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Resumo

A falta de robustez referente à degradação de qualidade de conjuntos de características
extraídas de padrões de cristas-e-vales, contidos na epiderme dos dedos humanos, é uma
das questões em aberto na análise de imagens de impressões digitais, com implicações
importantes em problemas de segurança, privacidade e fraude de identificação. Neste
trabalho, introduzimos uma nova metodologia para analisar a qualidade de conjuntos de
características de terceiro nível em imagens de impressões digitais representados, aqui,
por poros de transpiração. A abordagem sugerida leva em conta a interdependência
espacial entre as características consideradas e algumas transformações básicas envolvendo
a manipulação de processos pontuais e sua análise a partir de ferramentas anisotrópicas.
Foram propostos dois novos algoritmos para o cálculo de índices de qualidade que se
mostraram eficazes na previsão da qualidade da correspondência entre as impressões e na
definição de pesos de filtragem de características de baixa qualidade a ser empregado num
processo de identificação. Para avaliar experimentalmente o desempenho destes algoritmos
e suprir a ausência de uma base de dados com níveis de qualidade controlados, criamos
uma base de dados com diferentes recursos de configuração e níveis de qualidade. Neste
trabalho, propusemos ainda um método para reconstruir imagens de fase da impressão
digital a partir de um dado conjunto de coordenadas de poros. Para validar esta idéia
sob uma perspectiva de identificação, consideramos conjuntos de minúcias presentes nas
imagens reconstruídas, inferidas a partir das configurações de poros, e associamos este
resultado ao problema típico de casamento de impressões digitais.



Abstract

The lack of robustness against the quality degradation affecting sets of features extracted
from patterns of epidermal ridges on our fingers is one of the open issues in fingerprint
image analysis, with implications for security, privacy, and identity fraud. In this doc-
torate work we introduce a new methodology to analyze the quality of sets of level-3
fingerprint features represented by pores. Our approach takes into account the spatial in-
terrelationship between the considered features and some basic transformations involving
point process and anisotropic analysis. We propose two new quality index algorithms,
which have proved to be effective as a matcher predictor and in the definition of weights
filtering out low-quality features from an identification process. To experimentally assess
the performance of these algorithms and supply the absence of a feature-based controlled
quality database in the biometric community, we created a dataset with features config-
urations containing different levels of quality. In this work, we also proposed a method
for reconstructing phase images from a given set of pores coordinates. To validate this
idea from an identification perspective, we considered the set of minutia present in the
reconstructed images and inferred from the pores configurations and used this result in
fingerprint matchings.
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Chapter 1

Introduction

Security, privacy, and identity fraud are some of today’s most widely discussed and con-
troversial issues. In terms of modern economy and technology, the debate about these
questions revolves mainly around a mechanism for human identification in an automatic
and unique manner. A concrete example in this sense is given by the great number of
applications requiring users to be securely authenticated (e.g., e-commerce, e-trading,
homeland security, personal data protection). This concern has naturally revived the in-
terest in biometric techniques and, in particular, in fingerprint recognition, mainly due
to the interesting properties commonly attributed to fingerprints, namely, universality,
permanence, collectability, and distinctiveness [33].

In order to satisfy these requirements, Automated Fingerprint Identification Systems
(AFIS’s) were created and became very popular. The automatic recognition performed
by an AFIS relies on an accurate extraction of some features derived from fingerprint pat-
terns. Unlike traditional image processing approach, the term feature here is related to
specific details of the fingerprint pattern (e.g., minutiae, pores). In many practical appli-
cations, these features can be also combined with other representation schemes including,
among others, images of gray-scale values [3], phase [54] and skeletons [16,19].

Usually, an AFIS works under different non-controlled conditions due to the potential
number of users and the inappropriate handling of the attached sensor. As a consequence,
several degradation factors can affect the quality of all aforementioned representation
schemes. That is the case of degradations caused by physical skin injuries, inconsistent
contact and unwanted residues on the sensor surface which result in a loss of quality of the
original information. Further, we can add errors concerned with parameters estimation
during the steps of image preprocessing, segmentation, and feature extraction and/or
other modules concerned with the identification system. All these factors are closely
related to the final set of obtained fingerprint features [1, 30,32].

Since some of these operations cannot be controlled or avoided, the issues of quality
assessment of both captured image and extracted features became progressively more
important in the last few years. Although great progress has been made in the last
few decades (see Chapter 2, for a brief review), prior works are generally limited in the
sense that they are based mainly on the iconic representation and conditions of the input
images [1, 5, 9, 22,26,30,32,41,45,49,59].

In general, the concepts behind the image-based quality indexes currently available

14
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Biological
Mechanisms

−→ Finger −→ Sensor −→ Image −→ Algorithms
(pore extraction)

−→ Features
(pores)

Figure 1.1: Hypothesis of our framework. We assume that feature distribution on high-
quality samples are imposed by some biological mechanisms acting on the fingerprint
formation.

in literature (see Chapter 2, for a review) have a straight visual correspondence with the
clearness of the ridges. Nevertheless, they are not well adapted to cope with problems re-
lated, for example, with the inaccurate estimation of the parameters by feature extraction
algorithms (e.g. ridge direction [30]). Indeed, one of the most important problems with
this type of index concerns the lack of robustness against the quality degradation affect-
ing directly the set of related features. Further, since different photometric properties are
closely dependent on the image acquisition, any image-based quality measure may work
differently, according to the used capture sensor [1].

This doctorate work focuses on a new type of quality assessment which considers not
only the gray-scale image information but also the set of extracted features represented
by the pores present in high-quality fingerprint images. Such an objective quality index
can improve the overall system efficiency in two ways. First, it can be used to assist on
the feature extraction or provide a quality feedback about the image acquisition process.
Second, this quality information can assign confidence levels to the extracted features
during a matching phase or be used in conjunction with other biometric features. As it
will be illustrated in the experiments (Chapter 6), a fingerprint matching algorithm can
take advantage of this information by defining weights such that low-quality features are
partly considered in the identification process.

Our research hypothesis is that

quality approaches can take advantage of feature distribution due to biological mecha-
nisms (see Figure 1.1) to improve the identification performance.

More specifically, we explore in this work the fact that competitive interactions among
the pores coordinates can be used to analyze the quality of set of pores and improve the
identification.

1.1 Main contributions

In this thesis we present a new methodology to analyze the quality of sets of fingerprint
features. Our approach is based on the interrelationship between features locations, their
manipulation via spatial transformations, and some tools for anisotropic analysis. These
main contributions can be grouped into the following three classes:

• Modeling: The contribution in this category relies on models taking into account the
way sweat pores arise on fingertips. We design a model for the mechanism regarding
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the spatial interaction of the fingerprint sweat pores from an energy-optimization
standpoint. We also propose an approach for reconstructing the phase image from a
given set of pores coordinates. The assumption in this case is that fingerprint ridges
do arise along a minimum-energy path linking distinct pores. These contributions
were tested for a consistent set of real fingerprint images and the results obtained
from experiments corroborate the efficacy of the models.

• Algorithmics: In this aspect we illustrated how well-known techniques from different
areas of literature (e.g., meshing, numerical optimization, statistics, probability the-
ory) can be integrated to approach the problem of fingerprint quality assessment. In
particular, we introduced a framework yielding the design of two new feature-based
quality algorithms dealing with spatial and structural properties of the fingerprint
features distribution. Two main questions guided this study: (i) are the locations
of the extracted features plausible? and (ii) is the set of extracted features coherent
with other available information drawn from the captured image? The proposed
quality index algorithms based on these questions have proved to be effective in the
definition of fingerprint image quality indexes, in the sense that they can be used
as a predictor in a typical matching procedure.

• Experimental: The main contributions here comprises methodological way to assess
feature-based quality indexes and improve the performance of pore-based match-
ing. In this sense, we designed a new feature-based quality dataset with features
configuration containing different levels of quality. This dataset supplies the ab-
sence of a feature-based controlled quality database in the biometric community.
Furthermore, from an identification point of view, we proposed two new approaches
relying on the idea of features carrying complementary information (e.g., minutiae)
to the one supplied by pores, and use such a combination in matching algorithms.
Namely, we show that minutia can be inferred from the reconstructed phase images
encompassed by our proposed structural algorithm and used to improve pore-based
identification. We also define an adaptive strategy to combine matching scores ob-
tained from sets of pores and corresponding inferred minutia, based on the quality
of a given features configuration.

1.2 Thesis Organization

We organized the remainder of this thesis in six chapters. Chapter 2 examines the liter-
ature for related work. Chapter 3 gives a brief overview of previous theoretical thinking
necessary for the understanding of this thesis. Chapter 4 describes the steps of our basic
framework, and Chapter 5 contains the main contributions related to the original algo-
rithms for feature-based quality assessment. Chapter 6 shows the experimental protocol
used to validate our work and corresponding results. Finally, Chapter 7 draws conclu-
sions about our techniques, describes strengths and shortcomings, and gives perspectives
of future and on going research.



