impacts of these bottlenecks on populations genetic diversity and viability 

(Fahrig 1997; Hobbs & Yates 2003; Honnay & Jacquemyn 2007). Founder effect is a particular case 

of bottleneck, in which a population is founded from a small sample of a larger population. Thus, in 

fragments that are result of both natural regeneration process and active restoration, it is possible to 

observe reduction in genetic diversity due to founder effect. A study of populations in second-

growth forests indicated reduced genetic diversity in founding tree populations, reflecting a strong 
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founder effect, and a shift towards genetically rich populations in the mid- and long-term due to 

gene flow at the landscape level (Sezen et al. 2007). Many of the areas actively restored on the last 

decades were implanted with high species diversity, but there was little or no concern about genetic 

diversity (Rodrigues 2009). A study with Inga vera tree species in a restoration area also indicated 

reduced genetic diversity in planted individuals, with higher diversity in seedlings, probably due to 

gene flow from natural remnants (Neto et al. 2014).   

 On the last decade, however, the importance of genetic diversity for long-term viability of 

populations in restoration plantations has been highlighted. Both researchers and restoration 

practitioners have focused on using highly diverse seeds and seedlings to obtain populations with 

high genetic diversity, and most recommendations are based on the number of seed-trees from 

which to collect seeds (Bozzano et al. 2014). Those recommendations were based on the minimum 

viable population, and on the mating system of the species. For outcrossing species, it is 

recommended to collect seeds from at least 30 or 45 plants, depending on the percentage of genetic 

diversity to be captured (95% or 99%, respectively). For seeds produced by self-pollination, twice 

as many plants are necessary as seed sources (Sebbenn 2006; Crossa & Vencovsky 2011; Basey et 

al. 2015). The Bureau of Land Management in the United States suggests that seeds should be 

collected from a minimum of 50 trees, considering that the reproductive biology of most tree 

species is not well known (USDI BLM 2012).  

 Consequently, the number of studies that employ a genetic approach within restoration 

context increased in the last five years. More than half of them (59% of 160 studies) provided 

information to guide restoration decision-making processes, such as planning translocation of 

organisms, quantifying demographic changes in target populations, and estimating gene flow over 

the landscape. However, most tropical regions are poorly studied, as most of these studies were 

performed in North America, and the implications of restoration on evolutionary processes are also 

not well understood yet (Mijangos et al. 2015). Thus, most decision-making are still based on 

incomplete knowledge (Rice & Emery 2003; Thomas et al. 2014). This fact highlights the need for 

further case studies especially focusing the genetic diversity of species from neglected and 

threatened biomes. 

 Neutral molecular markers are the most commonly used tools for genetic diversity studies in 

restoration context. They are becoming quicker and more affordable, which makes them more 
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easily applied in studies that aim to support restoration plans (Mijangos et al. 2015). The most 

commonly used molecular markers are microsatellite markers, because they are affordable, 

ubiquitous, and have high discriminatory power (Schlötterer 2004). These characteristics allow us 

to obtain information about genetic diversity, mating system, connectivity, fluctuation on population 

size, and identifying the origin of individuals (Oliveira et al. 2006). This information can be used 

directly to evaluate the success of restoration projects, and to enhance and support restoration plans, 

and can be used in simulation models.  

Model based studies 

 In some cases, it is possible to obtain empirical observations of biological processes, and to 

perform experiments to test different methods and approaches for forest restoration. McIver and 

Starr (2001) discuss passive and active restoration approaches based on results from scientific 

literature and indicate when each approach could be more adequate. Bertacchi and collaborators  

(2015) investigated the effects of understory of restoration sites of different ages on seedling 

establishment, and observed that the understory of young restoration plantations provides suitable 

conditions to spontaneous regeneration and enrichment planting of native trees. However, in some 

cases, experiments can be time consuming and have high costs, which make experimentation 

unfeasible. The time necessary to execute experiments of long term effects of different initial 

genetic diversity would make this kind of experiment impracticable, particularly in environments 

with a large number of species, as tropical forests. In situations as this, models and simulation 

studies can be a feasible alternative.  

 Individual-based models (IBM) are simulation models that treat individuals as unique and 

discrete entities (Grimm 1999). They are especially useful in fields as ecology and landscape 

genetics, because they enable the incorporation of demographic and environmental stochasticity, 

that are very common in biological systems. IBM also allows relaxation of assumptions from ideal 

models, increasing biological realism (Grimm et al. 1999). The individual-based simulations are a 

bottom-up approach, because the focus is first to the individuals (parts) and the way they develop 

and interact. From the parts, we try to understand properties of the population (system) that emerge 

from the interaction among these parts (Grimm 1999). This approach is appropriate for hypothesis 
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testing and for analysis of potential results of field experiments, which can help on optimization of 

sampling schemes for empirical studies (Epperson et al. 2010).   

 There are some individual-based simulation programs available for population and 

evolutionary genetics studies. Each program account for a group of parameters that may include 

population growth, selection, migration, and mutation. They can also account for demographic 

events such as population size fluctuations, extinction and colonization, among other events (Hoban 

et al. 2012). One example of IBM developed for population viability analysis tested the effects of 

different managed programs on genetic diversity and demographic viability of populations of 

orang-utans (Bruford et al. 2010). There are fewer studies with plants, and programs rarely accont 

for the long life spam of trees. One example of a model developed for trees made possible the 

analysis of the effect of fire, logging and insect attacks on burned area and defoliation of pine trees 

forests (James et al. 2010).  

  

Justification 

 The Atlantic Forest is one of the hotspots for conservation, with 11.7% remaining from the 

original extent of primary vegetation (Ribeiro et al. 2009). It provides environmental services for 

over 60% of Brazilian population and is still threatened by deforestation and forest conversion. The 

Atlantic Forest Restoration Pact was created to restore the Atlantic Forest, conserving biodiversity, 

while creates employment, income, and helps on legal compliancy of pasture and agricultural 

activities. The Pact aims to restore 15 million hectares of Atlantic Forest by 2050 (Rodrigues et al. 

2009a). To accomplish this, more research is necessary to enhance efficiency of restoration 

practices and to objectively evaluate the restoration success. 

 Draw populations with high genetic diversity is fundamental to accomplish ecological 

restoration requirements, as conservation of biodiversity and resilience (Suding et al. 2015). 

Additionally, information about natural levels of genetic diversity and population structure must be 

available for a large number of species from different successional stages, and with different 

ecological characteristics (i.e., pollination and seed dispersal, reproductive system, etc.). It is 

possible to find these information for a limited number of model and threatened species, but most 

species from tropical forests are still poorly studied (Thomas et al. 2014; Mijangos et al. 2015). 

Beside this, the success of restoration projects in recovering genetic diversity is not yet well 
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understood. Most studies on restoration did not even consider the success of distinct genetic 

assessments (Ruiz-Jaen & Aide 2005; Wortley et al. 2013). 

 In this study, we aimed to fill this knowledge gap by assessing genetic diversity, population 

structure, and mating system of a tropical tree species widely used in restoration projects in the 

Atlantic Forest. The selected species was Centrolobium tomentosum Guillem ex. Bentham 

(Fabaceae). 

Centrolobium tomentosum 

 Centrolobium tomentosum Guill. ex Benth. (Fabaceae) is a tree species widely used in the 

Atlantic Forest's restoration projects, because it is a typical gap species, with relatively fast growth 

and symbiotic associations with nitrogen fixation microorganisms (Carvalho 2005; Pagano 2008). 

This species has a wide range of distribution over the Atlantic Forest and some parts of Cerrado, the 

Brazilian savanna. 

 The trees are semi-deciduous, can grow up to 35 m height and can reach 100 cm of diameter 

at breast height. The trunk is cylindric and straight, the canopy is large and dense (Fig. 2). The 

species is monoecious, the flowers are observed in inflorescences, with yellow flowers (Siqueira & 

Oliveira 2000). Flowering period is during the wet season (Aidar 1992; Brina 1998). The main 

pollinators are large bees with long distance flight capacity (genus Xylocopa, Bombus, Centris, and 

Megachile) (Aidar 1992), one of the most common group of pollinators of tropical canopy tree 

species (Bawa 1990).  

 Fruits are large samaras with approximately 9 g each, and reach maturity at the dry season 

(Aidar 1992; Brina 1998). Seed dispersal syndrome is anemocory (Cavalho 2005), but most fruits 

fall under the canopy of the mother tree (Aidar & Joly 2003). Seeds are shade tolerant, but seedling 

growth is light dependent (Durigan et al. 1997).  

 This species is frequently used for forest restoration, but is also used in urban tree planting, 

in afforestation of pasture and in agroforestry system (Lorenzi 1998; Toledo Filho & Parente 1988). 

The tree’s wood can also be explored for construction and other purposes (Carvalho 2005). This 

species has also phytoterapic uses (Diaz 1992). 
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Figure 2. Centrolobium tomentosum from the restoration area at Cosmopolis municipality (São 
Paulo State). Left: Adult tree; Right: juvenile. 

Study sites 

 We selected five sample sites for this study. Two of them were restoration areas and three 

were natural forest remnants. All sites were in included within the semideciduous seasonal forest, 

one of the most threatened vegetation types of the Atlantic Forest, with only 7% of its natural cover 

remaining (Ribeiro et al. 2009). They were located in São Paulo State, southeastern Brazil, in a 

region with Cwa climate (Köeppen 1948), surrounded by agricultural and urban areas. 

 The first restoration area (15 ha) was planted from 1955 to 1960 in the riparian buffers of 

the Jaguari River in a sugarcane farm in Cosmópolis municipality (São Paulo State). The restoration 

model used was the random heterogeneous planting, and it was established with high-species 

diversity (70 species) with predominance of native species (70%), chosen from available seedlings 

in commercial sources and surrounding landscapes (Nogueira 1977). 

 The second restoration site (21 ha) was a riparian forest planted from 1988 to 1990, at 

Iracemápolis municipality (São Paulo State), in the borders of the city’s water supply reservoir (Fig. 

3) (Brancalion et al. 2014). The restoration model was the use of a combination of species from 

different successional stages in modules of planting (6 pioneers and 2 early secondary, 1 late 

secondary or climax). This forest patch was also established with high species diversity (140 
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species), most of them native (77%), chosen from available seedlings in commercial sources 

(Rodrigues et al. 1992). 

Figure 3. Restoration area from Iracemápolis municipality (São Paulo State). View from the margin 
of the water supply reservoir. 

 The Caetetus Ecological Station (2,170 ha) was a large and well preserved natural forest 

remnant, surrounded by agricultural areas and pastures (Durigan et al. 2000). This population 

served as a reference of well conserved population for comparisons with the fragmented and 

restored populations.  

 The other two areas were natural forest fragments disturbed by historical human-mediated 

disturbances, such as selective logging and fires. One of them was the Municipal reserve of Santa 

Genebra Forest, the largest urban semideciduous seasonal forest fragment in São Paulo State (252 

ha). It has been compromised by human-mediated disturbances like selective logging, fires, and 

proliferation of ruderal climbers (Farah et al. 2014), thus being chosen as an example of comparison 

disturbed forest, representing a kind of reference of natural forest submitted to typical chronic 

disturbances found in the region where the restoration sites are located. 

 The other disturbed natural remnant (42 ha) was a riparian, second-growth forest surrounded 

by pasture. It has been through selective logging in the past, but was isolated from the cattle and 

protected for the last 70 years (Aidar 1992). 
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Objectives 

 This study aimed to assess reproductive biology and genetic diversity of Centrolobium 

tomentosum, a tropical tree species frequently used in restoration projects, and support management 

and restoration plans.  

Specific objectives 

1. Identify the mating system of a population of C. tomentosum; 

2. Describe the patterns of seed pollen dispersal of the species in one population; 

3. Examine the influence of gene flow by seed and pollen on the spatial genetic 

structure of populations; 

4. Evaluate the success in the recovery of genetic diversity and inbreeding levels in 

populations from restoration areas, using natural remnants as reference areas; 

5. Develop an individual-based model that compares the effects of different initial 

genetic diversity on population viability; 

6. Exemplify the model’s applicability. 

 This thesis is organized in four chapters. Chapter 1 is a description of the nuclear 

microsatellite markers developed for the species and used for most genetic analyses. Chapter 2 

describes aspects of the species reproductive biology. The mating system was identified from the 

crossing rates, and the patterns of pollen and seed dispersal were estimated from mother-offspring 

data. The effects of reproductive traits on spatial genetic structure were also discussed in this second 

chapter. Chapter 3 shows the assessment of the success of restoration projects in restoring genetic 

diversity of populations. It also contains estimates the variance effective population size in juvenile 

individuals as a measurement of genetic representativeness. Chapter 4 presents an individual based 

model that allows us to evaluate the effect of different levels of initial genetic diversity on the 

population viability in short and mid-terms. Information obtained from this model can be used to 

support restoration plans, improving genetic diversity recovery in restoration projects. This Thesis 

ends with a general discussion of its main results and implications for forest restoration.  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Chapter 1 

Isolation and characterisation of microsatellite markers for Centrolobium 

tomentosum (Fabaceae), a neotropical tree species widely used for Atlantic 
Rainforest restoration 

Sujii PS, Schwarcz KD, Grando C, do Valle GE, de Campos JB, Pinheiro JB, Zucchi MI. 2015. 

Isolation and characterisation of microsatellite markers for Centrolobium tomentosum (Fabaceae), a 

neotropical tree species widely used for Atlantic Rainforest restoration. Conservation Genetics 

Resources, 7(3): 733-734. 
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Abstract We isolated and characterised eight pairs of
primers to amplify microsatellite regions for Centrolobium

tomentosum, a neotropical tree species widely used for

forest restoration, with important pharmacological poten-
tial. For the primer characterisation, we genotyped 48 in-

dividuals from two populations of C. tomentosum from

natural remnants of Atlantic Rainforests. We detected 2–9
alleles per locus, observed and expected heterozygosities

ranged from 0.08 to 0.72, and 0.08 to 0.83, respectively and

we observed private alleles in six of the loci. No linkage
disequilibrium was observed and all loci are in Hardy–

Weinberg Equilibrium in at least one of the populations.

This study presents a powerful tool for population genetic
studies of this species.

Keywords Araribá ! SSR ! Plant genetics ! Population

genetics

Ecological restoration of forests is a very important com-

plement to forest conservation actions and the knowledge

of genetic information can contribute substantially for the

development of effective restoration projects and evalua-
tion of restoration success (Thomas et al. 2014). Although

molecular technics became more affordable, there are

molecular markers available for a small part of neotropical
species. Centrolobium tomentosum Guillem ex. Bentham

(Fabaceae) is a neotropical tree species widely used for

forest restoration, with important pharmacological poten-
tial (Carvalho 2005). In the present study, we aimed to

develop microsatellite primers for C. tomentosum and

validate them for use in population genetics studies.
We collected samples of C. tomentosum from two nat-

ural remnants of Atlantic Rainforest in Brazil, both from

seasonal semi deciduous forests: Mata de Santa Genebra
(22"4902000S; 47"0604000W), at Campinas municipality, and

Estação Ecológica de Caetetus (22"2401100S; 49"4105500W),

at Galia municipality, both in São Paulo State. A genomic
library was constructed using the protocol developed by

Billotte et al. (1999). DNA digestion was performed with

the enzyme Afa I (Invitrogen). Digested DNA was linked to
adapters, amplified by polymerase chain reaction (PCR)

and purified using the QIAquick PCR purification kit
(QIAGEN Cat. # 28106). Fragments with adapters were

linked to a complex containing poly-CT/GT oligonu-

cleotide fragments, biotin and magnetic beads (Dyn-
abeads—Streptavidin Boehringer Mannhein) and amplified

by PCR. These fragments were linked to pGEM-T Easy

Vector (Promega) and transformed into Escherichia coli
strain by chemical transformation. Sequencing reaction

templates were generated from 282 transformed clones.

Sequencing reactions were performed with the BigDye
Terminator v3.1 Cycle Sequencing Kit (Applied Biosys-

tems) and purified by precipitation with isopropanol and

ethanol. From the 282 DNA fragments sequenced, we de-
signed 79 primer pairs complementary to SSR flanking

regions.
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Optimal PCR conditions were determined using DNA

from two C. tomentosum trees from each sampled

population. PCR reactions contained 1–5 ng of template
DNA, 0.25 lm of each primer, 1U Taq DNA polymerase,

250 lm of each dNTP, 0.25 lg BSA, 1.5 mM MgCl2 and

1 9 reaction buffer (10 mM Tris–HCl pH 8.3, 50 mM
KCl) in a total volume of 10 lL. Cycling conditions were:

94 !C for 5 min (one cycle), then 94 !C for 1 min, 50 to

56 !C (according to the primer annealing temperature) for
45 s, 72 !C for 45 s (30 cycles); and 72 !C for 7 min (one

cycle). We obtained 24 primer pairs which amplified

clearly interpretable bands.
To detect loci with intra and inter-population polymor-

phism we used DNA from six individuals of each population.

DNA amplified fragments were separated and analysed us-
ing LI-COR 4300 DNA Analyzer (Uniscience). We obtained

eight primer pairs that amplified regions with at least two

alleles, with clearly identifiable bands (Table 1).
Population analysis was performed with both sampled

populations. Linkage disequilibrium was tested and geno-

typic proportions were tested to Hardy–Weinberg
Equilibrium using Fisher’s exact test on Genepop on the

Web (Raymond and Rousset 1995). Genetic diversity was
characterised by estimates of allele numbers, number of

alleles per locus, observed heterozigosity and expected

heterozygosity under Hardy–Weinberg equilibrium
(HWE). Inbreeding coefficient (FIS) was also estimated

using Hierfstat (Goudet 2005).

