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Resumo

Neste trabalho estudamos alguns aspectos de estimação e diagnóstico de influência global

e local em modelos de regressão robustos com respostas censuradas sob a classe de dis-

tribuições de misturas de escala skew-normal (SMSN) (Lachos et al., 2010). A SMSN é

uma classe atraente de distribuições assimétricas com caudas pesadas que inclui a skew-

normal, skew-t, skew-slash, skew-normal contaminada e toda a família de distribuições

de misturas de escala normal (SMN) como casos especiais. As estimativas de máxima

verossimilhança (ML) dos parâmetros são obtidas utilizando uma aproximação estocás-

tica do algoritmo EM (SAEM). Esta abordagem nos permite estimar os parâmetros de

interesse de forma eficiente, assim como, obter os erros padrão, predições de valores não

observados (censuras) e a função de log-verossimilhança. Para analisar o desempenho do

modelo proposto, técnicas de deleção de casos e influência local são desenvolvidas para

mostrar a robustez contra outlier e observações influentes. Os métodos propostos são ver-

ificados através da análise de vários estudos de simulação e aplicando em dois conjuntos

de dados reais.

Palavras-chave: modelos de regressão censurados; caudas pesadas; algoritmo SAEM;
distribuições de misturas de escala skew-normal; modelo de deleção de casos, influência
local.



Abstract

In this work, we study studied some aspects of estimation and diagnostics of global and

local influence in robust regression models with censored responses under the class of scale

mixtures of the skew-normal (SMSN) distribution (Lachos et al., 2010). The SMSN is

an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal,

skew-t, skew-slash, skew-contaminated normal and the entire family of scale mixtures

of normal (SMN) distributions as special cases. The estimates of maximum likelihood

(ML)of the parameters are obtained using a stochastic approximation of the EM (SAEM)

algorithm. This approach allows us to estimate the parameters of interest efficiently, as

well as obtain standard errors, predictions of unobservable values (censoring) and the

log-likelihood function. To examine the performance of the proposed model, case-deletion

and local influence techniques are developed to show its robust aspect against outlying

and influential observations. The proposed methods are verified through the analysis of

several simulation studies and applying in two real datasets.

Keywords: censored regression model; heavy tails; SAEM algorithm; scale mixtures of
skew-normal distributions; case-deletion model; local influence.
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Chapter 1

Introduction

Regression models with censored dependent variable (CR models) are applied

in different fields, such as econometric analysis, astrophysics, clinical testing, among many

others. In econometrics, for example, the study of the labor force participation of married

women is usually conducted under the ordinary Tobit model (Greene, 2012). In AIDS

research, the viral load measures can be subject to some upper and lower detection limits,

below or above which they are not quantifiable. As a result, the viral load responses are

either left or right censored depending on the diagnostic assays used (see, for instance,

Wu, 2010).

The cases of censored responses with normal observational errors, denoted by

N-CR, has been studied extensively in the literature, see for example, Nelson (1977),

Thompson and Nelson (2003), Park et al. (2007) and Vaida and Liu (2009), to mention

a few. However, several phenomena are not always in agreement with the assumptions

of the normal model. To deal with this problem, some proposals have been made in the

literature to replace the normality assumption with more flexible classes of distributions.

For instance, Fernández and Steel (1999) discuss some inferential procedures in regression

models with Student-t distribution for the errors. Ibacache-Pulgar and Paula (2011), pro-

pose local influence measures in the Student-t partially linear regression model. Recently,

Arellano-Valle et al. (2012) and Massuia et al. (2014) proposed an extension of the CR

model with normal errors (N-CR) to Student-t (T-CR) errors.

Other existing methods for robust estimation are based on the class of scale

mixtures of normal (SMN) distributions introduced by Andrews and Mallows (1974).

For example, Garay et al. (2015) proposed a robust CR model where the observational



13

errors follow a SMN distribution (SMN-CR model). These distributions have heavier tails

than the normal one, so they seem to be a reasonable choice for robust inference. They

include as special cases many symmetric distributions, such as the normal (N), Pearson

type VII (P-VII), Student-t (T), slash (SL) and contaminated normal (CN). Although

these models are attractive, there is a need to check the distributional assumptions of the

model errors because these can present skewness and heavy tail behavior, simultaneously.

To overcome the problem of atypical data in an asymmetrical context, Branco and Dey

(2001) proposed the class of scale mixtures of skew-normal (SMSN) distributions. This

class of distributions contains the entire family of SMN distributions, and skewed versions

of classic asymmetric distributions such as the skew-normal (SN), skew-t (ST), skew-slash

(SSL) and skew contaminated normal (SCN) distributions. Recently, Massuia et al. (2015)

developed a Bayesian framework for CR models by assuming that the random errors follow

a SMSN distribution.

Motivated by this, in this work, we propose a robust parametric approach

of the censored linear regression models based on the SMSN distributions, denoted by

SMSN-CR, from a likelihood-based perspective, extending the previous cited works of

Arellano-Valle et al. (2012), Massuia et al. (2014), Garay et al. (2015) and supplementing

the work by Massuia et al. (2015). In addition, we suggest a fast estimation procedure

to obtain the maximum likelihood (ML) estimates of the parameters, using a stochastic

approximation of the EM (SAEM) algorithm, proposed by Delyon et al. (1999). The

SAEM algorithm has been proved to be more computationally efficient than the classical

Monte Carlo EM (MCEM) algorithm due to reuse of simulations from one iteration to the

next in the smoothing phase of the algorithm (Jank, 2006). In this work we also develop

influence diagnostic techniques, based on case deletion and local influence approaches,

proposed by Cook and Weisberg (1982) and Cook (1986).

Based on what was discussed up to here, we will present a brief description

of the family of SMSN distributions. Next, we present an outline of the EM and SAEM

algorithms, a summary of analysis of influence and, finally, a organization of dissertation.
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1.1 Scale mixtures of skew-normal (SMSN) distribu-

tions

In order to define the SMSN-CR model, we first make some remarks related

to the SMSN class of distributions. This class of distributions was proposed by Branco

and Dey (2001) and is a group of skew-thick-tailed distributions that are useful for robust

inference and that contain as proper elements the SN, ST, SSL, SCN distributions and the

entire family of SMN distributions proposed by Andrews and Mallows (1974) (see also,

Lange and Sinsheimer, 1993). Thus, in the following we present some definitions where we

explain first the fundamental concept of the SN distribution proposed by Azzalini (1985),

and its relation with the SMSN class of distributions.

Definition 1. A random variable 𝑍 has a skew-normal distribution with location param-

eter 𝜇, scale parameter 𝜎2 and skewness parameter 𝜆, denoted by 𝑍 ∼ 𝑆𝑁(𝜇, 𝜎2, 𝜆), if its

probability density function (pdf) is given by

𝑓𝑆𝑁(𝑧|𝜇, 𝜎2, 𝜆) = 2𝜑(𝑧|𝜇, 𝜎2)Φ
(︃
𝜆(𝑧 − 𝜇)

𝜎

)︃
, 𝑧 ∈ R, (1.1.1)

where 𝜑 ( · |𝜇, 𝜎2) denotes the density of the univariate normal distribution with mean 𝜇

and variance 𝜎2 > 0 and Φ(·) is the cumulative distribution function (cdf) of the standard

univariate normal distribution.

Definition 2. A random variable 𝑌 has a SMSN distribution with location parameter 𝜇,

scale parameter 𝜎2 and skewness parameter 𝜆, denoted by SMSN(𝜇, 𝜎2, 𝜆;𝐻), if it has the

following stochastic representation:

𝑌 = 𝜇+ 𝜅(𝑈)1/2𝑍, 𝑈⊥𝑍, (1.1.2)

where 𝑍 ∼ 𝑆𝑁(0, 𝜎2, 𝜆), 𝜅(·) is a positive function, 𝑈 is a positive random variable with

cdf 𝐻( · |𝜈) indexed by a scalar or vector parameter 𝜈. 𝑈⊥𝑍 represents that the random

variables 𝑈 and 𝑍 are independent.

The random variable 𝑈 is known as the scale factor and its cdf 𝐻( · |𝜈) is

called the mixing distribution function. Note that when 𝜆 = 0, the SMSN family reduces

to the symmetric class of SMN distributions.



15

Using the representation given in Equation (1.1.2), we observe that

𝑌 |𝑈 = 𝑢 ∼ 𝑆𝑁(𝜇, 𝜅(𝑢)𝜎2, 𝜆)

and integrating out 𝑈 from the joint density of 𝑌 and 𝑈 leads to the following marginal

density of 𝑌 :

𝑓𝑆𝑀𝑆𝑁(𝑦|𝜇, 𝜎2, 𝜆;𝐻) = 2
∫︁ ∞

0
𝜑(𝑦|𝜇, 𝜅(𝑢)𝜎2)Φ

(︃
𝜆(𝑦 − 𝜇)
𝜎𝜅(𝑢)1/2

)︃
𝑑𝐻(𝑢). (1.1.3)

Another important class of distribution, which will be useful for implement-

ing the SAEM algorithm, is the truncated SMSN distributions, given by the following

definition:

Definition 3. Let 𝑊 ∼ SMSN(𝜇, 𝜎2, 𝜆;𝐻) and P (𝑎 < 𝑊 < 𝑏) > 0, with 𝑎 < 𝑏. A

random variable 𝑌 has a truncated SMSN distribution in the interval ⌊𝑎, 𝑏⌋, denoted by

𝑌 ∼ TSMSN(𝜇, 𝜎2, 𝜆;𝐻, ⌊𝑎, 𝑏⌋), if it has the same distribution as 𝑊 |𝑊 ∈ ⌊𝑎, 𝑏⌋. Here

⌊𝑎, 𝑏⌋ means that each extreme of the interval can be either open or closed.

Thus, the pdf of the random variable 𝑌 ∼ TSMSN(𝜇, 𝜎2, 𝜆;𝐻, ⌊𝑎, 𝑏⌋) is

𝑓𝑇 𝑆𝑀𝑆𝑁 (𝑦 | 𝜇, 𝜎2, 𝜆 ; 𝐻, ⌊𝑎, 𝑏⌋) = 𝑓𝑆𝑀𝑆𝑁 (𝑦 | 𝜇, 𝜎2, 𝜆 ; 𝐻)
𝐹𝑆𝑀𝑆𝑁 (𝑏 | 𝜇, 𝜎2, 𝜆 ; 𝐻) − 𝐹𝑆𝑀𝑆𝑁 (𝑎 | 𝜇, 𝜎2, 𝜆 ; 𝐻)11⌊𝑎,𝑏⌋(𝑦),

where 11A(·) denotes the indicator function of the set A, i.e., 11A(𝑦) = 1 if 𝑦 ∈ A and

11A(𝑦) = 0 otherwise. 𝑓𝑆𝑀𝑆𝑁(· | 𝜇, 𝜎2, 𝜆;𝐻) and 𝐹𝑆𝑀𝑆𝑁(· | 𝜇, 𝜎2, 𝜆;𝐻) represent the pdf

and cdf of the SMSN distribution, respectively.

The following lemmas show a convenient stochastic representation of a SMSN

random variable as well as its cdf. These lemmas will be useful to implement the proposed

SAEM algorithm.

Lemma 1. The random variable 𝑌 ∼ SMSN(𝜇, 𝜎2, 𝜆;𝐻), has a stochastic representation

given by

𝑌 = 𝜇+ Δ𝑇 + 𝜅(𝑈)1/2𝜏 1/2𝑇1, (1.1.4)

where Δ = 𝜎𝛿, 𝜏 = (1 − 𝛿2)𝜎2, 𝛿 = 𝜆√
1 + 𝜆2

, 𝑇 = 𝜅(𝑈)1/2|𝑇0|, 𝑇0 and 𝑇1 are independent

standard normal random variables and |·| denotes absolute value.

Proof. See Basso et al. (2010).
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The representation given in Lemma 1 is very appropriate to derive some math-

ematical properties and can be used to simulate pseudo-realizations of 𝑌 . It is important

to stress that this representation was used by Basso et al. (2010) in the context of finite

mixtures of SMSN distributions and by Cancho et al. (2011), Garay et al. (2011) and

Labra et al. (2012) in the context of non-linear regression models for complete data. For

instance, from Equation (1.1.2), we have the following hierarchical representation:

𝑌 |𝑇 = 𝑡, 𝑈 = 𝑢 ∼ 𝑁(𝜇+ Δ𝑡 , 𝜅(𝑢)𝜏),

𝑇 |𝑈 = 𝑢 ∼ 𝑇𝑁(0, 𝜅(𝑢) ; ⌊0,∞⌋),

𝑈 ∼ 𝐻( · ; 𝜈), (1.1.5)

where TN(𝜇, 𝜎2 ; ⌊𝑎, 𝑏⌋) denotes a normal distribution with mean 𝜇 and variance 𝜎2 trun-

cated in the interval ⌊𝑎, 𝑏⌋.

Lemma 2. Let 𝑌 ∼ SMSN(𝜇, 𝜎2, 𝜆;𝐻). Then, the cdf of 𝑌 can be written in the following

way:

𝐹𝑆𝑀𝑆𝑁(𝑦 | 𝜇, 𝜎2, 𝜆 ; 𝐻) =
∫︁ ∞

0
2Φ2

(︁
𝑦(𝑢)*|𝜇*,Σ

)︁
𝑑𝐻(𝑢), (1.1.6)

where

𝑦(𝑢)* = (𝜅(𝑢)−1/2𝑦, 0)⊤, 𝜇* = (𝜇, 0)⊤, Σ =

⎛⎜⎝ 𝜎2 −𝛿𝜎

−𝛿𝜎 1

⎞⎟⎠ (1.1.7)

and Φ𝑚(· | 𝜇0,Σ0) denotes the cdf of the 𝑚−variate normal distribution with mean vector

𝜇0 and covariance matrix Σ0.

Proof. See Appendix 1 in Massuia et al. (2015).

1.1.1 Particular cases of SMSN distributions.

Although we can deal with any 𝜅(·) function, we restrict our attention to the

case where 𝜅(𝑢) = 1/𝑢, since it leads to good mathematical properties. Moreover, the

scale factor 𝑈 can be discrete or continuous and the form of the SMSN distribution is

determined by its distribution. We take into account four members of SMSN class: skew–

normal, skew–t, skew–slash and skew contaminated normal distributions. For each specific

SMSN distribution described below, we compute its cdf, which is useful to evaluate the
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likelihood function related to CR models.

∙ The skew–t distribution. Denoted by 𝑌 ∼ 𝑆𝑇 (𝜇, 𝜎2, 𝜆; 𝜈), this case arises when we
consider 𝑈 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜈/2, 𝜈/2) in Definition 2. Thus, the density of 𝑌 takes the
form

𝑓𝑆𝑇 (𝑦|𝜇, 𝜎2, 𝜆; 𝜈) =
2 Γ( 𝜈+1

2 )
Γ( 𝜈

2 )
√

𝜋𝜈𝜎

(︂
1 +

𝑑(𝑦)2

𝜈

)︂− 𝜈+1
2

𝑇1

(︂
𝜆 𝑑(𝑦)

√︂
𝜈 + 1

𝜈 + 𝑑(𝑦)2 | 0, 1, 𝜈 + 1
)︂

, 𝑦 ∈ R, (1.1.8)

where 𝑑(𝑦) = (𝑦 − 𝜇)/𝜎. A particular case of the skew-t distribution is the skew–

Cauchy distribution, when 𝜈 = 1. Also, when 𝜈 → ∞, we get the skew-normal

distribution as the limiting case. Using Lemma 2, we obtain the following expression

for the cdf of 𝑌 :

𝐹𝑆𝑇 (𝑦 | 𝜇, 𝜎2, 𝜆 ; 𝜈) = 2 𝑇2 (𝑦(𝑢)* | 𝜇*,Σ, 𝜈) , (1.1.9)

where 𝑦(𝑢)*, 𝜇* and Σ are as in (1.1.7) and 𝑇𝑚 (·| 𝜇0,Σ0, 𝜈) represents the cdf of

the 𝑚-variate Student-t distribution with location vector 𝜇0, scale matrix Σ0 and

𝜈 degrees of freedom. The proof of these results are given in Massuia et al. (2015).

∙ The skew–slash distribution. Denoted by 𝑌 ∼ 𝑆𝑆𝐿(𝜇, 𝜎2, 𝜆; 𝜈), in this case we

consider 𝑈 ∼ 𝐵𝑒𝑡𝑎(𝜈, 1) with 𝜈 > 0 in Definition 2. The density of 𝑌 is given by

𝑓𝑆𝑆𝐿(𝑦|𝜇, 𝜎2, 𝜆; 𝜈) = 2𝜈
∫︁ 1

0
𝑢𝜈−1𝜑(𝑦|𝜇, 𝑢−1𝜎2)Φ(𝑢1/2𝐴(𝑦))𝑑𝑢, 𝑦 ∈ R, (1.1.10)

where 𝐴(𝑦) = 𝜆(𝑦 − 𝜇)/𝜎. The cdf of the skew-slash distribution does not have a

closed form expression. However, using Lemma 2, we can write it in terms of the

following integral, which can be approximated by numerical methods:

𝐹𝑆𝑆𝐿(𝑦|𝜇, 𝜎2, 𝜆; 𝜈) =
∫︁ ∞

0
2𝜈Φ2

(︁
𝑦(𝑢)*|𝜇*,Σ

)︁
𝑢𝜈−1 𝑑𝑢, (1.1.11)

where 𝑦(𝑢)*, 𝜇* and Σ are as in (1.1.7).

