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final da tese defendida pela aluna Diana
Cristina González González, e orientada
pelo Prof. Dr. José Cândido Silveira
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Aos Profs. Germán Acero, Ricardo Quintana, Marcela Rodŕıguez, Sandra Cancino, En-
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Resumo

A seleção de antena na transmissão tem sido apresentada como uma estratégia

promissora para explorar os benef́ıcios do uso de múltiplas antenas em sistemas

de comunicações com retransmissores. No entanto, essa abordagem pode exigir

um montante considerável de estimações de canal, transmissões de realimen-

tação e atraso, dado que a sua implementação ótima e centralizada requer o

monitoramento do estado do canal de todos os enlaces. Para aliviar essas defi-

ciências, este trabalho propõe e analisa um conjunto de esquemas subótimos

de seleção de antena na transmissão para sistemas com retransmissores do

tipo amplifica-e-encaminha, os quais podem ser implementados de uma forma

distribúıda. Nos esquemas propostos, a antena é selecionada com base na in-

formação local do estado de canal que está dispońıvel na fonte, requerendo,

portanto, um atraso e uma carga de realimentação pequenos e constantes. Tal

abordagem é considerada em uso conjunto com diferentes técnicas, incluindo

métodos de combinação de diversidade (combinação por máxima razão e com-

binação por seleção) no destino, protocolos de ganho fixo ou variável no relay,

e transceptores com múltiplas antenas no relay. Além disso, para o caso partic-

ular em que o retransmissor tem ganho fixo e uma única antena, considera-se

também o uso de um mecanismo de seleção de enlace na fonte. Para cada caso,

o desempenho do sistema é avaliado em termos de probabilidade de outage,

eficiência espectral e/ou vazão. O foco principal é direcionado à probabili-

dade de outage, para a qual são deduzidas expressões exatas e limitantes de

desempenho. Uma análise assintótica é também efetuada para enriquecer a

compreensão do comportamento do sistema quando operando sob alta relação

sinal-rúıdo. Finalmente, como contribuição isolada, uma estratégia subótima

e simples de alocação de potência é elaborada para um sistema com múltiplos

retransmissores do tipo decodifica-e-encaminha, considerando-se enlaces com

erros e codificação de fonte distribúıda.

Palavras-chave: Diversidade cooperativa, canal com retransmissão, seleção

de antena na transmissão, probabilidade de outage, combinação por máxima

razão, combinação por seleção, seleção de enlace, eficiência espectral, alocação

de potência.



Abstract

Transmit-antenna selection has been presented as a promising strategy for

exploiting the benefits of multiple antennas in relaying communication sys-

tems. However, this approach may demand a considerable amount of channel

estimations, feedback transmissions, and delay, since its optimal centralized

implementation requires monitoring the channel state of all links. To allevi-

ate those impairments, this work proposes and analyzes a set of suboptimal

transmit-antenna selection schemes for amplify-and-forward relaying systems,

which can be implemented in a distributed manner. In the proposed schemes,

the antenna is selected based on the local channel-state information that is

available at the source, thus requiring a low and constant delay/feedback

overhead. Such an approach is considered along with di↵erent techniques,

including diversity combining methods (maximal-ratio combining and selec-

tion combining) at the destination, fixed- and variable-gain protocols at the

relay, and multi-antenna transceivers at the relay. A link-selection mecha-

nism at the source is also considered for the special case of a single-antenna

fixed-gain relay. For each case, the system performance is assessed in terms

of outage probability, spectral e�ciency, and/or throughput. The main focus

is placed on the outage probability, for which exact or bound expressions are

derived. An asymptotic analysis is also performed to provide further insights

into the system behavior at high signal-to-noise ratio. Finally, as an isolated

contribution, a simple suboptimal power allocation strategy is designed for a

decode-and-forward multi-relay system with lossy intra-links and distributed

source coding.

Key-words: Cooperative diversity, outage probability, relay channel, transmit

antenna selection, selection combining, maximal-ratio combining, link selec-

tion, spectral e�ciency, power allocation.
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• D. C. González, D. B. da Costa, and J. C. S. Santos Filho, “An e�cient distributed

approach for TAS/SC and TAS/MRC in variable-gain AF relaying systems,” IEEE

Trans. Commun., under review.
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Chapter 1
Introduction

Multiantenna cooperative relaying schemes have emerged as a promising strategy to

boost the reliability, capacity, and coverage of wireless communication systems [1–5]. In or-

der to alleviate the deleterious impact of spectrum scarcity, multipath fading, shadowing,

and path loss on communications, such schemes benefit from the well-known advantages

o↵ered by multiple-input multiple-output (MIMO) techniques [6–10], namely, spatial di-

versity and spatial multiplexing, while creating an extended virtual antenna array based

on a collection of distributed antennas from multiple collaborating terminals [8,11]. How-

ever, implementing those schemes may be rather intricate, due to common restrictions in

power, complexity, cost, and antenna size. As a result, practical realistic implementations

of multiantenna relaying schemes usually limit the use of multiantenna devices to a few

particular nodes, or restrict the total number of antennas in the various nodes [12], or

both.

These practical limitations can be addressed by opting for simplified multiantenna

techniques. At the transmitter side, a technique that proves attractive is transmit-antenna

selection (TAS), which retains the essential benefits of more sophisticated MIMO schemes

[13, 14] at a reduced cost and complexity. In this technique, the best antenna is selected

for transmission, based on the channel state information (CSI) of the multiple links from

source to destination. This CSI must be first estimated at various nodes and then sent to

the transmitter, thus requiring some feedback notifications. The required number of bits

of feedback information varies depending on the number of source, relay, and destination

antennas [13]. In optimal centralized TAS schemes, it is usually the destination that

chooses the best antenna that the source should transmit with, based on the full CSI of

all available links. Afterwards, the destination feeds the index of the selected antenna

back to the source. This process may incur a considerable delay and feedback overhead.

Indeed, as the number of antennas increases, such scheme may rapidly become infeasible

in practice. Therefore, suboptimal distributed antenna-selection schemes (DAS) based on

partial CSI of a subset of links are of great practical interest.

At the receiver side, in the destination, the signal replicas coming from the direct and

relaying links must be properly combined to yield a considerable diversity gain. Although

there are several diversity techniques available, only the two most popular ones, namely,

maximal-ratio combining (MRC) and selection combining (SC), shall be discussed in this
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work. On the one hand, MRC is the optimal linear combining scheme, which is attained

by co-phasing, weighting, and adding the received signals from all diversity paths [15].

However, its implementation is relatively intricate, since it requires multiple channel esti-

mations to adequately weight each path with a factor proportional to the corresponding

signal level, as well as a complex hardware design with a dedicated receiver chain for each

antenna [16]. On the other hand, SC is a simpler suboptimal scheme, where the diversity

path with the highest signal-to-noise ratio (SNR) is selected. In this scheme, no channel

estimation is required and a single receiver chain su�ces to process the selected path.

Choosing one of these combining techniques represents a trade-o↵ between performance

and complexity, and a suitable decision shall depend on the system requirements and

available resources.

Another important aspect of cooperative systems is how each relay processes the re-

ceived signal before forwarding it to another relay or to the final destination. This process-

ing can follow di↵erent protocols, which can be divided into two main groups: transparent

relaying and regenerative relaying [7,11,17–19]. In the transparent relaying protocols, the

relay does not access the information contents of the received message, i.e., the latter

is not detected by the former. Instead, the relay only performs some linear (analog)

operations (e.g., amplification and phase shifting) in order to prepare the signal for re-

transmission [7]. In this group, the amplify-and-forward (AF) relaying protocol is by far

the most widely used. The AF protocol has a reduced hardware complexity, since the

relay does not perform any kind of detection. In contrast, AF relays may exhibit noise

accumulation, since the relay amplifies and retransmits a noisy version of the transmitted

source signal, without decoding it [20, 21]. In addition, two types of amplification are

usually employed for the AF protocol, namely, variable gain and fixed gain. In the for-

mer, the relay requires the instantaneous CSI of the source-relay link in order to achieve a

fixed transmit power all the time. In the latter, the relay employs the average CSI of the

source-relay link in order to achieve a fixed average transmit power [22,23]. Contrarily to

these transparent protocols, in regenerative relaying, the relay extracts the information

sent by the source, by applying some procedure to recover the original source message

prior to retransmission. In this group, the most prominent protocol is decode-and-forward

(DF). In this protocol, the relay decodes, re-encodes, and retransmits the source message

to the destination. The DF protocol achieves a better performance than the AF protocol,

but it requires a much more complex implementation [7].

1.1 Related Work and Motivation

Several studies have proposed and tested various relaying schemes with the integrated

use of TAS techniques, at the transmitter side, and diversity-combining methods, at the

receiver side, including those in [4, 12, 24–33] and the references therein. A timeline is

presented in Fig. 1.1. In a pioneering work [24], the authors derived an optimal selection

criteria for the TAS/MRC scheme operating over a multi-antenna, half-duplex, dual-

hop AF relaying network. Based on a bit-error rate (BER) analysis, they concluded

that the optimal TAS strategy achieves the same diversity order of a more sophisticated

communication scheme that fully and simultaneously exploits all transmit antennas. The
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2008 2009 2010 2011 2012

Peter et al 
TAS/MRC, [24]

Karaevli et al 
TAS/SC, [25]

(a)

2008 2009 2010 2011 2012

Cao et al 
TAS/MRC, [26]

Amarasuriya et al TAS/MRC [27] 
Tarkhan et al TAS/MRC [28] 
Suraweera et al TAS/MRC [12]

(b)

2008 2009 2010 2011 2012

Kim et al 
TAS/MRC, [31]

Chen et al 
TAS/MRC, [29]

Suraweera et al 
 TAS/MRC, [30]

Yeoh et al 
TAS/MRC and TAS/SC, [32]

Elkashlan et al 
TAS/MRC and TAS/SC [33] 
Yeoh et al 
TAS/MRC and TAS/SC, [4]

(c)

2008 2009 2010 2011 2012

Ding et al 
DAS/MRC, [34]

(d)

Figure 1.1: Timeline of TAS relaying techniques: (a) optimal centralized schemes; (b)
suboptimal schemes disregarding the channel state of some transmission links; (c) optimal
schemes under no direct link; (d) distributed suboptimal schemes.

main drawback of this scheme is its high complexity when performing an exhaustive search

for the best transmit antenna. A similar study for TAS/SC was presented in [25], leading

to similar conclusions as well. In this case, the diversity order was investigated based on

an asymptotic analysis of the symbol-error rate (SER). The results showed that DAS/SC

achieves the same diversity order of TAS/MRC, as indeed expected. These two works on

optimal centralized TAS schemes are illustrated in Fig. 1.1a.

Afterwards, aiming to reduce complexity, some suboptimal TAS strategies have been

explored by the research community. In most of these explorations, suboptimal selection

criteria have been considered that disregard the channel state of some transmission links

between source and destination [12, 26–28] (see Fig. 1.1b). The authors in [26] proposed

two suboptimal, low-complexity TAS strategies for the same network configuration origi-

nally employed in [24]. These strategies were based on the local CSI at the source, that

is, on the channel state of the source-destination link (a.k.a. direct link) and source-relay

link (a.k.a. first hop). More specifically, the SNR of either the direct link or the first

hop was maximized in the proposed strategies. The performance of these strategies was

investigated via simulation, and the results revealed that the maximization of the direct-

link SNR can achieve the same diversity order as the optimal centralized strategy. Later

on, the authors in [27] unfolded a mathematical analysis of the two strategies introduced

in [26]. For both strategies, lower bound expressions of the outage probability and SER

were derived under Nakagami-m fading. Another suboptimal strategy was introduced

in [28], once again for the network configuration used in [24]. Therein, an adaptive TAS

rule was designed, dynamically based on the CSI of either the direct link or the direct

link and first hop, depending on the state of these links. The performance of this strat-
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egy was investigated via simulation. Finally, the authors in [12] assessed analytically

and compared the performance of two TAS/MRC schemes (optimal and suboptimal) in a

dual-hop, variable-gain AF relaying network with a multi-antenna source, a single-antenna

relay, and a single-antenna destination. The TAS rule for the proposed suboptimal strat-

egy was based solely on the CSI of direct link. A tight upper bound was used to derive

CDF expressions for the SNR of the two schemes, based on which some performance mea-

sures were then investigated, such as outage probability, average BER, and mean channel

capacity.

TAS techniques have been also widely addressed for dual-hop AF relaying networks

under the absence of a usable direct link, as in [4,29–33] (see Fig. 1.1c). This assumption

reduces the complexity of the TAS scheme, since it becomes then su�cient to maxi-

mize the first- and second-hop SNRs separately. In [29], the authors derived the SER

and outage probability for a TAS/MRC relaying network with a multi-antenna source,

a multi-antenna destination, and a single-antenna AF variable-gain relay. This scheme

was generalized in [31] and [30], by assuming a multi-antenna relay. More specifically,

the authors in [31] derived the PDF of the end-to-end SNR, and provided a BER expres-

sion when using M -PSK over Rayleigh fading channels. This work was complemented

in [30], by considering the performance analysis of other metrics, such as outage prob-

ability, moments of the end-to-end SNR, and error rates for some modulation schemes,

including M -QAM. Based on the same relaying network, the authors in [32] investigated

a distributed TAS/MRC strategy, which selects the best transmit antennas at the source

and relay by maximizing the corresponding local CSIs. For this scheme, exact closed-form

expressions were derived for the outage probability and SER, based on the CDF of the

end-to-end SNR. In addition, asymptotic high-SNR expressions were also derived for each

of these metrics. Afterwards, the authors in [33] further explored the scheme proposed

in [32], but now considering SC at the destination. In [32] and [33], Nakagami-m fading

was assumed. The results therein showed that the two schemes (TAS/MRC and TAS/SC)

achieve the same diversity order. Finally, the authors in [4] investigated the operation of

such schemes when operating with multiple relays under Weibull fading.

An e�cient distributed approach was introduced in [34] for a DAS/MRC scheme op-

erating over a single-antenna fixed-gain AF relay (see Fig. 1.1d). Unlike all the aforemen-

tioned TAS strategies, this approach avoids the full CSI of optimal centralized schemes

while considering all the links in the antenna-selection mechanism. Importantly, it achieves

a satisfactory performance under a constant and low delay/feedback overhead. Such

characteristics render the new approach highly attractive from a practical perspective.

Therefore, further investigations into the potentials of this approach become timely and

important.

1.2 Contributions and Outline

In light of the above discussion, the main scope of this dissertation is to conceive and

test a myriad of generalizations, extensions, and derivatives inspired by the distributed

approach introduced in [34]. More specifically, we design and analyze a set of low-cost,

low-complexity, suboptimal distributed transmit-antenna selection schemes for amplify-
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and-forward relaying networks, by considering many di↵erent network configurations. In

addition, an independent “unplanned” contribution is presented at the end, somewhat

disconnected from the other contributions, but still into the context of relaying networks.

The following chapters are replicas of manuscripts that we have published in or submitted

to journals and conferences along the research activities. Next we present an annotated

outline of the rest of this dissertation.

Chapter 2. This Chapter investigates the performance of a DAS/SC scheme for dual-

hop fixed-gain AF relaying systems, containing a source equipped with Nt antennas,

as well as a single-antenna relay and destination. It is assumed that all channels

undergo flat independent Rayleigh fading — this is also assumed in all subsequent

chapters. As already mentioned, the proposed antenna-selection strategy is inspired

by the distributed TAS strategy proposed in [34]. However, in contrast to that work,

which uses MRC at the destination, our work proposes and analyzes the use of SC

instead, in order to reduce the system complexity. On the other hand, like in [34],

the proposed strategy has a reduced delay and feedback overhead, requiring only a

2-bit pilot signaling to inform the source with relevant information for the antenna

selection. The performance of the proposed DAS/SC scheme is assessed in terms of

outage probability, for which analytical lower and upper bounds are derived, since an

exact closed-form solution to the inherently intricate mathematical framework seems

infeasible. Moreover, the analytical results are verified via Monte Carlo simulation.

In addition, a high-SNR analysis of these bounds is performed to provide insights

into the asymptotic behavior and system diversity order. The results reveal that the

proposed scheme achieves a diversity order of Nt +1, being the same achieved by its

optimal centralized TAS counterpart as well as by the DAS/MRC scheme originally

proposed in [34]. Importantly, the proposed scheme performs closely to the optimal

one. Therefore, for practical purposes, it represents an interesting alternative, giving

an excellent trade-o↵ between complexity and performance.

Chapter 3. This Chapter extends the work in Chapter 2, by further detailing the deriva-

tion process and enhancing the discussions related to the DAS/SC scheme, in addi-

tion to introducing and investigating a new distributed mechanism for transmit-

antenna selection and link selection (DAS/LS) — either the direct link or the

relaying link is selected for communication. The primary motivation behind the

proposed DAS/LS scheme is to reduce the loss in spectral e�ciency due to the

multi-hop transmission, as follows. In this scheme, a TAS rule identical to that of

the DAS/SC scheme is used. However, unlike DAS/SC, the selection between the

direct link or relaying link is no longer performed at the destination, after the trans-

mission process, but at the source instead, before the transmission process. This

way, the average spectral e�ciency is improved, once a time slot is saved whenever

the direct link happens to be selected for communication. Exact closed-form expres-

sions are derived for the outage probability, mean spectral e�ciency, and high-SNR

asymptotic behavior of the DAS/LS scheme. Our analytical results for DAS/SC and

DAS/LS are verified using Monte Carlo simulation, and compared against those of

centralized (TAS/MRC and TAS/SC) and distributed (DAS/MRC) schemes previ-
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ously investigated in the literature. While both centralized and distributed DAS/SC

and DAS/MRC schemes achieve full diversity order, equal to Nt + 1, the proposed

DAS/LS scheme achieves a nearly-full diversity order, equal to Nt. However, in

terms of spectral e�ciency, the DAS/LS scheme outperforms all the others.

Chapter 4. This Chapter generalizes the DAS/MRC scheme proposed in [34] to the

multi-antenna relay scenario, by considering one half-duplex fixed-gain AF relay

with Nrr receive antennas and Nrt transmit antennas. Similarly to [34], the investi-

gated network is composed of one source with Nt antennas and one single-antenna

destination. In order to assess the performance of the generalized DAS/MRC

scheme, lower and upper bounds for the outage probability are derived. More-

over, an asymptotic expression for each of these bounds at high SNR is obtained

in closed form. From these results, it is observed that the proposed DAS scheme

achieves a full diversity order, equal to Nt + min(Nrt, Nrr). Some representative

scenarios, using di↵erent number of antennas at the source and relay, are presented

and analyzed. Additionally, Monte Carlo simulations are run to support the de-

rived analytical bounds. Importantly, the underlying distributed strategy is shown

to perform closely to the costly optimal centralized TAS/MRC scheme, especially

when the relay approaches the destination.

Chapter 5. This Chapter complements the contribution introduced in Chapter 4, by de-

scribing in more detail the mathematical analysis of the generalized DAS/MRC

scheme and extending the amount of investigated scenarios and related discus-

sions. In addition, a corresponding generalized (multi-antenna relay) version of the

DAS/SC scheme presented in Chapter 3 is also designed and analyzed. Similarly

to the DAS/MRC scheme, the central metric used to assess the performance of the

generalized DAS/SC scheme is the outage probability. Analytical lower bounds for

the outage probability of the proposed schemes are derived and compared. Impor-

tantly, the derived bounds prove to be very tight approximations to the exact outage

performance. Moreover, capitalizing on a strikingly interesting property of Stirling

numbers of the second kind, closed-form asymptotic expressions for these bounds

were obtained. The proposed distributed schemes achieve the same diversity order,

equal to Nt + min(Nrt, Nrr), which is identical to that of their optimal centralized

counterparts. In order to verify the accuracy of the analytical framework, Monte

Carlo simulation results are also provided. The impact on the outage probability is

discussed for di↵erent system parameters, such as average SNR, relay location, and

number of antennas.

Chapter 6. This Chapter introduces and analyzes new DAS/MRC and DAS/SC schemes

for dual-hop AF relaying systems. However, di↵erently from all previous Chapters,

in which fixed-gain relaying is used, herein we extend the distributed approach to

the variable-gain scenario, leading to a distinct design framework. Once again,

we consider a source with Nt antennas, as well as a single-antenna relay and a

single-antenna destination. Analytical lower bounds for the outage probability of

the proposed schemes are derived, since an exact analysis looks intractable. Impor-
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tantly, the obtained bounds prove to be extremely tight approximations to the exact

outage performance. In addition, a closed-form asymptotic analysis at high SNR

is performed for these bounds, revealing that both proposed schemes achieve a full

order diversity of Nt + 1, the same achieved by its optimal centralized counterpart.

Monte Carlo simulation is used to validate our analytical results. Furthermore, the

proposed distributed schemes are shown to perform closely to the costly centralized

counterparts, especially when the relay approaches the source or destination.

Chapter 7. This Chapter brings an isolated contribution, which leaves the TAS topic

addressed in the previous Chapters. This contribution resulted from a three-months

research visit to the Technische Universität Dresden, Germany, as part of the project

RESCUE, funded by the European Commission, and aimed at the development of ef-

ficient communication technologies for highly challenging environments (e.g., during

catastrophes or disasters). In this Chapter, the outage performance of a distributed

source coding scheme is investigated for a decode-and-forward multirelay system

inspired by the so-called Chief Executive O�cer problem. The CEO problem sug-

gests that the source message can be recovered at the destination by combining a

set of corrupted replicas forwarded by multiple relays, as long as these replicas are

su�ciently correlated with the original message. We consider a binary source that

transmits a message through multiple lossy intra-links, modeled as independent bi-

nary symmetric channels (BSC). As a result, each relay detects a possibly erroneous

replica of the source message, re-encoding and forwarding it to the destination via a

block Rayleigh fading channel. The destination, in turn, must reconstruct the source

message by jointly decoding all received replicas. In order to derive an analytical

expression for the outage probability of such scheme, the Slepian-Wolf Theorem is

revisited and adapted to comply with the engineering requirements of the problem

at hand. Furthermore, based on an asymptotic analysis, a simple and highly e↵ec-

tive power allocation strategy is designed for the investigated system. Our results

and discussions find important applications in emerging technologies for robust and

e�cient communications in unpredictable environments.
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Chapter 2
Distributed Transmit-Antenna Selection
Scheme for Relaying Systems with
Selection Combining

Diana C. González, Daniel B. da Costa, and José Cândido S. Santos Filho1

Abstract

The use of multiple antennas at the node terminals of relay networks potentially improves

cooperative diversity in terms of both reliability and spectral e�ciency. A simple practical

approach to exploit such potentials at the transmitter side is to appropriately select one

out of the many transmit antennas available. In this work, we propose and analyze a

dual-hop fixed-gain amplify-and-forward relaying system based on a distributed transmit

antenna selection scheme, along with a selection-combining treatment of the direct and

relaying signals at the destination. We derive analytical lower and upper bounds for

the outage probability of the proposed scheme in single-fold integral form. In addition,

asymptotic expressions for these bounds at high signal-to-noise ratio are obtained in closed

form. Our results reveal that the proposed scheme achieves full diversity order. More

importantly, the underlying distributed strategy of transmit antenna selection is shown

to perform closely to the costly optimal centralized solution.

1This Chapter is a replica of the following manuscript: D. C. González, D. B. da Costa, and J.
C. S. Santos Filho, “Distributed transmit-antenna selection scheme for relaying systems with selection
combining,” in Proc. XXXI Brazilian Telecommunications Symposium (SBrT), Fortaleza, Brazil, 1–4
Sep. 2013.
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2.1 Introduction

Several studies have suggested the combined use of multiple-input–multiple-output

(MIMO) techniques and cooperative communications in order to improve the reliability

of wireless systems, by fully exploiting multipath signal diversity [1], [2], [3]. However,

in practice, the implementation of such multiantenna systems is constrained by restric-

tions in power, complexity, and antenna size. Realistic schemes usually limit the use of

multiple antennas to specific relay network nodes, or strongly restrict the total number of

antennas [4].

As well known, the impairments of multipath fading on communications can be alle-

viated by using both transmit as well as receive diversity techniques. At the transmitter

side, these techniques include, for example, space-time coding and transmit antenna se-

lection (TAS); at the receiver side, they include many diversit-combining schemes such

as maximum-ratio combining (MRC) and selection combining (SC) [2]. Many dual-hop

networks with TAS at the source and MRC at the destination have been recently proposed

and analyzed in the literature (see, for example, [4], [5], and the references therein). In

particular, the TAS/MRC combination is widely used, because TAS reduces the complex-

ity and power requirements at the transmitter—although it is not an optimal beamforming

technique [6]—and because MRC is the optimal linear combining technique [7]. On the

other hand, the MRC implementation requires many channel estimations and complex

hardware resources, since each antenna needs a separate receiver chain [8]. In contrast,

SC needs no channel estimation and only requires a single receiver chain. Thus, know-

ing that both combining techniques achieve the same diversity order, SC represents an

excellent trade-o↵ between complexity and performance.

Very few studies have considered the TAS/SC combination in relay networks, including

the following. In [2], the end-to-end performance is analyzed for a regenerative (multi-

hop, decode-and-forward) MIMO relaying system. This system assumes that the receivers

have perfect channel state information (CSI) in order to apply TAS at the transmission,

and then the best-antenna information is fed back to the transmitter using partial CSI.

Karaevli et al. [9] determined the performance of a cooperative system with a single relay

and multiple antennas at the source and destination. In this system, TAS is employed

to choose the transmit antenna with the largest end-to-end SNR at the source and relay,

by using feedbacks from destination. Finally, in [3], a performance comparison between

TAS/MRC and TAS/SC schemes in MIMO relay networks is performed. It was found

that the SNR advantage of TAS/MRC over TAS/SC in balanced hops does not depend

on the number of relays.

In systems with TAS, a feedback usually exists that informs the transmitter the best

antenna to select. This feedback contains CSI of various links of the system. That is,

the channel knowledge improves the overall system performance. The required bits of

feedback information varies depending on the number of source and destination antennas

[10].

In this work, we capitalize on the distributed antenna selection (DAS) scheme pro-

posed in [5] for a relaying network under a dual-hop, fixed-gain, amplify-and-forward (AF)

scenario with a multiple-antenna source and single-antenna relay and destination. On the
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other hand, di↵erently from [5], which uses MRC, we propose and analyze the use of SC

at the destination, in order to reduce the system complexity. A remarkable feature of the

TAS scheme used here is the requirement of CSI with low and constant delay/feedback

overhead, regardless of the number of transmit antennas [5]. We derive analytical lower

and upper bounds for the outage probability of the proposed scheme in single-fold integral

form. In addition, asymptotic expressions for these bounds at high signal-to-noise ratio

are obtained in closed form. Our results reveal that the proposed scheme achieves full di-

versity order. More importantly, the underlying distributed strategy of transmit antenna

selection is shown to perform closely to the costly optimal centralized solution.

Throughout this paper, fZ (·) denotes the probability density function (PDF) of a

generic random variable Z, E [·] denotes expectation, and Pr (·) denotes probability.

2.2 System Model and Antenna Selection Scheme

2.2.1 System Model

We consider a half-duplex dual-hop communication system containing a source S with

Nt antennas, a single-antenna fixed-gain AF relay R, and a single-antenna destination

D. Furthermore, we consider that the noise term in all of the nodes is an additive

white Gaussian noise (AWGN) with mean power N
0

, and that all of the links undergo

independent flat Rayleigh fading. The terminals are assumed to operate on a time-division

multiple access basis.

Before data transmission, TAS is employed at S, in order to find the best transmit

antenna that maximizes the end-to-end SNR. After that, a conventional two-slots co-

operative transmission takes place. As mentioned before, this system is similar to that

presented in [5], but di↵ers from that in the sense that the direct- and relaying-link signals

are now combined at D by means of SC, instead of MRC. Accordingly, the end-to-end

SNR from the ith antenna at S to D can be written as

�i = max

✓

�SD,i,
�SR,i�RD

�RD + C

◆

, (2.1)

where �SD,i , P
S

N
0

|hSD,i|2, �SR,i , P
S

N
0

|hSR,i|2, �RD , P
R

N
0

|hRD|2, and C = 1 + �̄SR, with

�̄SR = E[�SR,i]. In these expressions, |hSD
i

|2, |hSR
i

|2, and |hRD|2 denote the channel power

coe�cients of the links from the ith antenna at S to D, from the ith antenna at S to

R, and from R to D, respectively; and PS and PR denote the transmit powers at S and

R, respectively. As commonly adopted in the literature [5], we assume an homogeneous

network, in which E[�SR,i] = �̄SR and E[�SD,i] = �̄SD, for any i = 0, . . . , Nt, that is,

all links from each antenna at S to D (or to R) undergo identically distributed fading

conditions. Finally, the fixed-gain relaying factor G at R is adjusted according to [11]

G2 = E



PR

PS|hSR
i

|2 + N
0

�

. (2.2)
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Figure 2.1: Operation of the DAS scheme (reproduced from [5, Fig. 1]).

