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RESUMO

O conteúdo desta tese insere-se dentro de duas áreas de pesquisa muito ativas:
a teoria de códigos corretores de erros e sistemas dinâmicos sobre corpos finitos. Para
abordar problemas em ambos os tópicos introduzimos um tipo de sequência finita que
chamamos v-séries. No conjunto destas definimos uma métrica que induz uma estrutura
de poset usada no estudo das possíveis estruturas de grupo abeliano representadas por
códigos perfeitos na métrica de Chebyshev. Por outro lado, cada v-série é associada a uma
árvore com raiz, a qual terá um papel importante em resultados relacionados à estrutura
dinâmica de iterações de funções de Rédei. Na teoria de códigos corretores de erros, estu-
damos códigos perfeitos na métrica de Lee e na métrica de Chebyshev (correspondentes
à métrica `p para p = 1 e p = ∞, respetivamente). Os principais resultados obtidos
estão relacionados com a descrição dos códigos q-ários n-dimensionais com raio de empa-
cotamento e, que sejam perfeitos nestas métricas, a obtenção de suas matrizes geradoras
e a classificação destes, a menos de isometrias e a menos de isomorfismos. Várias con-
struções de códigos perfeitos e famílias interessantes destes códigos com respeito à métrica
de Chebyshev são apresentadas. Em sistemas dinâmicos sobre corpos finitos centramos
nossa atenção em iterações de funções de Rédei, sendo o principal resultado um teorema
estrutural para estas funções, o qual permite estender vários resultados sobre funções de
Rédei. Este teorema pode também ser aplicado para outras classes de funções permitindo
obter provas alternativas mais simples de alguns resultados conhecidos como o número de
componentes conexas, o número de pontos periódicos e o valor esperado para o período e
preperíodo da aplicação exponencial sobre corpos finitos.

Palavras-chave: Códigos perfeitos, métrica de Lee, conjectura de Minkowski,
ladrilhamento por cubos, funções de Rédei.



ABSTRACT

The content of this thesis is inserted in two very active research areas: the
theory of error correcting codes and dynamical systems over finite fields. To approach
problems in both topics we introduce a type of finite sequence called ν-series. A metric is
introduced in the set of such sequences inducing a poset structure used to determine all
possible abelian group structures represented by perfect codes in the Chebyshev metric.
Moreover, each ν-serie is associated with a rooted tree, which has an important role in
results related to the cycle structure of iterating Rédei functions. Regarding the theory
of error correcting codes, we study perfect codes in the Lee metric and Chebyshev metric
(corresponding to the `p metric for p = 1 and p = ∞, respectively). The main results
obtained are related to the description of n-dimensional q-ary codes with packing radius
e which are perfect in these metrics, obtaining their generator matrices and their clas-
sification up to isometry and up to isomorphism. Several constructions of perfect codes
in the Chebyshev metric are given and interesting families of such codes are presented.
Regarding dynamical system over finite fields we focus on iterating Rédei functions, where
our main result is a structural theorem, which allows us to extend several results on Rédei
functions. The above theorem can also be applied to other maps, allowing simpler proofs
of some known results related to the number of components, the number of periodic points
and the expected value for the period and preperiod for iterating exponentiations over
finite fields.

Keywords: Perfect codes, Lee metric, Minkowski’s conjecture, cube tiling,
Rédei functions.
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Chapter 1
INTRODUCTION

The Lee metric for n-dimensional codes over Zq, which coincides with the
Hamming metric for q = 2, 3, was introduced in 1957-1958 [Lee58, Ulr57] for signal trans-
mission over certain noisy channels. Since then, problems related to this metric have been
approached in several works due to their applications [RS94, BM10, BBV98, Sch07, EY09],
having many of them emerged in the last decade. Linear codes over Zq are associated with
lattices and have been used in the proposal of cryptographic schemes. One of the most
important problems regarding the Lee metric is about the existence or non-existence of
perfect codes which has been discussed in several papers [Ast82, Hor09, AHM09]. At first,
only codes in the Lee metric over an alphabet Zp with p a prime number were considered;
then, in 1970 this approach was generalized by Golomb and Welch [GW70] for alphabet
Zq with arbitrary values of q. In that work, the authors presented their famous conjecture
which in terms of codes over Zq can be written as: for n > 2 and q ≥ 2e + 1, the only
n-dimensional perfect codes over Zq are those with packing radius equal to 1.

The Lee metric is part of a family of more general metrics called the p-Lee
metric (for 1 ≤ p ≤ ∞). The use of these metrics in applications to coding and cryptog-
raphy is relatively recent. For example, in [Pei08] it is studied the complexity of various
computational problems related to codes in the `p norm such as the closest vector problem
(CVP) and the shortest vector problem (SVP). In [JCC13] are presented some decoding
algorithms for codes in the `p metric and some results there generalize known results in
the Lee metric. In addition to the mentioned above, there are not many references in
the literature on p-Lee metrics concerning error correcting codes, except for the specific
values of p: p = 1 (Lee metric), p = 2 (Euclidean metric) and for p = ∞ (Chebyshev
metric). In this work we focus mainly on the case p = 1 and p =∞.

One motivation to the study of the Chebyshev metric is because it captures
much of the essence of perfect codes in other p-Lee metrics since any perfect code in the
∞-Lee metric is also perfect in the p-Lee metric for large enough p [CCJ+14]. Other moti-
vation is that for some specific values of p it is possible to prove that the only perfect codes
in the p-Lee metric are also perfect codes either in the Lee metric or in the ∞-Lee met-
ric. This is the case, for example, for the two-dimensional 2-Lee perfect codes [CJC+15].

11
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Another motivation is the fact that q-ary perfect codes in the Chebyshev metric are asso-
ciated with certain tilings by cubes of Rn which have intrinsic interest by themselves. In
1906, an interesting conjecture was proposed by Minkowski [Min07] while he was consid-
ering a problem in diophantine approximation. The Minkowski’s conjecture states that
in every tiling of Rn by cubes of the same length, where the centers of the cubes form a
lattice, there exists two cubes that meet at an (n− 1)-dimensional face. This conjecture
was proved in 1942 by Hajós [Haj42]. A similar conjecture was proposed by Keller [Kel30]
removing the restriction that the centers of the cubes have to form a lattice. However, this
stronger version was shown to be true in dimensions n ≤ 6 [Per40], false in dimensions
n ≥ 8 [LS92, Mac02] and it remains open in dimension n = 7. A lot of variants and related
problems with cube tilings have been considered [KP08, KP12b, KP12a, SI10, SIP07] as
well as application to other areas such as combinatorics and graph theory [CS90], coding
theory [LS94], algebra [Sza04], harmonic analysis [Kol98], music theory [And04], among
others.

Other topic covered in this thesis is regarding finite dynamics. Particularly
dynamics of iterations of polynomials and rational functions over finite fields have at-
tracted much attention in recent years. This is in part due to their applications in cryp-
tography and integer factorization methods like Pollard rho algorithm; see for example
[GLV00, JMV01, WZ99] for some applications in elliptic curve cryptography

In general, let Fn be the set of mappings from the set {1, 2, . . . , n} to itself.
With any ϕ ∈ Fn it is associated a functional graph on n nodes, with a directed edge
from vertex u to vertex v if and only if ϕ(u) = v. Functional graphs of mappings are sets
of connected components; the components are directed cycles of nodes and each of those
nodes is the root of a tree.

We are interested here in functions over finite fields. Iterations of functions
over finite fields have centered on studies such as

• period and preperiod of an element;

• (average) “rho length” (number of iterations until we cycle back);

• number of connected components;

• length of cycles (largest, smallest, average);

• number of fixed points and conditions to have a permutation;

• isomorphism of graphs; and so on.

Iterations of some functions over finite fields have strong symmetries that can be mathe-
matically explained. In that sense, previous results for several quadratic functions are in
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[PMMnY01, Rog96, VS04]; iterations of x+x−1 have been dealt in [Ugo14] and iterations
of Chebyshev polynomials over finite fields have been treated in [Gas14]. An estimate for
the number of non-isomorphic graphs of degree d polynomials is given in [KLM+13]; in
[MP12] some results on the asymptotic behavior for the tail and cycle length of random
mappings with restricted preimages are provided. Algebraic dynamical systems generated
by several rational functions on many variables over finite fields have also been considered;
see Section 10.5 of [MP13].

The contributions of this thesis constitute Chapters 3, 4 and 5. In Chapter
3 we introduce a special type of finite sequences (called ν-series) with a metric (called
multiplicative) which induces a poset structure in the set of such sequences. This poset
structure allows us to introduce the relation “be more cyclic” between two abelian group
which will be used in Chapter 4 to prove that the set of group structures represented by
Chebyshev perfect codes with packing radius e and fixed cardinality is an ideal in this
poset. On the other hand, every ν-series is associated with a rooted tree which will play
a fundamental role in Chapter 5, in results related to the dynamic structure of iterat-
ing Rédei functions. The ν-series were introduced in [QP15] and they were also used in
[QC15b].

Chapter 4 deals with error-correcting codes. We study q-ary perfect codes in
the Lee metric and in the Chebyshev metric (corresponding to the `p metric for p = 1 and
p =∞). We consider admissible parameters (n, e, q) for which there exists n-dimensional
q-ary perfect codes with packing radius e. The results obtained in this chapter are focused
on the description of (n, e, q)-perfect codes, providing generator matrices and studying
their isometry classes and isomorphism classes. For two dimensional codes this problem
is solved completely, including the non-linear case, for both metrics. These results also
can be used to characterize two-dimensional perfect codes with respect to the `p metrics
for other values of p. Constructions of perfect codes from codes in smaller dimensions and
via sections are introduced for the Chebyshev metric. Through these constructions it can
be obtained families of cyclic perfect codes in all dimensions and the characterization of
generator matrices for perfect codes in the Chebyshev metric. We introduce a subfamily
of perfect codes (called maximal) for which we obtain a complete description of their
isometry classes and isomorphism classes. Some results of this chapter were presented in
[QC13, QC15a, QC15b, CCJ+14].

Chapter 5 centers on dynamical system over finite fields. Many cryptographic
algorithms and constructions of pseudorandom number generators are based on the it-
eration of certain functions defined over finite fields. Here our main result is a theorem
which describes the dynamic of Rédei functions over finite fields. Some of the corollaries
obtained are the description into disjoint cycles of Rédei functions when they are permu-
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tation functions (extending known results), some formulas for the number of fixed points
or periodic points as well as an algorithm to construct Rédei functions with prescribed
length cycles. The refereed theorem can be applied to other maps, allowing to obtain
alternative and simpler proofs of known results such as the number of connected com-
ponents, number of fixed points and the expected value for the period and preperiod of
the exponential map over finite fields. Most of the results of this chapter are collected in
[QP15]. In Chapter 6 we list further interesting research problems.



Chapter 2
BACKGROUND

Coding theory involves the study of the properties of codes. It can be con-
sidered as part of information theory, where two main aspects are considered: reliability
(error correcting codes) and security (cryptography). Codes are used for data compres-
sion, data storage and data transmission. The topics studied in this thesis are mostly
related to information theory and more specifically with error correction.

The situation is roughly the following. Let us suppose that a message is to
be sent through a communication channel. The characteristics of the channel depend on
the nature of the message to be sent (i.e. sound, image, data). In general we have to
transform our original message x into a message c which can be sent through the channel.
This process is called codification. This coded message c can be distorted while it pass
through the channel due to noise and interference, obtaining a message c′, which may be
different from c. Then the received message c′ is decoded into original terms and what
the receiver obtain, x′, may be different from x (see picture below). The goal is to detect
this error and correct it, if it is possible. Error-correcting codes focus on the second and
fourth step of the scheme above, that is, coding and decoding the sent message and the
problem of detection and correction of the received message.

This is a branch of information theory, which has as an important landmark,
the work of Claude Shannon [Sha48] in 1948. In this field the whole process is consid-
ered as well as others related problems such as channel design, entropy, signal processing,
compressing data, storing, etc.

In this work we consider a theoretical approach of channel codes, restricting
our attention to the part concerned with detection and correction of error (i.e. to deter-
mine if c = c′ and to recover c from c′ in the scheme above).

Associated with a noisy channel we have an error probability distribution.

Sender x
// Encoder c

// Channel
c′

// Decoder
x′

// Receiver

Noise

OO

15
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Maximum likelihood decoding is the way to decode choosing the message (word) which
has the greatest probability of having been sent. This process in general is very expensive
and we have to adopt an alternative strategy. Let us suppose that the set X of all possible
received words contain the set of all possible sent words C. In some cases it is possible
to obtain a metric d in X which matches with the channel, in the sense that maximizing
this probability is equivalent to minimizing the distance. This is the case for important
types of channels such as the binary symmetric channel which matches with the Hamming
metric, the most used metric in coding theory [MR91, Chapter 5].

If we denote by C the set of all the possible words to be sent, we say that C is
a code in X and its elements are the codewords. Let us consider X = Znq (in this case we
say that C is an n-dimensional q-ary code) and let d be a metric invariant by translation
(we will consider only this type of metrics) which matches with a noisy channel. Suppose
that we transmit a word c ∈ C and a word c′ is received, if d(c, c′) = e0 we say that an
error of distance e0 with respect to the metric d has occurred in the transmission. An
important parameter of a code is the packing radius which is defined as the smallest real
number e which verify the following conditions:

(i) B(c, e) ∩B(c′, e) = ∅ if c, c′ ∈ C and c 6= c′.

(ii) If e′ > e is such that B(0, e) ( B(0, e′) then there exists two codewords c, c′ ∈ C
such that B(c, e) ∩B(c′, e) 6= ∅.

The balls above are with respect to the metric d. We observe that if C is a code with
packing radius e then if an error with distance e′ < e has occurred, then we obtain the
original word when we decode by minimum distance (which in this case is the same that
maximum likelihood decoding since we suppose that the metric matches with the channel).
In this case we say that the code C is e-corrector or that C corrects up to distance e. So,
the larger is a packing radius of a code the more its capacity of error-correction. Related
to the packing radius we have the following result whose proof is straightforward [MR91,
Chapter 5].

Proposition 2.0.1 (Sphere packing bound). If C ⊆ Znq is a q-ary code with packing
radius e (with respect some metric d) then #B(0, e) ≤ qn/#C.

When the equality holds we say that C is a perfect code. Perfect codes are of
special interest in coding theory and one of our main object of study in this thesis.

Remark 2.0.2. In practice it is not enough to construct codes with large distance because
we also need to have good algorithms to obtain the nearest codeword for the received word.
In fact random codes are specially good in term of packing radius [Sha48] but they are
not good in practice to be used for error-correction. Usually codes with certain algebraic
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structure (for example linear codes) are considered, due to they advantages in the coding-
decoding processes.

Apart from the Hamming metric, one of the most used metric in error-correcting
codes is the Lee metric which coincides with the first one for q = 2 and q = 3. This metric
was introduced by Lee [Lee58] when he studied certain type of channels and it is defined
as follows.

Definition 2.0.3 (Lee metric). Let Zq = {0, 1, 2, . . . , q − 1} the set of integers modulo
q. The Lee metric in Zq is given by d(x, y) = min{|x − y|, q − |x − y|}. This metric is
extended to Znq (for n > 1) as follows: if x = (x1, . . . , xn) and y = (y1, . . . , yn) belong to
Znq then d1(x, y) = ∑n

i=1 d(xi, yi) where d is the Lee metric in Zq.

Golomb [Gol69] in 1969 already remarked that the most often used metrics
in error-correcting codes such as the Hamming metric and the Lee metric among others
come from the Lebesgue norm `p in Rn. The p-norm in Rn is defined as follows: for
x = (x1, . . . , xn) ∈ Rn we have


|x|p = ∑n

i=1 |xi|p if 0 < p < 1,
|x|p = (∑n

i=1 |xi|p)
1
p if 1 ≤ p <∞,

|x|∞ = max{|xi| : 1 ≤ i ≤ n}.
(2.0.1)

If we consider the space X = Znq (instead of Rn) and we replace |x| in Equa-
tion (2.0.1) by |x|1 = d(x, 0) (the Lee distance between x ∈ Znq and 0) we obtain the
p-Lee norm |x|

p,Lee which induces the p-Lee metric dp(x, y) = |x − y|
p,Lee in Znq . When

p approaches 0 the p-Lee metric is just the Hamming metric, when p = 1 we obtain the
Lee metric and when p =∞ this is the Chebyshev metric.

Next we present some notations and definitions related to error-correcting
codes. We assume that a metric d in Znq is given.

Definition 2.0.4. An n-dimensional q-ary code is a subset C ⊆ Znq (we assume here
#C > 1). An (n, e, q)-code is an n-dimensional q-ary code with packing radius e. A
perfect (n, e, q)-code is also called a (n, e, q)-perfect code. A linear code is a code which is
a subgroup of Znq . The minimum distance of C is dmin(C) = min{d(x, y) : x, y ∈ Znq , x 6=
y}. The covering radius is the smallest real number r such that for every x ∈ Znq there
exists c ∈ C with d(x, c) ≤ r.

We consider in this work d = dp for p ∈ [1,∞] (and specially when p = 1 or
p =∞), so it is convenient to introduce the following notation.

Notation 2.0.5. PLp(n, e, q) denotes the set consisting of all (n, e, q)-perfect codes. The
subset of linear codes is denoted by LPLp(n, e, q).
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Definition 2.0.6. Let C ∈ PLp(n, e, q). The error-correcting function of C is the func-
tion fC : Znq → C given by the property dp (x, fC(x)) ≤ e.

Remark 2.0.7. From here on we will use the same notation dp to denote the p-Lee metric
in Znq and the `p metric in Zn (i.e. the metric induced by the `p norm).

There is a strong relation between n-dimensional q-ary codes and q-periodic
sets of Rn, that is, subsets Λ such that qZn + Λ = Λ (here the sum is the Minkowski sum
of the two sets, namely A+B = {a+ b : a ∈ A, b ∈ B}).

We consider the map π : Zn → Znq taking modulo q in each coordinate which
establishes a correspondence between q-ary codes and q-periodic sets known in the litera-
ture as Construction A [CS13]. For C ⊆ Znq we denote by ΛC = π−1(C) the corresponding
q-periodic set given by Construction A. This correspondence preserve linearity, so every
q-ary linear code C ⊆ Znq correspond with a q-periodic full-rank lattice ΛC ⊆ Zn, that
is, a subgroup of Rn of the form v1Z + · · · + vnZ where {v1, . . . , vn} is a basis of Rn as
R-vector space (see [Zam09] for more about lattices and coding theory and [Mar03] for
algebraic background about lattices). An n-dimensional full-rank lattice of Rn is also
called an n-dimensional lattice.

Linear codes - isometry and isomorphism

Now we focus on the linear case and we consider only isometries of Znq with
respect to the p-Lee metric that preserve linearity, that is, homomorphisms f : Znq → Znq
such that |f(x)|p = |x|p.

Notation 2.0.8. We denote by [n] = {1, 2, . . . , n}. We let Sn be the permutation group
of [n] and let ei represents a vector (in Znq or Rn) which has 1 in the i-th coordinate and 0
otherwise. If x is a vector (in Znq or Rn) we denote by xi for i = 1, 2, . . . , n its coordinates,
that is, x = ∑n

i=1 xiei. We denote by G(n, q, p) the group of isometries of Znq with respect
to the p-Lee metric (or simply by G when n, q and p are understood by the context).