∙ The skew-contaminated normal distribution. Denoted by 𝑌 ∼ 𝑆𝐶𝑁(𝜇, 𝜎2, 𝜆; (𝜈, 𝛾)),

here 𝑈 is a discrete random variable taking one of two states of 𝜈 = (𝜈, 𝛾)⊤. In this
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case the pdf of 𝑈 is given by

𝑈 =

⎧⎪⎨⎪⎩ 𝛾 with probability 𝜈;

1 with probability 1 − 𝜈.

It follows immediately that

𝑓𝑆𝐶𝑁(𝑦|𝜇, 𝜎2, 𝜆; 𝜈) = 2{𝜈𝜑(𝑦|𝜇, 𝛾−1𝜎2)Φ(𝛾1/2𝐴(𝑦)) + (1 − 𝜈)𝜑(𝑦|𝜇, 𝜎2)Φ(𝐴(𝑦))}

(1.1.12)

and

𝐹𝑆𝐶𝑁(𝑦|𝜇, 𝜎2, 𝜆; 𝜈) = 2{𝜈Φ2
(︁
𝛾1/2𝑦*|𝜇*,Σ

)︁
+ (1 − 𝜈)Φ2

(︁
𝑦*|𝜇*,Σ

)︁
}, (1.1.13)

where 𝐴(𝑦) = 𝜆(𝑦 − 𝜇)/𝜎.

∙ The skew-normal distribution. This distribution is obtained when 𝑈 = 1 (a degen-

erated random variable) in Definition 2. The density of 𝑌 was defined in (1.1.1)

and clearly, from Lemma 2, the cdf of 𝑌 is given by

𝐹 (𝑦) = 2Φ2
(︁
𝑦*|𝜇*,Σ

)︁
, (1.1.14)

where 𝑦* = (𝑦, 0)⊤ and 𝜇* and Σ are as in (1.1.7).

In Table 1.1, we present the expected values 𝑘𝑚 = 𝐸[𝑈−𝑚/2] for all the SMSN

distributions discussed above, which are useful to define the SMSN-CR model.

Table 1.1: 𝑘𝑚 = 𝐸[𝑈−𝑚/2] for different SMSN models.

Model 𝑘𝑚

SN 1
ST

(︁
𝜈
2
)︁𝑚/2 Γ(𝜈−𝑚

2 )
Γ(𝜈/2)

SSL
2𝜈

𝜈−𝑚/2
SCN

𝜈
𝛾𝑚/2 + 1 − 𝜈



19

1.2 Algorithms for ML estimation

In models with non-observed or incomplete data, the EM algorithm is a very

popular iterative optimization strategy commonly used. This algorithm has many at-

tractive features such as numerical stability and simplicity of implementation, and its

memory requirements are quite reasonable (Couvreur, 1996). Letting y𝑐𝑜𝑚𝑝 = (y𝑚,y𝑜)

the complete data vector, where y𝑚 represents the missing data and y𝑜 the observed

data respectively and ℓ𝑐𝑜𝑚𝑝(𝜃|y𝑐𝑜𝑚𝑝) the complete data log-likelihood function, then the

EM-algorithm proceeds in two steps:

• E-step: Let ̂︀𝜃(𝑗) be the current 𝑗−th step estimate of 𝜃. By using the property of

conditional expectation, we can compute the 𝑄(𝜃|̂︀𝜃(𝑗)) function by

𝑄(𝜃|̂︀𝜃(𝑗)) = 𝐸
[︂
ℓ𝑐𝑜𝑚𝑝(𝜃|y𝑐𝑜𝑚𝑝)|y𝑜, ̂︀𝜃(𝑗)

]︂
. (1.2.1)

• M-step: Maximize 𝑄(𝜃|̂︀𝜃(𝑗)) with respect to 𝜃, obtaining ̂︀𝜃(𝑗+1).

As mentioned by Meza et al. (2012), each iteration of the EM algorithm in-

creases the likelihood function ℓ(𝜃|y𝑜) and the EM sequence 𝜃(𝑗) converges to a stationary

point of the observed likelihood under mild regularity conditions (for more details see Wu

(1983) and Vaida (2005)).

For cases in which the E-step has no analytic form, Wei and Tanner (1990)

proposed the Monte Carlo EM (MCEM) algorithm, in which the E-step is replaced by a

Monte Carlo approximation based on a large number of independent simulations of the

missing data. In order to reduce the number of required simulations compared to the

MCEM algorithm, Delyon et al. (1999) proposed the stochastic approximation version

of the EM algorithm, the so-called SAEM algorithm, which consists of replacing the E-

step by a stochastic approximation, obtained using simulated data, while the M-step is

unchanged. The SAEM algorithm consists, at each iteration, of successively simulating

the missing data with the conditional distribution, and updating the unknown parameters

of the model. Thus, the 𝑗−th iteration of SAEM algorithm consists of the following steps:

• S-step: Draw the missing data y𝑚(𝑗) with the conditional distribution 𝑝(y𝑚|y𝑜, ̂︀𝜃(𝑗−1)).
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• AE-step: Update 𝑄(𝜃|̂︀𝜃(𝑗)) according to

Q(𝜃|̂︀𝜃(𝑗)) ≈ Q(𝜃|̂︀𝜃(𝑗−1)) + 𝛾𝑗

[︃
1
𝑚

𝑚∑︁
ℓ=1

ℓ𝑐𝑜𝑚𝑝(𝜃|y𝑜,y𝑚(𝑗)) − Q(𝜃|̂︀𝜃(𝑗−1))
]︃
. (1.2.2)

• M-step: Maximize 𝑄(𝜃|̂︀𝜃(𝑗)) with respect to 𝜃 obtaining ̂︀𝜃(𝑗+1),

where 𝛾𝑗 is a decreasing sequence of positive numbers such that

∞∑︁
𝑗=1

𝛾𝑗 = ∞ and
∞∑︁

𝑗=1
𝛾2

𝑗 < ∞, (1.2.3)

as presented by Kuhn and Lavielle (2004).

Thus, the SAEM algorithm performs a Monte Carlo E-step, like MCEM, but

with a small and fixed Monte Carlo sample sizes (𝑚 ≤ 20). This is possible because

unlike the traditional EM algorithm and its variants, the SAEM algorithm uses not only

the current simulation of the missing data at the 𝑗−iteration, denoted by y𝑚, but also

some or all previous simulations, where this ‘memory’ property is set by the smoothing

parameter 𝛾𝑗.

Note, in Equation (1.2.2), that sequence 𝛾𝑗 has a strong impact on the speed

of convergence of the algorithm. Thus, if the smoothing parameter 𝛾𝑗 is equal to 1 for

all 𝑗, the SAEM algorithm will have ‘no memory’, and will be equivalent to the MCEM

algorithm. The SAEM with no memory will converge quickly (convergence in distribution)

to a solution neighborhood, but the algorithm with memory will converge slowly (almost

sure convergence) to the ML solution. As suggested by Galarza et al. (2015), we use the

following choice of the smoothing parameter:

𝛾𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1, for 1 ≤ 𝑗 ≤ 𝑐𝑆,

1
𝑗−𝑐𝑆

, for 𝑐𝑆 + 1 ≤ 𝑗 ≤ 𝑆,

where 𝑆 is the maximum number of iterations, and 𝑐 a cutoff point (0 ≤ 𝑐 ≤ 1) that

determines the percentage of initial iterations with no memory. For example, if 𝑐 = 0, the

algorithm will have memory for all iterations, and hence will converge slowly to the ML

estimates. If 𝑐 = 1, the algorithm will have no memory, and so will converge quickly to

a solution neighborhood. For the first case, 𝑆 would need to be large in order to achieve
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the ML estimates. For the second, the algorithm will yield a Markov Chain where, after

applying a burn-in and thinning, the mean of the chain observations can be a reasonable

estimate. A number 𝑐 between 0 and 1 (0 < 𝑐 < 1) will assure an initial convergence

in distribution to a solution neighborhood for the first 𝑐𝑆 iterations and an almost sure

convergence for the rest of the iterations. Hence, this combination will lead to a fast

algorithm with good estimates. To implement SAEM, the user must fix several constants

matching the number of total iterations 𝑆 and the cutoff point 𝑐 that defines the start of

the smoothing step of the SAEM algorithm. However, those parameters will vary depend-

ing of the model and the data. To determinate those constants, a graphical approach is

recommended to monitor the convergence of the estimates for all the parameters, and if

possible, to monitor the difference (relative difference) between two successive evaluations

of the log-likelihood ℓ(𝜃|y𝑜), given by:

||ℓ(𝜃(𝑗+1)|y𝑜) − ℓ(𝜃(𝑗)|y𝑜)|| or ||ℓ(𝜃(𝑗+1)|y𝑜)/ℓ(𝜃(𝑗)|y𝑜) − 1||,

respectively.

1.3 Diagnostic Analysis

The statistical models are important tools to extract and understand essential

features of a dataset. An important stage in the analysis is the verification of possible

deviations from the assumptions made in the model, such as the existence of extreme

observations with some interference in the results of the fit. The elements of the dataset

that effectively control aspects of the analysis, are said influential if they produce changes

in the analysis result when deleted or subjected to some type of disturbance.

In the statistical literature have developed two main approaches for the detec-

tion of influential observations. The first approach is the case-deletion model in which

the impact of dropping an individual observation in the prediction is directly assessed

by measures such as the generalized Cook’s distance and likelihood distance (see, Cook

(1977) and Cook and Weisberg (1982)). The second approach is local influence technique

Cook (1986), used to assess the stability of the estimation outputs with respect to the

model inputs.

Following the pioneering work of Cook (1986), this area of research has re-
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ceived considerable attention in the recent statistical literature; see, for example Lesaffre

and Verbeke (1998), Zhu and Lee (2001), Lee and Xu (2004) and Osorio et al. (2007),

amongst others. A study of influence diagnostic in linear regression models under SMSN

distributions has been presented by Zeller et al. (2011). However, to the best of our knowl-

edge, there are no previous studies of diagnostic analysis for censored linear regression

models based in the SMSN distributions.

1.4 Organization of the Dissertation

The results contained in this dissertation are organized into four chapters. In

Chapter 2, we describe the SMSN-CR model and the ML estimation procedure based in

the SAEM algorithm and we discuss how to obtain the approximated standard errors.

To conclude this chapter we examine the performance of the proposed methods through

various simulation studies as well as the analysis of a real dataset.

In Chapter 3, we develop influence diagnostic techniques, based on case-deletion

and local influence approaches. The methodology is illustrated using a motivating astro-

physical dataset and we present a simulation study evaluating the efficiency of our method

in detecting outliers under various degrees of data perturbation and censoring.

Finally, the Chapter 4 presents some concluding remarks, with some possible

directions for future research.



Chapter 2

The SMSN censored linear

regression model

2.1 Introduction

Censored regression models, in general, are based on the development of the

so called Tobit model, which is constructed in terms of the normal assumption (Tobin,

1958). However, many models do not fit the assumption of normality. Thus, in re-

cent years several authors have studied CR models for statistical modeling of censored

datasets involving observed variables with heavier tails than the normal distribution. For

instance, Arellano-Valle et al. (2012) and Massuia et al. (2014) proposed an extension of

the CR model with normal errors (N-CR) to Student-t (T-CR) errors. Garay et al. (2015)

proposed a robust CR model where the observational errors follow a SMN distribution

(SMN-CR model). More recently, Massuia et al. (2015) developed a Bayesian framework

for CR models by assuming that the random errors follow a SMSN distribution. In this

chapter, we suggest an attractive ML estimation procedure for CR models considering the

SMSN class of distributions, extending the works by Arellano-Valle et al. (2012), Massuia

et al. (2014), Garay et al. (2015) and supplementing the work by Massuia et al. (2015)

from a likelihood-based perspective.

A typical algorithm for ML estimation in models involving the class of SMSN

distributions is the EM algorithm and its variants. See, for instance, Basso et al. (2010),

Lachos et al. (2010) and Garay et al. (2011). However, in some cases EM-type algorithms

are not appropriate due to the computational difficulty in the E-step, which involves the
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computation of expected quantities that cannot be obtained analytically and must be

calculated using stochastic simulation. To deal with this problem, Delyon et al. (1999)

proposed a stochastic approximation version of the EM algorithm, the so-called SAEM

algorithm. This algorithm consists of replacing the E-step by a stochastic approximation

obtained using simulated data, while the M-step remains unchanged. Jank (2006) showed

that the computational effort of SAEM is much smaller and reaches convergence in just a

fraction of the simulation size when compared to Monte Carlo EM (MCEM). This is due

the memory effect contained in the SAEM method, in which the previous simulations are

considered in the computation of the posterior ones. In this chapter, we develop a full

likelihood approach for SMSN-CR models, including the implementation of the SAEM

algorithm for ML estimation with the likelihood function, predictions of unobservable

values of the response and the asymptotic standard errors as a byproduct.

2.2 Model specification

The SMSN-CR model that we are going to discuss is defined by:

𝑌𝑖 = x⊤
𝑖 𝛽 + 𝜀𝑖, 𝑖 = 1, 2, . . . , 𝑛, (2.2.1)

where 𝛽 = (𝛽1, . . . , 𝛽𝑝)⊤ is a vector of regression parameters, 𝑌𝑖 is a response variable and

x𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝)⊤ is a vector of explanatory variables for subject 𝑖.

In this work, we assume that

𝜀𝑖 ∼ 𝑆𝑀𝑆𝑁

⎛⎝−
√︃

2
𝜋
𝑘1Δ, 𝜎2, 𝜆;𝐻

⎞⎠ , 𝑖 = 1, . . . , 𝑛, (2.2.2)

are independent random variables. The value of the location parameter, −
√︁

2
𝜋
𝑘1Δ, of 𝜀𝑖 is

chosen in order to obtain 𝐸[𝜀𝑖] = 0, as in the normal model. For more details, see Lemma

1 in Basso et al. (2010). Thus, when the moments exist, we have

𝑌𝑖 ∼ 𝑆𝑀𝑆𝑁

⎛⎝x⊤
𝑖 𝛽 −

√︃
2
𝜋
𝑘1Δ, 𝜎2, 𝜆;𝐻

⎞⎠ ,

where 𝐸[𝑌𝑖] = x⊤
𝑖 𝛽 and 𝑉 𝑎𝑟[𝑌𝑖] = 𝑘2𝜎

2 − 2𝑘2
1Δ2

𝜋
, for 𝑖 = 1, . . . , 𝑛. The values of 𝑘1 and
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𝑘2 are given in Table 1.1, for particular cases of SMSN distributions.

In this work we are interested in the situation in which the response variable is

not fully observed for all subjects. Thus, for the 𝑖−th subject and assuming left-censoring,

𝑌𝑖 is a latent variable and the observed data (𝑉𝑖, 𝜌𝑖) is of the form

𝑉𝑖 =

⎧⎪⎨⎪⎩ 𝑐𝑖 if 𝜌𝑖 = 1 (i.e. 𝑌𝑖 ≤ 𝑐𝑖);

𝑌𝑖 if 𝜌𝑖 = 0 (i.e. 𝑌𝑖 > 𝑐𝑖),
(2.2.3)

for some known threshold point 𝑐𝑖, 𝑖 = 1, 2, . . . , 𝑛.

The SMSN-CR model is defined by combining (2.2.1)–(2.2.3). The log-likelihood

function of 𝜃 =
(︁
𝛽⊤, 𝜎2, 𝜆, 𝜈

)︁⊤
given the observed data (𝑣,𝜌), is

ℓ(𝜃|𝑣,𝜌) = log
{︃

𝑛∏︁
𝑖=1

[︃
𝐹𝑆𝑀𝑆𝑁

(︃
𝑣𝑖 − x⊤

𝑖 𝛽

𝜎
|𝜃;𝐻

)︃]︃𝜌𝑖

[𝑓𝑆𝑀𝑆𝑁(𝑣𝑖|𝜃;𝐻)]1−𝜌𝑖

}︃
, (2.2.4)

where 𝜌 = (𝜌1, 𝜌2, . . . , 𝜌𝑛) and 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) is the observed sample of V =

(𝑉1, 𝑉2, . . . , 𝑉𝑛). Thus, 𝜌𝑖 = 1, 0 indicating whether the 𝑖−th observation is censored,

i.e. 𝑌𝑖 ≤ 𝑐𝑖, or not respectively. 𝑓𝑆𝑀𝑆𝑁(·|𝜃;𝐻) and 𝐹𝑆𝑀𝑆𝑁(·|𝜃;𝐻) represent the pdf and

cdf of the SMSN class, respectively.

For simplicity, we will assume the data are left censored, and develop the

SAEM algorithm for ML estimation. Extensions, to right censored data are immediate.

2.2.1 ML estimation via the SAEM algorithm

In this subsection we consider the ML estimation of the parameters in the

SMSN-CR models introduced in Section 1.2. In particular, we show how to implement

the SAEM algorithm for the particular cases of the SMSN class, that is, the SN, ST, SSL

and SCN distributions.

