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RESUMO 

 
Em escala global o alojamento de kimberlitos é controlado por estruturas 

translitosféricas pré-existentes ou recém formadas por tectonica de placas conhecidas como 

Lineamentos continentais. Esses lineamentos são formados durante a reorganização de placas 

antes da formação de riftes oceânicos e estendem-se para o rifte oceânico e falhas 

transformantes em desenvolvimento antes da deriva. Finalmente as placas derivam. Deste 

modo, há uma ligação genética entre lineamentos continentais translitosféricos, seus 

equivalentes em falhas transformantes oceânicas e o alojamento de kimberlitos. O Corredor 

125 no Brasil é um desses lineamentos continentais translitosféricos que hospedam 

kimberlitos e outras rochas máfico-ultramáficas. O alinhamento de rochas máficas e 

ultramáficas nas partes amazônica e extra-amazônica do Corredor 125 é apenas uma 

coincidência. A parte extra-amazônica do corredor foi formada inicialmente há 1.8 Ga e foi 

reativada várias vezes desde então como evidenciado por diferentes grupos de idades de 

diques máficos, agrupamentos de kimberlitos e de outras rochas máficas ao longo de todo o 

seu comprimento e largura. A ativação estrutural mais antiga na parte amazônica do corredor 

ocorreu há 1.8 Ga. Os kimberlitos ao longo do Corredor 125 formam picos de idades entre 

226 e 268 Ma, 120 e 122 Ma, 80 e 94 Ma e em 74 Ma. A reconstrução tectônica da placa sul-

americana revela que a trajetórica da trilha do hotspot Trindade-Martim Vaz não coincide 

com o Corredor 125 e que não há nenhuma progressão aparente na idade de kimberlitos ao 

longo do corredor. Diferente de sugestões anteriores, a trilha do hotspot Trindade-Martim Vaz 

como possível fonte de alojamento do magma kimberlítico é descartada. Ao contrário, o 

alojamento de kimberlitos esteve relacionado provavelmente à reorganização do 

supercontinente Pangea (kimberlitos de 226-268 Ma), incipiente abertura do Oceâno Atlantico 

de 120 a 122 Ma quando o movimento da placa sul-americana foi caracterizado por zig-zags, 

e a última fase de intrusão de kimberlitos entre 80 e 94  Ma e há aproximadamente 74 Ma 

quando houve o segundo aumento na velocidade da placa. Os períodos de tempo desprovidos 

de kimberlitos são estágios quando a placa sul-americana esteve estável ou experimentando 

velocidade e direção de movimento regular. 



ABSTRACT 

 

On a global scale kimberlite emplacement is controlled by pre-existing/newly formed 

translithospheric structures known as Continental Lineaments due to plate tectonics.  These 

translithospheric continental lineaments are formed during plate-reorganisation prior to 

oceanic rift formation.  Further these lineaments extend onto the newly developing oceanic 

rift and transform fractures prior to the drift. Finally the plates drift apart. Hence, there is a 

genetic link between continental translithospheric lineaments, its oceanic transform fracture 

counterparts and associated kimberlite emplacement. Corridor-125 in Brazil is one such 

continental translithospheric lineaments, which host kimberlites and other mafic/ultramafic 

rocks.  This Amazonian part and Extra-Amazonian part of the corridor is a coincidental 

alignment along with its associated mafic and ultramafic magmatism.  The Extra-Amazonian 

part of this corridor was formed initially about 1.8 Ga and has been reactivated several times 

as evidenced by different age group of mafic dyke swarm, kimberlite clusters and other mafic 

rocks along its entire length and width. The oldest known structural activation on the 

Amazonian part of the corridor is 1.8 Ga.  The kimberlite age along Corridor-125 is found to 

peak at 226 to 268 Ma, 120 to 122 Ma, 80 to 94 Ma and 74 Ma.  Plate tectonic reconstruction 

of South American plate reveals the path of Trinidad-Martin Vaz (TMV) hotspot trail does 

not coincide with the Corridor and there is no apparent kimberlite age progression along 

Corridor-125.  Unlike previous suggestions, the role of TMV as possible source for kimberlite 

emplacement is ruled out.  The kimberlite emplacement is rather related to Pangea 

supercontinent plate re-organization (226-268 Ma kimberlites); incipient South Atlantic 

rifting from 120 to 122 Ma when the South American plate movement was characterized by 

cusps and jogs; and the last phase of kimberlite emplacement from 80 to 94 and 74 Ma is due 

to the second phase of increased plate velocity.  The quiescent periods devoid of kimberlites 

are stages when the South American plate was stable or experiencing a smooth plate velocity 

and direction.   
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Chapter 1 

Tectonic Setting and Structural Controls on Kimberlite Magmatism in 

Brazil 

 

Aim 

The aim of the research is to test the hypothesis that kimberlite/lamproite 

emplacement are controlled by structural corridors which are formed or reactivated during the 

early stages of supercontinent deformation like rifting, subduction etc. 

 

Kimberlite emplacement in time and space are intrinsically related to particular stages 

in the life cycle of supercontinents and its associated translithospheric structures (Jelsma et 

al., 2009). The periods devoid of kimberlite magmatism corresponds to times of 

supercontinent stabilization where plate motions are smooth (Jelsma et al., 2009).  

 

The kimberlites of Brazil are aligned in well-defined corridors or fields. The 

kimberlites are associated with sub-vertical lithosphere-scale fracture zones (DeBoorder, 

1982, Fitton et al., 1986). These structurally defined corridors are a characteristic of 

kimberlites and associated alkaline intrusives around the world. One such example being the 

Azimuth-125 lineament (named after the compass direction of the alignment – Crough et al., 

1980) in Brazil which is the continuation and mirror image of Angola-DRC 

lineament/LucapaGraben (Marsh 1973). Few other examples are, the alignment of kimberlites 

from Kimberley to Pretoria and beyond in South Africa (Jelsma et al., 2004, 2009), Olenek-

DaldynAlakit-MaloBotyobinksy in Siberia (Kushev et al., 1992). 

 

Often, there is a progression in kimberlite age, variation in composition of magmas, 

diamond content of kimberlites along these corridors/lineaments. There is age progression 

observed in Brazil (Crough et al, 1980). The Brazilian lineament encompasses rocks from 

carbonatite to kamafugite to lamproite to kimberlites. Marsh (1973) related the linear zones of 

alkaline intrusives (carbonatites and kimberlites) in Angola and SW Africa to the on-land 

extension of oceanic transform fracture zones, however, this interpretation is somewhat 

ambiguous as the oldest age of oceanic crust and the associated seafloor fractures is around 

160 Ma yet kimberlite emplacement predates the formation of these fracture zones by several 
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tens of millions of years. Accordingly, it is suggested that displacement at the transforms 

resulted in reactivation of old continental structures.  

 

Hence, the project is aimed at testing the above hypothesis by studying structural 

setting, geophysical characterization, geochemistry and geological setting of selected 

kimberlites from Brazil.This research aims at answering a global-scale question -where and 

when are kimberlites emplaced, and what are the tectonic controls on kimberlite magmatism. 

The methodologies and ideas generated will have implications for kimberlite exploration on a 

global scale. 
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Structure of thesis 

 

To arrive at the aim of the research, the following objectives are considered:  

 

1. Introduction and Kimberlite Review 

2. Study Area and Fieldwork for sample collection.  

3. Geological Framework of Brazil. 

4. Global Tectonic events and Role of Brazilian plate (Tectonic events including periods 

 of major plate reorganisations, continental breakup, subduction and hotspot positions).   

5. Brazilian Kimberlites (Clusters, Age and Mapped Structural framework).  

6. Aeromagnetic Characterization of Brazilian platform. 

a. Aeromagnetic investigation of the Structural features associated with Kimberlite 

emplacements.   

b. Aeromagnetic Signatures of kimberlite bodies.   

6. Geochemistry of Brazilian kimberlites and their significance to the nature of mantle 

source region. 

7. Revised Structural Framework of Corridor-125 by the integration of mapped and  

Aeromagnetic structures.   

8. Plate Tectonic Reconstruction of Brazilian plate 

a. Brazilian kimberlite association with hotspot paleo-track. 

b. Brazilian kimberlite association with South Atlantic Rift along eastern border of 

Brazilian plate.   

c. Brazilian kimberlite association with Pacific Plate subduction along the western 

border of the Brazilian plate. 

9. Discussion and Conclusions.   

a. Structural Trend controlling the kimberlites along Corrido-125 

b. Aeromagnetic signatures of corridor-125 kimberlites 

c. Geochemical nature of corridor-125 

d. Tectonic trigger induced Petrogenetic model for Corridor-125 kimberlites.  

e. Final Reconstruction of Brazilian plate from present day to Permo-Triassic times.   

10. Future Research. 
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Chapter 2 

Introduction 

 

Brazilian kimberlite occurrences along the Corridor-125, its structural controls and 

tectonic settings are evaluated using the geological, aeromagnetic and geochemical data in 

this research.  The aim of the research is to test the hypothesis that kimberlite/lamproite 

emplacement are controlled by structural corridors which are formed or reactivated during the 

early stages of supercontinent deformation like rifting, subduction etc. Thus, the results from 

this research investigation lead to the betterunderstandingofglobal scale plate tectonic events 

its genetic link to the regional scale structures and magmatism particularly kimberlite 

magmatism.   

 

Global distribution pattern of kimberlite and their association along rifted margins 

forms the basis for this hypothesis.  Kimberlites are distributed on every continent worldwide 

(except Antarctica) as shown in Fig.1a. In present-day plate tectonic framework, the 

synchronicity of eruption on different continents appears to be unrelated. But upon 

reconstructing the plates back in time reveals geometry in kimberlite distribution (Fig.1b) 

being centered around regions of rifting but also exhibit intercontinental switching of 

magmatism. Geometry in the distribution pattern is due to structural corridors on a global 

scale.   

 

Fig.1a: Global distribution of kimberlites on present day plate positions. Fig.1b: Global distribution of 

kimberlites with reconstructed plate positions to 130 Ma 
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Dawson (1989) and Janse and Sheahan(1995) have shown that kimberlites occur only 

on Archons, i.e. cratonic regions underlainby Archean basement, whereas lamproites occur on 

some Protons, i.e. Protereozoicmobile belts adjacent to Archons. These are termed as 

lithospheric provinces (Fig.2). The specificpreferential occurrence of kimberlites within 

ancientArchean and Precambrian terranes older than 1.5 Ga (Clifford's Rule") has direct 

relationshipwith the diamond stability field (Clifford, 1966).The necessary P-T conditions of 

diamond stability are provided by thick, old lithospheric mantle roots. Because of the low 

paleogeothermalgradients these lithospheric mantle roots typically lie under ancient 

continentalnuclei (Archean and Protereozoic craton). 

Fig. 2:Global Lithospheric provinces (Archons, Protons and Tectons) with kimberlite distribution.  The colour 

of dots for kimberlite location corresponds to the diamond content of the kimberlites as shown on map 

afterEkstrand et al, 1995 and Janse, 2007. 

 

Structural corridors are lineament or set of lineaments.  These lineaments are zones of 

weakness or structural displacements in the crust, which can be mapped or indirectly inferred 

by the presence of magmatic rocks aligned in a straight or slightly curving manner when the 

younger geological and tectonic processes often mask its presence underneath (Hobbs et al, 

1976).  The length of lineament varies considerably and is typically measured in tens or 
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hundreds of kilometers.  The lineaments thatare up to 100km are termed as mega-lineament 

where as those that are longer than 100km are termed as giga-lineament. 

 

Kimberlite magmatism is episodic along the structural corridors. Thus, there is often 

grouping of kimberlites in one area termed as clusters. Further, this clustering repeats on a 

subregional scale on the craton and forms fields.  On regional scale, these kimberlite fields are 

oriented along translithospheric lineaments acting as structural controls. This regional scale 

orientation of kimberlites is known as corridors. It is also observed that, kimberlite 

emplacement in time and space is related to global plate tectonics and its associated 

translithospheric structural controls (White et al., 1995; Barnett et al., 2013; Jelsma et al., 

2009).  These translithospheric structures are the regional structural controls for kimberlite 

emplacement (Sykes, 1978). The structures contained within the corridors are repeatedly 

reactivated (White et al., 1995) thereby forming the pathways for kimberlite magmas with 

different age groups. On subregional scale kimberlites are preferentially emplaced at the tips 

and shoulders of rifts, major preexisting dyke swarms, structural bends, step-overs, and fault 

intersections (Jelsma et al., 2004; Gladdkov et al. 2005). Within structural corridors the brittle 

structures of the crust form the local structural controls for kimberlite emplacement. Thus, 

structural controls are seen on varying scales.   

 

Kimberlite emplacements are found to peak with respect to specific time.  As 

examples on the African plate kimberlite episodicity is observed at five major time periods 

 

 85-95 Ma-(Davis, 1977; Smith et al., 1985; Le Roex et al., 2003; Wu et al., 2010) 

 120 Ma- (Smith et al., 1985; Phillips et al., 1998). 

 235 Ma- (Kinny et al., 1989)  

 510-530 Ma-(Phillips et al., 1998)  

 1200 Ma- (Smith et al., 1985) 

On the North American plate, kimberlites have been emplaced over a period of 

approximately 1billion years with several peaks. Among them, around 80% of all known 

North Americankimberlites are younger than about 200 Ma (Heaman et al., 2004). The time 

periods are as follows: 
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 50-60 Ma (Lockhart et al., 2004), 

 70-80 Ma (Aravanis,1999)  

 95-103 Ma (Zonneveld et al., 2004) 

 150-160 Ma (Heaman and Kjarsgaard, 2000)  

 170-180 Ma (Kong et al., 1999; Heaman and Kjarsgaard, 2000) 

 

The continental structures control the position of transforms in the newly developing 

younger ocean (Lister et al, 1986).  Thus, there exists a genetic link between the oceanic 

transforms and the continental Lineaments. Due to complex overprinting of the younger 

tectonic events post dating the plate rifting at global and local scales, there is masking of the 

older continental lineaments where as the ocean floor is tectonically less disturbed in nature.  

As a result they retain the structural signatures i.e. transform fractures signatures on the ocean 

floor and is much easily observed in comparison to landward counterparts. The orientations of 

the present day oceanic and continental lineament may be different because of the change in 

Euler pole dynamics after the oceanic crust started to form. A single plate could have played 

part of different supercontinent life cycle and thus the continental lineaments are associated 

with more than one set of ocean floor lineaments. In such a case, the most recent ocean floor 

signatures are much easier to associate with the continental lineaments while the older ones 

are masked by younger events. At times the relationship between older continental lineaments 

with its respective oceanic transforms becomes impossible to demonstrate. Kimberlite magma 

emplacement pathways are interpreted to be reactivated pre-existing lineaments or newly 

created ones due to the dynamics of plate tectonic events at different stages of supercontinent 

life cycle (DeWit, 2007; Moore et al, 2008; Jelsma et al, 2009). Thus, the kimberlite 

emplacement, continental lineaments and the oceanic transforms are all genetically related.  

There are several periods of kimberlite emplacement worldwide associated with plate tectonic 

events.  It is possible to establish the link between the kimberlites and the lineaments and their 

associated plate tectonic events.  The complexity lies in associating the older events. This is 

particularly true with respect to the association of older than Mesozoic kimberlites. On the 

other hand it is much easily accomplished with younger kimberlites.   
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Continental and Oceanic Lineament Genetic Link 

 

The Continental lineaments manifest themselves as faults and fractures, which forms 

the pathway for kimberlite magma migration and emplacement. The process continues and the 

weakness extends on to the newly forming mid-ocean ridges and transforms in the oceanic 

crust. There are discrete batches of kimberlite magma emplacement on the continents at 

different stages of continental plate movement.  The process continues during and after the 

rifting of the plates characterized by cusps and jogs. One way of finding the link with the 

kimberlite emplacement and rifting is by looking at the oceanic transforms with its 

corresponding continental lineaments.   

In summary, this research aims at evaluating the proposed genetic link between 

continental lineaments with the oceanic lineaments, episodicity in kimberlite magmatism, 

reactivation of structural lineaments, plate tectonic events associated, types of kimberlites 

based on geochemistry and geophysical nature of kimberlites on the Brazilian platform.  

Petrogenetic modeling and Plate tectonic reconstruction will be the final results of this 

research work.   
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Chapter 3 

Study Area and Field work carried  

 

The NW-SE trending Lineament-125 or Azimuth-125 of Brazil (Crough et al 1980, 

Bizzi, 1995; Bizzi et al, 1995a, 1995b; Gibson et al., 1995; Carlson et al., 2007) is the study 

area.  This lineament runs from Rio de Janeiro in São Paulo state to Porto Velho in Rondonia 

state.  Along the entire length and width of the lineament kimberlite and other alkaline rocks 

are seen.  In fact, this is not just a lineament, instead it is a zone made up of several 

lineaments majority of which are trending in NW-SE direction.  Interpretation of geophysical 

aeromagnetic map reveals, this lineament is made up of several parallel to subparallel 

lineaments in NW-SE trend and also cross cut by NE-SW trending Transbrasiliano Lineament 

(TBL). Hence, this zone of multiple lineaments associated with kimberlites is termed as 

Corridor-125.  Corridor-125 with its plethora of exotic mantle-derived rocks is an excellent 

platform to understand the kimberlite magmatism, its structural and tectonic controls.   

 

Field work for the Sample Collection 

 

Samples were collected along Corridor-125 from the states of Minas Gerais, Rondonia 

and Mato Grosso.  The sample type from Rondonia and Mato Grosso are drill core samples; 

the samples from Minas Gerais are outcrop samples.  Moderate to high intensity weathering is 

common in Brazilian samples.  Due care is taken to select the least weathered sample for 

geochemical analysis.  Inspite of this careful selecting, the samples from Rondonia and Mato 

Gross were all weathered ones.  The Minas Gerais sample showed least weathering and was 

almost fresh hard rock sample. Names of the samples are Collier-01, Collier-04, Juina-23, 

Cosmos-01, Tumeliero-13, Forca and Indaia.   

 

Sample location is shown on the map in fig.3 with the names of the kimberlites 

sampled. The Collier-01, 04, Juina-23 and Cosmos-01 are all from Rondonia and Mato 

Grosso states.  The Indaia and Forca are from Minas Gerais state.   
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Fig.3: Sample Location map with structural provinces background. 
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Chapter 4 

 

Kimberlite Review 

 

 

The term kimberlite was proposed in the year 1987 by Prof. Henry Carvil Lewis with 

the description as porphyritic mica-bearing peridoditic volcanic breacia (Lewis, 1987; 1988). 

Later, this term has been used worldwide.  Kimberlites are ultrapotassic, volatile-richrocks 

with extremely enriched incompatible element signatures. They originate at depths greater 

than 200 km below the surface of the Earth, below thick, cool Archean craton roots (Mitchell, 

1986). As kimberlite magma rise towards the surface, they entrain fragments of the mantle 

through which they pass. Hence, they are hybrid in nature and these mantle fragments provide 

"windows" nature of the mantle below. The cool peridotitic roots of Archean cratons have 

been identified as the source region for diamonds recovered from kimberlites and lamproites 

(Mitchell, 1986). The presence of mantle derived diamonds in kimberlites makes it more 

interesting from economic point of view.  The revised definition from older definitions of 

kimberlite is given by Mitchell (1986) 

 

“Kimberlites are a clan of volatile-rich (dominantly CO2) potassicultrabasicrocks. 

Commonly, they exhibit a distinctive inequigranular texture resultingfrom the presence of 

macrocrysts (and in some instances megacrysts) set in a fine grained matrix. The 

megacryst/macrocryst consists of roundedanhedral crystals of magnesian ilmenite, Cr-poor 

titanianpyrope, olivine, Cr-poor clinopyroxene, phlogopite, enstatite, Ti-poor chromite. 

Olivine is the dominant member of the macrocryst assemblage. The matrix mineralsinclude: 

second generation euhedral primary olivine and/or phlogopite, togetherwith perovskite, spinel 

(titaniferousmagnesian aluminous chromite titanianchromite, members of the 

magnesianulvospinel-ulvospinel-magnetiteseries), diopside (Al- and Ti-poor), monticellite, 

apatite, calcite, and primarylate stage serpentine (commonly Fe rich). Some kimberlites 

contain latestage poikiliticeastoniticphlogopites. Nickeliferous sulfides and rutile are common 

accessory minerals. The replacement of early-formed olivine, phlogopite, monticellite and 

apatite by deuteric serpentine and calcite is common.Evolved members of the clan may be 

devoid of, or poor in, macrocrystsand composed essentially of calcite, serpentine, and 

magnetite, together withminor phlogopite, apatite, and perovskite." 
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Kimberlite pipe morphology 

 

Kimberlite intrusions are typically conical in shape (Fig.4) and are referred to as pipes 

due to their appearance (Mitchell, 1986). Some kimberlites can be of champagne glass 

shaped. The kimberlite pipes with conical-shape are taken as standard for classification and 

understanding.  They are made up of different zones with each zone having its own texture 

and mineralogy. Clement & Skinner (1985) classified kimberlite pipes into three faciesnamely 

crater, diatreme and hypabyssal from surface to bottom of the pipe based on their intrusion 

characteristics.  Crater facies is composed of volcanoclastic material. The diatreme facies is 

steep sided and the lower most hypabyssal facies is irregular and complex with it dykes and 

sills.  This simple classification has been revised based on the nature of texture being either 

volcanoclasitc or coherent by Scott Smith et al., 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4:Diagramatic representation of typical Kimberlite pipe morphologysource---Mitchell, (1986). 
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Kimberlite classification 

 

Currently three groups of kimberlites have been identified, Group I kimberlites, 

GroupII kimberlites and Transitional Group kimberlites.  The Group I and II classification 

was given by Smith (1983) based on isotopic affinities (Sr-Nd-Pb isotopic signatures). Later 

Mitchell (1995) proposed the term orangeite for group II kimberlites.  The orangeite or Group 

II kimberlites are rare and restricted in its occurrence and are found in South Africa, India and 

Finland.  The Transitional Group kimberlites are the rarest compared to other types of 

kimberlites with very limited occurrences and studies carried out (Beard et al., 2000; 

Kaminsky et al., 2004; Becker et al., 2007; Donatti-Filho et al., 2013b).  These transitional 

type kimberlites show mixed signatures from group I and Group II.  In Brazil, kimberlites 

along Corridor-125 are of three types Group I (Concordo-2), Transitional Group (Tres 

Ranchos) and Lamproites (Juina).   