Chapter 2

Related Work

This chapter examines the literature for related work. We look at connections of our work
with modern fingerprint techniques and discuss some of the major approaches available
for fingerprint quality.

2.1 Literature Review

Fingerprints are orientated texture patterns created by interleaved ridge and valley infor-
mation present on fingertip surfaces. Modern literature about these patterns dates back
to the late sixteen century with the work by N. Grew [18], which is believed to be the
first one in this area to introduce a systematic analysis about ridges, furrows, and pores
structures. Since then, a certain number of researchers have invested significant efforts
in studying this subject [10, 17, 20, 21, 24, 33, 37–39, 43, 46, 52, 53, 58, 60] and, in the early
twentieth century, fingerprints were formally accepted as valid mechanisms for human
identification by law-enforcement agencies around the world [33]. Nowadays, Automatic
Fingerprint Identification Systems (AFIS) are one of the most widely used technology for
personal recognition, mainly due to the following attributes [33]:

• Universality: everyone has it.

• Permanence: remains invariant over lifetime.

• Collectability: easy to be collected.

• Uniqueness: it is sufficiently different from one person to another, even in cases of
identical twins [25].

The purported uniqueness of fingertip patterns is characterized by three levels of fea-
tures [8, 38]. Naturally, a finer analysis taking into account more distinguishable subsets
of features might yield a more reliable identification. Level-1 features refer to singular
points, such as cores and deltas illustrated in Fig. 2.1, around which the ridge orientation
is discontinue or changes abruptly [24, 42]. Level-2 features is commonly related to local
ridge discontinuities named minutia [22, 40, 47, 57]. Fig. 2.2 shows an example of two of
the most prominent types of minutia, namely ridge ending (Fig. 2.2a) and bifurcation
(Fig. 2.2b). The last and most distinguishable level is represented by fine intra-ridge

17
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Figure 2.1: Core and delta in a fingerprint fragment.

(a) (b)

Figure 2.2: Examples of minutiae: (a) ridge ending; (b) ridge bifurcation.

Figure 2.3: Example of fingerprint pores. Open and closed pores are marked, respectively,
on the left and right side of the image.

details such as the fingertip sweat pores [23, 52, 53, 60]. Fig. 2.3 depicts some open and
closed pores in a fingerprint fragment. As illustrated in this figure, the so-called closed
pores are entirely enclosed by a ridge, while open ones intersect with a valley.

The main topic of this work concerns feature-based quality assessment system. Broadly,
for the identification, an AFIS extracts sets of features and produces a real value indicating
the similarity score between two fingerprints. Since an AFIS works under non-controlled
conditions, the issues of quality assessment of both captured image and extracted fea-
tures became progressively important in the last few years. Although great progress
has been achieved, prior works are generally limited in the sense that they are based
mainly on the iconic representation (gray-scale values) and conditions of the input im-
ages [1, 5, 9, 22,26,30,32,41,45,49,59].

According to the quality assessment level, these approaches can be roughly classified
into local or global. The former class, constituting the majority of the existing algorithms,
takes a gray-scale fingerprint image and defines a quality map for blocks (or individual
pixels) of the input image, at a given position. In general, the quality measure defined
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here considers some fingerprint photometric information about the clarity of the ridges
and valleys and the corresponding extractability of the considered features.

Lee et al. [30], for example, proposed a block-wise algorithm based on the shapes
of probability density functions of 2D gradients. These functions are computed on two
distinct subsets of image pixels: one parallel and the other perpendicular to the flow
orientation of the ridges. The model in [30], soon followed by other works [1], explores
the statistical relationship between the gray levels along the directional orientation of the
ridges and the pixels in a perpendicular direction.

Hong et al. [22] modeled the ridges and valleys representation as a sinusoidal-shaped
wave adjusted along the direction perpendicular to the corresponding flow orientation.
The amplitude, frequency and variance of this wave are used to compute the quality of
each image block.

More recently, Sutthiwichaiporn and Areekul [49] introduced a frequency-domain algo-
rithm, which computes the fingerprint quality by considering the distinctiveness between
ridges and noise signals. This approach takes into account the FFT applied to small
image blocks and can be summarized into two steps. First, the noise and ridge signals
are estimated and the region quality is computed as the ratio between the spectral values
characterizing these signals. Locally, the ridge signal is related to the highest peak in the
spectrum, while regions with spectral information below to this peak are related to noise.

Approaches based on learning of dictionaries have also been discussed in literature. In
particular, Cao et al. [5] introduced a multi-scale approach to estimate the local quality of
a gray-scale fingerprint image. This work is based on a dictionary of expected fingerprint
patches representing distinct image regions. The patches are generated by a supervised
learning taking into account image blocks with different directions and frequencies. The
multi-scale estimation, in this case, is obtained by considering image blocks of different
sizes. For the 500 dpi image resolution in [5], coarse and fine level qualities are defined
from image blocks of size 64 × 64 and 32 × 32, respectively. At each scale, the quality
is estimated through the structural similarity [56] between the expected patches and the
image blocks extracted from the input image. The final quality is obtained by combining
coarse and fine estimates into a single image.

The global methods characterizing the second type of image-based quality assessment
yield a scalar value corresponding to the estimated quality of the whole input image.
These approaches take advantage of some structural properties of the overall fingerprint
patterns, as it is the case of the work by Chen et al. [9], which introduced a frequency-
domain algorithm based on the concentration of energy in a ring-shaped region of the
spectrum. The authors explore the fact that the frequency values of the ridges in a
fingerprint image lie within a certain range. It is also expected that low-quality images
have a diffuse distribution of energy while high-quality ones exhibit a concentration of
energy in a few bands only. A set of bandpass filters computes the energy at each frequency
and the entropy is used to evaluate the energy concentration.

Lim et al. [32] proposed two global indicators taking into account the continuity of the
directional and frequency fields. The first indicator measures the abrupt changes occurring
along the adjacent blocks of the directional field and is based on the observation that the
ridge direction changes smoothly in high-quality images. The second one measures the
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standard deviation of the ridge and valley trickiness ratio. The assumption here is that
large deviations across the whole image can be associated with low-quality fingerprints
while small deviations represent high-quality ones.

The widely-considered work by Tabassi and Wilson [50] introduces a global algorithm
based on the degree of separation between match and non-match distributions of a given
fingerprint. The rationale behind this approach is that low-quality samples are generally
associated with scenarios where either there are few features or the features locations rely
on image regions where the ridges are not distinguishable. The quality of a given input
image is defined as a predictor of separation between match and non-match distributions.
This prediction is accomplished by using a neural network by considering the distinctness
of ridges, the amount of minutia and a minutiae quality-value (i.e., ridge distinctness at
each minutiae position). The output of this network is a number that classifies the quality
of the fingerprint into five values: 1 (excellent), 2 (very good), 3 (good), 4 (fair), and 5
(bad).

To sum up, the concepts behind the aforementioned image-based quality indexes are
simple to understand and have a straight visual correspondence with the clearness of the
ridges. Nevertheless, they are not well adapted to cope with problems related, for example,
with the inaccurate estimation of the parameters. Indeed, one of the most important
problems with this type of index concerns the lack of robustness against the quality
degradation directly affecting the set of related features. Furthermore, since different
photometric properties are closely dependent to the image acquisition, any image-based
quality measure may work differently, according to the capture sensor [1]. To deal with
these limitations, we will introduce a new type of quality assessment in the succeeding
chapters.

Since this work relies on the spatial interrelationship between level-three features rep-
resented by pores, we briefly review two main results in literature about pore spatial
distribution. Before proceeding, we should remember that the spatial distribution of
these features depends on the initial biological environment from which the fingerprints
have been developed [21, 27, 28, 39]. It is worth noting that the biological mechanisms
involved in this process are still not completely elucidated and there is no consensus on
how the arrangements of features arise [27, 28].

The first important result about pore spatial distribution is by Sir F. Galton’s re-
mark [17, chap. 4] asserting that usually the distance between successive pores on a
ridge is directly proportional to their width. 1 The other important property concerns
the well-known regularity of fingerprint pores. According to a 1973 study on skin-ridge
formation by Hirsch and Schweichel [21], sweat pores are gland secretion ducts opened on
the papillary ridges of fingertip surface, at regular intervals (see Fig. 2.3, for an example).

These results were used by Roddy and Stosz [43] to propose a model which is believed
to be the unique attempt in literature to explain spatial distribution. In this model, the

1There are some reasons to believe that this result is quite general. To take an example, we outline that
it can be used to explain outcomes of more recent works [2,34] reporting that: 1) the average number of
sweat pores are significantly less on men’s fingers (n.b. that ridge breadth is thinner in women compared
to men [36]) and 2) regions of the hand with thicker ridges (e.g., thumb, index finger [36]) have a lower
pore density.
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pore distribution is assumed to be purely homogeneous and isotropic. In such a case,
each pore is a unit of a lattice structure, such that adjacent pores are separated by a fixed
distance. Although simple, this approach almost never deals with situations in which two
pores appear in close proximity to each other [21, 37, 43]. In order to face these aspects,
our approach, unlike the one by Roddy and Stosz [43], avoids making priori assumption
on homogeneity and isotropy and, as illustrated in Chapter 5, explores the competitive
interaction which exists among the features (pores, in this case) and the minimum-energy
path linking them.