For a ∈ Zn2 we define ηa : Znq → Znq such that ηa(x) = ∑n
i=1(−1)aixiei and for

θ ∈ Sn we define ξθ : Znq → Znq such that ξθ(x) = ∑n
i=1 xieθ(i). It is easy to see that these

maps are isometries of Znq which verify ηaηb = ηa+b for all a, b ∈ Z2 and ξθηa = ηbξθ where
bi = aθ−1(i) for all a ∈ Zn2 and θ ∈ Sn. This implies that the group generated by these
maps is {ηaξθ : a ∈ Zn2 , θ ∈ Sn}.

p-Lee isometries, the case p ∈ [1,∞)

Let f be an isometry of Znq with respect to the p-Lee metric with p ∈ [1,∞).
For each i ∈ [n], we have |f(ei)|p = 1 so f(ei) = (−1)aieθ(i) for some ai ∈ Z2 and
θ(i) ∈ [n]. Since isometries are injective functions then θ(i) 6= θ(j) for i 6= j so f = ηaξθ

with a = (a1, . . . , an) ∈ Zn2 and θ ∈ Sn. So, in this case G = {ηaξθ : a ∈ Zn2 , θ ∈ Sn}.
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p-Lee isometries, the case p =∞

We observe that if q ≤ 3 and p =∞ every non-zero vector has norm 1. Hence,
the group of isometries coincides with the group of injective homomorphisms. Let f
be an isometry of Znq where q > 3, with respect to the Chebyshev metric (i.e. ∞-Lee
metric). Since |f(ei)|∞ = 1 then every non-zero coordinate of ei is ±1. Consider the set
A(i) = {j ∈ [n] : the j-th coordinate of f(ei) is ±1}. If k ∈ A(i) ∩ A(j) with i 6= j then
either f(ei) + f(ej) or f(ei)− f(ej) has it k-th coordinate ±2 which is a contradiction if
q > 3 because |ei ± ej|∞ = 1. Thus, the A(i) are disjoints for 1 ≤ i ≤ n and non-empty
(since f is injective) thus #A(i) = 1 and we obtain the same conclusion that in the case
p ∈ [1,∞), namely G = {ηaξθ : a ∈ Zn2 , θ ∈ Sn}.

Except for the cases (p, q) = (∞, 2) and (p, q) = (∞, 3) the group of isometries
of Znq is given by G = {ηaξθ : a ∈ Zn2 , θ ∈ Sn}. Moreover, if we consider the action
ϕ : Sn×Zn2 → Zn2 given by θa = (aθ−1(1), . . . , aθ−1(n)) we have ξθηa = ηθaξθ so G ' Zn2 oSn

(the semidirect product with respect to this action). In summary, we have the following
proposition.

Proposition 2.0.9. If (p, q) = (∞, 2) or (p, q) = (∞, 3) every injective homomorphism
of Znq is also a isometry. Otherwise, the group of isometries of Znq with respect to the
p-Lee metric is given by G = {ηaξθ : a ∈ Zn2 , θ ∈ Sn} (with the notation above) and we
have the isomorphism G ' Zn2 o Sn with respect to this action given above.

Remark 2.0.10. With the notation above, we have an action φ : Sn × Znq → Znq given
by (θ, x) 7→ ξθ(x). When we write θx for θ ∈ Sn and x ∈ Znq we refer to this action (i.e.
θx = ξθ(x)).

Isomorphism class of codes

Definition 2.0.11. Let Λ be an n-dimensional lattice. A generator matrix for Λ is an
n×n matrix (with real coefficients) such that its lines generate the lattice Λ as Z-module.
In this thesis, when we write that M is a generator matrix for a q-ary linear code C we
mean that M is a generator matrix for its associate lattice ΛC. An n-dimensional integer
lattice is a lattice contained in Zn.

Notation 2.0.12. If M is an n × n matrix with coefficients in Zq or R, we denote by
span(M) the Z-module generated by this lines (i.e. linear combination of the lines with
integer coefficients).

Remark 2.0.13. Let C be a q-ary linear code, ΛC be its associated lattice and M ∈
Mn(Z) (integer n × n matrix ) such that the lines of M generates C when they are
considered modulo q. In this case ΛC is generated by the lines of M and the vectors qei
for 1 ≤ i ≤ n, so M is a generator matrix for ΛC if and only if qZn ⊆ span(M) which
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is equivalent to AM = qI for some A ∈ Mn(Z) (where I denote the identity matrix).
Therefore M is a generator matrix for C if and only if the matrix qM−1 has integer
coefficients.

Next, we prove that if C is a linear q-ary code with generator matrix M then
its cardinality is given by qn/ det(M) and its group isomorphism class is determined by
the Smith normal form of A. Considering the natural projection π : ΛC → Znq (taking
modulo q in each coordinate) which verifies ker(π) = qZn and Im(π) = C, we obtain the
following result as consequence of the first group isomorphism theorem [Fra13, p. 307].

Proposition 2.0.14. If M is a generator matrix for a linear code C ⊆ Znq (i.e. a
generator matrix for ΛC), then C ' ΛC/qZn.

For α = {v1, . . . , vn} a basis of Rn and v = ∑n
i=1 αivi we denote by coordα(v) =

(α1, . . . , αn) ∈ Rn the coordinates of v with respect to the basis α. If β is other basis of

Rn we denote by α(I)β =


coordβ(v1)

...
coordβ(vn)

 the change of basis matrix, from the basis α to

the basis β. We remark that when the lattices associated with α and β verify Λα ⊆ Λβ,
the change of basis matrix α(I)β is an n× n matrix with integer coefficients. We identify
the set Zn with the set of matricesM1×n(Z).

Proposition 2.0.15. Let α = {v1, . . . , vn}, β = {w1, . . . , wn} be two basis of Rn and
Λα,Λβ be their associated lattices. We assume that Λα ⊆ Λβ. If A =α (I)β is the
change of basis matrix from the basis α to the basis β and D = diag(d1, . . . , dn) is its
Smith normal form (i.e. the only diagonal matrix verifying D = PAQ with P and Q

unimodular matrices), then Λβ
Λα ' Zd1 × · · · × Zdm.

Proof. The change of basis matrix verifies coordα(v)A = coordβ(v) and consequently

A


w1
...
wn

 =


v1
...
vn

. If D = PAQ is the Smith normal form of A (where det(P ) =

±1, det(Q) = ±1) then:

DQ−1


w1
...
wn

 = PA


w1
...
wn

 = P


v1
...
vn

 . (2.0.2)
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Denoting by


w′1
...
w′n

 = Q−1


w1
...
wn

 and substituting in Equation (2.0.2) we have:

P


v1
...
vn

 = D


w′1
...
w′n

 =


d1w

′
1

...
dnw

′
n

 .

Since P and Q are unimodular matrices, then {d1w
′
1, . . . , dnw

′
n} and {w′1, . . . , w′n} are also

Z-basis of α and β, respectively. The epimorphism φ : Zn � Λβ
Λα given by φ(ei) = w′i + Λα

verifies φ


m1
...
mn

 =


0
...
0

 if and only if ∑n
i=1miw

′
i ∈ Λα = d1w

′
1Z + . . . + dnw

′
nZ which

is equivalent to mi = 0 (mod di),∀i : 1 ≤ i ≤ n. Thus, the kernel of φ is given by
ker(φ) = d1Z + · · ·+ dnZ, therefore

Λβ

Λα

' Zm

d1Z + · · ·+ dnZ
' Zd1 × · · · × Zdn

as claimed.

If the generator matrix of the C ⊆ Znq is given by M =


w1
...
wn

 ∈ Mn(Z),

using Proposition 2.0.15 respect to the basis α = {qe1, . . . , qen} (so Λα = qZn) and
β = {w1, . . . , wn} (so Λβ = ΛC = w1Z + · · · + wnZ), the matrix A = α(I)β whose Smith
normal form determines the structure of ΛC/qZ

n = Λβ/Λα = C verifies AM = qI so
A = qM−1. In summary we have the following proposition.

Proposition 2.0.16. Let D = diag(d1, . . . , dn) be the Smith normal form of qM−1 ∈
Mn(Z) where M is the generator matrix for ΛC. Then, C ' Zd1 × . . .× Zdn.

Since d1 . . . dn = det(A) = det(qM−1) = qn/ det(M) we obtain the following
corollary.

Corollary 2.0.17. If M is a generator matrix for C, then #C = qn

det(M) .

Torus, polyominoes and polycubes

In the seminal paper of Golomb and Welch [GW70], the authors use an ap-
proach based on polyominoes and polycubes to settle several results in perfect Lee codes
over large alphabets. We use a similar approach to settle results about perfect codes in
the Chebyshev metric.
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Definition 2.0.18. A polycube P in Rn is a connected set formed by the union of a finite
number of unitary cubes centered at integers points, in such a way that given two centers
of cubes c and c′ there exists a sequence of centers of cubes c0 = c, c1, . . . , ck = c′ such
that |ci − ci−1|2 = 1 for 1 ≤ i ≤ k. When n = 2 a polycube is also called polyominoe.

The n-dimensional q-ary flat torus T nq is obtained from the cube [0, q]n by
identifying its opposite faces H−i = [0, q]n ∩ {xi = 0} and H+

i = [0, q]n ∩ {xi = q} via
fi : H−i → H+

i , fi(x) = x + qei (see Figure 2.1). It can also be obtained through the
quotient T nq = Rn/qZn, inheriting a natural group structure induced by this quotient.
Given a invariant-by-translation metric d in Rn, every ball B = B(0, r) in this metric
have an associated polycube PB ⊆ Rn given by PB = ⊎

x∈B∩Zn x + [−1/2, 1/2]n (see
Figure 2.2).

Figure 2.1: The torus in dimension one and two, obtained identifying opposite faces of
the n-cube for n = 1, 2.

Figure 2.2: Polyominoes associated with two-dimensional p-balls of radius 4.

In this way, tiling Zn by translated copies of B is equivalent to tiling Rn by
translated copies of its associated polycube PB. When there exists a translated copy of
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this polycube inside the q-ary cube (i.e. if there exists t ∈ Rn such that t+ PB ⊆ [0, q]n),
tiling Rn by translated copies of PB is in turn equivalent to tiling the q-ary n-torus T nq
by copies of PB. This association gives us an important geometric tool to study perfect
codes over Z.

Cube tilings

Since we consider the Chebyshev metric, the polyominoes associated with balls
in this metric correspond to cubes of odd length centered at an integer point x ∈ Zn (only
this type of cubes will be considered in this paper). The condition q = (2e+1)t guarantees
the equivalence above, so there is a correspondence between tiling of the torus T nq by cubes
and perfect codes in LPL∞(n, e, q).

Definition 2.0.19. An n-dimensional cartesian q-ary code is a code of the form (2e+1)Znq
for some e ∈ N such that 2e+ 1 | q. A linear q-ary code is a subgroup of (Znq ,+) (example
in Figure 2.3). A cyclic q-ary code is a linear q-ary code which is cyclic as abelian group.
The code C = Znq is always a perfect code and we refer to this code as the trivial code.

Figure 2.3: The cartesian code 3Z2
9 ∈ LPL∞(2, 1, 9) (codewords are marked with C).

Definition 2.0.20. A code C ∈ PL∞(n, e, q) is standard if there exist a canonical vector
ei (i.e. a vector with an 1 in the i-th coordinate and 0 in the other coordinates) for some
i : 1 ≤ i ≤ n such that C + (2e + 1)ei ⊆ C. In this case we also say that C is of type i;
see Figure 2.4.

As we will see later (see Remark 4.2.29), a code can have no type or it can
have more than one type (for example n-dimensional cartesian codes are of type i for
1 ≤ i ≤ n).

The following theorem of Hajos [Sza04], known also as Minkowski Conjecture,
is of fundamental importance when we approach perfect codes in arbitrary dimension.
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Figure 2.4: The cyclic perfect code C = 〈(2, 3)〉 ∈ Z2
9 ∈ CPL∞(2, 1, 9) is a type 1 code

but is not a type 2 code (codewords are marked with C).

Theorem 2.0.21 (Minkowski-Hajos). Every tiling of Rn by cubes of the same length
whose centers form a lattice contains two cubes that meet at an n− 1 dimensional face.

Corollary 2.0.22. Every linear perfect code C ∈ LPL∞(n, e, q) is standard.

Some notation and definitions

In Section 4.2 we will parametrize isomorphism classes of perfect codes through
certain generalized cosets of Zd that we introduce in the next definition.

Definition 2.0.23. Let A be an abelian ring with unit and A∗ the multiplicative group of
its invertible elements. A generalized coset is a set of the form xC where C is a subgroup
of A∗ (i.e. C < A∗). We denote by A/C = {xC : x ∈ A}.

Remark 2.0.24. Let C < A∗ and x, y ∈ A. If xC ∩ yC 6= ∅ then xC = yC, so C induce
an equivalence relation in A whose equivalence classes are given by xC with x ∈ A. In
this way A/C is just the quotient set with respect to this equivalence relation.

Next we introduce some notations that will be used later.

Notation 2.0.25. Let A be a ring (in particular a Z-module) and a ∈ A.
• Mm×n(A) denotes the set of rectangular matrices m × n with coefficients in A. In
particular we identify An withM1×n(A). When m = n, we setMn(A) =Mn×n(A).
• ∇n(A) denotes the set of upper triangular matrices inMn(A) and ∇n(a,A) is the subset
of ∇n(A) whose elements in the principal diagonal are all equals to a. For A = Z, we set
∇n(a) = ∇n(a,Z).
• For x ∈ Zn we denote by x = x+ qZn ∈ Znq . If M ∈Mn(Z) we denote by M the matrix
obtained from M taking modulo q in each coordinate.



Chapter 3
THE V -SERIES

In this chapter we introduce the concept of ν-series that plays an important
role in the next chapters. In Chapter 4 they will be used in Section 4.5 in order to obtain
structural information about the group isomorphism classes represented by Chebyshev
perfect codes and in Chapter 5 they help to describe isomorphism classes of the function
graph associated with Rédei functions and n-maps.

3.1 Definition and examples

Definition 3.1.1. Let ν > 1 be an integer. A ν-series is a finite sequence of positive
integers V = (ν1, ν2, . . . , νn) such that

i) νi+1 | νi for 1 ≤ i ≤ n− 1;

ii) ν = ∏D
i=1 νi.

The numbers νi for 1 ≤ i ≤ n are the components of V and n is its length. The number
D = max{i : νi > 1, 1 ≤ i ≤ n} is the depth of V (where D = 0 when this set is empty)
that is denoted by depth(V ). We say that V is reduced if νn > 1 or V = (1).

Example 3.1.2. V = (24, 24, 6, 2, 2) is a 13824-series with depth(V ) = 5.

The radical of a positive integer n is the product of the distinct prime divisors
of n and is denoted by rad(n); by convention rad(1) = 1. If ν and n are positive integers
with rad(ν) | rad(n), we have a particular way, to be given next, to construct ν-series in
which each component is a divisor of n.

Definition 3.1.3. If ν > 1 and n are positive integers with rad(ν) | rad(n) the ν-series
generated by n, denoted by ν(n) is defined as

 ν1 = gcd(ν, n),
νi+1 = gcd

(
ν

ν1ν2...νi
, n
)

for i ≥ 1.

If D = max{i ≥ 1 : νi > 1}, we define ν(n) = (ν1, ν2, . . . , νD). By convention,
for ν = 1 we define ν(n) = (1) for all n.

25
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Proposition 3.1.4. The ν-series generated by n with rad(ν) | rad(n) is well defined.
Moreover, if D = max {dep(ν)/ep(n)e : p | n, p prime} where ep(n) denotes the exponent
of the prime p in n, then D is the depth of ν(n).

Proof. We observe first that if p is a prime number that does not divide n, then ep(νi) = 0
for all i ≥ 1. On the other hand, if p is a prime divisor of n and ep(ν) = qep(n) + r with
0 ≤ r < ep(n), one can prove by induction that

ep(νi) =


ep(n) if 1 ≤ i ≤ q,
r if i = q + 1,
0 if i > q + 1.

From this, we have that ν(n) is a ν ′-series with depth D = max {dep(ν)/ep(n)e : p | n, p
prime}, where

ν ′ =
D∏
i=1

νi =
∏
p|n
pep(ν).

Now, as rad(ν) | rad(n) the last equation implies ν ′ = ν.

We observe that with the notation above

D = min{λ ∈ Z+ : ν | nλ}.

Example 3.1.5. If we take ν = 360, n = 30, the 360-series V associated with n = 30 is
ν1 = gcd(360, 30) = 30, ν/ν1 = 360/30 = 12;
ν2 = gcd(12, 30) = 6, ν/(ν1ν2) = 12/6 = 2;
ν3 = gcd(2, 30) = 2, ν/(ν1ν2ν3) = 2/2 = 1.

Therefore V = 360(30) = (30, 6, 2). The depth of this 360-series is 3.

3.2 Posets associated with ν-series

In this section we introduce a graph whose vertices are tn-series (for some
positive integer t) of length n, which will be used in Section 4.5 to describe structural
information about the group isomorphism classes represented by perfect codes in the
Chebyshev metric.

Notation 3.2.1. We denote by Sn(ν) the set consisting of ν-series of length n. For
a = (a1, . . . , an) ∈ Sn(ν) we denote by Za = Za1 × · · · × Zan.

Sometimes we use this correspondence and we identify the set Sn(ν) with the
corresponding set of abelian groups.
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Definition 3.2.2. Let N∞ be the set of non-negative integer sequences which are zero for
all but a finite number of terms and ` : Z+ → N∞ given by `(pα1

1 p
α2
2 . . .) = (α1, α2, . . .)

where (pn)n≥1 is the sequence of prime numbers. We define the multiplicative distance in
(Z+)n as following:

mdist(x, y) :=
n∑
i=1
||`(xi)− `(yi)||1.

Denoting by ep(m) the exponent of the prime p in the factorial decomposition
of m, we observe that for x, y ∈ Z+ we have ||`(x)− `(y)||1 = ∑∞

i=1 |epi(x)− epi(y)| where
pn denotes the n-th prime number.

Definition 3.2.3. For t ∈ Z+ the t-energy is the function Et : (Z+)n → N given by

Et(x) :=
n∑
i=1

mdist(xi, t) = mdist(x, (t, t, . . . , t)).

The t-energy is defined in Sn(ν) by identifying this set with the corresponding
subset of (Z+)n. We also remark that the set Sn(ν) is in correspondence with isomorphism
classes of abelian groups of order ν and in some cases we will use this identification.

Definition 3.2.4. For ν = tn we define the (directed) graph associated with Sn(ν), which
we denote by Gn(t), as the graph whose vertices set is V = Sn(ν) and −→xy is a directed edge
for this graph if mdist(x, y) = 2 and Et(x) > Et(y).

It is interesting to remark that for two distinct elements x, y ∈ Sn(ν) we have
mdist(x, y) ≥ 2.

Proposition 3.2.5. If we define the relation in Sn(tn) given by x ≥ y if x = y or there
exists a directed path in Gn(t) from x to y, then (Sn(tn),≥) is a poset.

Proof. Reflexivity and transitivity follow directly from definition. It is easy to see from
definition that the directed graph Gn(t) has no directed cycles and this implies the anti-
symmetry of ≥.

Next, we prove that the poset Sn(tn) has a minimum element and a maximum
element.

Proposition 3.2.6. The poset Sn(tn) has minimum element m = (t, t, . . . , t) and maxi-
mum element M = (tn, 1, . . . , 1).

Proof. Let ν = (ν1, . . . , νn) ∈ Sn(tn). On the one hand, if ν 6= m then there exists a
prime p | t such that ep(ν1) > ep(t) > ep(νn) (where ep(a) denotes the exponent of p in a).
Considering i maximum and j minimum such that ep(νi) > ep(t) > ep(νj) and w ∈ Sn(tn)
such that wi = νi/p, wj = pνj and wk = νk for 1 ≤ k ≤ n, k 6∈ {i, j} we have that w < ν.
On the other hand, if ν 6= M then depth(ν) = D > 1. Considering a prime p | νD and
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w ∈ Sn(tn) such that w1 = pν1, wD = νD/p and wk = νk for 1 ≤ k ≤ n, k 6∈ {i, j} we have
that w > ν. Hence, for all ν ∈ Sn(tn) we have m ≤ ν ≤ M , so m is minimum and M is
maximum.

Remark 3.2.7. By the association between tn-series and group isomorphism classes of
abelian group of order tn, the previous proposition implies that the cyclic group Ztn is
the biggest element and the cartesian group Znt is the smallest element between all group
isomorphism classes of abelian group of order tn.

3.3 Trees associated with ν-series

In this section we associate a rooted tree to each ν-series. This tree plays an
important role in the description of the non-periodic part of some functional graphs that
are studied in Chapter 5.

