
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Eric Velten de Melo

Semi e Weighted Semi-Nonnegative Matrix

Factorization: Estudo Comparativo

Semi and Weighted Semi-Nonnegative Matrix

Factorization: Comparative Study

CAMPINAS

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296883732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Eric Velten de Melo

Semi and Weighted Semi-Nonnegative Matrix Factorization:

Comparative Study

Semi e Weighted Semi-Nonnegative Matrix Factorization: Estudo

Comparativo

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial ful�llment of the requerements for the
degree of Master in Computer Science.

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Supervisor/Orientador: Prof. Dr. Jacques Wainer

Este exemplar corresponde à versão �nal da
Dissertação defendida por Eric Velten de
Melo e orientada pelo Prof. Dr. Jacques
Wainer.

CAMPINAS

2015



Agência(s) de fomento e nº(s) de processo(s): CAPES

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Maria Fabiana Bezerra Muller - CRB 8/6162

    
  Melo, Eric Velten de, 1987-  
 M491s MelSemi and weighted semi-nonnegative matrix factorization : comparative

study / Eric Velten de Melo. – Campinas, SP : [s.n.], 2015.
 

   
  MelOrientador: Jacques Wainer.
  MelDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.
 

    
  Mel1. Otimização com restrições. 2. Matrizes (Matemática). 3. Matrizes não-

negativas. I. Wainer, Jacques,1958-. II. Universidade Estadual de Campinas.
Instituto de Computação. III. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Semi e weighted wemi-nonnegative matrix factorization : estudo
comparativo
Palavras-chave em inglês:
Constrained optimization
Matrices
Nonnegative matrices
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Jacques Wainer [Orientador]
Siome Klein Goldenstein
Julio Michael Stern
Data de defesa: 16-11-2015
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)



Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Eric Velten de Melo

Semi and Weighted Semi-Nonnegative Matrix Factorization:

Comparative Study

Semi e Weighted Semi-Nonnegative Matrix Factorization: Estudo

Comparativo

Banca Examinadora:

• Prof. Dr. Jacques Wainer
IC/Unicamp

• Prof. Dr. Julio Michael Stern
IME/USP

• Prof. Dr. Siome Klein Goldenstein
IC/Unicamp

A ata da defesa, onde constam as assinaturas dos membros da banca, está arquivada
pela Universidade Estadual de Campinas.



Agradecimentos

Gostaria de agradecer primeiramente à Universidade Estadual de Campinas, à Fundação
CAPES e ao meu orientador, que tornaram possível a realização dessa dissertação.

Essas foram as causas principais, mas inúmeros foram os fatores que me levaram até
aqui e que me permitiram chegar até o �m. Agradeço à minha mãe por ter me dado
condições e apoio para tudo isso, desde os meus primeiros passos até agora. Agradeço à
minha querida Ethel, por ter me dado apoio e motivação nos momentos difíceis.

Agradeço aos meus amigos pelos momentos de descontração, aos moradores e agre-
gados da República Traz o Martelo onde morei durante a maior parte desse processo.
Agradeço ao pessoal do LBIC por terem me dado a oportunidade de trabalhar junto a
eles de vez em quando. Agradeço ao pessoal do Eldorado, que me deram apoio e incentivo
para concluir as etapas �nais. Preferi não citar nomes para não correr o risco de me
esquecer de alguém, mas sintam-se todos citados!

En�m, para todos aqueles que �zeram parte da minha vida e contribuíram direta ou
indiretamente para esse resultado �nal, meus sinceros agradecimentos!



Resumo

Algoritmos que envolvem fatoração de matrizes tem sido objeto de intensos estudos nos
anos recentes, gerando uma ampla variedade de técnicas e aplicações para diversos tipos
de problemas.

Dada uma matriz de dados de entrada X, a forma mais simples do problema de
fatoração de matrizes pode ser de�nido como a tarefa de encontrar as matrizes F e G,
usualmente com posto baixo, tal que X ≈ FG.

São consideradas duas variações principais do problema de fatoração de matrizes: a fa-
toração de matrizes semi-não-negativa (Semi Nonnegative Matrix Factorization (SNMF)
), que requer que a matriz G seja não-negativa, e a fatoração de matrizes semi-não-
negativa com pesos ( Weighted Nonnegative Matriz Factorization (WSNMF) ), que lida
adicionalmente com casos onde há dados de entrada faltantes ou incertos.

Essa dissertação tem como principal objetivo comparar diferentes algoritmos e estra-
tégias para resolver esses problemas, focando em duas estratégias principais: Mínimos
Quadrados Alternado com Restrição Constrained Alternating Least Squares e Atualização
Multiplicativa Multiplicative Updates.



Abstract

Algorithms that involve matrix factorization have been the object of intense study in the
recent years, generating a wide range of techniques and applications for many di�erent
problems.

Given an input data matrix X, the simplest matrix factorization problem can be
de�ned as the task to �nd matrices F and G, usually of low rank, such that X ≈ FG.

I consider two di�erent variations of the matrix factorization problem, the Semi-
Nonnegative Matrix Factorization, which requires the matrix G to be nonnegative, and
the Weighted Semi-Nonnegative Matrix Factorization, which deals additionally with cases
where the input data has missing or uncertain values.

This dissertation aims to compare di�erent algorithms and strategies to solve these
problems, focusing on two main strategies: Constrained Alternating Least Squares and
Multiplicative Updates.



List of Figures

A.1 Mean of error rankings separated by Input Size for SNMF without sparse-
ness constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.2 Mean of time rankings separated by Input Size for SNMF without sparse-
ness constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.3 Mean of sparseness rankings separated by Input Size for SNMF without
sparseness constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.4 Mean of error rankings separated by Rank for SNMF without sparseness
constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.5 Mean of time rankings separated by Rank for SNMF without sparseness
constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.6 Mean of sparseness rankings separated by Rank for SNMF without sparse-
ness constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.7 Mean of error rankings separated by Input Size for SNMF with 0.5 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.8 Mean of time rankings separated by Input Size for SNMF with 0.5 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.9 Mean of sparseness rankings separated by Input Size for SNMF with 0.5
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.10 Mean of error rankings separated by Rank for SNMF with 0.5 sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.11 Mean of time rankings separated by Rank for SNMF with 0.5 sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.12 Mean of sparseness rankings separated by Rank for SNMF with 0.5 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.13 Mean of error rankings separated by Input Size for SNMF with 0.9 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.14 Mean of time rankings separated by Input Size for SNMF with 0.9 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.15 Mean of sparseness rankings separated by Input Size for SNMF with 0.9
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.16 Mean of error rankings separated by Rank for SNMF with 0.9 sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.17 Mean of time rankings separated by Rank for SNMF with 0.9 sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.18 Mean of sparseness rankings separated by Rank for SNMF with 0.9 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.19 Mean of error rankings separated by Input Size For WSNMF without
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



A.20 Mean of time rankings separated by Input Size For WSNMF without
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.21 Mean of sparseness rankings separated by Input Size For WSNMF without
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.22 Mean of error rankings separated by Rank For WSNMF without sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.23 Mean of time rankings separated by Rank For WSNMF without sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.24 Mean of sparseness rankings separated by Rank For WSNMF without
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.25 Mean of error rankings separated by Weight For WSNMF without sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.26 Mean of time rankings separated by Weight For WSNMF without sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.27 Mean of sparseness rankings separated by Weight For WSNMF without
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.28 Mean of error rankings separated by Input Size for WSNMF with 0.5 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.29 Mean of time rankings separated by Input Size for WSNMF with 0.5 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.30 Mean of sparseness rankings separated by Input Size for WSNMF with 0.5
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.31 Mean of error rankings separated by Rank for WSNMF with 0.5 sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.32 Mean of time rankings separated by Rank for WSNMF with 0.5 sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.33 Mean of sparseness rankings separated by Rank for WSNMF with 0.5
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.34 Mean of error rankings separated by Weight for WSNMF with 0.5 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.35 Mean of time rankings separated by Weight for WSNMF with 0.5 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.36 Mean of sparseness rankings separated by Weight for WSNMF with 0.5
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.37 Mean of error rankings separated by Input Size for WSNMF with 0.9 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.38 Mean of time rankings separated by Input Size for WSNMF with 0.9 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.39 Mean of sparseness rankings separated by Input Size for WSNMF with 0.9
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.40 Mean of error rankings separated by Rank for WSNMF with 0.9 sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.41 Mean of time rankings separated by Rank for WSNMF with 0.9 sparseness
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.42 Mean of sparseness rankings separated by Rank for WSNMF with 0.9
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.43 Mean of error rankings separated by Weight for WSNMF with 0.9 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



A.44 Mean of time rankings separated by Weight for WSNMF with 0.9 sparse-
ness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.45 Mean of sparseness rankings separated by Weight for WSNMF with 0.9
sparseness projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



List of Tables

3.1 Comparison between di�erent initialization methods for M-SNMF . . . . . 30
3.2 Comparison between di�erent initialization methods for SNMF . . . . . . . 30
3.3 Comparison between di�erent initialization methods for M-WSNMF . . . . 31
3.4 Comparison between di�erent initialization methods for WSNMF . . . . . 31
3.5 Mean rank comparison between all algorithms solving SNMF . . . . . . . . 31
3.6 Mean rank comparison between all algorithms solving SNMF with 0.5 spar-

sity projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Mean rank comparison between all algorithms solving SNMF with 0.9 spar-

sity projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Mean rank comparison between all algorithms solving WSNMF . . . . . . 32
3.9 Mean rank comparison between all algorithms solving WSNMF with 0.5

sparsity projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 Mean rank comparison between all algorithms solving WSNMF with 0.9

sparsity projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.11 P-Values of the Pairwise Wilcoxon Test for the algorithms solving SNMF

without sparsity projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12 P-Values of the Pairwise Wilcoxon Test for the algorithms solving SNMF

with 0.5 sparsity projection . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.13 P-Values of the Pairwise Wilcoxon Test for the algorithms solving SNMF

with 0.9 sparsity projection . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.14 P-Values of the Pairwise Wilcoxon Test for the algorithms solving WSNMF 34
3.15 P-Values of the Pairwise Wilcoxon Test for the algorithms solving WSNMF

with 0.5 sparsity projection . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.16 P-Values of the Pairwise Wilcoxon Test for the algorithms solving WSNMF

with 0.9 sparsity projection . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Number of clusters K=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Number of clusters K=3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Number of clusters K=4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Number of clusters K=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Number of clusters K=6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Number of clusters K=7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Number of clusters K=8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Results of Friedman test for the clustering experiment . . . . . . . . . . . . 42
4.9 Score results of the related work experiment for cluster number 3 to 8 . . . 43



Contents

1 Introduction 14
1.1 NMF algorithms classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Basic NMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.2 Constrained NMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.3 Structured NMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.4 Generalized NMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 NMF Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 NMF for Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2 NMF for Product Recommendation and Rating Prediction . . . . . 17
1.2.3 Weighted NMF Applications . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Studied Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Algorithms 20
2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Solution Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Multiplicative Updates . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Constrained Alternating Least Squares . . . . . . . . . . . . . . . . 22

2.4 Sparseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Dealing with Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Marginalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.3 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Minimization Error, Time and Sparseness Experiment 26
3.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Semi-NMF Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Weighted Semi-NMF Algorithms . . . . . . . . . . . . . . . . . . . 27
3.1.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Initialization Results . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Algorithm Comparison Results . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Friedman Test and Post-hoc Wilcoxon Test . . . . . . . . . . . . . . 33
3.2.4 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . 35



4 Clustering Experiments 37
4.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Experiment Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Comparison with other works . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusions 44
5.1 Minimization Error, Time and Sparseness Experiment . . . . . . . . . . . . 44
5.2 Clustering Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Wrapping up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47

A Graphs 51
A.1 SNMF without sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 SNMF with medium sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3 SNMF with high sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.4 WSNMF with no sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.5 WSNMF with medium sparsity . . . . . . . . . . . . . . . . . . . . . . . . 65
A.6 WSNMF with High Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Chapter 1

Introduction

This dissertation is divided as follows: In this chapter I present a brief introduction

for matrix factorization problems, their most relevant applications and the formulations

which are the topic of this study: Semi Non-negative Matrix Factorization (SNMF) and

Weighted Semi Non-Negative Factorization (WSNMF). Chapter 2 contains details of the

implementation of the algorithms and related research on the topic. Chapter 3 details the

methodology, results and discussion of the experiments with the algorithms implemen-

tations. Chapter 4 deals with the methodology, results and discussion of the clustering

experiment using selected algorithms from the previous experiment. In the last chapter,

I elaborate on the conclusion and future work.