2.2 Discussions and Conclusions

In this chapter we examined the related work on fingerprint image quality. As we can see
from this review, prior works in literature are generally limited in the sense that they are
based mainly on the iconic representation and conditions of the input images. We also
reviewed the state of art dedicated to pore spatial distribution which, as mentioned pre-
viously, relies upon unrealistic assumptions on the spatial distribution of features. Unlike
these previous attempts, we introduced in this thesis a methodology for fingerprint quality
analysis which avoids priori assumptions about this type of distribution. The proposed
methodology takes into account the spatial interrelationship between the interest features
(the pores) and some basic transformations involving point process and anisotropic anal-
ysis. The next chapter presents the background necessary to the understanding of our
approach.



Chapter 3

Theoretical Foundation

Throughout this work, we restrict attention to mapped data observed through a window
W ⊂ Rd (see Figure 3.1, for an example in R2). In order to give a self-contained un-
derstanding of the work, we review some previous theoretical thinking about this kind
of data. We start this chapter with a few description notions of mapped data in metric
spaces. Next, we present a methodology that can be used to study the degree of regularity
of patterns of points having an underlying anisotropic structure, as it is the case for the
set of the extracted features considered in this work (the level-3 fingerprint features rep-
resented by pores). As we will discuss elsewhere, the observed level of regularity of these
features, represented here by sets of points, can reveal possible interactions between these
objects and yield the definition of interesting algorithms closely related to fingerprint
image quality.

3.1 Point Patterns

From a theoretical perspective, spatial data like the one depicted in Figure 3.1 can be
described mathematically as a finite and unordered set of points [55]

S = {p1, . . . ,pn}, n ≥ 0,pi ∈ W ,

in some space X ⊆ Rd, where, obviously, d ≥ 1 and W ⊂ X . The window W is assumed
to have finite positive volume |W|. In the sequel of this thesis, each set S will be referred
to as configuration.

In order to give a rigorous measure-theoretical foundation to this description, some
authors [11, 12, 55] have imposed a certain structure on the set X . Here, following these
results, we assume that X is equipped with a metric δ such that (X , δ) is complete and
separable. For instance, X could be a compact subset of Rn equipped with the Euclidean
distance. This metric defines a topology and a Borel σ-algebra. In the following, a strong
condition for S is sought so that, in any Borel set A ⊆ X , there is at most a finite number
of points. In such a case, the sought-after S is said to be a locally finite configuration. The
family of all locally finite configurations will be denoted by N lf. With these considerations,
a mathematical definition of point process can now be recalled [55].

22
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Figure 3.1: Example of spatial observation in R2. In this work, each point indicates, for
example, the location of a minutiae or a pore in a fingerprint image. The windowW from
which the features are observed is represented by the silhouette of the whole fingerprint.

Definition 3.1.1 (Point Process) Let (X , δ) be a complete, separable metric space. A
point process on X is a mapping X from a probability space [Ω, A, P] into N lf, such that
for all Borel sets A ⊆ X , the number of points falling in A, N(A) = NX(A), is a finite
random variable.

In the above definition, the probability space [Ω, A, P] is a mathematical model for a
random experiment, where Ω is a set representing the sample space of the experiment, A
is a σ-algebra representing events, and P : A 7→ [0, 1] is a probability measure [35].

Next, we consider an example of a simple and widely used stochastic process.

3.1.1 Poisson Process

The most fundamental and simplest spatial phenomenon is one in which points are dis-
tributed uniformly and independently over the space X . We often takes the example
of the complete spatial randomness, meaning that the events are equally likely to occur
anywhere and do not interact with each other. In particular, one can also consider the
non-homogeneous case where the events are distributed following an intensity function ρ,
ρ :W 7→ R.

The mathematical model whereby these phenomena can be described is called a Pois-
son process. A Poisson process [55] with intensity function ρ is a process satisfying the
following properties:

i) the number of points N(B) in any region B is a Poisson random variable;

ii) the expected number of points in B is given by E(N(B)) =
∫
B
ρ(u)du;

iii) if B1 and B2 are disjoint sets then N(B1) and N(B2) are independent random
variables, and

iv) if there are n points in a region B then they are distributed independently following
a probability density p(u) = ρ(u)

T
, where T =

∫
B
ρ(u)du.

It is worth noting that, in homogeneous cases, ρ(u) is constant for all u ∈ X .
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Figure 3.2: Geometric interpretation of metric tensor.

3.2 Anisotropic Analysis

The fingerprint features studied in this work, namely pores and minutia, are good ex-
amples of mapped data having an underlying anisotropic structure. This reasoning is
twofold: a) the features lie only on the ridges, b) ridges are non-stationary components
having distinct directions and widths along the fingers.

To treat anisotropic aspects in a more specific and formal way, we assume that the
structural anisotropy of the fingerprint features can be modeled by a metric tensor field
M, and the set of interest features can be represented by a configuration of points S
observed through a window W ⊂ X ⊆ Rd. The metric tensor field [14, 29, 31] embeds a
certain structure on the space X , in the sense that, at each position p ∈ X , there is a
positive definitive metric tensorM(p) which dictates how lengths and angles are measured
from the perspective of p. The domain X and the metric tensor fieldM together are a
Riemannian manifold [7] denoted by (X ,M). Each metric tensor M(p) is most easily
represented as a d× d symmetric positive-definitive matrix. This matrix can be factored
as the product of a rotation matrix R and a diagonal scaling matrix Γ so that:

M(p) = RΓR−1

=
(

#»e1
#»e2
) (h−21 0

0 h−22

) (
#»e1
#»e2

)
.

(3.1)

Visually, as illustrated in Fig. 3.2, each metric tensor M(p) can be interpreted as a
transformation that maps an ellipse to a unit circle. The columns ofR are the eigenvectors
ofM(p) concerning the pair of directions: one parallel ( #»e1) and the other perpendicular
( #»e2) to the flow orientation of the anisotropic process. The diagonal terms of Γ are the
eigenvalues of M(p) indicating the magnitude of the anisotropic forces acting on the
process. For a fingerprint, R and Γ are related to values representing the ridge direction
and width, respectively. Note that if the metric tensor field M is isotropic (i.e., for all
points the metric tensor remains the identity matrix, or a constant multiple of this matrix),
then the structured space (X ,M) corresponds to the standard Euclidean topology.

The resulting structure supplied by the metric tensorM provides alternatives to the
use of conventional metrics (e.g., Euclidean distance, city block distance) in the distance
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computation between any two points in X [7, 31]. Particularly, we reuse the definition of
directional distance function in [14] as follows.

Definition 3.2.1 (Directional Distance) Let p and q be two points in W, andM(p)

be a metric tensor. The directional distance δp is defined by:

δp(p,q) =
√

#  »pqtM(p) #  »pq, (3.2)

where #  »pq denotes the vector pointing from p to q.

The above function computes the distance between two points, p and q, but only
w.r.t. the first one. In this sense, it can be interpreted as a simplification of the classical
Riemannian distance which considers the whole path connecting two points and measures
the distance from p to q through smooth steps. Also, one can observe that, unlike the
usual metrics (e.g., Euclidean distance), the directional distance is not always symmetric.

Next, we use the above notions to present an extension to the classical Voronoi Dia-
gram. A Voronoi diagram is a partition of the space from which a given configuration is
defined into convex polygons, also known as Voronoi regions. The following definition [14]
generalizes this diagram and introduces its anisotropic counterpart.

Definition 3.2.2 (Anisotropic Voronoi Diagram) Given a structured space (X ,M)

and a configuration S = {p1, . . . ,pn} observed in a window W ⊂ X , the set {Vi}ni=1 is
called a diagram of W, with respect to (X ,M) and S, if Vi ∩ Vj = ∅, for i 6= j and
∪ni=1Vi =W. The Voronoi region Vi corresponding to the point pi is given by:

Vi = {y ∈ W | δy(y,pi) ≤ δy(y,pj), for all i 6= j}. (3.3)

Points having equal directional distances to any two configuration’s points pi, pj are called
their bisectors.