We detected 2–9 alleles per locus and private alleles in
seven of the loci. The observed and expected heterozy-

gosities ranged from 0.08 to 0.72, and 0.08 to 0.83,

respectively. No linkage disequilibrium was observed and

all loci are in Hardy–Weinberg Equilibrium in at least one

of the populations. Detailed genetic parameters estimates
are presented in supplementary material. This study pre-

sents a powerful tool for population genetic studies of this

species widely used in forest restoration projects. These are
the first microsatellite markers developed for C. tomento-

sun, which are expected to be helpful tools for studies of

conservation genetics and reproductive biology of this
species widely used in forest restoration projects.
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S, Smith P, Bozzano M (2014) Genetic considerations in
ecosystem restoration using native tree species. Forest Ecol
Manag In press

Table 1 Characterization of 15 microsatellite loci for Centrolobium tomentosum

Locus Primer sequence (50–30) Repeat motif Ta (!C) Size range (bp) A Genbank number

Ct 01 F: GGGTGTGGCGATTAGAAAAC

R: TCGAGTTGTAGAAGCGGAATG

(TA)4 (CA)6 (CATA)7 51 219–249 5 KP284455

Ct 02 F: TCCAATTATTGTCGGTCTGC

R: TCAGCAGTGTTAGTATGCCAAG

(CA)14 51 202–226 5 KP284456

Ct 03 F: TGGTGGGAAAGAAGAATACG
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Chapter 2 

High gene flow through pollen partially compensate spatial limited seed 

dispersal in a Neotropical tree in fragmented and restored forests 
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Abstract  

The negative effects of deforestation and fragmentation can be mitigated by protecting forests 

remnants, enhancing connectivity among fragments, increasing genetic diversity in remnant 

populations, and restoring disturbed areas. To accomplish some of these actions, it is necessary to 

produce seedlings with high genetic diversity. This requires good planing on seed sampling, which 

is dependent on knowledge on how the diversity is organized in space. This study aimed to support 

seed sampling plans for conservation of genetic diversity of tropical tree species. To better 

understand the biology of the species and the structure of genetic diversity in different populations, 

we tested the following hypotheses: (i) seed dispersal is restricted to short distances; (ii) 

geographically closer individuals have greater contribution to the pollen cloud; (iii) the species has 

mixed-mating system; (iv) there is spatial genetic structure in all populations. Using this 

knowledge, we suggested recommendations for seed sourcing, and seed sampling for conservation 

and restoration purposes. We estimated seed dispersal distribution indirectly by counting individuals 

around adult trees, pollen dispersal distribution and outcrossing rates from adult and offspring 

genotypes, using microsatellite loci. We inferred spatial genetic structure assessing the correlation 

among kinship coefficients and geographical distances between pairs of individuals, using nuclear 

and chloroplast microsatellite markers. We observed restricted seed dispersal, with most seeds 

(78%) falling up to 10 m from the adult tree trunk. The best-fitted pollen dispersal distribution was 

the exponential power distribution, with a heavy tail and average pollen dispersal distance of 3,191 

m. The population analyzed was outcrossing (0.979), with a large number of pollen donors (8.2). 

We observed significant spatial genetic structure in all populations, with both markers, which 

suggests that the restricted gene flow by seed dispersal is not completely neutralized by high 

outcrossing rates and long distance pollen flow. Our results emphasize the importance of 

conservation and restoration of pollination services in fragmented areas, especially in tropical 

forests where most species are pollinated by animals and a large number of tree species experience 

dispersal limitation due to fragmentation and defaunation.   
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Introduction 

 Deforestation and forest fragmentation are major threats to species conservation (Dobson et 

al. 2006), and tropical trees are particularly vulnerable because of demographic and reproductive 

characteristics. As most tropical trees have high outcrossing rates and suffer from inbreeding 

depression, the isolation of populations from different fragments and the decline of population size 

may reduce seed production and increase extinction risk (Cascante et al. 2002; Petit & Hampe 

2006; Aguilar et al. 2008; Chaves et al. 2011). Furthermore, the reproduction of many plants is 

dependent on interactions with pollinators and seed disperses (Bawa 1990; Didham et al. 1996;  

Ward et al. 2005; Dick et al. 2008), and many studies have shown decline in both vertebrate and 

invertebrate abundance, and in ecosystem services provided by these animals (Harris & Johnson 

2004; Dobson et al. 2006; Dirzo et al. 2014). 

 The negative effects of deforestation and fragmentation can be mitigated by protecting 

forests remnants, enhancing connectivity among fragments, and increasing genetic diversity in 

remnant populations (Lowe et al. 2005; Frankham 2015). Ecological restoration is another effective 

practice to conserve populations and to reconnect fragments (Dobson et al. 1997; Possingham et al. 

2015). In order to increase genetic diversity in remnant fragments and to restore disturbed areas, it 

is necessary to obtain good quality seeds and seedlings. This includes the production of seedlings 

with high genetic diversity, which is essential for long-term conservation of populations (Frankham 

2005; Basey et al. 2015).  

 In order to obtain seed with high genetic diversity, it is necessary to understand how the 

diversity is organized in space. It can be organized in many different ways among populations and 

over the spatial distribution of individuals in a population. The structure of genetic diversity of plant 

populations in different levels is influenced by crossing rates and patterns of gene flow by pollen 

and by seed (Vekemans & Hardy 2004; Hardy & Vekemans 2006; Epperson 2007). Thus 

information about patterns of seed and pollen dispersal, outcrossing rates and spatial genetic 

structure are necessary to guide plans of seed sampling for conservation and restoration purposes. 

Although there are many studies on reproductive biology of tropical tree species (Ward et al. 2005; 

Azevedo et al. 2007; Collevatti et al. 2008; Fuchs & Hamrick 2011; Tambarussi et al. 2015), and on 

their seed and pollen dispersal (Bawa 1990; Barbosa & Pizo 2006), the impact of outcrossing and 

gene flow on genetic structure needs to be better understood (Hamilton 1999; Hardy & Vekemans 
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2006; Seidler & Plotkin 2006; Sebbenn et al. 2011). Moreover, there is an unfortunate lack of 

indications of how to use this knowledge in conservation and restoration practices. Some of the few 

indications include a method to estimate the minimum number of source trees to obtain seed for ex-

situ conservation (Sebbenn 2003), and a guide to produce seedlings with high genetic diversity for 

ecological restoration (Basey et al. 2015).  

Objective 

This study aimed to support seed sampling plans for conservation of genetic diversity of tropical 

tree species. We selected Centrolobium tomentosum as a model of a Neotropical tree species widely 

used in forest restoration projects. To better understand the biology of the species and the structure 

of genetic diversity in different populations, we tested the following hypotheses: (i) seed dispersal is 

restricted to short distances; (ii) geographically closer individuals have greater contribution to the 

pollen cloud; (iii) the species has mixed-mating system; (iv) there is spatial genetic structure in all 

populations. Using this knowledge, we suggested recommendations for seed sourcing, and seed 

sampling for conservation and restoration purposes.  

Methods 

Study species 

 Centrolobium tomentosum Guill. ex Benth. (Fabaceae) is a tree species widely used in the 

Atlantic Forest's restoration projects, because it is a typical gap species, with relatively fast growth 

and symbiotic associations with nitrogen fixation microorganisms (Carvalho 2005; Pagano 2008). 

This species has a wide range of distribution over the Atlantic Forest and some parts of Cerrado, the 

Brazilian savanna. The distribution of both adults and juvenile individuals is aggregated (Aidar 

1992). This is a self-compatible species, and the main pollinators are large bees with long distance 

flight capacity (genus Xylocopa, Bombus, Centris, and Megachile) (Aidar 1992), one of the most 

common group of pollinators of tropical canopy tree species (Bawa 1990). Seeds are large samaras 

(approximately 9 g each), and although the dispersal syndrome is anemocory (Carvalho 2005), most 
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fruits fall under the canopy of the mother tree (Aidar & Joly 2003), and seeds are hardly dispersed 

between forest fragments.  

Study sites  

 Study sites were all present within the semideciduous seasonal forest, one of the most 

threatened vegetation types of the Atlantic Forest global biodiversity hotspot, with only 7% of its 

natural cover remaining (Ribeiro et al. 2009). We collected samples from five populations in São 

Paulo State, southeastern Brazil, in a region with Cwa climate (Köeppen 1948), surrounded by 

agricultural and urban areas (Fig.1, Table 1) and embedded in landscapes with very low native 

vegetation cover (< 10%). The sample sites were classified as: old-growth reference site (Ref), 

fragmented forest remnant (Frag), and forest restoration (Rest). 

Table 1. Description of sample sites of Centrolobium tomentosum. 

 The Ref site was Caetetus Ecological Station (2,170 ha), a large and well preserved natural 

forest remnant, surrounded by agricultural areas and pastures (Durigan et al. 2000). The Frag areas 

were natural forest fragments disturbed by historical human-mediated disturbances, such as 

selective logging and fires. Frag1 was a disturbed natural forest remnant, the Municipal reserve of 

Santa Genebra (252 ha), historically compromised by fires, fragmentation, and a harsh matrix 

Identification Fragment 
classification area (ha) Sample sizes Coordinates

Ref1 Natural preserved 2170 53 juvenile W 49º42’05" 
S 22º24'11”

Frag1 Natural disturbed 252 33 juvenile W 47º06’40” 
S 22º49'20”

Frag2 Natural disturbed 42
12 adults, 10 juvenile,  

8 offsprings (7 - 37 seeds/
offspring)

W 48°10’24” 
S 22°16’ 03"

Rest1 Restoration 15 47 juvenile W 47º12’20" 
S 22º40'18”

Rest2 Restoration 21 64 juvenile W 47º31’09" 
S 22º34'36"
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dominated by urbanization and agriculture, which have imposed an arrested succession to the forest 

(Farah et al. 2014). Frag2 was the second disturbed natural forest remnant (42 ha), a riparian, 

second-growth forest surrounded by pasture. This fragment had selective logging in the past, but 

was protected since the decade of 1960 (Salis et al. 1994).  

Figure 1. Study sites of Centrolobium tomentosum populations, with characteristics of each forest 

fragment (Ref. = reference site; Frag. = fragmented forest sites; Rest. = forest restoration sites) 

 The first restoration area (Rest1 – 15 ha) was planted from 1955 to 1960 in the riparian 

buffers of Jaguari River, in a sugarcane farm in Cosmópolis municipality (São Paulo State). The 

restoration model used was the random heterogeneous planting, and it was established with high-

species diversity (70 species) with predominance of native species (70%), chosen from available 

seedlings in commercial sources and surrounding landscapes (Nogueira 1977). 

 Rest2 (21 ha) was a riparian forest planted from 1988 to 1990 on the borders of the city’s 

water supply reservoir in Iracemápolis municipality (São Paulo State). The restoration model was 

the use of a combination of species from different successional stages in modules of planting (6 

pioneers and 2 early secondary, 1 late secondary or climax). This forest patch was also established 
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with high species diversity (140 species), most of them native (77%), chosen from available 

seedlings in commercial sources (Rodrigues et al. 1992). 

Sampling 

 We sampled plant tissue (leaf or vascular cambium) for DNA extraction from a total of 219 

individuals from all sites: spontaneously regenerating juvenile individuals (heigh < 2 m), adult 

individuals (heigh > 2 m, DAP > 15 cm) (Table 1). We sampled up to 2 juvenile individuals close to 

each adult tree, to avoid sampling many possibly related individuals. At Ref, we sampled 

individuals in a small and central portion of the forest area (approximately 10 ha), so the distance 

between sampled individuals was similar to the other sites. A map with sampling design is 

presented in Figure 2.  

 At Frag2, we also selected eight adult trees, and sampled at least 20 open pollinated fruits 

from each tree (Figure 2). Each fruit of C. tomentosum contains from one to three seeds. We 

germinated the seeds and obtained 137 saplings (7 to 37 saplings/offspring), that were used for 

mating system analysis. 

 At Rest 2, we selected 10 adult trees, that were isolated from other C. tomentosum trees.  

We defined five convergent rectangular plots (0.25 x 15 m) around each tree, and each plot was 

divided in subplots (0.25 x 0.25 m). We counted all juvenile individuals within each of the 60 

subplots to infer seed dispersal pattern.   
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Figure 2. Sampling design of C. tomentosum populations in each study area.  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Seed dispersal 

 We analyzed seed dispersal in the Rest2 population. Each of the 15 subplots from a 

rectangular plot corresponds to a distance class from the trunk of the mother tree. For each distance 

class, we summed the number of individuals observed in all rectangular plots, and estimated the 

frequency of individuals of C. tomentosum. We used the least square method to fit data of frequency 

of individuals present in each distance class to different distribution functions using R (R Core 

Team 2015). The function represents the probability of a seed falling at each distance class apart 

from the mother tree. We tested one parameter dispersal distributions (normal and exponential), and 

two-parameter dispersal distributions (exponential power, geometric, and Weibull). 

Molecular markers and genotyping 

 We extracted DNA from all samples using an acid approach for DNA extraction (Cavallari 

et al. 2014). We amplified fragments of DNA from all individuals using seven nuclear 

microsatellites (nSSR) developed for the species: Ct01, Ct02, Ct03, Ct04, Ct05, Ct07, Ct08 (Sujii et 

al. 2015). DNA samples from Ref1, Frag1, Rest1 and Rest2 were also amplified with five 

chloroplast microsatellites (cpSSR). The chloroplast microsatellite primers used were: ccmp02, 

ccmp03, ccmp04, ccmp07, and ccmp10 (Weising & Gardner 1999). Genotypes were obtained using 

the Li-Cor 4300 DNA Analyzer (Li-Cor Biosciences, Lincoln, NE, USA) and we determined allele 

lengths using the 50-350bp IRDye700 and 800 (Li-Cor) sizing standard and the Saga v.3.3 software 

(Li-Cor). 

Pollen dispersal 

 We inferred the contemporary pollen dispersal distance from genotypic data obtained from 

the mapped adult trees from the site Frag2 and their offspring. We used the software package 

Poldisp 1.0c (Robledo-Arnuncio et al. 2007), that is composed by two modules: KINDIST and 

TWOGENER. We first tested the correlation of among-sibship correlated paternity and geographic 

distance, estimating the Pearson correlation coefficient. We then estimated the parameters of the 

pollen dispersal distribution (scale and shape), the average pollen dispersal distance, and the 

variance of the pollen dispersal distribution (σ2) with the KINDIST. We tested one-parameter 
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(normal and exponential), and two-parameters (exponential power and geometric) dispersal 

distributions models. We used the results obtained with KINDIST to estimate the global pollen flow 

structure (Φft), and the effective population density (de) with TWOGENER. 

Mating system 

 We characterized the mating system for the population from Frag2 and for individual 

offsprings in this population using the multilocus (tm) and single locus (ts) outcrossing estimates. We 

also estimated the levels of biparental inbreeding (tm -ts), proportion of full-sibs among outcrossed 

sibs (rp), and the correlation of selfing between two members of an offspring (rs). We obtained these 

estimates using the expectation maximization method in the software MLTR (Ritland 2002), 

following Ritland and Jain (1981) and Ritland (2002).  

 We estimated the inbreeding coefficient for each seed source tree (Fm) using the SPAGeDi 

1.2 program (Hardy & Vekemans 2002). We estimated the fixation index for each offspring (Fo); the 

total number of alleles (k); the allelic richness (Ar); and the observed heterozygosity (HO) using 

diveRsity (Keenan et al. 2013) and PopGenKit (Paquette 2012) packages from R (R Core Team 

2015). Confidence intervals were obtained with 1,000 bootstrap replicates.  

 In a partially selfing population, offsprings may be formed as a result of selfing and 

outcrossing, and a pair of siblings may be both selfed (SS); one selfed and one outcrossed (SO); 

both crossed with one male parent, i.e. full-sibs (FS); or both crossed with different parents, i.e. 

half-sibs (HS). We estimated the probabilities of mating events producing: a pair of selfed sibs 

(PSS), one selfed and one outcrossed pair of sibs (PSO), a pair of half-sibs (PHS), or a pair of full-sibs 

(PFS) (Ritland 1989);  

 For this population, we also estimated the effective number of pollen donors (Nep - Austerlitz 

& Smousse 2001; Smouuse & Sork 2004); the coancestry coefficient (Θ - Ritland 1989), the 

variance effective population size within offspring (Ne - Cockerham 1969). Using the estimates of 

crossing rate, inbreeding coefficient for each seed source tree, fixation index for each offspring, 

effective population size within offspring, proportion of full-sibs among outcrossed sibs, and the 

correlation of selfing between two members of an offspring, we estimated the number of trees from 

which sample seed for conservation of genetic diversity (m - Sebbenn 2003), with an effective 

population size of 100 (Frankham et al. 2014). 
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Spatial Genetic Structure 

 We analyzed the fine-scale spatial genetic structure (SGS) of all populations. These analyses 

were performed with nuclear data for all populations and with chloroplast DNA, when available. 

Chloroplasts DNA is only inherited from the mother-tree for most angiosperm tree species 

(Corriveau & Coleman 1988), and nuclear DNA is inherited from both parents. Thus, we can assess 

if there is limitation in seed dispersal, analyzing SGS with cpDNA. We can also evaluate is pollen 

dispersal is strong enough to neutralize the genetic structure, analyzing SGS with nuclear DNA 

(Hardy & Vekemans 1999). However, as C. tomentosum has an aggregated distribution, and 

probably SGS has not reached a stationary phase in restoration populations, it is not possible to 

estimate unbiased pollen and seed dispersal distances SGS data (Vekemans & Hardy 2004). 

 For the fine-scale spatial genetic structure, we estimated spatial autocorrelation using the J. 

Nasson's kinship coefficient between pairs of individuals (Fij), as it weights the allele contribution 

and is not biased by low frequency alleles (Loiselle et al. 1995). Average pairwise Fij estimates 

were plotted against pairwise spatial distances. Distances classes were defined with variable 

intervals, maximizing the number of pairs of individuals analyzed in each class. For each distance 

interval, the standard deviation (SD) of the average pairwise Fij estimates was obtained using the 

Jackknife method with 1,000 replications of loci, which was also used to calculate the 95% 

confidence interval of the pairwise spatial autocorrelation for the null hypothesis of no genetic 

structure (Fij = 0).  

 The overall extent of spatial genetic structure in each population was quantified by 

calculating Sp = b-log/ (F1-1), in which b-log is the slope of the linear regression between the 

pairwise kinship and the logarithm of spatial distance between pairs of individuals, and F1 is the 

average pairwise kinship between all individuals in the first distance class, which includes all the 

neighbouring pairs (Vekemans & Hardy 2004). The null hypothesis of absence of structure (b-log = 

0) was tested by the Mantel test and significance obtained by 1,000 bootstrap replications. All 

computations were carried out using the SPAGeDi 1.2 program (Hardy & Vekemans 2002).  

  

Results 
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Seed dispersal 

 We obtained the best fit of the distribution of saplings around an adult tree using the Weibull 

distribution function with scale parameter (λ) = 81.480, and shape parameter (k) = 0.694 (Fig. 2). 

When k ≤ 1, the density function is strictly decreasing and the distribution is fat-tailed. Most of the 

plants counted in the plots (78%) were observed up to 10 m away from the adult tree trunk, but we 

observed individuals in all other distances from the adult tree in lower frequencies. 

Figure 2. Number of Centrolobium tomentosum individuals observed in each distance class from the 
adult trees. The line represents the Weibull distribution function (λ = 0.6942213, k = 81.4806772). 

Pollen dispersal 

 We observed a significant correlation of among-sibship correlated paternity and separation 

distance (r = -0.428, p = 0.023). The distribution model with the best fit (smaller least-square 

residual) was the exponential power distribution (scale = 0.000012 and shape = 0.145) (Table 2, 

Fig. 3). For this distribution model, the average pollen dispersal distance was 3,191.6 m and 

variance of the pollen dispersal distribution (σ2) was 7,519.4. The global pollen flow structure (Φft) 

was 0.085, and the effective population density (de) was 0.2 ind/ha. 
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Table 2. Pollen dispersal estimates for population Frag2 of Centrolobium tomentosum population. 