2.2.2 Antenna Selection Scheme

The optimal selection criterion for TAS/SC chooses the i⇤th transmit antenna that

maximizes the end-to-end SNR, i.e.,

i⇤ = arg max
i

[�i] . (2.3)

Although optimal, such a scheme entails a large amount of delay and feedback overhead,

due to the full system CSI required for decision. Alternatively, a much simpler suboptimal

and distributed solution is provided in [5] In this DAS scheme, the local CSI available at S

is exploited to its furthest extent in order to assist the decision, incurring a negligible delay

and feedback overhead. In that work, the DAS concept is motivated and supported by an

important inequality involving the end-to-end SNR of the MRC reception and the SNRs

of the various links [5, Eq. (4)]. Here, since we use SC, the corresponding motivation and

support is given by the following inequality [12], [13]

�i < max
h

�SD,i, �SR,i min
h�RD

C
, 1
ii

�

=
⇠
�i. (2.4)

The DAS scheme is performed in two time slots [5], as shown in Fig. 2.1. In the first

time slot, D sends to R and S a 1-bit reverse pilot signaling. Then, R and S use this bit

to estimate their respective local CSIs �RD and �SD,i. In the second time slot, R compares

its local CSI with C, which may produce two outputs: �RD � C or �RD < C. In the

first case, R sends to S a 1-bit message “1” to indicate that �RD � C and, in this case,

�SD,i and �SR,i, which are available at S (�SR,i can be readily estimated from the 1-bit

message), are su�cient to apply the selection rule max
⇠
�i. In the second case, R sends to

S a 1-bit message “0” to indicate that �RD < C. In this case, from (2.4), the application

of max
⇠
�i would depend on the additional knowledge of �RD, which is unavailable at S.
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Then, a suboptimal decision can be attained from the available CSI as proposed by [4], by

performing the solely maximization of �SD,i. In summary, the transmit-antenna selection

rule of the proposed DAS/SC scheme is given as follows:

i⇤ =

(

i = arg max
i

[max [�SD,i, �SR,i]] �RD � C

i = arg max
i

[�SD,i] �RD < C.
(2.5)

The great advantage of DAS over other AS schemes is its greatly reduced delay/feedback

overhead. In conventional AS schemes, O(log Nt) bits of feedback information are re-

quired, as shown in [10], [4], and [7]. In contrast, in the DAS scheme, only a 2-bit

pilot/feedback signaling is required, at the cost of some additional hardware complexity

at the source.

2.3 Outage Analysis

The outage probability is the probability that the maximum mutual information be-

tween source and destination drops below a predefined spectral e�ciency R
0

(bits/s/Hz).

In our system, it can be formulated as

PDAS

out =

Pr

✓

�RD � C, max



�SD,i,
�SR,i�RD

�RD + C

�

< z , 22R
0 � 1

◆

| {z }

P
1

+ Pr

✓

�RD < C, max



�SD,i,
�SR,i�RD

�RD + C

�

< z

◆

| {z }

P
2

.

(2.6)

Considering the extreme complexity of obtaining an exact closed-form expression for

the above outage probability, we derive instead lower and upper bounds of it, based on

the inequality in (2.4). The analysis is performed separately for each term P
1

and P
2

. We

begin by deriving a lower bound for P
1

, which can be expressed as

P
1

> Pr
⇣

�RD � C, max
h

�SD,i, �SR,i min
h�RD

C
, 1
ii

< z
⌘

(a)

= Pr
⇣

�RD � C, max
i

[max [�SD,i, �SR,i]] < z
⌘

, P LB

1

= Pr (�RD � C) Pr (�SD,i < z)N
t Pr (�SR,i < z)N

t

= e
� C

�̄

RD

⇣

1 � e
� z

�̄

SD

⌘N
t

⇣

1 � e
� z

�̄

SR

⌘N
t

,

(2.7)

where, in step (a), we apply the DAS rule given in (2.5) for �RD � C. Focusing on the

high-SNR behavior, an asymptotic analysis of P LB

1

is performed. As a result, at high

SNR, (2.7) can be expressed, after some algebraic manipulations, as

P LB

1

' e
� C

�̄

RD

✓

z2

�̄SD�̄SR

◆N
t

. (2.8)
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In a similar way, an upper bound for P
1

can be obtained as [12]2

P
1

< Pr
⇣

�RD � C, max
h

�SD,i,
�SR,i

2
min

h�RD

C
, 1
ii

< z
⌘

< Pr
⇣

�RD � C, max
h�SD,i

2
,
�SR,i

2
min

h�RD

C
, 1
ii

< z
⌘

= Pr
⇣

�RD � C, max
i

[max [�SD,i, �SR,i]] < 2z
⌘

, PUB

1

' e
� C

�̄

RD

✓

(2z)2

�̄SD�̄SR

◆N
t

.

(2.9)

We now focus on the analysis of the term P
2

. Using again the inequality in (2.4) and

the DAS rule in (2.5) for �RD < C, a lower bound for P
2

is obtained as

P
2

> Pr
⇣

�RD < C, max
h

�SD,i, �SR,i min
h�RD

C
, 1
ii

< z
⌘

= Pr
⇣

�RD < C, max
h

�SD,i,
�SR,i�RD

C

i

< z
⌘

= P LB

2

= Pr

✓

�RD < C, max



max
j

[�SD,j] ,
�SR,i�RD

C

�

< z

◆

.

(2.10)

Using the concepts of probability theory presented in [4], P LB

2

can be further obtained in

a single-fold integral form as

P LB

2

=

Z C

0

f�
RD

(x) Pr

✓

max



max
j

[�SD,j] ,
x

C
�SR,i

�

< z

◆

dx

=

Z

1

0

C

�̄RD

e
� Cy

�̄

RD Pr

✓

max



max
j

[�SD,j] , y�SR,i

�

< z

◆

dy

=

Z

1
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e
� Cy
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RD Pr
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max
j

[�SD,j] < z

◆

Pr (y�SR,i < z) dy

=
⇣

1 � e
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SD
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t

Z
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e
� Cy
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RD
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SR
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dy
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'

.

(2.11)

In the Appendix B.1, we have derived a simple high-SNR asymptotic expression for '.

Accordingly, after some algebraic manipulations, P LB

2

can be asymptotically expressed as

P LB

2

'
✓

z

�̄SD

◆N
t

✓

z

�̄SRµ
2

(ln z � ln �̄RD �  (1) �  (2))

◆

=
zN

t

+1

(�̄SD)N
t �̄RDµ

2

✓

ln
z

�̄RD

�  (1) �  (2)

◆

,

(2.12)

where µ
2

, �̄
RD

�̄
SR

. By following a similar procedure, an upper bound for P
2

can be written

as [13]

P
2

< Pr
⇣

�RD < C, max
h

�SD,i, �SR,i min
h�RD

C
, 1
ii

< 2z
⌘

= PUB

2

,
(2.13)

2Note that the exact expression of PUB
1 has been omitted. Similarly to PLB

1 , this is given by (2.7),
but with z replaced by 2z.
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which is seen to have an identical form to P LB

2

in (2.10), with z replaced by 2z. Accord-

ingly, an asymptotic expression for PUB

2

can be readily obtained from (2.12) as

PUB

2

' (2z)N
t

+1

(�̄SD)N
t �̄RDµ

2

✓

ln
2z

�̄RD

�  (1) �  (2)

◆

. (2.14)

The derived exact and asymptotic bounds for P
1

and P
2

can be now added as in (2.6)

to yield corresponding bounds for Pout. In particular, asymptotic lower and upper bounds

at high SNR are obtained respectively as

PDAS,LB
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(2.16)

Finally, from (2.15) and (2.16), it can be seen that DAS/SC exhibits a full diversity order

of Nt+1, the same achieved by DAS/MRC [5]. This, allied to the simplicity of SC, renders

the proposed DAS/SC scheme highly attractive in practice.

2.4 Numerical Results and Discussions

In this section, we assess the outage performance of the proposed DAS/SC scheme

by investigating some representative examples and scenarios. Monte Carlo simulation is

performed to provide the exact performance as well as to support our analytical bounds.

Without loss of generality, we assume that the end-to-end spectral e�ciency is R
0

= 1

bit/s/Hz and that the path loss exponent is � = 4. We also assume that the channel

mean power is proportional to d��, with d being the distance between the transceivers.

The distance between S and D is normalized to unity, as in [5].3

Fig. 2.2 presents the outage performance versus dSR for both DAS and optimal AS

schemes using two and three antennas at the source. From this figure, we observe that

the outage performance of DAS/SC improves when the relay is closer to destination,

approaching the performance of optimal AS. This behavior is due to the probability of

�RD � C being higher when dSR is close to unity, thus causing the DAS selection rule being

3Again, as in [5], we assume a linear network topology, in which S and R transmit with the same SNR
P , and dSD = dSR + dRD, where dSD, dSR, and dRD represent the distance of the links S ! D, S ! R,
and R ! D, respectively. The corresponding average link SNRs can be formulated as �̄SD = Pd��

SD,

�̄SR = Pd��
SR, and �̄RD = Pd��

RD.
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Figure 2.2: Comparison of di↵erent AS schemes in terms of outage probability (P = 10
dB).

XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

P UB
2 can be readily obtained from (12) as
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The derived exact and asymptotic bounds for P1 and P2

can be now added as in (6) to yield corresponding bounds for
Pout. In particular, asymptotic lower and upper bounds at high
SNR are obtained respectively as
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Finally, from (15) and (16), it can be seen that DAS/SC
exhibits a full diversity order of Nt +1, the same achieved by
DAS/MRC [5]. This, allied to the simplicity of SC, renders
the proposed DAS/SC scheme highly attractive in practice.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we assess the outage performance of the pro-
posed DAS/SC scheme by investigating some representative
examples and scenarios. Monte Carlo simulation is performed
to provide the exact performance as well as to support our
analytical bounds. Without loss of generality, we assume that
the end-to-end spectral efficiency is R0 = 1 bit/s/Hz and that
the path loss exponent is � = 4. We also assume that the
channel mean power is proportional to d�� , with d being the
distance between the transceivers. The distance between S and
D is normalized to unity, as in [5].2

Fig. 2 presents the outage performance versus dSR for both
DAS/SC and optimal TAS/SC schemes using two and three
antennas at the source. From this figure, we observe that the
outage performance of DAS/SC improves when the relay is
closer to destination, approaching the performance of optimal
TAS/SC. This behavior is due to the probability of �RD �
C being higher when dSR is close to unity, thus causing the
DAS selection rule being indeed optimal during most of the
time. A similar behavior is reported for DAS/MRC in [5]. In
particular, when Nt = 2, the DAS/SC is observed to achieve
its best performance with dSR ' 0.7; when Nt = 3, the best
performance is observed with dSR ' 0.8. In both cases, the
outage probability of DAS/SC is seen to be very close to that
of the optimal TAS/SC scheme.

2Again, as in [5], we assume a linear network topology, in which S and R
transmit with the same SNR P , and d

SD

= d
SR

+d
RD

, where d
SD

, d
SR

,
and d

RD

represent the distance of the links S � D, S � R, and R �
D, respectively. The corresponding average link SNRs can be formulated as
�̄

SD

= Pd��

SD

, �̄
SR

= Pd��

SR

, and �̄
RD

= Pd��

RD

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−5

10−4

10−3

10−2

10−1

O
ut

ag
e

Pr
ob

ab
ili

ty
,P

o
u

t

Normalized distance between S and R, dSR

Optimal TAS scheme, Simulation Nt = 3
DAS, Simulation Nt = 3
Optimal TAS scheme, Simulation Nt = 2
DAS, Simulation Nt = 2

Fig. 2. Comparison of different TAS/SC schemes in terms of outage
probability (P = 10 dB).
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Fig. 3. Outage probability versus average SNR of the S � D link for
different TAS/SC schemes (d
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We now address two representative scenarios in order to
assess the outage performance of DAS while varying the
average SNR. The distance values used were established
based on the results of several Monte Carlo simulations,
which confirmed the observation from Fig. 2 that, for relays
placed at 0.6 � 0.8, the outage performance of DAS/SC is
improved and close to the optimal TAS/SC scheme. In other
words, the relay has been positioned to comply with these
best-performance cases. Fig. 3 depicts the outage probability
of the first proposed scenario, configured with dSR = 0.7
and Nt = 2, and Fig. 4 depicts a second scenario with
dSR = 0.8 and Nt = 3. In both scenarios, we see that the
performance of the proposed DAS/SC is comparable to that
of the optimal TAS/SC scheme, while widely outperforming
this in terms of feedback overhead. Moreover, when compared
to the corresponding cases (dSR = 0.7, Nt = 2; dSR = 0.8,
Nt = 3) of the DAS/MRC scheme presented in [5, Figs. 3
and 4], the DAS/SC scheme proposed here represents an SNR
loss of approx. 1.3 and 1.4 dB, respectively.

V. CONCLUSIONS

In this paper, we presented an analysis of the outage perfor-
mance for a dual-hop fixed-gain AF relaying system that com-
bines DAS and SC techniques for distributed transmit antenna

Figure 2.3: Outage probability versus average SNR of the S ! D link for di↵erent AS
schemes (dSR = 0.7, Nt = 2).

indeed optimal during most of the time. A similar behavior is reported for DAS/MRC

in [5]. In particular, when Nt = 2, the DAS/SC is observed to achieve its best performance

with dSR ' 0.7; when Nt = 3, the best performance is observed with dSR ' 0.75. In

both cases, the outage probability of DAS/SC is seen to be very close to that of the

optimal AS scheme. We now address two representative scenarios in order to assess the

outage performance of DAS while varying the average SNR. The distance values used were

established based on the results of several Monte Carlo simulations, which confirmed the

observation from Fig. 2.2 that, for relays placed at 0.6 � 0.8, the outage performance of

DAS/SC is improved and close to the optimal AS scheme. In other words, the relay has

been positioned to comply with these best-performance cases. Fig. 2.3 depicts the outage

probability of the first proposed scenario, configured with dSR = 0.7 and Nt = 2, and

Fig. 2.4 depicts a second scenario with dSR = 0.8 and Nt = 3. In both scenarios, we see

that the performance of the proposed DAS/SC is comparable to that of the optimal AS

scheme, while widely outperforming this in terms of feedback overhead. Additionally, we
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selection and diversity exploitation. We derived closed-form
expressions for lower and upper high-SNR asymptotic bounds
of the outage probability. Monte Carlo simulations have been
performed to support the derived analytical expressions. Our
results reveal that the proposed scheme achieves full diversity
order. More importantly, the underlying distributed strategy of
transmit antenna selection is shown to perform closely to the
costly optimal centralized solution.
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APPENDIX

Here we derive the high-SNR behavior of �. From its
definition, we have
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Steps (b) and (c) follow from [14, eq.(3.471.9)] and [14, eq.
(8.446)], respectively, where K1(·) is the first-order modified
Bessel function of second kind. Hence, by keeping only to the
lowest-order terms in �̄SR and �̄RD, � can be asymptotically
written as
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Finally, replacing (19) into (17), we obtain, after some alge-
braic manipulations, the high-SNR asymptote of � as

� ' z

�̄SRµ2
(ln z � ln �̄RD � �(1) � �(2)) . (20)

Figure 2.4: Outage probability versus average SNR of the S ! D link for di↵erent AS
schemes (dSR = 0.75, Nt = 3).

note from the curves that our analytical bounds for the outage probability approach the

exact (simulated) values in the medium-to-high SNR regime.

2.5 Conclusions

In this paper, we presented an analysis of the outage performance for a dual-hop

fixed-gain AF relaying system that combines DAS and SC techniques for distributed

transmit antenna selection and diversity exploitation. We derived closed-form expressions

for lower and upper high-SNR asymptotic bounds of the outage probability. Monte Carlo

simulations have been performed to support the derived analytical expressions. Our results

reveal that the proposed scheme achieves full diversity order. More importantly, the

underlying distributed strategy of transmit antenna selection is shown to perform closely

to the costly optimal centralized solution.
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Chapter 3
Distributed Suboptimal Schemes for TAS/SC
and TAS/LS in Fixed-Gain AF
Relaying Systems

Diana C. González, Daniel B. da Costa, and José Cândido S. Santos Filho1

Abstract

We design and analyze two distributed suboptimal schemes for transmit-antenna selec-

tion and link selection in a dual-hop, fixed-gain, amplify-and-forward relaying system,

composed by one multi-antenna source, one single-antenna destination, and one single-

antenna relay. The proposed schemes share the same antenna-selection policy, but di↵er

from each other in the way the direct or relaying link is selected for communication. In a

first scheme, the link is selected after transmission, at the destination; in a second scheme,

it is selected before transmission, at the source. A great advantage of the proposed schemes

over the optimal centralized solution is their low and constant delay/feedback overhead,

regardless of the number of transmit antennas. In addition, the second scheme brings an

improved spectral e�ciency, once it saves one time slot when selecting the direct link. We

derive analytical lower and upper bounds for the outage probability of the first scheme, in

single-fold integral form, and exact closed-form expressions for the outage probability and

mean spectral e�ciency of the second scheme. We also perform an asymptotic analysis,

showing that the first scheme achieves full diversity order, whereas the second scheme

achieves full diversity order minus one, as a penalty for its improved spectral e�ciency.

1This Chapter is a replica of the following manuscript: D. C. González, D. B. da Costa, and J. C.
S. Santos Filho, “Distributed suboptimal schemes for TAS/SC and TAS/LS in fixed-gain AF relaying
systems,” IEEE Trans. Wireless Commun., vol. 13, no. 11, pp. 604–6053, Nov. 2014.
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3.1 Introduction

The combined use of multiple-input–multiple-output (MIMO) techniques and coop-

erative communications has been suggested by many studies as a promising strategy to

enhance the reliability and capacity of wireless systems [1]-[3]. Such multiantenna and

multiterminal systems can fully benefit from spatial diversity and spatial multiplexing,

thereby alleviating the adverse impact of spectrum scarcity and multipath fading on com-

munications. In practice, however, implementing those systems may be rather intricate,

due to restrictions in power, complexity and antenna size. For this reason, realistic imple-

mentations commonly end up by limiting the use of multiantenna devices to few particular

nodes of the network, and by severely restricting the total amount of multiple antennas

in these devices [4].

The deleterious e↵ects of multipath fading on communications can be mitigated by

means of transmit as well as receive diversity techniques. At the transmitter side, these

techniques include the appropriate selection of one (desirably the best) out of many trans-

mit antennas available for transmission. This is known as transmit antenna selection

(TAS). At the receiver side, they include the use of several diversity-combining methods

such as maximal-ratio combining (MRC) and selection combining (SC) [2].

Many recent studies have proposed and analyzed the combined use of TAS at the

source and MRC at the destination (also known as TAS/MRC) in dual-hop networks

(see, for example, [4], [5], and the references therein). The TAS/MRC combination has

become popular because TAS reduces the complexity and power requirements at the

transmitter—although it is not an optimal beamforming technique [6]—and because MRC

is the optimal linear combining technique [7]. However, performance has its cost. The

MRC scheme requires many channel estimations and a complex hardware setup, for each

antenna needs a dedicated receiver chain [8]. In contrast, the SC implementation is much

simpler, avoiding the channel estimations and allowing for a single receiver chain that is

shared among the multiple antennas. Therefore, since both combining techniques achieve

the same diversity order, SC represents an attractive balance between complexity and

performance.

Notwithstanding its attractiveness, the TAS/SC combination in relaying networks has

been considered in very few studies, including the following. In [2], a regenerative, multi-

hop, decode-and-forward (DF) MIMO relaying system was analyzed. In this system, it was

assumed that the receivers have perfect channel state information (CSI) and feed back

the best-antenna selection to the transmitter, using partial CSI. In [3], a performance

comparison between the TAS/MRC and TAS/SC schemes in MIMO relaying networks

was performed. It was found that, in balanced hops, the advantage of TAS/MRC over

TAS/SC in terms of reliability does not depend on the number of relays. In [8], the

performance of a cooperative system with a single-antenna relay, a multiantenna source,

and a multiantenna destination was evaluated. In this system, by using feedback CSI

from the destination, a TAS scheme was employed at the source in order to choose the

transmit antenna with the largest end-to-end signal-to-noise ratio (SNR). In [10], the per-

formance of a MIMO amplify-and-forward (AF) cooperative system based on TAS/SC

was analyzed in terms of outage probability and symbol error rate, under the Rayleigh
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fading condition. An antenna selection technique that achieves full diversity order while

reducing complexity and power consumption was applied in [11], where the performance

of a MIMO cooperative network was analyzed by using joint transmit and receive antenna

selection (TRAS) over a flat and asymmetric Nakagami-m fading channel. Finally, in [12],

the performance of a dual hop AF system based on TAS and generalized selection com-

bining (GSC) was analyzed, considering a network composed by a single-antenna relay, a

multiantenna source, and a multiantenna destination, under the presence of error in the

feedback relay-source channel.

In TAS schemes, some feedback from the network nodes is usually needed to provide

the transmitter with enough information for the appropriate selection of the transmit

antenna that gives the best overall performance. This feedback contains CSI from the

various direct and relaying links of the network. In centralized optimal schemes, a full

feedback is necessary, containing CSI of all the links. Such a feedback requires a number

of bits that varies according to the number of source and destination antennas [13]. As

the number of antennas increase, the delay and complexity involved in a full feedback

may rapidly become prohibitive in practice. Therefore, suboptimal distributed transmit-

antenna selection (DAS) schemes, which alleviate the need for CSI feedback, are of great

practical interest.

Both centralized (TAS) and distributed (DAS) antenna-selection schemes, when used

along with diversity-combining techniques at the destination, do improve the system re-

liability, but at the expense of spectral e�ciency. This is because in these schemes the

relaying link is always employed for transmission, which requires an additional time slot.

As a result, the spectral e�ciency of schemes such as TAS/MRC, TAS/SC, DAS/MRC,

and DAS/SC is only half of that one attained by direct transmission. A way for reducing

the loss in spectral e�ciency while maintaining part of the gain in reliability is to move

the diversity-combining method from destination to source. Indeed, in our scenario, this

is only applicable to the SC case. In this case, instead of choosing (the best) between

direct or relaying link at the destination after the transmission has taken place, the system

can make this choice at the source, before transmission. This is generally known as link

selection (LS). Of course, LS may require some CSI at the source and may be somewhat

less reliable than SC in practice, due to partial or imperfect CSI. But LS improves the

spectral e�ciency when compared to SC, once it saves one time slot when the direct link

happens to be selected for transmission. Because of this, the average spectral e�ciency

of the combinations TAS/LS and DAS/LS lies somewhere between that one attained by

direct transmission and half of this. In [14], the performance of optimal centralized LS

schemes was analyzed for variable-gain as well as fixed-gain relaying with transmit beam-

forming, achieving a full diversity order. The same scenario was considered in [15], but

under a distributed LS mechanism, which was shown to provide a nearly-optimal outage

performance while reducing the CSI feedback overhead.

In this work, we design and analyze a DAS/SC scheme and a DAS/LS scheme for a

dual-hop, fixed-gain, amplify-and-forward relaying network with one multiantenna source,

one single-antenna relay, and one single-antenna destination. Both schemes employ the

same DAS policy, based on a policy introduced for a DAS/MRC scheme in [5]. However,

di↵erently from [5], which uses MRC, we propose to use either (i) SC, in order to reduce
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the system complexity, or (ii) LS, in order to increase the spectral e�ciency at the expense

of some reliability. A great advantage of our proposals is the requirement of CSI with

constant and low delay/feedback overhead, despite the number of transmit antennas. The

main contributions of this work include the following:

• Two new distributed low-cost schemes—DAS/SC and DAS/LS—are designed for

cooperative relaying systems;

• Analytical lower and upper bounds are derived in single-fold integral form for the

outage probability of the DAS/SC scheme;

• Exact closed-form expressions are derived for the outage probability and mean spec-

tral e�ciency of the DAS/LS scheme;

• Closed-form asymptotic analysis at high SNR is performed for these bounds and

exact expressions, revealing that (i) the DAS/SC scheme achieves full diversity order,

equal to the number of transmit antennas plus one, and that (ii) the DAS/LS scheme

achieves a nearly-full diversity order, equal to the number of transmit antennas;

• The outage probability and spectral e�ciency of the proposed schemes are compared

against those of centralized (TAS/MRC and TAS/SC) and distributed (DAS/MRC)

schemes previously investigated in the literature. In terms of outage probability, the

proposed distributed schemes are shown to perform closely to the costly centralized

solutions. In terms of spectral e�ciency, the proposed DAS/LS scheme is shown to

outperform the other schemes.

The remainder of this paper is organized as follows. In Section 3.2, we present the

system model and the proposed DAS/SC and DAS/LS schemes. In Section 3.3, we analyze

the outage probability of the proposed schemes, by deriving either analytical bounds or

exact closed-form expressions. An asymptotic analysis is also performed, allowing for the

evaluation of the diversity order of the two schemes. In Section 3.4, we derive the spectral

e�ciency of the DAS/LS scheme2. In Section 3.5, we present some numerical results and

discussions. Finally, in Section 3.6, we summarize the main conclusions of this work.

Throughout this paper, fW (·) and FW (·) denote the probability density function

(PDF) and the cumulative distribution function (CDF) of a generic random variable W ,

respectively, E [·] denotes expectation, and Pr (·) denotes probability.

3.2 System Model and Proposed Schemes

We consider a half-duplex dual-hop wireless communication system containing a source

S with Nt antennas, a single-antenna fixed-gain AF relay R, and a single-antenna des-

tination D. Furthermore, we consider that all the links are subject to independent flat

Rayleigh fading and additive white Gaussian noise (AWGN) with mean power N
0

. The

terminals are assumed to operate on a time-division multiple access basis.

2As aforementioned, the spectral e�ciency of the DAS/SC is trivial, being half of that one attained
by direct transmission.
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3.2.1 DAS/SC Scheme

Before the data transmission, a DAS operation is performed at S, in order to find

the desirably-best transmit antenna that maximizes the end-to-end SNR. After that, a

conventional two-slots cooperative transmission takes place. As previously indicated, this

system is similar to the one presented in [5], but di↵ers from that in the sense that the

direct-link and relaying-link signals are now combined at D by means of SC, instead of

MRC. Accordingly, the end-to-end received SNR from the ith antenna at S to D can be

expressed as

�i = max

✓

Yi,
XiZ

Z + C

◆

, (3.1)

where Yi , P
S

N
0

|hY,i|2 is the direct-link received SNR from the ith antenna at S to D,

Xi , P
S

N
0

|hX,i|2 is the first-hop received SNR from the ith antenna at S to R, Z , P
R

N
0

|hZ |2
is the second-hop received SNR from R to D, and C = 1 + X, with X = E[Xi]. In

these expressions, PS denotes the transmit power at S; PR denotes the transmit power

at R; and |hY
i

|2, |hX
i

|2, and |hZ |2 denote the channel power coe�cients of the links

from the ith antenna at S to D, from the ith antenna at S to R, and from R to D,

respectively. As commonly adopted in the literature [5], we assume an homogeneous

network topology, in which E[Xi] = X and E[Yi] = Y , for any i = 0, . . . , Nt, that is,

all links from each antenna at S to D (or to R) undergo identically distributed fading

conditions, and E[Z] = Z. Because of the Rayleigh-fading assumption, Yi, Xi, and Z are

exponentially distributed variates.

Although optimal, such a scheme requires the full-system CSI for decision, demanding

a large amount of delay and feedback overhead. Alternatively, we capitalize on a much

simpler suboptimal and distributed decision policy introduced in [5] for a DAS/MRC

scheme. In this scheme, the decision is almost exclusively assisted by the local CSI

available at S, incurring a negligible delay and feedback overhead. In that work, the

DAS policy is motivated and supported by an important inequality involving the end-

to-end SNR of the MRC output and the SNRs of the various network links [5, Eq. (4)].

Here, instead of MRC, we use SC, so that the corresponding motivation and support is

given by the following inequality [16], [17]:

�i < max



Yi, Xi min



Z

C
, 1

��

�

=
⇠
�i. (3.2)

In an optimal centralized TAS/SC scheme, the i⇤th transmit antenna is selected that

maximizes the end-to-end SNR, i.e.,

i⇤ = arg max
i

[�i] . (3.3)

The DAS operation is accomplished in two time slots [5], as shown in Fig. 3.1. In the

first time slot, D sends to R and S a 1-bit reverse pilot signaling. Then, based on this

message, R and S estimate their respective local CSIs Z and Yi. In the second time slot,

R compares its local CSI with C, yielding two possible outputs: Z � C or Z < C. In
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Figure 3.1: The DAS operation (reproduced from [5, Fig. 1]).

the first case, R reports to S a 1-bit message “1” indicating that Z � C, and thus the

local CSIs3 Yi and Xi at S su�ce to support the selection rule max
⇠
�i = max [max [Yi, Xi]],

since min [Z/C, 1] = 1. In the second case, R transmits to S a 1-bit message“0” indicating

that Z < C. In this case, min [Z/C, 1] = Z/C, so that the application of the selection rule

max
⇠
�i = max [max [Yi, XiZ/C]] would depend on the additional knowledge of the second-

hop CSI Z, which is unavailable at S. Instead, if Z < C, a relaxed suboptimal decision

can be attained from the available local CSI at S, by performing the solely maximization

of the direct-link SNRs Yi, as proposed in [4]. In summary, the transmit-antenna selection

rule of the proposed DAS/SC scheme is given as follows:

i⇤ =

(

i = arg max
i

[max [Yi, Xi]] , if Z � C

i = arg max
i

[Yi] , if Z < C.
(3.4)

In conventional TAS schemes, O(log Nt) bits of feedback information are required, as

shown in [13], [4], and [7]. The great advantage of DAS over centralized TAS schemes

is its reduced delay/feedback overhead. In the proposed DAS/SC scheme, only a 2-bit

pilot/feedback signaling is required, at the cost of some additional hardware complexity.

