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Resumo
Essa tese discute quatro modelos para problemas cujas respostas sejam curvas contínuas.
Para a modelagem utilizam-se modelos semi-paramétricos de auto-modelagem. A forma
comum às curvas é obtida por spline enquanto as especificidades das curvas são obtidas
por modelos lineares mistos. Com isso, incorporam se as diferenças de amplitude e de
deformação temporal a forma geral não-paramétrico.

Todos os modelos propostos têm em comum serem modelos de regressão de auto-modelagem.
Eles diferem nas características dos dados em que são aplicáveis: covariaveis invariantes em
tempo; censura à direita; modelos de curva com riscos proporcionais; ou riscos acelerados.

Para cada modelos, é apresentado um estudo de simulação e uma analise de dados reais.

Palavras-chave: Não-paramétrico, spline penalizada, dados longitudinais, semi-paramétrico.



Abstract
We discuss in this dissertation models for problems in which responses are continues
curves. We employ a semi-parametric model as follows. The common shape of the curves
is modeled by spline. The specificities of the curves are modeled by linear mixed models
so that different amplitude and time deformations may be incorporated to the underlying
shape.

All the four proposed models are self-modeling regression models. They differ in their appli-
cations; time-invariant covariates; right censoring; proportional hazard cure; or accelerated
hazards.

For each model a simulation study and an analysis of real data are provided.

Keywords: Non-parametric, penalized spline, longitudinal data, semi-parametric.
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1 Introduction

In many longitudinal studies such as electrocardiogram readings, growth curves
or serum glucose levels following a meal, the response to be modelled is a continuous curve
measured over time. The common factor in all of these examples is that the response
curves share a similar shape, e.g., the same number of extrema or inflection points located
relatively near some common region. The data can be represented as Yij for i � 1, ..., N
and j � 1, ..., ni, a sample of N individuals, curves, or experimental units, with the ith
individual measured at ni times tij . In such circumstances the interest may be to estimate
the shape of the response curve itself or the value of a response feature such as the slope
at a particular point or the location of a maximum.

Lawton, Sylvestre and Maggio (1972) proposed the self-modeling approach
to such data. Their method is based on the assumption that all individual’s response
curves have a common shape and that a particular individual’s curve is some simple
transformation of the common shape curve. The self-modeling model is

Yij � υi tµ0 rκiptijqsu � eij, (1.1)

where, Yij is the observed response on subject i at time tij. υipxq is a monotone inverse
link transforming the regression function and κipxq is a monotone transformation of the
time axis. µ0 is a shape function that is common to all the curves, and εij are unobserved
errors which may be correlated within subjects. In this dissertation, we will consider the
Shape-Invariant model (SI model) introduced by Altman e Villarreal (2004) which is a
special case of their self-modelling regression method. The model assumes a common
underlying regression function µ0 and transformations of both the time ptq and response
pY q axes. The SI model is

Yij � α0i � A1iµ0pβ0i �B1itijq � εij (1.2)

Here α0i, A1i, β0i and B1i are unknown parameters which may be functions of observed
covariates. Often A1i and B1i are constrained to be positive, in which case we set A1i �

exppα1iq and B1i � exppβ1iq. In this paper, we parametrize in this exponential form.

When µ0 is modelled by a parametric function, this can be fitted as a nonlinear
mixed or fixed effects model. However, when a parametric form is not known, when
goodness of fit to a parametric form is an issue, or for other reasons, it may be convenient
to fit a non-parametric function for µ0. Here we consider only nonparametric fits for µ0.
In this model, α0i and α1i (or A1iq will be referred to as the response scale parameters
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and β0i e β1i (or B1iq will be referred to as the time scale parameters, although in some
contexts we will model them as random effects.

The SI model has several advantages over fitting a separate nonparametric
curve to each subject:

1. Differences among the subjects due to time-invariant covariates are captured by the
parameters. We will demonstrate that when the parameters can be modelled by
a linear mixed model inference about the parameters can proceed as if µ0 were a
known regression function.

2. Curve summaries such as time until maximum, maximum response, area under the
curve, time to return to baseline, and most other common summaries can be expressed
as a functional of µ0 which does not depend on the covariates and a function of the
parameters which depends on the covariates. Hence, covariate effects on these curve
summaries are efficiently expressed by covariate effects on the parameters.

3. The assumption that all subjects have the same response profile allows pooling of
information about the profile over subjects. This produces a much better fit for
subjects and better interpolation.

4. When the response is multivariate, use of the SI model, with a possibly different
shape function for each response, allows a common setting for comparing the effects
of covariates across responses (whether the shape is fitted parametrically or non-
parametrically). For example in Altman e Villarreal (2004), in the nestling growth
study described later in the paper, a dietary supplement (calcium) was given to some
of the parent birds, and the effects of this supplement on several aspects of nestling
growth are of interest. Using the SI model, we can meaningfully determine whether
the effects of the supplement on bone growth were similar to the effects on body
mass, for example. This type of comparability across responses might be particularly
interesting in very high dimensional problems such as time course studies in gene
expression experiments

We are interested in the case when there are time invariant covariates X and Z
(possibly multivariate) which might have an effect on the parameters. In particular, letting

θ1i � pα0i, α1i, β0i, β1iq or θ1i � pα0i, A1i, β0i, B1iq , (1.3)

we consider a mixed model θik � gpXi,Zi;φk, ψikq � ηik where i refers to the subject k
refers to the particular component of the vector θ, g is a parametric function, φk are fixed
effects associated with X and ψik are random effects associated with Z. For example, if
the subjects are measured as part of a randomized complete block (RCB) design, we would
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fit the randomized complete block model to each of the response and time parameter.
Models 1.2 and 1.3 are extensions of the semi-parametric model of Zeger and Diggle (1994)
which can be thought of as a SI model with α1i � β0i � β1i � 0.

Kneip and Gasser (1988) and Kneip and Engel (1995) explored the problem
of fitting the parameters as fixed effects with no covariate. Kneip and Gasser (1988) also
considered identifiability. Capra and Muller (1997) demonstrated that nonparametric
smooth functions of the parameters can also be fitted. Lindstrom (1995) tackled the
problem of estimating the response and time scale parameters as random effects. Ke
and Wang (2001) consider self-modelling regression as a specific case of semi-parametric
regression with mixed effects.

There are several special cases of the model that we might consider. In many
cases, t � 0 has a special meaning, such as the onset of treatment or birth, and in those
cases β0i may be fixed at zero. In gene expression data, we might expect some genes
to be promoted while others are repressed, so we do not exponentiate. The errors εij
can be modelled parametrically or non-parametrically and can be serially correlated or
heteroscedastic, which is useful in the longitudinal setting

In many situations, inference focuses on the parametric effects on one or more
summary statistics. Many of the commonly used summary statistics can be expressed as
functions of the parameters and a functional of the shape. For example, if µ0ptq has a
critical point at t0, then the ith curve has a critical point at pt0 � β0iq{exp pβ1iq and the
value of the ith curve at the critical point is α0i � exp pα1iq µ0pt0q. Hence such summaries
as time until optimum, the value at the optimum and return to baseline can be expressed
as functions of the parameters. Since the functional of the shape does not vary with
the treatment and covariate effects, inferences about the treatment and covariate effects
depend only on the parameters. Use of the SI model for inference is therefore very similar
to the use of parametric nonlinear mixed models in that the parameters embody all of
the information about covariate effects. This is quite different from models in which each
curve is fitted non-parametrically with its own shape.

Under Penalized spline smoothing has become increasingly popular in recent
years. The idea of penalized splines has led to a powerful and applicable smoothing
technique (see Ruppert, Wand and Carroll, 2003). We use penalized regression spline
introduced by Ruppert and Carroll (1997) for Nonparametric Regression. The main
computational advance of this thesis is the use of penalized regression splines to estimate
the shape function µ0. This provides a sieve likelihood framework which can readily
incorporate parametric models for the error covariance structure. As well, the equivalence
of this model to a linear random effects model allows automatic selection of the smoothing
parameter(s) by the generalized maximum likelihood (GML) method due to Wahba (1985).
This provides considerable computational simplification over previous work fitting the SI
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model with kernel smoothers (e.g., Kneip and Gasser, 1988 and Kneip and Engel, 1995) or
regression splines (Lindstrom, 1995), since the smoothing parameter for the non-parametric
regression is chosen as part of the overall fitting algorithm.

Often, the response of interest is measured in a series of ordered categories.
Such measures termed as ordinal, can represent a variety of graded responses such as
agreement ratings (disagree, undecided, agree). In some cases, the response measure
of interest may represent a count (e.g., number of heath service visits) that has large
probability mass at zero (i.e., no service use), a majority of values in the one to two-visit
range, and a few extreme values. In these cases, an ordinal variable can be constructed
with ordered categories of 0, 1, 2, and 3 or more visits. The relative frequency with which
the categories are endorsed is not a factor for the ordinal regression model, whereas quite
strict requirements are imposed under the assumption of a Poisson process.

A variable with an unordered categorical scale is called nominal. Examples of
nominal variables are religious affiliation (Protestant, Catholic, Jewish, Muslim, other),
marital status (married, divorced, widowed, never married), favorite type of music (classical,
folk, jazz, rock, other), and preferred place to shop (downtown, Internet, suburban mall).
Distinct levels of such variables differ in quality, not in quantity. Therefore, the listing
order of the categories of a nominal variable should not affect the statistical analysis.

Many well-known statistical methods for categorical data treat all response
variables as nominal. That is, the results are invariant to permutations of the categories
of those variables, so they do not utilize the ordering if there is one. Examples are
the Pearson chi-squared test of independence and multinomial response modeling using
baseline-category logits. Test statistics and P-values take the same values regardless of the
order in which categories are listed. Some researchers routinely apply such methods to
nominal and ordinal variables alike because they are both categorical.

Recognizing the discrete nature of categorical data is useful for formulating
sampling models, such as in assuming that the response variable has a multinomial
distribution rather than a normal distribution. However, the distinction regarding whether
data are continuous or discrete is often less crucial to substantive conclusions than whether
the data are qualitative (nominal) or quantitative (ordinal or interval). Since ordinal
variables are inherently quantitative, many of their descriptive measures are more like
those for interval variables than those for nominal variables.

Many advantages can be gained from treating an ordered categorical variable
as ordinal rather than nominal. They include:

1. Ordinal data description can use measures that are similar to those used in ordinary
regression and analysis of variance for quantitative variables, such as correlations,
slopes, and means.
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2. Ordinal analyses can use a greater variety of models, and those models are more
parsimonious and have simpler interpretations than the standard models for nominal
variables, such as baseline-category logit models.

3. Ordinal methods have greater power for detecting relevant trend or location alterna-
tives to the null hypothesis of "no effect"of an explanatory variable on the response
variable.

4. Interesting ordinal models apply in settings for which standard nominal models are
trivial or else have too many parameters to be tested for goodness of fit.

Methods for ordinal response data analysis have been actively pursued, Harville
and Mee (1984), Jansen (1990), Ezzet and Whitehead (1991), Agresti and Lang (1993),
Hedeker and Gibbons (1994), Have (1996), Tutz and Hennevogl (1996), Fielding (1999)
and Santos and Berridge (2000).

In particular, because the proportional odds assumption described by McCullagh
(1980), which is based on the logistic regression formulation, is a common choice for analysis
of ordinal data, many of the mixed models for ordinal data are generalizations of this
model. The proportional odds model characterizes the ordinal responses in L categories
pl � 1, 2, . . . , Lq in terms of L � 1 cumulative category comparisons, specifically L � 1
cumulative logits (i.e., log odds). In the proportional odds model, the covariate effects
are assumed to be the same across these cumulative logits, or proportional across the
cumulative odds.

Let the L ordered response categories be coded as l � 1, 2, ..., L. As ordinal
models often utilize cumulative comparisons of the categories, define the cumulative
probabilities for the L categories of the outcome yij as

Pijl � Pr pyij ¤ lq �
ļ

k�1
pijk, (1.4)

where pijk represents the probability of response in category k. The mixed-effects logistic
regression model for the cumulative probabilities is given in terms of the cumulative logits
as

log

�
Pijl

1 � Pijl

�
� τl �

�
x1ijβ � z1ijυi

�
, l � 1, . . . , L� 1, (1.5)

with L � 1 strictly increasing model thresholds τl pi.e., τ1   τ2   . . .   τL�1q. xij is the
pp� 1q � 1 covariate vector (including the intercept), and zij is the design vector for the
r random effects, both vectors being for the jth timepoint nested within subject i. Also,
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β is the pp � 1q � 1 vector of unknown fixed regression parameters. Let υ � Tθ, where
TT

1

� Συ is the Cholesky factorization of random-effect variance covariance matrix Συ.

The relationship between the latent continuous variable y and an ordinal
outcome with three categories is depicted in Figure 1.1. In this case, the observed ordinal
outcome Yij � l if τl�1 ¤ yij   τl for the latent variable (with τ0 � �8 and τL � 8). To
set the location of the latent variable, it is common to set a threshold to zero. Typically,
this is done in terms of the first threshold (i.e., τ1 � 0). Figure 1.1 illustrates this concept
assuming that the continuous latent variable y follows either a normal or logistic probability
density function.

In Figure 1.1, setting τ1 � 0 implies that τ2 � 2. These threshold parameters,
in addition to the model intercept, represent the marginal response probabilities in the
L categories. For example, for this case with L � 3, 0 � β0 represents the log odds for a
response in the first category, relative to categories 2 and 3; τ2 �β0 represents the log odds
for a response in the first two categories, relative to the third category. An alternative
specification is to set the model intercept β0 � 0 and to estimate L�1 thresholds. Denoting
these L� 1 thresholds as τ�, we would then have the following relationship between these
two parameterizations: τ� � 0 � β0 e τ�2 � τ2 � β0.

Our primary focus is to frame up a model for longitudinal data where patients
suffering from a common disease, exhibits a similar shape even though each patient’s
response varies substantially over time. In longitudinal analysis for continuous data, the
response is a continuous curve measured over time. For example, serum glucose level
following a meal for individuals observed over certain time points or the value of air
expelled by persons measured different time points. In such situations, plot of raw data
indicates a possibly similar shape among the individual’s response curve. Lawton, Sylvestre
and Maggio (1972) have developed a model such that the model for every individual quite
naturally exhibits a common shape function. It becomes a challenge then to develop a
shape invariant model when the response variable ceases to be continuous. In fact, in
medical studies, often we come across binary or ordinal outcomes observed longitudinally.
Typically this scenario happens in our example on prostrate cancer study where the
severity of cancer for each patient is observed over different points of time. We build up
our shape invariant model based on the following three justifications.

1. One reason for using the proportional odds cumulative logit model is its connection
to the idea of a continuous latent response. We assume that the categorical outcome
is actually a categorized version of an unobservable continuous variable. In that case
it is reasonable to think that a Likert scale is a coarsened version of a continuous
variable. The continuous scale is divided into regions formed according to the category.
Suppose y� is related to x through a nonlinear regression y� � η�e where e � logistic
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(mean=0 and variance =c0), η being a nonlinear function that involves parameters as
well as the covariates x and individual specific random effects (indicating variation
over individuals though shape invariant). Then the coarsened version y will be
related to x by a proportional odds cumulative logit model. The motivation for self
generating shape invariant model then comes up through the latent variable.

2. In disease progression or pharmacokinetic studies where disease status (ordinal) is
observed longitudinally, the predictors usually appear through nonlinear relationship.
In the current investigation we bring non-linearity through the logit function main-
taining common shape for all individuals. Suppressing all suffixes, we write a simple
version of cumulative logit model where

log
�
P py ¤ l|xq

P py ¡ l|xq



� η � τl � ωpxq,

τl being category boundary parameter and ωpxq being a nonlinear function of
covariates and does not involve any category specific parameter. In our set up,
ωpxq � α0 � exppα1qµ0pt

�q. As has been assumed in our model, α0 is a random
intercept parameter (not involving x), hence

log
�
P py ¤ l|x1q{P py ¡ l|x1q

P py ¤ l|x2q{P py ¡ l|x2q



� ωpx1q � ωpx2q � µ0pt

�qpeα1px1q � eα1px2qq,

Thus the common shape is virtually a scale multiple of the log odds under two
covariates.

3. Lindstrom and Bates (1990) in their work on nonlinear mixed effects model for
longitudinal data, assume a common parametric function that relates the conditional
mean of the response variable to the covariate tij and random parameter vector ϕi.
An alternative way to analyze longitudinal data is to use a Self modeling nonlinear
regression (SEMOR) introduced by Lawton, Sylvestre and Maggio (1972) where a
common curve exists for all individuals. Later Ke and Wang (2001) extend this idea
of common shape function through Semi parametric Nonlinear mixed Models. In the
same light we develop our ordinal nonlinear mixed model (GLMM) where instead
of the conditional mean, the conditional canonical link is expressed in terms of the
intercept and common but unknown shape function µ0.

Survival analysis is generally defined as a set of methods for analyzing data
where the outcome variable is the time until the occurrence of an event of interest. The
event can be death, occurrence of a disease, marriage, divorce, etc. The time to event or
survival time can be measured in days, weeks, years, etc. For example, if the event of
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interest is heart attack, then the survival time can be the time in years until a person
develops a heart attack. In survival analysis, subjects are usually followed over a specified
time period and the focus is on the time at which the event of interest occurs. Why not use
linear regression to model the survival time as a function of a set of predictor variables?
First, survival times are typically positive numbers; ordinary linear regression may not
be the best choice unless these times are first transformed in a way that removes this
restriction. Second, and more importantly, ordinary linear regression cannot effectively
handle the censoring of observations.

Censoring is said to be present when information on time to outcome event is
not available for all study participants. Participant is said to be censored when information
on time to event is not available due to loss to follow-up or non-occurrence of outcome
event before the trial end. Censoring can be classified into three types:

1. Right censoring: a data point is above a certain value but it is unknown by how
much.

2. Left censoring: a data point is below a certain value but it is unknown by how much.

3. Interval censoring: a data point is somewhere on an interval between two values.

In a post-surgical recovery study, the status of recovery is assessed for pati-
ents who were given different dose of anaesthetic. The ordinal responses are recorded
longitudinally along with the recovery stage of a patient. Differences among the patients
due to time-invariant covariates are captured by the parameters. Since patients having a
common surgery usually exhibit a similar pattern, it is natural to build up a nonlinear
model that is shape invariant. In Chapter 3, we proposed the use of self-modeling ordinal
longitudinal model based on right-censoring where the conditional cumulative probabilities
for a category of an outcome has a relation with shape-invariant model. We focus on the
question of whether the dose of anesthesia affects the post-surgical recovery. In particular,
we investigate the interaction between the dose effect and time to follow-up.

Statistical models for survival data with a surviving or cure fraction, often
called cure models, have received a great deal of attention in the last decade. In medicine
and public health researches, survival cure models are widely used to analyse time-to-event
data in which some subjects are reasonably believed to be medically cured. In general,
there are two types of models for estimation of the cure fraction. The first one is the
Mixture Cure Model (MCM), which was developed by Boag (1949). This type of models
assumes that the whole population is composed of susceptible subjects and cured subjects.
Boag (1949) proposed lognormal normal distribution to model the failure time of the
susceptible group and assumed the cure probability to be constant. This model was further
developed three years later by Berkson and Gage (1952) and later studied extensively by
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several authors, e.g., Farewell (1986), Goldman (1984), Kuk and Chen (1992), Maller and
Zhou (1996), Taylor (1995), Peng and Dear (2000) and Banerjee and Carlin (2004), among
many others.

The second cure model type was proposed by Yakovlev et al. (1993) based
on the assumption that the treatment leaves the patient with a number of cancer cells,
which may grow slowly over time and produce a detectable recurrence of cancer. It is
known as the Non-Mixture Cure Model (NMCM). These two models are related and the
NMCM can be transformed into the MCM, when the cure fraction specially specified.
NMCM was further discussed by Chen, Ibrahim and Sinha (1999), Ibrahim and Chen
(2001),Chen, Ibrahim and Lipsitz (2002) and Tsodikov (2002). This model was motivated
by the underlying biological mechanism and developed based on assumption that the
number of cancer cells that remain active after cancer treatment follow Poisson distribution
(Yakovlev et al., 1993; Chen, Ibrahim and Sinha, 1999; Gutierrez, 2002; Uddin et al., 2006).

For decades, the MCM has been a popular method in analysing time-to-event
data in which some subjects are reasonably believed to be cured. This model assumes
that a proportion, π, of the subjects will be cured and that these subjects are not at
risk of experiencing the re-occurrence of the event. The other proportion p1 � πq is for
the individuals who are expected to experience the event in some future time eventually.
The MCM can be derived as following: Suppose that T denotes the occurrence time of
a disease with population survival function Sptq and that y expresses a binary random
variable taking the values 1 and 0 with probability p1 � πq (event rate) and π (cure rate),
respectively, where π � PrpT � 8q. Furthermore, let Suptq and fuptq be the survival
and density function for uncured group. So, the population survival function Sptq can be
represented as:

Spt|x, zq � πpzqSupt|xq � r1 � πpzqs, (1.6)

where x and z are two sets of covariates that have effects on π and Suptq. The density
function corresponding to 1.6 is fptq � p1 � πqfuptq. Different parametric distributions
have been used to model the density function fuptq, including Exponential distribution
(Ghitany, Maller and Zhou, 1994), Weibull distribution (Farewell, 1986), Log normal (Boag,
1949; Gamel, McLean and Rosenberg, 1990). Nonparametric approaches for fuptq have also
been considered in the literature (Taylor, 1995; Kuk and Chen, 1992; Sy and Taylor, 2000;
Peng and Dear, 2000). The advantage of the mixture cure model is that the proportion of
cured patients and the survival distribution of uncured patients are modeled separately
and the interpretation of the parameters of x and z in the model is straightforward.

Similar to the classical survival models, there are a number of methods to
specify the effects of x on Suptq. Let S0ptq be an arbitrary baseline survival function.



Capítulo 1. Introduction 24

Similar to the proportional hazards (PH) model in survival analysis, one can assume

Supt|xq � tS0ptqu
exppβxq (1.7)

or equivalently

hupt|xq � th0ptqu exppβxq (1.8)

where hu and h0ptq are the corresponding hazard functions of Su and S0ptq. This model is
referred to as the proportional hazards mixture cure (PHMC) model. The model can be
easily estimated if the baseline survival function S0ptq is specified up to a few unknown
parameters.

The most common method to specify the effects of z on π is via a logit link
function:

πpziq �
exppγ1ziq

1 � exppγ1ziq
, (1.9)

where γ is a vector of unknown parameters. Other link functions may be considered,
such as the complementary log–log and the probit link functions in the generalized linear
models for binary data. In this paper, we will use the logit link function only because of its
simplicity and popularity. Kuk and Chen (1992) considered the semi-parametric logistic
proportional hazard mixture model. They focused on estimation of regression parameters
using a marginal likelihood method. Sy and Taylor (2000) and Peng and Dear (2000) used
the full likelihood approach and derived some EM algorithms to compute the maximum
likelihood estimator.

In a cure model, the population can be a mixture of several levels of susceptible
and non-susceptible (cured) individuals. In a cancer study, patients have various stages
of illness. After treatment the patient will be cured or the stage of illness will change.
In such situations where there is good scientific or empirical evidence of a susceptible
population by several levels, we combine a Self-Modeling ordinal model for the probability
of occurrence of an event with a Cox regression for the time of occurrence of an event.
Unlike the univariate mixture cure model with two stages (Boag,1949, Farewell, 1982),
a mixture cure model with several levels of cured and uncured patients is proposed in
Chapter 4. The model allocates the probability of these stages by the ordinal regression of
self-modeling precisely. We will consider schizophrenia as a mental illness that can come
in various forms with different symptoms and outcomes and effects of four medications on
schizophrenia patients.
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To model a gradual treatment effect for data without a cure fraction, Chen
and Wang (2001) and Chen (2000) proposed an accelerated hazard (AH) model

hupt|xq � h0 pt exppβxqq . (1.10)

For the binary treatment covariate defined above, it is easy to see that the
hazard functions of the new and the standard treatments are h0ptexppβqq and h0ptq

respectively, and the difference of the two hazard functions starts at 0 when t � 0. Thus
the AH model assumes that the hazard does not change at time 0 and then change
gradually with time. Unless h0ptq � constant or limtÑ0�h0ptq � 0, the AH model provides
a useful way to model the gradual effect of a treatment that other existing models cannot
handle properly.

To better demonstrate the differences, we plot the hazard curves based on the
two models in Figure 1.2. We consider two groups with x � 0 for the control (baseline)
group and x � 1 for the treatment group. The baseline hazard function is a U-shape
function, which is often employed in health research. The value of β is set to �0.8.
Comparing the hazard curves from the two groups, we can see that the PH model implies
that the treatment decreases the hazard rate by e�0.8 � 0.45 for the whole period. The
AH model provides a simple scenario: the treatment starts at the same hazard rate as the
control group, it has a higher hazard rate than the control group at the early period due
to, say, the toxicity of the treatment. However, after certain time point, the positive effect
of the treatment is demonstrated with a smaller hazard rate than the control group.

Chen and Wang (2001) proposed estimating equations to estimate the para-
meters semi-parametrically in the AH model 1.10. When there is a cure fraction in the
data, the model 1.10 is clearly not appropriate. It is unclear whether the model and the
semi-parametrically estimation method can be easily adapted to incorporate the cure
fraction.

To allow a gradual effect of covariates on the failure time of uncured patients,
Zhang and Peng (2009) proposed to model Suptq in the mixture cure model 1.7 by the AH
model proposed by Chen (2000). That is,

Supt|xq � S0 pt exppβxqqexpp�βxq, (1.11)

where S0ptq is the corresponding survival function. Zhang and Peng (2009)
refered to the model specified by Eqs. 1.7, 1.9, and 1.11 as the AH mixture cure (AHMC)
model. Their mixture cure model (AHMC) employs a AH model to model the effects of x
on Suptq in the mixture cure model 1.6. the AHMC model allows covariate effects on the
failure time distribution of uncured patients to be negligible at time zero and to increase as
time goes by. Such a model is particularly useful in some cancer treatments when the treat
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effect increases gradually from zero. If h0ptq is specified up to a few unknown parameters
in the AHMC model, the parameters in the model can be estimated by the maximum
likelihood approach. Zhang and Peng (2009) focused on a semi-parametric estimation
approach where h0ptq is not parametrically specified. This approach is more attractive in
application because it does not rely on a parametric assumption that may be difficult to
verify.

A AHMCM with random effects is proposed in Chapter 5. We extend the
AHMCM such that the extended model can be applied for the time of occurrence of an
event when Self-Modeling binary model is used for the probability of occurrence of an
event. As an application of the model, we employ the proposed model to the respiratory
illness data set.

The aims of this dissertation are:

1. The shape invariant model is required to be developed through proportional odds
model.

2. The use of self-modeling longitudinal ordinal model based on right censoring is
developed.

3. A new cure model with several stages of cured or uncured patients combining the
self-modeling ordinal model for the probability of occurrence of an event with a Cox
regression analysis for the occurrence time of an event.

4. The longitudinal binary model is employed for a accelerated hazard mixture cure
model such that the extended model can be applied to the occurrence time of an
event.
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Figura 1.1 – Threshold concept for an ordinal response with three categories.

Figura 1.2 – Hazard curves from the PH model and AH model.
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2 Self-Modeling Ordinal regression with
Time Invariant Covariates

2.1 Introduction
Often, in longitudinal studies involving ordinal outcomes, the curve obtained

by smoothing over those outcome points exhibits a specific pattern measured over time.
Examples include severity/progression status of disease, Pharmacokinetic data of ordinal
nature etc. where response curves share a similar shape e.g. the same number of extremes
or inflection points located relatively near some common region. In such circumstances
the interest may be to estimate the shape of the response curve itself or the value of a
response feature such as the slope at a particular point or the location of a maximum.
Often polynomials or other standard regression models are used to fit the data. However,
in some cases no standard model is appropriate. Lawton, Sylvestre and Maggio (1972)
proposed the self-modeling approach for data of this type. Their method is based on the
assumption that all individual’s response curve have a common shape and that a particular
individual’s curve is some simple transformation of the common shape curve. The model
which implements this idea is called the shape invariant (SI) model. Estimation and testing
of parameters have been discussed by Kneip and Engel (1995).