 

Figure 3. The pollen dispersal kernels estimated for Centrolobium tomentosum population  
Frag2. The best fit was obtained for the exponential power distribution. 

Mating system 

 We observed high outcrossing rates for the population from Frag2 (tm = 0.979, CI95% [0.93 - 

1.00]), which was consistent for most families (Tables 4 and 5). We also observed evidence of low 

biparental inbreeding (tm-ts = 0.034). The estimated effective number of pollen donors was 8.2, and 

most of the seeds analyzed were half-sibs (0.84). We observed a small variance effective population 

Dispersal 
distribution models Scale Shape

Average pollen 
dispersal distance 

(δ)

Variance in 
pollen dispersal 

distance (σ2)
Least-square 

residuals

Normal 13.366 - 11.846 9.45 2.51

Exponential 14.811 - 14.81 12.83 2.45

Exponential power 0.000012 0.14477 3191.61 7519.46 1.80

Geometric 6.247 2.0 Infinite Infinite 2.14

2Dt 4.216 1.0 Infinite Infinite 2.21
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size (Ne = 2.58). The coancestry estimate (Θ = 0.169) was higher than expected under panmixia (Θ 

= 0.125). Results for the characterization of mating system of the population from Frag2 are 

presented in Table 2. The analysis of each family resulted in estimates similar to the overall results 

(Table 5). Our results suggest that if we collect 50 seeds from each tree, we should select at least 36 

source trees to conserve an effective population size of 100 (Table 4). 

Table 4. Mating system parameters in a Centrolobium tomentosum population from a fragmented 
forest remnant. 

Parameter Estimates

Multilocus outcrossing rate: tm (CI95%) 0.979  (0.932 - 1.000)

Single-locus outcrossing rate: ts (CI95%) 0.945  (0.913 - 0.980)

Mating among relatives: tm -

 

ts (CI95%)
0.034  (-0.009 - 0.052)

Selfing correlation: rs (SD) 0 (0.001)

Multilocus paternity correlation: rp(m) (CI95%) 0.122  (0.043 - 0.180)

Effective number of pollen donors: Nep (CI95%) 8.2 (5.56 - 22.73)

Proportion of self-sibs: PSS (CI95%) 0 (0 - 0.004)

Proportion of selfed and outcrossed sibs: PSO (CI95%) 0.04 (0 - 0.125)

Proportion of half-sibs: PHS (CI95%) 0.84 (0.752 - 0.934)

Proportion  of full-sibs: PFS (CI95%) 0.07 (0.041 - 0.171)

Coancestry: Θ 0.169

Variance effective size: Νe 2.58

Number of seed-trees: m 39
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Spatial Genetic Structure 

 The analysis of spatial autocorrelation with chloroplast DNA indicated that there is 

significant fine-scale spatial genetic structure in all populations analyzed (Fig. 4 - top; Table 5). The 

b-log values varied from -0.033 to -0.127, all with significance levels smaller than 0.05. For nSSR 

analysis, the correlation between kinship and geographical distance was significant for all 

populations, except for Rest1 (Fig. 4 - bottom; Table 6).  In all cases, the values obtained for the Sp-

statistic was higher with chloroplast markers than with nuclear markers (Tables 5 and 6). 

 

Figure 4. Average pairwise relationship (Fij) over distance intervals for each Centrolobium 
tomentosun population, with chloroplast (top) and with nuclear markers (bottom); gray lines 
indicate critical values of rejection (CV95 %) of the null hypothesis of absence of spatial genetic 
structure (Fij = 0). 



Seed and Pollen Dispersal  !  41
!

Table 6. Estimates of fine scale spatial genetic structure for Centrolobium tomentosum populations 
using chloroplast DNA 

F1: average pairwise kinship between all individuals in the first distance class; b-log: slope of 
the linear regression between the pairwise kinship and the logarithm of spatial distance 
between pairs of individuals; Sp-statistic: quantification of spatial genetic structure 

Table 7. Estimates of fine scale spatial genetic structure for Centrolobium tomentosum 
populations using nuclear DNA. 

F1: average pairwise kinship between all individuals in the first distance class; b-log: slope of 
the linear regression between the pairwise kinship and the logarithm of spatial distance 
between pairs of individuals; Sp-statistic: quantification of spatial genetic structure 

Discussion 

Seed dispersal is restricted to short distances 

 The small seed dispersal distance observed in a C. tomentosum population is expected due to 

its type of fruit, large samaras. Although wind dispersed fruits may have long dispersal distances 

(Seidler & Plotkin 2006), large samaras are usually more poorly dispersed, because of their greater 

falling speed (Augspurger 1986; Greene & Johnson 1993). This limited potential for long-distance 

seed dispersal may lead to strong intra-population spatial genetic structure and genetic 

cpSSR F1 b-log (ln dist) p-value Sp statistic Average N in each  
distance class 1st distance class

Ref1 0.335 -0.127 0.003 0.191 91.7 66.2

Frag1 0.262 -0.090 0.012 0.122 48.2 120.5

Rest1 0.121 -0.033 0.032 0.038 107 56.1

Rest2 0.223 -0.077 0.000 0.099 142.8 67.2

nSSR F1 b-log (ln dist) p-value Sp statistic Average N in each 
distance class

1st distance 
class

Ref1 0.046 -0.023 0 0.024 148.3 94

Frag1 0.138 -0.045 0 0.052 167.5 51.1

Frag2 0.029 -0.022 0.032 0.023 105.4 47.1

Rest1 0.018 -0.004 0.228 0.004 107 56.1

Rest2 0.069 -0.024 0 0.026 159.3 72.7
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differentiation of adjacent populations, which enhances the importance of gene flow through pollen 

to prevent inbreeding.  

 In spite of the seed dispersal pattern, with most seeds falling close to the mother tree, we did 

not observe a large number of individuals in later phases of development (heigh > 2 m) close to the 

adult tree. This may be due to distance and density-dependent factors, such as attack of pathogens 

and pests, following Janzen-Connell model (Janzen 1970; Connell 1971). Density dependent attacks 

of seed predators, herbivores, and pathogenic fungi were observed in studies with different species 

from tropical forests (Augspurger 1983; Schupp 1992). Higher genetic diversity in the saplings 

could enhance the probability of persistence of the population, after selective pressures of 

pathogens, herbivores and predators (Young 1996).  

   

Closer individuals contribute more to the pollen cloud 

 We observed that geographically closer individuals had greater contribution to the pollen 

cloud of Frag2 population, but a large amount of pollen was dispersed through long distances. The 

small value observed for the shape parameter leads to a tail that was heavier than the normal 

density. This result and the long average pollen dispersal distance are consistent with the long 

distance capacity of the large size bees that are the main pollinators of this species (Pasquet et al. 

2008). However, the pollinator behaviour suggests that the estimated average pollen dispersal 

distance may be overestimated. Large size bees are able to visit hundreds of flowers in a day, but 

studies showed that the median flying distance is close to 800 m and a large proportion of the flight 

distances are between 200 m and 1000 m (Pasquet et al. 2008; Hagen et al. 2011). Researchers 

compared mean pollen dispersal distance estimated directly using paternity analysis and indirectly 

from the pollen dispersal curve, and observed that the two-parameter models may overestimate 

dispersal whereas the one-parameter models may underestimate it (Eduardo et al. 2008; Lander et 

al. 2010). Thus, mean pollen dispersal of C. tomentosum may be larger than tens of meters and 

smaller than thousand meters. The pollen dispersal distance estimated for C. tomentosum is larger 

than pollen dispersal distances previously described for species pollinated by wind and smaller 

animals (Garcia et al. 2005; Veron et al. 2005; Lander et al. 2010; Nielsen & Kjaer 2010; Sebbenn 

et al. 2011), and was similar to pollen dispersal results obtained for species pollinated by large size 

bees (Silva 2014; Dick et al. 2008; Jha & Dick 2010). 
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 We estimated a small effective population density in Frag2 (de = 0.2 ind/ha), that was 

smaller than the actual density of adult individuals in the area (d = 70 ind/ha) observed by Aidar 

(1992). This indicates that a small proportion of adult individuals contributes to the pollen pool 

analyzed in this study. This also may indicate that related individuals may be clustered, so the 

pollen pool that fertilizes flowers from each tree may contain many alleles that are identical by 

descent. This result indicates that the effective size of this population (Ne) is probably smaller than 

the census size (Nc), which has important repercussions for conservation. If Nc is larger than Ne, 

estimates solely of  Nc may hide real threats to population long-term viability (Mills 2013).   

C. tomentosum is outcrossing 

 The high outcrossing rate observed for the population from Frag2 indicates that this species 

is likely outcrossing, as most tree species (Bawa 1990). The predominance of outcrossing may be 

result of pollination by long-flight animals, the most frequent pollination vector in Neotropical 

species (Bawa 1990), and as a consequence of longevity and large plant size (Petit & Hampe 2006). 

 This is a self-compatible species (Aidar 1992), with crossing rates similar to self-

incompatible species (tm=1.0). As we genotyped saplings, instead of seeds, this result may indicate 

inbreeding depression in early ontogenetic stages (Ayroles et al. 2009; Chaves et al. 2011). Long-

lived perennial species usually have substantial genetic loads, which leads to inbreeding depression, 

especially in populations with limited seed and pollen dispersal. If there is inbreeding depression in 

the population, individuals with high homozygosity have a higher probability to die, which leads to 

higher estimates of outcrossing rates in the offspring (Ward et al. 2005). 

 It would be expected negative effects of fragmentation on plant reproduction, which can be 

analyzed in terms of patterns of sexual reproduction (Aguilar et al. 2006). We observed that tm 

estimates in Frag2, a fragmented second-growth forest, was statistically as high as the expected in 

an allogamous population (tm = 1.0). This indicates that the patterns of sexual reproduction have a 

relatively high resilience to fragmentation effects for C. tomentosum.  

 Our results for biparental inbreeding, coancestry and fixation index estimates indicated that 

there was biparental inbreeding in most offsprings evaluated. Also, the Ne within offspring was 

smaller than the expected in a panmictic populations (Ne = 4). However, the large number of 

effective pollen donors indicated that many different trees contributed with pollen for the 
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production of each offspring. The large number of pollen donors and the long pollen dispersal 

distance emphasize the importance of conservation and restoration of pollination services in 

fragmented areas, especially in tropical forests where most tree species are pollinated by animals. 

This also highlights the importance of sampling seeds from trees surrounded by a large number of 

trees from the same species (i.e. forest fragments) instead of isolated trees. 

 We estimated that restoration practitioners should sample seeds from at least 39 trees for 

conservation of genetic diversity with an effective population size of 100 was 39. This result is in 

accordance with the recommended 30-50 trees for seed sampling for forest restoration (Sebbenn 

2003; Basey et al. 2015). 

Significant spatial genetic structure 

 We observed significant correlation between pairwise kinship coefficients and geographical 

distance obtained with both nSSR and cpSSR analysis for most samples. The SGS observed with 

cpSSR analysis was probably caused by the limited seed dispersal (Hardy & Vekemans 1999). The 

significant genetic structure estimated with nSSR analysis showed higher genetic similarities among 

neighbours than among more distant individuals, as expected under  

isolation-by-distance. This agrees with the pattern of pollen flow observed in Frag2, the behaviour 

of the pollinator (Keasar et al. 1996; Pasquet et al. 2008; Hagen et al. 2011) and the aggregated 

distribution of adults and juvenile individuals of this species (Aidar 1992, Carvalho 2005). 

 The SGS values (Sp-statistic) observed at chloroplast markers were higher than at nuclear 

markers. This was expected, because the haploid genome present in the chloroplast undergoes the 

effect of genetic drift twice faster than an outbred diploid genome, as the nuclear. Also, pollen 

dispersal, which is larger than seed dispersal, does not contribute to gene flow of cytoplasmic DNA. 

 Our results of SGS for nSSR are similar to the observed in other tree species with limited 

seed dispersal and pollination by insects. These Sp-statistics values were generally larger than 

values observed in tree species with long distance pollen and seed dispersal (Vekemans & Hardy 

2004; Hardy & Vekemans 2006; Dick et al. 2008; Ndiade-Bourbou et al. 2010). This pattern can be 

used to group species with similar pollination and seed dispersal syndromes to develop general 

guidelines for seed sampling. 
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Implications for conservation 

 Our analyses of pollen and seed dispersal patterns, outcrossing levels and spatial genetic 

structure of a tropical tree species provide insights on how these features can be considered in seed 

sampling for conservation and restoration purposes. As most species with large seeds, with 

restricted dispersal capacity, C. tomentosum has aggregated distribution, and significant spatial 

genetic structure, so we should avoid sampling seeds from very close trees, that are probably 

genetically similar. For outcrossing species, with large number of pollen donors, we should 

prioritize sites with conserved pollination service to be seed sources, to increase probability of 

sampling seeds with high representativeness of genetic diversity of the population. Finally, our 

results showed that for an outcrossing species with low to moderate coancestry levels, the number 

of source trees to collect seeds is close to the minimum number recommended in the literature (30 - 

50).   
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Chapter 3 

Ecological restoration recovers genetic diversity of a Neotropical tree species 
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Abstract 

To support long-term ecological viability of restoration projects, it is necessary to reach adequate 

levels of genetic diversity in spontaneously recolonizing and reintroduced populations. The 

importance of genetic diversity in long term viability of populations is acknowledged, but still 

poorly monitored in restoration projects. This study aimed to monitore genetic diversity and 

inbreeding levels of populations of a tree species widely used in restoration projects in the Atlantic 

Forest, Centrolobium tomentosum, exploring the potential of active restoration to successfully 

reestablish populations with higher chances of long-term perpetuation in agricultural landscapes. 

We used both nuclear and chloroplast microsatellite markers to assess genetic parameters in 

juveniles and adult individuals in two restoration areas (28 and 60 years old), one disturbed 

fragment, and one large and well conserved protected area, located within the Atlantic Forest in SE 

Brazil. We observed similar levels of genetic diversity and inbreeding in both restored and natural 

populations, for juveniles and adults. Surprisingly, haplotype diversity was higher in restoration 

sites. We also found private alleles in juveniles in both restoration areas, which are evidences of 

gene flow between restored and neighbouring natural populations. However, we observed negative 

effects of inbreeding on the effective population size of populations from the disturbed natural 

remnant and restoration areas. These results provide evidences of the capacity of recovery of levels 

of genetic diversity in restoration plantations and of the importance of maintaining large and well 

conserved forest remnants to be used as seed sources for restoration efforts.  

Key-words 

population genetics, Centrolobium tomenstosum, Atlantic Forest, inbreeding, effective population 

size 
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Introduction 

 Many international initiatives of ecological restoration have been launched to mitigate 

negative consequences of deforestation, habitat fragmentation, and other anthropogenic impacts on 

biodiversity and human wellbeing (Chazdon et al. 2016). These projects aim to restore millions of 

hectares of forest ecosystems and landscapes on the next decades and reestablish new populations 

of native tree species where they were locally extinct (Latawiec et al. 2015). The massive financial 

investments and political commitments to support restoration programmes highlight the importance 

of enhancing the process efficiency and the development of reliable monitoring approaches to 

safeguard key ecological principles for sustaining restoration success (Suding et al. 2015). 

 Biodiversity monitoring in restoration projects has been mostly focused in taxonomic 

diversity (Ruiz-Jaen & Aide 2005; Wortley et al. 2013) and functional diversity (Holl & Brancalion 

2016), with few studies on phylogenetic (Schweizer et al. 2015) or genetic diversity (Rodrigues 

2013; Neto et al. 2014). Consequently, little is known about the potential of restoration 

interventions to reestablish similar genetic diversity levels in relation to reference ecosystems. 

Although some conceptual frameworks have been recently proposed to monitore genetic issues in 

restoration projects (Thomas et al. 2014; Mijangos et al. 2015), on-the-ground assessments are 

scarce (Salas-Leiva et al. 2009; Neto et al. 2014). 

 Inbreeding levels is another genetic parameter with importance for monitoring reintroduced 

populations in restoration programs, since the mating of closely related individuals may lead to a 

reduction in fitness-related traits such as survival or fertility, a phenomenon called inbreeding 

depression (Charlesworth & Willis 2009). In plants, inbreeding depression is more common in 

perennial trees than in annual herbs (Angeloni et al. 2011), thus inbreeding in long-lived trees could 

reduce the chances of population viability in restoration areas. Therefore, it would be reason of 

concern if inbreeding coefficients in tree populations of restoration areas were higher than their 

normal levels found in natural, conserved populations, as observed in populations of Avicennia 

germinans (Salas-Leiva et al. 2009), and Inga vera (Neto et al. 2014).  

 The use of genetics as a source of information to support decision making in restoration 

programs is particularly relevant in developing tropical countries, where most of the global 

biodiversity hotspots are located (Myers et al. 2000). However, few restoration genetics studies 

have been carried out there, and the concern about genetic diversity levels in restoration sites started 
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just a few decades ago (Thomas et al. 2014; Mijangos et al. 2015). Genetic studies on tropical trees 

in restoration projects may provide a necessary knowledge platform to plan, implement, and 

monitor the ambitious restoration programmes planned for tropical regions, including the ambitions 

goals to bring to 20 million hectares of forest ecosystem and landscapes to restoration in Latin 

America and Caribbean by 2020 (WRI 2016), to restore 15 million hectares of the Atlantic Forest 

biodiversity in Brazil hotspot by 2050 (Melo et al. 2013), and many other commitments established 

internationally by  the Bonn Challenge, the United Nations Climate Summit, and the Aichi target 15 

of the Convention on Biological Diversity (Suding et al. 2015). 

 In order to shed light onto the potential of forest restoration to recover genetic diversity and 

inbreeding to levels observed in natural remnants, we tested the following hypotheses: (i) 

restoration areas were implanted in the past with low genetic diversity; (ii) populations from 

restoration areas have lower levels of genetic diversity than observed in natural remnants; (iii) 

populations from restoration areas have higher levels of inbreeding than those from natural 

remnants; (iv) there is gene flow between restoration areas and neighboring areas. 

Material and Methods 

Study species 

 We selected Centrolobium tomentosum Guill. ex Benth (Fabaceae) as model for this study, 

because this is a species widely used in the Atlantic Forest's restoration, and is self-compatible 

(Aidar 1992), which may lead to high levels of inbreeding in the absence of pollinator. Therefore, 

this is a suitable model for assessing the limitation and the potential of restoration to recover 

adequate levels of genetic diversity and gene flow to sustain population persistence in restoration 

sites.  

 C. tomentosum is a typical gap, intermediate succession species, with relatively fast growth 

and symbiotic associations with nitrogen-fixing microorganisms (Carvalho 2005; Pagano 2008). 