 

Mineralogy of kimberlites 

 

The mineralogy of kimberlites is complicated as they are hybrid in nature containing 

minerals varying from upper mantle to upper crustal conditions. The presence of numerous 

xenoliths, megacryst suits and secondary alteration complicates the generalization about 

kimberlite mineralogy.  Inspite of this, the rock exhibits distinct inequigranular texture with 

xenoliths and groundmass. 

 

Xenoliths: The xenoliths can be of mantle origin or country rock fragments. Mantle xenoliths 

made up of varying proportions of (i) peridotites, (ii) eclogites and (iii) metasomatised 

nodules including glimmerites, MARID (mica, amphibole, rutile, ilmenite, and diopside) suite 

xenoliths (Dawson and Smith, 1977; Dawson, 1980) are found in kimberlites. The type and 

proportions of xenoliths vary from one kimberlite to another. They normally constitute 2% in 

volume to that of the total kimberlite (Dawson, 1980) but can be as high as 50% volume (Cox 

et al., 1973). Country rock fragment also varies in amount, type and size between different 

kimberlites and within the same kimberlite pipe.  Within a kimberlite pipe the country rock 

fragment size, shape and distribution can give important information about the emplacement 

process and reworking of material within a kimberlite pipe (Schmincke, 1984). 
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Megacrysts and Macrocrysts: Smaller fragments bigger than 1cm mineral fragments or 

minerals found embedded in kimberlites are termed as Megacrysts and macrocrysts. This is a 

non genetic term and includes olivine, garnet, clinopyroxene, orthopyroxene, phlogopite, 

ilmenite and zircon. Olivine is the most abundant mineral phase in group I compared to group 

II kimberlites.  In case of Transitional group kimberlites the olivine content is in between 

group I and II kimberlites. It is difficult to distinguish between the phenocrystal and 

xenocrystal olivine as their compositions overlap. The group II kimberlites contain phlogopite 

as abundant mineral phase. It occurs as macrocrysts, microphenocrysts, and groundmass and 

can make up 50% of the mineral assemblage. In comparison, phlogopite from transitional 

kimberlites falls between Group I and Group II values.   

 

Diamonds also forms part of xenocryst phase and they are sampled randomly by an 

ascending kimberlite (Boyd and Gurney, 1986; Stachel and Harris, 2008). In most cases 

diamonds have been dated as a lot earlier than the age of the kimberlite that brought it to the 

surface (Evans and Harris, 1989; Bulanova, 1995; Pearson and Shirey, 1999). Temperature 

and pressure required for the formation of diamonds is found to be between 4-6 GPa (150-200 

km depth) and 1000-1200
0
Ctemperature (Bulanova, 1995; Stachel et al., 2005; Stachel and 

Harris, 2008). 

 

Groundmass: Skinner and Clement (1979); Clement and Skinner (1985) defined the 

groundmass as the relicts after removing all of the foreign material and macrocrysts and 

includes monticellite, serpentine, phlogopite, calcite, diopside, apatite, spinel and perovskite. 

Kimberlites groundmass is susceptible to syn- and post-emplacement alterations due to 

primary and secondary minerals and accordingly, it complicates the geochemistry of 

groundmass. In most kimberlites the groundmass is dominated by second generation 

serpentine, calcite and microliticdiopside.  

 

Geochemistry of Kimberlites 

 

The major- and trace-element geochemical of kimberlites are hindered by the 

ubiquitous presence ofcrustal, xenolithic and xenocrystic material. The measured values 

indicate the total resultant geochemistry due to primary magma, xenocyrsts, phenocrysts and 

their alteration products.   
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Major element concentration range will be,  low inSiO2 (25–30 wt. %), low in Al2O3 

(usually <3 wt. %), very low in Na2O (usually < 1 wt. %), high MgO (20-38 %), high CaO 

(5-14%), moderate FeO (6-16%), low TiO2 (< 4%), and low K2O (<2), although K2O levels 

can reach 7% in Group II kimberlites due to the increased phlogopite content (Mitchell, 1986; 

Mitchell, 1995). Group II kimberlites may also contain slightly higher SiO2 and lower 

contents of MgO than their Group I.  

 

Group I, Group II and transitional kimberlites are all highly enriched in LREE with 

respective to HREE, which is a reaction of a very low degree of partial melting of the source 

(Le Roex et al., 2003; Becker and Le Roex, 2006).In general, theratio of LREE to HREE 

(La/Yb, normalised to chondritic mantle abundances) ranges from 80to 200 (Mitchell, 1986). 

Trace element pattern provides guide to distinguish between Group I and Group II 

kimberlites. Group I kimberlites have lower Ba/Nb (<12),Th/Nb (<1·1) and La/Nb (<1·1) and 

higher Ce/Pb (>22) ratios, whereas Group II kimberlitesshow enrichment in Pb, Rb, Ba, and 

LREE and also contain Cr and Nb depletions withrespect to Group I kimberlites. With the 

exception of few trace element range spanning the entire range (for example Ni), Transitional 

kimberlite major and trace element characteristicstend to fall between those of Group I and 

Group II kimberlites (Becker et al., 2007). 

 

Some of group I kimberlites trace element ratios (such as Ce/Pb, Nb/U, La/Nb, Ba/Nb, 

Th/Nb) are also diagnostic of ocean island basalts(Smith, 1983). At the same time it has 

characteristics (refractory Mg numbers, Ni content) similar to subcontinental lithospheric 

mantle (Le Roex et al., 2003; Becker and Le Roex, 2006). This complicates ascertain of these 

kimberlite sources tosimple convectingasthenospheric source.   

 

Source region of kimberlite magma  

 

Source of kimberlite magma is argumentative with number of sources proposed 

including the convecting upper mantle, the sub-continental lithospheric mantle, the lower 

mantle and the core/mantle boundary (Smith, 1983; Ringwood et al., 1992; Tainton and 

McKenzie, 1994; Nowell et al., 2004; Becker and Le Roex, 2006; Paton et al., 2009; Tappe et 

al., 2011; Tappe et al., 2012; Guarino et al., 2013; Tappe et al., 2013). 
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General agreement of source region has been assigned to Group II kimberlite genesis. 

Their extremely enriched isotopic range, distinctive REE pattern, and refractory element 

concentration ranges (High Mg number and Ni, low Al2O3 and HREE). These characteristics 

will be achieved by a source that has undergone extreme metasomatic enrichment and 

subsequently been isolated from the convecting mantle for a substantial period of time. The 

SCLM that has undergone ancient (>1 Ga) metasomatic enrichment via melts derived from 

the asthenospheric mantle fulfils these requirements (Tainton and Mckenzie, 1994, Becker 

and Le Roex,. 2006). Interpreting Group II Kimberlite source region is more complicated.  A 

SCLM source has been proposed by several authors (Tainton and McKenzie, 1994; Le Roex, 

2003; Harris et al.,2004 and Becker and Le Roex, 2006). 

 

Two-stage melting model was proposed by Tainton and Mckenzie (1994) to 

accommodate the diversity observed in geochemistry of Group I kimberlites. Initially, the 

SCLM kimberlite source must have been strongly depleted by ~20% melting in the garnet 

stability field in order to account for thecharacteristic low HREE abundances. This depleted 

source is subsequently enriched by theinfiltration of sub-lithospheric source, small scale 

metasomatic melts. Interaction with thissmall-scale melt would increase concentrations of 

highly incompatible elements to a greater degree than the less incompatible HREE. Finally, 

with the removal of a very low melt fraction (0.4 – 0 3%) within the garnet stability field 

kimberlite magma is generated, there by concentrating the LREE and producing a melt with 

trace element concentrations that is observed.   

 

Becker and Le Roex (2006) propose a similar method of formation, with a strong 

relationship between Group I kimberlites and OIB (Sri Ndiisotope ratios, along with Ce/Pb, 

Nb/U, La/Nb, Ba/Nb, and Th/Nb elemental ratios) they suggest the enrichment process must 

have been achieved by OIB related fluids. Becker and Le Roex (2006) also emphasized that, 

in order to explain the bulk earth Sr and Nd isotope ratios, kimberlite magmatism must have 

occurred soon after the metasomatic enrichment event. 

 

Presence of ultra-deep source diamond inclusion phases (majoritic garnet, magnesio-

wüstite, andferropericlase present in diamonds) in Group I kimberlites has been a hindrance to 

the SCLM source theory.  Ringwood et al. (1992) argue that a SCLM source cannot 

adequately explain these observations. These phases being stable at depths of >400km, these 

diamonds should have originated from such deep sources and thereby the magma entrapping 
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these diamonds. Hence, they proposed that these kimberlites originate fromwithin the 

transition zone (400-650km depth). They proposed a two-stage melting modelsimilar to that 

of Tainton and Mckenzie (1994), where asthenosphericharzburgite has beenmetasomatically 

enriched by small degree partial melts originating from subducted oceaniccrust situated at 

boundary layer depth. This model invokes partial melting of ancient subducted crustal deep 

asthenospheric levels, forming “melt pools” which subsequently rise and congregateat sub-

lithospheric depths. The congregation of these asthenospheric melt pools homogenisesthe 

melt, explaining the isotopic signatures observed, whilst also increasing the pressure on the 

overlying SCLM, resulting in fracturing and kimberlite emplacement. 

 

The origin of transitional kimberlites is least documented in kimberlite literature.  As a 

preliminary proposal, a magma mixing through a single plumbing system theory is proposed 

by Becker et al, 2007. Few other authorshave proposed transitional kimberlites are sourced 

from the base of the SCLM, whereasthenospheric fluids/melts have interacted with the SCLM 

and subsequently melted (Beardet al., 2000; Donatti-Filho et al., 2013b). A SCLM source has 

been suggested for Braziliantransitional kimberlites in order to accommodate their isotopic 

and incompatible traceelement signatures (Gibson et al., 1995; Donatti-Filho et al., 2013b; 

Guarino et al., 2013); andthe problematic presence of high pressure inclusions (e.g. Collier 4, 

Bulanova et al., 2010) in many Brazilian diamonds are not thought to represent the source of 

the kimberlites (Bulanova et al., 2010; Walter, 2011).  
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Chapter 5 

Geological Framework of Brazil 

 

Geological Framework and Structural Trends 

 

 

Fig. 5: Structural Provinces of Brazil with major cities modified After Almeida et al, (1981) and CPRM 

Database. 

 

Brazilian platform is made up of Amazon, São Francisco, Rio de la Plata, São Luiz 

and Paranapanema cratons surrounded by Neoproterozoic fold belts and Paleo- to 

Mesoproterozoic domains with fold belts separating the cratonic fragments (Fig.5).  Major 

part of the cratonic regions are covered by intracratonic Palaeozoic rift basins namely Parecis, 
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Parana, Parnaiba, Amazonas, Alto Tapajos and Solimões basins (Fig.5). Transbrasiliano 

lineament is a shear zone that runs from the NE of the country to the SW and further down 

into Argentina.  The east coast of the country is a rift margin due to South Atlantic opening.  

To the north, the country is bound by equatorial rift margin.  The Western margin is bounded 

by Andes orogeny which is the result of Nazca plate subduction.   

 

Prior to the amalgamation of various tectonic blocks of Brazil, it was proposed that 

ClymeneOcean existed between the São Francisco and Amazonian Craton (Cordani et al, 

2013). The Clymene ocean closure and final amalgamation of tectonic blocks -São Francisco, 

Paranapanema, Rio de la Plata and Amazon cratons of Brazil took place during Brasiliano 

cycle around 650 to 600 Ma (Cordani et al, 2013; Almeida, 1978).  Neves et al, 2014 have 

considered the Amazon cratonic region along with the thrust and fold belts of Paraguay-

Araguaia belt as one tectonic unit and the region west of it as another unit.  Accordingly, in 

this current study, this broad classification of Amazonian and Extra-Amazonian regions aids 

in better understanding of the geotectonic evolution with respect to kimberlite magmatism.  

 

Due to the collision of Amazon craton with São Francisco craton east verging thrust 

and nappes developed on the Extra-Amazonian region.  Major east verging nappes are Araxa 

nappe, Passos, Guaxupe and Socorro nappes.  In the Central Brazilian region in between the 

Amazon craton, Paranapanema craton and São Francisco craton Tocantins fold belt is found.  

Brasilia belt is the fold belt of Tocantins province along Corridor-125 and its associated 

kimberlites are found intruding this fold belt.   

 

The Amazon craton is an accreted landmass of several mobile belts with successive 

younging from east to west.  This craton is divided into two cratonic blocks by Amazonas 

basin- The Rio Branco craton and the Guapore Craton. The Guapore craton is synonymously 

referred to as Brazilian Amazon craton and the Rio Branco with Guyanian Amazon craton. 

With the same convention of Amazon craton refers to Guapore craton in our study. The 

structural province classification calls this Guapore craton as Tapajos province. The central 

basement rock forms the nucleus of this accreted landmass with age greater than 2.3 Ga 

(Tassinari and Macambira, 1999) and subsequently cratonized during 1.7 Ga (Almeida et al, 

1981). Six provinces are recognised from the NE to SW of Amazonion region.  The corridor-

125 is represented by Rio Negro-Juruena mobile belt which is further divided into three 

tectonostratigraphic units namely Roosevelt, Jamari and Nova Brasilandia belts and 
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Rondonian-Sanignacio province (Tassinari et al, 1996). Further south of Brazil in Paraguay 

the mobile belt province is termed as Sunsas mobile belt province is seen. Scattered pieces of 

this mobile belt rocks are also seen in patches in SW Rondonia state.  

 

Nova Brasilandia belt (E-W trending) formed in an intracratonic rift setting with the 

proto-ocean opening and closure.  This oceanic opening was during Grenville time during 

which there was extensive orogenic in Laurentia. The suture zone from Nova Brasilandia 

beltup to southwest Paraguay thrust zone is a mega structure called Guapore suture zone 

(WNW-ENE trending) which resulted due to Mesoproterozoic suturing of Paraguay block and 

Amazonian craton (Hartmann, 2012). The area between Guapore suture zone and the 

Paraguay block is characterized by NW frontal thrusts and NE lineaments due crustal 

shortening along E-W direction (Rizzotto et al, 2013). Few ophiolites have been found and 

has been dated from this Guapore suture zone (Rizzotto et al, 2013) proving the fact that there 

was proto-ocean prior to suturing.  

 

The Parecis basin is a rift-sag basin found to the east of Guapore suture zone. The 

Rodinian breakup and continental rift extension resulted in weak zones which during 

Palaeozoic times evolved into Parecis basin. This rift system was further filled by sag deposits 

due to thermal subsidence.  The thermal subsidence is accomplished due to cessation of rift 

along with compression stresses from Andean region.  The NW trending Pimenta Bueno and 

E-W trending Colorado rifts are associated with this basin.  

 

North of Nova Brasilandia belt, the basement rock is overprinted by Jiparana shear 

zone of Grenville age. Jiparana shear zoneconsists of two trends- NNW and EW ductile 

deformation. (Tohver et al, 2005). Jiparana shear zone ductile deformation is interpreted as 

structures formed due to the collision of Laurentia with Amazonian craton (Tohver et al, 

2005).   

 

The Guapore basin is situated from the southwest margin of Brazil up to southeast 

boundary of Parecis basin. This basin architecture and the basement structures are poorly 

known due to cover sediments.  From the neotectonic framework, the structural trends are 

NW-SE due to compression in E-W direction, NE-SW transtensional and transpressive N-S 

lineaments (SouzaFilho et al. 1990) due block rotation and translation of South American 

plate.  
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The kimberlite occurrence in Extra-Amazonian basement is not clearly known as it is 

situated atthe marginal zone where two cratons have collided and amalgamated.  These two 

cratons involved are São Francisco craton and the Paranapanema craton, which is now 

covered by Paranabasinsediment cover. The São Francisco craton basement rocks are slightly 

older than the Amazonian basement and the oldest age known is around 3.1 Ga (Almeida et 

al, 1981).  This basement was cratonized during subsequent tectonic event around 1.7Ga 

(Almeida et al, 1981). It is interpreted that the kimberlite occurrences in the Extra-Amazonian 

region south of São Francisco craton is intruded into the São Francisco cratonic basement 

from the gravity geophysics data (Pereira et al, 2005).   

 

Geological Framework of Corridor-125 

 

Main geological units along Corridor-125 are the NE-trending Neoproterozoic 

(Brasiliano/Pan-African) Ribeira Orogen in the Southeast, São Francisco craton basement, 

NE-trending Neoproterozoic Brasilia Orogen, Phanerozoic Parana basin, NE-trending 

Neoproterozoic Paraguai-Araguaia Orogen followed by Amazonian craton basement (NW-

trending Mesoproterozoic Rondonian and Sunsasorogens) and Phanerozoic Parecis Basin. 

The NE-trending Transbrasiliano lineament cuts across Corridor-125. On the western side of 

Transbrasiliano lineament there occurs the Amazonian craton and on the eastern side the 

Extra-Amazonian region. 

 

The main structural features and geological units that characterize Corridor-125 are 

NW-trending Proterozoic mafic dyke swarms (Pará de Minas dyke swarm) in the Extra-

Amazonian region and the NW-trending Serra Formosa and Rio Guaporéarchs in the 

Phanerozoic Parecis Basin and its basement, Amazonian craton.  In between the latter two 

archs another major structural feature is the Pimenta Bueno graben in the Parecis basin. In the 

Extra-Amazonian region the Pará de Minas dyke swarm continues, without significant 

deformation, beneath the Brasilia orogen up to the Transbrasiliano Lineament as seen on 

aeromagnetic maps to be shown in a later section. Other lineaments at high to moderate angle 

to Corridor-125 are common and in several places the intersections with Corridor-125 are 

sites of kimberlite clustering. 
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Mafic and ultramafic magmatism along Corridor-125 

 

Along corridor-125, there are several alkaline rocks clustered in distinct provinces 

(fig.6).  They are Juina, Poxoreu, Batovi, Alto Paranaiba igneous provinces.  It is quite 

interesting to see that all these igneous provinces are also associated with kimberlite 

occurrences.  Next to the east coast of Brazil with continuation from corridor-125, there are 

two more igneous provinces – Abrolhos and Trindade igneous provinces.  Basalts, 

Kamafugites and carbonatites are also found within the corridor-125 along with the igneous 

province.   

 

 

Fig. 6: Igneous Provinces of Brazil from CPRM Database, 2004 with respect to        

Corridor-125
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Chapter 6 

 

Role of Brazilian plate in Global Plate tectonics 

Introduction  

 

 

Fig. 7: South American plate with tectonic boundary type. 
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The present day configuration of continents and ocean is the result of rearrangement of 

various blocks that make up the continents and ocean. These blocks are termed as Tectonic 

plates.  Each tectonic plate is made up of thinner oceanic and thicker continental parts.  The 

vertical limits of the plate go up to lithospheric depths.  These plates are dynamic and are in 

continuous motions, which are not recognizable easily due to its slow rate.  This movement of 

lithospheric plates or Tectonic plates is the basis of Plate tectonics which was first observed 

and proposed theoretically in 1960s by Alfred Wegener based on continental drift theory.  

Further, it has evolved into the concept of today’s Plate Tectonics.   

 

 

Currently, there are eight major plates and many minor ones.  South American plate is 

one such major tectonic plate. This plate consists of the continental part and the South 

Atlantic part as the oceanic part.  As mentioned earlier, the movement of tectonic plates 

rearranges the plates into different configuration, this is known as supercontinent. To 

precisely explain supercontinents, it is the amalgamation of several or all plates together at a 

particular time at a particular position on the globe.  Plate boundaries play an important role in 

plate tectonics.  Hence, understanding the type of plate boundary and the processes involved 

marks the key to the concept of plate tectonics.   

 

Supercontinent formations are accomplished by three types of boundary types: 

transform convergence /subduction and divergence/ rifting of two or more plates.  The 

transform boundary is conservative plate boundary; the divergent boundary is constructive 

and the convergent boundary is destructive in nature. The plate boundaries involved in the 

above movements are of the type continental-continent lithosphere, continent-oceanic 

lithosphere and oceanic-oceanic lithosphere.  In plate tectonics the landmass is always 

conserved.  The loss of landmass at subduction is compensated by the production of new 

oceanic crust at the midoceanic rifts. 

 

The supercontinent formation and breakupare episodic, giving rise to the idea of a 

supercontinent cycle (Nance et al., 1986). A supercontinent life cycleconsists of rifting and 

breaks up of one supercontinent, followed by a stage of reassembly in which dispersed plates 

collide to form a new supercontinent. Here most or all plates in different configurations from 

the older supercontinent (Hartnady, 1991). The assembly process generally takes much longer 
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than fragmentation, and often overlaps in time with the initial phases of rifting that mark the 

beginning of a new supercontinent dispersal phase. The supercontinental cycles provide a 

record of the processes controlling the formation and distribution of continental crust 

throughout the Earth’s history by means of magmatism and orogeny associated with it.  It also 

influences isotopic and elemental geochemical cycles, climatic distributions and changing 

environments which affect the evolution of organisms. 

 

Brazilian plate is an accretion of various minor blocks forming part of South American 

plate. South American plate is made up of main Brazilian plate, Salado subplate consisting of 

Salado and Colorado basins. Throughout this thesis, Brazilian plate is synonymously used 

with South American plate. As we are focusing on corridor-125, which is within the Brazilian 

plate all the reconstruction and interpretation is carried out with respect to Brazilian plate.  

Brazil has been part of many supercontinent lifecycle though not in the same framework of 

continental mass.   

 

Major supercontinents  

 

The existence of older than 1.3 Ga supercontinents is likely but their configurations 

are not understood very well and not documented.  Rodinia is the well documented 

supercontinent in which Brazilian plate formed a major part though not in the exact shape, 

size and position as today. This supercontinent timing is interpreted at 1.3-1.0 Ga. It 

fragmented at 750-600 Ma paving way for the next supercontinent assembly.  This break up 

followed by rearrangement of plates led to the formation of Gondwana supercontinent.  In 

fact, the rearrangement continued up to 550 Ma with further rearrangements. Note worthy 

rearrangement of our interest in this period is the collision and assembly of the São Francisco 

craton in Brazil and the Congocraton in Africa occurred in the Early Proterozoic. 

Paleomagneticand paleoclimatic data indicate that during the early Palaeozoic most continents 

remained at low, equatorial latitudes (Scotese, 1984; Jurdy et al., 1995).The Pacific/Nazca 

plate is subducting from Cambrian up to today under the South American plate forming the 

subduction zone.  The result of this subduction is the Andean orogen on the Western margin 

of South American plate.   
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Further rearrangement of the tectonic plates occurred resulting in Pangea 

Supercontinent around 300Ma.Pangea was composed of Laurentia (North America- Eurasia) 

and Gondwana (India, Africa-South America and Antartica-Australia) surrounded by Tethys 

in the east and Pacific ocean in the west.  Around 280 to 225 Ma Pangea drifted apart along 

south of North America and North of South America giving rise to Central Atlantic Ocean.  