Nonnegative Matrix Factorization (NMF) (sometimes also called NNMA Nonnegative

Matrix Approximation) is a much discussed topic in current research. It has been used in

many di�erent applications and many alternative formulations and implementations were

studied. From the applications which employ NMF algorithms or any of its variants, it can

be cited: DNA gene expression analysis[40][46][3], spectra recovery[31], feature extraction

and pattern recognition[21][22], multimedia data analysis[6], text mining[30][43], docu-

ment summarization[28], �nancial data analysis[10], social network analysis[39], rating

prediction, recommendation[45] and many others.

The most common formulation for the Nonnegative Matrix Factorization problem is as

follows: Given a non-negative input data matrixX of dimensionsm×n , �nd non-negative

matrix factors F and G of lower rank dimensions m×k and n×k respectively, such that it

minimizes the Eq. 1.1 (The symbolsX, F and G are used throughout the text to represent

the input data Matrix, the left-hand and right-hand matrix factors, respectively). There

are many variations developed for the basic NMF problem formulation. NMF itself is a

constrained version of the general Low Rank Approximation problem, as seen in Eq. 1.2.

One of the optimal solutions of the Low Rank Approximation can be obtained through

Truncated Singular Value Decomposition [36].

NMF, however, is a non-convex problem with many local optima. It has been shown

to be NP-hard[38].

min
F,G
‖X − FGT‖1

subject to X ≥ 0, F ≥ 0, G ≥ 0
(1.1)

14



CHAPTER 1. INTRODUCTION 15

min
F,G
‖(X − FGT )‖ (1.2)

1.1 NMF algorithms classi�cation

The survey [8] divides NMF variations into four broad categories: Basic NMF, Con-

strained NMF, Structured NMF andGeneralized NMF. No classi�cation is perfect

and is able to �t to all problems, but it can be used as a loose reference to the many dif-

ferent approaches that stem from NMF.

1.1.1 Basic NMF

Basic NMF concerns solely with the non-negativity constraint formulation (Eq. 1.1) and

their associated optimisation techniques and algorithms. To avoid ambiguity, I will take

�basic NMF� to mean this speci�c NMF formulation. Otherwise, NMF refers generally to

all algorithms and formulations that stem from NMF.

1.1.2 Constrained NMF

Constrained NMF applies additional constraints besides the non-negativity constraints

on factor matrices F and G. We could extend an objective function J(F,G) to include

some general constraints that depend on F and G as in Eq. 1.3. J1(F ) and J2(G) are

penalty terms that enforce a certain constraint. α and β are regularization parameters

that balance how strongly these constraints are enforced.

min
F,G

J(F,G) + αJ1(F ) + βJ2(F ) (1.3)

Varying the formulas for J1(F ) and J2(G), one can come up with di�erent Constrained

NMF problems, such as Sparse NMF, Orthogonal NMF, discriminant NMF and NMF on

manifold.

1.1.3 Structured NMF

Structured NMF algorithms modify the original structure of the objective function di-

rectly, rather than adding constraints to penalize the objective function as in Constrained

NMF. It can be generalized by an application of an arbitrary function M(F,G) as in

Eq. 1.4. This general formula can vary slightly, but the basic idea remains the same.

Examples of algorithms classi�ed as Structured NMF are Weighted NMF, Convolutive

NMF and Non-negative Marix Trifactorization.

X ≈M(F,G) (1.4)

1‖.‖ denotes the Frobenius norm



CHAPTER 1. INTRODUCTION 16

1.1.4 Generalized NMF

We can consider the Generalized NMF as extensions of NMF or NMF variations. It

might breach one or more characteristics of Basic NMF, such as the non-negativity con-

straints, data type or factorization pattern, therefore including a broad set of algorithms

related to NMF but not strictly NMF. Examples include Semi-NMF, Non-negative Tensor

Factorization, Non-negative Matrix-set Factorization and Kernel NMF.

1.2 NMF Applications

1.2.1 NMF for Clustering

Ding et al. [7] have shown that some NMF formulations are equivalent to some k-Means[7]

problems. Speci�cally, that Symmetric NMF (Approximating X ≈ HHT ) is equivalent to

kernel k-means and basic NMF is equivalent to spectral clustering when the orthogonality

constraints are relaxed. These demonstrations suggest that there is a strong relationship

between matrix factorization and clustering. Given the appropriate set of conditions and

restrictions, they can be shown to solve equivalent problems.

K-means clustering aims to minimize the distance between each data point xi from

X = [x1, x2, ..., xn] and its assigned cluster fj. The objective function Jκ, κ being the

number of clusters, is shown in Eq. 1.5.

Jk =
κ∑
k=1

∑
j∈cj

‖xi − fj‖2 (1.5)

If we take the input data Xm×n composed of n feature vectors of size m, a matrix

Fm×k where each column fi corresponds to a centroid and a matrix Gn×k associating each

of the n data points to one of the k centroids (Gij = 1 when xi is assigned to cluster

j), then the objective function for K-means can be rewritten as Eq. 1.6. This is similar

to a NMF problem, with G restricted to vectors with exactly one element set to 1 and

the other elements set to zero. This restricts the feasible space of solutions considerably.

NMF algorithms are much more general.

Jk = ‖X − FGT‖ (1.6)

NMF has several advantages over traditional clustering algorithms such as K-Means[8].

• NMF is �exible. It can model widely varying data distributions, as it does not

assume much about the data, as compared to regular K-Means clustering, which

assumes rigid spherical clusters. Also, many data mining and machine learning

problems can be modelled as an NMF problem, given an appropriate set of con-

straints and structure.

• NMF can do both hard and soft clustering simultaneously.

• NMF is able to simultaneously cluster the rows (data points) and columns (features).



CHAPTER 1. INTRODUCTION 17

• It has been shown[17] that NMF with sparseness constraints applied can outperform

K-Means.

Relationship between performance and objective function

When using NMF for clustering, it is useful to note that minimizing the objective function

is not a guarantee of good clustering performance. This is due to the fact that in clustering

problems, there is no unique way to determine the quality of a cluster, although many

such metrics exist, like purity, normalized mutual information or accuracy. In practice, the

clusters of a given dataset could have many di�erent shapes and sizes. Also, these clusters

could overlap with each other and they can not be easily identi�ed and separated. As a

result, it is di�cult to e�ectively capture the cluster structures using a single clustering

objective function[8]. Therefore, the ultimate clustering quality measure is always the

suitability to solving a given problem.

1.2.2 NMF for Product Recommendation and Rating Prediction

Product Recommendation and Rating Prediction is an open interesting problem which

have received a lot of attention recently. The Net�ix Prize Competition has demonstrated

of matrix factorization models over classic nearest-neighbour techniques[19]. A basic

algorithm for recommendation using matrix factorization can be modelled in this way:

Let Xm×n be an input data matrix consisting of m users and n item ratings. Each

user rates only a few of the items, resulting often in an incomplete data matrix with many

missing values. We'd like to know, for each user/item pair X(i, j), the predicted rating

of the unrated items. A dimensionality reduction/matrix factorization approach can be

applied by �nding low dimensional matrices F and G such that Xmxn ≈ FmxkG
T
kxn.

One can then compute the prediction matrix X̃ = FGT with X̃(i, j) denoting the rating

prediction from user i to the item j.

The challenge in this approach is how to deal with the missing values. Earlier ap-

proaches to solve this problem relied on imputation to �ll the missing values[32]. How-

ever, imputation can be very expensive and inaccurate imputation might distort the data

considerably[19]. Other works suggested modelling directly only the observed ratings,

while avoiding over-�tting through a regularized model[29]. These approaches minimize

the regularized squared error on the set of known ratings, as in Eq.1.7. Here, κ is the

subset of user/item pairs (i, j) which have been rated. The constant λ is a regularization

parameter and is usually determined by cross-validation.

min
F,G

∑
i,j∈κ

(Xij − FiGj)
2 + λ(‖Fi‖2 + ‖Gj‖2) (1.7)

Another approach which was shown to produce good results is modelling the problem

as a Weighted Nonnegative Matrix Factorization (WNMF)[18] problem. In this approach,

the problem becomes just as the WSNMF approach described here, except that nonneg-

ativity is enforced on the input data and matrix factors.



CHAPTER 1. INTRODUCTION 18

Inputs with Varying Con�dence Levels

A major advantage of using a Weight matrix is the ability to represent con�dence levels for

the input data. An example of this is a recommender system based on implicit feedback.

On those systems, the user might not always give ratings directly, but instead provide

hints or cues that he might like or dislike a product. Those hints can increase or decrease

the con�dence level of the recommender system for that particular rating. Con�dence can

stem from available numerical values that describe the frequency of actions, for example,

how much time the user watched a certain show or how frequently a user bought a certain

item. These numerical values indicate the con�dence in each observation[19].

1.2.3 Weighted NMF Applications

Weighted NMF has been applied successfully to some problems, such as Face Feature

Extraction[14], product recommendation[18], Data-driven simulation and control, matrix

completion and system identi�cation with missing data[25].

A multiplicative algorithm for WSNMF was applied for solving the problem of motion

segmentation with missing data[26]. The formulation proposed was shown to outperform

current state-of-the-art algorithm (which was based on spectral clustering) both in execu-

tion time and accuracy. They used the weighting matrix to account for object occlusions

and missing tracked points. Using SNMF instead of NMF allowed them to use velocity

information directly to build a more natural motion component representation. The im-

plementation of WSNMF using multiplicative updates used in this work is the same used

in my experimental tests (Chapter 3 and 4).

The work [24] uses a Weighted Low Rank Approximation algorithm which is an exten-

sion of SVD low-rank approximation using a weight matrix to design 2-D digital �lters.

The weights are used to give emphasis to important parts of the entries of the sampled

frequency response matrix.

1.3 Studied Formulations

In this study I am concerned with Semi Non-negative Matrix Factorization (SNMF) and

an extension of it for dealing with missing data, Weighted Semi Non-negative Matrix

Factorization (WSNMF). The Semi-NMF problem formulation was �rst proposed in [9].

In this formulation, the input data matrix X as well as the left-hand side matrix F

are unconstrained, but the right-hand side matrix G must be non-negative, as shown in

Eq.1.8.

min
F,G
‖X − FGT‖

subject to G ≥ 0
(1.8)

Therefore, Semi-NMF removes some of the constraints from the basic NMF formula-

tion, while still retaining the non-negativity constraint on the right-hand side matrix G.