Often, in longitudinal studies involving ordinal outcomes, the curve obtained
by smoothing over those outcome points exhibits a specific pattern measured over time.
Examples include severity/progression status of disease, Pharmacokinetic data of ordinal
nature etc. where response curves share a similar shape e.g. the same number of extremes
or inflection points located relatively near some common region. In such circumstances
the interest may be to estimate the shape of the response curve itself or the value of a
response feature such as the slope at a particular point or the location of a maximum.
Often polynomials or other standard regression models are used to fit the data. However,
in some cases no standard model is appropriate. Lawton, Sylvestre and Maggio (1972)
proposed proposed the self-modeling approach for data of this type. Their method is based
on the assumption that all individual’s response curve have a common shape and that a
particular individual’s curve is some simple transformation of the common shape curve.
The model which implements this idea is called the shape invariant (SI) model. Estimation
and testing of parameters have been discussed by Kneip and Engel (1995).

The shape-invariant model is a special case of the self-modeling regression
method (Lawton, Sylvestre and Maggio, 1972, Altman and Villarreal, 2004). In the context
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of continuous data, the model can be expressed as

Yij � α0i � exppα1iqµ0pβ0i � exppβ1iqtijq � εij (2.1)

where Yij is the observed response on subject i at time tij , for i � 1, ..., N and j � 1, ..., ni.
Here α0i, α1i, β0i and β1i are unknown parameters which may be functions of observed
covariates, εij is an unobserved error which may be correlated within subject, and µ0 is a
shape function which is common to all subjects.

In this case, the responses are of ordinal nature, like severity of bladder toxicity
in prostate cancer patients, the shape invariant model is required to be developed through
proportional odds model (see Section 2.2).

In many situations, inference focuses on the parametric effects on one or more
summary statistics. Many of the commonly used summary statistics can be expressed as
functions of the parameters and functions of the shape. For example, if µ0ptq has a critical
point at t0, then the ith curve has a critical point at pt0 � β0iq{exp pβ1iq and the value of
the ith curve at the critical point is α0i � exp pα1iq µ0pt0q. Since the function of the shape
does not vary with the treatment and covariate effects, inference about the treatment
covariate effects depend only on the parameters. Use of the SI model for inference is very
similar to the use of parametric nonlinear mixed models in that the parameters embody
all the information about covariate effects. This is quite different from models in which
each curve is fitted non-parametrically with its own shape.

Inference for the parameters conditionally on the fitted shape will be compa-
ratively simpler if the conditional model is an ordinary nonlinear mixed effect model. In
Section 2.3 we consider the SI model defined for the conditional cumulative probabilities
for a category of an outcome.

Penalized spline smoothing has become increasingly popular in recent years. A
smooth unknown regression function is estimated by assuming a functional parametric
shape constructed via a high dimensional basis function. The basis dimension is chosen to
achieve the desired flexibility, while the basis coefficients are penalized to ensure smoothness
of the resulting functional estimates. The idea of penalized splines has led to a powerful
and applicable smoothing technique.

Maximum likelihood estimation in the nonlinear mixed effects model brings up
a substantial challenge because the likelihood of observations cannot typically be expressed
in closed form. Several different approximations to the log-likelihood have been proposed.
These include the linearization approximation, the LME approximation, and the Laplace’s
approximation.

These likelihood approximations often perform well if the number of the intra-
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individual measurements is not small and the variability of random effects is not large,
but when some of the individuals have sparse data or the variability of the random effects
is large there are considerable errors in approximating the likelihood function via these
approximations (Davidian and Giltinan, 1995, Pinheiro and D.M., 1995, Lindstrom and
D.M., 1988). This has motivated the use of exact methods such as Monte Carlo methods.
In particular, the Monte Carlo EM algorithm, (Wei and Tanner, 1990) in which the E step
is approximated using simulated samples from the exact conditional distribution of the
random effects given the observed data, has been used for estimation in mixed models. In
Section 2.4, parameter estimation using the Monte Carlo method in Newton-Raphson and
EM algorithms are introduced. Section 2.5 discuss simulation results of the estimation
methods.

In Section 2.6, as an application, we focus on the question of whether the dose
level of radiation affects the severity of genito-urinary (bladder) toxicity, which is a side
effect of radiation therapy. In particular, we investigate the interaction between the dose
effect and follow-up time.

2.2 Ordinal longitudinal logistic regression model
The proportional odds model (see McCullagh, 1980) is essentially based on

the logistic regression formulation. It is commonly used for analysis of ordinal data. The
proportional odds model characterizes the ordinal responses in L categories pl � 1, 2, . . . , Lq
in terms of L� 1 cumulative category comparisons, specifically, L� 1 cumulative logits.
In the proportional odds model, the covariate effects are assumed to be the same across
these cumulative logits, or proportional across the cumulative odds. Let π1pxiq, . . . , πLpxiq

denote the response probabilities at value xi for a set of explanatory variables, such that:

Flpxiq � Pr pY ¤ l |xi q � π1pxiq � . . .� πlpxiq for l � 1, . . . , L� 1,

so that cumulative logits are then formed as follows:

Glpxiq � logit rFlpxiqs � log

�
Flpxiq

1 � Flpxiq

�
,

where Flpxiq is the cumulative probability up to and including category l, the
Proportional Odds Model can be expressed as follows:

Glpxiq � αl � β
1

xi.

The parameters α1, . . . , αL�1 are non decreasing in l and are known as the intercepts or
"cut-points". The parameter vector β contains the regression coefficients for the covariate
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vector xi. Inherent in this model is the proportional odds assumption, which states that
the cumulative odds ratio for any two values of the covariates is constant across response
categories. Its interpretation is that the odds of being in category less than or equals l
is exp rβ1 px1 � x2qs times higher at x � x1 than at x � x2. The model L � 1 response
curves to have the same shape, and therefore we cannot estimate by fitting separate logit
models for each cut-point. We must maximize the multinomial likelihood subject to this
constraint. The model assumes that effects are the same for each cut-point, l � 1, ..., L� 1.

Here, let the conditional cumulative probabilities for the L categories of the

outcome yij be called Pijl � Pr pyij ¤ l | υi, xij, zijq �
ļ

k�1
pijk, where pijk represents the

conditional probability in category k. The logistic Generalized Linear Mixed Model for
the conditional cumulative probabilities is given in terms of the cumulative logits as

log

�
Pijl

1 � Pijl

�
� ηijl, (2.2)

where the linear predictor is given by

ηijl � τl � ωij, (2.3)

and

ωij � x
1

ijβ � z
1

ijυi. (2.4)

We have L�1 strictly increasing model thresholds τl pi.e., τ1   τ2   . . .   τL�1q. The xij is
the pp� 1q � 1 covariate vector (including the intercept), and zij is design vector for the r
random effects, both vectors being for the jth time-point nested within subject i. Also,
β is the pp � 1q � 1 vector of unknown fixed regression parameters. Let υ � Tθ, where
TT

1

� Συ is the Cholesky factorization of random-effect variance covariance matrix Συ.

The thresholds allow the cumulative response probabilities to differ by categories.
For identification, either the first threshold τ1 or the model intercept β0 is typically set
to zero. As the regression coefficients β do not carry the l subscript, the effects of the
regressors do not vary across categories. McCullagh calls this assumption of identical odds
ratios across the L�1 cutoffs the proportional odds assumption. Because the ordinal model
is defined in terms of the cumulative probabilities, the conditional probability of a response
in category l is obtained as the difference of two conditional cumulative probabilities:

pijl � Pr pYij � l | υi, xij, zijq � Pijl � Pijl�1. (2.5)

Here, τ0 � �8 and τL � 8, and so Pij0 � 0 and PijL � 1.
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2.3 Self-Modeling Regression
In many longitudinal studies, the response to be modeled is a continuous curve

measured over time. The volume of air expelled by 18 individuals is measured at 20 time
points that vary among individuals. A plot of the raw data values with straight lines
connecting the observations in each individual’s response sequence (Figure 2.1) indicates a
possibly similar shape among the individual’s response curves. The data set, as reported,
includes one or two zeroes at the beginning of each individual’s data sequence.

The Self-Modeling Regression (SEMOR) Model is expressed as

Yij � πi tµ0 rκiptijqsu � eij (2.6)

where Yij is the response for curve i, i � 1, . . . , N , measured at ni times, tij. πipxq is
a monotone inverse link transforming the regression function and κipxq is a monotone
transformation of the time axis. µ0 is a shape function that is common to all the curves,
and eij are the error terms. For building up the SEMOR model for ordinal data, we will
focus on non-parametric modeling of µ0 and parametric modeling of πipxq and κipxq .

We give special attention to Shape Invariant Model and apply the SI model
(SIM) for equation (2.4), so

ωij � α0i � exp pα1iq µ0
�
t�ij
�
, (2.7)

where t�ij � β0i � exp pβ1iq tij . Therefore, equations (2.2), (2.3) and (2.7) we have

ηijl � log

�
Pijl

1 � Pijl

�
� τl �

�
α0i � exp pα1iq µ0

�
t�ij
��
. (2.8)

If one has physical or theoretical justification to pre-specify µ0
�
t�ij
�
parametrically, this

is just a special case of nonlinear regression. The semi-parametric SEMOR model allows
flexible modeling by estimating µ0

�
t�ij
�
non-parametrically. Several different approaches

have been studied earlier for fitting the SIM model. Denoting

θi � pα0i, α1i, β0i, β1iq
1 , (2.9)

we consider a mixed model

θij � x1ijφ� z1ijψi � εij, (2.10)

where z1ij is the design (or covariate) vector associated with the random effect vector
ψi. If µ0 is a known parametric function, and if we assume that ψi and εi are normally
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distributed, then equation (2.7) is a parametric nonlinear mixed model and the model can
be fitted using maximum likelihood using any standard software.

Here, we fit µ0 using the penalized spline model. Use of the penalized spline
method with penalty chosen by generalized maximum likelihood is equivalent to fitting
the model

µ0pt
�
ijq � Uγ �Vζ, (2.11)

where µ0pt
�
ijq is the vector of means at the transformed times, U is a design matrix for a

cubic polynomial in t�ij, V is a design matrix for cubic in t�ij which are left-truncated at
the knot, γ is a vector of unknown parameters and ζ is normally distributed with zero
mean and covariance matrix Σζ .

Note that for the analysis of ordinal longitudinal data, one can think of proportional odds
model given in equation 2.3 where ωij is straightway taken as θij considered in equation
2.10. In our simulation section, we compare the performance of estimators for our model
and for the proportional odds model even though the models are a bit different. In fact
our model involves a larger number of parameters for prediction of individual’s response
curve which is a transformation of the common shape curve. This situation is automatic
in proportional odds model where the predictor is linked through a linear mixed model.

2.3.1 Penalized regression spline for Nonparametric Regression

Consider the following non-parametric regression analysis is a curve fitted to the data set
pt�i ,wiq

wi � µ0pt�i q � εi, (2.12)

where µ0 is a smooth function giving the conditional mean of wi given t�i and
the εi are mutually independent with Np0, σ2

εq for i � 1, 2, . . . , n. The smooth function µ0

can be found as a result of minimization of the residual sum of squares plus a roughness
penalty,

ņ

i�1
pwi � µ0 pt�i qq

2 � λ

»
pµ0

ppt�i qq
2dt�i , (2.13)

where µ0
ppt�i q is the pth derivative of the function µ0pt�i q. The fitted curve is a piecewise

polynomial of degree 2p � 1, so that the smoothing parameter λ governs the trade-off
between smoothness and goodness of fit. This parameter is often unknown in practice and
needs to be estimated from the data. A classical data-driven approach to selecting the
smoothing parameter is cross-validation.
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A random coefficient linear regression spline model of order p for µ0pt
�
ijq is

µ0
�
t�ij
�
� β0 � β1t

�
ij � � � � � βpt

�
ij
p � βp�1

�
t�ij � ξ1

�p
�
� � � � � βp�K

�
t�ij � ξK

�p
�
, (2.14)

where the parameters to be estimated are β�pβ0, . . . , βp�kq and tξ1, . . . , ξku are K fixed
knots with a ¤ ξ1   . . .   ξk ¤ b and pxqp� � xpItx¥0u. We can write the equation (2.11)
with p � 3 as

µ0
�
t�ij
�
�

4̧

m�1
t�ij

m�1γm �
Ķ

k�1

�
t�ij � ξk

�3
�
ζk, (2.15)

where ζ � rζ1, . . . , ζks
1 � Np0, σ2

ζIq is independent of ε � rε1, . . . , εks
1. We can combine

equations (2.12) and (2.15) in one model

w � Uγ �Vζ � ε, (2.16)

with ε � Np0, σ2
εIq and

U�

������
1 t�i1 t�2

i1 t�3
i1

1 t�i2 t�2
i2 t�3

i2
... ... ... ...
1 t�ini

t�2
ini

t�3
ini

������ ,V�

����
pt�i1 � ξ1q

3 . . . pt�i1 � ξkq
3

... ... ...�
t�ini

� ξ1
�3

� � �
�
t�ini

� ξk
�3

���� . (2.17)

Equation (2.16) is nothing but a normal linear mixed model and, for any given σ2
ζ and σ2

ε,
the estimated best linear unbiased predictor (EBLUP) of w

pw � pµ0 � Upγ �Vpζ. (2.18)

E p pµ0q � Epµ0q, and that equation (2.18) can be rewritten as

pµ0
��CpC1C� λpDq

�1C1w, (2.19)

where C � rU Vs , D�Diagp0p�1, Ikq and λp � σ2
ε{σ

2
ζ for the pth degree of the penalized

spline model. The EBLUP estimates (2.19) evaluated at design points are the same as
the penalized regression spline solution to equation (2.13). Thus it turns out that the
nonparametric smoothing spline regression is equivalent to a mixed-effects model (2.16).
We see that the smoothing parameter λp is the ratio of the variance components σ2

ε{σ
2
ζ ,

and that fitting can be done using standard linear mixed effects software. This is the GML
method of Wahba (1985).
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2.4 Likelihood function and estimation
In view of (2.5) the conditional likelihood can be expressed as

`pθ | Yiq �

#
ni¹
j�1

L¹
l�1

pPijl � Pijl�1q
Iyij plq

+
, (2.20)

where θ � pφ1, σ2
ψ, σ

2
ε, τ

1q1 and

Iyij
plq�

#
1 if yij�l

0 if yij � l
. (2.21)

Then the marginal likelihood function is

L pθ,Yq �
N¹
i�1

» #
ni¹
j�1

L¹
l�1

pPijl�Pijl�1q
Iyij plq

+
f pθi | ψiq f

�
ψi

�� σ2
ψi

�
dθi dψi. (2.22)

Since ψi and εi have Nq

�
0,Σ

�
σ2
ψ

��
and N4

�
0, σ2

εI4
�
, respectively, in equation (2.10), we

write the joint likelihood of conditional cumulative probabilities of ordered outcomes and
the random effects θi and ψi simplicity in the cumulative logit function as

lic �
ni̧

j�1

Ļ

l�1
Iyij

plq logpPijl � Pijl�1q � log
�
φ
�
θi

�� Xiφ� Ziψi, σ
2
εI4

� 	
�log

�
φ
�
ψi

�� 0, σ2
ψi

� 	
, (2.23)

where Φ is a probability density function. Therefore, the complete log-likelihood is given
by

lc �
Ņ

i�1
lic. (2.24)

2.4.1 An Estimation algorithm

In this subsection we propose an algorithm for parameter estimation in the SI
ordinal model. Essentially steps 0-2 are considered for predicting the shape function µ0

and step 3 provides estimate of the parameters for the cumulative logit model through
MCNR and MCEM approaches.

Step 0: Choose initial estimates of γpsq, variances σ2psq
ε , σ

2psq
ζ and σ

2psq
ψ , random effects

ψ
psq
i � Nq

�
0,Σ

�
σ

2psq
ψ

		
, errors εpsqi � N4

�
0, σ2psq

ε I4
�
. Set s � 0.
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Step 1: Compute θpsqi � Xiφ
psq � Ziψ

psq
i � ε

psq
i and extract αpsq0i , α

psq
1i , β

psq
0i and βpsq1i

Step 1.1: t
�psq
ij � β

psq
0i � exp

�
β
psq
1i

	
tij ,

Step 1.2: Upsq�

����
1 t

�psq
i1 t

�2psq
i1 t

�3psq
i1

... ... ... ...
1 t

�psq
ini

t
�2psq
ini

t
�3psq
ini

���� , Vpsq�

�����
�
t
�psq
i1 � ξ1

	3
. . .

�
t
�psq
i1 � ξk

	3

... ... ...�
t
�psq
ini

� ξ1

	3
� � �

�
t
�psq
ini

� ξk

	3

����� ,

Cpsq�
�
Upsq Vpsq

�
.

Step 1.3: The pth degree of penalized spline model λppsq � σ2psq
ε {σ

2psq
ζ (See equation (A.8)

for more details). wpsq � Upsqpγpsq �Vpsqpζpsq.
Step 1.4: pµ0

�psq � Cpsq
�
C1psqCpsq � λppsqD

	�1
C1psqwpsq, D � Diagp0p�1; Ikq.

Step 2: Using linear mixed model estimation, estimate γps�1q and ζps�1q
�
σ

2ps�1q
ζ

	
by fitting

pµ0
�psq � Upsqγ �Vpsqζ.

Step 3: Using nonlinear mixed model estimation, estimate φps�1q, σ2ps�1q
ψ , σ2ps�1q

ε , and
τ ps�1q by fitting the model

Pijl � Pr pYij ¤ l|τl,θiq �
exppηijlq

1 � exppηijlq
,

ηijl � τl �
�
α0i � exppα1iq µ0

�
β0i � exppβ1iqtij

	�
,

θi � Xiφ� Ziψi � εi,

conditional on pµ0
�psq.

Step 4: Check for convergence. If the algorithm has converged, then stop. Otherwise,
increase the iteration counter s by one, and return to step 1.

2.4.2 MCEMNR algorithms

In the current setup, the E-M steps are as follows

E-Step

The ps� 1qth step computes the conditional expectation of lic

Q
�
θ
��θpsq � � Ņ

i�1
Eθi

�
lic|Di,θ

psq
�
, (2.25)
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where Di � pyi,Ziq. An alternative is to replace the E step with Monte Carlo approxima-
tions

constructed using a sample l1ic, . . . , l
pMiq
ic

Q
�
θ
��θpsq � � Ņ

i�1

1
Mi

Mi̧

m�1
l
pmq
ic

�
θ
�� Di,θ

psq
�
. (2.26)

We assume without loss of generality that the number of iterations Mi �M @ i.

M-Step

The ps� 1qth step then finds θps�1q as the maximizer of Q
�
θ
��θpsq �:

Q
�
θps�1q �� θpsq� ¥ Q

�
θ
�� θpsq� , (2.27)

for all θ in the parameter space. In principle, the M step is carried out by solving the
score equations

B

Bθ
Q
�
θ
�� θpsq� � Ņ

i�1

1
Mi

Mi̧

m�1

B

Bθ
l
pmq
ic

�
θ
�� Di,θ

psq
�
� 0, for θ. (2.28)

The essence of the EM algorithm is that increasing Qpθ|θpsqq forces an increase in the
log-likelihood of the observed data. To obtain a satisfactory accuracy, the MC sample size
M needs to be a large number. For example, to obtain two decimal digits of accuracy,
M ¥ 10 000 is required. Solution for θ in (2.28) can be obtained by the NR procedure. To
solve for θ, we proceed through NR steps described below.

NR-Step

Let θpsq � pφpsq, σ
2psq
ψ , σ2psq

ε , τ psqq, the Newton Raphson procedure is applied to estimate
θ at the ps� 1q iteration by using equation (2.28) as follows.

pθps�1q � pθpsq � rV �1Ŝpθqs|pθpsq , (2.29)

where

Ŝ pθq �
Ņ

i�1

1
Mi

Mi̧

m�1

�
Bl

pmq
ic

Bθ

�
|pθpsq

, (2.30)

and
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V �
BŜpθq

BθT |pθpsq
�

Ņ

i�1

1
Mi

Mi̧

m�1

B

BθT

�
Bl

pmq
ic

Bθ

�
|pθpsq

. (2.31)

M is the number of iterations in the Monte Carlo method. This process is repeated until���pθps�1q � pθpsq��� ¤ ε Ó 0. See Section A.1 for more details.

2.5 Simulation
In this section, we use simulate of data sets to compare the performances of the proportional
odds model and our model by the MCNREM algorithm. We assume the number of categories
L � 5 and for i � 1, .., N , N � 50, 100, 200 and for j � 1, .., n, n � 10, 25. The number of
iterations in the Monte Carlo is 10000. The true values and the estimates of all parameters
of the proportional odds model and our model by the MCNREM algorithm are displayed
in Tables 2.1 and 2.2 respectively. Note that both for the proportional odds model and
the proposed model the true value of the regression parameter vector φ has been taken
to be a null vector. Also the dispersion matrix of the random vector ψi is assumed to be
σ2
ψI4 for both models with the true value of σ2

ψ � 0.1.

Since we do not have a closed form expression for the maximizer Qpθ|θpsqq, we
use Newton-Raphson iterations to find the maximizer in the EM algorithm. The standard
errors (SE) based on generated random samples of different sizes are also computed for
each estimator. All the computations are carried out in MATLAB.

Tables 2.1 and 2.2 give us an idea about the performance of the estimators
under Proportional odds model and the self generating model of interest . In both tables,
we observe the variations in the estimates when n � 10 is fixed and the value of N is 50,
100, 200. The situation is pretty similar when n � 25 and N varies. From Table 2.2, it is
evident that performance of the estimates is quite satisfactory. The iteration convergence
figures for different parameters under both models have been appended at the end.

2.6 An Application to the Prostate Cancer Data
The primary motivation for considering the self generating model comes up while analyzing
the data recorded at some hospitals in Chicago 1. The objective is to see to what extent
the different doses of radiation affects the prostate cancer patients. Two hundred and forty
three patients are treated with radiation, under one of the three dose levels of radiation
(D = 1,2,3 for weak, medium, strong) applied randomly to each patient. The stage of
prostate cancer is associated with the spread and severity of the cancer (S = 1,2,3 for
minor, medium, severe). The initial investigation has been carried out in two hospitals (H
1 www.biometrics.tibs.org/datasets/980326.txt
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= 0,1) where the patients (N = 243) have been followed up over 6 years. The time points
of measurement differ from patient to patient. In each of the two hospitals, a physician
assesses the severity of genito-urinary (bladder) toxicity (gu = 0 for no symptoms, gu
= 1 for pain/local bleeding, does not require intervention, gu = 2 for bleeding lesion,
requires minor intervention, no hospitalization, and gu = 3 for serious lesion, requires
hospitalization). The detailed analysis is based on our proposed model where we consider
the severity of toxicity as a response variable.

For choosing the best model in this example, we use the deviance which is
the difference between the log-likelihood of the fitted model and the maximum possible
log-likelihood. Table 2.3 gives the values of the deviance. We can note that increasing the
number of the predictors in the model, the deviance decreases.

Table 2.4 shows the estimates of intercepts and coefficients for the fourth model
in Table 2.3. The p-value of 0.0065 and 0.0120 for age and hospital respectively indicate
that these factors are significant on the odds of the genito-urinary toxicity of a patient
being less than or equal to a certain value versus being greater than that value. The
p-values of 0.0520 and 0.6814 for dose and stage of a patient indicate that these factors
are not significant.

The self generating model with respect to the fourth model is

log

�
P pguijl ¤ 0q
P pguijl ¡ 0q



� 3.9847 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,

log

�
P pguijl ¤ 1q
P pguijl ¡ 1q



� 5.7957 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,

log

�
P pguijl ¤ 2q
P pguijl ¡ 2q



� 7.0340 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
.

θ̂i �
�
α̂0i, α̂1i, β̂0i, β̂1i

	1
� �0.1682D1

i � 0.0221A1

i � 0.3421H 1

i � 0.0312S 1

i,
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Figura 2.1 – Spirometer data. Volume of air expelled versus time for 18 individuals.

Tabela 2.1 – The estimates of all parameters of the proportional odds model by MCEMNR (SE in
parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 0.2311 0.2540 0.2476 0.2675 0.2616 0.2857
(0.2562) (0.2044) (0.1993) (0.1592) (0.1481) (0.1071)

τ2 0 0.2692 0.2859 0.2810 0.2988 0.2932 0.3160
(0.2508) (0.2027) (0.1960) (0.1549) (0.1422) (0.1055)

τ3 log3 0.2984 0.3193 0.3143 0.3345 0.3203 0.3426
(0.2593) (0.2133) (0.1967) (0.1584) (0.1470) (0.1037)

φ 0 -0.1412 -0.1207 -0.1125 -0.0991 -0.0832 -0.0683
(0.0705 (0.0596) (0.0410) (0.0280) (0.0217) (0.0121)
-0.1448 -0.1213 -0.1111 -0.1008 -0.0864 -0.0720
(0.0945) (0.0760) (0.0586) (0.0364) (0.0331) (0.0205)
-0.1406 -0.1290 -0.1181 -0.0952 -0.0811 -0.0682
(0.0763) (0.0588) (0.0450) (0.0271) (0.0238) (0.0110)
-0.1486 -0.1223 -0.1144 -0.1017 -0.0848 -0.0704
(0.0835) (0.0696) (0.0548) (0.0357) (0.0331) (0.0209)

σ2
ψ 0.1 0.0573 0.0668 0.0761 0.0805 0.0841 0.0948

(0.0130) (0.0116) (0.0109) (0.0088) (0.0080) (0.0063)
0.0602 0.0699 0.0780 0.0811 0.0871 0.0961
(0.0141) (0.0121) (0.0111) (0.0093) (0.0087) (0.0069)
0.0611 0.0692 0.0730 0.0813 0.0825 0.0955
(0.0145) (0.0121) (0.0113) (0.0097) (0.0086) (0.0070)
0.0585 0.0670 0.0758 0.0803 0.0863 0.0932
(0.0132) (0.0118) (0.0101) (0.0089) (0.0083) (0.0061)

σ2
ε 0.1 0.0918 0.0930 0.0947 0.0961 0.0966 0.0980

(0.0052) (0.0044) (0.0039) (0.0031) (0.0029) (0.0022)
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Tabela 2.2 – The estimates of all parameters of the Self generating ordinal model by MCEMNR (SE in
parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -0.7293 -0.7280 -0.7273 -0.7258 -0.7253 -0.7239
(0.1763) (0.0973) (0.1241) (0.0618) (0.0758) (0.0330)

τ2 0 0.1275 0.1269 0.1263 0.1257 0.1250 0.1244
(0.1865) (0.1204) (0.1440) (0.0853) (0.0946) (0.0439)

τ3 log3 1.2122 1.1951 1.1863 1.1758 1.1689 1.1580
(0.1967) (0.1372) (0.1678) (0.0995) (0.1299) (0.0751)

φ 0 -0.0112 -0.0097 -0.0090 -0.0074 -0.0070 -0.0054
(0.0221) (0.0207) (0.0150) (0.0136) (0.0087) (0.0075)
-0.0155 -0.0134 -0.0129 -0.0105 -0.0099 -0.0080
(0.0249) (0.0225) (0.0169) (0.0157) (0.0098) (0.0089)
-0.0141 -0.0122 -0.0116 -0.0098 -0.0059 -0.0051
(0.0138) (0.0130) (0.0097) (0.0089) (0.0059) (0.0051)
-0.0109 -0.0095 -0.0087 -0.0075 -0.0073 -0.0060
(0.0228) (0.0221) (0.0156) (0.0139) (0.0111) (0.0099)

σ2
ψ 0.1 0.0986 0.0990 0.0991 0.0995 0.0997 0.0999

(0.0059) (0.0054) (0.0055) (0.0049) (0.0048) (0.0044)
0.0988 0.0989 0.0992 0.0996 0.0995 0.0998
(0.0060) (0.0055) (0.0053) (0.0050) (0.0051) (0.0046)
0.0983 0.0991 0.0990 0.0993 0.0995 0.0997
(0.0062) (0.0058) (0.0059) (0.0055) (0.0053) (0.0049)
0.0985 0.0990 0.0994 0.0996 0.0997 0.0999
(0.0065) (0.0062) (0.0059) (0.0056) (0.0055) (0.0052)

σ2
ε 0.1 0.1128 0.1125 0.1115 0.1112 0.1101 0.1097

(0.0038) (0.0036) (0.0027) (0.0024) (0.0018) (0.0015)

γ 0 -0.0130 -0.0112 -0.0115 -0.0091 -0.0095 -0.0081
(0.1129) (0.0935) (0.0942) (0.0785) (0.0790) (0.0601)
-0.0163 -0.0147 -0.0149 -0.0130 -0.0135 -0.0113
(0.1387) (0.1159) (0.1163) (0.0927) (0.0930) (0.0697)
-0.0143 -0.0121 -0.0127 -0.0109 -0.0111 -0.093
(0.1336) (0.1181) (0.1190) (0.1049) (0.1057) (0.0864)
-0.0150 -0.0123 -0.0128 -0.0105 -0.0107 -0.0084
(0.1419) (0.1204) (0.1220) (0.1007) (0.1010) (0.0801)
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Tabela 2.2 – The estimates of all parameters of the Self generating ordinal model by MCEMNR (SE in
parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

σ2
ζ 0.1 0.0982 0.0984 0.0984 0.0987 0.0990 0.0993

(0.1409) (0.1405) (0.1406) (0.1400) (0.1395) (0.1391)
0.0981 0.0983 0.0984 0.0986 0.0991 0.0994
(0.1412) (0.1409) (0.1402) (0.1397) (0.1397) (0.1392)
0.0980 0.0982 0.0981 0.0985 0.0995 0.0998
(01410) (0.1404) (0.1405) (0.1400) (0.1398) (0.1390)
0.0978 0.0985 0.0982 0.0990 0.0993 0.0999
(0.1424) (0.1408) (0.1409) (0.1402) (0.1394) (0.1387)
0.0973 0.0977 0.0975 0.0983 0.0996 0.0999
(0.1421) (0.1412) (0.1414) (0.1407) (0.1390) (0.1386)

σ2
εp

0.1 0.0930 0.0941 0.0937 0.0950 0.0946 0.0960
(0.0299) (0.0284) (0.0286) (0.0270) (0.0275) (0.0259)

Tabela 2.3 – Values of the deviance for the best subset of each size

Subset size Predictors Dev
1 Dose 2210.1
2 Dose, Age 2203.0
3 Dose, Age, Hosp 2195.8
4 Dose, Age, Hosp, Stage 2195.6

Tabela 2.4 – Estimates of intercepts and coefficients of the fourth model

Variable Estimates Std. Error P-value
τ1 3.9847 0.6714 0.0000
τ2 5.7957 0.6820 0.0000
τ3 7.0340 0.7147 0.0000

Dose �0.1682 0.0847 0.0520
Age �0.0221 0.0085 0.0065
Hosp �0.3421 0.1468 0.0120
Stage 0.0312 0.1147 0.6814
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3 Self-Modeling ordinal regression under
right censoring

3.1 Introduction
We discuses the Self-Modeling ordinal regression under right censoring. Self-

Modeling regressions form a class of models for functional data observed for many indivi-
duals. We consider the Self-Modeling Regression (SEMOR) Model introduced by Lawton,
Sylvestre and Maggio (1972)

yij � πi tµ0 rκiptijqsu � eij, (3.1)

where yij is the response for curve i, i � 1, . . . , N , measured at ni times, tij. πipxq is
a monotone inverse link transforming the regression function and κipxq is a monotone
transformation of the time axis. µ0 is a shape function that is common to all the curves,
and eij are errors. This chapter will focus on non-parametric modeling of µ0 and parametric
modeling of πipxq and κipxq with known correlation structure for eij.