Let G = (V,E) be a directed graph and Gi = (Vi, Ei) be subgraphs of G for
1 ≤ i ≤ m. The notation G = ⊕m

i=1Gi means that V = ⊎m
i=1 Vi, the disjoint union of the

sets Vi, and E = ⊎m
i=1Ei, the disjoint union of the edges in Ei. We denote by • any graph

consisting of a unique vertex and by ' the isomorphism relation. If H denotes a directed
graph (or the isomorphism class of some directed graph) and n ∈ Z+, then G ' n × H
means G = ⊕n

i=1Gi with each Gi ' H. We also consider the graph ∅ as a graph without
vertices and edges. As our goal is to describe some functional graph, it is convenient to
introduce the following definition.

Definition 3.3.1. Let T be a rooted tree and f ∈ Z+. We denote by Cyc(f, T ) a directed
graph with a unique cycle of length f such that each node in that cycle is the root of a tree
isomorphic to T . When T = •, that is, it consists of only one vertex, we denote Cyc(f, •)
by Cyc(f).

Functional graphs associated with Rédei function have special symmetries:
each connected component is of the form Cyc(f, T ) for some f ∈ Z+ and some rooted
tree T (the same T for all connected components). Describing the trees T require a bit
of work, so we start by introducing some operations and notations on trees.

Notation 3.3.2. If T is a rooted tree and x is a vertex (or node) in T , we denote by
ρT (x) the set of directed predecessors of x in T . In this way, #ρT (x) = indeg(x) is the
in-degree of x. By definition each vertex in T has out-degree equal to 1 except for the root
which has out-degree equal to 0. The vertices x with ρT (x) = ∅ are called leaves; the set
of all leaves in T is denoted by HT . We consider the empty graph ∅ as a rooted tree.

Definition 3.3.3. Let T1, T2, . . . , Tk be rooted trees with roots t1, t2, . . . , tk, respectively. If
G = ⊕k

i=1 Ti is the graph whose connected components are the rooted trees Ti for 1 ≤ i ≤ k,
then 〈G〉 denotes a rooted tree where its root has directed predecessors t1, t2, . . . , tk. The
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empty graph verifies G ⊕ ∅ = G for every graph G and 〈∅〉 = • (the tree consisting of a
unique point).

Now, we define a special type of trees associated with ν-series. These trees
play an important role in the description of the Rédei functional graphs.

Definition 3.3.4. If V = (ν1, ν2, . . . , νD) is a ν-series, we define recursively the tree TV
associated with V as follows: T 0

V = •,
T kV = 〈νk × T k−1

V ⊕⊕k−1
i=1 (νi − νi+1)× T i−1

V 〉 for 1 ≤ k ≤ D,
(3.3.1)

and
TV = 〈(νD − 1)× TD−1

V ⊕
D−1⊕
i=1

(νi − νi+1)× T i−1
V 〉. (3.3.2)

For V = (1) we define TV = •.

Example 3.3.5. In Figure 3.1 we show the inductive construction of TV when the ν-series
V = (ν1, ν2, ν3, ν4) has four components.

Figure 3.1: Inductive definition of TV for V = (ν1, ν2, ν3, ν4).
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Example 3.3.6. We consider the 360-series associated with 30, that is V = 360(30) =
(30, 6, 2). In Figure 3.2 we show the inductive construction of TV for this 360-series.

Figure 3.2: The tree associate with the 360-series V = 360(30).

Proposition 3.3.7. If rad(ν) | rad(n) the tree associated with the ν-series generated by
n has exactly ν vertices.

Proof. If we denote by nk the number of vertices of T kν(n) for 0 ≤ k ≤ D, the number of
vertices of Tν(n) is nD − nD−1, where the sequence (nk)0≤k≤D verifies

 n0 = 1,
nk = νknk−1 +∑k−1

i=1 (νi − νi+1)ni−1 + 1 for 1 ≤ k ≤ D.



31

We can rewrite this last recurrence relation as

nk =
k∑
i=2

(ni−1 − ni−2)νi + ν1n0 + 1, for 1 ≤ k ≤ D.

Clearly, nk − nk−1 = νk(nk−1 − nk−2) for 2 ≤ k ≤ D, which implies that the number of
vertices of Tν(n) is nD − nD−1 = ∏D

j=1 νj = ν.

The proof of the following lemma is immediate.

Lemma 3.3.8. If T = 〈T1 ⊕ T2 ⊕ . . .⊕ Tk〉 then

depth(T ) = max
1≤i≤k

depth(Ti) + 1.

Proposition 3.3.9. If Tν(n) is the tree associated with ν(n) then

depth(Tν(n)) = depth(ν(n))

Proof. Let D = depth(ν(n)). Using (3.3.1) and Lemma 3.3.8, we can prove by induction
that depth(T kν(n)) = k. Using again Lemma 3.3.8 and (3.3.2) we have

depth(Tν(n)) = depth(TD−1
ν(n) ) + 1 = (D − 1) + 1 = D = depth(ν(n)).

Definition 3.3.10. Let n ≥ 2 and f ≥ 1 be integers and λ ∈ R such that nλ = ν ∈ Z+.
We define

Hn(f, λ) = Cyc(f, Tν(n)).

Remark 3.3.11. The following are some properties of the parameter λ that are not
difficult to check:

• Hn(f, λ) is a cycle if and only if λ = 0.

• When λ ∈ N this parameter represents the depth of the tree attached to the cyclic
points in Hn(f, λ).

• In general, the depth of the tree is given by the number of components of the ν-series
ν(n) which is the least integer D such that ν | nD.

• Hn(f, λ) has exactly fnλ vertices.



Chapter 4
CODES IN THE LEE METRIC AND IN THE CHEBYSHEV METRIC

In this chapter we study perfect codes in the Lee metric and in the Chebyshev
metric. We start with a brief discussion on how Construction A behaves with respect
to the p-Lee norm in general and consider some particularities of the Lee (p = 1) and
Chebyshev (p = ∞) metrics. In Section 2 we study two-dimensional perfect codes with
respect to these two metrics and in Section 3 we discuss on similarities and differences
regarding these two metrics as well as on some facts about p-Lee metrics in general.
In Section 4 we present several constructions of Chebyshev perfect codes from sections
and also from codes in smaller dimensions which allow us to extend some results from
dimension 2 to higher dimensions. In Section 5 we introduce a special class of matrices
(perfect matrices) which is in correspondence with Chebyshev perfect codes in arbitrary
dimension and also study isomorphism classes of such codes. In Section 6 structural
properties of the isomorphism classes that can be represented by perfect codes in the
Chebyshev metric are discussed.

4.1 Codes in Lebesgue spaces

Let dp be the p-Lee metric in Znq and we denote by Bp(x, e) = {y ∈ Zn :
dp(x, y) ≤ e} the ball with center x ∈ Zn and radius e ≥ 0 with respect to this metric.
In [CJC+15], the authors show that for every p, 1 < p < ∞ there exists perfect codes
in the p-Lee metric with the same minimum distance but different packing radius. For
p = 1 it is a well known fact that the minimum distance d and the packing radius e for
perfect codes verify e = bd−1

2 c (see [EVY13]). We prove here that this is also the case
for p = ∞. The idea is, given two points x, y ∈ Zn with d∞(x, y) = d, to find a point
m = m(x, y) ∈ Zn such that the distance d∞(x,m) and d∞(y,m) are as close as possible
to d

2 . We find such m that also works well for p = 1, in the sense that the same proof for
the case p =∞ (using m = m(x, y)) holds for p = 1.

Notation 4.1.1. Let x, y ∈ Zn, P = {i ∈ [n] : xi ≡ yi (mod 2)},m = x+y
2 and I = [n]\P .

We decompose I = I1 ] I2 where max I1 < min I2 and #I1 −#I2 ∈ {0, 1} (if #I ≤ 1 we
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define I1 = I and I2 = ∅). We denote by m(x, y) = z the point in Zn given by

zk =


mi if i ∈ P,
mi − sgn(xi − yi)/2 if i ∈ I1,

mi − sgn(yi − xi)/2 if i ∈ I2.

,

where sgn denotes the sign function.

Remark 4.1.2. With the notation above we have #I1 −#I2 ≡ d1(x, y) (mod 2) and by
direct calculation, it is easy to check that for x, y ∈ Zn and z = m(x, y) we have:

• d1(x, z) = bd+1
2 c and d1(y, z) = bd2c if d = d1(x, y), or

• d∞(x, z) ≤ bd+1
2 c and d∞(y, z) ≤ bd+1

2 c if d = d∞(x, y).

Proposition 4.1.3. For the Lee metric and for the Chebyshev metric, the minimum
distance d and the packing radius e for a code C in Zn are related by e = bd−1

2 c. Moreover,
if C is perfect with respect to one of these metrics, then d = 2e+ 1.

Proof. By triangular inequality e ≥ bd−1
2 c. Let p be 1 or∞ and d = dp(x, y) with x, y ∈ C.

By Remark 4.1.2, the point z = m(x, y) is in Bp

(
x, bd+1

2 c
)
∩ Bp

(
y, bd+1

2 c
)
so e = bd−1

2 c.
Now we suppose that C is perfect and let x′ ∈ C such that dp(z, x′) ≤ e. If d is odd, then
d = 2e+ 2 and dp(x, x′) ≤ (e+ 1) + e < d which is a contradiction, so d = 2e+ 1.

As it was seen in Chapter 2, Construction A establishes a correspondence be-
tween q-ary codes C ⊆ Znq and q-periodic sets in Zn. On the other hand, for all p ∈ [1,∞],
the `p metric in Zn induces the p-Lee metric in the quotient Zn/qZn = Znq [CJC+15] and
a natural question is how this construction behaves with respect to these metrics.

It is clear that if Λ ⊆ Zn is a q-periodic set with packing radius e(Λ), then the
corresponding code C = Λ has packing radius e(C) ≥ e(Λ). In fact the strict inequality
is possible, for example the binary code C = {(0, 0, 0), (1, 1, 1)} ⊆ Z3

2 is 1-perfect (i.e.
e(C) = 1) in the Lee metric but the packing radius of its corresponding lattice Λ is
0 (since (0, 0, 0) and (2, 0, 0) are in Λ). This correspondence works well when the ball
Bp(0, e) ⊆ Zn does not contain points which are congruent modulo q and for this it
is sufficient that this property holds for the horizontal segment {(−bec, 0), . . . , (bec, 0)}
(since Bp(0, e) ⊆ B∞(0, bec)). In summary, we have the following proposition.

Proposition 4.1.4. Let C ⊆ Znq be a code with packing radius e in the p-Lee metric. If
2bec+ 1 ≤ q, then ΛC ⊆ Zn is a code with packing radius e in the `p metric.

Corollary 4.1.5. If C ⊆ Znq is a linear perfect code with packing radius e such that
q ≥ 2bec+ 1, then ΛC ⊆ Zn is a e-perfect code in the `p metric.
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The condition q ≥ 2bec + 1 which guarantees preservation of packing radius
by Construction A is almost the same one that appears in Proposition 3.14 of [CJC+15]
(with the difference that when the fractional part of e belongs to (1/2,1) they obtain
q ≥ 2bec+ 2). In the case of the Lee metric this condition is well known in the literature
and we say that the code is defined over a large alphabet [Pos75]. An interesting problem
is, given n, e ∈ Z+ and p ∈ (1,∞), to determine q0(n, e, p), the minimum value of q ≥ 2
such that Construction A preserves the packing radius for every (n, e, q)-code in the p-Lee
metric. Proposition 4.1.4 implies q0(n, e, q) ≤ 2bec+ 1.

We observe that Lee codes have integer packing radius so in this case large
alphabet is equivalent to q ≥ 2e+ 1. In the Chebyshev metric the distance is bounded by
q so every code is defined over large alphabet, in other words the condition q ≥ 2e+ 1 is
always satisfied and we have:

{Perfect q-periodic codes in (Zn, `∞)} π // {∞-Lee Perfect codes in Znq }
π−1
oo .

4.2 Two-dimensional perfect codes

In this section we study two-dimensional codes in the Lee metric and in the
Chebyshev metric. In both metrics we characterize the set of (2, e, q)-perfect codes pro-
viding generator matrix for these codes. We also study isometry and isomorphism classes
of such codes.

4.2.1 Lee two-dimensional perfect codes

In this part we use “perfect code” as synonym of “perfect code with respect to
the Lee metric”. We observe that the minimum distance of every two-dimensional q-ary
code verifies d ≤ q therefore in this case every code is defined over a large alphabet. If C
is a two-dimensional q-ary code with packing radius e we have #B1(0, e) = 2e2 + 2e+ 1.
We denote by qe = 2e2 + 2e+ 1. For each positive integer e, Golomb and Welch presented
in [GW70] a (2, e, qe)-perfect code Ce. This code is given by Ce = 〈(e, e+ 1)〉 in Zqe . By
Construction A these codes correspond to perfect lattices with respect to the `1 metric.

Proposition 4.2.1. The lattice ΛCe that corresponds to the qe-ary perfect code Ce via
Construction A is given by ΛCa = ν1Z+ ν2Z where ν1 = (e, e+ 1) and ν2 = (−(e+ 1), e).

Proof. Since qe = 2e2 + 2e + 1 we have (2e + 1) · (e, e+ 1) = (2e2 + e, 2e2 + 3e+ 1) =

(−(e+ 1), e) ∈ Ce, therefore if M =
 e e+ 1
−(e+ 1) e

 then the lines of M generate the

code Ce. Since qeM−1 =
 e −(e+ 1)
e+ 1 e

 has integer entries, the matrix M is in fact,

a generator matrix for ΛCa .
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Since every qe-periodic integer lattice is also a hqe-periodic integer lattice for
every positive integer h we have the following corollary.

Corollary 4.2.2. If q = qeh with h ∈ Z+ then the q-ary code Ce,h with generator matrix

M =
 e e+ 1
−(e+ 1) e

 is a (2, e, q)-perfect code.

In order to simplify notation we will omit the overline when we consider mod-
ular classes if there is no danger of confusion.

Definition 4.2.3. Let C a q-ary code with packing radius e. We say that C is of Lee-type
1 if (e, e + 1) + C = C and C is of Lee-type 2 if (e + 1, e) + C = C. If C is a code of
Lee-type 1 or of Lee-type 2 we say that C is Lee-standard.

Our next goal is to prove that every two-dimensional perfect code in the Lee
metric is Lee-standard. We observe that for linear codes with packing radius e, C is of
Lee-type 1 if (e, e + 1) ∈ C and it is of Lee-type 2 if (e + 1, e). We also observe that
the permutation σ(x, y) = (y, x) establish a correspondence between Lee-type 1 codes
and Lee-type 2 code, this map is an isometry and so it preserves perfection and packing
radius.

Notation 4.2.4. We denote by e1 = (1, 0) and e2 = (0, 1) the unitary vectors of Z2
q and

the horizontal and vertical lines by hi = Zq × {i} and vj = {j} × Zq for i, j ∈ Zq. For
x ∈ Z2

q we define the following sets:

• up(x) = x+ {(−1, 1), (0, 1), (1, 1)},

• down(x) = x+ {(−1,−1), (0,−1), (1,−1)},

• right(x) = x+ {(1,−1), (1, 0), (1, 1)},

• left(x) = x+ {(−1,−1), (−1, 0), (−1, 1)}.

The following geometric lemmas can be verified easily.

Lemma 4.2.5. If a horizontal line r cuts a Lee-ball B = B(c, e) then #(B ∩ r) = 2`+ 1
for some integer ` with 0 ≤ ` ≤ e. If B∩r = {c′+(i, 0) : −` ≤ i ≤ `} then c = c′+(e−`)e2

or c = c′ − (e − `)e2. In particular, when ` = e we have that c is the midpoint of the
segment B ∩ r.

Lemma 4.2.6. Let B be a Lee-ball of radius e with 1 ≤ e ≤ q−1
2 .

(i) If #(hi+1 ∩B) > #(hi ∩B)⇒ ∀x ∈ hi ∩B : up(x) ⊆ B,

(ii) if #(hi−1 ∩B) > #(hi ∩B)⇒ ∀x ∈ hi ∩B : down(x) ⊆ B,

(iii) if #(hi ∩B) > max{#(hi+1 ∩B),#(hi−1 ∩B)} ⇒ #(hi ∩B) = 2e+ 1.
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Applying the symmetry θ(x, y) = (y, x) we can obtain analogous results for
vertical lines instead of horizontal lines.

Lemma 4.2.7 (Slingshot lemma). Let C ∈ PL1(2, e, q) and f : Z2
q → C its associated

error-correcting-function . Let B = B(c, e) with c ∈ C and P ∈ B.

1. If up(P ) 6⊆ B and down(P ) 6⊆ B then:

(i) f(P ) 6= f(P − e1)⇒ f(P ) = P + e · e1.

(ii) f(P ) 6= f(P + e1)⇒ f(P ) = P − e · e1.

2. If right(P ) 6⊆ B and left(P ) 6⊆ B then:

(i) f(P ) 6= f(P − e2)⇒ f(P ) = P + e · e2.

(ii) f(P ) 6= f(P + e2)⇒ f(P ) = P − e · e2.

Proof. It suffices to prove part (i) of 1 (the others are analogous). Let i = y(P ) (the
second coordinate of P ). By Lemma 4.2.6 we have that #(hi ∩ B) = 2e + 1, then by
Lemma 4.2.5 hi ∩ B = {P + (j, 0) : −t ≤ j ≤ k} with t, k ≥ 0 e t + k + 1 = 2e + 1.
Since f(P ) ∈ B (since P ∈ B) and f(P − e1) 6= f(P ) we have P − e1 6∈ B. In particular
P − e1 6∈ hi ∩B, thus t = 0, k = 2e and hi ∩B = {P, . . . , P + (2e, 0)}, so by Lemma 4.2.5
the center of the Lee-Ball B is f(P ) = P + (e, 0) (see Figure 4.1 which justify the name
of the lemma).

Definition 4.2.8. We denote by C ⊆ Z2
q the set given by C = {(−1, i) : −1 ≤ i ≤

2} ∪ {(0,−1), (0, 2)}.

Definition 4.2.9. Let B1 and B2 be two Lee-balls of radius e. We say that B1 and B2

are adjacent if they are disjoint and there exists c1 ∈ B1 and c2 ∈ B2 with d1(c1, c2) = 1.

Definition 4.2.10. Let B1 and B2 be two adjacent Lee-balls of radius e. We say that
they fit well if x + C ⊆ B1 ∪ B2 ⇒ x ∈ B1 ∪ B2 or x + e2 ∈ B1 and we say that they do
not fit otherwise (see Figure 4.2).

Lemma 4.2.11. If C ∈ PL1(2, e, q) then in the covering ⊎c∈C B(c, e) = Z2
q, any two

adjacent balls fit.

Proof. We suppose on the contrary that there are two adjacent Lee-balls B1 = B(c1, e)
and B2 = B(c2, e) which do not fit and let x ∈ Z2

q such that x+C ⊆ B1∪B2, x 6∈ B1∪B2

and y = x + e2 6∈ B1 ∪ B2 (see Figure 4.3). If f : Z2
q → C is the error-correcting

function associated with C, we can apply the slingshot Lemma (Lemma 4.2.7) to x and
y obtaining two codewords c3 = f(x) = x + e · e1 and c4 = f(y) = y + e · e1 with
d(c3, c4) =‖ e2 ‖1,Lee= 1 < 2e + 1 = dmin(C), which is a contradiction (see Figure
4.3).
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Figure 4.1: The four possibilities for the slingshot Lemma.

Figure 4.2: Example of two adjacent balls that do not fit.
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Figure 4.3: Contradiction obtained by applying slingshot Lemma (c1, c2, c3, c4, x and y
are as in the proof of Lemma 4.2.11).

Lemma 4.2.12. Let C ∈ PL1(2, e, q), ⊎c∈C B(c, e) = Z2
q and f : Z2

q → C be its associated
error-correcting function. We have f(c+ (e+ 1)e2) 6= f(c+ (e+ 2)e2) for all c ∈ C.