After the i⇤th transmit antenna has been selected, the transmission process is carried

out in two time slots. Subsequently, SC is employed at D to choose either the direct-link

signal or the relaying-link signal, so as to maximize the end-to-end received SNR � of the

proposed DAS/SC scheme, which is then written as

� = max

✓

Yi⇤ ,
Xi⇤Z

Z + C

◆

. (3.5)

3Xi can be readily estimated at S from the 1-bit message sent by R.
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Table 3.1: Link-Selection Rule

CSI Decision

Z � C, Yi⇤ � Xi⇤ Direct Link

Z � C, Xi⇤ � Yi⇤ Relaying Link

Z < C Direct Link

3.2.2 DAS/LS Scheme

The transmit-antenna selection rule of the proposed DAS/LS scheme is identical to

that of the previous DAS/SC scheme, as described in (3.4). But now, in order to improve

the spectral e�ciency, the selection between direct or relaying link shall be moved from

D to S and performed before transmission. From (3.5), it can be seen that such a LS

operation would in principle require the knowledge of Yi⇤ , Xi⇤ , and Z at S. However,

since Z is no local CSI at S, this task would demand a centralized implementation with

considerable feedback overhead. Alternatively, as in the DAS operation, we shall employ

a suboptimal distributed approach to perform the LS decision.

The central idea is to support the link selection not based on the exact maximum SNR

value �i⇤ between the preselected direct and relaying links, but on the upper bound
⇠
�i⇤

of this value, as defined by the inequality in (3.2). In other words, the link selection

is performed by comparing Yi⇤ with Xi⇤ min [Z/C, 1], as follows. Recall that S knows

whether Z � C or Z < C, from the previous DAS operation. When Z � C, then

Xi⇤ min [Z/C, 1] = Xi⇤ , and thus S compares Yi⇤ with Xi⇤ . If Yi⇤ � Xi⇤ , the direct link is

selected; if Yi⇤ < Xi⇤ , the relaying link is selected. On the other hand, when Z < C, then

Xi⇤ min [Z/C, 1] = Xi⇤Z/C, but since Z is not available as a local CSI at S to support the

decision, then the direct link is selected (somewhat arbitrarily). Table 3.1 summarizes the

link-selection rule. Accordingly, the end-to-end received SNR � of the proposed DAS/LS

scheme can be written as

� =

8

<

:

Yi⇤ , if Z � C and Yi⇤ � Xi⇤
X

i

⇤Z
Z+C

, if Z � C and Yi⇤ < Xi⇤

Yi⇤ , if Z < C.
(3.6)

After the i⇤th transmit antenna and the communication link have been selected, the

transmission process is carried out in one or two time slots, depending on whether the

direct link or the relaying link was selected, respectively. As a result, the mean spectral

e�ciency of this scheme outperforms that of the DAS/SC scheme, as shall be detailed in

Section 3.4.

3.3 Outage Analysis

In this section, we investigate the outage probability of the proposed schemes, by

deriving single-fold integral-form analytical bounds for DAS/SC and exact closed-form

expressions for DAS/LS. An asymptotic analysis is also performed in each case, revealing

the diversity order of the proposed schemes.
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3.3.1 DAS/SC Scheme

The outage probability is defined as the probability that the maximum mutual infor-

mation between source and destination drops below a predefined target spectral e�ciency

<s (bits/s/Hz). In the proposed DAS/SC scheme, using (3.4) and (3.5), the outage prob-

ability can be formulated as

PDAS/SC

out =

Pr

✓

Z � C, max



Yi,
XiZ

Z + C

�

< ⌧ , 22<
s � 1

◆

| {z }

I
1

+ Pr

✓

Z < C, max



Yi,
XiZ

Z + C

�

< ⌧

◆

| {z }

I
2

.

(3.7)

Considering the mathematical intricacy of an exact analysis for the above outage proba-

bility, we shall instead obtain lower and upper bounds of it. In this task, we exploit the

following known relationships:

Xi

2
min



Z

C
, 1

�

 XiZ

Z + C
 Xi min



Z

C
, 1

�

. (3.8)

Next, we analyze the terms I
1

and I
2

separately. We begin by deriving a lower bound

for I
1

, which can be expressed as

I
1

(a)

� Pr

✓

Z � C, max



Yi, Xi min



Z

C
, 1

��

< ⌧

◆

(b)
= Pr

⇣

Z � C, max
i

[max [Yi, Xi]] < ⌧
⌘

, ILB

1

= Pr (Z � C) Pr (Yi < ⌧)N
t Pr (Xi < ⌧)N

t

(c)
= e� C

Z

⇣

1 � e� ⌧

Y

⌘N
t

⇣

1 � e� ⌧

X

⌘N
t

, (3.9)

where, in step (a), we used (3.8); in step (b), we applied the DAS rule given in (3.4) for

Z � C; and, in step (c), we used the well-known expression for the CDF of exponentially

distributed variates. Focusing on the high-SNR behavior, an asymptotic analysis of ILB

1

is performed. As a result, at high SNR, (3.9) can be expressed, after some algebraic

manipulations, as

ILB

1

' e� C

Z

✓

⌧ 2

Y X

◆N
t

. (3.10)
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In a similar way, an upper bound for I
1

and its asymptote can be obtained as4

I
1

 Pr

✓

Z � C, max



Yi,
Xi

2
min



Z

C
, 1

��

< ⌧

◆

 Pr

✓

Z � C, max



Yi

2
,
Xi

2
min



Z

C
, 1

��

< ⌧

◆

= Pr
⇣

Z � C, max
i

[max [Yi, Xi]] < 2⌧
⌘

, IUB

1

= e� C

Z

⇣

1 � e� 2⌧

Y

⌘N
t

⇣

1 � e� 2⌧

X

⌘N
t

(3.11)

' e� C

Z

✓

(2⌧)2

Y X

◆N
t

. (3.12)

We proceed by analyzing the term I
2

. Using again the relationships in (3.2) and the

DAS rule in (3.4) for Z < C, a lower bound for I
2

can be formulated as

I
2

� Pr

✓

Z < C, max



Yi, Xi min



Z

C
, 1

��

< ⌧

◆

= Pr

✓

Z < C, max



Yi,
XiZ

C

�

< ⌧

◆

, ILB

2

= Pr

✓

Z < C, max



max
j

[Yj] ,
XiZ

C

�

< ⌧

◆

. (3.13)

Using a similar approach to that presented in [4], ILB

2

can be further developed into a

single-fold integral form as

ILB

2

=

Z C

0

fZ(u) Pr

✓

max



max
j

[Yj] ,
u

C
Xi

�

< ⌧

◆

du

=

Z

1

0

C

Z
e� Cv

Z Pr

✓

max



max
j

[Yj] , vXi

�

< ⌧

◆

dv

=

Z

1

0

C

Z
e� Cv

Z Pr

✓

max
j

[Yj] < ⌧

◆

Pr (vXi < ⌧) dv

=
⇣

1 � e� ⌧

Y

⌘N
t

Z

1

0

C

Z
e� Cv

Z

⇣

1 � e� ⌧

vX

⌘

dv
| {z }

'

. (3.14)

A simple closed-form asymptotic expression for ' at high SNR is derived in Appendix C.1.

Accordingly, after some algebraic manipulations, ILB

2

can be asymptotically expressed as

ILB

2

'
✓

⌧

Y

◆N
t

✓

⌧

Xµ
2

✓

ln Z � ln ⌧ +  (1) +  (2) � �
✓

0,
C

Z

◆◆◆

=
⌧N

t

+1

(Y )N
tXµ

2

✓

ln
Z

⌧
+  (1) +  (2) � �

✓

0,
C

Z

◆◆

, (3.15)

where µ
2

, Z
X

. By following a similar procedure, an upper bound for I
2

can be written as

I
2

 Pr

✓

Z < C, max



Yi, Xi min



Z

C
, 1

��

< 2⌧

◆

= IUB

2

, (3.16)

4Note that the expressions for IUB
1 are identical to those for ILB

1 , but with ⌧ replaced by 2⌧ .
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which is seen to have an identical form to ILB

2

in (3.13), with ⌧ replaced by 2⌧ . Accordingly,

an asymptotic expression for IUB

2

can be readily obtained from (3.15) as

IUB

2

' (2⌧)N
t

+1

(Y )N
tXµ

2

✓

ln
Z

2⌧
+  (1) +  (2) � �

✓

0,
C

Z

◆◆

. (3.17)

The derived exact and asymptotic lower (or upper) bounds for I
1

and I
2

can be now added

as in (3.7) to yield a corresponding lower (or upper) bound for PDAS/SC

out . In particular,

asymptotic lower and upper bounds at high SNR are obtained respectively as

PDAS/SC,LB

out '

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

e� 1

µ

2

⇣

⌧2

Y X

⌘N
t

+ ⌧N

t

+1

(Y )

N

tXµ
2

⇥
⇣

ln Z
⌧

+  (1) +  (2) � �
�

0, C
Z

�

⌘

if Nt = 1

⌧N

t

+1

(Y )

N

tXµ
2

⇥
⇣

ln Z
⌧

+  (1) +  (2) � �
�

0, C
Z

�

⌘

if Nt � 2

(3.18)

PDAS/SC,UB

out '

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

e� 1

µ

2

⇣

(2⌧)

2

Y X

⌘N
t

+ (2⌧)

N

t

+1

(Y )

N

tXµ
2

✓

ln
Z

2⌧
+  (1) +  (2) � �

�

0, C
Z

�

◆

if Nt = 1

(2⌧)

N

t

+1

(Y )

N

tXµ
2

⇥
✓

ln
Z

2⌧
+  (1) +  (2) � �

�

0, C
Z

�

◆

if Nt � 2.

(3.19)

Finally, from (3.18) and (3.19), it can be seen that the proposed DAS/SC scheme exhibits

a full diversity order of Nt + 1, the same achieved by DAS/MRC [5]. This, allied to the

simplicity of SC, renders the proposed DAS/SC scheme highly attractive in practice.

3.3.2 DAS/LS Scheme

Using (3.4) and (3.6), the outage probability of the proposed DAS/LS scheme can be

formulated as

PDAS/LS
out = Pr

⇣

Z � C, Yi � Xi, Yi < � , 2<
s � 1

⌘

| {z }

J
1

+ Pr

✓

Z � C, Xi � Yi,
XiZ

Z + C
< ⌧ , 22<

s � 1

◆

| {z }

J
2

+ Pr (Z < C, Yi < �)
| {z }

J
3

. (3.20)

Note that, for a given target espectral e�ciency <s, two di↵erent SNR outage levels must

now be defined, namely � , 2<
s � 1 and ⌧ , 22<

s � 1, in order to comply with the use

of one or two time slots for transmission, respectively. Next we derive exact closed-form

expressions and high-SNR asymptotes for J
1

, J
2

and J
3

.
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Exact Analysis

We begin with the term J
1

, which can be developed as

J
1

= Pr (Z � C, Yi � Xi, Yi < �)

= Pr (Z � C)

Z �

0

fX
i

(x) Pr (x  Yi < �) dx

= Pr (Z � C)

✓

FX
i

(z) FY
i

(�) �
Z �

0

fX
i

(x)FY
i

(x) dx

◆

. (3.21)

Using the DAS rule in (3.4) and knowing that the channel power coe�cients are expo-

nentially distributed, J
1

can be further developed as

J
1

= e� C

Z

0

B

B

@

⇣

1 � e� �

X

⌘N
t

⇣

1 � e� �

Y

⌘N
t

�
Z �

0

Nt

⇣

1 � e� x

X

⌘N
t�1 1

X
e� x

X

⇣

1�e� x

Y

⌘N
t

dx
| {z }

↵

1

C

C

A

,

(3.22)

where the term ↵ can be rewritten using the binomial theorem [18, Eq. (3.1.1)] as

↵ =

Z �

0

Nt

N
t

X

j=0

✓

Nt � 1

j

◆

(�1)je� jx

X

1

X
e� x

X
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t

X

m=0

✓

Nt

m

◆

(�1)me� mx
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Nt

X

N
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X

j=0

N
t

X

m=0

✓

Nt � 1

j

◆

(�1)j

✓

Nt

m

◆

(�1)m

Z �

0

e� jx

X e� mx

Y e� x

X dx. (3.23)

Replacing (3.23) into (3.22), and after some algebraic simplifications, an exact closed-form

expression for J
1

is then obtained as

J
1

= e� C

Z

 

⇣

1�e� �

X

⌘N
t

⇣

1�e� �

Y

⌘N
t

� Nt
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◆
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m

Y

)
⌘

Y

mX + (1 + j)Y

!

. (3.24)

We now proceed with the evaluation of the term J
2

. Using a similar approach to that

used for J
1

, the term J
2

can be developed as

J
2

= Pr

✓

Z � C, Xi > Yi,
XiZ

Z + C
< ⌧

◆

=

Z 1

C
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(3.25)
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Using the DAS rule in (3.4) and knowing that the channel power coe�cients are expo-

nentially distributed, J
2

can be further developed as

J
2

=

Z 1

C

1

Z
e� z

Z

✓
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dz. (3.26)

Infinite-series representations for the terms � and  are derived in Appendices C.2 and

C.3, respectively. Using these representations into (3.26), an exact infinite-series repre-

sentation for J
2

is then obtained as
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Finally, we address the analysis of the term J
3

, which is indeed simple. Using the DAS

rule in (3.4) and knowing that the channel power coe�cients are exponentially distributed,

an exact closed-form expression for J
3

is obtained as

J
3

= Pr (Z < C, Yi < �)

= Pr (Z < C) Pr (Yi < �)

= Pr (Z < C) Pr
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. (3.28)

Asymptotic Analysis

In order to assess the diversity order of the proposed DAS/LS scheme, we derive a high-

SNR asymptote for its outage probability. We address the terms J
1

, J
2

and J
3

separately.

Using the Maclaurin series for the exponential function into (3.24) while preserving only

the lowest-order terms in 1/X and 1/Y , a high-SNR asymptote for J
1

is obtained as
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Similarly, preserving in (3.27) only the lowest-order terms in 1/Y and 1/X, J
2

can be

expressed as
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After the combined use of the Maclaurin series for the exponential function and the

binomial theorem into (3.30), a high-SNR asymptote for J
2

is obtained as
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Finally, a high-SNR asymptote for J
3

is obtained as
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Note from (3.29), (3.31), and (3.32) that both J
1

and J
2

provide a diversity order of 2Nt,

whereas J
3

provides a diversity order of Nt. The high-SNR performance is governed by

the lowest-order term, so that the asymptote for the outage probability of the proposed

DAS/LS scheme equals the asymptote for J
3

, that is,

PDAS/LS
out '

⇣

1 � e� 1

µ

2

⌘

✓

�

Y

◆N
t

, (3.33)

which gives a diversity order of Nt. This is less than the full diversity order of Nt + 1

achieved by the proposed DAS/SC scheme, but it is compensated by an improved spectral

e�ciency, as shown next.
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3.4 Mean Spectral E�ciency

In this section, we address the mean spectral e�ciency <s of the proposed schemes. For

comparison, consider a certain spectral e�ciency <s attained by direct transmission. In

the DAS/SC scheme, the transmission process is accomplished in two time slots, because

the relaying link is always used for transmission. Therefore, the mean spectral e�ciency

of the DAS/SC scheme is half of that one attained by direct transmission, that is,5

<DAS/SC

s =
<s

2
. (3.34)

In contrast, in the DAS/LS scheme, the transmission process is accomplished in one or

two time slots, depending on whether the direct link or the relaying link is selected for

transmission, respectively. If the direct link is selected, then the spectral e�ciency equals

<s; otherwise, if the relaying link is selected, then the spectral e�ciency equals <s/2.

Therefore, the mean spectral e�ciency of the DAS/LS scheme lies somewhere between

<s/2 and <s, and can be obtained from the LS rule in Table 3.1 as

<DAS/LS

s =<s Pr (Z � C, Yi � Xi) +
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2
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where in step (a) we used the fact that Z is an exponentially distributed variate, and in step

(b) we used the exact closed-form expression derived for Pr (Xi > Yi) in Appendix C.4.

3.5 Numerical Results and Discussions

In this section, we assess the outage probability and spectral e�ciency of the proposed

schemes by applying our analytical expressions to representative sample cases. Monte

Carlo simulations are also performed, either as a check for the analytical expressions or as a

way to address other schemes in the literature. Besides the DAS/SC and DAS/SC schemes

proposed here, we also include the DAS/MRC scheme proposed in [5] and the centralized

optimal schemes TAS/SC and TAS/MRC in our comparisons. Without loss of generality,

we assume that the target spectral e�ciency is <s = 1 bit/s/Hz and that the path loss

exponent is � = 4. We also assume that the channel mean power is proportional to d��,

with d being the distance between the transceivers. As in [5], the distance dSD of the S-D

link is normalized to unity, and a linear network topology is considered, in which S and R

transmit with the same power PS = PR = P , and dSD = dSR + dRD, where dSR and dRD

represent the distance of the links S-R and R-D, respectively. The corresponding average

5From a practical viewpoint, we assume here that the direct and relaying-link transmissions employ
modulation schemes with identical alphabet sizes.
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d being the distance between the transceivers. As in [5], the distance dSD of the S-D link is normalized

to unity, and a linear network topology is considered, in which S and R transmit with the same power

PS = PR = P , and dSD = dSR + dRD, where dSR and dRD represent the distance of the links S-

R and R-D, respectively. The corresponding average link SNRs can be formulated as Y = Pd��
SD/N

0

,

X = Pd��
SR/N

0

, and Z = Pd��
RD/N

0

.

Fig. 2 presents the simulated outage performance versus dSR for the proposed (DAS/SC and DAS/LS)

and existing (DAS/MRC, TAS/SC, and TAS/MRC) schemes, using two and three antennas at the source.

Our exact analytical expression for DAS/LS is also included in the figure. As expected, TAS/MRC is

better than DAS/MRC, followed by TAS/SC and DAS/SC. However, when DAS/LS is included in the

comparison, an interesting and subtle behavior is observed. In principle, one may expect the performance

of DAS/LS to fall below that of DAS/SC, because the former preselects the direct or relaying link at

Figure 3.2: Comparison of proposed and existing antenna-selection schemes in terms of
outage probability (PS/N

0

= PR/N
0

= 10 dB).

link SNRs can be formulated as Y = Pd��
SD/N

0

, X = Pd��
SR/N

0

, and Z = Pd��
RD/N

0

.

Fig. 3.2 presents the simulated outage performance versus dSR for the proposed (DAS/SC

and DAS/LS) and existing (DAS/MRC, TAS/SC, and TAS/MRC) schemes, using two and

three antennas at the source. Our exact analytical expression for DAS/LS is also included

in the figure. As expected, TAS/MRC is better than DAS/MRC, followed by TAS/SC

and DAS/SC. However, when DAS/LS is included in the comparison, an interesting and

subtle behavior is observed. In principle, one may expect the performance of DAS/LS

to fall below that of DAS/SC, because the former preselects the direct or relaying link

at the source before transmission, based on partial CSI, while the latter postselects one

of the two links at the destination after transmission, based on full CSI. On the other

hand, as mentioned before, DAS/LS has an improved spectral e�ciency when compared

to DAS/SC and to the other schemes (TAS/MRC, DAS/MRC, and TAS/SC), since it

saves one time slot when the direct link is selected for transmission. Incidentally, in this

work, the outage event is defined in terms of a target spectral e�ciency, so that the

corresponding SNR threshold decreases when a single time slot is used for transmission

(2<
s �1 for single time slot, 22<

s �1 for two time slots). Taking all this into consideration,

DAS/LS may outperform the other schemes (even the TAS/MRC!), depending on the

relay position and on the number of source antennas, as observed in Fig. 3.2. From the

figure, we observe that the outage performance of DAS/SC improves when the relay is

placed closer to the destination, approaching the performance of the optimal centralized

TAS/SC scheme. This behavior is due to the probability of Z � C being higher when dRD

is smaller, thus causing the DAS selection rule being indeed optimal during most of the

time. A similar behavior is observed for DAS/MRC, in accordance with the reports in [5].
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Figure 3.3: Outage probability versus average SNR of the S-D link for the proposed
schemes (dSR = 0.7, Nt = 2).

In particular, the best performance achieved by DAS/SC is observed around the relay

positions dSR ' 0.7 for Nt = 2 and dSR ' 0.75 for Nt = 3. These values are also close to

those for DAS/MRC. The best-performance relay positions for DAS/LS are slightly closer

to the destination, around dSR ' 0.75 for Nt = 2 and dSR ' 0.80 for Nt = 3. Interestingly,

we also notice from the figure that the relay position has little impact on the performance

of DAS/LS when the relay is closer to the source. This is because in that scenario there

is a high probability of Z < C, causing the relaying link to be ignored by the LS rule.

Based on the best-performance relay positions established from Fig. 3.2 and confirmed

by several other simulations, we now address two representative scenarios in order to assess

the outage probability of the proposed schemes DAS/SC and DAS/LS while varying the

average SNR. In the first scenario, depicted in Fig. 3.3, we set dSR = 0.7 and Nt = 2; in

the second scenario, depicted in Fig. 3.4, we set dSR = 0.8 and Nt = 3. In all of the cases,

we observe a perfect match between the simulation and the exact analytical results for

DAS/LS. As for DAS/SC, note that the derived lower bound turns out to be a very tight

approximation to the exact (simulated) outage performance at medium to high SNR. On

the other hand, regardless of the tightness of these bounds, they are of great practical

importance to assess the system performance, because no other analytical solution (exact

or approximate) exists to this problem. In addition, the presented bounds allow for the

exact derivation of the system diversity order, which is a key performance parameter.

From the figures, note the di↵erence between the diversity orders of the two schemes,

which are equal to Nt + 1 and Nt, for DAS/SC and DAS/LS, respectively. At high SNR,

this one-unit-lower diversity order has a strong deleterious impact on the performance of

DAS/LS scheme.

Fig. 3.5 shows a comparison of the proposed and existing schemes, in terms of outage
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Figure 3.4: Outage probability versus average SNR of the S-D link for the proposed
schemes (dSR = 0.75, Nt = 3).

probability, for the two scenarios of Figs. 3.3 and 3.4. In both cases, we see that the

performance of the proposed DAS/SC is comparable to that of the optimal TAS/SC

scheme, while widely outperforming this in terms of feedback overhead. Moreover, we

observe that the DAS/SC scheme proposed here represents an SNR loss of approx. 1.8 dB

and 1.3 dB, for Nt = 2 and Nt = 3, respectively, when compared with the DAS/MRC. As

for the DAS/LS scheme, as explained before, it may outperform the other schemes at low

to medium SNR, depending on the relay position and on the number of source antennas.

On the other hand, DAS/LS gives the worst performance among all the schemes at the

high-SNR regime, due to its reduced diversity order. In Fig. 3.6, we compare the impact

of relay position on the mean spectral e�ciency of the proposed schemes, for Nt = 2

and Nt = 3. When R is placed close to S, we observe that <s rapidly increases towards

<s. The reason for this is that the probability of Z < C is high in this case, causing

the direct link to be most frequently selected for transmission. In contrast, when R is

moved toward D, the referred probability increases, causing the relaying link to be more

frequently selected, so that <s tends to decrease. Indeed, after reaching a minimum,

<s increases back to <s/2 as R approaches D. By comparing these curves against the

corresponding outage curves given in Fig. 2, we notice that the minimum values of <s and

Pout are not achieved for the same relay position. From the figures, the best-outage relay

position seems to represent a good compromise between outage probability and spectral

e�ciency for the proposed DAS/LS scheme. It is noteworthy that the spectral e�ciency

of all of the remaining schemes is only </2.
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DAS/LS scheme. It is noteworthy that the spectral efficiency of all of the remaining schemes is only </2.

VI. CONCLUSIONS

This paper proposed and analyzed two distributed suboptimal schemes for the joint selection of transmit

antenna and communication link in dual-hop, fixed-gain, amplify-and-forward relaying networks with a

Nt-antenna source, a single-antenna relay, and a single-antenna destination. Both schemes follow the

same antenna-selection policy, but distinct link-selection policies. In the first scheme, DAS/SC, in order

to select either the direct link or the relaying link, selection combining is employed at the destination

after transmission. In the second scheme, DAS/LS, link-selection is used instead at the source, before

transmission. We derived single-fold, integral-form lower and upper bounds for the outage probability of

the DAS/SC scheme, and exact analytical expressions for the outage probability of the DAS/LS scheme.

Besides, we derived closed-form high-SNR asymptotic expressions for outage probability of both schemes.

Figure 3.5: Outage probability versus average SNR of the S-D link for proposed and
existing schemes (dSR = 0.7, Nt = 2 and dSR = 0.8, Nt = 3).
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The derived analytical expressions have been checked via Monte Carlo simulations. Our asymptotic results

revealed that the DAS/SC scheme achieves a full diversity order of Nt + 1, and that the DAS/LS scheme

achieves a lower diversity order of Nt. In addition, we derived an exact closed-form expression for the

mean spectral efficiency of the DAS/LS scheme, which is higher than those of the proposed DAS/SC and

of other existing schemes. Importantly, the underlying distributed strategies of transmit-antenna selection

were shown to perform closely to the costly optimal centralized solutions.

Figure 3.6: Comparison of proposed schemes in terms of spectral e�ciency (PS/N
0

=
PR/N

0

= 10 dB).

3.6 Conclusions

This paper proposed and analyzed two distributed suboptimal schemes for the joint

selection of transmit antenna and communication link in dual-hop, fixed-gain, amplify-
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and-forward relaying networks with a Nt-antenna source, a single-antenna relay, and a

single-antenna destination. Both schemes follow the same antenna-selection policy, but

distinct link-selection policies. In the first scheme, DAS/SC, in order to select either the

direct link or the relaying link, selection combining is employed at the destination after

transmission. In the second scheme, DAS/LS, link-selection is used instead at the source,

before transmission. We derived single-fold, integral-form lower and upper bounds for the

outage probability of the DAS/SC scheme, and exact analytical expressions for the outage

probability of the DAS/LS scheme. Besides, we derived closed-form high-SNR asymptotic

expressions for outage probability of both schemes. The derived analytical expressions

have been checked via Monte Carlo simulations. Our asymptotic results revealed that the

DAS/SC scheme achieves a full diversity order of Nt + 1, and that the DAS/LS scheme

achieves a lower diversity order of Nt. In addition, we derived an exact closed-form

expression for the mean spectral e�ciency of the DAS/LS scheme, which is higher than

those of the proposed DAS/SC and of other existing schemes. Importantly, the underlying

distributed strategies of transmit-antenna selection were shown to perform closely to the

costly optimal centralized solutions.
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Chapter 4
A Distributed Transmit Antenna Selection
Scheme for Fixed-Gain Multi-Antenna AF
Relaying Systems

Diana C. González, Daniel B. da Costa, and José Cândido S. Santos Filho1

Abstract

Antenna selection has arisen as an attractive strategy in multi-antenna systems due to

its reduced complexity and cost. In this paper, the outage performance of a distributed

transmit antenna selection scheme for dual-hop fixed-gain amplify-and-forward relaying

systems is investigated. Our analysis considers a multi-antenna source, a multi-antenna

relay, and a single-antenna destination, in which selection combining and maximal-ratio

combining are employed at the relay and destination receptions, respectively. Lower and

upper bounds for the outage probability of the proposed scheme are derived as the sum

of two terms, one term given in closed form and the other term given in single integral

form. Moreover, asymptotic expressions for these bounds at high signal-to-noise ratio are

obtained in closed form. The results show that our scheme presents full diversity order.

More importantly, the underlying distributed strategy is shown to perform closely to the

costly optimal centralized antenna selection.

1This Chapter is a replica of the following manuscript: D. C. González, D. B. da Costa, and J.
C. S. Santos Filho, “A distributed transmit antenna selection scheme for fixed-gain multi-antenna AF
relaying systems,” in Proc. 9th International Conference Cognitive Radio Oriented Wireless Networks
and Communications (CROWNCOM), Oulu, Finland, 2–4 Jun. 2014, pp. 254–259.
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4.1 Introduction

Multi-antenna relaying systems are expected to be widely utilized in future wireless

communication networks, since the advantages o↵ered by multiple-input multiple-output

(MIMO) and relaying techniques can be fully exploited. However, a potential drawback

of the use of multiple antennas is their complex hardware and increased cost [1]. To

alleviate this, transmit antenna selection (TAS) has arisen as an alternative low-cost

low-complexity strategy to capture the advantages of MIMO systems. Nevertheless, in

order to provide the knowledge necessary for the transmitter to select the best antenna,

the implementation of TAS schemes usually requires feedback channels for acquiring the

channel state information (CSI) of all links. The required bits of feedback information

vary depending on the number of antennas at the nodes [1]. In this case, when the number

of antennas increases, the delay and complexity involved in the selection mechanism may

rapidly become prohibitive in practice.

Several works have shown and explored the advantages of TAS schemes, but a substan-

tial amount of CSI feedback has been observed in most of them. For instance, the optimal

TAS strategy was studied in [2] for a dual-hop MIMO amplify-and-forward (AF) relaying

system, in which an exhaustive search for the best antenna at the source and relay was

required. A di↵erent optimal TAS strategy was examined in [3] assuming a variable-gain

AF relay and Nakagami-m fading. Two suboptimal TAS strategies were also analyzed in

[3], in which the feedback overhead was reduced at the expense of system performance.

More recently, a distributed TAS scheme was proposed in [4] assuming a single-antenna

fixed-gain AF relay.

In this work, we generalize the scheme proposed in [4] by considering a fixed-gain AF

relay with multiple antennas in both transmission and reception. Our scheme provides a

low and constant delay/feedback overhead, despite of the number of transmit antennas.