Since the proportional odds assumption described by McCullagh (1980) is a
common choice for the analysis of ordinal data, many of the mixed models for ordinal
data are generalizations of this model. The proportional odds model characterizes the
ordinal responses in L categories pl � 1, 2, . . . , Lq in terms of L� 1 cumulative category
comparisons, specifically, L � 1 cumulative logits. In the proportional odds model, the
covariate effects are assumed to be the same across these cumulative logits, or proportional
across the cumulative odds. We denote the conditional cumulative probabilities for the L

categories of the outcome yij as Pijl � Pr pyij ¤ l|xij, zijq �
ļ

k�1
pijk, where pijk represents

the conditional probability of response in category k. The logistic Generalized Linear Mixed
Models for the conditional cumulative probabilities is given in terms of the cumulative
logits as

Pijl �
exppηijlq

1 � exppηijlq
, l � 1, . . . , L� 1, (3.2)

where the linear predictor is

ηijl � τl � ωij, (3.3)
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and

ωij � x
1

ijβ � z
1

ijυi. (3.4)

Take L � 1 strictly increasing model thresholds τl pi.e., τ1   τ2   . . .   τL�1q. xij the
pp� 1q � 1 covariate vector (including the intercept), and zij the design vector for the r
random effects, both vectors being for the jth time-point nested within subject i. Also, β let
be pp�1q�1 vector of unknown fixed regression parameters. Let υ � Tθ, where TT 1

� Συ

is the Cholesky factorization of random-effect variance covariance matrix Συ. Because
the ordinal model is defined in terms of the cumulative probabilities, the conditional
probability of a response in category l is obtained as the difference of two conditional
cumulative probabilities:

pijl � Pr pYij � l|xij, zijq � Pijl � Pijl�1,

where, τ0 � �8, τL � 8 so that Pij0 � 0 and PijL � 1.

In Section 3.2, we will consider the Self-Modeling defined for the conditional
cumulative probabilities for a category of an outcome. Therefore, unlike the model 3.1, in
our model there is no relation between the observed response and parameters directly. In
fact, unlike the non-linear mixed model, it is rather difficult to find the relation between
the observed response and parameters directly. In Section 3.3, parameter estimation using
the Monte Carlo method in Newton-Raphson and EM algorithms are introduced. Section
3.4 discuss simulation results of the estimation methods.

In a post-surgical recovery study, the status of recovery is assessed for patients
who were given different dose of anaesthetic. The ordinal responses are recorded longitudi-
nally along with the recovery stage of a patient. Differences among the patients due to
time-invariant covariates are captured by the parameters. Since patients having a common
surgery usually exhibit a similar pattern, it is natural to build up a nonlinear model that is
shape invariant. In Section 3.5, we focus on the question of whether the dose of anesthesia
affects the post-surgical recovery. In particular, we investigate the interaction between the
dose effect and follow-up time.

3.2 Self-Modeling Ordinal model under right censoring
The Shape-Invariant (SI) model is a special case of the self-modeling regression

method (Altman and Villarreal, 2004),

Yij � α0i � exppα1iqµ0pβ0i � exppβ1iqtijq � εij (3.5)
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where Yij is the observed response on subject i at time tij. We apply the SI model for
equation (3.4), so

ωij � α0i � exp pα1iq µ0
�
t�ij
�
, (3.6)

where t�ij � β0i � exp pβ1iq tij . From equations (3.2), (3.3) and (3.6) we have

ηijl � log

�
Pijl

1 � Pijl

�
� τl �

�
α0i � exp pα1iq µ0

�
t�ij
��
. (3.7)

Lawton, Sylvestre and Maggio (1972), Kneip and Gasser (1988) and Kneip and Engel
(1995) considered

θi � pα0i, α1i, β0i, β1iq
1 , (3.8)

while we consider a mixed model

θi � Xiφ� Ziψi � εi, (3.9)

where Zi is the design (or covariate) matrix for the random effect vector ψi. If µ0 is a
known parametric function, and if we assume that ψi, εi and εij are normally distributed,
then equation (3.6) is a parametric non-linear mixed model and the model can be fitted
using maximum likelihood using standard software (e.g., Lindstrom and D.M., 1988).

Here, we fit µ0 using the penalized spline model of Ruppert and Carroll (1997).
Use of the penalized spline method with penalty chosen by generalized maximum likelihood
(Wahba, 1985) is equivalent to fitting the model

µ0pt
�
ijq � Uγ �Vζ, (3.10)

where µ0pt
�
ijq is the vector of means at the transformed times, U is a design matrix for a

cubic polynomial in t�ij, V is a design matrix for cubics in t�ij which are left-truncated at
the knot, γ is a vector of unknown parameters and ζ is normally distributed with zero
mean and covariance matrix Σζ .

The result of a non-parametric regression analysis is a curve fitted to a set of
data pt�i ,wiq

wi � f0pt�i q � εi, (3.11)
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where f0 is a smooth function giving the conditional mean of wi given t�i and the εi are
mutually independent with Np0, σ2

εq for i � 1, 2, . . . , n. The smooth function f0 can be
found as result of minimization of the residual sum of squares plus a roughness penalty,

ņ

i�1
pwi � µ0 pt�i qq

2 � λ

»
pfp0 pt�i qq

2dt�i , (3.12)

where fp0 pt�i q is the pth derivative of the function f0pt�i q. The resultant curve fitted to
the data is a piecewise polynomial of degree 2p� 1. The smoothing parameter λ governs
the trade-off between smoothness and goodness of fit. This parameter is often unknown
in practice and needs to be estimated from the data. A classical data-driven approach
to selecting the smoothing parameter is cross-validation. A random coefficient linear
regression spline model of order p for µ0pt

�
ijq by Ruppert and Carroll (1997)., is

µ0
�
t�ij
�
� β0 � β1t

�
ij � � � � � βpt

�
ij
p � βp�1

�
t�ij � ξ1

�p
�
� � � � � βp�K

�
t�ij � ξK

�p
�
, (3.13)

where the parameters to be estimated are β�pβ0, . . . , βp�kq and tξ1, . . . , ξku are K fixed
knots with a ¤ ξ1   . . .   ξk ¤ b and pxqp� � xpItx¥0u. We can write equation (3.8) with
p � 3 as

µ0
�
t�ij
�
�

4̧

m�1
t�ij

m�1γm �
Ķ

k�1

�
t�ij � ξk

�3
�
ζk, (3.14)

where ζ � rζ1, . . . , ζks
1 � Np0, σ2

ζIq is independent of ε � rε1, . . . , εks
1. We can combine

equations (3.11) and (3.14) in one model

w � Uγ �Vζ � ε, (3.15)

with ε � Np0, σ2
εIq and

U�

������
1 t�i1 t�2

i1 t�3
i1

1 t�i2 t�2
i2 t�3

i2
... ... ... ...
1 t�ini

t�2
ini

t�3
ini

������ ,V�

����
pt�i1 � ξ1q

3 . . . pt�i1 � ξkq
3

... ... ...�
t�ini

� ξ1
�3

� � �
�
t�ini

� ξk
�3

���� . (3.16)

Equation (3.15) is nothing but a normal linear mixed model and, for any given σ2
ζ and σ2

ε,
the estimated best linear unbiased predictor (EBLUP) of w by Robinson (1991) is given
by

pw � pµ0 � Upγ �Vpζ. (3.17)
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Note that E p pµ0q � Epµ0q. Equation (3.17) can be rewritten by McCulloch and Searle
(2001) as

pµ0
��CpC1C� λpDq

�1C1w, (3.18)

where C � rU Vs , D�Diagp0p�1, Ikq and λp � σ2
ε{σ

2
ζ for the pth degree of penalized

spline model. It has been shown in Wang (1998) and Brumback and J.A. (1998) that the
EBLUP estimates given by (3.18) evaluated at design points are the same as the penalized
regression spline solution to equation (3.12). Thus it turns out that the non-parametric
smoothing spline regression is equivalent to a mixed-effects model (3.15). We see that the
smoothing parameter λp is the ratio of the variance components σ2

ε{σ
2
ζ , and that fitting

can be done using standard linear mixed effects software. This is the GML method of
Wahba (1985).

3.3 Estimation method
Let Yi , denote the vector of ordinal responses from subject i (for the ni repeated

observations nested within). The conditional likelihood for the observed responses can be
expressed as

` pθ|Yiq �
ni¹
j�1

L¹
l�1

pPijl � Pijl�1q
Iyij plq, (3.19)

where θ � pφ1, σ2
ψ, σ

2
ε, τ

1q1 and

Iyij
�

$&%1 if yij � l

0 if yij � l.

For the ordinal representation of the survival model, where right-censoring is
present, the above likelihood is generalized to

` pYi|θq �
ni¹
j�1

L¹
l�1

�
pPijl � Pijl�1q

cijp1 � Pijlq
1�cij

�Iyij plq, (3.20)

where

cij �

$&%1 if yij : Uncensored

0 if yij : Censored.
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With right-censoring, because there is essentially one additional response
category (for those censored at the last category L), given by τL�1 � 8 and PijL�1 � 1.
Then the marginal likelihood function under right-censoring is

L pθ,Yq �
N¹
i�1

» #
ni¹
j�1

L¹
l�1

�
pPijl � Pijl�1q

cijp1 � Pijlq
1�cij

�Iyij plq

f pθi|ψiq f
�
ψi|σ

2
ψi

�+
dθi dψi. (3.21)

Since ψi and εi have Nq

�
0,Σ

�
σ2
ψi

� 	
and N4

�
0, σ2

εi
I4
�
distributions, respectively, in

equation (3.9), we write the joint likelihood of the conditional cumulative probabilities of
ordered outcomes and the random effects θi and ψi in the cumulative logit function as

lic �
ni̧

j�1

Ļ

l�1
Iyij

plq
�
cij logpPijl � Pijl�1q � p1 � cijq logp1 � Pijlq

�
� log

�
Φ
�
θi|Xiφ� Ziψi, σ

2
εi
I4
� 	

� log
�
Φ
�
ψi|0, σ2

ψi

� 	
, (3.22)

where Φ is some probability density function. Therefore, the complete log-likelihood is

lc �
Ņ

i�1
lic. (3.23)

3.3.1 The estimation algorithm

In this section we propose an algorithm for the parameters estimation in the
SI ordinal model. Essentially steps 0-2 are considered for predicting the shape function µ0

and step 3 provides estimate of the parameters for the cumulative logit model through
MCNR and MCEM approaches.

Step 0: Choose initial estimates of τ psq, γpsq, variances σ2psq
ε , σ

2psq
ζ and σ2psq

ψ , random effects
ψ
psq
i � Nq

�
0,Σ

�
σ

2psq
ψ

		
, errors εpsqi � N4

�
0, σ2psq

ε I4
�
. Set s � 0.

Step 1: Compute θpsqi � Xiφ
psq � Ziψ

psq
i � ε

psq
i and extract αpsq0i , α

psq
1i , β

psq
0i and βpsq1i

Step 1.1: t
�psq
ij � β

psq
0i � exp

�
β
psq
1i

	
tij ,

Step 1.2: Upsq�

����
1 t

�psq
i1 t

�2psq
i1 t

�3psq
i1

... ... ... ...
1 t

�psq
ini

t
�2psq
ini

t
�3psq
ini

���� , Vpsq�

�����
�
t
�psq
i1 � ξ1

	3
. . .

�
t
�psq
i1 � ξk

	3

... ... ...�
t
�psq
ini

� ξ1

	3
� � �

�
t
�psq
ini

� ξk

	3

����� ,
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Cpsq�
�
Upsq Vpsq

�
.

Step 1.3: The pth degree of penalized spline model λppsq � σ2psq
ε {σ

2psq
ζ . wpsq � Upsqpγpsq �

Vpsqpζpsq.
Step 1.4: pµ0

�psq � Cpsq
�
C1psqCpsq � λppsqD

	�1
C1psqwpsq, D � diagp0p�1; Ikq.

Step 2: Using linear mixed model estimation, estimate γps�1q and ζps�1q
�
σ

2ps�1q
ζ

	
by fitting

pµ0
�psq � Upsqγ �Vpsqζ.

Step 3: Using non-linear mixed model estimation, estimate φps�1q, σ2ps�1q
ψ , σ2ps�1q

ε , and
τ ps�1q by fitting the model

Pijl � Pr pYij ¤ l|τl,θiq �
exppηijlq

1 � exppηijlq
,

ηijl � τl �
�
α0i � exppα1iq µ0

�
β0i � exppβ1iqtij

	�
,

θi � Xiφ� Ziψi � εi,

conditional on pµ0
�psq.

Step 4: Check for convergence. If the algorithm has converged, then stop. Otherwise,
increase the iteration counter s by one, and return to step 1.

3.3.2 MCEMNR algorithms

In the current set-up, the E-M steps are as follows

E-Step

The ps� 1qth step computes the conditional expectation of lic

Q
�
θ
��θpsq � � Ņ

i�1
Eθi

�
lic|Di,θ

psq
�
, (3.24)

where Di � pyi,Ziq. An alternative is to replace the E step with Monte Carlo approxima-
tions

constructed using a sample l1ic, . . . , l
pMiq
ic

Q
�
θ
��θpsq � � Ņ

i�1

1
Mi

Mi̧

m�1
l
pmq
ic

�
θ
�� Di,θ

psq
�
. (3.25)

We assume without loss of generality, that the number of iterations Mi �M @ i.
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M-Step

The ps� 1qth step then finds θps�1q as the maximizer of Q
�
θ
��θpsq �:

Q
�
θps�1q �� θpsq� ¥ Q

�
θ
�� θpsq� , (3.26)

for all θ in the parameter space. In principle, the M step is carried out by solving the
score equations

B

Bθ
Q
�
θ
�� θpsq� � Ņ

i�1

1
Mi

Mi̧

m�1

B

Bθ
l
pmq
ic

�
θ
�� Di,θ

psq
�
� 0, for θ. (3.27)

The essence of the EM algorithm is that increasing Qpθ|θpsqq forces an increase in the
log-likelihood of the observed data. To obtain a satisfactory accuracy, the MC sample size
M needs to be a large number. For example, to obtain two decimal digits of accuracy,
M ¥ 10 000 is required. Solution for θ in (3.27) can be obtained by NR procedure.To
solve for θ, we proceed through NR steps described below.

NR-Step

With θpsq � pφpsq, σ
2psq
ψ , σ2psq

ε , τ psqq, in Newton Raphson procedure is applied to estimate
θ at the ps� 1q iteration by using equation (3.27) as follows.

pθps�1q � pθpsq � rV �1Ŝpθqs|pθpsq , (3.28)

where

Ŝ pθq �
Ņ

i�1

1
Mi

Mi̧

m�1

�
Bl

pmq
ic

Bθ

�
|pθpsq

, (3.29)

and

V �
BŜpθq

BθT |pθpsq
�

Ņ

i�1

1
Mi

Mi̧

m�1

B

BθT

�
Bl

pmq
ic

Bθ

�
|pθpsq

. (3.30)

M is the number of iterations in the Monte Carlo method. This process is repeated until���pθps�1q � pθpsq��� ¤ ε Ó 0. See Section ?? for more details.
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3.4 Simulation
In this section, we use simulated data sets to compare the performances of the proportional
odds model under right censoring and our model by the MCNREM algorithm. We assume
the number of categories L � 5, N � 50, 100, 200 and n � 10, 25. The number of iterations
in the Monte Carlo is 10000. The true values and the estimates of all parameters of the
proportional odds model under right censoring and our model by the MCNREM algorithm
are displayed in Tables 3.1-3.3 and 3.4-3.6 respectively. Note that both for the proportional
odds model under right censoring and the proposed model the true value of the regression
parameter vector φ has been taken to be a null vector. Also the dispersion matrix of the
random vector ψi is assumed to be σ2

ψI4 for both models with the true value of σ2
ψ � 0.35.

The censoring time is generated from a uniform distribution in p0, rq with proper values of
r so that the corresponding censoring rates are 10%, 20% and 40%.

We do not have the closed form expression so we use Newton-Raphson iterations
to find the maximizer in EM algorithm. The standard errors (SE) based on generated
random samples of different sizes are also computed for each estimator. All the computations
are carried out in MATLAB.

Tables 3.1-3.3 and 3.4-3.6 respectively give us an idea about the performance
of the estimators under the proportional odds model under right censoring and the self
generating model of interest. In tables, we observe the variations in the estimates when
n � 10 is fixed and the value of N changes from 50 to 100 and then to 200. The situation
is pretty similar when n � 25 and N increases. From tables 3.4-3.6, it is evident that
performance of the estimates is quite satisfactory for our model built up for longitudinal
ordinal data.

3.5 An Application to Anaesthesia Recovery
The objective of focusing on the self generating model under right censoring

is to study the effects of varying dosages of an anaesthetic on post-surgical recovery. In
Davis (1991), 60 young children undergoing outpatient surgery were randomized to one
of four dosages (15, 20, 25 and 30 mg/kg) of the anaesthesia, with 15 children per dose
group. Recovery scores on a seven-point scale (0:least favorable; 6: most favorable) were
assigned upon admission to the recovery room and at minutes 5, 15 and 30 following
admission. In addition to the dosage, time when the measurement was taken, age of the
patient (in months) and duration of the surgery (in minutes) were considered as covariates.
The detailed analysis is based on our proposed model where we consider the recovery as a
response variable. The corresponding censoring rates are about 25% and 50%. For choosing
the best model in this example, we use the deviance which is the difference between the
log-likelihood of the fitted model and the maximum possible log-likelihood. Table 3.7 gives
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the values of the deviance.

Table 3.9 shows the estimates of intercepts and coeffcients for the sixth model
in Table 3.7. Under censoring rate 25%, the p-value of 0.0080, 0.0023 and 0.0162 for Dose,
Age and Dose�Age respectively indicate that these factors are significant on the odds of
the post-surgical recovery of a patient being less than or equal to a certain value versus
being greater than that value. The p-values of 0.0586 Dose�Duration of a patient indicates
that the factor is not significant. In another censoring rate only factors Dose and Age with
p-values of 0.0194 and 0.0480 respectively are significant. The self generating model with
respect to the sixth model with censoring rate 25% is

θ̂i �
�
α̂0i, α̂1i, β̂0i, β̂1i

	1
� 0.0581Dose1i � 0.0447Age1i � 0.0016pDose� Ageq1i � 0.0003pDose�Dur.q1i,

log

�
P prijl ¤ 0q
P prijl ¡ 0q



� �5.0521 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,

log

�
P prijl ¤ 1q
P prijl ¡ 1q



� �4.3099 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,

log

�
P prijl ¤ 2q
P prijl ¡ 2q



� �2.6073 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,

log

�
P prijl ¤ 3q
P prijl ¡ 3q



� �2.1794 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,

log

�
P prijl ¤ 4q
P prijl ¡ 4q



� �1.5271 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,

log

�
P prijl ¤ 5q
P prijl ¡ 5q



� �1.0530 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
.
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Tabela 3.1 – The estimates of all parameters of the proportional odds model under right censoring (10%)
by MCEMNR (SE in parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -0.8461 -0.8971 -0.8919 -0.9372 -0.9428 -0.9847
(0.1227) (0.0775) (0.0757) (0.0557) (0.0472) (0.0374)

τ2 0 0.4738 0.4679 0.4082 0.3991 0.3475 0.3247
(0.1172) (0.0740) (0.0728) (0.0526) (0.0428) (0.0335)

τ3 log3 2.6219 2.4929 2.4885 2.3320 2.2441 2.0471
(0.2500) (0.1986) (0.1848) (0.1268) (0.1192) (0.0984)

φ 0 0.0976 0.0871 0.0801 0.0714 0.0641 0.0552
(0.0813) (0.0580) (0.0563) (0.0403) (0.0356) (0.0276)
0.0982 0.0882 0.0811 0.0722 0.0652 0.0559
(0.0797) (0.0584) (0.0557) (0.0409) (0.0362) (0.0281)
0.0967 0.0869 0.0799 0.0706 0.0638 0.0545
(0.0802) (0.0578) (0.0561) (0.0414) (0.0356) (0.0284)
0.0985 0.0885 0.0809 0.0719 0.0647 0.0560
(0.0788) (0.0591) (0.0574) (0.0402) (0.0355) (0.0275)

σ2
ψ 0.35 0.3018 0.3105 0.3169 0.3251 0.3310 0.3405

(0.0716) (0.0594) (0.0507) (0.0401) (0.0355) (0.0264)
0.3020 0.3108 0.3165 0.3248 0.3305 0.3399
(0.0701) (0.0622) (0.0484) (0.0389) (0.0349) (0.0257)
0.3016 0.3100 0.3171 0.3256 0.3311 0.3410
(0.0683) (0.0625) (0.0468) (0.0394) (0.0371) (0.0291)
0.3013 0.3099 0.3170 0.3254 0.3316 0.3408
(0.0697) (0.0611) (0.0538) (0.0441) (0.0368) (0.0253)

σ2
ε 0.25 0.2429 0.2444 0.2451 0.2463 0.2467 0.2479

(0.0153) (0.0099) (0.0091) (0.0069) (0.0067) (0.0040)
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Tabela 3.2 – The estimates of all parameters of the proportional odds model under right censoring (20%)
by MCEMNR (SE in parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -1.3874 -1.2484 -1.3076 -1.1859 -1.2791 -1.1170
(0.1272) (0.0801) (0.0790) (0.0574) (0.0492) (0.0334)

τ2 0 0.2519 0.2309 0.1907 0.1829 0.1347 0.1201
(0.1180) (0.0743) (0.0729) (0.0527) (0.0430) (0.0337)

τ3 log3 2.5453 2.3208 2.3475 2.1071 1.9889 1.8640
(0.2034) (0.1558) (0.1545) (0.1008) (0.0997) (0.0561)

φ 0 0.0980 0.0876 0.0806 0.0720 0.0639 0.0560
(0.0812) (0.0581) (0.0563) (0.0403) (0.0357) (0.0221)
0.0976 0.0882 0.0815 0.0726 0.0645 0.0555
(0.0796) (0.0585) (0.0547) (0.0409) (0.0363) (0.0234)
0.0985 0.0870 0.0801 0.0714 0.0631 0.0569
(0.0803) (0.0578) (0.0563) (0.0414) (0.0357) (0.0228)
0.0991 0.0888 0.0820 0.0731 0.0643 0.0548
(0.0788) (0.0592) (0.0575) (0.0402) (0.0355) (0.0220)

σ2
ψ 0.35 0.3026 0.3118 0.3180 0.3264 0.3316 0.3411

(0.0697) (0.0560) (0.0520) (0.0391) (0.0354) (0.0231)
0.3018 0.3129 0.3171 0.3270 0.3310 0.3406
(0.0729) (0.0603) (0.0480) (0.0366) (0.0343) (0.0218)
0.3020 0.3120 0.3182 0.3275 0.3321 0.3419
(0.0694) (0.0614) (0.0476) (0.0395) (0.0365) (0.0261)
0.3015 0.3117 0.3175 0.3261 0.3324 0.3404
(0.0692) (0.0611) (0.0539) (0.0434) (0.0334) (0.0254)

σ2
ε 0.25 0.2428 0.2444 0.2450 0.2461 0.2478 0.2483

(0.0153) (0.0099) (0.0090) (0.0069) (0.0068) (0.0039)
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Tabela 3.3 – The estimates of all parameters of the proportional odds model under right censoring (40%)
by MCEMNR (SE in parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -1.5059 -1.4607 -1.4269 -1.3889 -1.3467 -1.2947
(0.1352) (0.0887) (0.0843) (0.0637) (0.0521) (0.0351)

τ2 0 -0.5524 -0.5030 -0.4518 -0.3970 -0.3491 -0.3017
(0.1191) (0.0775) (0.0746) (0.0548) (0.0436) (0.0340)

τ3 log3 1.4129 1.3658 1.3205 1.2756 1.2391 1.1964
(0.1536) (0.1162) (0.1125) (0.0765) (0.0794) (0.0381)

φ 0 0.0991 0.0883 0.0821 0.0740 0.0648 0.0573
(0.0814) (0.0582) (0.0564) (0.0405) (0.0362) (0.0254)
0.0979 0.0878 0.0816 0.0732 0.0639 0.0561
(0.0798) (0.0587) (0.0549) (0.0411) (0.0368) (0.0260)
0.0998 0.0888 0.0830 0.0739 0.0653 0.0580
(0.0805) (0.0580) (0.0566) (0.0416) (0.0362) (0.0251)
0.0986 0.0891 0.0836 0.0746 0.0660 0.0569
(0.0798) (0.0594) (0.0576) (0.0404) (0.0360) (0.0249)

σ2
ψ 0.35 0.3018 0.3109 0.3173 0.3258 0.3308 0.3415

(0.0697) (0.0560) (0.0520) (0.0396) (0.0347) (0.0224)
0.3022 0.3116 0.3184 0.3250 0.3311 0.3406
(0.0729) (0.0603) (0.0480) (0.0354) (0.0342) (0.0228)
0.3020 0.3121 0.3169 0.3261 0.3305 0.3414
(0.0694) (0.0614) (0.0476) (0.0390) (0.0369) (0.0270)
0.3031 0.3111 0.3180 0.3248 0.3320 0.3410
(0.0692) (0.0601) (0.0540) (0.0451) (0.0339) (0.0260)

σ2
ε 0.25 0.2438 0.2449 0.2453 0.2462 0.2478 0.2487

(0.0153) (0.0099) (0.0091) (0.0070) (0.0069) (0.0035)
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Tabela 3.4 – The estimates of all parameters of the Self generating ordinal model under right censoring
(10%) by MCEMNR (SE in parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -0.9824 -1.0039 -1.0128 -1.0352 -1.1477 -1.1632
(0.0609) (0.0516) (0.0469) (0.0388) (0.0348) (0.0261)

τ2 0 0.0892 0.0803 0.0756 0.0708 0.0639 0.0569
(0.0519) (0.0433) (0.0401) (0.0321) (0.0294) (0.0219)

τ3 log3 1.2122 1.1951 1.1863 1.1758 1.1689 1.1580
(0.0829) (0.0709) (0.0661) (0.0550) (0.0511) (0.0416)