Let 𝜃* = (𝛽⊤,Δ, 𝜏, 𝜈)⊤ be the vector of parameters in focus, which has a

one-to-one correspondence with the original vector of parameters 𝜃 =
(︁
𝛽⊤, 𝜎2, 𝜆, 𝜈

)︁⊤
,

since

Δ = 𝜎
𝜆√
𝜆2 + 1

= 𝜎𝛿 and 𝜏 =
(︁
1 − 𝛿2

)︁
𝜎2 = 𝜎2

𝜆2 + 1 ,

we can obtain 𝜎2 and 𝜆 from Δ and 𝜏 considering

𝜎2 = 𝜏 + Δ2 and 𝜆 = Δ/
√
𝜏 . (2.2.5)
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We observe that a useful straightforward result, used by Basso et al. (2010)

and Massuia et al. (2015), is that the conditional distribution of 𝑇𝑖 given 𝑦𝑖 and 𝑢𝑖 is

𝑇𝑁(𝜇𝑇 𝑖 −
√︁

2
𝜋
𝑘1, 𝑢

−1
𝑖 𝑀2

𝑇 ; ⌊−
√︁

2
𝜋
𝑘1,∞⌋), where

𝜇𝑇𝑖
= Δ

Δ2 + 𝜏
(𝑦𝑖 − x⊤

𝑖 𝛽) and 𝑀2
𝑇 = 𝜏

Δ2 + 𝜏
. (2.2.6)

In order to implement the SAEM algorithm, we consider a data augmenta-

tion scheme that consists of assuming that the latent variables (missing data) in the

model, given by the vector of censored responses Y = (𝑦1, 𝑦2, . . . , 𝑦𝑛)⊤, the vector t =

(𝑡1, 𝑡2, . . . , 𝑡𝑛)⊤ and u = (𝑢1, 𝑢2, . . . , 𝑢𝑛)⊤ - see representation (1.1.4) - can be observed.

Thus, considering the observed data (V,𝜌) and the latent variables (Y, t,u), we define

the complete data by Y𝑐𝑜𝑚𝑝 = (V⊤,𝜌⊤,Y⊤, t⊤,u⊤)⊤. Then, it is easy to derive the com-

plete data log-likelihood, defined by ℓ𝑐𝑜𝑚𝑝(𝜃*|Y𝑐𝑜𝑚𝑝), using the representation (1.1.5) as:

ℓ𝑐𝑜𝑚𝑝(𝜃*|Y𝑐𝑜𝑚𝑝) ∝ 𝑐𝑡𝑒− 𝑛

2 log 𝜏 − 1
2𝜏

𝑛∑︁
𝑖=1

𝑢𝑖(𝑦𝑖 − x⊤
𝑖 𝛽 − Δ𝑡𝑖)2 +

𝑛∑︁
𝑖=1

log ℎ(𝑢𝑖|𝜈), (2.2.7)

where 𝑐𝑡𝑒 is a constant that is independent of 𝜃* and ℎ(·|𝜈) is the pdf of the random

variable 𝑈 . In what follows the superscript (𝑗) indicates the estimate of the related

parameter at stage 𝑗 of the algorithm. Thus, we have:

• E-step: Given the current estimate 𝜃*(𝑗) = (𝛽(𝑗)⊤,Δ(𝑗), 𝜏 (𝑗), 𝜈(𝑗))⊤ at the 𝑗−th

iteration, we obtain the conditional expectation of the complete data log-likelihood

function (Q-function), which is given by

𝑄(𝜃*|𝜃*(𝑗)) = 𝐸
[︁
ℓ𝑐𝑜𝑚𝑝(𝜃*|Y𝑐𝑜𝑚𝑝)|V,𝜌,𝜃*(𝑗)

]︁

= 𝑐𝑡𝑒− 𝑛

2 log(𝜏) − 1
2𝜏

𝑛∑︁
𝑖=1

[︁
ℰ02𝑖(𝜃*(𝑗)) − 2ℰ01𝑖(𝜃*(𝑗))x⊤

𝑖 𝛽

+ ℰ00𝑖(𝜃*(𝑗))(x⊤
𝑖 𝛽)2 − 2Δℰ11𝑖(𝜃*(𝑗)) + 2Δℰ10𝑖(𝜃*(𝑗))x⊤

𝑖 𝛽

+ Δ2ℰ20𝑖(𝜃*(𝑗))
]︁

+ E
[︁
log{ℎ(𝑈𝑖|𝜈)}|𝑉𝑖, 𝜌𝑖,𝜃

*(𝑗)
]︁
. (2.2.8)
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Observe that the expression of the Q-function is completely determined by the

knowledge of the following expectations:

ℰ𝑟𝑠𝑖(𝜃*(𝑗)) = E[𝑈𝑖𝑇
𝑟
𝑖 𝑌

𝑠
𝑖 |𝑉𝑖, 𝜌𝑖,𝜃

*(𝑗)] for 𝑟, 𝑠 = 0, 1, 2,

as well as

E[log{ℎ(𝑈𝑖|𝜈)}|𝑉𝑖, 𝜌𝑖].

As presented by Basso et al. (2010), considering known properties of conditional

expectation and Equation (2.2.6), we obtain

ℰ10𝑖(𝜃*(𝑗)) = ℰ00𝑖(𝜃*(𝑗))𝜇(𝑗)
𝑇𝑖

+𝑀
(𝑗)
𝑇 𝜓

(𝑗)
𝑖 , (2.2.9)

ℰ20𝑖(𝜃*(𝑗)) = ℰ00𝑖(𝜃*(𝑗))𝜇2(𝑗)
𝑇𝑖

+𝑀
2(𝑗)
𝑇 +𝑀

(𝑗)
𝑇 𝜇

(𝑗)
𝑇𝑖
𝜓

(𝑗)
𝑖 , (2.2.10)

where

𝜓
(𝑗)
𝑖 = E

⎡⎣𝑈𝑖𝑊Φ

⎛⎝𝑈𝑖𝜇
(𝑗)
𝑇𝑖

𝑀
(𝑗)
𝑇

⎞⎠ |𝑉𝑖, 𝜌𝑖,𝜃
*(𝑗)

⎤⎦ and 𝑊Φ (𝑎) = 𝜑(𝑎)
Φ(𝑎) for 𝑎 ∈ R.

Thus, at each step, to compute ℰ𝑟𝑠𝑖(𝜃*(𝑗)) we need to obtain the conditional ex-

pectations ℰ00𝑖(𝜃*(𝑗)) and 𝜓
(𝑗)
𝑖 for the different SMSN distributions considering two

different situations:

a) For an uncensored observation 𝑖:

In this case we have that 𝜌𝑖 = 0, thus

𝑉𝑖 = 𝑌𝑖 ∼ 𝑆𝑀𝑆𝑁

⎛⎝x⊤
𝑖 𝛽 −

√︃
2
𝜋
𝑘1Δ, 𝜏 + Δ2, 𝜆;𝐻

⎞⎠
and, therefore,

ℰ𝑟𝑠𝑖(𝜃*(𝑗)) = 𝑦𝑠
𝑖 ℰ𝑟0𝑖(𝜃*(𝑗)), (2.2.11)

where ℰ𝑟0𝑖(𝜃*(𝑗)) can be obtained using equations (2.2.9)-(2.2.10) and the re-

sults given by Basso et al. (2010). Thus, for example,
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∗ For the skew-t case

ℰ00𝑖(𝜃*(𝑗)) =
22𝜈𝜈(𝑗)/2Γ

(︁
𝜈(𝑗)+3

2

)︁
(𝜈(𝑗) + d(𝑗)(𝑦𝑖))− 𝜈(𝑗)+3

2

𝑓𝑆𝑇 (𝑦𝑖)Γ
(︁

𝜈(𝑗)

2

)︁√
𝜋(𝜏 (𝑗) + Δ2(𝑗))1/2

×𝑇

⎛⎝⎯⎸⎸⎷ 𝜈(𝑗) + 3
𝜈(𝑗) + d(𝑗)(𝑦𝑖)

𝐴
*(𝑗)
𝑖 ; 𝜈(𝑗) + 3

⎞⎠ ,
𝜓

(𝑗)
𝑖 =

2Γ(𝜈(𝑗)+2
2 )𝜈𝜈(𝑗)/2(𝜈(𝑗) + d(𝑗)(𝑦𝑖) + 𝐴

2*(𝑗)
𝑖 )− 𝜈(𝑗)+2

2

𝑓𝑆𝑇 (𝑦𝑖)Γ
(︁

𝜈(𝑗)

2

)︁
𝜋(𝜏 (𝑗) + Δ2(𝑗))1/2

,

as defined in (1.1.8), 𝑓𝑆𝑇 (·) represents the pdf of skew-t distribution and

𝑇 (·; 𝜈) is the cdf of the standard Student-t distribution.

∗ For the skew-slash case

ℰ00𝑖(𝜃*(𝑗)) =
𝜈(𝑗)2𝜈(𝑗)+2Γ

(︁
2𝜈(𝑗)+3

2

)︁
𝑃1

(︃
2𝜈(𝑗) + 3

2 ,
d(𝑗)(𝑦𝑖)

2

)︃
d(𝑗)(𝑦𝑖)− 2𝜈(𝑗)+3

2

𝑓𝑆𝑆𝐿(𝑦𝑖)
√
𝜋(𝜏 (𝑗) + Δ2(𝑗))1/2

×𝐸
[︁
Φ(𝑆(𝑗)1/2

𝑖 𝐴
*(𝑗)
𝑖 )

]︁
,

𝜓
(𝑗)
𝑖 =

𝜈(𝑗)2𝜈(𝑗)+1Γ
(︁

2𝜈+2
2

)︁
𝑓𝑆𝑆𝐿(𝑦𝑖)𝜋(𝜏 (𝑗) + Δ2(𝑗))1/2

(︁
d(𝑗)(𝑦𝑖) + 𝐴

2*(𝑗)
𝑖

)︁− 2𝜈(𝑗)+2
2

×𝑃1

⎛⎝2𝜈(𝑗) + 2
2 ,

d(𝑗)(𝑦𝑖) + 𝐴
2*(𝑗)
𝑖

2

⎞⎠ ,

where 𝑆(𝑗)
𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎

(︃
2𝜈(𝑗) + 3

2 ,
d(𝑗)(𝑦𝑖)

2

)︃
I(0,1) is a truncated gamma dis-

tribution on (0, 1), with the parameter values in parentheses before trun-

cation and 𝑃𝑥(𝑎, 𝑏) denotes the cdf of the 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) evaluated at 𝑥 . As

defined in (1.1.10), 𝑓𝑆𝑆𝐿(·) represents a density of skew-slash distribution.

∗ For the skew contaminated normal case

ℰ00𝑖(𝜃*(𝑗)) = 2
𝑓𝑆𝐶𝑁 (𝑦𝑖)

{︁
𝜈(𝑗)𝛾(𝑗)𝜑

(︁
𝑦𝑖;𝜇*(𝑗), 𝛾−1(𝑗)(𝜏 (𝑗) + Δ2(𝑗))

)︁
Φ
(︁
𝛾1/2𝐴

*(𝑗)
𝑖

)︁
+(1 − 𝜈(𝑗))𝜑

(︁
𝑦𝑖;𝜇*(𝑗), 𝜏 (𝑗) + Δ2(𝑗)

)︁
Φ
(︁
𝐴

*(𝑗)
𝑖

)︁}︁
𝜓

(𝑗)
𝑖 = 2

𝑓𝑆𝐶𝑁 (𝑦𝑖)
{︁
𝜈(𝑗)𝛾(𝑗)𝜑

(︁
𝑦𝑖;𝜇*(𝑗), 𝛾−1(𝑗)(𝜏 (𝑗) + Δ2(𝑗))

)︁
Φ
(︁
𝛾1/2𝐴

*(𝑗)
𝑖

)︁
+(1 − 𝜈(𝑗))𝜑

(︁
𝑦𝑖;𝜇*(𝑗), 𝜏 (𝑗) + Δ2(𝑗)

)︁
𝜑
(︁
𝐴

*(𝑗)
𝑖

)︁}︁
,

where 𝑓𝑆𝐶𝑁(·) represents the pdf of the skew contaminated normal dis-

tribution, as defined in (1.1.12).
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In all cases described before, 𝜇*(𝑗) = x⊤
𝑖 𝛽(𝑗) −

√︁
2
𝜋
𝑘1Δ(𝑗), 𝐴*(𝑗) =

𝜇
(𝑗)
𝑇𝑖

𝑀
(𝑗)
𝑇

and

d(𝑗)(𝑦𝑖) = (𝑦𝑖−𝜇*(𝑗))√
𝜏 (𝑗)+Δ2(𝑗)

represents the Mahalanobis distance. Thus, in each step,

the conditional expectations ℰ00𝑖(𝜃(𝑗)) and 𝜓
(𝑗)
𝑖 can be easily obtained.

For the skew–t and skew contaminated normal distributions we have computa-

tionally attractive expressions that can be easily implemented. However, this

is not the case for the skew–slash one, where Monte Carlo integration can be

employed, as suggested by Basso et al. (2010) and Lachos et al. (2010).

b) For a censored observation 𝑖:

In this case, we have that 𝜌𝑖 = 1, i.e. 𝑌𝑖 ≤ 𝑐𝑖, therefore

ℰ𝑟𝑠𝑖

(︁
𝜃*(𝑗)

)︁
= E[𝑈𝑖𝑇

𝑟
𝑖 𝑌

𝑠
𝑖 |𝑉𝑖, 𝑌𝑖 ≤ 𝑐𝑖,𝜃

*(𝑗)] with 𝑟, 𝑠 = 0, 1, 2. (2.2.12)

As this conditional expectation does not have closed form, we need to introduce

two intermediate steps in order to replace the E-step by a stochastic approx-

imation using simulated data. Thus, the iteration 𝑗 consists of the following

steps:

∗ S-step (Sampling)

Let Y(𝑐) =
(︁
𝑌

(𝑐)
1 , 𝑌

(𝑐)
2 , . . . , 𝑌

(𝑐)
𝑛𝑐

)︁
the vector of 𝑛𝑐 censored cases, where 𝑌 (𝑐)

𝑖

is generated from TSMSN
(︁
x⊤

𝑖 𝛽 −
√︁

2
𝜋
𝑘1Δ, 𝜏 + Δ2, 𝜆;𝐻, ⌊−∞, 𝑐𝑖⌋

)︁
for 𝑖 =

1, . . . , 𝑛𝑐. Thus, the new vector of observations

Y(𝑙,𝑗) = (𝑌 (𝑙,𝑗)
𝑖1 , . . . , 𝑌

(𝑙,𝑗)
𝑖𝑛𝑐 , 𝑌𝑛𝑐

𝑖 +1, . . . , 𝑌𝑛) is a sample generated for the 𝑛𝑐

censored cases and the observed values (uncensored cases), for 𝑙 = 1, . . . ,𝑚.

Subsection 2.2.2 describes the details of the methods used to generate from

the random variable Y(𝑐).

∗ AE-step (Approximation Expectation)

Since we have the sequence Y(𝑙,𝑗), at the 𝑗-th iteration, considering equa-
tions (2.2.9)-(2.2.10) and the results given in Basso et al. (2010), we replace
the conditional expectations in (2.2.11) by the following stochastic approx-
imations:

ℰ𝑟𝑠𝑖

(︁
𝜃*(𝑗)

)︁
= ℰ𝑟𝑠𝑖(𝜃*(𝑗−1)) + 𝛾𝑗

[︃
1
𝑚

𝑚∑︁
𝑙=1

E[𝑈𝑖𝑇
𝑟
𝑖 𝑌

𝑠(𝑙,𝑗)
𝑖 |𝑉𝑖, 𝜌𝑖,𝜃

*(𝑗)] − ℰ𝑟𝑠𝑖(𝜃*(𝑗−1))
]︃
,
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for 𝑟, 𝑠 = 0, 1, 2.

An advantage of the SAEM algorithm is that even though it performs a Monte

Carlo E-step, it requires a small and fixed Monte Carlo sample size, making it

much faster than MCEM. Some authors claim that 𝑚 = 10 is large enough,

but to be more conservative, we chose 𝑚 = 20.

• CM-step: Maximize 𝑄(𝜃*|𝜃*(𝑗)) with respect to 𝜃* obtaining 𝜃*(𝑗+1), which leads

to the following expressions:

𝛽(𝑗+1) =
(︃

𝑛∑︁
𝑖=1

ℰ00𝑖(𝜃*(𝑗))(x𝑖x⊤
𝑖 )
)︃−1 [︃ 𝑛∑︁

𝑖=1
x𝑖ℰ01𝑖(𝜃*(𝑗)) − Δ

𝑛∑︁
𝑖=1

x𝑖ℰ10𝑖(𝜃*(𝑗))
]︃

;

Δ(𝑗+1) =
∑︀𝑛

𝑖=1 ℰ11𝑖(𝜃*(𝑗)) −∑︀𝑛
𝑖=1 ℰ10𝑖(𝜃*(𝑗))(x⊤

𝑖 𝛽(𝑗+1))∑︀𝑛
𝑖=1 ℰ20𝑖(𝜃*(𝑗))

;

𝜏 (𝑗+1) = 1
𝑛

(︃
𝑛∑︁

𝑖=1

[︁
ℰ02𝑖(𝜃*(𝑗)) − 2ℰ01𝑖(𝜃*(𝑗))(x⊤

𝑖 𝛽(𝑗+1)) + ℰ00𝑖(𝜃*(𝑗))(x⊤
𝑖 𝛽(𝑗+1))2 ;

− 2Δ(𝑗+1)ℰ11𝑖(𝜃*(𝑗)) + 2Δ(𝑗+1)ℰ10𝑖(𝜃*(𝑗))(x⊤
𝑖 𝛽(𝑗+1)) + (Δ(𝑗+1))2ℰ20𝑖(𝜃*(𝑗))

]︁)︁
.