The main pollinators are large bees with long distance flight capacity (genus Xylocopa, Bombus, 

Centris, and Megachile) (Aidar 1992), which is one of the most common group of pollinators of 

tropical canopy tree species (Bawa 1990). Fruits are large samaras (approximately 9 g each) 

dispersed by wind, but most fruits fall under the canopy of the mother tree (Aidar & Joly 2003). 
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Although this species is self-compatible, most seeds that germinate are result of outcrossing (Sujii 

et al. unpublished data). 

Study sites and sampling 

 We selected four sample sites, all located within the seasonal semideciduous forest domain 

of the Brazilian Atlantic Forest of São Paulo state, southeastern Brazil, a global hotspot for 

biodiversity conservation (Myers et al. 2000). This is one of the most threatened vegetation types of 

the Atlantic Forest, with only 7.5% of its natural cover remaining (Ribeiro et al. 2009). All sites had 

a Cwa Köppen climate and were embedded in human-modified landscapes, dominated by sugarcane 

plantations, pastures, or urban areas. 

 We evaluated populations from two restoration sites. The first restoration area (Rest1) was 

implanted between 1955 and 1960, in a sugarcane farm in Cosmópolis municipality, a 15 ha 

restoration plantation established  along the riparian buffer of the Jaguari River. The restoration 

model used was the random distribution of a high diversity of trees (71 species; 70% native), 

regardless of their successional performance, in density of 833 individuals per hectare  (Nogueira 

1977; Schweizer et al. 2015). The second restoration area (Rest2) was also implanted in a sugarcane 

farm, from 1988 to 1990, in Iracemápolis municipality. This fragment has 21 ha, and it is also a 

riparian forest, but planted surrounding the city’s water supply reservoir (Brancalion et al. 2014). 

The restoration model was the use of a combination of species from different successional stages in 

modules of planting (6 pioneers and 2 early secondary, 1 late secondary or climax). This forest 

patch was also established with high species diversity (141 species), most of them native (77%), 

chosen from available seedlings in commercial sources (Rodrigues et al. 1992). 

 We selected two natural remnant areas to compare with the forest restoration sites. The first 

natural remnant (Ref) was the Caetetus Ecological Station, the largest (2170 ha) and best preserved 

forest patch of the region, surrounded by agricultural areas and pastures (Durigan et al. 2000), 

chosen as the reference ecosystem for this study. The second natural remnant (Frag) was the 

Municipal reserve of Santa Genebra Forest, the largest urban semideciduous seasonal forest 

fragment in São Paulo State (252 ha). It has been compromised by human-mediated disturbances 

like selective logging, fires, and proliferation of ruderal climbers (Farah et al. 2014), thus 
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representing a typical forest remnant of the regions, exposed to chronic human-mediated 

disturbances and strong edge effects. 

 We sampled a total of 343 adult and juvenile individuals. From each restoration area, we 

sampled all adult individuals and more than 30 juveniles. From each natural remnant, we sampled at 

least 30 adults and 30 juveniles (Table 1). Up to two juvenile individuals were sampled close to 

each adult individual, to avoid sampling a large proportion of siblings. From each individual, we 

collected plant tissue (leaf or vascular cambium) for DNA extraction, and obtained the coordinates 

with a GPS (GPSMAP62, Garmin). 

Table 1. Description of study areas and sample sizes. 

Genotyping 

 We extracted DNA from all samples using an acid approach for DNA extraction (Cavallari 

et al. 2014). We amplified fragments of DNA from all individuals using seven nuclear 

microsatellites (nSSR) developed for the species: Ct01, Ct02, Ct03, Ct04, Ct05, Ct07, Ct08 (Sujii et 

al. 2015). We also used five universal chloroplast microsatellites (cpSSR): ccmp02, ccmp03, 

ccmp04, ccmp07, and ccmp10 (Weising & Gardner 1999). The nuclear loci analyzed were in 

Study 
area

Fragment 
group

area 
(ha)

Sample 
sizes Coordinates Other information

Ref Natural 
preserved 2,170 46 adult  

50 juvenile
W 49º42’05" 
S 22º24'11”

Preserved since the beginning of farming 
in the region and protected as an 
Ecological Station since 1987 (SMA 
1998) 

Frag Natural 
disturbed 252 32 adult 

33 juvenile
W 47º06’40” 
S 22º49'20”

Preserved since the beginning of farming 
in the region and protected since 1981, 
with recent drastic changes in community 
structure (Farah et al. 2014) 

Rest1 Restoration 15 19 adult 
47 juvenile

W 47º12’20" 
S 22º40'18”

Restored with 71 tree species, 70% native 
(Nogueira 1977)

Rest2 Restoration 21 52 adult 
64 juvenile

W 47º31’09" 
S 22º34'36"

Restored with 141 tree species, 77% 
native (Rodrigues et al. 1992)
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linkage equilibrium and were considered as independent loci. The chloroplast genotypes were 

organized in haplotypes.  

 Genotypes were obtained using the Li-Cor 4300 DNA Analyzer (Li-Cor Biosciences, 

Lincoln, NE, USA) and we determined allele lengths using the 50-350bp IRDye700 and 800 (Li-

Cor) sizing standard and the Saga v.3.3 software (Li-Cor).  

Genetic analyses  

 To analyze genetic diversity of maternal lineages, we organized chloroplast genotypes in 

haplotypes and estimated haplotype diversity using the Shannon’s index (Brown & Weir 1983). The 

number of haplotypes was used to assess the genetic diversity in the seed pool used for the forest 

restoration. The number of haplotypes observed in each sample should be equal to or smaller than 

the number of trees used as seed source, because it is possible that more than one source tree shared 

the same haplotype. The haplotype number and frequency were estimated with the software 

Arlequin 3.1 (Excoffier et al. 2006). Shannon’s index values were estimated using the package 

Vegan (Oksanen et al. 2015) in R (R Core Team 2015). 

  To estimate the nuclear genetic diversity for adults and juveniles separately and for all 

individuals in the population, we used expected heterozygosity under Hardy-Weinberg Equilibrium 

(HE), observed heterozygosity (HO), and allelic richness (Ar). We also compared Wright's fixation 

index (f ) in different life stages and populations, estimated from nuclear genotypes for adults, 

juveniles, and populations. These parameters were estimated using diveRsity (Keenan et al. 2013) 

and PopGenKit (Paquette 2012) packages from R (R Core Team 2015). Confidence intervals were 

obtained with 1,000 bootstrap replicates.  

  We estimated the variance effective population size (Ne) of adult and juvenile individuals 

based on Cockerham (1969), accounting for the sample size (N), coancestry (Θ) and inbreeding, 

infered from the fixation index (f). The coancestry was inferred from the kinship coefficient using 

the estimator of J. Nasson (Loiselle et al. 1995), using the SPAGeDi 1.2 program (Hardy & 

Vekemans 2002). The confidence intervals were obtained with 1,000 bootstrap replicates, 

resampling loci. We also estimated the genetic representativeness (Ne/N) of each sample.  

 We assessed the number and frequency of private alleles in nuclear genotypes (pA) and the 

private allelic richness (pAr) in different life stages to look for indications of gene flow, using the 



Genetic diversity in restoration areas  !  58
!

ADZE software (Szpieh et al. 2008). Private allelic richness provides a measure of the singularity 

of each sample (Rodrigáñez et al. 2008). 

Results 

 The haplotype diversity in restoration areas was higher than in natural remnant fragments 

(Fig. 1). In natural remnant populations, we observed three (Ref) or four (Frag) haplotypes both in 

adult and juvenile samples. In populations from restoration areas, we observed six haplotypes for 

Rest1 and 13 haplotypes for Rest2. The Shannon’s index was higher in samples from restoration 

areas than in samples from natural remnants (Fig. 1). Only one haplotype was observed only in 

juvenile samples (H11). The number of haplotypes observed in juvenile samples was always equal 

or smaller than the observed in adult samples, in spite of the larger sample size of juveniles. 

Figure 1. Haplotype diversity in Centrolobium tomentosum populations from natural fragmented 
(Frag) and conserved remnants (Ref) and restoration areas (Rest1, Rest2) for adult (A) and juvenile 
(J) samples. Bars represent absolute frequency of each haplotype and he numbers above bars are 
Shannon’s index. 

 The estimates of genetic diversity (HO and Ar) were similar in all samples from all 

populations (Fig. 2). The estimates of expected heterozygosis (HE) for both adults and juveniles 



Genetic diversity in restoration areas  !  59
!

from Rest1 were lower than for the other populations. Inbreeding levels were similar among 

populations (Fig. 2). Comparing juvenile samples, only inbreeding level for Ref population was not 

consistently different from zero (f = 0.040, CI95% [-0.046 - 0.105]). 

Figure 2. Estimates of genetic diversity and inbreeding levels in C. tomentosum populations from 
natural remnants (Ref, Frag) and restoration areas (Rest1, Rest2) for adult (A) and juvenile 
individuals (J). Ar: allelic richness; HO: observed heterozygosity; and HE: expected heterozygosity 
under Hardy-Weinberg equilibrium; f: inbreeding coefficient. Bars indicate 95% confidence 
intervals. 

 We observed private alleles from juvenile samples in both restoration areas. In Rest1, we 

observed nine private alleles (19%) and in Rest2 we observed three (5%). As we sampled all adult 

individuals in these areas, this result indicated that new alleles were introduced in the restoration 

area by gene flow from surrounding areas. The private allelic richness was higher in juvenile 

samples from restoration areas, when compared to adult samples (Table. 2). 
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Table 2. Private allele (pA) and private allelic richness (pAr) in Centrolobium tomentosum 
populations from restoration areas. 

  

 The coancestry estimates were all very close to zero, indicating that samples were not 

related (Table 3). The effective population size (Ne) of adults and juveniles from the Ref area were  

not significantly different from the sample size (N). All juvenile sample sizes from the Frag and 

Rest areas were significantly larger than Ne (Fig. 3). The genetic representativeness was higher than 

80% for all samples (Table 3). 

Figure 3. Variance effective population size (points, triangles and squares) of adult (A) and juvenile 
(J) samples of Centrolobium tomentosum from natural remnants (Ref, Frag) and restoration areas 
(Rest1, Rest2). Error bars represent 95% confidence intervals; and circles with crosses represent 
sample sizes. 

Population pA in juveniles
pAr (Standard Error)

Adults Juveniles

Rest1 9 (19%) 0.014 (0.016) 0.224 (0.136)

Rest2 3 (5%) 0.004 (0.003) 0.135 (0.094)
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Table 3. Estimates of fixation index (f) with the confidence interval (CI95%), coancestry (Θ), 
effective population size (Ne), and genetic representativeness of each sample (Ne/n), and the sample 
size (n).

Discussion 

 Overall, C. tomentosum populations in restoration sites had comparable levels of genetic 

diversity, coancestry and inbreeding to those in natural forest remnants, as well as higher haplotype 

diversity. These results evidence that both restoration areas were implanted with seedlings of high 

genetic diversity, probably from different sources.  

Restoration areas were implanted in the past with high genetic diversity 

 Our results did not show evidences of founder effect in populations from restoration areas. 

The chloroplast DNA analysis of adult individuals showed the presence of six different haplotypes 

in Rest 1, which indicates that seeds were sampled from at least six mother trees. In Rest2, the 

number of seed sources was even higher (n=13). The haplotypes diversity observed in restoration 

areas was higher than the diversity in populations from remnant forests, suggesting that the seeds 

used in the restoration project were sampled from many seed-trees, probably from different forest 

Sample n f (CI95%) Θ Ne (CI95%) Ne/n

Ref - Adults 47 0.131
(0.027-0.207) 0 45.90

(54.74-32.27) 0.98

Ref - Juvenile 50 0.040
(-0.046-0.105) 0 46.48

(50.30-43.04) 0.93

Frag - Adults 32 0.241
(0.119-0.343) 0 26.42

(29.79-23.41) 0.83

Frag - Juvenile 33 0.143
(0.051-0.207) 0.00059 29.70

(32.54-27.12) 0.90

Rest1 - Adults 19 0.027
(-0.174-0.159) 0.00327 16.11

(18.71-13.84) 0.85

Rest1 - Juvenile 47 0.125
(0.024-0.201) 0.00014 42.47

(46.29-38.74) 0.90

Rest2 - Adults 42 0.089
(-0.002-0.159) 0.00062 38.90

(42.47-34.40) 0.93

Rest2 - Juvenile 57 0.149
(0.068-0.217) 0.00006 49.04

(54.63-44.11) 0.86
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fragments. The analysis of genetic diversity of nuclear DNA from adult samples did not show 

reduced allelic richness and heterozygosity, which are signs of founder effect (Hartl & Clark 2010). 

 Such positive strategy for genetic conservation is aligned with the long history of scientific 

and practical maturation of ecological restoration in the Atlantic Forest, which now promotes the 

use of high levels of both species and genetic diversity in restoration plantations (Rodrigues et al. 

2009; Brancalion et al. 2012). An additional factor that may have contributed to the high level of 

genetic and haplotype diversity found in this work is the big size of C. tomentosum seeds, because 

many mother trees have to be harvested in order to obtain a given amount of seeds compared to 

species bearing small- to medium-sized seeds. 

 Analyzing samples from restoration areas, we observed lower Shannon’s diversity index in 

haplotypes of juvenile individuals than in adults. However, this pattern was not observed in natural 

remnant populations. This may be a result of genetic drift effect, due to the small population size in 

restoration areas (Ellstrand & Elam 1993). This may also be a consequence of outbreeding 

depression caused by interaction of nuclear and cytoplasmic genomes (Scopece et al. 2010). If 

seeds used in the restoration project had very different provenances, mating among individuals from 

different origins may reduce seed or sampling viability (Scopece et al. 2010; Pinheiro et al. 2013). 

Thus, high levels of genetic diversity, especially when it is obtained from very distant populations, 

is not always beneficial to restoration success. 

Populations from restoration areas have similar levels of genetic diversity to observed in natural 

remnants 

 The evaluation of genetic diversity in this study was based on allelic richness, observed 

proportion of heterozygote genotypes and allele frequencies of neutral regions of the genome. 

These estimates indicated that genetic diversity was similar in populations of restoration areas and 

natural remnant populations. Neutral genetic diversity has long been studied both in well preserved 

and disturbed, fragmented populations in order to assess the conservation status of targeted species 

(Lowe et al. 2005; Honnay & Jacquemyn 2007; Aguilar et al. 2008; Pautasso 2009; Vranckx et al. 

2012; Lowe et al. 2015). Although high genetic diversity is not a guarantee of potential to 

adaptation, it has already been detected a significant correlation between neutral levels of genetic 
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diversity and population fitness (Reed & Frankham 2003), thus allowing inferences on the potential 

of population persistence in restoration sites in relation to its levels of genetic diversity. 

 The results of genetic diversity for juvenile samples indicated that there was no evidence of 

negative effects in genetic diversity in the first few generations after implantation. Studies with 

Myroxylon peruiferum, Piptadenia gonoacantha, and Casearia sylvestris, tree species from the 

Atlantic Forest, in the same areas of our study also showed that populations in restoration areas can 

have genetic diversity as high as populations from natural remnants (Zucchi et al. unpublished 

data). Studies with Hymenaea stigonocarpa and Dipteryx alata, tree species from Cerrado 

(Brazilian Savanna), showed larger number of alleles in restoration areas, when compared to natural 

remnants, probably due to mixture of seeds from different forest fragments to produce seedlings to 

be used in the restoration project (Rodrigues 2013). Thus, although previous research has shown 

that the fragmentation of continuous forest patches into many small patches reduces genetic 

diversity of trees (Honnay & Jacquemyn 2007; Aguilar et al. 2008; Lowe et al. 2015), the re-

creation of small patches of forest through ecological restoration may re-establish similar or even 

higher levels of genetic diversity compared to both fragmented and conserved forest remnants. This 

positive result relies on the key role of seed collection for improving planting stocks in forest 

restoration, as already demonstrated for the same region of study (Brancalion et al. 2012). 

Populations from restoration areas have similar levels of inbreeding to those from natural remnants 

 Inbreeding levels of populations from restoration areas were not significantly different from 

natural remnant populations. However, we observed that for juvenile individuals, the only sample 

with inbreeding coefficient not significantly different from zero was the well preserved natural 

remnant. Also, we observed high estimates of inbreeding levels in the disturbed natural fragment. 

As C. tomentosum is an outcrossing, the inbreeding may be an indication of mating among relatives 

caused by deficit of pollination services in restoration areas (Rest1 and Rest2) and disturbed 

fragment (Frag). Although the reestablishment of pollination services in restoration areas is now 

well understood, it is known that specialized plant-pollinator interactions are more difficult to be 

successfully recovered, and that highly fragmented landscapes may not adequately support 

pollinator migration to restored sites (Dixon 2009). Thus indications of pollination service deficits 

in restoration areas are matter of concern and should be more thoroughly investigated. 
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 As expected, the Ne and the sample size were similar in both samples from the well 

preserved natural remnant, indicating that inbreeding and coancestry do not have negative effect on 

genetic diversity in the studied populations. For most samples from fragmented and restoration 

areas, the Ne was significantly smaller than the sample size. This is an effect of inbreeding or 

crossing among relatives, which may be due to the small population size, associated to spatial 

genetic structure and deficit of pollination service (Sujii et al. unpublished data). Although, the 

genetic representativeness was high for all samples, which indicates maintenance of genetic 

diversity over the next generations (Vencovsky & Crossa 2003; Raposo et al. 2007), in both 

restoration areas, where all adult individuals were sampled, the effective population sizes were 

smaller than the recommended for short-term (Ne ≥ 100) and long-term (Ne ≥ 1000) conservation 

of populations (Frankham 2014). This emphasizes the importance of enhance connectivity among 

surrounding fragments.   

There is gene flow between restoration areas and neighboring areas 

 In restoration areas, we sampled all adult individuals, so if an haplotype is present 

exclusively in juveniles, it can indicate that the seeds dispersed from trees in neighbour areas or that 

the parental tree was already dead. Only one haplotype (H11) was present in juveniles and absent in 

adults in a restoration area (Rest 1), and it was observed in only two juvenile individuals. This 

absence of evidences of gene flow by seed dispersal was expected for a species with a large fruit 

dispersed by wind, with low seed dispersal capacity (Greene & Johnson 1993; Sujii et al. 

unpublished data). 

 The presence of private alleles in juvenile samples of restoration areas is an evidence of 

gene flow from neighbour areas. The pAr estimates for juvenile samples from restoration areas were 

significantly higher than for adult samples. As we sampled all adult individuals from the restoration 

areas, private alleles in juveniles probably came from neighbour areas, most likely by pollen flow. 