This Permo-Triassic rifting was followed by cretaceous South Atlantic rifting and opening up 

of South Atlantic Ocean at 120 Ma.  Thus Africa and South America separated and reached 

the present day configurations. 

 

The driving forces guiding the plate motions has been a subject of debate from long times. 

There are many hypotheses concerning the driving forces for plate tectonics.  To name some 

of them are  

 

 Mantle Convection theory: Mechanical boundary exists below the Earth’s hard crust 

in the form of lithosphere and asthenosphere. These two layers of the Earth are 

contrastingly different with respect to density and heat flow or temperature.  The 

lithosphere is cooler than the asthenosphere.  Due to this temperature gradient, 

convection current develops serving as the driving force moving the plates above 

them.   

 Fixed hotspot theory: Based on the location of hotspots close to midoceanic ridges and 

seamount volcanic age progression, it is proposed that hotspots serve as the driving 

force which moves the plates above them when they rise from deeper mantle to higher.  

Here the rising mantle plume provides the necessary heat and material in the form of 

igneous activity for the melting and rifting of the plates.   

All these theories explain the processes involved around the plate boundaries ie 

horizontal tectonics.  The theories does not provide satisfactory reasoning for the intraplate 

magmatism which is found associated with plate tectonics especially kimberlite magmatism.  

Several attempts (Hastings & Sharp, 1979; Morgan, 1983; Le Roex, 1986; Skinner, 1989; 

Skinner et al., 2004; O’Neill et al., 2005) have been made to show the genetic link with the 

hotspots and kimberlite emplacements.  One such example is the North American kimberlite 

magmatism age progression associated with fixed hotspotpaleo-track over a moving plate 

(Heaman et al, 2004).  But the age progression and hotspot paleo-track is not consistent on all 

continents and occurrences.  
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Tectonic elements of Brazilian plate at present day configuration 

 

The Brazilian/South American plate (Fig.7) is bounded to the west by Subducting 

Pacific plate (Nazca plate with reference to Brazilian corridor-125). The eastward motion of 

pacific plate has been active from 300 Ma up to present resulting in steep subduction and slab 

roll over.  The subducted slab is restricted to Brazilian plate and there is no evidence for its 

continuation below African plate. The eastcoast of Brazil is bounded by rift margin.  This rift 

margin is a result of cretaceous opening of South Atlantic Ocean around 130 to 120 Ma.  To 

the north, Brazil is bounded by a rift margin.  This northern rift margin is the result of Triassic 

rifting between Laurentia and South American plates.  Brazilian oceanic plate boundary is 

represented by the Mid-Atlantic ridge.   
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Chapter 7 

 

 Corridor-125 and its Kimberlites (Occurrence, Clusters and Age) 

 

Corridor-125, A Regional Scale Structural Lineament 

 

Brazilian kimberlites are preferrentially oriented along major lineaments (Fig.1) 

namely, Az-125, Transbrasiliano Lineament (TBL), Blumenau lineament, Rio Alonzo 

Lineament, Rio Grande Arch and Amazonas basin Lineaments.  Of these lineaments, 

Azimuth-125, referred to as Corridor-125 in this research, hosts the maximum number of 

discoveries thereby indicating a fundamental structural control on their emplacement. Key is 

to understand the interplay between the structural and plate tectonic controls and the timing 

and location of kimberlite emplacement along Corridor-125. 

 

Corridor-125 is composed of several mega- and giga-lineaments and trends NW-SE 

from Rio de Janeiro to Porto Velho (Fig.1). The total length of the corridor is around 2700 km 

and its width of 500km is estimated with the kimberlite occurrence bordered by the dyke 

swarms. The width of the boundary is chosen arbitrarily just outside the kimberlite occurrence 

area to get a picture of the geology, structure and geophysical signatures of the host rocks and 

its structures during study.  Later this region will be checked for any signatures on 

geophysical aeromagnetic data to precisely delineate the corridor boundary.  

 

Continental Scale Lineament Analysis  

 

The genetic link between the oceanic transform fractures and Corridor-125 is studied 

by using “Global seafloor fabric and magnetic lineation (GSFML) database by Matthews et 

al., (2011) and Wessel et al., (2014).  The transform fractures signatures from GSFML are 

used in GIS platform. These fracture zones are plotted against the Earth Maganetic Anomaly 

Grid Version.2 (EMagV2 by Maus et al, 2009) data to trace back the fracture zones up to the 

Brazilian Eastern board.  This result is further overlained by the global oceanic age isochron 

and bathymetric data. By doing so, we further refined the trace back toward higher 

preciseness. Once, the data trace was achieved up to the border, the total field aeromagnetic 
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map which is reduced to IGRF, 1km square grid from the CPRM (Brazilian Geological 

survey) was utilized to identify the continental expression of the lineament. 

 

 

 

 

  Fig.8: Oceanic extension 

of Continental Corridor-

125 lineament in the 

Brazilian plate with 

global EMagV2 

backgroundand GSFML 

fracture zones and Mid 

Atlantic ridge.  
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The opening up of South Atlantic has a genetic link with the corridor-125 and the 

kimberlite occurrences along this corridor. With initiation of South Atlantic rift at 140Ma, it 

manifested in the oceanic extension of the continental lineaments of South American plate. 

Corridor-125, Transbrasiliano lineaments are the examples of such oceanic extension 

associated with South Atlantic rift. This link can be traced back with the help of Earth 

Magnetic Anomaly Grid data as shown in fig.8. The major oceanic fractures that are 

associated with the landward counterpart along Corridor-125 are Trindade fracture zone, 

Trindade_A fracture zone and Trindade_B fracture zone. 

 

Kimberlite Clusters along Corridor-125 

The kimberlite occurrences along Corridor-125 can be broadly classified into the 

following clusters (Fig.9): 

 

 

Fig.9: Kimberlite Clusters along Corridor-125 with structural provinces background. The region in 

yellow corresponds to Paleozoic basins. 
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1. Alto Paranaiba cluster; 

2. TBL-C-125 Right cluster  

4. TBL-C125 Left cluster 

3. Upper Paraguay cluster (Rio Guapore and Paranatinga clusters), 

4. South Rondonian cluster,  

5. Central Rondonian cluster, 

6. North Rondonian cluster, 

7. Madeira cluster, 

8. Juina cluster. 

 

Alto Paranaiba Cluster is found in the state of Minas Gerais and Goias forming a good 

cluster.  The Transbrasiliano cluster is divided into two subclusters as left and right clusters 

since they are found on either side of Transbrasiliano lineament along corridor-125.  The 

Tansbrasiliano clusters are found in the state of Mato Grosso.  The Upper Paraguay cluster is 

again subdivided into Rio Guapore and Paranatinga clusters.  They are found in the state of 

Mato Grosso.  The North, South and Central Rondonian clusters are found in Rondonia state. 

The Madeira and Juina clusters are found in the state of Mato Grosso.   

 

Structurally, AltoParanaiba and Transbrasiliano right kimberlite clusters are associated 

with Tocantins tectonic province to the base of São Francisco craton and at the margin of the 

Parana sedimentary basin.  Transbrasiliano left kimberlite cluster is associated periphery of 

Parana Sedimentary basin.  The Paranatinga cluster is associated with Amazonian craton 

basement and Tocantins structural province.  The Rio Guapore cluster is associated with 

Upper Paraguay thrust zone and Tapajos tectonic province.  Juina cluster is associated with 

Parecis basin and Tapajos tectonic province.  The North, South and Central Rondonian 

clusters are associated with Tapajos Tectonic province.  

 

Brazilian Kimberlite Age and Episodicity 

The Brazilian kimberlite age clusters (Fig.10) are of six major peaks with intermittent 

quiescent periods. Four of these periods of kimberlite peaks are associated with Corridor-

125.There are two known Proterozoic kimberlites in Brazil, namely the Salvador kimberlite, 

which are dated as 1150 Ma (Watkins et al, 2009; Dewit, 2010) and the Brauna kimberlites, 

which are dated at 642 Ma (Donatti-Filho et al., 2013). All other kimberlites are Perrmo-

Triassic in age.  The Proterozoic kimberlites are absent along corridor-125. Permo-Triassic 
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and Cretaceous kimberlite clusters are found along the corridor-125 and are grouped into the 

following clusters and listed below:  

 

1. 226-268 Ma 

2. 120-122 Ma 

3. 80-94 Ma 

4. 74 Ma 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.1: Brazilian Kimberlite Age and method of dating. 
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Fig 10:  

Brazilian Kimberlite age 

map with structural 

provinces background. 
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Chapter 8 

 

Structural Framework of Corridor-125 with mapped structures 

 

A compilation form the available geological, aeromagnetic, and lineament maps of 

Brazil (CPRM, 2004 etc.,) has resulted in the identification of several mega-and giga-

lineament systems along corridor-125 (Fig.11) that has favored the kimberlite emplacement 

while other are not. The oldest structural activity is derived from the age of the oldest known 

dyke swarm dating back to 1.8Ga.  After which this corridor has been subjected to several 

reactivations and these reactivations are expressed as different age group mafic and ultramafic 

rocks along its entire length.  The Amazonian and Extra-Amazonian craton structural 

frameworks are dealt separately.   

 

Fig.11: Structural Framework of Corridor-125 with Tectonic province background.  The pink 

circles represent kimberlites, black lines represent structures. Blue line is the Giga Transbrasilino 

lineament. 
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General structural framework of the Extra-Amazonian craton consists of numerous 

NW-SE trending parallel to subparallel lineaments running from SE end, which are cross cut 

by NE-SW structures.  The NW-SE subparallel lineaments sometimes are modified due to 

prevailing local tectonic regime where nappes and thrusts are seen as surface expression.  The 

southeastern most part of the corridor is characterized by the coast parallel lineaments, which 

are also parallel to the corresponding orogens. TBL is the most magnificent NE-SW trending 

lineament cross cutting the corridor-125.   

 

The TBL intersection with Corridor-125 has favored two major kimberlite clusters.  

The lateral branching at the SW end of the TBL has also favored two kimberlite clusters. 

These two sets of kimberlite occurrences on either sides of TBL are referred to as Western 

TBL-C-125 and Easter TBL_C-125 clusters.  On the southeastern end of the Corridor-125, 

there are no kimberlite occurrences (SE-Ribera belt); adjacent to it, the AltoParanaiba arch is 

associated with the biggest kimberlite clustering in numbers.   

 

This clustering of kimberlites is referred to as Alto Paranaiba cluster, which gives 

detailed information for the understanding of the lineament, kimberlite occurrences, age 

clustering etc.  Alto Paranaiba cluster of kimberlites are associated with a network of NW 

lineaments intersecting with NE and NNW lineaments.  The most significant ones are named 

as below: 

 

DCARSF: 

 

NW trending Upper Rio São Francisco Crustal discontinuity is a major continental 

lineament situated at the center of the corridor width.  It forms one of the major kimberlite 

favoring lineaments in the Alto Paranaiba region. This lineament is associated with parallel to 

subparallel dyke swarms in the southeastern region. There are several magnetic signatures 

running parallel to these dyke swarms from the SE São Francisco cratonic region up to TBL.  

Though we have Brasilia belt as the geomorphic feature bordering São Francisco craton, the 

magnetic signature lineaments running all along the length of the corridor-125 up to TBL is a 

good evidence of thin-skinned tectonics and a proof for intact basement.  Hence, the Brazilian 

kimberlites are found in the mobile belts does not deviate from Clifford’s rule.   
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Compo de Meio lineament starts as a NW lineament and has a characteristic bending 

around the São Francisco cratonic southern boundary.  There are kimberlites clustering 

around this lineament. Beyond this lineament there is a non-kimberlite occurrence zone. 

Hence, it is taken as lower boundary of the corridor-125 

 

Minas-Goias system: This megalineament is roughly NE trending forms part of the 

structures that hosts kimberlites of Alto Paranaiba Cluster.   

 

Lineament A: this is another major megalineament (location in Fig.4), which starts at the 

Northwestern end of the DCARF almost subparallel to it and runs further NW and probably 

extends up to the Transbrasiliano Lineament. Its extension up to TBL is seen as intermittent 

minor linear mag signatures.  This lineament hosts the next cluster of kimberlites, which is 

separated from the AltoParanaiba cluster by a non-kimberlite zone.   

 

Estrela Fault: trends NE-SW and is a reverse strike-slip fault (Allaoua Saadi et al, 2002).  It 

also forms part of the most influential lineaments of Alto Paranaiba kimberlite cluster.   

 

NE-SW subparallel set of lineaments:  There is a set of 3 sub parallel lineaments (C, D and 

E), which cut the corridor just after the Alto Paranaiba cluster of kimberlites and end at the A-

lineament.  These lineaments are not associated with kimberlite occurrence.  There are dyke 

swarms occurring all along the lineament especially in the portion of Corridor-125.   

 

Upper Paraguai Thrust:  This thrust zone is found at the suture zone between Amazonian 

and Extra-Amazonian region.  It forms the western margin of the Paraguai-Tocantins 

Marginal Suture zone.  

 

Porangatu Fault Zone:  This fault is also situated in the Paraguai-Tocantins Suture zone. It 

is a dextral fault (Allaoua Saadi et al, 2002) with no kimberlite occurrence along this fault but 

clustering is found to the left and right of this thrust zone.   

 

WSW-ENE trending B-lineaments: Next to the Southern end NE-SW cluster lineament 

there is a lineament named B-Lineament. It intersects with the lineament A and forms the loci 

for the new cluster of kimberlites.   
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Kimberlite barren lineaments in Extra Amazonian Region 

 

Lancinha-Cubatão-Além Paraiba Fault: This fault system trending NE-SW is found to the 

Southeastern end of the Corridor-125.  It is a strike-slip fault found more associated with 

South Altantic extension and there is no evidence of kimberlite.  

 

Rio Paraiba DoSul Crustal discontinuity (DCRPS): It is also at the Southern end of the 

corridor with dextral and vertical sense of (Allaoua Saadi et al, 2002). No kimberlite is 

associated with this lineament. 

 

Jacutinga Fault: trends WSW-ENE fault is found towards SE portion of the Corridor-125.  

This fault is not associated with any kimberlite occurrence.   

General structural framework of the Amazonian craton: consists of NNW, NW, NE and 

E-W trend, which has favored one cluster of Kimberlites in this craton.   The grabens, horst 

and rifts associated with Parecis basin forms the major loci of kimberlite emplacement.  A 

detailed account on the grabens, horst and lineaments are listed below: 

 Pimenta Bueno Graben, 

 Madiera lineament.  

 Arcs, Horsts, Flexutures and structural bends 

 

a. Madeira Lineament:  This Lineament trends NE and forms an important structural 

control for Kimberlites north of PimentaBuneno.   

b. Arco do Rio Guapore Lineament:  This lineament forms the lower boundary at the 

northwestern side of the Corridor-125.  It is the suture zone between the Paraguay 

block and the Amazon craton. This lineament shows concavity towards the Paraguay 

block. It consists of two clusters of kimberlites; one on the northern portion of the 

lineament and one on the southern portion.     

c. Arco Do Alto Xingu lineament: is also one of the important structures trending NE 

and hosting Paranatinga kimberlites at the intersection of Arco do Serra Formosa 

which trends NNW.  The kimberlites are seen only to the southeast of the Arco do 

Serra Formosa. Along with this, the paranatinga kimberlites are found in Southeastern 

end of Pimenta Bueno graben, brasnorte high, and in the SW-Xingu Graben.  

d. The Juina kimberlite cluster is found in the Parecis basin horst region.   
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The Paccas Novo graben, Colorado graben and Caibis graben found in Amazonian 

craton do not host any kimberlites. The Amazonian kimberlites are mainly associated with 

rifts, arcs, horst and graben associated with Paleozoic Parecis basin structural reactivation as 

we notice the NW Pimenta Bueno graben kimberlites are emplaced at 232 to 242 Ma whereas 

the SE end of the Pimenta Bueno graben kimberlites (Paranatinga kimberlites) were emplaced 

at 120 Ma.  The Juina (95 Ma) kimberlites are found on the horst structures of the Parecis 

basin border.  The Arco do Rio Guapore found to the SW border of the Parecis basin hosts 

kimberlites with emplacement age of 267.8 Ma (Concordo-1).  In nutshell the structural 

reactivation of Parecis basin from 267.8 Ma to 95 Ma have resulted in the different kimberlite 

clusters.  NW of Parecis basin the kimberlites are emplaced where there are NE-SW flexures.  

The last group of kimberlites is associated with NE trending Madeira lineament. 
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Chapter 9 

 

Aeromagnetic Characterization of Brazilian Structures and kimberlite along  

Corridor-125 

 

The aeromagnetic survey has been a distinguishedgeophysical survey method due to 

its rapid rate of coverage and low cost per unit area explored. The main purpose of magnetic 

survey is to detect rocks or minerals possessing unusual magnetic properties that reveal 

themselves by causing disturbances or anomalies in the intensity of the earth’s magnetic field. 

Airborne geophysical surveying is the process of measuring the variation of different physical 

or geochemical parameters of the earth such as distribution of magnetic minerals, density, 

electric conductivity and radioactive element concentration. Aeromagnetic survey maps the 

variation of the geomagnetic field, which occurs due to the changes in the percentage of 

magnetite in the rock and reflects the variations in the distribution and type of magnetic 

minerals below the earth surface and measure variations in basement susceptibility. Local 

variations occur where the basement complex is close to the surface and where concentration 

of ferromagnetic minerals exists. 

 

Key functions of aeromagnetic survey and interpretation is to quantitatively map the 

magnetic basement structures beneath sedimentary cover. Depth to source interpretation of 

magnetic field data provides important information on study areaarchitecture for exploration 

and for mapping areas where the mineralization is at a depth suitable for economic 

exploitation.  Apart from this, aeromagnetic survey and interpretation is handy tool in 

determining the structural framework of the area which is hidden by cover sediments, thrusts 

and other geotectonic elements.  All methods used to estimate depth to magnetic source 

benefit from discrete, isolated source bodies of appropriate shape and moderate to strong 

magnetization. The process of determining the location and depth of a source from gridded 

potential field data begins with the construction of a function from the data such that the 

function peaks over the source. Examples of such functions is the analytic signal amplitude 

(ASA) The objective of most magnetic field survey is to produce images for qualitative 

geological interpretation and gridding is often optimized to reduce noise in the images of 

Total Magnetic Intensity (TMI) or its enhancement, such as the ASA. Image processing of the 

grids enhances details and provides maps that facilitate interpretation by even non-specialist.  
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Aeromagnetic method being a faster economical and versatile geophysical tool may 

help reveal both large and small scale features, including differences in basement type, 

magnetic intrusion, volcanic rocks, basement surface and fault structures.  

 

Kimberlite rocks have characteristic conical or carrot shape or champagne glass 

shaped vertical bodies and are termed as pipes. The magnetic signatures of kimberlite pipes 

are due to its contrasting magnetic properties with that of the background country rock into 

which they have been intruded.  

 

Several geophysical methods are utilized to characterize or generate targets for the 

kimberlite pipes such as the magnetic method (Sarma et al., 1999; Keating and Sailhac, 2004), 

electro- magnetic (Smith et al., 1996), and gravity method (Vasanthi and Mallick, 2005) 

during regional exploration for kimberlites worldwide.  The magnetic method is widely 

utilized to characterize the kimberlites where a conical geometry with steeply dipping walls 

and diminishing diameter with depth (Skinner, 1986) forms the basis of the study. Kimberlite 

pipes are moderately to strongly magnetized, with susceptibilities in the range from 1 to 

80x10
−3

 units SI (Power et al., 2004). Variation in the observed magnetic response arises due 

to weathering, chemistry and content of magneticminerals, depth, erosion level, and remnant 

magnetization, as wellas the orientation and intensity of the inducing field. The conductivity 

of a kimberlite is also variable because it depends upon porosity, chemical composition, 

depth, weathering, alteration, and contrastwith background.  

 

The Kimberlite pipe signature from an air-borne survey in low magnetic latitudes may 

be complex (Keating and Sailhac, 2004) as is the case with Brazil. In high magnetic latitudes, 

the anomaly signatures are circular.  At equator, the signatures become negative.  To 

overcome the complex magnetic signatures of kimberlite pipes in low-latitude regions, several 

enhancement techniques, such as gradient (vertical, horizontal) and analytic signal, are used 

(Cowan et al., 2000). These techniques can rectify and produce expected circular signature of 

a kimberlite pipe. 

 

This research work is aimed at evaluating and determining the basement structures 

controlling the kimberlite emplacement and its corresponding geodynamic events along 

corridor-125. Based on the geodynamic evolution, two geological domains (Amazonian and 
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Extra-Amazonian Regions) were identified and evaluated from the geophysical data with its 

corresponding  assemblages of contrasting rock types, as well as different regional structures 

identified in this study. These domains are interpreted to be markedly separated by thrusts. A 

digitized aeromagnetic data of covering major part of Extra-Amazonian and small part of 

Amazonian region from CPRM, the Geological Survey of Brazil, airborne geophysical series 

(1000) were employed to determine the locations of Kimberlites and to interpret the structural 

framework.  

 

 
Fig.12: Aeromagnetic projects location map.  The region in sky blue is the project 1009, the region in 

bright green is the project 1068, the region in blue dark blue is project 1043 and the region in red is 

the project 1017.  Background regions represent structural provinces. 
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Aeromagnetic Data:  

 

Aeromagnetic data for four projects were obtained from CPRM spread out into two 

regions of the corridor-125 as shown in Fig.12.  These projects are named as  

 Serra dos Parecis aeromagnetic project-1043 of Amazonian Region,  

 Southeast Rondonia aeromagnetic project-1068 of Amazonian Region,  

 APIP aeromagnetic project-1017 of Extra-Amazonian Region and  

 CGBA aeromagnetic Project-1009 of Extra-Amazonian Region. 

The data used in the present work from Extra-Amazonian region is based on results of 

aeromagnetic surveys carried out in the study area. The earliest of these, known as Project 

1009, refer to surveys carried out during 1971 and 1972 as part of Geophysical agreement 

between Brazil and Germany. The Proton precision magnetometer Model L-803 with a bird 

sensor hung by a cord around 25m in length to the Aerocommander aircraft was utilized for 

the aeromagnetic survey.The results of this survey, acquired initially in analog form, were 

later digitized by Paterson, Grant & Watson Ltd. (PGW) and Western Mining Company 

(WMC). These digital data sets, made available for academic research by Company of 

Mineral Resources Research (CPRM), were acquired for purposes of the present work. The 

nominal flight height for data acquisition was 150m and spacing of flight lines was 2 km. The 

preferred direction of survey lines of this project was East-west. In the pre-processing stage, 

necessary corrections and merging were carried out.  