We derive lower and upper bounds for the outage probability of the proposed scheme

as the sum of two terms, one term given in closed form and the other term given in

single integral form. Moreover, an asymptotic expression for each of these bounds at

high signal-to-noise ratio (SNR) is obtained in closed form. It is noteworthy that such

analysis is considerably more intricate than that of the scheme in [4]. Our results show

that the proposed scheme presents full diversity order. More importantly, its underlying

distributed strategy is shown to perform closely to the costly optimal centralized TAS.

Throughout this paper, fZ (·) denotes the probability density function (PDF) of a

generic random variable Z, E [·] denotes expectation, and Pr (·) denotes probability.

4.2 System Model and Antenna Selection Scheme

4.2.1 System Model

Consider a dual-hop relaying system composed of one source S with Nt antennas, one

single-antenna destination D, and one half-duplex fixed-gain AF relay R with Nrr receive

antennas and Nrt transmit antennas. A time-division multiple access scheme is assumed

and all the channels undergo flat Rayleigh fading.
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Before data transmission, the transmit antenna at S that maximizes the end-to-end

instantaneous SNR is chosen according to the procedure to be described in the next

subsection. Afterwards, a conventional cooperative transmission takes place in two time

slots. In the first time slot, the signals received by the multiple antennas at R are combined

using a selection combining (SC) scheme, and, in the second time slot, the signals coming

from the direct and relaying links2 are combined at D using a maximal-ratio combining

(MRC) scheme. The end-to-end SNR from the ith antenna at S to D (through the kth

receive antenna and jth transmit antenna at R) can be written as

�i,k,j = �S
i

D +
�S

i

R
k

�R
j

D

�R
j

D + C
, (4.1)

where �S
i

D , P
S

N
0

|hS
i

D|2, �S
i

R
k

, P
S

N
0

|hS
i

R
k

|2, �R
j

D , P
R

N
0

|hR
j

D|2, and C = 1 + �̄S
i

R
k

, with

�̄S
i

R
k

= E[�S
i

R
k

]. In these expressions, |hS
i

D|2, |hS
i

R
k

|2, and |hR
j

D|2 denote the channel

power gains of the links from the ith antenna at S to D, from the ith antenna at S to the

kth antenna at R, and from the jth antenna at R to D, respectively; PS and PR stand

for the transmit powers at S and R, respectively; and N
0

denotes the additive white

Gaussian noise (AWGN) at each receiving terminal. We assume a homogeneous network,

in which E[�S
i

R
k

] = �̄SR, E[�S
i

D] = �̄SD, and E[�R
j

D] = �̄RD, for any i = 1, . . . , Nt,

any k = 1, . . . , Nrr, and any j = 1, . . . , Nrt. The fixed-gain relaying factor is adjusted

according to [5] as G2 = E
h

P
R

P
S

|h
S

i

R

k

|2+N
0

i

.

4.2.2 Antenna Selection Strategy

The optimal selection criterion chooses the best transmit antennas at S and R that

maximize the end-to-end SNR, i.e.,

(i⇤, k⇤, j⇤) = arg max
i,k,j

[�i,k,j] . (4.2)

Note that the optimal scheme entails a large amount of delay and feedback overhead due to

the full system CSI required for decision. To alleviate this, relying on the idea pioneeringly

proposed in [4], a suboptimal (yet e�cient) distributed antenna selection (DAS) scheme

is presented next. In this scheme, the local CSI available at S is exploited to its furthest

extent in order to assist the decision, incurring a negligible delay and feedback overhead.

The DAS concept is motivated and supported by the following inequality involving

the end-to-end SNR:

�i,k,j < �S
i

D + �S
i

R
k

min
h�R

j

D

C
, 1
i

�

=
⇠
�i. (4.3)

The DAS scheme is performed in two time slots [4]. In the first time slot, D sends

to R and S a 1-bit reverse pilot signaling. Then, R and S use this bit to estimate their

respective local CSIs �R
j

D and �S
i

D. At this time, based on �R
j

D, the relay selects its

optimal antenna to transmit data, by applying the selection rule j⇤ = arg max
j

⇥

�R
j

D

⇤

. In

the second time slot, R compares its local CSI �R
j

⇤D with C, yielding two cases:

2The relay employs a TAS scheme to forward to the destination the signal received from the source.
This will be described next.
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- Case I: If �R
j

⇤D � C, R sends to S a 1-bit message “1”. In this case, by using

(4.3), �S
i

D and �S
i

R
k

, which are available at S, are su�cient to apply the selection rule

max{⇠
�i,k,j⇤}.

- Case II: If �R
j

⇤D < C, R sends to S a 1-bit message “0”. In this case, by using (4.3),

the application of max{⇠
�i,k,j⇤} would require the additional knowledge of �R

j

⇤D, which is

unavailable at S. Therefore, somewhat arbitrarily, a suboptimal decision will be employed

that depends solely on the maximization of �S
i

D, which is available at S. All in all, the

TAS rule of the proposed DAS scheme is summarized as follows:

i⇤ =

8

<

:

i = arg max
i

h

�S
i

D + max
k

[�S
i

R
k

]
i

, if �R
j

⇤D � C

i = arg max
i

[�S
i

D] , if �R
j

⇤D < C.
(4.4)

It is noteworthy that the major advantage of DAS over other antenna selection schemes

is its reduced delay/feedback overhead, requiring only a 2-bit pilot/feedback signaling, at

the expense of some additional hardware complexity at the source.

4.3 Performance Analysis

In this section, the outage probability for the proposed scheme will be analyzed. Such

a metric can be defined as the probability that the end-to-end SNR falls below a given

threshold, commonly written in terms of a target spectral e�ciency <
0

, being mathemat-

ically formulated as

PDAS
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✓

�R
j

⇤D � C,

✓

�S
i

D +
�S

i

R
k

⇤�R
j

⇤D

�R
j

⇤D + C

◆

< z , 22<
0 � 1

◆

| {z }

P
1

+ Pr

✓

�R
j

⇤D < C,

✓

�S
i

D +
�S

i

R
k

⇤�R
j

⇤D

�R
j

⇤D + C

◆

< z

◆

| {z }

P
2

. (4.5)

Since an exact closed-form expression for the above expression is mathematically in-

tractable, lower and upper bounds for the outage probability will be derived instead,

based on the following paramount relationships:

�S
i

R
k

2
min

h�R
j

D

C
, 1
i


�S

i

R
k

�R
j

D

�R
j

D + C
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i

R
k
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h�R

j

D

C
, 1
i

. (4.6)
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In order to evaluate the terms P
1

and P
2

, we first derive a lower bound P LB

1

for P
1

, using

(4.6), as follows:
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where in step (a) we applied the DAS rule given in (4) for �R
j

⇤D � C. The term ↵ can

be rewritten using the binomial theorem [6, Eq. (1.111)] as
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Then, by substituting (4.8) in (4.7), a lower bound for P
1

can be derived in closed form

as
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In order to assess the asymptotic behavior of P LB

1

, a high-SNR expression for the term ↵

can be derived from its definition as
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which, when replaced in (4.7), yields a corresponding high-SNR asymptotic lower bound

for P
1

as
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Using (4.6), it can be shown that an upper bound PUB

1

for P
1

and its asymptote can be

directly attained by replacing z with 2z into (4.9) and (4.11), respectively.

Similarly, a lower bound P LB
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can be formulated as
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By using the principles of probability theory, P LB

2

can be elaborated as
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where the term ' can be calculated using the binomial theorem [6, Eq. (1.111)] as
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Then, by substituting (4.20) into (4.15), a lower bound for P
2

can be derived in single

integral form as
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In order to assess the asymptotic behavior of P LB

2

, we simplify the term ' defined in (4.15)

by using the binomial theorem [6, Eq. (1.111)] and the MacLaurin series of exponential

functions [6, Eq. (1.211.1)], obtaining
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By substituting (4.22) into (4.15) and using again the binomial theorem, P LB
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The behavior of �n in the high-SNR regime is characterized in Appendices D.1 and D.2.

In Appendix D.1, �n is determined for n = 0, yielding
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where µ
2

, �̄RD/�̄SR and n
1

, min(Nrr, Nrt) � 1. In Appendix D.2, �n is determined for

n > 0, in which two intervals for n are established (1  n  n
1

and n > n
1

), yielding
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As done before for the term P
1

, using (4.6), it can be shown that an upper bound PUB

2

for P
2

and its asymptote can be directly attained by replacing z with 2z into (4.21) and

(4.23).

Finally, by adding as in (4.5) the asymptotic bounds derived for P
1

and P
2

, corre-

sponding asymptotic lower and upper bounds for Pout are obtained, respectively, as

PDAS,LB

out '

8
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:

P LB

1

+ P LB

2

, if Nt = 1 and Nrr  Nrt

P LB

2

, otherwise
(4.27)
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Remarks:

1. Using (4.27), (4.28), and the asymptotic bounds for P
1

and P
2

, it can be shown that

the proposed DAS scheme achieves full diversity order, being equal to Nt +min(Nrr, Nrt).

2. As shown in (4.23), both lower and upper asymptotic bounds for P
2

are given in

terms of an infinite series. In order to observe the convergence of this series, two cases

are analyzed: (i) when Nrr 6= Nrt, only the first n
1

+1 terms are taken into consideration,

since the series is zero for terms greater than n
1

; (ii) when Nrr = Nrt, similarly to [4], the

convergence is proved using the convergence test of [6, Eq. (0.223)].

4.4 Numerical Results and Discussions

In this section, representative numerical results are presented and Monte Carlo simu-

lations are run to support the derived analytical bounds. In our plots, as a sample case,

we assume that the target spectral e�ciency is <
0

= 1 bit/s/Hz and that the path loss

exponent is � = 4. We also assume that the channel mean power is proportional to d��,

with d being the distance between the transceivers. The distance between S and D is

normalized to unity, as in [4]3. Figs. 4.1 and 4.2 show the outage probability for two

major system configurations, namely {Nt = 2, dSR = 0.7} and {Nt = 3, dSR = 0.8},

respectively. It is noteworthy that, in each case, the relay has been placed at the posi-

tion dSR that provides the best outage performance, and such a position was previously

established through simulations. These prior simulation results have not been presented

here due to space limitations. From the figures, note that the performed analysis for the

exact and asymptotic bounds is validated, and that the diversity order, determined as

Nt + min(Nrr, Nrt), is verified. For instance, using the system configuration {Nt = 2,

Nrr = 2, Nrt = 2} the diversity order equals 4, which agrees with the asymptotes’s slope

in Fig. 2. In addition, both figures compares the performance of the proposed DAS and

optimal TAS schemes, which can be seen to be very similar.

3Again, as in [4], we assume a linear network topology, in which S and R transmit with the same SNR
P , and dSD = dSR + dRD, where dSD, dSR, and dRD represent the distance of the links S ! D, S !
R, and R ! D, respectively. The corresponding average link SNRs can be formulated as �̄SD = Pd��

SD,

�̄SR = Pd��
SR, and �̄RD = Pd��

RD.



70

�0 = 2K0

 

2

s

jCiz

�̄SR�̄RD

!

�
Z �

1
u�1e� jCu

�̄RD

�
X

l=0

⇣

� iz
u�̄SR

⌘l

l!
du = � ln

jCiz

�̄SR�̄RD

�
X

k1=0

⇣

q

jCiz
�̄SR�̄RD

⌘2k1

k1!2
+

�
X

k2=0

⇣

q

jCiz
�̄SR�̄RD

⌘2k2

k2!2

⇥ 2�(k2 + 1) �
�
X

l=0

⇣

� iz
�̄SR

⌘l

l!

✓

jC

�̄RD

◆l

�

✓

�l,
jC

�̄RD

◆

. (24)

−5 0 5 10 15 20
10−10

10−8

10−6

10−4

10−2

100

 

 
O

ut
ag

e
pr

ob
ab

ili
ty

,P
o
u

t

Average SNR of the S!D link, �SD, dB

Optimal TAS scheme, Simulation
DAS, Simulation
DAS, Exact lower bound
DAS, Asymptotic lower bound
DAS, Exact upper bound
DAS, Asymptotic upper bound

(Nrr = 2, Nrt = 1)

(Nrr = 2, Nrt = 2)

Fig. 1. Outage probability versus average SNR of the S�D link for different
AS schemes (d
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= 0.7, N
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= 2).
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AS schemes (d
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= 3).

the nth-order modified Bessel function of the second kind
[6, Eq.(8.446)], �(·) represents the Euler psi function [6, Eq.
(8.360)] and �(·) is the gamma function [6, Eq. (8.310.1)]. It
is important to mention that in order to conduct the high-SNR
analysis of the inner expression that defines �0 in (17), the
outer summations in i and j must be considered. To this end,
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Observe that �0 is composed by the sum of three terms,
corresponding to the summations in k1, k2, and l. Using the
fact that

Pb
a=1

�b�1
a�1

�

(�1)
a�1ac is null for c = 0, 1, 2, . . . , b � 2,

after a careful inspection it was attested that each term presents
a different behavior at high-SNR regime, and this will be
described next. The first term is non-null for values of k1

greater than min(Nrr, Nrt) � 1, the second term is non-null
for values of k2 greater than max(Nrr, Nrt) � 1, and the
third term is non-null for values of l greater than Nrr � 1.
Using this and preserving only the lowest-order terms so as
to derive a high-SNR expression, we arrive at three cases:
(i) if Nrr = Nrt, the three terms must be considered; (ii) if
Nrr < Nrt, the first and third terms must be considered; and
(iii) if Nrr > Nrt, only the first term must be considered. In
all the cases, the diversity order of �0 is observed to be given
by n1 , min(Nrr, Nrt) � 1. By incorporating these results
into the definition of �0 given by (23) and (24), we finally
arrive at the high-SNR expression for �0 as given in (18).
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Figure 4.1: Outage probability versus average SNR of the S ! D link for di↵erent AS
schemes (dSR = 0.7, Nt = 2).
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the nth-order modified Bessel function of the second kind
[6, Eq.(8.446)], �(·) represents the Euler psi function [6, Eq.
(8.360)] and �(·) is the gamma function [6, Eq. (8.310.1)]. It
is important to mention that in order to conduct the high-SNR
analysis of the inner expression that defines �0 in (17), the
outer summations in i and j must be considered. To this end,
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Observe that �0 is composed by the sum of three terms,
corresponding to the summations in k1, k2, and l. Using the
fact that

Pb
a=1

�b�1
a�1

�

(�1)
a�1ac is null for c = 0, 1, 2, . . . , b � 2,

after a careful inspection it was attested that each term presents
a different behavior at high-SNR regime, and this will be
described next. The first term is non-null for values of k1

greater than min(Nrr, Nrt) � 1, the second term is non-null
for values of k2 greater than max(Nrr, Nrt) � 1, and the
third term is non-null for values of l greater than Nrr � 1.
Using this and preserving only the lowest-order terms so as
to derive a high-SNR expression, we arrive at three cases:
(i) if Nrr = Nrt, the three terms must be considered; (ii) if
Nrr < Nrt, the first and third terms must be considered; and
(iii) if Nrr > Nrt, only the first term must be considered. In
all the cases, the diversity order of �0 is observed to be given
by n1 , min(Nrr, Nrt) � 1. By incorporating these results
into the definition of �0 given by (23) and (24), we finally
arrive at the high-SNR expression for �0 as given in (18).
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Figure 4.2: Outage probability versus average SNR of the S ! D link for di↵erent AS
schemes (dSR = 0.8, Nt = 3).
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Chapter 5
Distributed TAS/MRC and TAS/SC
Schemes for Fixed-Gain AF Systems with
Multi-Antenna Relay

Diana C. González, Daniel B. da Costa, and José Cândido S. Santos Filho1

Abstract

Although transmit-antenna selection (TAS) is an alternative low-cost strategy to capture

the advantages of multi-antenna systems, its application may require a large amount of

feedback transmissions. Owing to this fact and in order to reduce such requirement, herein

we analyze the performance of two distributed TAS (DAS) schemes. One scheme employs

maximal-ratio combining (DAS/MRC) at the destination, whereas the other employs

selection combining (DAS/SC). We consider a dual-hop fixed-gain amplify-and-forward

relaying network, equipped with multi-antenna source/relay nodes and a single-antenna

destination. A lower bound expression is derived for the outage probability of each inves-

tigated scheme. Importantly, the derived bounds prove to be very tight approximations

to the exact outage performance. Also, capitalizing on a strikingly interesting property

of Stirling numbers of the second kind, we provide closed-form asymptotic expressions

for the obtained bounds. Our results show that the diversity order of the proposed dis-

tributed schemes is identical to that of their optimal centralized counterparts, namely

Nt + min(Nrr, Nrt), with Nt, Nrr, and Nrt denoting the number of transmit antennas

at the source, the number of receive antennas at the relay, and the number of transmit

antennas at the relay, respectively. In addition, as the relay approaches the destination,

the outage performance of the proposed schemes approaches the optimal one.

1This Chapter is a replica of the following manuscript: D. C. González, D. B. da Costa, and J. C.
S. Santos Filho, “Distributed TAS/MRC and TAS/SC Schemes for fixed-gain AF systems with multi-
antenna relay,” IEEE Trans. Wireless Commun., under review.
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5.1 Introduction

Multiple transmit and receive antenna systems have attracted much attention in the

context of wireless relaying communications, because they o↵er a significant improvement

in data rate and link reliability. However, this improvement comes along with an in-

crease in complexity, size, and cost in hardware design. To alleviate such impairments,

transmit-antenna selection (TAS) strategies have emerged as a promising simplified solu-

tion, while retaining many of the benefits of more sophisticated multiple-input multiple-

output (MIMO) relaying systems [1], [2]. With the aim to mitigate the adverse e↵ects of

fading, TAS schemes are usually accompanied by some diversity-combining techniques at

the receiver side, such as maximal-ratio combining (MRC) and selection combining (SC)

[1]. As well known, these two techniques represent a trade-o↵ between performance and

complexity. On the one hand, MRC is the optimal linear combining technique [3], but

its implementation is more di�cult, since it requires multiple channel estimations and a

complex hardware, with a dedicated receiver chain for each antenna [4]. On the other

hand, SC is a suboptimal technique, but with a simpler implementation, since it requires

a single receiver chain which is shared among multiple antennas.

In order to select the best transmit antenna, optimal TAS schemes require the chan-

nel state information (CSI) of all links, which can be in principle obtained by means

of feedback. However, the required bits of feedback information vary depending on the

number of antennas at the nodes [1]. As the number of antennas increases, the delay,

full channel estimation, feedback overhead, and exhaustive antenna search involved into

optimal centralized TAS mechanisms may rapidly become infeasible in practice. To al-

leviate this, suboptimal and/or distributed TAS (DAS) strategies with reduced feedback

overhead have been proposed along the last years. Recent works on dual-hop network

configurations with TAS or DAS at the source and MRC or SC at the destination (also

known as TAS/MRC, TAS/SC, DAS/MRC, and DAS/SC) include those in [5]-[15] and

the references therein. The authors in [5] derived an optimal TAS strategy at the source

and relay for a nonregenerative half-duplex MIMO relaying system, in which it was ver-

ified that the proposed strategy can achieve full diversity order. However, as mentioned

before, such an optimal antenna selection may be too complex. To overcome this, the

authors in [6] and [7] studied some suboptimal low-complexity TAS strategies and proved

that they can achieve the same diversity order as the optimal strategy. In [8], it was

presented an amplify-and-forward (AF) relaying scheme for a MIMO multi-relay network

operating over Rician, Nakagami-m, Weibull, and generalized-K fading channels, in which

the performances of TAS/MRC and TAS/SC were compared. In [9] and [10], TAS/MRC

MIMO relaying schemes operating in the absence of the direct link were investigated. In

[9], the source and destination nodes were equipped with multiple antennas, while a single-

antenna relay was considered. In such scheme, the antenna selection process at the source

required a feedback path from all links, which becomes prohibitive when the number of

antennas increases. Di↵erently, in [10], all the nodes (source, destination, and relay) were

assumed to be equipped with multiple antennas. A DAS strategy was then employed, so

that the selection criteria at the source was based solely on the source-relay link infor-

mation, while the selection criteria at the relay was based on the relay-destination link
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information. The authors in [11] analytically investigated and compared the performance

of two TAS/MRC schemes in a dual-hop AF relaying network. A tight upper bound was

used in order to derive expressions for the cumulative distribution function (CDF) of the

end-to-end signal-to-noise ratio (SNR). In [12], optimal and suboptimal TAS strategies

were presented assuming a variable-gain AF relaying network subject to Nakagami-m

fading, where the feedback overhead was reduced at the expense of system performance.

In [13], adopting a TAS/SC scheme, the authors examined the performance of a cooper-

ative system with a single relay and multiple antennas at all nodes. Such method was

applied at both source and relay nodes, requiring full feedback from the destination. The

authors in [16] have modeled AF relay schemes as a keyhoke channel. In [17], [18], it was

studied clustering structure of wireless multiantennas channels, from which closed-form

expressions for the ergodic capacity considering equal and unequal number of scatterers

in each cluster were derived.

The selection mechanism of many DAS schemes in the literature fully ignore the CSI of

certain network links. On the other hand, a DAS/MRC suboptimal scheme was proposed

in [14] assuming a single-antenna fixed-gain AF relay, in which the CSI of all links was

considered to select the transmit antenna. More recently, capitalizing on [14], a similar

distributed mechanism was designed and analyzed for a DAS/SC scheme [15]. In that

work, it was shown that the DAS/SC scheme achieves the same diversity order as the

DAS/MRC scheme, but with a simpler implementation.

In this paper, we design and analyze generalized versions of the DAS/MRC and

DAS/SC schemes introduced in [14] and [15], respectively. In contrast to these previ-

ous works, where a single-antenna fixed-gain AF relay was studied, herein we consider a

fixed-gain AF relay with multiple antennas at both transmission and reception. Analyt-

ical lower bounds for the outage probability of the proposed schemes are derived, since

an exact analysis looks very intractable. Importantly, the derived bounds prove to be

very tight approximations to the exact outage performance. Also, capitalizing on a strik-

ingly interesting property of Stirling numbers of the second kind, we provide closed-form

asymptotic expressions for the obtained bounds. It is worth noting that the analytical

treatment of such generalized schemes requires more sophisticated mathematical proce-

dures than those for the particular schemes in [14] and [15]. In order to evaluate the system

performance and verify the accuracy of our analytical framework, Monte Carlo simula-

tion results are also provided. Both DAS/MRC and DAS/SC schemes reveal to achieve

full diversity order, and a comparative analysis of their complexity and performance is

presented. It is shown that, as the relay approaches the destination, the underlying dis-

tributed strategy into those schemes performs closely to the costly optimal centralized

TAS mechanism, while requiring a low and constant delay/feedback overhead, despite the

number of transmit antennas.

Throughout this paper, fZ (·) denotes the probability density function (PDF) of a

generic random variable Z, E [·] denotes expectation, and Pr (·) denotes probability.
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5.2 System Model and Antenna Selection Scheme

5.2.1 System Model

We consider a dual-hop relaying system composed by one source S with Nt antennas,

one single-antenna destination D, and one half-duplex fixed-gain AF relay R with Nrr

receive antennas and Nrt transmit antennas. Additionally, we assume that the system

employs time-division multiple access and that all the channels undergo independent flat

Rayleigh fading and additive white Gaussian noise with mean power N
0

.

Before data transmission, the transmit antenna at S that maximizes the end-to-end

instantaneous SNR is chosen, according to the procedure to be described in the next

subsection. Afterwards, a conventional cooperative transmission takes place in two time

slots. In the first time slot, the signal replicas from S (first hop) are combined at R using

SC, and in the second time slot the signals from S (direct link) and R (second hop2)

are combined at D, by using one of two di↵erent methods: SC or MRC. Therefore, the

end-to-end SNR from the ith antenna at S to D (through the kth receive antenna and

jth transmit antenna at R) can be written as

MRC: �i,k,j = �S
i

D +
�S

i

R
k

�R
j

D

�R
j

D + C
(5.1)

SC: �i,k,j = max
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receive antenna at R, �R
j

D , P
R

N
0

|hR
j

D|2 is the second-hop received SNR from the jth

transmit antenna at R to D, and C , 1 + �̄S
i

R
k

, with �̄S
i

R
k

= E[�S
i

R
k

]. In these expres-

sions, |hS
i

D|2, |hS
i

R
k

|2, and |hR
j

D|2 denote the channel power gains of the corresponding

links, and PS and PR stand for the transmit powers at S and R, respectively. We assume

an homogeneous network, in which E[�S
i

R
k

] = �̄SR, E[�S
i

D] = �̄SD, and E[�R
j

D] = �̄RD,

8i = 1, . . . , Nt, 8k = 1, . . . , Nrr, and 8j = 1, . . . , Nrt. The fixed-gain relaying factor is

adjusted according to [19] as G2 = E [PR/(PS|hS
i

R
k

|2 + N
0

)].

5.2.2 Antenna Selection Scheme

The optimal selection criterion chooses the best transmit antennas at S and R that

maximize the end-to-end SNR in the system, i.e.,

(i⇤, k⇤, j⇤) = arg max
i,k,j

{�i,k,j}. (5.3)

Note that the optimal scheme entails a large amount of delay and feedback overhead

due to the full system CSI required for decision. To alleviate this, relying on the idea

pioneeringly proposed in [14], a suboptimal (yet e�cient) DAS scheme is presented next.

2The relay employs a TAS scheme to forward to the destination the signal received from the source.
This will be described in the next subsection.
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In this scheme, the local CSI available at S is exploited to its furthest extent in order to

assist the decision, incurring a negligible delay and feedback overhead.

The concepts of DAS/MRC and DAS/SC are motivated and supported by the following

inequalities, respectively, involving the end-to-end SNR:

MRC: �i,k,j < �S
i

D + �S
i

R
k

min
h�R

j

D

C
, 1
i

�

=
⇠
�i,k,j (5.4)

SC: �i,k,j < max
h

�S
i

D, �S
i

R
k

min
h�R

j

D

C
, 1
ii

�

=
⇠
�i,k,j. (5.5)

The DAS operation is performed in two time slots [14], as shown in Fig. 5.1. In the first
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slot, D sends to R and S a 1-bit reverse pilot signaling. Then, R and S use this message to

Figure 5.1: Operation of the DAS scheme.

time slot, D sends to R and S a 1-bit reverse pilot signaling. Then, R and S use this

message to estimate their respective local CSIs �R
j

D and �S
i

D. At this time, based on

�R
j

D, the relay selects its optimal antenna to transmit data, by applying the following

selection rule:

DAS/MRC and DAS/SC: j⇤ = arg max
j

�

�R
j

D

 

. (5.6)

In the second time slot, R compares its local CSI �R
j

⇤D with C, yielding two cases:

• If �R
j

⇤D � C, R sends to S a 1-bit message “1”. In this case, by using (5.4) and

(5.5), �S
i

D and �S
i

R
k

, which are available at S, are su�cient to apply the selection

rule max{⇠
�i,k,j⇤}.

• If �R
j

⇤D < C, R sends to S a 1-bit message “0”. In this case, by using (5.4)

and (5.5), the application of max{⇠
�i,k,j⇤} would require the additional knowledge

of �R
j

⇤D, which is unavailable at S. Therefore, somewhat arbitrarily, a suboptimal

decision will be employed that depends solely on the maximization of �S
i

D, which

is available at S.
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From the above, the TAS rule at the source of the proposed DAS schemes is summa-

rized as follows:

DAS/MRC: i⇤ =

8

<

:

i = arg max
i

n

�S
i

D + max
k

{�S
i

R
k

}
o

, if �R
j

⇤D � C

i = arg max
i

{�S
i

D}, if �R
j

⇤D < C
(5.7)

DAS/SC: i⇤ =

8

<

:

i = arg max
i

n

max
h

�S
i

D, max
k

{�S
i

R
k

}
io

, if �R
j

⇤D � C

i = arg max
i

{�S
i

D}, if �R
j

⇤D < C.
(5.8)

Finally, since SC is employed at the relay reception of both schemes, we have that

DAS/MRC and DAS/SC: k⇤ = arg max
k

{�S
i

⇤R
k

} . (5.9)

It is noteworthy that the major advantage of DAS over other antenna selection schemes

is its reduced delay/feedback overhead, requiring only a 2-bit pilot/feedback signaling, at

the expense of some additional hardware complexity at the source.

5.3 Outage Analysis

In this section, we analyze the outage probability of the proposed schemes, DAS/MRC

and DAS/SC. This metric is defined as the probability that the end-to-end SNR falls below

a given threshold z, commonly written in terms of a target spectral e�ciency <
0

. Because

the proposed schemes operate on a half-duplex basis, it follows that z = 22<
0 � 1. For

clarity and structure, our analytical results shall be organized as a set of theorems and

corollaries.

5.3.1 DAS/MRC

Proposition 1. The outage probability of the DAS/MRC scheme can be mathematically

formulated as

PDAS/MRC

out

= I
1

+ I
2

, (5.10)

where

I
1

= Pr

✓

�R
j

⇤D � C, �S
i

D +
�S

i

R
k

⇤�R
j

⇤D

�R
j

⇤D + C
< z

◆

(5.11)

I
2

= Pr

✓

�R
j

⇤D < C, �S
i

D +
�S

i

R
k

⇤�R
j

⇤D

�R
j

⇤D + C
< z

◆

. (5.12)

Proof. Based on the CSI of the relay-destination link, the algorithm used for the transmit

antenna selection at the source has two possible choices, as expressed by (5.7):

• If �R
j

⇤D � C, the transmit antenna selection at the source is made according to the

rule i. In this case, an outage occurs when the end-to-end SNR from the ith antenna

at S to D (through the k⇤th receive antenna and j⇤th transmit antenna at R) falls

below the threshold z. This end-to-end SNR is written as in (5.1). Therefore, the

joint probability I
1

of �R
j

⇤D � C and an outage event can be formulated as in (5.11).