• CML-step: We estimates 𝜈 by maximizing the actual marginal log-likelihood func-

tion, obtaining

𝜈(𝑗+1) = argmax𝜈

{︃
𝑛∑︁

𝑖=1
log [𝐹𝑆𝑀𝑆𝑁 (𝑣𝑖|𝜃;𝐻)]𝜌𝑖 +

𝑛∑︁
𝑖=1

log [𝑓𝑆𝑀𝑆𝑁(𝑣𝑖|𝜃;𝐻)]1−𝜌𝑖

}︃
.

Note that 𝜎2(𝑗+1) and 𝜆(𝑗+1) can be recovered using (2.2.5). The more efficient

CML-step can be easily accomplished by using, for instance, the optim routine in the 𝑅

software (R Development Core Team, 2015).

Thus, considering 𝜃(𝑗+1) =
(︁
𝛽(𝑗+1)⊤, 𝜎2(𝑗+1), 𝜆(𝑗+1), 𝜈(𝑗+1)

)︁⊤
, this process is it-

erated until some distance involving two successive evaluations of the actual log-likelihood

ℓ(𝜃|V,𝜌), like

||ℓ(𝜃(𝑗+1)|V,𝜌) − ℓ(𝜃(𝑗)|V,𝜌)|| or ||ℓ(𝜃(𝑗+1)|V,𝜌)/ℓ(𝜃(𝑗)|V,𝜌) − 1||,

is small enough. We have adopted this strategy to update the estimate of 𝜈, by

direct maximization of the marginal log-likelihood, circumventing the computation of



31

E𝜃(𝑗) [log{ℎ(𝑈𝑖|𝜈)}|V,𝜌].

In order to make our proposed algorithm more informative for the reader, in

Figure 2.1 we present a flow diagram, which reports all the steps needed to implement

the SAEM algorithm.

Start

precision; Data obs (V,ρ)
V = (V1, V2, . . . , Vn)

ρ = (ρ1, ρ2, . . . , ρn)

Initial Values
θ∗o = (β>o,∆o, τo, νo)>

criterion ← 1
j ← 0
i← 0

θ̂ ← θ∗o

Q(θ∗)← 0

precision < criterionPrint θ̂

End

Define
Ycomp = (V>,ρ>,Y>, t>,u>)>

`comp(θ∗|Ycomp)

i← i+ 1

yi is censored?
or

ρi = 1?

E-Step
Compute Ersi(θ∗(j))

Q(θ∗|θ∗(j))i

Update
Q(θ∗)← Q(θ∗) +Q(θ∗|θ∗(j))i

S-Step
Draw Yi from f(·|Vi, ρi,θ∗(j))

AE-Step
Compute Q(θ∗|θ∗(j))

Update
Q(θ∗)← Q(θ∗) +Q(θ∗|θ∗(j))i

i = n?

M-Step
Maximize Q(θ∗) obtaining θ∗(j+1)

Compute
θ(j+1) =

(
β(j+1)>, σ2(j+1), λ(j+1), ν(j+1)

)>

σ2(j+1) = τ (j+1) + ∆(j+1)2

λ(j+1) = ∆(j+1)√
τ(j+1)

θ̂ ← θ(j+1)

criterion ← ||`(θ̂|V,ρ)− `(θ(j)|V,ρ)||
j ← j + 1

no

yes

no yes

yes

no

Figure 2.1: Flow diagram of the SAEM algorithm.
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2.2.2 Computational aspects

The convergence of the SAEM algorithm is ensured by a careful choice of the

simulation data method. Thus, in this subsection, we describe two simulation methods

to generate random samples from the random variable 𝑌 ∼ TSMSN(𝜇, 𝜎2, 𝜆;𝐻, ⌊𝑎, 𝑏⌋).

We concentrate on the truncated skew normal (TSN), truncated skew-t (TST), truncated

skew slash (TSSL) and truncated skew contaminated normal (TSCN) distributions.

We use the sampling/importance resampling method (Method 1), proposed by

Rubin (1987) and Rubin et al. (1988), to generate samples from the TSN and TST models.

For the TSSL and TSCN models we use the stochastic representation of a SMSN random

variable, given in Lemma 1 (Method 2). In the following, we present a brief description

of those two methods:

• Method 1

The sampling/importance resampling (SIR) method is useful to generate an ap-

proximate independent and identically distributed (𝑖𝑖𝑑) sample of size 𝑚, from the

target density 𝑓(𝑦), where 𝑦 ∈ 𝒮𝑌 ⊆ R. Thus, let 𝑔(𝑦) a proposal density with the

same support 𝒮𝑌 . The method consists of two steps:

– Step 1.(Sampling) Generate a random sample 𝑌1, 𝑌2, · · · , 𝑌𝐽 from 𝑔(𝑦) and

construct weights

𝑊 (𝑌𝑗) = 𝑓(𝑌𝑗)
𝑔(𝑌𝑗)

, 𝑗 = 1, . . . , 𝐽

and probabilities

𝜋𝑗 = 𝑊 (𝑌𝑗)∑︀𝐽
𝑗=1 𝑊 (𝑌𝑗)

, 𝑗 = 1, . . . , 𝐽.

– Step 2.(Importance resampling) Draw 𝑚 values (𝑚 << 𝐽) 𝑌 *
1 , ..., 𝑌

*
𝑚 from the

𝐽 values 𝑌1, 𝑌2, . . . , 𝑌𝐽 with respective probabilities 𝜋1, 𝜋2, . . . 𝜋𝐽 . In practice,

Rubin (1987) suggested 𝐽/𝑚 = 20.

For the TSN model, the target density 𝑓(·) is a truncated skew normal distribu-

tion TSN (𝜇, 𝜎2, 𝜆; ⌊𝑎, 𝑏⌋) and as proposal density 𝑔(·), we utilize truncated normal

distribution, TN (𝜇, 𝜎2; ⌊𝑎, 𝑏⌋) . For TST model, the target density 𝑓(·) is a trun-

cated skew-t distribution TST (𝜇, 𝜎2, 𝜆, 𝜈; ⌊𝑎, 𝑏⌋) and as the proposal density 𝑔(·),

we utilize the truncated 𝑡 distribution, Tt (𝜇, 𝜎2, 𝜈; ⌊𝑎, 𝑏⌋) .
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• Method 2

In this case, we need to generate samples from the random variable

𝑌 ∼ TSMSN(𝜇, 𝜎2, 𝜆;𝐻, ⌊𝑎, 𝑏⌋).

Then, since 𝑈 is a positive random variable, we have that

𝑎 < 𝑌 < 𝑏,

which implies

(𝑎− 𝜇)𝑈1/2 < (𝑌 − 𝜇)𝑈1/2 < (𝑏− 𝜇)𝑈1/2.

Considering the stochastic representation given in (1.1.2), we have that 𝑍 = (𝑌 −

𝜇)𝑈1/2, where 𝑍 ∼ SN(0, 𝜎2, 𝜆) . Thus,

(𝑎− 𝜇)𝑈1/2 < 𝑍 < (𝑏− 𝜇)𝑈1/2.

Therefore, the algorithm to generate random samples of TSSL and TSCN models

is as follows:

– Step 1. Generate a random sample 𝑈1, 𝑈2, . . . , 𝑈𝑚 from 𝐻( · |𝜈).

– Step 2. Generate a random sample 𝑍1, 𝑍2, . . . , 𝑍𝑚 from TSN(0, 𝜎2, 𝜆; [𝛾1, 𝛾2]),

where 𝛾1 = (𝑎− 𝜇)𝑈1/2 and 𝛾2 = (𝑏− 𝜇)𝑈1/2, using Method 1.

– Step 3. Using the stochastic representation given in (1.1.2), set 𝑌 = 𝜇+𝑈1/2𝑍.

Consequently, we draw 𝑦
(𝑗)
𝑖 from 𝑓(𝑦𝑖|𝜃*(𝑗), 𝑉𝑖, 𝜌𝑖) in the S-step.

2.2.3 Model selection

Because there is no universal criterion for mixture model selection, we chose

three criteria to compare the models considered in this work. These are the Akaike

information criterion (AIC) (Akaike, 1974), the Bayesian information criterion (BIC)

(Schwarz, 1978) and the efficient determination criterion (EDC) (Bai et al., 1989). Like
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the more popular AIC and BIC criteria, EDC has the form

−2ℓ(̂︀𝜃) + 𝜌𝑐𝑛,

where ℓ(𝜃) is the actual log-likelihood, 𝜌 is the number of free parameters that have to

be estimated in the model and the penalty term 𝑐𝑛 is a convenient sequence of positive

numbers. Here, we use 𝑐𝑛 = 0.2
√
𝑛, a proposal that was considered in Basso et al. (2010)

and Cabral et al. (2012). We have 𝑐𝑛 = 2 for AIC, 𝑐𝑛 = log 𝑛 for BIC, where 𝑛 is the

sample size.

2.3 Approximated standard errors

Standard errors of the ML estimates can be approximated by the inverse of

the observed information matrix, but there is generally no closed form. Thus, we consider

the same strategy used by Meilijson (1989), Lin (2010) and Garay et al. (2015) to get ap-

proximate standard errors of the parameter estimates based on the empirical information

matrix.

Let (V,𝜌) be the vector of observed data. So, considering 𝜃 = (𝛽, 𝜎2, 𝜆,𝜈),

Y𝑐𝑜𝑚𝑝 = (V⊤,𝜌⊤,Y⊤, t⊤,u⊤)⊤ and relations described in the Equation (2.2.5), the em-

pirical information matrix is defined as

I𝑒 (𝜃|V,𝜌) =
𝑛∑︁

𝑖=1
s (𝑉𝑖, 𝜌𝑖|𝜃) s⊤ (𝑉𝑖, 𝜌𝑖|𝜃) − 1

𝑛
S (V,𝜌|𝜃) S⊤ (V,𝜌|𝜃) ,

where S⊤ (V,𝜌|𝜃) = ∑︀𝑛
𝑖=1 s (𝑉𝑖, 𝜌𝑖|𝜃). It is noted from the result of Louis (1982) that, the

individual score can be determined as

s (𝑉𝑖, 𝜌𝑖|𝜃) = 𝜕ℓ(𝜃|𝑉𝑖, 𝜌𝑖)
𝜕𝜃

= E
[︃
𝜕ℓ𝑐(𝜃|Y𝑐𝑜𝑚𝑝𝑖

)
𝜕𝜃

|𝑉𝑖, 𝜌𝑖,𝜃

]︃
. (2.3.1)

Thus, substituting the ML estimates of 𝜃 in (2.3.1), the empirical information

matrix I𝑒 (𝜃|V,𝜌) is reduced to

I𝑒

(︁̂︀𝜃|V,𝜌
)︁

=
𝑛∑︁

𝑖=1
̂︀s𝑖̂︀s⊤

𝑖 , (2.3.2)
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where ̂︀s𝑖 =
(︂̂︀s𝛽𝑖

, ̂︀s𝜎2
𝑖
, ̂︀s𝜆𝑖

, ̂︀s𝜈 𝑖

)︂
is an individual score vector and

̂︀s𝛽𝑖
= E

[︂
𝜕ℓ𝑐(𝜃|Y𝑐𝑜𝑚𝑝𝑖

)
𝜕𝛽

|𝑉𝑖, 𝜌𝑖, ̂︀𝜃]︂ = 1 + ̂︀𝜆2̂︀𝜎2

⎛⎝x𝑖ℰ01𝑖(̂︀𝜃) − ℰ00𝑖(̂︀𝜃)x𝑖x⊤
𝑖
̂︀𝛽 − ̂︀𝜎 ̂︀𝜆√︁

1 + ̂︀𝜆2
x𝑖ℰ10𝑖(̂︀𝜃)

⎞⎠ ,
̂︀s𝜎2

𝑖
= E

[︂
𝜕ℓ𝑐(𝜃|Y𝑐𝑜𝑚𝑝𝑖

)
𝜕𝜎2 |𝑉𝑖, 𝜌𝑖, ̂︀𝜃]︂ = − 1

2̂︀𝜎2 + 1 + ̂︀𝜆2

2̂︀𝜎4

(︁
ℰ02𝑖(̂︀𝜃) − 2ℰ01𝑖(̂︀𝜃)x⊤

𝑖
̂︀𝛽 + ℰ00𝑖(̂︀𝜃)(x⊤

𝑖
̂︀𝛽)2
)︁

−
̂︀𝜆√︁(1 + ̂︀𝜆2)

2̂︀𝜎3

(︁
ℰ11𝑖(̂︀𝜃) − ℰ10𝑖(̂︀𝜃)x⊤

𝑖
̂︀𝛽)︁ ,

̂︀s𝜆𝑖
= E

[︂
𝜕ℓ𝑐(𝜃|Y𝑐𝑜𝑚𝑝𝑖

)
𝜕𝜆

|𝑉𝑖, 𝜌𝑖, ̂︀𝜃]︂ =
̂︀𝜆

1 + ̂︀𝜆2
+
̂︀𝜆̂︀𝜎2

(︁
ℰ02𝑖(̂︀𝜃) − 2ℰ01𝑖(̂︀𝜃)x⊤

𝑖
̂︀𝛽 + ℰ00𝑖(̂︀𝜃)(x⊤

𝑖
̂︀𝛽)2
)︁

+ 1 + 2̂︀𝜆2

̂︀𝜎√︁1 + ̂︀𝜆2

(︁
ℰ11𝑖(̂︀𝜃) − ℰ10𝑖(̂︀𝜃)x⊤

𝑖
̂︀𝛽)︁− ̂︀𝜆ℰ20𝑖(̂︀𝜃),

̂︀s𝜈𝑖 = E
[︂
𝜕ℓ𝑐(𝜃|Y𝑐𝑜𝑚𝑝𝑖

)
𝜕𝜈

|𝑉𝑖, 𝜌𝑖, ̂︀𝜃]︂ = E
[︂
𝜕 log (𝑓(𝑈𝑖|𝜈))

𝜕𝜈
|𝑉𝑖, 𝜌𝑖, ̂︀𝜃]︂ ,

where ℓ𝑐(𝜃|Y𝑐𝑜𝑚𝑝𝑖
) is the log-likelihood formed from the single complete observation 𝑖 and

ℰ𝑟𝑠𝑖(𝜃*(𝑘)) = E[𝑈𝑖𝑇
𝑟
𝑖 𝑌

𝑠
𝑖 |𝑉𝑖, 𝜌𝑖,𝜃

*(𝑘)]. It is important to stress that the standard error of 𝜈

depends heavily on the calculation of E
[︁
log (𝑈𝑖) |𝑉𝑖, 𝜌𝑖, ̂︀𝜃]︁, which relies on computationally

intensive Monte Carlo integrations. In our analysis, we focus solely on comparing the

standard errors of 𝛽⊤, 𝜎2 and 𝜆.

2.4 Simulation studies

In order to examine the performance of our proposed models and algorithm, we

present three simulation studies. The first compare the performance of the estimates for

SMSN-CR models in the presence of outliers on the response variable. The second study

shows that our proposed SAEM algorithm estimates do provide good asymptotic proper-

ties. In the the third study we show the consistency of the approximate standard errors

for the ML estimates of parameters. All computational procedures were implemented

using the R software (R Development Core Team, 2015). We performed all Monte Carlo

simulation studies considering the model SMSN-CR, defined by combining (2.2.1)–(2.2.3)

where 𝛽⊤ = (𝛽1, 𝛽2) = (1, 4), 𝜎2 = 2, 𝜆 = 4 and x⊤
𝑖 = (1, 𝑥𝑖). The values 𝑥𝑖, 𝑖 = 1, . . . , 𝑛,

were generated independently from a uniform distribution on the interval (2,20) and those
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values were kept constant throughout the experiment. For all simulation studies, were

considered a random sample with censoring levels 𝑝 = 0%, 8%, 20% and 35% (i.e.,

0%, 8%, 20% and 35% of the observations in each dataset were censored respectively).

In addition, we also choose the parameters 𝑚 = 20, 𝑐 = 0.3 and 𝑆 = 400 for the SAEM

implementation.

2.4.1 Robustness of the SAEM estimates (Simulation study 1)

The purpose of this simulation study is to compare the performance of the

estimates for some censored regression models in the presence of outliers on the response

variable. We consider the different cases of the SMSN-CR models with fixed 𝜈, i.e.,

SN-CR, ST-CR (𝜈 = 3), SSL-CR (𝜈 = 3) and SCN-CR ((𝜈, 𝛾) = (0.1, 0.1)).