One of the motivations for the Semi-NMF formulation lies on the fact that a clustering

problem can be described in the form of a matrix factorization X = FGT in which X is



CHAPTER 1. INTRODUCTION 19

the data matrix, F contains the cluster centroids and G contains the cluster membership

indicators. Despite the fact that F may typically contain positive and negative data val-

ues, G is non-negative [9]. Even though Semi-NMF is a lighter version of NMF in terms

of constraints it is still a NP-Hard problem, as shown by [12].

When one has to deal with situations involving some missing or uncertain input data,

one can reformulate the minimization in Eq. ??, adding a weight matrix Wmxn whose

values are 1 when the corresponding element in X is present and 0 when it is missing.

The resulting minimization problem can be visualized in the Eq. 1.10. The symbol `�'
represents an element-wise multiplication. In this way, the values of (X −FGT ) in which

the respective element of W is 0 is not considered in the calculation of the error. It is also

possible to introduce weights relative to some noise estimate of the input data measured,

making the weights inversely proportional to this presumed noise, thus being able to deal

with not only missing data but also uncertain data. This approach can lead to a better

reconstruction of the internal data structure [35]. The introduction of weights however,

makes the problem considerably more complex to solve. [11] has shown that adding

weights to the unconstrained Low Rank Approximation problem is already NP-Hard.

A variation of the matrix factorization problem which has been so far scarcely studied

is the combination of the non-negativity constraint on the rightmost matrix G Semi-NMF,

with the addition of a weight matrixW to account for missing or uncertain data, as shown

in Eq. 1.9, from now on referred as Weighted Semi-Nonnegative Matrix Factorization, or

WSNMF. While SNMF is related to clustering, WSNMF is related to clustering with

missing or uncertain data.

min
F,G
‖W � (X − FGT )‖

subject to G ≥ 0
(1.9)

min
F,G
‖W � (X − FGT )‖ (1.10)



Chapter 2

Algorithms

This chapter presents a discussion related to the implementation of the NMF algorithms in

general and the proposed implementations to SNMF andWSNMF. Initialization, stopping

criteria, solution uniqueness and complexity analysis are brie�y discussed. The two main

approaches for solving NMF, Multiplicative Updates and Constrained Alternating Least

Squares are discussed along with implementation details for SNMF and WSNMF.

2.1 Initialization

Initialization is an important factor for NMF convergence speed and minimization of the

objective function. Since it is a non-convex problem, the solution falls often into local

minima. A good initialization can improve the algorithm performance, leading to rapid

error reduction and faster convergence. One possible approach to overcome this is running

the NMF algorithm several times with a random initialization. This approach, however,

can be very time consuming.

Many initialization methods have been tested in the literature. Spherical K-means

clustering[42], SVD[2], relaxed K-means clustering[44], PCA, fuzzy clustering, Gabor

wavelet [47], population based[16] and many others. According to [8], factorization-based

initialization methods and clustering-based initialization are able to lead to rapid error

reduction and faster convergence. In [20], a comparison was made between six di�erent

initialization methods: Random, Centroid, SVD-Centroid, Random col, Random C and

Co-ocurrence. From these, the authors conclude that SVD and Random col showed the

best results.

2.2 Solution Uniqueness

Uniqueness is a common concern for the NMF problem. There are di�erent ways one

can structure decomposition matrices F and G to produce the same output X̃ = FGT .

In other words, if there exists a solution X ≈ F0G
T
0 , let F = F0D, GT = D−1V0, then

X ≈ FGT . Therefore, one can assign any invertible matrix to D such as to produce a

range of equivalent solutions X ≈ F0DD
−1G0.

In practice, incorporating additional constraints such as sparseness (see section 2.4)

20



CHAPTER 2. ALGORITHMS 21

in the factor matrices or normalizing the columns of F (respectively rows of GT ) to unit

length is helpful in alleviating this indeterminacy[5]. This is because adding constraints

reduce the possible con�gurations the matrices can assume.

The work [26] attempts another solution for the uniqueness problem. To obtain rank-

k factorizations, �rst k rank-1 factorizations are performed, resulting in Fm×1 and Gn×1.

For each step, the vector F is normalized and the normalization constant is multiplied

back to G. The residual error E = X − FGT becomes the input data for the next step.

2.3 Algorithm Implementation

2.3.1 Stopping Criteria

There are usually three di�erent stopping criteria mostly adopted in NMF algorithms.[8]

• The objective function is reduced to below a given threshold.

• The change on the resulting matrices are not signi�cant between iterations.

• The objective function decreases less than a given threshold between iterations.

2.3.2 Multiplicative Updates

Generally speaking, there are many methods for the resolution of matrix factorization

problems. The most popular of them is the multiplicative update, proposed by Lee and

Seung [33] for the NMF problem formulated in Eq. 1.1.

An additive update algorithm, such as the well-known gradient descent, would have

the update rule for G shown in Eq. 2.1, where δ is the size of the step for each update,

and J(F,G) is the objective function. The method proposed by Lee and Seung is such

that the step δ is rescaled in each iteration, as shown in Eq. 2.2. Thus, the update rule

for G can be described as a multiplicative update as shown in Eq. 2.3. The same done

for F results in a multiplicative update rule for F (Eq. 2.4). Algorithm 1 shows the

general form of a multiplicative update algorithm.

Algorithm 1 Multiplicative Updates
1: Initialize F and G.
2: Apply update rule for F, such as Eq. 2.3.
3: Apply update rule for G, such as Eq. 2.4.
4: Repeat steps 1 and 2 a �xed number of times or until the variation of the error norm

is less than a tolerance value.

GT ← GT + δ[
∂J

∂G
] (2.1)

δ =
GT

F TFGT
(2.2)



CHAPTER 2. ALGORITHMS 22

GT ← GT F TX

F TFGT
(2.3)

F ← F
XG

FGTG
(2.4)

The main advantage of the multiplicative update rule is its simplicity of implemen-

tation, but there may be some more e�cient algorithms. In [23], the author studies in

detail the utilization of projected gradients, a bound-constrained gradient descent method

for Alternating Nonnegative Least Squares and concludes that the multiplicative update

method has a low cost per iteration, but the convergence is often slow, demanding a large

number of iterations. The projected gradients technique, in contrast, converges faster,

but the cost per iteration is higher.

2.3.3 Constrained Alternating Least Squares

The multiplicative update can be considered a special case of a more general approach

called block coordinate descent, which consists of alternately �xing one block (matrix)

and improving the other [23]. Instead of alternately improving each matrix, one can on

each iteration �nd the best point, such as in the Alternating Nonnegative Least Squares

(ANLS) [27] for NMF.

When the objective function is constrained (such as in NMF where both F and G must

be non-negative and SNMF and WSNMF where G must be non-negative), one alternative

is to use the Alternating Least Squares (ALS) scheme with bound-constrained gradient

descent methods. Such a method is summarized as follows: Given a vector x, an objective

function f(x) and a vector of lower and upper bounds l and u, minimize f(x) subject

to li ≤ xi ≤ ui. For each step of the gradient descent, it guarantees that the solution

remains within the lower and upper bounds. Algorithm 2 shows the general form of a

Constrained Alternating Least Squares algorithm.

Algorithm 2 Constrained Alternating Least Squares
1: Initialize F and G.
2: Fix G and �nd F that minimizes J(F,G) subject to constraints.
3: Fix F and �nd G that minimizes J(F,G) subject to constraints.
4: Repeat steps 1 and 2 a �xed number of times or until the variation of the error norm

is less than a tolerance value.

Since SNMF and WSNMF have constraints only in matrix G, the following variation

on Algorithm 3 can be had.

Algorithm 3 Constrained Alternating Least Squares for SNMF and WSNMF
1: Initialize F and G.
2: Fix G and �nd F that minimizes J(F,G).
3: Fix F and �nd G that minimizes J(F,G) subject to G ≥ 0.
4: Repeat steps 1 and 2 a �xed number of times or until the variation of the error norm

is less than a tolerance value.



CHAPTER 2. ALGORITHMS 23

SNMF and WSNMF di�er only by the objective function J(F,G). SNMF objective

function is Eq. 2.5 and WSNMF's is Eq. 2.6.

J(F,G) = ‖X − FGT‖ (2.5)

J(F,G) = ‖W � (X − FGT )‖ (2.6)

2.4 Sparseness

Sparseness is an often desired attribute of the result of a matrix factorization. NMF

algorithms have been known to produce sparse low-dimensional representations of the

input data. However, sometimes a higher control of the sparseness produced can result in

a better representation. The sparseness constraint is helpful in improving the uniqueness

of the decomposition and enforcing a local-based representation (See section 2.2). Sparse

NMF is the most widely employed Constrained NMF problem, and is often a necessity to

achieve better results [41].

If one interprets the left-hand-side matrix F as a set of k features and G as a matrix of

coe�cients, it is then desired that the input data be represented as a linear combination

of just a few set of features. To achieve this, a sparseness constraint must be applied to

the coe�cients matrix G. Hoyer et al.[15] de�ned a metric for measuring the degree of

sparseness of a vector, as shown in Eq. 2.8. Using this metric, a vector has maximum

sparsity if and only if x contains only one non-empty element and minimum when all the

components are the same. This measure is based on the relationship between the L1 and

L2 norm of a vector.

This sparseness measure can be used to provide a sparseness constraint to the coe�-

cient matrix G. Its sparseness measure would then be the mean of the sparseness of all

its column vectors. If one wants to ensure a certain degree of sparseness to the matrix

G, another variation of both multiplicative update and Constrained Alternating Least

Squares algorithms can be produced. Such a technique is presented in [15], and involves

the application of a projection operator to each column vector of the matrix G. The

projection operator works by projecting the vector to L2 unit norm and then adjusting

L1 norm to achieve the desired sparsity, according to the sparseness measure in Eq. 2.7.

sparseness(x) =

√
n− (

∑
|xi|)/

√∑
x2i√

n− 1
(2.7)

One can use this approach to implement a projected variant of both Multiplicative

Updates and Constrained Alternating Least Squares algorithms. The resulting algorithms

are shown on Algorithm 4 and Algorithm 5.

sparseness(x) =

√
n− (

∑
|xi|)/

√∑
x2i√

n− 1
(2.8)

Hoyer et al. also developed a vector projection algorithm that projects a vector in Rn

to the closest point in Rn satisfying a desired sparseness constraint, as shown in algorithm



CHAPTER 2. ALGORITHMS 24

Algorithm 4 Constrained Alternating Least Squares with Projection
1: Initialize F and G.
2: Fix G and �nd F that minimizes J(F,G).
3: Fix F and �nd G that minimizes J(F,G) subject to G ≥ 0.
4: Project G such that it has the desired sparsity.
5: Repeat steps 1 and 2 a �xed number of times or until the variation of the error norm

is less than a tolerance value.

Algorithm 5 Multiplicative Updates with Projection
1: Initialize F and G.
2: Apply update rule for F, such as Eq. 2.3.
3: Apply update rule for G, such as Eq. 2.4.
4: Project G such that it has the desired sparsity.
5: Repeat steps 1 and 2 a �xed number of times or until the variation of the error norm

is less than a tolerance value.

6. Usually, L2 remains the same and L1 is de�ned such as to achieve the desired sparseness.

2.5 Dealing with Missing data

Missing data is a problem present in many real applications. For a variety of reasons,

including error in the measuring process, non available data or invalid, missing values

may appear in the input. One example of a �eld of research with many missing value

problems is DNA microarray data analysis[37]. There are two main approaches that are

commonly adopted: imputation and marginalization.