 

 The Data from project-1017 was surveyed using proton precision magnetometer 

Model G-803 with the sensor mounted at the tip of the tail as stinger to Aerocommander 680F 

aircraft.The digitized data in the form of xyz format with nominal flight of 150m and line 

spacing of 2km apart; survey line direction NE-SW was acquired from CPRM for 

interpretation and analysis in this work.  This data was later unified with GIS platform for 

final interpretation after processing separately.   

 

The data from Amazonian region is based on results of aeromagnetic surveys carried 

out in the study under the name Project1043 and 1068, refer to surveys carried out during 

1979 (project 1043) and 2006(project 1068) as part of Geophysical Surveying Program of 

Brazil. The results were digitally collected data sets, made available for academic research by 

Company of Mineral Resources Research (CPRM).   
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 For the project 1043,Proton precision magnetometer, Model G -803 with a sensor 

mounted on the tip of the tail as stinger to the Islander aircraft PT- KNE whose average speed 

of operation was 220 km / h +/- 10 % was used to carry out the survey. 

 

In case of Project-1068, two aircrafts with magnetometers were utilized namely, 

 

a. The PR-PRS Aircraft was fitted with optically pumped cesium-vapor 

magnetometer model G-822-A, with a resolution of 0.001 nT and operating 

range of between 20,000 to 100,000 nT.  It was mounted at the tip of the tail of 

the aircraft as stinger type. The received signal passes through a preamplifier 

located in the cone base tail of the aircraft and sent to the compensator 

integrated system to other data RMS acquisition system / DGR33 PDAS 1000. 

Readings of gross magnetic field and offset are made every 0.1 seconds, which 

is equivalent to the speed 280 km / h of the aircraft,  approximately 7.8 meters 

on the ground;  

 

b. E-FZN Aircraft was fitted with Scintrexcesium-vapor magnetometer model 

CS-2, with 0.001 nT resolution and operating range of between 20000-100000 

nT. It was mounted on the tip of the tail of the aircraft- stinger type. It received 

signal via preamplifier located at the base of the tail cone of the aircraft and 

sent to the system acquisition / aeromagnetic compensation contained in 

FASDAS system.  Readings of gross and offset magnetic field are made every 

0.1 seconds, which is equivalent to the speed of 280 km / h of the aircraft, 

approximately 7.8 meters on the ground. 

 

The nominal flight height for data acquisition was 150m and spacing of flight lines 

was 2 km. The preferred direction of survey lines of this project was North-South. These data 

sets were processed separately and the results were studied separately.   

 

Geological Context of the Study Area 

 

The Corridor-125, Brazil is situated between 10 degrees and 20 degrees in the 

Southern Hemispherewhich corresponds to low magnetic latitude.  Hence, the magnetic 

signatures of the kimberlites are affected by typical low-magnetic latitude characteristics.  
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Accordingly, due care is taken by incorporating necessary enhancement techniques in the 

interpretation of the data.  

 

The Extra-Amazonian region forms part of the paranapanema and São Francisco 

craton.  The paranapanema craton is currently represented by the Parana basin margin in the 

study area.   The APIP project study area comprises thrust zone as a result of collision of the 

two cratons and further tectonically reactivated into Brasiliano mobile belt.  The Easter 

boundary of the Brazil is result of extensional tectonics due to rifting from South Africa 

around 120 Ma. This area consists of basement rocks of Archean age outcrop mainly in the 

southern and southeastern parts. Isolated blocks have also been identified in the northwestern 

parts. Most of the remaining area is covered by metamorphic complexes of Proterozoic age. 

Phanerozoic sediment cover occurs over Southern part of the study area. A characteristic 

feature of this province is the presence of a significant number of alkaline magmatic 

intrusions of Cretaceous to Tertiary period.  

 

Seismic studies have shown that the crustal thickness is around 40km (Assumpção et 

al, 2004) in São Francisco craton and 32 to 42 km in Brasilia belt and adjacent areas. The 

Ribeira belt to the southeast is estimated to have a crustal thickness of 37km (Assumpção et 

al, 2004). 

 

The projects1043 and 1068 forms part of the Amazonian region of the study area. The 

Amazon region along Corridor-125 is an amalgamation of various blocks with suture zone 

(Guapore Suture at south western boundary), Parecis rift basin, Nova Brasilandia tectonic belt 

and thrust zone (Upper Paraguay thrust). Further, western boundary of the South American 

platform has been affected by the Nazca plate subduction. Accordingly there are different sets 

of geophysical lineaments characteristics, some expressing themselves on the surface geology 

and others masked by younger sediment cover.  An investigation of these geophysical projects 

throws insight into different lineaments and its control on kimberlite occurrences.Amazon 

region has very few outcrops of Archean basement rocks and majority of the region is covered 

by Phanerozoic to recent sediment cover. A characteristic feature of this province is the 

presence of a significant number of alkaline magmatic intrusions of Permo-Triassic and 

cretaceous period. Kimberlites are also part of this Permo-Triassic magmatism.   

 



62 

Data Processing Techniques 

 

The bulk of aeromagnetic data processing in the present work was carried out using 

the computer software package Geosoft Oasis Montaj version 8.4.1. Built-in facilities of this 

package allowed homogenization of the database and elaboration of maps, making use of 

standardprocedures of interpolation, gridding, and plotting methods. The package was also 

used for setting geographic coordinates, which in the present work are referenced to as the 

datum WGS84 and its corresponding UTM zones.  

 

The next step in data processing has been removal of the International Geomagnetic 

Reference Field (IGRF) from the records of the total field. This has been an important part of 

data processing in view of the significant time differences in data acquisition and the large 

area extent of the surveys. The built-in IGRF reference fields corresponding to the year of 

data collection, available in the software package Geosoft Oasis Montaj utilized. The removal 

of the fieldoriginating in the core of the Earth and the external variations occurring mainly in 

the ionosphere and the sun allows derivation of the field of crustal origin. This crustal field 

was corrected for heading and incorporated into an ensemble of corrected data sets. Filters 

were then applied to correct directional trends. In addition, leveling and microleveling 

corrections were carried out to eliminate distortions of flight lines.  The results obtained at 

this stage were used in deriving the map of the Total intensity magnetic field of the study 

area.   

 

Interpretation of the Results 

 

Further analysis and interpretation is carried out by the following techniques namely 

upward continuation, Analytical Signal, Reduced to Magnetic pole, Euler Deconvolution 

techniques and keating coefficient for each of these four projects separately.   

 

Euler Deconvolution Technique: employed in this work has the objective of extracting 

information about the depths of magnetic sources. The result is independent of the direction 

and inclination of the main magnetic field and the orientation of the magnetic sources. Thus, 

the method is relatively insensitive to small-scale distortions of the field. A total magnetic 

anomaly (𝑇) without correction of regional values produced by a set of three-dimensional 

sources satisfies the homogeneous field equation of Euler: 



63 

 

(𝑥 − 𝑥0)�𝑇 /�𝑥+ (𝑦 − 𝑦0)/�𝑦 + (𝑧 − 𝑧0)/�z = N (B-𝑇) 

 

Where𝑥0, 𝑦0, and 𝑧0 are the initial coordinate positions of the anomalous source, B is the 

regional magnetic field and N is the structural index (Reid et al, 1990).   

 

In the practice the variations in the degree of homogeneity of the field are associated 

with a set of structural indices, which specifies the type of magnetic source. According to 

Thompson (1982) a structural index of zero represents contact between different types of 

rocks, while index of 1 represents linear features such as faults and dykes. Also, the structural 

indices 2 and 3 are indicative of cylindrical and spherical structures, respectively. 

 

The results obtained indicating the depths of sources are plotted in a map by using the 

krigridinterpolation method, with a specified grid size. Any differences or similarities are 

indications that the systematic differences/similarities in the depths of magnetic sources arise 

from mechanisms related to the thermal regime of the crust. 

 

Analytic Signal technique: used in interpretation of aeromagnetic data is basically the 

magnitude of the second derivative in the three directions of the magnetic field.  For a vertical 

cylinder, the shape of analytical signal is independent of field orientation and remanence and 

always results in a compact, almost circular anomaly (Nabighian, 1972). In practice, the 

analytical signal is regarded as the best tool for locating the edges of bodies that have 

magnetic contrast. When applied to the residual field magnetic anomaly the responses 

highlight the surface boundaries of geological bodies with contrasts in magnetic properties 

relative to the surrounding rocks. Hsu, 2002, suggests use of second and even higher order 

derivative to better highlight the bodies. However, higher orders enhance the noise leading to 

unrealistic solutions, especially when dealing with low quality data sets. 

 

Therefore, two advantages exist in using theanalytic signal to identify magnetic 

anomalies from kimberlitepipes: first, it is independent of remanence; second, as it will 

beshown, it performs well at low magnetic latitudes.Such a compact circular or nearly circular 

anomaly is known as bull’s eye anomaly.   
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Reduction to Magnetic Pole technique: In this method, the magnetic anomaly is transformed 

to its signature at the magnetic pole with vertical magnetic inclination. The magnetic anomaly 

becomes independent of the direction of the original field. This method transforms the 

magnetic field of the observed anomaly to its probable result of vertical field inclination 

measured at magnetic pole (Nabighian et al., 2005). This transformation converts the bipolar 

anomalies to monopole ones.  However, in the presence of remanent magnetization the 

processing is not clear conversion to monopole anomalies (Shurbet et al, 1976; Schnetzlerand 

Taylor, 1984; Roest and Pilkington, 1993) especially when the field of remanent magnetism is 

different from the current regional magnetic field.  

 

 Once, the interpretations are carried out individually for the projects.  For easy 

visualization and analysis, Grid knitting-Suture Technique was used for the Extra-Amazonian 

region data. This method enables the joining of two separate fabrics turning them into a single 

mesh. In this technique, the meshes are joined one by one until all five loops form a single 

fabric end. This is transformed into a database using the Sample Grid procedure, which is also 

a function of Oasis MontajTM,version 8.4.1.Proper homogenization was not achieved by Grid 

knitting-Suture technique for the Amazonian Region Data and hence, were overlaid on each 

other in GIS platform for better visualization and analysis.   
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RESULT AND DISCUSSION 

 

Discussion -Anomalous/Total Magnetic Intensity Field Map 

 

Fig.13: 1017_Total magnetic intensity anomaly Map with lineaments, alkaline intrusives 

(CatalaoI and II).The magnetic intensity are in nT. 



66 

 

 

1017 Project: TMI map (Fig.13) shows central region with dipole magnetic anomalies due to 

alkaline intrusions present in the area.  The kimberlites are found intruded around this central 

alkaline region.  But no significant clear anomaly is seen on this map.  The magnetic signature 

of the larger diameter alkaline intrusion masks the kimberlite occurrence.  Another major 

characteristic feature noticed is the weathering zone of the alkaline intrusive. These alkaline 

intrusives are Catalão I and Catalão II.  Lack of clear kimberlite signature is also attenuated 

due to the fact that this study area is in low-latitude region.  Structural elements of the region 

visible are few (three) NW-SE trending magnetic lineaments with linear magnetic signatures.   

 

Project 1009 Total Intensity magnetic Anomaly Map (Fig.14) 

 

This project consists of numerous normal magnetic dipoles spread throughout.  

Majority of them are due to alkaline intrusives of the region and few of them due to granitoid 

bodies.  The structural elements of the region visible are the NW-SE magnetic lineaments in 

the south–central region and, NS to NE to NNE in the north and eastern region.  The NW-SE 

magnetic lineaments are the corridor-125 lineaments with magnetic signatures in the Brasilia 

belt region.  The NS to NE to NNE trending lineaments of the northern and eastern region 

corresponds to Ribeira belt structures.  High magnetic anomaly marked as black triangle with 

no. 5 (Fig. 14) in the south-east is due to the iron-formations.  There are few slightly 

elongated dipoles corresponding with known kimberlites with less clarity to individual pipes.  

The co-existence of the small diameter kimberlite pipes in comparison to large diameter 

alkaline intrusions in this are masks clarity in the kimberlite along with low latitude problem.  

Multiple intrusions, co-existing alkaline intrusion and high weathering are probably the main 

reasons for the less clarity of the kimberlite signature anomalies. 
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Fig.14: 1009 Total magnetic intensity anomaly Map with magnetic lineaments, alkaline 

intrusive and kimberlites. The magnetic intensity in nT. 
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Fig. 15: Amazonian region Total magnetic intensity anomaly map with kimberlite, mafic 

intrusions, lineaments.  The magnetic intenstity is in nT units. 

 

The Amazonian region aeromagnetic TMI map (Fig.15): reveals three domains. North of 

Nova Brasilandia belt region is termed as the northern domain; the region south of Nova 

Brasilandia up to Colorado rift is the central domain and the region to the southeast of Nova 

Brasilandia is the Southern domain. The northern domain is characterised by NW Pimenta 

Bueno rift, high intensity magnetic signatures.  The central domain is characterized by E-W 

trending lineament (e.g. Nova Brasilandia belt, Colorado rift) etc.  This domain is also 

characterized by high magnetic intensity signatures.  Few dipole magnetic signatures are seen 
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along the Guapore suture zone, in Nova Brasilandia belt.  Kimberlite dipole signatures are not 

seen.  The characteristic structural features of the central domain are the thrust and NE 

trending lineaments.  The NW trending lineaments (2 in number) to the western margin is also 

another significant lineament group.  These two groups of lineaments along with the thrust 

zone structure are not seen on the ground which is covered by sediments.                    

 

The southern domain is characterized by magnetically quite zone in comparison to the 

other two zones in terms of structural thrusting high intensity magnetic signatures.  Numerous 

magnetic dipoles corresponding to alkaline and granitoid intrusions are seen along NNW-SSE 

structure parallel to Guapore suture zone on the western margin of the region.   

 

Discussion -Upward Continuation map 

Upward continuation (Fig.16a, 16b and 21) has enhanced the alkaline intrusions with 

bottom of the depth being deeper and also enhances the magnetic lineaments implying its 

deeper origin.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16 (a): Extra-Amazonian region Total Intensity map filtered to 100m upward 

continuation 
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Fig.16 (b): Amazonian region TMI with 500m upward continuation. 

 

On 1068 and 1043 project maps shallow depth magnetic anomalies of mafic and 

ultramafic intrusions are enhanced along with the linear structural elements corresponding to 

thrust and crustal shortening seen on the TMI maps.  Kimberlite signatures are not clearly 

identifiable.   
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Discussion -Reduced to Pole Map 

 

In this map from 1017 and 1009 projects (Fig.17), most of the anomalies seen in the 

TMI map are transformed to monopoles while few anomalies show distortions and there is no 

clear visible dipole or monopole. This is especially true with some kimberlite signatures. In 

the absence of the regional magnetic field the magnetic dipoles would transform into 

monopoles. The observed non-transformation implies that the presence of remanent 

magnetisation of the magnetic bodies whose paleomagnetic field direction is different from 

the current direction of the magnetic field. 

The Amazonian region reduced to pole map (Fig. 18) also shows distorted signatures 

rather than dipoles or monopoles that are seen on TMI map. This implies the presence of 

remanent magnetization with different direction of magnetic field than the current magnetic 

field direction.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17: Extra-Amazonian and Amazonian Region Reduced to pole map. 
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Fig.18: Amazonian Region Reduced to pole map. 

 

Discussion -Analytical Signal Map 

 

The ASA map (Fig19 a, 19b and 20) from projects-1017, 1009, 1043 and 1068 show 

circular and oval anomalies over mapped alkaline intrusions and even on the few kimberlite 

pipes.  The lineaments seen on the TMI map is more clearly identifiable. New lineaments 

which not visible on TMI are also seen trending subparallel to the magnetic lineaments seen 

on the TMI map. 
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Fig.19a: Extra-Amazonian Region Amplitude of Analytical Signal map. 
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Fig.19b: Extra-Amazonian and Amazonian Region Amplitude of Analytical Signal map. 
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Fig.20: Amazonian Region  Amplitude of Analytical Signal map with lineaments, alkaline 

intrusions and kimberlites. 
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Fig.21: Amazonian Region  Amplitude of Upward Continucation map with lineaments, mafic  

intrusions, kimberlite and other structures. 

 

The Northern boundary of the Corridor-125 on Extra-Amazonian region is demarcated 

very well by a NW-SE trending magnetic low lineament beyond which there is a non-

kimberlite zone. The subparallel NW-SE lineaments are also absent beyond this northern 

boundary.  There are many circular and oval anomalies on this map where no known 

kimberlites or other alkaline rocks are known.  These are probably new circular anomaly 

bodies for further follow-up.  Further analysis if ASA map is correlated with Euler solution 

index-2 to find potential kimberlite/alkaline body in the region.   
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Discussion - Euler Deconvolution Map Structural Indices. 

 

Fig.22: Extra-Amazonian Euler Structural Index-1 Solutions with TMI Map background. 

Black dots represent Euler Structural index-1 solutions.   
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Fig.23: Extra-Amazonian Euler Structural Index-2 Solutions with Depth range.  

 

Map corresponding to Euler structural index for magnetics generated shows, 

significant correlation with the magnetic dipole anomalies, linear structures.  The Structural 

index-2 (Fig.23) representing pipes/ cylinders corresponds very well with few known 

kimberlites, most of the known alkaline intrusions of the region in Extra-Amazonian Region.  

Possible new kimberlite targets are also seen with correlating analytical signal and Euler SI-2.  

The SI-1 (Fig.22) representing linear features correspond well with the basement structures of 

the region which is not mapped. 
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Fig. 24: Amazonian Euler Structural Index-1 Solutions with TMI background. Black dots 

represent Euler Structural index-1 solutions.   

 

The presence of these features is a clue for the basement intact situation which could 

be termed as thin skin tectonics.  This Brasilia belt region is characterized by E-W nappes and 

thrust.  These structures are not seen on the basement structures when upward continuation 

filter is used.  This proves the fact that the region has been subjected to thin skin tectonics.  

Hence, we find numerous diamondiferous kimberlites in this region which are characteristic 

of cratonic basement region.   
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The structures to the north corridor-125(Extra-Amazonion region) are NNW, NE, NS 

to NNE trending; here as the Corridor-125 is characterized by majority of the lineaments with 

NW-SE trend.  The region above Corridor-125 north boundary is less infested with structural 

lineaments and SI-2 solutions from Euler Deconvolution. This region is represented by São 

Francisco craton basement which has not been affected by NW-SE structures.   

Fig.25: Amazonian Euler Structural Index-2 Solutions and kimberlite as Red Big cirles 

represent kimberlitess. 
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On the Amazon region, the Euler Structural index-1 (Fig.24) representing the linear 

features, dykes and sills are significant as majority of this region is covered by phanerozoic to 

recent sediments.  The observed structures are NW-SE magnetic low lineaments on the 

western margin, NE-SW magnetic lineaments and N-S Nappes/thrust at the central region and 

of the study area.  The southern region is devoid of major nappes but NW-SE and NE-SW 

lineaments are seen. Other features of significance the NNW-SSE Guapore suture zone on the 

western region; E-W trending Nova Brasilandia belt, Colorado rift and NW trending Pimenta 

Bueno rift in the northern region of the study area.  Structural index-2 (Fig.25) corresponding 

to cylinders is found in good correlation to granitoid intrusions, alkaline intrusions and 

kimberlites.  

 

Geophysics Interpretation related to Structural lineaments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.26: Linear Structural Elements of Amazon region with Amplitude of Analytical Signal 

background and black open circles represent kimberlites studied. 
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Fig.27: Linear Structural Elements of Extra-Amazon region with Analytical signal map 

background and blue open circles represent kimberlites studied.  

 

 The aeromagnetic data processing from Corridor-125 and its results has thrown 

significant new trends in the structural and magmatic rock configuration of the region.  The 

magnetic characters of the alkaline, kimberlitic and country rock types are also very well 

distinguished and understood with respect to the regional dynamics. The Corridor-125 

basement structures are not mapped clearly owing to its lack of signatures on ground and 

satellite imageries.  This study delineates the width and length of the lineament and its nature 

with respect to basement structures, kimberlite and other alkaline rock intrusions.  The result 
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challenges the continuity of the corridor-125 from East coast of the country on to the 

Amazonian craton.   The northern boundary of the lineament has been clearly identified and 

delineated from the Aeromag data on the Extra-Amazonian region (Fig.26 and 27).   

 

 The revised extent of the corridor-125 is it starts from east coast of the country and 

runs up to Upper Paraguay thrust.  There are no signatures of this lineament extending on to 

Amazonian craton.  Instead, the basement structural configuration on the Amazonian craton is 

influenced by 1.4Ga collision of paraguay block with Amazonian craton and Brasiliano 

collision of São Francisco-Paranapanema cratons. These collisions have resulted in 

subduction zones, suture zones, thrusting and folding of the Amazonion region boundary.  

Within the cratonic region, it has resulted crustal shortening, thrusting and rift zones.  

Guapore suture zone is the result of amalgamation between Amazonian craton and Paraguay 

block. Upper Paraguay-Araguaia thrust is the suture zone between the Amazonian and Extra-

Amazonion block. Jiparan shear (North of the geophysics study area) zone has been 

interpreted as Greenvillie age (Tohver et al, 2005) Jiparan shear zone is associated with NS 

nappes in the northern part of the Rondonia state, which host another set of kimberlites along 

corridor-125.   

 

 As a concluding remark, the Amazonian region is characterised by different set of 

lineaments (Fig.26 and 27), mafic and other rock units which has undergone basement 

reworking prior and during Greenvillie times with the formation of structural lineaments seen 

in the aeromagnetic data.  These lineaments has been controlling the kimberlite emplacement 

during Permo-Triassic and cretaceous periods rather than as part of corridor-125 extension. 

During both the periods of kimberlite emplacements, plate reorganisation and structural 

reactivations has triggered kimberlite magmatism and hence, these kimberlites are 

geochemically different from each other.  The Extra-Amazonian region has undergone thin 

skin tectonic reworking where the basement is intact with NW-SE lineaments (Fig.27) along 

the kimberlite occurrence area.  This lineament has been structurally controlling the 

kimberlite and related rocks of cretaceous age due to reactivation during South Atlantic 

rifting.  The thrust and nappes seen as surface geomorphic expression has been due to the 

Brasilia belt evolution from Brasiliano times during which the Transbrasiliano lineament NE-

SW was also formed.  
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Aeromagnetic characterization of Corridor-125 kimberlites 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.28: Amazonian Kimberlite Analytical signal signatures geophysically tested. 