Proof. Let c′ = f(c+ (e+ 1)e2) and r be the vertical line through c. Since c+ (e+ 1)e2 ∈
r ∩ B(c′, e) ⇒ #(r ∩ B(c′, e)) = 2` + 1 with 0 ≤ ` ≤ e. We note that f(c + (e + 1)e2) =
f(c + (e + 2)e2) ⇔ ` = 0. We assume on the contrary that ` > 0. By Lemma 4.2.5 we
have c′ = x0 ± (e − `)e1 where r ∩ B(c′, e) = {x0 + ie2 : −` ≤ i ≤ `}. Applying an axial
symmetry around the axis r if necessary, we can suppose that c′ = x0 − (e − `)e1. It is
not difficult to prove that x := c+ (1, e) verifies:

• x 6∈ B(c, e) ∪B(c′, e),

• x+ C ⊆ B(c, e) ∪B(c′, e), and

• x+ (0, 1) 6∈ B(c, e) ∪B(c′, e) (since ` > 0).

Hence B(c, e) and B(c′, e) are adjacent balls which do not fit, contradicting Lemma 4.2.11
(see Figure 4.4).

Definition 4.2.13. Let C ∈ PL1(2, e, q). For each codeword c ∈ C we define the ω-set of
c as ω(c) = {ν1, . . . , ντ} where the adjacent balls to B(c, e) are exactly the balls B(c+νi, e)
for 1 ≤ i ≤ τ .

Lemma 4.2.14. If C ∈ PL1(2, e, q) then the set ω(c) does not depend on c. Moreover,
denoting by v′ = σ(v) where σ(x, y) = (y, x), we have only two possibilities:

i) ω(c) = {±ν1,±ν2} or
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Figure 4.4: There is a unique way to fit two adjacent balls up to symmetry.

ii) ω(c) = {±ν ′1,±ν ′2},

where ν1 = (e, e+ 1) and ν2 = (−(e+ 1), e).

Proof. Let c ∈ C and B = B(c, e) with respect to the Lee metric, we want to determine the
center of the adjacent Lee-balls to B with radius e. If r is the vertical line through c and
c1 = fC(c+ (e+ 1)e2) we obtain B1 = B(c1, e) which is adjacent to B. By Lemma 4.2.12
#(r∩B1) = 1, then by Lemma 4.2.5 we have that c1 = c+ν1 or c1 = c+ν1. First, we study
the case c1 = c+ν1. Applying slingshot lemma (Lemma 4.2.7) to the point P1 = c+(−1, e)
we obtain a new codeword c2 = f(P ) = c+ν2 such that the ball B2 = B(c2, e) is adjacent
to B. Applying again the same lemma to the point P2 = c + (−e,−1) we obtain a third
ball B3 = B(c− ν1, e) which is adjacent to B and to the point P3 = c+ (1,−e) we obtain
a fourth ball B(c − ν2, e) which is also adjacent to B. Hence ω := {±ν1,±ν2} ⊂ ω(c).
To prove that in fact these sets coincide it suffices to prove that c+ {P ∈ Z2

q : d1(P, c) =
e+1} ⊆ ⋃4

i=1Bi. We consider the partition {P ∈ Z2
q : d1(P, c) = e+1} = c+⋃4

i=1 `i where
`1 = {(x, e+1−x) : 0 ≤ x ≤ e}, `2 = {(y−(e+1), y) : 0 ≤ y ≤ e}, `3 = {(x,−x−(e+1)) :
0 ≤ x ≤ e} and `4 = {(y + (e + 1), y) : 0 ≤ y ≤ e}. By direct calculation we can check
that c + `i ⊆ Bi for 1 ≤ i ≤ 4, thus ω(c) = {±ν1,±ν2}. To the case c1 = c − ν1 we can
use a similar argument obtaining ω(c) = {±ν ′1,±ν ′2}. Finally, to prove that ω(c) does not
depend on c it suffices to prove that for adjacent codewords c, c′ ∈ C (i.e. for codewords
such that their respective balls are adjacent) we have ω(c) = ω(c′). Since c and c′ are
adjacent codewords we have that 0 ∈ ω(c) + ω(c′). On the contrary, if ω(c) 6= ω(c′) then
0 6∈ ω(c) + ω(c′) = {±ν1 ± ν1,±ν2 ± ν2} (since q ≥ 2e + 1) which is a contradiction, so
ω(c) = ω(c′).
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Corollary 4.2.15. Every two-dimensional q-ary perfect code C in the Lee metric is Lee-
standard. With the same notation used in the previous lemma, if C is of Lee-type 1 then
ω(c) = {±ν1,±ν2} for all c ∈ C and if C is of Lee type 2 then ω(c) = {±ν ′1,±ν ′2} for all
c ∈ C.

Proposition 4.2.16. If PL1(2, e, q) 6= ∅ then q = hqe for some h ∈ Z+.

Proof. Let ν = ν1 if C is of Lee-type 1 or ν = ν ′1 if C is of Lee-type 2. Since C + ν = C,
then q = #νZ | #C, so by the sphere packing condition qe | q.

Theorem 4.2.17. Let PL1(2, e, q) be the set of all (2, e, q)-perfect codes in the Lee metric
(linear and non-linear) and ν1 = (e, e + 1), ν2 = (−(e + 1), e), η1 = (1,−(2e + 1)), η2 =
(0, qe) be vectors in Z2

q where qe = 2e2 +2e+1. For q = hqe we denote by De,h = ν1Z+ν2Z
and D′e,h = ν ′1Z + ν ′2Z where (x, y)′ = (y, x).
1) (Existence) PL1(2, e, q) 6= ∅ ⇔ q = hqe for some positive integer h.
2) (Description) Let q = hqe. Then, C ∈ PL1(2, e, q) ⇔ C = c + De,h or C = c + D′e,h

for any c ∈ C (in particular C − c is a group).
3) (Structure) If C ∈ PL1(2, e, q) and GC = C − c its associated group (where c ∈ C),
then:

(i) GC is cyclic if and only if q = qe. In this case GC ' Zq with generator ν = (e, e+1)
if GC = De or ν ′ = (e + 1, e) if GC = D′e, where De = De,1 and De′ = D′e,1 are the
codes introduced by Golomb and Welch [GW70].

(ii) If q = hqe with h > 1 then GC ' Zq × Zh. Moreover, GC = η1Z ⊕ η2Z or GC =
η′1Z⊕ η′2Z according to either GC = De,h or GC = D′e,h respectively.

Proof. The existence follows from Corollary 4.2.2 and Proposition 4.2.16. By Corollary
4.2.15 if c ∈ C then c + De,h ⊆ C or c + D′e,h ⊆ C. Since c + De,h and c + D′e,h are
in PL1(2, e, q) (Corollary 4.2.2) then C = c + De,h or C = c + D′e,h which proves the
second part. To prove part 3, we can suppose that C is a linear Lee-type 1 perfect code,

so C = ν1Z + ν2Z. Let A =
 −1 −1
e+ 1 e

. Since A
ν1

ν2

 =
η1

η2

 and det(A) = 1,

we have C = η1Z + η2Z where η1 = (1,−(2e + 1)) and η2 = (0, qe) (in Z2
q). Clearly,

η1Z ∩ η2Z = (0), |η1Z| = q e |η2Z| = q
qe

= h, thus C = η1Z⊕ η2Z ' Zq × Zh. Since h|q it
is clear that C is cyclic if and only if h = 1.

Corollary 4.2.18. There are exactly 2qe = 4e2 +4e+2 perfect codes in PL1(2, e, q) where
q ≡ 0 (mod qe), two of them are linear and the others can be obtained from these two via
translation. The two linear codes can be obtained one from the other via the symmetry
(x, y) 7→ (y, x). Therefore, there is a unique (2, e, q)-perfect code in the Lee metric up to
isometry (including translation).
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Figure 4.5: Non-cyclic perfect Lee-code generated by the vectors (1, 21) and (0, 13) (the
black squares represent the codewords).

Corollary 4.2.19. PL1(2, e, q) contain a cyclic code if and only if q = qe. In this case,
the unique code up to isometry is the cyclic code De = 〈(e, e + 1)〉 ⊆ Z2

q introduced by
Golomb and Welch [GW70].

Corollary 4.2.20. There are non-cyclic perfect codes in the Lee metric (when q = hqe,
h > 1).

Example 4.2.21. If q = 26 and e = 2 we have the perfect code C = (1, 21)Z26+(0, 13)Z26

in Z26 × Z26 (see Figure 4.5).

Example 4.2.22. Since 1105 = 5·13·17, there are exactly 5 perfect codes in the Lee metric
in Z2

1105 up to translation and change of coordinate (that is, application of σ(x, y) = (y, x)).
One of them is cyclic and the others are non-cyclic. These codes are given by:

• C1 = (1,−3)Z1105 ⊕ (0, 5)Z1105 (e = 1),

• C2 = (1,−5)Z1105 ⊕ (0, 13)Z1105 (e = 2),

• C3 = (1,−13)Z1105 ⊕ (0, 85)Z1105 (e = 6),

• C4 = (1,−21)Z1105 ⊕ (0, 221)Z1105 (e = 10),
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• C5 = (23, 24)Z1105 (e = 23).

4.2.2 Chebyshev two-dimensional perfect codes

In this part we study two-dimensional perfect codes with respect to the Cheby-
shev metric. First we describe the set of all (non-necessarily linear) (2, e, q)-perfect codes
and how they can be obtained from a one-dimensional perfect code using horizontal and
vertical construction. In particular we obtain that every two-dimensional perfect code is
standard, which is not true in higher dimensions. This result in dimension 2 is known and
is mentioned in [Kis13], but we found no formal proof for it in the literature. The proof
presented here illustrates well the coding theory approach to be used in further results.
Then we focus on the linear case providing generator matrices for perfect codes and de-
scribing isometry classes and isomorphism classes of the (2, e, q)-perfect codes. In this part
we use “perfect code” as synonym of “perfect code with respect to the Chebyshev met-
ric”. The following result (whose proof is straightforward) characterizes the parameters
for which there exists perfect codes with these parameters.

Proposition 4.2.23. A necessary and sufficient condition for the existence of an n-
dimensional q-ary e-perfect code in the Chebyshev metric is that q = (2e + 1)t for some
integer t > 1. Moreover, if this condition is satisfied there exist a code in LPL∞(n, q, e).

Corollary 4.2.24. There exists a non trivial perfect code over Zq if and only if q is
neither a power of 2 nor a prime number.

These results led us restrict to the case q = (2e + 1)t where e ≥ 0 and t > 1
are integers and we will maintain this notation while we deal with the Chebyshev metric.

Linear and non-linear two-dimensional perfect codes in the Chebyshev metric

It is immediate to see that the only perfect codes C in PL∞(1, e, q) are of the
form a+ (2e+ 1)Zq where q = (2e+ 1)t. If we fix a map h : Zt → Zq we can construct a
two-dimensional q-ary perfect code as follows:
• (Horizontal construction) C1(a, h) = {(h(k) + (2e+ 1)s, a+ (2e+ 1)k) : k, s ∈ Zt}.
• (Vertical construction) C2(a, h) = {(a+ (2e+ 1)k, h(k) + (2e+ 1)s) : k, s ∈ Zt}.

It is not difficult to see that the above construction gives us (2, e, q)-codes of
cardinality t2 and minimum distance d ≥ 2e+ 1 from which is easy to deduce perfection.
In fact we obtain (2, e, q)-perfect codes of type 1 (if horizontal construction is used) or
of type 2 (if vertical construction is used). Moreover, every two-dimensional perfect code
can be obtained in this way as we will see next.



43

The following geometric lemma is an analogous of the slingshot Lemma (Lemma
4.2.7) and it is used in a similar way to prove the next proposition.

Lemma 4.2.25. Let πi : Znq → Zq be the canonical projection (i.e. π(x1, . . . , xn) = xi),
C ∈ PL∞(n, e, q), fC be its error-correcting function and x be an element of Znq .

• If fC(x) 6= fC(x− ei) then πi ◦ fC(x) = πi(x) + e · ei.

• If fC(x) 6= fC(x+ ei) then πi ◦ fC(x) = πi(x)− e · ei.

Proof. Let fC(x) = c and d be the Lee metric in Zq. We denote by xi = πi(x) and ci =
πi(c). The equation fC(x) = c implies that Mi = max{d(xj, cj) : 1 ≤ j ≤ n, j 6= i} ≤ e

and d(xi, ci) ≤ e. But fC(x− ei) 6= c implies that d(x− ei, c) = max{Mi, d(xi − 1, ci)} ≥
e+ 1, therefore d(xi − 1, ci) ≥ e+ 1. We have ‖(ci − xi)‖ ≤ e and ‖(ci − xi)− 1‖ ≥ e+ 1
then ci − xi = e and ci = xi + e. The other case can be obtained from this considering
the isometry ηi of Znq given by ηi(x1, . . . , xi, . . . , xn) = (x1, . . . ,−xi, . . . , xn).

Lemma 4.2.26. If C ∈ PL∞(2, e, q) verifies (2e+ 1)Zq × {0} ⊆ C then C is a standard
code of type 1.

Proof. Assume, on the contrary, that there is a codeword c = (c1, c2) ∈ C such that
c + (2e + 1)e1 = (c1 + 2e + 1, c2) 6∈ C, and we take c with this property such that c2

is minimum. We claim that c2 ≥ 2e + 1. Indeed, if 0 ≤ c2 < 2e + 1 and we express
c1 = (2e+ 1)k + r with |r| ≤ e, then ((2e+ 1)k, e) belongs to both balls B∞((2e+ 1)k, e)
and B∞(c, e) which is a contradiction, so c2 ≥ 2e+1. We consider now p = (c1, c2−(e+1)),
then fC(p+ e2) = c 6= fC(p) and by Lemma 4.2.25 we have fC(p) = (a, c2 − (2e+ 1)) for
some a ∈ Zq. We observe that c2− (2e+ 1) ≥ 0 and by the minimality of c2 we have that
(a + (2e + 1)k, c2 − (2e + 1)) ∈ C for 0 ≤ k < t. Consider now p′ = (c1 + e + 1, c2 − e)
and express c1 + e + 1 − a = (2e + 1)v + w with v, w ∈ Zq and |w| ≤ e. Clearly,
fC(p′− e1) = c 6= fC(p′) and fC(p′− e2) = (a+ (2e+ 1)v, c2− (2e+ 1)) 6= fC(p′), thus, by
Lemma 4.2.25 we have fC(p′) = p′ + (e, e) = c+ (2e+ 1)e1 which is a contradiction.

Proposition 4.2.27. Every two-dimensional perfect code in the Chebyshev metric is stan-
dard.

Proof. Let C ∈ PL∞(2, e, q) with q = (2e + 1)t and t > 1 an integer. Let we suppose
that C is not of type 2, so there exists a codeword c ∈ C such that c + (2e + 1)e2 6∈ C.
Composing with a translation, if necessary, we can assume c = 0. Consider p = (0, e+ 1),
by Lemma 4.2.25 we have fC(p) = (a, 2e + 1) with |a| ≤ e and a 6= 0. Composing with
the isometry (x, y) 7→ (−x, y), if necessary, we can assume 0 < a ≤ e. We consider the
following statement: {(ph = (2e + 1)h, 2e + 1), qh = (a + (2e + 1)h, 2e + 1)} ⊆ C, which
is valid for h = 0 (from above). Assume that this property holds for a fixed h, 0 ≤ h < t

and consider p = ((2e + 1)h + e + 1, e). This point verifies fC(p − e1) = ph 6= fC(p)
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and fC(p + e2) = qh 6= fC(p), so by Lemma 4.2.25 we have fC(p) = p + (e,−e) =
((2e + 1)(h + 1), 0) = ph+1 ∈ C. Now consider p′ = (a + (2e + 1)h + e + 1, e + 1) which
verifies fC(p′ − e1) = qh 6= fC(p′) and fC(p′ − e2) = ph+1 6= fC(p′), so by Lemma 4.2.25
we have fC(p′) = p′ + (e, e) = (a + (2e + 1)(h + 1), 2e + 1) = qh+1 ∈ C. By induction we
have that (2e+ 1)Zq × {0} ⊆ C and by Lemma 4.2.26 our code C is standard.

Corollary 4.2.28. Every two-dimensional perfect code C in the Chebyshev metric is of
the form C = C1(a, h) or C = C2(a, h) for some a ∈ Zq and some function h : Zt → Zq.

Remark 4.2.29. Proposition 4.2.27 cannot be generalized to higher dimensions. For ex-
ample the code C = {(0, 0, 0), (5, 0, 0), (1, 0, 5), (6, 0, 5), (1, 5, 0), (6, 5, 1), (1, 5, 5), (6, 5, 6)} ∈
PL∞(3, 2, 10) is a three-dimensional non-standard perfect code.

Corollary 4.2.30. The number of (2, e, q)-perfect codes is (2e+ 1)2 (2(2e+ 1)t − 1).

Proof. We consider the set L = PL∞(2, e, q), L0 = {C ∈ L : 0 ∈ C} and L0
i = {C ∈

L0 : C is of type i} for i = 1, 2. The map L � L0 given by C 7→ C − fC(0) is (2e + 1)2

to 1, so #L = (2e + 1)2#L0. By Proposition 4.2.27, L0 = L0
1 ∪ L0

2 and considering
the involution L0

1 → L0
2 given by C 7→ θ(C) where θ(x, y) = (y, x), which has exactly

one fixed point (given by (2e + 1)Znq ) we have #L0 = 2#L0
2 − 1. Finally, codes in L0

2

are univocally determined by h : Zt → Z2e+1, thus #L0
2 = (2e + 1)t and so #L =

(2e+ 1)2 (2(2e+ 1)t − 1).

Generator matrices and admissible structures for two-dimensional perfect
codes in the Chebyshev metric

In this part we provide generator matrices for linear perfect codes and we
describe all two-dimensional cyclic perfect codes in the Chebyshev metric. A description
of which group structure can be represented by two-dimensional linear perfect codes is
given.

Notation 4.2.31. We denote by LPL∞(2, e, q)o the set of (2, e, q)-perfect codes of type 2.

Remark 4.2.32. By Proposition 4.2.27, every two-dimensional perfect code is of type 1
or is of type 2. In addition, the isometry π(x, y) = (y, x) induces a correspondence between
the codes of type 1 and codes of type 2. So, without loss of generality we can restrict our
study to type 2 perfect codes.

Theorem 4.2.33. Let q = (2e+ 1)t with t > 1, d1 = gcd(2e+ 1, t) and h1 = 2e+1
d1

. Every

integer matrix of the form M =
2e+ 1 kh1

0 2e+ 1

 with k ∈ Z is the generator matrix

of some type 2 perfect code C ∈ LPL∞(2, e, q)o. Conversely, every type 2 perfect code
C ∈ LPL∞(2, e, q)o has a generator matrix of this form.
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Proof. Let M =
2e+ 1 kh1

0 2e+ 1

 with k ∈ Z. Since qM−1 =
t −k t

d1

0 t

 has integer

coefficient, M is the generator matrix of the q-ary code C = 〈c1, c2〉 ⊆ Z2
q where c1 =

(2e+1, kh1) and c2 = (0, 2e+1). Every codeword is of the form c = xc1+yc2 with x, y ∈ Z.
Since ||c||∞ = max{|(2e+ 1)x|1, |kh1x+ (2e+ 1)y|1}, the inequality ||c||∞ < 2e+1 implies
c = 0, thus the minimum distance of C is dist(C) ≥ 2e+ 1. In addition, the cardinality of
C is #C = q2/ det(M) = t2, so by the sphere packing condition the code C is perfect with
packing radius e and it is of type 2 because is linear and c2 = (2e + 1)e2 ∈ C. To prove
the converse we consider a code C ∈ LPL∞(2, e, q)o, since C is linear then 0 ∈ C and
C = C2(0, h) for some h : Zt → Zq. In particular, C has two codewords c1 = (2e+ 1, y1)
and c2 = (0, 2e+ 1) where y1 ∈ Z is such that y1 = h(1) ∈ Zq. Let ty1 = (2e + 1)s + r

with s, r ∈ Z and 0 ≤ r < 2e+ 1. By linearity tc1 − sc2 = (0, r) ∈ C which has minimum
distance 2e + 1, so r = 0 and y1 = h1k for some integer k. The code C ′ generated by c1

and c2 has generator matrix M =
2e+ 1 kh1

0 2e+ 1

, therefore by the first part, the code

C ′ generated by c1 and c2 is a (2, e, q)-perfect code which is contained in C, so C ′ = C.