φ 0 -0.1032 -0.0906 -0.0824 -0.0699 -0.0635 -0.0503
(0.0403) (0.0328) (0.0286) (0.0226) (0.0208) (0.0145)
-0.1028 -0.0904 -0.0826 -0.0701 -0.0630 -0.0501
(0.0408) (0.0321) (0.0289) (0.0233) (0.0208) (0.0146)
-0.1030 -0.0908 -0.0821 -0.0703 -0.0637 -0.0505
(0.0404) (0.0322) (0.0289) (0.0231) (0.0207) (0.0145)
-0.1035 -0.0901 -0.0823 -0.0702 -0.0631 -0.0504
(0.0405) (0.0325) (0.0286) (0.0231) (0.0207) (0.0145)

σ2
ψ 0.35 0.3761 0.3719 0.3683 0.3641 0.3606 0.3577

(0.0504) (0.0401) (0.0367) (0.0264) (0.0210) (0.0108)
0.3765 0.3720 0.3684 0.3641 0.3606 0.3578
(0.0504) (0.0402) (0.0367) (0.0264) (0.0211) (0.0108)
0.3764 0.3721 0.3684 0.3642 0.3607 0.3578
(0.0505) (0.0401) (0.0368) (0.0263) (0.0210) (0.0107)
0.3761 0.3720 0.3685 0.3640 0.3607 0.3577
(0.0503) (0.0401) (0.0368) (0.0264) (0.0210) (0.0107)

σ2
ε 0.25 0.2449 0.2462 0.2466 0.2478 0.2481 0.2491

(0.0078) (0.0055) (0.0048) (0.0039) (0.0035) (0.0024)

γ 0 0.0908 0.0763 0.0690 0.0630 0.0571 0.0504
(0.0405) (0.0353) (0.0276) (0.0237) (0.0168) (0.0130)
0.0908 0.0763 0.0689 0.0630 0.0572 0.0505
(0.0405) (0.0354) (0.0277) (0.0236) (0.0167) (0.0129)
0.0905 0.0761 0.0690 0.0632 0.0572 0.0505
(0.0407) (0.0354) (0.276) (0.0237) (0.0167) (0.0130)
0.0904 0.0763 0.0691 0.0633 0.0571 0.0504
(0.0404) (0.0352) (0.0276) (0.0236) (0.0168) (0.0130)
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Tabela 3.4 – The estimates of all parameters of the Self generating ordinal model under right censoring
(10%) by MCEMNR (SE in parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

σ2
ζ 0.3 0.2871 0.2898 0.2912 0.2941 0.2959 0.2976

(0.0762) (0.0657) (0.0469) (0.0362) (0.0147) (0.0055)
0.2873 0.2896 0.2912 0.2939 0.2960 0.2976
(0.0761) (0.0657) (0.0471) (0.0362) (0.0147) (0.0056)
0.2871 0.2896 0.2912 0.2940 0.2960 0.2976
(0.0761) (0.0653) (0.0471) (0.0362) (0.0148) (0.0055)
0.2869 0.2897 0.2911 0.2937 0.2958 0.2977
(0.0759) (0.0656) (0.0471) (0.0361) (0.0149) (0.0055)
0.2869 0.2899 0.2911 0.2938 0.2959 0.2977
(0.0761) (0.0657) (0.0469) (0.0362) (0.0149) (0.0055)

σ2
εp

0.2 0.1945 0.1955 0.1959 0.1967 0.1974 0.1982
(0.0130) (0.0086) (0.0085) (0.0058) (0.0055) (0.0039)
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Tabela 3.5 – The estimates of all parameters of the Self generating ordinal model under right censoring
(20%) by MCEMNR (SE in parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -0.9867 -1.0081 -1.0190 -1.0403 -1.1511 -1.1686
(0.0646) (0.0550) (0.0501) (0.0416) (0.0381) (0.0290)

τ2 0 0.0921 0.0839 0.0798 0.0739 0.0684 0.0605
(0.0544) (0.0462) (0.0420) (0.0336) (0.0305) (0.0231)

τ3 log3 1.2094 1.1926 1.1848 1.1733 1.1652 1.1544
(0.0801) (0.0698) (0.0670) (0.0526) (0.0498) (0.0386)

φ 0 -0.1030 -0.0905 -0.0806 -0.0681 -0.0624 0.0497
(0.0404) (0.0328) (0.0282) (0.0228) (0.0207) (0.0145)
-0.1032 -0.0901 -0.0809 -0.0682 -0.0625 0.0498
(0.0404) (0.0321) (0.0283) (0.0232) (0.0207) (0.0144)
-0.1025 -0.0904 -0.0808 -0.0683 -0.0624 0.0496
(0.0406) (0.0323) (0.0281) (0.0231) (0.0208) (0.0144)
-0.1033 -0.0907 -0.0805 -0.0684 -0.0623 0.0495
(0.0407) (0.0324) (0.0283) (0.0232) (0.0208) (0.0145)

σ2
ψ 0.35 0.3765 0.3720 0.3685 0.3642 0.3605 0.3579

(0.0485) (0.0394) (0.0331) (0.0235) (0.0199) (0.0101)
0.3766 0.3721 0.3685 0.3643 0.3605 0.3578
(0.0487) (0.0393) (0.0331) (0.0235) (0.0198) (0.0102)
0.3761 0.3721 0.3687 0.3643 0.3606 0.3578
(0.0488) (0.0394) (0.0330) (0.0234) (0.0199) (0.0102)
0.3766 0.3725 0.3684 0.3645 0.3606 0.3579
(0.0485) (0.0393) (0.0330) (0.0235) (0.0199) (0.0101)

σ2
ε 0.25 0.2450 0.2461 0.2467 0.2478 0.2482 0.2491

(0.0076) (0.0051) (0.0047) (0.0038) (0.0034) (0.0023)

γ 0 0.0909 0.0760 0.0689 0.0629 0.0571 0.0504
(0.0405) (0.0353) (0.0277) (0.0238) (0.0168) (0.0129)
0.0908 0.0767 0.0689 0.0630 0.0570 0.0504
(0.0406) (0.0353) (0.0277) (0.0237) (0.0168) (0.0129)
0.0905 0.0760 0.0690 0.0631 0.0572 0.0506
(0.0407) (0.0354) (0.275) (0.0237) (0.0167) (0.0130)
0.0904 0.0767 0.0692 0.0636 0.0574 0.0506
(0.0401) (0.0351) (0.0275) (0.0237) (0.0166) (0.0129)
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Tabela 3.5 – The estimates of all parameters of the Self generating ordinal model under right censoring
(20%) by MCEMNR (SE in parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

σ2
ζ 0.3 0.2872 0.2898 0.2911 0.2940 0.2959 0.2975

(0.0761) (0.0656) (0.0469) (0.0361) (0.0148) (0.055)
0.2873 0.2897 0.2912 0.2939 0.2960 0.2976
(0.0761) (0.0657) (0.0470) (0.0361) (0.0148) (0.0055)
0.2872 0.2896 0.2912 0.2938 0.2960 0.2977
(0.0760) (0.0652) (0.0471) (0.0362) (0.0149) (0.0056)
0.2868 0.2900 0.2913 0.2936 0.2957 0.2977
(0.0759) (0.0656) (0.0471) (0.0360) (0.0149) (0.0056)
0.2869 0.2901 0.2911 0.2935 0.2956 0.2976
(0.0760) (0.0657) (0.0469) (0.0363) (0.0149) (0.0055)

σ2
εp

0.2 0.1944 0.1953 0.1959 0.1968 0.1973 0.1982
(0.0131) (0.0086) (0.0084) (0.0057) (0.0055) (0.0038)
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Tabela 3.6 – The estimates of all parameters of the Self generating ordinal model under right censoring
(40%) by MCEMNR (SE in parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -0.9816 -1.0028 -1.0131 -1.0343 -1.0460 -1.0654
(0.0724) (0.0601) (0.0544) (0.0453) (0.0427) (0.0298)

τ2 0 0.0980 0.0896 0.0851 0.0792 0.0706 0.0638
(0.0560) (0.0485) (0.0439) (0.0378) (0.0336) (0.0268)

τ3 log3 1.2050 1.1886 1.1801 1.1692 1.1607 1.1491
(0.0774) (0.0662) (0.0640) (0.0481) (0.0434) (0.0277)

φ 0 -0.1029 -0.0907 -0.0811 -0.0677 -0.0626 -0.0493
(0.0405) (0.0329) (0.0286) (0.0223) (0.0206) (0.0141)
-0.1033 -0.0906 -0.0815 -0.0679 -0.0624 -0.0495
(0.0406) (0.0320) (0.0290) (0.0224) (0.0206) (0.0142)
-0.1026 -0.0905 -0.0816 -0.0681 -0.0625 -0.0495
(0.0408) (0.0322) (0.0289) (0.0224) (0.0205) (0.0141)
-0.1031 -0.0908 -0.0813 -0.0676 -0.0626 -0.0494
(0.0409) (0.0326) (0.0286) (0.0223) (0.0205) (0.0142)

σ2
ψ 0.35 0.3770 0.3724 0.3686 0.3649 0.3608 0.3582

(0.0498) (0.0414) (0.0352) (0.0248) (0.0214) (0.0123)
0.3771 0.3721 0.3687 0.3647 0.3608 0.3583
(0.0495) (0.0414) (0.0352) (0.0248) (0.0214) (0.0123)
0.3766 0.3721 0.3687 0.3647 0.3609 0.3583
(0.0500) (0.0416) (0.0351) (0.0248) (0.0213) (0.0123)
0.3769 0.3722 0.3689 0.3646 0.3609 0.3580
(0.0498) (0.0416) (0.0353) (0.0248) (0.0213) (0.0123)

σ2
ε 0.25 0.2451 0.2461 0.2468 0.2478 0.2483 0.2491

(0.0077) (0.0053) (0.0046) (0.0038) (0.0035) (0.0024)

γ 0 0.0911 0.0764 0.0691 0.0630 0.0573 0.0506
(0.0395) (0.0348) (0.0274) (0.0231) (0.0164) (0.0126)
0.0915 0.0769 0.0688 0.0631 0.0571 0.0508
(0.0396) (0.0351) (0.0275) (0.0230) (0.0164) (0.0128)
0.0905 0.0760 0.0695 0.0635 0.0572 0.0507
(0.0400) (0.0352) (0.274) (0.0230) (0.0165) (0.0128)
0.0901 0.0768 0.0694 0.0638 0.0575 0.0507
(0.0387) (0.0349) (0.0275) (0.0229) (0.0165) (0.0127)
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Tabela 3.6 – The estimates of all parameters of the Self generating ordinal model under right censoring
(40%) by MCEMNR (SE in parenthesis)

N 50 100 200
n 10 25 10 25 10 25
Parameter True value

σ2
ζ 0.3 0.2861 0.2891 0.2908 0.2933 0.2948 0.2972

(0.0756) (0.0651) (0.0466) (0.0358) (0.0143) (0.0059)
0.2866 0.2890 0.2911 0.2931 0.2947 0.2971
(0.0758) (0.0656) (0.0467) (0.0357) (0.0145) (0.0059)
0.2862 0.2895 0.2911 0.2931 0.2947 0.2972
(0.0760) (0.0653) (0.0467) (0.0358) (0.0144) (0.0058)
0.2865 0.2898 0.2910 0.2932 0.2947 0.2972
(0.0756) (0.0653) (0.0470) (0.0359) (0.0144) (0.0058)
0.2860 0.2897 0.2909 0.2934 0.2948 0.2973
(0.0758) (0.0658) (0.0462) (0.0359) (0.0143) (0.0059)

σ2
εp

0.2 0.1945 0.1951 0.1960 0.1967 0.1974 0.1981
(0.0132) (0.0087) (0.0078) (0.0056) (0.0045) (0.0026)

Tabela 3.7 – Values of the deviance for the best subset of each size in two censoring rates

Deviance
Model Subset size Predictors CR:25% CR:50%

1 1 Dose 630.2133 624.0238
2 2 Dose, Age 625.3785 622.5002
3 2 Dose, Dur. 622.9848 620.9668
4 3 Dose, Age, Dur. 620.6077 618.3663
5 4 Dose, Age, Dur., Age�Dur. 617.2568 614.7388
6 4 Dose, Age, Dose�Age, Dose�Dur. 615.3196 613.7527

CR: Censoring Rate, Dur.: Duration

Tabela 3.8 – Values of AIC and BIC for the best subset of each size in two censoring rates

AIC BIC
Model CR:25% CR:50% CR:25% CR:50%

1 2022.66 2041.44 2703.78 2724.84
2 2012.01 2032.56 2694.16 2716.19
3 2003.97 2024.31 2684.48 2707.25
4 1996.74 2018.92 2678.02 2700.67
5 1984.65 2007.33 2666.40 2689.08
6 1969.37 1991.53 2651.12 2673.28
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Tabela 3.9 – Estimates of intercepts and coefficients of the sixth model for two censoring rates

Censoring Rate Variable Estimates Std. Error P-value
τ1 -5.0521 0.4013 0.0000
τ2 -4.3099 0.3784 0.0000
τ3 -2.6073 0.3202 0.0000
τ4 -2.1794 0.3108 0.0000
τ5 -1.5271 0.2965 0.0000

25% τ6 -1.0530 0.2867 0.0000

Dose 0.0581 0.0219 0.0080
Age 0.0447 0.0147 0.0023

Dose�Age -0.0016 0.0006 0.0162
Dose�Dur 0.0003 0.0002 0.0586

τ1 -5.0472 0.3264 0.0000
τ2 -3.6004 0.3007 0.0000
τ3 -1.8698 0.2186 0.0000
τ4 -1.4377 0.2047 0.0000
τ5 -0.7807 0.1872 0.0000

50% τ6 -0.3033 0.1801 0.0000

Dose 0.0564 0.0241 0.0194
Age 0.0329 0.0166 0.0480

Dose�Age -0.0013 0.0008 0.0905
Dose�Dur 0.0002 0.0002 0.2374
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4 A proportional hazard cure model for ordi-
nal responses by Self-Modeling regression

4.1 Introduction
Farewell (1982), Farewell (1986) used mixture models for the analysis of survival

data with long-term survivors. On the cure models, the population is considered as a
mixture of cured patients and uncured patients. Let Y be the indicator variable for an
uncured patient with Y � 1 if the patient is uncured and 0 if cured, where T is the
failure time of a patient. We denote x and z as the covariate vectors, πpzq as the uncured
probability for a subject, and Spt|x, zq as the survival function for T , respectively. The
proportional hazard cure (PHC) model is given by

Spt|x, zq � πpzqSupt|xq � r1 � πpzqs, (4.1)

where Supt|xq be the survival function for uncured subjects. This formulation implies that
the survivor function Supt|xq for t is related to S0ptq as Supt|xq � tS0ptqu

exppβxq. To specify
the effects of z on π, we have

πpzq �
exppγ1zq

1 � exppγ1zq , (4.2)

where γ is a vector of unknown parameters. Kuk and Chen (1992) considered the se-
miparametric logistic PH mixture model. They focused on estimation of the regression
parameters using a marginal likelihood method. Sy and Taylor (2000) and Peng and Dear
(2000) used the full likelihood approach and derived some EM algorithms to compute the
maximum likelihood estimator.

McCullagh (1980) described the proportional odds model for analysis of ordinal
data. As a logit link function, the proportional odds model characterizes the ordinal
responses in L categories pl � 1, 2, . . . , Lq in terms of L�1 cumulative category comparisons,
specifically, L� 1 cumulative logits. In the proportional odds model, the covariate effects
are assumed to be the same across these cumulative logits, or proportional across the
cumulative odds. Here, denote the conditional cumulative probabilities for the L categories

of the outcome yij as Pijl � Pr pyij ¤ l|xij, zijq �
ļ

k�1
pijk, where pijk represents the

conditional probability of response in category k. The logistic Generalized Linear Mixed
Models for the conditional cumulative probabilities is given in terms of the cumulative
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logits as

Pijl �
exppηijlq

1 � exppηijlq
, l � 1, . . . , L� 1, (4.3)

where the linear predictor is

ηijl � τl � ωij, (4.4)

and

ωij � x
1

ijβ � z
1

ijυi. (4.5)

Take L � 1 strictly increasing model thresholds τl pi.e., τ1   τ2   . . .   τL�1q. xij is the
pp � 1q � 1 covariate vector (including the intercept), and zij is design vector for the r
random effects, both vectors being for the jth timepoint nested within subject i. Also,
β is the pp � 1q � 1 vector of unknown fixed regression parameters. Let υ � Tθ, where
TT

1

� Συ is the Cholesky factorization of random-effect variance covariance matrix Συ.

In this work we will consider the Self-Modeling Regression (SEMOR) Model
introduced by Lawton, Sylvestre and Maggio (1972)

yij � υi tµ0 rκiptijqsu � eij, (4.6)

where yij is the response for curve i, i � 1, . . . , N , measured at ni times, tij. υipxq is
a monotone inverse link transforming the regression function and κipxq is a monotone
transformation of the time axis. µ0 is a shape function that is common to all the curves,
and eij are errors. This paper will focus on nonparametric modeling of µ0 and parametric
modeling of υipxq and κipxq with known correlation structure for eij. In Section 4.2, we
will consider the Self-Modeling model defined for the conditional cumulative probabilities
for a category of an outcome. Therefore, unlike equation (4.6), in our model there is no
relation between the observed response and parameters directly.

In a medical study, patients have various stages of illness. For example the
stage of cancer is associated with the severity of the cancer (S = 1,2,3 for minor, medium,
severe). The patients are treated with radiation, where one of the three dose levels of
radiation (D = 1,2,3 for weak, medium, strong) is applied to each patient. After using
radiation, the patient will be cured or the stage of his cancer will change. Changing of
the stage of the cancer could be an deviance of health or not, therefore the changing will
effect on later decisions. To build up a suitable framework for an analysis of such data, we
propose the use of self-modeling ordinal longitudinal model. Unlike the univariate mixture
cure model (Boag, 1949, Farewell, 1982), a mixture cure model based on ordinal responses
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is proposed in Section 4.3. We outline the proportional hazard mixture cure model with
random effects. In Section 4.4, parameter estimation with using the Monte Carlo method
in Newton-Raphson and EM algorithms are introduced. Section 4.5 discuss simulation
results of the estimation methods.

Schizophrenia is a disorder of the mind that results in disorganisation of normal
thinking and feeling. Schizophrenia as a mental illness can come in various forms with
different symptoms and outcomes. In Section 4.6, as an application, we focus on the
question of whether four medications affects schizophrenia patients. In particular, we
investigate the interaction between the medication effect and time to follow-up.

4.2 Self-Modeling Ordinal model
Consider the Shape-Invariant (SI),

Yij � α0i � exppα1iqµ0pβ0i � exppβ1iqtijq � εij (4.7)

where Yij is the observed response on subject i at time tij. With

ωij � α0i � exp pα1iq µ0
�
t�ij
�
, (4.8)

where t�ij � β0i � exp pβ1iq tij and

ηijl � log

�
Pijl

1 � Pijl

�
� τl �

�
α0i � exp pα1iq µ0

�
t�ij
��
. (4.9)

Lawton, Sylvestre and Maggio (1972), Kneip and Gasser (1988) and Kneip e Engel (1995)
considered

θi � pα0i, α1i, β0i, β1iq
1 , (4.10)

while we consider a mixed model

θi � Xiφ� Ziψi � εi, (4.11)

where Zi is the design (or covariate) matrix for the random effect vector ψi.

As discussed before the use of the penalized spline method with penalty chosen
by generalized maximum likelihood (Wahba, 1985) is equivalent to fitting the model

µ0pt
�
ijq � Uγ �Vζ, (4.12)
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where µ0pt
�
ijq is the vector of means at the transformed times, U is a design matrix for a

cubic polynomial in t�ij, V is a design matrix for cubics in t�ij which are left-truncated at
the knot, γ is a vector of unknown parameters and ζ is normally distributed with zero
mean and covariance matrix Σζ .

The result of a nonparametric regression analysis is a curve fitted to a set of
data pt�i ,wiq

wi � f0pt�i q � εi, (4.13)

where f0 is a smooth function giving the conditional mean of wi given t�i and the εi are
mutually independent with Np0, σ2

εq for i � 1, 2, . . . , n. The smooth function µ0 can be
found as result of minimization of the residual sum of squares plus a roughness penalty,

ņ

i�1
pwi � f0 pt�i qq

2 � λ

»
pfp0 pt�i qq

2dt�i , (4.14)

where fp0 pt�i q is the pth derivative of the function f0pt�i q. The resultant curve fitted to the
data is a piecewise polynomial of degree 2p� 1. The smoothing parameter λ governs the
trade-off between smoothness and goodness of fit. This parameter is often unknown in
practice and needs to be estimated from the data. A classical data-driven approach to
selecting the smoothing parameter is cross-validation, which leaves out one subject’s entire
data at a time.

A random coefficient linear regression spline model of order p for µ0pt
�
ijq by

Ruppert and Carroll (1997)., is

µ0
�
t�ij
�
� β0 � β1t

�
ij � � � � � βpt

�
ij
p � βp�1

�
t�ij � ξ1

�p
�
� � � � � βp�K

�
t�ij � ξK

�p
�
, (4.15)

where the parameters to be estimated are β�pβ0, . . . , βp�kq and tξ1, . . . , ξku are K fixed
knots with a ¤ ξ1   . . .   ξk ¤ b and pxqp� � xpItx¥0u. We can write equation (4.12) with
p � 3 as

µ0
�
t�ij
�
�

4̧

m�1
t�ij

m�1γm �
Ķ

k�1

�
t�ij � ξk

�3
�
ζk, (4.16)

where ζ � rζ1, . . . , ζks
1 � Np0, σ2

ζIq is independent of ε � rε1, . . . , εks
1. We can combine

equations (4.13) and (4.16) in one model

w � Uγ �Vζ � ε, (4.17)
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with ε � Np0, σ2
εIq and

U�

������
1 t�i1 t�2

i1 t�3
i1

1 t�i2 t�2
i2 t�3

i2
... ... ... ...
1 t�ini

t�2
ini

t�3
ini

������ ,V�

����
pt�i1 � ξ1q

3 . . . pt�i1 � ξkq
3

... ... ...�
t�ini

� ξ1
�3

� � �
�
t�ini

� ξk
�3

���� . (4.18)

Equation (4.17) is nothing but a normal linear mixed model and, for any given σ2
ζ and σ2

ε,
the estimated best linear unbiased predictor (EBLUP) of w by Robinson (1991)

pw � pµ0 � Upγ �Vpζ. (4.19)

Unbiased refers here to the property that the average value of the estimate is equal to the
average value of the quantity being estimated, that is E ppµ0q � Epµ0q. Equation (4.19)
can be rewritten by McCulloch and Searle (2001) as

pµ�0�CpC1C� λpDq
�1C1w, (4.20)

where C � rU Vs , D�Diagp0p�1, Ikq and λp � σ2
ε{σ

2
ζ for the pth degree of penalized

spline model. It has been shown in Wang (1998) and Brumback and J.A. (1998) that
the EBLUP estimates (4.20) evaluated at design points are the same as the penalized
regression spline solution to equation (4.14). Thus it turns out that the nonparametric
smoothing spline regression is equivalent to a mixed-effects model (4.17). We see that the
smoothing parameter λp is the ratio of the variance components σ2

ε{σ
2
ζ , and that fitting

can be done using standard linear mixed effects software. This is the GML method of
Wahba (1985).

4.3 The model
Suppose an ordinal variable yij where yij ¤ l indicates that an individual will ex-

perience a particular event and yij ¡ l indicates that the individual will never experience the
event. Let O �

 
tij � minpt�ij, cijq, δij � Ipt�ij ¤ cijq, x

�
ij, z

�
ij, i � 1, . . . , N, j � 1, . . . , ni

(
be

the observed multivariate failure data, where ptij, δijq denote the failure time and cen-
soring indicator and x�ij and z�ij be the covariates of the jth observation within the ith
individual that may affect the failure time distribution of uncured individuals and the
cure proportion. t�ij is the value of the underlying failure time Tij that may be subject to
censoring with the censoring time cij . We assume that given covariates, the censoring time
cij is independent of the failure time t�ij and the cure status yij. Let fu

�
tij|yij ¤ l, x�ij, z

�
ij

�
and Su

�
tij|yij ¤ l, x�ij, z

�
ij

�
be the probability density function (pdf) and the survival
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function for uncured subjects. Since the ordinal model is defined in terms of the cumulative
probabilities, the conditional probability of a response in category l is obtained as the
difference of two conditional cumulative probabilities:

pijl � Pr pYij � l|xij, zijq � Pijl � Pijl�1, (4.21)

where Pijl is given by equation (4.8). Here, τ0 � �8 and τL � 8, and so Pij0 � 0 and
PijL � 1. The SI-PHC model can be written as a mixture model in terms of the survival
function

S
�
tij|yij ¤ l, x�ij, z

�
ij

�
� p1 � Pijlq � pijlSu

�
tij|yij ¤ l, x�ij, z

�
ij

�
, (4.22)

where

Su
�
tij|yij ¤ l, x�ij, z

�
ij

�
�
�
S0
�
tij|yij ¤ l

��exppx�ijφ
��z�ijψ

�
i q

. (4.23)

S0p�q is an arbitrary baseline survival function for uncured individuals. In this paper, we will
consider the Weibull distribution. Under the Weibull baseline assumption, S0ptq � r�pt{bqas

where a, b ¡ 0 are the shape and scale parameters of the distribution, respectively. The
marginal likelihood for the multivariate cure model is

L pθq �
N¹
i�1

» #
ni¹
j�1

L¹
l�1

��
pijlfu

�
tij|yij ¤ l, x�ijφ

� � z�ijψ
�
i

��δij

�
�
p1 � Pijlq � pijlSu

�
tij|yij ¤ l, x�ijφ

� � z�ijψ
�
i

��1�δij


Iyij plq

� f pθi|ψiq f
�
ψi|σ

2
ψi

�
f
�
ψ�
i |σ

2
ψ�

i

	+
dθi dψi dθ

�
i dψ

�
i , (4.24)

where

Iyij
�

$&%1 if yij � l

0 if yij � l.

and θ � pφ1, σ2
ψ, σ

2
ε, τ

1, φ�1 , σ2
ψ�q1. Since ψ�

i has N
�
0,Σ

�
σ2
ψ�

i

		
, therefore the complete
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log-likelihood is

lc �
Ņ

i�1
lic �

Ņ

i�1

ni̧

j�1

Ļ

l�1
Iyij

plq

�
δij

�
log pijl � log fu

�
tij|yij ¤ l, x�ijφ

� � z�ijψ
�
i

��
� p1 � δijq log

�
p1 � Pijlq � pijlSu

�
tij|yij ¤ l, x�ijφ

� � z�ijψ
�
i

��

� log

�
Φ
�
θi|Xiφ� Ziψi, σ

2
εi
I4
� �

� log
�
Φ
�
ψi|0, σ2

ψi

� �
� log

�
Φ
�
θ�i |X�

iφ
� � Z�

iψ
�
i , σ

2
ε�i
I4

	 �
� log

�
Φ
�
ψ�
i |0, σ2

ψ�
i

	 �
,

(4.25)

where Φ is a probability density function.

4.4 Estimation method
In this section we propose an algorithm for parameter estimation in the SI

ordinal model. Essentially steps 0-2 are considered for predicting the shape function µ0

and step 3 provides estimate of the parameters for the cummulative logit model through
MCNR and MCEM approaches.

Step 0: Choose initial estimates of τ psq, φpsq, φ�psq and γpsq, variances σ2
ψ
psq
, σ2
ε
psq
, σ2
ψ�

psq
, σ2
ε�

psq,
σ2
ζ
psq and σ2

εp
, random effects ψipsq � N4

�
0,Σ

�
σ2
ψ
psq
		

and ψ�
i
psq � N

�
0,Σ

�
σ2
ψ�

psq
		

,

errors εipsq � N4

�
0, σ2

ε
psq
I4

	
and ε�i

psq � N
�

0, σ2
ε�

psq
	
. Set s � 0.

Step 1: Compute θ�i
psq � X�

iφ
�psq � Z�

iψ
�
i
psq � ε�i

psq and θpsqi � Xiφ
psq � Ziψ

psq
i � ε

psq
i and

extract αpsq0i , α
psq
1i , β

psq
0i and βpsq1i

Step 1.1: t�ij
psq � β

psq
0i � exp

�
β
psq
1i

	
tij ,

Step 1.2: Upsq�

����
1 t�i1

psq t�2
i1
psq

t�3
i1
psq

... ... ... ...
1 t�ini

psq t�2
ini

psq
t�3
ini

psq

���� , Vpsq�

�����
�
t�i1

psq � ξ1

	3
. . .

