
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Carlos Alberto da Silva

Management of Cloud Computing using
security criteria

Gerenciamento de Nuvem Computacional usando
critérios de segurança

CAMPINAS
2015

Carlos Alberto da Silva

Management of Cloud Computing using
security criteria

Gerenciamento de Nuvem Computacional usando critérios de
segurança

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Paulo Lício de Geus

Este exemplar corresponde à versão final da
Tese defendida por Carlos Alberto da Silva
e orientada pelo Prof. Dr. Paulo Lício de
Geus.

CAMPINAS
2015

Agência(s) de fomento e nº(s) de processo(s): FUNDECT, 23/200.308/2009

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

Informações para Biblioteca Digital

Título em outro idioma: Gerenciamento de nuvem computacional usando critérios de segurança
Palavras-chave em inglês:

Cloud computing - Security measures
Cloud computing - Security management
Security metrics
Management information systems - Security measures
Information technology - Security measures
Security measures

Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:

Paulo Lício de Geus [Orientador]
Edmundo Roberto Mauro Madeira
Diego de Freitas Aranha
Carlos Alberto Maziero
Adriano Mauro Cansian

Data de defesa: 25-09-2015
Programa de Pós-Graduação: Ciência da Computação

		 Silva, Carlos Alberto da, 1968-
Si38m SilManagement of cloud computing using security criteria / Carlos Alberto da

Silva. – Campinas, SP : [s.n.], 2015.
Sil

Orientador: Paulo Lício de Geus.
Sil Tese (doutorado) – Universidade Estadual de Campinas, Instituto de
 Computação.

Sil 1. Computação em nuvem - Medidas de segurança. 2. Computação em

nuvem - Gerenciamento de segurança. 3. Métricas de segurança. 4. Sistemas
de informação gerencial - Medidas de segurança. 5. Tecnologia da informação
- Sistemas de segurança. 6. Sistemas de segurança. I. Geus, Paulo Lício
de,1956-. II. Universidade Estadual de Campinas. Instituto de Computação. III.
Título.

	

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Carlos Alberto da Silva

Management of Cloud Computing using
security criteria

Gerenciamento de Nuvem Computacional usando critérios de
segurança

Banca Examinadora:

• Prof. Dr. Paulo Lício de Geus (Orientador)
Instituto de Computação - UNICAMP

• Prof. Dr. Edmundo Roberto Mauro Madeira
Instituto de Computação - UNICAMP

• Prof. Dr. Diego de Freitas Aranha
Instituto de Computação - UNICAMP

• Prof. Dr. Carlos Alberto Maziero
Universidade Federal do Paraná - UFPR

• Prof. Dr. Adriano Mauro Cansian
Universidade Estadual de São Paulo - UNESP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 25 de setembro de 2015

Dedication

To my Family.

Verba volant, scripta manent.

Caio Tito (Senado romano)

Acknowledgements

I would like to thankCAPES and Fundect (Process #23/200.308/2009) for the financial
support.

I would like to thank my advisor, Professor Paulo Lício de Geus, for supporting me
during the past years, listening to my frequent complaints and giving me freedom to
pursue my goals. His advice and ideas were essential not only to glue the pieces of this
thesis together, but to allow me to grow as a scientist and as a better person.

I thank the Brazilian Government, my employer, for investing in me as a researcher.
I also thank my friends, students and research colleagues for all the support, chit-

chatting, laughs, coding, paper writing, mainly Anderson Soares Ferreira, André Grégio,
Dario Simões Fernandes Filho, Marcelo Palma, Vitor Monte Afonso. If I forgot someone,
I am sorry.

I thank the Harada and Resstel families throughout accommodation, entertainment
and support.

I finally thank my family, especially my wife Elizangela, my dad (Tiago in memorian),
my mom (Maria) and my children: Felipe, Eloá, Maria Eduarda and Fernando. Their
support, patience, love and friendship makes my life more meaningful.

Resumo

A nuvem computacional introduziu novas tecnologias e arquiteturas, mudando a compu-
tação empresarial. Atualmente, um grande número de organizações optam por utilizar
arquiteturas computacionais tradicionais por considerarem esta tecnologia não confiável,
devido a problemas não resolvidos relacionados a segurança e privacidade. Em particular,
quanto à contratação de um serviço na nuvem, um aspecto importante é a forma como as
políticas de segurança serão aplicadas neste ambiente caracterizado pela virtualização e
serviços em grande escala de multi-locação. Métricas de segurança podem ser vistas como
ferramentas para fornecer informações sobre o estado do ambiente. Com o objetivo de
melhorar a segurança na nuvem computacional, este trabalho apresenta uma metodologia
para a gestão da nuvem computacional usando a segurança como um critério, através
de uma arquitetura para monitoramento da segurança com base em acordos de níveis de
serviço de segurança Security-SLA para serviços de IaaS, PaaS e SaaS, que usa métricas
de segurança.

Abstract

Cloud Computing has introduced new technology and architectures that changed enter-
prise computing. Currently, there is a large number of organizations that choose to stick
to traditional architectures, since this technology is considered unreliable due to yet un-
solved problems related to security and privacy. In particular, when hiring a service in
the cloud, an important aspect is how security policies will be applied in this environ-
ment characterized by both virtualization and large-scale multi-tenancy service. Security
metrics can be seen as tools to provide information about the status of the environment.
Aimed at improving security in the Cloud Computing, this work presents a methodology
for Cloud Computing management using security as a criterion, across an architecture
for security monitoring based on Security-SLA for IaaS, PaaS and SaaS services using
security metrics.

List of Figures

2.1 NIST Cloud Definition. 22
2.2 Stack of cloud services. 24
2.3 NIST Service Offering. 25
2.4 Cloud monitoring and properties. 27
2.5 Cloud monitoring level views. 30
2.6 Estimation of risk levels based on ISO/IEC 27005:2011. 31
2.7 Risk distribution. 32

3.1 Life cycle of an SLA. 44

5.1 Security Metrics Hierarchy (SMH). 61
5.2 Result of normalizing some security metrics. 64
5.3 Packet filtering collected. 68
5.4 Packet filtering filtered. 68
5.5 Packet filtering normalized. 69
5.6 Packet filtering prediction. 69
5.7 Change of a value in the range of [0-4]. 70

6.1 Creating the Deployment Profile. 76
6.2 Firewall Metrics. 78
6.3 PostgreSQL Metrics. 78
6.4 Lifecycle of a Security-SLA. 80
6.5 Security-SLA management in Cloud Computing. 81
6.6 Behavior of the security metrics: stream segmentation. 83
6.7 Behavior of the security metric “insecure user account”. 85
6.8 Calculating index of security. 86
6.9 Measured for firewall metric (SLO), Met2.3, is 3 and engaged MA is 2. . . . 88
6.10 Computing the allocation index through Apply in All (AA). 90
6.11 Computing the allocation index through Apply in Regions (AR). 90
6.12 Strategy comparison. 91
6.13 Security architecture: IndSec and IndAlloc. 91
6.14 Result strategy A: Apply in All. 92
6.15 Result strategy B: Apply in Regions. 93
6.16 Result Strategy A and B. 94

7.1 Proposed Cloud security architecture. 97
7.2 Execution flow for the proposed Cloud security architecture. 102

B.1 Calculation of risk and impact of the Packet filtering metric. 305

List of Tables

2.1 Deployment Model’s Responsibilities . 26
2.2 Summary of Risks in Cloud Computing . 32

3.1 Parameters of Security-SLA . 45

4.1 Summary of related work . 49
4.2 Summary of current tools and frameworks 52

5.1 Relationship between: GQM, SMH and portfolio of metrics 59
5.2 GQM Project for Security-Related Downtime 60
5.3 Normalization of logical metric . 62
5.4 Normalization of numerical metric . 63
5.5 Result of the detection of attacks . 67
5.6 Results of the metrics evaluation in percentage 67

6.1 Deployment Profile (Portfolio of Infrastructure metrics) 77
6.2 Deployment Profile (Portfolio of metrics for a Service) 77
6.3 Necessary Investment (Portfolio of Infrastructure metrics) 79
6.4 Security Metrics chosen by the user . 82
6.5 Samples of Stream Segmentation Metric 83
6.6 Samples of Insecure User Account Metric 84
6.7 Measured for Firewall metric (MA) . 87
6.8 Security-SLA (Security Metrics) . 89
6.9 Resource allocation using the index of security 89
6.10 Examples for IndSec, IndAlloc and cpuLimit value parameters 95

7.1 CPU utilization on a Cloud Node . 103
7.2 Network traffic produced on a Cloud Node 103
7.3 CPU utilization on the Cloud Management Solution 103
7.4 Network traffic produced on the Cloud Management Solution 103

A.1 Portfolio of the Security Metrics . 132

The Glossary

CSA Cloud Security Alliance (organization).
CSP Cloud Service Provider is a company that offers some component of cloud

computing to other businesses or individuals.
CVE Common Vulnerabilities and Exposures system provides a public known

information-security vulnerabilities and exposures.
CVSS Common Vulnerability Scoring System is a open industry standard for

assessing the severity of computer system security vulnerabilities.
ENISA The European Network and Information Security Agency (organization).
GQM Goal-Question-Metric methodology.
IaaS Infrastructure as a Service, service model of NIST.
IDS Intrusion Detection Systems are softwares that detect an attack on a

network or computer system.
IPS Intrusion Prevention Systems are placed in-line and are able to actively

prevent/block intrusions that are detected.
IDPS Intrusion Detection and Prevention Systems are network security appli-

ances that monitor network or system activities for malicious activity.
ISACA Information Systems Audit and Control Association (organization).
ISO International Organisation for Standardization (organization).
NIST National Institute of Standards and Technology (organization).
QoS Quality of Service, a defined measure of performance in a system.
PaaS Platform as a Service, service model of NIST.
SaaS Software as a Service, service model of NIST.
SLA Service Level Agreement is a part of a standardized service contract where

a service is formally defined.
SLO Service Level Objectives, which are the actual topics to be measured by

the SLA. Each SLO may be composed of one or more QoS metrics.
Security-SLA Security Service Level Agreement is a part of a standardized security

service contract where a service is formally defined.
WSLA Web Service Level Agreement is a standard for service level agreement

compliance monitoring of web services.
VM Virtual Machine is an operating system OS or application environment

that is installed on software which imitates dedicated hardware.
VMI Virtual Machine Introspection, a technique to monitor internal states

and events of a virtual machines without inserting a component inside
the virtualized system.

VMM Virtual Machine Monitor, a “probe” inserted in a layer located between
the host and the guest in a virtualization system.

Contents

1 Introduction 16
1.1 Overview of the Problem . 17
1.2 Objectives . 18
1.3 Contributions . 18
1.4 Thesis organization . 19

2 Cloud Computing 21
2.1 A brief overview . 21

2.1.1 Deployment Models . 23
2.1.2 Service Models . 23
2.1.3 Essential characteristics . 24
2.1.4 Hosting . 25
2.1.5 Governance . 25
2.1.6 Roles . 26
2.1.7 Analyzing Cloud Options in Depth 26

2.2 Cloud Computing: the need for monitoring 26
2.2.1 Monitoring . 27
2.2.2 Properties . 28
2.2.3 Security Monitoring Views . 29

2.3 Security in Cloud Computing . 30
2.3.1 Classification of Risks . 30
2.3.2 Risk Assessment Process . 31

2.4 Summary . 37

3 Service Level Agreement 38
3.1 Unmeasurable Qualities . 38
3.2 Metrics . 39
3.3 Security Metrics . 39

3.3.1 Time Series Analysis . 40
3.3.2 Uncertainty . 41
3.3.3 Calibration & Measurement Standard 41

3.4 Service Level Agreement . 42
3.4.1 Definition . 42
3.4.2 SLA Life Cycle . 43
3.4.3 SLA Parameters . 44

3.5 Security-SLA . 44
3.6 Monitoring Security-SLA . 46
3.7 Summary . 46

4 Related Work 47
4.1 Summary of Related Work . 47
4.2 Cloud Monitoring . 51
4.3 Guides for Security-SLA monitoring . 57
4.4 Summary . 58

5 Methodology Proposal (SMH) 59
5.1 Security Metrics Hierarchy . 59

5.1.1 Modeling Security Metrics Hierarchy 60
5.1.2 Normalization of Security Metrics 62
5.1.3 Formal Security Metrics Hierarchy 65
5.1.4 Validation of Security Metrics . 66
5.1.5 Security Metrics Behavior . 67

5.2 Application of SMH . 70
5.3 Summary . 71

6 Management of Cloud using security criteria 72
6.1 Return On Security Investment (ROSI) . 72

6.1.1 Return on Investment (ROI) . 73
6.1.2 Methodology for ROSI Calculation 73
6.1.3 Calculating ROSI . 74
6.1.4 Deployment Profile . 75
6.1.5 Case Scenario . 76
6.1.6 Results . 79

6.2 Managing Security-SLA . 79
6.2.1 Automatic Security-SLA . 80
6.2.2 Monitoring Security-SLA . 81
6.2.3 Case Study . 82
6.2.4 Results . 85

6.3 Obtaining Index of Security (IndSec) . 85
6.3.1 Normalization of Risk and Impact 86
6.3.2 Function of Time . 86
6.3.3 Function of Weight, Impact, Risk 86
6.3.4 Case Study . 87
6.3.5 Results . 88

6.4 Obtaining Index of Allocation (IndAlloc) 88
6.4.1 Case Study . 90
6.4.2 Implementing Security Allocation (IndAlloc) 93
6.4.3 Results . 95

6.5 Summary . 95

7 Cloud Security Monitoring Architecture 96
7.1 Components Architecture . 97

7.1.1 Agents in IaaS, PaaS and SaaS . 101
7.2 Execution Flow . 101
7.3 Architecture Validation . 102
7.4 Summary . 104

8 Conclusions and future work 105
8.1 General Results . 106
8.2 Specific Results . 107
8.3 Future Work . 107
8.4 Publications . 108
8.5 Submitted Articles . 109
8.6 Future Articles . 109

Bibliography 110

A Portfolio of the Security Metrics 132

B Common Vulnerability Scoring System 304
B.1 Definition . 304
B.2 Normalization NVD-CVSS (risk and impact) 304
B.3 Collaboration with Industry . 305
B.4 CVSS Calculator Technical Design . 306

B.4.1 CVSS.calculateCVSSFromMetrics 306
B.4.2 CVSS.calculateCVSSFromVector 308
B.4.3 CVSS.severityRating . 309
B.4.4 CVSS.generateXMLFromMetrics 310
B.4.5 CVSS.generateXMLFromVector . 311
B.4.6 XML Schema Definition . 311

Chapter 1

Introduction

In general, emphasizing security policies ensures that the business goals at a more abstract
or higher level are achieved, and that the controls must be proportional to the value of
what one seeks to protect [Landwehr, 2001].

Cloud Computing is a technology that provides users with processing power, data stor-
age and applications over the network, through a model of utility computing whose com-
puting resources and software are offered as services through pay-per-use [Fox et al., 2009].
It provides its customers access to computing resources that would not be available
in traditional architectures, due to the technical complexity and high costs involved
[Krutz and Vines, 2010]. Just as the use of cloud services is growing among home users,
who use such services for personal communication (social networking and e-mail), storage
and even home office applications, its adoption by enterprises and governments is also
going strong.

Despite the growth of this market and massive investments, there is still a great
concern about security in these environments. According to [Foster et al., 2008], the se-
curity issues are considered as the main obstacle to the migration of services to cloud
environments. The growing concern and dissatisfaction with security in cloud services is
the result of a combination of several factors, among which may be cited: i) a lack of
knowledge of technical characteristics and risks in cloud environments [Chen et al., 2010,
Subashini and Kavitha, 2011]; ii) a lack of well defined interoperability standards in envi-
ronment [Hoefer and Karagiannis, 2010]; iii) the loss of control over data and applications
[Krutz and Vines, 2010]; iv) a history of failures in Computing Clouds that resulted in the
unavailability of services, data loss and information leakage [Subashini and Kavitha, 2011];
v) and the lack of guarantees regarding any sort of security levels [ENISA, 2009a].

In order to decide where to invest and how to prioritize investments, the service
provider needs to know how well each system is protected, which systems are under
higher risks, and how much should be invested to achieve the desired level of protection.
This is only possible with a range of standard values that allow a system level setting and
comparison with the level of protection for each of the security systems. For example,
on a scale of [0-4], (0) would represent a security level corresponding to little reliability
and/or presenting a serious security problem, and (4) a security level that is safer and/or
does not present any security issue. For relevant information, the service provider must
define what should be measured, i.e. what the events that have an impact on security are

16

CHAPTER 1. INTRODUCTION 17

and how to extract significant numbers of events.
Driven both by the increasing demand for the use of services in cloud computing

and the large number of security issues in these environments, various institutions started
working on typifying services and standards specifications for interoperability and security
in Cloud Computing. Although such actions are a significant step towards the creation of
secure environments, most of these efforts are still at a preliminary stage and will require
considerable time to mature and to be adopted, as interests of providers and pressure
from the service consumers amount.

1.1 Overview of the Problem

The processes of service provisioning based on Security-SLA and efficient management of
resources in an autonomic manner have been identified as major research challenges in
Cloud environments.

In today’s scenario, it is clear that demand is great not only for standards but also
for the specification of mechanisms, tools, recommendations, references, monitoring and
security management schemes on Cloud Computing environments. Some of these attempts
are:

• The Information Systems Audit and Control Association (ISACA) presents control
objectives for cloud [ISACA, 2014a], which are guidelines on cloud governance, re-
lationship between clients and service providers and specific control problems, and
also presents [ISACA, 2014b], which is a practical guide to assess cloud risks and
help determine the most suitable cloud model to meet the company’s needs;

• The Cloud Security Alliance (CSA) presents [CSA, 2014a], which are detailed guid-
ance on security principles and practices for Cloud Computing, and [CSA, 2014b],
which is a free public record of security controls provided by various computing
services in the cloud;

• The National Institute of Standards and Technology (NIST) presents security guides
[Mell and Grance, 2011, Voas et al., 2012, NIST, 2013a, NIST, 2013b, NIST, 2013c],
which are recommendations on Cloud Computing;

• The European Network and Information Security Agency (ENISA) presents infor-
mation security [ENISA, 2009b], describing the risks and benefits of Cloud Com-
puting;

• The International Organization for Standardization (ISO) presents the international
security standards for cloud computing, ISO/IEC-27017 [ISO/IEC-27017:2014, 2014]
and ISO/IEC-27018 [ISO/IEC-27018:2014, 2014], which are, respectively, extensions
to the ISO series ISO/IEC-27000 [ISO/IEC-27000:2009, 2009] and ISO/IEC-27002
[ISO/IEC-27002:2005, 2005];

• The Cloud Standards Customer Council dedicated to accelerating cloud’s successful
adoption, and present into the standards, security and interoperability issues sur-
rounding the transition to the cloud [Cloud-Council, 2012, Cloud-Council, 2015].

CHAPTER 1. INTRODUCTION 18

The specification of security controls, aimed to meet the needs of the service user,
may be achieved through the use of Security Service Level Agreements (Security-SLA),
which are seen as important tools for the security management of Cloud Computing
[Righi et al., 2004, de Chaves et al., 2010a, de Chaves et al., 2010b, Jaatun et al., 2012,
Nayak et al., 2013]. Nevertheless, one notices in the literature a lack of works actually
dealing with specifying and monitoring these agreements. When they do, the solutions
describe the representation of such agreements and the adoption of monitoring systems
developed for traditional computing architectures. By analyzing these solutions, one can
observe that they are not fully prepared for monitoring cloud environments because:

• Existing tools have little or no support for SLA monitoring, and there are mecha-
nisms for management of Security-SLA;

• The information used for monitoring agreements depends on the collection mecha-
nisms that run on the monitored machine. In infrastructure cloud services, virtual
machines are controlled by the user, which means that the installation of such
mechanisms, in addition to relying on user collaboration, is still subject to incom-
patibilities caused by differences in operating systems, libraries etc. Moreover, they
are sensitive to tampering in cases where the user is malicious;

• Existing tools do not consider fundamental events occurring in cloud environments,
such as the creation, modification, migration and stopping of virtual machines.

Among problem examples in cloud computing surrounding the lack of transparency
and control over security are: i) Amazon’s DynamoDB database issue on 20/Sep/2015
[Amazon, 2015]: Amazon Web Services and some of the big companies relying on its
public cloud infrastructure had a rough Sunday morning with Netflix and other client
sites reporting problems; ii) Skype was offline on 21/Sep/2015 [Skype, 2015]: bought by
Microsoft in 2011, has an estimated 300 million active users a month, with more than 660
million users registered worldwide.

1.2 Objectives

The main goal of this thesis is to present a new management process across a new moni-
toring methodology that complies with security requirements specified through Security-
SLAs. To this end: i) the security policy of the provider is converted (in a useful, organized
and understandable manner) to the objectives of the Security-SLA; ii) an agent-based
monitoring architecture allows for the collection and validation of security metrics and
iii) the information collected is applied in the cloud management process.

1.3 Contributions

Research in cloud security is very broad and plenty of effort has been spent by the security
community to address the multiple kinds of threats and vulnerabilities involved with this
complex environment.

CHAPTER 1. INTRODUCTION 19

In this thesis, the focus is on management of Cloud Computing using security criteria
and on what can be done with the monitoring information that is collected. Thus, in
addition to analyzing the time series of each security metric and establishing baselines on
past behavior, it is also presented a process to validate the collected metrics. The main
contributions of this thesis are:

• A review of the security monitoring scene in Cloud Computing environment;

• A discussion about the current Service Level Agreements (SLA) in information tech-
nology (IT), and parameterization of Security Service Level Agreements (Security-
SLA) in Cloud Computing;

• A methodology based on security policies for the management of Cloud Computing
using security criteria;

• A security monitoring architecture for management of cloud computing that defines
a high level abstraction for information gathering and suggests from where and how
security metrics will be collected;

• The definition of a model that allows for the organization and combination of each
metric in a coherent hierarchy, and also obtaining security information to Cloud
Computing environment;

• A way to perform more transparent, interactive, visual and organized management,
in order to provide a sense of security levels in Cloud Computing environments.

More than a closed and final work, the current work is seen as a starting point for
organizations to collect and correlate security data, so as to produce indicators that will
improve information security knowledge, also allowing one to check their assessment over
time. New metrics may and should be added to this model, due to technological changes
(that lead to new threats and vulnerabilities or make possible the collection of new kinds
of data) or to new systems or components being added to the environment. Evolving
systems/components may have different security metrics, depending on factors such as
architecture, hardware and software used etc.

Furthermore, the work concerning this thesis is not limited to the contents of this
document: two Masters and three undergraduate students have been co-advised. As a
result of this effort, articles and technical production have been generated and skills in
research leadership have been gained.

1.4 Thesis organization

The remainder of this thesis is organized as follows:

• Chapter 2 introduces the basic concepts of Computing Clouds, their features, ser-
vice models, the main issues related to security, the need for monitoring and their
mechanisms for this environment.

CHAPTER 1. INTRODUCTION 20

• Chapter 3 discusses the theoretical aspects of unmeasurable qualities and security
metrics, so that they can be used with Service Level Agreements (SLA) in general
and Security-SLAs in particular. It also discusses reference parameters for Security-
SLAs.

• Chapter 4 discusses works related to the main theme of the thesis, i.e. monitoring
process and guidelines to monitoring Security-SLAs in Cloud Computing environ-
ments.

• Chapter 5 applies the GQM methodology for the management of Cloud Computing
using security criteria across the security metrics hierarchy that was conceived in
this thesis.

• Chapter 6 evaluates and validates the proposed methodology over several aspects:
i) Return On Security Investment (ROSI); ii) parameter management for Security-
SLAs; iii) obtaining the Index of Security; iv) and obtaining the Index of Allocation.

• Chapter 7 presents the proposed monitoring architecture, based on Security-SLA,
its components and system interaction with the virtual machines running in the
cloud environment, its execution flow and architecture validation.

• Chapter 8 concludes with some considerations and summarizes general and specific
results obtained. A list of publications and submitted articles is also presented.

It is worth noticing that, since the chapters are based on papers published over a time
span, the analyzed set of samples may be different (regarding the set’s size and variety).

Chapter 2

Cloud Computing

Cloud Computing is a revolutionary technology model in which computing resources are
offered to users as a service, ensuring large processing capacity and flexibility. Despite the
great interest in this technology, there is still great misinformation about its characteris-
tics, potential and risks. This chapter presents the basic concepts about Cloud Computing
service models and the process of monitoring this environment, also discussing issues re-
lated to security monitoring.

2.1 A brief overview

Cloud Computing is associated with a new paradigm for computing supply infrastructure
[Vaquero et al., 2008], where processing power and applications are offered as services.
Although it is considered a new technology, its origins date back to the 1960s when the
computer scientist John McCarthy predicted that computing would be organized as a
public utility service [Garfinkel, 1999]. Since then, the intensified use of the Internet and
the emergence of new technologies allowed for Computing Clouds to offer a wide range of
services, including virtualization of computing resources, software development and end-
user applications of various types. This variety contributes to the existence of different
definitions of what is Cloud Computing, each focusing on specific characteristics. These
technologies are:

• Autonomic computing: a comprehensive set of services to help businesses develop
in an increasingly autonomic way, i.e. self-managing IT infrastructures;

• Grid computing: a collection of computer resources from multiple locations to
reach a common goal, as a distributed system;

• Service Oriented Architectures (SOA): a design pattern in which application
components provide services to other components via a communication protocol
over a network. The principles of service-orientation are independent of any seller,
product or technology;

• Software as a Service (SaaS): a software distribution and deployment model in
which applications are provided to customers as a service. The applications can run

21

CHAPTER 2. CLOUD COMPUTING 22

on the users’ computing systems or the provider’s Web servers. SaaS provides for
efficient patch management and promotes collaboration;

• Platform Virtualization: refers to the act of creating a virtual (rather than
actual) version of something, including (but not limited to) a virtual computer
hardware platform, operating system (OS), storage device or computer network
resources;

• Utility computing: a service provisioning model in which a service provider makes
computing resources and infrastructure management available to the customer as
needed and charges them by specific usage rather than a flat rate.

Initially, the cloud settings were described as aspects of “computing as a service” and
“distributed computing”. Over the years, the definitions have become more complete,
progressing to the definition proposed by NIST [Mell and Grance, 2011], which describes
aspects such as the sharing of virtualized resources and self-service. According to NIST,
cloud computing is defined as follows [Mell and Grance, 2011]:

“Model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (networks, servers, storage, appli-
cations, services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.”

Figure 2.1 presents the NIST cloud definition [Mell and Grance, 2011] that also deals
with the following important concepts [NIST, 2013a]: Deployment Models, Service Mod-
els, Essential Characteristics, Hosting and Roles. The next sections describe these con-
cepts.

Private	
Cloud	

Public	
Cloud	

Community	
Cloud	

Hybrid	 Clouds	
Deployment
Models

Service
Models

Essential
Characteristics

So6ware	 as	 a	
Service	 (SaaS)	

Pla:orm	 as	 a	
Service	 (PaaS)	

Infrastructure	 as	
a	 Service	 (IaaS)	

On	 Demand	 Self-‐Service	

Broad	 Network	 Access	

Resource	 Pooling	 Measured	 Service	

Rapid	 ElasIcity	

Figure 2.1: NIST Cloud Definition.

CHAPTER 2. CLOUD COMPUTING 23

2.1.1 Deployment Models

The Deployment Models document classifies clouds according to their way of management
and the relationship between service users [NIST, 2013a]. Under this view, clouds may
be classified as follows:

• Private cloud: the cloud infrastructure is provisioned for exclusive use by a single
organization comprising multiple consumers, e.g. business units. It may be owned,
managed, and operated by the organization, a third party or some combination of
them, and it may exist on or off premises;

• Community cloud: the cloud infrastructure is provisioned for exclusive use by a
specific community of consumers from organizations that have shared concerns, e.g.
mission, security requirements, policy, and compliance considerations. It may be
owned, managed and operated by one or more of the organizations in the community,
a third party, or some combination of them, and it may exist on or off premises;

• Public cloud: the cloud infrastructure is provisioned for open use by the general
public. It may be owned, managed, and operated by a business, academic, or
governmental organization, or some combination of them. It exists on the premises
of the cloud provider;

• Hybrid cloud: the cloud infrastructure is a composition of two or more distinct
cloud infrastructures (private, community, or public) that remain unique entities,
but are bound together by standardized or proprietary technology that enables data
and application portability, e.g. cloud bursting for load balancing between clouds.

2.1.2 Service Models

According to the service model document [NIST, 2013a], Cloud Computing may be clas-
sified as follows:

• Cloud Software as a Service (SaaS): the capability provided to the consumer
is to use the provider’s applications running on a cloud infrastructure. The applica-
tions are accessible from various client devices through a thin client interface such
as a Web browser, e.g. Web-based email, or a program interface. The consumer
does not manage or control the underlying cloud infrastructure, including network,
servers, operating systems, storage, or even individual application capabilities, with
the possible exception of limited user-specific application configuration settings;

• Cloud Platform as a Service (PaaS): the capability provided to the consumer is
to deploy onto the cloud infrastructure consumer-created or consumer-acquired ap-
plications created using programming languages and tools supported by the provider.
The consumer does not manage or control the underlying cloud infrastructure, in-
cluding network, servers, operating systems, or storage, but has control over the
deployed applications and possibly application hosting environment configurations;

CHAPTER 2. CLOUD COMPUTING 24

• Cloud Infrastructure as a Service (IaaS): the capability provided to the con-
sumer is to provision processing, storage, networks, and other fundamental comput-
ing resources where the consumer is able to deploy and run arbitrary software, which
can include operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control over operating systems,
storage, deployed applications; and possibly limited control of select networking
components, e.g. host firewalls.

An important feature of computer service architecture in clouds is the interdependence
between different service models, c.f. Figure 2.2. It can be observed that a SaaS cloud
service directly depends on the resources provided by the PaaS layer, just as the PaaS
layer builds on the features offered by the IaaS layer.

IaaS

PaaS

SaaS
Business Applications, ERP, CRM, Email, Virtual
desktop, Games, ...

Execution runtime, database, web server,
development tools, ...

Virtual machines, servers, storage, network, ...

Figure 2.2: Stack of cloud services.

2.1.3 Essential characteristics

The following essential characteristics document must be presented by any cloud service
[NIST, 2013a, NIST, 2013b], as described below:

• On-demand self-service: a consumer can unilaterally provision computing capa-
bilities, such as server time and network storage, as needed automatically without
requiring human interaction with each service provider;

• Broad network access: capabilities are available over the network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick client
platforms, e.g. mobile phones, tablets, laptops, and workstations;

• Resource pooling: the provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer demand. There is a
sense of location independence in that the customer generally has no control or
knowledge over the exact location of the provided resources, but may be able to
specify location at a higher level of abstraction, e.g. country, state, or datacenter.
Examples of resources include storage, processing, memory, and network bandwidth;

CHAPTER 2. CLOUD COMPUTING 25

• Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some
cases automatically, to scale rapidly outward and inward commensurate with de-
mand. To the consumer, the capabilities available for provisioning often appear to
be unlimited and can be appropriated in any quantity at any time;

• Measured Service: cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropriate to
the type of service, e.g. storage, processing, bandwidth, and active user accounts.
Resource usage can be monitored, controlled, and reported, providing transparency
for both the provider and consumer of the utilized service.

2.1.4 Hosting

According to the type of hosting, Cloud Computing maybe be considered internally or
externally hosted, depending on customer ownership, control of architectural design and
the degree of available customization.

2.1.5 Governance

Figure 2.3 shows the existing governance limits in the traditional architecture and different
service models of cloud computing [Mather et al., 2009], which resources are managed by
the customer and which are managed by the provider.

IaaS PaaS SaaS Traditional IT

M
anaged by the custom

er

M
anaged by the custom

er

M
anaged by the custom

er

Figure 2.3: NIST Service Offering.

CHAPTER 2. CLOUD COMPUTING 26

2.1.6 Roles

Multiple roles can be supported by a Cloud developer, many of which can exist within
a single provider [NIST, 2013a]: Cloud Auditor, Cloud Service Provider, Cloud Service
Carrier, Cloud Service Broker, and Cloud Service Consumer.

In this proposal, it is interested in the Cloud Auditor, who has the responsibility to
carry out the monitoring tasks and collection of information (the core set of Security
Components), necessary to implement security for the Cloud Computing environment
[NIST, 2013a].

2.1.7 Analyzing Cloud Options in Depth

Table 2.1 shows us that different cloud deployment models have varying management,
ownership, locations, and access levels.

Table 2.1: Deployment Model’s Responsibilities
Model Managed by Owned by Location Used by
Public External CSP External CSP Off-Site Untrusted
Private Customer or

external CSP
Customer or
external CSP

On-site or off-site Trusted

Hybrid Customer and
external CSP

Customer and
external CSP

On-site and off-site Trusted and
untrusted

2.2 Cloud Computing: the need for monitoring

Cloud monitoring is a task of essential importance for both providers and customers.
On the one side, it is a key tool for controlling and managing hardware, software in-
frastructures and services being provided. On the other side, it provides information
and indicators about the current state of various issues of the hired services in Cloud
Computing environment.

The continuous monitoring of the cloud and Security-SLAs (for example, in terms of
availability, duration, violation, penalty, compensation etc.) supplies both the providers
and the customers with information such as Quality of Service (QoS), service continu-
ity and application performance offered through the cloud, also allowing to implement
mechanisms to prevent or recover violations for both the provider and customers. The
monitoring process is clearly instrumental for all the activities covered by the role of Cloud
Auditor [NIST, 2013a].

Figure 2.4 present the main aspects of cloud monitoring considered in this work:
monitoring and properties, and that will be described in the Sections 2.2.1 and 2.2.2,
respectively.

CHAPTER 2. CLOUD COMPUTING 27

Proper&es:	
• Adaptability	
• Autonomicity	
• Elas3city	
• Extensibility	
• Resilience	 and	
Availability	

• Scalability	

Monitoring:	
• Capacity	 and	 Resource	 Planning	
• Capacity	 and	 Resource	 Management	
• Data	 Center	 Management	
• SLA	 Management	
• Billing	
• Performance	 Management	
• Security	 Management	

Cloud Monitoring

Figure 2.4: Cloud monitoring and properties.

2.2.1 Monitoring

As seen in Figure 2.4, the monitoring process is objective, performing the following man-
agement tasks:

• Capacity and resource planning: in order to guarantee the performance required
by hired services, administrators have to: (i) quantify capacity and resources, e.g.
Central Processing Unit (CPU), memory, storage, etc. to be provided. Cloud
service providers usually offer guarantees in terms of QoS and thus of resources and
capacity for their services as specified in SLAs [Hasselmeyer and d’Heureuse, 2010,
Shao and Wang, 2011]. To this end, monitoring becomes essential for cloud service
providers to predict and keep track of the evolution of all the parameters involved
in the process of QoS assurance [Kubert et al., 2011] in order to properly plan their
infrastructure and resources for complying with the SLAs;

• Capacity and resource management: a Cloud must have a monitoring system
able to accurately capture the state of resources [Viratanapanu et al., 2010]. Vir-
tualization has become a key component to implement Cloud Computing, hiding
the high heterogeneity of resources of the physical infrastructure, and infrastructure
providers have to manage both physical and virtualized resources [Shao et al., 2010,
Ferretti et al., 2010, Lakshmanan et al., 2010, Kubert et al., 2011];

• Data center management: cloud services are provided through large-scale data
centers integrating monitoring and analytics. Data center management activities
imply two fundamental tasks: i) monitoring and collecting desired hardware and
software metrics; and ii) data analysis, that processes such metrics for management

CHAPTER 2. CLOUD COMPUTING 28

actions: . resource provisioning, troubleshooting, or planning future actions to
prevent and correct violations [Hu et al., 2011, Buyya et al., 2011a];

• SLA management: the flexibility in terms of resource management by Cloud
Computing calls for new programming models in which cloud applications can take
advantage of this new feature [Rak et al., 2011], whose basic premise is monitoring;

• Billing: one of the characteristics of Cloud Computing is to offer “measured ser-
vices”, allowing the customer to pay proportionally to the use of the service, accord-
ing to the type of service and the price model adopted [Mell and Grance, 2011];

• Performance management: with infrastructure maintenance delegated to the
providers, the Cloud Computing model is attractive for most customers. Monitor-
ing is then necessary since it may considerably improve the performance of real
applications [Fox et al., 2009];

• Security management: cloud security is very important for a number of rea-
sons. Security is considered as one of the most significant obstacles to the adoption
of Cloud Computing, especially considering certain kinds of critical applications
and governmental customers [Chen et al., 2010]. Different works in the literature
have provided reviews and recommendations for cloud security [Chen et al., 2010,
Spring, 2011a, Spring, 2011b]. To manage security in cloud infrastructures and ser-
vices, proper monitoring systems are needed.

2.2.2 Properties

In the cloud scenario, a distributed monitoring system is required to have several proper-
ties to operate properly, consequently, introduce new security issues. In Figure 2.4, it has
described these properties for taxonomy of cloud monitoring considered in this work and
in literature:

• Adaptability: a monitoring system must adapt itself to varying computation and
network loads in order not to be invasive [Fox et al., 2009, Krutz and Vines, 2010,
Clayman et al., 2010, Buyya et al., 2011a, Vu et al., 2015];

• Autonomicity: an autonomic monitoring system can keep running without in-
tervention and reconfiguration, while hiding intrinsic complexity to providers and
customers [Fox et al., 2009, Buyya et al., 2011a, Mian et al., 2013, Vu et al., 2015];

• Elasticity: a dynamic monitoring system is elastic if it can manage itself correctly in
regards to the virtual resources created and destroyed by expansion and contraction
[Fox et al., 2009, Clayman et al., 2010, Krutz and Vines, 2010, Buyya et al., 2011a,
Vu et al., 2015]. Demand scalability and support for upsizing or downsizing of the
pool of monitored resources, also referred to as dynamism
[Hasselmeyer and d’Heureuse, 2010];

CHAPTER 2. CLOUD COMPUTING 29

• Extensibility: a monitoring system is extensible if it can easily be extended
through plug-ins or functional modules [Hasselmeyer and d’Heureuse, 2010]
[Krutz and Vines, 2010, Kubert et al., 2011, Vu et al., 2015];

• Resilience and Availability: a monitoring system is resilient when the persistence
of service delivery can justifiably be trusted when facing changes [Laprie, 2008,
Fox et al., 2009, Krutz and Vines, 2010, Buyya et al., 2011a, Vu et al., 2015], and it
is available if it provides services according to the system design whenever customers
request them [Shirey, 2007, Krutz and Vines, 2010];

• Scalability: due to the large number of parameters to be monitored about a huge
number of resources, a monitoring system is scalable if it can cope with a large
number of probes [Fox et al., 2009, Clayman et al., 2010, Krutz and Vines, 2010,
Buyya et al., 2011a, Vu et al., 2015].

2.2.3 Security Monitoring Views

Currently, cloud monitoring can provide information about aspects of system performance,
behavior, evolution, security, etc. This information is analyzed and applicable to the
appropriate domain or system level: server, infrastructure, platform or application. For
example, in an IaaS cloud such as Amazon EC2 [Amazon, 2008], customers can monitor
the state of their virtual machine instances in order to get knowledge about system load,
memory usage and performance. In the same scenario, the Cloud Service Provider (CSP)
would need to monitor all VM instances, continuously making sure SLA requirements
are satisfied. The CSP would also require monitoring information at the server level
in order to effectively control overall system load, VM allocation and migration, etc.
Therefore, the point of view of the entity that obtains the monitoring information (client,
management system, CSP, etc.) and its role in the monitoring system determines what
kind of information has to be provided.

Figure 2.5 presents different entities that require different security monitoring and have
different views of the cloud. From this perspective, two main cloud security-monitoring
views can be distinguished:

• Client-side security monitoring view: the cloud is capable of providing a specific set
of computing services, expressed as the service provisioning relationship established
between customer and CSP (Security-SLA). This monitoring information helps the
customer to understand the characteristics of the services received and their use;

• Cloud-service-provider-side security monitoring view: the cloud is viewed as a com-
plex distributed infrastructure, with many hardware and software elements com-
bined together to provide a specific set of services. Security monitoring information
produces knowledge for the CSP about the internal functioning of the different
cloud elements, their state, performance, etc. This security information serves as
an internal status control in order to guarantee the Security-SLAs.

CHAPTER 2. CLOUD COMPUTING 30

Monitoring views

Figure 2.5: Cloud monitoring level views.

These two security views are complementary and address different requirements of
cloud security monitoring, creating differentiated views of the system behavior and evo-
lution.

2.3 Security in Cloud Computing

The share of responsibility in traditional architectures, the user has control over all the
infrastructure and therefore, hold full responsibility for security. As for the cloud environ-
ment, the responsibility of the user decreases according to the service model used. IaaS
service users are responsible for the security of the VM and its applications, SaaS services,
and all responsibility lies with the service provider.

From the provider perspective, responsibility sharing is also a challenge, as in IaaS
services, the user has complete control over the VM. This causes this element to become a
weak point within the cloud architecture that can be used to commit itself or other VMs
physical machine (node) where VM is executed.

2.3.1 Classification of Risks

In Cloud Computing, the different technologies that integrate to form the cloud archi-
tecture (hardware, operating systems, virtualization technologies, etc.) introduce known
risks to the technological model. At the same time, their combined use introduces new
risks.

ENISA addresses the security risks of Cloud Computing [ENISA, 2009a], and classify
them into four categories:

1. Policy and organizational: these are risks related to loss of governance, obser-

CHAPTER 2. CLOUD COMPUTING 31

vance break the organizational policies and regulatory standards, dependence on
service providers, etc.;

2. Technical: related to questions about the security of the technologies used by the
provider, such as network communication, service management etc.;

3. Legal: concern the breakdown of data protection due to differences in legislation
between countries that host cloud servers;

4. Others risks not specific to the cloud: in the course of risk analysis, the
following threats which are not specific to Cloud Computing, but should nevertheless
be considered carefully when assessing the risk of a typical cloud-based system.

2.3.2 Risk Assessment Process

The risk level is estimated on the basis of the likelihood of an incident scenario, mapped
against the estimated negative impact. The likelihood of an incident scenario is given by
a threat-exploiting vulnerability with a given likelihood.

In Figure 2.6, the following shows the risk level as a function of the business impact
and likelihood of the incident scenario. The resulting risk is measured on a scale of 0
to 8 that can be evaluated against risk acceptance criteria, and estimation of risk levels
based on ISO/IEC 27005:2011 [ISO/IEC-27005:2011, 2011]. This risk scale could also be
mapped to a simple overall risk rating:

Figure 2.6: Estimation of risk levels based on ISO/IEC 27005:2011.

• Low risk: 0–2

• Medium Risk: 3–5

• High Risk: 6–8

Figure 2.7 shows the distribution of the risk probabilities and impacts. The likelihood
of each incident scenario and the business impact was determined in consultation with
the expert group contributing to this report, drawing on their collective experience.

CHAPTER 2. CLOUD COMPUTING 32

Probabilty

Impact

Figure 2.7: Risk distribution.

Table 2.3.2 describes different groups of risks [ENISA, 2009a], where column Topic
describes the Id risk, column Class describes the type of risk: (P) for “Policy and Organi-
zational”; (T) for “Technical”; (L) for “Legal”; and (X) for “Risks not specific to the Cloud”,
column Description presents the risk definition and column Value describes the risk level:
High, Medium, Low. More importantly, the impact of these risks and responsibility for
its control varies according to the type of service [Vacca, 2013].

Table 2.2: Summary of Risks in Cloud Computing

Topic Class Description Value
R.1 P Lock-in: currently, there are no tools, procedures, standard

data formats or service interfaces that could guarantee data and
service portability for a customer to migrate from one provider
to another.

High

Continued on next page

CHAPTER 2. CLOUD COMPUTING 33

Table 2.2 – Continued from previous page
Topic Class Description Value
R.2 P Loss of governance: while using the cloud, the client nec-

essarily concedes control to the CSP on a number of security
issues. The loss of control and governance could affect the con-
fidentiality, integrity and availability of data, cause a deteriora-
tion of performance and Quality of Service and introduce new
compliance challenges.

High

R.3 P Compliance challenges: customers make considerable invest-
ments in achieving certification, meeting industry standards and
regulatory requirements. The risks of a migration to the cloud
are: i) the CSP not providing evidence of their own compliance;
ii) the CSP not permitting auditing.

High

R.4 P Loss of business reputation due to co-tenant activities:
as examples, spamming, port scanning or the serving of mali-
cious content from cloud infrastructure can lead to: i) a range of
IP addresses being blocked, including the attacker’s and other
innocent tenants of an infrastructure’s; ii) confiscation of re-
sources due to neighbor activities (neighbor subpoenaed).

Medium

R.5 P Cloud service termination or failure: in the short or
medium term, some Cloud Computing services could be termi-
nated. The impact of this threat for the cloud customer could
lead to a loss or deterioration of service delivery performance
and Quality of Service, as well as an investment loss.

Medium

R.6 P Cloud provider acquisition: could increase the likelihood
of a strategic shift and may put non-binding agreements at
risk, e.g. software interfaces, security investments and non-
contractual security controls. The final impact could be damag-
ing for the organization’s reputation, customer or patient trust
and employee loyalty and experience.

Medium

R.7 P Supply chain failure: a cloud service provider can outsource
certain specialized tasks of its “production“ chain to third par-
ties. Any interruption or corruption in the chain or a lack of
coordination of responsibilities between all the parties involved
may lead to: unavailability of services, loss of data confidential-
ity, integrity and availability, economic and reputational losses
due to failure to meet customer demand, violation of SLA, cas-
cading service failure, etc.

Medium

R.8 T Resource exhaustion (under or over provisioning): In-
accurate modeling of customer demands by the cloud provider
may lead to service unavailability, access control compromising
and economic and reputational losses due to resource exhaus-
tion. The customer takes a level of calculated risk in allocating
all resources from a cloud service provider because resources are
allocated according to statistical projections.

Medium

Continued on next page

CHAPTER 2. CLOUD COMPUTING 34

Table 2.2 – Continued from previous page
Topic Class Description Value
R.9 T Isolation failure: This class of risks includes the failure of

mechanisms separating storage, memory, routing, and even rep-
utation between different tenants of the shared infrastructure.

High

R.10 T Cloud provider malicious insider - abuse of high priv-
ilege roles: the malicious activities of an insider could po-
tentially have an impact on the confidentiality, integrity and
availability of all kinds of data and services and therefore in-
directly on the organization’s reputation, customer trust and
the employees’ experience. As cloud use increases, employees of
cloud providers increasingly become targets of criminal gangs.

High

R.11 T Management interface compromise (manipulation,
availability of infrastructure): the customer management
interfaces of public cloud providers are Internet accessible and
mediate access to larger sets of resources (than traditional host-
ing providers) and therefore pose an increased risk, especially
when combined with remote access and Web browser vulnera-
bilities.

Medium

R.12 T Intercepting data in transit: Cloud Computing, being a
distributed architecture, implies more data in transit than tra-
ditional infrastructures. Sniffing, spoofing, man-in-the-middle
attacks, side channel and replay attacks should be considered
as possible threat sources.

Medium

R.13 T Data leakage on up/download, intra-cloud: this is the
same as the previous risk category, but applies to data transfer
between the cloud provider and the cloud customer.

Medium

R.14 T Insecure or ineffective deletion of data: whenever a
provider is changed, resources are scaled down, physical hard-
ware is reallocated, and data may be available beyond the life-
time specified in the security policy. Where true data wiping is
required, special procedures must be followed and this may not
be supported by CSP.

Medium

R.15 T Distributed Denial of Service (DDoS): a common method
of attack involves saturating the target environment with ex-
ternal communication requests, such that it cannot respond to
legitimate traffic, or responds so slowly as to be rendered ef-
fectively unavailable. This can result in financial and economic
losses.

Medium

R.16 T Economic Denial of Service (EDoS): destroys economic
resources; the worst case scenario would be the bankruptcy of
the customer or a serious economic impact.

Medium

Continued on next page

CHAPTER 2. CLOUD COMPUTING 35

Table 2.2 – Continued from previous page
Topic Class Description Value
R.17 T Loss of encryption keys: this includes disclosure of secret

keys or passwords to malicious parties, the loss or corruption
of those keys or their unauthorized use for authentication and
non-repudiation (digital signature).

Medium

R.18 T Undertaking malicious probes or scans: malicious probes
or scanning, as well as network mapping, are indirect threats to
the assets being considered. They can be used to collect infor-
mation in the context of a hacking attempt. A possible impact
could be a loss of confidentiality, integrity and availability of
service and data.

Medium

R.19 T Compromise service engine: each cloud architecture relies
on a highly specialized platform and the service engine. The
service engine sits above the physical hardware resources and
manages customer resources at different levels of abstraction.
For example, in IaaS clouds this software component can be
the hypervisor. Like any other software layer, the service en-
gine code may have vulnerabilities and is prone to attacks or
unexpected failure. Cloud providers must set out a clear segre-
gation of responsibilities that articulates the minimum actions
customers must undertake.

Medium

R.20 T Conflicts between customer hardening procedures and
cloud environment: cloud providers must set out a clear seg-
regation of responsibilities that articulates the minimum actions
customers must undertake. The failure of customers to properly
secure their environments may pose a vulnerability to the cloud
platform if the cloud provider has not taken the necessary steps
to provide isolation. Cloud providers should further articulate
their isolation mechanisms and provide best practice guidelines
to assist customers to secure their resources.

Medium

R.21 L Subpoena and e-discovery: in the event of the confiscation
of physical hardware as a result of subpoena by law-enforcement
agencies or civil suits, the centralization of storage as well as
shared tenancy of physical hardware means many more clients
are at risk of the disclosure of their data to unwanted parties.
At the same time, it may become impossible for the agency of
a single nation to confiscate a cloud given pending advances
around long distance hypervisor migration.

High

Continued on next page

CHAPTER 2. CLOUD COMPUTING 36

Table 2.2 – Continued from previous page
Topic Class Description Value
R.22 L Risk from changes of jurisdiction: customer data may be

held in multiple jurisdictions, some of which may be high risk or
subject to higher restrictions. Certain countries are regarded as
high risk because of their unpredictable legal frameworks and
disrespect international agreements. On the other hand, other
countries can have stricter privacy laws a might require that
certain data cannot be stored or tracked.

High

R.23 L Data protection risks: it has to be clear that the cloud cus-
tomer will be the main person responsible for the processing of
personal data, even when such processing is carried out by the
CSP in its role of external processor. While some CSP, provide
information about their data processing and data security ac-
tivities, others are opaque about these activities and can cause
legal problems for the customer. There may also be data secu-
rity breaches that are not notified to the controller by the CSP.
In some cases, customer might be storing illegal or illegally ob-
tained data, which might put the CSP and other customers at
risk.

High

R.24 L Licensing risks: licensing conditions, such as per-seat agree-
ments, and online licensing checks may become unworkable in
a cloud environment. For example, if software is charged on
a per instance basis every time a new machine is instantiated
then the cloud customer’s licensing costs may increase exponen-
tially, even though they are using the same number of machine
instances for the same duration.

Medium

R.25 X Network breaks: potentially thousands of customers are af-
fected at the same time.

Medium

R.26 X Network management: may occur network congestion, miss
connection, no optimal use, etc.

High

R.27 X Modifying network traffic: may occur network congestion,
miss connection, no optimal use, etc.

Medium

R.28 X Privilege escalation attack: a type of network intrusion that
takes advantage of programming errors or design flaws to grant
the attacker elevated access to the network and its associated
data and applications.

Medium

R.29 X Social engineering attacks: the art of manipulating people
into performing actions or divulging confidential information.
The access doesn’t have mean access to your systems (though
it often does), it can simply mean access to private information
that can later be used to compromise your systems (imperson-
ation).

Medium

Continued on next page

CHAPTER 2. CLOUD COMPUTING 37

Table 2.2 – Continued from previous page
Topic Class Description Value
R.30 X Loss or compromise of operational logs: operational logs

can be vulnerable due to lack of policy or poor procedures for log
collection. This would also include retention, access manage-
ment vulnerabilities, user unprovisioning vulnerabilities, lack of
forensic readiness, and operating system vulnerabilities.

Medium

R.31 X Loss or compromise of security logs: security logs can
be vulnerable due to lack of policy or poor procedures for log
collection, basically for manipulation of forensic investigation.

Medium

R.32 X Backup lost, stolen: the high-impact risk affects company
reputation, all backed up data, and service delivery. It also oc-
curs owing to inadequate physical security procedures, access
management vulnerabilities, and user unprovisioning vulnera-
bilities.

Medium

R.33 X Unauthorized access to premises: including physical access
to machines and other facilities, the probability of malicious
actors gaining access to a physical location is very low, but
in the event of such an occurrence, the impact to the cloud
provider and its customer is very high. It can affect company
reputation data hosted on premises.

Medium

R.34 X Theft of Computer Equipment: it can affect company repu-
tation and data hosted on premises; the risk is due to inadequate
physical security procedures.

Medium

R.35 X Natural Disasters: it can have a high impact on the busi-
ness involved in the event of its occurrence. If business has
untested business continuity or disaster recovery plan, its repu-
tation, data, and service delivery can be severely compromised.

Medium

2.4 Summary

This chapter presented a brief overview on topics of cloud Computing for the deployment
models, service models, essential characteristics, hosting and governance. In more detail, it
has been discussed the main activities in cloud environment that have strong benefit from
or actual need of monitoring. To contextualize and study cloud monitoring, background
and definitions for key concepts have been provided. It was also discussed the different
sides on security monitoring in the cloud Computing environment. Finally, the risks
involved in the migration process and utilization of services in Cloud Computing have
been presented.

Chapter 3

Service Level Agreement

This chapter discusses the importance of service level agreements as a way to specify
guarantees over parameters being monitored, their use in information technology and
new mechanisms to represent such agreements.

3.1 Unmeasurable Qualities

When trying to formalize risk (R), at times there is a need to determine tangible values
for intangible assets. Risk is directly linked to the degree of probability of a threat to
occur and to the degree of negative impact of the incident caused by the threat to the or-
ganization [NIST, 2013a], while also measuring the implemented protection effectiveness:

R = (GPO×GIN)
GEP

Where:

GPO: probability of occurrence of the threat;

GIN: degree of negative impact of the incident caused by the threat to business;

GEP: degree of effectiveness of the implemented protection.

These variables are intangible and unmeasurable. Overall, the qualities specified in an
SLA can be classified into measurable and unmeasurable. The measurable qualities are
those that can be measured automatically by means of metrics. While the unmeasurable
qualities do not allow an automatic measurement, they cannot be evaluated by a method
that results in a single value. In these cases, sets of secondary metrics that measure
specific aspects of unmeasurable qualities are used.

The following are measurable qualities found in IT services [Bianco et al., 2008]:

1. Accuracy: the error rate threshold for the service during a specific period of time;

2. Availability: probability that the service will be available when needed;

3. Capacity: number of concurrent requests that the service supports;

38

CHAPTER 3. SERVICE LEVEL AGREEMENT 39

4. Cost: cost of service;

5. Latency: the maximum time between the arrival of the request and the time to
complete the request;

6. Provisioning time: time required for the service to become operational;

7. Reliability of messages: guaranteed delivery of messages;

8. Scalability: ability to increase the number of operations performed successfully in
a time frame.

Now follows a list of unmeasurable qualities [Bianco et al., 2008]:

1. Interoperability: ability of intercommunication with other services;

2. Modificability: frequency of service changes (interface or implementation);

3. Security: ability to resist unauthorized use while providing service to legitimate
customers (clients/tenants).

3.2 Metrics

A metric is a standard for measurements, and its value is the result of measuring some-
thing. A metric provides a numerical description of a particular feature of the items under
investigation. The metric defines both what is being measured (the attribute) and how it
is being measured (the unit of measurement)[Herrmann, 2007].

Measurement is the process of collecting metrics and establishing rules for interpreta-
tion of the results. Any restrictions or related controls are defined in the measurement
process[Payne, 2006].

Each metric can return values such as:

i) number expressing an absolute value of a measured element;

ii) percentage expressing a measured component relative to the total of the elements;

iii) average expressing a mean value of an element relative to a set of elements;

iv) other quantifiable values.