 

 

 The kimberlite signature recognition is achieved by integrating analytical signal and 

Euler structural indexing technique for cylinders and pipes.  Many of the known kimberlites 

show good correlation with circular or oval analytical signal anomalies (Fig.28, 29, 30 and 

31) overlapping with good cluster of structural index-2 on them.  But many kimberlites 

especially multiple intrusions of the same kimberlite are not correlated properly which could 

be due to regional coverage nature of the data with large line spacing and or low-latitude 

nature of the study area.  With more high resolution data acquisition by decreasing the line 

spacing a better correlation could be achieved for all kimberlites of small diameter and 

multiple intrusions in Brazil.  
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The kimberlites from 1068 Project in the central domain of Amazonian region show 

complex analytical signal anomaly. Further refining could be achieved by ground magnetics 

survey and its interpretation. The results from this study also signify the fact that 

aeromagnetic results are not a stand along tool in kimberlite recognition.  But as an added tool 

it will be one of the best tools to identify kimberlites.  

 

Keating Coefficient for Potential Kimberlite body 

 

Keating Coefficient method is a simple pattern recognition technique to identify 

magnetic anomalies of modelled kimberlite signature with prior knowledge of the known 

kimberlite spatial data and dimension.  In this method approximate value of kimberlite radius, 

depth to the top of the kimberlite body and an appropriate threshold for the survey region.  

With the inclination and declination already determined, a model pipe grid is generated and 

run over the Total magnetic field grid as a moving window.  Each grid node is correlated with 

the model grid to look for any vertically dipping cylindrical body which is the representative 

of kimberlite pipe.  During correlation, the grid retains the value greater than the threshold 

specified. The final anomaly coefficient data gives the location depth and magnetic nature of 

the potential kimberlite. Further, the potential kimberlite body signature recognition is 

achieved by integrating analytical signal, Euler structural indexing technique for cylinders and 

pipes and Keating coefficient anomaly picks. Some of the known kimberlites show good 

correlation with circular or oval analytical signal anomalies overlapping with good cluster of 

structural index-2 on them.  But many kimberlites especially multiple intrusions of the same 

kimberlite are not correlated properly which could be due to regional coverage nature of the 

data with large line spacing and or low-latitude nature of the study area.  With more high 

resolution data acquisition by decreasing the line spacing a better correlation could be 

achieved for all kimberlites of small diameter and multiple intrusions in Brazil.  

 

Extra-Amazonian Region Kimberlite keating coefficient picks tested with the selected 

known kimberlites are correlated with the Analytical signal (Fig. 29 and 30) and Euler 

Structural Index-2.  This integrated approach works very well with tight clustering of SI-2 

over Analytic signal circular anomalies and keating coefficient potential anomaly.  The 

drawback in this method is observed where the basement is too deep as or the kimberlite 

multiple intrusion or when the kimberlite is assoicated with other large diameter alkaline 

intrusions. Last but not the least, higly deformed regions with numerous subparallel magnetic 



86 

high lineaments also masks the kimberlite signatures. Extra-Amazonian Region Kimberlite 

modelling with Keating Coefficient shows good correlation with the known tested known 

kimberlites and Keating coefficient anomaly picks with a depth of overburden 50m.   

 

Fig. 29: Extra-Amazonian known Kimberlites studied for modelling by integrated 

Analytical signal, Euler solution index-2 and Keating Coefficient. 
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Fig. 30: Extra-Amazonian Keating Coefficient Anomaly pick plot with known 

kimberlites.  The Keating Coefficient Anomaly is represented by blue circle and known 

kimberlites are represented by white circles. 
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Fig.31: Amazonian Kimberlite Analytical signal signatures geophysically tested. 

 

Amazonian Region Kimberlite Signature: Combined Analytic signal signatures, Euler 

SI-2 and Keating coefficient anomaly picks (Fig. 31 and 32) has identified shollow depth 

kimberlite bodies.  The deeper source kimbelrites found in the graben region of Pimenta 
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Bueno are not identified by this method.  There are more shallow depth anomalies which 

needs gound checking for potential kimberlite pipes.  Being one of the best low latitude 

region with numerous kimberlite bodies, the magnetic data is tested to arrive at the best 

possible methods and techniques by which the kimberlite bodies can be magnetically 

modelled and identified. The Northern Domain consists of shallow and slightly deeper depth 

to top of the kimberlite bodies.  Pimenta Bueno kimberlites are deeper seated than the North 

Rondonia cluster kimberlites.  The Southern Domain host comparatively shallow depth 

kimberlites which are covered by neotectonic sediments. There are interesting shallow depth 

source potential kimberlite anomalies which needs ground checking.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32: Amazonian region Keating Coefficient Anomaly pick plot with known kimberlites.  

The Keating Coefficient Anomaly is represented by blue circle and known kimberlites are 

represented by white circles. 
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Chapter 10 

Revised Structural Framework of Corridor-125 by the integration of mapped structures 

and magnetic structures. 

 

In this section, the mapped structures form all available sources like CPRM database, 

USGS Quaternary lineament map mapping project for Brazil, Megalineament map of Brazil 

etc., are integrated with the geophysically picked lineaments which have found to be 

associated with the kimberlite occurrences. The result of this integration is presented in the 

fig. 33, as revised structural framework for corridor-125.  It is interesting to see the basement 

structures that are hidden below the sedimentary cover in Brazil pops up and shows link to 

older tectonic events and have been reactivated during subsequent tectonic activities. 

Reactivation during Kimberlite emplacement is an evidence for this observation where in the 

basement structural trend associated with older than Brasiliano time is reactivated around 

Cretaceous and Permo-Triassic times.   

 

Fig. 33: Revised Structural Frame work of Corridor-125 with dyke swarms, kimberlites, 

magnetic and mapped structures.Boundary in red represents corridor-125, Black lines, and 
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brown lines represents structures Thick brown lines represents dykeswarms, Pink stars 

represents kimberlites and related rocks and city names are in blue.   

 

The revised structural framework of corridor-125 controlling the kimberlite 

emplacement is summarized in fig.33.  This map is the integration map from mapped 

structures and the lineaments picked form the aeromagnetic signatures. The hidden basement 

structures are identified from the aeromagnetic map and its significance to geodynamic 

evolution of corridor-125 and kimberlite emplacements.  The basement structural architecture 

of corridor-125 on Extra-Amazonian region is composed of NW-SE trending lineaments with 

occasional NE trending lineament intersections along the kimberlite occurrences. Thin skin 

tectonics is evident for the younger Brasilia belt geomorphology and tectonics. On the 

Amazonian region, the basement structures trending NW and NE.  These structures 

correspond to frontal thrusting and crustal shortening events due to collision of Paraguay 

block to Amazonian block and Andean evolution.  The older structures on both the regions 

are reactivated during younger rifting. 
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Chapter 11 

 

Geochemistry of Brazilian Kimberlites Analysed 

 

Review geochemical petrogenetic model on corridor-125 kimberlites.   

 

There are many models to explain APIP kimberlite geochemical signatures. Very few 

initial model for Amazonian region kimberlites are available. In fact, the models for 

Amazonian region is not complete except for modelling their subduction derived source and 

group I type classification. The Brazilian kimberlites are thought to have derived from plume 

related geochemistry by Bizzi et al. (1995) and Carlson (1996) looking at similarity ofSri and 

Ndi ratios of Tristan/Walvis hotspot. Later, this association of the hotspot and kimberlites was 

ruled out due to the large age discrepancy between the APIP magmatism (~85 Ma) and the 

proposed time the plume underlay the APIP (~130 Ma). Later, a model with the Trindade 

plume was proposed whose palae-position coincided with under the APIP cluster 

approximately at 85 Ma.  But its distinctive Sr and Nd isotopic composition also negates the 

association (Gibson et al., 1995). Our current review work also rules out the link between 

hotspots and kimberlite magmatism in Brazil along corridor-125. A model of magma mixing 

between Group I and II through the same plumbing systems was the next proposal to produce 

transitional type kimberlites. This does not explain all the geochemical signatures. Another 

proposal by Felgate, 2014 research work shows the Sri and Ndi of kimberlites represent 

derivation from a metasomatised SCLM source in all cases, with the range in isotopic values 

explained by heterogeneities within the source.  

 

The younger 95Ma Juina Kimberlites of the Amazonian craton is unique, it show 

geochemical signatures similar to Lamproites.  The diamond inclusion studies have shown 

that they have source region from great depths ranging from 670 to 410km (Bulanova et al, 

2010).   

 

Other kimberlites have their asthenospheric mantle source with reference to Batovi-6 

(Costa, 1996) and Concordo-1(Felgate, 2014) kimberlites, due to its isotopic similarities to 

Group I kimberlites and OIB signatures where in Oceanic subduction along with sediments at 

asthenospheric depths have given rise to these kimberlites.   
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The transitional type signatures are formed by the adiabatic decompression melting of 

SCLM due to extensional tectonics (Becker et al, 2007).  A SCLM source has been ascribed 

as the source for Brazilian kimberlites in order to characterise the isotopic and incompatible 

trace element signatures (Gibson et al, 1995; Guarino et al, 2013; Donatti-Filho et al, 2013b 

and Felgate, 2014).  There is clear evidence for Extra-Amazonian region kimberlites genetic 

link with the South Atlantic rifting as proposed by Becker et al, 2007.   

 

There is a need constraining a model which could accommodate kimberlite 

magmatism on both the regions and their associated tectonic event link.  In this study an 

initial modelling on this line is taken up.   

 

Geochemical Analytical Procedures 

 

Sevenwhole rock samples with least possible weathering and contamination (without 

any visible country rock fragments and xenocyrsts) were selected for the analysis. These 

samples were crushed, powdered and utilized for chemical analysis at the Institute of 

Geosciences of the University of Campinas after determination of Loss of ignition at 1000
o
C 

(% PF). Major elements were analysed on fusion beads by X-ray fluorescence spectrometry 

(XRF) - Philips PW 2404, Netherlands.  

 

Standard analytical procedures outlined in Vendemiatto and Enzweiler (2001) were 

followed for the major elements Na, Mg, Al, Si, P, K, Ca, Ti, Mn and Fe; Minor and trace 

elements Cu, Ni, Co, Cr, V, Zn and Nb analysis by XRF using pressed powder pellets. Data 

quality was controlled through routine analyses of the international rock standards SARM-39 

(Kimberlites), OU-6 and BPR-1 for major elements and trace elements. The relative errors are 

0.4 - 1.5% for major and minor elements, while for trace elements they range within 1.5 - 

10%. Rare earth elements (REE), Th, Ta, U, Hf and Nb were analysed by total digestion with 

HF/HNO3 (Parr pumps, 4 days, 180 ºC), followed bydissolving a mixture of nitric and 

hydrofluoric acids in Parr type pumps. All solutions were prepared with ultra-pure water (18.2 

MΩ.cm) obtained from a Milli-Q system. The acid nitric (HNO3) was purified by sub-boiling. 

The bottles used for the dilutions were previously cleaned with 5% HNO3 and rinsed with 

ultra-pure water. The limit of detection (LOD) was determined as the mean (x) plus 3 

standard deviations (s) ten blank measurements (LD = x + 3s). 
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Table 2: Major Element geochemical analysis results with crustal index values 

 

The measurements were carried out on ICP-MS (inductively coupled plasma mass 

spectrometry) Xseries-II equipped with STC (Collision Cell Technology). Prior to the 

measurements the instrument was adjusted as recommended by the manufacturer. Instrument 
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calibration was performed with multielement solutions prepared gravimetrically from 

monoelementstandard solutions of 100 mg/L (AccuStandards). The result deviation from the 

reference values is within 10%. The geochemical results of major and trace elements are 

reported in Table 2 and 3.  

Table 3: Trace Element Results from ICP-MS geochemical analysis. 
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Bulk Rock Major Element Results 

 

The Major element signatures of the analysed samples are well in agreement with the ranges 

for kimberlites, though couple of samples show contamination effect.  Often, major- and 

trace-element geochemical studies of kimberlites are hindered by the very hybrid nature due 

to the presence of crustal, xenolithic and xenocrystic material. Another hindrance encountered 

in geochemical studies is the alteration due to weathering.  Brazilian kimberlites are highly 

weathered and very difficult to find fresh samples even from drill core samples.  In order to 

reduce the effect of all these hindrances, several tests to arrive at control value calculations 

are introduced.   

 

Contamination analysis tests proposed by Clement (1982), Mitchell (1986), Taylor et al. 

(1994) and Berg (1998) are used to determine the type and extent of contamination. Clement 

(1982) used the contamination index (C.I.) to measure the proportion of clay minerals and 

tectosilicates relative to olivine and phlogopite: 

 

C.I. = ( SiO2 + Al2O3 + Na2O ) ̸ (MgO + K2O  

 

Clement (1982) and Mitchell (1986) suggested that contamination increases the 

whole-rock concentrations of SiO2, Al2O3 and Na2O in kimberlite. Mitchell (1986) 

concluded that <35 wt. % SiO2 and <5 wt. % Al2O3 are indicative of contamination-free 

kimberlite, and that mixing lines of various contaminants and weathering products could 

explain variations in kimberlite chemistry.Hence, an increased contamination will result in the 

sum of SiO2, Al2O3, and Na2O being much greater than the sum of MgO and K2O, resulting 

in higher C.I. A sample completely devoid of alteration or crustal contamination will have a 

C.I. value close to 1, whereas addition of crustal material and/or alteration will result in C.I. 

>1. Kjarsgaard et al., (2009) proposed a C.I. = 1.5 as a useful contamination/alteration 

threshold.  The samples with C.I.>1.5 should have entrained enough crustal material or 

undergone substantial alteration to compromise bulk rock geochemical signature.  Hence, 

such analyses will not give the correct picture of the kimberlite magma composition.   
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The samples are rich in SiO2 (55.98 – 29. 56) and MgO (13.84 – 29.56) wt %. The 

samples show slightly higher range of SiO2 than the expected range for Kimberlites which is 

probably due to the altered nature and presence of numerous country rock material visually 

seen. The aluminum oxide ranges is (1.78 – 7.42) wt %, CaO range is (2.88 – 11.59) wt %, 

Fe2O3is (5.86 – 14.46) wt % and K2O range is (0.14 – 3.47) wt %.  The Extra-Amazonian 

region samples (Forca and Indaia) show lower concentration of SiO2 compared to Amazonian 

region samples (Col-1, Col-4, Jun-23 and Tumeleiro). The range for these two Extra-

Amazonian region samples is less than 35 wt %.  The Amazonian region kimberlites are more 

enriched with SiO2, TiO2 and Al2O3in comparison to Extra-Amazonian region kimberlites. 

All the samples have TiO2 range slightly higher than expected for typical uncontaminated 

kimberlite range.  

 

 

 

Fig. 34: Graph to distinguish the samples into fresh or altered kimberlites with Al2O3 Vs 

SiO2. The uncontaminated and contaminated kimberlite region is after Mitchet, 1986. 
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Fig.35:Major element TiO2 Vs K2O plot. The Kimberlite type areas pertaining to group I, II, 

Transition type and lamproitesfrom Becker and le Roex, (2006); Becker,(2007) and Jaques, 

(1984). 

 

 

The uncontaminated samples of the Extra-Amazonian kimberlites have a C.I. in the 

range of 1.23 to 1.25 and the Amazonian kimberlites have C.I. of 0.27 to 16.12. The samples 

Col-4 and Juina-23 show too high CI (10.39 and 16.12) owing to their contamination and 

alteration.  Hence, these two samples are not taken into consideration for further 

interpretations.   

 

All other samples from Amazonian region (Col-1, Tumeleiro and Cosmos-1) range are 

within the permissible range for uncontaminated kimberlites and hence taken into 

consideration for further interpretation of geochemical signatures.  The Extra-Amazonian 

region samples (Forca and Indaia) with permissible CI range is also considered for further 

interpretation of geochemical signatures.   
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Inspite of the contamination and alteration problems in the analysed samples, they plot 

within or slightly outside the typical kimberlite field in graph major element binary plot 

(Fig.34). The Extra-Amazonian region samples are less contaminated and fall within the 

kimberlite field on the plot. The Amazonian region kimberlites are moderate to highly 

contaminated.  The extreme enrichment of crustal contamination has resulted in the rejection 

of two samples (Juina-23 and Col-4) for further interpretations.  Other samples with high to 

moderate contamination effect are also verified if they could be used for interpretation of the 

geochemical signatures.  They are plotted on various binary plots involving Major and trace 

elements as shown in figures 35 to 38. All these plots show huge variations atypical of 

kimberlite specific kimberlite group.  This is due to the altered nature of the kimberlite 

sample. Hence, it is concluded that major element signatures are highly influenced by 

alternation and crustal contamination.   
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Fig 36: Major element SiO2 Vs Nb/La  plot. The Kimberlite type areas pertaining to group I, 

II, Transition type and lamproites from Becker and le Roex, (2006); Becker, (2007); 

Jaques,(1984).  

 

Many Authors have worked on the trace-element geochemistry of kimberlites has been 

discussed by various authors (e.g., Dawson, 1962, 1967, 1980; Wedepohl and Muramatsu, 

1979; Muramatsu, 1983; Smith et al., 1985; Mitchell, 1986, 1995; Taylor et al., 1994).   

In general, kimberlites are characterized by abundances of first-period transition-

compatible elements (Sc, V, Cr, Ni, Co, Cu and Zn) similar to ultramafic rocks such as dunite 

and peridotite, and abundances of incompatible elements (e.g., Nb, Zr, Ta, Hf, U, Th, 

REE)similar to alkaline rocks such as melilitite, carbonatite, and potassic lavas. Like the 

major elements, kimberlite trace-element geochemistry is subject to contamination problems. 

Incompatible trace-element abundances may be reduced by the presence of olivine 

macrocrysts and/or crustal   contamination, but their inter element relationships remain 

unaffected and can be used to obtain information regarding the source regions of the magmas 

(Mitchell, 1986); Fesq et al. (1975) and Kable et al. (1975) concluded that elements such as  

 

Ti, Nb, Ta, Zr, Hf, and the rare earths are insignificantly affected by crustal 

contamination because of their high abundance in kimberlites and related rocks. Therefore, 

the trace elements are significant tool in the classification of kimberlite Trace element 

signature of the analysed samples. Hence, the weathered samples from Amazonian region 

along with the Extra-Amazonian region samples are further tested with the plots for their 

validity to ascertain the geochemical nature of these kimberlites.   
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Fig.37: Major element SiO2 Vs Pb plot. The Kimberlite type areas pertaining to group I, II, 

Transition type and lamproites from Becker and le Roex, (2006); Becker, (2007); Jaques, 

(1984). 
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Fig.38: Major element SiO2 Vs Th/Nb plot. The Kimberlite type areas pertaining to group I, 

II, Transition type and lamproites from Becker and le Roex, (2006); Becker, (2007); 

Jaques,(1984). 

 

The above plots show that all samples are contaminated including the fresh looking 

Indaia sample.  The Forca sample from Extra-Amazonian region kimberlites could be 

concluded to be derived of transitional group as it plots closer or within the transitional group 

fields. All other samples do not give a clear pictures about the group to which they belong.   

 

  The distribution of rare earth elements normalized to chondrites (Fig. 39) and the 

primitive mantle (Fig.40) are plotted in graphs. The La content of Extra-Amazonian region 

samples (Forca and Indaia) is 1000times the levels of  chondrite sample and the Amazonian 

region samples (Cosmos-1, Col-1 and Tumeleiro) is 100 to 500 times the chondrites levels.  

The Lu contents are lower and are 10times the chondrites for Extra-Amazonian (Forca and 

Indaia) samples and less than 10 to 10 times the chondrites for the samples from Amazonian 

region (Cosmos-1, Col-1, Col-4 and Tumeleiro). If the extremely contaminated samples are 

left behind, the Lutetium content is less than 10 times the chondrite level.  

 

 In Figure 40, There is a significant Sr negative anomaly for all kimberlites and again 

all the samples of this research have positive anomaly for the Nd element. The Sr negative 

anomaly of the samples shows a parent mantle characteristics of these rocks, previously 
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depleted in these elements. Apart from this, there are no significant anomalies when the 

region is taken together.  These trace element patterns, individually shows minor toughs and 

crests in the trend when compared to the typical South African kimberlite trends (Fig.39, 40 

and 41).  These individual trend needs to be further confirmed either by more sample analysis 

and or by mineral composition analysis for the trace elements.  There might be a 

contamination effect that has also affected the trace element concentrations probably due to 

xenocrystal contamination from mantle.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 39:Chondrite normalized REE Pattern graph for analysed samples and South African 

trend (Data from Becker and Le Roex 2006 and Becker at al., 2007) 

 

From the major and trace element signatures of the analyzed samples, it is concluded 

that the Amazonian kimberlites are contaminated to such an extent that no precise conclusion 

could be drawn as far as their type is concerned and the Extra-Amazonian region kimberlite 

Forca could be concluded as Transitional type, which also needs further studies to support. 
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Indaia also poses contamination problems and could not be conclusively classified.   To 

ascertain these characteristics further, more advanced geochemical analyses and interpretation 

techniques of isotopic signatures like Sr and Ni (Bizzi et al, 1994 and 1995); Hf isotope 

studies will provide more insight.  They provide robust method for group I, II and transitional 

type kimberlites distinction and their associated source region characters.    

 

 

Fig. 40:  Primitive mantle normalized multielement graph (Mc Donough and Sun 1995) of 

South African GroupI, Group II and transitional group kimberlites (Data from Becker and 

LeRoex 2006 and Becker at al., 2007)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 41:  Primitive mantle normalized multielement graph for analysed samples after Mc 

Donough and Sun 1995. 
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Hence, the earlier author’s conclusion as mentioned in the review section on 

kimberlite grouping for Brazilian corridor-125 kimberlites are followed in the final 

interpretation of this research.  
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Chapter 12 

 

Plate Tectonic Reconstructions 

 

The current day position of continents and ocean is the result of various paths the 

plates have travelled.  These plate motions can be modelled and visualized with time based of 

scientific clues and inferences. Such modelled plate position back in time is called pate 

tectonic reconstruction. Reconstructions are based on calculations of the paleo-position from 

various geological, geophysical and mathematical data.  These data can be joined to the 

simulated plateswhich will equip the researcher to trace the plate motions and further interpret 

the interactions of data through geological times.  There are numerous softwares to model the 

paleo-position of plate. Gplates is state of the art software which has been of immense value 

to scientific community in recent times.   

 

Gplates: this software enables interactive visualization of plate-tectonics.  It is configured to 

handle geographic information system functionality and raster data together under the 

reconstructions. It is innovative software allowing the visualization and manipulation of 

reconstruction and associated data through geological time. This software runs on various 

operating systems, windows operating system compatible version is utilized in this study. 