For this case, we generated 200 samples of size 𝑛 = 300 under the SN-CR

model with 𝜀𝑖 ∼ SN(−
√︁

2
𝜋
𝑘1Δ, 𝜎2, 𝜆) and four levels of percentage to the response variable

with left censored values, in each sample. To assess how much the SAEM estimates are

influenced by the presence of outliers, we replaced the observation 𝑦150 by 𝑦150(𝜗) = 𝑦150 +

𝜗, with 𝜗 = 1, 2, . . . , 10. For each replication, we obtained the parameter estimates with

and without outliers, under the four SMSN-CR models. We are interested in evaluating

the relative change in the estimates as a 𝜗 function. Given 𝜃 = (𝛽1, 𝛽2, 𝜎
2, 𝜆), the relative

change is defined by

𝑅𝐶
(︁̂︀𝜃𝑖(𝜗)

)︁
=
⃒⃒⃒⃒
⃒⃒
(︁̂︀𝜃𝑖(𝜗) − ̂︀𝜃𝑖

)︁
̂︀𝜃𝑖

⃒⃒⃒⃒
⃒⃒ ,

where ̂︀𝜃𝑖(𝜗) and ̂︀𝜃𝑖 denote the SAEM estimates of 𝜃𝑖 with and without perturbation,

respectively.

Figure 2.2 show the average values of the relative changes undergone by all the

parameters, for the censoring level of 8%. We note that for all parameters, the average

relative changes suddenly increase under SN-CR model as the 𝜗 value grows. In contrast,

for the SMSN-CR models with heavy tails, namely the ST-CR, SSL-CR and SCN-CR,

the measures vary little, indicating they are more robust than the SN-CR model in the

ability to accommodate discrepant observations. We also conducted simulations with

three censoring rates (𝑝 = 0%, 20% and 35%), obtaining similar results, as shown in

Figures A.1, A.2 and A.3 in Appendix A.
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Figure 2.2: Simulation study 1. Average relative changes on estimates for different per-
turbations 𝜗 and censoring level 𝑝 = 8%.

2.4.2 Asymptotic properties (Simulation study 2)

In this simulation study, the main focus is to evaluate the finite-sample perfor-

mance of the parameter estimates. To do so we generated left-censored samples from the

SMSN-CR model with the different censoring levels 𝑝 = 8%, 20% and 35% and sample

sizes fixed at 𝑛 = 50, 150, 300, 450, 600 and 750. For each combination of sample size and

censoring level, we generated 500 samples from the SMSN-CR models, under four different

situations: SN-CR, ST-CR (𝜈 = 3), SSL-CR (𝜈 = 4) and SCN-CR (𝜈⊤ = (0.1, 0.1)).

As in Garay et al. (2015), to evaluate the estimates obtained by the proposed

SAEM algorithm, we compared the bias (Bias) and the mean square error (MSE) for each

parameter over the 500 replicates. They are defined as

Bias(𝜃𝑖) = 1
500

500∑︁
𝑗=1

(̂︀𝜃(𝑗)
𝑖 − 𝜃𝑖) and MSE(𝜃𝑖) = 1

500

500∑︁
𝑗=1

(̂︀𝜃(𝑗)
𝑖 − 𝜃𝑖)2,
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where ̂︀𝜃(𝑗)
𝑖 is the estimate of 𝜃𝑖 from the 𝑗-th sample for 𝑗 = 1, . . . , 500.

Analyzing Figures 2.3 and 2.4, for the censoring level 𝑝 = 8%, it can be seen

that the Bias and MSE tend to zero in all SMSN-CR models when 𝑛 increases. Thus,

as a general rule the results indicate that the ML estimates of the SMSN-CR models

do provide good asymptotic properties. We also performed simulations with two higher

censoring rates (𝑝 = 20% and 35%) and the patterns of convergence still behaved well

(See Figures A.4 - A.7 given in Appendix A for more details).
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Figure 2.3: Simulation study 2. Bias of parameters 𝛽1, 𝛽2, 𝜎2 and 𝜆 for SMSN models
with level of censoring 𝑝 = 8%.
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Figure 2.4: Simulation study 2. MSE of parameters 𝛽1, 𝛽2, 𝜎2 and 𝜆 for SMSN models
with level of censoring 𝑝 = 8%.

2.4.3 Consistency of the estimates of the standard errors (Sim-

ulation study 3)

The design considered in this simulation study is the same as used in Subsection

2.4.1. Here, we examine the consistency of the approximation method, suggested in

Section 2.3, to get the standard errors (SE) of ML estimates ̂︀𝜃 = ( ̂︀𝛽1, ̂︀𝛽2,
̂︁𝜎2, ̂︀𝜆) for the

SMSN-CR models, considering four censoring levels 𝑝 = 0%, 8%, 20% and 35%.

We generated 500 random samples of size 𝑛 = 450 for the different SMSN-

CR models: SN-CR, ST-CR (𝜈 = 3) , SSL-CR (𝜈 = 4) and SCN-CR (𝜈⊤ = (0.1, 0.1)).

For each sample, we obtained the ML estimates of 𝜃 = (𝛽1, 𝛽2, 𝜎
2, 𝜆), their SE using the

technique proposed in Section 2.3 and the 95% normal approximation confidence intervals

for each parameter, i.e., ̂︀𝜃 ± 1.96SE.
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Considering all the ML estimates obtained (across 500 samples), we computed:

• the Monte Carlo standard deviation of ̂︀𝜃𝑖, defined by

MC-Sd =

⎯⎸⎸⎸⎷ 1
499

⎡⎣500∑︁
𝑗=1

(︁̂︀𝜃(𝑗)
𝑖

)︁2
− 500

(︂̂︀𝜃𝑖

)︂2
⎤⎦ where ̂︀𝜃𝑖 = 1

500

500∑︁
𝑗=1

̂︀𝜃(𝑗)
𝑖 ;

• the average values of the approximate standard errors of the SAEM estimates ob-

tained through the method described in Subsection 2.2.1 using the empirical infor-

mation matrix, denoted by AV-SE, and

• the percentage of times that the confidence intervals cover the true value of the

parameter (COV MC).

Table 2.1 shows that in general, the COV MC for the parameters is quite

stable for the censoring levels 𝑝 = 0%, 8%, and 20%, but it tends to be lower than

the nominal level (95%) when considering a high level of censoring, say 𝑝 = 35%. This

table also provides the average values of the approximate standard errors of the EM

estimates obtained through the information-based method described in Subsection 2.2.1

(AV SE) and the Monte Carlo standard deviation (MC Sd) for the parameters. Table 2.1

also reveals that the estimation method of the standard errors provides relatively close

results for the SMSN models, indicating that the proposed empirical information matrix(

Equation 2.3.2) is reliable.
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Table 2.1: Simulation study 3. Results based on 500 simulated samples. MC Sd, AVE
SE and COV MC are the respective average of the standard deviations, the average
of the approximate standard error obtained through the information-based method and
the coverage probability from fitting SMSN-CR models under various levels of censoring
proportion.

Cens. Level ̂︀𝜃𝑖
SN-CR ST-CR

MC-Sd AV-SE COV MC MC-Sd AV-SE COV MC

0%

̂︀𝛽1 0.0897 0.0847 92.60% 0.1099 0.1126 95.40%̂︀𝛽2 0.0070 0.0066 92.80% 0.0072 0.0076 97.00%̂︀𝜎2 0.1803 0.1828 95.40% 0.2422 0.2411 95.40%̂︀𝜆 0.7739 0.7590 95.60% 0.7978 0.7884 95.00%

8%

̂︀𝛽1 0.0952 0.0981 96.00% 0.1331 0.1290 94.60%̂︀𝛽2 0.0076 0.0077 94.40% 0.0093 0.0089 93.80%̂︀𝜎2 0.1878 0.1878 92.80% 0.2443 0.2484 95.60%̂︀𝜆 0.8127 0.7856 95.80% 0.8468 0.8460 95.00%

20%

̂︀𝛽1 0.1319 0.1314 94.20% 0.1612 0.1562 94.00%̂︀𝛽2 0.0095 0.0096 95.00% 0.0106 0.0105 94.20%̂︀𝜎2 0.1827 0.2035 97.60% 0.2902 0.2653 92.60%̂︀𝜆 0.7963 0.8822 97.60% 0.9836 0.9104 92.80%

35%

̂︀𝛽1 0.1922 0.1881 94.60% 0.2452 0.2344 90.80%̂︀𝛽2 0.0134 0.0130 94.40% 0.0158 0.0153 93.40%̂︀𝜎2 0.2185 0.2262 95.20% 0.2866 0.2835 93.40%̂︀𝜆 0.8434 0.9606 94.60% 0.7929 0.9635 92.20%

Cens. Level ̂︀𝜃𝑖
SCN-CR SSL-CR

MC-Sd AV-SE COV MC MC-Sd AV-SE COV MC

0%

̂︀𝛽1 0.0982 0.0995 95.40% 0.1001 0.0953 92.80%̂︀𝛽2 0.0072 0.0074 96.40% 0.0076 0.0075 94.40%̂︀𝜎2 0.2260 0.2184 94.40% 0.2030 0.1921 92.80%̂︀𝜆 0.8461 0.8028 95.00% 0.8115 0.7716 95.00%

8%

̂︀𝛽1 0.1152 0.1151 93.80% 0.1188 0.1176 94.40%̂︀𝛽2 0.0088 0.0086 95.20% 0.0088 0.0088 93.20%̂︀𝜎2 0.2251 0.2244 93.80% 0.1940 0.1988 95.60%̂︀𝜆 0.8343 0.8303 94.20% 0.7410 0.8023 96.60%

20%

̂︀𝛽1 0.1372 0.1405 92.60% 0.1484 0.1523 94.80%̂︀𝛽2 0.0103 0.0102 93.20% 0.0105 0.0109 94.60%̂︀𝜎2 0.2498 0.2431 95.80% 0.2080 0.2129 94.60%̂︀𝜆 0.8607 0.8978 95.20% 0.8307 0.8785 97.00%

35%

̂︀𝛽1 0.2032 0.2122 88.20% 0.2037 0.2125 93.20%̂︀𝛽2 0.0139 0.0142 90.60% 0.0139 0.0145 93.40%̂︀𝜎2 0.2657 0.2653 93.80% 0.2304 0.2354 93.20%̂︀𝜆 0.8156 0.9845 93.80% 0.8894 0.9914 96.40%
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2.5 Application: Wage rate dataset

In this section we provide an application of the results derived in the previous

sections using the data described by Mroz (1987). The dataset consists of 753 married

white women with ages between 30 and 60 years old in 1975, with 428 women who worked

at some point during that year. The response variable is the wage rate, which represents

a measure of the wage of the housewife known as the average hourly earnings. If the wage

rates are set equal to zero, these wives did not work in 1975. Therefore, these observations

are considered left censored at zero.

The variables involved in the study were:

• 𝑦𝑖: defined as the average hourly earnings (wage rates);

• 𝑥𝑖1: wife’s age;

• 𝑥𝑖2: wife’s years of schooling;

• 𝑥𝑖3: the number of children younger than six years old in the household;

• 𝑥𝑖4: the number of children between the ages of six and nineteen.

These data were analyzed by Arellano-Valle et al. (2012) using the Student-

t censored regression model; by Garay et al. (2015) considering SMN-CR models and,

more recently by Massuia et al. (2015) to evaluated the performance of the SMSN-CR

models from a Bayesian perspective. Here, we revisit this dataset in order to evaluate the

performance of the proposed SAEM algorithm to obtain ML estimates.

Table 2.2 contains the ML estimates for the parameters of the four models, i.e.,

SN-CR, ST-CR, SSL-CR and SCN-CR models, together with their corresponding stan-

dard errors calculated via the empirical information matrix. For the ST and SSL models,

the estimated value of 𝜈 is small, indicating the lack of adequacy of the skew-normal (and

normal) assumption for the wage rates dataset. Moreover, the results obtained under

SN-CR and ST-CR models are consistent with those presented in Massuia et al. (2015).

The SCN-CR and SSL-CR models presented estimates for 𝜆 closed to zero, indicating

coherence with the results presented in Garay et al. (2015). Table 2.3 compares the fit

of the four SMSN models using the model selection criteria discussed in Subsection 2.2.3.

Note that the SMSN distributions with heavy tails have better fit than the SN model.
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Particularly, the ST distribution fits the data better than the other three distributions.

The comparison process is conducted now considering the symmetric SMN distributions

(vide Garay et al. (2015)) and we observe that according model selection criteria the

ST-CR model still presents a better overall fit than the other four models (see Table A.1

given in Appendix A).

In order to study departures from the error assumption as well as presence of

outliers, we analyzed the transformation of the martingale type residual (MT), denoted

by 𝑟𝑀𝑇𝑖
, proposed by Barros et al. (2010) for censored models. These residuals are defined

by

𝑟𝑀𝑇𝑖
= sign(𝑟𝑀𝑖

)
√︁

−2[𝑟𝑀𝑖
+ 𝜌𝑖 log(𝜌𝑖 − 𝑟𝑀𝑖

)], 𝑖 = 1, . . . , 𝑛. (2.5.1)

where 𝑟𝑀𝑖
= 𝜌𝑖 +log(𝑆(𝑦𝑖; ̂︀𝜃)) is the martingale residual, with 𝜌𝑖 = 0, 1 indicating whether

the observation is censored or not, respectively. 𝑆(𝑦𝑖, ̂︀𝜃) is the SAEM estimate of the

survival function of 𝑦 – see more details in Ortega et al. (2003) and Garay et al. (2015).

The normal probability plot of the MT residuals with generated envelopes is presented in

Figure 2.5. From this figure, we note that the SMSN-CR models with heavy tails present

better fit than the SN-CR model.

Table 2.2: Wage rate dataset. Parameter estimates of the SMSN-CR models and SE for
Wage rate dataset.

SN-CR ST-CR SCN-CR SSL-CR

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

𝛽1 -1.3355 1.7627 -4.1685 1.4392 -1.3291 1.5026 -1.3489 1.4221
𝛽2 -0.1185 0.0272 -0.0722 0.0223 -0.1061 0.0229 -0.1053 0.0226
𝛽3 0.6917 0.0809 0.6541 0.0576 0.6490 0.0611 0.6434 0.0620
𝛽4 -3.2502 0.4345 -2.5956 0.3291 -3.0685 0.3642 -3.0480 0.3628
𝛽5 -0.2602 0.1433 -0.2676 0.1136 -0.3016 0.1199 -0.2901 0.1176
𝜎2 32.8512 2.0202 19.4969 3.1730 11.8519 3.7339 6.7930 1.1830
𝜆 1.5454 0.4412 -1.6976 0.2942 0.1273 1.4542 -0.2144 0.3698
𝜈 - - 2.5000 - 0.0537 - 1.45 -
𝛾 - - - - 0.0645 - - -
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Table 2.3: Wage rate dataset. Model selection criteria (values in bold correspond to the
best model).

Criteria SN-CR ST-CR SCN-CR SSL-CR

log-likelihood -1470.617 -1410.583 -1430.992 -1435.426
AIC 2955.234 2837.166 2879.984 2884.852
BIC 2987.602 2874.159 2921.601 2917.220
EDC 2979.651 2865.071 2911.378 2909.269

2.6 Conclusions

In this chapter, we have proposed a linear regression models with censored

responses based on scale mixtures of skew-normal distributions, denoted by SMSN-CR,

as a replacement for the conventional choice of normal (or symmetric) distribution for

censored linear models. Our results generalize the works of Barros et al. (2010), Arellano-

Valle et al. (2012), Massuia et al. (2014) and Garay et al. (2015) from a frequentist point

of view. In the context of SMSN-CR models, a Bayesian analysis was developed recently

by Massuia et al. (2015). However, to the best of our knowledge, there are no previous

studies of a likelihood based perspective related to this topic.

In order to explore the performance of our proposed models and SAEM algo-

rithm, we developed three simulation studies. The study compared the performance of

the estimates for SMSN-CR models in the presence of outliers on the response variable.

The second study showed that our proposed SAEM algorithm estimates do provide good

asymptotic properties. The third study showed the consistency of the approximate of

standard errors for the ML estimates of parameters. We also applied our method to the

wage rate dataset of Mroz (1987), in order to illustrate how the procedure developed

can be used to evaluate model assumptions and obtain robust parameter estimates. As

expected, our proposed SMSN-CR with heavy tails models, as ST-CR, SSL-CR and SCN-

CR models, present better results than the SN-CR model. It is interesting to note that

the ST-CR model still presents a better overall fit than the symmetrical SMN-CR models.
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Figure 2.5: Wage rate dataset. Envelopes of the MT residuals for the SMSN-CR models



Chapter 3

Diagnostic Analysis

3.1 Introduction

In the framework of censored regression models, the random errors are rou-

tinely assumed to have a normal distribution for mathematical convenience. However,

it is well known that several phenomena do not always fit under the assumptions of the

normal model, yielding data with a distribution having simultaneously heavier tails and

skewness. A good alternative is to consider observational errors with scale mixtures of

skew normal (SMSN) distributions, so that the SMSN censored regression (SMSN-CR)

model is defined. In Chapter 2 we developed a full likelihood approach for SMSN-CR

models, including the implementation of the SAEM algorithm for maximum likelihood

(ML) estimation with the likelihood function, predictions of unobservable values of the

response and asymptotic standard errors as byproducts.

Since the classic normal model is very sensitive to outlying observations, the

assessment of robustness aspects of the parameter estimates is an important concern.

The deletion method, which consists of studying the impact on the parameter estimates

after dropping individual observations, is probably the most employed technique to de-

tect influential observations – see Cook and Weisberg (1982) and the references therein.