3.3 Security Metrics

Security metrics are a technique which one can monitor and compare the level of security
and privacy, the privacy state (status) or the security record of a computing environment.
The judicious use of security metrics promotes transparency, decision-making, predictabil-
ity and proactive planning[Hayden, 2010].

As an example of a security metric specification:

• Id-Metric: Met2.3.18

CHAPTER 3. SERVICE LEVEL AGREEMENT 40

• Metric Name: Packet filtering

• Units: % (percentage)

• Formula: x =
Count(Incidents_Packet_filtering)

Total_Packet_filtering
∗ 100

• Version: 1.3.6

• Description: the Packet filtering Security Metric (Met2.3.18) is monitoring unusual
activity on the network when packet-filtering devices forward or deny packets based
on information in each packet’s header, such as IP address or TCP port number. A
packet-filtering firewall uses a rule set to determine which traffic should be forwarded
and which should be blocked.

• Place: Firewall, Router, Proxy, IPS, IDPS, etc.

3.3.1 Time Series Analysis

Time Series Analysis (TSA) can extract long time trends from data, both upwards and
downwards, that may also present seasonal behavior.

Time series are formed by sequential observation collected from one or more variables
ordered in time. For univariate series observations can be represented in the form (x1,
x2, .., xn), where the indices are instants of time t ∈ [1, n] where n is the number of
observations. In multivariate series, k represents the number of variables observed at
each time t. These sets are represented in the form (x1t, x2t, .., xkt), where t ∈ [1, n].

The modeling of time series allows for understanding their behavior and their proper-
ties, which in turn allows the prediction of their behavior over time. This is useful since
anticipating the series behavior helps in decision-making processes. The starting point is
to perform the series decomposition in order to derive patterns.

The series decomposition will identify which components are working properly in that
particular set, besides allowing to obtain indexes and/or equations to forecast future
periods of the series.

In this proposal, using the classical model, all time series are seen as composed by four
patterns:

(i) Trend (T): describes the behavior of the depicted variable in the time series in the
long run. There are three basic goals for such identification: to evaluate its behavior
for use in forecasts, to subtract the trend from the series for easy viewing of other
components and to identify the level of the series, i.e. the typical value or range of
values that the variable may assume;

(ii) Cyclical variations or cycles (C): fluctuations in the variable values longer than
a year that are repeated with a certain periodicity;

(iii) Seasonal variations or seasonality (S): fluctuations in the variable values of
less than a year, repeated every year, usually depending on the seasons, holidays,
festivals and so on; if the data is recorded every year there will be no influence of
seasonality in the series;

CHAPTER 3. SERVICE LEVEL AGREEMENT 41

(iv) Irregular variations (I): unexplained fluctuations, probably the result of ran-
dom and unexpected events such as natural disasters, terrorist attacks, untimely
government decisions etc.

This model has two options to describe the equation:

• The additive model, where the value of the series (Y) is the sum of the component
values:

Y = T + C + S + R

• The multiplicative model, where the value of the series (Y) is the product of the
component values:

Y = T · C · S · I

Obtaining the trend can be done in three ways: through a regression model (linear
model such as the - line), by means of moving averages, or through exponential fit, which
is nonetheless a moving average.

In this proposal, security metrics will be collected by monitoring agents and treated
as time series.

3.3.2 Uncertainty

In metrology, the result of a measurement is not meaningful if a statement of the mea-
surement’s uncertainty is not specified. This statement allows users to assess the quality
of the measurement results and to build confidence so as to compare results and use them
within the range of the measurement uncertainty.

In the context of cloud services, it is critical that the customer of a measured resource
be confident about the measurements operated on that resource. These measurements
will feed security metrics that could be compared against thresholds to determine the
range of acceptable results and then trigger possible reactions.

In this proposal, the security metrics will be validated during the collection process.

3.3.3 Calibration & Measurement Standard

Once new security metrics and units of measurement have been defined for cloud service
security properties that can be reusable and comparable, the next step would be the
calibration of the measurement systems used for measurement of cloud service security
properties against established measurement standards. This would bring better accuracy
and consequently better understanding of the security properties behavior involved.

CHAPTER 3. SERVICE LEVEL AGREEMENT 42

3.4 Service Level Agreement

The specification of guarantee parameters assures that the quality of services is an es-
sential mechanism in environments where outsourcing is used. This Section discusses the
importance of service levels as a way to specify such guarantees, its use on information
technology and security services, and finally ways of representing such agreements.

3.4.1 Definition

An SLA is part of the contract between the service consumer and service provider and for-
mally defines the level of service. The TeleManagement (TM) Forum’s SLA Management
Handbook [SLA, 2005] underscores the importance of SLAs for the telecommunications
industry:

“It is the Service Level Agreement (SLA) that defines the availability, re-
liability and performance quality of delivered telecommunication services and
networks to ensure the right information gets to the right person in the right
location at the right time, safely and securely. The rapid evolution of the
telecommunications market is leading to the introduction of new services and
new networking technologies in ever-shorter time scales. SLAs are tools that
help support and encourage customers to use these new technologies and ser-
vices as they provide a commitment from SPs (Service Providers) for specified
performance levels [SLA, 2005].”

The Service Level Agreement (SLA) is part of the service contract between provider
and customer, and describes the desired Quality of Service (QoS)
[Berberova and Bontchev, 2009]. An SLA alone does not guarantee that the specified
qualities are met, but it defines the necessary monitoring mechanisms, points out the
responsibilities and defines punishments and compensations if conditions are not met.

In this context, Muller [Muller, 1999] states that such agreements would have a mini-
mal set of information, as described for:

• Background: contain a set of information that allows a reader, even non-technical,
to understand the current service levels and its guarantees;

• Parties: identify the parties to the agreement, including the responsible party
within IT, within the business unit and/or application user group;

• Service: quantify the volume of the service to be provided by the IT department;

• Timeliness: provide a qualitative measure of measure of deadlines for execution of
user requests;

• Availability: describe the periods where the service will be available to the end
users;

• Limitations: describe the limits of service provided, while it is capable of peak
usage, caused by large demands of use;

CHAPTER 3. SERVICE LEVEL AGREEMENT 43

• Compensation: display the mechanisms used to compensate the user in situations
where violations of the contracted service levels occur;

• Measurements: describe the process of monitoring service levels, and should also
include a brief description of the data collection and extrapolation processes;

• Renegotiation: describe how and under what circumstances the SLA can be
changed to reflect changes in the environment.

In information technology (IT) services, SLA use takes a different approach than
that of telecommunication services. The agreement shall represent both customer’s and
provider’s expectations. As such, obligations may be specified for both parties. The scope
of information contained in the agreement is also differentiated. According to Bianco et
al. [Bianco et al., 2008], a properly specified IT SLA-based describes each service offered
and addresses:

• how delivery of the service at the specified level of quality will become realized;

• the parties involved;

• which metrics will be collected;

• who will collect the metrics and how;

• actions to be taken when the service is not delivered at the specified level of quality
and who is responsible for doing them;

• penalties for failure to deliver the service at the specified level of quality;

• how and whether the SLA will evolve as technology changes, e.g. multi-core pro-
cessors improve the provider’s ability to reduce end-to-end latency.

3.4.2 SLA Life Cycle

The SLA is not a static document and its proper use is a result of the implementation of
various activities conducted at different stages of his life. According to [SLA, 2005]:

1. Definition: this phase is focused on the identification of the service and its features,
as well as the definition of quality parameters that will be provided to users;

2. Negotiation: in this phase values are defined for the parameters of the service, the
cost to the user and penalties if the SLA is violated;

3. Implementation: the service is prepared for consumption for the user;

4. Execution: the phase of operation and service monitoring. In this phase, the
quality parameters specified are evaluated for compliance of the SLA;

5. Evaluation: in this phase the provider assesses the quality of the service provided;

CHAPTER 3. SERVICE LEVEL AGREEMENT 44

1.	Defini)on	

2.	Nego)a)on	

3.	Implementa)on	

4.	Execu)on	

5.	Evalua)on	

6.	Finish	

Figure 3.1: Life cycle of an SLA.

6. Finish: it matters finalization of the service, whether for reasons of expiration of
contract or breach of SLA.

The figure 3.1 shows the life cycle of an SLA, and it consists on six phases:
The renovation process in the SLA occurs from phase 5 (Evaluation) to phase 1 (Defini-
tion).

3.4.3 SLA Parameters

In this proposal, the SLA specifies the Service Level Objectives (SLOs), which are the
actual topics to be measured by the SLA. Each SLO may be composed of one or more
Quality of Service metrics. The combinations of these metrics Quality of Services (QoSs)
within a SLO depend greatly on the architecture of the service being provided.

A SLO is defined in terms of achieving a level of service within an agreed set of
security metrics for a certain period of time, explaining how and where it should be
measured. So SLA is the entire agreement, specifying what the service provided, which
is your support, periods, costs and responsibilities of the parties involved, and SLOs
are measurable characteristics of the SLA, such as availability, frequency, response time,
quality and others.

It is crucial to emphasize that, in the context of an SLA, service level monitoring is as
important as their specification. For this purpose, metrics are used to assess compliance
with the desired qualities of service. The way these metrics are measured depends on the
type of service and quality features that one wants to measure.

3.5 Security-SLA

The increasing use of outsourced IT services causes a growing concern with issues in-
volving privacy and security [Jaatun et al., 2012]. Thus, it is natural for such issues to
be addressed in SLAs, which allow the customer to specify security levels that must be
guaranteed for the contracted services. However, the specification of SLAs involving secu-
rity features (Security-SLA) presents challenges that involve the specification of security
levels, the representation of these levels and finally monitoring them.

CHAPTER 3. SERVICE LEVEL AGREEMENT 45

In the literature, the definition of security parameters can be done in two ways:
through security policies or from security metrics.

The specification of security settings through policies, as proposed in
[Casola et al., 2006], considers the Security-SLA as a set of policies expressed in standard
language, e.g. WS-Policy [W3C, 2007b]. Although this approach is able to clearly specify
the desired levels of security, the use of policies fail when specifying mechanisms for
monitoring, and ignore the representation of various members of SLA information.

This specification from security metrics is a commonly used method that allows defi-
nition not only of the security parameters but also of the monitoring process. Unlike the
specification of policies, the specification from metrics is based on a set of security metrics
that allows checking whether a particular goal (control) is being fulfilled or not.

Table 3.1 presents a group of the metrics about access control with yours respective
parameters that must monitored and evaluated by the Security-SLA.

Table 3.1: Parameters of Security-SLA
Class Description (requirement) Value
Access Control Password size > 10 characters

Password hashed Yes
Password change < 45 days

Operational Mean-Time Between Security Incidents 2 hours
Mean-Time to Incident Recovery 6 hours
Mean-Time to Mitigate Vulnerabilities 1 hour

In access control, the parameter to “Password size” defines each password must be at
least 10 characters, the parameter “Password encryption” defines that each password must
saved in hashed form, and the parameter “Password change” defines that each password
must change at most in 45 days. In Operational, the parameter to “Mean-Time Between
Security Incidents” defines each security incidents must be at least 2 hours, the parameter
“Mean-Time to Incident Recovery” defines that each incident recovery must be at least
6 hours, and the parameter “Mean-Time to Mitigate Vulnerabilities” defines that each
mitigate a vulnerabilities must change at most in 1 hour.

The form of representation agreements Security-SLA is an important aspect the mon-
itoring solution, since the entire monitoring process of the agreement is made in an au-
tomated fashion. Therefore, the search for a suitable language to the representation of
these agreements considered different existing standards, which at first were not focused
on the representation of security agreements.

Unlike traditional SLA agreements that have expressed their parameters as numerical
values [Muller, 1999], e.g. CPU utilization, network traffic, etc., agreements Security-
SLA have a very strong relationship with security policies. Despite this relationship, the
representation and evaluation of policies for compliance agreements is unnecessary, since
the existing metrics in the agreement should be sufficient to indicate whether a policy is
being fulfilled.

CHAPTER 3. SERVICE LEVEL AGREEMENT 46

3.6 Monitoring Security-SLA

The Cloud Computing model is always strongly based on guaranteeing Quality of Service
(QoS), as specified in the Security-SLA, and therefore useful security monitoring will
almost always be related to the terms in which the Security-SLAs are specified.

Both physical and virtual systems have to be monitored in order to detect, or even
anticipate, system behavior changes that could have an impact on QoS. Therefore, defining
the appropriate monitoring security metrics for each type of cloud monitoring is a crucial
aspect. There are, however, several issues that need to be considered when defining these
security metrics:

(i) In the case of security monitoring, security metrics have to provide information in
the same terms as the Security-SLA is specified, i.e. using the same parameters.

(ii) Virtual system monitoring metrics have to be defined in a similar way, but probably
including additional internal information. Again, this is strongly dependent on the
terms in which Security-SLAs are defined, and therefore, strongly varies from one
cloud service to other.

(iii) The case of physical system monitoring are those used in regular distributed systems,
such as hardware metrics (CPU, memory, physical storage, network traffic, etc.),
operating system metrics (system load, virtual memory, etc.) and so on.

Customers must establish trust relationships with the CSP and understand risk in
terms of how the provider implements, deploys, and manages security on their behalf
[Services, 2011, Zissis and Lekkas, 2012]. The CSP must address the fundamentals of
security and privacy, such as identity management, access control, data control, network
access, protected communication, and so on, agreed with the customer by means of the
corresponding Security-SLA as part of the service. However, customers can implement
their own monitoring infrastructure on top of the service as a part of the client-oriented
monitoring to know the service behavior.

3.7 Summary

This chapter presented the main properties about unmeasurable qualities, metrics, se-
curity metrics, and how the analysis of temporal series can predict a security metric
behavior. It described SLA and Security-SLA, the composition of a Service Level Agree-
ment by Service Level Objectives, and the relationship between an SLO and a security
metric. Finally, it presented issues that need to be addressed in the security monitoring
scenario of a Security-SLA.

Chapter 4

Related Work

This chapter presents the summary of related work for this proposal, the tools and frame-
works used in monitoring cloud environments and a brief description of the guides for
monitoring Security-SLAs.

4.1 Summary of Related Work

Security and privacy are among the most discussed topics when researching about infor-
mation migration from traditional systems to Cloud Computing [Chen et al., 2010]; they
have been consistently ranked as one of the top challenges to cloud adoption, but it is
not clear which security issues are particular to cloud computing. At this point, however,
these issues do not appear to require completely new security controls but instead the
creative usage of existing security techniques.

Despite all the cloud advantages, enterprise customers are still reluctant to deploy
their business in the cloud. Security and privacy are among the most discussed topics
in research about information migration from traditional systems to Cloud Computing
[Subashini and Kavitha, 2011]. In this scenario, several groups and organization are in-
terested in developing security solutions and standards for the cloud, for example, the
Cloud Security Alliance (CSA) is gathering solution providers, nonprofit organizations
and individuals to discuss current and future best practices for information assurance in
the cloud [CSA, 2014a, CSA, 2014b].

The initial surveys [Foster et al., 2008] described the intricate relations between the
Cloud and Grid Computing paradigms, but Cloud Computing is not a completely new
concept [Fox et al., 2009]. It has connections to other relevant technologies such as utility
computing, cluster computing and distributed systems in general [Ahmed et al., 2012].

The conceptual, technical, economic and user experience characteristics of Cloud
Computing are described in [Vaquero et al., 2008, Liu et al., 2010a, Buyya et al., 2011a],
which state more clearly what cloud computing is and so contribute to distinguish it
from other research areas. Taxonomies for cloud computing services [Rimal et al., 2009,
Hoefer and Karagiannis, 2010] have also been proposed, allowing for the extraction of
a consensus definition as well as a minimum definition containing the topic’s essential
features. Issues of security and privacy are relegated to a background role or their im-

47

CHAPTER 4. RELATED WORK 48

portance is just mentioned in passing, with assumptions that there must be mechanisms
to monitor them but no word on how to do it. Nevertheless, research from Dana Petcu
[Gonzalez et al., 2012, Petcu, 2014b, Petcu and Craciun, 2014, Petcu, 2014a] intended to
serve the design of an SLA-based cloud security monitoring system using taxonomies
for the fields of Cloud Computing, monitoring, security and SLAs. In their approach,
Security-SLA parameters are composed of system metrics using mapping techniques.
However, they consider neither resource metric monitoring nor Security-SLA violation
detection.

In the cloud environment, the problem is to find a method of security assessment
suitable for services. Henning [Henning, 1999] proposed to evaluate a service against
security domains, each of which would be evaluated separately and assigned a level (from
1 to 4). In contrast, this work’s essential goal is to propose a new methodology which can
be applied to different security requirements to generate security metrics.

In [Krautsevich et al., 2010, Krautsevich et al., 2011] the authors investigated how one
could define “more secure” relations and described the basic formal model for a description
and analysis of security metrics. In this thesis the basic goal is slightly different; it focus
on already proven usage of formal models, where each security metric has some complex
range of values to be normalized to the scale [0-4], in a monotonic way.

The goal of SLA Management [SLA, 2005] is to assist two parties, customer and
provider, in developing a Service Level Agreement (SLA) by providing a practical view of
the fundamental issues. Other researches described methodologies for SLA management
[Gonzalez and Helvik, 2012, Wu et al., 2013a, Rak et al., 2013], some other attempted to
integrate security policies with SLA or security requirements with Security-SLA using
QoS models [de Chaves et al., 2010b, Emeakaroha et al., 2010a, Bernsmed et al., 2011,
Zhien and Yiqi, 2012], yet only tackling control mechanisms to achieve SLA compliance
over CPU, memory and network bandwidth requirements [Brandic et al., 2009] and self-
manageable cloud services [Brandic, 2009]. This thesis was directed to generate security
metrics for any infrastructure device or cloud service through Security-SLAs, providing
the necessary control mechanisms to deal with these metrics.

Comuzzi et al. [SLA@SOI, 2010] define the process for SLA establishment adopted
within the EU SLA@SOI project’s framework. The authors propose the architecture for
monitoring SLAs considering two requirements introduced by the SLA establishment: the
availability of historical data for evaluating SLA offers and the assessment of the capability
to monitor the terms in an SLA offer. Hwever, they do not consider monitoring of low-
level security metrics and mapping them to high-level SLA parameters for ensuring the
Security-SLA goals.

In [ISO/IEC-27000:2009, 2009, ENISA, 2009c, CAMM, 2010, SSAE, 2011, IFAC, 2011,
CSA, 2011, ISO, 2011, ISO/IEC-27017:2014, 2014], security models or guidelines were de-
scribed for security control specifications deployable by the cloud service provider to ensure
the service’s security. Such solutions are not flexible and scalable, thus hindering new ad-
justments to the service being monitored. To tackle this issue, this thesis’ proposal makes
use of the GQM approach [Basili et al., 1994, Basili, 2002].

The literature on traditional Return on Investment (ROI) [Cavusoglu et al., 2004,
Keshavarzi et al., 2013] and Return on Security Investment (ROSI) [Stout et al., 2006,

CHAPTER 4. RELATED WORK 49

Brocke et al., 2007, Tsalis et al., 2013] describes traditional solutions to compute Total
Cost of Ownership (TCO), Net Present Value (NPV) and Internal Rate of Return (IRR).
These approaches, however, only considered the immediate costs of contracting and mi-
grating to the cloud and failed to do it for the long-term costs of operating in the cloud.
Worse still, they also fail to deal with the hidden costs that could damage the expected
return. This thesis’ proposal approaches the problem by describing a method to compute
ROSI for each security requirement being monitored, so as to offer the client subsidies to
help him/her decide on migrating or not to the cloud environment.

Solutions to the problem of adding resource allocation into SLAs [Hu et al., 2009,
Younge et al., 2010, Buyya et al., 2011b, Al-Haj et al., 2013, Nakamura et al., 2014] pro-
posed algorithms for IaaS, PaaS and SaaS providers who wanted to minimize infrastruc-
ture cost and SLA violations in dynamic, resource-sharing Cloud Computing environ-
ments. So, due to the willingness of providers to postpone security issues, one might
conclude that previous research work had not contemplated security in the VM migration
process. In this thesis’ proposal, security was prioritized.

In this scenario, Table 4.1 presents the additional topics on Cloud, security, Security-
SLA, allocation of resources and Return On Security Investment that are discussed in this
proposal. Column Topic presents the related subject, column Description presents the
related characteristics and column Reference presents related articles.

Table 4.1: Summary of related work

Topic Description Reference
Cloud Computing works proposing surveys and tax-

onomies of cloud computing services
[Letaifa et al., 2010,
Zhang et al., 2010,
Mell and Grance, 2011,
Atzori et al., 2011,
Voas et al., 2012, NIST, 2013b,
NIST, 2013c]

Security properties presents formal specification model,
measure the quality of protection
(QoP), and rigorous analysis of se-
curity metrics

[Foley et al., 2006,
Mana and Pujol, 2008,
Krautsevich et al., 2010,
Buyya et al., 2011a,
Cloud-Council, 2012,
Vacca, 2013,
Cloud-Council, 2015]

Continued on next page

CHAPTER 4. RELATED WORK 50

Table 4.1 – Continued from previous page
Topic Description Reference
Security policies x
SLA

methodologies that describe the in-
tegration of security policies with
SLA/Security-SLA

[Righi et al., 2004,
Arshad et al., 2009,
Hayden, 2010,
de Chaves et al., 2010b,
Buyya et al., 2011a,
Bernsmed et al., 2011,
Cloud-Council, 2012,
Zhien and Yiqi, 2012,
Rahulamathavan et al., 2014,
Cloud-Council, 2015]

SLA manager methodologies that describe Quality
of Service (QoS) model and are ex-
pressed using Service Level Agree-
ments (SLAs)

[Brandic et al., 2009,
Brandic, 2009,
Buyya et al., 2011a,
Gonzalez and Helvik, 2012,
Wu et al., 2013a,
Rak et al., 2013]

Security manager how to manage security in complex
systems such as cloud computing

[Arshad et al., 2009,
Halonen and Hatonen, 2010,
Krutz and Vines, 2010,
Bayuk, 2011,
Rebollo et al., 2012,
Petcu and Craciun, 2014]

Security metrics A comparative analysis model and
taxonomy of security metrics

[Payne, 2006, Jaquith, 2007,
Savola, 2007a, Savola, 2007b,
Rochwerger et al., 2009,
Savola, 2009, Bruno, 2011,
Frenz, 2010, Frenz, 2010,
Brotby and Hinson, 2013]

Security metrics x
SLA

methodologies used in the specifi-
cation of metrics for Security-SLA,
and monitoring solution

[Henning, 1999,
Righi et al., 2004,
Emeakaroha et al., 2010a]

Goal-Question-
Metric methodol-
ogy

Goal-Question-Metric (GQM)
methodology proposed for empirical
measurements in software testing,
based on well-defined goals

[Basili et al., 1994, Basili, 2002]

GQM methodology
x Security-SLA

GQM model being used together
with the COBIT framework to spec-
ify metrics for Security-SLA in cloud
computing

[Putri and Mganga, 2011,
Zhengwei et al., 2013,
Al-Hassan, 2013]

GQM x Security-
SLA in cloud

GQM model being used to build a
metrics hierarchy to generate an in-
dex of security in cloud computing

[Silva et al., 2012,
Silva and Geus, 2014c,
Silva and Geus, 2014a,
Silva and Geus, 2014b]

Continued on next page

CHAPTER 4. RELATED WORK 51

Table 4.1 – Continued from previous page
Topic Description Reference
Security framework
or tools

specify (high-level) security controls
that should be deployed by the cloud
service provider (CSP) to ensure the
service is secure

[NIST, 2002,
ISO/IEC-27000:2009, 2009,
ENISA, 2009c,
CAMM, 2010, SSAE, 2011,
Dempsey et al., 2011,
IFAC, 2011,
CSA, 2011, ISO, 2011,
ISO/IEC-27017:2014, 2014,
Hogben and Dekker, 2012,
FedRAMP, 2013]

Return On Secu-
rity Investment

present solutions to the problem
of Return On Security Investment
(ROSI)

[Cavusoglu et al., 2004,
Stout et al., 2006,
Brocke et al., 2007,
Keshavarzi et al., 2013,
Tsalis et al., 2013,
Nakamura et al., 2014]

Allocation of re-
sources x SLA

present solutions to the problem of
allocation of computing resources of
the clouds based on a number of cri-
teria

[SLA, 2005, Hu et al., 2009,
Liu et al., 2010b,
Younge et al., 2010,
Yazir et al., 2010,
Younge et al., 2010,
Liu et al., 2010b,
Buyya et al., 2011b,
Beloglazov et al., 2011,
Al-Haj et al., 2013,
Nakamura et al., 2014]

4.2 Cloud Monitoring

Table 4.2 describes de current tools and frameworks for security monitoring in the Cloud
Computing environments. The column Acronym presents the name of the tools/framework,
the column Type presents: (I) executes like Infrastructure-as-a-Service (IaaS), (P) exe-
cutes like Platform-as-a-Service (PaaS), (S) executes like Software-as-a-Service (SaaS),
and (F) executes like Physical system. The column Class presents: (C) Commercial
Cloud Monitoring Platforms, (R) Research prototypes cloud monitoring platforms, and
(O) Open source cloud monitoring platforms. Finally, the column Model presents: (A)
SLA-oriented cloud monitor tools, (T) Cloud security monitor tools, and (S) Services for
assessing cloud performance and dependability.

CHAPTER 4. RELATED WORK 52

Table 4.2: Summary of current tools and frameworks

Acronym Type Class Model Short description
Aftersight I P S R T Analyze the behavior/execution of a VM from

non-deterministic events and inputs to a VM
[Chow et al., 2008]

Amazon Cloud-
Watch

I C T Monitoring service for Amazon Web Service cloud
resources and the applications run on AWS
[Amazon, 2008]

Aneka man-
agement

P C A Platform for managing deployment and execu-
tion of applications on clouds based on QoS/SLA
[Manjrasoft, 2008]

AzureWatch I P S
F

C T cloud-based service dedicated to advanced mon-
itoring, auto-scaling of Azure-based solutions
[Paraleap, 2011]

Azure Suite I P S
F

C T Monitoring and managing servers and co-
ordinating resources for the applications
[Microsoft Windows Azure, 2008]

Boundary I P S
F

C S Monitor, manage and optimize the cloud, in-
frastructure, platform, service, and servers
[Boundary, 2010]

CA UIM I P S C A CA Unified Infrastructure Management, scalable
platform SLA for monitoring [CA Tech., 2015]

CASViD S R A Application level monitoring for SLA vi-
olation detection in clouds using SNMP
[Emeakaroha et al., 2010b]

Centrify S C S Identity management and auditing for cloud across
Identity-as-a-Service (IDaaS) [Centrify, 2008]

CipherCloud S C T Monitoring service, protection controls, data loss
prevention, malware detection [CipherCloud, 2011]

CloudClimate I F C S Reporting monitored metrics as measured from dif-
ferent cloud infrastructure [Paessler, 1998]

CloudCmp I P S O S Benchmark suite for cloud platforms, it runs on a
cloud instance as a web service [CloudCmp, 2011]

CloudCompass I P O A Extension of the SLAWS-Agreement for cloud, and
dynamic QoS rules [GRyCAP, 2009]

CloudCruiser I P S
F

C S Monitor, manage and optimize the hybrid cloud
architecture, compare public/private service
[Cloud Cruiser, 2010]

CloudFlare I P S C T Protects websites, optimize delivery, blocks threats,
limit abusive bots and crawlers [CloudFlare, 2009]

CloudFloor I P S
F

C S Monitoring service, SaaS-based infrastruc-
ture of any provider, critical communications
[Everbridge, 2011]

Continued on next page

CHAPTER 4. RELATED WORK 53

Table 4.2 – Continued from previous page
Acronym Type Class Model Short description
CloudHarmony I P S

F
C S Provides a set of: OS-layer metrics, application-

layer benchmarks and user-layer tests
[CloudHarmony, 2013]

Cloudkick I C T Monitor, analyze on the availability/performance of
the websites and cloud resources [Rackspace, 2012]

CloudPassage I P S C T Security monitoring/control platforms, and
integration with security tools and systems
[CloudPassage, 2011]

CloudSec I R T Security monitoring for multiple concurrent
VMs on a cloud platform in an IaaS setting
[Ibrahim et al., 2011]

CloudSleuth I P C S Web-based cloud performance visualization
tool, analysis of IaaS and PaaS providers
[Dynatrace, 2008]

CloudStack
Zenpack

I F O T Scalable Infrastructure-as-a-Service Cloud Com-
puting platform [CloudStack, 2008], ZenPack
Zenoss extension [Zenoss, 2011]

CloudStone I P S O S CloudStone: multi-platform, multi-language
benchmark and measurement tools for Web 2
[Sobel et al., 2008]

CloudWatcher S R T CloudWatcher: network security monitoring
using OpenFlow in dynamic cloud networks
[Shin and Gu, 2012]

Cloudyn I P S C S Monitor, manage and optimize hybrid clouds for
performance and cost [Cloudyn, 2012]

Collectl I P S O T Benchmarking and monitoring a system’s: CPU,
disk, memory, network, etc. [Collectl, 2007]

DARGOS I O T Distributed Architecture for Resource
manaGement and mOnitoring in cloudS
[Corradi et al., 2012]

DocTrackr I F C T Control extends throughout set user privileges
for each person you share a document with
[Intralinks, 2007]

FBCrypt I P S O T Encrypts the I/O between a VNC client and
a user VM using the Virtual Machine Monitor
[Egawa et al., 2012]

Ganglia F O T Scalable distributed monitoring system such as
clusters and grids [Ganglia Software, 2000]

GMonE I P S
F

R T General-purpose cloud monitoring tool for
IaaS, PaaS, SaaS and physical system
[Montes et al., 2013]

Continued on next page

CHAPTER 4. RELATED WORK 54

Table 4.2 – Continued from previous page
Acronym Type Class Model Short description
GridICE F R T Monitoring service for grid systems

and virtual organization-oriented service
[Andreozzia et al., 2005]

Groundwork I P S O T Scalable monitoring a system’s: vir-
tualization, network, application, etc.
[Groundwork Software, 2011]

HP OpenView F C T Integrated management of networks and sys-
tems for distributed computing environments
[Hewlett-Packard, 2005]

Hyperic-HQ I P S O T It monitors operating systems, middleware and ap-
plications (MySQL) [Hyperic-HQ Software, 2010]

HyperWall I P S R T Scalable monitoring a system’s: virtualization, ap-
plication, server, storage data, etc. [Szefer, 2013]

IBM Tivoli
Monitoring

F C T System monitoring manages O. S., databases,
servers in distributed/host environments
[IBM, 2005]

Intermapper
Cloud Monit.

I F C T Network management and monitoring tools across
multiple platforms [HelpSystems, 2012]

JasMINe I P S O T It monitors operating systems, applications,
servers, etc. [Jasmine Software, 2010]

K-Tracer I P S R T Dynamically analyze Windows kernel-level code
and extract malicious behaviors from rootkits
[Lanzi et al., 2009]

KVMSec I P S R T A security extension for Linux kernel virtual ma-
chines [Lombardi and Pietro, 2009]

Lares I P S R T Architecture for secure active monitoring using vir-
tualization [Payne et al., 2008]

Lattice I F R T Framework for monitoring virtual machines execut-
ing under hypervisor control [Galis et al., 2010]

Livewire I P S R T A virtual machine introspection based architecture
for intrusion detection [Rosenblum, 2003]

Logic Monitor I P S
F

C T Cloud performance monitoring for infrastructure
and applications [Logic Monitor, 2009]

LoM2HiS I R A Bridging the gap between monitored metrics
and SLA parameters in cloud environments
[Emeakaroha et al., 2010a]

Lycosid I P S R T Hidden process identification and detection:
comparing guest view with a VMM image
[Jones et al., 2008]

MARS I C T Cisco security: Monitoring, Analysis and Response
System, designed to monitor threats [Cisco, 2010]

MAVMM I P S R T Malware analysis of the applications running inside
a guest O.S. (VMM) [Nguyen et al., 2009]

Continued on next page

CHAPTER 4. RELATED WORK 55

Table 4.2 – Continued from previous page
Acronym Type Class Model Short description
MISURE I P S R T Monitoring infrastructure is a monitoring-as-a-

service for data analysis [Smit et al., 2013]
MonALISA F O T MONitoring Agents using a Large Integrated Ser-

vices Architecture [Monalisa, 2005]
Monitis I P S

F
C T Cloud Monitoring of the infrastructure, websites,

applications [Monitis, 2006]
Nagios F O T Monitoring and alerting for servers, switches, appli-

cations, and services [Nagios, 1996]
New Relic I P S

F
C A Monitoring application performance for SLA, avail-

ability, scalability, capacity [New Relic, 2008]
NICKLE I P S R T Based on a scheme memory shadowing to run-

ning VM and real-time kernel code authentication
[Riley et al., 2008]

Nimbus I P O T Providing Infrastructure-as-a-Service and plat-
form capabilities to the scientific community
[Nimbus Project, 2006]

Okta I P S
F

C T Identity management for the Cloud, identity
platform for developers, privilege provisioning
[Okta, 2009]

OpenNebula
Monitoring

I O T Monitoring infrastructure is a monitoring-as-a-
service for CPU, memory, etc. [OpenNebula, 2005]

OPNET I S F C T Monitoring infrastructure, analyze network
performance and application performance
[Riverbed, 2012]

Overshadow I P S R T Protects the privacy and integrity of application
data in VM [Chen et al., 2008]

PacketTrap I F C T Virtual infrastructure monitoring, and network
traffic and website surfing analysis [Dell, 2012]

PCMons I P S O T Private Clouds MONitoring Systems, in-
formation for monitoring data visualization
[Project PCMONS, 2008]

PoKeR I P S R T Avoiding profiler of kernel rootkits: hooking
behavior, kernel modifications, code injection
[Riley et al., 2009]

Proofpoint I P S
F

C S Security-as-a-service, hybrid email services, com-
bine SaaS with physical or virtual presence
[ProofPoint, 2002]

QoS-MONaaS S R A Quality of Service MONitoring as a Service, a
formal SLA and performance indicators violation
[Adinolf et al., 2009]

Qualys I P S
F

C T Providing Security-as-a-Service, monitoring infras-
tructure, platform, and service [Qualys, 1999]

Continued on next page

CHAPTER 4. RELATED WORK 56

Table 4.2 – Continued from previous page
Acronym Type Class Model Short description
ReVirt I P S R T Intrusion analysis through virtual-machine logging

and replay [Dunlap et al., 2002]
Rkprofiler I P S R T Sandbox-based malware tracking using QEMU vir-

tualization for Windows [Xuan et al., 2009]
Sandpiper I P S O A Automates the process of monitoring, recon-

figuring VMs, and checking SLAs violations
[Sandpiper, 2008]

SecMon I P S R T A secure introspection framework for hard-
ware c using a VM Monitor for Windows OS
[Wu et al., 2013b]

SecVisor I P S R T A tiny hypervisor to provide lifetime kernel code
integrity [Seshadri et al., 2007]

Sensu I O T Monitoring platforms, independent agents and fo-
cused on extensibility and elasticity [Sonian, 2006]

sFlow I F C T Detecting, diagnosing, fixing network prob-
lems, and understanding application P2P, Web
[sFlow, 2003]

SIGAR I P S O T System Information Gatherer and Reporter is
a framework/monitoring for O.S. and hardware
[Project Sigar, 2006]

SIM I P S R T Secure In-VM Monitoring, a framework for security
monitoring applications [Sharif et al., 2009]

Site24x7 S C A Website monitoring service, checking the avail-
ability, performance, SLA, uptime reporting
[Site24x7, 2007]

SilverSky I P S
F

C S Security-as-a-service platform across network
security services and email security services
[SilverSky, 2013]

SLA@SOI I O A SLA management platform for monitoring of dis-
tributed systems based on events [SLA@SOI, 2010]

Snorby I P S O T Application for network/host security monitor-
ing, and Intrusion Detection Systems (IDS)
[Snorby, 2011]

SPAE I C T Network monitoring tool using SNMP for various
protocols to cloud resources [Shalb, 2010]

Splunk’ Storm I P S C T Cloud security monitoring for web-sites, applica-
tions, servers, networks, mobile, etc. [Splunk, 2005]

Threat Stack I C T Monitoring: user loggings, network connec-
tions, servers, firewall policies, audit alerts
[Threat Stack, 2014]

TIMACS F R T Framework for management of large computing
systems, scalable low level system monitoring
[TIMACS, 2009]

Continued on next page

CHAPTER 4. RELATED WORK 57

Table 4.2 – Continued from previous page
Acronym Type Class Model Short description
TrustVisor I P S R T Hypervisor protects pieces of application logic to be

execute in isolation [McCune et al., 2010]
Up.Time I P S C A Provides SLA monitoring, and reporting the

impact of each infrastructure element on SLA
[Up.Time software, 2008]

Vaultive I P S
F

C T Encryption-in-use/gateway architecture being
processed, searched, sorted while encrypted
[Vaultive, 2012]

Vmware Cloud-
Status

I P S
F

C T Infrastructure and O.S. monitoring, application and
middleware monitoring [Vmware, 2008]

VMWatcher I P S R T A malware detection mechanism between observed
events at the VMM level and guest O.S. context
[Jiang et al., 2007]

White Hat Se-
curity

I P S
F

C T Focused on protecting your website from the
ground up, including in the coding process
[WhiteHat, 2001]

Zabbix I P S
F

O T Monitor performance/availability of servers,
WEB applications, databases, networking, SLA
[Zabbix, 2001]

Zscaler I P S
F

C T Protect from advanced persistent threats by mon-
itoring all the traffic that comes in and out
[Zscaler, 2008]

4.3 Guides for Security-SLA monitoring

The list below shows the guides produced as references to decision makers on monitoring
the Security Service Level Agreements in Cloud Computing environment:

• In the US, NIST issued: Special Publication SP-800-137 [Dempsey et al., 2011] on
Information Security Continuous Monitoring (ISCM) for Federal Information Sys-
tems and Organizations. This document is a guideline for organizing internal se-
curity processes focused on maintaining on-going awareness of information security,
vulnerabilities, and threats. The focus in this document is on the customer, to allow
the customer to continuously monitor security properties of the acquired service.

• The Cloud Standards Customer Council describe the Practical Guide to Cloud Ser-
vice Level Agreements that is a collaborative effort that brings together diverse
customer-focused experiences and perspectives into a guide for IT and business who
are considering cloud adoption [Cloud-Council, 2012, Cloud-Council, 2015].

• The European Commission’s European Cloud Partnership initiative, in European
Network and Information Security Agency (ENISA), present a practical guide aimed

CHAPTER 4. RELATED WORK 58

at the procurement and governance of cloud services. The main focus is on the public
sector, but much of the guide is also applicable to private sector procurement. This
guide provides advice on questions to ask about the monitoring of security (including
service availability and continuity). The goal is to improve public sector customer
understanding of the security of cloud services and the potential indicators and
methods which can be used to provide appropriate transparency during service
delivery [Hogben and Dekker, 2012].

• The Federal Risk and Authorization Management Program (FedRAMP)
[FedRAMP, 2013] is the action for federal government agencies to abide by in the
procurement of cloud services. It provides a standardized and centralized approach
to security assessment, authorization and continuous monitoring for cloud-based ser-
vices, and federal security requirements, e.g. Federal Information Security Manage-
ment Act (FISMA) [NIST, 2002]. The program not only sets security requirements,
it also monitors the implementation of security measures, for example, by quarterly
periodic vulnerability scan reports with a specific focus on continuous monitoring.

4.4 Summary

This chapter presented a summary on Cloud Computing, Security, Security-SLA and
Return On Security Investment, also presenting tools and frameworks used in monitor-
ing cloud environments, and finally a brief description of guides for monitoring Security
Service Level Agreements in Cloud Computing environments. To the best of our knowl-
edge, none of the discussed approaches deals with mapping of low-level resource metrics
to high-level Security-SLA parameters and Security-SLA violation detection at runtime,
which are desirable features for enforcing Security-SLAs in cloud-like environments.

Chapter 5

Methodology Proposal (SMH)

This chapter presents the Security Metrics Hierarchy (SMH) methodology for the man-
agement of security for Cloud Computing environments using security metrics.

5.1 Security Metrics Hierarchy

In the 1970s, the Goal-Question-Metric (GQM) method [Basili et al., 1994] was designed
to move testing for software defects from the qualitative and subjective state it was
currently in to an empirical model, in which defects would be measured against defined
goals and objectives that could then be linked to results.

The GQM methodology defines a measurement model on three levels: i) Conceptual
level (goal) a goal is defined for an object for a variety of reasons, with respect to various
models of quality, from several points of view and relative to a particular environment;
ii) Operational level (question) a set of questions is used to define models of the object
under study and then attention is focused on that object to characterize the assessment
or achievement of a specific goal; iii) Quantitative level (metric) a set of metrics, based on
the models, is associated with every question in order to answer it in a measurable way.

In our methodology, the security metrics hierarchy is generated directly from the
GQM definition process, during which stage security features are mapped to corresponding
security metrics. Table 5.1 shows the relationship (steps) between the GQM methodology,
the Security Metrics Hierarchy (SMH) and Portfolio of Metrics.

Table 5.1: Relationship between: GQM, SMH and portfolio of metrics
GQM levels SMH levels Portfolio of metrics levels
(1st step) (2nd step) (3rd step)

Conceptual level Group metric Aggregation goal
Operational level Metric Group objective
Quantitative level Submetric Service level objective

For each goal statement identified in the conceptual level, a group metric will be
defined. The operational level identifies which objects or activities must be observed
or collected to measure the individual components of the goal statement. Lastly, the

59

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 60

quantitative level defines which metrics remains explicitly aligned with the higher level
goal statement.

Other Example: Security-related downtime, understanding how long your systems are
up and available to users is a common IT metric. Understanding how security impacts
availability is also important, particularly when you need to compare security to other
IT challenges. Table 5.2 illustrates an example project for measuring security-related
downtime using GQM methodology in SMH.

Table 5.2: GQM Project for Security-Related Downtime
GQM
levels

Id Description SMH
levels

Goal 1 The goal of this project is to understand security impacts
on system

Group

Statement: availability by comparing security-related
downtime to general, and availability from the perspective
of the security team.

Question 1.1 Question How often is the system down due to failure? Metric
1.1.1 Metrics in Time Between Failures Submetric
1.1.2 Failure Duration Submetric
1.1.3 Mean System Availability Submetric

Question 1.2 Question how often is the system down due to mainte-
nance?

Metric

1.2.1 Metrics in Time Between Maintenance Submetric
1.2.2 Maintenance Duration Submetric
1.2.3 Mean System Availability Submetric
1.2.4 Metrics how often is Downtime the result of a security

event?
Submetric

Question 1.3 Question Number of security events in time period Metric
1.3.1 Duration of Event Remediation Submetric

This scenario demonstrates the importance of the perspective component of the GQM
template. For the security team, understanding how much impact on general availability
results from security-related issues would be important. But from the perspective of a
system user, downtime is downtime. Users usually don’t care that they are grounded
as a result of a security problem, a misconfiguration, or the fact that Bob accidentally
unplugged the wrong box? they just want the system back up.

5.1.1 Modeling Security Metrics Hierarchy

The security metrics hierarchy (Fig. 5.1) is derived from the GQM methodology. Its
components are: i) Index of Security (IndSec); ii) Group Metrics (Meti); iii) Metrics
(Meti.j); iv) Submetrics (Meti.j.k).

In context, the nomenclature for the security metrics is Meti.j.k, measured in the Cloud
Computing environment for the the virtual machine (v) on host (h) and service (s), for
layers IaaS, PaaS and SaaS. The reference i.j.k identifies the location of the metric in the

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 61

Index	of	Security	
(IndSec)	

Group	Metric	
(Met1)	

Metric	
(Met1.1)	

Metric	
(Met1.2)	

....	 Metric	
(Met1.i)	

Sub-Metric	
(Met1.i.1)	

Sub-Metric	
(Met1.i.2)	

....	 Sub-Metric	
(Met1.i.J)	

....	 Metric	
(Met1.L)	

Group	Metric	
(Met2)	

....	 Group	Metric	
(MetK)	

Metric	
(MetK.M)	

Sub-Metric	
(MetK.M.N)	

Figure 5.1: Security Metrics Hierarchy (SMH).

hierarchy, where: i refers to the security item, j refers to the group metric, and k refers
to the primitive metric.

The Index of Security (IndSec) is defined as the value in a set of security items
(Met1,Met2, ...,Metn):

IndSec = f∗(Met1,Met2, ...,Metn)

The value of a metric group (Meti) is defined as the value from a set of metrics
(Meti.1,Meti.2, ...,Meti.m):

Meti = f1(Meti.1,Meti.2, ...,Meti.m)

The value of a metric (Meti.j) is defined as the highest value from a set of submetrics
(Meti.j.1,Meti.j.2, ...,Meti.j.k):

Meti.j = f2(Meti.j.1,Meti.j.2, ...,Meti.j.k)

The submetric represents a subpart of a metric; it is used when a metric can be
specialized in several ways, with each one having a different contribution to the overall
metric. An example of the portfolio of security metrics is shown in Table A in Appendix
A (page 132).

The representation of a security metric in the hierarchy is described as follow: a value
Meti.j.k is a measurement for the for the group metric i, metric j and submetric k, or more
vertical levels.

In this proposal, the Security Metrics Hierarchy should separate into two groups of
security requirements: Infrastructure and Service. At the first level, which is the junction
of Infrastructure and Service values, the function f∗ can be rendered as one among several
possible functions, like, for instance, Max, Min, AVG etc., where Max, Min and AVG

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 62

are, respectively, the largest, smallest and average value assumed by the group of sub-
metrics. At the second level, which is a specific sublevel of Infrastructure or Service, the
functions f1, f2, · · · , fn−1, fn can be calculated using formulas similar to their submetrics
for infrastructure or Service.

The customer or provider may build as many levels in the SMH as required and
use the functions deemed important to describe the security status. For example, in
Infrastructure, the Firewall would be a group of metrics, with each submetric in the
group generating information on a specific topic. If the customer wants to know the
average value of this group, then she would use average (AVG), or if the customer or
provider wants to know the Standard Deviation (SD), then SD should be used and so on.

5.1.2 Normalization of Security Metrics

The normalization process will convert each value of a security metric in SMH to a value
in the range of [0-4]. Each expected value falls in the range [0, 1, 2, 3, 4], respectively
corresponding to the expected security levels [Critical, High, Medium, Low, None].

The motivation behind value normalization is:

i) to extract a meaning for the values measured by the primitive metrics;

ii) to allow sorting them by their absolute value;

iii) to prevent the value domains of security metrics from having instances that are
difficult to be compared with each other, and to simplify the computing model using
a method to converge the values of each primitive metric measured to a common
scale of values.

On the proposed scale of [0–4], the highest value (0) represents a security level less
reliable and/or presenting a serious security problem. The lowest value (4) represents a
security level that is safer and/or that does not present any security issue.

Logical metric

A metric of type logic must return a logical value measured from an event, e.g. “Anti-virus
installed?”. After the normalization (Tab. 5.3) one gets:

Table 5.3: Normalization of logical metric
Index Logical value (x)

0 Yes
1
2
3
4 No

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 63

The normalization function is described as y = f(x), where x can be a measured logic
value Yes or No:

y =

{
0 if x = Y es

4 if x = No

Depending on the nature of the measured value for the security metric, the normal-
ization formula can be reversed for clarity of the result, example: the metric “Anti-virus
configured?”, it can take the value “4” to “Yes” and “0” to “No” (inverse of the metric
“Anti-virus installed?”).

Numerical metric

It is a metric that returns a numerical value representing an event, e.g. “number of security
patches installed”. After the normalization (Tab. 5.4) one gets:

Table 5.4: Normalization of numerical metric
Index # Numeric Metric (x)

0] −∞ , 0]
1] 0 , a1]
2] a1 , b1]
3] b1 , c1]
4] c1 , +∞ [

With respect to the start and end boundaries of each interval, it has:

0 < a1 ≤ b1 ≤ c1 < +∞

The values a1, b1 and c1 must be calculated using historical information about this
security metric and the use of the techniques like sensitivity analysis.

The normalization function is described as y = f(x), where x is the value measured by
the numerical metric:

y =

0 if x ∈] −∞ , 0]

1 if x ∈] 0 , a1]

2 if x ∈] a1 , b1]

3 if x ∈] b1 , c1]

4 if x ∈] c1 , +∞ [

Again, depending on the nature of the measured value for the security metric, the
normalization formula can be reversed for clarity of the result. Example: the metric
“number of security patches installed”, can take the value “0” to “] −∞ , 0]” and “4” to “]
c1 , +∞ [” (inverse of the metric “number of security patches not installed”).

Figure 5.2 illustrates some behaviors of security metrics over time to the metrics:

• Met-1 - utilization rate of memory per VM;

• Met-2 - number of threats by VM running;

• Met-3 - time between mitigations for VM’s;

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 64

• Met-4 - utilization rate of I/O network;

• Met-5 - utilization rate of CPU per VM;

• Met-6 - utilization rate of CPU per VM servers.

And after application of this normalization methodology of metric values for the range of
values of [0-4], their behavior becomes predictable (result of the function f∗(x)), and facil-
itates the analysis of this security level as well as the process of identifying the motivation
and/or event that triggers changes in scale values.

0	

1	

2	

3	

4	

Day	 1	 Day	 2	 Day	 3	 Day	 4	 Day	 5	 Day	 6	

Met-‐1	

Met-‐2	

Met-‐3	

Met-‐4	

Met-‐5	

Met-‐6	

Met-1 Met-2 Met-3

Met-4 Met-5 Met-6

Figure 5.2: Result of normalizing some security metrics.

The next section describes the formalism to define security metrics, and features vali-
dating the scale of values.

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 65

5.1.3 Formal Security Metrics Hierarchy

In the measurement theory [Suppes and Zinnes, 1962, Finkelstein and Leaning, 1984], the
representation theorem (simplify) was defining like:
Definition 1: Let Q be a set of elements, r and q be its members (r, q ∈ Q). Let also
R = {R1, ..., Rn} be a set of relations on Q. The tuple 〈Q,R〉 is called an empirical
relational system. Measurement can be seen as an objective empirical function that
assigns a real value to an element (M : Q 7→ R) and P = {P1, ..., Pn} is a set of relations
on R (reals), which is in a binary relation with R (i.e., each Ri corresponds to Pi).
Then:

∀i Ri(r, q, ...)⇐⇒ Pi(M(r),M(q), ...)

Where the security measurement function is representative if one of the following
relations holds:

∀r, q ∈ Q (r ∼S q)⇐⇒M(r) = M(q) and
((r �S q)⇐⇒M(r) > M(q) xor

(r �S q)⇐⇒M(r) < M(q))

Where, r ∼S q means that r is equally secure as q, and r �S q means that r is more
secure than q. Consequently, security measurement function shows that a measurement
function must be monotone.

In [Kramosil and Michalek, 1974], The definition of metrics in the measurement theory
was defining like:
Definition 2: Metric is a function M on a set Q which determines the distance between
two members of the set (M : Q×Q 7→ R) and satisfies the properties:

1. M(q1, q2) ≥ 0 ∀q1, q2 ∈ Q (positivity)

2. M(q1, q2) = 0 iff q1 = q2 ∀q1, q2 ∈ Q (identity)

3. M(q1, q2) = M(q2, q1) ∀q2, q1 ∈ Q (symmetry)

4. M(q1, q3) ≤M(q1, q2) +M(q2, q3) ∀q1, q2, q3 ∈ Q (triangle inequality)

In [Barzilai, 2005, Coatanea et al., 2007], conclude that: the distance the mapping
from empirical quantities to real numbers is established.

It defines a formal approach to normalization of the numerical metric like:
Definition 3: LetQ be a set of elements and r and q be its members (r, q ∈ Q). Let alsoR
= {R1, ..., Rn} be a set of relations on Q. The tuple 〈Q,R〉 is called an empirical relational
system. Measurement can be seen as an objective empirical function that assigns a real
value to an element (M : Q 7→ R) and P = {P1, ..., Pn} is a set of relations on R (reals)
that is in a binary relation with R (i.e., each Ri corresponds to Pi).
Then:

∀i Ri(r, q, ..)⇐⇒ Pi(M(r),M(q), ..)

With respect to the start and end boundaries of each interval, it has:

0 < a1 ≤ b1 ≤ c1 < +∞

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 66

In the range [0-4] representing the relation monotone, there exists five relations for the
values of the intervals:

R5({∀ x | c1 < x < +∞ })⇐⇒ P5(M(x) = 4)

R4({∀ x | b1 < x ≤ c1 })⇐⇒ P4(M(x) = 3)

R3({∀ x | a1 < x ≤ b1 })⇐⇒ P3(M(x) = 2)

R2({∀ x | 0 < x ≤ a1 })⇐⇒ P2(M(x) = 1)

R1({∀ x | −∞ < x ≤ 0 })⇐⇒ P1(M(x) = 0)

And another formal description:
< {c1 < x < +∞ }, 4 >

< {b1 < x ≤ c1 }, 3 >

< {a1 < x ≤ b1 }, 2 >

< { 0 < x ≤ a1 }, 1 >

< {−∞ < x ≤ 0 }, 0 >

For each primitive security metric (numerical type) in the hierarchy of security metrics,
that converges to values in the range [0-4] representing the relation monotone, using r �S q

(means that r is more secure than q):
(4 �S 3), (4 �S 2), (4 �S 1), (4 �S 0)

(3 �S 2), (3 �S), (3 �S 0)
(2 �S 1), (2 �S 0)

(1 �S 0)

5.1.4 Validation of Security Metrics

To validate the collected security metrics, the monitoring scheme performs two steps:

1. The values measured by the security metrics in the range [0–4] are classified as
true-positive (TP), false-positive (FP) true-negative (TN) and false-negative (FN);

2. Validation indicators are calculated for the model:

• Precision, P = TP
TP+FP

, indicates the percentage of events correctly classified as
incident among those which were classified as such;

• Recall, R = TP
TP+FN

, indicates the percentage of events properly classified as
incidents among all the real events;

• F-measure, F = 2×P×R
P+R

, is the harmonic mean between precision and recall;

• Accuracy, A = TP+TN
TP+FP+TN+FN

, indicates the percentage of correctly classified
events.

By analyzing the values of the validation indicators, one can determine the degree of
reliability for the collected security metric values.

As an example, monitoring DoS attacks on Web servers (Apache [Apache, 1995]
[Coar and Bowen, 2008], Nginx[Nginx, 2003, Sharma, 2015] and Lighttpd[Lighttpd, 2005,
Bogus, 2008]) was based on a machine learning mechanism, one trained specifically for
the signatures generated by the machine under monitoring to detect anomalies. Two

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 67

data sets were generated for each server: the first one, used for model training, was com-
prised of data gathered over a period of 20 minutes; the second one, containing the data
to be evaluated, was collected over a period of 24 hours. In both sets, valid random
attacks and traffic with varying rates and durations were generated. Using an envi-
ronment analysis and mining composite data through the KNIME [KNIME, 2010] and
Weka [University of Waikato, 2013] tools, different classification algorithms were tested:
k-Nearest Neighbour (KNN), Support Vector Machines (SVM) and Multilayer Perceptron.

The validation process will be illustrated based on of a case study [Ferreira, 2013]. The
values in Table 5.5 show the distribution of true-positive values (TP), false-positives (FP),
true-negatives (TN) and false-negatives (FN) for detecting attacks using all parameters
(column “All”) and using only the parameters selected by the genetic algorithm (column
“Filtered”). It can be seen that the use of this selector contributed to a significant reduction
in the number of false positives.

Table 5.5: Result of the detection of attacks
TP FP TN FN

All Filtered All Filtered All Filtered All Filtered
Apache 1416 1413 1042 11 14826 15857 0 3
Nginx 1374 1377 282 6 15621 15897 9 6
Lighttpd 938 939 44 48 16301 16297 2 1

It is also observed that the SVM algorithm, using a linear kernel, showed the best
results in the event classification process. The evaluation was performed using a parameter
selection mechanism, based on a genetic algorithm. With this mechanism it was possible
to eliminate unnecessary parameters for building the attack signature and also to reduce
the cost of processing the classification model.