�
t�i1

psq � ξk

	3

... ... ...�
t�ini

psq � ξ1

	3
� � �

�
t�ini

psq � ξk

	3

����� ,

Cpsq�
�
Upsq Vpsq

�
.

Step 1.3: The pth degree of penalized spline model λppsq � σ2
εp

psq
{σ2
ζ
psq. wpsq � Upsqpγpsq �

Vpsqpζpsq � pεpsqp .

Step 1.4: pµ�0 psq � Cpsq
�
C1psqCpsq � λppsqD

	�1
C1psqwpsq, D � diagp0p�1; Ikq.

Step 2: Using linear mixed model estimation, estimate γps�1q and ζps�1q
�
σ2ps�1q
ζ

	
by fitting

pµ�0 psq � Upsqγ �Vpsqζ � εp.
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Step 3: Using nonlinear mixed model estimation, estimate τ ps�1q, φps�1q, σ2
ψ
ps�1q, σ2

ε
ps�1q,

φ�ps�1q, σ2
ψ�

ps�1q and σ2
ε�

ps�1q by fitting the model

ηijl � τl �
�
α0i � exppα1iq µ0

�
β0i � exppβ1iqtij

	�
,

Pijl �
exppηijlq

1 � exppηijlq
, pijl � Pijl � Pijl�1

θi � Xiφ� Ziψi � εi,

θ�i � X�
iφ

� � Z�
iψ

�
i � ε

�
i

,

conditional on pµ�0 psq.
Step 4: Check for convergence. If the algorithm has converged, then stop. Otherwise,
increase the iteration counter s by one, and return to step 1.

4.4.1 MCEMNR algorithms

In the current setup, the E-M steps are as follows

E-Step

The ps� 1qth step computes the conditional expectation of lic

Q
�
θ
��θpsq � � Ņ

i�1
Eθi

�
lic|Di,θ

psq
�
, (4.26)

where Di � pyi, Xi, Zi, X�
i , Z�

i q. An alternative is to replace the E step with Monte
Carlo approximations constructed using a sample lp1qic , . . . , l

pMiq
ic

Q
�
θ
��θpsq � � Ņ

i�1

1
Mi

Mi̧

m�1
l
pmq
ic

�
θ
�� Di,θ

psq
�
. (4.27)

Mi is the number of iterations in the Monte Carlo method. We assume without loss of
generality, the number of iterations Mi �M @ i.

M-Step

The ps� 1qth step then finds θps�1q as the maximizer of Q
�
θ
��θpsq �:

Q
�
θps�1q �� θpsq� ¥ Q

�
θ
�� θpsq� , (4.28)
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for all θ in the parameter space. In principle, the M step is carried out by solving the
score equations

B

Bθ
Q
�
θ
�� θpsq� � Ņ

i�1

1
Mi

Mi̧

m�1

B

Bθ
l
pmq
ic

�
θ
�� Di,θ

psq
�
� 0, for θ. (4.29)

The essence of the EM algorithm is that increasing Qpθ|θpsqq forces an increase in the
log-likelihood of the observed data. To obtain a satisfactory accuracy, the MC sample size
M needs to be a large number. For example, to obtain two decimal digits of accuracy,
M ¥ 10 000 is required. Solution for θ in (4.29) can be obtained by NR procedure.To
solve for θ, we proceed through NR steps described below.

NR-Step

With θpsq � pφpsq, σ2
ψ
psq
, σ2

ε
psq
, τ psq, φ�psq, σ2

ψ�

psq
, σ2

ε�
psq
q, Newton Raphson procedure is

applied to estimate θ at the ps� 1q iteration by using equation (20) as follows.

pθps�1q � pθpsq � rV �1Ŝpθqs|pθpsq , (4.30)

where

Ŝ pθq �
Ņ

i�1

1
Mi

Mi̧

m�1

�
Bl

pmq
ic

Bθ

�
|pθpsq

, (4.31)

and

V �
BŜpθq

BθT |pθpsq
�

Ņ

i�1

1
Mi

Mi̧

m�1

B

BθT

�
Bl

pmq
ic

Bθ

�
|pθpsq

. (4.32)

This process is repeated until
���pθps�1q � pθpsq��� ¤ ε Ó 0. See Section ?? for more details

4.5 Simulation
In this section, we use simulated data sets to compare the performances of

the PHC model with random effect and the SI-PHC model by the MCNREM algorithm.
The sample size is assumed to be N � 100, 250, 500 for i � 1, .., N and n � 10, 25 for
j � 1, .., n. The number of iterations in the Monte Carlo is 10000. The true values and
the estimates of all parameters of the PHC model and the SI-PHC by the MCNREM
algorithm are displayed in Tables 4.1-4.3 and 4.4-4.6 respectively. Note that both for the
PHC model and the SI-PHC model, the true values of the regression parameter vector φ
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and φ� respectively have been taken to be a null vector and logp0.5q. Also the dispersion
matrices of the random vectors ψi and ψ�

i are assumed to be σ2
ψI4 and σ2

ψ� for both
models with the true value of σ2

ψ � 0.35 and σ2
ψ� � 0.3 respectively. The baseline hazard

function h0ptq is assumed to be Weibull distribution with a � 2 and b � 1. The censoring
time is generated from a uniform distribution in p0, rq with proper values of r so that the
corresponding censoring rates are about 10%, 20% and 40%. The standard errors (SE)
based on generated random samples of different sizes are also computed for each estimator.
All the computations are carried out in MATLAB.

Tables 4.1-4.3 and 4.4-4.6 respectively give us an idea about the performance
of the estimators under the PHC model and the SI-PHC model of interest. The tables
show that the estimates from the proposed model tend to have smaller variances than
those from the PHC model. In the tables, the results also show that a larger sample size
improves the standard error estimation. From Table 4.4-4.6, it is evident that performance
of the estimates is quite satisfactory for the SI-PHC model built up for longitudinal data.

4.6 An Application to schizophrenia data
Schizophrenia is a mental disorder often characterized by abnormal social

behaviour and failure to recognize what is real. Common symptoms include false beliefs,
unclear or confused thinking, auditory hallucinations, reduced social engagement and
emotional expression, and lack of motivation. Schizophrenia affects around 0.3-0.7% of
people at some point in their life. It occurs 1.4 times more frequently in males than females
and typically appears earlier in men. The peak ages of onset are 25 years for males and 27
years for females. Onset in childhood is much rarer, as is onset in middle or old age.

In the U.S. National Institute of Mental Health (NIMH) Schizophrenia Colla-
borative Study 1, 329 patients were randomly assigned to receive one of four medications:
placebo, chlorpromazine, fluphenazine, or thioridazine; the latter three medications are
anti-psychotic drugs. The study protocol called for measurements to be made at weeks 0,
1, 3, and 6. The outcome variable of interest is a 4-level ordinal scale measuring "severity
of illness", derived from item 79 of the Inpatient Multidimensional Psychiatric Scale (Lorr
and Klett, 1966). The four categories of the ordinal response correspond to: 1 = normal or
borderline mentally ill, 2 = mildly or moderately ill, 3 = markedly ill, and 4 = severely or
among the most extremely ill. To illustrate application the SI-PHC model, we consider
the schizophrenia data with censoring rates 25% and 50% that we defined for this data.

Table 4.7 shows the estimates of intercepts and coeffcients for the model. Under
censoring rates 25% and 50%, the p-value of 0.0971 and 0.1016 for Treatment indicate
1 www.hsph.harvard.edu/fitzmaur/ala2e/schizophrenia.txt
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that this factor is not significant on the odds of schizophrenia of a patient being less than
or equal to a certain value versus being greater than that value.

The self generating model with respect to the model with censoring rate 25% is

θ̂i �
�
α̂0i, α̂1i, β̂0i, β̂1i

	1
� 0.1843Treatment1i,

log

�
P prijl ¤ 1q
P prijl ¡ 1q



� 1.4812 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,

log

�
P prijl ¤ 2q
P prijl ¡ 2q



� 2.8267 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,

log

�
P prijl ¤ 3q
P prijl ¡ 3q



� 3.2670 �

�
α̂0i � exp pα̂1iq µ̂0

�
t�ij
��
,
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Tabela 4.1 – The estimates of all parameters of the PHC model with censoring rate (10%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

φ 0 0.1168 0.0923 0.0876 0.0638 0.569 0.0326
(0.0679) (0.0434) (0.0422) (0.0301) (0.0269) (0.0189)
0.1179 0.0944 0.0890 0.0647 0.0575 0.0333
(0.0670) (0.439) (0.0429) (0.0304) (0.0271) (0.0191)
0.1196 0.0966 0.0901 0.0653 0.0583 0.0340
(0.0677) (0.0441) (0.0426) (0.0301) (0.0268) (0.0192)
0.1154 0.0911 0.0861 0.0630 0.0561 0.0321
(0.0672) (0.0437) (0.0423) (0.0300) (0.0267) (0.0191)

σ2
ψ 0.35 0.3221 0.3277 0.3289 0.3343 0.3354 0.3389

(0.0421) (0.0348) (0.0329) (0.0239) (0.0211) (0.0146)
0.3219 0.3276 0.3291 0.3339 0.3350 0.3392
(0.0419) (0.0353) (0.0334) (0.0237) (0.0216) (0.0149)
0.3225 0.3280 0.3287 0.3345 0.3352 0.3394
(0.0425) (0.0350) (0.0331) (0.0241) (0.0210) (0.0145)
0.3220 0.3275 0.3292 0.3340 0.3351 0.3388
(0.0423) (0.0346) (0.0327) (0.0243) (0.0215) (0.0151)

σ2
ε 0.25 0.2416 0.2434 0.2441 0.2458 0.2462 0.2475

(0.0186) (0.0143) (0.0136) (0.0097) (0.0089) (0.0056)

φ� logp0.5q -0.6778 -0.6796 -0.6801 -0.6818 -0.6823 -0.6847
(0.0348) (0.0274) (0.0251) (0.0189) (0.0165) (0.0111)

σ2
ψ� 0.3 0.2910 0.2926 0.2932 0.2945 0.2953 0.2967

(0.0358) (0.0334) (0.0279) (0.0256) (0.0203) (0.0181)

σ2
ε� 0.2 0.1959 0.1968 0.1971 0.1980 0.1983 0.1990

(0.0091) (0.0073) (0.0070) (0.0054) (0.0052) (0.0034)
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Tabela 4.2 – The estimates of all parameters of the PHC model with censoring rate (20%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

φ 0 0.1185 0.0947 0.0894 0.0655 0.591 0.0343
(0.0698) (0.0459) (0.0439) (0.0316) (0.0288) (0.0211)
0.1196 0.0959 0.0908 0.0669 0.0603 0.0351
(0.0690) (0.0463) (0.0451) (0.0323) (0.0294) (0.0208)
0.1208 0.0981 0.0913 0.0670 0.0599 0.0357
(0.0699) (0.0469) (0.0448) (0.0327) (0.0285) (0.0215)
0.1178 0.0939 0.0883 0.0648 0.0583 0.0346
(0.0689) (0.0453) (0.0443) (0.0318) (0.0291) (0.0206)

σ2
ψ 0.35 0.3245 0.3296 0.3311 0.3360 0.3373 0.3414

(0.0429) (0.0356) (0.0334) (0.0247) (0.0218) (0.0152)
0.3236 0.3294 0.3309 0.3366 0.3369 0.3410
(0.0425) (0.0360) (0.0340) (0.0243) (0.0224) (0.0155)
0.3243 0.3299 0.3306 0.3363 0.3370 0.3409
(0.0431) (0.0358) (0.0339) (0.0250) (0.0216) (0.0153)
0.3240 0.3291 0.3314 0.3361 0.3367 0.3412
(0.0430) (0.0351) (0.0334) (0.0249) (0.0222) (0.0157)

σ2
ε 0.25 0.2408 0.2427 0.2432 0.2449 0.2453 0.2466

(0.0191) (0.0148) (0.0142) (0.0102) (0.0094) (0.0062)

φ� logp0.5q -0.6769 -0.6788 -0.6792 -0.6810 -0.6815 -0.6836
(0.0353) (0.0279) (0.0255) (0.0195) (0.0169) (0.0116)

σ2
ψ� 0.3 0.2917 0.2933 0.2938 0.2951 0.2959 0.2972

(0.0363) (0.0340) (0.0284) (0.0262) (0.0207) (0.0187)

σ2
ε� 0.2 0.1951 0.1959 0.1963 0.1973 0.1975 0.1984

(0.0099) (0.0081) (0.0077) (0.0061) (0.0059) (0.0041)
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Tabela 4.3 – The estimates of all parameters of the PHC model with censoring rate (40%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

φ 0 0.1203 0.0971 0.0913 0.0682 0.0619 0.0368
(0.0707) (0.0468) (0.0447) (0.0323) (0.0296) (0.0219)
0.1211 0.0983 0.0924 0.0691 0.0628 0.0379
(0.0701) (0.0470) (0.0458) (0.0330) (0.0300) (0.0216)
0.1223 0.0994 0.0936 0.0697 0.0615 0.0374
(0.0706) (0.0475) (0.0455) (0.0333) (0.0293) (0.0224)
0.1199 0.0964 0.0906 0.0675 0.0609 0.0363
(0.0797) (0.0462) (0.0450) (0.0324) (0.0297) (0.0213)

σ2
ψ 0.35 0.3267 0.3319 0.3331 0.3384 0.3394 0.3431

(0.0436) (0.0363) (0.0342) (0.0253) (0.0226) (0.0161)
0.3258 0.3315 0.3328 0.3390 0.3390 0.3435
(0.0431) (0.0367) (0.0348) (0.0250) (0.0231) (0.0163)
0.3261 0.3321 0.3335 0.3386 0.3396 0.3438
(0.0438) (0.0364) (0.0345) (0.0258) (0.0224) (0.0160)
0.3263 0.3314 0.3334 0.3381 0.3393 0.3433
(0.0440) (0.0359) (0.0340) (0.0254) (0.0229) (0.0163)

σ2
ε 0.25 0.2400 0.2419 0.2423 0.2441 0.2445 0.2458

(0.0196) (0.0154) (0.0146) (0.0105) (0.0096) (0.0065)

φ� logp0.5q -0.6759 -0.6778 -0.6783 -0.6801 -0.6807 -0.6827
(0.0359) (0.0285) (0.0261) (0.0200) (0.0174) (0.0122)

σ2
ψ� 0.3 0.2925 0.2940 0.2944 0.2958 0.2964 0.2978

(0.0368) (0.0347) (0.0291) (0.0270) (0.0215) (0.0194)

σ2
ε� 0.2 0.1942 0.1950 0.1953 0.1965 0.1967 0.1978

(0.0105) (0.0090) (0.0086) (0.0071) (0.0068) (0.0049)
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Tabela 4.4 – The estimates of all parameters of the SI-PHC model with censoring rate (10%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -1.1680 -1.1606 -1.1589 -1.1512 -1.1496 -1.1415
(0.0556) (0.0483) (0.0467) (0.0398) (0.0382) (0.0311)

τ2 0 0.0513 0.0456 0.0453 0.0396 0.0384 0.0321
(0.0448) (0.0389) (0.0372) (0.0311) (0.0296) (0.0241)

τ3 log3 1.1649 1.1572 1.1553 1.1460 1.1441 1.1364
(0.0561) (0.0473) (0.0456) (0.0376) (0.0360) (0.0289)

φ 0 0.0446 0.0369 0.0352 0.0273 0.0259 0.0186
(0.0351) (0.0284) (0.0216) (0.0161) (0.0152) (0.0098)
0.0451 0.0373 0.0357 0.0280 0.0264 0.0190
(0.0356) (0.0287) (0.0218) (0.0166) (0.0154) (0.0094)
0.0442 0.0364 0.0349 0.0278 0.0261 0.0181
(0.0359) (0.0280) (0.0213) (0.0159) (0.0150) (0.0101)
0.0455 0.0370 0.0353 0.0275 0.0266 0.0184
(0.0360) (0.0291) (0.0223) (0.0168) (0.0157) (0.0103)

σ2
ψ 0.35 0.3360 0.3385 0.3391 0.3414 0.3420 0.3446

(0.0261) (0.0216) (0.0201) (0.0152) (0.0139) (0.0087)
0.3358 0.3381 0.3393 0.3416 0.3421 0.3445
(0.0259) (0.0213) (0.0197) (0.0149) (0.0136) (0.0089)
0.3363 0.3384 0.3396 0.3410 0.3418 0.3448
(0.0263) (0.0214) (0.0199) (0.0151) (0.0141) (0.0080)
0.3361 0.3380 0.3390 0.3411 0.3420 0.3442
(0.0260) (0.0219) (0.0203) (0.0155) (0.0137) (0.0083)

σ2
ε 0.25 0.2453 0.2464 0.2467 0.2476 0.2479 0.2488

(0.0060) (0.0047) (0.0044) (0.0032) (0.0030) (0.0019)

φ� logp0.5q -0.6805 -0.6827 -0.6832 -0.6851 -0.6855 -0.6873
(0.0149) (0.0126) (0.0117) (0.0100) (0.0094) (0.0078)

σ2
ψ� 0.3 0.2932 0.2943 0.2947 0.2959 0.2961 0.2972

(0.0195) (0.0174) (0.0178) (0.0160) (0.0163) (0.0145)

σ2
ε� 0.2 0.1980 0.1985 0.1983 0.1988 0.1989 0.1993

(0.0052) (0.0043) (0.0040) (0.0031) (0.0029) (0.0021)
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Tabela 4.4 – The estimates of all parameters of the SI-PHC model with censoring rate (10%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

γ 0 0.0549 0.0503 0.0486 0.0439 0.0423 0.0379
(0.0435) (0.0414) (0.0410) (0.0389) (0.0383) (0.0359)
0.0538 0.0496 0.0490 0.0442 0.0419 0.0370
(0.0429) (0.0410) (0.0407) (0.0385) (0.0382) (0.0361)
0.0534 0.0508 0.0492 0.0435 0.0412 0.0366
(0.0431) (0.0412) (0.408) (0.0384) (0.0380) (0.0362)
0.0552 0.0500 0.0483 0.0431 0.0415 0.0375
(0.0432) (0.0409) (0.0406) (0.0387) (0.0381) (0.0358)

σ2
ζ 0.3 0.2875 0.2893 0.2899 0.2921 0.2928 0.2944

(0.0389) (0.0346) (0.0338) (0.0295) (0.0286) (0.0239)
0.2879 0.2889 0.2895 0.2919 0.2924 0.2946
(0.0384) (0.0347) (0.0339) (0.0301) (0.0284) (0.0236)
0.2881 0.2891 0.2897 0.2925 0.2929 0.2940
(0.0380) (0.0341) (0.0335) (0.0297) (0.0288) (0.0235)
0.2876 0.2890 0.2895 0.2921 0.2926 0.2941
(0.0383) (0.0339) (0.0330) (0.0298) (0.0286) (0.0237)
0.2875 0.2894 0.2898 0.2926 0.2929 0.2947
(0.0390) (0.0344) (0.0337) (0.0296) (0.0289) (0.0241)

σ2
εp

0.2 0.1934 0.1945 0.1949 0.1960 0.1963 0.1975
(0.0071) (0.0069) (0.0066) (0.0054) (0.0050) (0.0039)
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Tabela 4.5 – The estimates of all parameters of the SI-PHC model with censoring rate (20%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -1.1689 -1.1613 -1.1596 -1.1518 -1.1503 -1.1421
(0.0562) (0.0489) (0.0472) (0.0403) (0.0387) (0.0315)

τ2 0 0.0520 0.0463 0.0461 0.0404 0.0390 0.0326
(0.0452) (0.0393) (0.0376) (0.0314) (0.0300) (0.0244)

τ3 log3 1.1655 1.1576 1.1561 1.1467 1.1446 1.1372
(0.0566) (0.0476) (0.461) (0.0380) (0.0365) (0.0296)

φ 0 0.0459 0.0378 0.0363 0.0284 0.0270 0.0195
(0.0356) (0.0290) (0.0221) (0.0167) (0.0158) (0.0103)
0.0460 0.0384 0.0366 0.0292 0.0276 0.0201
(0.0363) (0.0294) (0.0224) (0.0172) (0.0161) (0.0099)
0.0451 0.0375 0.0361 0.0289 0.0272 0.0192
(0.0364) (0.0286) (0.0219) (0.0166) (0.0157) (0.0106)
0.0463 0.0381 0.0365 0.0287 0.0279 0.0196
(0.0366) (0.0297) (0.0228) (0.0173) (0.0162) (0.0107)

σ2
ψ 0.35 0.3351 0.3376 0.3382 0.3405 0.3413 0.3437

(0.0264) (0.0218) (0.0204) (0.0154) (0.0141) (0.0090)
0.3349 0.3372 0.3385 0.3407 0.3412 0.3439
(0.0260) (0.0216) (0.0200) (0.0153) (0.0139) (0.0091)
0.3354 0.3374 0.3487 0.3402 0.3410 0.3438
(0.0265) (0.0217) (0.0201) (0.0155) (0.0143) (0.0083)
0.3352 0.3373 0.3381 0.3401 0.3412 0.3436
(0.0263) (0.0222) (0.0205) (0.0158) (0.0140) (0.0086)

σ2
ε 0.25 0.2447 0.2458 0.2462 0.2472 0.2475 0.2485

(0.0063) (0.0050) (0.0047) (0.0035) (0.0032) (0.0021)

φ� logp0.5q -0.6799 -0.6822 -0.6826 -0.6846 -0.6851 -0.6869
(0.0153) (0.0129) (0.0120) (0.0102) (0.0096) (0.0080)

σ2
ψ� 0.3 0.2928 0.2939 0.2944 0.2957 0.2959 0.2970

(0.0198) (0.0177) (0.0180) (0.0162) (0.0165) (0.0146)

σ2
ε� 0.2 0.1978 0.1984 0.1981 0.1987 0.1988 0.1992

(0.0054) (0.0044) (0.0042) (0.0032) (0.0031) (0.0023)
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Tabela 4.5 – The estimates of all parameters of the SI-PHC model with censoring rate (20%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

γ 0 0.0553 0.0508 0.0491 0.0444 0.0426 0.0383
(0.0437) (0.0416) (0.0412) (0.0391) (0.0385) (0.0361)
0.0544 0.0501 0.0494 0.0446 0.0425 0.0375
(0.0431) (0.0411) (0.0409) (0.0386) (0.0383) (0.0363)
0.0540 0.0511 0.0495 0.0440 0.0419 0.0373
(0.0433) (0.0414) (0.409) (0.0385) (0.0382) (0.0363)
0.0556 0.0504 0.0488 0.0438 0.0420 0.0379
(0.0435) (0.0412) (0.0407) (0.0389) (0.0383) (0.0361)

σ2
ζ 0.3 0.2869 0.2885 0.2890 0.2909 0.2915 0.2936

(0.0382) (0.0342) (0.0333) (0.0291) (0.0282) (0.0235)
0.2871 0.2883 0.2887 0.2906 0.2911 0.2933
(0.0380) (0.0344) (0.0335) (0.0295) (0.0281) (0.0234)
0.2874 0.2886 0.2890 0.2912 0.2917 0.2935
(0.0377) (0.0338) (0.0332) (0.0293) (0.0285) (0.0231)
0.2869 0.2884 0.2889 0.2908 0.2912 0.2930
(0.0379) (0.0337) (0.0326) (0.0296) (0.0283) (0.0234)
0.2870 0.2889 0.2902 0.2913 0.2917 0.2935
(0.0385) (0.0341) (0.0334) (0.0293) (0.0286) (0.0238)

σ2
εp

0.2 0.1929 0.1941 0.1944 0.1956 0.1958 0.1971
(0.0073) (0.0071) (0.0068) (0.0057) (0.0053) (0.0042)
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Tabela 4.6 – The estimates of all parameters of the SI-PHC model with censoring rate (40%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

τ1 �log3 -1.1700 -1.1622 -1.1605 -1.1527 -1.1510 -1.1428
(0.0568) (0.0496) (0.0479) (0.0410) (0.0393) (0.0321)

τ2 0 0.0528 0.0470 0.0469 0.0411 0.0397 0.0331
(0.0455) (0.0397) (0.0378) (0.0316) (0.0303) (0.0246)

τ3 log3 1.1663 1.1583 1.1568 1.1474 1.1453 1.1376
(0.0572) (0.0484) (0.0465) (0.0388) (0.0372) (0.0302)

φ 0 0.0472 0.0390 0.0372 0.0296 0.0281 0.0207
(0.0363) (0.0295) (0.0227) (0.0173) (0.0164) (0.0108)
0.0469 0.0393 0.0377 0.0301 0.0285 0.0210
(0.0369) (0.0300) (0.0231) (0.0177) (0.0168) (0.0105)
0.0462 0.0386 0.0370 0.0300 0.0283 0.0203
(0.0371) (0.0302) (0.0224) (0.0171) (0.0164) (0.0110)
0.0474 0.0392 0.0374 0.0298 0.0288 0.0205
(0.0372) (0.0303) (0.0233) (0.0179) (0.0169) (0.0113)

σ2
ψ 0.35 0.3342 0.3368 0.3374 0.3396 0.3407 0.3428

(0.0270) (0.0225) (0.0210) (0.0160) (0.0147) (0.0096)
0.3340 0.3361 0.3376 0.3398 0.3405 0.3430
(0.0268) (0.0222) (0.0207) (0.0158) (0.0145) (0.0098)
0.3345 0.3365 0.3379 0.3394 0.3403 0.3429
(0.0272) (0.0221) (0.0206) (0.0161) (0.0149) (0.0093)
0.3341 0.3362 0.3375 0.3392 0.3402 0.3428
(0.0269) (0.0228) (0.0211) (0.0163) (0.0148) (0.0092)

σ2
ε 0.25 0.2441 0.2452 0.2456 0.2467 0.2470 0.2481

(0.0068) (0.0054) (0.0051) (0.0039) (0.0035) (0.0023)

φ� logp0.5q -0.6791 -0.6813 -0.6716 -0.6837 -0.6843 -0.6861
(0.0159) (0.0135) (0.0127) (0.0106) (0.0100) (0.084)

σ2
ψ� 0.3 0.2923 0.2934 0.2941 0.2953 0.2955 0.2964

(0.0202) (0.0181) (0.0184) (0.0165) (0.0168) (0.0149)

σ2
ε� 0.2 0.1975 0.1981 0.1978 0.1984 0.1986 0.1990

(0.0056) (0.0047) (0.0045) (0.0034) (0.0033) (0.0025)
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Tabela 4.6 – The estimates of all parameters of the SI-PHC model with censoring rate (40%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

γ 0 0.0567 0.0521 0.0506 0.0456 0.0438 0.0397
(0.0448) (0.0425) (0.0422) (0.0400) (0.0397) (0.0372)
0.0560 0.0515 0.0507 0.0457 0.0430 0.0391
(0.0443) (0.0422) (0.0420) (0.0398) (0.0394) (0.0375)
0.0558 0.0520 0.0509 0.0455 0.0436 0.0393
(0.0442) (0.0425) (0.0419) (0.0395) (0.0392) (0.0374)
0.0565 0.0519 0.0504 0.0453 0.0439 0.0396
(0.0446) (0.0421) (0.0420) (0.0401) (0.0395) (0.0372)

σ2
ζ 0.3 0.2856 0.2870 0.2876 0.2893 0.2899 0.2918

(0.0387) (0.0346) (0.0338) (0.0294) (0.0286) (0.0240)
0.2857 0.2868 0.2873 0.2891 0.2896 0.2920
(0.0385) (0.0349) (0.0339) (0.0299) (0.0287) (0.0239)
0.2855 0.2869 0.2873 0.2890 0.2896 0.2923
(0.0382) (0.0342) (0.0335) (0.0296) (0.0289) (0.0236)
0.2850 0.2865 0.2870 0.2891 0.2895 0.2919
(0.0384) (0.0341) (0.0331) (0.0299) (0.0287) (0.0237)
0.2853 0.2867 0.2871 0.2894 0.2900 0.2924
(0.0389) (0.0346) (0.0337) (0.0297) (0.0289) (0.0240)

σ2
εp

0.2 0.1919 0.1930 0.1935 0.1947 0.1949 0.1962
(0.0080) (0.0077) (0.0074) (0.0062) (0.0058) (0.0047)

Tabela 4.7 – Estimates of intercepts and coefficients of the model for two censoring rates

Censoring Rate Variable Estimates Std. Error P-value
τ1 1.4812 0.0941 0.0000
τ2 2.8267 0.0976 0.0000

25% τ3 3.2670 0.0990 0.0000
Treatment 0.1843 0.0896 0.0971

τ1 1.6695 0.1067 0.0000
τ2 2.9870 0.1134 0.0000

50% τ3 3.4937 0.1186 0.0000
Treatment 0.2163 0.0936 0.1016
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5 Self-Modeling regression in the accelerated
hazards mixture cure model

5.1 Introduction
Binary outcomes are common in biomedical research, where success may indicate

that the patient is alive after treatment, develops no particular disease after exposure, or
develops no complication after a surgical operation. In health services research a common
binary outcome is the use or non-use of services. Logistic regression is a widely accepted
method for describing the relationship between a binary or dichotomous outcome and a
set of explanatory variables. It is used in many areas such as health care research and
biomedical studies (Kramer et al., 1983, Tsutakawa, 1988, Cleary and Angel, 1984, Khuri
et al., 1997).