Fig. 3.3 illustrates this anisotropic definition under distinct metric tensor fields, where
black circles in the diagram (four points at the corners plus one central point) indicate
the location of the configuration points in S. Diagrams for isotropic and anisotropic
scenarios are illustrated in Fig. 3.3a and 3.3b, respectively. As we can observe, in both
cases, the above anisotropic definition results in diagrams taking the usual shape: each
Voronoi region Vi of a configuration point pi is the set of all points in the manifold that
are at least as close to pi as to any other point. So if M is isotropic, the anisotropic
diagram is the classical Voronoi diagram (Fig. 3.3a). Since the above generalization
carries a significant amount of freedom, it is not surprising that there conveys at least an
important distinction. While the dual of the standard Voronoi diagram is the Delaunay
triangulation, the anisotropic diagram can be very complicated and its geometric dual
may contain irregularities that not always lead to an embedded triangulation. From [4],
we have that if a configuration produces orphan-free anisotropic Voronoi diagram, using
the above definition, then its dual is always an embedded triangulation. A diagram is
orphan-free if its regions Vi are connected, for all i, 1 ≤ i ≤ n (equivalently, each cell, or
connected component of a Voronoi region, contains its generating site).
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(a) Diagram defined w.r.t. a
uniform tensor field M, where
M(p) = ( 1 0

0 1 ), ∀p ∈ W.

(b) Diagram defined w.r.t. a
uniform tensor field M, where
M(p) = ( 1 0

0 4 ), ∀p ∈ W.

Figure 3.3: Anisotropic Voronoi Diagrams.

Focusing mainly on a spatially distributed configuration of points, we highlight two im-
portant structural properties of the Voronoi partition which will be explored in this work.
We start by assuming an orphan-free diagram to keep the link between an anisotropic
Voronoi diagram and its corresponding triangulation. The first property concerns the
empty circum-ellipse definition enunciated in [4] which states that there is some ellipse
that circumscribes sites corresponding to p1,p2, . . .pk and containing no other point in
its interior. This implies that inserting or removing a new point in the configuration
will affect only the Voronoi regions whose circum-ellipses contain that point. The other
property, very useful here, concerns the fact that for an optimal configuration of points,
with very regular distribution, each point pi coincides with the centroid location of the
corresponding Voronoi region Vi. This optimal configuration is known as the anisotropic
centroidal Voronoi diagram [13, 14]. Fig. 3.4 shows an example of the Voronoi diagram
for two configurations of points represented by black circles. The corresponding centroid
positions are indicated by red ×’s. As we can observe from the images, arbitrary chosen
points (Fig. 3.4a) do not correspond to the centroids of their associated Voronoi regions.
On the other hand, in the optimal configuration case (Fig. 3.4b), we have each point
coinciding with its centroid position.

In practice, the above property related to the empty circum-ellipse definition implies
that missing or spurious features would affect the Voronoi diagram only locally. As we
will illustrate in the next chapter, this result, associated with the optimal configuration of
points, suggests an interesting way to study the regularity level of the spatially distributed
sets of points represented by our interest features.

3.3 Discussions and Conclusions

This chapter considered some notions on mapped data observed through a window W ⊂
Rd. Further, we described a methodology to study patterns of points having an underlying
anisotropic structure, as it is the case for the set of extracted features considered in this
work (level-3 fingerprint features represented by pores). In Chapter 5, we will illustrate
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(a) (b)

Figure 3.4: Example of random and very regular configurations of points.

how these concepts can be integrated to approach the problem of fingerprint quality
assessment. Before that, we will introduce, in the next chapter, a new framework for
fingerprint quality analysis which takes into account the spatial interrelationship between
the corresponding interest features.



Chapter 4

Proposed Framework

The comparison of two fingerprints by an AFIS involves basically the set of features
extracted from the fingerprint images and the real value defining a similarity score. Since
high-quality fingerprints consisting mainly of reliable features might lead to a more precise
matching, it is natural to ask if a quality index should be computed directly from a set of
extracted features. That is the question we attempt to answer in this chapter. To do so,
we introduce a methodology aiming at a stronger theoretical ground for this feature-based
quality analysis.

4.1 Problem Statement

Given a configuration S observed through a window W ⊂ R2 (see Chapter 3) concerning
the locations of a set of features extracted from a gray-scale fingerprint image I, I : Z2 7→
Z, our goal is to assess the quality of subsets of S as well as of any given region in W .
To this end, we begin with the intuition that, for any previous defined window W , some
biological mechanisms involving the fingerprint formation, together with some physical
phenomena related to the image acquisition, impose certain arrangements on both set S
and image I. Thus, the quality problem becomes one of modeling the mechanisms related
to the way the arrangements of features arise.

In this respect, we propose a conceptual framework whereby new quality assessment
algorithms will be built by taking into account the following groups of analysis:

1. Spatial: The quality algorithms in this group are based on reflections about arrange-
ments of features of the same type (e.g., pores and pores, minutia and minutia). The
central question is the following: are the features locations in S plausible? With
this applied goal in mind, we will take advantage of the clustering tendency of the
minutia [63] or the regularity of the fingerprint sweat pores [43].

2. Structural: Algorithms that fall in this category are based on properties about
arrangements of features of different types (e.g., pores and local fingerprint phase,
pores and local orientation field, minutiae and singular points). Now, the central
question is: is the set S coherent with other available information drawn from image
I? For example, by exploring the fact that there exist a higher minutiae density in
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regions containing singular points [8] such as cores and deltas, we can somehow use
the positions of these singular points to verify whether some regions containing a
set S of minutia present a proper feature distribution.

The potential of the above formulation will be demonstrated in Chapter 5 by focusing
on fingerprint pores (level-three features). To the best of our knowledge, this is the first
work that explores such a kind of approach for quality assessment purpose.

4.2 Degradation Models

At this point, it is of paramount importance to recall some uncontrolled factors that can
affect the processing of the fingerprint images. In one respect, we remember the role played
by the different skin conditions (e.g., dryness, humidity), residues from previous captures
and inconsistent contact. In another respect, it is worthy noting that the algorithms used
for image preprocessing, segmentation, and feature extraction are generally imperfect and
often introduce measurement errors. The quality of a given input set of features relies on
one or more of these situations resulting in a wide spectrum of behaviors, ranging from
the ideal case, which comprises error-free feature sets, to the other extreme which consists
of a set that is either empty or full of spurious features. In order to cope with the so many
situations lying in-between these two extremes, we design an error model based on multiple
spatial phenomena. As we will see, the premise underlying this approach is twofold,
namely, we assume that 1) the biological mechanisms generating reliable configurations
can be seen as a point process, and 2) the errors affecting a given reliable configuration
S can be modeled by a certain spatial transformation. In such a case, distinct error
regions can be modeled by applying some useful transformations to S (e.g., thinning,
superposition, mapping, and random displacement [55]).

Given a regional subset E ⊂ W of the window in which a configuration S is observed,
the transformations considered in this work and directly involved with E can be grouped
into the following categories:

1. Regional randomness: The operation describing the regional randomness can simply
be defined as a realization of a Poisson process (Section 3.1.1) in E . Here we are
obviously treating cases where errors are i.i.d. in E and related to the intensity
function ρ.

2. Intra-ridge randomness: An alternative to the i.i.d. assumption is to consider a
non-homogeneous model whereby the errors are distributed w.r.t. a Poisson process
defined only on fingerprint ridges.

3. Random superposition: Let Si and Sr denote, respectively, an error-free feature
set and a configuration generated through the regional randomness transformation
given before. Then, the transformation associated with the random superposition
corresponds simply to the union between Si and Sr.

4. Intra-ridge random superposition: The transformation involved in the intra-ridge
random superposition corresponds to the union between Si and Sc, where, again, Si
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(a) Error-free configuration
S superimposed on an image
block.

(b) Image mask representing the
subset E .

(c) Regional randomness con-
figuration superimposed on the
image block (a).

(d) Intra-ridge randomness con-
figuration superimposed on the
image block (a).

(e) Random superpostion con-
figuration superimposed on the
image block (a).

(f) Intra-ridge random superpos-
tion configuration superimposed
on the image block (a).

(g) Thinning configuration su-
perimposed on the image block
(a) with probablity p = 0.3.

Figure 4.1: Illustration of the errors according to the proposed error models.

indicates an error-free configuration and Sc is a configuration describing an intra-
ridge randomness. The rationale behind this superposition operation relies on cases
where the algorithms associated with feature extraction can identify positive results
properly but fail to recognize some false features. The intensity function ρ is closely
related to the specificity of this extraction.
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5. Random thinning: The thinning transformation consists of using some predefined
rule to remove points from a configuration S to form a new set St. In this work,
we use the following simple rule: each point of S is independently removed (or
kept) with some probability p (or 1− p). In such a case, we treat situations where
the algorithms involved in the feature extraction lack ability to precisely identify
positive results. The sensitivity of this filtering is driven by the probability p.

The above models are illustrated in Fig. 4.1 for an image block and configuration S
represented by black circles which shows the corresponding set of pores in the ground-
truth (Fig. 4.1a). The new pores obtained from each error model are indicated by red
squares, except for the case of thinning (Fig. 4.1g), where the removed pores are marked
with red ×’s.