78

• If �R
j

⇤D < C, the transmit antenna selection at the source is made according to the

rule i. Except for the antenna index, the outage definition and the end-to-end SNR

are written exactly as in the previous case. Therefore, the joint probability I
2

of

�R
j

⇤D < C and an outage event can be formulated as in (5.12).

Finally, since �R
j

⇤D � C and �R
j

⇤D < C are complementary events, the outage prob-

ability can be obtained by adding I
1

and I
2

, as in (5.10).

1. Bound Analysis

Unfortunately, an exact closed-form solution to the general mathematical framework

provided in Proposition 1 seems infeasible. Instead, we derive a lower bound for the

outage probability. This bound is based on the following paramount relationships:

�S
i

R
k

�R
j

D

�R
j

D + C
 �S

i

R
k

min
h�R

j

D

C
, 1
i

. (5.13)

The ultimate aim is to obtain a closed-form asymptotic expression for the bound derived,

which shall be presented in Section 5.3.1-2. Hereafter, ILB

1

and ILB

2

denote the lower

bounds of I
1

and I
2

, respectively.

Corollary 1. From Proposition 1, ILB

1

can be expressed as

ILB

1

= Pr

✓

max
j

{�R
j

D} � C

◆

Pr
⇣

�S
i

D + max
k

{�S
i

R
k

} < z
⌘N

t

. (5.14)

Proof. See Appendix E.1.

Corollary 2. From Proposition 1, ILB

2

can be expressed as

ILB

2

= Pr

✓

max
j

{�R
j

D} < C, max
m

{�S
m

D} + max
k

{�S
i

R
k

}
�R

j

⇤D

C
< z

◆

. (5.15)

Proof. See Appendix E.2.

Theorem 1. For the propagation scenario considered in this work (independent flat Rayleigh

fading), ILB

1

specializes to the following closed-form expression:

ILB

1

=

✓

1 �
⇣

1 � e
� C

�̄

RD

⌘N
rt

◆

0

@

N
rr

X

j=0

✓

Nrr

j

◆

(�1)j

0

@

⇣

e
�j z

�̄

SR � e
� z

�̄

SD

⌘

�̄SR

j�̄SD � �̄SR

1

A

1

A

N
t

.

(5.16)

Proof. See Appendix E.3.

Theorem 2. For the propagation scenario considered in this work (independent flat Rayleigh

fading), ILB

2

specializes to the following single-fold integral form expression:

ILB

2

=

Z

1

0

CNrtNrr

�̄RD

e
� Cu

�̄

RD

⇣

1 � e
� Cu

�̄

RD

⌘N
rt

�1

⇥
N

t

X

m=0

N
rr

X

j=0

✓

Nt

m

◆✓

Nrr � 1

j

◆

(�1)m(�1)j

✓

e
� (1+j)z

u�̄

SR � e
� mz

�̄

SD

◆

�̄SD

mu�̄SR � (1 + j)�̄SD

du. (5.17)
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Proof. See Appendix E.4.

Combining the above results into (5.10), a lower bound for the outage probability of

the DAS/MRC scheme can be written as PDAS/MRC

out

� ILB

1

+ ILB

2

.

2. Asymptotic Bound Analysis

In order to assess the asymptotic behavior of PDAS/MRC

out

, which provides further insight

into the achievable system diversity order, a high-SNR analysis of ILB

1

and ILB

2

is now

formulated. Hereafter, ĨLB

1

, ĨLB

2

, and P̃DAS/MRC,LB

out

denote the asymptotic lower bounds

of I
1

, I
2

, and PDAS/MRC

out

, respectively.

Corollary 3. From Theorem 1, ĨLB

1

can be obtained as

ĨLB

1

=

✓

1 �
⇣

1 � e� 1

µ

2

⌘N
rt

◆

 

✓

1
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◆N
rr 1
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zN
rr
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(Nrr + 1)

!N
t

, (5.18)

where µ
2

, �̄RD/�̄SR.

Proof. See Appendix E.5.

Corollary 4. From Theorem 2, ĨLB

2

can be obtained as

ĨLB

2

= Nrt
Nrr

�̄SR

✓

1

�̄SD

◆N
t

N
rr

X
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✓
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(�1)i�1
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1
X
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where �̃n is defined as
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with n
1

, min(Nrr, Nrt)�1, �(·) being the gamma function, and  (·) = d
dx

ln�(x) = �

0
(x)

�(x)

being the digamma function.

Proof. See Appendix E.6.

Finally, these asymptotic lower bounds for I
1

and I
2

can be added as in (5.10), yielding

corresponding bounds for the outage probability. This is detailed in the following theorem.

Theorem 3. An asymptotic lower bound for PDAS/MRC

out

is obtained as

P̃DAS/MRC,LB

out

=

8

<

:

ĨLB

1

+ ĨLB

2

, if Nt = 1 and Nrr  Nrt

ĨLB

2

, otherwise.
(5.23)

Proof. First, let us consider the asymptotic lower bound. From (5.18) and (5.19)–(5.22),

the diversity orders of the terms ĨLB

1

and ĨLB

2

are given by NtNrr+Nt and Nt+min(Nrr, Nrt),

respectively. These values coincide for the special case Nt = 1 and Nrr  Nrt, yielding

1 + Nrr. Otherwise, the diversity order of ĨLB

1

exceeds that of ĨLB

2

. In each case, the

asymptotic expression P̃DAS/MRC,LB

out

is obtained by preserving only the lowest-order terms

of the sum ĨLB

1

+ ĨLB

2

, thus leading to (5.23).

Remarks:

• A similar procedure can be applied to derive an upper bound for PDAS/MRC

out

. The

resulting upper bound is somewhat loose, but it has the same diversity order as

the lower bound. Therefore, based on the Pinching Theorem [20] and on the above

discussion in the proof of Theorem 3, if follows that the proposed DAS/MRC scheme

achieves full diversity order, that is, Nt + min(Nrr, Nrt).

• In (5.19), ĨLB

2

is written in terms of an infinite series, namely
P1

n=0

�̃n. On the

other hand, note in (5.22) that the terms for n > n1 are nil if Nrr 6= Nrt. In

addition, if Nrr = Nrt, it can be shown that the sum of those terms reduces to
P1

n=n
1

+1

�n = 2

F
3

[{1,1,2+n
1

+N
t

},{2+n
1

,3+n
1

+N
t

},1]

(2+n
1

+N
t

)(1+n
1

)!

. Therefore, our analytical expression

for ĨLB

2

is actually written in closed form.

5.3.2 DAS/SC

Some of the following theorems and corollaries for the DAS/SC scheme can be proved

based on a mathematical framework similar to that of corresponding theorems and corol-

laries already proved here for the DAS/MRC scheme. In such cases, for the lack of space,

the proofs shall be omitted. Of course, in those proofs, all DAS/MRC equations involved

give place to their DAS/SC counterparts.

Proposition 2. The outage probability of the proposed DAS/SC scheme can be mathe-

matically formulated as

PDAS/SC

out

= J
1

+ J
2

, (5.24)
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where

J
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✓

�R
j

⇤D � C, max
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. (5.25)

J
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= Pr

✓
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⇤�R
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⇤D + C
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< z

◆

. (5.26)

Proof. As in the DAS/MRC scheme, the antenna selection algorithm of the DAS/SC

scheme has also two possible choices, depending on the CSI of the relay-destination link.

This is expressed in (5.8). Therefore, the proof of Proposition 2 follows the same rationale

presented for Proposition 1, by using (5.2) and (5.8) instead of (5.1) and (5.7), respectively.

1. Bound Analysis

As in the DAS/MRC scheme, there seems to be no exact closed-form solution to the

general mathematical framework provided in Proposition 2. Alternatively, we derive again

a lower bound for the outage probability, based on the inequalities in (5.13). As before,

our ultimate aim is to obtain a closed-form asymptotic expression for the bound derived,

which shall be presented in Section 5.3.2-2. Hereafter, JLB

1

and JLB

2

denote the lower

bounds of J
1

and J
2

, respectively.

Corollary 5. From Proposition 2, JLB

1

can be expressed as
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Proof. This proof3 is similar to that of Corollary 1.

Corollary 6. From Proposition 2, JLB

2

can be expressed as
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Proof. This proof4 is similar to that of Corollary 2.

Theorem 4. For the propagation scenario considered in this work (independent flat Rayleigh

fading), JLB

1

specializes to the following closed-form expression:
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. (5.29)

Proof. This result follows directly from (5.27), by specializing the involved probabilities

to the Rayleigh case and using the well-known result that the cumulative distribution of

the maximum is the product of the marginal distributions.

3Although in the original manuscript this proof has been omitted for the lack of space, it is presented
here for completeness, in Appendix E.7.

4Although in the original manuscript this proof has been omitted for the lack of space, it is presented
here for completeness, in Appendix E.8.
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Theorem 5. For the propagation scenario considered in this work (independent flat Rayleigh

fading), JLB

2

specializes to the following single-fold integral form expression:
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Proof. This proof5 is similar to that of Theorem 2.

As in the DAS/MRC scheme, by combining the above results into (5.24), outage

probability bound of the DAS/SC scheme can be written as PDAS/SC

out

� JLB

1

+ JLB

2

.

2. Asymptotic Bound Analysis

In order to assess the asymptotic behavior and the diversity order of the DAS/SC

scheme, we now perform a high-SNR analysis of JLB

1

and JLB

2

. Hereafter, J̃LB

1

, J̃LB

2

, and

P̃DAS/SC,LB

out

denote the asymptotic lower bounds of J
1

, J
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, and PDAS/SC
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, respectively.
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Proof. This result follows directly from (5.29), by using the MacLaurin series expansion

of the exponential function and dropping the terms beyond the second.

Corollary 8. From Theorem 5, J̃LB
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with µ
2

, �̄RD/�̄SR and n
1

, min(Nrr, Nrt) � 1, as already defined for the DAS/MRC

scheme.

Proof. This proof6 is similar to that of Corollary 4.

Finally, these asymptotic lower bounds for J
1

and J
2

can be added as in (5.24), yielding

corresponding bound for the outage probability. This is detailed in the following theorem.

5Although in the original manuscript this proof has been omitted for the lack of space, it is presented
here for completeness, in Appendix E.9.

6Although in the original manuscript this proof has been omitted for the lack of space, it is presented
here for completeness, in Appendix E.10.
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Theorem 6. An asymptotic lower bound for PDAS/SC

out

is obtained as

P̃DAS/SC,LB

out

=

8

<

:

J̃LB

1

+ J̃LB

2

, if Nt = 1 and Nrr  Nrt

J̃LB

2

, otherwise.
(5.34)

Proof. This proof is similar to that of Theorem 3.

Remarks:

• A discussion equivalent to that in the proof of Theorem 3 applies to Theorem 6.

Accordingly, the proposed DAS/SC scheme is also shown to achieve full diversity

order, that is, Nt + min(Nrr, Nrt).

• The proposed DAS/SC scheme is attractive in practice, because it is much simpler

to implement than the DAS/MRC scheme, while achieving the same diversity order.

5.4 Numerical Results and Discussions

In this section, we present sample numerical results and Monte Carlo simulations to

evaluate the performance of the proposed DAS/MRC and DAS/SC schemes and validate

the derived analytical bounds. As a term of comparison, the performance of the corre-

sponding optimal centralized schemes—TAS/MRC and TAS/SC—is also shown in the

figures. For illustration purposes, we assume the following scenario: (a) the target spec-

tral e�ciency is <
0

= 1 bit/s/Hz; (b) the path loss exponent is � = 4; (c) the network has

a linear topology, in which dSD = dSR +dRD, with dSD, dSR, and dRD being the lengths of

the links S ! D, S ! R, and R ! D, respectively; (d) S and R have identical transmit

powers, i.e., PS = PR = P ; (e) each channel mean power is proportional to d��, with

d being the distance between the corresponding transceivers, so that �̄SD = Pd��
SD/N

0

,

�̄SR = Pd��
SR/N

0

, and �̄RD = Pd��
RD/N

0

; (f) the distance between S and D is normalized

to unity, i.e., dSD = 1.

5.4.1 Impact of Relay Location and Number of Antennas

Figs. 5.2 and 5.3 show simulation results for the impact of relay location (dSR) on

the outage probability of DAS/MRC and DAS/SC, respectively, for di↵erent numbers

transmit and receive antennas at the relay (Nrr = 1 and Nrt = 1; Nrr = 1 and Nrt = 2;

Nrr = 2 and Nrt = 1; and Nrr = 2 and Nrt = 2) and di↵erent numbers of transmit

antennas at the source (Nt = 2 in Figs. 5.2a and 5.3a, and Nt = 3 in Figs. 5.2b and 5.3b).

As mentioned before, the optimal centralized TAS/MRC and TAS/SC schemes are also

plotted. In these figures, we highlight three main aspects:

1. The outage performances of the distributed and optimal centralized schemes bear

similar shapes. In both cases investigated—DAS/MRC and DAS/SC—the outage

probability curves of the distributed scheme and its centralized counterpart evolve

similarly as the relay is moved from source (dSR = 0) to destination (dSR = 1).
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Fig. 2: Comparison of proposed DAS/MRC and optimal centralized TAS/MRC in terms of
outage probability (P/N

0

= 10 dB): (a) Nt = 2 e (b) Nt = 3.

A. Impact of Relay Location and Number of Antennas

Figs. 2 and 3 show simulation results for the impact of relay location (dSR) on the outage

probability of DAS/MRC and DAS/SC, respectively, for different numbers transmit and receive

antennas at the relay (Nrr = 1 and Nrt = 1; Nrr = 1 and Nrt = 2; Nrr = 2 and Nrt = 1;

and Nrr = 2 and Nrt = 2) and different numbers of transmit antennas at the source (Nt =

2 in Figs. 2a and 3a, and Nt = 3 in Figs. 2b and 3b). As mentioned before, the optimal

Nrr =2

Figure 5.2: Comparison of proposed DAS/MRC and optimal centralized TAS/MRC in
terms of outage probability (P/N

0

= 10 dB): (a) Nt = 2 e (b) Nt = 3.
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centralized TAS/MRC and TAS/SC schemes are also plotted. In these figures, we highlight three

main aspects:

1) The outage performances of the distributed and optimal centralized schemes bear simi-

lar shapes. In both cases investigated—DAS/MRC and DAS/SC—the outage probability

curves of the distributed scheme and its centralized counterpart evolve similarly as the

relay is moved from source (dSR = 0) to destination (dSR = 1). In particular, the outage

probability achieves a minimum when the relay is placed somewhere between the midpoint

(dSR = 1/2) and the destination, depending on the scheme considered and on the antenna

configuration. One may conjecture why the best performance is not achieved with the relay

being placed exactly at the midpoint. This is because the end-to-end SNR for fixed-gain

relaying is not commutative with respect to the first- and second-hop SNRs, as can be

seen in (1) and (2). For variable-gain relaying, however, that would be the case.

2) The distributed schemes become optimal as the relay approaches the destination. As the

relay is placed closer to the destination (dSR ! 1), the performances of DAS/MRC and

DAS/SC approach those of TAS/MRC and TAS/SC, respectively. This is explained as

Figure 5.3: Comparison of proposed DAS/SC and optimal centralized TAS/SC in terms
of outage probability (P/N

0

= 10 dB): (a) Nt = 2 e (b) Nt = 3.
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In particular, the outage probability achieves a minimum when the relay is placed

somewhere between the midpoint (dSR = 1/2) and the destination, depending on the

scheme considered and on the antenna configuration. One may conjecture why the

best performance is not achieved with the relay being placed exactly at the midpoint.

This is because the end-to-end SNR for fixed-gain relaying is not commutative with

respect to the first- and second-hop SNRs, as can be seen in (5.1) and (5.2). For

variable-gain relaying, however, that would be the case.

2. The distributed schemes become optimal as the relay approaches the destination.

As the relay is placed closer to the destination (dSR ! 1), the performances

of DAS/MRC and DAS/SC approach those of TAS/MRC and TAS/SC, respec-

tively. This is explained as follows. When dSR ! 1, the channel quality of the

second hop improves, so that the probability of �R
j

⇤D � C increases. Conse-

quently, from (5.7) and (5.8), most of the time DAS/MRC applies the selection

rule i⇤ = i = arg max
i

{�S
i

D + max
k

{�S
i

R
k

}} and DAS/SC applies the selection

rule i⇤ = i = arg max
i

max
h

�S
i

D, max
k

{�S
i

R
k

}
i

. In addition, as the probability of

�R
j

⇤D � C increases,
�

S

i

R

k

�
R

j

D

�
R

j

D

+C
⇡ �S

i

R
k

proves more accurate, so that the optimal

selection rule in (5.3) reduces to (i⇤, k⇤, j⇤) ⇡ arg max
i,k,j

{�S
i

D + �S
i

R
k

} for TAS/MRC

and to (i⇤, k⇤, j⇤) ⇡ arg max
i,k,j

{max [�S
i

D, �S
i

R
k

]} for TAS/SC. Note that these rules

are indeed identical to their distributed i-case counterparts. Therefore, as dSR ! 1,

the proposed distributed schemes become optimal.

3. The imbalance between the number of transmit and receive antennas at the relay

sets its best position. To illustrate this, consider the antenna configuration (Nrr =

1, Nrt = 1) for reference, against which the other configurations (Nrr = 1, Nrt = 2),

(Nrr = 2, Nrt = 1), and (Nrr = 2, Nrt = 2) shall be compared in terms of best relay

position (minimum outage probability). First, when (Nrr = 2, Nrt = 2), we observe

that the best relay position is roughly preserved. We have empirically verified that

this always happens when Nrr = Nrt. On the other hand, when (Nrr = 1, Nrt = 2),

the best relay position is observed to move toward the source. We have also verified

that this always happens when Nrr  Nrt. Finally, when (Nrr = 2, Nrt = 1), the

best relay position is observed to move toward the destination, which is again a

general behavior for Nrr � Nrt. Note that a counterbalance mechanism is at play

here. The addition of a transmit antenna at the relay improves the quality of the

second hop, as well the addition of a receive antenna at the relay improves the

quality of the first hop. Accordingly, in each case, the best relay position always

moves in a direction so as to weaken the hop improved by the antenna addition.

5.4.2 Impact of Average SNR

In order to validate our bound expressions and assess the outage probability of the

proposed DAS/MRC and DAS/SC schemes while varying the average SNR of the source-

destination link, we present simulation and analytical results for di↵erent numbers trans-

mit and receive antennas at the relay (Nrr = 1 and Nrt = 1; Nrr = 1 and Nrt = 2;
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(a)

(b)

Fig. 4: Outage probability versus average SNR of the S-D link for the proposed DAS/MRC
scheme: (a) dSR = 0.7 and Nt = 2; (b) dSR = 0.8 and Nt = 3.

at the relay (Nrr = 1 and Nrt = 1; Nrr = 1 and Nrt = 2; Nrr = 2 and Nrt = 1; and Nrr = 2

and Nrt = 2) and different numbers of transmit antennas at the source (Nt = 2 in Figs. 4a and

5a, and Nt = 3 in Figs. 4b and 5b). For a better clarity of the simulated and exact bound results

at low to medium SNR, the asymptotic curves have been truncated at 10 dB. In each scenario,
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5a, and Nt = 3 in Figs. 4b and 5b). For a better clarity of the simulated and exact bound results

at low to medium SNR, the asymptotic curves have been truncated at 10 dB. In each scenario,

Figure 5.4: Outage probability versus average SNR of the S-D link for the proposed
DAS/MRC scheme: (a) dSR = 0.7 and Nt = 2; (b) dSR = 0.8 and Nt = 3.
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(a)

(b)

Fig. 5: Outage probability versus average SNR of the S-D link for the proposed DAS/SC
scheme: (a) dSR = 0.7 and Nt = 2; (b) dSR = 0.8 and Nt = 3.

the relay has been placed close to the position that provides the best outage performance for the

optimal centralized schemes with the antenna configuration (Nrr = 1, Nrt = 1), as a term of

comparison (dSR = 0.7 for Nt = 2 and dSR = 0.8 for Nt = 3).

In Figs. 4 and 5, it can be observed that, for both DAS/MRC and DAS/SC, our lower bound
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Fig. 5: Outage probability versus average SNR of the S-D link for the proposed DAS/SC
scheme: (a) dSR = 0.7 and Nt = 2; (b) dSR = 0.8 and Nt = 3.

the relay has been placed close to the position that provides the best outage performance for the

optimal centralized schemes with the antenna configuration (Nrr = 1, Nrt = 1), as a term of

comparison (dSR = 0.7 for Nt = 2 and dSR = 0.8 for Nt = 3).

In Figs. 4 and 5, it can be observed that, for both DAS/MRC and DAS/SC, our lower bound

Figure 5.5: Outage probability versus average SNR of the S-D link for the proposed
DAS/SC scheme: (a) dSR = 0.7 and Nt = 2; (b) dSR = 0.8 and Nt = 3.
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Nrr = 2 and Nrt = 1; and Nrr = 2 and Nrt = 2) and di↵erent numbers of transmit

antennas at the source (Nt = 2 in Figs. 5.4a and 5.5a, and Nt = 3 in Figs. 5.4b and

5.5b). For a better clarity of the simulated and exact bound results at low to medium

SNR, the asymptotic curves have been truncated at 10 dB. In each scenario, the relay

has been placed close to the position that provides the best outage performance for the

optimal centralized schemes with the antenna configuration (Nrr = 1, Nrt = 1), as a term

of comparison (dSR = 0.7 for Nt = 2 and dSR = 0.8 for Nt = 3).

In Figs. 5.4 and 5.5, it can be observed that, for both DAS/MRC and DAS/SC, our

lower bound expressions are extremely close to the simulation curves over the entire SNR

range in all the cases. The curves confirm that the proposed schemes achieve full diversity

order, which is equal to Nt +min(Nrr, Nrt). For instance, under the antenna configuration

Nt = Nrr = Nrt = 2, the diversity order equals 4, matching the asymptotic slope of the

corresponding curves in Figs. 5.4a and 5.5a. Note that for some antenna configurations

the lower bound meets its asymptotic expression outside the SNR range presented in the

figures.

5.5 Conclusions

In this work, we designed and analyzed two distributed transmit-antenna selection

schemes for dual-hop fixed-gain amplify-and-forward relaying networks. Our results gen-

eralize previous works to the multi-antenna relay scenario. We derived extremely tight

lower bounds for the outage probability of both schemes, as well as closed-form asymp-

totic expressions for each of these bounds. We also showed that the proposed distributed

schemes achieve the same diversity order as their optimal centralized counterparts, and

perform increasingly close to these as the relay approaches the destination.
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Chapter 6
Distributed Transmit-Antenna Selection in
Variable-Gain Relaying Systems

Diana C. González, Daniel B. da Costa, and José Cândido S. Santos Filho1

Abstract

Recently, distributed transmit-antenna selection schemes have attracted great interest,

since they capture the essential benefits of multi-antenna systems while reducing their

cost, complexity, delay, and feedback overhead. In those distributed schemes, the antenna

selection is based on local channel-state information, in contrast to their optimal central-

ized counterparts, which require knowing the channel state of all links. Herein, we design

two such distributed schemes for a dual-hop variable-gain amplify-and-forward relaying

system with one multi-antenna source, one single-antenna relay, and one single-antenna

destination. The two schemes di↵er in the diversity method used at the destination,

namely, selection combining or maximal-ratio combining, and in the selection rule accord-

ingly. In addition to conceiving these new schemes, we analyze their outage performance.

Since an exact analysis proves intractable, we tackle the outage probability in terms of

lower-bound expressions and their asymptotes at high signal-to-noise ratio. Importantly,

the derived bounds turn out to be almost indistinguishable from the true performance,

assessed via simulation. Our results reveal that the proposed distributed schemes achieve

the same diversity order of their optimal centralized counterparts and perform closely to

these, specially when the relay is near the source or destination.

1This Chapter is a replica of the following manuscript: D. C. González, D. B. da Costa, and J. C. S.
Santos Filho, “An e�cient distributed approach for TAS/SC and TAS/MRC in variable-gain AF relaying
systems,” IEEE Trans. Commun., under review.
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6.1 Introduction

Multi-antenna cooperative communications are regarded as a key emerging paradigm

for enhancing next-generation wireless networks in terms of reliability and spectral e�-

ciency, by leveraging the fundamental benefits of multiple-input–multiple-output (MIMO)

technologies, such as spatial diversity and spatial multiplexing [1], [2]. In practice, how-

ever, fully exploiting a high number of antennas increases the hardware cost and complex-

ity, since the required multiple radio-frequency chains are expensive and power consuming.

Alternatively, an attractive strategy is to lay hold of a transmit-antenna selection (TAS)

scheme, as it captures the essential advantages of multi-antenna systems at a reduced cost

and complexity [3]. In optimal centralized TAS schemes, the destination terminal collects

the full channel-state information (CSI) of all available links and use it to choose the best

antenna that the source terminal should transmit with. Afterwards, the destination feeds

the selected-antenna index back to the source, which then proceeds with the transmis-

sion process [3]. Thereby, centralized TAS schemes may incur a considerable delay and

feedback overhead associated with the assessment of all links. Indeed, such overhead may

rapidly become prohibitive in practice, as the number of antennas increases. To allevi-

ate the need for CSI estimation and feedback, suboptimal distributed TAS (a.k.a. DAS)

schemes are of great practical interest. In these schemes, the antenna-selection mechanism

is based on the partial CSI of a subset of links, usually the local ones, i.e., those links

directly interfacing with the node that selects the antenna. This partial channel-state

information is referred to as the local CSI. On the other hand, the TAS and DAS schemes

are usually complemented by means of some diversity-combining method at the receiver

side, such as maximal-ratio combining (MRC) and selection combining (SC) [4],[5]. These

methods are used to merge the signals received from the direct and relaying links.

Several studies have proposed and analyzed amplify-and-forward (AF) relaying schemes

with the joint use of TAS techniques at the transmitter side and diversity combining

methods at the receiver side, including those in [6]-[18] and the references therein. In

a pioneering work [6], optimal selection criteria for TAS/MRC were derived, and it was

analytically demonstrated that the optimal TAS scheme achieves the same diversity order

of a communication scheme that fully and simultaneously exploits all transmit anten-

nas. The main drawback of such an optimal TAS scheme is its high complexity when

performing an exhaustive search for the best transmit antenna. Aiming to reduce this

complexity, some suboptimal TAS strategies have been also explored in the literature.

In most cases, however, antenna selection criteria have been considered that ignore the

CSI of some links [7]-[10]. In those works, suboptimal schemes were studied for the same

basic TAS/MRC network configuration adopted in [6]. In [7], two TAS rules were consid-

ered and assessed via simulation, based on the direct-link and first-hop CSIs, respectively.

In [8], the schemes in [7] have been assessed on an analytical basis. In [9], an adaptive

TAS rule was considered, based either on the direct-link CSI or on the direct-link and

first-hop CSIs, depending on the local channel state at the source. Finally, in [10], two

TAS rules were considered and assessed analytically in terms of outage performance: the

optimal one and a suboptimal one, with the latter being based on the direct-link CSI. In

other cases, AF relaying schemes employing TAS techniques have been considered that
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Figure 6.1: System configuration for the distributed TAS/SC and TAS/MRC schemes.

ignore the direct link as a transmission path [11]-[16]. In [11], the error rate and outage

probability were derived for a TAS/MRC relaying network with a multi-antenna source,

a multi-antenna destination, and a single-antenna variable-gain AF relay. This scheme

was generalized in [12] and [13], by assuming a multi-antenna relay. Based on the same

network configuration, a suboptimal strategy for TAS/MRC and TAS/SC schemes was

proposed in [14] and [15], by considering Nakagami-m channels. In [16], TAS/MRC and

TAS/SC were investigated for Weibull channels in a multi-relay scenario.

An e�cient distributed approach was introduced in [17] for a DAS/MRC scheme op-

erating over a single-antenna fixed-gain AF relay. This approach avoids the full CSI of

optimal centralized schemes while considering all the links in the antenna-selection mech-

anism. More recently, in [18], the new approach was applied to DAS/SC, by considering

again a single-antenna fixed-gain AF relay. In this work, we extend the distributed ap-

proach used in [17] and [18] to the variable-gain scenario. More specifically, we design

and analyze e�cient DAS/MRC and DAS/SC schemes operating over a single-antenna

variable-gain AF relay. Analytical lower bounds for the outage probability of the proposed

schemes are derived, since an exact analysis proves intractable. Importantly, the obtained

bounds prove to be extremely tight approximations to the exact outage performance. In

addition, we provide simple closed-form asymptotic expressions for the derived bounds,

which reveal that the proposed schemes achieve full diversity. Strikingly, the proposed

suboptimal schemes turn out to perform very closely to their optimal centralized coun-

terparts, mainly when the relay is located near the source or destination. Monte Carlo

simulation is used to validate our analytical results.

In what follows, fA (·) denotes the probability density function (PDF) of a generic

random variable A, E [·] denotes expectation, Pr (·) denotes probability, and “'” denotes

asymptotic equivalence.
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6.2 System Model

Consider the dual-hop relaying system depicted in Fig. 6.1, composed by one source S

with Nt antennas, one single-antenna destination D, and one single-antenna, half-duplex,

variable-gain AF relay R. The system operates on a time-division multiple access basis,

and all the channels undergo independent flat Rayleigh fading and additive white Gaussian

noise with mean power N
0

.