Gplates is developed by an international team of scientist, professional software developers 

and postgraduate students like Scientists at the University of Sydney, Norwegian Geological 

Survey and Cal Tech have also been compiling sets of global data for plate boundaries, 

continental-oceanic crust boundaries, plate rotations, absolute reference frames and dynamic 

topography.  The best part of this software is it is open-source software which is free for 

working.  It has been licensed for distribution under GNU (general public license) version 2.   

  

Gplates is state-of the art software as it can handle and visualize data in variety of 

formatsgeometries like raster data to link plate kinematics to geodynamic evolution models. 

Finally it can produce high-resolution paleo-geographic maps and animation videos for 

presentation. 

 

Plate tectonic reconstructions are based on certain assumptions and principles.  The 

motion of plates on globe is governed by Euler’s fixed point theorem: “Every displacement 

from one position to another on the surface earth can be regarded as a rotation about a suitably 
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chosen axis passing through the center of the earth.”The axis of rotation is the suitably chosen 

axis passing through the center of the earth. The poles of rotation or the Euler’s poles are the 

two points where the axis of rotation cuts through the earth surface (Fig. 42).  

 

 

 

 

 

 

 

 

 

 

 

Fig.42: Diagrammatic representation of Euler pole and plate rotation relationship. 

 

The plates behave as rigid lithospheric blocks during plate motion; whereas 

boundaries are dynamic. Hence, they are called rigid plates with dynamic boundaries or 

dynamic plate polygons. These rigid plates with dynamic boundaries moves on the globe with 

a rotation axis passing through the center of the Earth called Euler pole of rotation. The 

relative velocity ‘’ of a certain point on the earth surface is a function of the angular velocity 

‘’ according to:  

 =  R Sin 
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where R is the earth radius and  is the angular distance between the pole of rotation 

and point on the plate of interest.Thus, the relative velocity is equal to zero at the poles, where 

=0 degrees and is a maximum at the equator where =90 degrees.The relative velocity is 

constant along small circles defined by =constant.Note that large angular velocity does not 

mean large relative velocity. 

 

Plate tectonics on a spherical earth can be defined by rotation poles and rotation axes 

for plates on either side of mid-ocean ridges.Transform faults are arcs of small circles about a 

rotation pole. The rotation pole thereforemust lie somewhere on a great circle that is 

perpendicular to that small circle. So if two transform faults are available the intersection of 

the great circles marks the position of the rotation pole. 

 

Determination of rotation poles and rotation axes for plates on either side of mid-

ocean ridges: The spreading rate of mid ocean ridge changes as a function of sine the angular 

distance ‘’ from the rotation pole. Thus if the spreading rates at various points along the 

plate boundary can be measured the rotation pole may be estimated.  

 

Triple junctions: Triple junction is a point at which three plates meet. A triple junction is 

stable if the relative motion of the three plates and the azimuth of their boundaries do not 

change in time.An unstable triple junction exists only momentarily before evolving to a 

different geometry.  

 

Practically triple junctions are the point where the plate would deform and develop 

into rift and move apart depending on the type of the stress and other conditions. This is the 

starting point along which a rigid plate breaks apart to form the dynamic plate boundary. An 

example is seen in the Fig.43. When one or more of the rift zones on the plate fails to develop 

into a rift. It remains as shear zones or translithospheric structural weakness. There are many 

failed rifts in world which are easily recognised by the presence of mafic dyke swarms along 

these structures.    

 

During plate tectonic reconstructions a reference frame is taken which remains 

stationary and the plate or point on the plate which is of importance is moved according to the 
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principles of plate tectonics. In this study, the fixed hotspot frame is utilized to all 

reconstructions.  This hotspot fixed reference frame is also known as absolute reference frame 

as there is no net rotation (NNR) of each plate with respect to average of all the world’s plate 

velocities.  
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Fig. 43: An example of triple junction with African. Arabian and Somalian plates are 

currently riftin. Source of figure from Samson et al, 2002. 
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Plate Tectonic Events associated with Brazilian kimberlites Age Clusters 

 

Kimberlite are emplaced along reactivated pre-existing zones of weakness or newly 

created zones of weakness during different stages of supercontinent life cycle (DeWit. 2007; 

Moore et al. 2008; Jelsma et al. 2009). Thus, the emplacement age of kimberlite clusters are 

precise time capsules in the whole history of various supercontinent life cycles. The 

relationship between the emplacement age and plate tectonic event can be deduced by looking 

at the reconstruction of the Brazilian plate back in time.  The plate tectonic reconstruction is 

carried out up to 300 Ma. From 300 Ma to 200 Ma reconstructions is modelled based on the 

present day position of Brazilian plate and plate reorganisation along with African and 

Laurentian plates to which it was attached.The whole land mass behaved as one unit and was 

moving south. The motion continued even further up to 190 Ma and switched over South 

Atlantic rift with initial E-W followed by NE motion of South American plate.  

 

The reconstruction of Brazilian plate form 200 Ma is taken from the Heine et al., 2013 

plate modeldata.  In this model the authors have achieved a full fit by structural restoration of 

the South Atlantic conjugate margins and intra-continental rift basins in Africa and South 

America. Heine et al (2013) have related the kinematic model of the late Jurassic/Early 

Cretaceous rift structures to observations from marginal and failed rift basins from the South 

Africa and South America conjugate margins.  According to this model, the pre-rift 

extensions and plate kinematics are categorized into three phases: 

 

a) Phase I: 140 to 126.57Ma: During this phase there was intra-continental rift basin 

formation. 

b) Phase II: 126.57 to 120.6Ma: This phase was characterized by a change in velocity 

and direction of the plate motion. 

c) Phase III: 120.6 to100Ma: this is the second phase of increased plate velocity and 

finally the South American and South African Plate drifted apart. 

226 to 268 Ma: Amazonian cratonkimberlites emplaced between 226and 268Ma. This 

episode of kimberlite magmatism is linked to the Permo-Triassic plate reorganization before 

the Pangea rifting at 225 Ma. 
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120 to 122 Ma: This is related to incipient South Atlantic rifting. 

 

80 to 95 Ma: Tectonic trigger of kimberlite magma generation while spreading is in progress 

and plate motion paths are marked by cusps (variation in direction) and jogs (variation in 

velocity).  Changes in plate motion may have caused shearing of subcontinental lithospheric 

mantle with strain accommodation along lithospheric discontinuities in this case in particular 

the continental continuation of oceanic fracture zones.   

74 Ma: There is only one kimberlite named Sucesso-08 (Felgate, 2014) with this age data. 

This is the only emplacement age which is younger than the known kamafugites. 

 

Thus emplacement of kimberlites magma from74 Ma to 268 Ma along the corridor-

125 with intermittent short periods of kimberlite emplacement peaks is linked to opening up 

of Pangea plate reorganization. South Atlantic Ocean and strain propagation with melt 

migration along the continental extension of the oceanic transform fault due to cusps and jogs 

during the Brazilian plate motion. The periods devoid of kimberlite emplacement corresponds 

to uniform plate motion. The phase I of Heine’s model is characterized by the rift basins 

formation which probably also activated older structures and thus when there was cusp and 

jog during Phase II kinematics of South American plate motion and the 120-122 Ma 

kimberlites were emplacement.  During phase III, there has been significant jog with respect 

to South American plate kinematics but this increase in velocity has not favored kimberlite 

emplacement. After this third phase the South American and South African plate drifted apart.  

This has resulted in enormous basaltic flows in the mid ocean ridge and formation of oceanic 

crust.  With the plates continued drifting, on the continental part of South America there is 

another phase IV between 80 to 90 Ma corresponding to the highest kimberlite emplacement 

peak.  The plate tectonic reconstructions carried out in gplates is presented in figures 44 to 50. 
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Fig.44: 300 Ma reconstructions with Brazilian plate in pink boundary, African plate with 

multiple blocks and Laurentian plate in green, the position of the corridor-125 is also 

marked. 

 

 

 

 

 

 

 

 

 

 

 

Fig.45: 225 Ma to 170 Ma reconstruction of Brazilian plate. 
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Fig.46: 130 Ma Reconstruction of Brazilian plate with progressing rift between Laurentian 

and Brazilian plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.47: 126 Ma Reconstruction of Brazilian plate with South Atlantic rift initiation at the 

southern tip of the South American (Brazilian plate). 
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Fig.48: 110 Ma Reconstruction of Brazilian plate with progressing South Atlantic rift. Tristan 

Cunha hotspot is seen on the newly developing oceanic part of the Brazilian plate well below 

Corridor-125. 

 

 

 

 

Fig.49: 75 Ma Reconstruction of Brazilian plate with progressing South Atlantic rift. 

Trinidad Martin Vaz (TMV) hotspot is seen under the corridor-125 of the Brazilian plate.  

This hotspot moves away from the corridor-125 after 75 Ma further north and finally reaches 

the oceanic crust on the east cost of Brazil. 
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Fig.50: Present day position of Brazilian plate and east coast hotspot locations. 

 

 

Fig.51: Trinidad Martin Vaz (TMV)Palaeo-track over Brazilian plate in relation to corridor-

125 from gplates for the present day position of Brazilian plate. 

 

Discussion on the role of Hotspot Trindade-Martin Vaz (TMV) in kimberlite 

emplacement 

 

Hotspots and Kimberlite Association: The validity of influence of hotspots and 

kimberlite emplacement within the South American plate during South Atlantic rift is 

analysed by using plate reconstruction.  
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It has been observed that from 225 Ma to 121 Ma there has been a quiescent period 

with respect to kimberlite emplacement along the Corridor-125. After which the kimberlite 

emplacement has peaked at 122 Ma to 120 Ma followed by another short period devoid of 

kimberlites from 94 to 119 Ma.  Again, kimberlite emplacement peak reached its maximum at 

80 to 95 Ma.  Lastly, a single kimberlite spike at 74 Ma is observed.  In total, the kimberlite 

emplacement episode has lasted from 268 Ma to 74 Ma with intermittent quiescent periods of 

short duration along lineament Corridor-125.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.52: Georeferenced TMV (Trindade Martin Vaz) hotspot Trail up to 300 Ma with 

Corridor-125 and  kimberlite occurrences.  
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Crough et al (1980) suggested age progression along the Corridor-125 due to the 

passage of the Trindade hotspot along the length of the lineament.  With more age dating of 

kimberlites, the scenario has changed with respect to age progression along the Corridor-125. 

With a fixed hotspot reference frame, plate tectonic reconstruction depicts the passage of the 

South American plate along the hotspot TMV.As the South American plate moves over TMV 

hotspot due to Pangea plate organization and South Atlantic opening, the TMV traces a wavy 

path as shown in the (Figs.51 and 52). It does not coincide exactly with the corridor-125 but is 

found close to it. The TMV motion path has traced entire the length of Corridor-125 with 

initial loping around 200 Ma to 180 Ma at the North-Western end and then following the 

entire length as the plate as the plate motion continued. With more kimberlite age data 

available now, the association of the hotspots like TMV directly in the kimberlite magma 

generation and its emplacement is not witnessed as there is no definite age progression as 

suggested by Crough. 

 

The youngest kimberlites are only present towards the south-eastern end of corridor-

125 whereas the oldest is only observed along the north-western end. The intermediate age 

kimberlites are found mixed up all along the lineament, which does not confirm the 

interpretation of hotspot influence and hence this hypothesis is unsustainable.  This result 

confirms, that, the role of paleo-track of TMV or other hotspot track is ruled out as the major 

cause for kimberlite emplacement along Corridor-125. 
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Chapter 13 

 

 Discussion 

 

The kimberlites are found emplaced all along the corridor-125. The spatio-temporal 

kimberlite peaks separated by distinguished quiescence on the corridor-125 with respect to 

kimberlite distribution and episodicity. On local scale, structural controls for the kimberlites 

are due to thrusting.Fractures, faults and shear zones. All along the corridor-125, kimberlites 

are associated with igneous alkaline provinces. On subregional scale arches, continental rift 

zones and other basement structures control kimberlite emplacement. On continent wide 

scale, structural reactivation of older basement structures provides important emplacement 

loci.  There is evidence of repeated reactive of basement structures.  Corridor-125 is an 

excellent example of continental scale structural control which is in turn composed of several 

mega- and giga lineaments.  This forms a continuous weak zone on continent and oceanic part 

of the Brazilian plate. This continental weak zone being older manifests itself with newly 

developing oceanic crust and its signatures and evidence can be traced back to ocean floor up 

to the mid-ocean ridges.  This emphasizes the genetic link with the rifting and the structures 

on continental rigid plates.  This is especially much easy to find evidence from the ocean floor 

magnetic anomaly data and global crustal magnetic data for younger oceanic rift basins.  The 

older ones are complicated or even masked by the overprinting of younger events.  South 

Atlantic oceanic transform fractures can be easily traced to decipher the genetic link between 

the oceanic and continental structural weakness and its manifestation as lineament. Other 

good examples where such genetic link is easily observed are the Ponta Grossa arch and its 

associated fracture zones on the ocean floor. Transbrasiliano lineament and its associated 

oceanic transform fracture zones.  Apart from kimberlites, there are other alkaline rocks found 

on corriodor-125 proving the fact that there is switching of magma type with continued 

rifting.   

 

Major kimberlite episodes found on corridor-125 are  

 

1. 226-268 Ma 

2. 120-122 Ma 

3. 80-94 Ma 

4. 74 Ma 
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These kimberlite emplacement peaksare associated with major plate kinematics with 

cusps and jogs in the plate motion or both. It is proposed that, the tectonic trigger of 

kimberlite magmatism along corridor-125 is associated with two rift events.  The first tectonic 

trigger is Permo-Triassic rifting of North America and South America around 290-225 Ma.  

In this case the kimberlite emplacement is associated with the Pangea plate re-organization 

just prior to rifting.  It is also interesting to see these kimberlites are of distinct group I type or 

lamproites with ultra-deep inclusions (Kaminsky et al., 2010).  The presence of ultra-deep 

inclusions associated subduction related source quite evident from the Pacific plate 

subduction source. Another interesting feature of this subduction related source is that they 

are of short duration compared to tectonic trigger only related to rifting.   

 

The second tectonic trigger is the cretaceous rifting of South Atlantic rift from 125 to 

74 Ma.  In this case, the kimberlites are associated only with rifting plate with major cups and 

jogs in plate kinematics. This magmatism has three major episodes and is a long term one 

compared to the subduction related one.  The problem in assessing the kimberlite 

emplacement along corridor-125 is the presence of 120 Ma kimberlites on both the regions 

(Amazonian and Extra-Amazonian) and the presence of 95 Ma kimberlite related to 

subduction on Amazonian region which is otherwise characterized by older Permo-Triassic 

kimberlites.   

 

Dual Tectonic Trigger model of Kimberlite emplacement in Brazil.   

 

It is proposed that Dual Tectonic trigger model of kimberlite emplacement in Brazil 

satisfies the observed nature of kimberlites. The Initial rifting of South American plate for 

North American (Laurentia Plate) has triggered kimberlite emplacement along the subduction 

zone and has resulted in Permo-Triassic kimberlites on Amazonian craton with the 

reactivation of greater than 1.0 Ga basement structures. This was followed by rifting at 

225Ma at the northern border of the country. Soon the plate reorganization has reactivated 

structures on the East coast extending up to Upper Paraguay thrust zone (Suture zone of 

Amazonian and São Francisco Craton) as we see 120 Ma kimberlite in Paranatinga cluster 

with Increased reactivation stress along the eastern coast preparing for the rift, high numberof 

kimberlite emplacements were concentrated on to the Extra-Amazonian region. Only two 

peak episodes of kimberlite magmatism has affected the Amazonian region due to South 

Atlantic rift which needs further confirmation.   
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The Permo-Triassic (225 to 268 Ma) kimberlite found in Amazonian region is absent 

in the Extra-Amazonian region. Whereas on contrary to the above observations, similar age 

group younger (120Ma) kimberlite occurrences on both the regions along the corridor-125 

contradicts the above observed features of non-continuation. The Amazonian craton is 

interpreted to have amalgamated with Extra-Amazonian region from 650 to 630 Ma (Cordani 

et al. 2013; Neves and Fuck. 2014).  On The Amazonian region any tectono-magmatic events 

prior to 226 Ma is unique to the craton and does show different signatures than that of Extra-

Amazonian region.  Whether the younger tectono-magmatic events are genetically linked to 

the Extra-Amazonian region or not is an interesting area for future research.  The occurrence 

of 95 Ma Juina magmatism and its magmatic trigger is not yet established.   

 

Hencecontinuation of Corridor-125 from Extra-Amazonian region beyond 

Transbrasiliano lineament into the Amazonian craton is a matter of debate. Firstly, because 

the continuation of NW-SEstructures found in the Extra-Amazonian region stops right at the 

Transbrasiliano lineament. The structural trend orientation also variesand lastly, significantly 

older age of kimberlites from Amazonian craton implies different source and trigger for 

kimberlite magmatism.   

 

Hence, it is concluded that kimberlite occurrence of corridor-125 from Extra-

Amazonian region and on to Amazonian region and the false appearance of continuity is 

merely a coincidence.  Structurally, these two regions are different and the styles of kimberlite 

magmatism and its geochemistry clearly show that these regions are different and there is no 

structural continuity.   

 

Geophysical aeromagnetic data has revealed interesting set of structural controls on 

kimberlite emplacement in Brazil.  These structures are masked by the sedimentary cover.  

The integrating the mapped structures and geophysical structures from the study area has 

resulted in revised basement structural frame work controlling the kimberlite emplacement 

which is quite different from the mapped structures alone. This resulted has been observed in 

the geophysical magnetic lineaments map and has facilitated better understanding and 

constraining of the Dual tectonic trigger of the kimberlite emplacement in Brazil in study 

area.   
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Kimberlite aeromagnetic signatures are quite complicated in Brazil due to various 

reasons like sediment cover masking the signatures of small diameter pipes; presence of 

multiple intrusions also masks and complicates the signature identification.  Coupled to this, 

the presence of other large diameter alkaline intrusions in the same area masks the kimberlite 

signatures completely in some cases.  Another drawback is the presence of intensely packed 

structural lineaments again masking the signatures. In spite of all these draw backs, there are 

obvious kimberlite signatures (though not clear on the anomalous magnetic field map) is 

clearly seen as bulls eye anomaly on the Analytical signal map. Tilt derivative and in some 

cases on Reduced to pole maps.  There is good correlation of the obvious bull’s eye signatures 

and Euler Structural Index-2.  There are some kimberlite signatures which are very subtle. 

Further ground magnetic and gravity data will be a good tool to isolate better and new 

kimberlite signatures.  It is also observed that the Anomalous magnetic field map signatures 

are more complicated and even the analytical signal signatures due to the fact that the study 

area is in the low latitude region.  The presence of reminiscent magnetism is very clearly seen 

by the way the dipolar anomalies transform during transformation to reduced to pole maps.   
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Conclusions 

 

There has been advances and increase in age dating of Brazilian kimberlites but still the data 

is limited. The following conclusions could be drawn from this study: 

 

 The onset of the major period of kimberlite magmatism coincided with incipient 

breakup of Gondwana when such structures are expected to develop (before ocean 

crust formation). 

 Subducted material gives rise to change in magma composition during short periods of 

kimberlite emplacements.   

 The geometryincluding movement directioncan be gleaned from studying “connected” 

transform faults on the adjacent oceanic crust.  

 Long term episodicity is determined by periods of supercontinent breakuptriggered by 

extension 

 Short term episodicity is related to a combination of processes of Subduction, 

reactivation and rifting.  

 The corridor-125 is a continental translithospheric lineament made of two sets of 

lineaments one each on Amazonian and Extra-Amazonian region. 

 The Extra-Amazonian region corridor-125 is an older lineament that has a genetic link 

to younger South Atlantictansform fractures formed during the opening of the South 

Atlantic Ocean during West-Gondwana break up.  It comprises of numerous mega- 

and giga-lineaments.Fractures, faults and minor structures which have been formed 

and or reactivated several times.  

 The Amzonian part of corridor-125 is associated with Pangea supercontinent tectonic 

trigger. The Andes is the surface expression of Pacific plate subduction, the kimberlite 

emplacement is the continental inland expression of the Pacific plate subduction and 

Pangea tectonic trigger.   

 Being host of few hundreds of kimberlite, major dyke swarms and other ultramafic 

and mafic rocks, it has no direct association to plumes that crossed the lineament; 

rather they are triggered due to reorganization/change in the plate motion kinematics. 

As there is no apparent age progression unlike what is expected from a plume-

triggered kimberlite emplacement model. 
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 The entire episode of kimberlite magma generation and emplacement is attributed to 

stress propagation due to Plate reorganization, incipient rifting and tectonic trigger due 

to South American plate motion and its related extension and subduction on the 

western margin.   

 It has been observed that thermal perturbations associated with tectonic events 

involving lithospheric faults formed or reactivated during breakup of continents 

resulting in strain localization and melt focusing along these reactivated/newly formed 

structures.  Finally, the emplacement of the magmatic rocks.   

 Major structural trends of kimberlite emplacement loci along the corridor-125 are 

associated mainly with NE and NW trends.  Other structural trends of importance are 

along NNW-SSE.  WWN and EW trends are rarely seen as kimberlite emplacement 

controls.  

 Major dyke swarms also follow the main structural trend (NE and NW) and with 

kimberlites along Corridor-125.  All forming part of the structural controls showing 

reactivation.  

 Corridor-125 is an older lineament probably older than 1.8 Ga and has been 

reactivated several times; kimberlite emplacement is associated to one reactivation 

event. Neotectonic reactivation of few faults at 1.6Ma (AllaouaSaadi et al. 2002) 

signifies this as an ongoing process.   

 Corridor-125 kimberlites are of Group I, transitional/Anomalous type and lamproitic 

(Juina and Facao).   

 The Trasitional type kimberlites are found only on Extra-Amazonian region associated 

with tectonic extension; the group I kimberlites are found only on Amazonian Region 

associated with subduction related rifts and graben.  The lamproite from Amazonian 

Region is associated with Parecis basin horst and its associated rift.  A subducted 

oceanic crust is attributed as the source for this lamproites.   

 Kimberlite and its related magmatism in Brazil, have their source from different 

depths ranging from base of SCLM, SCLMasthenosphere going up to 660km as 

evidenced by the diamond inclusion studies. 

 Kimberlite emplacement is found post-dating and partly synchronouswith the 

emplacement of the Parana flood basalts - along the same structural.    
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 Kimberlite emplacement is post-dated by kamafugites again showing structural 

reactivation. Thereforemagma composition reflects different styles of lithosphere 

deformation - not plume activity.   

 Finally, continued rifting and the opening of the Atlantic with progressive 

thinning/delamination of the lithosphere beneath South America to magmatic 

switching from kimberlites to kamafugites are seen.  