4.3 Discussions and Conclusions

The central premise of this work is that the quality of a fingerprint sample may be com-
puted directly from a set of extracted features. By exploring spatial and structural prop-
erties of the fingerprint features distribution, this chapter introduced a new framework
whose design was based on he following questions: (i) are the locations of the extracted
features plausible? and (ii) is the set of extracted features coherent with other available
information drawn from the captured image? In the next chapter, based on these issues,
we will define two quality index algorithms for the case of level-3 fingerprint features
represented by pores. Furthermore, we also present in this chapter some point process
transformations that can be used to model feature configurations with distinct speci-
ficity and sensitivity levels. These transformations will be explored in Chapter 6 in the
development of a new fingerprint quality dataset.



Chapter 5

Feature-based Quality Algorithms

From the previous discussion, we can state that the problem of feature-based quality
assessment can be seen as a quantification problem where certain arrangements of an
input set of features have to be evaluated according to some statistical models related
to the way the interest features arise. The key point of this process is to find a set of
discriminant models allowing the construction of appropriate algorithms. In this chapter,
we propose novel algorithms which, together with the corresponding models, illustrate
the main ideas discussed in Chapter 4.

5.1 Spatial Algorithm

The first algorithm considers the spatial distribution of the fingertip sweat pores. Shortly,
this analysis consists of a) definition of the region of influence associated with each feature
location and b) evaluation of the relative position of the centroids for each obtained region.
As explained next, the reasoning for such a procedure is closely related to the way the
pores arise along the ridges.

To understand why the pores location lies at areas surrounding the centroid coor-
dinates, it is important to recall the well-known regularity of the fingerprint pores. As
stated, for instance, in the work by Roddy and Stosz [43], the sweat pores are spread at
regular intervals in the papillary ridges. This information, combined with some biological
evidences (e.g., stabilization forces by acting when sweat gland secretion ducts open on
to the fingertip surface) about this fact reported in [21] and [39], led us to propose a new
quality index model taking into account the competitive interactions among the pores
coordinates. Since these interactions may make it unlikely, but not impossible, that two
pores can appear in close proximity to each other, we address the question concerning
the way these pores arise from an energy-optimization standpoint. In this regard, we
assume that the biological mechanisms involved in the process can be described in terms
of the centroidal Voronoi Diagram paradigm [13], where an optimal configuration con-
sists of points that coincide with the centroids of the corresponding Voronoi regions. To
our knowledge, this is the first attempt to model the mechanism regarding the spatial
interaction of the fingerprint sweat pores.

Based on this assumption, we propose the following global quality algorithm. Let
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Figure 5.1: Comparison between a real and modeled pores distribution considering an
energy-optimization standpoint. Black circles represent the features in the ground-truth.

S be a configuration related to the positions of a given set of pores extracted from a
high-resolution fingerprint image I. Our spatial algorithm consists mainly of three steps:

1. Compute the classical Voronoi Diagram for the configuration S. From now on, each
individual region obtained from a point pi of the configuration will be denoted by
Vi, so that the resulting diagram is indicated by {Vi}ni=1.

2. Compute the centroid ci for each Voronoi region Vi.

3. Evaluate the quality of the configuration S, by taking into account the observed
value di, di = ‖ #     »pici‖, i.e., by measuring the distance from a given feature location
pi (pi ∈ Sj) to the corresponding centroid ci. Particularly, we explore the fact that
the majority of the pores location lies within a certain range to the corresponding
centroids (see Fig. 5.1). In this respect, we analyze the distribution of the distances
di for all points in S. The global quality index Q1(S) is given by:

Q1(S) =
∑
pi∈S

1{di ≥ rng}. (5.1)

In terms of implementation issues, the value concerning the distance range, rng,
in Eq. 5.1 can be set up by analysing some distances between the feature-location
and the corresponding centroid coordinates obtained from a representative set of
distinct images. In this work, we set experimentally rng = 5. Naturally, the less the
Q1 value, the higher the image quality.

Fig. 5.1 shows a comparison between a real and modeled spatial distribution of a set
of pores. In this figure, the centroids of the corresponding Voronoi regions are represented
by red squares, whereas the original feature positions, defined in the ground-truth (see
Section 6.1), are indicated by black circles. As we can see, each pore does lie very close
to the corresponding centroid position.

The above quality information is illustrated in Fig. 5.2 for a set of features with
different quality levels. Fig. 5.2a shows a high-quality configuration of pores superimposed
on a fingerprint image. In such an ideal case, the majority of the pores remains very close
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(a) High-quality configuration S with Q1 = 3
superimposed on a fingerprint image.

(b) Low-quality configuration S with Q1 = 46
superimposed on a fingerprint image.

Figure 5.2: Illustration of the global quality index Q1.

to the corresponding centroids, thus defining a high quality configuration index (Q1 = 3).
Fig. 5.2b shows an example of a low-quality configuration (Q1 = 46) in which the pores do
not lie close to the corresponding centroid positions (due to capture errors, for example).

5.2 Structural Algorithm

Another way to explore the relationship among pores locations is to consider that the
fingerprint ridges do arise along a minimum energy path linking distinct pores. In this
sense, we can define an algorithm for fingerprint quality analysis, concerned with the
structural content of the images, by considering more directly the energy propagation
yielded by the optimization mechanism characterizing the competitive interaction between
sweat pores (Section 5.1). As we will show next, this algorithm takes into account the
anisotropic framework stated in Section 3.2. Beforehand, we consider the Voronoi-energy
map as the resulting energy map defined along the space from which the features are
observed.

Definition 5.2.1 (Voronoi-energy map) Given a structured space (X ,M) and a con-
figuration S = {p1, . . . ,pn} observed in a window W ⊂ X , the Voronoi-energy map,
E :W 7→ R, is defined at each location y, y ∈ W, as:

E(y) = min{δy(y,pk)}, for all pk ∈ S. (5.2)

Informally, for each point y in the observation domain W , the above defined map
assigns a value measuring the shortest directional distance stated in Section 3.2, δy, from
y to the closest configuration point in S. In this sense, the resulting mapping describes
the energy propagation underlying the Anisotropic Voronoi Diagram defined w.r.t. S (see
Section 3.2). Fig. 5.3 illustrates the Voronoi-energy map for a high-resolution fingerprint
fragment (Fig. 5.3a). The Voronoi-energy map E is depicted in Fig. 5.3b where the pixels
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(a) Error-free configuration S
superimposed on an image frag-
ment.

(b) Voronoi-energy map E
w.r.t. the configuration in (a).

Figure 5.3: Illustration of the Voronoi-energy map.

value, given by Eq. 5.2, ranges form black to white and indicate, respectively, the lowest
and highest energy. Notice that the paths depicted in Fig. 5.3b linking distinct pores upon
a minimum-energy trajectory are consonant with the respective ridges in the fingerprint
fragment (Fig. 5.3a).

The next quality index uses the notion of minimum-energy propagation to reconstruct
a representation of the fingerprint phase based on the available features. The quality
information will be given by the 2D-correlation between this reconstructed phase and the
corresponding one extracted from the input image. As illustrated in Fig. 5.4, the main
steps of this structural algorithm are as follows:

1. Construct a metric tensor fieldM for the configuration S, by taking into account
the anisotropic information of the ridges of an image I. The direction of the ridge
components can be easily obtained from the gradients in I [22].

2. Consider Definition 5.2.1 to estimate the Voronoi-energy map E for the points in S
w.r.t. the metric tensor field M. In such a case, the observation window W (the
region of interest) can be defined by the convex hull of the points in S.

3. To reconstruct the phase image, PS , from the set of features in S, highlight the
minimum-energy path information in the above Voronoi-energy map E. This local
enhancement is given here by a Gabor filtering which uses the local directions and
frequencies of the ridges estimated from E [22]. Throughout this thesis and following
the works in [6, 15,44], the term reconstruction is used to indicate the regeneration
of fingerprints from the stored feature coordinates.

4. Estimate the phase image, PI , from the input image I, by applying, once again, the
previous enhancement operation directly to I.

5. Divide PS into non-overlapping blocks, Fj, of size w × w. For the 1200 dpi image
resolution considered in this work, we set experimentally w = 40.

6. Apply the previous splitting operation to the estimated phase PI so thatHj indicates
an image block of size 40× 40 of PI .
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Figure 5.4: Flowchart of structural algorithm.

7. Evaluate the quality of each image block Fj, by computing the 2D-correlation be-
tween the estimated phase image PS and the corresponding information PI for each
image block, as follows:

Q2(Fj) = corr(z-score(Fj), z-score(Hj)), (5.3)

where corr corresponds to the 2D Pearson’s correlation coefficient between the in-
formations contained from the image blocks. The operator z-score indicates the
statistical standard score normalization such that the values of a given block are
centered and scaled to have, respectively, mean 0 and standard deviation 1. In that
way, we can observe that values given by Eq. 5.3 ranges from 0 to 1 and indicate, re-
spectively, lowest and highest quality. High values are associated with high-quality
samples of both image I and set S.