Before each data transmission, an antenna selection is carried out at the source, de-

sirably by choosing the best antenna for transmission, i.e., the one that maximizes the

end-to-end signal-to-noise ratio (SNR). The selection procedure shall be presented in the

next Section. Subsequently, a conventional cooperative transmission is held in two time

slots. In the first time slot, S broadcasts the data stream to R and D. In the sec-

ond time slot, R amplifies the received signal according to the variable-gain AF protocol

and forwards it to D, which then combines the replicas from S and R via SC or MRC.

Accordingly, the end-to-end SNR from the ith antenna at S to D can be formulated as

SC: �i = max



Yi,
XiZ

Xi + Z + 1

�

(6.1)

MRC: �i = Yi +
XiZ

Xi + Z + 1
, (6.2)

where Yi , P
S

N
0

|hY,i|2 is the direct-link received SNR from the ith antenna at S to D, Xi ,
P

S

N
0

|hX,i|2 is the first-hop received SNR from the ith antenna at S to R, and Z , P
R

N
0

|hZ |2
is the second-hop received SNR from R to D. Moreover, PS and PR denote the transmit

powers at S and R, respectively, and |hY
i

|2, |hX,i|2, and |hZ |2 denote the channel power

coe�cients of the links from the ith antenna at S to D, from the ith antenna at S to R,

and from R to D, respectively. Note that, due to the Rayleigh fading condition, Xi, Yi,

and Z are exponential random variables. Herein, we assume an homogeneous network,

so that all links from S to D (or to R) undergo identically distributed fading conditions,

i.e., E[Xi] = X̄ and E[Yi] = Ȳ , 8i 2 {1, . . . , Nt}, and E[Z] = Z̄.

6.3 Antenna Selection Scheme

In the optimal centralized scheme, the i⇤th transmit antenna at S is selected that

maximizes the end-to-end SNR, i.e.,

Optimal TAS/MRC and TAS/SC: i⇤ = arg max
i

{�i}, (6.3)

where �i is defined in (6.1) and (6.2) for TAS/SC and TAS/MRC, respectively. As men-

tioned before, the optimal decision requires the full knowledge of the entire system CSI,

which involves a large amount of delay and feedback overhead. To reduce such impair-

ments, we propose here e�cient suboptimal DAS/SC and DAS/MRC schemes, inspired

by the corresponding schemes for fixed-gain AF relaying presented in [17] and [18], re-

spectively. In those works, the antenna-selection mechanism is based on local CSI at S,

namely, Xi and Yi, i 2 {1, . . . , Nt}, and on a 1-bit partial CSI related to the second hop
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Z. The point here is to avoid feeding back to S the full value of Z estimated at R or D—

which would demand a certain number of bits—while not ignoring altogether the value of

Z in the selection mechanism. Herein, we shall not discuss how Xi and Yi, i 2 {1, . . . , Nt},

are made available at S, as this is also required in many suboptimal schemes proposed

in the literature, thus not distinguishing those schemes from ours. Instead, we focus on

showing how the addition of a minor 1-bit feedback overhead associated with Z can be

used to enable a great improvement in performance.

Our DAS/SC and DAS/MRC schemes are motivated by key inequalities involving

the respective end-to-end SNRs, which are obtained by replacing the known inequality

XiZ/ (Xi + Z + 1) < min [Xi, Z] into (6.1) and (6.2), leading to

SC: �i < max [Yi, min [Xi, Z]]
�

=
⇠
�i (6.4)

MRC: �i < Yi + min [Xi, Z]
�

=
⇠
�i. (6.5)

Note in (6.4) and (6.5) that the upper bound
⇠
�i of �i depends on min [Xi, Z]. From

this, a DAS mechanism can be designed based on the local CSI available at S, Xi and

Yi, i 2 {1, . . . , Nt}, and on the whether Z � maxi{Xi} or Z < maxi{Xi}. The latter

information can be fed back from R to S by using a 1-bit message. This is the underlying

rationale:

• If Z � maxi{Xi}, then min[Xi, Z] = Xi, 8i. In this case, from (6.4) and (6.5), based

on the local CSI Xi and Yi available as S, a suboptimal selection rule maxi{
⇠
�i} can

be applied.

• If Z < maxi{Xi}, then min[Xi, Z] = Z for some value(s) of i. In this case, the

application of the selection rule maxi{
⇠
�i} would require the knowledge of Z, which is

unavailable at S. Instead, somewhat arbitrarily, we suggest the suboptimal selection

rule maxi{Yi} that maximizes the direct-link received SNR.

All in all, in the proposed DAS schemes, the i⇤th transmit antenna at S is selected as

follows:

DAS/SC: i⇤ =

8

<

:

i , arg max
i

n

max [Yi, Xi]
o

, if Z � max
i

{Xi}
i , arg max

i
{Yi}, if Z < max

i
{Xi}

(6.6)

DAS/MRC: i⇤ =

(

i , arg max
i

{Yi + Xi}, if Z � max
i

{Xi}
i , arg max

i
{Yi}, if Z < max

i
{Xi} .

(6.7)

In comparison with optimal centralized schemes, the main advantage of the proposed DAS

schemes is a considerably reduced delay/feedback overhead, while achieving a slightly

worse performance, as discussed in [17] and [18]. Moreover, in comparison with other

suboptimal TAS schemes that ignore the CSI of the second hop, the main advantage of

the proposed DAS schemes is an improved outage performance at the expense of a minor

additional 1-bit feedback overhead.
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6.4 Outage Analysis

In this section, we examine the outage performance of the proposed DAS/SC and

DAS/MRC schemes. By definition, an outage event occurs whenever the end-to-end

SNR falls below a predefined threshold ⌧ , usually obtained in terms of a target spectral

e�ciency <s. For half-duplex relaying systems, which is the case here, ⌧ = 22<
s � 1. As

in many related studies, an exact mathematical treatment proves intractable, since the

outage event is related to the SNRs of the multiple links in a very complicated manner.

Because of that, we tackle the outage probability in terms of lower bounds and handy

closed-form asymptotic expressions at high SNR. Importantly, the derived bounds turn

out to be highly accurate approximations to the exact outage performance. For the sake

of clarity and fluidity, our analytical results shall be presented in the form of Lemmas and

Propositions, all the proofs of which are postponed to appendices, even the small ones.

6.4.1 DAS/SC

By using (6.6) into (6.1), the outage probability PDAS/SC

out

of the DAS/SC scheme can

be formulated as

PDAS/SC

out

= Pr

✓

Z � max
i

{Xi} , max



Yi,
XiZ

Xi + Z + 1

�

< ⌧

◆

| {z }

,I
1

+ Pr

✓

Z < max
i

{Xi} , max



Yi,
XiZ

Xi + Z + 1

�

< ⌧

◆

| {z }

,I
2

. (6.8)

Note in (6.8) that we have defined two probability terms, namely, I
1

and I
2

, the sum of

which gives the referred outage probability. Next we provide lower bounds for each of

these terms, as well as corresponding high-SNR asymptotic expressions.

Bound Analysis

The following lower-bound expressions are based on the key inequality presented

in (6.4). Hereafter, ILB

1

, ILB

2

, and PDAS/SC,LB

out

denote the lower bounds of I
1

, I
2

, and

PDAS/SC

out

, respectively.

Lema 6.1. A lower bound for the term I
1

defined in (6.8) can be elaborated as

ILB
1

= Pr (Yi < ⌧)N
t Pr

⇣

Z � max
i

{Xi} , max
i

{Xi} < ⌧
⌘

. (6.9)

Proof. See Appendix F.1.

Lema 6.2. A lower bound for the term I
2

defined in (6.8) can be elaborated as

ILB
2

= Pr (Yi < ⌧)N
t Pr

⇣

Z < max
i

{Xi} , min [Xi, Z] < ⌧
⌘

. (6.10)

Proof. See Appendix F.2.



97

Proposition 3. For independent flat Rayleigh fading, as is the case here, the lower bound

ILB

1

specializes to the following closed-form expression:

ILB

1

=
�

1 � e� ⌧

¯

Y

�N
t

 

e� ⌧

¯

Z

�

1 � e� ⌧

¯

X

�N
t

+
N

t

X

k=0

✓

Nt

k

◆

(�1)kX̄

X̄ + kZ̄

⇣

1 � e�⌧( k

¯

X

+

1

¯

Z

)
⌘

!

. (6.11)

Proof. See Appendix F.3.

Proposition 4. For independent flat Rayleigh fading, as is the case here, the lower bound

ILB

2

specializes to the following single-fold integral-form expression:

ILB

2

=
�

1 � e� ⌧

¯

Y

�N
t

 

�

1 � e� ⌧

¯

X

�

+
�

1 � e� ⌧

¯

Z

�

�
�

1 � e� ⌧

¯

X

� �

1 � e� ⌧

¯

Z

�

�
Z 1

⌧

1

Z̄
e� b

¯

Z

⇣

1 � e� b

¯

X

⌘N
t

�1

�

1 � e� ⌧

¯

X

�

db �
Z ⌧

0

1

Z̄
e� z

¯

Z

�

1 � e� z

¯

X

�N
t

dz

!

. (6.12)

Proof. See Appendix F.4.

By using (6.11) and (6.12) into (6.8), a lower-bound expression for the outage prob-

ability of the DAS/SC scheme operating over independent flat Rayleigh fading can be

obtained as PDAS/SC,LB

out

= ILB

1

+ ILB

2

.

Asymptotic Bound Analysis

In order to gain insights into the high-SNR trends of the proposed DAS/SC scheme,

we now investigate the asymptotic behavior of the derived lower bounds. To this end,

ĨLB

1

, ĨLB

2

, and P̃DAS/SC,LB

out

denote the asymptotic lower bounds of I
1

, I
2

, and PDAS/SC

out

,

respectively.

Proposition 5. A high-SNR asymptotic expression for the lower bound in (6.11) can be

obtained as

ĨLB

1

=
⇣ ⌧

Ȳ

⌘N
t

⇣ ⌧

X̄

⌘N
t

. (6.13)

Proof. See Appendix F.5.

Proposition 6. A high-SNR asymptotic expression for the lower bound in (6.12) can be

obtained as

ĨLB

2

=
⌧N

t

+1

Ȳ N
tX̄

+
⌧N

t

+1

Ȳ N
tZ̄

✓

1 � B

✓

X̄

Z̄
, Nt

◆◆

, (6.14)

where B(·, ·) is the beta function [14, Eq. (3.312.1)].

Proof. See Appendix F.6.

Proposition 7. A high-SNR asymptotic lower bound for the outage probability of the

DAS/SC scheme operating over independent flat Rayleigh fading can be obtained as

P̃DAS/SC,LB

out

'

8

>

>

<

>

>

:

2⌧2

¯Y ¯X
+ ⌧2

¯Y ¯Z

⇣

1 � B
⇣

¯X
¯Z
, Nt

⌘⌘

if Nt = 1

⌧N

t

+1

¯Y N

t

¯X
+ ⌧N

t

+1

¯Y N

t

¯Z

⇣

1 � B
⇣

¯X
¯Z
, Nt

⌘⌘

if Nt � 2.

(6.15)
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Proof. See Appendix F.7.

It is noteworthy that a similar procedure can be applied to derive a corresponding

upper bound for the outage probability of the proposed DAS/SC scheme. The resulting

upper bound is somewhat loose, but it bears the same diversity order as the lower bound

presented here. Thus, from the Pinching Theorem, it follows that our DAS/SC scheme

achieves full diversity order, namely, Nt + 1.

6.4.2 DAS/MRC

By using (6.7) into (6.2), the outage probability PDAS/MRC

out

of the DAS/MRC scheme

can be formulated as

PDAS/MRC

out

= Pr

✓

Z � max
i

{Xi} , Yi +
XiZ

Xi + Z + 1
< ⌧

◆

| {z }

,L
1

+ Pr

✓

Z < max
i

{Xi} , Yi +
XiZ

Xi + Z + 1
< ⌧

◆

| {z }

,L
2

. (6.16)

Note in (6.16) that we have defined two probability terms, namely, L
1

and L
2

, the sum

of which gives the referred outage probability. Next we provide lower bounds for each of

these terms, as well as corresponding high-SNR asymptotic expressions.

Bound Analysis

The following lower-bound expressions are based on the key inequality presented

in (6.5). Hereafter, LLB

1

, LLB

2

, and PDAS/MRC,LB

out

denote the lower bounds of L
1

, L
2

,

and PDAS/MRC

out

, respectively.

Lema 6.3. A lower bound for the term L
1

defined in (6.16) can be elaborated as

LLB
1

= Pr
⇣

Z � max
i

{Xi} , max
i

{Yi + Xi} < ⌧
⌘

. (6.17)

Proof. See Appendix F.8.

Lema 6.4. A lower bound for the term L
2

defined in (6.16) can be elaborated as

LLB
2

= Pr
⇣

Z < max
i

{Xi} , max
i

{Yi} + min [Xi, Z] < ⌧
⌘

. (6.18)

Proof. See Appendix F.9.

Proposition 8. For independent flat Rayleigh fading, as is the case here, the lower bound

LLB

1

specializes to the following single-fold integral-form expression:

LLB

1

=

Z ⌧

0

1

Z̄
e� z

¯

Z

✓

1 � e� z

¯

X � Ȳ

X̄ � Ȳ
e� ⌧

¯

Y

⇣

�1 + e�z( 1

¯

X

� 1

¯

Y

)
⌘

◆N
t

dz

+

Z 1

⌧

1

Z̄
e� z

¯

Z

✓

1 � e� ⌧

¯

X � Ȳ

X̄ � Ȳ
e� ⌧

¯

Y

⇣

�1 + e�⌧( 1

¯

X

� 1

¯

Y

)
⌘

◆N
t

dz. (6.19)
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Proof. See Appendix F.10.

Proposition 9. For independent flat Rayleigh fading, as is the case here, the lower bound

LLB

2

specializes to the following two-fold integral-form expression:

LLB

2

=

Z ⌧

0

Nt
1

Ȳ
e� y

¯

Y

⇣

1 � e� y

¯

Y

⌘N
t

�1

 

⇣

1 � e� ⌧�y

¯

X

⌘

+
⇣

1 � e� ⌧�y

¯

Z

⌘

�
⇣

1 � e� ⌧�y

¯

X

⌘⇣

1 � e� ⌧�y

¯

Z

⌘

�
Z 1

⌧�y

1

Z̄
e� b

¯

Z

⇣

1 � e� b

¯

X

⌘N
t

�1

⇣

1 � e� ⌧�y

¯

X

⌘

db �
Z ⌧�y

0

1

Z̄
e� z

¯

Z

�

1 � e� z

¯

X

�N
t

dz

!

dy.

(6.20)

Proof. See Appendix F.11.

By using (6.19) and (6.20) into (6.16), a lower-bound expression for the outage prob-

ability of the DAS/MRC scheme operating over independent flat Rayleigh fading can be

obtained as PDAS/MRC,LB

out

= LLB

1

+ LLB

2

.

Asymptotic Bound Analysis

As for the DAS/SC case, in order to gain insights into the high-SNR trends of the

proposed DAS/MRC scheme, we now investigate the asymptotic behavior of the derived

lower bounds. To this end, L̃LB

1

, L̃LB

2

, and P̃DAS/MRC,LB

out

denote the asymptotic lower

bounds of L
1

, L
2

, and PDAS/MRC

out

, respectively.

Proposition 10. A high-SNR asymptotic expression for the lower bound in (6.19) can be

obtained as

L̃LB

1

=

✓

1

2

⌧ 2

X̄Ȳ

◆N
t

. (6.21)

Proof. See Appendix F.12.

Proposition 11. A high-SNR asymptotic expression for the lower bound in (6.20) can be

obtained as

L̃LB

2

=

✓

1

Ȳ

◆N
t 1

X̄

✓

⌧N
t

+1

Nt + 1

◆

+

✓

1

Ȳ

◆N
t 1

Z̄

✓

⌧N
t

+1

Nt + 1

◆✓

1 � B

✓

X̄

Z̄
, Nt

◆◆

. (6.22)

Proof. See Appendix F.13.

Proposition 12. A high-SNR asymptotic lower bound for the outage probability of the

DAS/MRC scheme operating over independent flat Rayleigh fading can be obtained as

P̃DAS/MRC,LB

out

'

8

>

>

<

>

>

:

⇣

1

2

⌧2

¯X ¯Z

⌘N
t

e� ⌧

¯

Y + 1

¯ZN

t

¯X
⌧N

t

+1

(N
t

+1)

+ 1

¯ZN

t

¯Y
⌧N

t

+1

(N
t

+1)

⇣

1 � B
⇣

¯X
¯Y
, Nt

⌘⌘

if Nt = 1

1

¯ZN

t

¯X
⌧N

t

+1

(N
t

+1)

+ 1

¯ZN

t

¯Y
⌧N

t

+1

(N
t

+1)

⇣

1 � B
⇣

¯X
¯Y
, Nt

⌘⌘

if Nt � 2.

(6.23)

Proof. This proof is similar to that of Proposition 7.
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As for the DAS/SC case, it is noteworthy that a similar procedure can be applied to

derive a corresponding upper bound for the outage probability of the proposed DAS/MRC

scheme. The resulting upper bound is somewhat loose, but it bears the same diversity

order as the lower bound presented here. Thus, from the Pinching Theorem, it follows

that our DAS/MRC scheme achieves full diversity order, namely, Nt + 1.

6.5 Numerical Results and Discussions

In this section, we provide some application scenarios to verify our analytical results

for the proposed DAS/MRC and DAS/SC schemes, as well as to exemplify the outage

performance of these schemes in comparison with their optimal centralized counterparts

TAS/MRC and TAS/SC. To this end, Monte Carlo simulation results are also included.

For illustration purposes, we consider the following system configuration: the target spec-

tral e�ciency is <s = 1 bit/s/Hz; the path loss exponent is � = 4; the network follows

a linear topology, in which dSD = dSR + dRD, with dSD, dSR, and dRD being the lengths

of the source-destination, source-relay, and relay-destination links, respectively; S and R

have identical transmit powers, i.e., PS = PR = P ; each channel mean power is d��,

with d being the distance between the corresponding transceivers, so that Ȳ = Pd��
SD/N

0

,

X̄ = Pd��
SR/N

0

, and Z̄ = Pd��
RD/N

0

; and the distance between S and D is normalized to

unity, i.e., dSD = 1.

Fig. 6.2 presents simulation results that show the impact of relay location on the

outage performance of the proposed distributed schemes and their optimal centralized

counterparts. Two scenarios are presented for each scheme, by considering two and three

antennas at the source. The following can be observed from the curves:

• As expected, DAS/MRC outperforms DAS/SC in all the cases. Interestingly, the

outage curves of all distributed and optimal schemes bear very similar shapes over

the entire range of relay location.

• The outage performances of all investigated schemes are asymmetric functions of

the relay location: for no scheme the best performance is achieved when the re-

lay is placed at the midpoint between the source and destination. Instead, this is

achieved at dSR ⇡ 0.72 and dSR ⇡ 0.82 with Nt = 2 and Nt = 3, respectively, for

both DAS/SC and DAS/MRC. The best relay location is biased toward the desti-

nation because the number of transmit antennas in the first hop (Nt) is higher than

in the second hop (one). Therefore, an optimal balance is achieved by strength-

ening somewhat the weakest hop, i.e., by positioning the relay a bit closer to the

destination.

• As expected, the optimal centralized schemes outperform the distributed ones. How-

ever, their performances become increasingly close to each other as the relay ap-

proaches either the source (dSR ! 0) or the destination (dSR ! 1). This is

explained as follows. On the one hand, as dSR ! 0, Z < maxi{Xi} with high

probability, causing the DAS/SC and DAS/MRC rules in (6.6) and (6.7) to be both

very likely i⇤ = arg maxi{Yi}. Also, if Z < maxi{Xi}, then, from (6.1) and (6.2),
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Figure 6.2: Outage probability versus normalized distance between source and relay for
the proposed distributed schemes and their optimal centralized counterparts (P/N
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= 10
dB): (a) DAS/SC; (b) DAS/MRC.
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�i ⇡ max[Yi, Z] for DAS/SC and �i ⇡ Yi + Z for DAS/MRC. As a result, the DAS

rules tend to coincide with the optimal ones, since arg maxi{Yi} = arg maxi{Yi +

Z} = arg maxi{max[Yi, Z]}, with the last equality being true i↵ Z < maxi{Yi},

which is much probably the case. On the other hand, as dSR ! 1, Z � maxi{Xi}
with high probability, causing the DAS/SC and DAS/MRC rules in (6.6) and (6.7)

to be very likely i⇤ = arg maxi{max[Yi, Xi]} and i⇤ = arg maxi{Yi + Xi}, respec-

tively. Also, if Z � maxi{Xi}, then, from (6.1) and (6.2), �i ⇡ max[Yi, Xi] for

DAS/SC and �i ⇡ Yi +Xi for DAS/MRC. Therefore, once again the DAS rules tend

to coincide with the optimal ones.

Fig. 6.3 presents simulation and analytical results for the outage probability of the pro-

posed distributed schemes and their optimal centralized counterparts while varying the

average received SNR of the source-destination link. Here again, two scenarios are pre-

sented for each scheme, by considering two and three antennas at the source and the

corresponding best relay locations, estimated from Fig. 6.2. The following can be ob-

served from the curves:

• Our lower bound expressions are extremely close to the exact (simulated) outage

performance of the proposed distributed schemes over the entire range of SNR.

• The proposed distributed schemes achieve full diversity order, namely, Nt +1, which

is the same of the optimal centralized schemes.

• When the relay is positioned at the best location, the performance of proposed

distributed schemes is very close to that of their centralized counterparts.

6.6 Conclusions

This work proposed and analyzed a low-complexity, low-cost, distributed transmit-

antenna selection approach for dual-hop variable-gain amplify-and-forward relaying sys-

tems. Two di↵erent diversity-combining methods were considered at the destination,

namely, selection combining and maximal-ratio combining. Each method led to a dis-

tinct design of the antenna selection rule. We derived extremely tight lower bounds for

the outage probability of each proposed scheme, as well as useful closed-form asymptotic

expressions for each of the obtained bounds. In comparison with optimal centralized

schemes, our distributed schemes achieve the same diversity order and a slightly worse

performance, while reducing the cost, complexity, delay, and feedback overhead.
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Chapter 7
Decode-and-Forward Multirelay Systems
with Lossy Intra-Links and Distributed
Source Coding: Outage Probability and
Power Allocation

Diana C. González, Albrecht Wolf, José Cândido S. Santos Filho and Gerhard Fettweis1

Abstract

The so-called Chief Executive O�cer problem has inspired some relay transmission schemes.

It suggests that the source message can be recovered at the destination by combining a

set of corrupted replicas sent by multiple relays, as long as the replicas are su�ciently

correlated with the original message. In this work, we build on the Slepian-Wolf theorem

to assess the outage performance of a distributed source coding scheme for a decode-and-

forward multirelay system in which the direct link is unavailable to convey information.

As in the CEO problem, the replicas forwarded by the relays are allowed to contain intra-

link errors due to previous unreliable hops, and the destination is expected to reconstruct

the original message by jointly decoding all the received replicas. In addition to analyzing

the outage probability of such scheme, we derive a simple yet e�cient power allocation

strategy for the multiple relays, which is asymptotically optimal at high signal-to-noise

ratio.

1This Chapter is a replica of the following manuscript: D. C. González, A. Wolf, J. C. S. Santos Filho,
and G. Fettweis, “Decode-and-forward multirelay systems with lossy intra-links and distributed source
coding: outage probability and power allocation,” IEEE Trans. Commun., under review.
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7.1 Introduction

In some abnormal scenarios, wireless networks may be faced with challenging require-

ments in terms of energy e�ciency and reliable information transfer under a constantly

changing network topology. For example, in case of severe environmental disasters, the

communication infrastructure of mobile cellular networks may be seriously damaged,

which in turn may lead to a collapse of the entire communication system. In such a

scenario, intact mobile devices can be used to establish a mesh network without the need

for central coordination and backbone infrastructure. However, the transmit power of

mobile devices is inherently restricted by their limited power supply, so that low signal-

to-noise ratios (SNRs) are likely to occur, resulting in an unreliable information transfer

across the mesh network.

Cooperative communication techniques have emerged as a promising approach to sup-

port these restrictive transmissions, by exploiting the spatial diversity through a collec-

tion of intermediate relay nodes between source and destination [1]. Normally, before

forwarding information, a relay node checks the received message and discard it if any

uncorrectable error is detected, in order to ensure a reliable communication. However, in

such mesh networks, intra-link errors between the source and each relay are common and

inevitable, so that a huge amount of retransmissions would be needed to enable a reliable

multi-hop connectivity.

In order to prevent energy ine�ciency and improve the robustness of the referred

network, an innovative distributed source coding (DSC) scheme was proposed in [2]. The

DSC scheme exploits the fact that an erroneous message at the relay can be still highly

correlated with the original source message and thus can assist in the decoding process at

the destination—instead of being merely discarded. The performance gain of this approach

can be reasoned with use of the Slepian-Wolf correlated source coding theorem [3]. In [2]

and related studies, the link between the source and relay was considered to be lossy, being

described as a binary symmetric channel (BSC) with a certain bit flipping probability [4].

This assumption is indeed a plausible amalgamated model for multiple unreliable hops

that connect the source and relay. At the relay, a possibly erroneous message is detected,

re-encoded, interleaved, and forwarded to the destination. Finally, at the destination, a

joint decoding (JD) technique is applied to exploit the correlation between the original

direct-link message and the unreliable relay message, by means of a likelihood ratio update

function [2]. A significant improvement of the decoding performance is observed when

compared with the relay message being discarded. In [5], a comprehensive outage analysis

of the coding scheme proposed in [2] was carried out, by using the theorems for lossy

source-channel separation and source coding with side information. In [6], the authors

capitalized on the Slepian-Wolf theorem to analyze the outage probability of a correlated-

source transmission scheme, assuming a decode-and-forward (DF) relay system with a

BSC source-relay (SR) link and a relay-destination (RD) link under block Rayleigh fading.

More recently, the same authors proposed in [7] a corresponding power allocation strategy

to minimize the outage probability derived in [6].

In this work, based on the results in [6] and [7], we analyze the outage performance of

a DSC scheme for a DF relay network with lossy intra-links, as well as we design a power
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Figure 7.1: System model for the multirelay scheme based on the CEO problem.

allocation strategy for the investigated scheme. However, di↵erently from [6] and [7], we

consider a more realistic scenario, in which no direct link exists between the source and

destination. In addition, more generally than those works, we consider that each mes-

sage is simultaneously transmitted along an arbitrary number of relay routes—instead of

a single relay. It was shown in [8] that the joint decoder at the destination can exploit

the correlation among the replicas received from multiple relays, and that a significant

performance gain can be attained compared to conventional coding schemes. However,

error-free retrieval of the original message cannot be achieved [9]. This is known as the

chief executive o�cer (CEO) problem in network information theory [10]. Similarly to [6],

we capitalize on the Slepian-Wolf correlated source coding theorem to assess the outage

performance of the investigated transmission scheme. This is a reasonable framework,

since the various relays can be regarded as mutually correlated sources of information.

We illustrate the derivation process by providing exact outage expressions for the par-

ticular cases of two and three relays, obtained in integral form. More interestingly, we

derive a closed-form asymptotic outage expression for the general case with an arbitrary

number of relays. Finally, based on this general result, we derive a remarkably simple

power allocation strategy that is asymptotically optimal at high SNR. To the best of our

knowledge, Slepian-Wolf-based outage analysis and power allocation design for DSC relay

networks with lossy intra-links have not been addressed yet in the context of multiple

relays or unavailable direct transmission.

In what follows, Pr[·] denotes probability, fX(·) is the probability density function

(PDF) of a continuous random variable X, pY (·) is the probability mass function (PMF)

of a discrete random variable Y , H(Y ) is the entropy of Y , z is a sample realization of a

generic random variable Z, hb(x) , �x log
2

(x) � (1 � x) log
2

(1 � x) is the binary entropy

function, |S| is the cardinality of a set S, B = {0, 1} is the binary set, and {Ai|i 2 S} is

an indexed series (e.g., {Ai|i 2 {1, 5, 7}} = {A
1

, A
5

, A
7

}).
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7.2 System Model

We consider a half-duplex dual-hop2 relay system as shown in Fig. 7.1. It consists

of one source (S), one destination (D) and N DF relays (F
1

, F
2

, . . . , FN). The system

operation is based on the CEO problem. An i.i.d. binary information sequence3 B
0

is

originated by S with uniform probabilities Pr[B
0

= 0] = Pr[B
0

= 1] = 1/2. The source

sequence is transmitted via N mutually independent BSCs with associated memoryless

binary error sequences Ei, i 2 {1, . . . , N}—a representation of the accumulated error

caused by the multiple wireless hops up to the last one. The PMF of Ei can be written

as

pE
i

(e) = pi�(e � 1) + (1 � pi)�(e), (7.1)

e 2 {0, 1}, in which 0 < pi  0.5 is the bit-flipping probability and �(·) is the discrete

delta function. Therefore, the ith relay Fi observes an information sequence Bi = B
0

�Ei,

i 2 {1, . . . , N}, with “�” denoting the binary exclusive OR operation. Note that, like the

source sequence, all relay sequences are also uniformly distributed, so that H(Bi) = 1,

i 2 {0, 1, . . . , N}. In addition, note that the relay sequences B
1

, . . . , BN are mutually

correlated. Those sequences are transmitted to D over independent channels undergoing

flat Rayleigh fading (RF) and additive white Gaussian noise with mean power N
0

. At

the destination, the relay sequences are estimated as B̂
1

, . . . , B̂N and, based on these, the

source sequence is finally estimated as B̂
0

. The PDF of the received instantaneous SNR

�i at the ith second hop is exponentially distributed, thus given by

f
�

i

(�i) =
1

�̄i

exp(� �i

�̄i

), (7.2)

where �̄i is the average SNR, obtained as

�̄i =
Pi

N
0

· d�⌘
i , (7.3)

with Pi being the transmit power at Fi, di is the distance between Fi and D, and ⌘ is the

pathloss exponent.