2.5.1 Marginalization

Marginalization is the simplest approach of them all, consisting of simply abandoning or

ignoring the whole features of the data containing missing values. This approach is safe

and conservative, but may be undesirable in some cases or even infeasible depending on

the rate of missing values present in the data. Also, existing observed data in a feature is

entirely discarded when one or more elements in the feature are missing, leading possibly

to wasted relevant data.

2.5.2 Imputation

Imputation is also a common strategy to approach missing data, consisting of replacing

the missing data with some reasonable estimate produced from the available data and

known facts and properties of the data. This approach however, if not carefully executed,

can generate biased and degraded data[19]. In the case of DNA microarray analysis, but

also extensible to any missing data problem, [37] alerts that it is important to be cautious

when drawing critical biological conclusions from data that is partially imputed.

Many ways to estimate values for imputation exist, many relying on previous assump-

tions about the data. One simple and often used imputation method is to take the mean



CHAPTER 2. ALGORITHMS 25

Algorithm 6 Given a vector x, �nd the closest (in the euclidean sense) non-negative
vector s with a given L1 norm and a given L2 norm

1: si = xi + (L1 −
∑
xi)/dim(x), ∀i

2: Z = {}
3: loop
4: if i /∈ Z then
5: mi = L1/dim(x)− size(Z)
6: else
7: mi = 0
8: end if
9: s = m + α(s − m), where α is such that the resulting s satis�es the L2 norm

constraint. This requires solving a quadratic equation.
10: if all the components of s are non-negative then
11: return s
12: end if
13: Z = Z ∪ {i; si < 0}
14: si = 0,∀i ∈ Z
15: c = (

∑
si − L1)/dim(x)− size(Z))

16: si = si − c,∀i /∈ Z
17: end loop
18: Repeat steps 1 and 2 a �xed number of times or until the variation of the error norm

is less than a tolerance value.

or median of the elements in the same column.

2.5.3 Weights

In the case of matrix factorization, the introduction of a weight matrix to deal with the

missing data is a much more robust approach towards missing data, presenting many

advantages. We can set the missing elements in the weight matrix to zero, causing the

missing elements to be ignored in the objective function minimization. This e�ectively

ignores only the missing values, without discarding the whole feature vector as in the

marginalization approach. Also, it avoids having to estimate the missing values and

consequently biasing the results with arti�cially generated data and assumptions, as is

the case for imputation methods. In fact, this approach can be used to actually pro-

duce estimations of the missing data, as is the case of some product recommendation

algorithms[18].

Beyond missing data, one other major advantage of using a weight matrix is the ability

to weight each entry according to some reliability measure. For instance, [35] notes that for

gene expression analysis the error model provides entry-speci�c noise estimates. Setting

the weights inversely proportional to the assumed noise variance can lead to a better

reconstruction of the underlying structure.



Chapter 3

Minimization Error, Time and

Sparseness Experiment

3.1 Experimental Methodology

A range of variations of algorithms that use constrained Alternating Least Squares tech-

nique are studied and compared with the multiplicative update algorithms, both for Semi-

NMF (Eq. 1.8) problem and Weighted Semi-NMF (Eq. 1.9) problem. Variations of these

algorithms which include projection to achieve a certain degree of sparseness are also

implemented.

3.1.1 Semi-NMF Algorithms

J(F,G) = ‖X−FGT‖ is the objective function of the SNMF problem. Deriving partially

for F gives Eq. 3.1. For the �rst step, one must �nd F such that δJ
δF

= 0. Solving this

equation gives the analytical solution in Eq. 3.2. Either the analytical solution or or a

gradient descent approach using Eq. 3.1 as the gradient function can be used for step 1.

Preliminary studies showed that when the analytical function is too costly to compute,

it may not perform so well as the gradient descent, therefore justifying the comparison

between them.

δJ

δF
= FGTG−XG (3.1)

F = XG(GTG)−1 (3.2)

For the second step, δJ
δG

= F TFGT − F TX. One can �nd an analytical solution when

solving δJ
δG

= 0 for G, but the constraints of G is also a concern. Because of this, and also

to keep the symmetry between SNMF and WSNMF comparisons, it was decided not to

use the analytical solution for G in the experiments.

Three di�erent algorithms for solving SNMF are implemented using constrained Alter-

nating Least Squares. They use di�erent bound-constrained gradient descent approaches

from the Python Scipy optimization library. They are compared against each other

and the multiplicative update algorithm from the Python Matrix Factorization Module

26



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT27

(PyMF), which I call M-SNMF (Multiplicative Update SNMF). The algorithms imple-

mented for SNMF are the following:

• TNC: uses the Truncated Newton Conjugated Gradient (TNC) for both sides of

the minimization problem (step 1 and step 2). It is a constrained optimization

method. On step 1, TNC is run without any constraints and on step 2 it is

run with non-negativity constraint. The Truncated Newton Conjugated Gradient is

similar to the unconstrained Newton Conjugated Gradient, but never takes a step

size large enough to leave the space of possible values.

• L-BFGS-B: is a variant of the L-BFGS (Limited Memory Broyden-Fletcher-Goldfarb-

Shanno) that handles simple box constraints [4]. L-BFGS-B is applied to both sides

of the minimization problem. As with the TNC case, unconstrained L-BFGS-B is

applied on step 1 and constrained L-BFGS-B on step 2.

• Analytical: takes advantage of the fact that the problem of minimizing F with G

�xed has an analytical solution. This solution can the be used to solve the step

1 of the alternating least squares algorithm. For step 2, the L-BFGS-B gradient

descent algorithm is used.

3.1.2 Weighted Semi-NMF Algorithms

The objective function for WSNMF is J(F,G) = ‖W � (X−FGT )‖. Deriving it partially
for F gives Eq. 3.3. For the �rst step, one must �nd F such as ∂J

∂F
= 0. As pointed in

[34], this equation has an analytical solution, given by Eq. 3.4, where Wi is the diagonal

matrix formed by the ith row of W and Xi and Fi are column vectors formed by the ith
row of the matrix X and F , respectively.

∂J

∂F
= 2(W � (FGT −X)) (3.3)

Fi = (GTWiG)
−1GTWiXi (3.4)

For step 1, the analytical solution given in Eq.3.4 or gradient descent can be used to

minimize F . For the second step, deriving partially forG gives ∂J
∂G

= 2(W T�(GF T−XT )).

However, this equation does not have an analytical solution. Well-known techniques of

gradient descent can be used to �nd a local optimal solution.

As in the SNMF problem, TNC, L-BFGS-B and Analytical solutions are imple-

mented for SNMF. They are then compared against each other and the multiplicative

update solution for WSNMF (M-WSNMF) proposed in [26]. M-WSNMF is shown in

Algorithm 7.

3.1.3 Initialization

It is well known that most matrix factorization algorithms are very sensitive to initial-

ization [1]. Since the problem is often non-convex, the starting point in�uences whether



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT28

Algorithm 7 Multiplicative Updates solving WSNMF (M-WSNMF)

1: Initialize F and G.
2: R = ((W ⊗X)G)� ((W ⊗ FGT )G)
3: Apply update rule for F: F = F ⊗R.
4: R1 = ((W T ⊗XT )F )+ + ((W T ⊗GF T )F )−

5: R2 = ((W T ⊗XT )F )− + ((W T ⊗GF T )F )+

6: Apply update rule for G: G⊗R1 �R2.
7: Repeat steps 2 through 6 a �xed number of times or until the variation of the error

norm is less than a tolerance value.

the algorithm will reach better or worse local minima. Therefore, several di�erent initial-

ization methods are tested: Random, Random Col, SVD Centroid, K-Means and Fuzzy

C-Means. Except for the random initialization, all the other methods tested take into

account the input data matrix. In the case where there are missing data, I impute the

missing values using the mean of the values not missing in the column.

Random Initialization

Random initialization is a very common and simple form of initialization. It consists

of setting the matrices elements to random values from a continuous uniform distribu-

tion from 0 to 1. It is low-cost, but tend to produce poorer results than more robust

initialization methods.

Random col

Random Col method initializes the left-side matrix F to columns sampled randomly from

the input data matrix [1]. The matrix G is initialized randomly as in the random ini-

tialization method. The presumption is that the input data matrix points give a good

estimation for the cluster centroids, if we consider the analogy between matrix factoriza-

tion and clustering. It can also be justi�ed by assuming it is very likely that the input

data and the solution will have a similar distribution.

SVD Centroid

SVD Centroid uses the output from a Truncated SVD Decomposition initializing F and

G with the respective rank-k decompositions of the input data matrix. Since truncated

SVD decomposition is one optimal solution for the unconstrained matrix factorization

problem, it can be expected to yield a good initialization for the constrained problem.

K-Means

K-Means consists of running K-Means clustering on the input data matrix. The centroids

found by K-Means are assigned to matrix F and the cluster membership matrix to the

matrix G. The motivation behind this approach relies on the similarity between K-Means

and matrix factorization problems. It is not uncommon to use K-Means as initialization

for matrix factorization problems[13][42][44].



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT29

Fuzzy C-Means

Fuzzy C-Means is analogous to K-Means, the di�erence being that Fuzzy C-Means pro-

duces soft clusters while K-Means produces hard clusters.

3.1.4 Test cases

I run several tests varying the input data size, the proportion of missing data and the

rank of the resulting matrices. The variables and their possible values are the following:

Input Width (50, 100, 200, 500, 1000), Input Height (50, 100, 200, 500, 1000), Rank (2,

5, 10, 20, 30, 40), Weight (1, 0.75, 0.5, 0.3, 0.1). The permutation of the variables' values

gives a total of 135 test cases for the weighted cases and 27 for the non-weighted cases.

For each test case, I measure for each algorithm the overall time, the value of the error

and the sparsity of the matrix G (when applicable).

Given a rank k, I generate the input matrix Xm×n by multiplying two random matrix

Fmxk and Gk×n. The matrix F is sampled from an uniform distribution from −1 to 1 and

the matrix G is sampled from an uniform distribution from 0 to 1. This ensures that the

produced input matrix X is clearly separable with zero error for the given rank k.

I execute the tests with di�erent batches of algorithms variations, as follows:

1. SNMF without sparseness projection

2. SNMF with 0.5 sparseness projection

3. SNMF with 0.9 sparseness projection

4. WSNMF without sparseness projection

5. WSNMF with 0.5 sparseness projection

6. WSNMF with 0.9 sparseness projection

3.2 Experiment Results

3.2.1 Initialization Results

On each test case, the algorithms were ranked from 0 to n − 1 integer values; 0 for the

algorithm showing the best result and n−1 for the worst, n being the number of di�erent

algorithms on the test. This was done individually for each measure (Error, Time and

Sparsity). On table 3.1 through 3.3 I present the results from the initialization tests. The

time measured was the time of execution of each algorithm without initialization. That

is relevant because sometimes initialization provides a better starting point and reduces

the amount of work necessary to reach a local minima. I have also found that taking

initialization time into account does not signi�cantly change the time rankings of each

algorithm. It should also be noted that in the case of sparsity, a higher ranking means

higher sparsity measure. Since higher sparsity is desired, the higher the sparsity ranking,

the better.



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT30

The initialization tests show that Random col method produced smaller errors than

the other methods. It performs not so well in the time and sparsity comparison, though.

SVD Centroid produced the worse results in terms of error reduction, but this is because

applying SVD Centroid initialization in some cases resulted in a crash of the M-SNMF

algorithm, when attempting to calculate a negative square root.