This evidence of gene flow between restoration areas and the surrounding natural remnants 

indicates that restoration populations can be allele source for previously isolated fragments, 

contributing to the increase of the effective population size in the set of neighbour populations. This 

is a yet poorly studied contribution of restoration to biodiversity conservation in human-modified 

landscapes. However, it may also be a source of a problem for native populations’ conservation, 
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since these new alleles may cause outbreeding depression, i.e., decline of progeny fitness by the 

crossing of individuals adapted to different conditions (Lesica & Allendorf 1999). 

Implications for practice 

 Our results corroborate other studies that showed evidences of ecological restoration 

capacity to recover genetic diversity (Smulders et al. 2008; Ritchie & Krauss 2012), and highlight 

the importance of using high genetic diversity in the seed pool used for restoration to avoid strong 

founder effects. Thus, we suggest the use of seeds from different sources to produce seedling for 

restoration areas. We also suggest that large and well-conserved remnants as main sources of seeds, 

as they may have smaller effect of inbreeding on effective population size. 

 We also observed the presence of gene flow from neighbour populations, which indicates 

that it is possible to recover pollination services in restoration plantations. However, the smaller Ne 

in disturbed and restoration areas reinforce the importance of enhancing connectivity among 

fragments to create metapopulation dynamics, increasing the effective population size and slowing 

down genetic drift effects, key issues for supporting population ecological viability and persistence 

in a changing environment. 
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Chapter 4 

A genetic approach for simulating persistence of reintroduced tree species 
populations in forest restoration areas 
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Abstract 

Many plant populations from forests ongoing restoration are small and isolated from neighbouring 

populations, and are in human-modified landscapes. To mitigate inbreeding depression and genetic 

drift problems, there are recommendations for seed sampling aiming to introduce populations with 

high genetic diversity in restoration areas. However, studies validating or testing those 

recommendations' feasibility are not available, and ecological and financial constraints prevent 

obtaining the recommended number of seed sources. It is especially difficult to reintroduce as many 

tropical tree species in restoration sites as found in reference ecosystems, where there are thousands 

of species, many of which are rare. We present here an individual-based model that allows to 

evaluate the effect of different levels of initial genetic diversity on the short and mid-terms’ 

population viability. We also present a study case with Centrolobium tomentosum, a tropical tree 

species widely used in restoration projects in the Atlantic Forest of Brazil, to demonstrate the use of 

this simulation model. Our model can be applied in studies of tree species with different 

characteristics, from tropical and temperate forests, to assess population persistence in restoration 

sites. This knowledge can support planning of both restoration projects and management actions, 

increasing population viability and minimizing costs. 

Keywords 

individual-based model, ecological restoration, genetic diversity, population viability  



Individual based model  !  73
!

Introduction 

 Ecological restoration is the process by which ecological processes are recovered with 

functional and resilient communities, and with species that are able to adapt to changing conditions, 

while delivering ecosystem services (Alexander et al. 2011). Restoration is now acknowledged as a 

global environmental priority and many international initiatives are aiming to restore millions of 

hectares around the world. The New York Declaration on Forests is one such initiative that has set a 

goal to restore 350 million hectares of forest landscapes by 2030 (Suding et al. 2015). The proposed  

massive re-conversion of pasturelands and agricultural fields into native forest ecosystems is seen 

as necessary to mitigate future extinctions debt in regions with high levels habitat loss and 

fragmentation (Banks-Leite et al. 2014). In such conditions, ecological restoration efforts have to 

support the conservation and reestablishment of populations with enough genetic diversity to persist 

overtime and to increase landscape connectivity to facilitate plant and animal gene flow in human-

modified landscapes (FAO 2015). 

 In such landscapes, zones selected for forest restoration can become repopulated through 

artificial establishment of trees (i.e., active restoration) or by natural colonization and secondary 

succession (i.e., passive restoration; Holl & Aide 2011). Although humans can reestablish native 

tree species populations in degraded sites, their persistence may be threatened by various factors, 

e.g. micro-site limitations for seedling regeneration (Bertacchi et al. 2016), competition with 

invasive species (D'Antonio & Meyerson 2002), pollination and dispersal limitation (Dixon 2009), 

genetic-mediated processes (Thomas et al. 2014), and climate change (Harris et al. 2006). Most 

studies on restoration strategies and methods focus on solving immediate problems regarding 

timing of planting and on short-term persistence (Bertacchi et al. 2015). Mid- and long-term 

interventions however, tend to be more difficult to predict and are less often studied, and can be 

seen as less financially viable (Hobbs et al. 2011), despite their value and importance to long-term 

conservation (Suding et al. 2015). Mid- and long-term sustainability depends on a species’ and 

populations’ ability to persist and evolve in response to environmental changes, which depends on 

intra-specific population level genetic diversity (Young et al. 1996; Booy et al. 2000). Populations 

with reduced genetic diversity tend to show reduced fitness, limited potential for adaptation (Reed 

& Frankham 2003), and have a higher probability of extinction due to diseases or environmental 

stochasticity (Mills 2013). Thus, using seeds with high genetic diversity in restoration projects is 
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one of the main strategies for effective restoration and successful persistent conservation in the face 

of environmental change. 

 Genetic issues have been mostly considered in active forest restoration, where populations 

and mother trees can be selected for seed harvesting (Bozzano et al. 2014; Basey et al. 2015). In 

general, restoration practitioners aim to increase the genetic viability (i.e. reduce extincion risk) of 

reintroduced populations by using seeds from local populations to increase the chances of having 

local adaptations to the environmental conditions where restoration will be carried out. Also, many 

mother trees are also targeted to maximize the genetic diversity of the founding population (Lesica 

& Allendorf 1999; Hufford & Mazer 2003; McKay et al. 2005). However, even projects established 

with seedlings produced according to a well-planned program of seed collection are generally 

small. Thus, these populations are subject to the same risk of loss of genetic diversity as populations 

that have been reduced by habitat loss and fragmentation (Sezen et al. 2007; Chazdon 2014). In all 

these situations, a reduction in heterozygosity and allelic diversity over subsequent generations is 

expected in tree populations from restoration sites. The smaller the population, the faster we expect 

to observe the negative effects of genetic drift on genetic diversity (Mills 2013). The loss of genetic 

diversity in these populations associated with inbreeding depression increases the risk of extinction 

(Frankham et al. 2005) and, consequently, restoration failure. 

 This issue has worried researchers and practitioners and there are different recommendations 

for the minimum population size necessary to avoid inbreeding depression in the context of 

restoration actions in both the short-term (5 generations) and long-term (perpetuity). An effective 

population size (Ne) of 100 is considered necessary for short-term conservation and Ne = 1000 is 

considered necessary for long-term conservation (Frankham et al. 2014). For restoration purposes, 

it has been suggested as a general rule that seeds should be sampled from at least 30 trees (Sebbenn 

2006) or 50 trees (Basey et al. 2015) to recover genetic diversity and plant populations with high 

enough effective population size (Ne ≥ 100). These recommendations were based in population 

genetics theory; however there is a lack of studies validating or testing their feasibility. For 

example, in tropical forest restoration efforts, where over 100 native tree species have been 

reintroduced in restoration plantations (Rodrigues et al. 2011), reaching this minimum number of 

mother trees per species (i.e., 30-50) can be difficult. There are constraints in both ecological 

(limited number of mother trees of low density species in fragmented landscapes) and financial 
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terms (time and resources spent to find numerous mother trees and collect their seeds) (Brancalion 

et al. 2012). 

 Additionally, it is challenging to undertake experiments to test the effects of different levels 

of initial genetic diversity on the viability of tree species populations reintroduced in restoration 

areas, due to financial costs, long periods of time required, and difficulty to control for other 

potentially confounding environmental factors. Moreover, many particularities of restoration make 

this decision more complicated. Restoration fragments may have different levels of isolation from 

other populations, which also vary among species in a fragment, because of different abilities of 

pollinators and seed dispersers to mediate gene flow (Rudnick et al. 2012). 

 The use of computer models is one potential solution for this problem (Epperson et al. 

2010). The process through which we evaluate data and models of populations to estimate 

likelihoods of population persistance over an arbitrary amount of time is called population viability 

analysis (PVA) (Boyce 1992). Currently, there is an unfortunate lack of programs that simulate the 

population dynamics of tree species, which have long life spans, and overlapping generations, and 

that also model spatial and temporal genetic variation. Also, most PVAs assessments ignore or 

inadequately model genetic factors as the effect of inbreeding depression on total fitness (Frankham 

et al. 2014). 

 In this study we describe a novel individual-based model to simulate the spatio-temporal 

genetic and population dynamics of trees in restoration plantations, and show one case study as an 

example of application of the model. Using this model we evaluate the effect of different levels of 

initial genetic diversity on the population viability in a short and mid-terms in a tropical tree 

species. 

The model 

 The description of our model follows the ODD (Overview, Design concepts, Detail) 

protocol of Grim et al. (2006, 2010). 

 The initial genetic diversity can be represented by the minimum number of mother trees 

from which is it necessary to collect seeds to establish a restoration plantation. Indeed, this is one of 

the parameters over which management agencies have the greatest control when designing and 
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implementing restoration strategies. In this context, the specific questions this model was designed 

to address are:  

1. Do the initial population size and the initial genetic diversity in a restoration project affect the 

viability of a population in a restoration area? 

2. What is the minimum number of mother trees from which seeds should be collected for a 

restoration forest plantation to ensure sustainable levels of genetic diversity in the restoration 

population? 

Entities, state variables and scales 

 The entities of this model are individual trees. Each individual is characterized by the 

following four state variables: (1) spatial location; (2) age; (3) developmental stage (seed, juveniles 

and reproductive adult); and (4) genotype. Spatial location describes the x and y coordinates in a 

two dimensional lattice. Tree age can vary from zero to the maximum age that the species can reach 

and increases by one unit (year) at each time step. The simulations start with all individuals at 3 

years old, as in a recent plantation. Seeds have age of zero, and germinated seedlings have age of 

one. Individuals are considered juveniles before they reach reproductive age and adults are 

reproductive until the end of life with the same reproduction rate (Fig. 1). For each independent 

locus, each genotype is composed by a pair of alleles, represented by a pair of integer numbers from 

one to the maximum number of alleles initially defined. Genotypes represent independent 

codominant loci, with no linkage disequilibrium (Fig. 2). Any codominant markers can be 

simulated.  

Figure 1. Probability of survival to the next year as a function of age. 
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 The time step in the model is 1 year. The spatial extent of the simulated area consists of a 

single isolated forest fragment (patch) undergoing restoration. The area shape, always a narrow 

rectangle, was defined to simulate narrow riparian forests, where there is no light limitation. 

Process overview 

 The model starts by defining the initial parameters, which include age, spatial location, and 

genotypes of individuals in the initial planted population; the duration (time), and the number of 

simulation repetitions (rep); the number of loci in the input dataset; the model area dimensions 

(xDim, yDim); pollen (dPollen) and seed (dSeed) dispersal distances; number of seeds produced by 

each tree (avSeed); maximum age an individual can reach (maxAge); at what age the individual 

becomes an adult (adultAge); maximum number of pollen donors for each offspring (maxFathers); 

germination probability (germ); selection factor (selection); and the time steps when output files 

should be saved (output_years). 

 Each cycle starts with the determination of each individual’s survival rate, as a function of 

age. This model consider hermaphrodite tree species, so all individuals can be either mother or 

father of an offspring, and self-fertilization is possible. The reproduction step starts by defining for 

each mature tree (i.e., mother), which mature trees (i.e., fathers) are present within the pollen 

dispersal range. If the number of potential mates is fewer than the maxFathers, all mates contribute 

to pollination. Otherwise, a number of potential mates equivalent to maxFathers are randomly 

selected to be pollen donors. By default, potential mates as sampled with a uniform probability 

distribution, but other probability distributions may be used. Alleles are inherited following 

Mendelian inheritance.  

 Seed location is defined by the seed dispersal range and a randomly selected dispersal 

direction. If a seed falls at the same location of an existing adult or out of the study area, it does not 

survive. Otherwise, each seed has the predefined initial probability of germination, which can be 

decreased as a function of its inbreeding coefficient (Richards 2000). In species that produce a large 

number of seeds from which only a few germinate and survive to juvenile phase, as is the case of 

most trees, many seeds do not germinate and many seedlings do not survive by chance, so genetic 

drift has a stronger effect than selection. Thus, selection on germination and survival is not strong 

enough to purge deleterious alleles efficiently (Keller & Walter 2002). In these situations, 
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inbreeding depression can affect seed and seedling viability (Naito et al. 2005), germination success 

(Richards 2000), and survival rates (Ishida et al. 2005). The assumptions for estimating the 

inbreeding effects on fitness in this model are: 1) an increase in inbreeding by 10% leads to a 

reduction in fitness components of 5-10% (Frankel & Soulé 1981); 2) a large number of loci are 

affected by inbreeding depression (Ayroles et al. 2009; Chaves et al. 2011); and 3) a sample of loci 

allows inference about the inbreeding coefficient of a population (Chaves et al. 2011). When more 

precise information about the effects of inbreeding on fitness is available in the literature, they can 

be incorporated in this model.  

 If the seed germinates, the new individual is included in the tracking list of active 

individuals with an age of one. Probability of survival to the next year for both juveniles and 

reproductive individuals is assessed in each time step as an increasing function of tree age. Dead 

individuals are removed from the population. 

 At the end of the time steps defined by the user (output_years), a summary table with 

information on living individuals (location, genotypes, age and survival probability) is recorded. 

After the end of simulations, the output datasets are transformed to the FSTAT (Goudet 1995) 

format and the genetic summary statistics are calculated for all individuals with age ≥ 1, using 

Hierfstat (Goudet 2005). Summary statistics are: number of individuals, total number of alleles, 

allelic richness, observed and expected heterozygosity under Hardy-Weinberg Equilibrium (HWE), 

and inbreeding coefficient, with confidence interval. 

Design concepts 

1. Basic concepts: The basic principles of this model are that the population is isolated from others 

(no migration), mutation rates are negligible, individuals mate with others within the pollen 

dispersal range, which means that the population is not panmictic, and the germination probability 

is associated with the inbreeding coefficient of each seed. Mortality in all other life-stages is age 

dependent. 

2. Emergence: Population size is the total number of individuals with minimum age of 1 year old 

and is a result of mating rules (see below), survival probabilities and the amount of space available. 

So the population size is not explicitly modelled and is an emergent property of the simulation. The 
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frequency and number of alleles change as a result of genetic drift, which is random although 

influenced by the assumptions of dispersal and overall model spatial scale, thus it is also an 

emergent property that reflects in the genetic diversity in the population. 

3. Stochasticity: Randomness in the model operates through mating and survival. Mates are sampled 

at random from the adults available within the pollen dispersal range. Other than distance from the 

mother tree, there are no other rules for mating preference. Seed’s genotypes are defined by random 

sample from the parents’ genotypes. Each seed's location is defined in the seed dispersal range from 

the mother tree, according to the rules described in the seed dispersal sub-model, which includes 

randomness in dispersal direction. Death is represented as a probability that depends on the age of 

the individual (Fig. 1). 

Initialization 

 Before each simulation, the parameters of the initial population planted in the area must be 

defined. The saplings genotypes are drawn depending on the number of mother trees from which 

they descend and may vary from a pool of individuals in HWE to a full sibling pool. The saplings 

can be planted homogeneously or randomly distributed in the area, or aggregated in one or more 

clusters. 

  

Input 

 The input dataset consists of a tabular delimited table with individual location (x, y), 

genotypes, and age (Fig. 2). There is no limitation for number of individuals and the size of the 

restoration area.   

Figure 2. Input data example with 10 individuals, their location (x, y), genotypes (li_1, li_2) and 
age. 
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Sub-models 

 The model contains four sub-models: (1) reproduction; (2) seed dispersal; (3) seed 

germination; and (4) age-specific mortality. 

1. Reproduction: This sub-model simulates sexual reproduction among individuals in the pollen 

dispersal distance range. The model does not simulate asexual reproduction or gene flow from 

other, non-explicitly simulated populations. Reproductive events occur once a year, all individuals 

in the adult life stage are considered reproductive, all have the same potential for pollen and seed 

production, and there is no pollen limitation. The pollen donors are randomly sampled from the 

pool of individuals in the pollen dispersal distance range. We assumed Mendelian inheritance of 

alleles, as the model’s loci represent independent nuclear genetic marker loci (i.e., no linkage). 

Selfing was allowed in the simulations. 

2. Seed dispersal: We assumed isotropy (no preferential direction for dispersal), so the seed location 

is defined by the dispersal distance function and a random value from one to 2π radians for the 

direction. All seeds produced in a year germinate or die, so there is no soil seed bank formation. 

3. Seed germination: We modelled the probability of seed germination as a function of inbreeding. 

Thus, in this sub-model, the probability of germination is estimated using all neutral loci, wherein if 

the inbreeding coefficient (FIS) is greater than zero, an increase in inbreeding leads to a reduction of 

germination rate in the scale defined by the selection factor (gRate = g*(1- selection*FIS)), where g 

is the probability of germination with no inbreeding. So, a selection factor of 0.5 means that an 

increase in inbreeding by 10% leads to a reduction of 5% in germination rate. If inbreeding 

coefficient is zero or negative, it has no effect on germination rate. 

4. Mortality: The mortality probability was modelled as an age dependent function. All individuals 

die when reach the maximum age. For each individual in each time step, a random number is 

sampled from a uniform distribution between zero and one. If the number is larger than the survival 

probability (sRate), the individual dies. 
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Model development 

 We wrote the program script in R (R Core Team 2015). General model schematic is 

described in Fig. 3 and the program script can be found in supporting information and also at 

GitHub (https://github.com/sujiips/Restoration_PVA.git). 

Figure 3. Model flow chart. 

Sensitivity analysis 

 Sensitivity analyses were performed to quantify the relative importance of each model 

process on simulation results and to how uncertainty in parameter values affects the model 

reliability. All simulations for sensitivity analysis used a restoration area of five hectares with a 

https://github.com/sujiips/Restoration_PVA.git
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presumed seed source of a large population and using reference parameter values from 

Centrolobium tomentosum (Fabaceae), a tree species from an intermediate stage of ecological 

succession from a tropical forest. Each simulation was run for 500 time steps and each condition 

was repeated 250 times. The number of repetitions was defined to minimize the effects of stochastic 

variation on the estimated parameter mean (Fig. 4).  

Figure 4. Mean values for the mean number of alleles in the population (A) for each number of  
simulation repetitions. The bars represent the 95% confidence intervals and the scattered line 
indicates 250 repetitions. 

 We performed a local sensitivity analysis (Railsback & Grimm 2012), varying the parameter 

values one at a time. The range to vary the parameter values were defined following the rule of 

thumb (+/- 5%), except for some parameters, for which a 5% variation was too small to produce 

noticeable response. In this situation, a higher percentage of variation was selected. 