Notation 4.2.34. We denote by LCq(e, k) the q-ary perfect code whose generator matrix

is given by
2e+ 1 kh1

0 2e+ 1

.
Remark 4.2.35. Replacing the first row by the sum of that row and an integer multiple of
the second row if necessary, we can always suppose that the number k in the statement of
Theorem 4.2.33 verify 0 ≤ k < d1. In fact, it is possible replace k by any integer congruent
to k modulo d1 with this elementary operation in rows, so LCq(e, k) = LCq(e, k0) if k ≡ k0

(mod d1).

Now we approach the problem of what group isomorphism classes are repre-
sented by (2, e, q)-perfect codes (admissible structures). By the sphere packing condition,
if C ∈ LPL∞(2, e, q) then #C = t2. The structure theorem for finitely generated abealian
groups [Fra13, p. 338] in this case, take the following spacial form.

Lemma 4.2.36. If C is an abelian group of order t2 then there is an unique divisor d|t
such that C ' Zt/d × Zdt.

The question of what isomorphism classes are represented by two-dimensional
perfect codes in the Chebyshev metric is equivalent to determining for what values of d|t
there exists C ∈ LPL∞(2, e, q) such that C ' Zt/d × Zdt.

Lemma 4.2.37. Let q = (2e + 1)t, d1 = gcd(2e + 1, t), h1 = 2e+1
d1
, d2 = gcd(d1, k), h2 =

d1
d2
, k1 = k

d2
and k′ ∈ Z such that k1k ≡ 1 (mod h2). Then N =

(2e+ 1)h2 0
(2e+ 1)k′ h1d2

 is a

generator matrix for LCq(e, k).
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Proof. Let M be the generator matrix for LCq(e, k) given in Theorem 4.2.33 and U =h2 −k1

k′ 1−k1k′

h2

. Since det(U) = 1 and UM = N we have that N is also a generator matrix

for LCq(e, k).

Theorem 4.2.38. Let q = (2e+ 1)t, k be an integer and h2 = gcd(2e+1,t)
gcd(2e+1,t,k) .

(i) LCq(e, k) ' Zt/h2 × Zth2 (isomorphic as groups).

(ii) There exists C ∈ LPL∞(2, e, q) such that C ' Zt/d ×Ztd if and only if d | gcd(2e+
1, t).

Proof. To prove (i) we consider the homomorphism T : Z2 → Z2
q given by T (x) = xN ,

where N is as in Lemma 4.2.37. We have that ker(T ) = t
h2
Z× th2Z and by the referred

lemma Im(T ) = LCq(e, k), so (i) follows from the First group isomorphism theorem
[Fra13, p. 307]. To prove (ii) we observe that for every k we have h2 | gcd(2e + 1, t) and
for d | d1 where d1 = gcd(2e+ 1, t), then LCq(e, d1

d
) ' Zt/d × Ztd.

Corollary 4.2.39. There exists a two-dimensional perfect code C ' Za × Zb and a | b if
and only if ab is a perfect square and b/a is an odd number.

Proof. (⇒) By Theorems 4.2.33 and 4.2.38 if Za×Zb ' C with a|b for some perfect code
C, then there exists integers t, h2 and e such that a = t

h2
, b = th2 and h2 | 2e + 1 (in

particular h2 is odd), thus ab = t2 is a perfect square and b
a

= h2
2 is odd.

(⇐) Let ab = t2 and b = as with s odd. Since a2s = t2 we have s = (2e + 1)2 and
(2e+1)a = t. Defining q = (2e+1)t, by Theorem 4.2.38 we have LCq(e, 1) ' Za×Zb.

Corollary 4.2.40. Let C ∈ LPL∞(2, e, q) with q = (2e + 1)t. Then, C ' Zt × Zt ⇔ C

is the cartesian code C = (2e+ 1)Z2
q.

Proof. By Theorem 4.2.33 and Remark 4.2.35 every code is of the form C = LCq(e, k) for
some k with 0 ≤ k < d1 and by Theorem 4.2.38 we have C ' Zt × Zt ⇔ h2 = 1 ⇔ d1 =
d2 ⇔ d1 | k ⇔ 2e+ 1 | kh1 ⇔ k = 0⇔ C = (2e+ 1)Z2

q.

Corollary 4.2.41. There exists a linear two-dimensional q-ary perfect code C that is
non-cartesian if and only if q = p2a where p is an odd prime number and a is a positive
integer.

Proof. By Theorem 4.2.38 part (ii), there exists a q-ary non-cartesian perfect code if and
only if q = (2e + 1)t for some integers e and t such that gcd(2e + 1, t) > 1. This last
condition is equivalent to 2e+ 1 = pm and t = pn for some odd prime p and m,n ∈ Z+,
thus q = p2a where p is an odd prime and a is a positive integer.

Example 4.2.42. The first value of q for which there exists a two-dimensional q-ary
perfect code that is neither cartesian nor cyclic is for q = 32 · 2. An example of such code
has generators {(0, 9), (1, 3)} ⊆ Z2

18, see Figure 4.6.
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Figure 4.6: For q = 32 · 2, the perfect code C = 〈(0, 9), (1, 3)〉 ⊆ Z2
18 is isomorphic to

Z2 × Z18.

Corollary 4.2.43. There exists a two-dimensional cyclic q-ary perfect code if and only if
q = p2a where p is an odd prime number and a is an odd positive integer.

Proof. By Theorem 4.2.38 part (ii), there exists a q-ary cyclic perfect code if and only
if q = (2e + 1)t for some integers e and t such that gcd(2e + 1, t) = t > 1. This last
condition is equivalent to 2e + 1 = mt for some odd integer m, thus q = mt2 where a is
an odd integer and t > 1 which is equivalent to q = ap2 where a is an odd integer and p
is an odd prime number.

Corollary 4.2.44. Let q = (2e + 1)t. There exists a cyclic code in LPL∞(2, e, q) if and
only if t | 2e+ 1. In this case LCq(e, k) is cyclic if and only if gcd(k, t) = 1.

Proof. By Theorem 4.2.38 part (ii), there exists a cyclic code in LPL∞(2, e, q) if and only
if gcd(2e + 1, t) = t if and only if t | 2e + 1. In this case, by Theorem 4.2.38 part (i), we
have LPq(e, k) ≡ Zt2 ⇔ h2 = t⇔ and gcd(2e+ 1, t, k) = gcd(t, k) = 1.

Isometry and isomorphism classes of two-dimensional perfect codes in the
Chebyshev metric

Since the cardinality of a perfect q-ary code is determined by its packing radius,
it suffices to classify isometry classes and isomorphism classes in the set LPL∞(2, e, q) for
a fixed value of e. Moreover, since every (2, e, q)-perfect code is isometric to an type 2
perfect code we can restrict to LPL∞(2, e, q)o. Our main result here is a parametrization
of the set LPL∞(2, e, q)o by the ring Zd1 (where d1 = gcd(2e + 1, t)) in such a way that
isometry classes and isomorphism classes correspond to certain generalized cosets.
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Lemma 4.2.45. There exists u ∈ Z∗d such that a ≡ ub (mod d)⇔ gcd(a, d) = gcd(b, d).

Proof. If a ≡ ub (mod d) with gcd(u, d) = 1 clearly gcd(a, d) = gcd(b.d). Now suppose
that gcd(a, d) = gcd(b, d) and consider d = pα1

1 · · · pαtt q
β1
1 · · · qβss and a = pγ1

1 · · · p
γt
t q

δ1
1 · · · qδss

the factorial decomposition of d and a where αi > γi ≥ 0 for 1 ≤ i ≤ t and 0 < βj ≤
δj for 1 ≤ j ≤ s. Since gcd(a, d) = gcd(b, d) we have pγii ‖ b (since min{νpi(a) =
γi, αi} = min{νpi(b), αi}). Let ai = a

p
γi
i

and bi = b
p
γi
i

for i = 1, 2, . . . , t. The congruence
a ≡ bx (mod pαii ) is equivalent to ai ≡ bix (mod pαi−γii ) which is equivalent to x ≡ aici

(mod pαi−γii ) where bici ≡ 1 (mod pαi−γii ) (we observe that p - bi). Consider the system
of congruences 

x ≡ a1c1 (mod pα1−γ1
1 )

x ≡ a2c2 (mod pα2−γ2
2 )

...
x ≡ atct (mod pαt−γtt )
x ≡ 1 (mod q1q2 . . . qs)

By the Chinese remainder theorem there exists a solution u ∈ Z for this system. Since
pi - aici and αi > γi we have gcd(u, d) = 1. For j, 1 ≤ j ≤ s we have qδjj | b (since
gcd(a, d) = gcd(b.d)) and therefore a ≡ bu (mod q

γj
j ) because both sides are congruent to

0 modulo qγjj . By the Chinese remainder theorem again, we have a ≡ bu (mod d).

Theorem 4.2.46. Let q = (2e + 1)t, d1 = gcd(2e + 1, t) and h1 = 2e+1
d1

. We have the
parametrization (bijection):

ψ : Zd1 → LPL∞(2, e, q)o

k + d1Z 7→ LCq(e, k),

which induces the parametrizations:

ψG : Zd1

{1,−1} → LPL∞(2, e, q)o/G

k · {1,−1} 7→ [ψ(k)]G,

and
ψA : Zd1

Z∗d1

→ LPL∞(2, e, q)o/A

k · Z∗d1 7→ [ψ(k)]A,

Proof. By Theorem 4.2.33 and Remark 4.2.35 the map ψ is well defined and is a surjection,
so it remains to prove that LCq(e, k1) = LCq(e, k2)⇔ k1 ≡ k2 (mod d1). Since both codes
have the same cardinality t2, we have

LCq(e, k1) = LCq(e, k2)⇔ LCq(e, k1) ⊆ LCq(e, k2)⇔ (h1k1, 2e+ 1) ∈ LCq(e, k2)
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⇔ ∃x, y,∈ Z :
 (2e+ 1)x+ h1k2y ≡ h1k1 (mod q)

(2e+ 1)y ≡ 2e+ 1 (mod q)

⇔ ∃x, y,∈ Z :
 y ≡ 1 (mod t)
d1x+ k2y ≡ k1 (mod td1)

⇒ ∃y ∈ Z :
 y ≡ 1 (mod d1)
k2y ≡ k1 (mod d1)

which implies k1 ≡ k2 (mod d1).

Let ηi : Z2
q → Z2

q for i = 1, 2 given by η1(x, y) = (−x, y) and η2(x, y) = (x,−y).
We have that η1(LCq(e, k)) = 〈(−(2e+ 1), 0), (−kh1, 2e+ 1)〉 = LCq(e,−k) and the same
is valid for η2, thus [ψ(k)]G = {ψ(−k), ψ(k)} and so ψG is well defined and is a bijection.
By Theorem 4.2.38 we have ψ(k) = LCq(e, k) ' Zt/h2×Zth2 where h2 = d1

gcd(d1,k) , therefore
[ψ(k1)]A = [ψ(k2)]A ⇔ gcd(k1, d1) = gcd(k2, d1) and so k1 ≡ uk2 (mod d1) for some u ∈ Z
with gcd(u, d1) = 1 (Lemma 4.2.45), which is equivalent to k1Z∗d1 = k2Z∗d1 .

Example 4.2.47. Let p > 2 be a prime number and we take q = p2 and e ≥ 1 such
that 2e + 1 = p. In this case d1 = p and we have exactly p codes in LPL∞(2, p, p2)
given by LCp2(p, k) for 0 ≤ k < p, where the code LCp2(p, k) has generator matrix Mk = p 0
k p

 ∈ M2×2(Zp2). There exist exactly p+1
2 of such perfect codes up to isometry,

given by LCp2(p, k) for 0 ≤ k ≤ p−1
2 . Since p is prime, we have Zp = {0} ] Z∗p, so

there exist exactly 2 perfect codes in LPL∞(2, p2, p) up to isomorphism, one of which is
the cartesian code (which corresponds to k = 0) and the other is LCp2(p, 1) (which is
isomorphic to LCp2(p, k) for 1 < k < p).

Corollary 4.2.48. The set {LCq(e, k) : 0 ≤ k ≤ d1−1
2 } is a set of representative of

LPL∞(2, e, q)/G and {LCq(e, k) : k | d1} is a set of representative of LPL∞(2, e, q)/A.

Corollary 4.2.49. There exist exactly d1 = gcd(2e + 1, t) codes in LPL∞(2, e, q) where
q = (2e+1)t. There exist exactly d1+1

2 of such codes up to isometry and there exist exactly
σ0(d1) of such codes up to isomorphism where σ0, as usual, denotes the number-of-divisors
function.

Proof. The first two assertion are immediate. For the third assertion we observe that
Zd1 = ⊎

d|d1 dZ∗d1 and use Theorem 4.2.46.

4.2.3 Some remarks on p-Lee two-dimensional perfect codes

In what follows we point out some similarities and differences between perfect
codes in the Lee metric (p = 1) and in the Chebyshev metric (p =∞) and also comment
on connections with perfect p-Lee codes for other values of p.

On the one hand the characterization of the values (2, e, q) for which there
exist a perfect code (admissible parameters) is trivial in the case of the Chebyshev metric



50

but is not so trivial in the case of the Lee metric. On the other hand, for a given admis-
sible parameter (2, e, q) there is only one perfect code up to symmetry in the Lee metric
while in the case of Chebyshev codes this number can be arbitrary large (depend on the
choice of e and q) even if we are restricted to linear codes. For this reason the problem
of determining the isometry and isomorphism classes only have sense in the second case.
One remarkable similarity in both cases is that it is possible to define the type of a code,
that is, there exists exactly two vector v1(e) = (a, b) ∈ Zn and v2(e) = (b, a) ∈ Zn such
that if C is a (2, e, q)-perfect code then v1 + C = C or v2 + C = C. This property plays
an important role in the description of the perfect q-ary code with a given packing radius
e. Another remarkable property is related to the ω-set of codewords (Definition 4.2.13).
For general p, we say that two p-Lee balls Bp(c, e) and Bp(c′, e) are adjacent if they are
disjoint and there exists x ∈ Bp(c, e) and y ∈ Bp(c′, e) such that dp(x, y) = 1. Then, for
a given codeword c ∈ C we define its ω-set with respect to the p-metric by the property
v ∈ ωp(c) ⇔ Bp(c + v, e) is adjacent to Bp(c, e) and c + v ∈ C. In the case of Lee and
Chebyshev metrics, we have that for every perfect code ⋂c∈C ωp(c) 6= ∅, which geometri-
cally means that these codes present certain regularity.

In [CJC+15], the authors prove that every two-dimensional perfect code C in
the 2-Lee metric, has packing radius e ∈ {1,

√
2, 2,
√

8} and for each of these value either
C is a perfect code in the Lee metric or C is a perfect code in the Chebyshev metric.
Moreover, we have:

• PL2(2, 1, q) = PL1(2, 1, q),

• PL2(2,
√

2, q) = PL∞(2, 1, q),

• PL2(2, 2, q) = PL1(2, 2, q),

• PL2(2,
√

8, q) = PL∞(2, 2, q).

Using our results on Lee perfect codes and Chebyshev perfect codes we can
describe completely two-dimensional perfect codes in the 2-Lee metric. In fact, checking
for several values of e and p, we did not find other p-Lee ball different from the Lee-ball
and Chebyshev-ball capable of tiling the plane. We also observe the inclusion of p-Lee
balls over Z2:

B1(0, [e]) = B1(0, e) ⊆ Bp(0, e) ⊆ B∞(0, e) = B∞(0, [e])

and we make the following conjecture.

Conjecture 4.2.50. For every p ≥ 1,e ≥ 1 and q ≥ 2[e] + 1, if PLp(2.e, q) 6= ∅ then
either PLp(2, e, q) = PL1(2, [e], q) or PL∞(2, [e], q).
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4.3 Some constructions for the Chebyshev metric

In this section we give some constructions of perfect codes in the maximum
metric from perfect codes in smaller dimensions. We also present a section construction
which plays an important role in the next section. In this section and in the follow-
ing section of this chapter we deal only with perfect codes in the Chebyshev metric, and
use d to denote the Chebyshev metric in Znq and B for the ball with respect to this metric.

The simplest way to obtain perfect codes is using cartesian product. Using
the sphere packing condition we obtain the following proposition.

Proposition 4.3.1 (Cartesian product construction). If C1 ∈ PL∞(n1, e, q) and C2 ∈
PL∞(n1, e, q) then C1 × C2 ∈ PL∞(n1 + n2, e, q). This construction preserves linearity.

Proof. Let c11, c12 ∈ C1 and c21, c22 ∈ C2, we observe that

d∞((c11, c21), (c12, c22)) = max{d∞(c11, c12), d∞(c21, c22)}.

If (c11, c21) 6= (c12, c22) then c11 6= c12 or c21 6= c22, thus d∞(c11, c12) ≥ 2e+1 or d∞(c12, c22)
≥ 2e+1 (since C1 and C2 have packing radius e), therefore d∞((c11, c21), (c12, c22)) ≥ 2e+1
and we conclude that the packing radius of C1×C2 is at least e. Calculating the cardinality
C1×C2 = #C1 ·#C2 = tn1 · tn2 = tn1+n2 , where t is such that q = (2e+1)t. By the sphere
packing condition we conclude that the packing radius of C1 × C2 is e and that C1 × C2

is a perfect code. The fact that this construction preserve linearity is clear.

Corollary 4.3.2. There exists a linear non-cartesian n-dimensional q-ary perfect code if
and only if q = p2a where p is an odd prime number and a is a positive integer.

Proof. By Corollary 4.2.41, there exists a perfect code C ∈ LPL∞(2, e, q) for some e
that is neither trivial nor standard cartesian. By Proposition 4.3.1, C × (2e + 1)Zn−2

q ∈
LPL∞(n, e, q) is neither trivial nor standard cartesian.

Corollary 4.3.3. If q = (2e+ 1)t and d1, d2, . . . , dk are divisors (not necessarily distinct)
of gcd(2e+ 1, t), there exists a code C ∈ LPL∞(2k, e, q) such that

C ' Z t
d1
× Z t

d2
× . . .Z t

dk

× Zd1t × Zd2t × . . .Zdkt

and a code C ∈ LPL∞(2k + 1, e, q) such that

C ' Z t
d1
× Z t

d2
× . . .Z t

dk

× Zt × Zd1t × Zd2t × . . .Zdkt.

Proof. By Theorem 4.2.38, we have a code Ci ∈ LPL∞(2, e, q) such that Ci ' Z t
di

× Zdi
for 1 ≤ i ≤ k and the code (2e + 1)Zq ∈ LPL∞(1, e, q) is isomorphic to Zt. So we can
construct a perfect code as claimed using the above construction.
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Remark 4.3.4. There are others linear perfect codes whose group structure is not of the
form given in Corollary 4.3.3 (for example those in Corollary 4.3.8).

The next construction is exclusively for linear codes, this allows us to construct
a linear perfect q-ary code from other codes of smaller dimension.

Notation 4.3.5. If H is a subgroup of an abelian group G and t ∈ Z+, we denote by
t−1H = {g ∈ G : tg ∈ H}.

Remark 4.3.6. With the notation above, t−1H is a subgroup of G that contain H.

Proposition 4.3.7 (Linear construction). If C ∈ LPL∞(n, e, q) with q = (2e + 1)t and
x ∈ t−1C, then C̃ = C × {0}+ (x, 2e+ 1)Z ∈ LPL∞(n+ 1, e, q).