For SNMF, Fuzzy C-Means produced the best results for the error ranking. In both

cases, random and random col performed very similar to actual random initialization.

This might be explained by the fact that the distribution of the input data is also ran-

dom. Therefore, generating random initialization and taking random columns from the

randomly generated data did not produce much di�erence. Experiments with real ap-

plications suggest, however, that random col is generally better than simple random

initialization[20].

For WSNMF, K-Means was clearly the best performing for both error and sparseness.

It should be noted, however, that since M-WSNMF is a multiplicative update algorithm,

when K-Means initializes many elements in the G matrix initialized to zero, these values

remain zero. This is why the sparsity of M-SNMF and M-WSNMF with K-Means is

always maximum.

Initialization Error Rank Time Rank Sparsity Rank

Fuzzy C-Means 2.80 1.62 1.12

Random col 0.53 2.65 2.30

SVD Centroid 3.96 1.7 0.24

Random 0.55 2.84 2.34

K-Means 2.57 0.0 4.0

Table 3.1: Comparison between di�erent initialization methods for M-SNMF

Initialization Error Rank Time Rank Sparsity Rank

Fuzzy C-Means 0.57 3.47 0.19

Random col 2.43 1.92 1.77

SVD Centroid 1.39 1.6 3.38

Random 2.40 1.9 1.77

K-Means 3.2 1.1 2.9

Table 3.2: Comparison between di�erent initialization methods for SNMF



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT31

Initialization Error Rank Time Rank Sparsity Rank

Fuzzy C-Means 1.95 0.82 0.43

Random col 2.29 2.91 2.24

SVD Centroid 2.96 2.47 1.1

Random 2.2 2.94 2.23

K-Means 0.59 0.85 4.0

Table 3.3: Comparison between di�erent initialization methods for M-WSNMF

Initialization Error Rank Time Rank Sparsity Rank

Fuzzy C-Means 2.73 2.55 2.03

Random col 1.37 2.17 1.85

SVD Centroid 0.87 1.28 1.6

Random 3.74 1.84 0.96

K-Means 0.69 2.56 3.55

Table 3.4: Comparison between di�erent initialization methods for WSNMF

3.2.2 Algorithm Comparison Results

Based on the initialization test results, I decided the best performing initialization for each

algorithm group. I took the error rank as the decisive factor when choosing an initial-

ization method over another. For WSNMF, K-Means was clearly the best initialization

option, but the choice for SNMF was not so clear. I chose Random col for SNMF since

it was the best option for M-SNMF and performed adequately well also for SNMF.

As in the initialization tests, I measure the mean error and mean time rankings from

all the test runs and show the mean of the rankings obtained by each algorithm. I also

measure mean sparsity rankings for the cases without sparseness projection. For the other

cases, the projection enforces a certain degree of sparsity and all the algorithms end up

with the same sparsity. I measured the time including initialization time and excluding

initialization time, but since I ended up using the same initialization for each test group,

the initialization did not a�ect the time rank. The rankings are shown on Table 3.5

through 3.8.

Graphs showing the rank di�erence as input size, rank and weight varies are in the

Appendix A.

Algorithm Error Rank Time Rank Sparsity Rank

Analytical 1.81 0.27 1.88

TNC 2.1 2.93 2.13

L-BFGS-B 1.87 1.97 1.24

M-SNMF 0.22 1.55 0

Table 3.5: Mean rank comparison between all algorithms solving SNMF



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT32

Algorithm Error Rank Time Rank

Analytical 1.55 0.28

TNC 1.71 2.56

L-BFGS-B 1.5 1.05

M-SNMF 1.24 2.09

Table 3.6: Mean rank comparison between all algorithms solving SNMF with 0.5 sparsity

projection

Algorithm Error Rank Time Rank

Analytical 1.12 0.35

TNC 1.23 2.57

L-BFGS-B 1.11 1.03

M-SNMF 2.54 2.04

Table 3.7: Mean rank comparison between all algorithms solving SNMF with 0.9 sparsity

projection

Algorithm Error Rank Time Rank Sparsity Rank

Analytical 0.49 2.05 0.65

TNC 0.53 2.92 0.37

L-BFGS-B 2.51 1.03 1.99

M-WSNMF 2.47 0.0 2.99

Table 3.8: Mean rank comparison between all algorithms solving WSNMF

Algorithm Error Rank Time Rank

Analytical 0.23 1.47

TNC 0.87 2.85

L-BFGS-B 2.88 0.52

M-WSNMF 2.01 0.39

Table 3.9: Mean rank comparison between all algorithms solving WSNMF with 0.5 spar-

sity projection



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT33

Algorithm Error Rank Time Rank

Analytical 0.45 1.49

TNC 1.16 2.89

L-BFGS-B 2.40 0.43

M-WSNMF 1.99 1.19

Table 3.10: Mean rank comparison between all algorithms solving WSNMF with 0.9

sparsity projection

3.2.3 Friedman Test and Post-hoc Wilcoxon Test

The results were veri�ed with the Friedman Test, a non-parametrical statistical test to

detect di�erences in treatments across multiple test attempts. For each algorithm batch,

I applied the Friedman test to determine whether there were any statistically relevant

di�erence between all the algorithms tested. Since there were statistically signi�cant

di�erences detected in all batches, I then applied the post-hoc Wilcoxon test to each pair

of algorithms to determine whether they produced statistically relevant di�erences from

one another. The P-Values with values less than 0.005 on tables 3.11 through 3.16 show

that the di�erences in rank obtained from the respective experiments are signi�cant and

not produced by chance.

Algorithms Error P-Value Time P-Value Sparsity P-Value

L-BFGS-B & Analytical 0.9 0 0.34

L-BFGS-B & TNC 0.02 0 0.14

L-BFGS-B & M-SNMF 0 0 0

Analytical & TNC 0.002 0 0.009

Analytical & M-SNMF 0 0 0

TNC & M-SNMF 0 0 0

Table 3.11: P-Values of the Pairwise Wilcoxon Test for the algorithms solving SNMF

without sparsity projection

Algorithms Error P-Value Time P-Value

L-BFGS-B & Analytical 0.326 0

L-BFGS-B & TNC 0.317 0

L-BFGS-B & M-SNMF 0.024 0

Analytical & TNC 0.724 0

Analytical & M-SNMF 0.024 0

TNC & M-SNMF 0.024 0.002

Table 3.12: P-Values of the Pairwise Wilcoxon Test for the algorithms solving SNMF with

0.5 sparsity projection



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT34

Algorithms Error P-Value Time P-Value

L-BFGS-B & Analytical 0.277 0

L-BFGS-B & TNC 0.895 0

L-BFGS-B & M-SNMF 0 0

Analytical & TNC 0.811 0

Analytical & M-SNMF 0 0

TNC & M-SNMF 0 0

Table 3.13: P-Values of the Pairwise Wilcoxon Test for the algorithms solving SNMF with

0.9 sparsity projection

Algorithms Error P-Value Time P-Value Sparsity P-Value

M-WSNMF & L-BFGS-B 0.034 0 0

M-WSNMF & Analytical 0 0 0

M-WSNMF & TNC 0 0 0

L-BFGS-B & Analytical 0 0 0

L-BFGS-B & TNC 0 0 0

Analytical & TNC 0 0 0

Table 3.14: P-Values of the Pairwise Wilcoxon Test for the algorithms solving WSNMF

Algorithms Error P-Value Time P-Value

M-WSNMF & L-BFGS-B 0 0.001

M-WSNMF & Analytical 0 0

M-WSNMF & TNC 0 0

L-BFGS-B & Analytical 0 0

L-BFGS-B & TNC 0 0

Analytical & TNC 0 0

Table 3.15: P-Values of the Pairwise Wilcoxon Test for the algorithms solving WSNMF

with 0.5 sparsity projection

Algorithms Error P-Value Time P-Value

M-WSNMF & L-BFGS-B 0.002 0

M-WSNMF & Analytical 0 0

M-WSNMF & TNC 0 0

L-BFGS-B & Analytical 0 0

L-BFGS-B & TNC 0 0

Analytical & TNC 0 0

Table 3.16: P-Values of the Pairwise Wilcoxon Test for the algorithms solving WSNMF

with 0.9 sparsity projection



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT35

3.2.4 Discussion of the results

For the SNMF without sparsity projection batch, M-SNMF is shown to have the best error

rank. The statistical analysis on Table 3.11 shows that the the di�erence in rank between

M-SNMF and the other alternatives is signi�cant, but there was not much di�erence de-

tected between Analytical and L-BFGS-B. With respect to time, the analytical solution

outperformed the others and the di�erence is clearly signi�cant. The M-SNMF solution

had the second best time performance. With respect to sparsity, M-SNMF clearly per-

formed worse than the algorithms using Constrained Alternating Least Squares, which

had similar sparsity mean scores. From that I conclude that Constrained Alternating

Least Squares tends to produce sparser results than Multiplicative Updates for SNMF.

For the SNMF with 0.5 sparsity projection batch, the multiplicative update algorithm

(M-SNMF) performed better than the others with respect to the Error Rank. With respect

to time, the analytical solution had the best results. But with a greater sparsity projection

being enforced, performance of M-SNMF degraded and the other algorithms performed

better, but not very di�erent from one another. It can be seen from the statistical tests

that only the comparison between M-SNMF and the others were shown to be signi�cant.

It is reasonable to conclude that when a high degree of sparsity is enforced, Constrained

Alternating Least Squares algorithm often converge to a common local optima. As for

M-SNMF, the worse performance can be explained by the fact that the projection to a

high degree of sparseness may force many coe�cients of G to go to zero. Since it is a

multiplicative update algorithm, elements reaching zero tend to remain zero, diminishing

the available optimization options and thus being unable to reach the same local optima

reached by the other algorithms. In the graph at page 57 of the Appendix A, it can be

seen how the error performance for M-SNMF deteriorates as the input size increases, in

the case of high sparseness projection.

For the WSNMF without projection batch, as in the non-weighted case, the Analytical

also had the best error rank, though very close to TNC. The results mirror the non-

weighted case (SNMF without sparsity projection). Since there were more test cases for

the weighted case, except for the di�erence between the error rank in Analytical and TNC

algorithms, all di�erences in rank are shown to be signi�cant.

For the WSNMF with 0.5 and 0.9 sparsity projection, all the di�erences in rank are

shown to be signi�cant. The Analytical solution clearly outperforms the others in error

rank. Table 3.9 (WSNMF with 0.5 sparsity projection) and Table 3.10 (WSNMF with

0.9 sparsity projection) are similar, except from the shift of position between L-BFGS-B

and M-WSNMF in the Time Rank. With 0.5 sparsity projection, M-WSNMF is faster

than L-BFGS-B and with 0.9 sparsity projection, L-BFGS-B is faster.

It is also important to notice that there is a time performance drop for the M-SNMF

algorithm between without sparseness and with sparseness projection. This is because

the multiplicative update algorithm takes much more iterations to converge (around 100

iterations) than Constrained Alternating Least Squares (2 to 4 iterations). Since projec-

tion is performed at the end of each iteration, the time cost for the projection is much

higher for M-SNMF.

Examining the graphs on the Appendix A, one can see some interesting tendencies.