In a nutshell, Brazil has potential to find more kimberlites and its associated 

diamonds. A more detailed scale research around the Extra-Amazonian region sedimentary 

basins, Amazonian region sedimentary basins will be of worth considering for kimberlite 

exploration industry.  On the academic grounds, Brazil is an interesting source of unique 

spectrum of kimberlites and related rocks probing which will provide insight into the plate 

tectonics of Brazilian plate, nature of lithospheric mantle, subduction related diamond source 

etc.   

 

Future Research 

 

 The occurrence of 95Ma Juina magmatism and its magmatic trigger is not yet 

established with respect to structural analysis from geophysical studies. Also, the 

Transbrasiliano cluster kimberlite dating and structural analysis form geophysical 

studies will thought more interesting facts about corridor-125 and its nature.   

 Geophysical kimberlite signature analysis for the whole of Brazil will be an interesting 

study which will identify new undiscovered kimberlites in Brazil.  If this research is 

coupled with ground geophysical studies then it will the best tool to delineate 

kimberlite signatures better.   

 Reminiscence magnetizations of kimberlites and alkaline rocks are evident from this 

study.  Hence, study of the palaeo-magnetic studies will resolve the long standing 

problems regarding the reconstruction problems associated with various blocks of 

Brazilian plates.     
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Appendix-1: Publications 

 

Tectonic and Structural Controls on Phanerozoic-Cretaceous Kimberlite Emplacement 

along Corridor-125, Brazil - A Review 

 

Authors: Manimala. M., Elson.P.Oliveira, Simon Richard 

ABSTRACT 

On a global scale kimberlite emplacement is controlled by pre-existing/newly formed 

translithospheric structures known as Continental Lineaments due to plate tectonics.  These 

translithospheric continental lineaments are formed during plate-reorganisation prior to 

oceanic rift formation.  These lineaments extend onto the newly developing oceanic rift and 

transform fractures. Finally the plates drift apart. Hence, there is a genetic link between 

continental translithospheric lineaments, its oceanic transform fracture counterparts and 

associated kimberlite emplacement. Corridor-125 in Brazil is one such continental 

translithospheric lineaments, which host kimberlites and other mafic/ultramafic rocks.  It 

consists of Amazonian and Extra-Amazonian regions. These two regions of the corridor is a 

coincidental alignment along with its associated mafic and ultramafic magmatism.  The Extra-

Amazonian part of this corridor was cratonized by 2.3 Ga (Tassinari and Macambira, 1999). 

Later, this cratonic landmass was reactivated as there are evidences of younger mafic dyke 

swarms of 1.8 Ga (Sial et al., 1987), younger kimberlite clusters and other mafic rocks along 

its entire extent. The oldest known structural activation on the Amazonian part of the corridor 

is 1.8 Ga (Dyke swarms) followed by 1.4 Ga reactivation during amalgamation of SW 

Amazonian craton with Paraguay block (Rizzotto et al., 2012).  The final basement structural 

reactivation at 1.0 Ga (Tohver et al, 2005) has been the control on kimberlites in this region. 

The kimberlite age peaks along Corridor-125 are 226 to 268 Ma, 120 to 122 Ma, 80 to 94 Ma 

and 74 Ma.  Plate tectonic reconstruction of Brazilian plate reveals the path of Trinidad-

Martin Vaz (TMV) hotspot trail does not coincide with the Corridor and there is no apparent 

kimberlite age progression along Corridor-125.  Thus, earlier suggestions of TMV influence 

as possible source for kimberlite emplacement is ruled out.  The kimberlite emplacement is 

rather related to Pangea supercontinent plate re-organization (226-268 Ma kimberlites); 

incipient South Atlantic rifting from 120 to 122 Ma when the South American plate 

movement was characterized by cusp and jog; and the last phase of kimberlite emplacement 

from 80 to 94 and 74 Ma is due to the second phase of increased plate velocity and continued 
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rifting.  The quiescent periods devoid of kimberlites are stages when the South American 

plate was stable or experiencing a smooth plate velocity and direction.   

 

1. Introduction 

Kimberlite emplacement in time and space are related to global plate tectonics and its 

associated translithospheric structural controls (White et al., 1995; Barnett et al., 2013; Jelsma 

et al., 2009).  These translithospheric structures are the Global structural controls for 

kimberlite emplacement (Sykes, 1978). It has been proposed that the structures contained 

within the corridors are repeatedly reactivated (White et al., 1995) thereby forming the 

pathways for kimberlite magmas. On sub-regional scale kimberlites are preferentially 

emplaced at the tips and shoulders of rifts, major pre-existing dyke swarms, structural bends, 

step-overs, and fault intersections (Jelsma et al., 2004; Gladdkov et al. 2005). Within 

structural corridors the brittle structures of the crust form the local structural controls for 

kimberlite emplacement.  

 

Like those in Africa, the kimberlite occurrences in Brazil are clustered along major 

lineaments namely, Az-125, Transbrasiliano Lineament (TBL), Blumenau lineament, Rio 

Alonzo Lineament, Rio Grande Arch and Amazonas basin Lineaments.  Of these lineaments, 

Az-125, here called as Corridor-125 (Fig.1) hosts the maximum number of kimberlite 

discoveries thereby indicating a fundamental structural control on their emplacement. As 

there is link with plate tectonics and structures, the key here is to understand the interplay 

between the structural and plate tectonic controls along with the timing and location of 

kimberlite emplacement along corridor-125. 
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Fig.1: Corridors-125 and kimberlite occurrences in Brazil with structural provinces 

background.  1. Northern-Amazonian province, 2. Southern Amazonian Province (Tapajos 

Province), 3. São Francisco Craton, 4. BrasiliaBelt, 5. Ribeira Belt, 6. Borborema province, 

7. Parana Basin, 8. Parecis Basin, 9.Paraniba Basin.  Pink stars are kimberlite and related 

rock.  The boundary enclosed in red is the location of Corridor-125. 
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The corridor-125 is not a lineament easy to identify.  Lack of signature on Landsat 

images and lack of geomorphic expression makes difficult to identify the existence of 

Corridor-125. However, analysis of aeromagnetic map, distribution of basement units, 

weakness zones in the form of fractures, faults along with occurrence of dyke swarms help 

characterise the corridor. In this paper, we present a review of aeromagnetic map signatures; 

structures and geology of the basement of the cratons transect by corridor-125; age, 

geochemistry and distribution of kimberlites; paleo-position of hot spot with plate 

reconstruction. From this review, we will characterize the corridor-125, its associated 

structural and plate tectonic controls on kimberlite emplacement.  

 

2. Kimberlite occurrences along Corridor-125 

The term corridor is described as a set of lineaments broadly parallel to each other or a 

single lineament on which kimberlites are preferentially oriented. Lineaments are zones of 

weakness or structural displacements in the crust, which can be mapped or indirectly inferred 

by the presence of magmatic rocks aligned in a straight or slightly curving manner when the 

younger geological and tectonic processes often mask its presence underneath (Hobbs et al, 

1976).  The length of lineament varies considerably and is typically measured in tens or 

hundreds of kilometres.  The lineaments that are up to 100 km are termed as mega-lineament 

where as those that are longer than 100 km are termed as giga-lineament. 

 

Corridor-125 trends NW-SE and is composed of several mega- and giga-lineaments 

from Rio de Janeiro to Porto Velho (Fig. 1). The total length of the corridor is around 2700 

km and its width of c. 500 km, which is estimated with the kimberlite occurrence bordered by 

the dyke swarms. The width of the boundary is chosen little broader than the kimberlite 

occurrence to get a picture of the geology, structure and geophysical signatures of the host 

rocks and its structures during study.   
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Fig.2: Kimberlite Clusters along Corridor-12 with Structural provinces background. 

 

The kimberlite occurrences along Corridor-125 can be broadly classified into the 

following clusters (Fig. 2): 

1. Alto Paranaiba cluster, 

2. TBL-C-125 cluster, 

3. Upper Paraguay cluster (Rio Guapore and Paranatinga clusters), 

4. South Rondonian cluster, 

5. Central Rondonian cluster, 

6. North Rondonian cluster, 

7. Madeira cluster and 

8. Juina cluster. 
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3. Geological Setting of Corridor-125 

Main geological units along Corridor-125 (Fig.1, 2 and 3) are the NE-trending 

Neoproterozoic (Brasiliano/Pan-African) Ribeira Orogen in the Southeast, São Francisco 

craton basement, NE-trending Neoproterozoic Brasilia Orogen, Phanerozoic Parana basin, 

NE-trending Neoproterozoic Paraguay-Araguaia Orogen followed by Amazonian craton 

basement (NW-trending Mesoproterozoic Rondonian and Sunsas orogens) and Phanerozoic 

Parecis Basin. The NE-trending Transbrasiliano lineament cuts across Corridor-125. On the 

western side of Transbrasiliano lineament there occurs the Amazonian region and on the 

eastern side the Extra-Amazonian region. 

 

Fig.3: Simplified Brazil map with structural province after Almeida 1981. 

 

The main structural features that characterize Corridor-125 are NW-trending Proterozoic 

mafic dyke swarms (Pará de Minas dyke swarm) in the Extra-Amazonian region and the 

Amazonian region includes NW-trending Serra Formosa, Rio Guaporé archs in the 

Phanerozoic Parecis Basin and its basement, Amazonian craton.  In between the latter two 

archs another major structural feature is the Pimenta Bueno graben in the Parecis basin. In the 
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Extra-Amazonian region the Pará de Minas dyke swarm continues, without significant 

deformation, beneath the Brasilia orogen up to the Transbrasiliano Lineament as seen on 

aeromagnetic maps to be shown in a later section. Other lineaments at high to moderate angle 

to Corridor-125 are common and in several places the intersections with Corridor-125 are 

sites of kimberlite clustering. 

4. Methods 

To arrive at the objective of reviewing the available information on kimberlite occurrence 

along Corridor-125, we compiled data on kimberlite ages, lineaments, aeromagnetic maps, 

global magnetic anomaly grid, hot-spot re-location, and kimberlite geochemistry. These 

compiled data are analysed under the following headings: 

 

 Lineament Analysis (taken from maps, aeromagnetic data from CPRM and global 

magnetic grid). 

 Age of kimberlites (from the literature). 

 Review on Geochemistry of kimberlites (from the literature). 

 Hot spot paleo-location (from Plate tectonic reconstruction using gplates).  

 

Lineament analysis along Corridor-125 and its potential links with oceanic transform 

faults 

The continental structures control the position of transforms in the newly developing 

younger ocean (Lister et al, 1986).  Thus, there exists a genetic link between the oceanic 

transforms and the continental Lineaments exists. Due to complex overprinting of the younger 

tectonic events post dating the plate rifting at global and local scales, there is masking of the 

older continental lineaments where as the ocean floor is tectonically less disturbed in nature.  

As a result they retain the structural signatures i.e. transform fractures signatures on the ocean 

floor and is much easily observed in comparison to landward counterparts.  

 

The orientations of the present day oceanic and continental lineament may be different 

because of the change in Euler pole dynamics after the oceanic crust started to form. A single 

plate could have played part of different supercontinent life cycle and thus the continental 

lineaments are associated with more than one set of ocean floor lineaments. In such a case, the 



149 

most recent ocean floor signatures are much easier to associate with the continental 

lineaments while the older ones are masked by younger events. At times the relationship 

between older continental lineaments with its respective oceanic transforms becomes 

impossible to demonstrate. Kimberlite magma emplacement pathways are interpreted to be 

reactivated pre-existing lineaments or newly created ones due to the dynamics of plate 

tectonic events at different stages of supercontinent life cycle (DeWit, 2007; Moore et al, 

2008; Jelsma et al, 2009). Thus, the kimberlite emplacement, continental lineaments and the 

oceanic transforms are all genetically related.  There are several periods of kimberlite 

emplacement worldwide associated with plate tectonic events.  It is possible to establish the 

link between the kimberlites and the lineaments and their associated plate tectonic events.  

The complexity lies in associating the older events. This is particularly true with respect to the 

association of older than Mesozoic kimberlites. On the other hand it is much easily 

accomplished with younger kimberlites.   

 

Fig.4: Oceanic extension of Continental Corridor-125 lineament in the South American plate 

with EMagV2 background and GSFML fracture zones and mid-Atlantic ridges. 
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The genetic link between the oceanic transform fractures and Corridor-125 is 

established by using ‘Global seafloor fabric and magnetic lineation’ (GSFML) database by 

Matthews et al., (2011) and Wessel et al., (2014).  The transform fractures signatures from 

GSFML are used in GIS platform. These fracture zones are plotted against the Earth 

Maganetic Anomaly Grid Version.2 (EMagV2 by Maus et al, 2009) data to trace back the 

fracture zones up to the Brazilian Eastern board.  This result is further overlained by the 

global oceanic age isochron and bathymetric data. By doing so, we further refined the trace 

back toward higher preciseness. Once, the data trace was achieved up to the border, the total 

field aeromagnetic map which is reduced to IGRF, 1km square grid from the CPRM 

(Brazilian Geological survey) was utilized to identify the continental expression of the 

lineament. The work by Rocha et al., (2014) on the lineament analysis provides evidence on 

occurrence of lineaments within corridor-125.  

 

 

Fig.5: Structural Framework of Corridor-125 with Tectonic province background.  The pink 

open circles represent kimberlites and related rocks, black lines represent structures. Blue 

line is the Giga Transbrasilino lineament. 
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These continental lineaments are major zones of weakness, which favours conditions 

necessary for the melt production, melt migration and emplacement along high strain zones of 

fractures and faults. Such high strain fracture/fault focused melt generation can be formed 

during    (i) supercontinent formation, (ii) incipient rifting and onset of continental breakup 

and (iii) strain accommodation along the continental continuation of oceanic fracture zones 

during spreading (Jelsma et al 2009). The opening up of South Atlantic has a genetic link with 

the corridor-125 and the kimberlite occurrences along this corridor. With initiation of South 

Atlantic rift at 140 Ma, it manifested in the oceanic extension of the continental lineaments of 

South American plate. Corridor-125, Transbrasiliano lineaments are the examples of such 

oceanic extension associated with South Atlantic rift. This link can be traced back with the 

help of Earth Magnetic Anomaly Grid data as shown in fig.4.   The major oceanic fractures 

that are associated with the landward counterpart along Corridor-125 are Trindade fracture 

zone, Trindade_A fracture zone and Trindade_B fracture zone. 
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Structural Framework of Corridor-125 and Kimberlite occurrences 

 

A compilation (Fig.5) form the available geological, aeromagnetic map, and lineament 

maps of Brazil, has resulted in the identification of several Mega-and Giga-lineament systems 

along corridor-125 that has favoured the kimberlite emplacement while other are not. The 

Amazon and Extra-Amazonian region structural frameworks are dealt separately for 

convenience and easy analysis.   

 

Extra-Amazonian Region Structural Framework and kimberlite occurrences 

General structural framework of the Extra-Amazonian craton consists of numerous 

NW-SE trending parallel to subparallel lineaments running from SE end which are cross cut 

by NE-SW structures.  The NW-SE subparallel lineaments sometimes are modified due to 

prevailing local tectonic regime where nappes and thrusts are seen as surface expression.  The 

southeastern most part of the corridor is characterized by the coast parallel lineaments, which 

are also parallel to the corresponding orogens. TBL is the most magnificent NE-SW trending 

lineament cross cutting the corridor-125.   

 

The TBL intersection with Corridor-125 has favoured two major kimberlite clusters.  

The lateral branching at the SW end of the TBL has also favoured two kimberlite clusters. 

These two sets of kimberlite occurrences on either sides of TBL are referred to as Left TBL-

C-125 and Right TBL_C-125 clusters.  On the southeastern end of the Corridor-125, there are 

no kimberlite occurrences (SE-Ribera belt); adjacent to it, the Alto Paranaiba arch is 

associated with the biggest kimberlite clustering in numbers.  This clustering of kimberlites is 

referred to as Alto Paranaiba cluster. All these clusters of kimberlites and related rocks are 

associated with a network of NW, NE, NW/ NE intersections, WWN and WSW lineaments.    

 

Upper Rio São Francisco Crustal Discontinuity (DCARSF): NW trending Upper Rio São 

Francisco Crustal discontinuity (Fig. 5 and 6)) is a major continental lineament situated at the 

center of the corridor.  It forms one of the major kimberlite favouring lineaments in the Alto 

Paranaiba region. This lineament is associated with parallel to subparallel dyke swarms in the 

south-eastern region. There are several magnetic signatures running parallel to these dyke 

swarms from the SE São Francisco cratonic region up to TBL.  Though we have Brasilia belt 

as the geomorphic feature bordering São Francisco craton, the magnetic signature lineaments 
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running all along the length of the corridor-125 up to TBL is a good evidence of thin skinned 

tectonics and a proof for intact basement.  Hence, the Brazilian kimberlites are found in the 

mobile belts does not deviate from Clifford’s rule.   

 

Campo de Meio lineament: It starts as a NW lineament (Fig. 5 and 6) and has a 

characteristic bending around the São Francisco cratonic southern boundary.  There are 

kimberlites clustering around this lineament. Beyond this lineament there is a non-kimberlite 

occurrence zone.  

Minas-Goias Fault system: (Fig. 5 and 6), This mega-lineament is roughly WWN trending 

forms part of the structures that hosts kimberlites of Alto Paranaiba Cluster.   

 

Lineament A: this is another major mega-lineament (Fig. 5 and 6) which starts at the North-

Western end of the DCARF almost subparallel to it and runs further NW and probably 

extends up to the Transbrasiliano Lineament. Its extension up to TBL is seen as intermittent 

minor linear magnetic signatures.  This lineament hosts the next cluster of kimberlites, which 

is separated from the Alto Paranaiba cluster by a non-kimberlite zone.   

 

Guarapiara Lineament: It is NW trending lineament (Fig. 5 and 6) which starts from the 

eastern Ribeira belt and runs up to the Transbrasiliano lineament.  This lineament is taken as 

the southern limit of the Corridor-125 and is extended beyond the Transbrasiliano lineament 

on to the Amazonian region. Beyond this lineament there are no known kimberlites.    

 

Estrela Fault: trends NE-SW (Fig. 5 and 6) and is a reverse strike-slip fault (Alloua Saadi et 

al, 2002).  It also forms part of the most influential lineaments of Alto Paranaiba kimberlite 

cluster.   

 

NE-SW subparallel set of lineaments: (Fig. 5 and 6) there is a set of 3 sub parallel (C, D 

and E) NE trending lineaments, which cut the corridor just after the Alto Paranaiba cluster of 

kimberlites and end at the   A-lineament.  These lineaments are not associated with kimberlite 

occurrence.  There are dyke swarms occurring all along the lineament especially in the portion 

of Corridor-125.   
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Upper Paraguai Thrust: (Fig. 5 and 6) This thrust zone is found at the suture zone between 

Amazonian and Extra-Amazonian region.  It forms the western margin of the Paraguai-

Tocantins Marginal Suture zone.  

 

Porangatu Fault Zone: (Fig. 5 and 6) This fault is also situated in the Paraguai-Tocantins 

Suture zone. It is a dextral fault (Saadi et al, 2002) with no kimberlite occurrence along but 

new clustering of kimberlites is found to the left and right of this thrust zone.   

 

Lineament B: (Fig. 5) trending WSW-ENE intersects with NW trending lineament A and 

hosts the Right TBL_C125 cluster of kimberlites.  Further to the east lineament A intersects 

with lineament- C, D and E which are NE trending and does not host any known kimberlites.    

 

 

Fig6: Extra-Amazonian kimberlite Clusters and associated Structural Lineaments with 

Structural provinces back ground.  The pink open circles represent kimberlite and related 

rocks.   
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Lineaments that are not associated with Kimberlite occurrences in Extra Amazonian 

Region 

 

Rio Paraiba Do Sul Crustal discontinuity (DCRPS):(Fig. 5 and 6) It is also at the Southern 

end of the corridor with dextral and vertical sense of (Saadi et al, 2002). No kimberlite is 

associated with this lineament. 

 

Cubatão shear zone: (Fig. 5) comprising the Serra do mar rift and Cubatão fault system is 

also not associated with kimberlite occurrences. 

 

Jacutinga Fault: (Fig. 5 and 6) trends WSW-ENE fault is found towards SE portion of the 

Corridor-125.  This fault is not associated with any kimberlite occurrence.   

 

Local Structural Controls: Apart from these major lineaments, kimberlite occurrences in 

Extra-Amazonian region are associated with flexures and Arches, which forms the local or 

minor scale structural controls.  In case of arches where there is uplifting it is interpreted as 

dilated mantle region.  The flexures are the result of local structural regime due to the 

collision/compression between adjacent blocks.   

The region where Alto Paranaiba kimberlite cluster occurs is known as the Alto 

Paraniba high or Arch. This structural high region is geologically made up of a suture zone 

where the Paranapema block from South has collided with the Northern São Francisco craton 

giving rise to E-W flexures and nappes which has been intruded by kimberlite magmas. This 

E-W flexural control on kimberlites is so evident that the whole Alto Paranaiba cluster 

appears as E-W flexuring in shape.  As we go towards the Transbrasiliano-C125 clusters, this 

flexural control is absent instead is controlled by the intersection of NE and NW fractures and 

faults which are part of TBL south-western end offsets.   

 

From the above study it is observed that the Extra-Amazonian  sub-regional scale 

structural controls  are NW trending, NE trending and intersection of these two trend 

structures have favoured kimberlite emplacements. There is one trend each of WSW-ENE and 

WWN-SSE structural lineament which has favoured kimberlite emplacements in this region.  

The east coastal region structural lineaments with mainly NE-SW trends in the Ribeira belt 

region of the corridor-125 is not a favourable kimberlite occurrence zone as there are no 
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known kimberlites in this region.  On local scale, the E-W nappes are the structural controls 

for Alto Pranaiba cluster and lateral braches of the Transbrasiliano lineament is the structural 

controls for TBL-C125 cluster.   

 

Amazonian Structural Framework and Kimberlite Clusters 

 

General structural framework of the Amazonian craton consists of NNW, NW, NE 

and E-W trends which has favoured of Kimberlite occurrences in this region.   The grabens, 

horst and rifts associated with Parecis basin forms the major loci of kimberlite emplacement 

along with other major lineaments, arcs, horts, flextures, structural bends and nappes.  A 

detailed account of these structures is given in the next coming sections.   

 

Madeira Lineament: (Fig. 7) This Lineament trends NE and forms an important structural 

control for Madeira cluster kimberlites.   