Finally, Table 5.6 presents how metrics were evaluated: precision, recall, f-measure
and accuracy. One notices that the use of parameter selection (columns labeled “Fil-
tered”) sharply increased the classification precision in the Apache and Nginx data sets to
almost perfect levels, while the LightTPD data set results remained steady. Similarly, the
accuracy of the classification model also approached perfect levels for Apache and Nginx,
and also remained steady, close to perfect levels, for LightTPD [Ferreira, 2013].

Table 5.6: Results of the metrics evaluation in percentage
Precision Recall F-Measure Accuracy

All Filtered All Filtered All Filtered All Filtered
Apache 57.61 99.23 100.00 99.79 73.10 99.51 93.97 99.92
Nginx 83.16 99.59 99.38 99.54 90.50 99.57 98.32 99.93
Lighttpd 95.52 95.12 99.74 99.89 97.59 97.45 99.73 99.72

5.1.5 Security Metrics Behavior

After collection and analysis of packet filtering of security of metric of a firewall (infras-
tructure), through the in-side type monitoring agent, the prediction of their behavior

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 68

through the classic model of time series analysis will be presented the trend of the series
of this security metric.

Figure 5.3 presents the packet filtering security of metric was collected and in the
period: 01/02/2014 to 06/30/2015, in schedule of eleven consecutive hours.

2200	

2300	

2400	

2500	

2600	

2700	

2800	

2900	

01
/0
2/
15

	
03

/0
2/
15

	
05

/0
2/
15

	
07

/0
2/
15

	
09

/0
2/
15

	
11

/0
2/
15

	
13

/0
2/
15

	
15

/0
2/
15

	
17

/0
2/
15

	
19

/0
2/
15

	
21

/0
2/
15

	
23

/0
2/
15

	
25

/0
2/
15

	
27

/0
2/
15

	
01

/0
3/
15

	
03

/0
3/
15

	
05

/0
3/
15

	
07

/0
3/
15

	
09

/0
3/
15

	
11

/0
3/
15

	
13

/0
3/
15

	
15

/0
3/
15

	
17

/0
3/
15

	
19

/0
3/
15

	
21

/0
3/
15

	
23

/0
3/
15

	
25

/0
3/
15

	
27

/0
3/
15

	
29

/0
3/
15

	
31

/0
3/
15

	
02

/0
4/
15

	
04

/0
4/
15

	
06

/0
4/
15

	
08

/0
4/
15

	
10

/0
4/
15

	
12

/0
4/
15

	
14

/0
4/
15

	
16

/0
4/
15

	
18

/0
4/
15

	
20

/0
4/
15

	
22

/0
4/
15

	
24

/0
4/
15

	
26

/0
4/
15

	
28

/0
4/
15

	
30

/0
4/
15

	

Met-‐1	

Met-‐1	

Figure 5.3: Packet filtering collected.

Figure 5.4 presents the metric applying filters in the time series, excluding saturdays,
sundays and holidays.

2200	

2300	

2400	

2500	

2600	

2700	

2800	

2900	

02
/0
2/
15

	
04

/0
2/
15

	
06

/0
2/
15

	
08

/0
2/
15

	
10

/0
2/
15

	
12

/0
2/
15

	
14

/0
2/
15

	
16

/0
2/
15

	
18

/0
2/
15

	
20

/0
2/
15

	
22

/0
2/
15

	
24

/0
2/
15

	
26

/0
2/
15

	
28

/0
2/
15

	
02

/0
3/
15

	
04

/0
3/
15

	
06

/0
3/
15

	
08

/0
3/
15

	
10

/0
3/
15

	
12

/0
3/
15

	
14

/0
3/
15

	
16

/0
3/
15

	
18

/0
3/
15

	
20

/0
3/
15

	
22

/0
3/
15

	
24

/0
3/
15

	
26

/0
3/
15

	
28

/0
3/
15

	
30

/0
3/
15

	
01

/0
4/
15

	
03

/0
4/
15

	
05

/0
4/
15

	
07

/0
4/
15

	
09

/0
4/
15

	
11

/0
4/
15

	
13

/0
4/
15

	
15

/0
4/
15

	
17

/0
4/
15

	
19

/0
4/
15

	
21

/0
4/
15

	
23

/0
4/
15

	
25

/0
4/
15

	
27

/0
4/
15

	
29

/0
4/
15

	

Met-‐1	

Met-‐1	

Figure 5.4: Packet filtering filtered.

Figure 5.5 presents the normalized metric to the scale of values [0-4]. The function
of normalization can be summarized for f(x), where x account the number of filtered
packets, and assumes “2” for values greater/equal to 2500, and assumes “3” to values lower
than 2500. The parameters of the normalization function, are set in the mechanism for
collecting and normalizing each metric, and then specified as a SLO rule in Security-SLA.

This security metric was measured while running the PostgreSQL [PostgreSQL, 1996]
database (service hired), and analyzing the behavior of the application that ran in this
database, and growth in the number of filtered pacts, seasonal fluctuations.

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 69

0	

1	

2	

3	

4	
02
/0
2/
15
	

04
/0
2/
15
	

06
/0
2/
15
	

08
/0
2/
15
	

10
/0
2/
15
	

12
/0
2/
15
	

14
/0
2/
15
	

16
/0
2/
15
	

18
/0
2/
15
	

20
/0
2/
15
	

22
/0
2/
15
	

24
/0
2/
15
	

26
/0
2/
15
	

28
/0
2/
15
	

02
/0
3/
15
	

04
/0
3/
15
	

06
/0
3/
15
	

08
/0
3/
15
	

10
/0
3/
15
	

12
/0
3/
15
	

14
/0
3/
15
	

16
/0
3/
15
	

18
/0
3/
15
	

20
/0
3/
15
	

22
/0
3/
15
	

24
/0
3/
15
	

26
/0
3/
15
	

28
/0
3/
15
	

30
/0
3/
15
	

01
/0
4/
15
	

03
/0
4/
15
	

05
/0
4/
15
	

07
/0
4/
15
	

09
/0
4/
15
	

11
/0
4/
15
	

13
/0
4/
15
	

15
/0
4/
15
	

17
/0
4/
15
	

19
/0
4/
15
	

21
/0
4/
15
	

23
/0
4/
15
	

25
/0
4/
15
	

27
/0
4/
15
	

29
/0
4/
15
	

Met-‐1	

Met-‐1	

Figure 5.5: Packet filtering normalized.

It uses the method of least squares for the stretch of the coefficients that best fits the
data. The difference here is that the independent variable is always the time (measured
directly, e.g., years 2014, 2015, or by counting periods of 1, 2, 3).

For this linear case, the straight trend will be:

T = a + b · t

Where T is the trend value, the value of t is time, b is the slope of the line (if positive
indicates increasing trend, if the negative trend is downward) and is the linear coefficient
of the straight line. The coefficients of the equations are expressed as follows.

a =
∑n

i=1 yi − b·
∑n

i=1 ti
n

b =
n·
∑n

i=1(ti·yi) −
∑n

i=1 ti·
∑n

i=1 yi

n·
∑n

i=1(t2i) − (
∑n

i=1 ti)2

Where yi is any of the registered variable value in the time series, ti is the period
associated with yi, n is the number of periods of the series. To find the coefficients simply
calculate the sums (as in simple linear regression analysis).

Figure 5.6 presents the prediction for the normalized metric to the scale of values [0-4]
using the reference one week.

0	

1	

2	

3	

4	

02
/0
2/
15
	

04
/0
2/
15
	

06
/0
2/
15
	

08
/0
2/
15
	

10
/0
2/
15
	

12
/0
2/
15
	

14
/0
2/
15
	

16
/0
2/
15
	

18
/0
2/
15
	

20
/0
2/
15
	

22
/0
2/
15
	

24
/0
2/
15
	

26
/0
2/
15
	

28
/0
2/
15
	

02
/0
3/
15
	

04
/0
3/
15
	

06
/0
3/
15
	

08
/0
3/
15
	

10
/0
3/
15
	

12
/0
3/
15
	

14
/0
3/
15
	

16
/0
3/
15
	

18
/0
3/
15
	

20
/0
3/
15
	

22
/0
3/
15
	

24
/0
3/
15
	

26
/0
3/
15
	

28
/0
3/
15
	

30
/0
3/
15
	

01
/0
4/
15
	

03
/0
4/
15
	

05
/0
4/
15
	

07
/0
4/
15
	

09
/0
4/
15
	

11
/0
4/
15
	

13
/0
4/
15
	

15
/0
4/
15
	

17
/0
4/
15
	

19
/0
4/
15
	

21
/0
4/
15
	

23
/0
4/
15
	

25
/0
4/
15
	

27
/0
4/
15
	

29
/0
4/
15
	

Met-‐1	

Predic6on	

Figure 5.6: Packet filtering prediction.

In the context of this work, it seeks to identify the factors that produce the change
of a value in the range of [0-4] for each security metric measured the Cloud Computing
environment, summarized as follows:

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 70

• By customer: when induces or produces a change in the service contract, examples:
lightning propaganda, changes in service configuration, and etc.;

• By provider: when induces or produces a change in the service contract, examples:
changes in the service configuration, introduces a new device on the network, and
etc.;

• By customer and provider: when induces or produces any change in service
contract, examples: the client makes lightning advertising, and provider for meet
the new demand on the network, produces changes in the service configuration and
the network, and etc.;

• The system management: because the demands for high or low: system (provider)
produces physical change to meet the service (elasticity), produce the change of the
service to another server, events derived from the provider resource shares (net-
work, CPU, memory): the system can change the service to another avoiding server
violations of Security-SLA and SLA.

Figure 5.7 presents the case of study to the monitoring of factors that produce the
change of a value in the range of [0-4] on the database PostgreSQL [PostgreSQL, 1996],
provided service as SaaS, using the reference one trimester with the total of 79 events,
summarized as follows:

76%	

15%	

6%	

3%	 Total:	 79	 events	

System	 Management:	 60	 events	

Provider:	 12	 	 events	

Customer:	 5	 events	

Customer	 and	 Provider:	 2	 events	

Figure 5.7: Change of a value in the range of [0-4].

These factors can be used to predict the future behavior of security metrics in a cloud
environment.

5.2 Application of SMH

In the scenario of on-demand allocation and scalability of the cloud environment, the
Security Metrics Hierarchy (SMH) Methodology proposal introduced a flexible, extensible

CHAPTER 5. METHODOLOGY PROPOSAL (SMH) 71

concept, easy to understand and use. Based on security policies, this SMH is composed
of two components: the infrastructure and the services.

The infrastructure includes quantitative and qualitative requirements of hardware and
software to manage the cloud infrastructure through monitoring security metrics, re-
gardless of manufacturer, technology, service models etc. As required, this methodology
copes well with an increasing or decreasing number of active devices being monitored.
For example, in the Infrastructure metric (item Met1), one may add a group of metrics
called Group_Dell_PowerConnect_Switches, composed of Dell PowerConnect manage-
able switches (group metric Met1.18), with 200 units and enumerated as follows:

{Unit_Dell_PCon_001,Unit_Dell_PCon_002, . . . ,Unit_Dell_PCon_200}
(metrics: {Met1.18.1,Met1.18.2, . . . ,Met1.18.200})

As such, the methodology allows the classification, recording and monitoring of the per-
formance of each switch’s individual security requirements planned for it.

In the Services context, regardless of the type of service that was hired (IaaS, PaaS,
SaaS or others), services will be measured by security metrics that provide an overall view
of security. For example, in the Database service metric (item Met2), one might add a
group of metrics called Relational_Databases, composed of relational databases (group
metric Met2.25), with five types of relational databases (Oracle, MySQL, PostgreSQL,
Sybase and DB2) and enumerated as follows:

{Unit_Rel_Database_1,Unit_Rel_Database_2, ...,Unit_Rel_Database_5}
(metrics: {Met1.25.1,Met1.25.2, ...,Met1.25.5})

Therefore, the methodology allows the classification, recording and monitoring of the
performance of each relational database’s individual security requirements planned for it.

5.3 Summary

This chapter presented the Security Metrics Hierarchy (SMH) methodology for the man-
agement of security for cloud computing environments using security metrics. It described
the normalization process of the security metrics, the formal structure of the Security Met-
rics Hierarchy, the validation process of the security metrics and presented the security
metrics behavior through the classic model of time series analysis. Finally, it showed
an example of the SMH’s application when dealing with multiple devices in the cloud
infrastructure.

Chapter 6

Management of Cloud using security
criteria

This chapter uses the methods and techniques presented for the security man-
agement of Cloud Computing environments using security metrics [Silva and Geus, 2015,
Silva et al., 2012, Silva and Geus, 2014a, Silva and Geus, 2014b, Silva and Geus, 2014c].
The portfolio of security metrics structured in a hierarchy represents the security require-
ments of the Cloud Computing environment, allowing for measuring the quality of the
provided/hired service.

6.1 Return On Security Investment (ROSI)

Potential customers of Cloud Computing perceive a lack of transparency and a relative
lack of control when compared to the traditional computing models[Foster et al., 2008,
Pearson, 2013]. In the industry these services are referred to as Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), respectively.

Such customers (or companies) decide to migrate part of their data, services or infras-
tructure to a Cloud Computing service provider (CSP) based on the following parameters:
expected benefits, adoption costs, performance, flexibility, business opportunities and oth-
ers [Kantarcioglu et al., 2011, Johnson and Qu, 2012, Martens and Teuteberg, 2012]. In
the current literature, it is unclear whether the CSP should provide security services or
not, and what these services characteristics and varying levels of protection and costs
involved should be.

The decision to migrate refers to a particular document: “Deployment Profile”, which
is defined in the context of this article to include four elements that will be evaluated:
mobilized assets, types of Cloud service, deployment models and a specific CSP. Due to the
varying levels of customer controls for each profile, different security services are offered
by the CSP. Increased protection on the side of the CSP should raise rates deployment
and maintenance costs, while less protection means more control and client-side costs.

From a customer’s perspective, this proposal presents a new qualitative and quantita-
tive approach to the security requirements in the process of migrating to Cloud Comput-
ing, and proposes the use of security metrics to analyze the benefits and costs of security

72

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 73

for a given deployment profile. The ultimate goal is to properly assess whether the de-
cision to migrate assets, e.g. data, services, applications, infrastructure etc. to Cloud
Computing is beneficial or not, both economically and security-wise. This means that the
customer has to evaluate both the level of security provided by the CSP and the costs
that such controls present. It assumes that the CSP is cooperating and willing to reveal
its offered security services through a portfolio of security metrics.

6.1.1 Return on Investment (ROI)

Return on Investment (ROI) is one of several financial indicators available to estimate the
financial result of the company’s investments (in this proposal: a possible client who hires
a service from a CSP). This calculation takes into account the cost of an investment and its
expected earnings, and provides an estimate of how favorable the investment will be. To
calculate the ROI (simple ROI), the cost of an investment should be subtracted from the
gain (return) of the investment, and the result divided by the cost of the investment; the
result is expressed as a percentage or fee. In most cases, a rate greater than 0 (zero) means
that the return is greater than the cost, then the investment can be considered beneficial
(how beneficial depends on the objectives of the investment or corporate standards of the
company) [ENISA, 2012]:

ROI =
(Gain_From_Investment − Cost_of_Investment)

Cost_of_Investment

Where:

• Gain From Investment: the final value of the benefits;

• Cost of Investment: the initial value of the investment

Such values can be estimated or calculated.

6.1.2 Methodology for ROSI Calculation

There are many possible ways to estimate ROSI in a Cloud Computing environment,
and no approach is suitable for all situations due to the measurable and non-measurable
qualities. Selecting the best option for a particular case depends on many factors, in-
cluding what the business drivers for migrating to the Cloud are (revenue growth versus
cost savings), the approach to prepare and evaluate the business cases (emphasis on tan-
gible versus intangible QoS), and where the company is in the growth cycle/maturation
of business (new business versus mature company).

This approach is outlined in three steps for calculating ROSI; also, the described con-
cepts can also be applied to other scenarios, requiring more or less steps depending on
circumstances.

Step 1: Determine costs and benefits of the Cloud
At this stage will be set costs and benefits of the Cloud with the following substeps:

i) define high level business requirements (functional); ii) define the service model in the

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 74

initial/basic Cloud; iii) make a risk assessment of the initial/basic Cloud model; iv) esti-
mate the cost of migration from the current to the Cloud-based model, and estimate the
tangible and intangible benefits; v) consider other Cloud models (private, public, commu-
nity and hybrid); vi) re-evaluate cost/benefit for the ideal alignment model.

Step 2: Assess costs and current benefits
At this stage will be set the actual costs and benefits of the Cloud, with the following

substeps: i) make a current estimate for the business requirements used in step 1, set
the current service model to meet the same functional requirements and compliance; ii)
make a risk assessment (or review it if one already exists) of the current service model;
iii) make an estimate of costs/benefits, and include operating costs/current maintenance
(TCO), cost of mitigating risks, and costs/intangible benefits.

Step 3: Make an estimate for ROSI
At this step will be calculated an estimate for ROSI, with the following substeps: i)

compare the costs and benefits of the current and alternative option; ii) calculate ROSI
and other financial indicators of investment returns; iii) calculate the intangibles.

6.1.3 Calculating ROSI

This section presents the definition of new economic indicators created by this approach
to calculate the return on investment in security for the security requirements in a Cloud
Computing environment.

ROSIa

The financial indicator ROSIa is the arithmetic difference between the value measured
by the CSP for the security requirement “Deployment Profile” and the value expected by
the customer, as follows:

ROSIa = −(Evaluated_Metric − Expected_Value)

Where:

• Evaluated_Metric: the value measured by the CSP for the security metric require-
ment, between 0 and 4;

• Expected_Value: the value expected by the client for the security requirement, be-
tween 0 and 4.

ROSIvi

The financial indicator ROSIvi is obtained by subtracting the expected value from the
measured value for the given metric, as informed by the client, relative to the measured
value, as follows:

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 75

ROSIvi =
(Evaluated_Metric − Expected_Value)

Evaluated_Metric

Where:

• Evaluated_Metric: the value measured by the CSP for the security metric require-
ment, between 0 and 4;

• Expected_Value: the value expected by the client for the security requirement, be-
tween 0 and 4.

ROSIvf

The financial indicator ROSIvf is obtained by subtracting the expected value from the
measured value for the given metric, as informed by the client, relative to the expected
value, as follows:

ROSIvf =
(Evaluated_Metric − Expected_Value)

Expected_Value

Where:

• Evaluated_Metric: the value measured by the CSP for the security metric require-
ment, between 0 and 4;

• Expected_Value: the value expected by the client for the security requirement,
between 0 and 4.

The results for the previous indicators may fall into the following ranges:

• Positive: the CSP is ensuring greater security than the customer expects (beneficial
to the client). Example: ROSIa being 2.0 indicates that the Gain from Investment
is 200 % above the cost of investment;

• Zero: the CSP has exactly the level of security that the customer wishes/requests;

• Negative: the CSP is presenting less security than the customer expects (prejudicial
to the client). Example: ROSIa being -1.0 indicates that the Gain from Investment
is 100 % below the cost of investment.

6.1.4 Deployment Profile

The migration decision has to be implemented on the customer side. Essentially, the cus-
tomer has to answer to the following question: “Are the security controls offered adequate
and efficient from a security perspective?”. The answer to this question must affect the
decision to migrate to the Cloud Computing [Martens and Teuteberg, 2012].

The logical process of the decision follows four steps:

1. Define a deployment profile. The customer selects the migrated assets, the Cloud
type and the deployment model, coupled with a CSP offering such a service.

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 76

2. Define a set of controls for the deployment profile. These may be offered by the
CSP or implemented by the tenant (due to the Cloud migration).

3. Calculate each security metric to ROSI (beneficial or prejudicial to the client) for
the implemented security controls.

4. Evaluate Return on Security Investment (ROSI) for each security metrics combina-
tion of the deployment profile.

The last step results in the evaluation of the ROSI of one or more profiles and the customer
deciding whether he will migrate or selecting the CSP, the model, and the type of Cloud
that is more beneficial.

Figure 6.1 shows the process of creating the “Deployment Profile”, where the customer
chooses, from the portfolios of Infrastructure and Service security metrics, which security
metrics to use and their expected values. Each expected value falls in the range [0, 1, 2,
3, 4], respectively corresponding to the expected security levels [Critical, High, Medium,
Low, None].

Deployment	 Profile	 	

Security	
Metrics	 of	
Service	

(por7olio)	

Security	
Metrics	 of	

Infrastructure	
(por7olio)	

1.	 Defini=on	
2.	 Nego=a=on	 3. Implementation

4. Execution
5. Evaluation
6. Re-negotiation

Figure 6.1: Creating the Deployment Profile.

6.1.5 Case Scenario

Let’s consider a case scenario of customer John who considers whether to migrate assets
(e.g. data, services, etc.) to a Cloud deployment provided by CSP_X. CSP_X provides
a private Cloud deployment for Carlos, while the available offered service is Software-as-
a-Service (SaaS).

The customer chose in the range [0, 1, 2, 3, 4], respectively corresponding to the
expected security levels to some security metrics (portfolio) to security requirements, and

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 77

calculate the ROSIa,vi,vf . The result of ROSIa,vi,vf should guide decision-making about
hiring or not the service SaaS offered by the CSP_X.

Table 6.1 shows the firewall security metrics from the infrastructure portfolio chosen
by the customer, where: i) Identification (Id) singles out a metric from the portfolio; ii)
Evaluated Metric (EM) is the value that the CSP_X is committed to meet via contract
(measured by the CSP_X through a time series analysis); iii) Expected Value (EV) is the
value expected by the client for the security requirement.

Table 6.1: Deployment Profile (Portfolio of Infrastructure metrics)
Id Description EM EV ROSIa ROSIvi ROSIvf

1. Firewall
1.1 Average time vulnerabilities are

patched
4 3 1 0.20 0.25

1.2 Security event records 3 2 1 0.25 0.33
1.3 Application Software Security Threat

Level
2 3 -1 -0.33 -0.25

1.4 Backup mechanism 3 2 1 0.25 0.33
1.5 Mean time between failures 4 3 1 0.20 0.25
1.6 Mean time between maintenance 3 4 -1 -0.25 -0.20

Table 6.2 shows the PostgreSQL database security metrics from the service portfolio
chosen by the customer.

Table 6.2: Deployment Profile (Portfolio of metrics for a Service)
Id Description EM EV ROSIa ROSIvi ROSIvf

3. PostgreSQL Database
3.1 Default TCP port 2 2 0 0 0
3.2 Default user service account 3 2 1 0.25 0.33
3.3 Insecure user account 2 1 1 0.33 0.50
3.4 Mean time to verify latest security

patches
3 2 1 0.25 0.33

3.5 SQL injection 4 3 1 0.20 0.25

Figures 6.2 and 6.3 illustrate the behavior of the security metrics that make up the
deployment profile values: i) Evaluated Metric (EM) is the value that the CSP_X is
committed to comply via contract (blue lines); ii) Expected Value (EV) is the value
expected by the customer from the CSP_X (black lines); iii) Average EM (Aveg-EM) is
the arithmetic mean value of the metrics measured by the CSP_X (green lines). Figure 6.2
illustrates the firewall security metrics from the infrastructure portfolio and Figure 6.3
the PostgreSQL database security metrics from the service portfolio.

The red dots (expected values) that are above or equal to the blue dots (evaluated
metrics) are the requirements that are met by the CSP_X (beneficial to the client).
Otherwise, the expected values that are below the evaluated metrics are the CSP_X re-
quirements that do not meet the customer’s security level (prejudicial to the client).

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 78

0	

1	

2	

3	

4	
M_1.1	

M_1.2	

M_1.3	

M_1.4	

M_1.5	

M_1.6	

EM	

EV	

Aveg-‐EM	

Figure 6.2: Firewall Metrics.

0	

1	

2	

3	

4	
M_3.1	

M_3.2	

M_3.3	 M_3.4	

M_3.5	

EM	

EV	

Aveg-‐EM	

Figure 6.3: PostgreSQL Metrics.

Analyze the results of ROSI

The client should consider the behavior of each chosen security metric, in order to
understand and evaluate all aspects involving the Cloud migration decision. For instance,
the client may reject some of the included security controls or replace them with equivalent
ones, based on their benefit to the security cost or the result for ROSIa,vi,vf .

Based on data from Table 6.1, the security metrics M1.3 and M1.6 indicate negative
values for the return on security investment, i.e. these metrics are presenting security
levels below what the customer expects (prejudicial to the client).

When analyzing the percentage of security requirements that have negative values for
ROSIa,vi,vf , it verifies that 18% of them are prejudicial to the client (2 out of 11).

For security requirements that differ from the contract, the customer can choose one
of the following:

• Accept the migration to the CSP_X based on the described Deployment Profile and

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 79

the results for ROSIa,vi,vf ;

• Reject the migration to the Cloud due to the results for ROSIa,vi,vf that are not
satisfactory;

• Choose another Deployment Profile with new parameters: assets, models, types and
controls;

• Choose another CSP_X that satisfies the given parameters.

Thus, the customer can identify which what security requirements are guaranteed by the
CSP_X (beneficial to the client), and what not (prejudicial to the client).

Table 6.3 shows the necessary investment for firewall security metrics from the infras-
tructure portfolio chosen by the customer. The currency used in the example is irrelevant,
so it considers the values as plain numbers (e.g. 30), where: Cost is the annual value for:
install, configure, training, etc. and Investment is the necessary annual value to improve
the security requirement provided by the CSP_X.

Table 6.3: Necessary Investment (Portfolio of Infrastructure metrics)
Id Description ROSIa Cost Investment
1. Firewall
1.3 Application Software Security Threat Level -1 8,000 16,000
1.6 Mean time between maintenance -1 5,000 10,000

The CSP_X can use the ROSIa values to calculate the investment must do to meet the
security requirements detrimental to the client, for example, metrics “1.3” and “1.6” need
100% investment to meet customer needs, i.e., double the amount invested in the process
security controls.

6.1.6 Results

This work proposed a new quantitative and qualitative methodology for obtaining the
Return On Security Investment for a specific deployment profile through the use of security
metrics. The proposal covers the services offered by the Cloud Computing providers from
a client security perspective. Furthermore, this approach has the advantage of supporting
a hierarchical decomposition and also presents a solution to deal with intangible costs and
benefits, thereby allowing for distributed and scalability features. In Appendix A (page
132), this portfolio of security metrics is described in more details.

6.2 Managing Security-SLA

The methodology builds on the concept that the customer, when hiring a service in the
Cloud (SaaS, PaaS or IaaS), may choose from a portfolio of security metrics that will be
continuously monitored by the environment.

Within this approach, a database holds two classes of security metrics, according to
their functionality. The infrastructure device class consists of all the hardware devices and

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 80

related Cloud software, such as networking, firewalls, routers, proxies, operating systems,
etc. on which monitoring agents will run to generate security metrics. The service class
consists of all SaaS, PaaS or IaaS hardware/software components that provide the service
contracted by the customer, with the monitoring agents running on those assets generating
security metrics about the Virtual Machine (VM).

6.2.1 Automatic Security-SLA

Figure 6.4 represents the proposed lifecycle of Security-SLA management for Cloud Com-
puting environments, which is based on the following phases:

(1) Definition: this phase is focused on the selection of the infrastructure and service
security metrics, its features and the definition of quality parameters that will be
provided to customers. A database with all the security metrics (portfolio) is offered;

(2) Negotiation: in this phase are defined values for the security metrics parameters
(range 0–4), cost to the customer and penalties in case the Security-SLA is violated;

(3) Implementation: the security metrics are prepared according to the available
infrastructure devices that will allow for the service execution in the environment;

(4) Execution: it is the phase when monitoring security metrics for the infrastructure
devices and service takes place. Specified quality parameters (SLO) are evaluated
for compliance with the Security-SLA;

(5) Evaluation: in this phase the provider assesses the security quality provided;

(6) Re-negotiation: deals with the service ending, be it for reasons of contract expi-
ration or for Security-SLA re-negotiation.

Security-‐SLA	

Security	
Metrics	 of	
Service	

(por4olio)	

Security	
Metrics	 of	

Infrastructure	
(por4olio)	

1.	 Defini>on	
2.	 Nego>a>on	 3. Implementation

4. Execution
5. Evaluation
6. Re-negotiation

Figure 6.4: Lifecycle of a Security-SLA.

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 81

Figure 6.5 presents a simplified overview of this Security-SLA management process for
Cloud Computing environments. As today’s business systems typically consist of layers
of complex systems, user-level Security-SLAs cannot be directly mapped to physical in-
frastructure. Services can be composed of other more fundamental services, maybe even
provided by third parties. Consequently, a gradual mapping of higher-level Security-SLA
requirements onto lower levels, and aggregation of lower-level resources to higher-level
ones is crucial to allow binding of user-level Security-SLAs to the infrastructure. This
vertical flow of information must carefully reflect service interdependencies. In addi-
tion to Security-SLAs, vertical information flow also covers monitoring, tracking and ac-
counting data, having to support intermediation and negotiation processes at each layer.
The Security-SLA management process may deal with different stakeholders, namely cus-
tomers, service and infrastructure providers, and also various business steps such as busi-
ness valuation, contracting and sales. The illustration also shows the role of software
providers responsible for creating components with predictable behavior. In this con-
text, one notices the integration of multiple levels, as there are several interested parties
(suppliers of software/services/infrastructure and customers), various roles (IT people,
experts, customers), various types of services, various aspects of service level (availability,
performance etc.), all under the full lifecycle of the Security-SLA (definition, negotiation,
implementation, execution, evaluation and re-negotiation).

Service Provider

Contracting/
Sales

SOA

SLA
Negotiation/
Aggregation

Security-SLA
(Re-)Negotiation

physical

virtual

Mapping

Sec-
SLA

Security-SLA

Customer

Infrastructure Provider

Monitoring

Software Provider

Service

Provisioning

Figure 6.5: Security-SLA management in Cloud Computing.

6.2.2 Monitoring Security-SLA

Monitoring agents are specialized programs responsible for the monitoring process. Each
program is tasked with collecting information from existing components in the infrastruc-
ture. Such information will be used in the Security-SLA validation.

When an agent runs, it gets the Security-SLA parameters: service that will be mon-
itored, execution parameters and some metric identifiers that will be measured. “Place”

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 82

specifies the elements where the measurement is done, like VM, Firewall, IDS/IPS etc.
“Procedure” specifies whether the type is black-box or not. “Frequency” of measurement
in hours. SLO specifies the contract value in the 0–4 range. Finally, “Incidence” specifies
the percentage of samples that stayed above the SLO value.

6.2.3 Case Study

A case study was developed and tested on a Cloud Computing environment based on
OpenNebula [OpenNebula, 2014], on a machine with a 2.8 GHz intel i7 quad-core proces-
sor and 32 GB of RAM running Gentoo Linux and the KVM hypervisor. The customer
chooses mysql enterprise edition as a SaaS service and as an infrastructure service Intru-
sion Detection and Prevention System (IDPS). During the negotiation, the client specified
that monitoring would be performed 10 times (events in between two samples being ac-
cumulated to the next sample). The system under test is responsible for human resources
management at an University and holds about 400 tables, 200 users and 5 administrators.
Table 6.4 describes the security metrics that compose the Security-SLA.

Table 6.4: Security Metrics chosen by the user
Item Description (metric) Value of Metric
2 Infrastructure Cloud Computing Met2 ≥ 3
2.4 Intrusion Detect and Prevention System Met2.4 ≥ 3
2.4.1 Packet Fragmentation Met2.4.1 ≥ 4
2.4.2 Stream Segmentation Met2.4.2 ≥ 3
2.4.3 Remote Procedure Call Fragmentation Met2.4.3 ≥ 3
2.4.4 Recovery from Abnormal System Shutdown Met2.4.4 ≥ 4
2.4.5 Security Events Records Met2.4.5 ≥ 4
2.4.6 Evasion Attacks Met2.4.6 ≥ 3
9 SaaS Cloud Computing Met9 ≥ 3
9.1 Database mysql Met9.1 ≥ 2
9.1.1 Default User Service Account Met9.1.1 ≥ 2
9.1.2 Insecure User Account Met9.1.2 ≥ 2
9.1.3 Default TCP Port Met9.1.3 ≥ 2
9.1.4 SQL Injection Met9.1.4 ≥ 2

IDPS Metrics

As an example of the IDPS metric, the following parameters were chosen:

Metric Name: Stream Segmentation

Description: The Stream Segmentation Security Metric (Met2.4.2) is monitoring unusual
activity on the network, like the remote host advertising a zero window size, dropped
TCP connections and session timeouts. By manipulating the way in which a TCP
stream is segmented, it is possible to evade detection by some firewalls and IDPS.

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 83

When doing that, an attacker could overwrite a portion of a previous segment in
a stream with new data in a subsequent segment. This method could allow the
attacker to hide or obfuscate the attack on the network.

Formula: Met2.4.2 = Count(Incidents)

SLO Value: 3

Incidence: 90.00%

Table 6.5 describes the distribution of sample values (0–4 range) for the Stream Seg-
mentation Metric (Met2.4.2), for each monitored incident and their percentage of occur-
rence.

Table 6.5: Samples of Stream Segmentation Metric
Met2.4.2 Incidents Percentage

4 32 0.15%
3 1,505 6.96%
2 15,219 70.37%
1 4,422 20.45%
0 448 2.07%

Based on data from Table 6.5, Figure 6.6 presents the visual result of monitoring the
Stream Segmentation Metric (Met2.4.2) during the evaluated time span (1 to 10, i.e. the
radii in the illustration). The hired SLO value was ≥ 3, the measured average MA value
was 2 in the period, and Incidence total was 7.11% (percentage of incidents of levels 3 and
4: 0.15 + 6.96), however this is in sharp contrast with the contracted value of 90.00%.
Therefore, one can conclude that not only there is a problem with the hired security level,
but the relation between the measured 7.11% and the expected 90.00% values for the
Incidence also suggests that the delivered security is very poor.

0	

1	

2	

3	

4	
1

2

3

4

5

6

7

8

9

1
0

SLO	

MA	

Aveg-‐2.4.2	

Figure 6.6: Behavior of the security metrics: stream segmentation.

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 84

MySQL Metrics

Heuristics. It implemented two heuristic algorithms to compute the incidents over the
MySQL service:

a. Log: Uses black-box external monitoring, analyzes log files of the database, and
identifies and records incidents. Let n be the number of records in the log file, m the
number of operations and l the number of permissions. The asymptotic complexity
is O(n log ml)

b. Interface: Uses black-box internal monitoring, runs a PHP code inside the system
interface and each command in the interface, verifies and records the incidents. Let
n be the number of commands in the interface, m the number of operations and l

the number of permissions. Its asymptotic complexity is O(nml)

As an example of MySQL metric, the following parameters were chosen:

Metric Name: Insecure User Account Security

Description: The Insecure User Account Security Metric (Met9.1.2) is monitoring whether
the customer used a default user account instead of an administrator account. The
transaction log for the database is checked for the combination: source (Admin-
istrator or User), type of operation (select, update, drop, alter and create), and
permission of the operation.

Formula: Met9.1.2 = Count(Incidents)

SLO Value: 2

Incidence: 80.00%

Table 6.6 describes the distribution of sample values (0–4 range) for the Insecure User
Account Metric (Met9.1.2), for each monitored incident and their percentage of occurrence.

Table 6.6: Samples of Insecure User Account Metric
Met9.1.2 Incidents Percentage

4 5,678 19.84%
3 18,104 63.25%
2 3,624 12.66%
1 1,000 3.49%
0 215 0.75%

Based on data from Table 6.6, Figure 6.7 presents the visual result of monitoring the
Insecure User Account Metric (Met9.1.2), during the evaluated time span (1 to 10, i.e.
the radii in the illustration). The hired SLO value was ≥ 2, the measured average MA
value was 3 in the period, and Incidence total was 95.75% (percentage of incidents of
levels 2 to 4: 19.84 + 63.25 + 12.66), yielding a value well above the contracted 80.00%.

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 85

Therefore, one can conclude that security as contracted has not only been met, but in
fact the relative position of the 95.75% figure towards the hardest target of 100% suggests
that security was quite good.

0	

1	

2	

3	

4	
1

2

3

4

5

6

7

8

9

1
0

SLO	

MA	

Aveg-‐9.1.2	

Figure 6.7: Behavior of the security metric “insecure user account”.

6.2.4 Results

It presented a substantial contribution to make an automatic way of contracting a Security-
SLA using as basis a portfolio of security metrics for the infrastructure and services classes.
It also introduced a new model to view information about security through a range of
values (0–4) and treated the problem of managing intangible and unmeasurable numbers.
Moreover, it proposed a new way of managing security levels (top-down view) that con-
siders values for each security metric with its respective risk, Quality of Service (QoS)
and impact. Separating Security-SLA in two reference security value classes allows for an
abstracted visualization of security and helps to easily spot which security items present
values below the expected values. Thus, the customer may have a more tangible feeling
of how the hired service is being protected. In Appendix A (page 132), this portfolio of
security metrics is described in more details.

6.3 Obtaining Index of Security (IndSec)

The calculation of the Index of Security based on the values collected and organized in
the Security Metrics Hierarchy. The Figure 6.8 describes Security Index composition.

In this model, the entire process monitoring/auditing of the security metrics is divided
into two stages:

(a) Static Analysis: in this process, analysis parameters are as follows: (i) Security-
SLA defined by the client and provider; (ii) the requirements of Quality of Service
(QoS-SLA) derived from the SLA; (iii) and vulnerabilities recorded in the NVD
database to the type of service, identifying the risk and impact through the CVSS
[NIST, 2014];

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 86

Security-‐SLA	 Risk	

Security	 Index	 (IndSec)	

CVSS	 QoS-‐SLA	 Impact	

Sta=c	 Analysis	

Sec-‐QoS	 Threat/Vulnerabili=es	

Dynamic	 Analysis:	
Monitoring	 Security	 Metrics	

Figure 6.8: Calculating index of security.

(b) Dynamic Analysis: the security requirements defined in the statistical analysis step
will be measured by monitoring/auditing of security metrics to the threats and
vulnerabilities detected at runtime, and the measured values? to the final degree
of impact, risk, quality security service (QoS-Sec-SLA) threats and vulnerabilities
detected.

6.3.1 Normalization of Risk and Impact

Based on the National Vulnerability Database (NVD) [NIST, 2014], the portfolio of se-
curity metrics can be complemented with risk and impact values to the type of activity
being measured (hired service). The NVD provides a score [0-10.0] through the Common
Vulnerability Scoring System (CVSS) for the characteristics and impacts of the vulnera-
bilities of a system.

In this proposal, the scores of risk and impact are normalized is a range of values [0-4].
This process is equivalent to the normalization process of the normalization of security
metrics to the value scaling [0-4] described in the Section 5.1.2 (page 62).

In Appendix B (page 304), this normalization scene is described in more details.

6.3.2 Function of Time

All values measured in SA and DA analytics converge to values in the range [0-4] rep-
resenting the level of security monitored and audited, representing the range of security
values as [Critical, High, Medium, Low, None]. The index of security (IndSec) is calcu-
lated by the average arithmetic of all N elements of analysis (EAi) that compose the SA
and DA analyzes (to f ∗):

IndSecT = b
∑N

i=1 EAi∗Ti∑N
i=1 Ti

c

where Ti is the amount of time a value (slice-time) in the range [0-4] assumes the total
time measured.

6.3.3 Function of Weight, Impact, Risk

By analogy, the calculation of IndSec may be due to the weight (Pi), impact (Ii) and risk
(Ri), substituting Ti in function:

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 87

IndSecW = b
∑N

i=1 EAi∗Wi∑N
i=1 Wi

c, IndSecI = b
∑N

i=1 EAi∗Ii∑N
i=1 Ii

c, IndSecR = b
∑N

i=1 EAi∗Ri∑N
i=1 Ri

c

The parameters of the weight (Wi), Impact (Ii) and risk (Ri) define the importance of
submetric within the composition of the metric hence the level above (group level).

6.3.4 Case Study

A case study was developed and tested on a Cloud Computing environment based on
OpenNebula [OpenNebula, 2014], on a machine with a 2.8 GHz intel i7 quad-core proces-
sor and 32 GB of RAM running Gentoo Linux and the KVM hypervisor. The customer
chooses PostgreSQL object-relational database system as a SaaS service and as an in-
frastructure service firewall. During the negotiation, the client specified that monitoring
would be performed 10 times (events in between two samples being acumulate to the next
sample). The system under test is responsible for academic system at an University and
holds about 100 tables, 9000 users and 10 administrators.

As an example of the firewall metric, the following parameters were chosen:

Metric Name: firewall

Description: firewall metric (Met2.3) is composed of other submetrics measuring perfor-
mance, maintenance, threats and vulnerabilities. This case study, Met2.3 is calcu-
lated by average of Met2.3.i on time, so, dividing the value each submetric by time
of incidence Ti.

Formula: Met2.3 = b
∑N

i=1 Met2.3.i∗Ti∑N
i=1 Ti

c

SLO Value: 3

Incidence: 70.00%

Based on data from Table 6.7, during the evaluated time span (1 to 10, i.e. the radii in
the illustration). The hired SLO value was ≥ 3 (hired), the measured average MA value
was 2 in the period (measured), and Incidence total was 72.16% (percentage of incidents
of level 2). Therefore, one can conclude that security was bad with 72.16% of the sample
below expectations (there is a security problem).

Table 6.7: Measured for Firewall metric (MA)
Met2.3 Incidents Percentage

4 1,931 9.29 %
3 3,469 16.69 %
2 15,003 72.16 %
1 320 1.54 %
0 67 0.32 %

Figure 6.9 presents the visual result of monitoring the Firewall metric (Met2.3).
Table 6.8 illustrates a security metric, specifically the firewall metric M2.3 for this case

study.

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 88

0	

1	

2	

3	

4	
Met_2.3.1	

Met_2.3.2	
Met_2.3.3	

Met_2.3.4	

Met_2.3.5	

Met_2.3.6	

Met_2.3.7	

Met_2.3.8	

Met_2.3.9	

Met_2.3.10	
Met_2.3.11	

Met_2.3.12	
Met_2.3.13	

Met_2.3.14	

Met_2.3.15	

Met_2.3.16	

Met_2.3.17	

Met_2.3.18	

Met_2.3.19	

Met_2.3.20	

Met_2.3.21	
Met_2.3.22	

SLO	

MA	

Aveg-‐2.3	

Figure 6.9: Measured for firewall metric (SLO), Met2.3, is 3 and engaged MA is 2.

6.3.5 Results

It proposed a methodology for management of Cloud Computing using security criteria.
The index of security (IndSec) transparently conveys the security level measured in the
Cloud Computing environment for the various security features modeled in the metrics
hierarchy. Moreover, this approach has the advantage of supporting hierarchical decom-
position, which allows the model to be more scalable and distributed. In Appendix A
(page 132), this portfolio of security metrics is described in more details.

6.4 Obtaining Index of Allocation (IndAlloc)

The Index of Allocation (IndAlloc) is calculated from the index of security, and its value
represents the resource allocation percentage that will be supplied to the user:

IndAlloc(%) = 100− (20 ∗ (4− IndSec))

Table 6.9 shows the resource allocation percentage calculated as a function of the index
of security.

The next two sections describe two alternative strategies to be chosen by the user for
the implementation of the allocation index.

Strategy A: Apply in All

In the Apply in All (AA) strategy, the physical structure of the Cloud Computing is seen
as a single logical unit for resource allocation management. Therefore, this results in an
allocation index ranging from 20% to 100% of the original allocation factor. Figure 6.10
depicts this strategy.

As an example of this strategy, a client who has a security index that equals 2 will be
allocated 60% of his/her resource requests.

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 89

Table 6.8: Security-SLA (Security Metrics)
Item Description (Metric) Value of metric
2 Infrastructure Cloud Computing Met2 ≥ 3
2.3 Firewall Met2.3 ≥ 2
2.3.1 Average number of hours an unauthorized device

is found on the network
Met2.3.1 ≥ 3

2.3.2 Average time vulnerabilities are patched Met2.3.2 ≥ 4
2.3.3 Application Software Security Threat Level Met2.3.3 ≥ 4
2.3.3 Backup mechanism Met2.3.4 ≥ 4
2.3.5 Mean time between failures Met2.3.5 ≥ 4
2.3.6 Mean time between maintenance Met2.3.6 ≥ 4
2.3.7 Mean time failure duration Met2.3.7 ≥ 4
2.3.8 Mean time to incident detection/identification Met2.3.8 ≥ 3
2.3.9 Mean time to incident eradication Met2.3.9 ≥ 3
2.3.10 Mean time to incident recovery Met2.3.10 ≥ 3
2.3.11 Mean time maintenance duration Met2.3.11 ≥ 4
2.3.12 Mean time to recovery from abnormal system shut-

down
Met2.3.12 ≥ 3

2.3.13 Mean time system availability Met2.3.13 ≥ 4
2.3.14 Mean time system down (failure) Met2.3.14 ≥ 4
2.3.15 Mean time system down (maintenance) Met2.3.15 ≥ 4
2.3.16 Security events records Met2.3.16 ≥ 3
2.3.17 Security rule control Met2.3.17 ≥ 3
2.3.18 Packet filtering Met2.3.18 ≥ 2
2.3.19 Total number of malicious packets found entering

network
Met2.3.19 ≥ 3

2.3.20 Total number of unauthorized devices found in a
given period

Met2.3.20 ≥ 3

2.3.21 Total number of vulnerabilities found Met2.3.21 ≥ 3
2.3.22 Unauthorized device threat eevel Met2.3.22 ≥ 3

Table 6.9: Resource allocation using the index of security
Index of Allocation

IndSecv,h,s IndAllocv Priority Impact
4 100 % maximal none
3 80 % high low
2 60 % medium medium
1 40 % low high
0 20 % minimal critical

Strategy B: Apply in Regions

In the Apply in Regions strategy (AR), the physical structure of the Cloud Computing is
divided into five logical regions that represent the calculated security levels (0, 1, 2, 3 and

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 90

Region*	

Allocation Index	
(20% to 100%)	

Physical	 Cloud	 =	 Logical	 Cloud	 (Region*)	

Figure 6.10: Computing the allocation index through Apply in All (AA).

4), where Regioni ⇔ IndSec = i. Each region will provide a specific resource percentage,
as shown in Table 6.9. Figure 6.11 shows this strategy, which may be exemplified by,
say, a client who owns a security index that equals 2, that will be located in Region2 and
allocated 60% of his/her resource requests.

Region4	
Allocation

Index = 100%
IndSec = 4	

Physical	 Cloud	 =	 Logical	 Cloud	 (Region0+Region1+Region2+Region3+Region4)	

Region3	
Allocation

Index = 80%
IndSec = 3	

Region0	
Allocation

Index = 20%
IndSec = 0	

Region1	
Allocation

Index = 40%
IndSec = 1	

Region2	
Allocation

Index = 60%
IndSec = 2	

Figure 6.11: Computing the allocation index through Apply in Regions (AR).

Strategy Comparison

Strategy A has a lower cost to create and maintain (single region), therefore presents a
lower security level, since all clients continue to share the same infrastructure. A security
incident on a client’s domain could have consequences on other client’s. In contrast,
strategy B has a higher creation and maintenance cost but due to its intrinsic confinement
guarantees, to a certain degree, a more desirable security level among different client
services. Figure 6.12 shows an estimate of this comparison.

6.4.1 Case Study

To validate the proposed cost management in relation to time, a prototype was de-
veloped and tested in a small Cloud environment based on the OpenNebula solution

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 91

Strategy A:
Apply in All

Strategy B:
Apply in Regions

Management
Cost

t

100 %

50 %

Figure 6.12: Strategy comparison.

[OpenNebula, 2014] composed of 6 machines with 2 intel Xeon Quad core 3.6 GHz and
16 GB of RAM running O.S. Gentoo Linux and KVM hypervisor. With a machine as a
server to Infrastructure Manager Server, and the other five for servers (Node-0, .., Node-4)
for the execution hired services, connected through the switch, and representing the five
levels of the scale of values [0-4] the Figure 6.13.

Infrastructure
Management
Server

Node-0

Reservation-1

Node-2 Node-3 Node-4

Reservation-2

Node-1

Figure 6.13: Security architecture: IndSec and IndAlloc.

Tests conducted during validation intended to determine the consumption of CPU
and memory resources, and the volume of network traffic produced (performance cost) to
implement the strategies A (Apply in All) and B (Apply in Regions). For the consumer-
side testing of these resources, a number of allocations were performed using different
types of services provided by the Cloud and different numbers of virtual machines. Each
experiment lasted twelve hours and collected measurements for 5 Nodes, two Reservation
Servers and one Infrastructure Management Server.

Figure 6.14 shows the results for Strategy A of this comparison, with the following
comments:

• During the time interval from 3 to 7 minutes, there happens the process of assigning

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 92

virtual machines among the five servers (nodes) with maximum CPU, memory and
network consumption (VMs are loaded in the nodes according to the IndSec value);

• During the time interval from 8 to 16 minutes, there is no physical separation of
the nodes, which allows for a VM to be migrated to another node as needed. At
this stage, if a node has less than 30% utilization of resources (CPU, memory and
network), its VMs are migrated to another node and the node is put to standby;

• From this moment onward, the migration of VMs and deactivation of nodes settles,
which causes the increased use of CPU, memory and network resources (leveled
above 50%)

	-				

	10		

	20		

	30		

	40		

	50		

	60		

	70		

	80		

	90		

	100		

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	

Apply	in	All	-	CPU	 Apply	in	All	-	Memory	 Apply	in	All	-	Network	

Figure 6.14: Result strategy A: Apply in All.

Notice that the migration of VMs respected only the SLA requirements for CPU, memory
and network.

Figure 6.15 shows the results for Strategy B of this comparison, with the following
comments:

• During the time interval from 3 to 8 minutes, there happens the process of assigning
virtual machines among the five servers (nodes);

• From this moment onward, the normal processing of services in the Cloud environ-
ment settles and there is physical separation of the nodes: a VM cannot be migrated
to another node. CPU, memory and network resources are being used less than 50%,
as in [Beloglazov et al., 2011].

Notice that for each server the VMs were physically separated according to their
IndSec, with resource use limitation according to Table 6.9.

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 93

	-				

	10		

	20		

	30		

	40		

	50		

	60		

	70		

	80		

	90		

	100		

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	

Apply	in	Regions	-	CPU	 Apply	in	Regions	-	Memory	 Apply	in	Regions	-	Network	

Figure 6.15: Result strategy B: Apply in Regions.

One important note is that the tests conducted were designed to assess the perfor-
mance cost and, for this reason, the agents were designed to have low impact on resource
consumption. In real environments, collecting information may result in CPU-intensive
activities, depending on the type of information collected and the collection technique.

The results show that, despite the SOAP standard being considered heavy by making
all communication through XML messages, the message envelope sizes do not generate
significant traffic. During the experiments it was observed that the highest traffic activity
occurs at the time of creating the VMs, when transfer agreements and monitoring agents
are required. After this phase, the generated traffic comes from data transfer operations,
whose range depends on the existing schedules in the agreement.

Figure 6.16 shows the combined results for Strategies A and B of this comparison.

6.4.2 Implementing Security Allocation (IndAlloc)

To implement IndAlloc at thresholds 20%, 40%, 60%, 80% and 100%, limiting memory
and CPU usage requires setting appropriate parameters on the KVM’s application profile,
together with proper configuration of control groups (cgroups) [Turner et al., 2010]. Each
VM in the computing server requires a dedicated control group. Cgroups is a Linux
kernel feature that allows hierarchical allocation and management of system resources
(for example, CPU, memory and disk I/O) of groups of processes [Taku Izumi, 2012]. In
this case, the groups were named Group20, Group40, Group60, Group80 and Group100.

The cgroups memory subsystem isolates the memory behavior of a group of processes
(tasks) from the rest of the system. It reports on memory resources used by the processes
in a cgroup and sets limits on memory used by those processes. These are KVM’s cgroup
memory parameters:

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 94

	-				

	10		

	20		

	30		

	40		

	50		

	60		

	70		

	80		

	90		

	100		

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	

Apply	in	Regions	-	CPU	 Apply	in	Regions	-	Memory	 Apply	in	Regions	-	Network	

Apply	in	All	-	CPU	 Apply	in	All	-	Memory	 Apply	in	All	-	Network	

Figure 6.16: Result Strategy A and B.

• memory.memsw.limit_in_bytes stores the value of the virtualMemoryLimit param-
eter, which is configured in the VM application profile;

• memory.limit_in_bytes stores the value of virtualMemoryLimit and physicalMem-
oryLimit parameter, which is configured in the VM (application) profile.

The cgroups CPU subsystem isolates the CPU time consumption of a group of pro-
cesses from the rest of the system. It reports on CPU usage by the processes in a cgroup
and sets limits on CPU consumption by those processes. These are KVM’s cgroup CPU
parameters:

• cpu.cfs_period_us specifies a period of time in microseconds for how regularly a
cgroup’s access to the CPU resources should be reallocated. The upper limit of the
cpu.cfs_period_us parameter is 1 second and the lower limit is 1000 microseconds;

• cpu.cfs_quota_us specifies the total amount of time in microseconds for which all
tasks in a cgroup can run during one period (as defined by cpu.cfs_period_us).
As soon as tasks in a cgroup use up all the time specified by the quota, they are
throttled for the remainder of the time specified by the period and not allowed to
run until the next period.

Together, the cpu.cfs_period_us and cpu.cfs_quota_us store the cpuLimit pa-
rameter value, which is configured within the VM (application) profile. The cpuLimit
parameter stores the number of cores on which a KVM service (VM) is expected to run.
Table 6.10 describes how the cpuLimit value translates the cpu.cfs_period_us and
cpu.cfs_quota_us cpu cgroup parameters.

The KVM platform translates the cpuLimit value to cpu cgroup parameters using
these formulas:

cpu.cfs_period_us = 100000 (0.1 second)

CHAPTER 6. MANAGEMENT OF CLOUD USING SECURITY CRITERIA 95

Table 6.10: Examples for IndSec, IndAlloc and cpuLimit value parameters
IndSec IndAlloc cpuLimit cpu.cfs_quota_us cpu.cfs_period_us

0 20% 1 100000 100000
1 40% 2 200000 100000
2 60% 3 300000 100000
3 80% 4 400000 100000
4 100% 5 500000 100000

and
cpu.cfs_quota_us = m ∗ cpu.cfs_period_us ,

which in this case is the range of IndSec, [0–4], where m is equal to 1, 2, 3, 4 or 5,
respectively.

6.4.3 Results

The results allows for stating that this new model to view security information through a
range of values (0–4) copes quite well with the task it proposed to address, dealing with
the problem of managing software (provided services) with different security levels within
the same environment. The Index of Allocation (IndAlloc) presented two strategies for
resource management that addressed scalability and granularity in Cloud Computing,
while presenting the customer a more tangible feeling of how the hired service is being
protected. In Appendix A (page 132), this portfolio of security metrics is described in
more detail.

6.5 Summary

This chapter described a new quantitative and qualitative methodology for obtaining the
return on security investment for a specific deployment profile through the use of security
metrics. The proposal covers the services offered by the Cloud computing providers from
a client security perspective. It described in detail the Security-SLA management and
presented case studies to validate it. It also presented the Index of Security and Index of
Allocation for cloud computing environments using security metrics.

Chapter 7

Cloud Security Monitoring Architecture

This section presents the solution for monitoring Security-SLAs. The basic features of the
architecture will be discussed, its components, functionality and mechanisms for integra-
tion with the Cloud architecture. The section also describes the approach for representing
security agreements with a view on automated monitoring.

The first version of this architecture was described in [Ferreira, 2013]; since then, new
improvements have been incorporated by the research group. The proposed monitoring
solution aims to verify compliance with Security-SLAs for virtual machines running on
Clouds. To this end, the architecture was designed to ease the integration of the dis-
tributed Cloud infrastructure components. The main features of the architecture are:

• Monitoring Security-SLA-based: In addition to monitoring security parameters
that must be guaranteed by the service, the proposed solution is based on the
agreement itself, the metrics information and the intervals between data collection.
The solution also guarantees a high level of automation of the agreement monitoring
process;

• Multi-agent system: collecting information that will be used in the Security-SLA
compliance verification is done through specialized programs. Each agent program
collects the desired information from existing components in the Cloud infrastruc-
ture, supplying a subset of security metrics;

• Multiplatform architecture: the proposed solution supports monitoring of dif-
ferent platforms and settings. This enables its use in different implementations
of the Cloud infrastructure and different virtualization technologies from the hired
services.