Suppose the probability of a response for a subject i at a time-point j is condi-
tional on the random (subject) effect, and so pij � Pr pyij � 1|xij, zijq, i � 1, . . . , N, j �
1, . . . , ni. The mixed-effects logistic regression model is

log
� pij

1 � pij

�
� ηij (5.1)

where

ηij � x
1

ijβ � z
1

ijυi. (5.2)

xij is the pp � 1q � 1 covariate vector (including the intercept), and zij is design vector
for the r random effects, both vectors being for the jth time-point nested within subject
i. Also, β is the pp� 1q � 1 vector of unknown fixed regression parameters. Let υ � Tθ,
where TT 1

� Συ is the Cholesky factorization of random effect variance covariance matrix
Συ.

Survival models incorporating a cure fraction, often called cure models, are
often used in analyzing data from cancer clinical trials. In these clinical trials, a group of
patients respond favorably to the treatment. They usually have long-term censored survival
times and tend to be regarded as cured. Since the mixture nature of patients in the trials,
the most popular type of cure models is the mixture model. Farewell (1982), Farewell
(1986) used mixture models for the analysis of survival data with Long-Term Survivors.
Kuk and Chen (1992) considered the semiparametric logistic proportional hazard mixture
model.
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The accelerated hazards (AH) model was first considered by Chen (2000) and
Chen and Wang (2001) for survival data without a fraction of cured subjects. The AH
model is useful to model the situation when the effect of treatments or other covariates is
gradually released on the failure time distribution. Let Y be the indicator variable for an
uncured patient with Y � 1 if the patient is uncured and 0 if cured, T be the failure time
of a patient. Define π � P pY � 1q, Sptq � P pT ¡ tq and Suptq � P pT ¡ t|Y � 1q. That
is, π is the probability of being uncured, and Sptq and Suptq are the survival functions of
the failure time of a patient and the failure time of an uncured patient respectively. The
AH model is given by

Spt|x, zq � πpzqSupt|xq � r1 � πpzqs, (5.3)

where x and z are two sets of covariates that have effects on π and Suptq. The advantage
of the mixture cure model is that the proportion of cured patients and the survival
distribution of uncured patients are modeled separately and the interpretation of the
parameters of x and z in the model is straightforward. To specify the effects of z on π,
the most common method is the logit link function

πpzq �
exppγ1zq

1 � exppγ1zq , (5.4)

where γ is a vector of unknown parameters. In fact, equation 5.4 is a simple form of
equation 5.1 without random effects. To allow a gradual effect of covariates on the failure
time of uncured patients, Zhang and Peng (2009)proposed to model Suptq in the mixture
cure model 5.3 by the AH model proposed by Chen and Wang (2001). That is

Supt|xq � rS0pt exppβTxqqsexpp�βT xq. (5.5)

where S0ptq is an arbitrary baseline survival function. We refer to the model specified
by Eqs. 5.3–5.5 as the AH mixture cure (AHMC) model. The AHMCM allows covariate
effects on the failure time distribution of uncured patients to be negligible at time zero
and to increase as time goes by. In some cancer treatments when the treat effect increases
gradually from zero, the AHMCM is particularly useful.

In this work, we propose a model for longitudinal data where patients suffering
from a common disease exhibits a similar shape even though each patient’s response
varies substantially over time. In longitudinal analysis for continuous data, the response is
a continuous curve measured over time. We will consider the Self-Modeling Regression
(SEMOR) model introduced by Lawton, Sylvestre and Maggio (1972)

yij � πi tµ0 rκiptijqsu � eij, (5.6)
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where yij is the response for curve i, i � 1, . . . , N , measured at ni times, tij. πipxq is
a monotone inverse link transforming the regression function and κipxq is a monotone
transformation of the time axis. µ0 is a shape function that is common to all the curves,
and eij are errors. This paper will focus on nonparametric modeling of µ0 and parametric
modeling of πipxq and κipxq with known correlation structure for eij. The Lawton model
exhibits a common shape function for every individual quite naturally. It becomes a
challenge then to develop a shape invariant model when the response variable ceases to
be continuous. In fact, in medical studies, often we come across binary outcome observed
longitudinally. Typically this scenario happens in our example on respiratory illness study
where the stage of illness for each patient is observed over different points of time. In section
5.2, we will consider the Self-Modeling model defined for the conditional probabilities for
a category of an outcome. Therefore, unlike equation 5.6, in our model there is no relation
between the observed response and parameters directly.

A AHMCM with random effects is proposed in Section 5.3. We extend the
AHMCM such that the extended model can be applied for the time of occurrence of
an event when Self-Modeling binary model is used for the probability of occurrence of
an event. In section 5.4, parameter estimation with using the Monte Carlo method in
Newton-Raphson and EM algorithms are introduced. Section 5.5 discuss simulation results
of the estimation methods. As an application of the model, we apply the model to the
respiratory illness data set in Section 5.6.

5.2 Self-Modeling binary model
We give special attention to shape invariant (SI) Model (Lawton, Sylvestre and

Maggio, 1972, Altman and Villarreal, 2004) and apply the SI model for equation (5.2), so

ηij � α0i � exp pα1iq µ0
�
t�ij
�
, (5.7)

where t�ij � β0i � exp pβ1iq tij . Here α0i, α1i, β0i and β1i are unknown parameters which
may be functions of observed covariates and µ0 is a shape function which is common to
all subjects. Therefore, with equations (5.1), (5.2) and (5.7) we have

ηij � log

�
pij

1 � pij

�
� α0i � exp pα1iq µ0

�
t�ij
�
. (5.8)

If one has physical or theoretical justification to pre-specify µ0
�
t�ij
�
parametrically, this

is just a special case of nonlinear regression. The semi-parametric SEMOR model allows
flexible modeling by estimating µ0

�
t�ij
�
non-parametrically. Several different approaches
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have been studied in fitting the SI model. Lawton, Sylvestre and Maggio (1972), Kneip
and Gasser (1988), Kneip and Engel (1995) considered

θi � pα0i, α1i, β0i, β1iq
1 , (5.9)

we consider a mixed model

θi � Xiφ� Ziψi � εi, (5.10)

where Zi is the design (or covariate) matrix for the random effect vector ψi. If µ0 is a
known parametric function, and if we assume that ψi, εi and eij are normally distributed,
then equation (5.7) is a parametric nonlinear mixed model and the model can be fitted
using maximum likelihood using standard software (e.g., Lindstrom and D.M., 1988).

Here, we fit µ0 using the penalized spline model of Ruppert and Carroll (1997).
Use of the penalized spline method with penalty chosen by generalized maximum likelihood
(Wahba, 1985) is equivalent to fitting the model

µ0pt
�
ijq � Uγ �Vζ, (5.11)

where µ0pt
�
ijq is the vector of means at the transformed times, U is a design matrix for a

cubic polynomial in t�ij, V is a design matrix for cubics in t�ij which are left-truncated at
the knot, γ is a vector of unknown parameters and ζ is normally distributed with zero
mean and covariance matrix Σζ .

5.3 The SI-AHMC model
Suppose a binary variable yij where yij � 1 indicates that an individual will

experience a particular event and yij � 0 indicates that the individual will never experience
the event. let O �

 
tij, δij, x

�
ij, z

�
ij, xij, zij

(
denote the observed data for the ith individual,

i � 1, . . . , N on time-point j, j � 1, . . . , ni, where ptij, δijq denote the observed survival
time and censoring indicator with 1 if tij is uncensored (i.e., observed) and 0 if censored.
x�ij and z�ij be the covariates of the jth observation within the ith individual that may
affect the survival time distribution of uncured individuals and the cure proportion. xij
and zij are covariate vector and design vector for the random effect ψi in the logistic model
for pij. Let hu

�
tij|yij � 1, x�ij, z�ij

�
and Su

�
tij|yij � 1, x�ij, z�ij

�
be the hazard function and

the survival function for uncured subjects. The SI-AHMC model can be written as

hu
�
tij|yij � 1, x�ij, z�ij

�
� h0

�
tijexppx�ijφ� � z�ijψ

�
i q
�

(5.12)
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or

Su
�
tij|yij � 1, x�ij, z�ij

�
�
�
S0
�
tijexppx�ijφ� � z�ijψ

�
i q
��exp

�
�px�ijφ

��z�ijψ
�
i q

�
. (5.13)

h0p�q and S0p�q are respectively arbitrary baseline hazard and survival functions for uncured
individuals. Therefore we can write the Cox PH cure model as a mixture model in terms
of the survival function

S
�
tij|yij � 1, x�ij, z�ij

�
� p1 � pijq � pijSu

�
tij|yij � 1, x�ij, z�ij

�
. (5.14)

where pij is given by equation (5.8) as

pij �
exp pηijq

1 � exp pηijq
. (5.15)

Note for creating the AHMC model, we use the logit link function defining in equations
(5.1) and (5.2). In this paper, we will consider the Weibull distribution. Under the Weibull
baseline assumption, h0ptq � pa{baq tpa�1q and S0ptq � exp r�pt{bqas where a, b ¡ 0 are the
shape and scale parameters of the distribution, respectively. The marginal likelihood for
the SI-AHMC model is

L pθq �
N¹
i�1

» #
ni¹
j�1

�
pijfu

�
tij|yij � 1, x�ij, z�ij

��δij

�
�
p1 � pijq � pijSu

�
tij|yij � 1, x�ij, z�ij

��p1�δijq

� f pθ�i |ψ
�
i q f

�
ψ�
i |σ

2
ψ�

i

	
f pθi|ψiq f

�
ψi|σ

2
ψi

�+
dθi dψi dθ

�
i dψ

�
i ,

(5.16)

where θ � pφ1, σ2
ψ, σ

2
ε, φ

�1 , σ2
ψ� , σ2

ε�q
1 and fu

�
tij|yij � 1, x�ij, z�ij

�
is the probability density

function for uncured subjects. Since ψ�
i and ε� have N

�
0,Σ

�
σ2
ψ�

i

		
and N

�
0, σ2

ε�i

	
respectively, therefore the complete log-likelihood is

lc �
Ņ

i�1
lic �

Ņ

i�1

ni̧

j�1
δij

�
log pij � log fu

�
tij|yij � 1, x�ijφ� � z�ijψ

�
i

��
� p1 � δijq log

�
p1 � pijq � pijSu

�
tij|yij � 1, x�ijφ� � z�ijψ

�
i

��
� log

�
Φ
�
θ�i |X�

iφ
� � Z�

iψ
�
i , σ

2
ε�i
I
	 �

� log
�
Φ
�
ψ�
i |0, σ2

ψ�
i

	 �
� log

�
Φ
�
θi|Xiφ� Ziψi, σ

2
εi
I4
� �

� log
�
Φ
�
ψi|0, σ2

ψi

� 	�
,

(5.17)

where Φ is a probability density function.
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5.4 Estimation method
In this section we propose an algorithm for parameter estimation in the SI-

AHMC model. Essentially steps 0-2 are considered for predicting the shape function µ0

and step 3 provides estimate of the parameters for the SI-AHMC model through MCNR
and MCEM approaches.

Step 0: Choose initial estimates of φpsq, φ�psq and γpsq, variances σ2
ψ
psq
, σ2
ε
psq
, σ2
ψ�

psq
, σ2
ε�

psq,
σ2
ζ
psq and σ2

εp
, random effects ψipsq � N4

�
0,Σ

�
σ2
ψ
psq
		

and ψ�
i
psq � N

�
0,Σ

�
σ2
ψ�

psq
		

,

errors εipsq � N4

�
0, σ2

ε
psq
I4

	
and ε�i

psq � N
�

0, σ2
ε�

psq
	
. Set s � 0.

Step 1: Compute θ�i
psq � X�

iφ
�psq � Z�

iψ
�
i
psq � ε�i

psq and θpsqi � Xiφ
psq � Ziψ

psq
i � ε

psq
i and

extract αpsq0i , α
psq
1i , β

psq
0i and βpsq1i

Step 1.1: t�ij
psq � β

psq
0i � exp

�
β
psq
1i

	
tij ,

Step 1.2: Upsq�

����
1 t�i1

psq t�2
i1
psq

t�3
i1
psq

... ... ... ...
1 t�ini

psq t�2
ini

psq
t�3
ini

psq

���� , Vpsq�

�����
�
t�i1

psq � ξ1

	3
. . .

�
t�i1

psq � ξk

	3

... ... ...�
t�ini

psq � ξ1

	3
� � �

�
t�ini

psq � ξk

	3

����� ,

Cpsq�
�
Upsq Vpsq

�
.

Step 1.3: The pth degree of penalized spline model λppsq � σ2
εp

psq
{σ2
ζ
psq. wpsq � Upsqpγpsq �

Vpsqpζpsq � pεpsqp .

Step 1.4: pµ�0 psq � Cpsq
�
C1psqCpsq � λppsqD

	�1
C1psqwpsq, D � diagp0p�1; Ikq.

Step 2: Using linear mixed model estimation, estimate γps�1q and ζps�1q
�
σ2ps�1q
ζ

	
by fitting

pµ�0 psq � Upsqγ �Vpsqζ � εp.

Step 3: Using nonlinear mixed model estimation, estimate φps�1q, σ2
ψ
ps�1q, σ2

ε
ps�1q, φ�ps�1q,

σ2
ψ�

ps�1q and σ2
ε�

ps�1q by fitting the model

ηij � α0i � exppα1iq µ0

�
β0i � exppβ1iqtij

	
,

pij �
exppηijq

1 � exppηijq

,
θi � Xiφ� Ziψi � εi
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,
θ�i � X�

iφ
� � Z�

iψ
�
i � ε

�
i

Conditional on pµ�0 psq.
Step 4: Check for convergence. If the algorithm has converged, then stop. Otherwise,
increase the iteration counter s by one, and return to step 1.

5.4.1 MCEMNR algorithms

In the current setup, the E-M steps are as follows

E-Step

The ps� 1qth step computes the conditional expectation of lic

Q
�
θ
��θpsq � � Ņ

i�1
Eθi

�
lic|Di,θ

psq
�
, (5.18)

where Di � pyi, Xi, Zi, X�
i , Z�

i q. An alternative is to replace the E step with Monte
Carlo approximations constructed using a sample lp1qic , . . . , l

pMiq
ic

Q
�
θ
��θpsq � � Ņ

i�1

1
Mi

Mi̧

m�1
l
pmq
ic

�
θ
�� Di,θ

psq
�
. (5.19)

Mi is the number of iterations in the Monte Carlo method. We assume without loss of
generality, the number of iterations Mi �M @ i.

M-Step

The ps� 1qth step then finds θps�1q as the maximizer of Q
�
θ
��θpsq �:

Q
�
θps�1q �� θpsq� ¥ Q

�
θ
�� θpsq� , (5.20)

for all θ in the parameter space. In principle, the M step is carried out by solving the
score equations

B

Bθ
Q
�
θ
�� θpsq� � Ņ

i�1

1
Mi

Mi̧

m�1

B

Bθ
l
pmq
ic

�
θ
�� Di,θ

psq
�
� 0, for θ. (5.21)

The essence of the EM algorithm is that increasing Qpθ|θpsqq forces an increase in the
log-likelihood of the observed data. To obtain a satisfactory accuracy, the MC sample size
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M needs to be a large number. For example, to obtain two decimal digits of accuracy,
M ¥ 10 000 is required. Solution for θ in (5.21) can be obtained by NR procedure.To
solve for θ, we proceed through NR steps described below.

NR-Step

With θpsq � pφpsq, σ2
ψ
psq
, σ2

ε
psq
, φ�psq, σ2

ψ�

psq
, σ2

ε�
psq
q, Newton Raphson procedure is applied

to estimate θ at the ps� 1q iteration by using equation (20) as follows.

pθps�1q � pθpsq � rV �1Ŝpθqs|pθpsq , (5.22)

where

Ŝ pθq �
Ņ

i�1

1
Mi

Mi̧

m�1

�
Bl

pmq
ic

Bθ

�
|pθpsq

, (5.23)

and

V �
BŜpθq

BθT |pθpsq
�

Ņ

i�1

1
Mi

Mi̧

m�1

B

BθT

�
Bl

pmq
ic

Bθ

�
|pθpsq

. (5.24)

This process is repeated until
���pθps�1q � pθpsq��� ¤ ε Ó 0. See Apendix ?? for more details ??

5.5 Simulation
In this section, we use simulated data sets to compare the performances of the

AHMC model with random effect and the SI-AHMC model by the MCNREM algorithm.
The sample size is assumed to be N � 100, 250, 500 for i � 1, .., N and n � 10, 25 for
j � 1, .., n. The number of iterations in the Monte Carlo is 10000. The true values and
the estimates of all parameters of the AHMCM and the SI-AHMCM by the MCNREM
algorithm are displayed in Tables 5.1-5.3 and 5.4-5.6 respectively. Note that both for
the AHMCM and the SI-AHMCM model, the true values of the regression parameter
vector φ and φ� respectively have been taken to be a null vector and logp0.5q. Also the
dispersion matrices of the random vectors ψi and ψ�

i are assumed to be σ2
ψI4 and σ2

ψ� for
both models with the true value of σ2

ψ � 0.35 and σ2
ψ� � 0.3 respectively. The baseline

hazard function h0ptq is assumed to be Weibull distribution with a � 0.5 and b � 1.5. The
censoring time is generated from a uniform distribution in p0, rq with proper values of r
so that the corresponding censoring rates are about 10%, 20% and 40%. The standard
errors (SE) based on generated random samples of different sizes are also computed for
each estimator. All the computations are carried out in MATLAB.
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Tables 5.1-5.3 and 5.4-5.6 respectively give us an idea about the performance
of the estimators under the AHMC model and the SI-AHMC model of interest. The tables
show that the estimates from the proposed model tend to have smaller variances than
those from the AHMC model. In the tables, the results also show that a larger sample size
improves the standard error estimation. From Table 5.4-5.6, it is evident that performance
of the estimates is quite satisfactory for the SI-AHMC model built up for longitudinal
data.

5.6 An Application to respiratory illness Data
Respiratory disease encompasses pathological conditions affecting the organs

and tissues that make gas exchange possible in higher organisms, and includes conditions
of the upper respiratory tract, trachea, bronchi, bronchioles, alveoli, pleura and pleural
cavity, and the nerves and muscles of breathing. Respiratory diseases range from mild and
self-limiting, such as the common cold, to life-threatening entities like bacterial pneumonia,
pulmonary embolism, and lung cancer. Respiratory disease is a common and significant
cause of illness and death around the world. In 2012, respiratory conditions were the most
frequent reasons for hospital stays among children. Therefore, the data respiratory illness
are important for researchers, clinicians, policy makers, and citizens in understanding this
disease.

Davis (1991) displayed the raw data from a clinical trial comparing two tre-
atments for a respiratory illness. In each of two centres, eligible patients were randomly
assigned to active treatment or placebo. During treatment, respiratory status (categorized
here as 0 = poor, 1 = good) was determined at four visits. Potential covariates were centre
and sex (all dichotomous), as well as age (in years) at the time of study entry. There were
111 patients (54 active, 57 placebo) with no missing data for responses or covariates. The
detailed analysis is based on SI-AHMC model where we consider the respiratory status as
a response variable. We defined censoring rates 25% and 40% for the data. For choosing
the best model in this example, we use the deviance which is the difference between the
log-likelihood of the fitted model and the maximum possible log-likelihood. Table 5.7 gives
the values of the deviance.

In view of the deviance values observed in table 5.7, we carry out our analysis.
Table 5.9 shows the estimates of intercepts and coeffcients for the sixth model in table
5.7. Under censoring rate 20%, the p-value of 0.0017, 0.0001 and 0.0004 for Treatment,
Age and Center respectively indicate that these factors are significant on the odds of the
post-surgical recovery of a patient being less than or equal to a certain value versus being
greater than that value. The p-values of 0.5129 Sex of a patient indicates that the factor is
not significant. In another censoring rate we have same results in significance of estimators.
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The self generating model with respect to the sixth model with censoring rate 20% is

θ̂i �
�
α̂0i, α̂1i, β̂0i, β̂1i

	1
� 0.7094Treatment1i � 0.0229Age1i � 0.1269Sex1i � 0.6302Center1i,

log

�
pij

1 � pij

�
� α0i � exp pα1iq µ0

�
t�ij
�
,
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Tabela 5.1 – The estimates of all parameters of the AHMC model with censoring rate (10%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

φ 0 0.0633 0.0591 0.576 0.0528 0.0495 0.0447
(0.0661) (0.0418) (0.0410) (0.0300) (0.0267) (0.0189)
0.0641 0.0599 0.0571 0.0526 0.0491 0.0441
(0.0645) (0.0417) (0.0406) (0.0303) (0.0269) (0.0191)
0.0639 0.0587 0.0569 0.0524 0.0488 0.0439
(0.0639) (0.0421) (0.0411) (0.0300) (0.0266) (0.0191)
0.0635 0.0595 0.0577 0.0531 0.0499 0.0451
(0.0641) (0.0421) (0.0419) (0.0299) (0.0264) (0.0190)

σ2
ψ 0.35 0.3124 0.3186 0.3203 0.3279 0.3298 0.3358

(0.0405) (0.0371) (0.0359) (0.0310) (0.0298) (0.0251)
0.3129 0.3179 0.3210 0.3283 0.3302 0.3364
(0.0411) (0.0372) (0.0356) (0.0311) (0.0294) (0.0253)
0.3119 0.3191 0.3204 0.3281 0.3303 0.3368
(0.0409) (0.0378) (0.0355) (0.0316) (0.0297) (0.0254)
0.3123 0.3183 0.3209 0.3288 0.3307 0.3371
(0.0415) (0.0375) (0.0360) (0.0314) (0.0296) (0.0255)

σ2
ε 0.25 0.2461 0.2470 0.2472 0.2478 0.2480 0.2486

(0.0101) (0.0066) (0.0065) (0.0049) (0.0043) (0.0031)

φ� logp0.5q -0.6823 -0.6844 -0.6850 -0.6862 -0.6867 -0.6880
(0.0323) (0.0211) (0.0209) (0.0158) (0.0142) (0.0099)

σ2
ψ� 0.3 0.2890 0.2913 0.2921 0.2939 0.2946 0.2957

(0.0366) (0.0329) (0.0255) (0.0240) (0.0193) (0.0174)

σ2
ε� 0.2 0.1978 0.1981 0.1982 0.1985 0.1987 0.1989

(0.0086) (0.0055) (0.0054) (0.0039) (0.0035) (0.0025)
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Tabela 5.2 – The estimates of all parameters of the AHMC model with censoring rate (20%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

φ 0 0.0638 0.0594 0.0580 0.0531 0.0499 0.455
(0.0659) (0.0420) (0.0412) (0.0301) (0.0268) (0.0192)
0.0647 0.0603 0.0575 0.0529 0.0502 0.0450
(0.0644) (0.0419) (0.0407) (0.0305) (0.0271) (0.0193)
0.0644 0.0590 0.0571 0.0525 0.0501 0.0446
(0.0638) (0.0422) (0.0412) (0.0301) (0.0268) (0.0192)
0.0640 0.0609 0.0581 0.0534 0.0505 0.0456
(0.0639) (0.0410) (0.0422) (0.0300) (0.0269) (0.0191)

σ2
ψ 0.35 0.3108 0.3167 0.3184 0.3249 0.3269 0.3330

(0.0419) (0.0392) (0.0376) (0.0331) (0.0314) (0.0262)
0.3111 0.3164 0.3187 0.3243 0.3275 0.3334
(0.0421) (0.0393) (0.0377) (0.0329) (0.0316) (0.0263)
0.3109 0.3172 0.3188 0.3240 0.3264 0.3339
(0.0423) (0.0398) (0.0379) (0.0333) (0.0315) (0.0261)
0.3107 0.3166 0.3193 0.3247 0.3273 0.3336
(0.0418) (0.0399) (0.0381) (0.0332) (0.0314) (0.0264)

σ2
ε 0.25 0.2459 0.2467 0.2469 0.2477 0.2479 0.2485

(0.0103) (0.0068) (0.0067) (0.0050) (0.0044) (0.0032)

φ� logp0.5q -0.6820 -0.6842 -0.6859 -0.6860 -0.6864 -0.6876
(0.0325) (0.0213) (0.0210) (0.0163) (0.0148) (0.0101)

σ2
ψ� 0.3 0.2886 0.2905 0.2914 0.2933 0.2938 0.2952

(0.0371) (0.0338) (0.0263) (0.0249) (0.0198) (0.0181)

σ2
ε� 0.2 0.1976 0.1979 0.1980 0.1982 0.1983 0.1986

(0.0087) (0.0057) (0.0056) (0.0040) (0.0036) (0.0027)
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Tabela 5.3 – The estimates of all parameters of the AHMC model with censoring rate (40%) by MCEMNR
(SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

φ 0 0.0646 0.0604 0.0583 0.0536 0.0505 0.0461
(0.0661) (0.0425) (0.0413) (0.0305) (0.0270) (0.0197)
0.0653 0.0609 0.0579 0.0533 0.0507 0.0452
(0.0650) (0.0421) (0.0410) (0.0307) (0.0274) (0.0193)
0.0651 0.0597 0.0577 0.0529 0.0506 0.0453
(0.0642) (0.0423) (0.0414) (0.0302) (0.0270) (0.0195)
0.0648 0.0616 0.0585 0.0536 0.0508 0.0460
(0.0643) (0.0417) (0.0421) (0.0301) (0.0271) (0.0193)

σ2
ψ 0.35 0.3090 0.3155 0.3169 0.3231 0.3247 0.3316

(0.0431) (0.0403) (0.0382) (0.0339) (0.0323) (0.0270)
0.3093 0.3151 0.3163 0.3227 0.3245 0.3311
(0.0434) (0.0405) (0.0384) (0.0337) (0.0324) (0.0269)
0.3086 0.3153 0.3161 0.3230 0.3250 0.3214
(0.0437) (0.0409) (0.0386) (0.0340) (0.0321) (0.0268)
0.3099 0.3160 0.3168 0.3236 0.3249 0.3219
(0.0430) (0.0411) (0.0389) (0.0338) (0.0322) (0.0271)

σ2
ε 0.25 0.2456 0.2465 0.2466 0.2474 0.2476 0.2482

(0.0106) (0.0071) (0.0070) (0.0053) (0.0047) (0.0035)

φ� logp0.5q -0.6817 -0.6836 -0.6843 -0.6857 -0.6861 -0.6874
(0.0332) (0.0221) (0.0216) (0.0170) (0.0153) (0.0105)

σ2
ψ� 0.3 0.2879 0.2897 0.2906 0.2924 0.2931 0.2947

(0.0378) (0.0344) (0.0270) (0.0255) (0.0199) (0.0188)

σ2
ε� 0.2 0.1973 0.1977 0.1978 0.1980 0.1982 0.1985

(0.0089) (0.0059) (0.0058) (0.0042) (0.0038) (0.0028)
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Tabela 5.4 – The estimates of all parameters of the SI-AHMC model with censoring rate (10%) by
MCEMNR (SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

φ 0 0.0486 0.0437 0.0428 0.0371 0.0351 0.0296
(0.0322) (0.0205) (0.0202) (0.0142) (0.0126) (0.0090)
0.0479 0.0429 0.0417 0.368 0.0348 0.0293
(0.0325) (0.0206) (0.0201) (0.0143) (0.0127) (0.0090)
0.0475 0.0431 0.0423 0.0361 0.0346 0.0289
(0.0326) (0.0202) (0.0197) (0.0142) (0.0127) (0.0090)
0.0483 0.0435 0.0429 0.0366 0.0350 0.0294
(0.0320) (0.0200) (0.0198) (0.0142) (0.0127) (0.0090)

σ2
ψ 0.35 0.3276 0.3327 0.3336 0.3381 0.3397 0.3439

(0.0285) (0.0258) (0.0252) (0.0228) (0.0221) (0.0202)
0.3283 0.3321 0.3334 0.3387 0.3396 0.3442
(0.0282) (0.0259) (0.0250) (0.0228) (0.0222) (0.0196)
0.3286 0.3324 0.3333 0.3289 0.3401 0.3440
(0.0281) (0.0259) (0.0250) (0.0229) (0.0219) (0.0196)
0.3280 0.3320 0.3331 0.3384 0.3400 0.3443
(0.0289) (0.0260) (0.0253) (0.0231) (0.0220) (0.0198)