 

Arco Do Rio Guapore Lineament: (Fig. 7) This lineament is found at close to the SW 

margin of Amazonian region and trends NW. It hosts Guapore kimberlite cluster and South 

Rondonia cluster. The intersection of this lineament with NE trending Arco do Velheno forms 

the loci of South Rondonian cluster kimberlite emplacement.  The Guapore kimberlite cluster 

is found to the South of the lineament where it is intersect by Arco do Alto Xingu lineament.  

This Guapore lineament is interpreted as suture zone between the Paraguay block and the 

Amazonian craton (Rizzotto et al., 2013). 
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Fig.7: Amazonian Region Kimberlite clusters and associated structural lineaments. 

 

Arco Do Alto Xingu lineament: (Fig. 7) This lineament trends NE and hosts Paranatinga 

kimberlites at northern end where it intersects with  Arco do Serra Formosa (NNW trend); at 

the southern end it hosts Guapore cluster where it intersects with Acro do Rio Guapore suture 

zone.   

 

Pimenta Bueno Rift (Fig. 7) is a NW trending Paleozoic rift system associated with Parecis 

basin. It hosts Central Rondonian cluster and Juina cluster kimberlites.  It is interesting to see 

that the Central Rondonian cluster is in the graben region and the Juina cluster is in the horst 

region of the basin with cratonic basement.   

 

Ji Parana Shear zone (Fig.7) is regional shear zone.  It consists of NNW and EW mylonite 

shear zones. This shear zone is interpreted as Grenvillian age (1.18 to 1.15 Ga) collisional 

deformation zone, which is a result of collision between North American plate and 

Amazonian craton (Tohver et al., 2005). Due to this collision, NNW verging nappes (Fig. 7) 

are formed which hosts the North Rondonian cluster kimberlites.  

 

The Paccas Novo graben, Colorado graben, Caibis graben and Nova Brasiliandia belt 

found in Amazonian region do not host any kimberlites.  On local scale structural bends and 

nappes forms the structural control for this region.   
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Plate Tectonic Events Associated with Brazilian kimberlites Age Clusters: 

 

Kimberlite are emplaced along reactivated pre-existing zones of weakness or newly 

created zones of weakness during different stages of supercontinent life cycle (DeWit, 2007; 

Moore et al, 2008; Jelsma et al, 2009). Thus, the emplacement age of kimberlite clusters are 

precise time capsules in the whole history of various supercontinent life cycles. The 

relationship between the emplacement age and plate tectonic event can be deduced by looking 

at the reconstruction of the Brazilian plate back in time.  The plate tectonic reconstruction is 

carried out with gplates software and the data for this work is taken from, Heine et al, 2013, 

plate model.  In this model the authors have achieved a full fit by structural restoration of the 

South Atlantic conjugate margins and intra-continental rift basins in Africa and South 

America. Heine et al (2013) have related the kinematic model of the late Jurassic/Early 

Cretaceous rift structures to observations from marginal and failed rift basins from the South 

Africa and South America conjugate margins.  According to this model, the pre-rift 

extensions and plate kinematics are categorized into three phases: 

d) Phase I: 140 to 126.57 Ma: During this phase, there was intra-continental rift basin 

formation. 

e) Phase II: 126.57 to 120.6 Ma: This phase was characterized by a change in velocity 

and direction of the plate motion (Graph.1). 

f) Phase III: 120.6 to100 Ma: this is the second phase of increased plate velocity 

(Graph.1) and finally the South American and South African Plate drifted apart. 

 

 

Graph.1:  A plot of Brazilian plate velocity magnitude in cm/year Vs Time in Ma. 
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Graph.2:  A plot of Brazilian plate Azimuth as angular velocity Vs Time in Ma. 

 

Brazilian Kimberlite Episodicity and age peaks 

 

The Brazilian kimberlite ages (Table.1) are of six major peaks (Fig.8) with 

intermittent quiescent periods. Four of these periods are associated with Corridor-125.There 

are two known Proterozoic kimberlites in Brazil, namely the Salvador kimberlite, which are 

dated as 1150 Ma (Watkins et al, 2009; Dewit, 2010) and the Brauna kimberlites, which are 

dated at 640 Ma (Donatti-Filho et al., 2013). All other kimberlites are Triassic and Mesozoic 

in age.  The Proterozoic kimberlites are absent along corridor-125. Only Triassic and 

Cretaceous kimberlite clusters are found along the corridor-125. These kimberlites are 

grouped into the following clusters:  

 

1. 226-268 Ma,  

2. 120-122 Ma 

3. 80-94 Ma,  

4. 74 Ma 
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Table.1: Brazilian kimberlite ages from literature. 
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Fig.8:  Brazilian Kimberlite age map.  The age data are taken from literature. 

Amazonian craton kimberlites emplaced between 226 Ma and 268 Ma:  This episode of 

kimberlite magmatism is probably linked to the Permo-Triassic Alto Paraguay magmatism, 

which is in turn related to Pangea plate reorganization. 

 

120 to 122 Ma: This is related to incipient South Atlantic rifting. 

 

80 to 95 Ma: Tectonic trigger of kimberlite magma generation while spreading is in progress 

and plate motion paths are marked by cusps (variation in direction) and jogs (variation in 

velocity).  Changes in plate motion may have caused shearing of subcontinental lithospheric 

mantle with strain accommodation along lithospheric discontinuities, in this case in particular 

the continental continuation of oceanic fracture zones.   

 

74 Ma: There is only one kimberlite named Sucesso-08 (Felgate, 2014) with this age.  

 

Thus emplacement of kimberlites magma from74 Ma to 268 Ma with intermittent 

quiescent periods is observed along the corridor-125. A short period of kimberlite 

emplacement peaks from 268 Ma to 226 Ma is linked to Pangea plate reorganization. The 

younger Cretaceous kimberlite peaks from 120 to 74 Ma is related to opening up of South 

Atlantic Ocean and strain propagation with melt migration along the continental extension of 

the oceanic transform fault due to cusps and jogs during the Brazilian plate motion. The 

periods devoid of kimberlite emplacement (225 to 120 Ma and 73 to 0 Ma) corresponds to 

uniform plate motion or stabilization of plate. The phase I of Heine’s model is characterized 

by the rift basins formation there by activating older structures. During phase II kinematics 

the South American plate experienced cusp and jog and the emplacement of 120-122 Ma 
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kimberlites.  During phase III, there has been significant jog with respect to South American 

plate kinematics but this increase in velocity has not favored kimberlite emplacement. After 

this third phase the South American and South African plate drifted apart.  This has resulted 

in enormous basaltic flows in the mid ocean ridge and formation of oceanic crust.  Further, 

the plates continued to drift apart and the continental part of South American plate has 

witnessed another phase of kimberlite emplacement peak between 80 to 90 Ma corresponding 

to phase IV.  Lastly, a single kimberlite spike at 74 Ma is observed corresponding to 

continued rifting of South American plate.   
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Geochemistry of Kimberlites 

 

In this review work, a summary of various kimberlite types on both Amazonian and 

Extra-Amazonian region is presented from available literatures.  Kimberlites are classified 

into three main groups namely Group I, Group II (Smith et al., 1985) and the Transitional 

groups based on the mineralogy and geochemistry. The general composition range for 

kimberlites can be made in spite of its wide compositional ranges. It is typically low in SiO2 

(25–30 wt. %), low in Al2O3 (usually <5 wt. %) and very low in Na2O (usually < 1 wt. %). 

Group I kimberlite is generally non-micaceous and the radiogenic isotopic signature is similar 

to many ocean island basalts (OIB). In contrast, micaceous Group II kimberlite is derived 

from ancient (>1 Ga) cratons with enriched trace-element signature originating from within 

the subcontinental lithospheric source. In order to interpret geochemistry of any kimberlite 

one has to resolve the contamination effect due to pre/post/syn emplacement alteration 

xenoliths entertainment and weathering.  

The nature of Brazilian kimberlites (APIP Cluster) was initially thought to be of 

Group II by many authors (Bizzi et al 1995b, Gibson et al., 1995; Carlson et al. 1996; Arauja 

et al., 2001; Carlson et al. 2007; Guarino et al. 2013). But they show an overlapping signature 

between Group I and II. Felgate (2014) thesis work on the isotopic signatures shows that these 

APIP kimberlites are transitional type.  They show similarities to South African, Brauna 

kimberlites (Donatti-Filho et al, 2013) from north east of Brazil and Guaniamo kimberlite 

(Kaminsky et al., 2004) from Venezuela with elemental and isotopic values corresponding to 

transitional group kimberlites. The Amazonian craton kimberlites are Group I type (Felgate, 

2014). The Juina kimberlites of Amazonian craton show lamproitic affinities (geochemistry 

data from Costa, 2013).  

 

To summarize, the Brazilian kimberlites are of three types known so far namely, 

transitional type, group I type and lamproitic type. These kimberlites are less documented in 

literature with respect to its source and paragenesis. These different groups of rocks show 

subtle differences in major element concentrations, the trace element composition along with 

isotopic signature provides a better understanding.  The Sr, Nd, Hf- isotopic range is the best 

indicator to classify the kimberlite into its corresponding type. The transitional type 

kimberlites plot below mantle array, the group II kimberlites plot well within the mantle array 

and show negative epsilon Ndi values compared with group I and transitional type.  
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Petrogenesis of Kimberlites from Corridor-125 

 

Bizzi et al. (1995a) and Carlson (1996) proposed a hotspot triggered kimberlite magma 

source based on Sri and Ndi ratios similarity with that of the Tristan/Walvis ridge hotspot. 

This association could not sustain with new kimberlite age data results and later, Trindade 

plume triggered model was due to the paleo-location of this plume under the kimberlite 

occurrence region. But, this was also abandoned as its distinctive Sr and Nd isotopic 

composition also precludes it from being the source of the APIP magmatism (Gibson et al., 

1995). The next model proposed (Becker et al., 2007) was that of magma mixing between 

Group I and II though the same plumbing systems to produce transitional type kimberlites 

does not explain all the geochemical signatures. Donatti et al., 2013b; Beard et al., 2000) have 

proposed that transitional kimberlites are sourced from the base of the SCLM, where 

asthenospheric fluids/melts have interacted with the SCLM and subsequently melted. The Sri 

and Ndi of all three rock types are thought to represent derivation from a metasomatised 

SCLM source in all cases, with the range in isotopic values explained by heterogeneities 

within the source.  

 

On Amazonian region, an asthenospheric mantle has been proposed for Batovi-6 

(Costa, 1996) and Concordo-1(Felgate, 2014) kimberlites, due to its isotopic similarities to 

Group I kimberlites and OIB signatures. These kimberlites show signatures of Oceanic 

subduction along with sediments at asthenospheric depths.  The younger 93 Ma Juina 

Kimberlites of the Amazonian craton is unique, it show geochemical signatures similar to 

Lamproites.  The super deep diamond inclusion studies (Kaminsky et al, 2010; Bulanova et al 

2010) have shown that they have source region from great depths ranging from 670 to 410km.   

 

The transitional type signatures are thought to have formed by the adiabatic 

decompression melting of SCLM due to extensional tectonics (Becker et al, 2007).  A SCLM 

source has been ascribed as the source for Brazilian kimberlites in order to characterise the 

isotopic and incompatible trace element signatures (Gibson et al, 1995; Guarino et al, 2013; 

Donatti-Filho et al, 2013b).  In this model, it is proposed that asthenospheric fluids/melts have 

interacted with SCLM and subsequently melted. As proposed by Becker et al, the cretaceous 

APIP kimberlite magmatism is related to the continental extension due to South Atlantic 

rifting.   
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The role of Hotspot Trindade-Martin Vaz (TMV) in kimberlite emplacement 

 

Crough et al (1980) suggested age progression along the Corridor-125 due to the 

passage of the Trindade hotspot below the Brazilian plate along corridor-125.  The validity of 

hotspots influence with kimberlite emplacement within the Brazilian plate during South 

Atlantic rift is analyzed in this section.  It is carried out by using plate reconstruction with the 

help of Gplates open source software {http://www.gplates.org} and the Heine’s plate 

kinematic model is used along with data from gplates hotspot data.   

 

Gplates: this open source software enables interactive visualization of plate-tectonics open 

source.  It is configured to handle geographic information system functionality and raster data 

together under the reconstructions. It is innovative software allowing the visualization and 

manipulation of reconstruction and associated data through geological time. This software 

runs on various operating systems, windows operating system compatible version is utilized 

in this study. Gplates is developed by an international team of scientist, professional software 

developers and postgraduate students at School of Geosciences at the University of Sydney, 

the Division of Geological and Planetary Sciences at CalTech and The Centre for 

Geodynamics at the Norwegian Geological Survey (NGU).   

 

Scientists at the University of Sydney, Norwegian Geological Survey and Cal Tech 

have also been compiling sets of global data for plate boundaries, continental-oceanic crust 

boundaries, plate rotations, absolute reference frames and dynamic topography.  It has been 

licensed for distribution under GNU (general public license) version 2. Gplates being state-of 

the art software, it can handle and visualize data in variety of formats geometries like raster 

data to link plate kinematics to geodynamic evolution models. Finally it can produce high-

resolution paleo-geographic maps and animation videos for presentation. 

 

As mentioned in the earlier paragraph, Crough related kimberlite occurrence age along 

corriod-125 with Trinidad Martin Vaz hotspot paleo-track based on the kimberlite age data 

that was available at that time.  With more available robust age dating techniques and age of 

kimberlites, the scenario has changed with respect to age progression along the Corridor-125. 

There is no precise age progression along entire length of the corridor-125 as proposed by 

Crough. Though oldest kimberlites are only found on the NW end of the corridor and 

youngest kimberlites are found in the SE end, the intermediate age kimberlites are found 
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mixed up all along the lineament, which makes the interpretation of hotspot influence 

unsustainable. Example of such intermittent age group kimberlite is the 120 Ma kimberlite 

found in the Extra-Amazonian and Amazonian region.  To arrive at a conclusion, the 

reconstruction of the Brazilian plate with hotspot fixed frame is taken up.  The Trinidad 

Martin Vaz paleo track is traced on Brazilian plate and checked with respect to kimberlite age 

and location along corridor-125.   This reconstruction depicts the passage of the Brazilian 

plate over fixed the hotspot TMV. As the Brazilian plate moves over TMV hotspot due to 

Pangea plate organization and South Atlantic opening, the TMV traces a wavy path as shown 

in the fig.9a &b. The TMV path is not exactly coincident with the Corridor-125 but it has 

been to in close proximity to the Corridor.  

The TMV motion path has traced the close proximity of Corridor-125 with initial 

loping around 300 Ma to 180 Ma at the North-Western end and then following the entire 

length close proximity of the plate as the plate motion continued. If the kimberlite 

emplacement is influenced by this hotspot paleo-track, then the position of corridor-125 

should have been slightly lower than the currently considered location and more kimberlite 

occurrences should have been found in this slightly lower corridor region.  This is not 

observed.  Also, in the previous section on geochemistry of Brazilian kimberlites, we have 

seen there are no geochemical similarities with the TMV rock and kimberlite geochemistry 

from Corridor-125.   Sequential age progression along the corridor is also not seen.  Thus, the 

association of the hotspots like TMV directly in the kimberlite magma generation and its 

emplacement is ruled out.   
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Fig.9a &b: TMV hotspot Trail along the Corridor-125 with kimberlite occurrences. 
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5. DISCUSSION 

 

The continuation of Corridor-125 from Extra-Amazonian region beyond 

Transbrasiliano lineament into the Amazonian craton is a matter of debate. Firstly, because 

the continuation of dykes found in the Extra-Amazonian region stops right at the 

Transbrasiliano lineament. Secondly, basement structural trend orientation also varies, and 

lastly, age of kimberlites from Amazonian craton is different from the Extra-Amazonian 

craton Cretaceous kimberlites.  The Permo-Triassic (225 to 268 Ma) kimberlite found in 

Amazonian region and is absent in the Extra-Amazonian region. Whereas on contrary to the 

above observations, similar age group younger (120 Ma, 91 to 93 Ma) kimberlites on both the 

regions along the corridor-125 contradicts the above observed features of non-continuation. 

The Amazonian craton is interpreted to have amalgamated with Extra-Amazonian region from 

650 to 630 Ma (Cordani et al, 2013; Neves and Fuck, 2014).  On The Amazonian region any 

tectono-magmatic events prior to 225 Ma is unique to the craton and does show different 

geochemical signatures than that of Extra-Amazonian region. The 93 Ma kimberlites of Juina 

show subduction related magmatic signatures and magma generation trigger related to South 

Atlantic opening.  There is a genetic link between the Extra-Amazonian part of the corridor-

125 with that of the oceanic transforms namely Trinidad fracture zone, Trinidad_A fracture 

zone and Trinidad_B fracture zone.  This link is clearly visible on global magnetic anomaly 

map.  These transforms are related to South Atlantic opening and hence, a clear association 

with the continental lineaments, its associated kimberlites and the newly developed oceanic 

transforms are genetically related to one another and the tectonic event associated with them.  

 

Dual Tectonic Trigger model of Kimberlite emplacements in Brazil.   

It is proposed that Dual Tectonic trigger model of kimberlite emplacement has 

affected corridor-125. The Initial rifting of South American plate from  North American 

(Laurentia Plate) has triggered kimberlite emplacement in the Amazonian region along the 

western boarder subduction zone and has resulted in Permo-Triassic kimberlites on 

Amazonian craton. The older basement structures have been reactivated and the kimberlites of 

Permo-Triassic age are emplaced during the Pangea plate reorganization. This is soon 

followed by Pangea rifting at 225Ma at the northern border of the country. The Permo-

Triassic kimberlite occurrence region is characterized by suture zone where subduction of the 

Pacific plate due to east-ward directed motion has been in place since 300 Ma to 130 Ma.  

Probably, the group I signature of these kimberlites is due to its associated with this 
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subduction derived material. This fact needs confirmation from geochemical signatures.  This 

magmatism has been switched over to another plate reorganization and reactivation of 

structures due second tectonic rifting – The South Atlantic Rifting, along the eastern margin 

of the lineament. This rifting has favoured kimberlite emplacements extending up to Upper 

Paraguay thrust zone (Suture zone between Amazonian and São Francisco Craton) as we see 

120 Ma kimberlite in Paranatinga cluster. With maturing rift on the east coast, increased 

incidence of kimberlite emplacements with younger age are found concentrated on the Extra-

Amazonian region. Only two peak episodes of kimberlite magmatism has affected the 

Amazonian region due to South Atlantic rift.  The occurrence of 95Ma Juina magmatism with 

ultra-deep diamond inclusions have been attributed to subduction derived source magma 

generated during plate reorganization related to South Atlantic rifting.    
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6. Conclusions 

 

From this review the following conclusions could be drawn: 

 

 Detailed analysis of kimberlite and related magmatism in time and space has allowed 

us to pinpoint lithosphere-scale transfers as important structural controls for 

emplacement. Corridor-125 is one such lithosphere-scale lineament controlling 

kimberlites emplacements.  

 

 The onset of the major period of kimberlite magmatism coincided with incipient 

breakup of Gondwana when such structures are expected to develop/reactivation of 

old continental structures (before ocean crust formation). 

 

 

 Subducted material gives rise to change in magma composition during short periods of 

kimberlite emplacements. This is seen in the 226-268 Ma short episode kimberlite 

magmatism in Amazonian region. Short term episodicity is related to a combination of 

processes of subduction, reactivation and rifting in Brazil.  

 The geometry including movement direction can be gleaned from studying 

“connected” transform faults on the adjacent oceanic crust. As we seen there is a link 

between the South Atlantic transforms with the corridor-125.    

 

 Long term episodicity is determined by periods of supercontinent breakup triggered by 

extension.  The Cretaceous and younger kimberlites in Brazil is an evidence for this 

long term episodicity. 

 

 The corridor-125 is a continental translithospheric lineament made of two sets of 

lineaments. These two sets correspond to The Amazonian and Extra-Amazonian 

region lineaments.  The Extra-Amazonian region corridor-125 is an older lineament 

that has a genetic link to younger South Atlantic transform fractures formed during the 

opening of the South Atlantic Ocean and West-Gondwana break up.  It comprises of 

numerous mega- and giga-lineaments. Fractures, faults and minor structures which 
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have been formed and or reactivated several times. The Amazonian part of corridor-

125 is associated with Pangea supercontinent tectonic trigger. The Andes is the surface 

expression of Pacific plate subduction, the kimberlite emplacement is the continental 

inland expression of the Pacific plate subduction and Pangea tectonic trigger.  This 

tectonic trigger has reactivated older than 1.0 Ga basement structures.   

 

 The emplacement of Kimberlites is not related to plumes that crossed the lineament; 

rather they are triggered due to reorganization/change in the plate motion kinematics. 

As there is no apparent age progression unlike what is expected from a plume-

triggered kimberlite emplacement model. 

 The entire episode of kimberlite magma generation and emplacement is attributed to 

stress propagation due to Plate reorganization, incipient rifting and tectonic trigger due 

to South American plate motion and its related extension and subduction on the 

western margin.   

 

 It has been observed that thermal perturbations associated with tectonic events 

involving lithospheric faults reactivated during breakup of continents resulting in 

strain localization and melt focusing along these reactivated structures.  Finally, the 

emplacement of the magmatic rocks.   

 

 Major structural trends of kimberlite emplacement loci along the corridor-125 are 

associated mainly with NE and NW trends.  Other structural trends of importance are 

along NNW-SSE.  WWN and EW trends are rarely seen as kimberlite emplacement 

controls.  

 

 Major dyke swarms also follow the main structural trend (NE and NW) and with 

kimberlites along Corridor-125.  All forming part of the structural controls showing 

reactivation.  

 

 Corridor-125 is an older lineament probably older than 1.8 Ga and has been 

reactivated several times; kimberlite emplacement is associated to one reactivation 
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event. Neotectonic reactivation of few faults at 1.6 Ma (Saadi et al. 2002) signifies this 

as an ongoing process. 

 Corridor-125 kimberlites are of Group I, transitional type and Juina is a lamproite.  

 

 The transitional type kimberlites are found only on Extra-Amazonian region 

associated with tectonic extension; the group I kimberlites are found only on 

Amazonian Region associated with subduction related rifts and grabens.  The 

lamproite is associated with Parecis basin horst and its associated rift and a subducted 

oceanic crust is attributed as the source for these lamproites.   

 

 Kimberlite emplacement is post-dated by kamafugites of shallow depth origin than 

kimberlites (Felgate, 2014) again showing structural reactivation. Therefore magma 

composition reflects different styles of lithosphere deformation - not plume activity.   

 

 Finally, continued rifting and the opening of the Atlantic with progressive 

thinning/delamination of the lithosphere beneath South America where magmatic 

switching from kimberlites to kamafugites are seen.  
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