To represent a Security-SLA, a hybrid approach was adopted, one in which numeri-
cal metrics are used to assess compliance with the agreement. Security policies may be
optionally specified for use by security control mechanisms. The language used was Web
Service Level Agreement (WSLA) [Ludwig et al., 2003], capable of representing complex
metrics through linking with lower-level submetrics, describe schedule time controls for
data collection and use conditional expressions and actions for monitoring of the agree-
ment’s goals [Ferreira, 2013].

96

CHAPTER 7. CLOUD SECURITY MONITORING ARCHITECTURE 97

7.1 Components Architecture

The infrastructure of a Cloud is made up of different hardware and software components
that operate in coordination in order to provide the service. In Clouds, the main com-
ponents are: Cloud Nodes, which constitute the computing power offered to customers;
the Infrastructure Management Server, which allows management of the nodes, storage
systems, network devices (switches, routers, Internet Service Providers etc.) and security
(firewall, IDS/IPS etc.).

To interact with the Cloud infrastructure, the monitoring solution consists of different
software components that run on Cloud Nodes, Security-SLA Servers and Infrastructure
Management Servers. The architecture also defines a Security-SLA Manager component
that is responsible for managing all information related to Security-SLA Agreements and
the collected monitoring data. Although represented as a single entity, the Security-SLA
Manager can be deployed across multiple physical servers, in order to ensure scalability
and redundancy for the proposed architecture.

Node

Node

Node

Node

Node

Node

Node

Node

Node

Infrastructure
Database

Infrastructure
Management Server

Cloud
Infrastructure

Security-SLA
Manager

Cloud Node

Operating System (Host)

Hypervisor Cloud Platform Software

V
M

1

V
M

2

V
M

3

V
M

n ...

Security-SLA Local

V
M

1
M

on
ito

r

V
M

2
M

on
ito

r

 V
M

3
M

on
ito

r

 V
M

n
M

on
ito

r

...

D
at

a
D

is
pa

tc
he

r

Security-SLA Manager

Deployment
Profile

Database

Portfolio of
Metrics

Database

Security-SLA
Database

Communication Service

Monitoring
Data

Backend

Zabbix

PostgreSQL
Database

CONTROL
(Time Series Analysis)

Figure 7.1: Proposed Cloud security architecture.

Figure 7.1 presents the components of the monitoring architecture and the relationship
of these components with the Cloud infrastructure:

• Cloud Node: presents the basics components of a Cloud computing environment,
such as operating system (host), virtual machine (VM) and hypervisor. The com-
ponents that present new functionality will be described as follows:

– Security-SLA Local: runs on each Cloud Node and Security-SLA Manager.
Its function is to prepare the environment and also monitor the implementation
of the VM Monitor. For this, the Security-SLA Local communicates with the
Infrastructure Manager Server and the Security-SLA Manager, which allows

CHAPTER 7. CLOUD SECURITY MONITORING ARCHITECTURE 98

the retrieval of information about the Security-SLA agreements and monitor
the changes to the execution state of the VM;

The communication between the Infrastructure Manager Server and Security-
SLA Local is done via hooks. A hook allows actions to be taken when specific
events occur in the Cloud Infrastructure. In the case of the monitoring solu-
tion, events that are treated are related to creation, initialization, suspension,
migration and stopping a VM. In each of these events, a new instance of the
Security-SLA Local is started, the actions are performed according to the state
of the VM and the Security-SLA Local is finished;

The communication between the Security-SLA Local and the VM Monitor is
made through an exclusive communication channel based on sockets. Through
this channel, the Security-SLA Local can request initiation or suspension of
the monitoring process and also finishing the Security-SLA Local execution,
for situations when the VM is finished or migrated to another Cloud Node;

– VM Monitor: the Virtual Machine Monitor (VM Monitor) is a multithreaded
utility run in the Cloud Node that is responsible for controlling the VM mon-
itoring process. Each VM allocated to run on the Node has an associated
VM Monitor, which remains running throughout the VM life-cycle. The VM
Monitor is terminated only when the VM finishes its execution or when it is
migrated to another Node. While remaining resident, the VM Monitor only
collects information during the period in which the VM is running, Thus re-
ducing resources usage on the Node;

Each VM Monitor Consists of three distinct types of threads: the main, re-
sponsible for communication with the Security-SLA Local; the scheduler, re-
sponsible for controlling the execution of monitoring tasks; and the threads of
tasks that control the agents’ execution;

To coordinate the execution of the agents, the scheduler uses the information
(schedule) existing in the Security-SLA itself. When the time comes for the
task execution, the scheduler creates the task thread and the file that will be
used to store the collected data;

The format of the file generated during the task’s execution follows the exten-
sion model of WSLA, described in [Ferreira, 2013]. After running all agents,
the task thread is finished and the file containing the collected data is moved
to the transfer area (spool), where it will await its processing by the Data
Dispatcher;

– Data Dispatcher: the process responsible for the transfer of measurement
files collected by Monitors VM to the Security-SLA Manager. The mechanism
used for transfer is based on a shared spool area which is periodically mon-
itored by the transmitter, looking for new data. As new files are found, the
transmitter uses the Data service in this communication layer to send data to
the Security-SLA Manager. During the transfer process, transaction control
mechanisms are used to ensure integrity at the destination;

CHAPTER 7. CLOUD SECURITY MONITORING ARCHITECTURE 99

– Cloud Platform Software: this software controls large pools of comput-
ing, storage, and networking resources throughout a datacenter. Among the
open source Cloud solutions are Eucalyptus [Eucalyptus, 2012], OpenNebula
[OpenNebula, 2014] and OpenStack [Project, 2008], which also offer integrated
capabilities for monitoring. These solutions allow monitoring only of basic in-
formation such as CPU load, storage space usage and network traffic. In the
proposed architecture, OpenNebula was chosen for convenience purposes: i)
private and public resources; ii) lightweight and easy to install, maintain, op-
erate and use; iii) fully open-source and customizable to fit into any data center
and policies; iv) private and hybrid clouds and datacenter virtualization.

– Agents: they form the basis of all the monitoring process and are responsi-
ble for measuring the entities whose metrics are specified in the Security-SLA
agreements. An agent is an executable utility that can be either a binary for-
mat or a script to be created in any language that is supported by the Node;

Communication between an agent and VM Monitor is simple. As an agent
runs, it receives the parameters from the VM Monitor: the identifier of the VM
that will be monitored, execution parameters and a set of metrics that will be
measured. The results are output to the VM Monitor through standard output
(stdout). The success or failure in running the agent is reported through the
return code from the operating system and possible error messages are sent
through the standard error device (stderr);

During its execution, the agent has a mechanism provided by the architecture
that provides facilities for temporary data persistence and obtains additional
information, such as the type of Cloud solution used, hypervisor, network in-
terfaces, VM type and paths to important directories.

• Infrastructure Management Server: this module is responsible for managing
the Cloud Infrastructure and Nodes that compose the Cloud. Its role is to register on
the Infrastructure Database data about the infrastructure, classifying the kinds of
devices, available communication, schedules and intervals for these communications,
as well as the record of available Nodes for use in the Cloud, identifying for each
Node the kind of operating system, virtual machine, hypervisor and Cloud Platform
Software;

• Infrastructure Database: the relational database that is responsible for storing
information about the Cloud Infrastructure and Nodes that compose the Cloud. It
also records relationships between Services that are available, hired or in execution
by customers. Such information is used by the monitoring agents to set the data
collection parameters of the security metrics;

• Security-SLA Manager: in the Cloud Infrastructure, this module is responsible
for the management and control of all information related to Security-SLA agree-
ments and monitoring collected data. Internally, it has the following submodules:

CHAPTER 7. CLOUD SECURITY MONITORING ARCHITECTURE 100

– Communication Service: the component that provides access to information
from the Security-SLA Database to the other components of the architecture.
To provide a secure, standardized communication mechanism, this component
was implemented as a Web Services server that abstracts database entities and
provides a set of operations for each entity through standard Simple Object
Access Protocol (SOAP) [W3C, 2007a];

Aimed at integrating the monitoring solution to other existing systems, storage
of the collected data is done through modules that allow the use of different
data repositories, transparently to the rest of the architecture;

The Communication Service module receives data collected from the Data Dis-
patcher module and transfers it to the Backend Monitoring Data module;

– Backend Data Monitoring: this submodule is the integration between the
data collected in the monitoring process and the entire Cloud management
structure through the Zabbix tool [Zabbix, 2001] and the PostgreSQL database
[PostgreSQL, 1996];

Zabbix is the ultimate enterprise-level software designed for real-time moni-
toring of a number of metrics, scalable to tens of thousands of servers, virtual
machines and network devices. It provides mechanisms for device discovery
and monitoring distributed agent-based event alerts;

The PostgreSQL is a well-known relational database that records data from
the monitoring process, notifications and alerts;

– Security-SLA Database: this database records all the parameters of each
SLO’s Security-SLA metrics and their respective submetrics, originated from
the collecting agents;

– Control (Time Series Analysis): the Control module has the functionality
of a Security-SLA administrator and is implemented as a command line utility
that allows the monitoring solution managers to supply the managing infor-
mation to the database. Through it one can manage user information, import
Security-SLA agreements, register and maintain metrics and manage informa-
tion collecting agents. The collected metrics will be analyzed through the Time
Series Analysis submodule to predict the behavior of the security metrics and
then record information about the Quality of Service in the Portfolio of Metrics
Database.

• Portfolio of Metrics Database: this database records all the security metrics for
the Infrastructure and Service class, their respective submetrics and the Quality of
Service class, which will be offered to the customers;

• Deployment Profile Database: this database records all the security metrics for
the Infrastructure and Service class, their respective submetrics, which will be used
to compute the Return On Security Investment.

This architecture does not specify a rigid method for collecting measurements, thus
allowing different mechanisms to be used to obtain information.

CHAPTER 7. CLOUD SECURITY MONITORING ARCHITECTURE 101

7.1.1 Agents in IaaS, PaaS and SaaS

Within the context of Cloud Computing, the VM is a black-box inasmuch as the provider
does not know what is running inside it, and so no knowledge on the kind of service that
is running is available. In this approach, the process of monitoring and/or auditing for
black-boxes is divided into three strategies, namely:

(A) Outside: it covers all the hardware devices and Cloud entities, such as networking,
firewalls, routers, proxies, operating systems etc. The monitoring agents will run on
these hardware/software to generate security metrics and transmit the data through
the SNMP and HTTP protocols or through direct access to databases or other
external services. In summary, this strategy covers the devices that make up the
infrastructure of the Cloud computing environment;

(B) Inside: For the monitoring agents to run inside the virtual machine (VM), the
customer has to permit the installation of the monitoring/auditing code that collects
security information;

(C) Introspection: for monitoring intrinsic elements of a black-box, Virtual Machine
Introspection (VMI) from the LibVMI library is used [Rosenblum, 2003]. Intro-
spection allows access to the VM memory from the hypervisor, enabling infor-
mation queries about the data structures of the VM’s operating system kernel
[VMITools, 2013]. Security anomaly detection is performed through machine learn-
ing over security metrics, deriving performance signatures for the monitoring system.

The monitoring process depends on the type of service being hired and where threats
and vulnerabilities are identified, according to attack profiles. It computes the risk and
impact to the Cloud customer. The next section describes the execution flow of the
proposed architecture.

7.2 Execution Flow

The execution flow of the monitoring process, shown in Figure 7.2, is integrated to the
Inside and Outside strategies as operations performed on VMs by the Cloud management
solution.

When a customer performs an operation on a VM through the Control submodule,
this transaction is sent to the running Node through the Cloud Management Solution
(flows 1 and 2). At this point, the Cloud infrastructure notifies the Security-SLA Local
about the event that occurred (flow 3) using a hook mechanism.

According to the type of operation requested by the customer, the Cloud Management
Solution may perform different activities in the monitoring process. These activities
involve: obtaining information about the Security-SLA and transferring it to the agents
in charge of monitoring the VM (flow 4); execution or completion of the VM Monitor
(flow 6); sending notifications about VM state changes to the VM Monitor (flow 7); and
VM status update to the database from the information received by the VM Monitor
(flows 9 and 10).

CHAPTER 7. CLOUD SECURITY MONITORING ARCHITECTURE 102

Infrastructure
Management Server

Cloud
Management

Solution

VMn Monitor Security-SLA
Local

VMn

Data Dispatcher

Security-SLA
Manager

Cloud Node

1: Operation of
 VM control 2: Control VM

8: Monitoring

6: Initialization and
 Finalization

7: Event Notification

9: Status VM

11: Collected Data 12: Collected Data

5: Information: Security-SLA
 and Agents

10: Status VM

4: Request Information
 and Agents

3: Event Notification

Portfolio of
Metrics

Database

Deployment
Profile

Database

13: TSA Metrics

14: TSA Metrics

15: TSA Metrics
(Security-SLA)

Figure 7.2: Execution flow for the proposed Cloud security architecture.

While running the monitor, the information received from the Cloud Management So-
lution determines the beginning or end of the data collection cycle. When data collection
is active (the VM is running), the monitor performs the monitoring tasks and receives
measurements from the agents (flow 8). At the end of each task’s execution, the mon-
itor sends the data to the Data Dispatcher (flow 11), which in turn transfers this data
for storage and compliance assessing through monitoring data from the Backend Data
Monitoring (flow 12).

Based on the data collected and stored in the Monitoring Data Backend, the Time
Series Analysis submodule will predict the security metrics’ behavior and finally record
information about the Quality of Service in the Portfolio of Metrics Database (flow 13).
Such information is again transferred to the Deployment Profile Database (flow 14) and
that will allow computing the Return On Security Investment for each service provided
(flow 15).

7.3 Architecture Validation

To validate the proposed cost management as related to time, a prototype was de-
veloped and tested in a small Cloud environment based on the OpenNebula solution
[OpenNebula, 2014], composed of 6 machines with 2 Intel quad-core 3.6 GHx Xeon CPUs,
with 16 GB of RAM running Gentoo Linux and the KVM hypervisor. Network composed
with Gigabit Ethernet switch and cat 6 cabling.

One machine ran as the Infrastructure Manager Server and the other five as computing
servers (Node-0, .., Node-4) for execution of the hired services, connected through a switch
and representing the five levels of the scale of values [0-4].

Tests conducted during validation intended to determine the CPU consumption and
the network traffic produced by the proposed architecture. For CPU utilization tests, a
series of experiments were carried out using different monitoring intervals and with differ-
ent numbers of virtual machines. Each experiment lasted twelve hours and measurements
were collected by the Cloud Nodes and Cloud Management Solution.

CHAPTER 7. CLOUD SECURITY MONITORING ARCHITECTURE 103

Tables 7.1 and 7.2 describe the percentage of CPU utilization and network traffic
volume produced on a Cloud Node, respectively.

Table 7.1: CPU utilization on a Cloud Node
Collection CPU usage
intervals 2 VMs 7 VMs 15 VMs
30 sec 0.1 % 0.2 % 0.3 %
1 min 0.1 % 0.2 % 0.2 %
10 min 0.1 % 0.1 % 0.2 %

In these simulations, the Cloud Node should have at least two VMs, one for monitoring
and one for the provided service.

Table 7.2: Network traffic produced on a Cloud Node
Collection Network traffic produced
intervals 2 VMs 7 VMs 15 VMs
30 sec 0.1 % 0.2 % 0.3 %
1 min 0.1 % 0.1 % 0.2 %
10 min 0.1 % 0.1 % 0.2 %

Tables 7.3 and 7.4 describe the percentage of CPU utilization and network traffic
volume, respectively, produced by the Cloud Management Solution.

Table 7.3: CPU utilization on the Cloud Management Solution
Collection Use CPU
intervals 1 VM 7 VMs 15 VMs
30 sec 0.0 % 0.1 % 0.1 %
1 min 0.0 % 0.0 % 0.1 %
10 min 0.0 % 0.0 % 0.0 %

In these simulations, the Cloud Management Solution must have at least one VM for
monitoring.

Table 7.4: Network traffic produced on the Cloud Management Solution
Collection Network traffic produced
Intervals 1 VM 7 VMs 15 VMs
30 sec 0.0 % 0.1 % 0.1 %
1 min 0.0 % 0.1 % 0.1 %
10 min 0.0 % 0.0 % 0.1 %

The results show that the average CPU utilization by the architecture components
represented less than 0.3 % of the total CPU time on the Cloud Node and on the Cloud
Management Solution, even when multiple instances of VMs were monitored simultane-
ously. As expected, the most significant CPU utilization occurred on the Cloud Node,
which executes the management tasks of monitoring and data collection through agents.

CHAPTER 7. CLOUD SECURITY MONITORING ARCHITECTURE 104

The network utilization tests measured the traffic generated by the communication
between processes running on the Cloud Node (Security-SLA Local and Security-SLA
Server) and the Cloud Management Solution. This traffic is strictly composed of SOAP
messages representing information request on agreement operations, agent and data trans-
fer, and VM state change notifications.

The results show that the SOAP standard does not generate significant traffic. During
the experiments more traffic was observed at the VM’s creation moment, when agreement
and agent transfers take place. After this phase, the generated traffic comes from data
transfer operations (sendData), whose intervals depend on the schedules present in the
agreement.

7.4 Summary

This chapter presented the Cloud security monitoring architecture solution proposed in
this thesis, based on Security-SLA. Also Discussed was the execution flow, validation of
the architecture and its interaction with the Cloud components.

Chapter 8

Conclusions and future work

The infrastructure of a cloud environment is very complex. This complexity translates
into more effort needed for monitoring and managing security. The greater scalability
and larger size of clouds as compared to traditional service hosting infrastructures involve
more complex security monitoring systems, which have therefore to be more scalable,
robust and efficient.

The Security Metrics Hierarchy (SMH) Methodology proposal introduced a general,
flexible and extensible, yet of simple use and easy to understand way of managing secu-
rity in the cloud through a unified view of diverse security aspects. It showed that this
methodology may be used with a plethora of services. Based on the security policy, SMH
is composed of two parts, infrastructure and services. Infrastructure accounts for all kinds
of hardware and software available commercially, independent of manufacturer, technol-
ogy and services model, scaling up to large numbers of active devices being monitored.
Services, regardless of the service type (IaaS, PaaS, SaaS or others), contract and model
of billing, allows for measuring security in a tangible, more meaningful way.

The Normalization process attempts to convert any security metric to a scale of values
[0-4], standardizing metrics and thus allowing analyses and comparisons in regard to those
metrics’ performance and behavior.

By analyzing the values of the validation indicators, as true-positive (TP), false-
positive (FP), true-negative (TN) and false-negative (FN) rates, one can determine the
degree of reliability for the collected security metric values by computing precision, recall,
f-measure and accuracy, for instance.

The security metrics behavior can be time-series analyzed to produce a series trend,
therefore producing behavior baselines for continuous, proper monitoring of security re-
quirements compliance over time to a given service contract.

Security-SLAs are used to guarantee customers a certain level of security quality for
their services. In a situation where this level of quality is not met, the provider pays penal-
ties for the breach of contract. In order to save cloud providers from paying penalties and
consequently increasing their profit, providers have to monitor the current security status
of resources and continuously check whether the established Security-SLAs are being kept
or violated. Thus, in order to facilitate appropriate monitoring of automatic Security-
SLAs, low-level security metrics to high-level Security-SLA requirements mappings were
developed. This in turn enables anticipating future Security-SLA violation threats so as

105

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 106

to react before actual violations occur.
The direct conversion of SMH to Security-SLA, where each security metric is a Service

Level Objective (SLO), presents greater transparency and quality in the process. Once
established, Security-SLAs should not be violated even in case of system failures, changed
environmental conditions or unpredictable events. Thus, self-management of the Infras-
tructure and Service while minimizing user-interactions with the system represents a new
approach to manage cloud computing environments based on security requirements. The
customer can monitor what is being offered in the contract, transparently tracking and
viewing security requirements of the Security-SLA.

One of the main contributions of this work is to allow the customer to analyze and
compare actual security metric values supplied by the Cloud Service Provider to the values
expected in the negotiated Security-SLA. The provider, in turn, may identify which of the
requirements are turning out to be beneficial or prejudicial to the customer, so now the
provider is able to advise the customer about service migrations to the cloud. The ROSI
guides the customer to choose one of the options: accept the migration, reject it or choose
another Deployment Profile with new parameters for assets, models, types and controls,
or even choose another provider that satisfies the given parameters. In addition, other
indexes like IndSec (as a function of time, weight, or impact risk) and IndAlloc (based on
the SMH) helps managing the cloud computing environment both from a customer’s as
well as from a provider’s perspective, which were evaluated with some study cases.

The Cloud Security Monitoring Architecture presents a new solution for monitoring
Security-SLA-based virtualization resources in terms of on-demand service provision and
detection of possible Security-SLA violations. These rely on predefined service level ob-
jectives and on the use of knowledge databases to predict security metrics in an attempt
to prevent such violations. The architecture reports also provide a baseline (taken over
appropriate monitoring intervals) for applications, services IaaS, PaaS, SaaS and others,
depending on their resource consumption behavior.

8.1 General Results

In this thesis, the following general results were obtained for the proposed model:

• levels of abstraction that allows the process of security management to be monitored
abstracted from the hardware, software and services, applicable to IaaS, PaaS, SaaS
and other;

• scalability that allows monitoring of all infrastructure and services, with both au-
tomatic and on-demand scaling;

• a way of managing complex systems security-wise at a lower cost;

• a way of extending a security monitoring system to cope with new technologies;

• granularity to present information about the cloud computing environment with
multiple security level views, up to a synthetic outlook of the cloud, involving all
the variables affecting QoS and other requirements;

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 107

• smoother transition from security policies at the design level to a management level.

8.2 Specific Results

In this thesis, the following specific results were obtained for the proposed model:

• a new methodology for management of Cloud Computing using security criteria;

• a cloud security monitoring architecture for management based on Security-SLA;

• a model for the visualization of the monitoring scene based on Security-SLA;

• a new approach to calculating the return on security investment from a customer
perspective;

• the introduction of a composite index of security (IndSec) to assess the service
provided;

• the introduction of an index of allocation (IndAlloc) for the provider, to allow for
service isolation and better resource provisioning from the security point of view.

8.3 Future Work

Security metrics are a critical aspect of the selection, operation and use of Cloud services.
They allow managers to gain a better understanding of Cloud service properties through
consistent, reproducible and repeatable observations. They can also be used for a wide
range of objectives, from decision-making to operation.

The proposed architecture may be extended and integrated into other models that
address other aspects of the metrics ecosystem, like the context of a given security metric,
the observation and measurement results based on a given security metric or the scenarios
that make use of security metrics. Some of these aspects are already being explored in a
joint research partnership.

More specifically, one finds outlined below some possible development themes derived
from this thesis:

• Automatic normalization: the architecture currently uses security metrics that
can be measured automatically from the environment, but the process still requires
experts to set up limiting values for the ranges, which means that our model is
highly dependent on human intervention;

• New formulations for IndSec and IndAlloc: other approaches based on be-
havior prediction through the classic model of time series analysis, or else;

• Prediction based on both low-level and high-level metrics: identification of
patterns resulting from low-level metrics (related to IaaS: CPU, memory, operating
system, network etc.) to high-level service metrics from Security-SLA parameters.
This process strongly depends on the type of services being provided and the be-
havior of the security metrics in the long run;

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 108

• Allocation management using security criteria: is already under development
based an Integer Linear Programming (ILP) to schedule incoming requests according
to different QoS and security levels. The joint research proposes mapping those levels
into the charging models offered by IaaS, PaaS and SaaS providers. It will then be
possible to maximize the number of requests properly executed, according to the
customer’s QoS and security requirements, while at the same time minimizing costs;

• Green Cloud technologies: achieving energy and cost efficient monitoring, since
the activities involved may be highly demanding in terms of computing and commu-
nication resources, network topology (routers, switches etc.), cooling systems and
so on;

• Application of Security Metrics Hierarchy to other technologies: in the
context of mobile communications, trust relationships exist between enterprise man-
agement and users, but the enterprise has no control over the mobile device’s security
configuration, and even the user who owns the device does not have adequate means
to control its configuration.

8.4 Publications

The list below includes published results that served as the basis for this text:

1. 2012: Projeto e Gestão de Segurança na Computação na Nuvem. Carlos Alberto
da Silva, Anderson Soares Ferreira. Workshop de Tese e Dissertações de 2012 no
Instituto de Computação, Institute of Computer Unicamp, Campinas, Brazil. Pages:
65-69. 23 May 2012.

2. 2012: A Methodology for Management of Cloud Computing using Security Cri-
teria. Carlos Alberto da Silva, Anderson Soares Ferreira, and Paulo Lício de
Geus. IEEE Latin American Conference on Cloud Computing and Communica-
tions (Latin-Cloud’12). Pages: 49-54. 26-27 November 2012, Porto Alegre, Brazil.

3. 2014: Gestão da Segurança para ambiente de Nuvem Computacional. Carlos Al-
berto da Silva and Paulo Lício de Geus. V Escola Regional de Informática (ERI).
Universidade Federal de Mato Grosso do Sul, Campus de Ponta Porã, 27-29 Agust
2014.

4. 2014: Arquitetura de monitoramento para Security-SLA em Nuvem Computacional
do tipo SaaS. Carlos Alberto da Silva and Paulo Lício de Geus. XIV Simpósio
Brasileiro em Segurança da Informação e de Sistemas Computacionais (SBSeg’14).
3-6 november 2014, Belo Horizonte (MG), Brazil.

5. 2014: An Approach for Security-SLA in Cloud Computing Environments. Carlos
Alberto da Silva and Paulo Lício de Geus. 6th IEEE Latin-American Conference on
Communications (LATINCOM’14). Pages 1-6, 5-7 november 2014, Cartagena das
Índias, Colômbia.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 109

6. 2015: Return On Security Investment for Cloud Computing: a Customer Perspec-
tive. Carlos Alberto da Silva, and Paulo Lício de Geus. ACM 7th International
conference on Management of computational and collective Intelligence in Digital
EcoSystems (MEDES’15). 25-29 October 2015, Caraguatatuba/São Paulo, Brazil.

8.5 Submitted Articles

Computer security:

1. A New Approach to Management of Cloud Computing using Security Criteria. Jour-
nal of IEEE Transactions on Cloud Computing. Submitted in September 2015.

8.6 Future Articles

1. Journal paper about “Allocation management using Security Criteria” in partnership
with Cristiano Costa Argemon Vieira, FACOM, UFMS.

2. Journal paper about “A new approach for Green Cloud using Security Criteria” in
partnership with Marcos Paulo Moro, UFGD.

Bibliography

[A. Riley et al, 2008] A. Riley et al (2008). ITIL Configuration Management. Technical
report. Available in http://www.itlibrary.org/index.php?page=Configuration_
Management. Access in July 15, 2015.

[Adinolf et al., 2009] Adinolf, O., Cristaldi, R., Coppolino, L., and Romano, L. (2009).
Qos-monaas: A portable architecture for qos monitoring in the cloud. IEEE 8th Interna-
tional Conference on Signal Image Technology and Internet Based Systems (SITIS’12),
pages 527–532.

[Ahmed et al., 2012] Ahmed, M., Chowdhury, A. S. M. R., Ahmed, M., and Rafee, M.
M. H. (2012). An advanced survey on cloud computing and state-of-the-art research
issues. International Journal of Computer Science Issues (IJCSI).

[Al-Haj et al., 2013] Al-Haj, S., Al-Shaer, E., and Ramasamy, H. G. V. (2013). Security-
aware resource allocation in clouds. IEEE 10th International Conference on Services
Computing (ICSC 2013), pages 400–407.

[Al-Hassan, 2013] Al-Hassan, M. N. M. (2013). Thesis for Master Degree: A Semantic
Ontology based Concept for Measuring Security Compliance of Cloud Service Providers.
Faculty of Information Technology, Amman, Jordan.

[Amazon, 2008] Amazon (2008). Amazon CloudWatch. Available in http://aws.
amazon.com/es/cloudwatch/. Access in April 15, 2015.

[Amazon, 2015] Amazon (2015). Problems with Amazon’s DynamoDB database affected
Netflix and other web sites on Sunday morning. Available in http://fortune.com/
2015/09/20/amazon-cloud-snafu/. Access in September 20, 2015.

[Andreozzia et al., 2005] Andreozzia, S., Bortolib, N. D., Fantinelc, S., Ghisellia, A., Ru-
binia, G. L., Tortoneb, G., and Vistolia, M. C. (2005). Gridice: a monitoring service
for grid systems. Future Generation Computer Systems, page 559–571.

[Apache, 1995] Apache (1995). The Apache Software Foundation. Available in https:
//www.apache.org/. Acessado em 09 de julho de 2013.

[Arshad et al., 2009] Arshad, J., Townend, P., and Xu, J. (2009). Quantification of se-
curity for compute intensive workloads in clouds. 15th International Conference on
Parallel and Distributed Systems - IEEE.

110

http://www.itlibrary.org/index.php?page=Configuration_Management
http://www.itlibrary.org/index.php?page=Configuration_Management
http://aws.amazon.com/es/cloudwatch/
http://aws.amazon.com/es/cloudwatch/
http://fortune.com/2015/09/20/amazon-cloud-snafu/
http://fortune.com/2015/09/20/amazon-cloud-snafu/
https://www.apache.org/
https://www.apache.org/

BIBLIOGRAPHY 111

[Atzori et al., 2011] Atzori, L., Granelli, F., and Pescapè, A. (2011). A network-oriented
survey and open issues in cloud computing. Cloud Computing: Methodology, System,
and Applications, pages 91–108.

[Barzilai, 2005] Barzilai, J. (2005). Measurement and preference function modelling. In-
ternational Transactions in Operational Research, 12:173––183.

[Basili, 2002] Basili, V. (2002). Goal Question Metric (GQM) Approach, Encyclopedia of
Software Engineering. John Wiley & Sons.

[Basili et al., 1994] Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). The goal
question metric approach. Encyclopedia of software engineering, 2:528–532.

[Bayuk, 2011] Bayuk, J. (2011). Cloud security metrics. IEEE 6th International Confer-
ence on System of Systems Engineering (SoSE’11), pages 341–345.

[Beloglazov et al., 2011] Beloglazov, A., Buyya, R., Lee, Y. C., and Zomaya, A. (2011).
A taxonomy and survey of energy-efficient data centers and cloud computing systems.
82:47–111.

[Berberova and Bontchev, 2009] Berberova, D. and Bontchev, B. (2009). Design of service
level agreements for software services. Proceedings of the International Conference on
Computer Systems and Technologies and Workshop for PhD Students in Computing
(CompSysTech ’09).

[Bernsmed et al., 2011] Bernsmed, K., Jaatun, M. G., Meland, P. H., and Undheim, A.
(2011). Security slas for federated cloud services. pages 202–209.

[Bianco et al., 2008] Bianco, P., Lewis, G. A., and Merson, P. (2008). Service level agree-
ments in service-oriented architecture environments. Technical Report CMU/SEI-2008-
TN-021, Carnegie Mellon University - SEI. Available in http://www.sei.cmu.edu/
reports/08tn021.pdf. Access in December 15, 2014.

[Bogus, 2008] Bogus, A. (2008). Lighttpd. Packt Publishing Ltd. ISBN: 978-1-847192-10-
3.

[Boundary, 2010] Boundary (2010). Boundary software. Available in http://boundary.
com/. Access in July 15, 2015.

[Brandic, 2009] Brandic, I. (2009). Towards self-manageable cloud services. 33rd Annual
IEEE International Computer Software and Applications Conference.

[Brandic et al., 2009] Brandic, I., Music, D., Leitner, P., and Dustdar, S. (2009). Vieslaf
framework: Enabling adaptive and versatile sla-management. Grid Economics and
Business Models, Lecture Notes in Computer, 5745.

[Brocke et al., 2007] Brocke, J., Buddendick, C., and Strauch, G. (2007). Return on secu-
rity investments - design principles of measurement systems based on capital budgeting.
AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS’2007), pages
21–31.

http://www.sei.cmu.edu/reports/08tn021.pdf
http://www.sei.cmu.edu/reports/08tn021.pdf
http://boundary.com/
http://boundary.com/

BIBLIOGRAPHY 112

[Brotby and Hinson, 2013] Brotby, W. K. and Hinson, G. (2013). PRAGMATIC Security
Metrics, Applying Metametrics to Information Security. CRC Press.

[Bruno, 2011] Bruno, A. M. G. (2011). Thesis for Master Degree: security metrics to
evaluate quality of protection. IT Depto, Faculty of Sciences, Lisbon University.

[Buyya et al., 2011a] Buyya, R., Broberg, J., and Goscinski, A. (2011a). Cloud Comput-
ing - Principles and Paradigms. Wiley.

[Buyya et al., 2011b] Buyya, R., Garg, S. K., and Calheiros, R. N. (2011b). Sla-oriented
resource provisioning for cloud computing: Challenges, architecture, and solutions.
Proceedings of the International Conference on Cloud and Service Computing (CSC
2011).

[CA Tech., 2015] CA Tech. (2015). CA Unified Infrastructure Management (for-
merly CA Nimsoft Monitor). Available in http://www.ca.com/us/opscenter/
ca-unified-infrastructure-management.aspx. Access in April 15, 2015.

[CAMM, 2010] CAMM (2010). Steering committee for the common assurance maturity
model. Technical report, Common Assurance Maturity Model (CAMM). Available in
http://common-assurance.com/resources/CAMM-response-to-Cloud-computing.
pdf. Access in July 15, 2015.

[Casola et al., 2006] Casola, V., Mazzeo, A., Mazzocca, N., and Rak, M. (2006). A sla
evaluation methodology in service oriented architectures, quality of protection. Quality
of Protection, Advances in Information Security, 23:119–130.

[Cavusoglu et al., 2006] Cavusoglu, H., Cavusoglu, H., and Zhang, J. (2006). Economics
of security patch management. The Fifth Workshop in the Economics of Information
Security (WEIS’2006).

[Cavusoglu et al., 2004] Cavusoglu, H., Mishra, B., and Raghunathan, S. (2004). A model
for evaluating it security investments. COMMUNICATIONS OF THE ACM, 47(7):87–
92.

[Centrify, 2008] Centrify (2008). Centrify software. Available in http://www.centrify.
com/. Access in July 15, 2015.

[Chen et al., 2008] Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P., Wald-
spurger, C. A., Boneh, D., Dwoskin, J., and Ports, D. R. K. (2008). Overshadow:
a virtualization-based approach to retrofitting protection in commodity operating sys-
tems. ACM SIGOPS Oper. Syst. Rev., 43(3):2–13.

[Chen et al., 2010] Chen, Y., Paxson, V., and Katz, R. H. (2010). What’s new about
cloud computing security? Technical report, Electrical Engineering and Computer
Sciences University of California at Berkeley.

http://www.ca.com/us/opscenter/ca-unified-infrastructure-management.aspx
http://www.ca.com/us/opscenter/ca-unified-infrastructure-management.aspx
http://common-assurance.com/resources/CAMM-response-to-Cloud-computing.pdf
http://common-assurance.com/resources/CAMM-response-to-Cloud-computing.pdf
http://www.centrify.com/
http://www.centrify.com/

BIBLIOGRAPHY 113

[Chew et al., 2008] Chew, E., Swanson, M., Stine, K., Bartol, N., Brown, A., and Robin-
son, W. (2008). Performance measurement guide for information security. Technical Re-
port SP-800-55-rev1, National Institute of Standards and Technology (NIST). Available
in http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.
pdf. Access in July 15, 2015.

[Chow et al., 2008] Chow, J., Garfinkel, T., and Chen, P. M. (2008). Decoupling dy-
namic program analysis from execution in virtual environments. USENIX 2008 Annual
Technical Conference on Annual Technical Conference (ATC’08), page 1–14.

[Cichonski et al., 2012] Cichonski, P., Millar, T., Grance, T., and Scarfone, K. (2012).
Computer security incident handling guide. Technical Report SP-800-61 Revision 2,
National Institute of Standards and Technology (NIST). Available in http://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf. Access in July
15, 2015.

[CICSWG, 2000] CICSWG (2000). Incident Cost Analysis and Modeling Project
(ICAMP) Final Report 2. Technical report, Committee on Institutional Coopera-
tion Security Working Group (CICSWG). Available in https://www.cic.net/docs/
default-source/reports/icampreport2.pdf?sfvrsn=0. Access in July 15, 2015.

[CipherCloud, 2011] CipherCloud (2011). CipherCloud Software. Available in http://
www.ciphercloud.com. Access in April 15, 2015.

[Cisco, 2010] Cisco (2010). Security Monitoring Analysis Response Sys-
tem. Available in http://www.cisco.com/c/en/us/products/security/
security-monitoring-analysis-response-system/index.html. Access in April
15, 2015.

[Clayman et al., 2010] Clayman, S., Galis, A., and Mamatas, L. (2010). Monitoring vir-
tual networks with lattice. IEEE/IFIP - Network Operations and Management Sym-
posium Workshops (NOMS Wksps), page 239–246.

[Cloud-Council, 2012] Cloud-Council (2012). Practical guide to cloud service level agree-
ments version 1.0. Technical report, Cloud Standards Customer Council. Available in
http://www.cloud-council.org/2012_Practical_Guide_to_Cloud_SLAs.pdf. Ac-
cess in July 15, 2015.

[Cloud-Council, 2015] Cloud-Council (2015). Security for Cloud Computing Ten Steps
to Ensure Success Version 2.0. Technical report, Cloud Standards Customer Coun-
cil. Available in http://www.cloud-council.org/Security_for_Cloud_Computing_
Version_2.pdf. Access in July 15, 2015.

[Cloud Cruiser, 2010] Cloud Cruiser (2010). Cloud cruiser software. Available in http:
//cloudcruiser.com/. Access in July 15, 2015.

[CloudCmp, 2011] CloudCmp (2011). Project CloudCmp. Available in https://github.
com/angl/cloudcmp. Access in December 15, 2014.

http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://www.cic.net/docs/default-source/reports/icampreport2.pdf?sfvrsn=0
https://www.cic.net/docs/default-source/reports/icampreport2.pdf?sfvrsn=0
http://www.ciphercloud.com
http://www.ciphercloud.com
http://www.cisco.com/c/en/us/products/security/security-monitoring-analysis-response-system/index.html
http://www.cisco.com/c/en/us/products/security/security-monitoring-analysis-response-system/index.html
http://www.cloud-council.org/2012_Practical_Guide_to_Cloud_SLAs.pdf
http://www.cloud-council.org/Security_for_Cloud_Computing_Version_2.pdf
http://www.cloud-council.org/Security_for_Cloud_Computing_Version_2.pdf
http://cloudcruiser.com/
http://cloudcruiser.com/
https://github.com/angl/cloudcmp
https://github.com/angl/cloudcmp

BIBLIOGRAPHY 114

[CloudFlare, 2009] CloudFlare (2009). CloudFlare Software. Available in https://www.
cloudflare.com. Access in April 15, 2015.

[CloudHarmony, 2013] CloudHarmony (2013). Cloudharmony. Available in http://
cloudharmony.com/. Access in July 15, 2015.

[CloudPassage, 2011] CloudPassage (2011). Cloudpassage software. Available in http:
//cloudpassage.com. Access in April 15, 2015.

[CloudStack, 2008] CloudStack (2008). Cloudstack project. Available in http://www.
cloudstack.org/. Access in July 15, 2015.

[Cloudyn, 2012] Cloudyn (2012). Cloudyn monitor. Available in http://www.cloudyn.
com/. Access in July 15, 2015.

[Coar and Bowen, 2008] Coar, K. and Bowen, R. (2008). Apache Cookbook, 2nd Edition.
O’Reilly Media, Inc. ISBN: 978-0-596-52994-9.

[Coatanea et al., 2007] Coatanea, E., Yannou, B., and Honkala, S. (2007). Measurement
theory and dimensional analysis: methodological impact on the comparison and evalu-
ation process. In Proceedings of ASME-07.

[Collectl, 2007] Collectl (2007). Available in http://collectl.sourceforge.net/
index.html. Access in December 15, 2014.

[Corradi et al., 2012] Corradi, A., Foschini, L., Povedano-Molina, J., and Lopez-Soler,
J. M. (2012). Dds-enabled cloud management support for fast task offloading. IEEE
Symposium on Computers and Communications (ISCC’2012), pages 67–74.

[CSA, 2011] CSA (2011). Cloud controls matrix. Technical report, Cloud Security Al-
liance (CSA). Available in https://cloudsecurityalliance.org/research/ccm/.
Access in July 15, 2015.

[CSA, 2014a] CSA (2014a). Security Guidance for Critical Areas of Focus in Cloud
Computing V2.1. Technical report, Cloud Security Alliance (CSA). Available in
https://cloudsecurityalliance.org/csaguide.pdf. Access in December 15, 2014.

[CSA, 2014b] CSA (2014b). Security, trust & assurance registry (star). Technical report,
Cloud Security Alliance (CSA). Available in https://cloudsecurityalliance.org/
star/. Access in December 15, 2014.

[de Chaves et al., 2010a] de Chaves, S. A., Westphall, C. B., and Lamin, F. R. (2010a).
SLA perspective in security management for cloud computing. Sixth International
Conference on Networking and Services, pages 212–217.

[de Chaves et al., 2010b] de Chaves, S. A., Westphall, C. B., and Lamin, F. R. (2010b).
Sla perspective in security management for cloud computing. Sixth International Con-
ference on Networking and Services (ICNS’10), pages 212–217.

https://www.cloudflare.com
https://www.cloudflare.com
http://cloudharmony.com/
http://cloudharmony.com/
http://cloudpassage.com
http://cloudpassage.com
http://www.cloudstack.org/
http://www.cloudstack.org/
http://www.cloudyn.com/
http://www.cloudyn.com/
http://collectl.sourceforge.net/index.html
http://collectl.sourceforge.net/index.html
https://cloudsecurityalliance.org/research/ccm/
https://cloudsecurityalliance.org/csaguide.pdf
https://cloudsecurityalliance.org/star/
https://cloudsecurityalliance.org/star/

BIBLIOGRAPHY 115

[Dell, 2012] Dell (2012). Dell PacketTrap Remote monitoring and mangagement (RMM).
Available in http://www.packettrap.com. Access in April 15, 2015.

[Dempsey et al., 2011] Dempsey, K., Chawla, N. S., Johnson, A., Johnston, R., Jones,
A. C., Orebaugh, A., Scholl, M., and Stine, K. (2011). Information Security
Continuous Monitoring (ISCM) for Federal Information Systems and Organiza-
tions. Technical Report SP-800-137, National Institute of Standards and Technol-
ogy (NIST). Available in http://csrc.nist.gov/publications/nistpubs/800-137/
SP800-137-Final.pdf. Access in July 15, 2015.

[Dorofee et al., 2007] Dorofee, A., Killcrece, G., Ruefle, R., and Zajicek, M. (2007).
Incident management capability metrics version 0.1. Technical report, Soft-
ware Engineering Institute. TECHNICAL REPORT CMU/SEI-2007-TR-008,
ESC-TR-2007-008, Available in https://resources.sei.cmu.edu/asset_files/
TechnicalReport/2007_005_001_14873.pdf. Access in July 15, 2015.

[Dunlap et al., 2002] Dunlap, G. W., King, S. T., Cinar, S., Basrai, M. A., and Chen,
P. M. (2002). Revirt: Enabling intrusion analysis through virtual-machine logging and
replay. ACM SIGOPS Operating Systems Review - OSDI ’02: Proceedings of the 5th
symposium on Operating systems design and implementation, pages 211–224.

[Dynatrace, 2008] Dynatrace (2008). Dynatrace synthetic monitoring. Available in http:
//www.dynatrace.com/en/index.html. Access in July 15, 2015.

[Egawa et al., 2012] Egawa, T., Nishimura, N., and Kourai, K. (2012). Dependable and
secure remote management in iaas clouds. In Proceedings of the 4th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom 2012), pages 411–
418.

[Emeakaroha et al., 2010a] Emeakaroha, V. C., Brandic, I., Maurer, M., and Dustdar, S.
(2010a). Low level metrics to high level slas - lom2his framework: Bridging the gap
between monitored metrics and sla parameters in cloud environments. In International
Conference on High Performance Computing and Simulation (HPCS’10), pages 48–54.

[Emeakaroha et al., 2010b] Emeakaroha, V. C., Calheiros, R. N., Netto, M. A. S.,
Brandic, I., and Rose, C. A. F. D. R. A. F. D. (2010b). Desvi: An architecture for
detecting sla violations in cloud computing infrastructures. 2nd International ICST
Conference on Cloud Computing.

[ENISA, 2009a] ENISA (2009a). Cloud computing: Benefits, risks and recommendations
for information security. Technical report, European Network and Information
Security Agency (ENISA). Available in http://www.enisa.europa.eu/activities/
risk-management/files/deliverables/cloud-computing-risk-assessment/at_
download/fullReport. Access in December 15, 2014.

[ENISA, 2009b] ENISA (2009b). Cloud computing: Benefits, risks and recommendations
for information security. Technical report, European Network and Information

http://www.packettrap.com
http://csrc.nist.gov/publications/nistpubs/800-137/SP800-137-Final.pdf
http://csrc.nist.gov/publications/nistpubs/800-137/SP800-137-Final.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14873.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14873.pdf
http://www.dynatrace.com/en/index.html
http://www.dynatrace.com/en/index.html
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport

BIBLIOGRAPHY 116

Security Agency (ENISA). Available in http://www.enisa.europa.eu/activities/
risk-management/files/deliverables/cloud-computing-risk-assessment/at_
download/fullReport. Access in December 15, 2014.

[ENISA, 2009c] ENISA (2009c). Cloud computing information assurance framework.
Technical report, European Network and Information Security Agency (ENISA).
Available in http://www.enisa.europa.eu/activities/risk-management/files/
deliverables/cloud-computing-information-assurance-framework. Access in
December 15, 2014.

[ENISA, 2012] ENISA (2012). Introduction to return on security investment. Tech-
nical report, European Network and Information Security Agency (ENISA).
Available in https://www.enisa.europa.eu/activities/cert/other-work/
introduction-to-return-on-security-investment. Access in December 15, 2014.

[Eucalyptus, 2012] Eucalyptus, I. (2012). Eucalyptus system. Technical report. Available
in http://www.eucalyptus.com/eucalyptus-cloud. Access in December 15, 2014.

[Everbridge, 2011] Everbridge (2011). Everbridge software. Avail-
able in http://www.everbridge.com/products/everbridge-platform/
system-capacity-resiliency-security/. Access in July 15, 2015.

[FedRAMP, 2013] FedRAMP (2013). Security assessment framework. Technical re-
port, Federal Risk and Authorization Management Program (FedRAMP). Available
in https://www.fedramp.gov/. Access in July 15, 2015.

[Ferreira, 2013] Ferreira, A. S. (2013). Uma arquitetura para monitoramento de segu-
rança baseada em acordos de níveis de serviço para nuvens de infraestrutura. Instituto
de Computação, UNICAMP, Brazil. Available in http://www.bibliotecadigital.
unicamp.br/document/?code=000915715. Access in July 15, 2015.

[Ferretti et al., 2010] Ferretti, S., Ghini, V., Panzieri, F., Pellegrini, M., and Turrini, E.
(2010). Qos-aware clouds. Proceedings of the 2010 IEEE 3rd International Conference
on Cloud Computing (CLOUD ’10), pages 321–328.

[Finkelstein and Leaning, 1984] Finkelstein, L. and Leaning, M. S. (1984). A review of
the fundamental concepts of measurement. Measurement, 1(2):25–34.

[Foley et al., 2006] Foley, S. N., Bistarelli, S., O’Sullivan, B., Herbert, J., and Swart, G.
(2006). Multilevel security and quality of protection. QUALITY OF PROTECTION -
Security Measurements and Metrics, 23:93–105.

[Foster et al., 2008] Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud computing
and grid computing 360-degree compared. Grid Computing Environments Workshop
(GCE ’08), pages 1–10.

[Fox et al., 2009] Fox, A., Armbrust, M., Griffith, R., Joseph, A. D., Katz, R. H., Kon-
winski, A., Lee, G., Patterson, D. A., Rabkin, A., and Zaharia, M. (2009). Above the

http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-information-assurance-framework
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-information-assurance-framework
https://www.enisa.europa.eu/activities/cert/other-work/introduction-to-return-on-security-investment
https://www.enisa.europa.eu/activities/cert/other-work/introduction-to-return-on-security-investment
http://www.eucalyptus.com/eucalyptus-cloud
http://www.everbridge.com/products/everbridge-platform/system-capacity-resiliency-security/
http://www.everbridge.com/products/everbridge-platform/system-capacity-resiliency-security/
https://www.fedramp.gov/
http://www.bibliotecadigital.unicamp.br/document/?code=000915715
http://www.bibliotecadigital.unicamp.br/document/?code=000915715

BIBLIOGRAPHY 117

clouds: A Berkeley view of cloud computing. Technical report, Electrical Engineering
and Computer Sciences University of California at Berkeley.

[Frenz, 2010] Frenz, S. (2010). Ontology-based generation of it-security metrics. Proceed-
ings of the 2010 ACM Symposium on Applied Computing (SAC’10), pages 1833–1839.

[Galis et al., 2010] Galis, A., Clayman, S., and Mamatas, L. (2010). Monitoring virtual
networks with lattice. IEEE/IFIP Network Operations and Management Symposium
Workshops (NOMS Wksps), pages 239 – 246.

[Ganglia Software, 2000] Ganglia Software (2000). Ganglia monitoring system. Available
in http://ganglia.sourceforge.net. Access in December 15, 2014.

[Garfinkel, 1999] Garfinkel, S. L. (1999). Architects of the Information Society: Thirty-
Five Years of the Laboratory for Computer Science at MIT. The MIT Press.

[Gonzalez and Helvik, 2012] Gonzalez, A. J. and Helvik, B. E. (2012). Guaranteeing sla
availability in telecommunications networks. pages 1–6.

[Gonzalez et al., 2012] Gonzalez, N., Miers, C., Redigolo, F., Simplicio, M., Carvalho,
T., Naslund, M., and Pourzandi, M. (2012). A quantitative analysis of current security
concerns and solutions for cloud computing. Journal of Cloud Computing: Advances,
Systems and Applications, SpringerOpen Journal, 11(1).

[Groundwork Software, 2011] Groundwork Software (2011). Groundwork. Available in
http://www.gwos.com/. Access in December 15, 2014.

[GRyCAP, 2009] GRyCAP (2009). Grid y computación de altas prestaciones group.
Available in http://www.grycap.upv.es/compaas/index.htm. Access in December
15, 2014.

[Halonen and Hatonen, 2010] Halonen, P. and Hatonen, K. (2010). Towards holistic se-
curity management through coherent measuring. Proceedings of the Fourth European
Conference on Software Architecture (ECSA’10), ACM, pages 155–161.

[Hasselmeyer and d’Heureuse, 2010] Hasselmeyer, P. and d’Heureuse, N. (2010). Towards
holistic multi-tenant monitoring for virtual data centers. IEEE/ IFIP Network Opera-
tions and Management Symposium Workshops (NOMS Wksps), page 350–356.

[Hayden, 2010] Hayden, L. (2010). IT Security Metrics: A Practical Framework for Mea-
suring Security & Protecting Data. McGraw-Hill Osborne.

[HelpSystems, 2012] HelpSystems (2012). Intermapper cloud monitor. Available in http:
//www.helpsystems.com/intermapper/. Access in April 15, 2015.

[Henning, 1999] Henning, R. R. (1999). Security service level agreements: Quantifiable se-
curity for the enterprise? Proceedings of the 1999 Workshop on New Security Paradigms
(NSPW ’99), pages 54–60.

http://ganglia.sourceforge.net
http://www.gwos.com/
http://www.grycap.upv.es/compaas/index.htm
http://www.helpsystems.com/intermapper/
http://www.helpsystems.com/intermapper/

BIBLIOGRAPHY 118

[Herrmann, 2007] Herrmann, D. S. (2007). Complete guide to security and privacy met-
rics. Auerbach Publications. ISBN: 0-8493-5402-1.

[Hewlett-Packard, 2005] Hewlett-Packard (2005). HP OpenView. Available in http:
//www8.hp.com/us/en/software/enterprise-software.html. Access in April 15,
2015.

[Hoefer and Karagiannis, 2010] Hoefer, C. N. and Karagiannis, G. (2010). Taxonomy
of cloud computing services. Proceedings of the 4th IEEE Workshop on Enabling the
Future Service-Oriented Internet (EFSOI’10), pages 1345–1350.

[Hogben and Dekker, 2012] Hogben, G. and Dekker, M. (2012). Procure secure: A
guide to monitoring of security service levels in cloud contracts. Technical report,
European Network and Information Security Agency (ENISA). Available in http:
//www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/
procure-secure-a-guide-to-monitoring-of-security-service-levels-in-\
cloud-contracts. Access in December 15, 2014.

[Hu et al., 2011] Hu, L., Wang, C., Schwan, K., Talwar, V., Eisenhauer, G., and Wolf, M.
(2011). A flexible architecture integrating monitoring and analytics for managing large-
scale data centers. Proceedings of the 8th ACM International Conference on Autonomic
Computing (ICAC ’11), pages 141–150.

[Hu et al., 2009] Hu, Y., Wong, J., Iszlai, G., and Litoiu, M. (2009). Resource provisioning
for cloud computing. pages 101–111.

[Hyperic-HQ Software, 2010] Hyperic-HQ Software (2010). Hyperic-HQ. Available in
http://sourceforge.net/projects/hyperic-hq/. Access in December 15, 2014.

[IBM, 2005] IBM (2005). IBM Tivoli Monitoring. Available in http://www-03.ibm.com/
software/products/en/tivomoni/. Access in April 15, 2015.

[Ibrahim et al., 2011] Ibrahim, A. S., Hamlyn-Harris, J., Grundy, J., and Almorsy, M.
(2011). Cloudsec: A security monitoring appliance for virtual machines in the iaas cloud
model. 5th International Conference on Network and System Security (NSS’2011), page
113–120.

[IFAC, 2011] IFAC (2011). International Standard on Assurance Engagements
(ISAE) 3402. Technical report, International Federation of Accountants
(IFAC). Available in http://www.ifac.org/sites/default/files/downloads/
b014-2010-iaasb-handbook-isae-3402.pdf. Access in July 15, 2015.

[Intralinks, 2007] Intralinks (2007). Information rights management. Avail-
able in https://www.intralinks.com/platform-solutions/platform/
information-rights-management. Access in July 15, 2015.

[ISACA, 2014a] ISACA (2014a). It control objectives for cloud comput-
ing: Controls and assurance in the cloud. Technical report, Informa-
tion Systems Audit and Control Association (ISACA). Available in

http://www8.hp.com/us/en/software/enterprise-software.html
http://www8.hp.com/us/en/software/enterprise-software.html
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/procure-secure-a-guide-to-monitoring-of-security-service-levels-in- \ cloud-contracts
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/procure-secure-a-guide-to-monitoring-of-security-service-levels-in- \ cloud-contracts
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/procure-secure-a-guide-to-monitoring-of-security-service-levels-in- \ cloud-contracts
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/procure-secure-a-guide-to-monitoring-of-security-service-levels-in- \ cloud-contracts
http://sourceforge.net/projects/hyperic-hq/
http://www-03.ibm.com/software/products/en/tivomoni/
http://www-03.ibm.com/software/products/en/tivomoni/
http://www.ifac.org/sites/default/files/downloads/b014-2010-iaasb-handbook-isae-3402.pdf
http://www.ifac.org/sites/default/files/downloads/b014-2010-iaasb-handbook-isae-3402.pdf
https://www.intralinks.com/platform-solutions/platform/information-rights-management
https://www.intralinks.com/platform-solutions/platform/information-rights-management

BIBLIOGRAPHY 119

http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/
Pages/IT-Control-Objectives-for-Cloud-Computing-Controls-and-\
Assurance-in-the-Cloud.aspx. Access in December 15, 2014.

[ISACA, 2014b] ISACA (2014b). Security considerations for cloud computing. Technical
report, Information Systems Audit and Control Association (ISACA). Available
in http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/
Pages/Security-Considerations-for-Cloud-Computing.aspx. Access in December
15, 2014.