Proof. Since tx ∈ C every codeword v ∈ C̃ can be written as v = (c+ xk, (2e+ 1)k) with
c ∈ C and 0 ≤ k < t and we have

‖(c+ xk, (2e+ 1)k)‖∞ = max{‖c+ xk‖∞, ‖(2e+ 1)k‖∞}. (4.3.1)

If k = 0, then ‖(c + xk, (2e + 1)k)‖∞ = ‖c‖∞ ≥ 2e + 1 if c 6= 0 (since C has packing
radius e). If 0 < k < t, then ‖(2e + 1)k‖∞ ≥ 2e + 1 and by Equation (4.3.1) we have
‖(c + xk, (2e + 1)k)‖∞ ≥ 2e + 1. We conclude that C has packing radius at least e. We
want to calculate the cardinality of C, that is

#C = #C × {0} ·#(x, 2e+ 1)Z
#C × {0} ∩ (x, 2e+ 1)Z . (4.3.2)

We have #C×{0} = #C = tn. Let θ the additive order of tx in Znq (i.e. the least positive
integer θ such that θtx = 0). It is straightforward to check that the order of (x, 2e + 1)
in Zn+1

q is tθ and that C × {0} ∩ (x, 2e+ 1)Z = (tx, 0)Z. Using Equation (4.3.2) we have
#C = tn·tθ

θ
= tn+1 and by the sphere packing condition the code C̃ ⊆ Zn+1

q is perfect with
packing radius e.

Corollary 4.3.8. If q = (2e+ 1)t with tn−1 | 2e+ 1 and n ≥ 1, then the q-ary cyclic code

Cn,e,q =
〈(2e+ 1

tn−1 ,
2e+ 1
tn−2 , . . . ,

2e+ 1
t

, 2e+ 1
)〉
∈ LPL∞(n, e, q).

Proof. We denote by pn =
(

2e+1
tn−1 ,

2e+1
tn−2 , . . . ,

2e+1
t
, 2e+ 1

)
∈ Znq and proceed by induction.

For n = 1 it is clear. If Cn,e,q ∈ LPL∞(n, e, q) holds for some n ≥ 1, we apply the
linear construction with x =

(
2e+1
tn
, 2e+1
tn−2 , . . . ,

2e+1
t

)
. Since tx = pn ∈ Cn,e,q then C̃ =

〈(pn, 0), (x, 2e + 1) = pn+1〉 ∈ LPL∞(n + 1, e, q). We observe that tpn+1 = (pn, 0) (since
(2e+ 1)t ≡ 0 (mod q)), so C̃ = 〈pn+1〉.

In particular, if 2e + 1 = tn−1 we obtain the following family of cyclic perfect
codes.
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Corollary 4.3.9. If q = tn where t is an odd number, then the q-ary code C = 〈(1, t, t2,
. . . , tn−1)〉 ∈ LPL∞(n, e, q), for the packing radius e = (tn−1 − 1)/2.

Proposition 4.3.10. Let q = (2e + 1)t. There exists a cyclic code in LPL∞(n, e, q) if
and only if tn−1 | 2e+ 1.

Proof. If C ∈ LPL∞(n, e, q) is cyclic, there exists c ∈ C with order tn = |C|. Since qc = 0
we have tn | q, and so tn−1 | 2e+ 1. The converse follows from Corollary 4.3.8.

The next construction generalize horizontal and vertical construction for two-
dimensional perfect code in the maximum metric presented in the previous section.

Proposition 4.3.11 (Non linear construction). Let C ∈ PL∞(n, e, q) and h : C → Zq
be a map (called height function). If Ĉ = {(c, h(c) + (2e + 1)k) : c ∈ C, k ∈ Z}, then
Ĉ ∈ PL∞(n+ 1, e, q).

Proof. Since (2e+ 1)t = q we have #Ĉ = #C · t = tn+1, thus it suffices to prove that the
minimum distance of Ĉ is at least 2e+ 1. Let ĉi = (ci, h(ci) + (2e+ 1)ki) ∈ Ĉ with ci ∈ C
for i = 1, 2 and suppose that ‖ ĉ1 − ĉ2 ‖∞< 2e+ 1. The relation

‖ ĉ1 − ĉ2 ‖∞=‖ c1 − c2 ‖∞ + ‖ (h(c1)− h(c2)) + (2e+ 1)(k1 − k2) ‖∞

implies ‖ c1 − c2 ‖∞< 2e and ‖ (h(c1) − h(c2)) + (2e + 1)(k1 − k2) ‖∞< 2e + 1 and so
c1 = c2 (since the minimum distance of C is 2e+ 1) and k1 = k2. Therefore the minimum
distance of Ĉ is also 2e+ 1 and Ĉ ∈ PL∞(n+ 1, e, q).

Remark 4.3.12. The non linear construction generalize horizontal and vertical construc-
tions. Indeed, let NL(C, h) be the code obtained from the non-linear construction from
the code C and the height function h. Considering Ca = a+ (2e+ 1) ∈ PL∞(1, e, q) and
ha(k) = h(a+ (2e+ 1)k) then C2(a, ha) = NL(Ca, h) and C1(a, ha) = σNL(Ca, h) where
σ = (1 2).

Remark 4.3.13. If C is linear, it is possible to choose the height function in such a way
that C̃ is also linear, but for arbitrary choice of h this is not true.

Remark 4.3.14. Every code constructed from the non linear construction is standard.
Consequently, there are codes that cannot be constructed from the non-linear construction
(for example the code given in the Remark 4.2.29). On the other hand, by Corollary 2.0.22
we can obtain every linear perfect code using this construction (with good choices for the
height functions) in a finite number of steps.

The next construction allows us to obtain perfect codes in lower dimension
from a given perfect code via cartesian sections. This construction plays a fundamental
role in the next section, when we introduce the concept of ordered code.
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Definition 4.3.15. Let S ⊆ Znq . A perfect code over S is a subset C ⊆ S for which there
exists e ∈ N such that S = ⊎

c∈C (B(c, e) ∩ S). In this case, e is determined by C (by the
packing sphere condition) and is called the packing radius of C.

Notation 4.3.16. Let [n] = {1, 2, . . . , n}. If I ⊆ [n], we denote by HI = {x ∈ Znq :
xi = 0,∀i ∈ I} (these sets are called cartesian subgroups). We define its dimension as
dim(HI) = n−#I.

Definition 4.3.17. Let I ⊆ [n]. The orthogonal projection over HI is the unique mor-

phism πI : Znq → Znq verifying πI(ei) =
 0 ∀i ∈ I
ei ∀i ∈ Ic

.

The following lemma is a direct consequence of this definition.

Lemma 4.3.18. Let I ⊆ [n]. For h ∈ HI and x ∈ Znq we have d(x, h) ≥ d(πI(x), h).

Notation 4.3.19 (Generalized balls). If H ⊆ Znq and e ∈ N, we denote by

B(H, e) = {x ∈ Znq : d(x, h) ≤ e for some h ∈ H} =
⋃
h∈H

B(h, e).

Lemma 4.3.20. If x ∈ Znq and H = HI is a cartesian subgroup, then x ∈ B(H, e) if and
only if |xi|1 ≤ e for all i ∈ I.

Proof. If x ∈ B(H, e) then exists y ∈ H such that d(x, y) ≤ e, so |xi − yi|1 ≤ e for all
i ∈ [n]. In particular |xi − 0|1 ≤ e, for all i ∈ I. Reciprocally, if x ∈ Znq verifies |xi|1 ≤ e

for all i ∈ I we consider the point y ∈ Znq such that yi =
 yi = 0 for i ∈ I
yi = xi for i ∈ Ic

, then

x ∈ B(y, e) ⊆ B(H, e).

Remark 4.3.21. If C ∈ LPL∞(n, e, q) and fC : Znq → C is the associated error correcting
function, then B(H, e) ∩ C = fC(H).

Definition 4.3.22. Let C ⊆ Znq and I ⊆ [n]. The cartesian section of C (respect to the
cartesian subgroup HI) is given by C〈I〉 = πI(B(HI , e) ∩ C) = πI ◦ fC(HI).

We remark that if m = #I, then HI can be identified with Zn−mq , consequently
codes over HI are in correspondence with codes over Zn−mq .

Proposition 4.3.23 (Section construction). If C ∈ PL∞(n, e, q) and I ⊆ [n], then C〈I〉
is a perfect code over HI with packing radius e.

Proof. Let h ∈ HI and c = πI(fC(h)) ∈ C〈I〉. By Lemma 4.3.18 d(c, h) ≤ d(fC(h), h) ≤ e

and we have that h ∈ B(c, e), so H ⊆ ⋃c∈C〈I〉B(c, e). Since H = ⋃
c∈C〈I〉 (B(c, e) ∩H) the
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covering radius of C〈I〉 is at most e (as code over HI). On the other hand, if ĉ1, ĉ2 ∈ C〈I〉
verify d(ĉ1, ĉ2) ≤ 2e and let ĉi = πI(ci) for i = 1, 2 where ci ∈ B(H, e) ∩ C, we have

|c1(i)− c2(i)|1 = |ĉ1(i)− ĉ2(i)|1 ≤ 2e, ∀i ∈ Ic, (4.3.3)

and by Lemma 4.3.20 we have

|c1(i)− c2(i)|1 ≤ |c1(i)|1 + |c2(i)|1 ≤ 2e ∀i ∈ I. (4.3.4)

Equations (4.3.3) and (4.3.4) imply d(c1, c2) ≤ 2e, since C has packing radius e we have
c1 = c2 so ĉ1 = ĉ2. Therefore C〈I〉 has minimum distance d ≥ 2e + 1 and its packing
radius is at least e. We conclude that C〈I〉 is a perfect code in HI with packing radius
e.

In the linear case, under some conditions we can prove that the resulting code
is also linear.

Lemma 4.3.24. If C ∈ LPL∞(n, e, q) is of type i for all i ∈ I, then C〈I〉 is a linear
perfect code of HI with packing radius e. Moreover, C〈I〉 = πI(C).

Proof. We just need to check linearity and for this it suffices to prove that πI(C) = C〈I〉.
It is clear that C〈I〉 = πI(C ∩ B(HI , e)) ⊆ πI(C). For the other inclusion, let c ∈ C

and for each i ∈ I we consider ki ∈ Z such that |c + (2e + 1)ki|1 ≤ e. Since C is of
type i for all i ∈ I, then (2e + 1)kiei ∈ C and also the vector v = ∑

i∈I(2e + 1)kiei ∈ C.
By Lemma 4.3.20 c + v ∈ C ∩ B(HI , e) and (c + v)j = cj for all j ∈ Ic, therefore
πI(c) = πI(c+ v) ∈ πI(B(HI , e) ∩ C) = C〈I〉 and we have πI(C) ⊆ C〈I〉.

4.4 Perfect codes in the Chebyshev metric in arbitrary dimensions

4.4.1 Permutation associated with perfect codes

The type of a code is an important concept when we deal with two-dimensional
perfect codes, in part because every two-dimensional perfect code is isometric to a one of
type 2 which have a generator matrix with a simple form (upper triangular in this case).
This last property is false in greater dimensions so we need a more general concept in
order to describe all perfect codes with given parameters (n, e, q).

Notation 4.4.1. For C ∈ LPL∞(n, e, q) we denote by

τ(C) = max{i : 1 ≤ i ≤ n,C is of type i}.
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Definition 4.4.2. Let C ∈ LPL∞(n, e, q) with q = (2e+ 1)t and t > 1. We consider the
following sequence: ℘1 = τ(C), J1 = {℘1}, C1 = C〈J1〉

℘i+1 = τ(Ci), Ji+1 = Ji ∪ {℘i+1}, Ci+1 = C〈Ji+1〉 for 1 ≤ i < n

The permutation of [n] associated with C is ℘(C) = (℘1, ℘2, . . . , ℘n).

Remark 4.4.3. Minkowski-Hajos Theorem (Theorem 2.0.21) and Lemma 4.3.24 guaran-
tee the existence of ℘i in each step and the linearity of the corresponding code Ci (because
we start from a linear code C). Since (2e+1)ek 6∈ HI for k ∈ I, we have that the numbers
℘i are pairwise different, so ℘ ∈ Sn.

Example 4.4.4. We consider the code C = span


1 3 0 0
0 0 1 3
3 0 1 0
0 0 3 0

 over Z4
81. This code is a

perfect code with parameters (n, e, q) = (4, 1, 81), let us calculate its associated permuta-
tion. In the first step we have:

• ℘1 = τ(C) = 3, J1 = {3}, C1 = C〈3〉 = span


1 3 0 0
0 0 0 3
3 0 0 0
0 0 0 0

 ,

in the second step we have:

• ℘2 = τ(C1) = 4, J2 = {3, 4}, C2 = C〈3, 4〉 = span


1 3 0 0
0 0 0 0
3 0 0 0
0 0 0 0

 ,

in the third step we have:

• ℘3 = I(C2) = 1, J2 = {1, 3, 4}, C3 = C〈1, 3, 4〉 = span


0 3 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

and in the last step we have ℘4 = τ(C3) = 2 so, the permutation associated with C is
℘(C) = (3, 4, 1, 2).

Definition 4.4.5. We say that a perfect code C ∈ LPL∞(n, e, q) is ordered if its associated
partition is given by ℘(C) = (n, n− 1, . . . , 2, 1).
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Proposition 4.4.6. For all C ∈ LPL∞(n, e, q) there exists θ = θC ∈ Sn such that θ(C)
is ordered.

Proof. Let C ∈ LPL∞(n, e, q) with ℘(C) = (℘1, ℘2, . . . , ℘n) and θ be the permutation
given by θ(℘i) = n+1−i. For all i with 1 ≤ i < n we have (2e+1)e℘i+1 ∈ C〈℘1, . . . , ℘i〉 =
πHI (C) where I = {℘1, . . . , ℘i}, so there exists c ∈ C ∩ π−1

HI
((2e + 1)e℘i+1). We have

c℘i+1 = 2e + 1 and ck = 0 for k 6∈ {℘1, ℘2, . . . , ℘i+1}. Since θ(c)i = cθ−1(i) we have
θ(c)n−i = 2e+ 1 and θ(c)k = 0 for k : n ≥ k ≥ n− i, so

(2e+ 1)en−i = πHθ(I) (θ(c)) ∈ θ(C)〈n, n− 1, . . . , n+ 1− i〉

for 1 ≤ i < n. This last condition together with the fact that (2e+1)en = θ ((2e+ 1)e℘1) ∈
θ(C) imply ℘ (θ(C)) = (n, n− 1, . . . , 1).

Notation 4.4.7. We denote by LPL∞(n, e, q)o = {C ∈ LPL∞(n, e, q) : C is ordered}.

Example 4.4.8. Let C be the code defined in Example 4.4.4. The permutation θ =
(1 2)(3 4) verify θ(℘i) = 5− i, so the resulting code θ(C) ∈ LPL∞(4, 1, 81)o. We remark
that this permutation is not unique, for example if we take τ = (1 3 4 2) we have τ(C) ∈
LPL∞(4, 1, 81)o and τ(C) 6= θ(C).

4.4.2 Perfect matrices

In this section we characterize matrices associated with perfect codes in the
Chebyshev metric.

Definition 4.4.9. Let q = (2e+ 1)t. A matrix M ∈ ∇n(2e+ 1) is a (e, q)-perfect matrix
if there exists matrices A ∈ ∇n(t) and B ∈ ∇n(1) such that AM = qB.

Remark 4.4.10. For n = 2 a matrix M =
2e+ 1 a

0 2e+ 1

 is (e, q)-perfect if only if

there exists x, y ∈ Z satisfying
t x

0 t

2e+ 1 a

0 2e+ 1

 =
q qz

0 q

 and this is equivalent

to ta+ (2e+ 1)x = qz or qz− (2e+ 1)x = ta. This last diophantine equation has solution
if and only if gcd(q, 2e + 1) = 2e + 1 | ta which is equivalent to a = kh1 for some k ∈ Z
(where h1 = 2e+1

gcd(2e+1,t)). Is summary, a 2× 2 matrix is a (e, q)-perfect matrix if and only
if is the generating matrix of a type 2 perfect code in LPL∞(2, e, q).

Proposition 4.4.11. If q = (2e + 1)t and M is a n × n integer matrix with rows
M1,M2, . . . ,Mn, then M is a (e, q)-perfect matrix if and only if the following condition
are satisfied:

1. M is upper triangular,
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2. Mii = 2e+ 1,

3. tMi ∈ span(Mi+1, . . . ,Mn) for 1 ≤ i < n,

where for x ∈ Zn we denote by x = x+ qZn ∈ Znq the residual class of x modulo q.

Proof. Conditions (1) and (2) are equivalent to M ∈ ∇n(2e + 1) and condition (3) is
equivalent to the existence of integers αij ∈ Z for 1 ≤ i < j ≤ n and vectors Bi ∈ Zn for
1 ≤ i ≤ n verifying tMi = ∑n

j=i+1 αijMj + qNi for 1 ≤ i < j ≤ n and these equations can
be expressed in matricial form AM = qB where the matrix A is upper triangular with

Aij =
 t for i = j

−αij for i < j
and B has rows B1, B2, . . . , Bn.

Lemma 4.4.12. Let q = (2e+1)t, C ∈ LPL∞(n, e, q) and H be a k-dimensional cartesian
subgroup of Znq . If S ⊆ C ∩H and #S = tk, then S = C ∩H and the code S is a perfect
code over H with packing radius e.

Proof. We have that tk = #S ≤ #(C ∩ H) ≤ qk

(2e+1)k = tk (the last inequality is con-
sequence of the sphere packing condition) so S = C ∩ H. Let e′ be the packing radius
of S. Since C has packing radius e we have e′ ≥ e, by the sphere packing condition
(2e′ + 1)k ≤ qk

#S = (2e+ 1)k hence e′ = e and (2e+ 1)k ·#S = qk, therefore S = C ∩H is
a perfect code over H with packing radius e.

Proposition 4.4.13. Every ordered perfect code C ∈ LPL∞(n, e, q) has a generator
matrix which is a (e, q)-perfect matrix.

Proof. Let C ∈ LPL∞(n, e, q). By the Hermite normal form theorem we have a generator
matrix M for C which is upper triangular. Let M1,M2, . . . ,Mn be the rows of M and we
denote by mi = Mii the elements in the principal diagonal. Multiplying by −1 if it were
necessary we can suppose that each mi > 0 (mi 6= 0 because M is non-singular). We will
prove the following assertion by induction: tMn−i ∈ span

(
Mn−(i−1),Mn−(i−2), . . . ,Mn

)
mn−(i−1) = mn−(i−2) = . . . = mn = 2e+ 1

(4.4.1)

for 1 ≤ i < n, where as usual X = X+qZn ∈ Znq is the residual class modulo q of X ∈ Zn.
For i = 1 we express mn = (2e+ 1)a+ r with a and b non-negative integer 0 ≤ r < 2e+ 1.
Since C is of type n (since C is ordered) we have that v = (2e + 1)en ∈ ΛC and the
same for ren = Mn − av ∈ ΛC . The packing radius of ΛC (which is equal to the packing
radius of C) is e and consequently its minimum distance is 2e+ 1, but ||ren||∞ = r which
imply r = 0 and Mn = av. Substituting Mn by v we have another generator matrix M ′

for C, since det(M) = det(M ′) = det(ΛC) and det(M) = a det(M ′) we have a = 1 and
mn = 2e + 1. Using that C is ordered, the code C〈n〉 is of type n − 1 and using that
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mn−1en−1 ∈ C〈n〉 and a similar argument used in the proof of mn = 2e+ 1 we can prove
thatmn−1 = 2e+1, then tMn−1 ∈ H{1,...,n−1}∩C. On the other hand, sinceMn = (2e+1)en
we have span(Mn) ⊆ C ∩H{1,...,n−1} and #span(Mn) = t, thus by Lemma 4.4.12 we have
H{1,...,n−1} ∩C = span(Mn) so the assertion (4.4.1) is true for i = 1. Now consider j with
2 ≤ j < n and let us suppose that the assertion (4.4.1) is true for i with 1 ≤ i < j. By
inductive hypotesis tMn−i ∈ span

(
Mn−(i−1),Mn−(i−2), . . . ,Mn

)
for 1 ≤ i < j so linear

construction (Prop. 4.3.7) guarantees that C ′ = span
(
Mn−(j−1),Mn−(j−2), . . . ,Mn

)
is a

perfect code overH{1,2,...,n−j} with packing radius e. In particular #C ′ = tj and by Lemma
4.4.12 we have that C ′ = C∩H1,2,...,n−j. Since C is ordered, C〈n−(j−1), . . . , n〉 is of type
n− j and using that mn−jen−j ∈ C〈n− (j−1), . . . , n〉 and a similar argument used in the
proof of mn = 2e+ 1 we can prove that mn−j = 2e+ 1, then tMn−j ∈ H{1,2,...,n−j} ∩ C =
span

(
Mn−(j−1),Mn−(j−2), . . . ,Mn

)
, so assertion (4.4.1) is true for i = j. Finally, assertion

(4.4.1) for 1 ≤ i < n and Proposition 4.4.11 imply that M is an (e, q)-perfect matrix.