Model application 

 C. tomentosum (Fabaceae) was selected as the species for the exposition of this simulation 

model because this is a tree species widely used in restoration projects for which demographic and 

genetic data are available. This species is frequently used for forest restoration because it is a 

typical gap species, that reproduces once a year, with relatively fast growth, and has symbiotic 

associations with nitrogen fixation microorganisms (Carvalho 2005; Pagano 2008). This species has 
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a wide range of distribution over the Atlantic Forest and some parts of Cerrado, global Biodiversity 

Hotspots.  

 We sampled this species in a 20-ha restoration plantation established in a riparian buffer 

around a reservoir from 1988 to 1990, in Iracemápolis municipality, São Paulo State, in the Atlantic 

Forest region of southeastern Brazil (W 47º 31' 09", S 22º 34' 36") (Brancalion et al. 2014). The 

restoration model in this area was the use of a combination of species from different successional 

stages in modules of planting (6 pioneers and 2 early secondary, 1 late secondary or climax). This 

forest patch was also established with high species diversity (140 species), most of them native 

(77%), chosen from available seedlings in commercial sources (Rodrigues et al. 1992). 

 We simulated restoration areas with different initial conditions to determine the effect of the 

following factors on genetic diversity and short and mid-terms population viability in restoration 

zones: 1) initial population size; 2) initial genetic composition (number of alleles and genotypic 

frequencies). 

 All the simulated patches were riparian areas (long and narrow), with 30 m width. We 

simulated areas with 5 ha, 10 ha and 20 ha. The initial population size was dependent of the patch 

area, because the current recommendations for forest restoration is to plant 20 ind/ha. Simulations 

were run over 30, 50, 100, 250 and 500 years. The initial genetic composition was determined by 

the seed source characteristics: 

1. One isolated tree: seeds produced from 100% selfing; 

2. Partially isolated trees: patches with five and 10 trees, seeds collected from one to 10 mother 

trees and different number of pollen donors; 

3. Forest fragment: patch with a large population, seeds collected from one to 10 mother trees and 

different number of pollen donors. 

 Maximum tree age is limited to 89 years. This parameter was estimated according to 

Laurance et al. 2004, using mean values of growth rate and functions based on both canopy and 

emergent trees. Growth rate for C. tomentosum was estimated using diameter measures of trees 

from restoration areas with different known ages (Silva 2013). The probability of surviving to the 

next time step was estimated using a demographic study of adult individuals from a natural remnant 

forest fragment (Barreto 2015; Silva 2013) and it follows a Weibull distribution. As there were no 

available data for seedlings and saplings survival rate, a linear function was utilized. The function 
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describes an increase of 0.2 in survival rate every year, from one year old until the age of six, for 

which there are information about survival (Fig. 1). 

 As C. tomentosum is a hermaphrodite species, all individuals can be either mother or father 

of an offspring, and self-fertilization is also possible. The main pollinators are large bees with long 

distance flight capacity. The maximum distance of pollen flow (1000 m) was based on information 

on flight patterns and mean maximum flight distances of large bees, that are the main pollinators of 

C. tomentosum (Pasquet et al. 2008; Hagen et al. 2011). The pollen donors are randomly sampled 

from the pool of individuals in the pollen dispersal distance range, following the pollinators' 

foraging behaviour (Keasar et al. 1996). The species has a mixed mating system, and the maximum 

number of pollen donors for each mother tree is 20 trees (Chapter 2).  

 C. tomentosum has one or two seeds enclosed in a large (~ 9 g each) thorny samara (winged 

fruit), that does not remain in permanent seed banks and are dispersed by wind for short distances 

(at most 100 m away from the mother tree, following a Weibull distribution),so most seeds fall 

under the canopy of the mother tree (Cavalho 2005; Aidar & Joly 2003; Chapter 2). The 

germination probability is 0.7 (Carvalho 2005). The parameter values used for the simulations are 

in Table 1. 

 To produce the input datasets, we first simulated a large original population (N = 1000), 

with all loci in Hardy-Weinberg Equilibrium (HWE), and the same number of loci and alleles that 

would be used in the simulations (10 loci, 5 alleles). From this original population, we sampled the 

individuals for the simulations with initial genetic composition in HWE. For the simulations with 

saplings from one mother tree, we sampled one individual from the original population to be the 

mother. This mother was the source of the first allele of each locus of each sapling used in the 

plantation. The second allele of each locus was randomly sampled from the original population 

allele pool, simulating panmixia. For the simulations with saplings from more that one mother tree, 

we applied the same procedure as for one mother, but using more sampled individuals as mothers. 
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Table 1 – Parameters and values of the model 

  

Results   

Sensitivity analysis 

Our results indicated that our model is not overly sensitive to any of the parameters tested (Table 2). 

Each parameter had different effects on mean number of alleles (A), inbreeding coefficient (FIS) and 

proportion of extinct populations. The parameters with the strongest effect were maximum age that 

a tree can reach, germination rate, selection pressure value, and average number of seeds produced 

by each tree on the number of alleles (Table 2).  

Parameter Value/ Distribution Reference

Reproduction

Sexual maturity age age = 10 years Brancalion (comunication)

Maximum pollen dispersal 
distance

Dpollen ≤ 1,000 m Pasquet et al. 2008; Hagen et 
al. 2011

Pollen donors n ≤ 20 Chapter 2

Seed dispersal

Maximum seed dispersal 
distance

Dseed ≤ 100 m Chapter 2

Seed dispersal function Weibull distribution (k = 0.6942; λ = 81.4807) Chapter 2

Germination

Germination probability 
function

FIS ≤ 0, g = 0.7 
FIS > 0, g = 0.7*(1 - 0.5*FIS )

Carvalho et al. 2005; Frankel 

& Soulé 1981; Richards 2000

Mortality

Maximum age age = 89 years Laurance et al. 2004; Silva 
2013

Survival rate age = 1, sRate = 0.1 
1 > age ≤ 5 years, sRate = 0.2*age - 0.3 
age > 5 years, sRate = Weibull function (k = 
0.7631, λ = 7.8216) 
age > 89, sRate = 0
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Table 2. Values for number of alleles (A), inbreeding coefficient (FIS) and proportion of extinct 
populations estimates in the local sensitivity analysis and the sensitivity coefficient (S). 

Reference values: Adult age = 10 years; Pollen dispersal = 1000 m, Maximum number of pollen donors = 20, Seed 
dispersal = 100 m, Germination rate = 0.7, Selection pressure = 0.5, Maximum age = 89 years, Average number of 
seeds per tree = 70. 

A FIS
Proportion of 

extinct populations

Variable Value Variation value S value S value S

Reference condition * 1.83 0.396 0.480

Adult age 5 yrs - 50% 2.52 1.37 0.204 -0.383 0.388 -0.184

Adult age 15 yrs + 50% 1.66 -0.35 0.473 0.155 0.676 0.392

Pollen dispersal 500 m - 50% 1.79 -0.08 0.458 0.125 0.560 0.160

Pollen dispersal 1500 m + 50% 2.00 0.33 0.354 -0.084 0.532 0.104

Maximum number 
of pollen donors

15 - 25% 1.88 0.18 0.362 -0.136 0.484 0.016

Maximum number 
of pollen donors

25 + 25% 1.95 0.48 0.347 -0.194 0.528 0.192

Seed dispersal 50 m - 50% 2.98 2.30 0.097 -0.597 0.136 -0.688

Seed dispersal 150 m + 50% 1.55 -0.56 0.531 0.271 0.676 0.392

Germination rate 0.6 - 14% 1.50 -2.37 0.592 1.376 0.752 1.904

Germination rate 0.8 + 14% 2.52 4.80 0.168 -1.594 0.260 -1.540

Selection pressure 
value

0.475 - 5% 1.93 2.01 0.358 -0.751 0.448 -0.640

Selection pressure 
value

0.525 + 5% 2.01 3.62 0.321 -1.502 0.520 0.800

Maximum age 85 yrs - 5% 1.71 -2.81 0.424 0.641 0.592 2.492

Maximum age 93 yrs + 5% 2.14 6.86 0.272 -2.758 0.440 -0.890

Average number of 
seeds per tree

74 - 5% 2.04 3.58 0.346 -0.878 0.436 -0.770

Average number of 
seeds per tree

67 + 5% 1.595 -5.549 0.512 2.723 0.576 2.240
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Model application 

 Both initial population size and initial genetic composition had an impact on population 

viability and long-term maintenance of genetic diversity (Table 3). We observed that larger 

populations resulted in smaller effects of genetic drift, measured here as loss of total number of 

alleles (Fig. 5a). Especially in larger initial populations (200 and 400 individuals), an increase in the 

number of pollen donors reduced the rate of loss of alleles (Fig. 5a). Initial genetic composition had 

a stronger effect on the inbreeding coefficient in populations from the small areas (Fig. 5b). 

Sampling seeds from only one isolated tree resulted in a larger increase in inbreeding and in 

stronger bottleneck effects. Selection against overall homozygosity at the germination phase kept 

the inbreeding coefficient small or moderate, even with fixation of alleles at some loci (Fig. 5b). 

Populations in smaller areas that were founded by seeds from only one isolated mother tree had a 

greater probability of extinction (Fig. 5c). 
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Discussion 

This model is a tool for understanding the effects of initial genetic diversity on the viability 

of populations in forest restorations. It can be applied in studies of tree species with different 

characteristics, from tropical and temperate forests, as observed in the case study.  

 The use of stochastic space–time simulations has many advantages over mathematical 

models, because we can incorporate stochasticity, individual variation, adaptive traits, and other 

complexities important in biological systems (Epperson 2010). Individual-based models may be 

particularly useful for planning reintroduction and conservation of endangered species in restoration 

areas. Habitat loss and population disruption by fragmentation are two of the main causes of species 

extinction (Fahrig 1997), so the introduction of endangered species in restoration projects can be a 

complement to the species conservation in natural remnant areas. Nevertheless, endangered species 

are usually found in small population sizes and in low densities, which hampers seed sample both 

for ex-situ and in-situ conservation. In addition, sometimes it is unfeasible to find the minimum 

number of source trees previously suggested by the literature (Basey et al. 2015). This model is a 

valuable tool for decision-making since it may help restoration and conservation practitioners to 

design seed sampling for introduction of endangered species in restoration areas. For most tree 

species, some of the information required for using our model is not available, but the availability 

of datasets on native species autoecology and population structure is growing fast (Kattge et al. 

2011; Canhos et al. 2014; de Lima et al. 2015). In addition, some information can be extrapolated 

from species with similar ecological and demographic characteristics. In addition, there is more 

information on the literature for key species, and for threatened species (Sousa-Baena et al. 2013). 

 This model accounts for overlapping generations and effects of inbreeding depression, 

which are present in many tree species (Angeloni et al. 2011). The effects of inbreeding depression 

were summarized in this model in the germination process, that is when the negative effects of 

inbreeding are strong and were more carefully measured (Ishida et al. 2005; Naito et al. 2005; 

Chaves et al. 2011). Although there is evidence that inbreeding may reduce survival and 

reproduction in different life stages (Hufford & Hamrick 2003; Naito et al. 2005), there is a lack of 

studies testing the magnitude of the effect on later life stages. When this information become 

available in the literature, we can incorporate the effects of inbreeding depression on different life 

stages.  
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 This model was designed for simulations of populations in the short and mid-terms (tens of 

generations), because it does not account for mutation and for changes in selective pressures over 

time. It also focuses on only one isolated population, so it is not possible to evaluate effects of inter-

population gene flow. These limitations may be overcome using the results obtained from our 

model as input or assumptions for other simulation programs that account for mutation, migration 

and natural selection in changing environments. A list of such programs can be found in Epperson et 

al. (2010).  

 For C. tomentosum, if the restoration area is long and narrow, as in riparian forests, the 

initial population size is an important characteristic in order to consider to reduce the risk of genetic 

bottlenecks, i.e. abrupt changes in allele frequency and loss of genetic variation (Allendorf et al. 

2013). In general, the smaller the area, the smaller the initial population size and the greater should 

be the concern with the genetic composition of the seed pool to maintain high genetic diversity and 

increase the long-term viability. Consequently, small restoration patches may not sustain genetic 

conservation of many tree species, so ecological prioritization models have to determine which 

species should be used according to their conservation value, importance for provisioning 

ecosystem services, supply timber and non-timber forest products, and other targeted functions in 

restoration. In all sizes of restoration area, planting seeds from only one isolated tree results in a 

very strong bottleneck effect, higher extinction rate and genetic diversity loss. This knowledge may 

support planning of both restoration projects and management actions, increasing population 

viability and minimizing costs.  

 Simulation studies have been performed for diverse applications in forest restoration 

projects, such as to assess the impact of ecophysiological parameters on species resilience of forest 

stands (Pietsch & Hasenauer 2002); to understand the influence of management on forest structure 

over time (Corvington et al. 2001); and to predict habitat quality in restoration plantations (Pausas 

et al. 1997). Simulations are a particularly useful tool for examining population persistence in forest 

restoration in situations where empirical manipulation of the system is either too costly financially, 

or simply limited to the rarity and conservation status of the taxa being examined. Nonetheless, 

integration of simulation and empirical studies will further serve to inform decision making 

processes and ultimately improve the probability of success and long term persistence of restoration 

efforts. As far as we are concerned, this is the first model to simulate population persistence in 
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restoration sites with a population biology and genetic approach, and has a great potential to support 

seed collection, restoration implementation and adaptive management, but requires further tests, 

adaptations, and improvements to better address specific goals and conditions of restoration 

projects. 
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General discussion 

 Overall, our results indicated that it is possible to recover genetic diversity of Centrolobium 

tomentosum, a allogamous tree species, in ecological restoration areas. However, it is fundamental 

to guarantee high diversity in the seed pool used in for restoration, avoiding founder effect, and to 

restore connectivity among fragments to increase effective population size and reduce the impacts 

of genetic drift.  

 C. tomentosum is an outcrossing species (t̂m = 0.98), with limited seed dispersal and long 

pollen dispersal distance. These characteristics, associated with self-compatibility (Aidar 1992), 

relatively fast growth (Carvalho 2005), and symbiotic associations with nitrogen fixation 

microorganisms (Pagano 2008) make this species very useful in restoration projects. This species’ 

seeds probably will not disperse naturally to distant fragments, but if they are actively planted in a 

restoration area, they will grow fast and reproduce even if pollination services are not yet well 

recovered. When pollinators are present, the genetic diversity in the population can be maintained 

by cross-fertilization, and gene flow among populations can increase diversity and slow down 

genetic drift effects.  

 The low gene flow by seed dispersal causes a strong spatial genetic structure in the 

population, when we analyze only DNA maternally inherited. This low gene flow by seeds is 

partially compensated by the pollen dispersal kernel (exponential power distribution), which 

indicates that a large amount of pollen is dispersed through long distances, and the high frequency 

of outcrossing in the species. The spatial genetic structure estimated with nuclear DNA, inherited 

from both parents is weaker and similar to other species with long distance gene flow (Vekemans & 

Hardy 2004; Hardy et al. 2006; Dick et al. 2008). 

 We detected a larger number of haplotypes from chloroplast DNA in both restoration areas, 

when compared to natural remnants. This indicates that the seedlings used in the restoration projects 

came from different provenances, probably from more than one population. This result is similar to 

the observed for two tree species from Cerrado, in which the high allelic richness indicated that 

seeds for restoration were sampled from different fragments (Rodrigues 2013). The high genetic 

diversity in the seed pool resulted in weak founder effect, which is reflected in the high levels of 

allelic richness and heterozygosity observed in microsatellite markers in adult individuals. We also 

observed private alleles in juveniles in restoration areas, which is an evidence of pollen flow from 
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neighbouring areas. This indicates that pollination services are being also recovered in the areas and 

that pollinators may connect populations from different patches.  

 We also found similar levels of inbreeding comparing restoration areas populations to 

natural remnants. The analysis of individuals pooled according to their life stages (juvenile and 

adult) showed that the mating system is probably not being affected by disturbances as 

fragmentation. It also shows that there is no evidence of pollination service deficit in restoration 

areas. The similar patterns of spatial genetic structure corroborates these results. Other studies of 

genetic diversity and inbreeding levels in other species in the same areas showed the same patterns 

as the presented in this study. A study that investigated the genetic diversity in monospecific stands 

of restoration areas found lower genetic diversity than in natural remnants (Neto et al. 2014). 

Estimates of representativeness of our samples showed that inbreeding and coancestry were not 

affecting negatively the effective population size. This indicates that these populations have high 

probability of maintenance of genetic diversity over generations (Vencovsky & Crossa 2003; 

Raposo et al. 2007). 

 Using crossing rates and coancestry information, we estimated the minimum number of 

trees from which sample seeds for restoration purposes. Our results indicate that sampling seed 

from 39 trees would produce a seedling pool with effective population size of 100, the 

recommended for short-term conservation (Frankham 2014). This number agrees with other studies 

that support restoration planning (Sebbenn 2006; Basey et al. 2015). 

 Although the ideal situation is to restore populations with a large effective population size, 

to increase long term viability (Bozzano et al. 2014), in some cases it is not feasible or possible. 

Many tree species from tropical forests are rare or occur in low densities (Hubbell and Foster 1986; 

Slik et al. 2015), which hampers the achievement of the minimum number of seed-trees. Besides, 

some restoration areas are very small (< 10 ha) and may not have enough space for an effective 

population size of 100. Our individual based model can support management and restoration 

planing in these situations. It is possible to simulate populations in areas of different sizes, and with 

different initial genetic diversity to assess the effects of these parameters on population viability. 

This model accounts for overlapping generations and effects of inbreeding depression, which are 

present in many tree species (Angeloni et al. 2011), and are not yet well explored in other 

simulation programs (Epperson et al. 2010). 
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 We performed a case study with C. tomentosum to validate the model and test the program. 

The results obtained agreed with to the expected, according to population genetics theory. 

Analyzing fragments from five to 20 ha, we observed that initial genetic diversity levels have 

stronger effect on populations from small areas. Different levels of initial genetic diversity were 

translated in the model as the number of seed-trees and pollen donors that contribute to the seed 

pool used in the restoration. We observed that using seeds from one isolated tree has strong negative 

impacts on population viability. We also observed that there is no difference on viability sampling 

seeds from 10 or 20 trees, if the number of pollen donor is large. 

 This model can be used for different species, with different ecological and demographical 

characteristics to better understand the effects of initial genetic diversity on population viability. 

Simulating different populations, and a large range of area sizes and genetic diversity can lead to 

generalizations that may be used to support decision-making in restoration plans.  
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Conclusion 

 Centrolobium tomentosum is an allogamous species, with biparental inbreeding, probably 

due to the spatial genetic structure. The seed dispersal is limited to tens of meters, with very rare 

longer distance dispersal, due to the large size and weight of the fruits (samaras). The long flight 

capacity of the pollinators (large bees) enables that a large proportion of pollen is dispersed over 

hundreds of meters, and some may be dispersed over thousands of meters. Both seed dispersal and 

pollen flow have effect on spatial genetic structure. The long distance pollen dispersal partially 

compensates gene flow dispersal limitation by seeds.  