CHAPTER 3. MINIMIZATION ERROR, TIME AND SPARSENESS EXPERIMENT36

In the graph at page 51, measuring time versus input size for SNMF without sparseness

projection, it can be seen that the performance of the analytical solution gets increasingly

better than the others, showing that the analytical solution scales better for the SNMF

problem. The same is not through for WSNMF. Adding weights to the algorithms makes

Constrained Alternating Least Squares more complex than the multiplicative update al-

gorithm equivalent. It can be seen from the graphs at pages 61, 65 and 70 that M-SNMF

scales better as input size increases.



Chapter 4

Clustering Experiments

4.1 Experimental Methodology

For the clustering experiments, I created a synthetic data set from a mixture of gaussians,

following the methodology in [17]. For each target number of clusters k, I constructed a

data set of 1000 elements in 500 dimension as follows:

1. Construct mean vectorsm1,m2, ...,mk ∈ R500×1. For each row index i = 1, 2, ..., 500,

• Randomly pick an index q from {1, 2, ..., k} and d from {1, 2, 3}

• set mq(i) = d and mj(i) = 0 for all j 6= q where mj(i) is i-th element of mj

2. Then, for each j = 1, 2, ..., k, set the covariance matrix Covj ∈ R500×500 as Covj(i, i) =

0.3 if mj(i) 6= 0 and Covj(., .) = 0 for all others.

3. Generate mixture of gaussians from m1,m2, ...,mk and Cov1, Cov2, ..., Covk with

balanced weights.

The �rst step in the algorithm generates k mean vectors where for each of the 500

dimensions, only one of the vectors will have a non-zero value assuming a magnitude of

1, 2 or 3 (chosen at random). Each mean vector represents the center of a multivariate

gaussian. The second step generates a covariance matrix for each of the k mean vectors.

This covariance matrix is a 500 × 500 diagonal matrix with zeroed elements along the

diagonal whenever the corresponding dimension is zero in the mean vector and 0.3 oth-

erwise. This means that each gaussian mixture generates elements only along the axis

which are not zero in its corresponding mean vector, and since each non zero entry in the

mean vector is guaranteed to be zero in the other mean vectors, we ensure that there is

no intersection between the gaussians mixtures.

This approach creates a clearly separable high dimensional data set. Because the data

set was created in a way that the clusters are clearly separated, the optimal clustering

assignments can be considered as ground truth. Data sets were generated for k = 2, 3, ..., 8.

For each k I did 100 trials and recorded how many times the algorithms achieved 100%

accuracy. The algorithms were also tested with di�erent percentages of missing values.

I tested �ve di�erent algorithm variations: WSNMF, M-WSNMF, SNMF and M-SNMF

37



CHAPTER 4. CLUSTERING EXPERIMENTS 38

with sparseness enforced and K-Means. In all the matrix factorization based methods, a

sparseness degree of 0.5 was enforced. For each case, the algorithms that achieved the

best minimization error from the previous tests were chosen.

For each k and each of the 100 trials, the following was done:

1. Generate arti�cial high-dimensional data set

2. Create random weight matrix with 0, 25%, 50% and 70% of zeroes and the corre-

sponded amount of ones.

3. For each weight matrix, run the �ve algorithms. When they support weighting(M-

WSNMF and WSNMF), use the weight matrix directly. When they do not, impute

the missing data with the mean of the corresponding column.

4. Measure accuracy of each algorithm.

For WSNMF, I applied the analytical optimization on the left-hand side and L-BFGS-

B on the right-hand-side, as in Algorithm 8. M-WSNMF was run as in Algorithm 9.

Algorithm 8 WSNMF with sparseness projection
1: Initialize F and G using K-Means.
2: Fix G and �nd Fi = (GTWiG)

−1GTWiXi for each row i.
3: Fix F and �nd G using L-BFGS-B gradient descent subject to non-negativity con-

straints.
4: Project G such that it has sparseness equal to 0.5.
5: Repeat steps 2 and 3, 4 times or until the variation of the error norm stabilizes.

Algorithm 9 Multiplicative Updates solving WSNMF (M-WSNMF)

1: Initialize F and G using K-Means.
2: R = ((W ⊗X)G)� ((W ⊗ FGT )G)
3: Apply update rule for F: F = F ⊗R.
4: R1 = ((W T ⊗XT )F )+ + ((W T ⊗GF T )F )−

5: R2 = ((W T ⊗XT )F )− + ((W T ⊗GF T )F )+

6: Apply update rule for G: G⊗R1 �R2.
7: Project G such that it has sparseness equal to 0.5.
8: Repeat steps 2 through 6 100 times or until the variation of the error norm stabilizes.

The matrix Gn×k represents the cluster assignments. Since matrix factorization al-

gorithms generate soft clustering assignments, the ith feature is assigned to cluster j if

argmax(Gi) = j, where Gi is the i
th row of matrix G.

4.2 Experiment Results and Discussion

The results of the clustering experiment are shown from Table 4.1 through 4.7. For each

cluster k = 2, 3...8 and each missing rate (0, 0.25, 0.5 0.7) I measure the score (number of

times the algorithms got 100% accuracy) and the mean accuracy from all the 100 runs.



CHAPTER 4. CLUSTERING EXPERIMENTS 39

Missing (%) 0 0.25 0.5 0.7

Method Acc. Score Acc. Score Acc. Score Acc. Score

K-Means 1.00 100 1.00 100 1.00 100 1.00 100

M-WSNMF 1.00 100 1.00 100 1.00 100 1.00 100

M-SNMF 0.54 0 0.55 0 0.55 0 0.55 0

SNMF 1.00 100 1.00 100 1.00 100 1.00 100

WSNMF 1.00 100 1.00 100 1.00 100 1.00 100

Table 4.1: Number of clusters K=2

Missing (%) 0 0.25 0.5 0.7

Method Acc. Score Acc. Score Acc. Score Acc. Score

K-Means 0.83 61 0.85 65 0.88 71 0.90 77

M-WSNMF 0.81 57 0.89 74 0.88 71 0.88 72

M-SNMF 0.70 24 0.75 26 0.72 28 0.76 27

SNMF 0.86 58 0.88 65 0.86 59 0.89 66

WSNMF 0.87 65 0.89 68 0.90 70 0.92 77

Table 4.2: Number of clusters K=3

Missing (%) 0 0.25 0.5 0.7

Method Acc. Score Acc. Score Acc. Score Acc. Score

K-Means 0.76 32 0.83 50 0.82 46 0.80 43

M-WSNMF 0.74 33 0.80 49 0.82 51 0.77 41

M-SNMF 0.85 40 0.88 48 0.87 35 0.88 52

SNMF 0.84 38 0.84 40 0.83 35 0.83 37

WSNMF 0.78 33 0.85 49 0.86 49 0.86 48

Table 4.3: Number of clusters K=4

Missing (%) 0 0.25 0.5 0.7

Method Acc. Score Acc. Score Acc. Score Acc. Score

K-Means 0.72 19 0.76 28 0.76 25 0.74 25

M-WSNMF 0.68 16 0.71 20 0.73 20 0.74 26

M-SNMF 0.84 23 0.86 29 0.84 17 0.85 23

SNMF 0.83 26 0.81 21 0.77 9 0.80 15

WSNMF 0.74 19 0.81 26 0.83 32 0.83 27

Table 4.4: Number of clusters K=5



CHAPTER 4. CLUSTERING EXPERIMENTS 40

Missing (%) 0 0.25 0.5 0.7

Method Acc. Score Acc. Score Acc. Score Acc. Score

K-Means 0.69 13 0.69 11 0.68 8 0.73 17

M-WSNMF 0.64 7 0.70 12 0.70 14 0.69 13

M-SNMF 0.86 14 0.84 9 0.83 13 0.86 15

SNMF 0.81 10 0.80 10 0.81 14 0.80 8

WSNMF 0.74 10 0.78 19 0.76 13 0.80 16

Table 4.5: Number of clusters K=6

Missing (%) 0 0.25 0.5 0.7

Method Acc. Score Acc. Score Acc. Score Acc. Score

K-Means 0.65 5 0.69 6 0.68 10 0.68 5

M-WSNMF 0.63 3 0.65 2 0.68 7 0.67 6

M-SNMF 0.81 7 0.83 8 0.82 3 0.83 10

SNMF 0.80 3 0.81 12 0.79 5 0.80 6

WSNMF 0.71 3 0.77 6 0.77 7 0.75 7

Table 4.6: Number of clusters K=7

Missing (%) 0 0.25 0.5 0.7

Method Acc. Score Acc. Score Acc. Score Acc. Score

K-Means 0.65 0 0.66 4 0.65 3 0.67 2

M-WSNMF 0.62 2 0.64 4 0.65 3 0.65 1

M-SNMF 0.81 5 0.81 6 0.82 7 0.81 1

SNMF 0.79 1 0.78 7 0.79 5 0.78 3

WSNMF 0.71 1 0.73 0 0.74 4 0.75 3

Table 4.7: Number of clusters K=8

The most notable aspect of the results is that M-SNMF was clearly superior than the

others for k > 3(Table 4.3-4.7) in terms of mean accuracy. For k = 2(Table 4.1), however,

M-SNMF was the only algorithm that didn't get 100% accuracy on all test runs. In terms

of score, however, the result was mixed. K-Means scored in most cases worse than the

best performing matrix factorization algorithm.

Between the two algorithms using weights, the multiplicative update version (M-

WSNMF) and the constrained alternate least squares version (WSNMF), WSNMF showed

superior performance on the vast majority of the tests. For the versions that do not use

weights, however, the multiplicative update algorithm (M-SNMF) was better than SNMF.

One curious phenomenon that was noticed in this experiment was that in many cases,

when the percentage of missing data increased, performance of the algorithms in terms of

mean accuracy and score also increased. One hint towards explaining this phenomenon



CHAPTER 4. CLUSTERING EXPERIMENTS 41

might be the peculiarity of the arti�cial dataset generated, which guaranteed clearly

separable clusters in a high-dimensional space. On the other hand, generating arti�cial

datasets with ambiguous clusters also has its problems, as there is no ground truth for

determining accuracy and it would be necessary to resort to other metrics for measuring

cluster quality. As noted in Section 1.2.1, there is no unique way of measuring cluster

quality and the best measure is ultimately the suitability to a given problem.

4.2.1 Statistical Test

As with the experiment in Chapter 3, I applied the Friedman test for the clustering ex-

periment, to check whether the experimental data was su�cient to determine a statistical

signi�cance between the di�erent methods. The results of the Friedman test in table 4.8

show the resulting P-value for each set of number of clusters and missing rate. Unfortu-

nately, all P-values were above 0.05, indicating that there might not be su�cient data to

be certain of a conclusion.



CHAPTER 4. CLUSTERING EXPERIMENTS 42

K Missing Rate Accuracy P-Value

2 0 0.48

2 0.25 0.48

2 0.5 0.48

2 0.7 0.48

3 0 0.94

3 0.25 0.64

3 0.5 0.86

3 0.7 0.11

4 0 0.82

4 0.25 0.87

4 0.5 0.42

4 0.7 0.45

5 0 0.14

5 0.25 0.48

5 0.5 0.92

5 0.7 0.23

6 0 0.12

6 0.25 0.43

6 0.5 0.09

6 0.7 0.86

7 0 0.31

7 0.25 0.74

7 0.5 0.26

7 0.7 0.67

8 0 0.34

8 0.25 0.32

8 0.5 0.39

8 0.7 0.52

Table 4.8: Results of Friedman test for the clustering experiment

4.2.2 Comparison with other works

I have found no other works that perform quite the same algorithm comparison. How-

ever, the method for generating the arti�cial data set was taken from the work �Sparse

Nonnegative Matrix Factorization for Clustering�[17], in which the authors compare K-

Means with Sparse NMF and Sparse SNMF algorithms implemented with Alternating

Non-negative Least Squares. However, they did not test for di�erent missing rates. In

this work, the enforcing of sparseness is done by adding regularization parameters in the

objective function, as in Eq. 1.3 from the introduction.