Remark 4.4.14. In order to obtain a (e, q)-perfect generator matrix for an ordered perfect
code C ∈ LPL∞(n, e, q) from a given generator matrix we can apply the same algorithm
of the Hermite normal form and multiply some rows by −1 if it were necessary.

Definition 4.4.15. We say that a matrix M ∈ ∇n(2e + 1) is reduced if |Mij| ≤ e for
1 ≤ i < j ≤ n.

Notation 4.4.16. We denote by Pn(e, q) = {M ∈ ∇n(2e + 1) : M is (e, q) − perfect}.
The subset of reduced matrices in ∇n(2e+ 1) and Pn(e, q) is denoted by ∇n(2e+ 1)red and
Pn(e, q)red respectively.

Proposition 4.4.17. Let M,M ′ ∈ Pn(e, q). If Mij ≡M ′
ij (mod 2e+ 1) then span(M) =

span(M ′).

Proof. A reduced (e, q)-perfect generator matrix for a code C ∈ LPL∞(n, e, q) is just a
modified version of the Hermite normal form, so span(M) = span(M ′) is a consequence
of the uniqueness of the Hermite normal form.

Corollary 4.4.18. There is a surjection Pn(e, q)red � LPL∞(n, e, q)o given by M 7→
span(M)/qZn.

Proof. By Proposition 4.4.13 and Remark 4.4.14 we can obtain a (e, q)-perfect generator
matrix M from the Hermite normal form of any generator matrix with the condition
0 ≤ Mij < 2e + 1 if i < j. For i = 2, 3, . . . , n and for 1 ≤ j < i, if the element ji is
greater than e we can substract the i-th row to the j-th row obtaining a new equivalent
matrix whose element ji has absolute value at most e. Repeating this process we obtain a
reduced (e, q)-perfect generator matrix for a given ordered code C ∈ LPL∞(n, e, q)o.
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Corollary 4.4.19. Let q = (2e+ 1)t. We have the following inequality:

log2e+1 (#LPL∞(n, e, q)) ≤
(
n

2

)
(4.4.2)

Proof. Using Lemma 4.4.18 we obtain:

#LPL∞(n, e, q) ≤ #Pn(e, q)red ≤ #∇n(2e+ 1)red = (2e+ 1)(
n
2).

Definition 4.4.20. A perfect code C is maximal if its parameter (n, e, q) verify equality
in Corollary 4.4.19. In this case we also say that the parameter (e, q) ia n-maximals.

Remark 4.4.21. If (e, q) is n-maximal then Pn(e, q)red = ∇n(2e+ 1)red.

4.4.3 n-maximal codes

In this part we show that there are infinitely many maximal codes in each
dimension establishing conditions which guarantee maximality. We extend some results
obtained for two-dimensional code to maximal codes including a parametrization theorem
for such codes and for their isometry and isomorphism classes.

Lemma 4.4.22. If (e, q) is n-maximal, then (e, q) is i-maximal for all i, 1 ≤ i ≤ n.

Proof. Let (e, q) be an n-maximal pair and M0 ∈ ∇i(2e+ 1) with 1 ≤ i < n. We consider

the matrix M =
(2e+ 1)In−i 0

0 M0

 ∈ ∇n(2e+ 1), since (e, q) is n-maximal there exists

A ∈ ∇n(t), B ∈ ∇n(1) such that AM = qB. If we denote by A0 and B0 the submatrices
consisting of the last i rows and the last i columns of A and B respectively. Clearly,
A0 ∈ ∇i(t) and B0 ∈ ∇i(1) and A0M0 = qB0, therefore M0 is (e, q)-perfect, so the pair
(e, q) is i-maximal.

Lemma 4.4.23. Let q = (2e+1)t and X = X+qZn ∈ Znq be the residual class of X ∈ Zn

modulo q. The following assertions are equivalent:

(i) (e, q) is n-maximal.

(ii) For all M ∈ ∇n(2e+ 1), there exists A ∈ ∇n(t), B ∈ ∇n(1) such that AM = qB.

(iii) tZiq ⊆ span(M) for all M ∈ ∇i(2e+ 1) and for all i, 1 ≤ i < n.

Proof. We have (ii) ⇔ ∇n(2e + 1) = Pn(e, q) ⇔ (i). We note that if (iii) holds then
condition (3) in Proposition 4.4.11 is always satisfied, thus (iii) ⇒ (ii). In order to
prove (ii) ⇒ (iii), by Lemma 4.4.22 it suffices to prove (ii) ⇒ tZn−1

q ⊆ span(M) for all
M ∈ ∇n−1(2e + 1). Let M ′ ∈ ∇n−1(2e + 1) and w ∈ Zn−1, we want to prove that
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tw ∈ span(M). We consider the matrix M =
2e+ 1 w

0t M ′

 ∈ ∇n(2e + 1). By (ii) there

exist matrices A ∈ ∇n(t), B ∈ ∇n(1) such that AM = B, expressing A =
 t v

0t A′

 and

B =
 1 u

0t B′

 with A′ ∈ ∇n−1(t) and B′ ∈ ∇n−1(1), from the equality AM = qB we

obtain tw + vM ′ = qu, thus tw = −vM ′ ∈ span(M).

Lemma 4.4.24. If (2e+1)n | q, then (2e+1)n−1Zn−1
q ⊆ span(M) for allM ∈ ∇n−1(2e+1).

Proof. For n = 1 the assertion is true because (0) ⊆ span(M) and for n = 2 the assertion
is true since (2e + 1)Zq ⊆ span(2e + 1) = (2e + 1)Zq. Let us suppose that the assertion
is true for n − 1 where n ≥ 3 and (2e + 1)n | q. Let M ∈ ∇n−1(2e + 1) and we express

M =
2e+ 1 w

0t M ′

 with M ′ ∈ ∇n−2(2e + 1) and w ∈ Zn−2. Since (2e + 1)n−2 | q we

have (2e+ 1)n−2Zn−2
q ⊆ span(M), then (2e+ 1)n−2H{1} ⊆ span(0t,M ′) and we obtain the

following chain of inequalities:

(2e+ 1)n−1H{1} ⊆ (2e+ 1)n−2H{1} ⊆ span(0t,M ′) ⊆ span(M),

in particular (2e + 1)n−1H{1} ⊆ span(M). To conclude the proof we need to show that
(2e+1)n−1e1 ∈ span(M). We have that (2e+1)n−1e1−(2e+1)n−2(2e+1, w) = (0,−(2e+
1)n−2w) ∈ (2e + 1)n−2H{1} ⊆ span(M), so (2e + 1)n−1e1 ∈ span(M). In conclusion, we
have that

(2e+ 1)n−1Zn−1
q = (2e+ 1)n−1Ze1 ⊕ (2e+ 1)n−1H{1} ⊆ span(M).

Corollary 4.4.25. If (2e + 1)n | q then (2e + 1)iZiq ⊆ span(M) for all M ∈ ∇i(2e + 1)
and for all i, 1 ≤ i < n.

Theorem 4.4.26. Let q = (2e+1)t. The pair (e, q) is n-maximal if and only if (2e+1)n−1 |
t.

Proof. First, we suppose that (2e+ 1)n−1 | t (or equivalently (2e+ 1)n | q). By Corollary
4.4.25, for all M ∈ ∇(2e+ 1) and 1 ≤ i < n we have:

tZiq ⊆ (2e+ 1)n−1Ziq ⊆ (2e+ 1)iZiq ⊆ span(M),

and by Lemma 4.4.23 the pair (e, q) is n-maximal. Now we suppose that (e, q) is n-
maximal and consider the bidiagonal matrixM ∈ ∇n(2e+1) which has 1 in the secondary
diagonal (i.e. in the diagonal above the principal diagonal). Since (e, q) is n-maximal,
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there exists A ∈ ∇n(t), B ∈ ∇n(1) such that AM = qB. If we denote the first row
of A by A1 = (a11, a12, . . . , a1n) and the first row of B by B1, we have that qB1 =
(q, a11 + (2e + 1)a12, a12 + (2e + 1)a13, . . . , a1,n−1 + (2e + 1)a1n) using a11 = t we deduce
that:

t+ (−1)n(2e+ 1)n−1a1n =
n−1∑
i=1

(−2e− 1)i−1(a1i + (2e+ 1)a1,i+1) ≡ 0 (mod q).

If h ∈ Z is such that t+(−1)n(2e+1)n−1a1n = qh we have t(1−(2e+1)h) = (−1)n+1(2e+
1)n−1a1n, since gcd(1− (2e+ 1)h, 2e+ 1) = 1 we have (2e+ 1)n−1 | t.

Since ∇n(2e + 1) = Pn(e, q) holds for maximal codes, in this case we obtain
the following parametrization for ordered codes which generalize the first part of Theorem
4.2.46.

Theorem 4.4.27. Let (e, q) be an n-maximal pair. There is a parametrization

ψ : ∇n(2e+ 1)red → LPL∞(n, e, q)o

given by ψ(M) = span(M)/qZn.

Next we study isomorphism classes of perfect codes.

Notation 4.4.28. An unimodular integer matrix is a square matrix with determinant 1
or −1. We denote by Γn = {M ∈ Mn(Z) : M is unimodular}. If A,B ∈ Mn(Z) we say
that A and B are Γn-equivalent if there exists U, V ∈ Γn such that A = UBV , we denote
A ∼

Γ
B for this equivalence relation.

We remark that two matrices A and B are Γ-equivalent if we can obtain one
from the other through a finite number of elementary operations on the rows and on the
columns. For X ⊆ Mn(Z) we denote by X/Γn the quotient space for this equivalence
relation.

Theorem 4.4.29. Let (e, q) be an n-maximal pair. There is a parametrization

ψA :
∇n(2e+ 1)red

Γn
→ LPL∞(n, e, q)o

A

given by ψA(M) = [ψ(M)]A (where ψ is as in Theorem 4.4.27)

Proof. If M is the generator matrix for a linear code C ⊆ Znq then the matrix qM−1 has
integer coefficient and their Smith normal form determines the isomorphism class of C
(as abelian group). On the other hand for M1,M2 ∈ ∇n(2e+ 1)red we have the following
equivalences:

span(M1) ∼
A
span(M2)⇔ qM−1

1 ∼
Γ
qM−1

2 ⇔ ∃U, V ∈ Γn : UqM−1
1 V = qM−1

2
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⇔ ∃U, V ∈ Γn : V −1M1U
−1 = M2 ⇔M1 ∼Γ M2,

so ψA is well defined and is injective. Since ψ is surjective then ψA is surjective, therefore
ψA is a bijection.

The next goal is to characterize what are the possible group isomorphism
classes that can be represented by maximal perfect codes.

Definition 4.4.30. Let G = Zd1 × . . . × Zdm with d1|d2| . . . |dm. We say that G is an
(n, e, q)-admissible structure if there exist C ∈ LPL∞(n, e, q) such that C ' G as abelian
groups.

Lemma 4.4.31. For a, x and y non-zero integers we have
a 0

0 axy

 ∼
Γ

ay a

0 ax

 .
Proof. We have the following chain of Γ-equivalence:a 0

0 axy

 ∼
Γ

a a

0 axy

 ∼
Γ

 a a

ax axy + ax

 ∼
Γ

 a a− ay
ax ax



∼
Γ

a a− ay
0 ax

 ∼
Γ

ay a

0 ax



Lemma 4.4.32. If M is a n×n integer matrix with determinant (2e+1)n, then ΓnMΓn∩
∇n(2e+1)red 6= ∅. Moreover, M is Γ-equivalent to a bidiagonal matrix A ∈ ∇n(2e+1)red.

Proof. For n = 1, det(M) = 2e + 1 implies M = (2e + 1) ∈ ∇1(2e + 1)red. Let us
suppose that the result is true for n− 1 and we consider a n× n integer matrix M with
det(M) = (2e+1)n. By Smith normal formM ∼

Γ
D where D = diag(d1, d2, . . . , dn) is a di-

agonal matrix with d1 | d2 | . . . | dn and d1d2 . . . dn = (2e+1)n, in particular dn = (2e+1)x
and 2e+ 1 = d1y for some integers x and y. Permuting the second and nth rows of D and
then the second and nth column we have D ∼

Γ
D̃ := diag(d1, dn, d3, . . . , dn−1, d2). Apply-

ing Lemma 4.4.31 with dn = d1xy we obtain D̃ ∼Γ

2e+ 1 v

0t D0

 where v = (d1, 0, . . . , 0) ∈

Zn−1 and D0 = diag(d1x, d3, . . . , dn−1, d2). By inductive hypothesis there exists unimod-
ular matrices U0, V0 ∈ Γn−1 such that U0D0V0 ∈ ∇n−1(2e + 1) with U0D0V0 bidiagonal,
thus  1 0

0t U0

2e+ 1 v

0t U0

 1 0
0t V0

 =
2e+ 1 vV0

0t U0D0V0


is a bidigonal matrix in ∇n(2e + 1). Since this matrix have 2e + 1 in the main diagonal,
we can obtain a reduced matrix from this, by applying some elementary operations on
rows, thus the result holds for n.
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Corollary 4.4.33. If we denote by Mn(Z, det = D) the set of matrices M ∈ Mn(Z)
with det(M) = D, each equivalence class in ∇n(2e+ 1)red/Γn is contained in exactly one
equivalence class in Mn(Z, det = (2e + 1)n)/Γn. Moreover, both quotient sets have the
same number of elements.

Theorem 4.4.34. Let (e, q) be an n-maximal pair where q = (2e + 1)t and G = Zd1 ×
. . . × Zdn with d1|d2| . . . |dn. Then G is a (n, e, q)-admissible structure if and only if
d1d2 . . . dn = tn and dn|q.

Proof. The direct implication follows from the fact that if C ∈ LPL∞(n, e, q) then
#C = tn and qC = {0} (since C ⊆ Znq ). We denote by D = {(d1, . . . , dn) ∈ N :
d1| . . . |dn, d1 . . . dn = tn, dn|q}. To prove the converse implication it suffices to prove that
#D = #LPL∞(n, e, q)red/A (where X/A denotes the set of isomorphism classes of codes
in X). By Theorem 4.4.29, Lemma 4.4.32 and the Smith normal form theorem we have
that #LPL∞(n, e, q)red/A = #F where F = {(f1, . . . , fn) ∈ N : f1| . . . |fn, f1 . . . fn =
(2e+ 1)n}, so it suffices to prove that #D = #F . We consider X = {(x1, . . . , xn) ∈ Nn :
x1 | . . . | xn | q} and the involution ψ : X → X defined by ψ(x1, . . . , xn) = (y1, . . . , yn)
where xiyj = q if i + j = n + 1. For x = (x1, . . . , xn) ∈ X we denote by p(x) = x1 . . . xn.
Since (2e + 1)n−1 | t, then F ⊆ X and the property p(ψ(a)) · p(a) = qn imply ψ(F) = D
and #F = #D.

The involution argument in the above proof give us the following corollary.

Corollary 4.4.35. Let q = (2e + 1)t with (2e + 1)n−1 | t and C ∈ LPL∞(n, e, q) with
generator matrix M . If the Smith normal form of M is given by D = diag(d1, . . . , dn),
then C ' Zq/dn × Zq/dn−1 × . . .× Zq/d1.

The following corollary give us the number of isomorphism classes of perfect
codes in LPL∞(n, e, q).

Corollary 4.4.36. Let q = (2e + 1)t with (2e + 1)n−1 | t and f(x) be the generating
function f(x) = 1

(1−x)(1−x2)...(1−xn) . If ep(m) is the exponent of the prime p in the fac-
torial decomposition of m, then the number of isomorphism classes of perfect codes in
LPL∞(n, e, q) is given by: ∏

p|2e+1
[xnep(2e+1)]f(x).

In particular for n = 2 this number is given by

∏
p

[x2ep(2e+1)] 1
(1− x)(1− x2) =

∏
p

(ep(2e+ 1) + 1) = σ0(2e+ 1),

the number of divisor of 2e + 1 (according with Corollary 4.2.49, since gcd(2e + 1, t) =



65

2e+ 1). For n = 3 this number is given by

∏
p

[x3ep(2e+1)] 1
(1− x)(1− x2)(1− x3) =

∏
p

d3/4 · (ep(2e+ 1) + 1)2c

where dxc denotes the nearest integer to x. In particular when 2e + 1 is square-free this
number is 3ω(2e+1) where ω(n) is the number of distinct prime divisors of n.

Proof. Let X(α) = {(x1, . . . , xn) ∈ Nn : x1 ≤ . . . ≤ xn, x1 + . . . + xn = nα} for α ∈ Z+

and ep(a1, . . . , an) := (ep(a1), . . . , ep(an)) (where ep(m) denote the exponent of p in m).
If F is as in the proof of Theorem 4.4.34, then for each prime divisor p | 2e + 1 and for
each a ∈ F we have ep(a) ∈ X(ep(2e + 1)). In this way we have a bijection between F
and ∏pX(ep(2e + 1)) where p runs over the prime divisors of 2e + 1, in particular the
number of isomorphism classes of (n, e, q)-codes (with (2e + 1)n−1 | t) is given by #F =∏
p|2e+1 #X(ep(2e + 1)). With the standard change of variable xi = yn + . . . + yn+1−i for

1 ≤ i ≤ n we have #X(α) = #{(y1, . . . , yn) ∈ Nn : y1+2y2+. . .+nyn = nα} which clearly
is the coefficient of xnα in the generating function f(x) = 1

(1−x)(1−x2)...(1−xn) . For n = 2 and
n = 3 we have the well known formulas f(x) = ∑∞

n=0bn+2
2 cx

n and f(x) = ∑∞
n=0

⌈
(n+3)2

12

⌋
xn

respectively (see for example [Har20, p. 10]).

4.5 The ideal of admissible structures for Chebyshev perfect codes

On the one hand the group G = Zt × Zt × . . .× Zt = Znt (cartesian group) is
always represented by a perfect code in LPL∞(n, e, q) with q = (2e + 1)t. On the other
hand cyclic groups seem more difficult to be represented by perfect codes. Informally
speaking is like the more cyclic is a group the more difficult is to represent it as a perfect
code. We formalize this idea through the poset Sn(tn) (Proposition 3.2.5). We will show
that in the two-dimensional case and in the maximal case, the isomorphism classes that
can be represented by perfect code is an ideal in this poset and we conjecture that this is
valid in general.

We consider Sn(tn) with the poset structure given in Section 3.2. Proposition
3.2.6 and Remark 3.2.7 motivate the following definition.

Definition 4.5.1. If G1 and G2 are two abelian group of order tn we say that G1 is
more cyclic that G2 (or G2 is more cartesian that G1) with respect to t, if G1 ' Zq1 and
G2 ' Zq2 with q1, q2 ∈ Sn(tn) and q1 ≥ q2.

Notation 4.5.2. We denote by A(n, e, q) the set of (n, e, q)-admissible structures (see
Definition 4.4.30).

Example 4.5.3. The set A(3, 1, 27) = {Z27×Z27,Z3×Z9×Z27,Z9×Z9×Z9}. This set
can be seen as a subset of the vertices of the graph G3(9) as show in Figure 4.7.
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Z729

��
Z3 × Z243

vv ��
Z3 × Z3 × Z81

((

Z9 × Z81

��

Z27 × Z27

ww
Z3 × Z9 × Z27

��

Z9 × Z9 × Z9

Figure 4.7: The graph G3(9) and the set A(3, 1, 27) as a subset of vertices of this graph.

Example 4.5.4. The graph G3(152) has 49 vertices. Nine of these vertices are in A(3, 7, 153).
Figure 4.8 show the subgraph of G3(152) induced by the vertices in A(3, 7, 153).