[ISO, 2011] ISO (2011). Guidelines on information security controls for the use of cloud
computing services. Technical report, International Organization for Standardiza-
tion (ISO). Available in http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=43757. Access in July 15, 2015.

[ISO/IEC-12207:2008, 2008] ISO/IEC-12207:2008 (2008). Information technology —
Software life cycle processes and ISO/IEC-15288:2008. International Organization for
Standardization (ISO).

[ISO/IEC-27000:2009, 2009] ISO/IEC-27000:2009 (2009). Information technology - Secu-
rity techniques - Information security management systems - Overview and vocabulary.
International Organization for Standardization (ISO).

[ISO/IEC-27002:2005, 2005] ISO/IEC-27002:2005 (2005). Information technology - Secu-
rity techniques - Code of practice for information security management. International
Organization for Standardization (ISO).

[ISO/IEC-27005:2011, 2011] ISO/IEC-27005:2011 (2011). Information technology – Se-
curity techniques – Information security risk management. International Organization
for Standardization (ISO).

[ISO/IEC-27017:2014, 2014] ISO/IEC-27017:2014 (2014). ISO/IEC 27017 — Informa-
tion technology — Security techniques — Code of practice for information security
controls based on ISO/IEC 27002 for cloud services (DRAFT). International Organi-
zation for Standardization (ISO).

[ISO/IEC-27018:2014, 2014] ISO/IEC-27018:2014 (2014). Information technology - Secu-
rity techniques - Code of practice for protection of personally identifiable information
(PII) in public clouds acting as PII processors. International Organization for Stan-
dardization (ISO).

[Jaatun et al., 2012] Jaatun, M. G., Bernsmed, K., and Undheim, A. (2012). Security
slas - an idea whose time has come? Proceedings of the International Conference on
Cloud and Service Computing (CSC 2011), pages 123–130.

[Jaquith, 2007] Jaquith, A. (2007). Security Merics: Replacing Fear Uncertainty and
Doubt. Addison Wesley.

http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/IT-Control-Objectives-for-Cloud-Computing-Controls-and- \ Assurance-in-the-Cloud.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/IT-Control-Objectives-for-Cloud-Computing-Controls-and- \ Assurance-in-the-Cloud.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/IT-Control-Objectives-for-Cloud-Computing-Controls-and- \ Assurance-in-the-Cloud.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/Security-Considerations-for-Cloud-Computing.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/Security-Considerations-for-Cloud-Computing.aspx
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43757
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43757

BIBLIOGRAPHY 120

[Jasmine Software, 2010] Jasmine Software (2010). Jasmine. Available in
http://repository.ow2.org/nexus/content/repositories/ow2-legacy/org/
ow2/jasmine/. Access in December 15, 2014.

[Jiang et al., 2007] Jiang, X., Wang, X., and Xu, D. (2007). Stealthy malware detection
through vmm-based "out-of-the-box" semantic view reconstruction. Proceedings of the
14th ACM Conference on Computer and Communications Security (CCS ’07), pages
128–138.

[Johnson and Qu, 2012] Johnson, B. and Qu, Y. (2012). A holistic model for making cloud
migration decision: A consideration of security, architecture and business economics.
10th Int. Symposion on Parallel and Distributed Processing with Applications, page
435–441.

[Jones et al., 2008] Jones, S. T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H.
(2008). Vmm-based hidden process detection and identification using lycosid. Pro-
ceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 91–100.

[Kantarcioglu et al., 2011] Kantarcioglu, M., Bensoussan, A., and Hoe, S. C. (2011). Im-
pact of security risks on cloud computing adoption. 49th Annual Allerton Conference
on Communication, Control, and Computing, page 670–674.

[Kempter, 2011a] Kempter, S. (2011a). Checklist Request for Change RFC. Technical
report. ITIL 2011 Service Transition - Change Management, IT Process Map.

[Kempter, 2011b] Kempter, S. (2011b). Configuration Management Process. Technical
report. ITIL 2011 Service Transition - Change Management, IT Process Map.

[Keshavarzi et al., 2013] Keshavarzi, A., Haghighat, A. T., and Bohlouli, M. (2013). Re-
search challenges and prospective business impacts of cloud computing: A survey. The
7th IEEE International Conference on Intelligent Data Acquisition and Advanced Com-
puting Systems: Technology and Applications, pages 731–736.

[Killcrece et al., 2003] Killcrece, G., Kossakowski, K.-P., Ruefle, R., and Zajicek, M.
(2003). State of the practice of computer security incident response teams (csirts).
Technical report, Carnegie-Mellon Software Engineering Institute. Available in http:
//resources.sei.cmu.edu/library/asset-view.cfm?assetid=6571. Access in July
15, 2015.

[KNIME, 2010] KNIME (2010). KNIME.COM AG. Available in http://www.knime.
org/knime-desktop. Access in September 20, 2015.

[Kramosil and Michalek, 1974] Kramosil, I. and Michalek, J. (1974). A review of the
fundamental concepts of measurement. Kybernetica, 5(11):336—-344.

http://repository.ow2.org/nexus/content/repositories/ow2-legacy/org/ow2/jasmine/
http://repository.ow2.org/nexus/content/repositories/ow2-legacy/org/ow2/jasmine/
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6571
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6571
http://www.knime.org/knime-desktop
http://www.knime.org/knime-desktop

BIBLIOGRAPHY 121

[Krautsevich et al., 2010] Krautsevich, L., Martinelli, F., and Yautsiukhin, A. (2010).
Formal approach to security metrics.: what does "more secure" mean for you? Pro-
ceedings of the Fourth European Conference on Software Architecture (ECSA’10), pages
162–169.

[Krautsevich et al., 2011] Krautsevich, L., Martinelli, F., and Yautsiukhin, A. (2011).
Formal analysis of security metrics and risk. Proceedings of the 5th IFIP WG 11.2
international conference on Information security theory and practice: security and pri-
vacy of mobile devices in wireless communication (WISTP’11), pages 304–319.

[Krutz and Vines, 2010] Krutz, R. L. and Vines, R. D. (2010). Cloud Security: A Com-
prehensive Guide to Secure Cloud Computing. John Wiley & Sons, Inc.

[Kubert et al., 2011] Kubert, R., Katsaros, G., and Gallizo, G. (2011). Building a service-
oriented monitoring framework with rest and nagios. Proceedings of the 2011 IEEE
International Conference on Services Computing (SCC ’11), pages 426–431.

[Lakshmanan et al., 2010] Lakshmanan, G. T., Keyser, P., Slominski, A., Curbera, F.,
and Khalaf, R. (2010). A business centric end-to-end monitoring approach for ser-
vice composites. Proceedings of the 2010 IEEE International Conference on Services
Computing (SCC ’10), pages 409–416.

[Landwehr, 2001] Landwehr, C. E. (2001). Computer security. International Journal of
Information Security, 1:3–13.

[Lanzi et al., 2009] Lanzi, A., Sharif, M., and Lee, W. (2009). K-tracer: A system for
extracting kernel malware behavior. In Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS’09).

[Laprie, 2008] Laprie, J.-C. (2008). From dependability to resilience. IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN).

[Letaifa et al., 2010] Letaifa, A. B., Haji, A., Jebalia, M., and Tabbane, S. (2010). State of
the art and research challenges of new services architecture technologies: virtualization,
soa and cloud computing. International Journal of Grid and Distributed Computing.

[Lighttpd, 2005] Lighttpd (2005). The Lighttpd Software. Available in http://www.
lighttpd.net/. Acessado em 09 de julho de 2013.

[Liu et al., 2010a] Liu, J., Gong, C., Zhang, Q., Chen, H., and Gong, Z. (2010a). The
characteristics of cloud computing. Proceedings of the 2010 39th International Confer-
ence on Parallel Processing Workshops (ICPPW ’10), pages 275–279.

[Liu et al., 2010b] Liu, X., Mei, H., Zhang, Y., and Huang, G. (2010b). Integrating
resource consumption and allocation for infrastructure resources on-demand. IEEE 3rd
International Conference on Cloud Computing.

[Logic Monitor, 2009] Logic Monitor (2009). Logic monitor. Available in http://www.
logicmonitor.com/. Access in April 15, 2015.

http://www.lighttpd.net/
http://www.lighttpd.net/
http://www.logicmonitor.com/
http://www.logicmonitor.com/

BIBLIOGRAPHY 122

[Lombardi and Pietro, 2009] Lombardi, F. and Pietro, R. D. (2009). Kvmsec: A security
extension for linux kernel virtual machines. Proceedings of the 2009 ACM symposium
on Applied Computing (SAC’09), page 2029–2034.

[Ludwig et al., 2003] Ludwig, H., Keller, A., Dan, A., King, R. P., and Franck, R. (2003).
Web service level agreement (wsla) language specification. technical report, ibm. Tech-
nical report. Available in http://www.research.ibm.com/people/a/akeller/Data/
WSLASpecV1-20030128.pdf. Access in July 15, 2015.

[Mana and Pujol, 2008] Mana, A. and Pujol, G. (2008). Towards formal specification
of abstract security properties. The Third International Conference on Availability,
Reliability and Security (ARES 08) - IEEE, pages 80–87.

[Manjrasoft, 2008] Manjrasoft (2008). Aneka management. Available in http://www.
manjrasoft.com/products.html. Access in July 15, 2015.

[Martens and Teuteberg, 2012] Martens, B. and Teuteberg, F. (2012). Decision-making in
cloud computing environments: A cost and risk based approach. Information Systems
Frontiers, 14(4):871—-893.

[Mather et al., 2009] Mather, T., Kumaraswamy, S., and Latif, S. (2009). Cloud Security
and Privacy: An Enterprise Perspective on Risks and Compliance. O’Reilly Series.
O’Reilly Media.

[McCune et al., 2010] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., and
Perrig, A. (2010). Trustvisor: Efficient tcb reduction and attestation. IEEE Symposium
on Security and Privacy (SSP’10), page 143–158.

[Mell and Grance, 2011] Mell, P. and Grance, T. (2011). The NIST definition of cloud
computing. Technical Report SP-800-145, National Institute of Standards and Technol-
ogy (NIST). Available in http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf. Access in July 15, 2015.

[Mian et al., 2013] Mian, R., Martin, P., and Vazquez-Poletti, J. L. (2013). Provisioning
data analytic workloads in a cloud. Future Gener. Comput. Syst., pages 1452–1458.

[Microsoft Windows Azure, 2008] Microsoft Windows Azure (2008). Microsoft windows
azure suite. Available in http://www.windowsazure.com. Access in July 15, 2015.

[Monalisa, 2005] Monalisa (2005). Monalisa Project. Technical report. Available in http:
//monalisa.caltech.edu/monalisa.htm. Access in April 15, 2015.

[Monitis, 2006] Monitis (2006). Monitis. Available in http://portal.monitis.com/.
Access in July 15, 2015.

[Montes et al., 2013] Montes, J., Sánchez, A., Memishi, B., Pérez, M. S., and Antoniu,
G. (2013). Gmone: A complete approach to cloud monitoring. Future Generation
Computer Systems, 29:2026–2040.

http://www.research.ibm.com/people/a/akeller/Data/WSLASpecV1-20030128.pdf
http://www.research.ibm.com/people/a/akeller/Data/WSLASpecV1-20030128.pdf
http://www.manjrasoft.com/products.html
http://www.manjrasoft.com/products.html
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.windowsazure.com
http://monalisa.caltech.edu/monalisa.htm
http://monalisa.caltech.edu/monalisa.htm
http://portal.monitis.com/

BIBLIOGRAPHY 123

[Muller, 1999] Muller, N. J. (1999). Managing service level agreements. International
Journal of Network Management, 9:155–166.

[Nagios, 1996] Nagios (1996). Nagios Software. Technical report. Available in http:
//www.nagios.org. Access in April 15, 2015.

[Nakamura et al., 2014] Nakamura, L. H. V., Julio C. Estrella, R. H. C. S., Santana,
M. J., and da Silva Dias, A. (2014). Providing iaas resources automatically through
prediction and monitoring approaches. pages 1–7.

[Nayak et al., 2013] Nayak, D., Butt, M. A., Zaman, M., and Themazi, D. A. (2013). Em-
powering cloud security through sla. Journal of Global Research in Computer Science,
pages 30–33.

[New Relic, 2008] New Relic (2008). New relic software. Available in http://newrelic.
com/. Access in July 15, 2015.

[Nginx, 2003] Nginx (2003). The Nginx Software. Available in http://nginx.org/. Aces-
sado em 09 de julho de 2013.

[Nguyen et al., 2009] Nguyen, A. M., Schear, N., Jung, H., Godiyal, A., King, S. T.,
and Nguyen, H. D. (2009). Mavmm: Lightweight and purpose built vmm for malware
analysis. pages 441–450.

[Nimbus Project, 2006] Nimbus Project (2006). Nimbus project. Available in http://
www.nimbusproject.org. Access in July 15, 2015.

[NIST, 2002] NIST (2002). Federal Information Security Management Act (FISMA).
Technical report, National Institute of Standards and Technology (NIST). Available in
http://www.nist.gov/itl/csd/soi/fisma.cfm. Access in July 15, 2015.

[NIST, 2013a] NIST (2013a). Nist cloud computing security reference architecture.
Technical Report SP-500-299, National Institute of Standards and Technology
(NIST). Available in collaborate.nist.gov/twiki-cloud-computing/pub/
CloudComputing/CloudSecurity/NIST_security_Reference_Architecture_2013.
05.15_v1.0.pdf. Access in July 15, 2015.

[NIST, 2013b] NIST (2013b). Nist cloud computing standards roadmap working group.
Technical Report SP-500-291 Version-2 FINAL, National Institute of Standards and
Technology (NIST). Available in http://www.nist.gov/itl/cloud/upload/NIST_
SP-500-291_Version-2_2013_June18_FINAL.pdf. Access in July 15, 2015.

[NIST, 2013c] NIST (2013c). Nist guide to enterprise patch management technologies.
Technical Report SP-800-40r3, National Institute of Standards and Technology (NIST).
Available in http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-40r3.pdf. Access in July 15, 2015.

http://www.nagios.org
http://www.nagios.org
http://newrelic.com/
http://newrelic.com/
http://nginx.org/
http://www.nimbusproject.org
http://www.nimbusproject.org
http://www.nist.gov/itl/csd/soi/fisma.cfm
collaborate.nist.gov/twiki-cloud-computing/pub/Cloud Computing/CloudSecurity/NIST_security_Reference_Architecture _2013.05.15_v1.0.pdf
collaborate.nist.gov/twiki-cloud-computing/pub/Cloud Computing/CloudSecurity/NIST_security_Reference_Architecture _2013.05.15_v1.0.pdf
collaborate.nist.gov/twiki-cloud-computing/pub/Cloud Computing/CloudSecurity/NIST_security_Reference_Architecture _2013.05.15_v1.0.pdf
http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-40r3.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-40r3.pdf

BIBLIOGRAPHY 124

[NIST, 2013d] NIST (2013d). Nist security and privacy controls for federal information
systems and organizations. Technical Report SP-800-53r4, National Institute of Stan-
dards and Technology (NIST). Available in http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-53r4.pdf. Access in July 15, 2015.

[NIST, 2014] NIST (2014). Common vulnerability scoring system (cvss). Technical re-
port, National Institute of Standards and Technology (NIST). Available in http:
//nvd.nist.gov/cvss.cfm. Access in December 15, 2014.

[Okta, 2009] Okta (2009). Okta software. Available in https://www.okta.com/. Access
in July 15, 2015.

[OpenNebula, 2005] OpenNebula (2005). OpenNebula Monitoring System. Avail-
able in http://archives.opennebula.org/documentation:archives:rel3.4:img.
Access in April 15, 2015.

[OpenNebula, 2014] OpenNebula (2014). OpenNebula Project. Available in http://www.
opennebula.org/. Access in December 15, 2014.

[Paessler, 1998] Paessler (1998). Prtg network monitor. Available in http://www.
paessler.com/cloud_computing_monitoring. Access in July 15, 2015.

[Paraleap, 2011] Paraleap (2011). Paraleap technologies. Available in http://www.
paraleap.com/azurewatch. Access in July 15, 2015.

[Payne et al., 2008] Payne, B., Carbone, M., Sharif, M., and Wenke, L. (2008). Lares:
An architecture for secure active monitoring using virtualization. IEEE Symposium on
Security and Privacy (SP’08), pages 233 – 247.

[Payne, 2006] Payne, S. C. (2006). A guide to security metrics. Technical report, SANS In-
stitute. Available in http://www.sans.org/reading_room/whitepapers/auditing/
guide-security-metrics_55. Access in December 15, 2014.

[Pearson, 2013] Pearson, S. (2013). Toward accountability in the cloud. Jornal IEEE
Cloud Computing - Especial Edition: Securing the Cloud, 1(1):6–10.

[Petcu, 2014a] Petcu, D. (2014a). Sla-based cloud security monitoring: Challenges, bar-
riers, models and methods. Euro-Par 2014: Parallel Processing Workshops, Lecture
Notes in Computer Science, 8805:359–370.

[Petcu, 2014b] Petcu, D. (2014b). A taxonomy for sla-based monitoring of cloud secu-
rity. 38th Annual International Computers, Software and Applications Conference, page
640–641.

[Petcu and Craciun, 2014] Petcu, D. and Craciun, C. (2014). Towards a security sla-
based cloud monitoring service. 4th International Conference on Cloud Computing and
Services Science (CLOSER’2014), page 598–603.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvd.nist.gov/cvss.cfm
http://nvd.nist.gov/cvss.cfm
https://www.okta.com/
http://archives.opennebula.org/documentation:archives:rel3.4:img
http://www.opennebula.org/
http://www.opennebula.org/
http://www.paessler.com/cloud_computing_monitoring
http://www.paessler.com/cloud_computing_monitoring
http://www.paraleap.com/azurewatch
http://www.paraleap.com/azurewatch
http://www.sans.org/reading_room/whitepapers/auditing/guide-security-metrics_55
http://www.sans.org/reading_room/whitepapers/auditing/guide-security-metrics_55

BIBLIOGRAPHY 125

[PostgreSQL, 1996] PostgreSQL (1996). PostgreSQL Software. Available in http://www.
postgresql.org/. Access in July 15, 2015.

[Project, 2008] Project, O. (2008). Openstack cloud software. Technical report. Available
in http://www.openstack.org. Access in December 15, 2014.

[Project PCMONS, 2008] Project PCMONS (2008). Private Clouds MONitoring Sys-
tems. Technical report. Available in https://code.google.com/p/pcmons/. Access in
April 15, 2015.

[Project Sigar, 2006] Project Sigar (2006). Hyperic SIGAR. Available in http://
sourceforge.net/projects/sigar/. Access in April 15, 2015.

[ProofPoint, 2002] ProofPoint (2002). Proofpoint software. Available in https://www.
proofpoint.com/. Access in July 15, 2015.

[Putri and Mganga, 2011] Putri, N. R. and Mganga, M. C. (2011). Thesis for Master
Degree: Enhancing Information Security in Cloud Computing Services using SLA Based
Metrics. School of Computing - Blekinge Institute of Technology.

[Qualys, 1999] Qualys (1999). Qualys cloud platform. Available in https://www.qualys.
com/. Access in July 15, 2015.

[Rackspace, 2012] Rackspace (2012). Rackspace Cloud Monitoring. Available in http:
//www.rackspace.com/cloud/monitoring/. Access in July 15, 2015.

[Rahulamathavan et al., 2014] Rahulamathavan, Y., Pawar, P. S., Burnap, P., Rajarajan,
M., Rana, O. F., and Spanoudakis, G. (2014). Analysing security requirements in
cloud-based service level agreements. Proceedings of the 7th International Conference
on Security of Information and Networks (SIN’14), page 73.

[Rak et al., 2013] Rak, M., Suri, N., Luna, J., Petcu, D., Casola, V., and Villano, U.
(2013). Security as a service using an sla-based approach via specs. IEEE International
Conference on Cloud Computing Technology and Science, pages 1–6.

[Rak et al., 2011] Rak, M., Venticinque, S., Máhr, T., Echevarria, G., and Esnal, G.
(2011). Cloud application monitoring: The mosaic approach. Proceedings of the 2011
IEEE Third International Conference on Cloud Computing Technology and Science
(CLOUDCOM ’11), pages 758–763.

[Rebollo et al., 2012] Rebollo, O., Mellado, D., and Fernández-Medina, E. (2012). A sys-
tematic review of information security governance frameworks in the cloud computing
environment. Journal of Universal Computer Science, 18:798–815.

[Righi et al., 2004] Righi, R. R., Pellissari, F. R., and Westphall, C. B. (2004). Sec-sla:
Specification and validation of metrics for security oriented service level agreements.
IV Workshop in Computing Systems Security.

http://www.postgresql.org/
http://www.postgresql.org/
http://www.openstack.org
https://code.google.com/p/pcmons/
http://sourceforge.net/projects/sigar/
http://sourceforge.net/projects/sigar/
https://www.proofpoint.com/
https://www.proofpoint.com/
https://www.qualys.com/
https://www.qualys.com/
http://www.rackspace.com/cloud/monitoring/
http://www.rackspace.com/cloud/monitoring/

BIBLIOGRAPHY 126

[Riley et al., 2008] Riley, R., Jiang, X., and Xu, D. (2008). Guest-transparent prevention
of kernel rootkits with vmm-based memory shadowing. 5230:1–20.

[Riley et al., 2009] Riley, R., Jiang, X., and Xu, D. (2009). Multi-aspect profiling of
kernel rootkit behavior. Proceedings of the 4th ACM European Conference on Computer
Systems (EuroSys’09), pages 47–60.

[Rimal et al., 2009] Rimal, B. P., Choi, E., and Lumb, I. (2009). A taxonomy and sur-
vey of cloud computing systems. Proceedings of the 2009 Fifth International Joint
Conference on INC, IMS and IDC (NCM ’09), pages 44–51.

[Riverbed, 2012] Riverbed (2012). Network performance management (old opnet). Avail-
able in http://www.riverbed.com/products/performance-management-control/
network-performance-management/. Access in April 15, 2015.

[Rochwerger et al., 2009] Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K.,
Llorente, I. M., Montero, R., Wolfsthal, Y., Elmroth, E., Cáceres, J., Ben-Yehuda, M.,
Emmerich, W., and Galán, F. (2009). The reservoir model and architecture for open
federated cloud computing. IBM J. Res. Dev., pages 535–545.

[Rosenblum, 2003] Rosenblum, T. G. M. (2003). A virtual machine introspection based
architecture for intrusion detection. IEEE Symposium on Security and Privacy (SP’08),
page 191–206.

[Sandpiper, 2008] Sandpiper (2008). Project sandpiper. Technical report. Available in
http://ass.cs.umass.edu/projects/virtualization/sandpiper/. Access in April
15, 2015.

[Savola, 2007a] Savola, R. M. (2007a). Towards a security metrics taxonomy for the infor-
mation and communication technology industry. International Conference on Software
Engineering Advances (ICSEA) - IEEE, page 60.

[Savola, 2007b] Savola, R. M. (2007b). Towards a taxonomy for information security
metrics. Proceeding QoP ’07 Proceedings of the 2007 ACM workshop on Quality of
protection - ACM, pages 28–30.

[Savola, 2009] Savola, R. M. (2009). A security metrics taxonomization model for
software-intensive systems. Journal of Information Processing Systems, 5:197.

[Services, 2011] Services, I. G. T. (2011). Security and high availability in cloud comput-
ing environments. Technical report, IBM.

[Seshadri et al., 2007] Seshadri, A., Luk, M., Qu, N., and Perrig, A. (2007). Secvisor: A
tiny hypervisor to provide lifetime kernel code integrity for commodity oses. Proceedings
of 21st ACM SIGOPS symposium on Operating systems principles (SOSP’07), page
335–350.

[sFlow, 2003] sFlow (2003). sflow software. Available in http://www.sflow.org. Access
in April 15, 2015.

http://www.riverbed.com/products/performance-management-control/network-performance-management/
http://www.riverbed.com/products/performance-management-control/network-performance-management/
http://ass.cs.umass.edu/projects/virtualization/sandpiper/
http://www.sflow.org

BIBLIOGRAPHY 127

[Shalb, 2010] Shalb (2010). Project spae. Available in http://shalb.com/en/spae/
spae_features/. Access in April 15, 2015.

[Shao and Wang, 2011] Shao, J. andWang, Q. (2011). A performance guarantee approach
for cloud applications based on monitoring. Proceedings of the 2011 IEEE 35th Annual
Computer Software and Applications Conference Workshops (COMPSACW ’11), pages
25–30.

[Shao et al., 2010] Shao, J., Wei, H., Wang, Q., and Mei, H. (2010). A runtime model
based monitoring approach for cloud. Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD ’10), pages 313–320.

[Sharif et al., 2009] Sharif, M. I., Lee, W., Cui, W., and Lanzi, A. (2009). Secure in-vm
monitoring using hardware virtualization. pages 477–487.

[Sharma, 2015] Sharma, R. (2015). NGINX High Performance. Packt Publishing Ltd.
ISBN: 978-1-78528-183-9.

[Shin and Gu, 2012] Shin, S. and Gu, G. (2012). Cloudwatcher: Network security moni-
toring using openflow in dynamic cloud networks (or: How to provide security monitor-
ing as a service in clouds?). 20th IEEE International Conference on Network Protocols
(ICNP’12), page 1–6.

[Shirey, 2007] Shirey, R. W. (2007). Internet security glossary. Technical report, Internet
Engineering Task Force RFC 4949 Informational.

[Silva et al., 2012] Silva, C. A., Ferreira, A. S., and Geus, P. L. (2012). A methodol-
ogy for management of cloud computing using security criteria. Proceedings of the
IEEE Latin American Conference on Cloud Computing and Communications (Latin-
Cloud’12), pages 49–54.

[Silva and Geus, 2014a] Silva, C. A. and Geus, P. L. (2014a). An approach for security-sla
in cloud computing environments. 6th IEEE Latin-American Conference on Commu-
nications (LATINCOM’2014), pages 1–6.

[Silva and Geus, 2014b] Silva, C. A. and Geus, P. L. (2014b). Arquitetura de monitora-
mento para security-sla em nuvem computacional do tipo saas. XIV Simpósio Brasileiro
em Segurança da Informação e de Sistemas Computacionais (SBSeg’2014), pages 310–
313.

[Silva and Geus, 2014c] Silva, C. A. and Geus, P. L. (2014c). Gestao da segurança para
ambiente de nuvem computacional. Escola Regional de Informática (ERI’2014).

[Silva and Geus, 2015] Silva, C. A. and Geus, P. L. (2015). Return on security invest-
ment for cloud computing: a customer perspective. ACM 7th International Confer-
ence on Management of computational and collective IntElligence in Digital EcoSystems
(MEDES’15).

http://shalb.com/en/spae/spae_features/
http://shalb.com/en/spae/spae_features/

BIBLIOGRAPHY 128

[SilverSky, 2013] SilverSky (2013). Bae systems. Available in https://www.silversky.
com/. Access in July 15, 2015.

[Site24x7, 2007] Site24x7 (2007). Site24x7 Software. Available in http://www.site24x7.
com. Access in April 15, 2015.

[Skype, 2015] Skype (2015). Skype is STILL offline. Available
in http://www.dailymail.co.uk/sciencetech/article-3243151/
Skype-status-problem-preventing-users-making-calls.html. Access in Septem-
ber 21, 2015.

[SLA, 2005] SLA (2005). SLA Management Handbook. Technical report,
TeleManagement Forum. available in http://www.tmforum.org/Guidebooks/
GB917-SLAManagement/30753/article.html. Access in December 15, 2014.

[SLA@SOI, 2010] SLA@SOI (2010). Project sla@soi. Available in http://sourceforge.
net/projects/sla-at-soi/. Access in April 15, 2015.

[Smit et al., 2013] Smit, M., Simmons, B., and Litoiu, M. (2013). Distributed,
application-level monitoring for heterogeneous clouds using stream processing. Future
Generation Computer Systems, 29:2103–2114.

[Snorby, 2011] Snorby (2011). Project snorby. Available in https://www.snorby.org.
Access in April 15, 2015.

[Sobel et al., 2008] Sobel, W., Subramanyam, S., Sucharitakul, A., Nguyen, J., Wong,
H., Klepchukov, A., Patil, S., Fox, A., and Patterson, D. (2008). Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web 2.0.

[Sonian, 2006] Sonian (2006). Cloud monitoring sensu. Available in http://sonian.com/
about/sensu/. Access in July 15, 2015.

[Splunk, 2005] Splunk (2005). Splunk Software. Available in http://www.splunk.com.
Access in April 15, 2015.

[Spring, 2011a] Spring, J. (2011a). Monitoring cloud computing by layer, part 1. IEEE
Security and Privacy, pages 66–68.

[Spring, 2011b] Spring, J. (2011b). Monitoring cloud computing by layer, part 2. IEEE
Security and Privacy, pages 52–55.

[SSAE, 2011] SSAE (2011). Ssae 16 auditing standard. Technical report. Available in
http://www.ssae-16.com/. Access in July 15, 2015.

[Stout et al., 2006] Stout, B., Sonnenreich, W., and Albanese, J. (2006). Return on se-
curity investment (rosi) – a practical quantitative model. Journal of Research and
Practice in Information Technology, 38(1):55–66.

https://www.silversky.com/
https://www.silversky.com/
http://www.site24x7.com
http://www.site24x7.com
http://www.dailymail.co.uk/sciencetech/article-3243151/Skype-status-problem-preventing-users-making-calls.html
http://www.dailymail.co.uk/sciencetech/article-3243151/Skype-status-problem-preventing-users-making-calls.html
http://www.tmforum.org/Guidebooks/GB917-SLAManagement/30753/article.html
http://www.tmforum.org/Guidebooks/GB917-SLAManagement/30753/article.html
http://sourceforge.net/projects/sla-at-soi/
http://sourceforge.net/projects/sla-at-soi/
https://www.snorby.org
http://sonian.com/about/sensu/
http://sonian.com/about/sensu/
http://www.splunk.com
http://www.ssae-16.com/

BIBLIOGRAPHY 129

[Subashini and Kavitha, 2011] Subashini, S. P. and Kavitha, V. R. (2011). A survey on
security issues in service delivery models of cloud computing. Journal of Network and
Computer Applications, pages 1–11.

[Suppes and Zinnes, 1962] Suppes, P. and Zinnes, J. L. (1962). Basic measurement the-
ory. Technical report, Technical Report 45 of Institute for mathematical studies in the
social science, Stanford, USA. Technical Report 45.

[Szefer, 2013] Szefer, J. M. (2013). Architectures for secure cloud computing servers (phd
thesis). Technical report, University of Princeton.

[Taku Izumi, 2012] Taku Izumi (2012). Evaluation of CPU cgroup - The Linux Foun-
dation. Available in https://events.linuxfoundation.org/images/stories/pdf/
lcjp2012_izumi.pdf. Access in September 20, 2015.

[Taylor, 1997] Taylor, J. R. (1997). An introduction to Error Analysis - the study of
uncertainties in physical measurements. University Science Books.

[Team, 2015] Team, V. B. R. (2015). 2015 data breach investigations report. Technical
report. Available in http://www.verizonenterprise.com/DBIR/2015/. Access in July
15, 2015.

[Threat Stack, 2014] Threat Stack (2014). Threat Stack Software. Available in https:
//www.threatstack.com. Access in April 15, 2015.

[TIMACS, 2009] TIMACS (2009). TIMACS Software. Available in http://www.timacs.
de. Access in April 15, 2015.

[Tsalis et al., 2013] Tsalis, N., Theoharidou, M., and Gritzalis, D. (2013). Return on se-
curity investment for cloud platforms. IEEE International Conference on Cloud Com-
puting Technology and Science, pages 132–137.

[Turner et al., 2010] Turner, P., Rao, B. B., and Rao, N. (2010). Cpu bandwidth control
for cfs. pages 245–254.

[University of Waikato, 2013] University of Waikato (2013). Weka 3: Data Mining
Software in Java. Available in http://www.cs.waikato.ac.nz/ml/weka/. Access in
September 20, 2015.

[Up.Time software, 2008] Up.Time software (2008). Up.time software. Available in http:
//www.uptimesoftware.com/cloud-monitoring.php. Access in July 15, 2015.

[Vacca, 2013] Vacca, J. R. (2013). Computer and Information Security Handbook, 2nd
Edition. Morgan Kaufmann Publishers.

[Vaquero et al., 2008] Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner, M.
(2008). A break in the clouds: Towards a cloud definition. ACM SIGCOMM Computer
Communication Review.

https://events.linuxfoundation.org/images/stories/pdf/lcjp2012_izumi.pdf
https://events.linuxfoundation.org/images/stories/pdf/lcjp2012_izumi.pdf
http://www.verizonenterprise.com/DBIR/2015/
https://www.threatstack.com
https://www.threatstack.com
http://www.timacs.de
http://www.timacs.de
http://www.cs.waikato.ac.nz/ml/weka/
http://www.uptimesoftware.com/cloud-monitoring.php
http://www.uptimesoftware.com/cloud-monitoring.php

BIBLIOGRAPHY 130

[Vaultive, 2012] Vaultive (2012). Vaultive company. Available in http://vaultive.com/
solution/vaultive-encryption-platform/. Access in July 15, 2015.

[Viratanapanu et al., 2010] Viratanapanu, A., Hamid, A. K. A., Kawahara, Y., and
Asami, T. (2010). On demand fine grain resource monitoring system for server con-
solidation. In: Kaleidoscope: Beyond the Internet? - Innovations for Future Networks
and Services (ITU-T), IEEE., pages 1–8.

[VMITools, 2013] VMITools (2013). Virtual machine introspection tools. Available in
https://code.google.com/p/vmitools/. Access in December 15, 2014.

[Vmware, 2008] Vmware (2008). Vmware cloudstatus. Available in http://www.vmware.
com/products/vrealize-hyperic/. Access in July 15, 2015.

[Voas et al., 2012] Voas, J., Grance, T., Patt-Corner, R., and Badger, L. (2012). Cloud
computing synopsis and recommendations. Technical Report SP-800-146, National
Institute of Standards and Technology (NIST). Available in http://www.nist.gov/
manuscript-publication-search.cfm?pub_id=911075. Access in July 15, 2015.

[Vu et al., 2015] Vu, Q. H., Ardagna, C. A., Asal, R., Damiani, E., and Ardagna, C. A.
(2015). From security to assurance in the cloud: A survey. 48.

[W3C, 2007a] W3C (2007a). Simple Object Acess Prototol (SOAP) Part 1: Messag-
ing Framework (2nd Edition). Available in http://www.w3.org/TR/soap12-part1/.
Access in July 15, 2015.

[W3C, 2007b] W3C (2007b). Web Services Policy 1.5 - Framework, World Wide Web
Consortium.

[West-Brown et al., 2003] West-Brown, M. J., Stikvoort, D., Kossakowski, K.-P., Kill-
crece, G., Ruefle, R., and Zajicek, M. (2003). Handbook for computer security incident
response teams (csirts), 2nd edition, cmu/sei-2003-hb-002. Technical report, Carnegie-
Mellon Software Engineering Institute.

[WhiteHat, 2001] WhiteHat (2001). Whitehat security. Available in https://www.
whitehatsec.com/index.html. Access in July 15, 2015.

[Wu et al., 2013a] Wu, L., Garg, S. K., Buyya, R., Chen, C., and Versteeg, S. (2013a).
Automated sla negotiation framework for cloud computing (ccgrid’13). pages 235–244.

[Wu et al., 2013b] Wu, X., Gao, Y., Tian, X., Song, Y., Guo, B., Feng, B., and Sun, Y.
(2013b). Secmon: A secure introspec- tion framework for hardware virtualization. IEEE
21st Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP’13).

[Xuan et al., 2009] Xuan, C., Copeland, J., and Beyah, R. (2009). Toward revealing
kernel malware behavior in virtual execution environments. 5758:304–325.

http://vaultive.com/solution/vaultive-encryption-platform/
http://vaultive.com/solution/vaultive-encryption-platform/
https://code.google.com/p/vmitools/
http://www.vmware.com/products/vrealize-hyperic/
http://www.vmware.com/products/vrealize-hyperic/
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=911075
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=911075
http://www.w3.org/TR/soap12-part1/
https://www.whitehatsec.com/index.html
https://www.whitehatsec.com/index.html

BIBLIOGRAPHY 131

[Yazir et al., 2010] Yazir, Y. O., Matthews, C., Farahbod, R., Nevilley, S., Guitouni, A.,
Ganti, S., and Coady, Y. (2010). Dynamic resource allocation in computing clouds
using distributed multiple criteria decision analysis. 3rd International Conference on
Cloud Computing - IEEE, pages 91–98.

[Younge et al., 2010] Younge, A. J., von Laszewski, G., Wang, L., Lopez-Alarcon, S., and
Carithers, W. (2010). Efficient resource management for cloud computing environments.
IEEE.

[Zabbix, 2001] Zabbix (2001). Zabbix LLC Software. Available in http://www.zabbix.
com. Access in July 15, 2015.

[Zenoss, 2011] Zenoss (2011). Zenpack. Available in https://github.com/zenoss/
ZenPacks.zenoss.CloudStack. Access in July 15, 2015.

[Zhang et al., 2010] Zhang, S., Zhang, S., Chen, X., and Huo, X. (2010). Cloud com-
puting research and development trend. Proceedings of the 2010 Second International
Conference on Future Networks (ICFN ’10), pages 93–97.

[Zhengwei et al., 2013] Zhengwei, V., Ran, D., Zhigang, L., Xihong, W., and Baoxu, L.
(2013). A meta-synthesis approach for cloud service provider selection based on secsla.
IEEE 2013 Fifth International Conference on Computational and Information Sciences
(ICCIS’2013), pages 1356–1360.

[Zhien and Yiqi, 2012] Zhien, G. and Yiqi, D. (2012). Security slas for ims-based cloud
services. Proceedings of the 2012 Seventh ChinaGrid Annual Conference (CHINA-
GRID’12), pages 57–60.

[Zissis and Lekkas, 2012] Zissis, D. and Lekkas, D. (2012). Addressing cloud computing
security issues. Future Generation Computer Systems, 28:583–592.

[Zscaler, 2008] Zscaler (2008). Zscaler security. Available in http://www.zscaler.com/.
Access in July 15, 2015.

http://www.zabbix.com
http://www.zabbix.com
https://github.com/zenoss/ZenPacks.zenoss.CloudStack
https://github.com/zenoss/ZenPacks.zenoss.CloudStack
http://www.zscaler.com/

Appendix A

Portfolio of the Security Metrics

This Appendix presents the portfolio of the security Metrics, the list of metrics presented
do not intend to be exhaustive nor suitable to all systems, since as stated before that
would be an impossible mission in the context of this work. Table A describes each
metric of the security of metric hierarchy and its respective page (full specification) this
proposal. The class column specifies the type of security metric: (I) for Infrastructure,
(S) for hired Service and (B) for both previous types.

Table A.1: Portfolio of the Security Metrics

Id Description Class Page
1. Security Policy
1.1 Current Level of Enforcement of the Security Policy
1.1.1 Number of reported security policy violations in the previous

12 months (NRSPV)
B 137

1.1.2 Number of enforcement actions taken against policy violations
in the previous 12 months (NESTSPV)

B 138

1.2 Current Structure of the Security Policy
1.2.1 Number of documents that make up the corporate security pol-

icy (NDMUSP)
B 139

1.2.2 Format(s) of security policy documents (FSPD) B 140
1.2.3 Location(s) of security policy documents (LSPD) B 141
1.2.4 Types of policy acknowledgement mechanisms (TPAM) B 142
1.2.5 Length of time since the last security policy review by manage-

ment (LTSLSPRBM)
B 143

1.3 Employees Read and Understand the Security Policy
1.3.1 Ratio of employee job descriptions that specify responsibility

for following the security policy (REJDTSRFSP)
B 144

1.3.2 Number of security policy awareness or training activities con-
ducted in the previous 12 months (NSPATACP)

B 145

1.3.3 Ratio of employees who have formally acknowledged the secu-
rity policy in the previous 12 months (REWHFASP)

B 146

Continued on next page

132

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 133

Table A.1 – Continued from previous page
Id Description Class Page
1.3.4 Results of a user survey asking how familiar users are with the

policy is judged to be (HFUAP)
B 147

1.3.5 Results of a user survey asking how appropriate and usable the
policy is judged to be (HAUP)

B 148

1.4 Enforcement of the Security Policy Increasing
1.4.1 Increase in security policy enforcement actions over baseline

(ISPEAOB)
B 149

1.4.2 Increase in awareness of corporate security policy (IACSP) B 150
1.4.3 Increase in efficiency of the security policy process (IESPP) B 151
1.4.4 Improved response from surveyed users on policy familiarity and

usability (IRSUPFU)
B 152

2 Security-Related Downtime
2.1 System down (failure)
2.1.1 Mean Time To Failures (MTTF) B 153
2.1.2 Mean Time Between Failures (MTBF) B 154
2.1.3 Mean Time Between Recovery (MTTRc) B 155
2.1.4 Mean Time Between Repare (MTTRp) B 156
2.1.5 Mean To System Availability (MTSA) B 157
2.2 System down (maintenance)
2.2.1 Duration of the Preventive Maintenance (DPM) B 158
2.2.2 Duration of the Corrective Maintenance (DCM) B 159
2.2.3 Mean Time Between Maintenance (MTBM) B 160
2.3 Downtime resulting from a security event
2.3.1 Number of Security Events in a time period, duration of event

remediation (NSEER)
B 161

3 Vulnerability Policies
3.1 Vulnerability Management
3.1.1 Total number of registered hosts (TRH) B 162
3.1.2 Total number of unregistered hosts (TUH) B 163
3.1.3 Total number of registered hosts vulnerable (TRHV) B 164
3.1.4 Total number of unregistered hosts vulnerable (TUHV) B 165
3.1.5 Percentage of registered hosts vulnerable (PRHV) B 166
3.1.6 Percentage of unregistered hosts vulnerable (PUHV) B 167
3.2 Mitigate Vulnerabilities
3.2.1 Mean Cost To Mitigate Vulnerabilities (MCTMV) B 168
3.2.2 Mean Time To Mitigate Vulnerabilities (MTTMV) B 170
3.2.3 Number of Known Vulnerability Instances (NKVI) B 172
3.2.4 Percent of Systems Without Known Severe Vulnerabilities

(PSWKSV)
B 174

3.2.5 Vulnerability Scan Coverage (VSC) B 176
3.3 Internal Vulnerability Assessment
3.3.1 Vulnerabilities on the internal nodes (VIN) B 178

Continued on next page

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 134

Table A.1 – Continued from previous page
Id Description Class Page
3.3.2 Security vulnerability counts for assessed internal nodes (SV-

CAIN)
B 180

3.3.3 Ratios of vulnerabilities by type, OS, owner, and so on (RVT) B 182
3.3.4 Severe vulnerabilities found on the internal nodes (SVFIN) B 184
3.3.5 CVSS scores for all identified vulnerabilities present on internal

nodes (SIVPIN)
B 186

4 Incident Policies B
4.1 Incident Management B
4.1.1 Cost of Incidents (COI) B 188
4.1.2 Incident Handled (IH) B 190
4.1.3 Incident Rate (IR) B 192
4.1.4 Mean Cost of Incidents (MCOI) B 194
4.1.5 Mean Incident Recovery Cost (MIRC) B 196
4.1.6 Mean Time Between Security Incidents (MTBSI) B 198
4.1.7 Mean Time from Discovery to Containment (MTDC) B 199
4.1.8 Mean Time To Incident Discovery (MTTID) B 201
4.1.9 Mean Time To Incident Recovery (MTTIR) B 203
4.1.10 Number of Incidents (NI) B 205
4.1.11 Percentage of Incidents Detected by Internal Controls (PIDIC) B 207
4.1.12 Time Per Incident (TPI) B 209
5 Patch Policies
5.1 Patch Management
5.1.1 Configuration Management Coverage (CMC) B 211
5.1.2 Mean Cost to Patch (MCTP) B 213
5.1.3 Mean Time To Complete Changes (MTTCC) B 215
5.1.4 Mean Time to Deploy Critical Patches (MTDCP) B 217
5.1.5 Mean Time To Patch (MTTC) B 219
5.1.6 Patch Management Coverage (PMC) B 221
5.1.7 Patch Policy Compliance (PPC) B 223
5.2 Change Management
5.2.1 Percent of Changes with Security Exceptions (PCSE) B 225
5.2.2 Percent of Changes with Security Review (PCSR) B 227
6 Infrastructure Security Policies
6.1 Firewall Management
6.1.1 Number of Packet Filtering (NPFi) I 229
6.1.2 Number of Security Rule Control (NSRC) I 231
6.1.3 Number of Traffic Flow Statistics (NTFS) I 233
6.1.4 Number of Prevention of DoS (NPD) I 235
6.1.5 Number of Shutdown (NS) I 237
6.1.6 Mean Time To Recovery From Shutdown Firewall (MTTRFSF) I 239
6.2 Intrusion Detect and Prevention System (IDPS)
6.2.1 Number of Packet Fragmentation (NPFr) I 241
6.2.2 Number of Stream Segmentation (NSS) I 243

Continued on next page

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 135

Table A.1 – Continued from previous page
Id Description Class Page
6.2.3 Number of Remote Procedure Call Fragmentation (NRPCF) I 245
6.2.4 Number of Recovery from Abnormal System Shutdown

(NRASS)
I 247

6.2.5 Number of Security Events Records (NSER) I 249
6.2.6 Number of Evasion Attacks (NEA) I 251
6.2.6.1 Number of URL Obfuscation (NUO) I 253
6.2.6.2 Number of SMB & NetBIOS Evasions (NSNE) I 255
6.2.6.3 Number of HTML Obfuscation (NHO) I 257
6.2.6.4 Number of Payload Encoding (NPE) I 259
6.2.6.5 Number of FTP Evasion (NFE) I 261
6.2.6.6 Number of Layered Evasion (NLE) I 263
6.2.7 Mean Time To Recovery From Shutdown IDPS (MTTRFSI) I 265
7 Application Security Policies
7.1 Application Security Management
7.1.1 Percentage of Critical Applications (PCA) S 267
7.1.2 Risk Assessment Coverage (RAC) S 268
7.1.3 Security Testing Coverage (STC) S 269
7.1.4 Number of Applications/Service/VM (NASV) S 271
7.2 Security Budget Management
7.2.1 Information Security Budget as % of IT Budget (SBPITB) S 273
7.2.2 Information Security Budget Allocation (SBBA) S 275
7.3 Application Security
7.3.1 Current Anti-Malware Coverage for the Application (CAMCA) S 277
7.3.2 Number of Anti-Malware (NAM) S 279
7.4 Backup Management
7.4.1 Mean Time Between Backup Process (MTBBP) S 281
7.4.2 Number of Backup Processes that have Failed (NBPF) S 283
7.4.3 Percent of Backup Processes that have Failed (PBPF) S 285
7.5 Database - MySql or PostgreSQL
7.5.1 Number of Default User Service Account (NDUSA) S 286
7.5.2 Number of Insecure User Account (NIUA) S 288
7.5.3 Number of Default TCP Port (NDTP) S 290
7.5.4 Number of SQL Injection (NSI) S 292
8 Prevention initiative by assessing the incidents of data

loss
8.1 Sensitive or controlled data leave through e-mail S
8.1.1 E-mail-based data loss events, overall and by data type; ra-

tio of data loss events of all types between corporate divisions
(EBDLE)

S 294

8.2 Differences in the type of data lost S
8.2.1 Chi-square test for types of data loss by corporate division

(CTDL)
S 296

9 Distribution of perimeter security events
Continued on next page

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 136

Table A.1 – Continued from previous page
Id Description Class Page
9.1 Breakdown of perimeter-related security events S
9.1.1 Perimeter security events by datacenter (PSEBD) S 298
9.1.2 Ratio of perimeter security events between datacenters

(RPSEBD)
S 300

9.2 Difference threats S
9.2.1 Analysis of variance between reported datacenter perimeter

event data (AVBRDPED)
S 302

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 137

Id: 1.1.1 - Metric Name: Number of Reported Security Policy Violations in
the previous 12 months (NRSPV)

• Objective: measures the organization’s relative exposure to number of reported
security policy violations in the previous 12 months.

• Description: measures the number of reported security policy violations in the
previous period.

• Question: what is the number of reported security policy violations in the previous
12 months?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: NRSPV is calculated by counting those numbers of reported security
policy violations in the previous period: 12 month’s.

NRSPV = Count(objects)

• Units: numbers of objects

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NRSPV values should trend higher over time. It would be ideal to
have known to the number of reported security policy violations in the previous
12 months.

• Sources: security management systems will provide information on which systems
were identified with security policy violations.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(objects) < 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 138

Id: 1.1.2 - Metric Name: Number of Enforcement Actions Taken Against
Policy Violations in the previous 12 months (NESTSPV)

• Objective: measures the organization’s relative exposure to number of enforcement
actions taken against policy violations in the previous 12 months (NESTSPV).

• Description: measures the number of enforcement actions taken against policy
violations in the previous 12 months.

• Question: what is the number of enforcement actions taken against policy viola-
tions in the previous 12 months?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: NESTSPV is calculated by counting those numbers of enforcement ac-
tions taken against policy violations in the previous 12 month’s.

NESTSPV = Count(objects)

• Units: numbers of objects

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NESTSPV values should trend higher over time. It would be ideal to
have known to the numbers of enforcement actions taken against policy violations
in the previous 12 months.

• Sources: security management systems will provide information on which systems
were identified with actions taken against policy violations.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(objects) < 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 139

Id: 1.2.1 - Metric Name: Number of Documents that Make Up the corporate
Security Policy (NDMUSP)

• Objective: measures the organization’s relative exposure to number of documents
that make up the corporate security policy (NDMUSP).

• Description: measures the number of documents that make up the corporate se-
curity policy.

• Question: what is the number of documents that make up the corporate security
policy?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: NDMUSP is calculated by counting those documents that make up the
corporate security policy.

NESTSPV = Count(objects)

• Units: numbers of objects.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NDMUSP values should trend higher over time. It would be ideal to have
known to the numbers of enforcement actions taken against policy violations in the
previous 12 months.

• Sources: security management systems will provide information on which systems
were identified that make up the corporate security policy.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(objects) < 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 140

Id: 1.2.2 - Metric Name: Format(s) of Security Policy Documents (FSPD)

• Objective: measures the organization’s relative exposure to number of format(s)
of security policy documents (FSPD).

• Description: measures the number of format(s) of security policy documents.

• Question: what is the number of format(s) of security policy documents?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: FSPD is calculated by counting number of format(s) of security policy
documents.

NESTSPV = Count(objects)

• Units: numbers of formats.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: FSPD values should trend higher over time. It would be ideal to have
known to the number of format(s) of security policy documents.

• Sources: security management systems will provide information on which systems
were identified with format(s) of security policy documents.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(objects) < 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 141

Id: 1.2.3 - Metric Name: Location(s) of security policy documents (LSPD)

• Objective: measures the organization’s relative exposure to number of location(s)
of security policy documents (content management system, static web page, three-
ring binder).

• Description: measures the number of location(s) of security policy documents.

• Question: what is the number of location(s) of security policy documents?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: LSPD is calculated by counting number of location(s) of security policy
documents.

LSPD = Count(objects)

• Units: numbers of formats.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: LSPD values should trend higher over time. It would be ideal to have
known to the number of location(s) of security policy documents.

• Sources: security management systems will provide information on which systems
were identified with location(s) of security policy documents.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(objects) < 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 142

Id: 1.2.4 - Metric Name: Types of Policy Acknowledgement Mechanisms
(TPAM)

• Objective: measures the organization’s relative exposure to number of types of pol-
icy acknowledgement mechanisms (e-mail notification of users, electronic acknowl-
edgement of policy access or review, hard copy signoff sheet).

• Description: measures the number of types of policy acknowledgement mecha-
nisms.

• Question: what is the number of types of policy acknowledgement mechanisms?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: TPAM is calculated by counting number of types of policy acknowledge-
ment mechanisms.

TPAM = Count(objects)

• Units: numbers of formats.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: TPAM values should trend higher over time. It would be ideal to have
known to the number of types of policy acknowledgement mechanisms.

• Sources: security management systems will provide information on which systems
were identified with types of policy acknowledgement mechanisms.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(objects) < 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 143

Id: 1.2.5 -Metric Name: Length of Time Since the Last Security Policy Review
By Management (LTSLSPRBM)

• Objective: measures the organization’s relative exposure to length of time since
the last security policy review by management.

• Description: measures the length of time since the last security policy review by
management.

• Question: what is the Length of time since the last security policy review by
management?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: LSPD is calculated by the subtracting the last Date of Review from the
Date of Review.

LTSLSPRBM = (Date_of_Reviewn − Date_of_Reviewn−1)

• Units: numbers of hours, days, months, years.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: LSPD values should trend lower over time. It would be ideal to have
known to the length of time since the last security policy review by management.

• Sources: security management systems will provide information on which systems
were identified the length of time since the last security policy review by manage-
ment.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(objects) < 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 144

Id: 1.3.1 - Metric Name: Ratio of Employee Job Descriptions That Specify
Responsibility for Following the Security Policy (REJDTSRFSP)

• Objective: measures the organization’s relative exposure to ratio of employee job
descriptions that specify responsibility for following the security policy.

• Description: measures the ratio of employee job descriptions that specify respon-
sibility for following the security policy.

• Question: what is the ratio of employee job descriptions that specify responsibility
for following the security policy?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: REJDTSRFSP is calculated by dividing the number of employee job
descriptions that specify responsibility for following the security policy by Jobs
Total.

REJDTSRFSP =
Count(Jobs_Descriptions)

Count(Jobs_Total)
∗ 100

• Units: ratio of employee job descriptions that specify responsibility for following
the security policy.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: REJDTSRFSP values should trend higher over time. It would be ideal
to have known to the ratio of employee job descriptions that specify responsibility
for following the security policy.

• Sources: security management systems will provide information on which systems
were identified the ratio of employee job descriptions that specify responsibility for
following the security policy.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(objects) < 0.

• References: [Silva et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 145

Id: 1.3.2 - Metric Name: Number of Security Policy Awareness or Training
Activities Conducted in the Previous 12 months (NSPATACP)

• Objective: measures the organization’s relative exposure to number of security
policy awareness or training activities conducted in the previous period.

• Description: measures the number of security policy awareness or training activi-
ties conducted in the previous period.

• Question: what is the number of security policy awareness or training activities
conducted in the previous 12 months?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: NSPATACP is calculated by counting number of security policy aware-
ness or training activities conducted in the previous period.

NSPATACP = Count(Activities)

• Units: number of security activities.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NSPATACP values should trend higher over time. It would be ideal
to have known to the number of security policy awareness or training activities
conducted in the previous period.

• Sources: security management systems will provide information on which systems
were identified the number of security policy awareness or training activities con-
ducted in the previous 12 months.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(objects) < 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 146

Id: 1.3.3 - Metric Name: Ratio of Employees Who Have Formally Acknowl-
edged the Security Policy in the previous 12 months (REWHFASP)

• Objective: measures the organization’s relative exposure to ratio of employees who
have formally acknowledged the security policy in the previous period.

• Description: measures the ratio of employees who have formally acknowledged the
security policy in the previous period.

• Question: what is the ratio of employees who have formally acknowledged the
security policy in the previous 12 months?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: REWHFASP is calculated by dividing the number of employees acknowl-
edged the security policy in the previous 12 months by Employees Total.

REWHFASP =
Count(Employees_Acknowledged)

Count(Employees_Total)
∗ 100

• Units: ratio of employees who have formally acknowledged the security policy in
the previous period.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: REWHFASP values should trend higher over time. It would be ideal
to have known to the number of security policy awareness or training activities
conducted in the previous period.

• Sources: security management systems will provide information on which systems
were identified the ratio of employees who have formally acknowledged the security
policy in the previous 12 months.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(Employees_Acknowledged) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 147

Id: 1.3.4 - Metric Name: Results of a user survey asking How Familiar Users
Are with the Policy is judged to be (HFUAP)

• Objective: measures the organization’s relative exposure to results of a user survey
asking how familiar users are with the policy is judged to be.

• Description: measures the results of a user survey asking how familiar users are
with the policy is judged to be.

• Question: what is the results of a user survey asking how familiar users are with
the policy is judged to be?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: HFUAP is calculated by dividing the number of employees survey asking
how familiar users are with the policy is judged to be by Employees Total.