Fig. 5.5 illustrates, for an ideal case consisting of a configuration S representing
the ground-truth, the above phase reconstruction for a high-resolution fingerprint im-
age (Fig. 5.5a). The corresponding Voronoi-energy map is depicted in Fig. 5.5b. The
white regions in Fig. 5.5b indicate points lying outside of the fingerprint window W (the
convex-hull defined by the set of features). Fig. 5.5c shows the estimated phase PI of
the input image I. The reconstructed phase estimated from the pores coordinates ex-
tracted from I is depicted in Fig. 5.5c. As we can see from this example, in such an ideal
case, there is an evident visual correspondence between the estimated phase images PI
(Fig. 5.5c) and PS (Fig. 5.5d).

The structural quality mapQ2 is illustrated in Fig. 5.6 for both configurations depicted
in Fig 5.2. Fig. 5.6 shows, according to Eq. 5.3, the quality values varying from black to
white and corresponding, respectively, to the lowest and highest quality. The block-wise
quality computed by considering the configuration in Fig. 5.2a is depicted in Fig. 5.6a.
Fig. 5.6b shows the block-wise quality computed by taking into account the configuration
in Fig. 5.2b. As we can see, the quality values concerning blocks in the high-quality
sample (Fig. 5.6a) are distinguisable to the ones obtained in the low-quality configuration
(Fig. 5.6b). The mean quality value obtained in these situations are, respectively, 0.8404
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(a) Original input image I. (b) Voronoi-energy map E estimated from the
pores in configuration S comprising the ground-
truth obtained from I.

(c) Phase image PI estimated from the input
image I (Fig. 5.5a).

(d) Phase image PS corresponding to the re-
construction of the fingerprint from the pores
coordinates in S.

Figure 5.5: Illustration of the phase reconstruction for an ideal case.
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(a) Block-wise quality Q2 computed by
considering the configuration in Fig. 5.2a.

(b) Block-wise quality Q2 computed by
considering the configuration in Fig. 5.2b.

Figure 5.6: Illustration of the structural quality algorithm.

(Fig. 5.6a) and 0.3973 (Fig. 5.6b).

5.3 Discussions and Conclusions

In this chapter we continued the work on feature-based quality assessment started in
Chapter 4 and proposed two new quality index algorithms with the focus on fingerprint
pores and under an energy-optimization standpoint. The first algorithm explored the fact
that, as shown in Section 5.1, the pores location lies at areas surrounding the centroids
of Voronoi regions defined w.r.t. the original pores position. The second algorithm (Sec-
tion 5.2) considered that fingerprint ridges do arise along a minimum energy path linking
distinct pores. As we saw here, this contribution relies on models taking into account the
way sweat pores arise on fingertips. From this point of view, we can observe that the first
algorithm has an underpinning model for the mechanism regarding the spatial interaction
among pores location. The second algorithm introduced a method for reconstructing the
phase images from a given set of pores coordinates. The next chapter shows the protocol
considered in the validation of these contributions and the corresponding experimental
results.



Chapter 6

Experiments and Discussions

In this chapter, we carry out three different experiments to illustrate the main results of
our approach. In Section 6.2, we assess the introduced spatial and structural models for a
consistent set of real fingerprint images. Further, in Section 6.3, we assess the capacity of
the proposed structural algorithm to identify low-quality image regions in configurations
with distinct error intensities. Finally, since the practical value of a given system depends
on its capacity to correctly accept or reject the identity of an individual, we will show in
Section 6.4 how the proposed feature-based quality information can be used to improve
the identification accuracy. Before proceeding, we introduce a new fingerprint quality
dataset constructed according to the error models introduced in Section 4.2. This dataset
will be further used in our experiments.

6.1 Dataset

To objectively assess the performance of our approach, we need a dataset of features
configuration conveying different levels of quality. In the absence of such a dataset in
the biometric community, we extend the well-known PolyU High-Resolution Fingerprint
Database [62], in the construction of this required dataset, by considering the set of error
models introduced in Section 4.2. The PolyU HRF database consists of 1, 480 fingerprint
images of size 640 × 480, collected in two sessions, from 148 fingers. In each session,
separated by two weeks apart, five images of each finger were captured by using a custom
built high-resolution sensor with 1, 200 dpi.

To extend the original database, a set of 120 fingerprint images was manually an-
notated in order to determine the ground-truth. Table 6.1 shows some details of this
ground-truth consisting of four different images from 30 fingers and comprising a total
of 138, 643 annotated pores location. Further, we combine the 90 images from the first
session with the error models in Section 4.2 to give shape to distinct degradation scenar-
ios and model the various problems affecting the set of features. Images from the second
session are used as templates for matching (Section 6.4) and are not taken into account
here.

The different degradation scenarios of the dataset are obtained by varying the speci-
ficity and sensitivity levels associated with the point process transformations described

39
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Table 6.1: A Summary of the ground-truth.

PolyU HRF Collection Session # Images # Fingers # Pores

1 90 30 103, 490

2 30 30 35, 153

Total 120 30 138, 643

in Section 4.2, and acting on a given subset E ⊂ W of a configuration of points. To
enrich the error modeling process by randomly considering different subsets, we introduce
an error intensity parameter, e, related to the probability of a block-wise foreground re-
gion is independently marked. Obviously, the greater this error intensity, the greater the
probability of an image block to be marked. These marked blocks are used to define the
regional subset E ⊂ W where the corresponding error models are applied.

To improve our analysis, we also separate random and intra-ridge degradations into
two distinct datasets, namely DB1 and DB2. For each error intensity ranging in the values
0.4, 0.6 and 0.8, we generate 15 scenarios for each database by taking into account the
ratio of specificity and/or sensitivity (including the combination of both) varying in the
values 0.2, 0.4, 0.6, 0.8 and 0.9, as illustrated in Table 6.2. More specifically, in the case of
intra-ridge degradations, scenarios with different levels of specificity, sensitivity and the
combination of both are obtained by applying to the given ground-truth transformations
of intra-ridge random superposition, random thinning and random thinning followed by
intra-ridge random superposition. In the case of random degradations, we consider random
superposition, random thinning and random thinning followed by random superposition.

Fig. 6.1 shows some configuration examples of features with error intensities equal to
0.4, 0.6 and 0.8. Fig. 6.1a, 6.1b and 6.1b show some image masks representing the ran-
domly marked blocks affected by error transformations. The corresponding configurations
are depicted, respectively, in Fig. 6.1d, 6.1e and 6.1f, where the black circles indicate the
features position.

At the end of this process, each dataset consists of 4, 050 images grouped into 45 scenar-
ios. To our knowledge, this extended set consisting of 9, 100 configurations and presenting
different levels of specificity, sensitivity, and error intensity is the unique feature-based
quality fingerprint dataset currently available 1.

6.2 Validation Issues

The objective of this first experiment is to assess the hypothesis underlying our spa-
tial algorithm (Eq. 5.1) which states that the mechanisms (the competitive interactions)
involved in the pores distribution can be described in terms of the centroidal Voronoi Dia-
gram tessellation. In the same way, we also analyze the effectiveness of the reconstruction
step associated with our structural approach (Eq. 5.3).

1The ground-truth and the extended datasets are available in https://github.com/raoniteixeira/
HRFQDB_UFMT_2015.

https://github.com/raoniteixeira/HRFQDB_UFMT_2015
https://github.com/raoniteixeira/HRFQDB_UFMT_2015
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Some configurations examples: (a-c) Image masks representing the blocks af-
fected by error transformations, and (d-f) the corresponding configurations superimposed
on the respective images.

Fig. 6.2 shows the histogram of the distance between the pores location and the cor-
responding centroids of the Voronoi regions defined by these pores, for all images in the
ground-truth (total of 138, 643 pores), indicating that our initial hypothesis can be en-
dorsed. Notice that the majority of the pores analyzed in this experiment (about 86% of
the total) lies in a distance inferior to 2 pixels of the corresponding centroid coordinates.

In the second part of this experiment, we analyze the reconstruction of the finger-
print phases encompassed by our structural algorithm. As illustrated by some examples
in Fig. 6.3, a visual analysis of the fingerprint images reveals that the phase image de-
fined by our approach is fairly consistent with the ridges structures present in the input
images. As we can see in Fig. 6.3, unlike some previous attempts based on level-2 fea-
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Figure 6.2: Histogram of the distances between the pores location and the corresponding
centroids of the Voronoi regions.
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Table 6.2: The dataset parameters for each error intensity.