Nevertheless, research on the influence of small perturbations in the model/data on the pa-

rameter estimates has received increasing attention in recent years. This can be achieved

by performing local influence analysis, a general statistical technique used to assess the

stability of the estimation outputs with respect to the model inputs. Following the pio-

neering work of Cook (1986), this area of research has received considerable attention in
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the statistical literature in linear regression models. However, for the SMSN-CR model

the marginal log-likelihood function is complex for many applications, and a direct appli-

cation of Cook’s approach may be very difficult, because these measures involve the first

and second partial derivatives of this function. The work of Zhu and Lee (2001) presents

an approach to perform local influence analysis for general statistical models with missing

data by working with a Q-displacement function, closely related to the conditional ex-

pectation of the complete-data log-likelihood at the E-step of the SAEM algorithm. This

approach produces results very similar to those obtained from Cook’s method. Moreover,

the case-deletion can be studied by the Q-displacement function following the approach

of Zhu et al. (2001) and Zhu et al. (2009). So, we develop in this chapter methods to

obtain case-deletion measures and local influence measures by using the method of Zhu

et al. (2001) (see also Zhu and Lee, 2001; Lee and Xu, 2004) in the context of regres-

sion models with censored data. This method or modifications of it have been applied

successfully to perform influence analysis in several regression models, see for example

Bolfarine et al. (2007), Ying-Zi et al. (2009), Zeller et al. (2010), Zeller et al. (2011),

Lachos et al. (2011), Santana et al. (2011), Matos et al. (2013), among others. Using this

general method and also applying the method of Lee and Xu (2004), in this chapter we

develop a local influence approach for SMSN-CR models and show that it leads to simple

influence measures.

3.2 Case-deletion Measures

Case-deletion is a common approach to study the effect of dropping the 𝑖−th

case from the dataset. From now on, the subscript “[𝑖]” will denote the original dataset

with the 𝑖−th case deleted. For example, Y𝑐𝑜𝑚𝑝[𝑖] corresponds the complete data with

the 𝑖−th observation deleted. Let ̂︀𝜃[𝑖] =
(︂̂︀𝛽⊤

[𝑖],
̂︁𝜎2[𝑖], ̂︀𝜆[𝑖]

)︂⊤
be the maximizer of the func-

tion 𝑄[𝑖]
(︁
𝜃|̂︀𝜃)︁ = E

[︁
ℓ𝑐𝑜𝑚𝑝

(︁
𝜃|Y𝑐𝑜𝑚𝑝[𝑖]

)︁
|V[𝑖],𝜌[𝑖],

̂︀𝜃]︁ , where ̂︀𝜃 =
(︂̂︀𝛽⊤

,̂︁𝜎2, ̂︀𝜆)︂⊤
is the ML

estimates of 𝜃. To assess the influence of the 𝑖−th case on ̂︀𝜃, we compare the difference

between ̂︀𝜃[𝑖] and ̂︀𝜃. Note that 𝑄
(︁
𝜃|̂︀𝜃)︁ achieves its global of a maximum at ̂︀𝜃, if deletion

of a case seriously influences the estimates, so more attention should be paid to that case.

In other words, if ̂︀𝜃[𝑖] is fairly far from ̂︀𝜃 in some sense, then the 𝑖−th case could be

considered influential. Since ̂︀𝜃[𝑖] is needed for every case, the total computational burden



48

involved can be quite heavy, so the following one-step approximation ̃︀𝜃[𝑖] is used to reduce

the burden (Cook and Weisberg, 1982):

̃︀𝜃[𝑖] = ̂︀𝜃 +
{︁
−𝑄̈

(︁̂︀𝜃|̂︀𝜃)︁}︁−1
𝑄̇[𝑖]

(︁̂︀𝜃|̂︀𝜃)︁ , for 𝑖 = 1, 2, . . . , 𝑛, (3.2.1)

where 𝑄̈
(︁̂︀𝜃|̂︀𝜃)︁ =

{︂
𝜕2

𝜕𝜃𝜕𝜃⊤𝑄
(︁
𝜃|̂︀𝜃)︁}︂ |

𝜃=̂︀𝜃 and 𝑄̇[𝑖]
(︁̂︀𝜃|̂︀𝜃)︁ =

{︁
𝜕

𝜕𝜃𝑄[𝑖]
(︁
𝜃|̂︀𝜃)︁}︁ |

𝜃=̂︀𝜃 represent

the Hessian matrix and the individual score vector, respectively.

Thus, 𝑄̇[𝑖]
(︁̂︀𝜃|̂︀𝜃)︁ =

(︁
𝑄̇[𝑖]𝛽

(︁̂︀𝜃|̂︀𝜃)︁ , 𝑄̇[𝑖]𝜎2

(︁̂︀𝜃|̂︀𝜃)︁ , 𝑄̇[𝑖]𝜆
(︁̂︀𝜃|̂︀𝜃)︁)︁ , with its elements

given by

𝑄̇[𝑖]𝛽
(︁̂︀𝜃|̂︀𝜃)︁ =

{︂
𝜕

𝜕𝛽
𝑄[𝑖]

(︁
𝜃|̂︀𝜃)︁}︂ |

𝜃=̂︀𝜃 =
̂︀𝜆2 + 1̂︀𝜎2

̂︀𝐸1[𝑖],

𝑄̇[𝑖]𝜎2

(︁̂︀𝜃|̂︀𝜃)︁ =
{︂

𝜕

𝜕𝜎2𝑄[𝑖]
(︁
𝜃|̂︀𝜃)︁}︂ |

𝜃=̂︀𝜃 = − 1
2̂︀𝜎2

⎡⎣(𝑛− 1) −
̂︀𝜆2 + 1̂︀𝜎2

̂︀𝐸2[𝑖] +
̂︀𝜆√︁̂︀𝜆2 + 1̂︀𝜎 ̂︀𝐸3[𝑖]

⎤⎦ ,
𝑄̇[𝑖]𝜆

(︁̂︀𝜃|̂︀𝜃)︁ =
{︂
𝜕

𝜕𝜆
𝑄[𝑖]

(︁
𝜃|̂︀𝜃)︁}︂ |

𝜃=̂︀𝜃 = (𝑛− 1)̂︀𝜆̂︀𝜆2 + 1
−
̂︀𝜆̂︀𝜎2
̂︀𝐸2[𝑖] + 2̂︀𝜆2 + 1

̂︀𝜎 (︁̂︀𝜆2 + 1
)︁1/2

̂︀𝐸3[𝑖] − ̂︀𝜆∑︁
𝑗 ̸=𝑖

ℰ20𝑗(̂︀𝜃),

where

̂︀𝐸1[𝑖] =
∑︁
𝑗 ̸=𝑖

⎡⎣x𝑗ℰ01𝑗(̂︀𝜃) − ℰ00𝑗(̂︀𝜃)x𝑗x⊤
𝑗
̂︀𝛽 −

̂︀𝜎̂︀𝜆√︁̂︀𝜆2 + 1
x𝑗ℰ10𝑗(̂︀𝜃)

⎤⎦ , (3.2.2)

̂︀𝐸2[𝑖] =
∑︁
𝑗 ̸=𝑖

[︁
ℰ02𝑗(̂︀𝜃) − 2ℰ01𝑗(̂︀𝜃)x⊤

𝑗
̂︀𝛽 + ℰ00𝑗(̂︀𝜃)(x⊤

𝑗
̂︀𝛽)2

]︁
, (3.2.3)

and ̂︀𝐸3[𝑖] =
∑︁
𝑗 ̸=𝑖

[︁
ℰ11𝑗(̂︀𝜃) − ℰ10𝑗(̂︀𝜃)x⊤

𝑗
̂︀𝛽]︁ . (3.2.4)

Case-deletion measures can be developed to assess influential observations,

such as the generalized Cook’s distance and the likelihood distance (Zhu et al., 2001).

To assess the influence of the 𝑖−th case on the EM estimate ̂︀𝜃, we need to compare ̂︀𝜃[𝑖]

and ̂︀𝜃. If ̂︀𝜃[𝑖] is far from ̂︀𝜃, in some sense, then the 𝑖−th case is regarded as influential.

Based on the metric for measuring the distance between ̂︀𝜃[𝑖] and ̂︀𝜃 proposed by Zhu et al.

(2001), we consider here the following generalized Cook’s distance:

𝐺𝐷𝑖 =
(︁̂︀𝜃[𝑖] − ̂︀𝜃)︁⊤ {︁

−𝑄̈
(︁̂︀𝜃|̂︀𝜃)︁}︁ (︁̂︀𝜃[𝑖] − ̂︀𝜃)︁ , 𝑖 = 1, . . . , 𝑛. (3.2.5)

Upon substituting (3.2.1) into (3.2.5), we obtain the following approximation
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of the generalized Cook’s distance:

𝐺𝐷1
𝑖 = 𝑄̇[𝑖]

(︁̂︀𝜃|̂︀𝜃)︁⊤ {︁
−𝑄̈

(︁̂︀𝜃|̂︀𝜃)︁}︁−1
𝑄̇[𝑖]

(︁̂︀𝜃|̂︀𝜃)︁ .
Another measure of the influence of the 𝑖−th case is the following 𝑄-distance

function, similar to the likelihood distance 𝐿𝐷𝑖 (Cook and Weisberg, 1982), defined as:

𝑄𝐷𝑖 = 2
{︁
𝑄
(︁̂︀𝜃|̂︀𝜃)︁−𝑄

(︁̂︀𝜃[𝑖]|̂︀𝜃)︁}︁ . (3.2.6)

We can compute an approximation of the likelihood displacement 𝑄𝐷𝑖 by

substituting (3.2.1) into (3.2.6), resulting in the following approximation 𝑄𝐷1
𝑖 of 𝑄𝐷𝑖:

𝑄𝐷1
𝑖 = 2

{︁
𝑄
(︁̂︀𝜃|̂︀𝜃)︁−𝑄

(︁̃︀𝜃[𝑖]|̂︀𝜃)︁}︁ .
The approximated measures 𝑄𝐷1 and 𝐺𝐷1

𝑖 have been satisfactorily applied in

the context of censored regression models by Matos et al. (2013) and Massuia et al. (2014).

The Hessian matrix 𝑄̈
(︁̂︀𝜃|̂︀𝜃)︁

In order to obtain the measures for case-deletion diagnostics and local influence

considering a particular perturbation scheme, it is necessary to compute 𝑄̈
(︁̂︀𝜃|̂︀𝜃)︁, where

𝜃 =
(︁
𝛽⊤, 𝜎2, 𝜆

)︁⊤
is the original parameter vector.

However, from Zeller et al. (2011), considering the parameterizations 𝜃* =

(𝜃*
1,𝜃

*
2) where 𝜃*

1 =
(︁
𝛽⊤,Δ

)︁⊤
and 𝜃*

2 = 𝜏 , we have that the Hessian matrix of 𝜃* is

block-diagonal of the form

𝑄̈
(︁̂︀𝜃*|̂︀𝜃*)︁ = block diag

{︁
𝑄̈𝜃*

1

(︁̂︀𝜃*|̂︀𝜃*)︁
, 𝑄̈𝜃*

2

(︁̂︀𝜃*|̂︀𝜃*)︁}︁
,

where

𝑄̈𝜃*
1

(︁̂︀𝜃*|̂︀𝜃*)︁ =
{︃

𝜕2

𝜕𝜃*
1𝜕𝜃*

1
⊤𝑄

(︁
𝜃*|̂︀𝜃*)︁}︃ |

𝜃*
=̂︀𝜃* = −1̂︀𝜏

⎛⎜⎝∑︀𝑛
𝑖=1 ℰ00𝑖(̂︁𝜃*)(x𝑖x⊤

𝑖 ) ∑︀𝑛
𝑖=1 x𝑖ℰ01𝑖(̂︁𝜃*)∑︀𝑛

𝑖=1 x𝑖ℰ01𝑖(̂︁𝜃*) ∑︀𝑛
𝑖=1 ℰ20𝑖(̂︁𝜃*)

⎞⎟⎠
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and

𝑄̈𝜃*
2

(︁̂︀𝜃*|̂︀𝜃*)︁ =
{︃

𝜕2

𝜕𝜃*
2𝜕𝜃*

2
⊤𝑄

(︁
𝜃*|̂︀𝜃*)︁}︃ |

𝜃*
=̂︀𝜃*

= 𝑛

2̂︀𝜏 2 − 1̂︀𝜏 3

(︃
𝑛∑︁

𝑖=1

[︁
ℰ02𝑖(̂︁𝜃*) − 2ℰ01𝑖(̂︁𝜃*)(x⊤

𝑖
̂︀𝛽) + ℰ00𝑖(̂︁𝜃*)(x⊤

𝑖
̂︀𝛽)2 − 2 ̂︀Δℰ11𝑖(̂︁𝜃*)

+ 2 ̂︀Δℰ10𝑖(̂︁𝜃*)(x⊤
𝑖
̂︀𝛽) + ̂︀Δ2ℰ20𝑖(̂︁𝜃*)

]︁)︁
.

Now, returning to our original parameterization, we find the Hessian matrix

for the original parameter vector 𝜃,

𝑄̈
(︁̂︀𝜃|̂︀𝜃)︁ = J

(︁
𝜃*|̂︀𝜃)︁ 𝑄̈ (︁̂︀𝜃*|̂︁𝜃*

)︁
J
(︁
𝜃*|̂︀𝜃)︁⊤

, (3.2.7)

where J
(︁
𝜃*|̂︀𝜃)︁ is the Jacobian matrix of order (𝑝+ 2) × (𝑝+ 2), defined by:

J
(︁
𝜃*|̂︀𝜃)︁ = 𝜕𝜃*

𝜕𝜃
|
𝜃=̂︀𝜃 =

⎛⎜⎜⎜⎜⎜⎝
I𝑝 0𝑝 0𝑝

0⊤
𝑝

̂︀𝜆
2̂︀𝜎√̂︀𝜆2+1

1̂︀𝜆2+1

0⊤
𝑝

̂︀𝜎
(̂︀𝜆2+1)3/2 − 2̂︀𝜆̂︀𝜎2

(̂︀𝜆2+1)2

⎞⎟⎟⎟⎟⎟⎠ ,

where I𝑝 represents the identity matrix of order 𝑝× 𝑝 and 0𝑝 is a zero 𝑝× 1 vector.

3.3 Local Influence

In this section, we derive the normal curvature of the local influence on the ba-

sis of the 𝑄-function previously determined for some common perturbation schemes, either

in the model or in the data. Thus, consider a perturbation vector 𝜔 = (𝜔1, ..., 𝜔𝑔)⊤ vary-

ing in an open region Ω ⊂ R𝑔. Let ℓ𝑐𝑜𝑚𝑝 (𝜃|Y𝑐𝑜𝑚𝑝,𝜔) be the complete-data log-likelihood

of the perturbed model. We assume there is a 𝜔0 ∈ Ω such that ℓ𝑐𝑜𝑚𝑝 (𝜃|Y𝑐𝑜𝑚𝑝,𝜔0) =

ℓ𝑐𝑜𝑚𝑝 (𝜃|Y𝑐𝑜𝑚𝑝) for all 𝜃. Let us define

𝑄𝜔
(︁
𝜃|̂︀𝜃)︁ = E

[︁
ℓ𝑐𝑜𝑚𝑝 (𝜃|Y𝑐𝑜𝑚𝑝,𝜔) |V,𝜌, ̂︀𝜃]︁ and

̂︀𝜃(𝜔) = arg max𝜃

{︁
𝑄𝜔

(︁
𝜃|̂︀𝜃)︁}︁ =

(︁̂︀𝛽(𝜔)⊤,̂︁𝜎2(𝜔), ̂︀𝜆(𝜔)
)︁⊤
.
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The influence graph is then defined as 𝛼 (𝜔) =
(︁
𝜔⊤, 𝑓𝑄(𝜔)

)︁⊤
, where 𝑓𝑄(𝜔) is

the Q-displacement Function, defined as follows:

𝑓𝑄(𝜔) = 2
[︁
𝑄
(︁̂︀𝜃|̂︀𝜃)︁−𝑄

(︁̂︀𝜃(𝜔)|̂︀𝜃)︁]︁ .
Following the approach of Cook (1986) and Zhu and Lee (2001), the normal

curvature 𝐶𝑓𝑄,d of 𝛼(𝜔) at 𝜔0 in the direction of some unit vector d can be used to

summarize the local behavior of the Q-displacement function. Let

∇𝜃,𝜔 =
{︃

𝜕2

𝜕𝜃𝜕𝜔⊤𝑄𝜔
(︁
𝜃|̂︀𝜃)︁}︃ |

𝜃=̂︀𝜃 and 𝑄̈𝜔0 =
{︃

𝜕2

𝜕𝜔𝜕𝜔⊤𝑄
(︁̂︀𝜃(𝜔)|̂︀𝜃)︁}︃ |𝜔=𝜔0 .

Then, it can be shown that

𝐶𝑓𝑄,d = −2d⊤𝑄̈𝜔0d = 2d⊤∇⊤
𝜃,𝜔0

{︁
−𝑄̈

(︁̂︀𝜃|̂︀𝜃)︁}︁−1
∇𝜃,𝜔0

d,

where 𝑄̈
(︁̂︀𝜃|̂︀𝜃)︁ is as defined in (3.2.7).