REWHFASP =
Count(Employees_Acknowledged)

Count(Employees_Total)
∗ 100

• Units: results of how familiar users are with the policy is judged to be.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: HFUAP values should trend higher over time. It would be ideal to have
known to the number of user survey asking how familiar users are with the policy
is judged to be.

• Sources: security management systems will provide information on which systems
were identified the results of a user survey asking how familiar users are with the
policy is judged to be

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(Employees_Acknowledged) ≤ 0.

• References: [Silva et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 148

Id: 1.3.5 - Metric Name: Results of a user survey asking How Appropriate
and Usable the Policy is judged to be (HAUP)

• Objective: measures the organization’s relative exposure to results of a user survey
asking how appropriate and usable the policy is judged to be.

• Description: measures the results of a user survey asking how appropriate and
usable the policy is judged to be.

• Question: what is the results of a user survey asking how appropriate and usable
the policy is judged to be?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: HAUP is calculated by dividing the number of employees survey asking
how appropriate and usable the policy is judged to be by Employees Total.

REWHFASP =
Count(Employees_Acknowledged)

Count(Employees_Total)
∗ 100

• Units: ratio of how appropriate and usable the policy is judged to be.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: HAUP values should trend higher over time. It would be ideal to have
known to the results of a user survey asking how appropriate and usable the policy
is judged to be.

• Sources: security management systems will provide information on which systems
were identified the results of a user survey asking how appropriate and usable the
policy is judged to be.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(Employees_Acknowledged) ≤ 0.

• References: [Silva et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 149

Id: 1.4.1 - Metric Name: Increase in Security Policy Enforcement Actions
Over Baseline (ISPEAOB)

• Objective: measures the organization’s relative exposure to increase in security
policy enforcement actions over baseline (expressed as either a raw count or a per-
centage, as appropriate).

• Description: measures the results of increase in security policy enforcement actions
over baseline.

• Question: what is the results of increase in security policy enforcement actions
over baseline?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: ISPEAOB is calculated by adding the difference of the number of secu-
rity policy enforcement actions and baseline to the n security requirements of the
baseline.

ISPEAOB =
∑N

i=1(Actionsi − BaseLinei)

• Units: number of the security policy enforcement actions over baseline.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: ISPEAOB values should trend higher over time. It would be ideal to have
known to the increase in security policy enforcement actions over baseline.

• Sources: security management systems will provide information on which systems
were identified the increase in security policy enforcement actions over baseline.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: BaseLinei = 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 150

Id: 1.4.2 - Metric Name: Increase in awareness of corporate security policy
(IACSP)

• Objective: measures the organization’s relative exposure to increase in awareness
of corporate security policy (number of awareness activities, number of user ac-
knowledgements of the policy).

• Description: measures the results of increase in awareness of corporate security
policy.

• Question: what is the results of increase in awareness of corporate security policy?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: IACSP is calculated by counting the to increase in awareness of corporate
security policy.

IACSP = Count(Actions)

• Units: number of the increase in awareness of corporate security policy.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: IACSP values should trend higher over time. It would be ideal to have
known to the increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the increase in awareness of corporate security policy.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(Actions) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 151

Id: 1.4.3 - Metric Name: Increase in efficiency of the security policy process
(IESPP)

• Objective: measures the organization’s relative exposure to increase in efficiency
of the security policy process (increased policy reviews, reduction in the number of
locations).

• Description: measures the results of increase in awareness of corporate security
policy.

• Question: what is the results of increase in awareness of corporate security policy?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: IESPP is calculated by counting the policy reviews.

IESPP = Count(Reviews)

• Units: number of the policy reviews.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: IESPP values should trend higher over time. It would be ideal to have
known to the increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the increase in efficiency of the security policy process.

• Usage: it is important in the decision-making process of the end user, but it is
more important for industries and integrators.

• Limitations: it can not be: Count(Actions) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 152

Id: 1.4.4 - Metric Name: Improved response from surveyed users on policy
familiarity and usability (IRSUPFU)

• Objective: measures the organization’s relative exposure to increase in awareness
of corporate security policy (number of awareness activities, number of user ac-
knowledgements of the policy).

• Description: measures the results of increase in awareness of corporate security
policy.

• Question: what is the results of increase in awareness of corporate security policy?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: IRSUPFU is calculated by counting the number of awareness activities.

IRSUPFU = Count(Activities)

• Units: number of the awareness activities.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: IRSUPFU values should trend higher over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified that improved response from surveyed users on policy familiarity and
usability.

• Usage: it is important in the decision-making process of the end user, but it is more
important for industries and integrators. Without the proper data, a manufacturer’s
piece of equipment would be immediately disqualified.

• Limitations: it can not be: Count(Actions) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 153

Id: 2.1.1 - Metric Name: Mean Time To Failure (MTTF)

• Objective: the goal of this project is to understand security impacts on system.

• Description: measures the availability by comparing security-related downtime to
general availability from the perspective of the security team.

• Question: How often is the system down due to failure?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: FD is calculated by the sum of the operational periods divided by the
number of observed failures. The formula is:

MTTF =
∑

(Time_of_Down_timen − Time_of_Up_Timen−1)

Count(Failures)

• Units: hours per failures.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: FD values should trend higher over time. It would be ideal to have known
to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system. Without the proper data, a manu-
facturer’s piece of equipment would be immediately disqualified.

• Usage: Mean Time To Failure (MTTF) is a reliability term used to provide the
amount of failures per million hours for a product. This is the most common in-
quiry about a product’s life span, and is important in the decision-making process
of the end user. MTBF is more important for industries and integrators than for
consumers. Most consumers are price driven and will not take MTBF into consid-
eration, nor is the data often readily available. On the other hand, when equipment
such as media converters or switches must be installed into mission critical applica-
tions, MTBF becomes very important. In addition, MTTF may be an expected line
item in an RFQ (Request For Quote). Without the proper data, a manufacturer’s
piece of equipment would be immediately disqualified.

• Limitations: it can not be:
Time_of_Down_timen = Time_of_Up_Timen−1.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 154

Id: 2.1.2 - Metric Name: Mean Time Between Failures (MTBF)

• Objective: the goal of this project is to understand security impacts on system.

• Description: measures the availability by comparing security-related downtime to
general availability from the perspective of the security team.

• Question: How often is the system down due to failure?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: MTBF is calculated by the sum of the operational periods divided by
the number of observed failures. The formula is:

MTBF =
∑

(Date_of_Down_time − Date_of_Up_Time)

Count(Failures)

• Units: hours per failures.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTBF values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: Mean Time Between Failure (MTBF) is a reliability term used to provide
the amount of failures per million hours for a product. This is the most common
inquiry about a product’s life span, and is important in the decision-making process
of the end user. MTBF is more important for industries and integrators than for
consumers. Most consumers are price driven and will not take MTBF into consid-
eration, nor is the data often readily available. On the other hand, when equipment
such as media converters or switches must be installed into mission critical applica-
tions, MTBF becomes very important. In addition, MTBF may be an expected line
item in an RFQ (Request For Quote). Without the proper data, a manufacturer’s
piece of equipment would be immediately disqualified.

• Limitations: it can not be:
Date_of_Down_time = Date_of_Up_Time.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 155

Id: 2.1.3 - Metric Name: Mean Time To Recovery (MTTRc)

• Objective: is the average time that a device will take to recover from any failure.
Up to whole systems which have to be repaired or replaced.

• Description: measures the availability by comparing security-related downtime to
general availability from the perspective of the security team.

• Question: How often is the system down between recoveries?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: MTTR is calculated by the sum of the operational periods divided by
the number of observed failures. The formula is:

MTTRc =
∑

(Date_of_Discovered_Failure − Date_of_Return_Operation)

Count(Failures)

• Units: hours per recovery.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTTR values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: Mean Time To Recovery (MTTRc) is the time needed to repair a failed
hardware module. In an operational system, repair generally means replacing a
failed hardware part. Thus, hardware MTTRc could be viewed as mean time to
replace a failed hardware module. Taking too long to repair a product drives up the
cost of the installation in the long run, due to down time until the new part arrives
and the possible window of time required to schedule the installation. To avoid
MTTRc, many companies purchase spare products so that a replacement can be
installed quickly. Generally, however, customers will inquire about the turn-around
time of repairing a product, and indirectly, that can fall into the MTTRc category.

• Limitations: it can not be:
Date_of_Discovered_Failure = Date_of_Return_Operation.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 156

Id: 2.1.4 - Metric Name: Mean Time To Repair (MTTRp)

• Objective: is a basic measure of the maintainability of repairable items. It repre-
sents the average time required to repair a failed component or device.

• Description: measures the availability by comparing security-related downtime to
general availability from the perspective of the security team.

• Question: How often is the system down between repair?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: MTTRp is calculated by the sum of the operational periods divided by
the number of observed failures. The formula is:

MTTRp =
∑

(Date_of_Return_Repair − Date_of_Begin_Operation)

Count(Failures)

• Units: hours per repair.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTTRp values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: Mean Time To Repair (MTTRp) is the time needed to repair a failed
hardware module. In an operational system, repair generally means replacing a
failed hardware part. Thus, hardware MTTRp could be viewed as mean time to
replace a failed hardware module. Taking too long to repair a product drives up the
cost of the installation in the long run, due to down time until the new part arrives
and the possible window of time required to schedule the installation. To avoid
MTTRp, many companies purchase spare products so that a replacement can be
installed quickly. Generally, however, customers will inquire about the turn-around
time of repairing a product, and indirectly, that can fall into the MTTRp category.

• Limitations: it can not be:
Date_of_Return_Repair = Date_of_Begin_Operation.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 157

Id: 2.1.5 - Metric Name: Mean To System Availability (MTSA)

• Objective: The goal of this project is to understand security impacts on system.

• Description: measures the availability by comparing security-related downtime to
general availability from the perspective of the security team.

• Question: What is system availability?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: Once MTBF and MTTRp are known, the availability of the component
can be calculated using the following formula:

MTSA = MTBF
(MTBF + MTTRp)

∗ 100

• Units: percent system availability.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTSA values should trend higher over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: Availability is the probability that a system will work as required when
required during the period of a mission.

• Limitations: it can not be: MTBF = 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 158

Id: 2.2.1 - Metric Name: Duration of the Preventive Maintenance (DPM)

• Objective: the goal of this project is to understand duration of the preventive
maintenance on system.

• Description: measures the duration of the preventive maintenance from the per-
spective of the security team.

• Question: How often is the system down due to preventive maintenance?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: DPM is calculated by the sum of the operational periods divided by the
number of observed failures. The formula is:

DPM =
∑

(Time_of_End_Maintenance − Time_of_Begin_Maintenance)

Count(Maintenances)

• Units: hours per maintenances.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: DPM values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: The primary goal of maintenance is to avoid or mitigate the consequences of
failure of equipment. This may be by preventing the failure before it actually occurs
which Planned Maintenance and Condition Based Maintenance help to achieve. It
is designed to preserve and restore equipment reliability by replacing worn compo-
nents before they actually fail. Preventive maintenance activities include partial or
complete overhauls at specified periods, oil changes, lubrication, minor adjustments,
and so on. In addition, workers can record equipment deterioration so they know
to replace or repair worn parts before they cause system failure.

• Limitations: it can not be:
Time_of_End_Maintenance = Time_of_Begin_Maintenance.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 159

Id: 2.2.2 - Metric Name: Duration of the Corrective Maintenance (DCM)

• Objective: the goal of this project is to understand duration of the corrective
maintenance on system.

• Description: measures the duration of the preventive maintenance from the per-
spective of the security team.

• Question: How often is the system down due to corrective maintenance?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: DCM is calculated by the sum of the operational periods divided by the
number of observed maintenances. The formula is:

DCM =
∑

(Time_of_End_Maintenance − Time_of_Begin_Maintenance)

Count(Maintenances)

• Units: hours per maintenances.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: DCM values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: The primary goal of corrective maintenance is to detect, isolate, and rectify
a fault so that the failed equipment, machine, or system can be restored to its normal
operable state.

• Limitations: it can not be:
Time_of_End_Maintenance = Time_of_Begin_Maintenance.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 160

Id: 2.2.2 - Metric Name: Mean Time Between Maintenance (MTBM)

• Objective: the goal of this project is to understand duration of the corrective and
preventive maintenances on system.

• Description: measures the duration of the corrective and preventive maintenances
from the perspective of the security team.

• Question: How often is the system down due to maintenance?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: MTBM is calculated by the sum of the operational periods divided by
the number of observed maintenances. The formula is:

MTBM =
∑

(Time_of_End_Maintenance − Time_of_Begin_Maintenance)

Count(Maintenances)

• Units: hours per maintenances.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTBM values should trend higher over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: The primary goal of corrective and preventive maintenance is to detect,
isolate, and rectify a fault so that the failed equipment, machine, or system can be
restored to its normal operable state.

• Limitations: it can not be:
Time_of_End_Maintenance = Time_of_Begin_Maintenance.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 161

Id: 2.3.1 -Metric Name: Number of Security Events in a time period, duration
of event remediation (NSEER)

• Objective: measures the organization’s relative exposure to number of security
events in a time period, duration of event remediation.

• Description: measures the results to number of security events in a time period,
duration of event remediation.

• Question: what is the number of security events in a time period, duration of event
remediation?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: NSEER is calculated by counting the number of security events in a time
period, duration of event remediation.

NSEER = Count(Activities)

• Units: number of security events.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NSEER values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: security management systems will provide information on which systems
were identified the security impacts on system. Without the proper data, a manu-
facturer’s piece of software/hardware would be immediately disqualified.

• Limitations: it can not be: Count(Activities) ≤ 0.

• References: [Silva et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 162

Id: 3.1.1 - Metric Name: Total number of registered hosts (TRH)

• Objective: measures the organization’s relative exposure to number of registered
hosts in a time period.

• Description: measures the results to number of registered hosts in a time period.

• Question: what is the number of registered hosts in a time period?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: TRH is calculated by counting the number of registered hosts in a time
period.

TRH = Count(Registered_hosts)

• Units: number of registered hosts.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: TRH values should trend higher over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: security management systems will provide information on which systems
were identified the security impacts on system. Without the proper data, a manu-
facturer’s piece of software/hardware would be immediately disqualified.

• Limitations: it can not be: Count(Registered_hosts) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 163

Id: 3.1.2 - Metric Name: Total number of unregistered hosts (TUH)

• Objective: measures the organization’s relative exposure to number of unregistered
hosts in a time period.

• Description: measures the results to number of unregistered hosts in a time period.

• Question: what is the number of unregistered hosts in a time period?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: TUH is calculated by counting the number of unregistered hosts in a
time period.

TUH = Count(Unregistered_hosts)

• Units: number of unregistered hosts.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: TUH values should trend lower over time. It would be ideal to have known
to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: security management systems will provide information on which systems
were identified the security impacts on system. Without the proper data, a manu-
facturer’s piece of software/hardware would be immediately disqualified.

• Limitations: it can not be: Count(Unregistered_hosts) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 164

Id: 3.1.3 -Metric Name: Total number of registered hosts vulnerable (TRHV)

• Objective: measures the organization’s relative exposure to number of registered
hosts vulnerable in a time period.

• Description: measures the results to number of registered hosts vulnerable in a
time period.

• Question: what is the number of registered hosts vulnerable in a time period?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: TRHV is calculated by counting the number of registered hosts vulner-
able in a time period.

TRHV = Count(Registered_hosts_vulnerable)

• Units: number of registered hosts vulnerable.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: TRHV values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: security management systems will provide information on which systems
were identified the security impacts on system. Without the proper data, a manu-
facturer’s piece of software/hardware would be immediately disqualified.

• Limitations: it can not be: Count(Registered_hosts_vulnerable) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 165

Id: 3.1.4 - Metric Name: Total number of unregistered hosts vulnerable
(TUHV)

• Objective: measures the organization’s relative exposure to number of unregistered
hosts vulnerable in a time period.

• Description: measures the results to number of unregistered hosts vulnerable in a
time period.

• Question: what is the number of unregistered hosts vulnerable in a time period?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: TUHV is calculated by counting the number of unregistered hosts vul-
nerable in a time period.

TUHV = Count(Unregistered_hosts_vulnerable)

• Units: number of unregistered hosts vulnerable.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: TUHV values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: security management systems will provide information on which systems
were identified the security impacts on system. Without the proper data, a manu-
facturer’s piece of software/hardware would be immediately disqualified.

• Limitations: it can not be: Count(Unregistered_hosts_vulnerable) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 166

Id: 3.1.5 - Metric Name: Percentage of registered hosts vulnerable (PRHV)

• Objective: measures the organization’s relative exposure to percentage of regis-
tered hosts vulnerable in a time period.

• Description: measures the results to percentage of registered hosts vulnerable in
a time period.

• Question: what is the percentage of registered hosts vulnerable in a time period?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: PRHV is calculated by the sum of the registered hosts vulnerable divided
by the number of Hosts. The formula is:

PRHV =
Count(Registered_hosts_vulnerable)

Count(Hosts)
∗ 100

• Units: percentage of registered hosts vulnerable.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: PRHV values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: security management systems will provide information on which systems
were identified the security impacts on system. Without the proper data, a manu-
facturer’s piece of software/hardware would be immediately disqualified.

• Limitations: it can not be: Count(Registered_hosts_vulnerable) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 167

Id: 3.1.6 -Metric Name: Percentage of unregistered hosts vulnerable (PUHV)

• Objective: measures the organization’s relative exposure to percentage of unregis-
tered hosts vulnerable in a time period.

• Description: measures the results to percentage of unregistered hosts vulnerable
in a time period.

• Question: what is the percentage of unregistered hosts vulnerable in a time period?

• Answer: a positive integer value that is greater than or equal to zero.

• Formula: PUHV is calculated by the sum of the unregistered hosts vulnerable
divided by the number of Hosts. The formula is:

PUHV =
Count(Unregistered_hosts_vulnerable)

Count(Hosts)
∗ 100

• Units: percentage of unregistered hosts vulnerable.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: PUHV values should trend lower over time. It would be ideal to have
known to increase in awareness of corporate security policy.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: security management systems will provide information on which systems
were identified the security impacts on system. Without the proper data, a manu-
facturer’s piece of software/hardware would be immediately disqualified.

• Limitations: it can not be: Count(Unregistered_hosts_vulnerable) ≤ 0.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 168

Id: 3.2.1 - Metric Name: Mean Cost To Mitigate Vulnerabilities (MCTMV)

• Objective: this defines a metric for measuring the mean effort required to miti-
gate an identified vulnerability that can be remedied. The metric is expressed in
the context of a vulnerability management process, with the assumption that the
organizations is scanning for known vulnerabilities, a formal system (i.e. change
management and electronic ticketing system) is used to track activities to mitigate
known vulnerabilities, and there is a known remedy for the vulnerability. The metric
is useful where a single vulnerability or remedy (no matter how many systems are
affected) is expressed as a single change ticket or as one change ticket per affected
network node.

• Description: The goal of this metric is to understand the effort required for vul-
nerability remediation activities. Risk management decisions can take into account
the efficiency of vulnerability remediation and make more informed decisions around
vulnerability policies, SLAs, and resource allocation in the IT environment.

• Question: what is the average (mean) cost to the organization to mitigate an
identified vulnerability during the given period?

• Answer: A positive integer value that is greater than or equal to zero. A value of
“0.0” indicates there were no measured costs to the organization.

• Formula: this metric is calculated by summing the total cost to mitigate each
vulnerability and dividing it by the total number of mitigated vulnerabilities. This
count should also be done for each severity value (Low, Medium, and High):

MCTMV =
∑

(Person_Hours_to_Mitigate ∗ Hourly_Rate)+Other_Mitigation_Costs

Count(Mitigated_Vulnerabilities)

• Units: hours per vulnerability

• Frequency: monthly, annually.

• Targets: ideally, all vulnerabilities would be remedied by a automated vulnerability
remediation system, and the mean cost to remediate would be zero. In practice a
target can be set based on the expected loss budget determined by risk assessments
processes.

• Sources: vulnerability tracking systems will provide vulnerability data. Cost data
can come from management estimates, ticket tracking systems, and capital and
services budgets.

• Usage: Mean-Time To Mitigate Vulnerabilities is a type of vulnerability manage-
ment metric and relies on the common definition of “vulnerability” as defined in
the Glossary. Due to the number of vulnerabilities and exposures found by most
scanning tools, this metric should generally be calculated for “High” and “Medium”
severity vulnerabilities. Combined with the number of identified vulnerabilities this
metric can provide visibility into the total cost and effort required to remediate and

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 169

manage the known vulnerabilities in the organization. Optimal conditions would
reflect a low value in the metric. The lower the value the more efficient and cheaply
the organization is able to mitigate identified vulnerabilities. There may be a direct
correlation between the number of un-mitigated vulnerabilities and the number of
security incidents. Since vulnerabilities may not be addressed due to cost concerns,
an organization with a lower average remediation cost may be able to mitigate more
vulnerabilities.

• Limitations: Note that this assumes:

– Effort is tracked for vulnerability remediation;

– Tickets are closed when the change is known to have mitigated the vulnerabil-
ity;

– Vulnerabilities can be tracked between scans on a vulnerability instance per-
host basis;

– It is not including in-progress tickets, vulnerabilities that have not been miti-
gated, or vulnerabilities that do not have a resolution.

• References: [ISO/IEC-27002:2005, 2005, NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 170

Id: 3.2.2 - Metric Name: Mean Time To Mitigate Vulnerabilities (MTTMV)

• Objective: Mean-Time To Mitigate Vulnerabilities (MTTMV) measures the av-
erage amount of time required to mitigate an identified vulnerability. This metric
indicates the performance of the organization in reacting to vulnerabilities identified
in the environment. It only measures the time average times for explicitly mitigated
vulnerabilities, and not mean time to mitigate any vulnerability, or account for
vulnerabilities that no longer appear in scanning activities.

• Description: Mean-Time To Mitigate Vulnerabilities measures the average time
taken to mitigate vulnerabilities identified in an organization’s technologies. The
vulnerability management processes consists of the identification and remediation of
known vulnerabilities in an organization’s environment. This metric is an indicator
of the performance of the organization in addressing identified vulnerabilities. The
less time required to mitigate a vulnerability the more likely an organization can
react effectively to reduce the risk of exploitation of vulnerabilities. It is important
to not that only data from vulnerabilities explicitly mitigated are is included in this
metric result. The metric result is the mean time to mitigate vulnerabilities that are
actively addressed during the metric time period, and not a mean time to mitigate
based on the time for all known vulnerabilities to be mitigated.

• Question: how long does it take the organization to mitigate a vulnerability?

• Answer: a positive floating-point value that is greater than or equal to zero. A
value of “0” indicates that vulnerabilities were instantaneously mitigated.

• Formula: Mean-Time To Mitigate Vulnerabilities is calculated by determining the
number of hours between the date of detection and the Date of Mitigation for each
identified vulnerability instance in the current scope, for example, by time period,
severity or business unit. These results are then averaged across the number of
mitigated vulnerabilities in the current scope:

MTTMV =
∑

(Date_of_Mitigation − Date_of_Detection)

Count(Mitigated_Vulnerabilities)

• Units: hours per vulnerability

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTTMV values should trend lower over time. Lower levels of MTTMV
are preferred. Most organizations put mitigation plans through test and approval
cycles prior to implementation. Generally, the target time for MTTMV will be a
function of the severity of the vulnerability and business criticality of the technology.
Because of the lack of experiential data from the field, no consensus on the range of
acceptable goal values for Mean Time to Mitigate Vulnerabilities exists.

• Sources: vulnerability management systems will provide information on which sys-
tems were identified with severe vulnerabilities.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 171

• Usage: Mean-Time To Mitigate Vulnerabilities is a type of vulnerability manage-
ment metric and relies on the common definition of “vulnerability” as defined in
the Glossary. Due to the number of vulnerabilities and exposures found by most
scanning tools, this metric should generally be calculated for “High” and “Medium”
severity vulnerabilities. Combined with the number of identified vulnerabilities this
metric can provide visibility into the time and effort required to manage the known
vulnerabilities in the organization. Optimal conditions would reflect a low value in
the metric. The lower the value the more quickly the organization is able to react to
and mitigate identified vulnerabilities. Since many attacks are designed to exploit
known vulnerabilities there may be a direct correlation between a lower time to mit-
igate vulnerabilities and the number of security incidents. MTTV can be calculated
over time, typically per-month. To gain insight into the relative performance and
risk , this metric can be calculated for vulnerabilities with differing severity levels, as
well as calculated for cross-sections of the organization such as individual business
units or geographies.

• Limitations: only data from mitigated vulnerabilities are included in this calcula-
tion. Therefore it is an indicator of the organization’s ability to mitigate vulnerabil-
ities as they are identified, but not necessarily a true representation of the average
time taken to mitigate all vulnerabilities that may exist in the organization’s envi-
ronment. Other indicators of the scale of scope of unmitigated vulnerabilities should
also be used to assess the performance of the vulnerability management function.
Mitigation effort can vary depending on the scope and depth of the mitigation solu-
tion, modification of firewall rules or other changes to the environment may be less
effort than directly addressing vulnerabilities in an application’s code. It is possible
that the vulnerabilities that are easier to mitigate are the ones completed in the
metric scope, and the remaining vulnerabilities represent the most challenging to
mitigate. Therefore the metric result could be biased low compared the to mean
time to mitigate remaining known vulnerabilities.

• References: [ISO/IEC-27002:2005, 2005, NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 172

Id: 3.2.3 - Metric Name: Number of Known Vulnerability Instances (NKVI)

• Objective: Number of Known Vulnerability Instances (NKVI) measures the total
number of instances of known vulnerabilities within an organization among scanned
assets based on the scanning process at a point in time.

• Description: Number of Known Vulnerability Instances (NKVI) measures the
number of known vulnerabilities that have been found on organization’s systems
during the vulnerability identification process.

• Question: how many open vulnerability instances were found during the scanning
process?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0” indicates that no instances of known vulnerabilities were found.

• Formula: this metric is calculated by counting the number of open vulnerability
instances identified. This count should also be done for each severity value (Low,
Medium, and High):

NKVI = Count(Vulnerability.status = Open)

• Units: number of vulnerabilities

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NKVI values should trend lower over time. In the ideal case, there would
be no known vulnerability instances on any technologies in the organization. Be-
cause of the lack of experiential data from the field, no consensus on the range of
acceptable goal values for Number of Known Vulnerability Instances exists.

• Sources: vulnerability management systems will provide information on which sys-
tems were identified with severe vulnerabilities.

• Usage: by understanding the number of instances of known exploitable vulnerabil-
ities, the organization can assess relative risk levels across the organization of time,
estimate and management remediation efforts, and correlate and predict the volume
of security incidents. The vulnerability scanning process can consist of a number of
vulnerability scanning activities occurring over a set time period in cases where mul-
tiple scans are necessary to cover all of an organization’s technologies or potential
vulnerability types. This metric should be used in conjunction with other vulnera-
bility metrics to provide context around the magnitude of known vulnerabilities in
an organization. Since other metrics are expressed as ratios, this metric quantifies
the volume of known vulnerabilities the organization is managing. Combined with
the mean time to mitigate vulnerabilities this metric can provide visibility into the
time and effort required to manage the known vulnerabilities in the organization.
When comparing performance over time and between organizations, this metric can
be normalized across the total number of systems. This and additional vulnerability
metrics are an area noted for further development by the CIS metrics community.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 173

• Limitations: the vulnerability scans may not be comprehensive, instead only at-
tempting to identify a subset of potential vulnerabilities. Different scanning sessions
and products can be checking for different numbers and types of vulnerabilities,
some may consist of thousands of checks for vulnerabilities, while other products
or sessions may only check for hundreds of known vulnerabilities. The scope of
the scanning effort may not be complete and may also not be representative of the
organizations overall systems. Those systems out of scope may potentially be areas
of risk. In some cases key servers or production systems may be excluded from
scanning activities. This metric only reports on known vulnerabilities. This does
not mean that there are no “unknown” vulnerabilities. Severe vulnerabilities that
the organization is unaware of can exist, and potentially be exploited, for years
before any public disclosure may occur. When reporting a total number of vulnera-
bilities, severe vulnerabilities are considered equal to informational vulnerabilities.
Reporting this metric by the dimension of Vulnerability Severity will provide more
actionable information.

• References: [ISO/IEC-27002:2005, 2005, NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 174

Id: 3.2.4 - Metric Name: Percent of Systems Without Known Severe Vulner-
abilities (PSWKSV)

• Objective: Percent of Systems Without Known Severe Vulnerabilities (PSWKSV)
measures the organization’s relative exposure to known severe vulnerabilities. The
metric evaluates the percentage of systems scanned that do not have any known
high severity vulnerabilities.

• Description: Percent of Systems Without Known Severe Vulnerabilities
(PSWKSV) measures the percentage of systems that when checked were not found
to have any known high severity vulnerabilities during a vulnerability scan. Vulner-
abilities are defined as “High” severity if they have a CVSS base score of [7.0-10.0].
Since vulnerability management involves both the identification of new severe vul-
nerabilities and the remediation of known severe vulnerabilities, the percentage of
systems without known severe vulnerabilities will vary over time. Organizations can
use this metric to gauge their relative level of exposure to exploits and serves as a
potential indicator of expected levels of security incidents (and therefore impacts
on the organization). This severity threshold is important, as there are numerous
informational, local, and exposure vulnerabilities that can be detected that are not
necessarily material to the organization’s risk profile. Managers generally will want
to reduce the level of noise to focus on the greater risks first. This metric can also
be calculated for subsets of systems, such as by asset criticality of business unit.

• Question: of the systems scanned, what percentage does not have any known severe
vulnerabilities?

• Answer: a positive integer value that is greater than or equal to zero. A value
of “100%” indicates that none of the organization’s systems have any known high
severity vulnerabilities.

• Formula: Percent of Systems Without Known Severe Vulnerabilities is calculated
by counting those systems that have no open high severity level vulnerabilities (Vul-
nerability Status != “Open” & CVSS Base Score >= 7.0). This result is then divided
by the total number of systems in the scanning scope.

PSWKSV =
Count(Systems_Without_Known_Severe_Vulnerabilities)

Count(Scanned_Systems)
∗ 100

• Units: percentage of systems

• Frequency: weekly, monthly, quarterly, annually.

• Targets: PSWKSV values should trend lower over time. It would be ideal to have
no known severe vulnerabilities on systems; therefore, an ideal target value would
be 100%. Because of the lack of experiential data from the field, no consensus on
the range of acceptable goal values for Percent of Systems Without Known Severe
Vulnerabilities exists.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 175

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: Percent of Systems Without Known Severe Vulnerabilities is a type of vul-
nerability management metric and relies on the common definition of “vulnerability”
as defined in the Glossary. Due to the number of vulnerabilities and exposures found
by most scanning tools, this metric should be calculated for “High” severity vulner-
abilities. Optimal conditions would reflect a high value in the metric. A value of
100% would indicate that none of the organizations systems are known to possess
severe vulnerabilities. The lower the value, the greater the risk that systems are
exploited. Since many attacks are designed to exploit known severe vulnerabilities
there may be a direct correlation between a higher percentage of vulnerable systems
and the number of security incidents. Percent of Systems Without Known Severe
Vulnerabilities can be calculated over time, typically per-week or permonth. To
gain insight into the relative performance and risk to one business unit over an-
other, the metric may also be calculated for cross-sections of the organization such
as individual business units or geographies.

• Limitations: due to technical or operational incompatibility certain systems may
be excluded from scanning activities while other systems such as laptops may be
intermittently present for network scans. Systems not scanned, even if they possess
severe vulnerabilities will not be included in this metric result. In addition, scanning
activities can vary in depth, completeness, and capabilities. This metric assumes
that systems scanned for vulnerabilities are systems known to and under full man-
agement by the organization. These systems do not include partial or unknown
systems. Future risk metrics may account for these to provide a clearer view of all
system ranges.

• References: [Cichonski et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 176

Id: 3.2.5 - Metric Name: Vulnerability Scan Coverage (VSC)

• Objective: Vulnerability Scan Coverage (VSC) indicates the scope of the orga-
nization’s vulnerability identification process. Scanning of systems known to be
under the organization’s control provides the organization the ability to identify
open known vulnerabilities on their systems. Percentage of systems covered allows
the organization to become aware of areas of exposure and proactively remediate
vulnerabilities before they are exploited.

• Description: Vulnerability Scanning Coverage (VSC) measures the percentage of
the organization’s systems under management that were checked for vulnerabilities
during vulnerability scanning and identification processes. This metric is used to
indicate the scope of vulnerability identification efforts.

• Question: what percentage of the organization’s total systems has been checked
for known vulnerabilities?

• Answer: positive integer value that is greater than or equal to zero but less than
or equal to 100%. A value of? 100%? indicates that all systems are covered by the
vulnerability scanning process.

• Formula: Vulnerability Scanning Coverage is calculated by dividing the total num-
ber of systems scanned by the total number of systems within the metric scope such
as the entire organization:

VSC =
Count(Scanned_Systems)

Count(All_Systems_Within_Organization)
∗ 100

• Units: percentage of systems

• Frequency: weekly, monthly, quarterly, annually.

• Targets: VSC values should trend higher over time. Higher values are obviously
better as it means more systems have been checked for vulnerabilities. A value of
100% means that all the systems are checked in vulnerability scans. For technical
and operational reasons, this number will likely be below the theoretical maximum.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: this metric provides information about how much of the organization’s en-
vironment is checked for known vulnerabilities. Organizations can use this metric
to evaluate their risk position in terms of concentrations of unknown vulnerability
states of systems. In combination with other vulnerability metrics, it provides in-
sight on the organization’s exposure to known vulnerabilities. The results of the
coverage metric indicate the:

– Scope of the vulnerability scanning activities;

– Applicability of other metric results across the organization;

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 177

– Relative amount of information known about the organization’s vulnerability.

• Limitations: due to technical or operational incompatibility certain systems may
be excluded from scanning activities while other systems such as laptops and guest
systems may be intermittently present for network scans, resulting in variability of
metric results. In addition, scanning activities can vary in depth, completeness, and
capability. This metric assumes that systems scanned for vulnerabilities are systems
known to and under full management by the organization. These systems do not
include partial or unknown systems. Future risk metrics may account for these to
provide a clearer view of all system ranges.

• References: [ISO/IEC-27002:2005, 2005, NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 178

Id: 3.3.1 - Metric Name: Vulnerabilities on the Internal Nodes (VIN)

• Objective: Vulnerabilities on the Internal Nodes indicates the scope of the or-
ganization’s vulnerability identification process. Scanning of systems known to be
under the organization’s control provides the organization the ability to identify
open known vulnerabilities on their systems.

• Description: Vulnerabilities on the Internal Nodes measures the percentage of
the organization’s systems under management that were checked for vulnerabilities
during vulnerability scanning and identification processes. This metric is used to
indicate the scope of vulnerability identification efforts.

• Question: how many are vulnerabilities on the Internal Nodes?

• Answer: A positive integer value that is greater than or equal to zero. A value of
“0” indicates that no vulnerabilities on the Internal Nodes were found.

• Formula: Vulnerabilities on the Internal Nodes is calculated by counting the num-
ber of open vulnerability instances on the Internal Nodes identified:

VIN = Count(Vulnerability.status=Open)
Internal_Nodes

∗ 100

• Units: number of vulnerabilities

• Frequency: weekly, monthly, quarterly, annually.

• Targets: VSC values should trend higher over time. Higher values are obviously
better as it means more systems have been checked for vulnerabilities. A value of
100% means that all the systems are checked in vulnerability scans. For technical
and operational reasons, this number will likely be below the theoretical maximum.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: this metric provides information about how much of the organization’s en-
vironment is checked for known vulnerabilities. Organizations can use this metric
to evaluate their risk position in terms of concentrations of unknown vulnerability
states of systems. In combination with other vulnerability metrics, it provides in-
sight on the organization’s exposure to known vulnerabilities. The results of the
coverage metric indicate the:

– Scope of the vulnerability scanning activities;

– Applicability of other metric results across the organization;

– Relative amount of information known about the organization’s vulnerability.

• Limitations: due to technical or operational incompatibility certain systems may
be excluded from scanning activities while other systems such as laptops and guest
systems may be intermittently present for network scans, resulting in variability of

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 179

metric results. In addition, scanning activities can vary in depth, completeness, and
capability. This metric assumes that systems scanned for vulnerabilities are systems
known to and under full management by the organization. These systems do not
include partial or unknown systems. Future risk metrics may account for these to
provide a clearer view of all system ranges.

• References: [ISO/IEC-27002:2005, 2005, NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 180

Id: 3.3.2 - Metric Name: Security vulnerability counts for assessed internal
nodes (SVCAIN)

• Objective: Security vulnerability counts for assessed internal nodes indicates the
scope of the organization’s vulnerability identification process. Scanning of systems
known to be under the organization’s control provides the organization the ability
to identify open known vulnerabilities on their systems.

• Description: Security vulnerability counts for assessed internal nodes from scan-
ning measures the percentage of the organization’s systems under management that
were checked for vulnerabilities during vulnerability scanning and identification pro-
cesses. This metric is used to indicate the scope of vulnerability identification efforts.

• Question: how many are Security vulnerability counts for assessed internal nodes
from scanning?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0” indicates that no Security vulnerability counts for assessed internal nodes from
scanning were found.

• Formula: Security vulnerability counts for assessed internal nodes is calculated by
counting the number of open vulnerability instances on the internal nodes identified:

SVCAIN = Count(Vulnerability.status=Open)
Internal_Nodes

∗ 100

• Units: number of vulnerabilities

• Frequency: weekly, monthly, quarterly, annually.

• Targets: SVCAIN values should trend higher over time. Higher values are obviously
better as it means more systems have been checked for vulnerabilities. A value of
100% means that all the systems are checked in vulnerability scans. For technical
and operational reasons, this number will likely be below the theoretical maximum.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: this metric provides information about how much of the organization’s en-
vironment is checked for known vulnerabilities. Organizations can use this metric
to evaluate their risk position in terms of concentrations of unknown vulnerability
states of systems. In combination with other vulnerability metrics, it provides in-
sight on the organization’s exposure to known vulnerabilities. The results of the
coverage metric indicate the:

– Scope of the vulnerability scanning activities;

– Applicability of other metric results across the organization;

– Relative amount of information known about the organization’s vulnerability.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 181

• Limitations: due to technical or operational incompatibility certain systems may
be excluded from scanning activities while other systems such as laptops and guest
systems may be intermittently present for network scans, resulting in variability of
metric results. In addition, scanning activities can vary in depth, completeness, and
capability. This metric assumes that systems scanned for vulnerabilities are systems
known to and under full management by the organization. These systems do not
include partial or unknown systems. Future risk metrics may account for these to
provide a clearer view of all system ranges.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 182

Id: 3.3.3 - Metric Name: Ratios of vulnerabilities by type, OS, owner, and so
on (RVT)

• Objective: the goal of this project is to assess the remediation priorities for internal
servers by identifying the presence of vulnerabilities on internal servers from the
perspective of the server administrators.

• Description: ratios of vulnerabilities by type from scanning measures the percent-
age of the organization’s systems under management that were checked for vulner-
abilities during vulnerability scanning and identification processes. This metric is
used to indicate the scope of vulnerability identification efforts.

• Question: how vulnerable are the internal servers?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0” indicates that no security vulnerability counts for assessed internal nodes from
scanning were found.

• Formula: ratios of vulnerabilities by type is calculated by dividing the number of
open vulnerability instances on the Internal Node by the total number of vulnera-
bilities identified:

RVT = Count(Vulnerability.status=Open)
Count(Vulnerabilities)

∗ 100

• Units: ratios of vulnerabilities by type

• Frequency: weekly, monthly, quarterly, annually.

• Targets: RVT values should trend higher over time. Higher values are obviously
better as it means more systems have been checked for vulnerabilities. A value of
100% means that all the systems are checked in vulnerability scans. For technical
and operational reasons, this number will likely be below the theoretical maximum.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: this metric provides information about how much of the organization’s en-
vironment is checked for known vulnerabilities. Organizations can use this metric
to evaluate their risk position in terms of concentrations of unknown vulnerability
states of systems. In combination with other vulnerability metrics, it provides in-
sight on the organization’s exposure to known vulnerabilities. The results of the
coverage metric indicate the:

– Scope of the vulnerability scanning activities;

– Applicability of other metric results across the organization;

– Relative amount of information known about the organization’s vulnerability.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 183

• Limitations: due to technical or operational incompatibility certain systems may
be excluded from scanning activities while other systems such as laptops and guest
systems may be intermittently present for network scans, resulting in variability of
metric results. In addition, scanning activities can vary in depth, completeness, and
capability. This metric assumes that systems scanned for vulnerabilities are systems
known to and under full management by the organization. These systems do not
include partial or unknown systems. Future risk metrics may account for these to
provide a clearer view of all system ranges.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 184

Id: 3.3.4 - Metric Name: Severe vulnerabilities found on the internal nodes
(SVFIN)

• Objective: the goal of this project is to assess the remediation priorities for internal
servers by identifying the presence and severity of vulnerabilities on internal servers
from the perspective of the server administrators.

• Description: ratios of vulnerabilities by type from scanning measures the percent-
age of the organization’s systems under management that were checked for vulner-
abilities during vulnerability scanning and identification processes. This metric is
used to indicate the scope of vulnerability identification efforts.

• Question: how severe vulnerable are the internal servers?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0” indicates that no severe security vulnerability counts for assessed internal nodes
from scanning were found.

• Formula: ratios of vulnerabilities by type is calculated by dividing the number of
open severe vulnerability instances on the Internal Node by the total number of
vulnerabilities identified:

SVFIN =
Count(Severe_Vulnerability.status=Open)

Count(Vulnerabilities)
∗ 100

• Units: ratios of severe vulnerabilities by type

• Frequency: weekly, monthly, quarterly, annually.

• Targets: SVFIN values should trend higher over time. Higher values are obviously
better as it means more systems have been checked for vulnerabilities. A value of
100% means that all the systems are checked in vulnerability scans. For technical
and operational reasons, this number will likely be below the theoretical maximum.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: this metric provides information about how much of the organization’s en-
vironment is checked for known vulnerabilities. Organizations can use this metric
to evaluate their risk position in terms of concentrations of unknown vulnerability
states of systems. In combination with other vulnerability metrics, it provides in-
sight on the organization’s exposure to known vulnerabilities. The results of the
coverage metric indicate the:

– Scope of the vulnerability scanning activities;

– Applicability of other metric results across the organization;

– Relative amount of information known about the organization’s vulnerability.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 185

• Limitations: due to technical or operational incompatibility certain systems may
be excluded from scanning activities while other systems such as laptops and guest
systems may be intermittently present for network scans, resulting in variability of
metric results. In addition, scanning activities can vary in depth, completeness, and
capability. This metric assumes that systems scanned for vulnerabilities are systems
known to and under full management by the organization. These systems do not
include partial or unknown systems. Future risk metrics may account for these to
provide a clearer view of all system ranges.

• References: [Silva et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 186

Id: 3.3.5 - Metric Name: CVSS scores for all identified vulnerabilities present
on internal nodes (SIVPIN)

• Objective: the goal of this project is to assess the remediation priorities for internal
servers by identifying the presence and severity of vulnerabilities on internal servers
from the perspective of the server administrators.

• Description: CVSS scores for all identified vulnerabilities present on internal nodes
from scanning measures the percentage of the organization’s systems under man-
agement that were checked for vulnerabilities during vulnerability scanning and
identification processes. This metric is used to indicate the scope of vulnerability
identification efforts.

• Question: how CVSS scores for all identified vulnerabilities present on internal
nodes?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0” indicates that no CVSS scores for assessed internal nodes from scanning were
found.

• Formula: CVSS scores for all identified vulnerabilities present on internal nodes is
calculated by dividing the number of open CVSS scores vulnerability instances on
the Internal Node by the total number of vulnerabilities identified:

SIVPIN =
Count(Severe_Vulnerability.status=Open)

Count(Vulnerabilities)
∗ 100

• Units: ratios of severe vulnerabilities by type

• Frequency: weekly, monthly, quarterly, annually.

• Targets: SIVPIN values should trend higher over time. Higher values are obviously
better as it means more systems have been checked for vulnerabilities. A value of
100% means that all the systems are checked in vulnerability scans. For technical
and operational reasons, this number will likely be below the theoretical maximum.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: this metric provides information about how much of the organization’s en-
vironment is checked for known vulnerabilities. Organizations can use this metric
to evaluate their risk position in terms of concentrations of unknown vulnerability
states of systems. In combination with other vulnerability metrics, it provides in-
sight on the organization’s exposure to known vulnerabilities. The results of the
coverage metric indicate the:

– Scope of the vulnerability scanning activities;

– Applicability of other metric results across the organization;

– Relative amount of information known about the organization’s vulnerability.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 187

• Limitations: due to technical or operational incompatibility certain systems may
be excluded from scanning activities while other systems such as laptops and guest
systems may be intermittently present for network scans, resulting in variability of
metric results. In addition, scanning activities can vary in depth, completeness, and
capability. This metric assumes that systems scanned for vulnerabilities are systems
known to and under full management by the organization. These systems do not
include partial or unknown systems. Future risk metrics may account for these to
provide a clearer view of all system ranges.

• References: [Hayden, 2010].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 188

Id: 4.1.1 - Metric Name: Cost of Incidents (COI)

• Objective: Organizations need to understand the impact of security incidents. Im-
pact can take many forms from negative publicity to money directly stolen. Mone-
tary costs provide a set of units that can be directly compared across impact of the
incidents and across organizations. In order to make effective risk management deci-
sions, the impact of incidents needs to be measured and considered. Understanding
of the costs experienced by the organization can be used to improve security process
effectiveness and efficiency.

• Description: Cost of Incidents (COI) measures the total cost to the organization
from security incidents occurring during the metric time period. Total costs from
security incidents consists of the following costs:

– Direct Loss (DL): value of IP, customer lists, trade secrets; or other assets
that are destroyed;

– Cost of Business System Downtime (COBSD): cost of refunds for failed
transactions; and cost of lost business directly attributable to the incident;

– Cost of Containment (COC): efforts and cost, and consulting services;

– Cost of Recovery (COR): cost of incident investigation and analysis; effort
required to repair and replace systems; replacement cost of systems consulting
services for repair or investigation; and additional costs not covered by an
insurance policy.

– Cost of Restitution (COR): penalties and other funds paid out due to
breaches of contacts or SLAs resulting from the incident; cost of services pro-
vided to customers as a direct result of the incident (e.g. ID Theft Insurance);
public relations costs; cost of disclosures and notifications; and legal costs,
fines, and settlements.

• Question: what is the total cost to the organization from security incidents during
the given period?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0.0” indicates there were no measured costs to the organization.

• Formula: cost of Incidents (COI) is calculated by summing all costs associated
with security incidents during the time period:

COI =
∑

(DL + COBSD + COC + COR + COR)

• Units: R$ per incident

• Frequency: monthly, annually.

• Targets: Ideally there would be no security incidents with material impacts on the
organization, and the metric value would be zero. In practice a target can be set
based on the expected loss budget determined by risk assessments processes.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 189

• Sources: Incident tracking systems will provide incident data. Cost data can come
from both management estimates, ticket tracking systems and capital and services
budgets.

• Usage: Cost of Incidents (COI) represents the overall known outcome of security
systems, processes, and policies. The lower the COI, the less the organization is
impacted by security incidents. Optimal conditions would reflect a low value of COI.
Costs experienced by organizations may vary as a result of the threat environment,
controls in place, and resiliency of the organization. Over time as processes and
controls become more effectiveness, COI should be reduced.

• Limitations: some incidents such as exposure of business strategy via social en-
gineering may not have a direct incident costs. Significant harm, bad press, or
competitive disadvantage may still be experienced for which it is not practical to
assign a cost; some new controls may have significant costs and/or address recov-
ery from multiple incidents; this metric relies on the common definition of “security
incident” as defined in Terms and Definitions; this metric relies on an organization
being able to produce costs or cost estimates related to security incidents.

• Dimensions: This metric may include additional dimensions for grouping and
aggregation purposes. These dimensions should be applied or tagged at the level
of the underlying incident record as described in Security Incident Metrics. For
example: (i) priority dimension allows COI to be computed for high, medium, or
low severity incidents; (ii) classifications for characterizing types of incidents, such as
denial of service, theft of information, etc.; (iii) affected Organization for identifying
the affected part of the organization.

• References: [CICSWG, 2000, Dorofee et al., 2007, Cichonski et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 190

Id: 4.1.2 - Metric Name: Incident Handled (IH)

• Objective: Incident Handled (IH) indicates the number of detected security inci-
dents the organization has handled during the metric time period. In combination
with other metrics, this can indicate the level of threats, effectiveness of security
controls, or incident detection capabilities.

• Description: Incident Handled (IH) measures the number of security incidents for
a given time period.

• Question: what is the number of security incidents that handled during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: to calculate Incident Handled (IH), the number of security incidents are
counted across a scope of incidents, for example a given time period, category or
business unit:

IH = Count(Incidents)

• Units: incidents per period; for example, incidents per week or incidents per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: for example, a growing number of incidents performed by insiders could
prompt stronger policy provisions concerning background investigations for person-
nel and misuse of computing resources and stronger security controls on internal
networks, e.g. deploying intrusion detection software to more internal networks and
hosts.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: number of incidents Handled is a type of security incident metric and relies
on the common definition of “security incident”. Optimal conditions would reflect
a low number of incidents. The lower the number of incidents, the healthier the
security posture would be assuming perfect detection. However, a low number of
incidents Handled might also indicate a weak capability to detect incidents. This
metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better per-
formance of one set of security controls. The Incident Handled metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,
so the trend of incidents can be useful for indicating patterns in the environment.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 191

To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or geographies.

• Limitations: a security program may or may not have direct control over the
number of incidents handled that occur within their environment. However, this
metric could be used to show that improving countermeasures and processes within
operations to reduce the number of incidents that occur.

• References: [Cichonski et al., 2012, Killcrece et al., 2003].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 192

Id: 4.1.3 - Metric Name: Incident Rate (IR)

• Objective: Incident Rate (IR) indicates the number of detected security incidents
the organization has experienced during the metric time period. In combination
with other metrics, this can indicate the level of threats, effectiveness of security
controls, or incident detection capabilities.

• Description: Incident Rate (IR) measures the number of security incidents for a
given time period.

• Question: what is the number of security incidents that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Incident Rate (IR) is calculated by dividing the number of current inci-
dent in period by the total number of incidents:

IR =
Count(Incidents_Period)

Count(Incidents)
∗ 100

• Units: incidents per period; for example, incidents per week or incidents per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: IR values should trend lower over time? assuming perfect detection ca-
pabilities. The value of “0” indicates hypothetical perfect security since there were
no security incidents. Because of the lack of experiential data from the field, no
consensus on range of acceptable goal values for Incident Rate exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: number of incidents is a type of security incident metric and relies on the
common definition of “security incident”. Optimal conditions would reflect a low
number of incidents. The lower the number of incidents, the healthier the security
posture would be assuming perfect detection. However, a low number of incidents
might also indicate a weak capability to detect incidents. This metric can also
indicate the effectiveness of security controls. Assuming similar threat levels and
detection capabilities, fewer incidents could indicate better performance of one set
of security controls. The Incident Rate metric is calculated over time, typically per-
week or per-month. Not all incidents are easily detected, so the trend of incidents
can be useful for indicating patterns in the environment. To gain insight into the
relative performance of one business unit over another, the number of incidents may
also be calculated for cross-sections of the organization such as individual business
units or geographies.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 193

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations
to reduce the number of incidents that occur. Thus, Number of Incidents must be
considered in the context of other metrics, such as MTTID.

• References: [Killcrece et al., 2003, Cichonski et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 194

Id: 4.1.4 - Metric Name: Mean Cost of Incidents (MCOI)

• Objective: Organizations need to understand the impact of security incidents. Im-
pact can take many forms from negative publicity to money directly stolen. Mone-
tary costs provide a set of units that can be directly compared across impact of the
incidents and across organizations. In order to make effective risk management deci-
sions, the impact of incidents needs to be measured and considered. Understanding
of the costs experienced by the organization can be used to improve security process
effectiveness and efficiency.

• Description: Mean Cost of Incidents (MCOI) measures the mean cost to the orga-
nization from security incidents identified relative to the number of incidents that
occurred during the metric time period. Total costs from security incidents consists
of the following costs:

– Direct Loss (DL): value of IP, customer lists, trade secrets; or other assets
that are destroyed;

– Cost of Business System Downtime (CoBSD): cost of refunds for failed
transactions; and cost of lost business directly attributable to the incident;

– Cost of Containment (CoC): efforts and cost, and consulting services;

– Cost of Recovery (CoRy): cost of incident investigation and analysis; effort
required to repair and replace systems; replacement cost of systems consulting
services for repair or investigation; and additional costs not covered by an
insurance policy.

– Cost of Restitution (CoRn): penalties and other funds paid out due to
breaches of contacts or SLAs resulting from the incident; cost of services pro-
vided to customers as a direct result of the incident (e.g. ID Theft Insurance);
public relations costs; cost of disclosures and notifications; and legal costs,
fines, and settlements.

• Question: what is the average (mean) cost to the organization from security inci-
dents during the given period?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0.0” indicates there were no measured costs to the organization.

• Formula: Mean Cost of Incidents (MCOI) is calculated by summing all costs as-
sociated with security incidents by the number of security incidents that occurred
during the time period:

MCOI =
∑

(DL+CoBSD+CoC+CoRy+CoRn)

Count(Incidents)

• Units: R$ per incident

• Frequency: monthly, annually.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 195

• Targets: ideally there would be no security incidents with material impacts on the
organization, and the metric value would be zero. In practice a target can be set
based on the expected loss budget determined by risk assessments processes.

• Sources: incident tracking systems will provide incident data. Cost data can come
from both management estimates, ticket tracking systems and capital and services
budgets.

• Usage: Mean Cost of Incidents (MCOI) represents the average impact of a security
incident on the organization. This impact is the average known outcome resulting
from the interaction of the threat environment with the security systems, processes,
and policies or the organization. The lower the MCOI, the less the organization
is impacted by security incidents on average. Optimal conditions would reflect a
low value of MCOI. Costs experienced by organizations can vary as a result of the
threat environment, systems and processes in place, and resiliency of the organiza-
tion. Over time, the effectiveness of changes to an organization’s security activities
should result in a reduction in the Mean Cost of Incidents. MCOI should provide a
management indicator of the ability of the organization to alter the known impact
expected from security incidents.

• Limitations: some incidents such as exposure of business strategy via social en-
gineering may not have a direct incident costs. Significant harm, bad press, or
competitive disadvantage may still be experienced for which it is not practical to
assign a cost; some new controls may have significant costs and/or address recov-
ery from multiple incidents; this metric relies on the common definition of “security
incident” as defined in Terms and Definitions; this metric relies on an organization
being able to produce costs or cost estimates related to security incidents.

• Dimensions: this metric may include additional dimensions for grouping and ag-
gregation purposes. These dimensions should be applied or tagged at the level of
the underlying incident record as described in Security Incident Metrics. For exam-
ple: (i) priority dimension allows MCOI to be computed for high, medium, or low
severity incidents; (ii) classifications for characterizing types of incidents, such as
denial of service, theft of information, etc.; (iii) affected Organization for identifying
the affected part of the organization.

• References: [Killcrece et al., 2003, West-Brown et al., 2003, Dorofee et al., 2007].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 196

Id: 4.1.5 - Metric Name: Mean Incident Recovery Cost (MIRC)

• Objective: Mean Incident Recovery Cost measures the total costs directly associ-
ated with the operational recovery from an incident. While the impact of similar
incidents may vary across organizations, the technical recovery should be compara-
ble on a per-system basis across firms.

• Description: Mean Incident Recovery Cost (MIRC) measures the cost of returning
business systems to their pre-incident condition. The following costs may be taken
into consideration:

– Cost to repair and/or replace systems;

– Opportunity cost of staff implementing incident handling plan;

– Cost to hire external technical consultants to help recover from the incident;

– Cost to installation new controls or procurement of new resources that directly
addresses the re-occurrence of the incident, e.g. installation of AV software;

– Legal and regulatory liabilities resulting from the incident.