Scenario Sensitivity ratio Specificity ratio

1 - 0.2

2 0.2 -

3 0.2 0.2

4 - 0.4

5 0.4 -

6 0.4 0.4

7 - 0.6

8 0.6 -

9 0.6 0.6

10 - 0.8

11 0.8 -

12 0.8 0.8

13 - 0.9

14 0.9 -

15 0.9 0.9

tures [6, 15, 44], the reconstructed images (Fig.6.3g-Fig.6.3j) have interesting structural
properties in the sense that they preserve many of the local ridge frequencies conveyed
by the fingerprint patterns. In order to verify the accuracy of this result, we compare the
phase images obtained from the features in the ground-truth (Section 6.1) with the cor-
responding phase estimated from the original gray-scale values (Section 5). To determine
the similarity between these two iconic sets, we compute, as before, the Pearson’s corre-
lation coefficient for each image block of size 40× 40. Fig. 6.4 shows the histogram of the
correlation coefficients computed for all images in the ground-truth (about 21, 001, 800

valid image blocks). This result shows that the reconstructed phase images are high cor-
related with the phase estimated from the input images. Indeed, as we can see in the
histogram depicted in Fig. 6.4, about 90% of the image blocks have correlation values
greater than 0.74.

6.3 Local Robustness Analysis

In this second experiment, we quantify the robustness of the reconstruction as well as the
local properties of the structural quality method proposed in this work for varying values
of specificity, sensitivity, and error intensity.

The dependence of the structural algorithm under random degradations concerned
with dataset DB1 is depicted in Fig. 6.5, where the solid and dashed lines indicate, re-
spectively, the average structural quality in image blocks affected and non-affected by error
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.3: Some reconstruction examples: (a-f) Original images, and (g-l) the corre-
sponding reconstructed phases.
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Figure 6.4: Histogram of the Pearson’s correlation coefficients between the reconstructed
image blocks and the corresponding original phase images for the ground-truth samples.

transformations. The black, red and blue lines indicate error scenarios with controlled
specificity, sensitivity and combination of specificity and sensitivity. We recall that, as
discussed in Sections 4.2 and 6.1, these types of scenarios were obtained by considering
the operations of superposition and thinning. Fig. 6.5a shows the result for the fifteen
first scenarios (see Table 6.2) with error intensity equal to 0.4. As we can see, there is an
evident distinctness between the average structural quality of the image blocks affected
and non-affected by the error transformations. Fig. 6.5b and 6.5c show the same result for
scenarios relying on error intensity of 0.6 and 0.8, respectively. These results illustrate the
potential of our structural quality index to properly discriminate between image blocks
affected and non-affected by random noise.

The above conclusion is illustrated also in Fig. 6.6 for configurations of features with
different levels of quality (Fig. 6.6a and 6.6d). Fig. 6.6a shows a feature configuration
with error intensity equal to 0.4. The marked blocks used to define the regions generating
this configuration is depicted in Fig. 6.6b. The structural quality map Q2 computed by
considering the configuration in Fig. 6.6a is illustrated in Fig. 6.6c. As before, the values
in Fig. 6.6c vary from black to white and correspond to the lowest and highest quality,
respectively. As we can observe in this example, only the affected blocks in Fig. 6.6b have
a distinguishable lower value in Fig. 6.6c. Fig. 6.6d, 6.6e and 6.6f show the same result
for a configuration with error intensity equal to 0.8.

Fig. 6.7 depicts the dependence of the structural quality index, Q2, under intra-ridge
degradations related to the dataset DB2. The black, red, and blue lines in Fig. 6.7
indicate error scenarios with controlled specificity, sensitivity and combination of both.
Once again, the solid and dashed lines indicate, respectively, the average structural quality
of blocks affected and non-affected by the error transformations. The behavior of the
index for scenarios (see Table 6.2) with error intensities equal to 0.4, 0.6, and 0.8 is
illustrated in Fig. 6.7a, 6.7b, and 6.7c, respectively. In such a case, we observe that,
except for configurations with some level of sensitivity, indicated by the red lines, there
is no difference between the average response of the index for regions affected and non-
affected by the corresponding error transformations. This result shows that the index
Q2 can not be used to identify such type of errors. Nevertheless, since the larger the
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Figure 6.5: Dependence of the structural algorithm under random degradations and dif-
ferent error intensities.

correlation value, the more similar are the original and reconstructed phase images, we
can observe that the high average values ofQ2 reflect the effectiveness of the reconstruction
approach with varying levels of intra-ridge noise.

This conclusion is illustrated again in Fig. 6.8 for a high-resolution fingerprint image
(Fig. 6.8a). Fig. 6.8b, 6.8c and 6.8d show, respectively, configurations with controlled
specificity, sensitivity and combination of specificity and sensitivity, where the black cir-
cles indicate the features location. Fig. 6.8e shows the phase image estimated from the
gray-scale image (Fig. 6.8a). Fig. 6.8f, 6.8g and 6.8h show some reconstruction examples
for error scenarios with controlled specificity (Fig. 6.8b), sensitivity (Fig. 6.8c) and com-
bination of both (Fig. 6.8d). As we can see from Fig. 6.8, except for the configuration
with a high level of sensitivity noise (Fig. 6.8g), the reconstructed phase images (Fig. 6.8f
and 6.8h) are fairly consistent with the original ridges in the input image (Fig. 6.8e).



CHAPTER 6. EXPERIMENTS AND DISCUSSIONS 46

(a) Configuration with error in-
tensity equal to 0.4.

(b) Image mask representing the
affected blocks by error trans-
formations with error intensity
equal to 0.4.

(c) Structural quality map Q2

obtained from configuration with
error intensity equal to 0.4
(Fig. 6.6a).

(d) Configuration with error in-
tensity equal to 0.8

(e) Image mask representing the
affected blocks by error trans-
formations with error intensity
equal to 0.8.

(f) Structural quality map Q2

obtained from configuration with
error intensity equal to 0.8
(Fig. 6.6d).

Figure 6.6: Local properties of the structural quality indexQ2 under random degradations.

6.4 Identification Performance

The aim of this third experiment is to assess the quality indexes in a fingerprint identifi-
cation problem. In this case, we consider the PolyU HRF images from the second session
which are matched against the 9, 100 configurations of the images from the first session,
grouped in the extended datasets DB1 and DB2. Two distinct tests are considered here.
First, we explore the fact that the fingerprints reconstructed by the structural algorithm
are highly correlated with the corresponding phase of the input images. In this case, we
compare the performance of the quality indexes when associated with a well-known finger-
print matcher [51] taking into account the minutia of the reconstructed phase images. For
the second test, we consider the pore-based matcher in [61] and analyze the effectiveness
of a combination of this kind of matching with the minutiae-based one where the set of
minutia are obtained from the reconstructed phase images. This approach relies on the
potential of the reconstruction to infer minutia from the set of available pores and use
this information in a matching process.

The so-called receiver operating characteristic (ROC) curve is commonly used to ana-
lyze graphically the the effectiveness of a biometric identification system. The ROC curve
plots the effectiveness of a system with reference to correct identification and misidentifi-
cation. In particular, we also consider the area under this curve (AUC) which summarizes
the ROC’s result in a scalar amount varying from 0.5 to 1.0 and associated, respectively,
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Figure 6.7: Dependence of the structural algorithm under intra-ridge degradations and
different error intensities.

with worthless and perfect identification.
Fig. 6.9 shows the results of the matching with the reconstructed minutia obtained

according to Section 5.2. Fig. 6.9a and 6.9b depict, respectively, the ROC curves obtained
using the spatial and structural indexes. In this case, the solid and dashed lines indicate
the response of the matching for high and low-quality samples, respectively. The AUC
values for the spatial quality index Q1 (Fig. 6.9a) and associated with high and low-
quality samples are, respectively, 0.77 and 0.53. For the structural index Q2 (Fig. 6.9a),
these values are, respectively, 0.76 and 0.51. In these tests, while high-quality samples
are selected by considering the values Q1 ≤ 10 and Q2 ≥ 0.7, low-quality ones are chosen
by setting Q1 ≥ 100 and Q2 ≤ 0.3.

Fig. 6.10 shows the correlation among the proposed spatial (Fig. 6.10a-6.10c) and
structural (Fig. 6.10d-6.10f) quality indexes, and the area under the curve obtained in
the matching of the reconstructed minutia for the extended datasets. To obtain a global
quality value to our local structural index, we compute the average value of all block-wise
quality indexes Q2. The red central line in Fig. 6.10 indicates the linear surface obtained
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(a) Original input image. (b) Configuration with error intensity
and specificity equal to 0.9 superim-
posed on a fingeprint image.

(c) Configuration with error intensity
and sensitivity equal to 0.9 superim-
posed on a fingeprint image.

(d) Configuration with error intensity,
sensitivity and specificity equal to 0.9
superimposed on a fingeprint image.

(e) Phase image estimated from input
image (Fig. 6.8a).

(f) Reconstructed phase image from
configuration with error intensity and
specificity equal to 0.9 (Fig. 6.8b)

(g) Reconstructed phase image from
configuration with error intensity and
sensitivity equal to 0.9 (Fig. 6.8c).

(h) Reconstructed phase image from
configuration with error intensity,
specificity and sensitivity equal to 0.9
(Fig. 6.8d).