 It is possible to recover high genetic diversity in populations planted in restoration areas, 

since the seeds used in the plantation have high genetic diversity. The maintenance of genetic 

diversity over generation may be enhanced with large effective population sizes and gene flow 

among neighbouring fragments. It is also possible to recover inbreeding levels, providing the 

pollination service is also restored.   

 The model developed in this project can be used to simulate populations with different 

characteristics and lead to generalizations. This is especially useful for restoration and management  

planing in tropical forests, where there are many species still poorly understood. 
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A Mata Atlântica é um dos biomas mais importantes e mais ricos em biodiversidade do 

planeta, entretanto, é um dos mais ameaçados e muitas espécies de plantas e animais 

estão em extinção.  

Ocorre principalmente junto ao litoral brasileiro, do Rio Grande do Sul ao Rio Grande do 

Norte, chegando até o interior do país, abrangendo ainda parte da Argentina e do Paraguai. 

É formada por diversos tipos de vegetação nativa, sendo estas: as Florestas Ombrófilas, 

Florestas Estacionais Deciduais e Semideciduais, os Mangues, as Restingas e os Campos 

de Altitude.  

Nela vivem milhares de espécies de plantas e animais, algumas são endêmicas, isto é, 

somente ocorrem na Mata Atlântica, em nenhum outro lugar do mundo. Além disso, este 

ecossistema contribui para a preservação de rios e nascentes de sete das nove bacias 

hidrográficas brasileiras, para o controle do clima e é fonte de alimentos entre outros (A 

MATA ATLÂNTICA, 2012). 

A destruição da Mata Atlântica é um dos mais alarmantes problemas de conservação 

ecológica do mundo. Para preservarmos esse bioma precisamos conservar as florestas 

existentes, juntamente com sua diversidade de espécies e também restaurar as áreas já 

degradadas. Além da diversidade de espécies, também é importante conservar a 

mailto:mizucchi@apta.sp.gov.br
105

mailto:claudiattanasio@apta.sp.gov.br
mailto:sujiips@gmail.com


www.aptaregional.sp.gov.br 
 

ISSN 2316-5146                                                                     Pesquisa & Tecnologia, vol. 10, n. 1, Jan-Jun 2013  

diversidade genética, ou seja, garantir que os organismos de uma espécie que vivem em um 

local não sejam todos idênticos. Desse modo, aumentamos as chances da espécie resistir a 

mudanças ambientais e a doenças, evitando a extinção. 

O Brasil é considerado um dos países com maior diversidade vegetal, abrigando 55 mil 

espécies catalogadas, sendo que 4 mil espécies vegetais são utilizadas com fins medicinais, 

resultado da observação e manejo da flora por povos tradicionais. No entanto, a 

conservação e a exploração sustentável desses recursos genéticos dependem dos estudos 

sobre a  diversidade genética (ZUCCHI, 2009). 

Os objetivos desta pesquisa são: estudar a diversidade genética de quatro espécies de 

árvores nativas da Mata Atlântica com potencial medicinal; e comparar a diversidade das 

espécies alvo em áreas de matas nativas e áreas em processo de restauração florestal, 

para orientar ações efetivas para conservação destas árvores nativas.  

As espécies alvo deste estudo são: o Araribá, a Cabreúva, a Guaçatonga e o Pau-jacaré. Os 

fragmentos naturais são a Mata de Santa Genebra e a Mata Ribeirão Cachoeira em 

Campinas (SP), Estação Ecológica de Caetetus em Gália (SP). Os fragmentos restaurados 

ficam em Cosmópolis (SP) e Iracemápolis (SP). Estudos como este fazem parte de um 

conjunto de ações que contribuem para a preservação da natureza, visando a 

sustentabilidade do nosso planeta. Esta iniciativa faz parte do programa BIOTA financiado 

pela FAPESP (processo 2011/50296-8). 

Dentre as diversas ações do projeto envolvendo a linha de estudo da diversidade genética, 

temos também o foco na educação ambiental em que se trabalha em colaboração com as 

escolas de Piracicaba com atividades didáticas além de plantio de mudas de espécies 

nativas. Um folder com informações sobre as espécies estudadas neste projeto foi 

elaborado e encontra-se disponível no site do projeto (www. 

genomicadaconservacao.com.br/folder). Todos os resultados obtidos nesta pesquisa estão 

sendo divulgados no site www.genomicadaconservacao.com.br  

A seguir apresentamos as principais características das espécies alvo deste trabalho. É 

importante ressaltar que nenhuma planta deve ser utilizada como medicamento sem 

recomendação médica, uma vez que podem existir efeitos tóxicos, dependendo da forma 

como a mesma é utilizada.   

Araribá (Centrolobium tomentosum Guillem ex. Bentham) 

http://www.genomicadaconservacao.com.br/
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As árvores desta espécie pertencem à família Fabaceae, podem alcançar até 35m de altura 

e 1m de diâmetro (Fig. 1A). Sua madeira é utilizada na construção civil e naval e na 

carpintaria. Ocorre na Mata Atlântica dos Estados de Goiás, Minas Gerais, Mato Grosso do 

Sul, São Paulo e Paraná.  

Estudos revelaram a presença propriedades medicinais, ainda em estudo, com possível 

atividade antialergênica e antiinflamatória e compostos com atividade anti-leishmania ( 

ARAUJO  et al., 1998).  

Cabreúva (Myroxylon peruiferum Linnaeus, Carl von f. ) 

É uma espécie da família Fabaceae que pode alcançar até 20m de altura (Fig.1B). Sua 

madeira é utilizada na fabricação de móveis, na construção civil, entre outros. Seu óleo 

essencial é utilizado pela indústria cosmética. Ocorre em todo Brasil, principalmente na Mata 

Atlântica, nos Estados do Espírito Santo, Minas Gerais, São Paulo, Paraná, Mato Grosso e 

Goiás. 

Da cabreúva é extraído o bálsamo-do-Peru, empregado na medicina popular como 

analgésico para infecções do trato urinário e respiratório, diabetes e contra a micobactéria 

gram-negativa Helicobacter pylori, além de ser usado pela indústria cosmética e de 

perfumaria. De suas folhas foram isoladas substâncias que apresentaram atividade frente à 

Mycobacterium tuberculosis, M. avium e M. kansasii (CARVALHO, et. al.; 2008). Também 

há registro de atividade de extrato da espécie contra Streptococcus pyogenes, Shigella 
sonnei e Staphylococcus aureus (GONÇALVES, et. al.; 2005).  

Guaçatonga (Casearia sylvestris Swartz) 

Conhecida também por Erva-de-lagarto e Café-bravo, pertence à família Salicaceae e pode 

atingir até 6m de altura (Fig.1C). Tem importância para o repovoamento de áreas 

degradadas. Pode ser usada para arborizar a cidade, porque tem tamanho médio e raízes 

profundas, portanto não estragam as calçadas.  

Sua madeira pode ser utilizada como lenha, na construção civil e na marcenaria. Ocorre em 

todo o Brasil, em praticamente todas as formações florestais. A espécie possui várias 

substâncias de interesse. Casearia sylvestris Sw. (Salicaceae), ou guaçatonga, é uma 

espécie vegetal de ampla ocorrência no Cerrado e na Mata Atlântica que apresenta diversas 

propriedades medicinais. Os diterpenos clerodânicos produzidos por esta espécie têm 

despertado o interesse da indústria farmacêutica, e alguns deles (denominados casearinas) 

107



www.aptaregional.sp.gov.br 
 

ISSN 2316-5146                                                                     Pesquisa & Tecnologia, vol. 10, n. 1, Jan-Jun 2013  

foram patenteados por pesquisadores japoneses como agentes antitumorais (ITOKAWA et 

al., 1990).  

Pau-jacaré (Piptadenia gonoacantha (Mart.) J. F. Macbr.) 

Planta da família Fabaceae, alcança de 10 a 30m. A árvore cresce rápido, inclusive em 

solos pobres e degradados, por isso é muito usada na recuperação florestal. Além desse 

uso, serve também para a produção de carvão, de lenha com aroma agradável e de mel. 

Ocorre principalmente em regiões de Mata Atlântica.  

É pouco frequente em zonas de transição com Floresta das Araucárias e é rara no Cerrado. 

Ocorre nos estados do Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo e Paraná. O 

tronco destas árvores se assemelha com um jacaré (Fig. 1D).  

Estudos fitoquímicos da casca, dos galhos e das folhas do Pau-jacaré, elaborados por 

Carvalho et al. (2010), encontraram diversas classes de componentes químicos, como o 

aspefenamato, terpenóides e flavonóides. Esta última classe é reconhecida pelos efeitos 

antiinflamatórios e antialérgicos, e, para P. gonoacantha, destaca-se a apigenina, que atua 

no combate ao câncer, o que evidencia o alto potencial medicinal da espécie. 

  

 

 

Figura 1 – A- árvore do Araribá, com altura expressiva; B – a Cabreúva; C- a Guaçatonga; D 

-o caule característico do Pau-Jacaré. 
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ABSTRACT 
The advance of scientific knowledge in various areas of molecular ecology has allowed the adoption of new 
strategies, particularly in forest restoration. The fusion of multidisciplinary areas and the implementation of 
management methodologies in order to get better results in forest restoration are current realities. In order to 
review the main ideas about the role of molecular techniques in the service of ecology restoration, this paper 
outlines how forest recovery can benefit from genetic and genomic plant population studies. The next challenges in 
conservation genetics can be brought by the quest for more efficient forest restorations from the point of view of 
biodiversity as well as the ecological dynamics as a whole. It is believed that in the coming years we will observe 
integrated strategies in molecular ecology with specific methodologies for restoration in tropical forests. 
Keywords: forest restoration, conservation genetics, molecular ecology, population genetics. 
 

Como pode ecologia molecular contribuir para a 
restauração florestal? 
 

RESUMO 
O avanço do conhecimento científico nas várias áreas da ecologia molecular tem permitido que novas estratégias 
sejam adotadas, nomeadamente, na disciplina de restauração florestal. A fusão de áreas multidisciplinares e a 
implementação de metodologias no sentido de buscar melhores resultados na restauração florestal são realidades 
atuais. Objetivando rever as principais ideias sobre o papel das técnicas moleculares a serviço da restauração 
ecológica, o presente trabalho traça como a recuperação das florestas pode ser beneficiada pelos estudos de genética 
e de genômica populacional de plantas. Os próximos desafios na genética da conservação podem ser traduzidos por 
desenvolvimento de projetos de restauração mais eficientes, seja do ponto de vista da biodiversidade como da 
dinâmica ecológica. Acredita-se que nos próximos anos observemos estratégias integradas de ecologia molecular 
com metodologias específicas para restauração de florestas tropicais. 

Palavras-chave: restauração florestal, genética da conservação, ecologia molecular, genética de populações. 
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INTRODUCTION 
The new Brazilian forest code was approved by 
the national congress in 2011, when it had high 
repercussion and occupied considerable media 
time. The new legislation was sanctioned with 
several vetoes by the president and new discussion 
and votes in congress brought up a delicate 
subject. In this great debate about the Brazilian 
forests, we understood that policies should be 
reviewed, giving goals and duties to reach 
sustainability and preservation of our natural 
resources. Moreover, such decisions brought to the 
population the concern of how to deal with 
resources and which goals should be targeted. For 
many, the “Rio + 20” World Forum in 2012, 
brought a few concrete actions of forest 
conservation, but left profound environmental 
questions to second plan to many governments. 
The country has a high biological richness 
(Giulietti et al., 2005; Vitule, 2012), which has 
been unsustainably exploited over the years, 
especially with the development of Brazilian 
agriculture. The legal reserves, water springs 
zones and other permanent preservation areas 
bring benefits to all sectors, including 
agribusiness. According to Galdolfi (2011), 
discussion of this topic is vast and complex, and 
legal reserves are a strategic and invaluable tool 
for the economic, social, scientific and 
technological development of Brazil. 
The restoration of areas that have been degraded 
by human activity is essential for the sustainability 
of the environment and allows for the connection 
of forest patches. Thus, it becomes necessary to 
map priority areas for restoration and 
conservation, aiming to establish a policy that 
reconciles agroecology productivity and 
environment conservation (Rogalski et al, 2003; 
Joly et al, 2010). 
With the increasing demand for recovery and 
management of these areas, it is essential that 
theoretical concepts about the composition, 
structure and functioning of tropical ecosystems 
are undertaken for the construction of appropriate 
technologies for these actions. Besides the concern 
for forest restoration, it is also important to recover 
the complex networks of inter and intraspecific 
interactions and to make possible the long-term 
conservation of habitats and organisms (Koskela et 
al., 2003). 
The fusion of concepts and practices of population 
ecology and population genetics is essential to 
guide the actions to be undertaken in the field of 

biology conservation (Kageyama & Gandara, 
1998). However, despite the broad theoretical 
basis for population genetics studies found in the 
literature (Allendorf & Luikart, 2006), the 
application to issues such as conservation and 
management of natural populations disturbed by 
anthropogenic factors is still recent (Lowe et al., 
2005), especially in Brazil (Kageyama & Gandara, 
2004). More incipient are the studies on 
restoration ecology to assist the definition of more 
efficient strategies for reforestation of degraded 
areas (Engel & Parrotta, 2001; Leopold et al., 
2001), especially as regards the restoration of 
genetic diversity of tree populations (Rodrigues et 
al., 2009). The use of molecular markers in 
population genetics studies allowed the 
development of a new way of analyzing 
population patterns and relationships between 
individuals of the same species. The Molecular 
Ecology is showing up as a study area with several 
applications, among them, the conservation of 
species, ecosystems and forest restoration. The 
purpose of this article is to underline how 
Molecular Ecology can be applied to forest 
restoration and what is the return of these 
investments in the quality of forest restoration 
projects. 
 
Molecular biology in the service of forest 
restoration 
Molecular markers are one of the main tools in 
Molecular Ecology studies. They are landmarks in 
the chromosome, where it is possible to verify the 
genetic polymorphism at the DNA level 
(Grattapaglia & Ferreira, 1998). These markers are 
used to understand the population’s genetic 
diversity and structure, and also to determine the 
reproductive system of these species, to test 
hypotheses of migration patterns, and to 
understand how the processes of gene flow and 
genetic drift are affected due to landscape 
fragmentation (Heywood & Iriondo, 2003; 
González-Martínez et al., 2006). 
In modern projects of forest restoration it is 
essential to take into account the richness of 
species and their genetic diversity, considering the 
consequences of the level of genetic diversity 
located in the target area. Thus, population 
genetics is critical to the design and 
implementation of any restoration project. It is 
directly related to the population’s ability to 
evolve in response to environmental changes and 
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to adapt to the current environment in which it is 
found (Falk et al., 2006). 
Genetic effects resulting from habitat loss are 
important factors to be considered in the study of 
genetic diversity. Since the anthropic action on 
forest areas usually reduces the size and number of 
the populations, the effects of genetic drift over 
them become more pronounced. Genetic drift is 
the change in genetic composition of populations 
as a result of chance. Common consequences of 
habitat loss and isolation of forest fragments are 
reduced genetic variability (He), smaller effective 
population size (Ne), and the possible increase of 
inbreeding (FIS) among loci (Hartl & Clark, 1997). 
These genetic effects can have serious 
consequences for plant populations, such as 
reduced reproductive success and ongoing 
population reduction (Nason & Hamrick, 1997). 
Another important issue to be discussed is the 
influence of deforestation on the genetic structure 
of populations, i.e., how the populations of each 
species are grouped considering their genotypes. 
Knowledge of the population genetic structure is 
essential to conservationists so that they can make 
changes in magnitude and desired direction. The 
replacement of the original vegetation by an 
anthropogenic landscape, in most cases by pasture 
or crops for agriculture, negatively influences the 
ability of species dispersion and consequently 
gene flow (Nm) between populations. In this 
scenario, it is commonly observed the increase of 
genetic structure (Hamrick, 2004; Haag et al. 
2010), usually calculated by the estimator Ө (Weir 
& Cockerham, 1984). From the viewpoint of 
metapopulation, reduced gene flow between 
demes increases the effect of stochastic events 
such as genetic drift, which may radically reduce 
the persistence time of species (Hanski, 1991). 
Forest restoration is an important tool to minimize 
the isolation of populations. If the restored areas 
work effectively as a stopping point for pollinators 
and seed dispersers, gene flow can be restored and 
the effects of genetic drift can be slowed, i.e., 
reducing the loss of genetic diversity (Young et al., 
1996). 
The current restoration model accepted by the 
scientific community has an emphasis on the 
recovery of ecological processes that lead to the 
development of plant communities (Brancalion et 
al., 2009). However, there is great concern about 
the diversity of species, but little attention is given 
to intraspecific diversity. Generally, seedlings 
introduced in reforestation areas have low genetic 

diversity, because they come from few seed 
matrices, which can generate the same negative 
consequences of fragmentation (Brancalion et al., 
2009). Recent studies indicate that it is of vital 
importance to select source populations with high 
genetic diversity and collect a random sample of 
seeds, respecting the minimum number of trees 
(Kageyama & Gandara, 2000). For an effective 
size of at least 50 individuals in the restored 
population, it is suggested to collect seeds from at 
least 12 matrices (Brancalion et al., 2009) 
Even if forest restoration has been done with care 
to maintain genetic diversity, it is also important to 
note if this diversity can be maintained in the long 
term, since there is a downward trend over the 
generations. Inbreeding and fine-scale structure, 
on the other hand, are the most immediate 
indicators of the impact of the reduction in 
population and the restriction of seed dispersal 
(Lowe 2005). 
The reforestation of degraded areas is critical 
when considering the current state of 
fragmentation of native ecosystems in the country. 
Reed and Frankham (2003) found a significant 
correlation between genetic variation and the 
likelihood of long-term survival of a population 
and that adaptability is reduced in small 
populations due to genetic drift and inbreeding 
depression. Considering the case of the Atlantic 
Rain Forest, which was reduced approximately to 
11.7% of the original area of the biome in 
fragment areas (Ribeiro et al., 2009), forest 
restoration based on studies of population genetics 
can be seen as another tool for conservation. 
 