Following the same procedure adopted by Cook (1986), the information pro-

vided by the symmetric matrix −𝑄̈𝜔0 is quite useful for detecting influential observations.

First, we consider the spectral decomposition

−2𝑄̈𝜔0 =
𝑔∑︁

𝑘=1
𝜁𝑘𝜀𝑘𝜀⊤

𝑘 ,

where {(𝜁𝑘, 𝜀𝑘), 𝑘 = 1, . . . , 𝑔} are eigenvalue–eigenvector pairs of −2𝑄̈𝜔0 with 𝜁1 ≥ . . . ≥

𝜁𝑟 > 𝜁𝑟+1 = . . . = 0 and orthonormal eigenvectors 𝜀𝑘, for 𝑘 = 1, . . . , 𝑔. Zhu and Lee (2001)

proposed to inspect all eigenvectors corresponding to nonzero eigenvalues to capture more

information, according to the following method:

𝜁𝑘 = 𝜁𝑘

𝜁1 + . . .+ 𝜁𝑟

, 𝜀2
𝑘 = (𝜀2

𝑘1, . . . , 𝜀
2
𝑘𝑔)⊤ and 𝑀(0) =

𝑟∑︁
𝑘=1

𝜁𝑘𝜀2
𝑘.

Let 𝑀(0)𝑙 = ∑︀𝑟
𝑘=1 𝜁𝑘𝜀

2
𝑘𝑙 be the 𝑙−th component of 𝑀(0). The assessment of influential

cases is based on visual inspection of 𝑀(0)𝑙, 𝑙 = 1, . . . , 𝑔 plotted against the index 𝑙. The

𝑙−th case may be regarded as influential if 𝑀(0)𝑙 is larger than a specified benchmark.

There is some inconvenience when using the normal curvature to decide about

the influence of the observations, since 𝐶𝑓𝑄,d may assume any value and it is not invariant
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under a uniform change of scale. Based on the work of Poon and Poon (1999), Zhu and

Lee (2001) considered using the following conformal normal curvature:

𝐵𝑓𝑄,d =
𝐶𝑓𝑄,d

tr
[︁
−2𝑄̈𝜔0

]︁ ,
whose computation is quite simple and also has the property that 0 ≤ 𝐵𝑓𝑄,d ≤ 1. Let d𝑙

be a basic perturbation vector with 𝑙-th entry equal to 1 and all other entries equal to 0.

Zhu and Lee (2001) showed that 𝑀(0)𝑙 = 𝐵𝑓𝑄,d𝑙
for all 𝑙. We can therefore obtain 𝑀(0)𝑙

via 𝐵𝑓𝑄,d𝑙
.

So far, there is no general rule to judge how large the influence of a given

case is. Let 𝑀(0) and 𝑆𝑀(0) denote, respectively, the mean and the standard error of

{𝑀(0)𝑙; 𝑙 = 1, . . . , 𝑔}. Using the fact that the vectors 𝜀𝑘 are orthonormal, it is easy to

prove that 𝑀(0) = 1/𝑔. Poon and Poon (1999) proposed to use 2𝑀(0) as a benchmark

for 𝑀(0). However, one may use different functions of 𝑀(0). For instance, Zhu and

Lee (2001) proposed using 𝑀(0) + 2𝑆𝑀(0) as a benchmark to take into account the

variance of {𝑀(0)𝑙; 𝑙 = 1, . . . , 𝑔}. According to Lee and Xu (2004), the exact choice of

the function of 𝑀(0) as the benchmark is subjective. For example, they proposed using

𝑀(0) + 𝑐*𝑆𝑀(0), where 𝑐* is a selected constant, and depending on the application, 𝑐*

may be taken to be any value.

3.4 Perturbation schemes

We will evaluate the matrix ∇𝜃,𝜔0
under the following perturbation schemes

for the SMSN-CR model: case-weight perturbation to detect observations with outstanding

contribution of the log-likelihood function and that can exercise high influence on the

maximum likelihood estimates; response perturbation of the response values, which can

indicate observations with large influence on their own predicted values; scale perturbation

of 𝜎2 which can reveal individuals that are most influential, in the sense of the likelihood

displacement on the scale structure; and finally explanatory variables perturbation.

For each perturbation scheme, we have the partitioned form:

∇𝜃,𝜔0
=
(︁
∇⊤

𝛽,𝜔0 ,∇
⊤
𝜎2,𝜔0 ,∇

⊤
𝜆,𝜔0

)︁⊤
,
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where

∇𝛽,𝜔0 =
{︃

𝜕2

𝜕𝛽𝜕𝜔⊤𝑄𝜔
(︁
𝜃|̂︀𝜃)︁}︃ |

𝜃=̂︀𝜃(𝜔0)
∈ R𝑝×𝑔,

∇𝜎2,𝜔0 =
{︃

𝜕2

𝜕𝜎2𝜕𝜔⊤𝑄𝜔
(︁
𝜃|̂︀𝜃)︁}︃ |

𝜃=̂︀𝜃(𝜔0)
∈ R1×𝑔,

∇𝜆,𝜔0 =
{︃

𝜕2

𝜕𝜆𝜕𝜔⊤𝑄𝜔
(︁
𝜃|̂︀𝜃)︁}︃ |

𝜃=̂︀𝜃(𝜔0)
∈ R1×𝑔.

3.4.1 Case-weight perturbation

First, we consider an arbitrary attribution of weights to the expected value
of the complete-data log-likelihood function (perturbed 𝑄-function), which can capture
departures in general directions, represented by writing:

𝑄𝜔
(︁
𝜃|̂︀𝜃)︁ = E

[︁
ℓ𝑐𝑜𝑚𝑝 (𝜃|Y𝑐𝑜𝑚𝑝,𝜔) |V,𝜌, ̂︀𝜃]︁ =

𝑛∑︁
𝑖=1

𝜔𝑖E
[︁
ℓ𝑐𝑜𝑚𝑝 (𝜃|𝑌𝑐𝑜𝑚𝑝𝑖) |𝑉𝑖, 𝜌𝑖, ̂︀𝜃]︁ =

𝑛∑︁
𝑖=1

𝜔𝑖𝑄𝑖

(︁
𝜃|̂︀𝜃)︁ .

Here, 𝜔 = (𝜔1, . . . , 𝜔𝑛)⊤ is an 𝑛 × 1 vector and 𝜔0 = (1, . . . , 1)⊤. Note that

for 𝜔𝑖 = 0 and 𝜔𝑗 = 1, 𝑗 ̸= 𝑖, the 𝑖−th observation is dropped from the log-likelihood

function for complete data. For this perturbation scheme, we find:

∇𝛽,𝜔0 = 1̂︀𝜏
[︁
x⊤Diag

{︁
ℰ01(̂︀𝜃)

}︁
−̂︁A − ̂︀Δx⊤Diag

{︁
ℰ10(̂︀𝜃)

}︁]︁
;

∇𝜎2,𝜔0 = − 1
2̂︀𝜎2

[︃
1⊤

𝑛 − 1̂︀𝜏 ̂︀B⊤ +
̂︀Δ̂︀𝜏 ̂︀C⊤

]︃
;

∇𝜆,𝜔0 =
̂︀𝜆̂︀𝜆2 + 1

1⊤
𝑛 −

̂︀𝜆̂︀𝜎2
̂︀B⊤ + 2̂︀𝜆2 + 1

̂︀𝜎√︁̂︀𝜆2 + 1
̂︀C⊤ − ̂︀𝜆ℰ⊤

20(̂︀𝜃),

where ̂︁A is a matrix with 𝑛 columns equal to x⊤Diag
{︁
ℰ00(̂︀𝜃)

}︁
x̂︀𝛽, X is a design matrix

with rows x⊤
𝑖 , ℰ𝑟𝑠(̂︀𝜃) =

(︁
ℰ𝑟𝑠1(̂︀𝜃), . . . , ℰ𝑟𝑠𝑛(̂︀𝜃)

)︁⊤
, 𝑟, 𝑠 = 0, 1, 2. ̂︀B and ̂︀C are 𝑛−dimensional

vectors with coordinates ̂︀𝐵𝑖 = ℰ02𝑖(̂︀𝜃) − 2ℰ01𝑖(̂︀𝜃)x⊤
𝑖
̂︀𝛽 + ℰ00𝑖(̂︀𝜃)(x⊤

𝑖
̂︀𝛽)2 and ̂︀𝐶𝑖 = ℰ11𝑖(̂︀𝜃) −

ℰ10𝑖(̂︀𝜃)x⊤
𝑖
̂︀𝛽, respectively.

3.4.2 Scale perturbation

To study the effects of departures from the assumption regarding the scale

parameter 𝜎2, we consider the perturbation 𝜎2(𝜔𝑖) = 𝜔−1
𝑖 𝜎2, for 𝑖 = 1, . . . , 𝑛. Under this
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perturbation scheme, the non-perturbed model is obtained when 𝜔0 = 1𝑛. Moreover, the

perturbed 𝑄-function is as in (2.2.8), with 𝜎2(𝜔𝑖) and ̂︀𝜃 replacing 𝜎2 and 𝜃(𝑘), respectively.

The matrix ∇𝜃,𝜔0
has the following elements:

∇𝛽,𝜔0 = 1̂︀𝜏
[︃
x⊤Diag

{︁
ℰ01(̂︀𝜃)

}︁
−̂︁A −

̂︀Δ
2 x⊤Diag

{︁
ℰ10(̂︀𝜃)

}︁]︃
;

∇𝜎2,𝜔0 = 1
2̂︀𝜎2

[︃
1̂︀𝜏 ̂︀B⊤ −

̂︀Δ
2̂︀𝜏 ̂︀C⊤

]︃
;

∇𝜆,𝜔0 = −
̂︀𝜆̂︀𝜎2
̂︀B⊤ + 2̂︀𝜆2 + 1

2̂︀𝜎√︁̂︀𝜆2 + 1
̂︀C⊤.

3.4.3 Response perturbation

A perturbation of the response variables 𝑉𝑖, 𝑖 = 1, . . . , 𝑛 , can be introduced

by replacing 𝑉𝑖 by 𝑉𝑖(𝜔𝑖) = 𝑉𝑖 + 𝜔𝑖S𝑣 , where S𝑣 is a scale factor that can represent the

standard deviation of the censored response. Now substituting 𝑉𝑖(𝜔𝑖) into (2.2.3), we can

write the perturbed model as:

𝑉𝑖(𝜔𝑖) =

⎧⎪⎨⎪⎩ 𝑐𝑖(𝜔𝑖) if 𝜌𝑖 = 1;

𝑌𝑖(𝜔𝑖) if 𝜌𝑖 = 0,

where 𝑐𝑖(𝜔𝑖) = 𝑐𝑖 −𝜔𝑖S𝑣 and 𝑌𝑖(𝜔𝑖) = 𝑌𝑖 −𝜔𝑖S𝑣. Hence, the perturbed 𝑄-function follows

(2.2.8), with ℰ𝑟𝑠𝑖(̂︀𝜃(𝑗)) = E[𝑈𝑖𝑇
𝑟
𝑖 𝑌

𝑠
𝑖 |𝑉𝑖, 𝜌𝑖, ̂︀𝜃(𝑗)] replaced by

ℰ𝑟𝑠𝑖(̂︀𝜃(𝑗)
, 𝜔𝑖) = E[𝑈𝑖𝑇

𝑟
𝑖 𝑌

𝑠
𝑖 (𝜔𝑖)|𝑉𝑖(𝜔𝑖), 𝜌𝑖, ̂︀𝜃(𝑗)]. Under this perturbation scheme, the vec-

tor 𝜔0, representing no perturbation, is given by 𝜔0 = 0 and ∇𝜃,𝜔0
has the following

elements:

∇𝛽,𝜔0 = −S𝑣̂︀𝜏 x⊤Diag
{︁
ℰ00(̂︀𝜃)

}︁
;

∇𝜎2,𝜔0 = − S𝑣̂︀𝜎2̂︀𝜏
[︃
ℰ⊤

01(̂︀𝜃) − ̂︀𝛽⊤x⊤Diag
{︁
ℰ00(̂︀𝜃)

}︁
−
̂︀Δ
2 ℰ⊤

10(̂︀𝜃)
]︃

;

∇𝜆,𝜔0 = 2̂︀𝜆̂︀𝜎2 S𝑣

[︂
ℰ⊤

01(̂︀𝜃) − ̂︀𝛽⊤x⊤Diag
{︁
ℰ00(̂︀𝜃)

}︁]︂
− 2̂︀𝜆2 + 1̂︀𝜎(̂︀𝜆2 + 1)1/2

S𝑣ℰ⊤
10(̂︀𝜃).
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3.4.4 Explanatory variables perturbation

Here, we consider the influence that perturbation of the explanatory variables

can produce on the parameter estimates. In this case, we are interested in perturbing a

specific explanatory variable, thus we consider the perturbation x⊤
𝑖𝜔 = x⊤

𝑖 + 𝜔𝑖S𝑡1
⊤
𝑡 , S𝑡 is

a scale factor that can represent the standard deviation of the 𝑡-th explanatory variable

and 1⊤
𝑡 = (0, . . . , 1, . . . , 0) is a 1 ×𝑝 vector with 1 in the 𝑡-th column, 𝑡 = 1, . . . , 𝑝. Hence,

this case covers situations where 𝑥 is measured with error. The perturbed 𝑄-function is

as in (2.2.8), switching x⊤
𝑖𝜔 with x⊤

𝑖 and the no perturbation case is obtained by taking

𝜔0 = 0. Under this perturbation scheme, ∇𝜃,𝜔0
has the following elements:

∇𝛽,𝜔0 = S𝑡̂︀𝜏 1𝑡

[︂
ℰ⊤

01(̂︀𝜃) − 2̂︀𝛽⊤x⊤Diag
{︁
ℰ00(̂︀𝜃)

}︁
− ̂︀Δℰ⊤

10(̂︀𝜃)
]︂

;

∇𝜎2,𝜔0 = − S𝑡̂︀𝜎2̂︀𝜏 1⊤
𝑡
̂︀𝛽 [︃ℰ⊤

01(̂︀𝜃) − ̂︀𝛽⊤x⊤Diag
{︁
ℰ00(̂︀𝜃)

}︁
−
̂︀Δ
2 ℰ⊤

10(̂︀𝜃)
]︃

;

∇𝜆,𝜔0 = S𝑡̂︀𝜎 1⊤
𝑡
̂︀𝛽 [︃2̂︀𝜆̂︀𝜎

(︂
ℰ⊤

01(̂︀𝜃) − ̂︀𝛽⊤x⊤Diag
{︁
ℰ00(̂︀𝜃)

}︁)︂
− 2̂︀𝜆2 + 1

(̂︀𝜆2 + 1)1/2
ℰ⊤

10(̂︀𝜃)
]︃
.

3.5 Application: Stellar abundances dataset

In this section, we use a censored dataset from stellar astronomy, previously

analyzed by Santos et al. (2002), where the authors seek differences in the abundance of

the light element beryllium (Be) in stars that do and do not host extrasolar planetary

systems. These data are available in the R package astrodatR, under the name Stel-

lar abundances. The dataset consists of 68 solar-type stars where the response variable

is logN(Be), representing a measure of beryllium abundance with respect to the Sun’s

abundance.

According to Feigelson and Babu (2012) in a supervised astronomical survey

where a particular property of a previously defined sample of objects is sought, some

objects in the sample may be too faint to detect. Thus, the dataset contains the full sample

of interest, but some objects have upper limits and others have detections. In this dataset

we have 12 left-censored data points (see Figure 3.1, panel b). The predictor variable (𝑥)

is effective stellar surface temperature (in Kelvin, T𝑒𝑓𝑓/1000). To verify the existence of

skewness in the data, Figure 3.1 (panel a) presents the histogram of the response variable

and shows an apparent non-normal pattern. This figure also presents the normal quantile-
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quantile (Q-Q) plot for the residuals (panel c) obtained by fitting a Gaussian regression

model using the R package stats. The Q-Q plot exhibits an asymmetrical heavy-tailed

behavior, suggesting that the normality assumption for the errors might be inappropriate.

In addition, Figure 3.1 (panel b) also indicates it is plausible to use a linear regression for

the dataset.

Thus, in this section, we analyzed the Stellar abundances dataset with the aim

of providing additional inferences by using SMSN distributions in the context of censored

models.
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Figure 3.1: Stellar abundances dataset. (a) Histogram of the logN(Be). (b) Scatter-plot
of the dataset. (*) represents the censored observations. (c) Normal Q-Q plot for model
residuals obtained by using the R package stats.

3.5.1 ML estimates using SAEM algorithm

We fitted a regression model with an intercept parameter 𝛽0 and applied the

SAEM algorithm for censored data, as described in Subsection 2.2.1. We focus on the

SN-CR, ST-CR, SCN-CR and SSL-CR distributions from the SMSN-CR class.

Table 3.1 contains the ML estimates for the parameters of the four models,

together with the values of their corresponding standard errors (SE). The log-likelihood

values (see column ℓ(̂︀𝜃)) indicate that the heavy-tailed SMSN distributions have a signif-

icantly better fit than the SN model. This finding is also confirmed by inspecting some

model selection criteria, says the Akaike information criterion (AIC) (Akaike, 1974), the

Bayesian information criterion (BIC) (Schwarz, 1978) and the efficient determination cri-

terion (EDC) (Bai et al., 1989). Moreover, the SE values of the ST-CR, SCN-CR and

SSL-CR models are smaller than that of the SN-CR model. These results indicate that
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the use of the SMSN-CR models with heavy tails produces more accurate estimates.