7.3 Preliminaries

In any e↵ective JD scheme, the best recovery of the source message B
0

at the destina-

tion is obviously expected to be achieved when all recovered relay messages B̂
1

, . . . , B̂N

are error-free. However, even in such a favorable scenario at the second hops, the source

error probability Pr[B̂
0

6= B
0

] cannot be zero, since the formulation of the CEO problem

excludes error-free BSCs at the first hops (pi > 0, 8i). So far, only a few JD schemes for

the referred problem have been proposed that exchange decoding information among the

2As mentioned before, in our model the first hop is an amalgamated representation of possibly multiple
hops between the source and relay.

3In order to alleviate the notation, we shall drop the time index when denoting information and error
sequences.
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relays as a means to reduce the source error probability. In particular, the joint decoder

proposed in [11] shows a significant performance gain when compared to other coding

schemes. The exact calculation of the source error probability for the joint decoder in [11]

is provided in [9].

In this work, we neither address any specific DSC/JD scheme nor perform any er-

ror probability calculations. Instead, following the approach in [6], we assess the outage

performance limits of a generic DSC/JD scheme from an information-theoretical perspec-

tive. To this end, the joint decoder performance gain can be reasoned by means of the

Slepian-Wolf correlated source coding theorem [3], because the multiple relay messages

can be seen as correlated information sources, each of which resembles to some extent the

original source message.

7.3.1 Slepian-Wolf Theorem: the original scope

The Slepian-Wolf theorem states that if the transmission rates Ri at the relays, i 2
{1, . . . , N}, measured in bits per channel use, satisfy the inequality constraints [3]

X

i2S

Ri �H ({Bi|i 2 S}|{Bj|j 2 Sc})

=H (B
1

, . . . , BN) � H ({Bj|j 2 Sc}) (7.4)

for all subsets S ✓ {1, . . . , N}, then all relay sequences B
1

, . . . , BN can be recovered error-

free, with Sc denoting the complement of S. The set of N -tuples R
1

, . . . , RN that satisfy

all the constraints in (7.4) is referred to as the Slepian-Wolf admissible rate region. We

now find this region in terms of the bit-flipping probabilities of the first hops. Note in (7.4)

that each constraint is written in terms of (i) the joint entropy of all relay sequences and

(ii) the joint entropy of a certain subset {Bj|j 2 Sc} of relay sequences. Any of these

entropies can be evaluated as special cases of the following general formula:

H({Bi|i 2 S}) = �
X

{b
i

}2B|S|

Pr [{Bi|i 2 S} = {bi}] log
2

(Pr [{Bi|i 2 S} = {bi}]) . (7.5)

The required probabilities Pr [{Bi|i 2 S} = {bi}] can be obtained by knowing that the

source bits are equally likely and by recognizing that both B
0

= 0 and B
0

= 1 may lead

to each possible sample realization of {Bi|i 2 S}, which gives

Pr [{Bi|i 2 S} = {bi}] =
1

2

"

Y

i2S

pE
i

(bi) +
Y

i2S

p̄E
i

(bi)

#

, (7.6)

where we have used (i) the independence among the error sequences and (ii) the auxiliary

PMF

p̄E
i

(e) , (1 � pi)�(e � 1) + pi�(e) (7.7)

defined by swapping the probabilities of Ei. Note that (7.6) is ultimately given in terms

of the bit-flipping probabilities pi associated with the first hops. Accordingly, using this

into (7.5) and then into (7.4), we obtain each rate constraint of the Slepian-Wolf theorem

also in terms of the individual bit-flipping probabilities.
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7.3.2 Slepian-Wolf Theorem: a modified scope

In its original scope, the Slepian-Wolf theorem provides the rate conditions for recov-

ering all relay messages at the destination. However, from an engineering perspective, this

is not the primary aim. In the investigated system, the destination is ultimately not in-

terested in recovering all relay messages—which are possibly erroneous replicas, indeed—,

but in merging them somehow to recover the original source message. Note that each

relay sequence contains a di↵erent amount of information about the source sequence,

according to the channel quality of the first hop. To gain insight, let us consider two

extreme sample cases. First, when the first hop is fully unreliable, i.e., if the bit-flipping

probability equals 1/2, then the relay sequence does not contain any useful information

about the source sequence and thus should be discarded altogether. In such case, no rate

constraint should be imposed at all. Second, when the first hop is fully reliable, i.e., if the

bit-flipping probability is zero, then the relay sequence is identical to the source sequence.

In such case, it would be desirable to fully recover the relay sequence and thus the rate

constraint should be maximal. These two examples suggest that, in the general case, an

appropriate rate requirement for a given relay should not depend on the absolute infor-

mation content of the relay message (entropy), but on how much of this content concerns

at most the source message (mutual information). This can be accomplished by adapting

the Slepian-Wolf Theorem accordingly, as done in [6] and [7] under a di↵erent context. All

in all, we propose modifying the original scope of the Slepian-Wolf Theorem by replacing

each entropy term with a corresponding mutual information term involving the source

message. Specifically, the transmission rates Ri at the relays, i 2 {1, . . . , N}, must satisfy

the inequality constraints

X

i2S

Ri �I ({Bi|i 2 S}; B
0

|{Bj|j 2 Sc})

=I (B
1

, . . . , BN ; B
0

) � I ({Bj|j 2 Sc}; B
0

) . (7.8)

Hereafter, the set of N -tuples R
1

, . . . , RN that satisfy all the constraints in (7.8) is referred

to as the modified Slepian-Wolf admissible rate region. We now find this region in terms of

the bit-flipping probabilities of the first hops. This is paramount for many derivations that

follow. Note in (7.8) that each constraint is written in terms of (i) the mutual information

between all relay sequences and the source sequence and (ii) the mutual information

between a certain subset {Bj|j 2 Sc} of relay sequences and the source sequence. Any

of these mutual informations can be evaluated as special cases of the following general

formula:

I({Bi|i 2 S}; B
0

) =H({Bi|i 2 S}) � H(B
0

, {Bi|i 2 S}) + 1, (7.9)

where H({Bi|i 2 S}) is defined as in (7.5) and

H(B
0

, {Bi|i 2 S}) = �
X

{b
0

,{b
i

}}2B|S|+1

Pr [{B
0

, {Bi|i 2 S}} = {b
0

, {bi}}]

⇥ log
2

(Pr [{B
0

, {Bi|i 2 S}} = {b
0

, {bi}}]) . (7.10)
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Figure 7.2: Modified Slepian-Wolf admissible rate region for two relays.

By knowing that the source bits are equally likely, the required probabilities Pr [{B
0

, {Bi|i 2 S}}
= {b

0

, {bi}}] can be obtained as

Pr [{B
0

, {Bi|i 2 S}} = {b
0

, {bi}}] =
1

2

"

�(b
0

)
Y

i2S

pE
i

(bi) + �(b
0

� 1)
Y

i2S

p̄E
i

(bi)

#

. (7.11)

Note that (7.11) is ultimately given in terms of the bit-flipping probabilities pi associated

with the first hops. Accordingly, using this into (7.10) and then into (7.9) and (7.8),

we obtain each rate constraint of the modified Slepian-Wolf theorem also in terms of the

individual bit-flipping probabilities. Next we illustrate this process for the particular cases

of two and three relays.

7.3.3 Two Relays

In Fig. 7.2, the modified admissible rate region is shown for two relays. In this case,

R
1

and R
2

must satisfy three inequality constraints:

R
1

�I (B
1

; B
0

|B
2

) ,

R
2

�I (B
2

; B
0

|B
1

) , (7.12)

R
1

+ R
2

�I (B
1

, B
2

; B
0

) .

In other words, the transmission rate at each relay has to be greater than or equal to

the mutual information between its sequence and the source sequence conditioned on the

other relay sequence, and the rate sum has to be greater than or equal to the mutual infor-

mation between the two relay sequences and the source sequence. By using (7.9), (7.10),

and (7.11), after some algebraic manipulations, those mutual informations are obtained

in terms of the bit-flipping probabilities p
1

and p
2

as

I(B
1

; B
0

|B
2

) = h
2

(p
1

, p
2

) � h
02

(p
1

, p
2

) � hb(p2

),

I(B
2

; B
0

|B
1

) = h
2

(p
1

, p
2

) � h
02

(p
1

, p
2

) � hb(p1

), (7.13)

I(B
1

, B
2

; B
0

) = h
2

(p
1

, p
2

) � h
02

(p
1

, p
2

) + 1,
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).

where

h
2

(p
1

, p
2

) , �2
2

X

i=1

a
2

(i) log
2

(a
2

(i)), (7.14)

with

a
2

(1) = 0.5[p
1

p
2

+ (1 � p
1

)(1 � p
2

)],

a
2

(2) = 0.5[p
1

(1 � p
2

) + (1 � p
1

)p
2

],
(7.15)

and

h
02

(p
1

, p
2

) , �2
4

X

i=1

a
02

(i) log
2

(a
02

(i)), (7.16)

with

a
02

(1) = 0.5[p
1

p
2

],

a
02

(2) = 0.5[p
1

(1 � p
2

)],

a
02

(3) = 0.5[(1 � p
1

)p
2

],

a
02

(4) = 0.5[p
1

(1 � p
2

)].

(7.17)

7.3.4 Three Relays

The modified admissible rate region for three relays is shown in Fig. 7.3. This is less

easy to visualize than the previous one. In this case, the rates R
1

, R
2

, and R
3

must satisfy
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seven inequality constraints:

R
1

� I(B
1

; B
0

|B
2

, B
3

),

R
2

� I(B
2

; B
0

|B
1

, B
3

),

R
3

� I(B
3

; B
0

|B
1

, B
2

),

R
1

+ R
2

� I(B
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, B
2

; B
0

|B
3

), (7.18)

R
1

+ R
3

� I(B
1

, B
3

; B
0

|B
2

),

R
2

+ R
3

� I(B
2

, B
3

; B
0

|B
1

),

R
1

+ R
2

+ R
3

� I(B
1

, B
2

, B
3

; B
0

).

In other words, the transmission rate at each relay has to be greater than or equal to the

mutual information between its sequence and the original source sequence conditioned

on the other two relay sequences; each sum of two relay rates has to be greater than or

equal to the mutual information between the two relay sequences and the source sequence

conditioned on the remaining relay sequence; and the sum of all relay rates has to be

greater than or equal to the mutual information between all relay sequences and the

source sequence. By using (7.9), (7.10), and (7.11), after some algebraic manipulations,

those entropies are obtained in terms of the bit-flipping probabilities p
1

, p
2

, and p
3

as

I(B
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3
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(7.19)

where

h
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X
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a
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a
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and

h
03

(p
1

, p
2

, p
3

) , �2
8

X

i=1

a
03

(i) log
2

(a
03

(i)), (7.22)
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with
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a
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)p
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3

)],

a
03
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)p
3
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a
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)(1 � p
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)(1 � p
3
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(7.23)

Capitalizing on the general formulations (7.9), (7.10), and (7.11), the same rationale

illustrated here for two and three relays can be applied to an arbitrary number of relays.

7.4 Outage Probability

In the proposed system, an outage event occurs whenever the transmission rates

R
1

, . . . , RN fall outside the modified Slepian-Wolf admissible rate region. Such condi-

tion means that, at least for one of the relays, the information content regarding the

source message cannot be entirely recovered at the destination. The maximum achievable

value of Ri is related to the received SNR �i by means of [5]

Ri =
1

Rci

log
2

(1 + �i), (7.24)

where Rci represents the spectrum e�ciency associated with the modulation and channel

coding schemes [7]. In many parts of this work, for simplicity, we shall assume Rci = Rc, 8i.

Using (7.24), each rate constraint in (7.8) that defines an outage event can be mapped

into an equivalent SNR constraint. In this Section, we follow this approach to derive exact

integral-form expressions for the outage probability of the particular cases with two and

three relays, as well as a simple and insightful closed-form asymptotic outage expression

for the general case with an arbitrary number of relays.

7.4.1 Two Relays

Fig. 7.4 shows the modified inadmissible rate region for two relays. It is divided into

two areas, with associated probabilities J
2,1 and J

2,2. Thus, the outage probability P
out

for two relays can be formulated as

P
out

= J
2,1 + J

2,2. (7.25)

Substituting (7.24) into the rate inequalities in (7.12), J
2,1 and J

2,2 can be expressed in
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Figure 7.4: Modified Slepian-Wolf inadmissible rate region for two relays, divided into
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terms of SNR constraints as

J
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These expressions can be evaluated by integrating the joint PDF f
�

1

,�
2

(�
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)

over the corresponding ranges defined in (7.26) and (7.27). This is done in Appendices G.1

and G.2. By combining the results therein, P
out

can be finally written in exact single-fold

integral form as
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(7.28)

Although the outage expression in (7.28) cannot be solved in exact closed form, a sim-

ple asymptotic solution can be derived at high SNR. This is also done in Appendices G.1

and G.2, for J
2,1 and J

2,2 separately, by assuming Rc1 = Rc2 = Rc. From the results

therein, it turns out that the diversity order of J
2,2 is greater than that of J

2,1, so that the

latter dominates the high-SNR outage behavior. Accordingly, an asymptotic expression

of P
out

for two relays can be written in compact form as

P
out

' C
1

�̄
1

+
C

2

�̄
2

, (7.29)

where the constants C
1

and C
2

are defined as

C
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) � 1, (7.30)

C
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Figure 7.5: Modified Slepian-Wolf inadmissible rate region for three relays, divided into
five volumes.

with the mutual informations I (B
1

; B
0

|B
2

) and I (B
2

; B
0

|B
1

) being given as in (7.13) in

terms of the bit-flipping probabilities.

7.4.2 Three Relays

Following a similar procedure, we now derive the outage probability for three relays.

Fig. 7.5 shows the modified inadmissible rate region, which is divided into five regions or

volumes, with associated probabilities J
3,1 to J

3,5. Thus, the outage probability can be

formulated as

P
out

= J
3,1 + J

3,2 + J
3,3 + J

3,4 + J
3,5. (7.32)

Substituting (7.24) into the rate inequalities in (7.18), J
3,1, J

3,2, J
3,3, and J

3,4 can be

expressed in terms of SNR constraints as
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In addition, J
3,5 can be decomposed into three terms as

J
3,5 = J
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As before, all of these expressions can be evaluated by integrating the joint PDF f
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) over the corresponding ranges defined in (7.33) to (7.40). This is

done in Appendices G.3, G.4, and G.5. The obtained results are
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where all of the required mutual informations involving B
1

, B
2

, and B
3

are provided

in (7.19) in terms of the bit-flipping probabilities. Using (7.41)–(7.47) into (7.32) and

(7.37), the outage probability is finally obtained as P
out

= J
3,1 +J

3,2 +J
3,3 +J

3,4 +J
3,5a �

J
3,5b � J

3,5c.

Note that the exact outage probability is obtained in terms of single- and two-fold

integral-form expressions. On the other hand, as in the previous case, a simple closed-

form asymptotic solution can be derived at high SNR. This is done in Appendices G.3,

G.4, and G.5 for each probability component separately, by assuming Rc1 = Rc2 = Rc.

From the results therein, it can be shown that the high-SNR outage behavior is again

dominated by a single component, namely J
3,1. Accordingly, an asymptotic expression of

P
out

for three relays can be written in compact form as

P
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where the constants C
1

, C
2

, and C
3

are defined as
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with the mutual informations I (B
1

; B
0

|B
2

, B
3

), I (B
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|B
1

, B
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), and I (B
3

; B
0
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)

being given as in (7.19) in terms of the bit-flipping probabilities.

7.4.3 N Relays

The same approach can be applied to any given number N of relays, by splitting the

modified inadmissible rate region into several parts. The contribution of each part is then

evaluated by integrating the joint PDF of the individual SNRs over the corresponding

range. However, as in the cases of two and three relays, the resulting outage expression is

written in (N �1)-fold integral form. On the other hand, a simple closed-form asymptotic

solution at high SNR can be also obtained for the general case with an arbitrary number

of relays. This is based on the following key result of a pioneering work in [12]: the

asymptotic outage behavior at high SNR is exclusively determined by the PDF behavior

of the SNR in the vicinity of the origin. Therefore, in our case, it su�ces to consider those

parts of the modified inadmissible rate region that directly interface with at least one of

the coordinate axes. From the Slepian-Wolf constraints given in (7.8), the probability

mass JN,1 of the referred parts can be expressed as
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(7.52)

Now, by following the same procedure presented in Appendices G.1 to G.5 for two and

three relays, after some algebraic manipulations, an asymptotic high-SNR expression for
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the outage probability P
out

of the general case with an arbitrary number of relays can be

finally obtained as

P
out

'
N
X

i=1

Ci

�̄i

, (7.53)

where each constant Ci is defined as

Ci , 2R
c

I(B
i

;B
0

|{B
j

,j 6=i}) � 1, (7.54)

with the mutual informations I(Bi; B0

|{Bj, j 6= i}), i 2 {1, . . . , N}, being computed from

(7.8)–(7.11) in terms of the bit-flipping probabilities.

7.4.4 Throughput

Although the outage probability is e↵ective in measuring the likelihood that each

transmission succeeds, it does not capture how much useful information the destination

receives on average per transmission. To capture this, following the standard approach

in the literature, we define the system throughput T as the mutual information between

the set of relay sequences B
1

, . . . , BN and the source sequence B
0

times the non-outage

probability, which gives

T = I(B
1

, . . . , BN ; B
0

) · (1 � P
out

), (7.55)

where I(B
1

, . . . , BN ; B
0

) and P
out

can be computed by using the mathematical framework

developed heretofore.

7.5 Asymptotically Optimal Power Allocation

In this section, we design a simple power allocation strategy for the multiple relays in

order to improve the outage performance of the investigated system. Despite its simplicity,

the proposed allocation proves highly e↵ective, being asymptotically optimal at high SNR.

For that reason, we call it Asymptotically Optimal Power Allocation (AOPA).

Given a total amount of transmit power PT for all relays, the transmit power at the

ith relay is assigned as Pi = ↵iPT , where 0  ↵i  1 is the power allocation coe�cient,

i 2 {1, . . . , N}. Of course,
PN

i=1

↵i = 1. Then, from (7.3), the average received SNR at

the ith second hop can be written as

�̄i =
↵i P

T

d�⌘
i

N
0

. (7.56)

Our primary aim is to find the set of power allocation coe�cients ↵
1

, . . . ,↵N that minimize

P
out

, that is,
minimize

↵
1

,...,↵
N

P
out

(↵
1

, . . . ,↵N)

subject to 0  ↵i  1, 8i, and
N
X

i=1

↵i = 1.
(7.57)
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Unfortunately, as seen in the previous Section, there exists no general exact closed-form

expression for P
out

. Alternatively, we propose minimizing the simple asymptotic outage

expression in (7.53). By using (7.3), this can be formulated as

minimize
↵

1

,...,↵
N

N
X

i=1

N
0

Cid
⌘
i

P
T

· 1

↵i

subject to 0  ↵i  1, 8i, and
N
X

i=1

↵i = 1,

(7.58)

where each constant Ci is defined as in (7.54). This is a convex optimization problem,

as follows. Note that the cost function is a summation, each component of which is a

function of a single power allocation coe�cient. It turns out that the ith component

N
0

Cid
⌘
i /(PT

↵i) is a convex function of the ith coe�cient ↵i, because N
0

Cid
⌘
i /PT

� 0 and

1/↵i is a convex function of ↵i. The proof of convexity is completed by recognizing that

a sum of convex functions is also a convex function [13]. To find the global minimum,

we eliminate the Nth power allocation coe�cient ↵N by incorporating the constraint
PN

i=1

↵i = 1 into the cost function, which gives

N�1

X

i=1

N
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· 1
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+
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0

CNd⌘
N

P
T
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PN�1

i=1
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. (7.59)

Then, by di↵erentiating (7.59) with respect to the remaining set of power allocation

coe�cients ↵
1

, . . . ,↵N�1

, by equating all these partial derivatives to zero, and by solving

the resulting system of equations, after some algebraic manipulations omitted here for

simplicity, we finally arrive at the AOPA scheme:

↵i =

p

Ci · d⌘
i

PN
j=1

q

Cj · d⌘
j

, i 2 {1, . . . , N}. (7.60)

Note that the proposed power allocation depends ultimately on the distances di between

each relay and the destination, and on the conditional mutual informations I(Bi; B0

|{Bj, j 6=
i}) between each relay sequence and the source sequence, which, in turn, have been de-

rived here in terms of the bit-flipping probabilities of the first hops. Also note that the

solution in (7.60) inherently complies with the constraint 0  ↵i  1.

7.6 Numerical Results

In this Section, we evaluate the impact of the our AOPA policy on the performance of

the investigated DSC scheme, by considering some representative sample scenarios. The

equal power allocation (EPA) policy, i.e., ↵i = 1/N , 8i, is included for comparison. In

each scenario, the outage probability is assessed asymptotically, by means of (7.53), as

well as via Monte Carlo simulation, whereas the throughput is assessed via simulation

only. For illustration purposes, we assume a binary phase-shift keying modulation and a

channel code rate of 1/2, so that Rc = 2. Moreover, we assume ⌘ = 4 and a normalized
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Figure 7.6: Performance comparison between EPA and AOPA for two, three, and four
relays under identical bit-flipping probabilities: pi = 0.01, 8i; (a) outage probability;
(b) throughput.

distance 0  di  1 between the relays and destination. We investigate the system

performance for two, three, and four relays, by exploiting multiple configurations in terms

of bit-flipping probabilities, relay location, and average SNR.

Fig. 7.6 presents the first investigated scenario, which illustrates the outage proba-

bility and throughput versus the average system transmit SNR (PT /N
0

) for two, three,

and four relays under identical bit-flipping probabilities of 0.01. We consider di = 0.5

for all relays. The following can be observed from the curves: (i) our asymptotic outage

expression in (7.53) has an excellent match at medium to high SNR; (ii) under iden-

tical bit-flipping probabilities and identical relay-to-destination distances, AOPA coin-

cides with EPA, which is expected intuitively and from (7.60); and (iii) the performance

improves as the number of relays increases. Although the last observation may sound

obvious at first glance, it subtly involves two conflicting aspects, as follows. On the

one hand, as the number of relays increases, the mutual information between the set of

relay messages and the source message also increases, rendering the sum-rate inequal-

ity R
1

+ · · · + RN � I (B
1

, . . . , BN ; B
0

) less likely for a given second-hop scenario. On

the other, the mutual information between each relay message and the source message

conditioned on the remaining relay messages diminishes, rendering each individual rate

inequality Ri � I (Bi; B0

|{Bj, j 6= i}) more likely. We know from (7.53) that the latter

aspect dominates the performance, at least asymptotically, for high SNR. From Fig. 7.6,

it becomes apparent that such domination holds true for low to medium SNR.

Fig. 7.7 shows the outage probability versus the average system transmit SNR for

two, three, and four relays under non-identical bit-flipping probabilities. As before, we

consider di = 0.5 for all relays. The investigated scenarios are listed in Tab. 7.1 along

with the power allocation coe�cients provided by AOPA and the corresponding SNR gains

with respect to EPA. The following can be observed from the curves: (i) once again, our

asymptotic expression in (7.53) gives an excellent match at medium to high SNR; (ii) in all

the cases, AOPA outperforms EPA at medium to high SNR; and (iii) the more dissimilar
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Figure 7.7: Outage comparison between EPA and AOPA under non-identical bit-flipping
probabilities: (a) two relays; (b) three relays; (c) four relays. (See Table 7.1 for further
details.)

Table 7.1: Bit-flipping probabilities, AOPA coe�cients, and AOPA-over-EPA SNR gain
for investigated scenarios.

Scenario p
1

p
2

p
3

p
4

↵
1

↵
2

↵
3

↵
4

AOPA-over-EPA
Gain (dB)

2 0.01 0.1 0.8244 0.1756 1.54

3 0.001 0.3 0.9833 0.0167 2.88

4 0.001 0.01 0.04 0.6011 0.2251 0.1738 1.29

5 0.001 0.02 0.3 0.7969 0.1569 0.0462 3.12

6 0.0001 0.001 0.01 0.1 0.5491 0.2409 0.1588 0.0512 2

7 0.0001 0.01 0.01 0.3 0.7225 0.1257 0.1257 0.0261 3.56

8 0.001 0.1 0.94095 0.05905 2.54



125

○

○

○

○

○

○

○

○

○

○

○

□
□

□
□

□
□

□
□

□
□

□

●

●

●

●

●

●

●

●

●

●

●

■
■

■
■

■
■

■
■

■
■

■

0 5 10 15 20
10-4

0.001

0.010

0.100

Average system transmit SNR, PT/N0, dB

O
ut
ag
e 

pr
ob
ab
ili
ty
,P

ou
t

EPA, Asymptotic

AOPA, Asymptotic

EPA, Simulation

AOPA, Simulation

Scenario 2
p1 = 0.01
p2 = 0.1

Scenario 8 
p1 = 0.001 
p2 = 0.1

(a)

●

●

●

●
●

● ● ● ● ● ●

■

■

■
■

■ ■ ■ ■ ■ ■ ■

○

○

○

○
○

○ ○ ○ ○ ○ ○

□

□

□
□

□ □ □ □ □ □ □

0 5 10 15 20
0.80

0.85

0.90

0.95

1.00

Average system transmit SNR, PT/N0, dB

Th
ro
ug
hp
ut
,T

, b
its

/tr
an

sm
is

si
on

● EPA, Simulation

■ AOPA, Simulation

S enario 
  0 00  
  0

S enario 
  0 0  
  0

(b)

Figure 7.8: Performance comparison between EPA and AOPA for two relays and varying
bit-flipping probability at the first relay: (a) outage probability; (b) throughput.

are bit-flipping probabilities of the first hops, the greater is the SNR gain achieved by

AOPA when compared with EPA. The last observation is indeed expected, by considering

that, for identically distributed first hops and identical relay-to-destination distances, the

AOPA coincides with EPA, then providing no gain at all.

Fig. 7.8 depicts the outage probability and throughput versus the average system trans-

mit SNR for two relays, a constant bit-flipping probability of 0.1 at the second relay, and

a varying bit-flipping probability at the first relay. The aim is to find out how di↵erently

the quality of the first-hop channel impacts each performance metric for EPA and AOPA.

From the curves, we notice that the impact is indeed quite di↵erent in each case. For EPA,

a better quality of the first-hop (lower bit-flipping probability) associated with the first re-

lay deteriorates the outage probability, although it improves the system throughput. This

is explained as follows. As the first hop improves, the mutual information between the

two relay messages and the source message increases, rendering the sum-rate inequality

R
1

+R
2

� I (B
1

, B
2

; B
0

) less likely, which deteriorates the outage probability. In contrast,

for the same scenario, the referred increases in the mutual information I (B
1

, B
2

; B
0

) and

in the outage probability P
out

have opposite e↵ects on the system throughput, as evi-

denced by (7.55). From Fig. 7.8, it becomes apparent that the increase in the mutual

information dominates the impact, thus increasing the throughput. On the other hand,

for AOPA, both metrics—outage probability and throughout—improve as the first hop

associated with the first relay improves. In other words, the proposed power allocation

redesigns the second-hop resources (by redistributing the transmit power between the two

relays) in such an e↵ective manner that the sum-rate inequality R
1

+ R
2

� I (B
1

, B
2

; B
0

)

becomes more likely, even though the required mutual information I (B
1

, B
2

; B
0

) is higher.

Finally, Fig. 7.9 displays the impact of the relay position on the outage probability

and throughput for two relays with an average system transmit SNR of PT /N
0

= 20 dB.

The first relay is fixed at d
1

= 0.5, and the second one is located at varying distances d
2

from the destination, ranging from 0 to 1. Three scenarios are investigated: (a) identical
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Figure 7.9: Outage comparison between EPA and AOPA for two relays and PT /N
0

=
20 dB in terms of the distance between the second relay and destination: (a) outage
probability; (b) AOPA coe�cient for the second relay.

bit-flipping probabilities (p
1

= p
2

= 0.01), (b) smallest bit-flipping probability assigned

to the relay with a variable location (p
1

= 0.3 and p
2

= 0.01), and (c) highest bit-flipping

probability assigned to the relay with a variable location (p
1

= 0.01 and p
2

= 0.3).

The outage probability is shown in Fig. 7.9a and the corresponding AOPA coe�cient

for the second relay is shown in Fig. 7.9b. The following can be observed from the

curves: (i) in all the cases, our asymptotic outage expression in (7.53) has an excellent

match; (ii) AOPA outperforms EPA, possibly except for a singular relay location, for

which AOPA and EPA have identical performances; (iii) the closer is the relay to the

destination, the smaller is the transmit power allocated to it by AOPA. Regarding the

observation (ii), the balancing distance d
2

for which EPA and AOPA perform identically

is, as expected, d
2

= d
1

= 0.5 when the bit-flipping probabilities associated with the two

relays are identical. On the other hand, when the bit-flipping probability for the second

relay is smaller/higher than that for the first (fixed) relay, the balancing distance d
2

moves

toward/outward the destination. There is compensation mechanism at play: if a given

relay is moved toward the destination, its second hop tends to improve, but the AOPA

criterion counteracts this by reducing the relay’s transmit power, which keeps the optimal

balance between all the second hops. In particular, for scenario (b), note that the outage

performance of both EPA and AOPA are barely a↵ected by the location of the second

relay. This is because in this case the fixed (first) relay has a much better first hop (much

smaller bit-flipping probability), dominating the performance.