Next challenges 
Since the 1980’s it is understood that biodiversity 
loss has been caused by man, and currently most 
of the scientific community agrees that the main 
challenge of this century is to prevent this loss of 
diversity at different levels: genes, species and 
ecosystems (Rands et al., 2010). Understanding 
"what, where and how to save" has gained priority 
in conservation biology, especially in species that 
inhabit major threatened hotspots (Brandon et al., 
2005; Scheffers et al., 2012). Therefore, the 
conservation of species relies heavily on the 
concept of endemism, as well as the number of 
existing species. These decisions are best viewed 
using biogeographic methods that aim to 
understand critically the patterns of spatial 
distribution of organisms and respond to how these 
patterns were formed (Carvalho, 2009). 
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The rich native biodiversity of the state of São 
Paulo, Brazil, is threatened by changes in 
vegetation cover and effects of habitat 
fragmentation (Tabarelli et al., 2005; Brancalion et 
al., 2009). The Virtual Institute of Biodiversity 
BIOTA-FAPESP is a research program that 
focuses on conservation of biomes and one of its 
missions is to identify priority areas for forest 
restoration, with the goal of connecting forest 
fragments of native vegetation and select areas to 
create new conservation units (Joly et al., 2010). 
Integrated into this program, our group develops a 
contribution to the project entitled "Conservation 
Biology of native Atlantic Rainforest with 
phytotherapic potential: A genetic approach to 
forest restoration." One objective of this research 
is to understand the main differences between the 
remaining areas and areas undergoing restoration 
under the genetic point of view of some tree 
species using molecular markers to evaluate these 
differences. 
With the development of microsatellite markers 
for forest species in this project, diversity and 
population genetic structure may be assessed. 
Furthermore, the use of a large number of samples 
and the application of markers such as AFLP, 
SNP, among others, in order to obtain a larger 
number of markers will, in an innovative way, 
compare the genomics of populations from 
degraded areas and forest remnants. The current 
project is expected to evaluate a possible 
methodology for enrichment of genetic diversity in 
previously reforested areas and contribute strongly 
to the field of molecular ecology applied to forest 
restoration. 
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Abstract 

New international commitments foster large-scale restoration projects. The long-term ecological 

success of these emergent projects will rely on the genetic diversity of reintroduced or colonizing 

species, which is a limiting factor in highly-fragmented landscapes. Despite the paramount role of 

genetic diversity for species persistence, the effectiveness of genetic diversity recovery in 

restoration programs is poorly known. By assessing the genetic diversity of four model tree species 

in restored and conserved sites in the Atlantic Forest of Brazil, we found that restoration areas show 

similar levels of neutral genetic diversity and inbreeding to those observed in natural forest 

remnants. Based on these findings, we advocate the use of high levels of genetic diversity in 

restoration in order to support biodiversity conservation in human-modified landscapes. We 

demonstrate how ecological restoration can be a powerful tool for not only supporting the 

conservation of ecosystems and species, as well documented in the literature, but also genetic 

diversity – the basic constituent of biodiversity. 

Introduction 

 Recent international commitments have paved the way for the implementation of large-scale 

ecological restoration programs in the upcoming decades (Latawiec et al. 2015). The success of 

such programs will rely on the increase of ecological integrity and long term sustainability of 

restoration (Suding et al. 2015). One of the key aspects underlying ecological integrity and 

sustainability is genetic diversity, which influences the chances of reintroduced or naturally 

colonizing populations persisting in restored sites without further human assistance (Mijangos et al. 

2015). However, the role of genetic diversity in restoration processes represents a knowledge gap 

for the effective implementation of restoration programs.  

 Threatened ecosystems, where severe habitat loss and fragmentation increase the risk of 

extinction after habitat change, require special attention to genetic issues (Kuussaari et al. 2009). 

Following drastic reductions in population size and gene flow, some species may go extinct due to 

increased genetic load, i.e. accumulation of deleterious recessive alleles; reduced fecundity, and 

hindered adaptability as a result of genetic drift and inbreeding (Young et al. 1996, Aguilar et al. 

2008). Consequently, protecting existing fragments, increasing habitat cover, and reconnecting 
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habitat patches through restoration interventions represent a major strategy for mitigating loss of 

biodiversity (Possingham et al. 2015). Threatened ecosystems are also dominated by second-growth 

remnants. In the case of tropical forests, over 70% of their global cover is constituted by naturally 

regenerated fragments (FAO 2010). Tree populations in second-growth tropical forests can initially 

have low levels of genetic diversity reflecting a strong founder effect, and shift towards genetically-

rich populations in the mid- and long-term due to gene flow at the landscape level (Sezen et al. 

2005, 2007). This gene flow between remaining and restored patches may be compromised in 

threatened ecosystems due to reduced habitat cover and severe fragmentation. This scenario 

enhances the need for restoration projects aimed at planting populations with higher levels of 

genetic diversity, in order to ensure some level of autonomous viability among the restored 

populations, until gene flow is restored. Consequently, the implementation of restoration projects 

that use an initial pool of individuals representing high levels of genetic diversity can help achieve 

both ecological sustainability for restored patches and provide a source of alleles and genes for 

remaining populations.  

 In spite of its strategic importance for conserving biodiversity in threatened ecosystems, 

ecological restoration has been mostly recognized and supported by society because of its role for 

improving ecosystem services (Palmer & Filoso 2009). For instance, 86% of restoration projects 

implemented in Colombia focused in watershed services (Murcia et al. 2015), a trend also observed 

in other restoration projects in Latin America (Brancalion et al. 2014). Fostered by society 

awareness, restoration policies have been focused in reestablishing ecosystem functions in degraded 

areas with importance for soil and water protection. Overall, 60% of studies included in a review 

about restoration success were implemented to comply with environmental laws with clear links 

with ecosystem services provisioning, like the Clean Water Act in USA (Ruiz-Jaen & Aide 2005). 

Payments for ecosystem services (PES) schemes reinforced this trend. A review about PES in the 

Brazilian Atlantic Forest indicated that only 5 out of 79 projects focused on biodiversity 

conservation, while carbon stocking and watershed protection were the main targets (Guedes & 

Seehusen 2011). While a growing body of empirical and scientific evidence has supported the role 

of restoration for recovery of ecosystem services, the same cannot be said about its ability to 

reestablish similar composition levels to reference ecosystems (Rey Benayas et al. 2009; Bullock et 

al. 2011; Suganuma & Durigan 2014). When genetic diversity is considered, the knowledge gap is 
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even bigger, which limits science-policy interface for the inclusion of genetic concerns as part of 

the strategic plan for the implementation of global restoration commitments in the coming decades. 

 In the Brazilian Atlantic Forest, one of the top five global biodiversity hotspots, the 

predominance of landscapes with less than 10% habitat cover illustrates the need to upscale 

restoration programs to safeguard biodiversity (Banks-Leite et al. 2014). Restoration projects aimed 

at high levels of species diversity have been implemented in the last two decades in this biome 

(Rodrigues et al. 2011), but with little attention to the genetic diversity of reintroduced species. The 

same is true for the restoration of other species-rich ecosystems worldwide, in which restoration 

practitioners are still struggling to address taxonomic and functional diversity, with concerns over 

genetic diversity remaining a relatively minor issue.  

 We assessed the genetic diversity of four tree species in old restoration plantations and 

conserved forest remnants. We tested the following hypotheses for four functionally different 

species to evaluate the potential for restoration projects to provide sources of alleles among 

fragments through gene flow: (i) there is substantial genetic differentiation among study 

populations due to the approach adopted by early restoration projects and the geographic distance 

between natural areas; (ii) restored populations have lower genetic diversity and higher inbreeding 

levels than populations from natural forest remnants. 

Methods  

Study sites  

 We studied four areas within the Brazilian Atlantic Forest, in the state of São Paulo: two 

areas undergoing restoration and two natural remnants (Figure 1). All fragments selected for this 

study lie in the seasonal semideciduous forest domain, within the Atlantic forest complex, with Cwa 

Köppen climate classification. 
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Figure 1. Description of studied sites and species in the Atlantic Forest region of São Paulo state, 
Brazil. 

 Both restoration sites were established in riparian buffers previously occupied by sugarcane 

plantations in the Iracemápolis (Rest.1) and Cosmópolis (Rest.2) municipalities. The restoration 

approach for these areas has been based on establishing high species-diversity (see details in Garcia 

et al. 2014), and the landscape matrix in which they occur is dominated by sugarcane plantations, 

which has very low native forest cover remaining (5.6% for Iracemápolis and 10.5% for 

Cosmópolis municipalities).  
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 The natural remnants were selected to represent a large conserved ecosystem and a 

fragmented, disturbed forest patch, in order to contrast the genetic status of populations in 

conserved areas with those in remnants subject to strong fragmentation, which predominately 

comprise the Atlantic Forest region (Ribeiro et al. 2009). Caetetus Ecological Station (Cons.) served 

as the reference ecosystem, as it is a well-preserved and large forest patch (2170 ha), surrounded by 

agricultural areas and pastures (Durigan et al. 2000). The Municipal reserve of Santa Genebra 

Forest (Frag.) represented the disturbed forest and is the largest urban, semideciduous, seasonal 

forest fragment in São Paulo State  (252 ha). In contrast to the Cons., Frag. has been compromised 

by human-mediated disturbances (Farah et al. 2014).  

Study species 

 We studied the tree species Casearia sylvestris (Salicaceae), Centrolobium tomentosum 

(Fabaceae), Myroxylum peruiferum (Fabaceae) and Piptadenia gonoachanta (Fabaceae), which 

represent different ecological, pollination, and seed dispersal groups (Figure 1). They were also 

selected because there were a sufficient number of adult individuals in each site for genetic 

diversity analysis and spontaneously regenerating seedlings in the understory of plantations for 

further studies on gene flow. These species were initially planted in Rest.1 using nursery grown 

seedlings produced in the same farm where the plantation was implemented, and in Rest.2 using 

seedlings produced in the forest nurseries of the Botanical Institute of São Paulo and of the 

Department of Water and Electric Energy of São Paulo State. Unfortunately, there is no information 

regarding the number of populations and mother trees from which the seeds used to produce the 

seedlings were collected. However, such pioneer restoration projects were known to focus in 

taxonomic plant diversity, without concerns about genetic diversity (Rodrigues et al. 2009). 

Sampling 

 We sampled a total of 468 adult individuals across the four species in all sites (with an 

average of 31.2 individuals, min = 14, max = 50, for each species and sampling locality). Whenever 

it was possible, we sampled adult trees present in the original planting lines of restoration sites in 

123



Supplement material  !  116
!

order to better include planted individuals in our samples. We collected leaves or a disc of vascular 

cambium from each tree for DNA extraction. 

  

Molecular markers and genotyping 

  We quantified the genetic diversity of the four selected species using previously developed 

microsatellite markers. Seven loci were genotyped for C. tomentosum (Sujii et al. 2015), eight for 

M. peruiferum (Schwarcz et al. 2014), eight for P. gonoachanta (Grando et al. 2015) and eight for 

C. sylvestris (Cavallari et al. 2008). Genetic markers were enriched using the Polymerase Chain 

Reaction (PCR) following the amplification conditions described in the aforementioned studies. We 

genotyped amplified fragments on a Li-Cor 4300 DNA Analyzer (Li-Cor Biosciences, Lincoln, NE, 

USA) using the 50-350bp IRDye700 and 800 (Li-Cor) ladder and identified alleles  with the Saga v.

3.3 software (Li-Cor). 

Genetic analyses  

 We examined genetic population structure using the multilocus clustering method 

implemented in STRUCTURE 2.3.3 (Pricthard et al. 2000) under an admixture model with 

correlated allele frequencies. We performed 50 independent Markov Chain Monte Carlo runs for the 

number of clusters (K) ranging from one to 10 with 1×106 iterations following a burn-in period of 

5×105 iterations. The uppermost hierarchical level of genetic structure was identified using K 

inferred with the ad hoc ΔK statistic (Evanno et al. 2005), which best explained the genetic data. We 

also quantified population subdivision by estimating FST (proportion of the genetic variance 

between subpopulations relative to the total genetic variance) using the R package diveRsity 

(Keenan et al. 2013). Confidence intervals were obtained with 1,000 bootstrap replicates. We used 

expected (HE) and observed heterozygosities (HO) and allelic richness (Ar) to estimate the genetic 

diversity of each species in each sampling locality. We also estimated inbreeding coefficients (FIS) 

for the populations within each sampling locality using the diveRsity (Keenan et al. 2013) and 

PopGenKit (Paquette 2012) R (R Core Team 2015) packages. Confidence intervals were obtained 

with 10,000 bootstrap replicates. 
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Results  

 The multilocus clustering analysis indicated that populations from natural remnant forests 

were genetically differentiated as expected due to the large distance between them (Figure 2). 

Populations from restoration areas were comprised of up to three distinct genetic clusters, some of 

which were similar to natural remnant populations. Although we observed genetic structure among 

populations within species, the exact pattern of differentiation was not the same for all species. 

Each sample site for P. gonoacantha represented a genetically unique population, with almost no 

admixture. Conversely, for C. tomentosum, we detected only two distinct genetic groups, with one 

being present in all populations and the other in one remnant and one restoration area. Populations 

of M. peruiferum and C. sylverstris were composed of either two or three genetic groups, with 

substantial admixture.  

Figure 2. Genetic structure of all species and populations determined by the multilocus clustering 
method of STRUCTURE. Each column corresponds to a single individual and each colour 
represents a particular genetic assignment. 
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 Overall, allelic richness was slightly lower or did not differ between restoration areas and 

natural remnants. Earlier successional species (C. sylvestris and P. gonochanta) showed the largest 

reduction in allelic richness between restored and natural populations compared to other species 

(Figure 3). In contrast, across all species the general pattern of estimated expected heterozygosity 

under Hardy-Weinberg Equilibrium and inbreeding coefficients for populations from restoration 

areas was not different from natural remnant populations (Figure 3).  

 

Figure 3. Estimates of genetic diversity (Ar - allelic richness; and HE - expected heterozygosity 
under Hardy-Weinberg Equilibrium) and of inbreeding coefficients (FIS) for each species. Blue: 
populations from natural remnants; Red: populations from restoration areas. 

Discussion 

 Overall, we observed that populations in restoration sites had comparable levels of genetic 

diversity to those in natural forest remnants and were not exposed to higher levels of inbreeding 

depression. This pattern was consistent across all species, despite particularities detected for each 

taxa. Such favourable results indicate that it is fairly possible to reestablish high levels of genetic 

diversity when restoring degraded areas using seedling plantation and direct seeding – the most 
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commonly used restoration techniques described in the literature (Ruiz-Jaen & Aide 2005), and that 

it may support the persistence of reintroduced populations in the plant community by reducing the 

chances of genetic load even in the context of highly fragmented landscapes.  

 The persistence in restoration sites of reintroduced tree species with ecological importance 

for maintaining forest structure – like those included in this work – is one of the aspects to be 

considered to meet the call made by ecologists to policy makers to consider long term restoration 

sustainability as a planning principle (Suding et al. 2015). The healthy regeneration of such species 

in the plant community can help preventing biomass collapse even in the context of dispersal 

limitation, a common ecological barrier preventing the recolonization of large-seeded, late-

successional tree species in tropical forest restoration projects (Reid et al. 2015). Ultimately, 

safeguarding the persistence of canopy tree species in restoration sites can help maintaining some of 

the functions they mediate, like carbon stocking and soil protection, with direct implications for 

ecosystem services. Establishing populations with high levels of genetic variation can also be a 

strategy to face global climate change.  

 Genetic variation in regions of the genome responsible for adaptation is required for 

populations to evolve in response to environmental changes (Allendorf et al. 2013). Although high 

genetic diversity in neutral regions of the genome does not guarantee adaptive potential, there is a 

significant correlation between neutral levels of genetic diversity and population fitness (Reed & 

Frankham 2003). Therefore, similar levels of genetic diversity in restored and natural remnant 

forests indicate that the fitness of restored populations may be robust to inbreeding. It is noteworthy 

that for this analysis we examined only adult individuals, which in the restoration areas represent 

the initially-planted saplings and are not the result of reproduction after restoration. These results 

are evidence that the seedlings used in restoration plantations were not more inbred than the ones 

from well preserved natural remnants. Although the long term maintenance of high levels of genetic 

diversity is uncertain, given the evident limitations imposed by severe fragmentation, it was clear 

that restoration was not depauperated in genetic diversity compared to reference sites, and this is a 

good beginning. 

 However, the higher reduction in allelic richness in early successional species sampled in 

restoration sites suggests that some species may be more susceptible to bottleneck effects and lose 

alleles at a faster rate than overall heterozygosity, which indicates that the challenge of restoring 
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genetic diversity can vary among species. The observed differences in genetic structuring across 

species may be due to idiosyncratic ecological and historical species characteristics such as 

demography, life history, evolutionary history and genomic architecture (Duminil et al. 2007), as 

well as different seed sources used for each species. Both allelic richness and genetic structuring 

can be manipulated in restoration projects due to two main strategies, namely the establishment of 

restoration projects in portions of landscape where gene flow is favoured and the selection of 

populations and mother trees to collect seeds. This first strategy can be operationalized through the 

selection of restoration sites based on landscape connectivity, using prioritization maps already 

available for the Atlantic Forest (Tambosi et al. 2014). The second can be achieved through a well-

designed seed collection program to increase genetic diversity of seed lots, which can include 

selecting populations and mother trees and mixing seed lots obtaining from different sources to 

maximize genetic diversity (Brancalion et al. 2012). Therefore, managing genetic diversity is not 

only important but also viable in Atlantic Forest restoration and, potentially, elsewhere. 

 Establishing populations with high genetic diversity in restoration sites can be useful for 

supporting the persistence of restored populations, as well as for conserving populations in forest 

fragments, since these early restoration areas may be suitable nodes of forest connectivity in the 

landscape matrix and be a source of new alleles for previously isolated populations. Populations 

from restoration fragments can facilitate gene flow by acting as stepping-stones for genetic material 

bound for surrounding forest fragments, which in turn mitigates genetic drift in small restoration 

patches and in previously isolated tree populations (Figure 4). Since some restoration areas may be 

gene sources in fragmented landscapes, they could be used as key landscape components to support 

conservation genetics of species threatened by fragmentation. This reinforces the importance of 

maintaining and creating habitat patches for increasing landscape connectivity and consequent gene 

flow among remaining and reintroduced populations (Possingham et al. 2015), adding value to 

recent frameworks that propose prioritization of restoration sites to increase landscape connectivity 

(Rappaport et al. 2015). Such restoration patches could also serve as germplasm conservation sites 

to safeguard genetic diversity of vulnerable species, which might be particularly relevant in 

drastically transformed environments (Breed et al. 2012) such as the Atlantic Forest. 

128



Supplement material  !  121
!

Figure 4. Expected effects of restoring small forest fragments with high genetic diversity. 

 Conservation genetics research should go beyond describing the ongoing trend of 

fragmentation-driven genetic impoverishment, and explore the new avenues offered by the 

emergent field of restoration genetics. Ecological restoration can be a powerful tool for not only 

supporting the conservation of ecosystems and species, as is well documented in the scientific 

literature, but also genes – the basic constituents of biodiversity. 
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