Table 3.1: Stellar abundances dataset. Parameter estimates of the SMSN-CR models. SE
values in parentheses.

Model ̂︀𝛽0 ̂︀𝛽1 ̂︀𝜎2 ̂︀𝜆 𝜈 𝛾 ℓ(̂︀𝜃) AIC BIC EDC

SN-CR -2.0399 0.4944 0.2942 -7.7400 - - -18.2141 44.42811 53.30614 43.02508(0.8974) (0.1549) (0.0426) (3.5972)

ST-CR -2.2350 0.5441 0.0672 -6.4338 3 - -2.1267 12.2535 21.1315 10.8505(0.4690) (0.0815) (0.0167) (2.1758)

SCN-CR -2.2452 0.5357 0.0438 -6.4700 0.5 0.1 -3.7231 15.4462 24.3243 14.0432(0.5457) (0.0936) (0.0082) (1.9214)

SSL-CR -2.2294 0.5452 0.0401 -6.8774 1.20 - -2.7259 13.4518 22.3299 12.0488(0.4322) (0.0750) (0.0101) (2.3953)

In order to identify atypical observations and/or model misspecification, we

use the martingale-type residuals, 𝑟𝑀𝑇𝑖
, proposed by Barros et al. (2010) (see also Garay

et al., 2015) for censored models. These residuals are defined in (2.5.1).

The normal probability plot of the MT residuals with generated envelopes is

presented in Figure 3.2. We observe that the ST-CR, SCN-CR and SSL-CR models fit

the data better than the SN-CR model, since, in that case, there are fewer observations

which lie outside the envelopes.

In Figure 3.3, we present the Mahalanobis distance, given by 𝑑2
𝑖 = (𝑦𝑖−x⊤

𝑖
̂︀𝛽)2̂︀𝜎2

vs, the estimated weights 𝑢𝑖 = ℰ00𝑖(̂︀𝜃), for 𝑖 = 1, . . . , 68, considering the ST-CR, SSL-

CR and SCN-CR models. We observe that when we use distributions with heavier tails

than the SN one, the SAEM algorithm allows accommodating atypical observations by

attributing small weights to them in the estimation procedure. The estimated weights

for the SN-CR distribution are indicated as a continuous line. These results agree with

similar considerations, presented for instance in Labra et al. (2012), where a nonlinear

regression model under SMSN distributions is studied.

3.5.2 Diagnostic Analysis

In this section, we compute case-deletion measures and analysis of local influ-

ence for the Stellar abundances dataset by using the SMSN-CR models.
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Figure 3.2: Stellar abundances dataset. Envelopes of the MT residuals for the SMSN-CR
models
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Figure 3.3: Stellar abundances dataset. Estimated 𝑢𝑖 for the ST-CR, SCN-CR and SSL-
CR models

Global Influence

In order to evaluate the effect on the ML estimates of the regression coefficients

of the SMSN-CR models, when some observation is eliminated, we analyze the GD1
𝑖 and
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QD1
𝑖 plot in Figures 3.4-3.5. As can be seen, case # 5 is the most influential in the

estimation of the parameters, for the four SMSN-CR models considered.
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Figure 3.4: Stellar abundances dataset. Approximate generalized Cook’s distance GD1
𝑖

for SMSN-CR models.

Local Influence

Next, we conduct a local influence study, with interest focused on 𝜃, using

the benchmark 𝑀(0) from the conformal curvature B𝑓𝑄,d , as described in Section 3.4

by considering the four different perturbation schemes. Thus, here we present a local

influence analysis, using 𝑐* = 4 to compute the benchmark 𝑀(0).

From Figure 3.6, we observe that under the case-weight perturbation, case

# 5 is identified as influential for the four SMSN-CR models considered. Under the

scale perturbation, Figure 3.7, case # 29 appears influential in the ML estimates of 𝜃

for the SN-CR, ST-CR and SCN-CR models. In addition, from Figure 3.8, this same

observation # 29 is considered as influential for the SN-CR model, under the response

variable perturbation. Finally, from Figure 3.9, we have that under explanatory variable

perturbation no observations are considered potentially influential.
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Figure 3.5: Stellar abundances dataset. Approximate likelihood displacement QD1
𝑖 for

SMSN-CR models.
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Figure 3.6: Stellar abundances dataset. Index plots of M(0) under the case-weight per-
turbation for SMSN-CR models.
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Figure 3.7: Stellar abundances dataset. Index plots of M(0) under scale perturbation for
SMSN-CR models.
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Figure 3.8: Stellar abundances dataset. Index plots of M(0) under response perturbation
for SMSN-CR models.
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Figure 3.9: Stellar abundances dataset. Index plots of M(0) under explanatory variable
perturbation for SMSN-CR models.

Impact of the detected influential observations

Table 3.2 shows that based in the global and local influence diagnostics, cases:

# 5 and # 29 are detected as potentially influential observations under different pertur-

bation schemes. In order to assess the impact of these possible influential observations

on the ML estimates, we refitted the model dropping each one of these cases. Thus, in

Table 3.3 we present the relative changes (RC) of these estimates, RC(̂︀𝜃) =
⃒⃒⃒⃒
⃒ (̂︀𝜃−̂︀𝜃[j])̂︀𝜃

⃒⃒⃒⃒
⃒ ,

where 𝜃 = (𝛽0, 𝛽1, 𝜎
2, 𝜆) and ̂︀𝜃[j] denotes the SAEM estimate of 𝜃 with the 𝑗−th observa-

tion removed. We observe that observation # 5, detected as influential under global and

local influence diagnostics, causes a significant change in the parameters 𝜎2 and 𝜆, and

observation # 29 causes significant changes (in particular) to the parameter 𝜎2.

3.6 Simulation study

In order to examine the performance of the proposed methods, we present

a simulation study to show the capacity of the method to detect atypical data. We

consider the SMSN-CR model, defined by combining equations (2.2.1)-(2.2.3), where
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Table 3.2: Stellar abundances dataset. Influential observations for SMSN-CR models

Models

Influence Measures SN ST SSL SCN

𝐺𝐷1
𝑖 # 5 # 5 # 5 # 5

𝑄𝐷1
𝑖 # 5 # 5 # 5 # 5

Case-weight perturbation # 5 # 5 # 5 # 5
Scale perturbation # 29 # 29 - # 29

Response perturbation # 29 - - -
Explanatory variable perturbation - - - -

Table 3.3: Stellar abundances dataset. Relative change for the dataset.

SN-CR ST-CR

Dropping RC(̂︀𝛽0) RC(̂︀𝛽1) RC(̂︀𝜎2) RC(̂︀𝜆) RC(̂︀𝛽0) RC(̂︀𝛽1) RC(̂︀𝜎2) RC(̂︀𝜆)

[# 5] 0.0697 0.0551 0.2451 1.9120 0.0345 0.0208 0.0371 1.1948
[# 29] 0.0678 0.0669 0.2689 0.1575 0.0037 0.0034 0.1465 0.0763

[# 5, # 29] 0.1366 0.1199 0.4439 1.5015 0.0242 0.0214 0.1451 1.0246

SCN-CR SSL-CR

Dropping RC(̂︀𝛽0) RC(̂︀𝛽1) RC(̂︀𝜎2) RC(̂︀𝜆) RC(̂︀𝛽0) RC(̂︀𝛽1) RC(̂︀𝜎2) RC(̂︀𝜆)

[# 5] 0.0347 0.0199 0.0117 1.6863 0.0389 0.0197 0.1673 1.0833
[# 29] 0.0064 0.0197 0.2729 0.1557 0.0045 0.0013 0.1161 0.0652

[# 5, # 29] 0.0303 0.0319 0.2539 1.5163 0.0261 0.0199 0.0680 0.8788

𝛽⊤ = (𝛽0, 𝛽1) = (3,−1), 𝜎2 = 2, 𝜆 = 4 and x⊤
𝑖 = (1, 𝑥𝑖). The values 𝑥𝑖, 𝑖 = 1, . . . , 400,

were generated independently from a uniform distribution in the interval (2, 5) and those

values were kept constant throughout the experiment. The degree of freedom (𝜈) for

the different cases of SMSN-CR models was fixed: 𝜈 = 3 for the ST-CR and SSL-CR

models and (𝜈, 𝛾) = (0.1, 0.1) for the SCN-CR distribution. We generated 500 sam-

ples of size 𝑛 = 400 from the SMSN-CR model, considering five censoring proportions,

𝑝 = {0%, 10%, 20%, 30%, and 40%}. To guarantee the presence of a perturbed obser-

vation, we chose case # 200 and we replaced its parameters 𝛽 by {2.5𝛽, 5𝛽, 7.5𝛽, 10𝛽}.

Considering the criteria 𝑀(0)𝑖 > 𝑀(0) + 3𝑆𝑀(0) and 𝐺𝐷1
𝑖 for 𝑖 = 1, . . . , 400, to decide

which point is influential or not.

Table 3.4 shows, in percentage, the number of times that the measure correctly

identify the observation # 200 as the most influential. As expected, the percentage of

correctly detecting atypical observations increases for increasing perturbation rates and
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we observe that in general, there is high sensitivity of the estimates in the presence of

atypical data when the SN-CR model is considered.

Table 3.4: Simulation study. % of correctly identified influential observation using 𝐺𝐷1
𝑖

and under case-weight perturbation.

SN-CR ST-CR

Influence Measures Perturbation Cens. Level Cens. Level

0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

GD𝑖

2.5𝛽 19.8 15.8 15.8 14.8 14.0 4.6 5.6 4.0 3.4 0.8
5𝛽 64.2 63.2 60.8 64.8 60.6 39.2 35.4 36.4 30.8 20.8

7.5𝛽 89.8 86.0 86.2 87.8 85.6 70.6 68.6 70.2 62.0 62.2
10𝛽 96.4 98.6 96.6 98.4 96.6 84.4 83.6 80.8 87.2 82.4

Case-Weight
perturbation

2.5𝛽 15.0 14.4 16.0 17.0 16.0 14.0 18.6 19.6 19.6 20.4
5𝛽 62.0 62.6 61.2 65.6 63.8 50.0 56.0 56.4 59.6 56.2

7.5𝛽 88.4 85.8 87.4 88.0 87.6 77.8 78.8 79.0 80.4 83.2
10𝛽 96.2 98.6 96.8 98.4 97.0 88.8 88.4 88.0 92.6 90.2

SCN-CR SSL-CR

Influence Measures Perturbation Cens. Level Cens. Level

0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

GD𝑖

2.5𝛽 15.4 11.0 11.0 9.0 4.8 14.2 12.0 13.0 7.2 7.2
5𝛽 36.2 34.4 37.2 40.2 38.0 53.6 50.0 53.4 46.4 46.8

7.5𝛽 54.6 44.4 39.6 31.8 42.2 79.8 78.6 80.2 77.6 73.2
10𝛽 80.2 73.4 63.2 16.8 35.8 93.0 94.4 100 91.8 91.8

Case-Weight
perturbation

2.5𝛽 14.4 12.2 15.0 13.0 9.6 11.8 13.0 15.2 12.6 10.8
5𝛽 34.4 40.6 47.2 48.8 44.4 52.0 50.6 55.6 52.6 50.4

7.5𝛽 52.8 52.4 55.8 48.6 53.0 78.8 79.2 81.8 79.0 76.4
10𝛽 78.6 77.4 70.8 26.6 48.0 92.6 94.4 100 92.8 92.6

3.7 Conclusion

In this chapter we presented a diagnostic analysis of linear regression models

with censored responses and observational errors following a distribution belonging the

class of SMSN distributions. The diagnostic analysis was based on the case-deletion

and local influence techniques suggested by Zhu et al. (2001) and Zhu and Lee (2001),

respectively, which are the counterparts for missing data models of the well-known ones

proposed by Cook (1977) and Cook (1986). The structure of the complete-data likelihood

function, obtained considering as if the missing data were in fact observed, is an essential

element of the theory. Its simple form allows obtaining a tractable expression for the Q-

function, which is essentially what is needed to provide an approximation of the maximum



65

likelihood estimate of the parameters when an observation is excluded (for the case-

deletion method). The same is true for the local influence method, in the case of the

normal curvature expressions. Using the developed method, we analyzed a real dataset

and carried out extensive simulation studies. We observe, through influence diagnostic

procedures, that when we used distributions with heavier tails than the SN-CR model,

some aspects of robustness of the SAEM estimators under heavy-tail SMSN distributions

were noted.



Chapter 4

Concluding remarks

In this work we developed a full likelihood approach for linear regression models

with censored responses based on scale mixtures of skew-normal distributions, denoted

by SMSN-CR. By exploring statistical properties of the SMSN class, we discuss in detail

the implementation of the SAEM algorithm for maximum likelihood estimation with the

likelihood function, predictions of unobservable values of the response and the asymptotic

standard errors as a byproducts. Next, influence techniques, such as case-deletion and

local influence, are developed to show the robust aspect of the SMSN-CR models against

outlying and influential observations.

In order to examine the performance of our proposed methods, we present

various simulation studies and the methods are illustrated by analysis of two real dataset.

The methods developed have been implemented in software R and are the codes are

available upon request.

4.1 Future research

The are a number of possible extensions of the current work. For example, cen-

sored nonlinear regression models using SMSN distributions (SMSN-NLCR) as considered

by Garay et al. (2011). The proposed methods can be extended to multivariate settings,

such as the recent proposals of Matos et al. (2015) for censored mixed-effects models and

Garay et al. (2015) for irregularly observed longitudinal data using multivariate SMSN

distributions (Lachos et al., 2010). Due to the popularity of Markov chain Monte Carlo

techniques, another potential work is to pursue a fully Bayesian treatment in this context
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for producing posterior inference. The method can also be extended to finite mixtures of

regressions with skewed and heavy-tailed censored responses based on recent approaches

by Caudill (2012) and Karlsson and Laitila (2014).
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Appendix A

Additional results of Chapter 2

A.1 Complementary results of the simulation study

1

In this Section, we present the results of the simulation study 1 for different

levels of censoring: 𝑝 = 0%, 20% and 35%.
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Figure A.1: Simulation study 1. Average relative changes on estimates for different per-
turbations 𝜗 and censoring level 𝑝 = 0%.
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Figure A.2: Simulation study 1. Average relative changes on estimates for different per-
turbations 𝜗 and censoring level 𝑝 = 20%.
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Figure A.3: Simulation study 1. Average relative changes on estimates for different per-
turbations 𝜗 and censoring level 𝑝 = 35%.
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A.2 Complementary results of the simulation study

2

Here we show the Bias and MSE of parameters 𝜃, for the levels of censoring

𝑝 = 20% and 35%, respectively.
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Figure A.4: Simulation study 2. Bias of parameters 𝛽1, 𝛽2, 𝜎2 and 𝜆 for SMSN-models
with level of censoring 𝑝 = 20%.
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Figure A.5: Simulation study 2. MSE of parameters 𝛽1, 𝛽2, 𝜎2 and 𝜆 for SMSN-models
with level of censoring 𝑝 = 20%.
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Figure A.6: Simulation study 2. Bias of parameters 𝛽1, 𝛽2, 𝜎2 and 𝜆 for SMSN-models
with level of censoring 𝑝 = 35%.
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Figure A.7: Simulation study 2. MSE of parameters 𝛽1, 𝛽2, 𝜎2 and 𝜆 for SMSN-models
with level of censoring 𝑝 = 35%.

A.3 Wage rate dataset under SMN-CR models

In this Section, we present the comparison between the SMN-CR models, con-

sidering the wage rate dataset.

Table A.1: Wage rate dataset. Values of some model selection criteria for SMN-CR models

Criteria N-CR T-CR CN-CR SL-CR

log-likelihood -1481.6550 -1440.1450 -1432.0850 -1436.2860
AIC 2975.3110 2894.2910 2880.1710 2886.5730
BIC 3003.0550 2926.6590 2917.1630 2918.9410
EDC 2996.2400 2918.7080 2908.0760 2910.9900

A.4 Complementary results of the application

In this Section, we describe the summary of convergence for the parameters,

𝛽, 𝜎2, 𝜆, 𝜈, for the SMSN-CR models. The vertical dashed line delimits the beginning

of the almost sure convergence, as defined by the cutoff point, 𝑐.
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Figure A.8: Wage rate dataset. Graphical summary of convergence for the parameters
from SN-CR model, 𝑚 = 20, 𝑐 = 0.35 and 𝑆 = 400.
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Figure A.9: Wage rate dataset. Graphical summary of convergence for the parameters
from ST-CR model, 𝑚 = 20, 𝑐 = 0.40 and 𝑆 = 400.
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Figure A.10: Wage rate dataset. Graphical summary of convergence for the parameters
from SCN-CR model, 𝑚 = 20, 𝑐 = 0.35 and 𝑆 = 400.
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Figure A.11: Wage rate dataset. Graphical summary of convergence for the parameters
from SSL-CR model, 𝑚 = 20, 𝑐 = 0.30 and 𝑆 = 300.
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