Figure 6.8: Reconstruction examples for intra-ridge degradations.
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(a) Spatial quality index Q1
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Figure 6.9: ROC curve for spatial and structural quality indexes and two levels of quality.

by applying a robust regression [48] to the data. As we can see, there is an evident
correlation among the both proposed quality indexes and the corresponding AUC obtained
by matching the reconstructed minutia (correlation values corresponding to −0.89, −0.93,
−0.88, 0.73, 0.94 and 0.81).

The above result confirms the potential of the proposed algorithms to predict the
identification performance. To reinforce this statement, we consider now an adaptive
strategy which combines the matching scores based on two different features, namely
minutia and pores. This combination yields a new value SQ related to the similarity
between two images (input and template data) and depending on the quality of a given
input configuration S, as follows:

SQ = wQ ∗ SM + (1− wQ) ∗ SP , (6.1)

where SM and SP indicate the matching scores between two images and obtained, respec-
tively, with the minutiae-based algorithm in [51] and the pore-based AFIS in [61]. In order
to remap the score SM to the same range of SP , SM was normalized into the interval [0, 1]

through the min-max rule [33, Chapter 7], where min = 0 and max = 57 were defined
experimentally. Thus, as the quality of S improves, more importance is attributed to the
matching score of the reconstructed minutia (SM).

In Eq. 6.1, the importance of SM is controlled by the quality adaptive weight wQ
which, in the test, was defined by a simple linear transformation taking into account the
decision surfaces (red central lines) in Fig. 6.10 and related to the quality indexes and the
identification performance:

wQ = m(1, 1) ∗ Q+ m(2, 1), (6.2)

where Q can be either the spatial quality index, Q1, or the structural index, Q2. Depend-
ing on the chosen quality index, we can have distinct values for the vector of weights m
of dimension (2 × 1). Here, we set m = ( −0.00080.6694 ) or m = ( 0.2130

0.4803 ), respectively, for the
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(a) Extended dataset DB1
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(b) Extended dataset DB2
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(c) Extended dataset DB1 and DB2
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(d) Extended dataset DB1
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(e) Extended dataset DB2
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(f) Extended dataset DB1 and DB2

Figure 6.10: Correlation between the average quality indexes and the AUC obtained in all
degradation scenarios of the extended datasets: (a, b, c) Spatial, and (d, e, f) Structural
indexes.
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(b) Extended dataset DB2

Figure 6.11: ROC curve for the spatial quality index.
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(b) Extended dataset DB2

Figure 6.12: ROC curve for the structural quality index.

spatial and structural case.
Figure 6.11 and 6.12 show the results of the adaptive quality approach in a one-to-

many fingerprint matching using, respectively, the spatial and structural quality indexes.
In these cases, while the black dashed line indicates the response of the pore-based matcher
proposed in [61], the black solid line shows the response of the propose adaptive strategy.
The blue line indicates the behavior of the fixed combination strategy based on the sum
of the unweighted values (sum rule) in Eq. 6.1. Fig. 6.11a and 6.11b show the ROC
curves obtained by considering the spatial quality index for the datasets DB1 and DB2,
respectively. The AUC values for the dataset DB1 (Fig. 6.11a) and associated with
SQ, sum rule and pore-based matcher are, respectively, 0.79, 0.77 and 0.70. For the
dataset DB2 (Fig. 6.11b), these values are 0.81, 0.78 and 0.72. The curves concerning the
structural index for the datasets DB1 and DB2 are depicted, respectively, in Fig. 6.12a
and 6.12b. The values obtained for the dataset DB1 (Fig. 6.12a) and associated with the
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curves concerning SQ, sum rule and pore-based matcher are, respectively, 0.81, 0.77 and
0.70. For the dataset DB2 (Fig. 6.12b), these values correspond to 0.82, 0.78 and 0.72.
As wee can see from all the test cases (about 243, 000 matching instances for each quality
index), the proposed adaptive combination strategy resulted in improved performance of
all image quality levels, outperforming even the standard sum rule approach, especially
in low image quality conditions where the performance of individual matchers may be
very different. These last results illustrated also that the proposed algorithms represent
indeed effective quality indexes in the sense that they can be easily used as a predictor of
the performance of commonly used matching algorithms.

6.5 Discussions and Conclusions

This chapter presented contributions comprising a methodological way to assess feature-
based quality indexes and improvements on the performance of pore-based matchings.
To do so, we first created a new feature-based quality dataset with features configura-
tion containing different levels of quality. We carried out experiments with this dataset
to validate the proposed algorithms. The both structural and spatial algorithms have
proved to be effective as a matcher predictor. From an identification point of view, we
also proposed in this chapter two new approaches relying on the idea of features carrying
complementary information (e.g., minutia) to the one supplied by pores, and use such
a combination in well-known matching algorithms. More specifically, we showed in this
part of the experiments that minutia can be inferred from the reconstructed phase im-
ages encompassed by our proposed structural algorithm and used to improve pore-based
identification. We also defined an adaptive strategy to combine matching scores obtained
from sets of pores and corresponding inferred minutia, based on the quality of a given
features configuration. The next chapter draws some conclusions and gives a perspective
of future works.



Chapter 7

Conclusions and Future Work

This work introduced a new methodology to analyze the quality of sets of level-3 finger-
print features, represented by sweat pores, and presented some experiments showing that
this information may be used to improve the identification process. Our approach takes
into account the spatial interrelationship between the considered features and some basic
transformations involving point process and anisotropic analysis.

The increasing concern about security, privacy, and identity fraud has revived the
interest in automatic human identification techniques specially in fingerprints which today
have become the most popular biometric trait. As a consequence, the lack of robustness
against the quality degradation affecting fingerprints is one important open issue with
social and economic implications.

In this thesis, we addressed a new notion of quality assessment which considers not
only the captured gray-scale image, but also the set of extracted features. Two main
questions guided this study: (i) are the locations of the extracted features plausible?
and (ii) is the set of extracted features coherent with other available information drawn
from the captured image? To answer these questions, we proposed two new quality
index algorithms with the focus on fingerprint pores and taking into account an energy-
optimization standpoint. The first algorithm explored the fact that, as we shown in
Section 5.1, the pores location lies at areas surrounding the centroids of Voronoi regions
defined w.r.t. the original pores position. The second algorithm (Section 5.2) considered
that fingerprint ridges do arise along a minimum energy path linking distinct pores.

To objectively assess the performance of these algorithms and supply the absence of a
feature-based controlled quality database in biometric community, we created a dataset
with features configurations containing different levels of quality. In the experiments
carried out with this dataset, as we presented in Section 6.4, the two above algorithms
have proved to be effective as a matcher predictor and in the definition of weights filtering
out low-quality features from an identification process.

The proposed quality algorithms took into account two observations about the way
fingerprints arise, namely, competitive interactions and minimum energy path linking dis-
tinct pores. From this point of view, we validated the spatial interaction of the fingerprint
sweat pores and the proposed method for reconstructing the phase images from a given
set of pores coordinates. In these experiments, the two contributions were tested for a
consistent set of real fingerprint images and the results obtained in Section 6.2 corrobo-
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rates the ideas behind the defined models. Furthermore, we also assessed the accuracy
of the reconstructed phase images from an identification perspective. In such a case, we
considered the set of minutia found in these images and inferred from the pores configu-
rations and used this result in fingerprint matchings. The results reported in Section 6.4
show that this information may be used to improve the identification provided by classi-
cal pore-based matching algorithm. Since we dealt with the concept of different features
(e.g., minutia and pores) carrying complementary characteristics which can be used to
improve the overall matching process, we strongly believe that such a contribution offers
an interesting perspective for future works.

In this sense, we are currently investigating solutions for three main shortcomings of
this reconstruction process: (i) the reconstructed frequency and orientation fields are not
explicitly considered, (ii) although the reconstructed images are very close to the original
fingerprints, the obtained phase can be improved around the corresponding minutia, and
(iii) the reconstruction step is computationally intensive.

Another promising research topic is to explore the data provided by the reconstruction
step encompassed by the algorithm in Section 5.2 aiming at matching fingerprints by
considering, for instance, the correspondence among ridges. In such a case, we can take
advantage of the significant structural information available from the fingerprint ridges.

It is important to point out that the strategy combining the matching scores of minutia
and pores features presented in Eq. 6.1 relies on a linear dependence assumption between
the proposed quality indexes (Q1 and Q2) and adaptive weight wQ. So, in the future, we
will evaluate other combination strategies by exploring distinct forms of dependence.

We will also investigate the use of energy-optimization observations (i.e. competi-
tive interactions and minimum energy path linking distinct pores) for fingerprint image
synthesis. Note that the synthesis of high-resolution fingerprints (i.e. fingerprint images
containing level-3 features such as pores) is a very important open problem in literature.
Finally, we will intend to investigate an extension of the proposed framework to other
types of features, such as minutia and singular points. Since most existing AFIS are cur-
rently based on minutia, we believe that a minutiae-based version of our framework will
be very useful to the biometric community.
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