σ2
ε 0.25 0.2473 0.2478 0.2480 0.2487 0.2489 0.2495

(0.0054) (0.0035) (0.0034) (0.0024) (0.0022) (0.0015)

φ� logp0.5q -0.6801 -0.6823 -0.6830 -0.6852 -0.6860 -0.6875
(0.0311) (0.0198) (0.0189) (0.0141) (0.0136) (0.0087)

σ2
ψ� 0.3 0.2924 0.2939 0.2948 0.2954 0.2961 0.2975

(0.0342) (0.0311) (0.0239) (0.0221) (0.0167) (0.0133)

σ2
ε� 0.2 0.1983 0.1986 0.1987 0.1989 0.1990 0.1992

(0.0077) (0.0048) (0.0047) (0.0029) (0.0028) (0.0019)

γ 0 0.0572 0.0511 0.0498 0.0435 0.0416 0.0359
(0.0617) (0.0498) (0.0478) (0.0209) (0.0184) (0.0089)
0.0585 0.0519 0.0502 0.0438 0.0419 0.0356
(0.0259) (0.0225) (0.0207) (0.0181) (0.0165) (0.0080)
0.0579 0.0513 0.0496 0.0435 0.0411 0.0351
(0.0106) (0.0081) (0.0070) (0.0051) (0.0049) (0.0034)
0.0570 0.0508 0.0495 0.0431 0.0421 0.0357
(0.0011) (0.0008) (0.0007) (0.0005) (0.0005) (0.0004)
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Tabela 5.4 – The estimates of all parameters of the SI-AHMC model with censoring rate (10%) by
MCEMNR (SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

σ2
ζ 0.25 0.2431 0.2444 0.2452 0.2468 0.2475 0.2486

(0.0341) (0.0322) (0.0225) (0.0208) (0.0165) (0.0138)
0.2436 0.2447 0.2451 0.2469 0.2473 0.2487
(0.0357) (0.0331) (0.0217) (0.0207) (0.0163) (0.0139)
0.2433 0.2448 0.2456 0.2466 0.2474 0.2487
(0.0346) (0.0330) (0.0229) (0.0209) (0.0159) (0.0134)
0.2431 0.2450 0.2453 0.2469 0.2477 0.2489
(0.0344) (0.0328) (0.0234) (0.0201) (0.0145) (0.0133)
0.2429 0.2446 0.2452 0.2465 0.2480 0.2491
(0.0359) (0.0329) (0.0216) (0.0202) (0.0166) (0.0138)

σ2
εp

0.15 0.1485 0.1488 0.1489 0.1491 0.1493 0.1495
(0.0064) (0.0043) (0.0041) (0.0032) (0.0026) (0.0018)
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Tabela 5.5 – The estimates of all parameters of the SI-AHMC model with censoring rate (20%) by
MCEMNR (SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

φ 0 0.0496 0.0443 0.0439 0.0386 0.0363 0.0306
(0.0327) (0.0212) (0.0204) (0.0148) (0.0129) (0.0094)
0.0485 0.0438 0.0429 0.0381 0.0362 0.0300
(0.0329) (0.0213) (0.0207) (0.0146) (0.0131) (0.0092)
0.0482 0.0440 0.0430 0.0376 0.0367 0.0297
(0.0328) (0.0216) (0.0201) (0.0147) (0.0133) (0.0093)
0.0494 0.0445 0.0437 0.0379 0.0359 0.0299
(0.0322) (0.0215) (0.0203) (0.0146) (0.0130) (0.0091)

σ2
ψ 0.35 0.3261 0.3318 0.3327 0.3369 0.3381 0.3428

(0.0297) (0.0269) (0.0262) (0.0242) (0.0232) (0.0211)
0.3264 0.3319 0.3330 0.3366 0.3379 0.3430
(0.0294) (0.0273) (0.0260) (0.0245) (0.0232) (0.0215)
0.3260 0.3313 0.3326 0.3367 0.3384 0.3431
(0.0293) (0.0276) (0.0259) (0.0246) (0.0223) (0.0210)
0.3267 0.3322 0.3331 0.3370 0.3375 0.3426
(0.0300) (0.0271) (0.0261) (0.0240) (0.0228) (0.0209)

σ2
ε 0.25 0.2474 0.2477 0.2479 0.2486 0.2488 0.2494

(0.0054) (0.0036) (0.0035) (0.0024) (0.0023) (0.0016)

φ� logp0.5q -0.6792 -0.6814 -0.6821 -0.6843 -0.6851 -0.6869
(0.0322) (0.0213) (0.0208) (0.0148) (0.0138) (0.0093)

σ2
ψ� 0.3 0.2916 0.2933 0.2941 0.2950 0.2957 0.2969

(0.0352) (0.0319) (0.0248) (0.0230) (0.0175) (0.0139)

σ2
ε� 0.2 0.1981 0.1984 0.1985 0.1988 0.1989 0.1991

(0.0079) (0.0050) (0.0048) (0.0031) (0.0029) (0.0020)

γ 0 0.0589 0.0521 0.0505 0.0449 0.0425 0.0366
(0.0629) (0.0507) (0.0492) (0.0215) (0.0187) (0.0089)
0.0593 0.0529 0.0503 0.0446 0.0429 0.0360
(0.0270) (0.0233) (0.0211) (0.0188) (0.0172) (0.0085)
0.0591 0.0525 0.0508 0.0451 0.0418 0.0369
(0.0113) (0.0086) (0.0072) (0.0052) (0.0052) (0.0041)
0.0581 0.0519 0.0511 0.0453 0.0426 0.0365
(0.0012) (0.0008) (0.0008) (0.0006) (0.0006) (0.0005)
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Tabela 5.5 – The estimates of all parameters of the SI-AHMC model with censoring rate (20%) by
MCEMNR (SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

σ2
ζ 0.25 0.2417 0.2430 0.2437 0.2451 0.2459 0.2473

(0.0352) (0.0333) (0.0230) (0.0211) (0.0167) (0.0142)
0.2413 0.2428 0.2433 0.2455 0.2463 0.2478
(0.0361) (0.0340) (0.0234) (0.0210) (0.0165) (0.0143)
0.2421 0.2431 0.2436 0.2450 0.2458 0.2480
(0.0355) (0.0339) (0.0238) (0.0213) (0.0161) (0.0143)
0.2418 0.2426 0.2435 0.2454 0.2463 0.2479
(0.0351) (0.0337) (0.0240) (0.0211) (0.0152) (0.0145)
0.2420 0.2429 0.2438 0.2451 0.2458 0.2477
(0.0363) (0.0334) (0.0229) (0.0210) (0.0168) (0.0141)

σ2
εp

0.15 0.1479 0.1483 0.1484 0.1488 0.1490 0.1494
(0.0068) (0.0046) (0.0043) (0.0032) (0.0027) (0.0019)
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Tabela 5.6 – The estimates of all parameters of the SI-AHMC model with censoring rate (40%) by
MCEMNR (SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

φ 0 0.0501 0.0456 0.0443 0.0399 0.0380 0.0320
(0.0329) (0.0214) (0.0206) (0.0156) (0.0133) (0.0097)
0.0493 0.0447 0.0441 0.0396 0.0375 0.0321
(0.0331) (0.0215) (0.0209) (0.0154) (0.0137) (0.0094)
0.0490 0.0451 0.0439 0.0393 0.0381 0.0317
(0.0330) (0.0223) (0.0204) (0.0155) (0.0140) (0.0096)
0.0502 0.0460 0.0446 0.0395 0.0376 0.0313
(0.0326) (0.0224) (0.0207) (0.0157) (0.0139) (0.0093)

σ2
ψ 0.35 0.3251 0.3306 0.3316 0.3357 0.3369 0.3418

(0.0307) (0.0284) (0.0273) (0.0251) (0.0239) (0.0214)
0.3020 0.3308 0.3314 0.3355 0.3367 0.3420
(0.0303) (0.0281) (0.0275) (0.0256) (0.0240) (0.0218)
0.3016 0.3305 0.3317 0.3359 0.3371 0.3416
(0.0304) (0.0284) (0.0271) (0.0257) (0.0234) (0.0215)
0.3013 0.3310 0.3321 0.3360 0.3366 0.3417
(0.0311) (0.0283) (0.0277) (0.0251) (0.0237) (0.0213)

σ2
ε 0.25 0.2473 0.2476 0.2478 0.2484 0.2487 0.2491

(0.0055) (0.0037) (0.0036) (0.0026) (0.0023) (0.0017)

φ� logp0.5q -0.6787 -0.6809 -0.6813 -0.6836 -0.6843 -0.6862
(0.0327) (0.0216) (0.0211) (0.0151) (0.0140) (0.0096)

σ2
ψ� 0.3 0.2912 0.2929 0.2937 0.2947 0.2953 0.2966

(0.0355) (0.0321) (0.0251) (0.0234) (0.0178) (0.0141)

σ2
ε� 0.2 0.1978 0.1981 0.1982 0.1985 0.1986 0.1989

(0.0081) (0.0052) (0.0050) (0.0033) (0.0031) (0.0022)

γ 0 0.0602 0.0533 0.0516 0.0463 0.0439 0.0383
(0.0636) (0.0515) (0.0501) (0.0228) (0.0195) (0.0091)
0.0596 0.0536 0.0520 0.0467 0.0441 0.0386
(0.0276) (0.0240) (0.0218) (0.0193) (0.0178) (0.0089)
0.0599 0.0531 0.0514 0.0461 0.0438 0.0387
(0.0120) (0.0092) (0.0077) (0.0060) (0.0059) (0.0046)
0.0597 0.0539 0.0516 0.0459 0.0435 0.0390
(0.0013) (0.0010) (0.0009) (0.0008) (0.0007) (0.0005)
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Tabela 5.6 – The estimates of all parameters of the SI-AHMC model with censoring rate (40%) by
MCEMNR (SE in parenthesis)

N 100 250 500
n 10 25 10 25 10 25
Parameter True value

σ2
ζ 0.25 0.2399 0.2416 0.2422 0.2439 0.2445 0.2460

(0.0371) (0.0347) (0.0236) (0.0216) (0.0169) (0.0146)
0.2401 0.2418 0.2424 0.2441 0.2447 0.2464
(0.0370) (0.0348) (0.0239) (0.0218) (0.0170) (0.0148)
0.2397 0.2420 0.2426 0.2443 0.2449 0.2463
(0.0378) (0.0350) (0.0240) (0.0219) (0.0168) (0.0147)
0.2494 0.2419 0.2427 0.2444 0.2450 0.2467
(0.0367) (0.0346) (0.0242) (0.0217) (0.0158) (0.0148)
0.2403 0.2424 0.2429 0.2447 0.2453 0.2470
(0.0375) (0.0352) (0.0234) (0.0217) (0.0171) (0.0146)

σ2
εp

0.15 0.1474 0.1478 0.1480 0.1485 0.1487 0.1491
(0.0073) (0.0045) (0.0042) (0.0033) (0.0027) (0.0019)

Tabela 5.7 – Values of the deviance for the best subset of each size in two censoring rates

Deviance
Model Subset size Predictors CR:20% CR:40%

1 1 Tre. 751.4400 761.2625
2 2 Tre., Age 747.4016 756.5138
3 2 Tre., Tre.� Cen. 737.6777 749.6382
4 3 Tre., Tre.� Age, Tre.� Cen. 737.3458 749.5815
5 3 Tre., Age, Cen. 732.6792 748.4719
6 4 Tre., Age, Sex, Cen. 732.2774 747.1268

Tre.: Treatment, Cen.: Center, CR: Censoring rate

Tabela 5.8 – Values of AIC and BIC for the best subset of each size in two censoring rates

AIC BIC
Model CR:20% CR:40% CR:20% CR:40%

1 1601.77 1652.91 1951.46 1993.65
2 1591.39 1640.31 1942.91 1976.19
3 1578.64 1615.44 1931.39 1957.83
4 1564.17 1592.73 1918.51 1945.48
5 1557.59 1585.27 1909.43 1934.09
6 1548.23 1576.18 1896.74 1923.11
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Tabela 5.9 – Estimates of intercepts and coefficients of the sixth model for two censoring rates

Censoring Rate Variable Estimates Std. Error P-value
Treatment 0.7094 0.1984 0.0017

20% Age -0.0229 0.0054 0.0001
Sex -0.1269 0.2009 0.5129

Center 0.6302 0.1563 0.0004

Treatment 0.5817 0.2218 0.0101
40% Age -0.0236 0.0065 0.0007

Sex -0.2648 0.2279 0.2316
Center 0.5537 0.1761 0.0020
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6 Conclusions and proposals for future work

Chapter 2 proposes the use of self-modeling regression to analysis ordinal
longitudinal data when the conditional cumulative probabilities for a category of an outcome
is linked with a shape-invariant model. The proposed model ensures that individual’s
response curves have a common shape and that a particular individual’s response curve is
some simple transformation of the common shape curve. The model is essentially semi-
parametric where the population time curve is modeled with a penalized regression spline.
Besides simulation studies, we have also analyzed a Prostate cancer data based on our
model to see whether the dose level of radiation and other factors affect the severity of
genito-urinary (bladder) toxicity.

The model we consider though a bit complex, has the capability of covering
the nonlinear as well as linear proportional odds model with simpler assumptions. Data
obeying this framework are common and hence are quite useful to the medical statisticians
for taking appropriate decisions. Some more issues like missing outcomes and measurement
errors are also of interest to medical people.

Survival analysis is plagued by problem of censoring in design of clinical
trials which renders routine methods of determination of central tendency redundant in
computation of average survival time. Since patients having a common surgery usually
exhibit a similar pattern, it is natural to build up a nonlinear model that is shape invariant.
In Chapter 3, we extended the self-modeling ordinal model for censored data. As an
application for anesthesia recovery data based on our model, we focus on the question
of whether the dose of anesthesia affects the post-surgical recovery. In particular, we
investigate the interaction between the dose effect and time to follow-up

Unlike the uni-variate mixture cure model, a cure model has been presented in
Chapter 4 that models survival data in the case of ordinal response. The model is based on
a proportional hazards assumption with random effects. We used the self-modeling ordinal
model and the Cox regression respectively for the probability and time of occurrence of an
event. A schizophrenia illness data is considered based on our model to verify effects of
the treatment on the schizophrenia illness.

In Chapter 5 we used of self-modeling regression to the accelerated hazards
mixture cure model. The extended model can be applied for the time of occurrence of
an event when self-modeling binary model is used for the probability of occurrence of an
event. As an application of the model, we apply the model to the respiratory illness data
set to see whether the treatment affects the respiratory illness.

Monte Carlo Expectation Maximization (MCEM) technique is used to estimate
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the parameters of the models. Simulation studies are also carried out to justify the
methodologies used. The results in the simulations and applications show the advantages
of the models with respect to the old models very well.

The future researches emphasize the following topics:

1. Since in many researches observed responses are binary or nominal, we can apply
the presented models for these kinds of data. Also we can use the provided model in
chapter 5 for ordinal and nominal responses.

2. Using the interval censoring instead of right censoring in the self-modeling regression
model.

3. Applying the self-modeling regression model in the definition of the survival function
for uncured individuals and comparing the models in presence of the correlation
between covariates of the model.

4. Considering to another distributions such as log-normal and Gompertz-Makeham
for the baseline survivor function in the cure models and comparing the models with
the accelerated failure time mixture cure model.

5. Extension of a the new cure models when cure information is partially known,
especially for the accelerated hazard form.
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APÊNDICE A – The derivatives for the
Newton-Raphson and EM procedures

A.1 Chapter 2

A.1.1 The Newton-Raphson procedure

The first derivative of lic respect to thresholds τl, for l� 1, . . . ,L is given by:

BPijl
Bτl

� Pijlp1 � Pijlq,

Bηijl
Bτl

� 1, Bηijpl�1q

Bτl
� 0,

BPijpl�1q

Bτl
�
BPijpl�1q

Bηijpl�1q

Bηijpl�1q

Bτl
� 0,

Blic
Bτl

�
ni̧

j�1
Iyijl

plq
Pijlp1 � Pijlq

Pijl � Pijl�1
.

The first derivative of lic respect to φ is given by:

Blic
Bφ

�
ni̧

j�1

Ļ

l�1
Iyij

plq

BPijl

Bφ
�

BPijl�1
Bφ

Pijl � Pijl�1
�
pθi �Xiφ� Ziψiq

1Xi

2σ2
ε

,

BPijl
Bφ

� Pijlp1 � Pijlq
Bηijl
Bφ

,

Bα0i

Bφ
� Xi

������
1
0
0
0

�����, Bα1i

Bφ
� Xi

������
0
1
0
0

�����, Bβ0i

Bφ
� Xi

������
0
0
1
0

�����, Bβ1i

Bφ
� Xi

������
0
0
0
1

�����,

Bηijl
Bφ

� �

������Xi

������
1
0
0
0

������Xi

������
0
1
0
0

�����exppα1iq µ0pt
�
ijq � exppα1iq

Bµ0pt
�
ijq

Bφ

������ ,
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Bµ0pt
�
ijq

Bφ
�
Bµ0pt

�
ijq

Bt�ij

Bt�ij
Bφ

,

Bµ0pt
�
ijq

Bt�ij
�

4̧

m�1
pm� 1qt�ij

m�2γm �
Ķ

k�1
3
�
t�ij � ξk

	2
ζk.

Bt�ij
Bφ

� Xi

������
0
0
1
0

������Xi

������
0
0
0
1

�����exppβ1iqtij.

The first derivative of lic respect to σ2
ε is given by:

Blic
Bσ2

ε

� �
1

2σ2
ε

�
pθi �Xiφ� Ziψiq

1 pθi �Xiφ� Ziψiq

2
�
σ2
ε

	2 ,

The first derivative of lic respect to σ2
ψ is given by:

Blic
Bσ2

ψ

� �
1

2σ2
ψ

�
ψ2
i

2
�
σ2
ψ

	2 .

The second derivative of lic respect to thresholds τl is given by:

B2Pijl
Bτl2

� Pijlp1 � Pijlqp1 � 2Pijlq,

B2P ijl

Bτ lBτl
1 � 0, l � l

1

.

B2lic
Bτl2

�
ni̧

j�1
Iyij

plq
P 2
ijl p1 � PijlqPijl�1 � P 3

ijl p1 � Pijlq � Pijlp1 � Pijlq
2Pijl�1

pPijl � Pijl�1q2
,

B2lic
BτlBτl1

� 0, l � l1.

The second derivative of lic respect to φ is given by:

B2lic
Bφ1Bφ

�
ni̧

j�1

Ļ

l�1
Iyij

plq

�
B2Pijl

Bφ1Bφ
�

B2Pijl�1
Bφ1Bφ

Pijl � Pijl�1
�

�
BPijl

Bφ1
�

BPijl�1
Bφ1

	�
BPijl

Bφ
�

BPijl�1
Bφ

	
pPijl � Pijl�1q2

�

�
X 1
iXi

2σ2
ε

,
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B2Pijl
Bφ1Bφ

� Pijlp1 � Pijlq
2Bηijl
Bφ1

Bηijl
Bφ

� P 2
ijlp1 � Pijlq

Bηijl
Bφ1

Bηijl
Bφ

� Pijlp1 � Pijlq
B2ηijl
Bφ1Bφ

.

B2ηijl
Bφ1Bφ

� �

�
Xi

������
0
1
0
0

�����
�

0 1 0 0
	
X 1
i exppα1iq µ0pt

�
ijq �Xi

������
0
1
0
0

�����exppα1iq
Bµ0pt

�
ijq

Bφ1

�
�

0 1 0 0
	
X 1
i exppα1iq

Bµ0pt
�
ijq

Bφ
� exppα1iq

B2µ0pt
�
ijq

Bφ1Bφ

�
.

B2µ0pt
�
ijq

Bφ1 Bφ
�
B2µ0pt

�
ijq

Bφ1 Bt�ij

Bt�ij
Bφ

�
Bµ0pt

�
ijq

Bt�ij

B2t�ij
Bφ1 Bφ

,

B2µ0pt
�
ijq

Bφ1 Bt�ij
�

4̧

m�1
pm� 1qpm� 2q

��
0 0 1 0

	
X 1
i �

�
0 0 0 1

	
X 1
i exppβ1iqtij

�
t�ij

m�3γm

�
Ķ

k�1
6
��

0 0 1 0
	
X 1
i �

�
0 0 0 1

	
X 1
i exppβ1iqtij

��
t�ij � ξk

	
ζk,

B2t�ij
Bφ1Bφ

� Xi

������
0
0
0
1

�����
�

0 0 0 1
	
X 1
i exppβ1iqtij.

The second derivative of lic respect to thresholds τl and φ is given by:

B2lic
BτlBφ

�
ni̧

j�1

� B2Pijl

Bτ
l
Bφ

�
B2Pijl�1
Bτ

l
Bφ

Pijl � Pijl�1
�

�
BPijl

Bτ
l
�

BPijl�1
Bτ

l

	�
BPijl

Bφ
�

BPijl�1
Bφ

	
pPijl � Pijl�1q2

�
.

B2Pijl
BτlBφ

� Pijlp1 � Pijlqp1 � 2Pijlq
Bηijl
Bφ

.

The second derivative of lic respect to φ and σ2
ε is given by:

B2lic
Bσ2

εBφ
� �

pθi �Xiφ� Ziψiq
1Xi

2
�
σ2
ε

	2 .

B2Pijl
Bσ2

εBφ
�

B

Bσ2
ε

�
Pijlp1 � Pijlq

Bηijl
Bφ



� 0.
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The second derivative of lic respect to σ2
ε is given by:

B2lic

B
�
σ2
ε

	2 �
1

2 pσ2
εq

2 �
pθi �Xiφ� Ziψiq

1 pθi �Xiφ� Ziψiq�
σ2
ε

	3 .

The second derivative of lic respect to σ2
ψ is given by:

B2lic

B
�
σ2
ψ

�2 �
1

2
�
σ2
ψ

�2 �
ψ2
i�

σ2
ψ

�3 .

A.1.2 The E and M steps

E- step:

Q
�
θ
��θpsq � � Ņ

i�1

1
Mi

Mi̧

m�1

�
ni̧

j�1

Ļ

l�1
Iyij

plq log pPijl � Pijl�1q �
1
2 log

�
σ2psq
ε

�

�

�
θi �Xiφ

psq � Ziψ
psq
i

	1 �
θi �Xiφ

psq � Ziψ
psq
i

	
2σ2psq

ε

�
1
2 log

�
σ

2psq
ψi

	
�

ψ
2psq
i

2σ2psq
ψi

�
.

M- step:

For l� 1, . . . ,L

BQ
�
θ
��θpsq �

Bτl
�

Ņ

i�1

1
Mi

Mi̧

m�1

ni̧

j�1
Iyij

plq
P
psq
ijl

�
1 � P

psq
ijl

	
P
psq
ijl � P

psq
ijl�1

� 0,

Pijlp1 � Pijlq

Pijl � Pijl�1
�

exppηijlq
�

1 � exppηijl�1q
	

�
1 � exppηijlq

	�
exppηijlq � exppηijl�1q

	
With exppηijlq � exppτl � ωijq

�
exppτlq

exppτlq � exppτl�1q

exppωijq � exppτl�1q

exppωijq � exppτlq
.

BQ
�
θ
��θpsq �

Bτl
�

Ņ

i�1

1
Mi

Mi̧

m�1

ni̧

j�1
Iyij

plq
exp

�
ω
psq
ij

	
� exp pτl�1q

exp
�
ω
psq
ij

	
� exp pτlq

� 0,

Ņ

i�1

1
Mi

Mi̧

m�1

ni̧

j�1
1� exp pτl�1q � exp pτlq

exp
�
ω
psq
ij

	
� exp pτlq

� NMini�
Ņ

i�1

1
Mi

Mi̧

m�1

ni̧

j�1

exp pτl�1q � exp pτlq
exp

�
ω
psq
ij

	
� exp pτlq

� 0,
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Ņ

i�1

1
Mi

Mi̧

m�1

ni̧

j�1

1
exp

�
ω
psq
ij

	
� exp pτlq

�
NMini

exp pτlq � exp pτl�1q

For the parameter τl, we can’t get the closed form expression for the maximizer Q
�
θ
�� θpsq�.

We use the Newton-Raphson iterations as:

BQ
�
θ
��θpsq �

Bφ
�

Ņ

i�1

1
Mi

Mi̧

m�1

�
ni̧

j�1

Ļ

l�1
Iyij

plq

Bηijl

Bφ

�
Pijlp1 � Pijlq � Pijl�1p1 � Pijl�1q

	
Pijl � Pijl�1

�

�
θi �Xiφ

psq � Ziψ
psq
i

	1
Xi

2σ2psq
ε

�
� 0,

φps�1q �
Ņ

i�1

1
MiX 1

iXi

Mi̧

m�1

�
2σ2psq

ε

�
ni̧

j�1

Ļ

l�1
Iyij

plq

Bηijl

Bφ

�
Pijlp1 � Pijlq � Pijl�1p1 � Pijl�1q

	
Pijl � Pijl�1

�

�θ1iXi � ψ
1psq
i Z 1

iXi

�
.

BQ
�
θ
��θpsq �

Bσ2
ε

�
Ņ

i�1

1
Mi

Mi̧

m�1

���� 1
2σ2psq

ε

�

�
θi �Xiφ

psq � Ziψ
psq
i

	1 �
θi �Xiφ

psq � Ziψ
psq
i

	
2
�
σ

2psq
ε

	2

��� � 0,

σ2ps�1q
ε �

1
N

Ņ

i�1

1
Mi

Mi̧

m�1

�
θi �Xiφ

psq � Ziψ
psq
i

	1 �
θi �Xiφ

psq � Ziψ
psq
i

	
.

BQ
�
θ
��θpsq �

Bσ2
ψ

�
Ņ

i�1

1
Mi

Mi̧

m�1

���� 1
2σ2psq

ψ

�
ψ

2psq
i

2
�
σ

2psq
ψ

	2

��� � 0,

σ
2ps�1q
ψ �

1
N

Ņ

i�1

1
Mi

Mi̧

m�1
ψ

2psq
i .
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A.2 Chapter 3

A.2.1 The Newton-Raphson procedure

The first derivative of lic respect to thresholds τl, for l � 1, . . . , L is given by:

Blic
Bτl

�
ni̧

j�1
Iyijl

plq

�
cij
Pijlp1 � Pijlq

Pijl � Pijl�1
� p1 � cijq

�Pijlp1 � Pijlq

1 � Pijl

�
,

Bηijl
Bτl

� 1, BPijl
Bτl

� Pijlp1 � Pijlq,
Bηijpl�1q

Bτl
� 0, BPijpl�1q

Bτl
� 0.

The first derivative of lic respect to φ is given by:

Blic
Bφ

�
ni̧

j�1

Ļ

l�1
Iyij

plq

�
cij

BPijl

Bφ
�

BPijl�1
Bφ

Pijl � Pijl�1
� p1 � cijq

�
BPijl

Bφ

1 � Pijl

�
�
pθi �Xiφ� Ziψiq

1Xi

2σ2
ε

,

BPijl
Bφ

� Pijlp1 � Pijlq
Bηijl
Bφ

,

Bα0i

Bφ
� Xi

������
1
0
0
0

�����, Bα1i

Bφ
� Xi

������
0
1
0
0

�����, Bβ0i

Bφ
� Xi

������
0
0
1
0

�����, Bβ1i

Bφ
� Xi

������
0
0
0
1

�����,

Bηijl
Bφ

� Xi

������
1
0
0
0

������Xi

������
0
1
0
0

�����exppα1iq µ0pt
�
ijq � exppα1iq

Bµ0pt
�
ijq

Bφ
,

Bµ0pt
�
ijq

Bφ
�
Bµ0pt

�
ijq

Bt�ij

Bt�ij
Bφ

,

Bµ0pt
�
ijq

Bt�ij
�

4̧

m�1
pm� 1qt�ij

m�2γm �
Ķ

k�1
3
�
t�ij � ξk

	2
ζk.

Bt�ij
Bφ

� Xi

������
0
0
1
0

������Xi

������
0
0
0
1

�����exppβ1iqtij.
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The first derivative of lic respect to σ2
εi
is given by:

Blic
Bσ2

εi

� �
1

2σ2
εi

�
pθi �Xiφ� Ziψiq

1 pθi �Xiφ� Ziψiq

2
�
σ2
εi

	2 .