7.7 Conclusions

In this work, we analyzed the outage performance of a distributed source coding scheme

for a decode-and-forward multirelay system with intra-link errors and no direct path avail-

able from source to destination. In addition, we designed a simple and highly e↵ective



127

power allocation scheme for the investigated system. To this end, we revisited the Slepian-

Wolf Theorem and modified its scope to comply with the engineering requirements of the

problem at hand. Our results and discussions find important application in emerging

links-on-the-fly technologies for robust and e�cient communications in unpredictable en-

vironments.
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Chapter 8
Conclusions

This chapter highlights the main contributions of this dissertation and suggests possi-

ble directions of future related work.

8.1 Concluding Remarks

In this dissertation, we proposed and analyzed a myriad of distributed, suboptimal

transmit-antenna selection schemes for AF relaying systems, inspired by a recently in-

troduced distributed approach for a DAS/MRC scheme operating over a single-antenna

fixed-gain AF relay. This approach circumvents the need for full system CSI, required

in optimal centralized schemes, while considering all the links in the antenna-selection

mechanism, unlike most suboptimal schemes, in which some links are ignored. In order to

bring insight into the potentials of the investigated DAS strategy, five di↵erent network

scenarios were considered. In the first scenario, the original policy in the DAS/MRC

scheme was adapted to operate with SC at the destination, i.e., a DAS/SC scheme with a

single-antenna, fixed-gain AF relay was considered. In the second scenario, the selection

mechanism between the direct link and the relaying link was moved from the destination

to the source, i.e., a DAS/LS scheme with a single-antenna, fixed-gain AF relay was con-

sidered. In the third scenario, the original policy in the DAS/MRC scheme was generalized

to allow for multiple antennas at the relay, i.e., a DAS/MRC scheme with a multi-antenna,

fixed-gain AF relay was considered. In the fourth scenario, such generalization was ex-

tended to the DAS/SC case. Finally, in the fifth scenario, both DAS/MRC and DAS/SC

schemes with a single-antenna relay were again considered, but now for variable-gain

AF. Next, we summarize important aspects of our main contributions, challenges, and

conclusions.

Outage probability and spectral e�ciency. Due to the inherent intricacy of an ex-

act mathematical treatment, analytical bounds were derived in integral-form for

the outage probability of the proposed DAS/SC and DAS/MRC schemes. On the

other hand, exact closed-form expressions were derived for the outage probability

and mean spectral e�ciency of the proposed DAS/LS scheme.

Asymptotic analysis and diversity order. In order to provide further insight into
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the achievable diversity order of the investigated scenarios, a closed-form asymptotic

analysis at high SNR was performed for the each of the derived bounds and exact

expressions. The analysis reveals that all the proposed schemes achieve full diversity

order, except the DAS/LS, which achieves full diversity order minus one, as a penalty

for its improved spectral e�ciency.

Simulation and validation. All of our analytical results were validated by means of

Monte Carlo simulations.

Centralized vs. distributed schemes. The proposed distributed schemes were shown

to perform closely to their costly, optimal centralized counterparts, mainly when the

relay is located near the destination, for the fixed-gain schemes, and near the source

or destination, for the variable-gain schemes.

System generalization and analytical complexity. The main challenge we faced in

this work was the high mathematical intricacy inherent to the investigated systems.

In some cases, an apparently minor generalization of the system setup caused a

major increase in the level of di�culty of the analytical treatment. When going

from the single-antenna to the multi-antenna relay scenario, for instance, completely

di↵erent, sophisticated, non-usual mathematical procedures were required to solve

the new problem. This is partly the reason we decided to investigate a sequence of

small progressive generalizations of the distributed antenna-selection approach.

8.2 Future Directions

According to the results obtained from the analysis of the proposed scenarios, the

distributed suboptimal transmit-antenna selection strategy proved to be an interesting

approach, especially for practical purposes. On the other hand, there are others aspects

and scenarios that could be investigated to bring further insights into the potentials of this

promising strategy. Some possible directions for the future related work are summarized

as follows.

Variable-gain relay and multi-antenna destination. In this work, we investigated

DAS schemes with either a multi-antenna fixed-gain AF relay or a single-antenna

variable-gain AF relay. It remains to investigate those schemes for a multi-antenna

variable-gain AF relaying, as well as the generalizations of all those schemes to

multi-antenna destinations.

Imperfect CSI. In this work, we assumed perfect CSI, because the focus was to provide

a benchmark analysis for the best achievable performance of the proposed DAS

schemes. In practice, however, the CSI is imperfectly known. Therefore, considering

this in the analysis would be very important (and challenging).

Generalized channel models. In this work, we considered that all the channels un-

dergo independent flat Rayleigh fading. It would be important to extend the anal-

ysis to more general and realistic fading models, such as Rice, Hoyt, Nakagami-m,

Weibull, ↵-µ, -µ, and ⌘-µ.
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Single multi-antenna relay vs. multiple single-antenna relays. It would be inter-

esting to compare the performance of the proposed schemes when operating over

either a single multi-antenna relay or multiple single-antenna relays. Equivalently,

in the battlefield, what is the best reinforcement for a soldier: another equally armed

soldier or a twice as powerful weapon?
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Supporting Material to Chapter 2

The references cited in this appendix are listed at the end of Chapter 2.

B.1 High-SNR expression for ' in (2.11)

Here we derive the high-SNR behavior of '. From its definition, we have
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Steps (a) and (b) follow from [14, Eq (3.471.9)] and [14, Eq (8.4)], respectively, where

K
1

(·) is the first-order modified Bessel function of second kind. Hence, by keeping only

to the lowest-order terms in �̄SR and �̄RD, ⇢ can be asymptotically written as
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Finally, replacing (B.3) into (B.1), we obtain, after some algebraic manipulations, the

high-SNR asymptote of ' as
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Appendix C
Supporting Material to Chapter 3

The references cited in this appendix are listed at the end of Chapter 3.

C.1 High-SNR Asymptote for the Term ' in (3.14)

In this section, we derive an asymptotic high-SNR expression for the term ' defined

in (3.14). From its definition, we have
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where ⇢ can be expressed as
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Steps (a) and (b) follow from [18, Eq. (3.471.9)] and [18, Eq. (8.446)], respectively, where

K
1

(·) is the first-order modified Bessel function of the second kind. Hence, by keeping

only to the lowest-order terms in X and Z, ⇢ can be asymptotically written as
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Finally, replacing (C.3) into (C.1), we obtain, after some algebraic manipulations, the

high-SNR asymptote of ' as
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C.2 Infinite-Series Representation for the term � in (3.26)

In this section, we derive an infinite-series representation for the term � defined

in (3.26). Using the binomial theorem [18, Eq. (3.1.1)], � can be rewritten as
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Then, using the Maclaurin series for the exponential function in step (a), [18, Eq. (3.381.9)]

in step (b), and after some albegraic manipulations, an infinite-series representation for

� is obtained as
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C.3 Infinite-Series Representation for the term  in (3.26)

In this section, we derive an infinite-series representation for the term  defined

in (3.26). From its definition,
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where the term ⇠ can be solved using the binomial theorem [18, Eq. (3.1.1)] as
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Substituting (C.8) into (C.7),  is then rewritten as
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Finally, using the Maclaurin series for the exponential function in step (a) and [18, Eq.

(3.381.9)] in step (b), an infinite-series representation for  is obtained as
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C.4 Exact Closed-Form Expression for Pr (Xi > Yi)

In this section, we derive a closed-form expression for Pr (Xi > Yi), with the transmit-

antenna index i being defined by the DAS rule in (3.4). Because this index is chosen so
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as to provide max
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where in step (a) we used the fact that X and Y are the maximum of Nt i.i.d. exponentially

distributed variates, and in step (b) we used the binomial theorem [18, Eq. (3.1.1)].
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Appendix D
Supporting Material to Chapter 4

The references cited in this appendix are listed at the end of Chapter 4.

D.1 High-SNR Expression for the Term �0 in (4.23)

Here we consider �n for n = 0, which is defined in (4.23) as
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The term ⇢
0

can be rewritten through the help of [6, Eq. (3.471.9)], [6, Eq. (1.211.1)],

and [6, Eq. (8.446)] as
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in which Kn(·) denotes the nth-order modified Bessel function of the second kind [6,

Eq.(8.446)],  (·) represents the Euler psi function [6, Eq.(8.360)] and �(·) is the gamma

function [6, Eq.(8.310.1)]. It is important to mention that in order to conduct the high-
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Plugging (D.2) into (D.1) and this into (D.3), �
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Observe that �
0

is composed by the sum of three terms, corresponding to the summa-

tions in k
1

, k
2

, and l. Using the fact that
Pb
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after a careful inspection it was attested that each term presents a di↵erent behavior at

high-SNR regime, and this will be described next. The first term is non-null for values
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The term ⇢n can be rewritten as
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in which we have used [6, Eq. (3.471.9)] and [6, Eqs. (8.446) and (3.381.3)] in steps (a)

and (b), respectively. The analysis that follows is similar to that in App. D.1. To this
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Plugging (D.6) into (D.5) and this into (D.7), �n can be rewritten as
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Observe that, similarly to �
0

, �n is composed by the sum of three terms, corresponding

to the summations in m
1

, m
2

, and l. The first term is non-null for values of m
1

greater than

max(Nrr, Nrt)�1; the second term is non-null for values of m
2

greater than min(Nrr, Nrt)�
1; and the third term is non-null for values of l greater than Nrr � 1. Using this and

preserving only the lowest-order terms so as to derive a high-SNR expression, we arrive

at three cases: (a) if Nrr = Nrt, the three terms must be considered; (b) if Nrr < Nrt, the

second and third terms must be considered; and (c) if Nrr > Nrt, only the second term

must be considered. In all the cases, the diversity order of �n is observed to be given by

n
1

, min(Nrr, Nrt) � 1. By incorporating these results into the definition of �n given by

(D.5) and (D.6), we finally arrive at the high-SNR expression for �n as given in (4.25)

and (4.26).
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Appendix E
Supporting Material to Chapter 5

The references cited in this appendix are listed at the end of Chapter 5.

E.1 Proof of Corollary 1

By replacing the right-hand side inequality of (5.13) into (5.11), the lower bound ILB

1

for I
1

can be derived as

I
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�R
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, (E.1)

where in step (a) we have used (5.9) and the DAS rule given in (5.7) for �R
j

⇤D � C. Then,

using (5.6) into (E.1), (5.14) is obtained.

E.2 Proof of Corollary 2

By replacing the right-hand side inequality of (5.13) into (5.12), the lower bound ILB

2

for I
2

can be derived as

I
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, (E.2)

where we have used the DAS rule given in (5.7) for �R
j

⇤D < C. Then, using (5.6) into

(E.2), (5.15) is obtained.

E.3 Proof of Theorem 1

The general expression for ILB

1

in (5.14) can be specialized to the Rayleigh-fading sce-

nario by using the corresponding PDFs and CDFs, as well as some principles of probability
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theory, as follows:
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The term ↵ can be rewritten using the binomial theorem [21, Eq. (1.111)] as
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Finally, using (E.4) into (E.3), a lower bound for I
1

can be derived in closed form as in

(5.16).

E.4 Proof of Theorem 2

The general expression for ILB

2

in (5.15) can be specialized to the Rayleigh-fading sce-

nario by using the corresponding PDFs and CDFs, as well as some principles of probability

theory, as follows:

ILB

2

=

Z C

0

f�
RD

(x) Pr
⇣

max
m

{�S
m

D} + max
k

{�S
i

R
k

} x

C
< z

⌘

dx

=

Z

1

0

Cf�
RD

(Cu) Pr
⇣

max
m

{�S
m

D} + max
k

{�S
i

R
k

}u < z
⌘

du

=

Z

1

0

Cf�
RD

(Cu)

Z z

0

f�
SR

(y) Pr
⇣

max
m

{�S
m

D} + yu < z
⌘

dydu

=

Z

1

0

Cf�
RD

(Cu)

Z z

0

1

u
f�

SR

⇣v

u

⌘

Pr
⇣

max
m

{�S
m

D} < z � v
⌘

dvdu

=

Z

1

0

CNrt

�̄RD

e
� Cu

�̄

RD

⇣

1 � e
� Cu

�̄

RD

⌘N
rt

�1 Nrr

u�̄SR

⇥
Z z

0

e
� v

u�̄

SR

⇣

1 � e
� v

u�̄

SR

⌘N
rr

�1

⇣

1 � e
� z�v

�̄

SD

⌘N
t

dv
| {z }

'

du, (E.5)



148

where the term ' can be calculated using the binomial theorem [21, Eq. (1.111)] as
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Finally, by substituting (E.6) into (E.5), a lower bound for I
2

can be derived in single-fold

integral form as in (5.17).

E.5 Proof of Corollary 3

In order to obtain an asymptotic lower bound ĨLB
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, a high-SNR expression for

the term ↵ in (E.3) can be derived from its definition as
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where the MacLaurin series of exponential functions [21, Eq. (1.211.1)] has been used.

By using (E.7) into (E.3), ĨLB

1

is then obtained as in (5.18).

E.6 Proof of Corollary 4

In order to obtain an asymptotic lower bound ĨLB

2

for I
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, we rewrite the term '

defined in (E.5) by using the binomial theorem [21, Eq. (1.111)] and the MacLaurin series

of exponential functions, obtaining
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By substituting (E.8) into (E.5) and using again the binomial theorem, ILB

2

can be also

rewritten as
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(E.9)

Next, with the purpose of characterizing the behavior of �n in the high-SNR regime, we

address the cases n = 0 and n > 0 in Appendices E.6.1 and E.6.2, separately.
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E.6.1 High-SNR Expression for the Term �0 in (E.9)

Here we consider �n for n = 0, which is defined in (E.9) as
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The term ⇢
0

can be rewritten with use of [21, Eqs. (3.471.9), (1.211.1), and (8.446)] as
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in which Kn(·) denotes the nth-order modified Bessel function of the second kind [21,

Eq.(8.446)] and �(·) is the gamma function [21, Eq. (8.310.1)]. It is noteworthy that the

high-SNR analysis of �
0

cannot be performed from its definition alone in (E.10). Instead,

the term must considered in the whole context of the outer summations over i and j that

appear in (E.9). To this end, we define an auxiliary variable �
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Plugging (E.11) into (E.10) and this into (E.12), �
0

can be rewritten as
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(E.13)

Observe that �
0

is composed by three outer summations, over k
1

, k
2

, and l. Each of

these summations contains two inner summations, over i and j, some of which are of the
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form
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E.6.2 High-SNR Expression for the Term �n in (E.9), n > 0
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The term ⇢n can be rewritten as
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(E.15)

in which we have used [21, Eq. (3.471.9)] and [21, Eqs. (8.446) and (3.381.3)] in steps (a)

and (b), respectively. The analysis that follows is similar to that in Appendix E.6.1. To
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this end, we define the auxiliary variable �n as
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Plugging (E.15) into (E.14) and this into (E.16), �n can be rewritten as
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Observe that, similarly to �
0

, �n is composed by three outer summations, over k
1

, k
2

,

and l. Following the same rationale presented for �
0

, one can verify that the first nonzero

term of the summation over k
1

occurs for k
1

= min(Nrr, Nrt)�1, the first nonzero term of

the summation over k
2

occurs for k
2

= max(Nrr, Nrt)�1 , and the first nonzero term of the

summation over l occurs for l = Nrr � 1. Using this and preserving only the lowest-order

terms so as to derive a high-SNR expression, we arrive at three cases: (a) if Nrr = Nrt, all

three summations must be considered; (b) if Nrr < Nrt, only the summations over k
1

and l

must be considered; and (c) if Nrr > Nrt, only the summation over k
1

must be considered.

In all the cases, the diversity order of �n is observed to be given by min(Nrr, Nrt)� 1. By

incorporating these results into the definition of �n given by (E.14) and (E.15), we finally

arrive at the high-SNR expressions �̃n for �n as given in (5.21) and (5.22).

E.7 Proof of Corollary 5

By replacing the right-hand side inequality of (5.13) into (5.25), the lower bound JLB

1

for J
1

can be derived as

J
1

> Pr
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D, �S
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R
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}
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�

< z

◆

, (E.18)

where in step (a) we have used (5.9) and the DAS rule given in (5.8) for �R
j

⇤D � C. Then,

using (5.6) into (E.18), (5.27) is obtained.
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E.8 Proof of Corollary 6

By replacing the right-hand side inequality of (5.13) into (5.26), the lower bound JLB

2

for J
2

can be derived as

J
2

> Pr
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j
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, (E.19)

where in step (a) we have used the DAS rule given in (5.8) for �R
j

⇤D < C. Then, using

(5.6) into (E.19), (5.28) is obtained.

E.9 Proof of Theorem 5

The general expression for JLB

2

in (5.28) can be specialized to the Rayleigh-fading sce-

nario by using the corresponding PDFs and CDFs, as well as some principles of probability

theory, as follows:
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which is identical to the expression for JLB

2

presented in (5.30).

E.10 Proof of Corollary 8

In order to obtain an asymptotic lower bound J̃LB

2

for J
2

, we rewrite (5.30) by using

the binomial theorem as

JLB
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=
N
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(E.21)
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By using again the binomial theorem, ⌘ can be also rewritten as
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which, replaced back into (E.21), gives
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The term � can be elaborated as
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Steps (a) and (b) follow from [21, Eq. (3.471.9)] and [21, Eqs. (8.446)], respectively. Now,

the high-SNR analysis of � is similar to that of �
0

in Appendix E.6.1. To this end, we
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define an auxiliary variable � as
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(E.25)

Observe that, similarly to �
0

in (E.13), � is composed by three outer summations,

over k
1

, k
2

, and l. Following the same rationale presented for �
0

, one can verify that the

first nonzero term of the summation over k
1

occurs for k
1

= min(Nrr, Nrt) � 1, the first

nonzero term of the summation over k
2

occurs for k
2

= max(Nrr, Nrt) � 1, and the first

and second nonzero terms of the summation over l occurs for l = 0 and l = Nrr + 1.

Using this and preserving only the lowest-order terms so as to derive a high-SNR

expression, we arrive at two cases: (a) if Nrr = Nrt, all three summations must be

considered; and (b) if Nrr 6= Nrt, only the summations over k
1

and l must be considered.

In all the cases, the diversity order of � is observed to be given by min(Nrr, Nrt) � 1.

By incorporating these results into (E.23), after some algebraic manipulations, we finally

arrive at the high-SNR expression for ⌦ as given in (5.33).
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Appendix F
Supporting Material to Chapter 6

The references cited in this appendix are listed at the end of Chapter 6.

F.1 Proof of Lemma 6.1

By using (6.4) into the definition of I
1

in (6.8), a lower bound ILB

1

can be derived as

I
1

� Pr
⇣

Z � max
i

{Xi} , max [Yi, min [Xi, Z]] < ⌧
⌘

, ILB

1

= Pr
⇣

Z � max
i

{Xi} , max [Yi, Xi] < ⌧
⌘

(a)

= Pr
⇣

Z � max
i

{Xi} , max
i

{max [Yi, Xi]} < ⌧
⌘

= Pr
⇣

Z � max
i

{Xi} , max
i

{Xi} < ⌧
⌘

| {z }

,⇢

Pr (Yi < ⌧)N
t , (F.1)

which coincides with the result in (6.9). In step (a) we have used the DAS/SC rule for

Z � maxi {Xi}, given in (6.6).

F.2 Proof of Lemma 6.2

By using (6.4) into the definition of I
2

in (6.8), a lower bound ILB

2

can be derived as

I
2

� Pr
⇣

Z < max
i

{Xi} , max [Yi, min [Xi, Z]] < ⌧
⌘

, ILB

2

(a)

= Pr
⇣

Z < max
i

{Xi} , max
i

{Yi} < ⌧, min [Xi, Z] < ⌧
⌘

= Pr
⇣

Z < max
i

{Xi} , min [Xi, Z] < ⌧
⌘

| {z }

,J

Pr (Yi < ⌧)N
t , (F.2)

which coincides with the result in (6.10). In step (a) we have used the DAS/SC rule for

Z < maxi {Xi}, given in (6.6).
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F.3 Proof of Proposition 3

Relying on basic principles of the probability theory, the term ⇢ defined in (F.1) can

be elaborated as

⇢ = Pr
⇣

Z � max
i

{Xi} , max
i

{Xi} < ⌧
⌘

= Pr
⇣

Z � ⌧, max
i

{Xi} < ⌧
⌘

+ Pr
⇣

Z < ⌧, max
i

{Xi} < Z
⌘

= Pr (Z � ⌧) Pr (Xi < ⌧)N
t +

Z ⌧

0

fZ(z) Pr (Xi < z)N
t dz. (F.3)

By using this into (F.1), as well as the exponential PDFs and cumulative distribution

functions (CDFs) of Xi, Yi, and Z, ILB

1

can be rewritten as

ILB

1

=
�

1 � e� ⌧

¯

Y

�N
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e� ⌧
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�N
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,�

!

. (F.4)

Finally, by using the binomial theorem [19, Eq. (1.111) ] to solve the integral term �

defined in (F.4), a closed-form expression for ILB

1

is then obtained as in (6.11).

F.4 Proof of Proposition 4

Relying on basic principles of the probability theory, the term J defined in (F.2) can

be elaborated as

J = Pr
⇣
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i

{Xi} , Xi < ⌧
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Below, the component terms J
1

, J
2

, and J
2

are analyzed. The term J
1

can be solved as

J
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(F.6)
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the term J
2

as

J
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= Pr
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and the term J
3

as

J
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=Pr
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where in step (a) of the above expressions we have used the exponential PDFs and CDFs

of Xi and Z. Finally, by substituting (F.6)–(F.8) into (F.5) and then into (F.2), with

use of the exponential CDF of Yi, a single-fold integral form expression for ILB

2

is then

obtained as in (6.12).

F.5 Proof of Proposition 5

By using the MacLaurin series of the exponential function [19, Eq. (1.211.1)] into the

term � defined in (F.4), we obtain

� '
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. (F.9)

Then, by substituting (F.9) into (F.4), and by using again the MacLaurin series of the

exponential function, ILB

1

can be asymptotically expressed as

ILB
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. (F.10)

Finally, by preserving only the lowest-order terms in (F.10), it reduces to ĨLB

1

as in (6.13).
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F.6 Proof of Proposition 6

By using the MacLaurin series of the exponential function into the term � defined

in (F.6), we obtain
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Then, by substituting (F.9) and (F.11) into (6.12), and by using again the MacLaurin

series of the exponential function, ILB

2

can be asymptotically expressed as
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(F.12)

Finally, by preserving only the lowest-order terms in (F.12), it reduces to ĨLB

2

as in (6.14).

F.7 Proof of Proposition 7

An asymptotic expression for the outage probability is obtained by preserving only the

lowest-order terms in the sum ĨLB

1

+ ĨLB

2

. From (6.13) and (6.14), it becomes apparent that

the individual diversity orders of ĨLB

1

and ĨLB

2

are 2Nt and Nt +1, respectively. Therefore,

only for the particular case of Nt = 1 these two diversity orders coincide, so that the both

terms must be preserved in the asymptotic outage bound. Otherwise, when Nt � 2, the

diversity order of ĨLB

1

is higher than that of ĨLB

2

, and thus ĨLB

1

can be ignored. Taking all

this into account, we arrive at (6.15).

F.8 Proof of Lemma 6.3

By using (6.5) into the definition of L
1

in (6.16), a lower bound LLB

1

can be derived as

L
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i
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⌘
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⌘

(a)

= Pr
⇣
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⌘

, (F.13)

which coincides with the result in (6.17). In step (a) we have used the DAS/MRC rule

for Z � maxi {Xi}, given in (6.7).
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F.9 Proof of Lemma 6.4

By using (6.5) into the definition of L
2

in (6.16), a lower bound LLB
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can be derived as
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which coincides with the result in (6.18). In step (a) we have used the DAS/MRC rule

for Z < maxi {Xi}, given in (6.7).

F.10 Proof of Proposition 8

Relying on basic principles of the probability theory, the lower bound LLB

1

in (F.13)

can be elaborated as
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where in step (a) we have used the exponential PDFs and CDFs of Xi and Yi. Finally,

by using the exponential PDF of Z into (F.15), a single-fold integral-form expression for

LLB

1

is then obtained as in (6.19).
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F.11 Proof of Proposition 9

Relying on basic principles of the probability theory, the lower bound LLB

2

in (F.14)

can be elaborated as
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where the term K defined above can be split into three components as
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By comparing (F.17) and (F.5), it becomes apparent that the definitions of K
1

, K
2

, and

K
3

coincide with those of J
1

, J
2

, and J
3

, respectively, except that ⌧ (in the latter) is

replaced by ⌧ � y (in the former). Therefore, expressions for K
1

, K
2

, and K
3

can be

respectively obtained as in (F.6), (F.7), and (F.8), by substituting ⌧ � y for ⌧ . Finally, by

applying those expressions into (F.17) and then into (F.16), with use of the exponential

PDF of Yi, a two-fold integral form expression for LLB

2

is then obtained as in (6.20).

F.12 Proof of Proposition 10

By using the MacLaurin series of the exponential function into the term ↵
1

defined

in (F.15), we obtain
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The term ↵
2

, also defined in (F.15), can be obtained in the same way, by substituting ⌧

for z. Then, by using (F.18) into (F.15), LLB

1

can be asymptotically expressed as

LLB

1

'
Z ⌧

0

1

Z̄
e� z

¯

Z

✓

1

2

z2

X̄Ȳ
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Finally, by solving the integrals in (F.19) with use of the MacLaurin series of the exponen-

tial function, and preserving only the lowest-order terms, it reduces to L̃LB

1

as in (6.21).



161

F.13 Proof of Proposition 11

To begin with, let us rewrite the lower bound LLB
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in (6.20) as
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Now, high-SNR asymptotic expressions for the terms ✏
1

, ✏
2

, ✏
3

, ✏
4

, and ✏
5

defined above

can be obtained by appropriately using the MacLaurin series of the exponential function

into each definition. For ✏
1

, we obtain
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From (F.20), note that an expression for ✏
2

can be obtained by replacing X̄ with Z̄ into

the expression for ✏
1

, which gives
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In addition, expressions for ✏
3

, ✏
4

, and ✏
5

are obtained as follows:
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Ȳ

⌘N
t

�1 (⌧ � y)

Z̄
B

✓

X̄

Z̄
, Nt

◆

dy

' 1

Z̄

✓

1

Ȳ
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Ȳ
e� y

¯

Y

⇣ y

Ȳ
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Finally, by using (F.21)–(F.25) into (F.20), and preserving only the lowest-order terms,

it reduces to L̃LB

2

as in (6.22).
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Appendix G
Supporting Material to Chapter 7

G.1 Exact and High-SNR Expressions for J2,1

The SNRs �
1

and �
2

are mutually independent, with marginal PDFs given in (7.2).

Using this into (7.26), and exact closed-form expression for J
2,1 is obtained as
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Assuming Rc1 = Rc2 = Rc, a corresponding high-SNR expression can be obtained by

invoking the approximation exp(x) ⇡ 1 � x, x ⌧ 1, which gives
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G.2 Exact and High-SNR Expressions for J2,2

The SNRs �
1

and �
2

are mutually independent, with marginal PDFs given in (7.2).

Using this into (7.27), and exact closed-form expression for J
2,1 is obtained as
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Assuming Rc1 = Rc2 = Rc, a corresponding high-SNR expression can be obtained by

invoking the approximation exp(x) ⇡ 1 � x, x ⌧ 1, which gives
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where Ei(·) is the exponential integral function.

G.3 Exact and High-SNR Expressions for J3,1

The SNRs �
1

, �
2

, and �
3

are mutually independent, with marginal PDFs given in

(7.2). Using this into (7.33), and exact closed-form expression for J
3,1 is obtained as
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Assuming Rc1 = Rc2 = Rc3 = Rc, a corresponding high-SNR expression can be obtained

by invoking the approximation exp(x) ⇡ 1 � x, x ⌧ 1, which gives
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G.4 Exact and High-SNR Expressions for J3,2, J3,3,
and J3,4

The SNRs �
1

, �
2

, and �
3

are mutually independent, with marginal PDFs given in

(7.2). Using this into (7.34), (7.35), and (7.36), and exploiting the symmetry among the

volumes associated to J
3,2, J3,3, and J

3,4, these probabilities can be obtained in an unified

manner as
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where (l, i, j, k) 2 {(2, 1, 2, 3), (3, 3, 1, 2), (4, 2, 3, 1)}. Assuming Rc1 = Rc2 = Rc3 = Rc,

a corresponding high-SNR expression can be obtained by invoking the approximation

exp(x) ⇡ 1 � x, x ⌧ 1, which gives
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G.5 Exact and High-SNR Expressions for J3,5

Following (7.37), J
3,5 is composed of three terms. Initially, we analyze the term J

3,5a.

The SNRs �
1

, �
2

, and �
3

are mutually independent, with marginal PDFs given in (7.2).

Using this into (7.38), and exact closed-form expression for J
3,5a is obtained as
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Assuming Rc1 = Rc2 = Rc3 = Rc, a corresponding high-SNR expression can be obtained

by invoking the approximation exp(x) ⇡ 1 � x, x ⌧ 1, which gives
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Exact and asymptotic expressions for J
3,5b and J

3,5c can be obtained on a similar basis.

For brevity, we present here only the final asymptotic results, which are
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