The work tested K-Means, Sparse NMF and Sparse SNMF for a number of clusters

varying from 3 to 30 and measured only the number of times each algorithm achieved



CHAPTER 4. CLUSTERING EXPERIMENTS 43

perfect accuracy, but not the mean accuracy. The scores obtained for number of clusters

varying from 3 to 8 are on table 4.9. Similar to my results, performance of K-Means

dropped rapidly as the number of clusters increased. However, the results for Sparse NMF

and Sparse SNMF had much better scores than the ones I got for similar algorithms.

The results may di�er because the algorithms are in fact di�erent and regularization

is a better approach to ensure sparseness than sparseness projection in this case. This

hypothesis needs to be properly tested, though. Both works indicate, however, that matrix

factorization algorithms with sparseness constraints are more �tted for high dimensional

data clustering than K-Means.

K 3 4 5 6 7 8

K-Means 53 37 13 3 4 1

NMF 69 62 66 65 72 76

SNMF 100 100 100 100 100 100

Table 4.9: Score results of the related work experiment for cluster number 3 to 8



Chapter 5

Conclusions

5.1 Minimization Error, Time and Sparseness Experi-

ment

Several conclusions can be drawn from the results of the �rst experiment. Concerning

SNMF, I found that the multiplicative update wins over the multiplicative update alter-

native when no sparseness projection takes place and also when a sparseness projection of

0.5 is enforced, but the multiplicative update algorithm performance deteriorates as the

desired sparseness gets higher.

On the WSNMF cases, the Analytical solution consistently performed better that

the alternatives in terms of the minimization of the error. Restricting sparseness, in

fact, widened the di�erence between the other algorithms. The Multiplicative Update

algorithm, however, had a much better time performance. Also, I found that K-means

seems to be a good choice of initialization for WSNMF.

This empirical study suggests that the choice betweenMultiplicative Updates and Con-

strained Alternating Least Squares for solving NMF problems should be carefully consid-

ered. The results suggest that for SNMF, when low to medium sparseness is required by

the application, it is preferable to choose M-SNMF over Constrained Alternating Least

Squares algorithm. For high degree of sparseness, the Analytical version of Constrained

Alternating Least Squares is preferred. When time is critical, the analytical version should

be preferred. For WSNMF applications in which time is not essential, constrained Alter-

nating Least Squares methods should be more appropriate to be used over Multiplicative

Update algorithms. Also, using an analytical solution when available is shown to produce

smaller error results for both SNMF and WSNMF.

5.2 Clustering Experiment

Regarding the clustering experiment, it can be concluded, conforming to the literature on

the subject, that matrix factorization algorithms with sparseness constraints outperform

K-Means clustering, while also remaining much more versatile.

The M-SNMF algorithm turned out to be very robust with respect to the number

of clusters k. This agrees with the previous experiment that shows that M-SNMF also

44



CHAPTER 5. CONCLUSIONS 45

produced the smallest error ranking when sparseness was enforced. Having lower error in

the objective function does not necessarily mean that the algorithm will perform well for

clustering, since objective function alone is not a good indicative of clustering performance

(Section 1.2.1). But as seen in Section 2.2, even though sparseness constraints (Section

2.4) do not contribute towards error minimization of the objective function, they help

in alleviating the uniqueness problem, reaching a factorization that is more sparse, and

better structured for a clustering solution.

The algorithms using weights overall did not perform better than their weightless

counterparts when missing values were present. Imputation worked out better for this

experiment than the addition of the weights. This may be due to the peculiarities of the

arti�cial data set chosen. One should note, however, that the addition of weights is not

useful only for modelling missing values, but also for providing di�erent con�dence values

for the data or modelling error in the data measurement. This could hardly be achieved

by using imputation methods.

5.3 Wrapping up

From both experiments it can be seen that multiplicative update algorithm for SNMF

(M-SNMF) performed better in comparison with the other SNMF algorithms and also

achieved better performance in the clustering experiment. It can be seen from tables 3.7

that the analytical SNMF solution had the smallest error ranking (tied with L-BFGS-B)

when sparseness of 0.9 was enforced and had best time performance overall, while M-

SNMF had the best error ranking for low and medium sparseness projection ((Tables 3.5

and 3.6) and average time performance.

It can be seen that time performance of M-SNMF (and M-WSNMF) worsen when

sparseness projection is applied. This happens because multiplicative updates algorithm

needs much more iterations to converge and sparseness projection is applied at the end

of each iteration. It can be conjectured that taking smaller steps toward minimizing the

objective function and then projecting at the end of each step leads to better local optima

solutions. However, more tests are necessary to reach this conclusion.

Regarding the comparison between the algorithms solving WSNMF, the constrained

alternating least squares analytical implementation performs better than the multiplica-

tive update on both experiments. From the experiments alone, it is hard to infer why this

happens. One possible explanation could be the fact that multiplicative update algorithm

have weak convergence properties, while constrained alternating least squares converge

really fast.

The literature often states that constrained alternating least squares is more time

e�cient and has better convergence properties, while multiplicative updates are simple

to implement. This might be an oversimpli�cation. Being a di�cult problem (NP-Hard)

and having many di�erent possible variations, parameters and heuristics, it is not always

the case that one method is better than the other, as can be seen from the experiments

that were made.



CHAPTER 5. CONCLUSIONS 46

5.4 Future Work

As shown in the bibliographic research and related works(Chapter 2), matrix factorization

methods are used in many di�erent applications from distinct �elds. In particular, the

addition of weights to model uncertainty, missing data or con�dence levels in the objective

function of a factorization has shown to be useful in real applications. Also, the possibility

to deal seamlessly with negative input data, as opposed to regular NMF, has also shown

to be very valuable.

Therefore, I believe the WSNMF formulation could be used successfully to model

di�erent kinds of problems, but this remains to be tested. A possible direction of future

work would be to improve the overall performance of the WSNMF algorithms and test it

in applications that are very sensitive to weights and have negative values as input, such

as product recommendation or gene expression analysis.



Bibliography

[1] Russell Albright, James Cox, David Duling, Amy N Langville, and C Meyer. Al-

gorithms, initializations, and convergence for the nonnegative matrix factorization.

Technical report, Tech. rep. 919. NCSU Technical Report Math 81706. http://meyer.

math. ncsu. edu/Meyer/Abstracts/Publications. html, 2006. url: http://citeseerx.

ist. psu. edu/viewdoc/download, 2006.

[2] C. Boutsidis and E. Gallopoulos. SVD based initialization: A head start for nonneg-

ative matrix factorization. Pattern Recognition, 41(4):1350�1362, April 2008.

[3] J.P. Brunet, P. Tamayo, T.R. Golub, and J.P. Mesirov. Metagenes and molecular

pattern discovery using matrix factorization. Proceedings of the National Academy

of Sciences, 101(12):4164�4169, 2004.

[4] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A Limited Memory

Algorithm for Bound Constrained Optimization, 1995.

[5] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi Amari. Nonnegative

matrix and tensor factorizations: applications to exploratory multi-way data analysis

and blind source separation. John Wiley & Sons, 2009.

[6] M. Cooper and J. Foote. Summarizing video using non-negative similarity matrix

factorization. In Multimedia Signal Processing, 2002 IEEE Workshop on, pages 25�

28. IEEE, 2002.

[7] C. Ding, X. He, and H.D. Simon. On the equivalence of nonnegative matrix factor-

ization and spectral clustering. In Proc. SIAM Data Mining Conf, pages 606�610,

2005.

[8] Chris Ding. Nonnegative matrix factorizations for clustering: A survey. Data Clus-

tering: Algorithms and Applications, page 148, 2013.

[9] Chris H. Q. Ding, Tao Li, and Michael I. Jordan. Convex and semi-nonnegative

matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell., 32(1):45�55, 2010.

[10] Konstantinos Drakakis, Scott Rickard, Ruairí De Fréin, and Andrzej Cichocki. Anal-

ysis of �nancial data using non-negative matrix factorization. In International Math-

ematical Forum, volume 3, pages 1853�1870. Journals of Hikari Ltd, 2008.

47



BIBLIOGRAPHY 48

[11] Nicolas Gillis and François Glineur. Low-Rank Matrix Approximation with Weights

or Missing Data Is NP-Hard. SIAM Journal on Matrix Analysis and Applications,

32(4):1149�1165, October 2011.

[12] Nicolas Gillis and Abhishek Kumar. Exact and Heuristic Algorithms for Semi-

Nonnegative Matrix Factorization. page 18, October 2014.

[13] Liyun Gong and Asoke K. Nandi. An enhanced initialization method for non-negative

matrix factorization. In 2013 IEEE International Workshop on Machine Learning

for Signal Processing (MLSP), pages 1�6. IEEE, September 2013.

[14] ND Ho, P Van Dooren, and V Blondel. Weighted nonnegative matrix factorization

and face feature extraction. submitted to Image and Vision Computing, 2007.

[15] P.O. Hoyer. Non-negative matrix factorization with sparseness constraints. The

Journal of Machine Learning Research, 5:1457�1469, 2004.

[16] Andreas Janecek and Ying Tan. Using Population Based Algorithms for Initializ-

ing Nonnegative Matrix Factorization, volume 6729 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[17] Jingu Kim and Haesun Park. Sparse nonnegative matrix factorization for clustering.

Technical report, 2008.

[18] Yong-Deok Kim and Seungjin Choi. Weighted nonnegative matrix factorization.

2009 IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 1541�1544, April 2009.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix Factorization Techniques for

Recommender Systems. Computer, 42(8):30�37, August 2009.

[20] Amy N Langville, Carl D Meyer, Russell Albright, James Cox, and David Duling.

Initializations for the nonnegative matrix factorization. In Proceedings of the Twelfth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 23�26. Citeseer, 2006.

[21] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative

matrix factorization. Nature, 401(6755):788�791, 1999.

[22] Stan Z Li, XinWen Hou, HongJiang Zhang, and QianSheng Cheng. Learning spatially

localized, parts-based representation. In Computer Vision and Pattern Recognition,

2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,

volume 1, pages I�207. IEEE, 2001.

[23] C.J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural

computation, 19(10):2756�2779, 2007.



BIBLIOGRAPHY 49

[24] W.-S. Lu, S.-C. Pei, and P.-H. Wang. Weighted low-rank approximation of general

complex matrices and its application in the design of 2-D digital �lters. IEEE Trans-

actions on Circuits and Systems I: Fundamental Theory and Applications, 44(7):650�

655, July 1997.

[25] Ivan Markovsky and Mahesan Niranjan. Approximate low-rank factorization with

structured factors. Computational Statistics & Data Analysis, 54(12):3411�3420,

December 2010.

[26] Quanyi Mo and Bruce A. Draper. Semi-nonnegative matrix factorization for motion

segmentation with missing data. In Andrew W. Fitzgibbon, Svetlana Lazebnik,

Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors, ECCV (7), volume 7578

of Lecture Notes in Computer Science, pages 402�415. Springer, 2012.

[27] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor

model with optimal utilization of error estimates of data values. Environmetrics,

5(2):111�126, 2006.

[28] Sun Park, Ju-Hong Lee, Deok-Hwan Kim, and Chan-Min Ahn. Multi-document

summarization based on cluster using non-negative matrix factorization. In SOFSEM

2007: Theory and Practice of Computer Science, pages 761�770. Springer, 2007.