• Question: what is the average (mean) cost of recovery from a security incidents
during the given period?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0.0” indicates there were no measured costs to the organization.

• Formula: Mean Incident Recovery Cost (MIRC) is calculated by summing all costs
associated with recovering from security incidents by the number of security inci-
dents that occurred during the time period:

MIRC =
(
∑

(Cost_Recovery)

Count(Incidents)

• Units: R$ per incident

• Frequency: monthly, annually.

• Targets: Ideally, recovery from security incidents would have no material impacts
on the organization, and the metric value would be zero. In practice a target can
be set based on the expected loss budget determined by risk assessments processes,
and planned incident recovery resources.

• Sources: Incident tracking systems will provide incident data. Cost data can come
from management estimates, ticket tracking systems and capital and services bud-
gets.

• Usage: Mean Incident Recovery Cost (MIRC) represents the average cost the orga-
nization incurs while recovering from a security incident. This cost is correlated to
the capabilities and resiliency of the systems, processes, and policies. The lower the
MIRC, the less the organization is impacted by security incidents on average, and

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 197

the greater the general resiliency of the organization’s systems. Optimal conditions
would reflect a low value of MIRC. Costs experienced by organizations can vary
as a result of the threat environment, systems, and processes in place. Over time,
the effectiveness of changes to an organization’s security activities should result in
a reduction in the Mean Incidents Recovery Cost. MIRC should provide a manage-
ment indicator of the expected ability of the organization’s resiliency and ability to
recover from security incidents.

• Limitations: some incidents, such as theft via social engineering, may not have a
direct recovery costs as there may not be a clear end point or may be the result
of several related incidents; establishment of new controls or procurement of new
resources may have significant costs; this metric is dependent upon when during the
incident management process cost information is collected. Depending if information
is collected during the occurrence of the incident or following the incident may
influence the metric outcome.

• Dimensions: this metric may include additional dimensions for grouping and ag-
gregation purposes. These dimensions should be applied or tagged at the level of
the underlying incident record as described in Security Incident Metrics. For exam-
ple: (i) priority dimension allows MIRC to be computed for high, medium, or low
severity incidents; (ii) classifications for characterizing types of incidents, such as
denial of service, theft of information, etc.; (iii) affected Organization for identifying
the affected part of the organization.

• References: [Killcrece et al., 2003, Dorofee et al., 2007, Cichonski et al., 2012]

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 198

Id: 4.1.6 - Metric Name: Mean Time Between Security Incidents (MTBSI)

• Objective: Mean Time Between Security Incidents (MTBSI) identifies the relative
levels of security incident activity.

• Description: Mean Time Between Security Incidents (MTBSI) calculates the av-
erage time, in days, between security incidents. This metric is analogous to the
Mean Time Between Failure (MTBF) metric found in break-fix processes for Cloud
Computing environment.

• Question: for all security incidents that occurred within a given time period, what
is the average (mean) number of days between incidents?

• Answer: a floating-point value that is greater than or equal to zero. A value of “0”
indicates instantaneous occurrence of security incidents.

• Formula: for each record, the mean time between incidents is calculated by dividing
the number of hours between the time on the Date of Occurrence for the current
incident from the time on the Date of Occurrence of the previous incident by the
total number of incidents prior to the current incident:

MTBSI =
∑N

i=1(Date_of_Occurence[Incidentn] − Date_of_Occurence[Incidentn−1])

Count(Incidents)

• Units: hours per incident interval

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTBSI values should trend higher over. The value of “0” indicates hypo-
thetical instantaneous occurrence between security incidents. Because of the lack of
experiential data from the field, no consensus on the range of acceptable goal values
for Mean Time Between Security Incidents exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: this metric provides an indication of activity within the environment. A
higher value for this metric might indicate a less-active landscape. However, an
inactive landscape might be caused by a lack of reporting or a lack of detection of
incidents.

• Limitations: the date of occurrence of an incident may be hard to determine
precisely. The date of occurrence field should be the date that the incident could
have occurred. This date may be subject to revision as more information becomes
known about a particular incident.

• References: [Killcrece et al., 2003, Cichonski et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 199

Id: 4.1.7 -Metric Name: Mean Time from Discovery to Containment (MTDC)

• Objective: Mean Time from Discovery to Containment (MTDC) characterizes the
effectiveness of containing a security incident as measured by the average elapsed
time between when the incident has been discovered and when the incident has been
contained.

• Description: Mean Time from Discovery to Containment (MTDC) measures the
effectiveness of the organization to identify and contain security incidents. The
sooner the organization can contain an incident, the less damage it is likely to incur.
This calculation can be averaged across a time period, type of incident, business
unit, or severity.

• Question: what is the average (mean) number of hours from when an incident has
been detected to when it has been contained?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0” indicates instantaneous containment.

• Formula: for each incident contained in the metric time period, the mean time
from discovery to containment is calculated dividing the difference in hours between
the Date of Containment from the Date of Discovery for each incident by the total
number of incidents contained in the metric time period:

MTDC =
∑

(Date_of_Containment − Date_of_Discovery)

Count(Incidents)

• Units: hours per incident

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTDC values should trend lower over time. The value of “0” indicates
hypothetical instantaneous containment. Because of the lack of experiential data
from the field, no consensus on the range of acceptable goal values for Mean Time
from Discovery to Containment exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: MTDC is a type of security incident metric and relies on the common
definition of “security incidents” as defined in Glossary. An incident is determined
to be “contained” when the immediate effect of the incident has been mitigated.
For example, a DDOS attack has been throttled or unauthorized external access
to a system has been blocked, but the system has not yet been fully recovered
or business operations are not restored to pre-incident levels. Optimal conditions

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 200

would reflect a low value in the MTDC. A low MTDC value indicates a healthier
security posture as malicious activity will have less time to cause harm. Given the
modern threat landscape and the ability for malicious code to link to other modules
once entrenched, there may be a direct correlation between a lower MTDC and a
lower incident cost.

• Limitations: This metric measures incident containment capabilities of an orga-
nization. As such, the importance of this metric will vary between organizations.
Some organizations have much lower profiles than others, and would thus be a more
attractive target for attackers, whose attack vectors and capabilities will vary. As
such, MTDCs may not be directly comparable between organizations. In addition,
the ability to calculate meaningful MTDCs assumes that incidents are detected. A
lack of participation by the system owners could skew these metrics. A lower rate
of participation in the reporting of security incidents can increase the accuracy of
these metrics. The date of occurrence of an incident may be hard to determine pre-
cisely. The date of occurrence field should be the date that the incident could have
occurred no later than given the best available information. This date may be sub-
ject to revision and more information becomes known about a particular incident.
Incidents can vary in size and scope. This could result in a variety of containment
times that, depending on its distribution, may not provide meaningful comparisons
between organizations when mean values are used.

• References: [Killcrece et al., 2003, Cichonski et al., 2012, Team, 2015].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 201

Id: 4.1.8 - Metric Name: Mean Time To Incident Discovery (MTTID)

• Objective: Mean-Time-To-Incident-Discovery (MTTID) characterizes the efficiency
of detecting incidents, by measuring the average elapsed time between the initial
occurrence of an incident and its subsequent discovery. The MTTID metric also
serves as a leading indicator of resilience in organization defenses because it mea-
sures detection of attacks from known vectors and unknown ones.

• Description: Mean-Time-To-Incident-Discovery (MTTID) measures the effective-
ness of the organization in detecting security incidents. Generally, the faster an
organization can detects an incident, the less damage it is likely to incur. MTTID
is the average amount of time, in hours, that elapsed between the Date of Occur-
rence and the Date of Discovery for a given set of incidents. The calculation can be
averaged across a time period, type of incident, business unit, or severity.

• Question: what is the average (mean) number of hours between the occurrence of
a security incident and its discovery?

• Answer: a positive decimal value that is greater than or equal to zero. A value of
“0” indicates hypothetical instant detection.

• Formula: for each record, the time-to-discovery metric is calculated by dividing the
subtracting the Date of Occurrence from the Date of Discovery by the total number
of incidents prior to the current incident. These metrics are then averaged across a
scope of incidents, for example by time, category or business unit:

MTTID =
∑

(Date_of_Discovery − Date_of_Occurrence)

Count(Incidents)

• Units: hours per incident

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTTID values should trend lower over time. The value of “0 hours”
indicates hypothetical instant detection times. There is evidence the metric result
may be in a range from weeks to months (2015 Verizon Data Breach Report).
Because of the lack of experiential data from the field, no consensus on the range of
acceptable goal values for MTTIDs exist.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: Mean-Time-To-Incident-Discovery is a type of security incident metric,
and relies on the common definition of “security incident” as defined in Terms in
Definitions. Optimal conditions would reflect a low value in the MTTID. The lower
the value of MTTID, the healthier the security posture is. The lower the MTTID,

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 202

the more time malicious activity is likely to have occurred within the environment
prior to containment and recovery activities. Given the current threat landscape and
the ability for malicious code to link to other modules once entrenched, there may
be a direct correlation between a lower MTTID and a lowergher level-of-effort value
(or cost) of the incident. MTTIDs are calculated across a range of incidents over
time, typically per-week or per-month. To gain insight into the relative performance
of one business unit over another, MTTIDs may also be calculated for cross-sections
of the organization, such as individual business units or geographies.

• Limitations: this metric measures incident detection capabilities of an organiza-
tion. As such, the importance of this metric will vary between organizations. Some
organizations have much lower profiles than others, and would thus be a more attrac-
tive target for attackers, whose attack vectors and capabilities will vary. As such,
MTTIDs may not be directly comparable between organizations. In addition, the
ability to calculate meaningful MTTIDs assumes that incidents are, in fact, detected
and reported. A lack of participation by the system owners could cause a skew to
appear in these metrics. A lower rate of participation in the reporting of security
incidents can increase the accuracy of these metrics. The date of occurrence of an
incident may be hard to determine precisely. The date of occurrence field should be
the date that the incident could have occurred no later than given the best available
information. This date may be subject to revision and more information becomes
known about a particular incident. Mean values may not provide a useful repre-
sentation of the time to detect incidents if distribution of data exhibits significantly
bi-modal or multi-model. In such cases additional dimensions and results for each
of the major modes will provide more representative results.

• References: [Killcrece et al., 2003, Cichonski et al., 2012, Team, 2015].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 203

Id: 4.1.9 - Metric Name: Mean Time To Incident Recovery (MTIR)

• Objective: Mean Time to Incident Recovery (MTIR) characterizes the ability of
the organization to return to a normal state of operations. This is measured by the
average elapse time between when the incident occurred to when the organization
recovered from the incident.

• Description: Mean Time to Incident Recovery (MTIR) measures the effectiveness
of the organization to recovery from security incidents. The sooner the organization
can recover from a security incident, the less impact the incident will have on the
overall organization. This calculation can be averaged across a time period, type of
incident, business unit, or severity.

• Question: what is the average (mean) number of hours from when an incident
occurs to recovery?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0” indicates instantaneous recovery.

• Formula: Mean time-to-incident recovery is calculated by dividing the difference
between the Date of Occurrence and the Date of Recovery for each incident recovered
in the metric time period, by the total number of incidents recovered in the metric
time period

MTTIR =
∑

(Date_of_Recovery − Date_of_Occurrence)

Count(Incidents)

• Units: hours per incident

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTIR values should trend lower over time. There is evidence the metric
result will be in a range from days to weeks (2015 Verizon Data Breach Report).
The value of “0” indicates hypothetical instantaneous recovery. Because of the lack
of experiential data from the field, no consensus on the range of acceptable goal
values for Mean Time to Incident Recovery exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: MTIR is a type of security incident metric and relies on the common
definition of “security incidents” as defined in Glossary. Optimal conditions would
reflect a low value in the MTIR. A low MTIR value indicates a healthier security
posture as the organization quickly recovered from the incident. Given the impact
that an incident can have on an organization’s business processes, there may be a
direct correlation between a lower MTIR and a lower incident cost.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 204

• Limitations: this metric measures incident recovery capabilities of an organiza-
tion. As such, the importance of this metric will vary between organizations. Some
organizations have much lower profiles than others and would be a more attractive
target for attackers whose attack vectors and capabilities vary. MTIRs may not be
directly comparable between organizations. The date of occurrence of an incident
may be hard to determine precisely. The date of occurrence field should be the date
that the incident could have occurred. This date may be subject to revision and
more information becomes known about a particular incident.

• References: [Killcrece et al., 2003, Cichonski et al., 2012, Team, 2015].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 205

Id: 4.1.10 - Metric Name: Number of Incidents (NI)

• Objective: Number of Incidents indicates the number of detected security incidents
the organization has experienced during the metric time period. In combination with
other metrics, this can indicate the level of threats, effectiveness of security controls,
or incident detection capabilities.

• Description: Number of Incidents measures the number of security incidents for a
given time period.

• Question: what is the number of security incidents that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: to calculate Number of Incidents (NI), the number of security incidents
are counted across a scope of incidents, for example a given time period, category
or business unit:

NI = Count(Incidents)

• Units: incidents per period; for example, incidents per week or incidents per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NI values should trend lower over time? assuming perfect detection ca-
pabilities. The value of “0” indicates hypothetical perfect security since there were
no security incidents. Because of the lack of experiential data from the field, no
consensus on range of acceptable goal values for Incident Rate exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Incidents is a type of security incident metric and relies on the
common definition of “security incident” as defined in Glossary. Optimal conditions
would reflect a low number of incidents. The lower the number of incidents, the
healthier the security posture would be assuming perfect detection. However, a low
number of incidents might also indicate a weak capability to detect incidents. This
metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,
so the trend of incidents can be useful for indicating patterns in the environment.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 206

To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Killcrece et al., 2003, Cichonski et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 207

Id: 4.1.11 - Metric Name: Percentage of Incidents Detected by Internal Con-
trols (PIDIC)

• Objective: Percentage of Incidents Detected by Internal Controls (PIDIC) indi-
cates the effectiveness of the security monitoring program.

• Description: Percentage of Incidents Detected by Internal Controls (PIDIC) cal-
culates the ratio of the incidents detected by standard security controls and the
total number of incidents identified.

• Question: of all security incidents identified during the time period, what percent
were detected by internal controls?

• Answer: positive floating point value between zero and 100. A value of “0” indicates
that no security incidents were detected by internal controls and a value of “100”
indicates that all security incidents were detected by internal controls.

• Formula: percentage of Incidents Detected by Internal Controls (PIDIC) is calcu-
lated by dividing the number of security incidents for which the Detected by Internal
Controls field is equal to “true” by the total number of all known security incidents:

PIDIC =
Count(Incident_Detected_By_Internal_Controls = TRUE)

Count(Incidents)
∗ 100

• Units: percentage of incidents

• Frequency: weekly, monthly, quarterly, annually.

• Targets: PIDIC values should trend higher over time. The value of? 100%? in-
dicates hypothetical perfect internal controls since no incidents were detected by
outside parties. Because of the lack of experiential data from the field, no consen-
sus on the range of acceptable goal values for Percentage of Incidents Detected by
Internal Controls exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: this metric measures the effectiveness of a security monitoring program
by determining which incidents were detected by the organization’s own internal
activities (e.g. intrusion detecti on systems, log reviews, employee observations)
instead of an outside source, such as a business partner or agency. A low value can
be due to poor visibility in the environment, ineffective processes for discovering
incidents, ineffective alert signatures and other factors. Organizations should report
on this metric over time to show improvement of the monitoring program.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 208

• Limitations: An organization may not have direct control over the percentage
of incidents that are detected by their security program. For instance, if all the
incidents that occur are due to zero-day or previously unidentified vectors then
there are not many options left to improve posture. However, this metric could be
used to show that improving countermeasures and processes within operations could
increase the number of incidents that are detected by the organization.

• References: [Killcrece et al., 2003, Cichonski et al., 2012, Team, 2015].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 209

Id: 4.1.12 - Metric Name: Time Per Incident (TPI)

• Objective: Time Per Incident (TPI) indicates the time of detected security inci-
dents the organization has handled during the metric time period. In combination
with other metrics, this can indicate the level of threats, effectiveness of security
controls, or incident detection capabilities. Time total period in the steps of the
detected security incidents: (i) Incident Definition and Examples; (ii) Preparation,
Detection, and Analysis; (iii) Containment, Eradication, and Recovery; (iv) Check-
list for Handling Multiple Component Incidents; (v) Recommendations; (vi) Post-
Incident Activity.

• Description: Time Per Incident (TPI) measures the time of security incidents for
a given time period.

• Question: what is the time of security incidents that handled during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Time Per Incident (TPI) is calculated by dividing the difference between
the Date of Finished and the Date of Occurrence for each incident recovered in the
metric time period, by the total number of incidents recovered in the metric time
period:

TPI =
∑

(Date_of_Finished − Date_of_Occurrence)

Count(Incidents)

• Units: time per incident; for example, hours, days, months.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: for example, a growing number of incidents performed by insiders could
prompt stronger policy provisions concerning background investigations for person-
nel and misuse of computing resources and stronger security controls on internal
networks (e.g., deploying intrusion detection software to more internal networks
and hosts).

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: Time Per Incident is a type of security incident metric, and relies on the
common definition of “security incident”, and theses are calculated across a range of
incidents over time, typically per-week or per-month. To gain insight into the rela-
tive performance of one business unit over another, TPI may also be calculated for
cross-sections of the organization, such as individual business units or geographies.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 210

• Limitations: this metric measures time per incident capabilities of an organiza-
tion. As such, the importance of this metric will vary between organizations. Some
organizations have much lower profiles than others and would be a more attractive
target for attackers whose attack vectors and capabilities vary. TPI may not be
directly comparable between organizations. The date of occurrence of an incident
may be hard to determine precisely. The date of occurrence field should be the date
that the incident could have occurred. This date may be subject to revision and
more information becomes known about a particular incident.

• References: [Killcrece et al., 2003, Cichonski et al., 2012].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 211

Id: 5.1.1 - Metric Name: Configuration Management Coverage (CMC)

• Objective: The goal of this metric is to provide an indicator of the scope of configu-
ration management control systems and monitoring. Accurate and timely detection
of configuration changes, as well as the ability to assess the state of the current
configuration through regular processes or automated means provides organizations
with improved visibility into their security posture. If 100% of systems are under
configuration monitoring than the organization is relatively less exposed to exploits
and to unknown threats resulting from un-approved, untested, or unknown config-
uration states.

• Description: this metric attempts to answer the question? Are system under
configuration management control? This question presumes the organization has
a configuration management system to test and monitor the configuration states
of systems. The percentage of total computer systems in an organization that
are under the scope of a configuration monitoring/management system. Scope of
configuration monitoring is a binary evaluation: a given system is either part of a
system that can assess and report it’s configuration state or it is not. Configuration
state can be evaluated by automated methods, manual inspection, or audit, or some
combination. The computer system population base is the total number of computer
systems with approved configuration standards. This may be all systems or only
a subset (i.e. only desktops, or only servers, etc.) Organizations that do not have
approved standards for their computer systems should report “N/A” rather than a
numeric value (0% or 100%).

– In Scope: examples of percentage of systems under configuration manage-
ment may include: (i) configuration of servers; (ii) configuration of worksta-
tions/laptops; (iii) configuration of hand-held devices; (iv) configuration of
other supported computer systems covered by the organizations configuration
policy.

– Out of Scope: examples of computer system configurations that are not in
scope include: (i) temporary guest systems (contractors, vendors); (ii) lab/test
systems performing to or in support of a specific nonproduction project; (iii)
networking systems (routers, switches, access points); (iv) storage systems (i.e.
network accessible storage)

• Question: what percentage of the organizations systems are under configuration
management?

• Answer: a positive integer value between zero and 100 inclusive, expressed as a
percentage. A value of? 100%? indicates that all technologies are in configuration
management system scope.

• Formula: Configuration Management Coverage (CMC) is calculated by determin-
ing the number of in-scope systems within configuration management scope and
then averaging this across the total number of in-scope systems:

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 212

CMC =
∑

(InScope_Systems_Under_Configuration_Management)

Count(InScope_Systems)
∗ 100

• Units: percentage of Systems

• Frequency: monthly, annually.

• Targets: the expected trend for this metric over time is to remain stable or increase
towards 100

• Sources: configuration management and asset management systems will provide
coverage.

• Usage: the Configuration Management Coverage metric provides information about
well the organization ensures the integrity of their network. Organizations can use
this metric to evaluate their risk position in terms of concentrations of inconsistent
state of systems. The results of the coverage metric indicate the: (i) scope of the
configuration scanning activities; (ii) applicability of other metric results across the
organization; (iii) relative amount of information known about the organization’s
configuration.

• Limitations: the organization’s critical systems (e.g. production servers) maybe
out of scope of the configuration management system by design, for performance or
network architecture reasons.

• References: [ISO/IEC-12207:2008, 2008, Chew et al., 2008, NIST, 2013d].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 213

Id: 5.1.2 - Metric Name: Mean Cost to Patch (MCTP)

• Objective: this defines a metric for measuring the mean effort required to deploy a
patch into an environment. The metric is expressed in the context of a patch man-
agement process, with the assumption that the organizations has a formal system
(i.e. patch management and electronic ticketing system) used to track activities to
deploy patches. The metric is useful where a single patch deployment (no matter
how many systems are affected) is expressed as a single change ticket or as one
change ticket per affected network node. This data can also be recorded as monthly
totals where per-patch level granularity is not possible.

• Description: The goal of this metric is to understand the effort required for patch
management activities. Risk management decisions can take into account the effi-
ciency of patch deployment to make more informed decisions around patch compli-
ance policies, Service Level Agreements, and resource allocation in the IT environ-
ment.

• Question: what is the average (mean) cost to the organization to deploy a patch
during the given period?

• Answer: a positive integer value that is greater than or equal to zero. A value of
“0.0” indicates there were no measured costs to the organization.

• Formula: Mean Cost To Patch is calculated by determining the total cost to deploy
patches. These results are then averaged across the number of patches deployed in
the current scope:

MCTP =
∑

(Patch_Cost + Other_Patch_Cost)

Count(Deployed_Patches)

Patch Cost may be a determined aggregate cost or is calculated based upon the
amount of effort put into the patching process as calculated by: Patch_Effort ∗
Hourly_Rate. Other Patch Costs may include:

– purchases of additional equipment;

– purchases of new software versions;

– cost associated with mitigation of a specific vulnerability;

– cost associated with vendor waiting to release patch until its next release cycle
for identified vulnerabilities;

– cost associated with delaying updates until next update cycle;

– cost associated with identifying missing patches;

– cost associated with downtime during testing and installation of missing patches.

The cost of patch management systems should not be included in this cost. If a one-
time cost is associated with multiple vulnerabilities the cost should be distributed
evenly across the relevant vulnerabilities.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 214

• Units: R$ per patch

• Frequency: monthly, annually.

• Targets: ideally, all patches would be deployed by an automated system, and the
mean cost to patch would approach zero (given patch testing costs, etc.).

• Sources: patch management and IT support tracking systems will provide patch
deployment data. Cost data can come from management estimates, ticket tracking
systems, and services budgets.

• Usage: keeping systems fully patched should reduce risk and result in lower inci-
dents costs to the organization. Organizations generally have to balance the desire
to patch systems with the cost and effort of preparing, testing, and deploying patches
in their environment. Mean Cost To Patch allows the organization understand the
cost of patch deployment, manage trends, and perform cost-benefit analysis patch
updates, comparing the cost to the organization to the costs of any increases in
security incidents.

• Limitations: note that this assumes: (i) effort is tracked for vulnerability reme-
diation; (ii) tickets are closed when the change is known to have mitigated the
vulnerability; (iii) vulnerabilities can be tracked between scans on a vulnerability
instance per-host basis; (iv) it is not including in-progress tickets, vulnerabilities
that have not been mitigated, or vulnerabilities that do not have a resolution.

• References: [Cavusoglu et al., 2006, NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 215

Id: 5.1.3 - Metric Name: Mean Time To Complete Changes (MTTCC)

• Objective: the goal of this metric is to provide managers with information on the
average time it takes for a configuration change request to be completed.

• Description: the average time it takes to complete a configuration change request.

• Question: what is the mean time to complete a change request?

• Answer: a positive integer value that is greater than zero. A value of “0” indicates
that the organization immediately implements changes.

• Formula: the mean time to complete a change request is calculated by taking the
difference between the date the request was submitted and the date the change
was completed for each change completed within the time period of the metric.
This number is then divided by the total number of changes completed during the
metric’s time period:

MTTCC =
∑

(Completion_Date − Submission_Date)

Count(Completed_Changes)

• Units: days per configuration change request

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTCC values should generally trend lower over time provided operational
system uptime is very high. This number will depend on the organization’s busi-
ness, structure, and use of IT. While a lower value indicates greater effectiveness
at managing the IT environment, this should be examined in combination with the
use of approval and change review controls. Because of the lack of experiential data
from the field, no consensus on the range of acceptable goal values for Mean Time
to Complete Changes exists.

• Sources: configuration management and IT support tracking systems will provide
configuration change data.

• Usage: managers can use this metric to understand their ability to react to changing
needs i n their environment. The faster the approval cycle, the shorter the response
time will be. The exact value that reflects a healthy environment will be subjective
for the type of company. However, values should be similar for companies of the same
size and business focus. By focusing on high-value applications or urgent change
requests they can improve their understanding of risk management capabilities.
It is useful to pair this metric with data on the absolute number of changes in
order to understand the effectiveness of the change management capabilities of the
organization.

• Limitations: (i) only completed changes: this metric only calculates the result for
changes that have been completed during the time period. Changes that have not

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 216

occurred will not influence the metric results until they are completed, perhaps sev-
eral reporting periods later. This may over - report performance while the changes
are not completed and under-report performance after the changes has been com-
pleted; (ii) scheduled changes: changes that have been submitted with a scheduled
change date may result in metric values that do not provide material information.
The time taken for the change request to be approved and any delays due to the
work queue volumes should be considered, but not time a change request is not be-
ing processed in some manner; (iii) variations in the scale of changes: all changes are
weighted equally for this metric regardless of the level of effort required or priority
of the request and are not taken into account by the current metric definition. Or-
ganizations wanting increased precision could group results by categories of change
size (e.g. Large, Medium, Small) or normalize based on level of effort.

• References: [A. Riley et al, 2008, Kempter, 2011a, Kempter, 2011b].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 217

Id: 5.1.4 - Metric Name: Mean Time to Deploy Critical Patches (MTDCP)

• Objective: Mean Time to Deploy Critical Patches (MTDCP) characterizes effec-
tiveness of the patch management process by measuring the average time taken from
notification of critical patch release to installation in the organization. This metric
serves as an indicator of the organization’s exposure to severe vulnerabilities by
measuring the time taken to address systems in known states of high vulnerability
for which security patches are available. This is a partial indicator as vulnerabilities
may have no patches available or occur for other reasons such as system configura-
tions.

• Description: Mean Time to Patch Deploy Patches (MTPCP) measures the average
time taken to deploy a critical patch to the organization’s technologies. The sooner
critical patches can be deployed, the lower the mean time to patch and the less time
the organization spends with systems in a state known to be vulnerable. In order for
managers to better understand the exposure of their organization to vulnerabilities,
Mean Time to Deploy Critical Patches should be calculated for the scope of patches
with Patch Criticality levels of? Critical?. This metric result, reported separately
provides more insight than a result blending all patch criticality levels as seen in the
Mean Time to Patch metric.

• Question: how many days does it take the organization to deploy critical patches
into the environment?

• Answer: a positive floating-point value that is greater than or equal to zero. A value
of “0” indicates that critical patches were theoretically instantaneously deployed.

• Formula: Mean Time to Deploy Critical Patches is calculated by determining the
number of hours between the Date of Notification and the Date of Installation for
each critical patch completed in the current scope, for example by time period or
business unit. These results are then averaged across the number of completed
critical patches in the current scope:

MTDCP =
∑

(Date_of_Installation − Date_of_Notification)

Count(Completed_
C

ritical_Patches)

• Units: hours per patch

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTDCP values should trend lower over time. Most organizations put
critical patches through test and approval cycles prior to deployment. Generally, the
target time for Mean Time to Deploy Critical Patches is within several hours to days.
Because of the lack of experiential data from the field, no consensus on the range
of acceptable goal values for Mean Time to Deploy Critical Patches exists.MTDCP
values should trend lower over time. Most organizations put critical patches through
test and approval cycles prior to deployment. Generally, the target time for Mean
Time to Deploy Critical Patches is within several hours to days. Because of the

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 218

lack of experiential data from the field, no consensus on the range of acceptable goal
values for Mean Time to Deploy Critical Patches exists.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: Mean Time to Deploy Critical Patches is a type of patch management met-
ric, and relies on the common definition of “patch” as defined in Glossary. Given
that many known severe vulnerabilities result from missing critical patches, there
may be a direct correlation between lower MTDCP and lower levels of Security In-
cidents. MTDCP can be calculated over time, typically per-week or per-month. To
gain insight into the relative performance and risk to one business unit over another,
MTDCP can be compared against MTTP by cross-sections of the organization such
as individual business units or geographies.

• Limitations: (i) critical Technologies: this metric assumes that the critical tech-
nologies are known and recorded. If the critical technologies are unknown, this
metric cannot be accurately measured. As new technologies are added their criti-
cality needs to be determined and, if appropriate, included in this metric; (ii) vendor
Reliance. This metric is reliant upon the vendor’s ability to notify organization of
updates and vulnerabilities that need patching. If the vendor does not provide a
program for notifying their customers then the technology, if critical, will always be
a black mark on this metric; (iii) criticality Ranking: this metric is highly depen-
dent upon the ranking of critical technologies by the organization. If this ranking
is abused then the metric will become unreliable; (iv) patches in Progress. This
metric calculation does not account for patch installations that are incomplete or
on-going during the time period measured. It is not clear how this will bias the
results, although potentially an extended patch deployment will not appear in the
results for some time.

• References: [NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 219

Id: 5.1.5 - Metric Name: Mean Time To Patch (MTTC)

• Objective: Mean Time to Patch (MTTP) characterizes the effectiveness of the
patch management process by measuring the average time taken from date of patch
release to installation in the organization for patches deployed during the metric
time period. This metric serves as an indicator of the organization’s overall level of
exposure to vulnerabilities by measuring the time the organization takes to address
systems known to be in vulnerable states that can be remediated by security patches.
This is a partial indicator as vulnerabilities may have no patches available or occur
for other reasons such as system configurations.

• Description: Mean Time To Patch (MTTP) measures the average time taken to
deploy a patch to the organization’s technologies. The more quickly patches can
be deployed, the lower the mean time to patch and the less time the organization
spends with systems in a state known to be vulnerable.

• Question: how long does it take the organization to deploy patches into the envi-
ronment?

• Answer: a positive floating-point value that is greater than or equal to zero. A
value of “0” indicates that patches were theoretically instantaneously deployed.

• Formula: Mean Time To Patch is calculated by determining the number of hours
between the Date of Availability and the Date of Installation for each patch com-
pleted in the current scope, for example by time period, criticality or business unit.
These results are then averaged across the number of completed patches in the
current scope:

MTTP =
∑

(Date_of_Installation − Date_of_Availability)

Count(Completed_Patches)

• Units: hours per patch

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTTP values should trend lower over time. Most organizations put
patches through test and approval cycles prior to deployment. Generally, the target
time for MTTP will be a function of the criticality of the patch and business criti-
cality of the technology. Because of the lack of experiential data from the field, no
consensus on the range of acceptable goal values for Mean Time to Patch exists.

• Sources: Patch management and IT support tracking systems will provide patch
deployment data.

• Usage: Mean Time to Patch is a type of patch management metric, and relies on
the common definition of “patch” as defined in Glossary. Given that many known
vulnerabilities result from missing patches, there may be a direct correlation be-
tween lower MTTP and lower levels of Security Incidents. MTTP can be calculated

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 220

over time, typically per-week or per-month. To gain insight into the relative perfor-
mance and risk to one business unit over another, MTTP may also be calculated for
different patch criticalities and cross-sections of the organization, such as individual
business units or geographies.

• Limitations: (i) Critical Technologies: this metric assumes that the critical tech-
nologies are known and recorded. If the critical technologies are unknown, this
metric cannot be accurately measured. As new technologies are added their criti-
cality needs to be determined and, if appropriate, included in this metric; (ii) Vendor
Reliance: this metric is reliant upon the vendor’s ability to notify organization of
updates and vulnerabilities that need patching. If the vendor does not provide a
program for notifying their customers then the technology, if critical, will always be
a black mark on this metric; (iii) Criticality Ranking. This metric is highly depen-
dent upon the ranking of critical technologies by the organization. If this ranking
is abused then the metric will become unreliable. (iv) Patches in-Progress. This
metric calculation does not account for patch installations that are incomplete or
on-going during the time period measured. It is not clear how this will bias the
results, although potentially an extended patch deployment will not appear in the
results for some time.

• References: [NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 221

Id: 5.1.6 - Metric Name: Patch Management Coverage (PMC)

• Objective: Patch Management Coverage (PMC) characterizes the efficiency of the
patch management process by measuring the percentage of total technologies that
are managed in a regular or automated patch management process. This metric
also serves as an indicator of the ease with which security-related changes can be
pushed into the organization’s environment when needed.

• Description: Patch Management Coverage (PMC) measures the relative amount
of an organization’s systems that are managed under a patch management process
such as an automated patch management system. Since patching is a regular and
recurring process in an organization, the higher the percentage of technologies man-
aged under such a system the timelier and more effectively patches are deployed to
reduce the number and duration of exposed vulnerabilities.

• Question: what percentage of the organization’s technology instances are not part
of the patching process and represent potential residual risks for vulnerabilities?

• Answer: a positive integer value that is greater than or equal to zero. A value of?
100%? indicates that all technologies are under management.

• Formula: Patch Management Coverage is calculated by dividing the number of the
technology instances under patch management by the total number of all technology
instances within the organization. This metric can be calculated for subsets of
technologies such as by asset criticality or business unit.

PMC =
Count(Technology_Instances_Under_Patch_Management)

Count(Technology_Instances)
∗ 100

• Units: percentage of technology instances

• Frequency: weekly, monthly, quarterly, annually.

• Targets: PMC values should trend higher over time. Given the difficulties in
manually managing systems at scale, having technologies under patch management
systems is preferred. An ideal result would be 100% of technologies. However, given
incompatibilities across technologies and systems this is unlikely to be attainable.
Higher values would generally result in more efficient use of security resources. Be-
cause of the lack of experiential data from the field, no consensus on the range of
acceptable goal values for PMC exists.

• Sources: patch management and IT support tracking systems will provide patch
deployment data.

• Usage: Patch Management Coverage is a type of patch management metric and
relies on the common definition of “patch” as defined in Glossary. Optimal conditions
would reflect a high value in the metric. A value of 100% would indicate that every
technology in the environment falls under the patch management system. The lower
the value, the greater the degree of? ad-hoc? and manual patch deployment and

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 222

the longer and less effective it will be. Given that many known vulnerabilities
result from missing patches, there may be a direct correlation between a higher
level of Patch Management coverage and the number of known vulnerabilities in an
environment. Patch Management Coverage can be calculated over time, typically
per-week or per-month. To gain insight into the relative performance and risk to
one business unit over another, Coverage may also be calculated for cross-sections
of the organization, such as individual business units or geographies.

• Limitations: not all technologies within an organization may be capable of being
under a patch management system, for technical or performance reasons, so the re-
sults and interpretation of this metric will depend on the specifics of an organizations
infrastructure.

• References: [NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 223

Id: 5.1.7 - Metric Name: Patch Policy Compliance (PPC)

• Objective: Patch Policy Compliance (PPC) indicates the scope of the organiza-
tion’s patch level for supported technologies as compared to their documented patch
policy. While specific patch policies may vary within and across organizations, per-
formance versus stated patch state objectives can be compared as a percentage of
compliant systems.

• Description: Patch Policy Compliance (PPC) measures an organization’s patch
level for supported technologies as compared to their documented patch policy.
“Policy” refers to the patching policy of the organization, more specifically, which
patches are required for what type of computer systems at any given time. This
policy might be as simple as install the latest patches from system vendors? or may
be more complex to account for the criticality of the patch or system. “Patched to
policy” reflects an organization’s risk/reward decisions regarding patch management.
It is not meant to imply that all vendor patches are immediately installed when they
are distributed.

• Question: what percentage of the organization’s technologies is not in compliance
with current patch policy?

• Answer: a positive integer value between zero and 100 inclusive. A value of “100%”
indicates that all technologies are in compliance to the patch policy.

• Formula: Patch Policy Compliance (PPC) is calculated by dividing the sum of
the technologies currently compliant by the sum of all technologies under patch
management (where the current patch state is known). This metric can be calculated
for subsets of technologies such as by technology value or business unit:

PPC =
Count(Compliant_Instances)

Count(Technology_Instances)
∗ 100

• Units: percentage of technology instances

• Frequency: weekly, monthly, quarterly, annually.

• Targets: PPC values should trend higher over time. An ideal result would be 100%
of technologies. The expected trend for this metric over time is to remain stable or
increase towards 100%. There will be variations when new patches are released for
large number of technologies (such as a common operating system) that could cause
this value to vary significantly. Measurement of this metric should take such events
into consideration. Higher values would generally result in less exposure to known
security issues. Because of the lack of experiential data from the field, no consensus
on the range of acceptable goal values for Patch Policy Compliance exists.

• Sources: Patch management and IT support tracking systems will provide patch
deployment data. Audit reports will provide compliance status.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 224

• Usage: Patch Management Coverage is a type of patch management metric and
relies on the common definition of “patch” as defined in Glossary. Patch Policy
Compliance can be calculated over time typically per-week or per-month. To gain
insight into the relative risk to one business unit over another, Compliance may also
be calculated for cross-sections of the organization, such as individual business units
or geographies or technology values and types.

• Limitations: this metric is highly dependent upon the current set of patch policy
requirements. When patches are released that affect large numbers of technologies
(such as common operating systems), this number can vary greatly with time if the
lack of new patches makes a system non-compliant.

• References: [NIST, 2013c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 225

Id: 5.2.1 -Metric Name: Percent of Changes with Security Exceptions (PCSE)

• Objective: the goal of this metric is to provide managers with information about
the potential risks to their environment resulting from configuration or system
changes exempt from the organization’s security policy.

• Description: this metric indicates the percentage of configuration or system changes
that received an exception to existing security policy.

• Question: what percentage of changes received security exceptions?

• Answer: a positive integer value between zero and one, reported as a percentage.
A value of? 100%? indicates that all changes are exceptions.

• Formula: this Percentage of Security Exception (PCSE) metrics are calculated by
counting the number of completed configuration changes that received security ex-
ceptions during the metric time period divided by the total number of configuration
changes completed during the metric time period:

PCSE =
Count(Completed_Changes_with_Security_Exceptions)

Count(Completed_Changes)
∗ 100

• Units: percentage of configuration changes

• Frequency: weekly, monthly, quarterly, annually.

• Targets: PCSE values should trend lower over time. Generally speaking, exceptions
made to security policies increase the complexity and difficulty of managing the
security of the organization. Because of the lack of experiential data from the field,
no consensus on the range of acceptable goal values for Percent of Changes with
Security Exceptions exists.

• Sources: configuration management and IT support tracking systems will provide
configuration change data.

• Usage: manager can use this metric to understand their exposure in terms of the
percentage of change exceptions to their security policy. While exceptions may be
granted based on negligible risk or additional controls, it is possible that accumulated
change exceptions could degrade their security posture.By focusing on exceptions
granted to changes to high-value applications and technologies, or key business units,
managers can focus their attention and resources and increase their understanding
of the degree to which security risks may be introduced to these systems.

• Limitations: (i) only completed changes: this metric is only calculating the results
for changes that have been completed during the time period. Changes in-progress
will not be included in this metric if they have not been completed in the metric
time period; (ii) variations in the scale of changes. All changes are weighted equally
for this metric and do not take into account the amount of effort required. For a

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 226

better understanding of the scale of exceptions, organizations should group results
by categories of change size (Large, Medium, Small) or normalize based on scale
of the change; (iii) dependency on security reviews: security exceptions may only
have been granted for systems that received security reviews. Changes implemented
without security reviews may include unknown and untracked exceptions to security
policies.

• References: [A. Riley et al, 2008, Kempter, 2011a, Kempter, 2011b].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 227

Id: 5.2.2 - Metric Name: Percent of Changes with Security Review (PCSR)

• Objective: the goal of this metric is to provide managers with information about
the amount of changes and system churn in their environment that have unknown
impact on their security state.

• Description: this metric indicates the percentage of configuration or system changes
that were reviewed for security impacts before the change was implemented.

• Question: what percentage of changes received security reviews?

• Answer: a positive integer value between zero and one hundred that represents a
percentage. A value of? 100%? indicates that all changes received security reviews
during the metric time period.

• Formula: the Percent of Changes with Security Review (PCSR) metric is calculated
by counting the number of completed configuration changes that had a security
review during the metric in time period divided by the total number of configuration
changes completed during the metric time period.

PCSR =
Count(Completed_Changes_with_Security_Reviews)

Count(Completed_Changes)
∗ 100

• Units: percentage of configuration changes

• Frequency: weekly, monthly, quarterly, annually.

• Targets: PCSR values should trend higher over time. Generally speaking, change
management processes should contain review and approval steps that identify po-
tential business and security risks. Because of the lack of experiential data from the
field, no consensus on the range of acceptable goal values for Percent of Changes
with Security Review exists.

• Sources: configuration management and IT support tracking systems will provide
configuration change data.

• Usage: managers can use this metric to understand the degree to which changes
with unknown security impacts are occurring in their environment. The metric
results indicate the amount of churn that has a known impact on the intended
security model of the organization. As changes with unknown security implications
accumulate, it would be expected that the security model of these systems would
degrade. By focusing on changes to high-value applications and technologies or key
business units, managers can understand the degree to which security risks may be
introduced to these systems.

• Limitations: (i) only completed changes: this metric is only calculating the results
for changes that have been completed during the time period. Changes in security
review policies may not be included in this metric if the changes have not been
completed in the metric time period; (ii) variations in the scale of changes. All

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 228

changes are weighted equally for this metric regardless of the level of effort required
or priority of the request and are not taken into account by the current metric defi-
nition. Organizations wanting increased precision could group results by categories
of change size (e.g. Large, Medium, Small) or normalize based on level of effort.

• References: [A. Riley et al, 2008, Kempter, 2011a, Kempter, 2011b].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 229

Id: 6.1.1 - Metric Name: Number of Packet Filtering (NPFi)

• Objective: Number of Packet Filtering indicates the number of detected security
incidents the organization has experienced during the metric time period. In com-
bination with other metrics, this can indicate the level of threats, effectiveness of
security controls, or incident detection capabilities.

• Description: Number of Packet Filtering measures the number of security incidents
for a given time period.

• Question: what is the number of packet filtering that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: number of packet filtering is calculated by counting the number of packets
that are filtered by rules of filtering, for example a given time period, category or
block specific packets, and permit specific packets:

NPFi = Count(Filtering_Packets)

• Units: number of packet per period; for example, number of packet per week or
number of packet per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NPFi values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for packet filtering exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Packet Filtering is a type of security incident metric and relies
on the common definition of “security incident” as defined in Glossary. Optimal con-
ditions would reflect a low number of incidents. The lower the number of incidents,
the healthier the security posture would be assuming perfect detection. However, a
low number of incidents might also indicate a weak capability to detect incidents.
This metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 230

so the trend of incidents can be useful for indicating patterns in the environment.
To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 231

Id: 6.1.2 - Metric Name: Number of Security Rule Control (NSRC)

• Objective: Number of Security Rule Control indicates the number of detected
security incidents the organization has experienced during the metric time period.
In combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: Number of Security Rule Control measures the number of security
incidents for a given time period.

• Question: what is the number of security rule control that occurred during the
time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Security Rule Control is calculated by counting the number
of rule control, for example a given time period, category type:

NSRC = Count(Security_Rules_Control)

• Units: number of security rule control per period; for example, number of security
rule control per week or number of security rule control per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NSRC values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for packet filtering exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Security Rule Control is a type of security incident metric and
relies on the common definition of “security incident” as defined in Glossary. Opti-
mal conditions would reflect a low number of incidents. The lower the number of
incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 232

the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 233

Id: 6.1.3 - Metric Name: Number of Traffic Flow Statistics (NTFS)

• Objective: Number of Traffic Flow Statistics indicates the number of detected
security incidents the organization has experienced during the metric time period.
In combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: Number of Traffic Flow Statistics measures the number of security
incidents for a given time period.

• Question: what is the number of traffic flow statistics that occurred during the
time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Traffic Flow Statistics is calculated by counting the number
of rule control, for example a given time period, category type:

NTFS = Count(Number_Traffic_Flow_Statistics)

• Units: number of traffic flow statistics per period; for example, number of traffic
flow statistics per week or number of traffic flow statistics per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NTFS values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for packet filtering exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Traffic Flow Statistics is a type of security incident metric and
relies on the common definition of “security incident” as defined in Glossary. Opti-
mal conditions would reflect a low number of incidents. The lower the number of
incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 234

the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 235

Id: 6.1.4 - Metric Name: Number of Prevention of DoS (NPD)

• Objective: Number of Prevention of DoS indicates the number of detected secu-
rity incidents the organization has experienced during the metric time period. In
combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: Number of Prevention of DoS measures the number of security inci-
dents for a given time period, and security functions should continue to work after
attacks are terminated.

• Question: what is the number of prevention of DoS that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Prevention of DoS is calculated by counting the number of
attacks prevented to type DoS, for example a given time period, category type:

NPD = Count(Number_Prevention_DoS)

• Units: number of prevention of DoS per period; for example, number of prevention
of DoS per week or number of prevention of DoS per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NPD values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for packet filtering exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Prevention of DoS is a type of security incident metric and relies
on the common definition of “security incident” as defined in Glossary. Optimal con-
ditions would reflect a low number of incidents. The lower the number of incidents,
the healthier the security posture would be assuming perfect detection. However, a
low number of incidents might also indicate a weak capability to detect incidents.
This metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 236

so the trend of incidents can be useful for indicating patterns in the environment.
To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 237

Id: 6.1.5 - Metric Name: Number of Shutdown (NS)

• Objective: Number of Shutdown indicates the number of detected security inci-
dents the organization has experienced during the metric time period. In combina-
tion with other metrics, this can indicate the level of threats, effectiveness of security
controls, or incident detection capabilities.

• Description: Number of Shutdown measures the number of security incidents for
a given time period.

• Question: what is the number of shutdown that occurred during the time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Shutdown is calculated by counting the number of shutdown,
for example a given time period, category type:

NS = Count(Number_Shutdown)

• Units: number of shutdown per period; for example, number of shutdown per week
or number of shutdown per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NS values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of shutdown exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Shutdown is a type of security incident metric and relies on the
common definition of “security incident” as defined in Glossary. Optimal conditions
would reflect a low number of incidents. The lower the number of incidents, the
healthier the security posture would be assuming perfect detection. However, a low
number of incidents might also indicate a weak capability to detect incidents. This
metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,
so the trend of incidents can be useful for indicating patterns in the environment.
To gain insight into the relative performance of one business unit over another, the

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 238

number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 239

Id: 6.1.6 - Metric Name: Mean Time To Recovery From Shutdown Firewall
(MTTRFSF)

• Objective: Mean Time To Recovery From Shutdown Firewall (MTTRFSF) charac-
terizes the effectiveness of the patch management process by measuring the average
time taken from date of patch release to installation in the organization for patches
deployed during the metric time period. This metric serves as an indicator of the
organization’s overall level of exposure to vulnerabilities by measuring the time the
organization takes to address systems known to be in vulnerable states that can be
remediated by security patches. This is a partial indicator as vulnerabilities may
have no patches available or occur for other reasons such as system configurations.

• Description: Mean Time To Recovery From Shutdown measures the average time
taken to deploy a patch to the organization’s technologies. The more quickly patches
can be deployed, the lower the mean time to patch and the less time the organization
spends with systems in a state known to be vulnerable.

• Question: for all security incidents that occurred within a given time period, what
is the average (mean) number of hours to recovery from shutdown firewall?

• Answer: a positive floating-point value that is greater than or equal to zero. A
value of “0” indicates that patches were theoretically instantaneously deployed.

• Formula: Mean Time To Recovery From Shutdown is calculated by dividing the
difference between the Date of Occurrence and the Date of Recovery From Shutdown
Firewall for each incident recovered in the metric time period, by the total number
of incidents recovered in the metric time period:

MTTRFSF =
∑

(Date_of_Recovery − Date_of_Occurrence)

Count(Incidents)

• Units: hours per recovery.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTTRFSF values should trend lower over time. The value of “0” indicates
hypothetical instantaneous recovery. Because of the lack of experiential data from
the field, no consensus on the range of acceptable goal values for mean time to
recovery from shutdown exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: MTIR is a type of security incident metric and relies on the common
definition of “security incidents” as defined in Glossary. Optimal conditions would
reflect a low value in the MTIR. A low MTIR value indicates a healthier security

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 240

posture as the organization quickly recovered from the incident. Given the impact
that an incident can have on an organization’s business processes, there may be a
direct correlation between a lower MTIR and a lower incident cost.

• Limitations: this metric measures incident recovery capabilities of an organiza-
tion. As such, the importance of this metric will vary between organizations. Some
organizations have much lower profiles than others and would be a more attractive
target for attackers whose attack vectors and capabilities vary. MTIRs may not be
directly comparable between organizations. The date of occurrence of an incident
may be hard to determine precisely. The date of occurrence field should be the date
that the incident could have occurred. This date may be subject to revision and
more information becomes known about a particular incident.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 241

Id: 6.2.1 - Metric Name: Number of Packet Fragmentation (NPFr)

• Objective: Number of Packet Fragmentation (NPFr) indicates the number of de-
tected security incidents the organization has experienced during the metric time
period. In combination with other metrics, this can indicate the level of threats,
effectiveness of security controls, or incident detection capabilities.

• Description: Number of Packet Fragmentation measures the number of security
incidents for a given time period.

• Question: what is the number of packet fragmentation that occurred during the
time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Packet Fragmentation is calculated by counting the number
of packet fragmentation, for example a given time period, category type:

NPFr = Count(Number_Packet_Fragmentation)

• Units: number of packet fragmentation per period; for example, number of packet
fragmentation per week or number of packet fragmentation per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NPFr values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for packet fragmentation exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Packet Fragmentation is a type of security incident metric and
relies on the common definition of “security incident” as defined in Glossary. Opti-
mal conditions would reflect a low number of incidents. The lower the number of
incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 242

the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 243

Id: 6.2.2 - Metric Name: Number of Stream Segmentation (NSS)

• Objective: Number of Stream Segmentation (NSS) indicates the number of de-
tected security incidents the organization has experienced during the metric time
period. In combination with other metrics, this can indicate the level of threats,
effectiveness of security controls, or incident detection capabilities.

• Description: Number of Stream Segmentation measures the number of security
incidents for a given time period.

• Question: what is the number of stream segmentation that occurred during the
time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Stream Segmentation is calculated by counting the number
of stream segmentation, for example a given time period, category type:

NSS = Count(Number_Stream_Segmentation)

• Units: number of stream segmentation per period; for example, number of stream
segmentation per week or number of stream segmentation per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NSS values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for stream segmentation exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Stream Segmentation is a type of security incident metric and
relies on the common definition of “security incident” as defined in Glossary. Opti-
mal conditions would reflect a low number of incidents. The lower the number of
incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 244

the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 245

Id: 6.2.3 - Metric Name: Number of Remote Procedure Call Fragmentation
(NRPCF)

• Objective: Number of Remote Procedure Call Fragmentation (NRPCF) indicates
the number of detected security incidents the organization has experienced during
the metric time period. In combination with other metrics, this can indicate the
level of threats, effectiveness of security controls, or incident detection capabilities.

• Description: Number of Remote Procedure Call Fragmentation measures the num-
ber of security incidents for a given time period.

• Question: what is the number of remote procedure call fragmentation that occurred
during the time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Remote Procedure Call Fragmentation is calculated by count-
ing the number of remote procedure call fragmentation, for example a given time
period, category type:

NRPCF = Count(Number_Remote_Procedure_Call_Fragmentation)

• Units: number of remote procedure call fragmentation per period; for example,
number of remote procedure call fragmentation per week or number of remote pro-
cedure call fragmentation per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NRPCF values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there were
no security incidents. Because of the lack of experiential data from the field, no
consensus on range of acceptable goal values for remote procedure call fragmentation
exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Remote Procedure Call Fragmentation is a type of security
incident metric and relies on the common definition of “security incident” as defined
in Glossary. Optimal conditions would reflect a low number of incidents. The
lower the number of incidents, the healthier the security posture would be assuming
perfect detection. However, a low number of incidents might also indicate a weak
capability to detect incidents. This metric can also indicate the effectiveness of

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 246

security controls. Assuming similar threat levels and detection capabilities, fewer
incidents could indicate better performance of one set of security controls. The
Number of Incidents metric is calculated over time, typically per-week or per-month.
Not all incidents are easily detected, so the trend of incidents can be useful for
indicating patterns in the environment. To gain insight into the relative performance
of one business unit over another, the number of incidents may also be calculated
for cross-sections of the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 247

Id: 6.2.4 - Metric Name: Number of Recovery from Abnormal System Shut-
down (NRASS)

• Objective: Number of Recovery from Abnormal System Shutdown (NRASS) in-
dicates the number of detected security incidents the organization has experienced
during the metric time period. In combination with other metrics, this can in-
dicate the level of threats, effectiveness of security controls, or incident detection
capabilities.

• Description: Number of Recovery from Abnormal System Shutdown measures the
number of security incidents for a given time period.

• Question: what is the number of recovery from abnormal system shutdown that
occurred during the time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Recovery from Abnormal System Shutdown is calculated by
counting the number of abnormal system shutdown, for example a given time period,
category type:

NRASS = Count(Number_Abnormal_System_Shutdown)

• Units: number of recovery from abnormal system shutdown per period; for example,
number of recovery from abnormal system shutdown per week or number of recovery
from abnormal system shutdown per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NRASS values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field, no
consensus on range of acceptable goal values for remote procedure call fragmentation
exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of recovery from abnormal system shutdown is a type of security
incident metric and relies on the common definition of “security incident” as defined
in Glossary. Optimal conditions would reflect a low number of incidents. The
lower the number of incidents, the healthier the security posture would be assuming
perfect detection. However, a low number of incidents might also indicate a weak

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 248

capability to detect incidents. This metric can also indicate the effectiveness of
security controls. Assuming similar threat levels and detection capabilities, fewer
incidents could indicate better performance of one set of security controls. The
Number of Incidents metric is calculated over time, typically per-week or per-month.
Not all incidents are easily detected, so the trend of incidents can be useful for
indicating patterns in the environment. To gain insight into the relative performance
of one business unit over another, the number of incidents may also be calculated
for cross-sections of the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 249

Id: 6.2.5 - Metric Name: Number of Security Events Records (NSER)

• Objective: Number of Security Events Records (NSER) indicates the number of
detected security incidents the organization has experienced during the metric time
period. In combination with other metrics, this can indicate the level of threats,
effectiveness of security controls, or incident detection capabilities.

• Description: Number of Security Events Records measures the number of security
incidents for a given time period.

• Question: what is the number of security events records that occurred during the
time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Security Events Records is calculated by counting the number
of security events, for example a given time period, category type:

NSER = Count(Number_Security_Events_Records)

• Units: number of security events records per period; for example, number of secu-
rity events recordsn per week or number of security events records per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NSER values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field, no
consensus on range of acceptable goal values for remote procedure call fragmentation
exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of security events records is a type of security incident metric and
relies on the common definition of “security incident” as defined in Glossary. Opti-
mal conditions would reflect a low number of incidents. The lower the number of
incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 250

are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 251

Id: 6.2.6 - Metric Name: Number of Evasion Attacks (NEA)

• Objective: Number of Evasion Attacks (NEA) indicates the number of detected
security incidents the organization has experienced during the metric time period.
In combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: Number of Evasion Attacks measures the number of security incidents
for a given time period.