The first derivative of lic respect to σ2
ψ2

i
is given by:

Blic
Bσ2

ψi

� �
1

2σ2
ψi

�
ψ2
i

2
�
σ2
ψi

	2 .

The second derivative of lic respect to thresholds τl, for l � 1, . . . , L is given by:

B2Pijl
Bτl2

� Pijlp1 � Pijlqp1 � 2Pijlq,

B2P ijl

BτlBτl
1 � 0, l � l

1

.

B2lic
Bτl2

�
ni̧

j�1
Iyij

plq

�
cij
P 2
ijl p1 � PijlqPijl�1 � P 3

ijl p1 � Pijlq � Pijlp1 � Pijlq
2Pijl�1

pPijl � Pijl�1q2

� p1 � cijq
Pijl � 3P 2

ijl � 7P 3
ijl � P 4

ijl

p1 � Pijlq2

�
,

B2lic
BτlBτl1

� 0, l � l1.

The second derivative of lic respect to φ is given by:

B2lic
Bφ1Bφ

�
ni̧

j�1

Ļ

l�1
Iyijl

plq

�
cij

�
B2Pijl

Bφ1Bφ
�

B2Pijl�1
Bφ1Bφ

Pijl � Pijl�1
�

�
BPijl

Bφ1
�

BPijl�1
Bφ1

	�
BPijl

Bφ
�

BPijl�1
Bφ

	
pPijl � Pijl�1q2

�

� p1 � cijq

�
B2Pijl

Bφ1Bφ
p1 � Pijlq �

BPijl

Bφ1
BPijl

Bφ

p1 � Pijlq2

��
�
X 1
iXi

2σ2
εi

.

B2Pijl
Bφ1Bφ

� Pijlp1 � Pijlq
2Bηijl
Bφ1

Bηijl
Bφ

� P 2
ijlp1 � Pijlq

Bηijl
Bφ1

Bηijl
Bφ

� Pijlp1 � Pijlq
B2ηijl
Bφ1Bφ

.
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B2ηijl
Bφ1Bφ

� Xi

������
0
1
0
0

�����
�

0 1 0 0
	
X 1
i exppα1iq µ0pt

�
ijq �Xi

������
0
1
0
0

�����exppα1iq
Bµ0pt

�
ijq

Bφ1

�
�

0 1 0 0
	
X 1
i exppα1iq

Bµ0pt
�
ijq

Bφ
� exppα1iq

B2µ0pt
�
ijq

Bφ1Bφ
.

B2µ0pt
�
ijq

Bφ1 Bφ
�
B2µ0pt

�
ijq

Bφ1 Bt�ij

Bt�ij
Bφ

�
Bµ0pt

�
ijq

Bt�ij

B2t�ij
Bφ1 Bφ

,

B2µ0pt
�
ijq

Bφ1 Bt�ij
�

4̧

m�1
pm� 1qpm� 2q

Bt�ij
Bφ1

t�ij
m�3γm �

Ķ

k�1
6
Bt�ij
Bφ1

�
t�ij � ξk

	
ζk,

Bt�ij
Bφ1

�
�

0 0 1 0
	
X 1
i �

�
0 0 0 1

	
X 1
i exppβ1iqtij,

B2t�ij
Bφ1Bφ

� Xi

������
0
0
0
1

�����
�

0 0 0 1
	
X 1
i exppβ1iqtij.

The second derivative of lic respect to thresholds τl and φ is given by:

B2lic
BτlBφ

�
ni̧

j�1
Iyijl

plq

�
cij

� B2Pijl

Bτ
l
Bφ

�
B2Pijl�1
Bτ

l
Bφ

Pijl � Pijl�1
�

�
BPijl

Bτ
l
�

BPijl�1
Bτ

l

	�
BPijl

Bφ
�

BPijl�1
Bφ

	
pPijl � Pijl�1q2

�

� p1 � cijq

B2Pijl

Bτ
l
Bφ
p1 � Pijlq �

BPijl

Bτ
l

BPijl

Bφ

p1 � Pijlq2

�
.

B2Pijl
BτlBφ

� Pijlp1 � Pijlqp1 � 2Pijlq
Bηijl
Bφ

.

The second derivative of lic respect to φ and σ2
εi
is given by:

B2lic
Bσ2

εi
Bφ

� �
pθi �Xiφ� Ziψiq

1Xi

2
�
σ2
εi

	2 .

B2Pijl
Bσ2

εi
Bφ

�
B

Bσ2
εi

�
Pijlp1 � Pijlq

Bηijl
Bφ



� 0.



APÊNDICE A. The derivatives for the Newton-Raphson and EM procedures 115

The second derivative of lic respect to σ2
εi
is given by:

B2lic

B
�
σ2
εi

	2 �
1

2
�
σ2
εi

�2 �
pθi �Xiφ� Ziψiq

1 pθi �Xiφ� Ziψiq�
σ2
εi

	3 .

The second derivative of lic respect to σ2
ψi

is given by:

B2lic

B
�
σ2
ψi

�2 �
B

Bσ2
ψi

�
�

1
2σ2

ψi

�
ψ2
i

2σ2
ψi



�

1
2
�
σ2
ψi

�2 �
ψ2
i�

σ2
ψi

�3 .

A.2.2 The E- and M- steps

E- step:

Q
�
θ
��θpsq � � Ņ

i�1

1
Mi

Mi̧

m�1

�
ni̧

j�1

Ļ

l�1
Iyij

plq
�
cij logpPijl � Pijl�1q � p1 � cijq logp1 � Pijlq

�
� log

�
Φ
�
θi|Xiφ� Ziψi, σ

2
εi
I4
� 	

� log
�
Φ
�
ψi|0, σ2

ψi

� 	�
.

M- step:

For l� 1, . . . ,L

BQ
�
θ
��θpsq �

Bτl
�

Ņ

i�1

1
Mi

Mi̧

m�1

ni̧

j�1
Iyijl

plq

�
cij
Pijlp1 � Pijlq

Pijl � Pijl�1
� p1 � cijq

�Pijlp1 � Pijlq

1 � Pijl

�
� 0,

Pijlp1 � Pijlq

Pijl � Pijl�1
�

exppηijlq
�

1 � exppηijl�1q
	

�
1 � exppηijlq

	�
exppηijlq � exppηijl�1q

	
With exppηijlq � exppτl � ωijq

�
exppτlq

exppτlq � exppτl�1q

1
exppωijq

� exppτl�1q
1

exppωijq
� exppτlq

.

BQ
�
θ
��θpsq �

Bτl
�

Ņ

i�1

1
Mi

Mi̧

m�1

ni̧

j�1
Iyij

plq

�
cij

1
exppτlq � exppτl�1q

1
exppωpsqij q

� exp pτl�1q

1
exppωpsqij q

� exp pτlq

� p1 � cijqexppωpsqij q
�
� 0,
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For the parameter τl, we can’t get the closed form expression for the maximizer Q
�
θ
�� θpsq�.

We use the Newton-Raphson iterations as:

BQ
�
θ
��θpsq �

Bφ
�

Ņ

i�1

1
Mi

Mi̧

m�1

�
ni̧

j�1

Ļ

l�1
Iyij

plq

�
cij

Bηijl

Bφ

�
Pijlp1 � Pijlq � Pijl�1p1 � Pijl�1q

	
Pijl � Pijl�1

� p1 � cijq
Bηijl
Bφ

Pijl

�
�

�
θi �Xiφ

psq � Ziψ
psq
i

	1
Xi

2σ2psq
ε

�
� 0,

φps�1q �
Ņ

i�1

1
MiX 1

iXi

Mi̧

m�1

�
2σ2psq

ε

�
ni̧

j�1

Ļ

l�1
Iyij

plq

�
cij

Bηijl

Bφ

�
Pijlp1 � Pijlq � Pijl�1p1 � Pijl�1q

	
Pijl � Pijl�1

�

� p1 � cijq
Bηijl
Bφ

Pijl

�
� θ1iXi � ψ

1psq
i Z 1

iXi

�
.

BQ
�
θ
��θpsq �

Bσ2
ε

�
Ņ

i�1

1
Mi

Mi̧

m�1

�
�

1
2σ2psq

ε

�

�
θi �Xiφ

psq � Ziψ
psq
i

	1 �
θi �Xiφ

psq � Ziψ
psq
i

	
2
�
σ

2psq
ε

	2

�

� 0,

σ2ps�1q
ε �

1
N

Ņ

i�1

1
Mi

Mi̧

m�1

�
θi �Xiφ

psq � Ziψ
psq
i

	1 �
θi �Xiφ

psq � Ziψ
psq
i

	
.

BQ
�
θ
��θpsq �

Bσ2
ψ

�
Ņ

i�1

1
Mi

Mi̧

m�1

���� 1
2σ2psq

ψ

�
ψ

2psq
i

2
�
σ

2psq
ψ

	2

��� � 0, σ2ps�1q
ψ �

1
N

Ņ

i�1

1
Mi

Mi̧

m�1
ψ

2psq
i .
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A.3 Chapter 4

A.3.1 The Newton-Raphson procedure

C � 1 � Pijl � pijlSu
�
tij|yij � 1, x�ij, z�ij

�
,

The first derivative of lic respect to thresholds τl, for l � 1, . . . , L is given by:

Blic
Bτl

�
ni̧

j�1
Iyij

plq

�
δij
Pijlp1 � Pijlq

Pijl � Pijl�1
� p1 � δijq

BC
Bτl

C

�
.

Bηijl
Bτl

� 1, Bηijpl�1q

Bτl
� 0, BPijl

Bτl
� Pijlp1 � Pijlq,

BPijpl�1q

Bτl
� 0,

BC

Bτl
� �

BPijl
Bτl

� Su
�
tij|yij � 1, x�ij, z�ij

�Bpijl
Bτl

The first derivative of lic respect to φ is given by:

Blic
Bφ

�
ni̧

j�1
Iyij

plq

�
δij

Bpijl

Bφ

pijl
� p1 � δijq

BC
Bφ

C

�
�
pθi �Xiφ� Ziψiq

1Xi

2σ2
εi

,

BPijl
Bφ

� Pijlp1 � Pijlq
Bηijl
Bφ

,
BC

Bφ
� �

BPijl
Bφ

� Su
�
tij|yij � 1, x�ij, z�ij

�Bpijl
Bφ

,

Bα0i

Bφ
� Xi

������
1
0
0
0

�����, Bα1i

Bφ
� Xi

������
0
1
0
0

�����, Bβ0i

Bφ
� Xi

������
0
0
1
0

�����, Bβ1i

Bφ
� Xi

������
0
0
0
1

�����,

Bηijl
Bφ

� Xi

������
1
0
0
0

������Xi

������
0
1
0
0

�����exppα1iq µ0pt
�
ijq � exppα1iq

Bµ0pt
�
ijq

Bφ
,

Bµ0pt
�
ijq

Bφ
�
Bµ0pt

�
ijq

Bt�ij

Bt�ij
Bφ

,
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Bµ0pt
�
ijq

Bt�ij
�

4̧

m�1
pm� 1qt�ij

m�2γm �
Ķ

k�1
3
�
t�ij � ξk

	2
ζk,

Bt�ij
Bφ

� Xi

������
0
0
1
0

������Xi

������
0
0
0
1

�����exppβ1iqtij.

The first derivative of lic respect to σ2
ψ2

i
:

Blic
Bσ2

ψi

� �
1

2σ2
ψi

�
ψ2
i

2
�
σ2
ψi

	2 .

The first derivative of lic respect to σ2
εi
is given by:

Blic
Bσ2

εi

� �
1

2σ2
εi

�
pθi �Xiφ� Ziψiq

1 pθi �Xiφ� Ziψiq

2
�
σ2
εi

	2 .

The first derivative of lic respect to φ� is given by:

A � �p
tij
b
qa,

Blic
Bφ�

�
ni̧

j�1
Iyij

plq

�
δij
B log fu

�
tij|yij � 1, x�ij, z�ij

�
Bφ�

�p1�δijq
BC
Bφ�

C

�
�
pθ�i �X�

i φ
� � Z�

i ψ
�
i q

1X�
i

2σ2
ε�i

,

B log fu
�
tij|yij � 1, x�ij, z�ij

�
Bφ�

� x�ijp1 � exppθ�q Aq,
BC

Bφ�
� pijl

BSu
�
tij|yij � 1, x�ij, z�ij

�
Bφ�

,

BSu
�
tij|yij � 1, x�ij, z�ij

�
Bφ�

� A x�ij exppθ
�q Su

�
tij|yij � 1, x�ij, z�ij

�
.

The first derivative of lic respect to σ2
ψ�i

is given by:

Blic
Bσ2

ψ�i

� �
1

2σ2
ψ�i

�
ψ�2
i

2
�
σ2
ψ�i

	2 .

The first derivative of lic respect to σ2
ε�i

is given by:
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Blic
Bσ2

ε�i

� �
1

2σ2
ε�i

�
pθ�i �X�

i φ
� � Z�

i ψ
�
i q

1 pθ�i �X�
i φ

� � Z�
i ψ

�
i q

2
�
σ2
ε�i

	2 .

The second derivative of lic respect to thresholds τl, for l � 1, . . . , L is given by:

B2lic
Bτ 1lBτl

�
ni̧

j�1
Iyij

plq

�
δij

B2pijl

Bτ 1
l
Bτl
pijl �

Bpijl

Bτ 1
l

Bpijl

Bτl

p2
ijl

� p1 � δijq

B2C
Bτ 1

l
Bτl
C � BC

Bτ 1
l

BC
Bτl

C2

�
,

B2lic
BτlBτl1

� 0, l � l1.

B2Pijl
Bτl2

� Pijlp1 � Pijlqp1 � 2Pijlq,

B2P ijl

Bτ lBτl
1 � 0, l � l

1

.

B2C

Bτ 1lBτl
� �

B2Pijl
Bτ 1lBτl

� Su
�
tij|yij � 1, x�ij, z�ij

� B2pijl
Bτ 1lBτl

.

The second derivative of lic respect to φ is given by:

B2lic
Bφ1Bφ

�
ni̧

j�1
Iyij

plq

�
δij

B2pijl

Bφ1Bφ
pijl �

Bpijl

Bφ1
Bpijl

Bφ

p2
ijl

� p1 � δijq
B2C
Bφ1Bφ

C � BC
Bφ1

BC
Bφ

C2

�
�
X

1

iXi

2σ2
εi

,

B2Pijl
Bφ1Bφ

� Pijlp1 � Pijlq
2Bηijl
Bφ1

Bηijl
Bφ

� P 2
ijlp1 � Pijlq

Bηijl
Bφ1

Bηijl
Bφ

� Pijlp1 � Pijlq
B2ηijl
Bφ1Bφ

,

B2C

Bφ1Bφ
� �

B2Pijl
Bφ1Bφ

� Su
�
tij|yij � 1, x�ij, z�ij

� B2pijl
Bφ1Bφ

,

B2ηijl
Bφ1Bφ

� Xi

������
0
1
0
0

�����
�

0 1 0 0
	
X 1
i exppα1iq µ0pt

�
ijq �Xi

������
0
1
0
0

�����exppα1iq
Bµ0pt

�
ijq

Bφ1

�
�

0 1 0 0
	
X 1
i exppα1iq

Bµ0pt
�
ijq

Bφ
� exppα1iq

B2µ0pt
�
ijq

Bφ1Bφ
,
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B2µ0pt
�
ijq

Bφ1 Bφ
�
B2µ0pt

�
ijq

Bφ1 Bt�ij

Bt�ij
Bφ

�
Bµ0pt

�
ijq

Bt�ij

B2t�ij
Bφ1 Bφ

,

B2µ0pt
�
ijq

Bφ1 Bt�ij
�

4̧

m�1
pm� 1qpm� 2q

Bt�ij
Bφ1

t�ij
m�3γm �

Ķ

k�1
6
Bt�ij
Bφ1

�
t�ij � ξk

	
ζk,

Bt�ij
Bφ1

�
�

0 0 1 0
	
X 1
i �

�
0 0 0 1

	
X 1
i exppβ1iqtij,

B2t�ij
Bφ1Bφ

� Xi

������
0
0
0
1

�����
�

0 0 0 1
	
X 1
i exppβ1iqtij.

The second derivative of lic respect to φ and σ2
εi
is given by:

B2lic
Bσ2

εi
Bφ

� �
pθi �Xiφ� Ziψiq

1Xi

2
�
σ2
εi

	2 .

The second derivative of lic respect to σ2
ψi

is given by:

B2lic

B
�
σ2
ψi

�2 �
1

2
�
σ2
ψi

�2 �
ψ2
i�

σ2
ψi

�3 .

The second derivative of lic respect to σ2
εi
is given by:

B2lic

B
�
σ2
εi

	2 �
1

2
�
σ2
εi

�2 �
pθi �Xiφ� Ziψiq

1 pθi �Xiφ� Ziψiq�
σ2
εi

	3 .

The second derivative of lic respect to thresholds τl and φ is given by:

B2lic
BφBτl

�
ni̧

j�1
Iyij

plq

�
δij

B2pijl

BφBτl
pijl �

Bpijl

Bφ

Bpijl

Bτl

p2
ijl

� p1 � δijq
B2C
BφBτl

C � BC
Bφ

BC
Bτl

C2

�
,

B2Pijl
BφBτl

� Pijlp1 � Pijlqp1 � 2Pijlq
Bηijl
Bφ

.

B2C

BφBτl
� �

B2Pijl
BφBτl

� Su
�
tij|yij � 1, x�ij, z�ij

�B2pijl
BφBτl

.
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The second derivative of lic respect to φ� is given by:

B2lic
Bφ�1Bφ�

�
ni̧

j�1
Iyij

plq

�
δij
B2 log fu

�
tij|yij � 1, x�ij, z�ij

�
Bφ�1Bφ�

� p1 � δijq

B2C
Bφ�1Bφ�

C � BC
Bφ�1

BC
Bφ�

C2

�

�
X�1

i X
�
i

2σ2
ε�i

,

B2 log fu
�
tij|yij � 1, x�ij, z�ij

�
Bφ�1Bφ�

� x�
1

ij x
�
ij expp�θ

�qA,
B2C

Bφ�1Bφ�
� pijl

B2Su
�
tij|yij � 1, x�ij, z�ij

�
Bφ�1Bφ�

,

B2Su
�
tij|yij � 1, x�ij, z�ij

�
Bφ�1Bφ�

� x�ij expp�θ
�q A

�
x�

1

ijSu �
BSu
Bφ�1

�
.

The second derivative of lic respect to φ� and σ2
ε�i

is given by:

B2lic
Bσ2

ε�i
Bφ�

� �
pθ�i �X�

i φ
� � Z�

i ψ
�
i q

1X�
i

2
�
σ2
ε�i

	2 .

The second derivative of lic respect to σ2
ψ�i

is given by:

B2lic

B
�
σ2
ψ�i

	2 �
1

2
�
σ2
ψ�i

	2 �
ψ�2
i�

σ2
ψ�i

	3 .

The second derivative of lic respect to σ2
ε�i

is given by:

B2lic

B
�
σ2
ε�i

	2 �
1

2
�
σ2
ε�i

	2 �
pθ�i �X�

i φ
� � Z�

i ψ
�
i q

1 pθ�i �X�
i φ

� � Z�
i ψ

�
i q�

σ2
ε�i

	3 .

The second derivative of lic respect to φ and φ� is given by:

B2lic
Bφ Bφ�

�
ni̧

j�1
p1 � δijq

B2C
Bφ Bφ�

C � BC
Bφ

BC
Bφ�

C2 ,
B2C

Bφ Bφ�
�
Bpijl
Bφ

BSu
�
tij|yij � 1, x�ij, z�ij

�
Bφ�

.
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A.3.2 The E- and M- steps

E- step:

Q
�
θ
��θpsq � � Ņ

i�1

1
Mi

Mi̧

m�1

�
ni̧

j�1

Ļ

l�1
Iyij

plq
�
δij logppijlq � δij log fu

�
tij|yij � 1, x�ij, z�ij

�
� p1 � δijq log

�
1 � Pijl � pijlSu

�
tij|yij � 1, x�ij, z�ij

�	�
�

1
2 log

�
σ2psq
εi

�
�

�
θi �Xiφ

psq � Ziψ
psq
i

	1 �
θi �Xiφ

psq � Ziψ
psq
i

	
2σ2psq

εi

�
1
2 log

�
σ

2psq
ε�i

	
�

�
θ�i �X�

i φ
�psq � Z�

i ψ
�psq
i

	1 �
θ�i �X�

i φ
�psq � Z�

i ψ
�psq
i

	
2σ2psq

ε�i

�
1
2 log

�
σ

2psq
ψi

	
�

ψ
2psq
i

2σ2psq
ψi

�
1
2 log

�
σ

2psq
ψ�i

	
�
ψ�2psq

i

2σ2psq
ψ�i

�
.

M- step: For l� 1, . . . ,L

BQ
�
θ
��θpsq �

Bτl
�

Ņ

i�1

1
Mi

Mi̧

m�1

ni̧

j�1
Iyijl

plq

�
δij

Bpijl

Bτ
l

pijl
� p1 � δijq

BC
Bτ

l

C

�
� 0,

Pijlp1 � Pijlq

Pijl � Pijl�1
�

exppτlq
exppτlq � exppτl�1q

1 � exppτl�1q exppωijq
1 � exppτlq exppωijq

,

BQ
�
θ
��θpsq �

Bτl
�

Ņ

i�1

1
Mi

Mi̧

m�1

ni̧

j�1
Iyij

plq

�
δij

1
exppτlq � exppτl�1q

1 � exppτl�1q exppωpsqij q
1 � exppτlq exppωpsqij q

� p1 � δijq
Pijlp1 � PijlqpSu � 1q

C

�
� 0.

For the parameter τl, we can’t get the closed form expression for the maximizer Q
�
θ
�� θpsq�.

We use the Newton–Raphson iterations as:

BQ
�
θ
��θpsq �

Bφ
�

Ņ

i�1

1
Mi

Mi̧

m�1

�
ni̧

j�1

Ļ

l�1
Iyij

plq

�
δij

Bpijl

Bφ

pijl
� p1 � δijq

BC
Bφ

C

�

�

�
θi �Xiφ

psq � Ziψ
psq
i

	1
Xi

2σ2psq
εi

�
� 0,
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φps�1q �
Ņ

i�1

1
MiX 1

iXi

Mi̧

m�1

�
2σ2psq

εi

ni̧

j�1

Ļ

l�1
Iyij

plq

�
δij

Bpijl

Bφ

pijl
� p1 � δijq

BC
Bφ

C

�
� θ1iXi � ψ

1

i

psq
Z 1
iXi

�
.

BQ
�
θ
��θpsq �

Bσ2
εi

�
Ņ

i�1

1
Mi

Mi̧

m�1

�
�

1
2σ2psq

εi

�

�
θi �Xiφ

psq � Ziψ
psq
i

	1 �
θi �Xiφ

psq � Ziψ
psq
i

	
2
�
σ

2psq
εi

	2

�
� 0,

σ2ps�1q
εi

�
1
N

Ņ

i�1

1
Mi

Mi̧

m�1

�
θi �Xiφ

psq � Ziψ
psq
i

	1 �
θi �Xiφ

psq � Ziψ
psq
i

	
.

BQ
�
θ
��θpsq �

Bσ2
ψi

�
Ņ

i�1

1
Mi

Mi̧

m�1

���� 1
2σ2psq

ψi

�
ψ

2psq
i

2
�
σ

2psq
ψi

	2

��� � 0, σ2ps�1q
ψi

�
1
N

Ņ

i�1

1
Mi

Mi̧

m�1
ψ

2psq
i .

BQ
�
θ
��θpsq �

Bφ�
�

Ņ

i�1

1
Mi

Mi̧

m�1

�
ni̧

j�1

�
δij
B log fu

�
tij|yij � 1, x�ij, z�ij

�
Bφ�

� p1 � δijq
BC
Bφ�

C

�

�
pθ�i �X�

i φ
� � Z�

i ψ
�
i q

1X�
i

2σ2
ε�i

,

�
� 0,

φ�ps�1q �
Ņ

i�1

1
MiX�1

i X
�
i

Mi̧

m�1

�
2σ2psq

εi

ni̧

j�1

�
δij
B log fu

�
tij|yij � 1, x�ij, z�ij

�
Bφ�

� p1 � δijq
BC
Bφ�

C

�

� θ�
1

i X
�
i � ψ�1

i

psq
Z�1

i X
�
i

�
.

BQ
�
θ
��θpsq �

Bσ2
ε�i

�
Ņ

i�1

1
Mi

Mi̧

m�1

�
�

1
2σ2psq

ε�i

�

�
θ�i �X�

i φ
�psq � Z�

i ψ
�
i
psq
	1 �

θ�i �X�
i φ

�psq � Z�
i ψ

�
i
psq
	

2
�
σ

2psq
ε�i

	2

�
� 0,

σ
2ps�1q
ε�i

�
1
N

Ņ

i�1

1
Mi

Mi̧

m�1

�
θ�i �X�

i φ
�psq � Z�

i ψ
�
i
psq
	1 �

θ�i �X�
i φ

�psq � Z�
i ψ

�
i
psq
	
.

BQ
�
θ
��θpsq �

Bσ2
ψ�i

�
Ņ

i�1

1
Mi

Mi̧

m�1

���� 1
2σ2psq

ψ�i

�
ψ�
i

2psq

2
�
σ

2psq
ψ�i

	2

��� � 0, σ2ps�1q
ψ�i

�
1
N

Ņ

i�1

1
Mi

Mi̧

m�1
ψ�
i

2psq.
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A.4 Chapter 5

A.4.1 The Newton-Raphson procedure

The first derivative of lic respect to φ is given by:

C � 1 � pij � pijSu
�
tij|yij � 1, x�ij, z�ij

�
,

Blic
Bφ

�
ni̧

j�1

�
δij

Bpij

Bφ

pij
� p1 � δijq

BC
Bφ

C

�
�
pθi �Xiφ� Ziψiq

1Xi

2σ2
εi

,

Bpij
Bφ

� pijp1 � pijq
Bηij
Bφ

,
BC

Bφ
� Su

�
tij|yij � 1, x�ij, z�ij

�Bpij
Bφ

,

Bα0i

Bφ
� Xi

������
1
0
0
0

�����, Bα1i

Bφ
� Xi

������
0
1
0
0

�����, Bβ0i

Bφ
� Xi

������
0
0
1
0

�����, Bβ1i

Bφ
� Xi

������
0
0
0
1

�����,

Bηijl
Bφ

� Xi

������
1
0
0
0

������Xi

������
0
1
0
0

�����exppα1iq µ0pt
�
ijq � exppα1iq

Bµ0pt
�
ijq

Bφ
,

Bµ0pt
�
ijq

Bφ
�
Bµ0pt

�
ijq

Bt�ij

Bt�ij
Bφ

,

Bµ0pt
�
ijq

Bt�ij
�

4̧

m�1
pm� 1qt�ij

m�2γm �
Ķ

k�1
3
�
t�ij � ξk

	2
ζk,

Bt�ij
Bφ

� Xi

������
0
0
1
0

������Xi

������
0
0
0
1

�����exppβ1iqtij.

The first derivative of lic respect to σ2
ψ2

i
is given by:

Blic
Bσ2

ψi

� �
1

2σ2
ψi

�
ψ2
i

2
�
σ2
ψi

	2 .
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The first derivative of lic respect to σ2
εi
is given by:

Blic
Bσ2

εi

� �
1

2σ2
εi

�
pθi �Xiφ� Ziψiq

1 pθi �Xiφ� Ziψiq

2
�
σ2
εi

	2 .

The first derivative of lic respect to φ� is given by:

A � �pb tij exppθ
�qqa,

Blic
Bφ�

�
ni̧

j�1

�
δij
B log fu

�
tij|yij � 1, x�ij, z�ij

�
Bφ�

� p1 � δijq
BC
Bφ�

C

�
�
pθ�i �X�

i φ
� � Z�

i ψ
�
i q

1X�
i

2σ2
ε�i

,

B log fu
�
tij|yij � 1, x�ij, z�ij

�
Bφ�
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The first derivative of lic respect to σ2
ψ�i

is given by:
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2
�
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The first derivative of lic respect to σ2
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is given by:
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The second derivative of lic respect to φ is given by:
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The second derivative of lic respect to φ and σ2
εi
is given by:
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The second derivative of lic respect to σ2
ψi

is given by:
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The second derivative of lic respect to σ2
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is given by:
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The second derivative of lic respect to φ� is given by:
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The second derivative of lic respect to φ� and σ2
ε�i

is given by:
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The second derivative of lic respect to σ2
ψ�i

is given by:
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The second derivative of lic respect to σ2
ε�i

is given by:
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The second derivative of lic respect to φ and φ� is given by:
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A.4.2 The E- and M- steps

E- step:
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M- step:
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