[29] Arkadiusz Paterek. Improving regularized singular value decomposition for collabo-

rative �ltering. In Proceedings of KDD cup and workshop, volume 2007, pages 5�8,

2007.

[30] V Paul Pauca, Farial Shahnaz, Michael W Berry, and Robert J Plemmons. Text

mining using non-negative matrix factorizations. In SDM, volume 4, pages 452�456,

2004.

[31] Paul Sajda, Shuyan Du, Truman R Brown, Radka Stoyanova, Dikoma C Shungu,

Xiangling Mao, and Lucas C Parra. Nonnegative matrix factorization for rapid

recovery of constituent spectra in magnetic resonance chemical shift imaging of the

brain. Medical Imaging, IEEE Transactions on, 23(12):1453�1465, 2004.

[32] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. Applica-

tion of dimensionality reduction in recommender system � a case study. In IN ACM

WEBKDD WORKSHOP, 2000.

[33] D. Seung and L. Lee. Algorithms for non-negative matrix factorization. Advances in

neural information processing systems, 13:556�562, 2001.

[34] N. Srebro and T. Jaakkola. Weighted low rank approximation, 2003.

[35] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Tom

Fawcett and Nina Mishra, editors, Machine Learning, Proceedings of the Twentieth

International Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA,

pages 720�727. AAAI Press, 2003.



BIBLIOGRAPHY 50

[36] John A. Tropp. Topics in Sparse Approximation. PhD thesis, University of Texas,

2004.

[37] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Bot-

stein, and R. B. Altman. Missing value estimation methods for DNA microarrays.

Bioinformatics, 17(6):520�525, June 2001.

[38] Stephen A. Vavasis. On the Complexity of Nonnegative Matrix Factorization. SIAM

Journal on Optimization, 20(3):1364�1377, January 2010.

[39] Fei Wang, Tao Li, Xin Wang, Shenghuo Zhu, and Chris Ding. Community discov-

ery using nonnegative matrix factorization. Data Mining and Knowledge Discovery,

22(3):493�521, 2011.

[40] Jim Jing-Yan Wang, Xiaolei Wang, and Xin Gao. Non-negative matrix factorization

by maximizing correntropy for cancer clustering. BMC bioinformatics, 14(1):107,

2013.

[41] Yu-Xiong Wang and Yu-Jin Zhang. Nonnegative Matrix Factorization: A Com-

prehensive Review. IEEE Transactions on Knowledge and Data Engineering,

25(6):1336�1353, June 2013.

[42] Stefan Wild, James Curry, and Anne Dougherty. Improving non-negative matrix

factorizations through structured initialization. Pattern Recognition, 37(11):2217�

2232, November 2004.

[43] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix

factorization. In Proceedings of the 26th annual international ACM SIGIR conference

on Research and development in informaion retrieval, pages 267�273. ACM, 2003.

[44] Yun Xue, Chong Sze Tong, Ying Chen, and Wen-Sheng Chen. Clustering-based

initialization for non-negative matrix factorization. Applied Mathematics and Com-

putation, 205(2):525�536, November 2008.

[45] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning from

incomplete ratings using non-negative matrix factorization. In SDM, volume 6, pages

548�552. SIAM, 2006.

[46] Chun-Hou Zheng, De-Shuang Huang, D Zhang, and Xiang-Zhen Kong. Tumor clus-

tering using nonnegative matrix factorization with gene selection. Information Tech-

nology in Biomedicine, IEEE Transactions on, 13(4):599�607, 2009.

[47] Zhonglong Zheng, Jie Yang, and Yitan Zhu. Initialization enhancer for non-negative

matrix factorization. Engineering Applications of Arti�cial Intelligence, 20(1):101�

110, February 2007.



Appendix A

Graphs

A.1 SNMF without sparsity

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.1: Mean of error rankings separated by Input Size for SNMF without sparseness

constraints

51



APPENDIX A. GRAPHS 52

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.2: Mean of time rankings separated by Input Size for SNMF without sparseness

constraints

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.3: Mean of sparseness rankings separated by Input Size for SNMF without

sparseness constraints



APPENDIX A. GRAPHS 53

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.4: Mean of error rankings separated by Rank for SNMF without sparseness

constraints

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.5: Mean of time rankings separated by Rank for SNMF without sparseness

constraints



APPENDIX A. GRAPHS 54

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.6: Mean of sparseness rankings separated by Rank for SNMF without sparseness

constraints

A.2 SNMF with medium sparsity

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.7: Mean of error rankings separated by Input Size for SNMF with 0.5 sparseness

projection



APPENDIX A. GRAPHS 55

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.8: Mean of time rankings separated by Input Size for SNMF with 0.5 sparseness

projection

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.9: Mean of sparseness rankings separated by Input Size for SNMF with 0.5

sparseness projection



APPENDIX A. GRAPHS 56

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.10: Mean of error rankings separated by Rank for SNMF with 0.5 sparseness

projection

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.11: Mean of time rankings separated by Rank for SNMF with 0.5 sparseness

projection



APPENDIX A. GRAPHS 57

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.12: Mean of sparseness rankings separated by Rank for SNMF with 0.5 sparse-

ness projection

A.3 SNMF with high sparsity

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.13: Mean of error rankings separated by Input Size for SNMF with 0.9 sparseness

projection



APPENDIX A. GRAPHS 58

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.14: Mean of time rankings separated by Input Size for SNMF with 0.9 sparseness

projection

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.15: Mean of sparseness rankings separated by Input Size for SNMF with 0.9

sparseness projection



APPENDIX A. GRAPHS 59

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.16: Mean of error rankings separated by Rank for SNMF with 0.9 sparseness

projection

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.17: Mean of time rankings separated by Rank for SNMF with 0.9 sparseness

projection



APPENDIX A. GRAPHS 60

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-snmf

Figure A.18: Mean of sparseness rankings separated by Rank for SNMF with 0.9 sparse-

ness projection

A.4 WSNMF with no sparsity

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.19: Mean of error rankings separated by Input Size For WSNMF without sparse-

ness projection



APPENDIX A. GRAPHS 61

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.20: Mean of time rankings separated by Input Size For WSNMF without sparse-

ness projection

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.21: Mean of sparseness rankings separated by Input Size For WSNMF without

sparseness projection



APPENDIX A. GRAPHS 62

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.22: Mean of error rankings separated by Rank For WSNMF without sparseness

projection

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.23: Mean of time rankings separated by Rank For WSNMF without sparseness

projection



APPENDIX A. GRAPHS 63

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.24: Mean of sparseness rankings separated by Rank For WSNMF without sparse-

ness projection

0.1 0.3 0.5 0.75 1
0

1

2

3

4

Weight

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.25: Mean of error rankings separated by Weight For WSNMF without sparseness

projection



APPENDIX A. GRAPHS 64

0.1 0.3 0.5 0.75 1
0

1

2

3

4

Weight

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.26: Mean of time rankings separated by Weight For WSNMF without sparseness

projection

0.1 0.3 0.5 0.75 1
0

1

2

3

4

Weight

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.27: Mean of sparseness rankings separated by Weight For WSNMF without

sparseness projection



APPENDIX A. GRAPHS 65

A.5 WSNMF with medium sparsity

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.28: Mean of error rankings separated by Input Size for WSNMF with 0.5 sparse-

ness projection

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.29: Mean of time rankings separated by Input Size for WSNMF with 0.5 sparse-

ness projection



APPENDIX A. GRAPHS 66

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.30: Mean of sparseness rankings separated by Input Size for WSNMF with 0.5

sparseness projection

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.31: Mean of error rankings separated by Rank for WSNMF with 0.5 sparseness

projection



APPENDIX A. GRAPHS 67

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.32: Mean of time rankings separated by Rank for WSNMF with 0.5 sparseness

projection

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.33: Mean of sparseness rankings separated by Rank for WSNMF with 0.5 sparse-

ness projection



APPENDIX A. GRAPHS 68

0.1 0.3 0.5 0.75 1
0

1

2

3

4

Weight

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.34: Mean of error rankings separated by Weight for WSNMF with 0.5 sparseness

projection

0.1 0.3 0.5 0.75 1
0

1

2

3

4

Weight

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.35: Mean of time rankings separated by Weight for WSNMF with 0.5 sparseness

projection



APPENDIX A. GRAPHS 69

0.1 0.3 0.5 0.75 1
0

1

2

3

4

Weight

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.36: Mean of sparseness rankings separated by Weight for WSNMF with 0.5

sparseness projection

A.6 WSNMF with High Sparsity

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.37: Mean of error rankings separated by Input Size for WSNMF with 0.9 sparse-

ness projection



APPENDIX A. GRAPHS 70

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.38: Mean of time rankings separated by Input Size for WSNMF with 0.9 sparse-

ness projection

2.5k 10k 25k 50k 200k 500k 1000k
0

1

2

3

4

Input Size

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.39: Mean of sparseness rankings separated by Input Size for WSNMF with 0.9

sparseness projection



APPENDIX A. GRAPHS 71

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.40: Mean of error rankings separated by Rank for WSNMF with 0.9 sparseness

projection

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.41: Mean of time rankings separated by Rank for WSNMF with 0.9 sparseness

projection



APPENDIX A. GRAPHS 72

2 5 10 20 30 40
0

1

2

3

4

Rank

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.42: Mean of sparseness rankings separated by Rank for WSNMF with 0.9 sparse-

ness projection

0.1 0.3 0.5 0.75 1
0

1

2

3

4

Weight

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.43: Mean of error rankings separated by Weight for WSNMF with 0.9 sparseness

projection



APPENDIX A. GRAPHS 73

0.1 0.3 0.5 0.75 1
0

1

2

3

4

Weight

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.44: Mean of time rankings separated by Weight for WSNMF with 0.9 sparseness

projection

0.1 0.3 0.5 0.75 1
0

1

2

3

4

Weight

M
ea
n
of

R
an
k
in
g

analytical
lbfgsb
tnc

m-wsnmf

Figure A.45: Mean of sparseness rankings separated by Weight for WSNMF with 0.9

sparseness projection


	Introduction
	NMF algorithms classification
	Basic NMF
	Constrained NMF
	Structured NMF
	Generalized NMF

	NMF Applications
	NMF for Clustering
	NMF for Product Recommendation and Rating Prediction
	Weighted NMF Applications

	Studied Formulations

	Algorithms
	Initialization
	Solution Uniqueness
	Algorithm Implementation
	Stopping Criteria
	Multiplicative Updates
	Constrained Alternating Least Squares

	Sparseness
	Dealing with Missing data
	Marginalization
	Imputation
	Weights


	Minimization Error, Time and Sparseness Experiment
	Experimental Methodology
	Semi-NMF Algorithms
	Weighted Semi-NMF Algorithms
	Initialization
	Test cases

	Experiment Results
	Initialization Results
	Algorithm Comparison Results
	Friedman Test and Post-hoc Wilcoxon Test
	Discussion of the results


	Clustering Experiments
	Experimental Methodology
	Experiment Results and Discussion
	Statistical Test
	Comparison with other works


	Conclusions
	Minimization Error, Time and Sparseness Experiment
	Clustering Experiment
	Wrapping up
	Future Work

	Bibliography
	Graphs
	SNMF without sparsity
	SNMF with medium sparsity
	SNMF with high sparsity
	WSNMF with no sparsity
	WSNMF with medium sparsity
	WSNMF with High Sparsity