• Question: what is the number of evasion attacks that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Evasion Attacks is calculated by counting the number of
abnormal system shutdown, for example a given time period, category type:

NEA = Count(Number_Evasion_Attacks)

• Units: number of evasion attacks per period; for example, number of evasion attacks
per week or number of evasion attacks per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NEA values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of remote procedure call
fragmentation exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of evasion attacks is a type of security incident metric and relies on
the common definition of “security incident” as defined in Glossary. Optimal condi-
tions would reflect a low number of incidents. The lower the number of incidents,
the healthier the security posture would be assuming perfect detection. However, a
low number of incidents might also indicate a weak capability to detect incidents.
This metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 252

so the trend of incidents can be useful for indicating patterns in the environment.
To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 253

Id: 6.2.6.1 - Metric Name: Number of URL Obfuscation (NUO)

• Objective: Number of URL Obfuscation (NUO) indicates the number of detected
security incidents the organization has experienced during the metric time period.
In combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: Number of URL Obfuscation measures the number of security inci-
dents for a given time period.

• Question: what is the number of URL obfuscation that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of URL Obfuscation is calculated by counting the number of
URL obfuscation, for example a given time period, category type:

NUO = Count(Number_URL_Obfuscation)

• Units: number of URL obfuscation per period; for example, number of URL ob-
fuscation per week or number of URL obfuscation per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NUO values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of URL obfuscation
exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of URL Obfuscation is a type of security incident metric and relies
on the common definition of “security incident” as defined in Glossary. Optimal con-
ditions would reflect a low number of incidents. The lower the number of incidents,
the healthier the security posture would be assuming perfect detection. However, a
low number of incidents might also indicate a weak capability to detect incidents.
This metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 254

so the trend of incidents can be useful for indicating patterns in the environment.
To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 255

Id: 6.2.6.2 - Metric Name: Number of SMB & NetBIOS Evasions (NSNE)

• Objective: Number of SMB & NetBIOS Evasions (NSNE) indicates the number of
detected security incidents the organization has experienced during the metric time
period. In combination with other metrics, this can indicate the level of threats,
effectiveness of security controls, or incident detection capabilities.

• Description: Number of SMB & NetBIOS Evasions measures the number of secu-
rity incidents for a given time period.

• Question: what is the number of SMB & NetBIOS evasions that occurred during
the time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of SMB & NetBIOS Evasions is calculated by counting the
number of SMB & NetBIOS evasionson, for example a given time period, category
type:

NSNE = Count(Number_SMB_NetBIOS_Evasions)

• Units: number of SMB & NetBIOS evasions per period; for example, number of
SMB & NetBIOS evasions per week or number of SMB & NetBIOS evasions per
month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NSNE values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of SMB & NetBIOS
evasions exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of SMB & NetBIOS Evasions is a type of security incident metric
and relies on the common definition of “security incident” as defined in Glossary.
Optimal conditions would reflect a low number of incidents. The lower the number
of incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 256

Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 257

Id: 6.2.6.3 - Metric Name: Number of HTML Obfuscation (NHO)

• Objective: Number of HTML Obfuscation (NHO) indicates the number of detected
security incidents the organization has experienced during the metric time period.
In combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: Number of HTML Obfuscation measures the number of security
incidents for a given time period.

• Question: what is the number of HTML obfuscation that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of HTML Obfuscation is calculated by counting the number of
HTML obfuscation, for example a given time period, category type:

NHO = Count(Number_HTML_Obfuscation)

• Units: number of HTML obfuscation per period; for example, number of HTML
obfuscation per week or number of HTML obfuscation per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NHO values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of HTML obfuscation
exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of HTML Obfuscation is a type of security incident metric and
relies on the common definition of “security incident” as defined in Glossary. Opti-
mal conditions would reflect a low number of incidents. The lower the number of
incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 258

are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 259

Id: 6.2.6.4 - Metric Name: Number of Payload Encoding (NPE)

• Objective: Number of Payload Encoding (NPE) indicates the number of detected
security incidents the organization has experienced during the metric time period.
In combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: Number of Payload Encoding measures the number of security inci-
dents for a given time period.

• Question: what is the number of payload encoding that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Payload Encoding is calculated by counting the number of
HTML obfuscation, for example a given time period, category type:

NPE = Count(Number_Payload_Encoding)

• Units: number of payload encoding per period; for example, number of payload
encoding per week or number of payload encoding per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NPE values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of payload encoding
exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Payload Encoding is a type of security incident metric and relies
on the common definition of “security incident” as defined in Glossary. Optimal con-
ditions would reflect a low number of incidents. The lower the number of incidents,
the healthier the security posture would be assuming perfect detection. However, a
low number of incidents might also indicate a weak capability to detect incidents.
This metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 260

so the trend of incidents can be useful for indicating patterns in the environment.
To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 261

Id: 6.2.6.5 - Metric Name: Number of FTP Evasion (NFE)

• Objective: Number of FTP Evasion (NFE) indicates the number of detected se-
curity incidents the organization has experienced during the metric time period. In
combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: Number of FTP Evasion measures the number of security incidents
for a given time period.

• Question: what is the number of FTP evasion that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of FTP Evasion is calculated by counting the number of FTP
evasion, for example a given time period, category type:

NFE = Count(Number_FTP_Evasion)

• Units: number of FTP evasion per period; for example, number of FTP evasion
per week or number of FTP evasion per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NFE values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of FTP evasion exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of FTP Evasion is a type of security incident metric and relies on
the common definition of “security incident” as defined in Glossary. Optimal condi-
tions would reflect a low number of incidents. The lower the number of incidents,
the healthier the security posture would be assuming perfect detection. However, a
low number of incidents might also indicate a weak capability to detect incidents.
This metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,
so the trend of incidents can be useful for indicating patterns in the environment.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 262

To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 263

Id: 6.2.6.6 - Metric Name: Number of Layered Evasion (NLE)

• Objective: Number of Layered Evasion (NLE) indicates the number of detected
security incidents the organization has experienced during the metric time period.
In combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: Number of Layered Evasion measures the number of security inci-
dents for a given time period.

• Question: what is the number of layered evasionis that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of Layered Evasionis calculated by counting the number of FTP
evasion, for example a given time period, category type:

NLE = Count(Number_Layered_Evasion)

• Units: number of layered evasionis per period; for example, number of layered
evasionis per week or number of layered evasionis per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NLE values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of layered evasionis
exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: Number of Layered Evasion is a type of security incident metric and relies
on the common definition of “security incident” as defined in Glossary. Optimal con-
ditions would reflect a low number of incidents. The lower the number of incidents,
the healthier the security posture would be assuming perfect detection. However, a
low number of incidents might also indicate a weak capability to detect incidents.
This metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 264

so the trend of incidents can be useful for indicating patterns in the environment.
To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 265

Id: 6.2.7 - Metric Name: Mean Time To Recovery From Shutdown IDPS
(MTTRFSI)

• Objective: Mean Time To Recovery From Shutdown IDPS (MTTRFSI) charac-
terizes the effectiveness of the patch management process by measuring the average
time taken from date of patch release to installation in the organization for patches
deployed during the metric time period. This metric serves as an indicator of the
organization’s overall level of exposure to vulnerabilities by measuring the time the
organization takes to address systems known to be in vulnerable states that can be
remediated by security patches. This is a partial indicator as vulnerabilities may
have no patches available or occur for other reasons such as system configurations.

• Description: Mean Time To Recovery From Shutdown IDPS measures the average
time taken to deploy a patch to the organization’s technologies. The more quickly
patches can be deployed, the lower the mean time to patch and the less time the
organization spends with systems in a state known to be vulnerable.

• Question: for all security incidents that occurred within a given time period, what
is the average (mean) number of hours to recovery from shutdown IDPS?

• Answer: a positive floating-point value that is greater than or equal to zero. A
value of “0” indicates that patches were theoretically instantaneously deployed.

• Formula: Mean Time To Recovery From Shutdown IDPS is calculated by dividing
the difference between the Date of Occurrence and the Date of Recovery From
Shutdown IDPS for each incident recovered in the metric time period, by the total
number of incidents recovered in the metric time period:

MTTRFSI =
∑

(Date_of_Recovery − Date_of_Occurrence)

Count(Incidents)

• Units: hours per recovery.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTTRFSI values should trend lower over time. The value of “0” indicates
hypothetical instantaneous recovery. Because of the lack of experiential data from
the field, no consensus on the range of acceptable goal values for mean time to
recovery from shutdown exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: MTTRFSI is a type of security incident metric and relies on the common
definition of “security incidents” as defined in Glossary. Optimal conditions would
reflect a low value in the MTIR. A low MTIR value indicates a healthier security

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 266

posture as the organization quickly recovered from the incident. Given the impact
that an incident can have on an organization’s business processes, there may be a
direct correlation between a lower MTIR and a lower incident cost.

• Limitations: this metric measures incident recovery capabilities of an organiza-
tion. As such, the importance of this metric will vary between organizations. Some
organizations have much lower profiles than others and would be a more attractive
target for attackers whose attack vectors and capabilities vary. MTIRs may not be
directly comparable between organizations. The date of occurrence of an incident
may be hard to determine precisely. The date of occurrence field should be the date
that the incident could have occurred. This date may be subject to revision and
more information becomes known about a particular incident.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 267

Id: 7.1.1 - Metric Name: Percentage of Critical Applications (PCA)

• Objective: this metric tracks the percentage of applications that are critical to the
business.

• Description: the percentage of critical applications measures the percent of appli-
cations that are critical to the organization’s business processes as defined by the
application’s value rating.

• Question: what percentage of the organization’s applications is of critical value?

• Answer: a positive integer value that is equal to or greater than zero and less than
or equal to one hundred, reported as a percentage. A value of? 100%? indicates
that all applications are critical.

• Formula: the Percentage of Critical Applications (PCA) metric is calculated by
dividing the number of applications that have high value to the organization by the
total number of applications in the organization:

PCA =
Count(Critical_Applications)

Count(Applications)
∗ 100

• Units: percentage of applications

• Frequency: weekly, monthly, quarterly, annually.

• Targets: because of the lack of experiential data from the field, no consensus on
goal values for the percentage of critical applications. The result will depend on the
organization’s business and use of IT.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: managers can use this metric to gain a better understanding of the quan-
tity of applications that are critical to their organization. This metric provides a
reference to the scale of the organization’s use of applications and assists managers
with better understanding of the scope and scale of their application security risk.

• Limitations: (i) variations in application scope. Different organizations might
count as a “single” application a system that another organization may consider
several distinct applications, resulting in significantly different numbers of applica-
tions between organizations; (ii) variations in application scale: applications within
or across organizations might be significantly different in size, so the level of effort
required to assess, test or fix vulnerabilities may vary between applications.

• References: [Silva and Geus, 2014c].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 268

Id: 7.1.2 - Metric Name: Risk Assessment Coverage (RAC)

• Objective: this metric reports the percentage of applications that have been sub-
jected to risk assessments.

• Description: risk assessment coverage indicates the percentage of business appli-
cations that have been subject to a risk assessment at any time.

• Question: what percentage of applications have been the subjected to risk assess-
ments?

• Answer: a positive value between zero and one hundred, reported as a percentage.
A value of? 100%? would indicate that all applications have had risk assessments.

• Formula: the metric is calculated by dividing the number of applications that have
been subject to any risk assessments by the total number of applications in the
organization:

RAC =
Count(Applications_Undergone_Risk_Assessment)

Count(Applications)
∗ 100

• Units: percentage of applications

• Frequency: weekly, monthly, quarterly, annually.

• Targets: RAC values should trend higher over time. A higher result would indicate
that more applications have been examined for risks. Most security process frame-
works suggest or require risk assessments for applications deployed in production
environments. Because of the lack of experiential data from the field, no consensus
on the range of acceptable goal values for Risk Assessment Coverage exists.

• Sources: The data source for this metric is a risk assessment tracking system.

• Usage: managers can use this metric to evaluate their risk posture in terms of
applications that have undergone a risk assessment. A better understanding of the
quantity of applications that have not been exposed to a risk assessment allows the
organization to evaluate their level of unknown risk associated with these applica-
tions.

• Limitations: (i) variations in application scope.: different organizations might
count as a “single” application a system that another organization may consider
several distinct applications, resulting in significantly different numbers of applica-
tions between organizations; (ii) variations in application scale: applications within
or across organizations might be significantly different in size, so the level of effort
required to assess, test or fix vulnerabilities may vary between applications; (iii)
depth of Risk assessments: risk assessments can vary in depth due to the method-
ology used, the amount of time spent, and the quality of the assessment team; (iv)
stage when Assessed: risk assessments can occur at varying times in an application’s
development cycle that may influence the assessment.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 269

Id: 7.1.3 - Metric Name: Security Testing Coverage (STC)

• Objective: this metric indicates the percentage of the organization’s applications
have been tested for security risks.

• Description: this metric tracks the percentage of applications in the organization
that have been subjected to security testing. Testing can consists of manual or
automated white and/or black-box testing and generally is performed on systems
post-deployment (although they could be in pre-production testing). Studies have
shown that there is material differences in the number and type of application
weaknesses found. As a result, testing coverage should be measured separately from
risk assessment coverage.

• Question: what percentage of applications has been subjected to security testing?

• Answer: a positive value between zero and one hundred, reported as a percentage.
A value of? 100%? would indicate that all applications have had security testing.

• Formula: this metric is calculated by dividing the number of applications that have
had post-deployment security testing by the total number of deployed applications
in the organization:

STC =
Count(Applications_Undergone_Security_Testing)

Count(Deployed_Applications)
∗ 100

• Units: percentage of applications

• Frequency: weekly, monthly, quarterly, annually.

• Targets: STC values should trend higher over time. Generally, the higher the value
and the greater the testing scope, the more vulnerabilities in the organization’s
application set will be identified. A value of 100% indicates that every application
has been subject to post-deployment testing. Because of the lack of experiential
data from the field, no consensus on the range of acceptable goal values for Security
Testing Coverage exists.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: managers can use this metric to evaluate the degree to which applications
have been tested for weaknesses during the post-development phase (dimensions
could be used to expand this metric to cover various stages of the development
lifecycle). Quantifying the applications not subjected to security testing allows the
organization to evaluate their application risk.

• Automation: the ability to automate source data collection for this metric is
medium. While the results of security testing are often maintained in a tracking
system, these systems are generally maintained manually. Once the initial dataset
has been collected, use of the dataset can be automated for metric calculation pur-
poses.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 270

• Limitations: (i) variations in application scope. Different organizations might
count as a “single” application a system that another organization may consider
several distinct applications, resulting in significantly different numbers of applica-
tions between organizations; (ii) variations in application scale: applications within
or across organizations might be significantly different in size, so the level of effort
required to assess, test or fix vulnerabilities may vary between applications; (iii)
depth of Risk assessments: risk assessments can vary in depth due to the method-
ology used, the amount of time spent, and the quality of the assessment team.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 271

Id: 7.1.4 - Metric Name: Number of Applications/Service/VM (NASV)

• Objective: this metric indicates the number of the organization’s applications have
been tested for security risks.

• Description: this metric tracks the number of applications in the organization
that have been subjected to security testing. Testing can consists of manual or
automated white and/or black-box testing and generally is performed on systems
post-deployment (although they could be in pre-production testing). Studies have
shown that there is material differences in the number and type of application
weaknesses found. As a result, testing coverage should be measured separately from
risk assessment coverage.

• Question: what number of applications has been subjected to security testing?

• Answer: a positive value or zero, expressed as a number.

• Formula: this metric is calculated by the number of applications that have had
post-deployment security testing in the organization:

NASV = Count(Applications_Undergone_Security_Testing)

• Units: number of applications

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NASV values should trend higher over time. Generally, the higher the
value and the greater the testing scope, the more vulnerabilities in the organization’s
application set will be identified. A value of 100% indicates that every application
has been subject to post-deployment testing. Because of the lack of experiential
data from the field, no consensus on the range of acceptable goal values for Security
Testing Coverage exists.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: managers can use this metric to evaluate the degree to which applications
have been tested for weaknesses during the post-development phase (dimensions
could be used to expand this metric to cover various stages of the development
lifecycle). Quantifying the applications not subjected to security testing allows the
organization to evaluate their application risk.

• Automation: the ability to automate source data collection for this metric is
medium. While the results of security testing are often maintained in a tracking
system, these systems are generally maintained manually. Once the initial dataset
has been collected, use of the dataset can be automated for metric calculation pur-
poses.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 272

• Limitations: (i) variations in application scope. Different organizations might
count as a “single” application a system that another organization may consider
several distinct applications, resulting in significantly different numbers of applica-
tions between organizations; (ii) variations in application scale: applications within
or across organizations might be significantly different in size, so the level of effort
required to assess, test or fix vulnerabilities may vary between applications; (iii)
depth of Risk assessments: risk assessments can vary in depth due to the method-
ology used, the amount of time spent, and the quality of the assessment team.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 273

Id: 7.2.1 - Metric Name: Information Security Budget as % of IT Budget
(SBPITB)

• Objective: Organizations are seeking to understand if their security spending is
reasonable for the level of security performance and in-line with other organizations.
This metric presents the IT security budget as a percentage of organizations overall
IT budget, tracking the relative cost of security compared to IT operations. This
result can also be used to benchmark spending against other organizations.

• Description: security budget as a percentage of IT Budget tracks the percentage
of IT spending on security activities and systems. For the purposes of this metric,
it is assumed that Information Security is included in the IT budget.

• Question: what percentage of the IT Budget is allocated to information security?

• Answer: a positive value equal to or between 0 and 1, expressed as a percentage.
A value of? 100%? indicates that the entire Information Technology budget is
dedicated to information security.

• Formula: the total budget allocated for security activities and systems for the
metric time period is divided by the total information security budget.

SBPITB =
Security_Budget

IT_Budget
∗ 100

• Units: percentage of IT Budget

• Frequency: monthly, annually depending on budget cycle

• Targets: because of the lack of experiential data from the field, no strong consensus
on the range of acceptable goal values for security spending exists In general, this
value should be comparable with peer organizations with similar IT profiles and
security activities.

• Sources: financial management systems and/or annual budgets.

• Usage: examining and tracking the percentage of the IT budget allocated to se-
curity allows an organization to compare the costs of securing their infrastructure
between an organization’s divisions, against other organizations, as well as to observe
changes over time. These results will also provide a foundation for the optimization
of security spending through comparison of spending with the outcomes of other
metrics such as numbers of incidents, time to detection, time to patch, etc. The
percentage of budget allocated to security should be calculated over time, typically
per - quarter or per-year. To gain insight into the relative performance of one
business unit over another, this result may also be calculated for cross-sections of
the organization, such as individual business units or geographies where they have
discrete budgets.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 274

• Limitations: (i) different threat profiles across organizations: while there is sys-
temic risk to common viruses and attacks, there is also firm specific risk based on
the companies? specific activities that may require higher or lower level of security
spending relative to peer organizations; (ii) different IT profiles across organizations:
although in theory all organizations will make market-efficient use of IT, legacy sys-
tems and specific implementations will impact the costs of otherwise-similar IT
operations as well as the costs of similar levels of security performance; (iii) differ-
ences in accounting: different organizations may account for both IT and security
spending in different ways that make it hard to compare this value across organiza-
tions. Some may leverage IT resources for security purposes that make it hard to
account for such partial FTEs without significant activity-based costing exercises;
others may have lump-sum outsourced IT contracts without specific information on
security spending.

• References: [Chew et al., 2008].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 275

Id: 7.2.2 - Metric Name: Information Security Budget Allocation (SBBA)

• Objective: Organizations are seeking to understand if their security spending is
reasonable for the level of security performance and in-line with other organizations.
This metric presents the IT security budget as a percentage of organizations overall
IT budget, tracking the relative cost of security compared to IT operations. This
result can also be used to benchmark spending against other organizations.

• Description: security budget Allocation as a number of IT Budget tracks the
number of IT spending on security activities and systems. For the purposes of this
metric, it is assumed that Information Security is included in the IT budget.

• Question: what number of the IT Budget is allocated to information security?

• Answer: a positive value or zero, expressed as a number.

• Formula: the total budget allocated for security activities and systems for the
metric time period is divided by the total information security budget.

SBBA = Security_Budget

• Units: financial IT Budget

• Frequency: monthly, annually depending on budget cycle

• Targets: because of the lack of experiential data from the field, no strong consensus
on the range of acceptable goal values for security spending exists In general, this
value should be comparable with peer organizations with similar IT profiles and
security activities.

• Sources: financial management systems and/or annual budgets.

• Usage: examining and tracking the percentage of the IT budget allocated to se-
curity allows an organization to compare the costs of securing their infrastructure
between an organization’s divisions, against other organizations, as well as to observe
changes over time. These results will also provide a foundation for the optimization
of security spending through comparison of spending with the outcomes of other
metrics such as numbers of incidents, time to detection, time to patch, etc. The
percentage of budget allocated to security should be calculated over time, typically
per - quarter or per-year. To gain insight into the relative performance of one
business unit over another, this result may also be calculated for cross-sections of
the organization, such as individual business units or geographies where they have
discrete budgets.

• Limitations: (i) different threat profiles across organizations: while there is sys-
temic risk to common viruses and attacks, there is also firm specific risk based on
the companies? specific activities that may require higher or lower level of security
spending relative to peer organizations; (ii) different IT profiles across organizations:

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 276

although in theory all organizations will make market-efficient use of IT, legacy sys-
tems and specific implementations will impact the costs of otherwise-similar IT
operations as well as the costs of similar levels of security performance; (iii) differ-
ences in accounting: different organizations may account for both IT and security
spending in different ways that make it hard to compare this value across organiza-
tions. Some may leverage IT resources for security purposes that make it hard to
account for such partial FTEs without significant activity-based costing exercises;
others may have lump-sum outsourced IT contracts without specific information on
security spending.

• References: [Chew et al., 2008].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 277

Id: 7.3.1 - Metric Name: Current Anti-Malware Coverage for the Application
(CAMCA)

• Objective: the goal of this metric is to provide an indicator of the effectiveness of
an organization’s antimalware management. If 100% of systems have current anti-
malware detection engines and signatures, then those systems are relatively more
secure. If this metric is less than 100%, then those systems are relatively more
exposed to viruses and other malware. The expected trend for this metric over time
is to remain stable or increase towards 100%.

• Description: this metric attempts to answer the question “Do it has acceptable lev-
els of anti-malware coverage?” This question presumes the organization has defined
what is an acceptable level of compliance, which may be less than 100% to account
for ongoing changes in the operational environments. Malware includes computer
viruses, worms, trojan horses, most rootkits, spyware, dishonest adware, crimeware
and other malicious and unwanted software. The percentage of total computer sys-
tems in an organization that have current, up-to-date anti-virus (or anti-malware)
software and definition files. “Current” is a binary evaluation: a given system is
either configured with both up-to-date detection engines and signatures or it is not.
Compliance can be evaluated by automated methods, manual inspection, audit, or
some combination. Current coverage of a system is defined as a the most recent
version of the engine, and a signature file that is no more than 14 days older than
the most recent signature file released.

– In Scope: examples of systems under considerations for this metric include:
servers, workstations/laptops, hand-held devices, and other supported com-
puter systems.

– Out of Scope: examples of systems that are not under consideration for this
metric include: (i) temporary guest systems (contractors, vendors); (ii) lab/test
systems performing to or in support of a specific nonproduction project; (iii)
networking systems (routers, switches, access points); (iv) storage systems (i.e.
network accessible storage).

• Question: what percentage of the organizations systems have current anti-malware
protection?

• Answer: a positive integer value between zero and 100 inclusive, expressed as a
percentage. A value of “100%” indicates that all technologies have current anti-
malware coverage.

• Formula: Current Anti-Malware Coverage (CAMC) is calculated by determining
the number of in-scope systems with current coverage and then averaging this across
the total number of in-scope systems:

CAMCA =
In_Scope_Systems_with_current_Anti_Malware)

In_Scope_Systems
∗ 100

• Units: percentage of systems

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 278

• Frequency: monthly, annually.

• Targets: the expected trend for this metric over time is to remain stable or increase
towards 100%.

• Sources: configuration management and Anti-malware systems (locally or centrally
managed).

• Usage: Current Anti-Malware Coverage for the Application (CAMCA) represents
the overall compliance to anti-malware policies. The higher the CAMC the greater
the number of systems in the organization are running anti-malware with recent
signature files, the less likely it is that existing known malware will infect or spread
across the organizations systems, or fail to be detected in a timely manner.

• Limitations: (i) systems critical to the organization (e.g. production servers)
maybe out of scope of the anti-malware management system by design, for perfor-
mance, or network architecture reasons; (ii) variation in type of anti-malware such
as inbound email scanning vs. resident process scanning may be material. The
completeness of signature files and frequency of updates may also vary. (iii) the
time window defined as current may not be adequate if malware has its impact on
the organization before signature files are developed, or before the current window
has expired.

• References: [NIST, 2013d].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 279

Id: 7.3.2 - Metric Name: Number of Anti-Malware (NAM)

• Objective: Name: Number of Anti-Malware (NAM) indicates the number of de-
tected security incidents the organization has experienced during the metric time
period. In combination with other metrics, this can indicate the level of threats,
effectiveness of security controls, or incident detection capabilities.

• Description: Number of Anti-Malware measures the number of security incidents
for a given time period.

• Question: what is the number of anti-malware that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: number of anti-malware is calculated by counting the number of anti-
malware, for example a given time period, category type:

NAM = Count(Number_Anti−Malware)

• Units: number of anti-malware per period; for example, number of anti-malware
per week or number of anti-malware per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NAM values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of anti-malware exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of anti-malware is a type of security incident metric and relies on
the common definition of “security incident” as defined in Glossary. Optimal condi-
tions would reflect a low number of incidents. The lower the number of incidents,
the healthier the security posture would be assuming perfect detection. However, a
low number of incidents might also indicate a weak capability to detect incidents.
This metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,
so the trend of incidents can be useful for indicating patterns in the environment.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 280

To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 281

Id: 7.4.1 - Metric Name: Mean Time Between Backup Process (MTBBP)

• Objective: Mean Time Between Backup Process (MTBBP) characterizes the effec-
tiveness of the patch management process by measuring the average time taken from
date of patch release to installation in the organization for patches deployed during
the metric time period. This metric serves as an indicator of the organization’s
overall level of exposure to vulnerabilities by measuring the time the organization
takes to address systems known to be in vulnerable states that can be remediated by
security patches. This is a partial indicator as vulnerabilities may have no patches
available or occur for other reasons such as system configurations.

• Description: Mean Time Between Backup Process measures the average time
taken to deploy a patch to the organization’s technologies. The more quickly patches
can be deployed, the lower the mean time to patch and the less time the organization
spends with systems in a state known to be vulnerable.

• Question: for all security incidents that occurred within a given time period, what
is the average (mean) number of hours between backup process?

• Answer: a positive floating-point value that is greater than or equal to zero. A
value of “0” indicates that patches were theoretically instantaneously deployed.

• Formula: Mean Time Between Backup Process is calculated by dividing the differ-
ence between the Date of Occurrence and the Date of End From Shutdown IDPS for
each incident recovered in the metric time period, by the total number of incidents
recovered in the metric time period:

MTBBP =
∑

(Date_of_End − Date_of_Occurrence)

Count(Incidents)

• Units: hours per backup process.

• Frequency: weekly, monthly, quarterly, annually.

• Targets: MTBBP values should trend lower over time. The value of “0” indicates
hypothetical instantaneous recovery. Because of the lack of experiential data from
the field, no consensus on the range of acceptable goal values for mean time between
backup process exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics. However, these
incidents may be reported by operational security systems, such as anti-malware
software, security incident and event management (SIEM) systems, and host logs.

• Usage: MTBBP is a type of security incident metric and relies on the common
definition of “security incidents” as defined in Glossary. Optimal conditions would
reflect a low value in the MTIR. A low MTIR value indicates a healthier security
posture as the organization quickly recovered from the incident. Given the impact

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 282

that an incident can have on an organization’s business processes, there may be a
direct correlation between a lower MTIR and a lower incident cost.

• Limitations: this metric measures incident recovery capabilities of an organiza-
tion. As such, the importance of this metric will vary between organizations. Some
organizations have much lower profiles than others and would be a more attractive
target for attackers whose attack vectors and capabilities vary. MTIRs may not be
directly comparable between organizations. The date of occurrence of an incident
may be hard to determine precisely. The date of occurrence field should be the date
that the incident could have occurred. This date may be subject to revision and
more information becomes known about a particular incident.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 283

Id: 7.4.2 - Metric Name: Number of Backup Processes that have Failed
(NBPF)

• Objective: Name: number of Backup Processes that have Failed (NBPF) indicates
the number of detected security incidents the organization has experienced during
the metric time period. In combination with other metrics, this can indicate the
level of threats, effectiveness of security controls, or incident detection capabilities.

• Description: number of Backup Processes that have Failed measures the number
of security incidents for a given time period.

• Question: what is the number of failed backup processes that occurred during the
time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: number of Backup Processes that have Failed is calculated by counting
the number of anti-malware, for example a given time period, category type:

NBPF = Count(Number_Backup_Processes_Failed)

• Units: number of backup processes that have failed per period; for example, number
of backup processes that have failed per week or number of backup processes that
have failed per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NBPF values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there were
no security incidents. Because of the lack of experiential data from the field, no
consensus on range of acceptable goal values for number of failed backup processes
exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of backup processes that have failed is a type of security incident
metric and relies on the common definition of “security incident” as defined in Glos-
sary. Optimal conditions would reflect a low number of incidents. The lower the
number of incidents, the healthier the security posture would be assuming perfect
detection. However, a low number of incidents might also indicate a weak capabil-
ity to detect incidents. This metric can also indicate the effectiveness of security
controls. Assuming similar threat levels and detection capabilities, fewer incidents

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 284

could indicate better performance of one set of security controls. The Number of
Incidents metric is calculated over time, typically per-week or per-month. Not all
incidents are easily detected, so the trend of incidents can be useful for indicat-
ing patterns in the environment. To gain insight into the relative performance of
one business unit over another, the number of incidents may also be calculated for
cross-sections of the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 285

Id: 7.4.3 - Metric Name: Percent of backup processes that have failed (PBPF)

• Objective: this metric tracks the percent of failed backup processes that are critical
to the business.

• Description: the percent of failed backup processes measures the percent of appli-
cations that are critical to the organization’s business processes as defined by the
application’s value rating.

• Question: what percent of backup processes that have failed?

• Answer: a positive integer value that is equal to or greater than zero and less than
or equal to one hundred, reported as a percentage. A value of? 100%? indicates
that all backup processes are critical.

• Formula: the percent of failed backup processes metric is calculated by dividing
the number of failed backup processes by the total number of backup processes in
the organization:

PBPF =
Count(Failed_Backup_Processes)

Count(Total_Backup_Processes)
∗ 100

• Units: percentage of failed backup processes

• Frequency: weekly, monthly, quarterly, annually.

• Targets: because of the lack of experiential data from the field, no consensus on
goal values for the percentage of critical applications. The result will depend on the
organization’s business and use of IT.

• Sources: security management systems will provide information on which systems
were identified the security impacts on system.

• Usage: managers can use this metric to gain a better understanding of the quan-
tity of applications that are critical to their organization. This metric provides a
reference to the scale of the organization’s use of applications and assists managers
with better understanding of the scope and scale of their application security risk.

• Limitations: (i) variations in application scope. Different organizations might
count as a “single” application a system that another organization may consider
several distinct applications, resulting in significantly different numbers of applica-
tions between organizations; (ii) variations in application scale: applications within
or across organizations might be significantly different in size, so the level of effort
required to assess, test or fix vulnerabilities may vary between applications.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 286

Id: 7.5.1 - Metric Name: Number of Default User Service Account (NDUSA)

• Objective: Name: number of Default User Service Account (NDUSA) indicates
the number of detected security incidents the organization has experienced during
the metric time period. In combination with other metrics, this can indicate the
level of threats, effectiveness of security controls, or incident detection capabilities.

• Description: number of Default User Service Account measures the number of
security incidents for a given time period.

• Question: what number of default user service account that occurred during the
time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: number of Default User Service Account is calculated by counting the
number of default user service account, for example a given time period, category
type:

NBPF = Count(Number_Default_User_Service_Account)

• Units: number of default user service account per period; for example, number of
default user service account per week or number of default user service account per
month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NBPF values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of default user service
account exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of default user service account is a type of security incident metric
and relies on the common definition of “security incident” as defined in Glossary.
Optimal conditions would reflect a low number of incidents. The lower the number
of incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 287

Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 288

Id: 7.5.2 - Metric Name: Number of Insecure User Account (NIUA)

• Objective: Name: number of Insecure User Account (NIUA) indicates the number
of detected security incidents the organization has experienced during the metric
time period. In combination with other metrics, this can indicate the level of threats,
effectiveness of security controls, or incident detection capabilities.

• Description: number of Insecure User Account measures the number of security
incidents for a given time period.

• Question: what number of insecure user account that occurred during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: number of Insecure User Account is calculated by counting the number
of insecure user account, for example a given time period, category type:

NIUA = Count(Number_Insecure_User_Account)

• Units: number of default user service account per period; for example, number of
default user service account per week or number of default user service account per
month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NIUA values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of default user service
account exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of default user service account is a type of security incident metric
and relies on the common definition of “security incident” as defined in Glossary.
Optimal conditions would reflect a low number of incidents. The lower the number
of incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 289

metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 290

Id: 7.5.3 - Metric Name: Number of Default TCP Port (NDTP)

• Objective: number of Default TCP Port (NDTP) indicates the number of detected
security incidents the organization has experienced during the metric time period.
In combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: number of Default TCP Port measures the number of security inci-
dents for a given time period.

• Question: what number of default TCP port that occurred during the time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: number of Default TCP Port is calculated by counting the number of
default TCP port, for example a given time period, category type:

NDTP = Count(Number_Default_TCP_Port)

• Units: number of default TCP port per period; for example, number of default
TCP port per week or number of default TCP port per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NDTP values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of default TCP port
exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of default TCP port is a type of security incident metric and relies
on the common definition of “security incident” as defined in Glossary. Optimal con-
ditions would reflect a low number of incidents. The lower the number of incidents,
the healthier the security posture would be assuming perfect detection. However, a
low number of incidents might also indicate a weak capability to detect incidents.
This metric can also indicate the effectiveness of security controls. Assuming similar
threat levels and detection capabilities, fewer incidents could indicate better perfor-
mance of one set of security controls. The Number of Incidents metric is calculated
over time, typically per-week or per-month. Not all incidents are easily detected,
so the trend of incidents can be useful for indicating patterns in the environment.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 291

To gain insight into the relative performance of one business unit over another, the
number of incidents may also be calculated for cross-sections of the organization
such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 292

Id: 7.5.4 - Metric Name: Number of SQL Injection (NSI)

• Objective: Name: number of SQL Injection (NSI) indicates the number of detected
security incidents the organization has experienced during the metric time period.
In combination with other metrics, this can indicate the level of threats, effectiveness
of security controls, or incident detection capabilities.

• Description: number of SQL Injection measures the number of security incidents
for a given time period.

• Question: what number of SQL injection that occurred during the time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Number of SQL Injection is calculated by counting the number of SQL
injection, for example a given time period, category type:

NSI = Count(Number_SQL_Injection)

• Units: number of SQL injection per period; for example, number of default user
service account per week or number of default user service account per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: NSI values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of SQL injection exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of default user service account is a type of security incident metric
and relies on the common definition of “security incident” as defined in Glossary.
Optimal conditions would reflect a low number of incidents. The lower the number
of incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 293

over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 294

Id: 8.1.1 - Metric Name: E-mail-based data loss events, overall and by data
type; ratio of data loss events of all types between corporate divisions (EBDLE)

• Objective: Name: e-mail-based data loss events, overall and by data type; ratio
of data loss events of all types between corporate divisions (EBDLE) indicates the
number of E-mail-based data loss events the organization has experienced during the
metric time period. In combination with other metrics, this can indicate the level of
data loss events, effectiveness of security controls, or incident detection capabilities.

• Description: number of E-mail-based data loss events for a given time period.

• Question: what number of E-mail-based data loss events during the time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: number of events is calculated by counting the number of E-mail-based
data loss events, for example a given time period, category type:

EBDLE = Count(Number_Events)

• Units: number of E-mail-based data loss events per period; for example, number
of default user service account per week or number of default user service account
per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: EBDLE values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there were
no security incidents. Because of the lack of experiential data from the field, no
consensus on range of acceptable goal values for number of E-mail-based data loss
events exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of default user service account is a type of security incident metric
and relies on the common definition of “security incident” as defined in Glossary.
Optimal conditions would reflect a low number of incidents. The lower the number
of incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 295

Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 296

Id: 8.2.1 - Metric Name: Chi-square test for types of data loss by corporate
division (CTDL)

• Objective: Name: chi-square test for types of data loss by corporate division
(CTDL) indicates the number of Chi-square test for types of data loss the organi-
zation has experienced during the metric time period. In combination with other
metrics, this can indicate the level of data loss events, effectiveness of security con-
trols, or incident detection capabilities.

• Description: number of Chi-square test for types of data loss for a given time
period (χ̃2) in [Taylor, 1997].

• Question: what number of Chi-square test for types of data loss during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: number of events is calculated by counting the number of Chi-square test
for types of data loss, for example a given time period, category type:

CTDL = 1
d

∑N
1

(Ok−Ek)2

Ek

where:
- Ok is event of types of data loss (Occurrence);
- Ek is event of types of data loss but false-positive;
- d is number of degress of freedom (this case, d = n− 1).

• Units: number of E-mail-based data loss events per period; for example, number
of default user service account per week or number of default user service account
per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: CTDL values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of E-mail-based data
loss events exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 297

• Usage: number of default user service account is a type of security incident metric
and relies on the common definition of “security incident” as defined in Glossary.
Optimal conditions would reflect a low number of incidents. The lower the number
of incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 298

Id: 9.1.1 - Metric Name: Perimeter security events by datacenter (PSEBD)

• Objective: Name: perimeter security events by datacenter (PSEBD) indicates the
number of perimeter security events by datacenter the organization has experienced
during the metric time period. In combination with other metrics, this can indicate
the level of data loss events, effectiveness of security controls, or incident detection
capabilities.

• Description: number of perimeter security events by datacenter for a given time
period.

• Question: what number of perimeter security events by datacenter during the time
period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: number of security events is calculated by counting the number of perime-
ter security events by datacenter, for example a given time period, category type:

PSEBD = Counter(Number_Security_Events)

• Units: number of perimeter security events by datacenter per period; for example,
number of default user service account per week or number of default user service
account per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: PSEBD values should trend higher over time? assuming perfect detection
capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of E-mail-based data
loss events exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of default user service account is a type of security incident metric
and relies on the common definition of “security incident” as defined in Glossary.
Optimal conditions would reflect a low number of incidents. The lower the number
of incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 299

Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 300

Id: 9.1.2 - Metric Name: Ratio of perimeter security events between datacen-
ters (RPSEBD)

• Objective: Name: ratio of perimeter security events between datacenters (RPSEBD)
indicates the ratio of perimeter security events between datacenters the organization
has experienced during the metric time period. In combination with other metrics,
this can indicate the level of data loss events, effectiveness of security controls, or
incident detection capabilities.

• Description: ratio of perimeter security events between datacenters for a given
time period.

• Question: what ratio of perimeter security events between datacenters during the
time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: Ratio of perimeter security events between datacenters is calculated by
counting the number of security events by datacenter X, for example a given time
period, category type:

RPSEBD =
Counter(Number_Security_Events)

Counter(Number_Security_Events_between_datacenters)
∗ 100

• Units: number of perimeter security events by datacenter per period; for example,
number of default user service account per week or number of default user service
account per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: RPSEBD values should trend higher over time? assuming perfect detec-
tion capabilities. The value of “0” indicates hypothetical perfect security since there
were no security incidents. Because of the lack of experiential data from the field,
no consensus on range of acceptable goal values for number of E-mail-based data
loss events exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

• Usage: number of default user service account is a type of security incident metric
and relies on the common definition of “security incident” as defined in Glossary.
Optimal conditions would reflect a low number of incidents. The lower the number
of incidents, the healthier the security posture would be assuming perfect detection.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 301

However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 302

Id: 9.2.1 - Metric Name: Analysis of variance between reported datacenter
perimeter event data (AVBRDPED)

• Objective: Name: analysis of variance between reported datacenter perimeter
event data (AVBRDPED) indicates the ratio of variance between reported datacen-
ter perimeter event data the organization has experienced during the metric time
period. In combination with other metrics, this can indicate the level of data loss
events, effectiveness of security controls, or incident detection capabilities.

• Description: variance between reported datacenter perimeter event data for a
given time period (S2).

• Question: what variance between reported datacenter perimeter event data during
the time period?

• Answer: a non-negative integer value. A value of “0” indicates that no security
incidents were identified.

• Formula: variance between reported datacenter perimeter event data is calculated
by counting the number of security events by datacenter X, for example a given
time period, category type:

AVBRDPED = 1
n−1

∑n
1(xk − x̄)2

where:
- n is the sample size;
- xk is reported datacenter perimeter event data during the time period;
- x̄ is the sample mean.

• Units: variance between reported datacenter perimeter event data per period; for
example, number of default user service account per week or number of default user
service account per month

• Frequency: weekly, monthly, quarterly, annually.

• Targets: AVBRDPED values should trend higher over time? assuming perfect
detection capabilities. The value of “0” indicates hypothetical perfect security since
there were no security incidents. Because of the lack of experiential data from the
field, no consensus on range of acceptable goal values for number of E-mail-based
data loss events exists.

• Sources: since humans determine when an incident occurs, when the incident is
contained, and when the incident is resolved, the primary data sources for this
metric are manual inputs as defined in Security Incident Metrics: Data Attributes.
However, these incidents may be reported by operational security systems, such as
anti-malware software, security incident and event management (SIEM) systems,
and host logs.

APPENDIX A. PORTFOLIO OF THE SECURITY METRICS 303

• Usage: number of default user service account is a type of security incident metric
and relies on the common definition of “security incident” as defined in Glossary.
Optimal conditions would reflect a low number of incidents. The lower the number
of incidents, the healthier the security posture would be assuming perfect detection.
However, a low number of incidents might also indicate a weak capability to de-
tect incidents. This metric can also indicate the effectiveness of security controls.
Assuming similar threat levels and detection capabilities, fewer incidents could in-
dicate better performance of one set of security controls. The Number of Incidents
metric is calculated over time, typically per-week or per-month. Not all incidents
are easily detected, so the trend of incidents can be useful for indicating patterns in
the environment. To gain insight into the relative performance of one business unit
over another, the number of incidents may also be calculated for cross-sections of
the organization such as individual business units or locations.

• Limitations: a security program may or may not have direct control over the
number of incidents that occur within their environment. For instance, if all the
incidents that occur are due to zero-day or previously unidentified attack vectors
then there are not many options left to improve posture. However, this metric could
be used to show that improving countermeasures and processes within operations to
reduce the number of incidents that occur. Thus, Number of Incidents must be con-
sidered in the context of other metrics, such as MTTID. The definition of “Incident”
may not be consistently applied across organizations. For meaningful comparisons,
similar definitions are necessary. The importance of this metric will vary between
organizations. Some organizations have much lower profiles than others and would
be a more attractive target for attackers whose attack vectors and capabilities will
vary.

• References: [Silva and Geus, 2014a].

Appendix B

Common Vulnerability Scoring System

This Appendix presents of normalization scene of risk and impact, it presents method of
calculating a metric based on a number of factors like the vulnerabilities present in the
system, vulnerability history of the services and impact onto hired service. It measures
the existing vulnerability by combining the severity scores of the vulnerabilities present
in the system. It uses the National Vulnerability Database (NVD) [NIST, 2014], provided
by NIST, to find the vulnerability history of the services running on the system, and from
the frequency and severity of the past vulnerabilities.

B.1 Definition

The Common Vulnerability Scoring System (CVSS) [NIST, 2014] provides an open frame-
work for communicating the characteristics and impacts of IT vulnerabilities. Its quan-
titative model ensures repeatable accurate measurement while enabling users to see the
underlying vulnerability characteristics that were used to generate the scores. Thus, CVSS
is well suited as a standard measurement system for industries, organizations, and gov-
ernments that need accurate and consistent vulnerability impact scores. Two common
uses of CVSS are prioritization of vulnerability remediation activities and in calculating
the severity of vulnerabilities discovered on one’s systems. The National Vulnerability
Database (NVD) provides CVSS scores for almost all known vulnerabilities.

B.2 Normalization NVD-CVSS (risk and impact)

The example of the normalization of NVD to calculate the risk and impact of security
metric Packet Filtering:

• Vulnerability Summary for: CVE-2002-0515

• Original release date: 08/12/2002

• Last revised: 09/05/2008

• Source: US-CERT/NIST

304

APPENDIX B. COMMON VULNERABILITY SCORING SYSTEM 305

• Overview: IPFilter 3.4.25 and earlier sets a different TTL when a port is being
filtered than when it is not being filtered, which allows remote attackers to identify
filtered ports by comparing TTLs.

• Impact:

– CVSS Severity (version 2.0):

– CVSS v2 Base Score: 5.0 (MEDIUM)
(AV:N/AC:L/Au:N/C:P/I:N/A:N) (legend)

– Impact Subscore: 2.9

– Exploitability Subscore: 10.0

– CVSS Version 2 Metrics:

– Access Vector: Network exploitable

– Access Complexity: Low

– Authentication: Not required to exploit

– Impact Type: Allows unauthorized disclosure of information

The Figure B.1 shows the calculation of overall of this metric. The impact value 2.9,
will be normalized to scale values of [0-4] to represent the impact of this metric in the
Cloud Computing environment.

Figure B.1: Calculation of risk and impact of the Packet filtering metric.

Incomplete Data, with some vulnerabilities, all of the information needed to create
CVSS scores may not be available. This typically happens when a vendor announces a
vulnerability but declines to provide certain details. In such situations, NVD analysts
assign CVSS scores using a worst case approach. Thus, if a vendor provides no details
about a vulnerability, NVD will score that vulnerability as a 10.0 (the highest rating).

This normalization process is equivalent to the normalization process of the security
of metrics to the scale of values [0-4] described in the Section 5.1.2 (page 62).

B.3 Collaboration with Industry

NVD staff are willing to work with the security community on CVSS impact scoring. If
you wish to contribute additional information or corrections regarding the NVD CVSS

APPENDIX B. COMMON VULNERABILITY SCORING SYSTEM 306

impact scores, please send email to nvd@nist.gov. It actively works with users that provide
us feedback.

B.4 CVSS Calculator Technical Design

This section explains the CVSS Calculator’s implementation. This may be useful if you
wish to implement your own CVSS calculator based on FIRST’s code. Each file is listed
with an explanation of how it may be useful in your CVSS calculator implementation.

B.4.1 CVSS.calculateCVSSFromMetrics

Takes Base, Temporal and Environmental metric values as individual parameters and
returns: scores for each, severity ratings for each, and a complete Vector String. The
input parameters are:

AttackVector, AttackComplexity, PrivilegesRequired, UserInteraction, Scope,
Confidentiality, Integrity, Availability, Exploitability, RemediationLevel,
ReportConfidence, ConfidentialityRequirement, IntegrityRequirement,

AvailabilityRequirement, ModifiedAttackVector, ModifiedAttackComplexity,
ModifiedPrivilegesRequired, ModifiedUserInteraction, ModifiedScope,

ModifiedConfidentiality, ModifiedIntegrity, ModifiedAvailability

Assuming this to be the case, the following properties are also defined:

baseMetricScore, baseSeverity, temporalMetricScore, temporalSeverity,
environmentalMetricScore, environmentalSeverity, vectorString

Each “Score” property contains a number representing the score, each “Severity” prop-
erty contains a string with the associated severity rating, and the “vectorString” property
is a complete Vector String.

APPENDIX B. COMMON VULNERABILITY SCORING SYSTEM 307

An example of a call to this function is:

Algorithm 1: CVSS.calculateCVSSFromMetrics
Data: ’N’,’L’,’N’,’R’,’C’,’L’,’L’,’N’
Result: calculateCVSSFromMetrics(’N’,’L’,’N’,’R’,’C’,’L’,’L’,’N’)
var result;
if (output.success === true) then

result = “Base score is ” + output.baseMetricScore + “. ” +
“Base severity is ” + output.baseSeverity + “. ” +
“Temporal score is ” + output.temporalMetricScore + “. ” +
“Temporal severity is ” + output.temporalSeverity + “. ” +
“Environmental score is ” + output.environmentalMetricScore + “. ” +
“Environmental severity is ” + output.environmentalSeverity + “. ” +
“Vector string is ” + output.vectorString + “. ” ;

else
result = “An error occurred. The error type is ” + errorType +
“ and the metrics with errors are ” + errorMetrics + “.”;

alert (result);

This displays an alert box with the contents:

Base score is 6.1.
Base severity is Medium.
Temporal score is 6.1.
Temporal severity is Medium.
Environmental score is 6.1.
Environmental severity is Medium.
Vector string is CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N.

Refer to the source code for more details on how errors are returned.

APPENDIX B. COMMON VULNERABILITY SCORING SYSTEM 308

B.4.2 CVSS.calculateCVSSFromVector

This is similar to the previous function except that it takes a Vector String as input.
Outputs are the same, except that additional error types are defined to handle problems
in the format of the Vector String.

Algorithm 2: CVSS.calculateCVSSFromVector
Data: “CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:N/A:N/RL:O/CR:L”
Result: calculateCVSSFromVector(“CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:H

/I:N/A:N/RL:O/CR:L”)
var result;
if output.success === true then

result = “Base score is ” + output.baseMetricScore + “. ” +
“Base severity is ” + output.baseSeverity + “. ” +
“Temporal score is ” + output.temporalMetricScore + “. ” +
“Temporal severity is ” + output.temporalSeverity + “. ” +
“Environmental score is ” + output.environmentalMetricScore + “. ” +
“Environmental severity is ” + output.environmentalSeverity + “. ” +
“Vector string is ” + output.vectorString + “. ”;

else
result = “An error occurred. The error type is ” + output.errorType +
“ and the metrics with errors are ” + output.errorMetrics + “.”;

alert (result);

This displays an alert box with the contents:

Base score is 8.6.
Base severity is High.
Temporal score is 8.2.
Temporal severity is High.
Environmental score is 6.0.
Environmental severity is Medium.
Vector string is
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:N/A:N/RL:O/CR:L.

APPENDIX B. COMMON VULNERABILITY SCORING SYSTEM 309

B.4.3 CVSS.severityRating

Takes a CVSS score as input and returns the severity rating name associated with that
score. An example of a call to this function is:

Algorithm 3: CVSS.severityRating
Data: “4.8”
Result: severityRating(4.8)
var result;
if (typeof rating === ’string’) then

result = “Returned severity rating is ” + rating;
else

if (typeof rating === ’undefined’) then
result = “The input is not within the range of any defined severity rating.”;

else
result = “The input is not recognized as a number.”;

alert (result);

This displays an alert box with the contents: returned severity rating is Medium.

APPENDIX B. COMMON VULNERABILITY SCORING SYSTEM 310

B.4.4 CVSS.generateXMLFromMetrics

This is a rudimentary function to demonstrate how an XML representation of a given
set of metric values can be generated. The inputs and errors are the same as for the
CVSS.calculateCVSSFromMetrics function. The output is a string containing an XML
representation of the metric values passed. If no error occurs, the string will be available
in the xmlString property of the returned object.

An example of a call to this function is:

Algorithm 4: CVSS.generateXMLFromMetrics
Data: ’N’,’L’,’N’,’R’,’C’,’L’,’L’,’N’,undefined,’W’
Result: CVSS.generateXMLFromMetrics(’N’,’L’,’N’,’R’,’C’,’L’,’L’,’N’,undefined,’W’)
var result;
if (output.success === true) then

result = output.xmlString;
else

result = “An error occurred. The error type is ” + errorType +
“ and the metrics with errors are ” + errorMetrics + “.” ;

alert (result);

This displays an alert box whose contents begin with:

< ?xml version=“1.0” encoding=“UTF-8”? >
< cvssv3.0 xmlns=“https://www.first.org/cvss/cvss-v3.0.xsd”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“https://www.first.org/cvss/cvss-v3.0.xsd
https://www.first.org/cvss/cvss-v3.0.xsd” >

< base_metrics >
< attack-vector > NETWORK < /attack-vector >
< attack-complexity > LOW < /attack-complexity >
< privileges-required > NONE < /privileges-required >
?

Refer to the source code for more details on how errors are returned.

APPENDIX B. COMMON VULNERABILITY SCORING SYSTEM 311

B.4.5 CVSS.generateXMLFromVector

This is a rudimentary function to demonstrate how an XML representation of a given
Vector String can be generated. It is similar to the previous function except that it takes
a Vector String as input. Outputs are the same, except that additional error types are
defined to handle problems in the format of the Vector String.

An example of a call to this function is:

Algorithm 5: CVSS.generateXMLFromVector
Data: ’CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N/RL:W’
Result: CVSS.generateXMLFromVector(’CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/

C:L/I:L/A:N/RL:W’)
var result;
if (output.success === true) then

result = output.xmlString;
else

result = “An error occurred. The error type is ” + errorType +
“ and the metrics with errors are ” + errorMetrics + “.”;

alert (result);

This displays an alert box whose contents begin with:

< ?xml version=“1.0” encoding=“UTF-8”? >
< cvssv3.0 xmlns=“https://www.first.org/cvss/cvss-v3.0.xsd”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“https://www.first.org/cvss/cvss-v3.0.xsd
https://www.first.org/cvss/cvss-v3.0.xsd” >

< base_metrics >
< attack-vector> NETWORK < /attack-vector >
< attack-complexity> LOW < /attack-complexity >
< privileges-required> NONE < /privileges-required >
?

Refer to the source code for more details on how errors are returned.

B.4.6 XML Schema Definition

It is sometimes useful to represent the CVSS metric values and scores for a vulnerability
in XML format, e.g. to transfer CVSS data between systems.

	Introduction
	Overview of the Problem
	Objectives
	Contributions
	Thesis organization

	Cloud Computing
	A brief overview
	Deployment Models
	Service Models
	Essential characteristics
	Hosting
	Governance
	Roles
	Analyzing Cloud Options in Depth

	Cloud Computing: the need for monitoring
	Monitoring
	Properties
	Security Monitoring Views

	Security in Cloud Computing
	Classification of Risks
	Risk Assessment Process

	Summary

	Service Level Agreement
	Unmeasurable Qualities
	Metrics
	Security Metrics
	Time Series Analysis
	Uncertainty
	Calibration & Measurement Standard

	Service Level Agreement
	Definition
	SLA Life Cycle
	SLA Parameters

	Security-SLA
	Monitoring Security-SLA
	Summary

	Related Work
	Summary of Related Work
	Cloud Monitoring
	Guides for Security-SLA monitoring
	Summary

	Methodology Proposal (SMH)
	Security Metrics Hierarchy
	Modeling Security Metrics Hierarchy
	Normalization of Security Metrics
	Formal Security Metrics Hierarchy
	Validation of Security Metrics
	Security Metrics Behavior

	Application of SMH
	Summary

	Management of Cloud using security criteria
	Return On Security Investment (ROSI)
	Return on Investment (ROI)
	Methodology for ROSI Calculation
	Calculating ROSI
	Deployment Profile
	Case Scenario
	Results

	Managing Security-SLA
	Automatic Security-SLA
	Monitoring Security-SLA
	Case Study
	Results

	Obtaining Index of Security (IndSec)
	Normalization of Risk and Impact
	Function of Time
	Function of Weight, Impact, Risk
	Case Study
	Results

	Obtaining Index of Allocation (IndAlloc)
	Case Study
	Implementing Security Allocation (IndAlloc)
	Results

	Summary

	Cloud Security Monitoring Architecture
	Components Architecture
	Agents in IaaS, PaaS and SaaS

	Execution Flow
	Architecture Validation
	Summary

	Conclusions and future work
	General Results
	Specific Results
	Future Work
	Publications
	Submitted Articles
	Future Articles

	Bibliography
	Portfolio of the Security Metrics
	Common Vulnerability Scoring System
	Definition
	Normalization NVD-CVSS (risk and impact)
	Collaboration with Industry
	CVSS Calculator Technical Design
	CVSS.calculateCVSSFromMetrics
	CVSS.calculateCVSSFromVector
	CVSS.severityRating
	CVSS.generateXMLFromMetrics
	CVSS.generateXMLFromVector
	XML Schema Definition