Theorem 4.5.5. Let q = (2e+ 1)t. If n = 2 or (e, q) is n-maximal then the set A(n, q, e)
is an ideal in the poset (Sn(tn),≥)

Proof. Without loss of generality we can restrict to ordered codes. In dimension n = 2,
by Theorem 4.2.38 and Theorem 4.2.46 all perfect codes in LPL∞(n, e, q)o are of the

form Ck = span
2e+ 1 kh1

0 2e+ 1

 ' Zt/h2 × Zth2 where h1 = 2e+1
d1
, h2 = d1

gcd(d1,k) and

d1 = gcd(2e+ 1, t). So, A(2, e, q) = {Zt/d × Zdt : d | d1} which is the ball of radius Ω(d1)
(the number of prime divisors of d1 counting with multiplicity) and center in Zt×Zt with
respect to the graph metric in G2(t), in particular it is a poset ideal. In the maximal case
the set A(n, e, q) consist of f = (f1, . . . , fn) ∈ Sn(tn) such that fn | q. If a = (a1, . . . , an) ∈
A(n, e, q) and −→ab is an arrow in Gn(t) with b ∈ Sn(tn), then there exists a prime p | t and
i, j ∈ {2, . . . , n} such that νp(ai) < νp(t), νp(aj) > νp(t) such that bi = pai, bj = aj/p and
bk = ak for all k 6= i, j, in particular max{νp(ai) : 1 ≤ i ≤ n} ≥ max{νp(bi) : 1 ≤ i ≤ n}
and so bn | q, then b ∈ A(n, e, q).

Next we show some non-maximal examples in dimension 3.

Example 4.5.6. We consider q-ary perfect codes in dimension 3 with q = 225 and packing
radius 7 (i.e. e = 7, t = 15, q = 152). Using Proposition 4.4.11, we obtain that the

integer matrix M =


15 a b

0 15 c

0 0 15

 is a (7, 225)-perfect matrix if and only if ac ≡ 0

(mod 15). Applying elementary operation in rows if it were necessary we can assume that
|a| ≤ 7, |b| ≤ 7 and 1 ≤ b ≤ 15. For every one of these 675 matrices M we calculate the
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Z153 × Z153

����

Z3 × Z5·152 × Z153

����

Z32 × Z5·152 × Z5·152

��

Z5 × Z3·152 × Z153

����

Z15 × Z152 × Z153

����

Z3·15 × Z152 × Z5·152

��

Z52 × Z3·152 × Z3·152

��

Z5·15 × Z152 × Z3·152

��

Z152 × Z152 × Z152

Figure 4.8: The subgraph of G3(152) induced by A(3, 7, 152).

Smith normal form of the integer matrix qM−1 to determine all possibles group structures
represented in LPL∞(3, 7, 225) obtaining A(3, 7, 152) = {Z15 × Z15 × Z15,Z3 × Z15 ×
Z5·15,Z5 × Z15 × Z3·15,Z15 × Z152}. Representing by Cd ⊆ Z3

225 the perfect code whose

generator matrix is


15 0 d

0 15 0
0 0 15

, we have that {Cd : d | 15} is a set of representatives.

Moreover, we have:

• C1 ' Z15 × Z152,

• C3 ' Z3 × Z15 × Z5·15,

• C5 ' Z5 × Z15 × Z3·15,

• C15 ' Z15 × Z15 × Z15.

In this case we also have that A(3, 7, 152) is a poset ideal in S3(153) (see Figure 4.9).

Example 4.5.7. For e = 112, t = 15, q = (2e + 1)t = 153, using Proposition 4.4.11 we
can prove that all (112, 153)-perfect matrix is of the form

M =


225 15a+ 225k1 ac+ 15b+ 225k2

0 225 15c+ 225k3

0 0 225


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Z153

����

Z5 × Z3·152

����

Z5 × Z5 × Z32·15

��

Z3 × Z5·152

����
Z15 × Z152

����

Z5 × Z15 × Z3·15

��

Z3 × Z3 × Z52·15

��

Z3 × Z15 × Z5·15

��

Z15 × Z15 × Z15

Figure 4.9: The set of admissible structures A(3, 7, 152) as subset of vertices in the graph
G3(15).

where a, b, c, k1, k2 and k3 are integers with 0 ≤ a, b, c ≤ 14. Applying some elementary
operations in rows we can restrict to matrices of the form

M =


225 15a ac+ 15b
0 225 15c
0 0 225


with 0 ≤ a, b, c ≤ 14. After checking all the possibilities we have that each group structures
in S3(153) is represented by some code in LPL∞(3, 112, 3375), in fact each group structure

can be represented by a perfect code C(a, c) with generator matrix


225 15a ac

0 225 15c
0 0 225

 as

showed in following table:

(a, c) Group structure of C(a, c)
(0, 0) Z15 × Z15 × Z15

(0, 3) Z3 × Z15 × Z5·15

(0, 5) Z5 × Z15 × Z3·15

(3, 3) Z3 × Z3 × Z52·15

(0, 1) Z15 × Z152

(5, 5) Z5 × Z5 × Z32·15

(1, 3) Z3 × Z5·152

(1, 5) Z5 × Z3·152

(1, 1) Z153
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Z153

����

Z5 × Z3·152

����

Z5 × Z5 × Z32·15

��

Z3 × Z5·152

����

Z15 × Z152

����

Z5 × Z15 × Z3·15

��

Z3 × Z3 × Z52·15

��

Z3 × Z15 × Z5·15

��

Z15 × Z15 × Z15

Figure 4.10: The set of admissible structures A(3, 112, 153) coincides with the set of
vertices of the graph G3(15).

Figure 4.10 show the set of admissible structures A(3, 112, 153) which in this case coincide
with S3(153), the whole set of vertices of G3(15).

To finish we show that if the set of admissible structures A(n, e, q) contain
a cyclic group, then A(n, e, q) = Sn(tn) (where q = (2e + 1)t). In particular, we have
another case where A(n, e, q) is a poset ideal.

Definition 4.5.8. We say that the pair (e, q) is n-cyclic when the set LPL∞(n, e, q)
contain a cyclic perfect code.

Remark 4.5.9. Let q = (2e+ 1). By Proposition 4.3.10 we have that (e, q) is n-cyclic if
and only if tn−1 | 2e+ 1 (or equivalently if tn | q).

Theorem 4.5.10. If (e, q) is an n-cyclic pair where q = (2e+1)t, then every group struc-
ture associate with the elements of Sn(tn) is represented by a perfect code in LPL∞(n, e, q).

Proof. Let d = (d1, . . . , dn) be a tn-series of order n. By Lemma 4.4.32 there exists
A = (aij)1≤i,j≤n ∈ ∇n(t) with A ∼

Γ
diag(d1, . . . , dn). We define M ∈ ∇n(2e + 1,Q)

recursively as following: Mn = (2e+ 1)en
Mi = (2e+ 1)ei −

∑n
k=i+1(aik/t)Mk for 1 ≤ i < n,

(4.5.1)

where Mi denote the ith row of M . Using tn−1 | 2e + 1, it is not difficult to prove by
induction that Mi ∈ ti−1Zn for 1 ≤ i ≤ n, which implies that the matrix M has integer
coefficient, hence M ∈ ∇n(2e + 1). Equation (4.5.1) can be written in matricial form as
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AM = qI, in particular M ∈ Pn(e, q) (that is, M is (e, q)-perfect) and qM−1 ∈ Mn(Z).
This last fact imply that M is the generator matrix of a code C ∈ LPL∞(n, e, q) whose
group structure is given by the Smith normal form of qM−1 = A, that is C ' Zd1 ×
. . .Zdn .

The property that the (n, e, q)-admissible structures are ideals was checked for
other cases (in addition to the two-dimensional, the n-maximal and the n-cyclic case for
n > 2) and we did not find a counterexample, so it is possible that a more general result
than Theorem 4.5.5 holds.



Chapter 5
THE CYCLE STRUCTURE OF ITERATING RÉDEI FUNCTIONS

In this chapter we study the action of Rédei functions over non-binary finite
fields via the action of the multiplication-by-n map over a cyclic group. These functional
graphs present a strong type of symmetries. The cyclic decomposition and some prop-
erties related to the trees attached to cyclic nodes were studied in [Sha12]. We extend
the description of these functional graphs giving two different characterizations for their
associated trees. In Section 5.1 we focus our attention in the action of the multiplication-
by-n map over the cyclic group Zm, describing its functional graph and relating its trees
to the trees associated with ν-series. We also give in this section an alternative descrip-
tion of these trees. In Section 5.2 we apply the previous results to the case of Rédei
functions. This section begins with a review of Rédei functions over finite fields and we
briefly comment on their main properties and applications. Next, we give the structure
of the functional graph associated with a Rédei function, providing period and preperiod
studies. As corollaries of our main structural theorem we extend the characterization of
Rédei permutations by describing its decomposition into disjoint cycles and use this to
obtain a method for constructing Rédei functions with prescribed length cycles in certain
geometric progression. Finally, we use our structural theorem to obtain results about tails
and cycles in orbits of iterations of Rédei function.

5.1 Functional graph associated with the n-map.

If m and n are positive integers we can consider the factorization m = νω with
rad(ν) | rad(n) and gcd(n, ω) = 1. The n-map in Zm is the application x 7→ nx which we
also denote by n. The main goal of this section is to describe the functional graph of this
map. Part of this was done in [Sha12] where it is proved that each connected component
is of the form Cyc(f, T ); see also [Den13]. An explicit expression for the periodic part
(that is, the length of the cycles and how many of them) and properties of the tree T are
also given in [Sha12]. In this section we give another characterization of T (and therefore,
of the functional graph) in terms of trees associated with ν-series and in terms of certain
operators cr that are defined below. We start by introducing some general notation and
definitions.

Definition 5.1.1. Let g : A → A be a function defined over a finite set A. If π ≥ 1
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and ρ ≥ 0 are the least integers such that gπ+ρ(u) = gρ(u), then u has period π = per(u)
and preperiod ρ = pper(u) (with respect to g). Moreover u is a periodic point when
pper(u) = 0, and strictly preperiodic otherwise.

Notation 5.1.2. If g : A → A is a function defined over some finite set A and B ⊆ A

is such that g(B) ⊆ B, we denote by G(g/B) the functional graph of the restriction
g|B : B → B. We also denote by Per(g/B) = {x ∈ B : x is a periodic point}. In
particular, if B = Per(g/A) we denote by Gper(g/A) = G(g/B). If x ∈ Per(g/A) we
denote by Tx(g/A) the tree attached to x in the functional graph G(g/A). Sometimes
when Per(g/A) = {x} or the isomorphism class of Tx(g/A) does not depend on x we
denote Tx(g/A) by T (g/A). As usual, we denote by on(d) the order of d modulo n.

Lemma 5.1.3. Let d be a divisor of ω. If x ∈ νZνω with gcd(ω, x) = ω/d then x is a
periodic point in G(n/Zνω) and per(x) = on(d).

Proof. If x ∈ νZνω with gcd(ω, x) = ω/d we have

nπx ≡ x (mod νω)⇔ nπx ≡ x (mod ω)⇔ nπ ≡ 1 (mod d)⇔ π ≡ 0 (mod on(d)).

Then x is a periodic point in G(n/Zνω) and per(x) = on(d).

Proposition 5.1.4. We have that Per(n/Zνω) = νZνω and the following isomorphism
holds:

Gper(n/Zνω) '
⊕
d|ω

{
ϕ(d)
od(n) × Cyc(od(n))

}
.

Proof. By Lemma 5.1.3 we have Per(n/Zνω) ⊇ νZνω. For the other inclusion we observe
that if there exists π ≥ 1 such that nπx ≡ x (mod νω) then (nπ − 1)x ≡ 0 (mod ν).
Therefore x ≡ 0 (mod ν) since gcd(nπ − 1, ν) = 1 (because rad(ν) | rad(n)). This proves
the first part.

For the second part we consider the partition νZνω = ⊎
d|ω A(d) where A(d) =

{x ∈ νZνω : gcd(ω, x) = ω/d}. As gcd(ω, n) = 1 we have nA(d) = A(d), and therefore

Gper(n/Zνω) = G(n/νZνω) =
⊕
d|ω
G(n/A(d)). (5.1.1)

By Lemma 5.1.3, all points in A(d) have period on(d). Hence, the graph
G(n/A(d)) is the union of #A(d)/on(d) cycles of length on(d).

Finally we observe that x ∈ A(d) if and only if x ≡ ν · ω
d
·u with gcd(u, d) = 1,

and for different choices of u we have different values of x. Then #A(d) = ϕ(d) and

G(n/A(d)) ' ϕ(d)
on(d) × Cyc(on(d)).

Substituting this equation in Equation (5.1.1) we have the desired isomorphism.
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Notation 5.1.5. For x ∈ Z we denote by η(x) = min{k ≥ 0 : nkx ≡ 0 (mod ν)}.

Remark 5.1.6. We observe that η(x) = depth(ν(x)), the depth of the ν-series generated
by x.

Proposition 5.1.7. If Ta(n/Zνω) denotes the tree attached to the periodic point a in
G(n/Zνω), we have the following:

i) The vertices of Ta(n/Zνω) are the elements b ∈ Zνω such that b ≡ w
η(b)
0 a (mod ω),

where nw0 ≡ 1 (mod ω).

ii) We have the isomorphism

Ta(n/Zνω) ' T0(n/Zν)

where T0(n/Zν) denotes the tree attached to 0 in G(n/Zν).

Proof. i) If b ∈ Ta(n/Zνω) then a = nkb where k is the least exponent such that nkb is a
periodic point. By Proposition 5.1.4, this least exponent has to be equal to η(b), therefore
nη(b)b = a. In particular nη(b)b ≡ a (mod ω), and so b ≡ w

η(b)
0 a (mod ω).

ii) For a periodic point a ∈ Zνω we consider

Va = {b ∈ Zνω : b ≡ w
η(b)
0 a (mod ω)}

and the function g : Va → Va defined by

g(x) =
 nx if x 6= a,

a if x = a.

We observe that the graph G(g/Va) is composed of the tree Ta(n/Zνω) together with a
loop in a. On the other hand, using Proposition 5.1.4 we have that the graph G(n/Zν)
is composed of the tree T0(n/Zν) and a loop in 0. Therefore, it is sufficient to prove
that G(g/Va) ' G(n/Zν). To prove this last assertion suffices to prove that the function
π : Va → Zν is a bijection and π ◦ g = n ◦ π.

The equation π ◦ g = n ◦ π can be directly checked. To prove that π is a
bijection we observe that for each α ∈ Zν , by the Chinese remainder theorem, there exists
a unique b ∈ Zνω such that b ≡ α (mod ν) and b ≡ w

η(α)
0 a (mod ω).

Corollary 5.1.8. There exists a tree T = T (n/Zνω) such that

G(n/Zνω) '
⊕
d|ω

{
ϕ(d)
od(n) × Cyc(od(n), T )

}
.

Moreover, this tree T can be obtained from the graph G(n/Zν) by deleting the loop in 0.
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Corollary 5.1.9. Let T0(n/Zν) be the tree attached to 0 in G(n/Zν). The isomorphism
class of T (n/Zνω) does not depend on ω and T0(n/Zν) is a representative for this isomor-
phism class.

The next objective is to prove that T0(n/Zν) = Tν(n). This requires a new
operator on trees that we define next.

Definition 5.1.10. Let d and m be positive integers such that d | m and T a rooted tree
with vertices Zm and root 0. We denote by HT the set of leaves (vertices of in-degree 0)
except for the root in the case that the tree consists only of one vertex. We say that T is
a (d,m)-tree if it verifies the following conditions:

i) indeg(0) ∈ {0, d− 1},

ii) indeg(x) = d if x 6∈ HT , x 6= 0,

iii) #HT = m− m
d
.

We denote by Tree(d,m) the set of all (d,m)-trees.

Definition 5.1.11. Let d,m ∈ Z+ with d | m and r = sd with s ∈ Z+. We define an
operator

cr : Tree(d,m)→ Tree(sd, rm)

as follows. For T ∈ Tree(d,m) we consider a pair (P , f) where P is a partition of Zrm
of the form P = {Dx : x ∈ Zm} ∪ {Hx : x ∈ HT} where #Dx = s and #Hx = sd; we
observe that s · #Zm + sd · #HT = sm + sd

(
m− m

d

)
= rm. The set Dx is called the

set of duplicates of x and the set Hx is the set of new predecessors of x. The function
f : Zm → Zrm satisfies f(0) = 0 and f(x) ∈ Dx for all x ∈ Zm.

If ρT (x) denotes the set of predecessors of x in T , we define the rooted tree
cr(T ) = T̃ whose vertices are Zrm, the root is 0, the set of leaves is H

T̃
= Zrm \ Im(f)

and for the other vertices we have:

ρ
T̃

(0) = ⊎
y∈ρT (0)Dy ] (D0 \ {0}),

ρ
T̃

(f(x))= ⊎
y∈ρT (x) Dy if x 6∈ HT , x 6= 0,

ρ
T̃

(f(x))= Hx if x ∈ HT , x 6= 0.

Remark 5.1.12. Informally, if T ∈ Tree(d,m) and r = sd we obtain cr(T ) attaching
d(s−1) new directed predecessors to each non-leaf vertex of T and attaching r new directed
predecessors to each leaf of T .

Proposition 5.1.13. If T ∈ Tree(d,m) with d | m and T̃ = cr(T ) where r = sd with
s ∈ Z+ (for some choice of pair (P , f) as in Definition 5.1.11), we have

i) T̃ ∈ Tree(sd, rm);
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ii) the function f : Zm → Zrm induce an injective homomorphism between T and T̃ ;

iii) the isomorphism class of cr(t) = T̃ does not depend on the choice of the pair (P , f).

Proof. i) If m = 1 then d = 1 and r = s ∈ Z+. In this case, by construction, we have
H
T̃

= Zr \ {0}, which implies indeg(0) = r − 1 and #H
T̃

= r − 1 = r − r
s
, therefore

T̃ ∈ Tree(s, r).
For m > 1 we have

indeg(0) = #ρ
T̃

(0) = s ·#ρT (0) + s− 1 = s(d− 1) + s− 1 = sd− 1.

For x 6∈ HT , x 6= 0 we have

indeg(f(x)) = #ρ
T̃

(f(x)) = s ·#ρT (x) = sd.

For x ∈ HT , x 6= 0 we have
indeg(f(x)) = #Hx = sd.

With respect to the leaves, #H
T̃

= rm−#Im(f) = rm−m = rm− rm
sd
, and

therefore T̃ ∈ Tree(s, r).
ii) The fact that f is injective follows from the fact that P is a partition.

On the other hand, by construction we have Dy ⊆ ρ
T̃

(f(x)) for all y ∈ ρT (x). Hence,
y ∈ ρT (x) implies f(y) ∈ Dy ⊆ ρ

T̃
(f(x)) which proves that f is a homomorphism between

T and T̃ .
iii) We consider T̃1 and T̃2 two constructions of cr(T ), using the pairs (P1, f1)

and (P2, f2), respectively. The partitions are of the form

Pi = {Di
x : x ∈ Zm} ∪ {H i

x : x ∈ HT} for i = 1, 2.

Let F : Zrm → Zrm be a bijection that satisfies

1. F (f1(x)) = f2(x) for all x ∈ Zm,

2. F (D1
x) = D2

x for all x ∈ Zm,

3. F (H1
x) = H2

x for all x ∈ HT .

We prove next that F is an isomorphism between T̃1 and T̃2.
First, we observe that F (H

T̃1
) = Zrm\F (Im(f1)) = Zrm\Im(f2) = H

T̃2
, that is,

F maps leaves into leaves. Moreover, it follows from (1), (2) and (3) that F (ρ
T̃1

(f1(x))) =
ρ
T̃2

(F (f1(x))) for all x ∈ Zm which prove that F is an isomorphism, and then T̃1 and T̃2

are isomorphic.

Now, we can obtain a new characterization of the trees TV where V is a ν-series.
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Lemma 5.1.14. If V = (ν1, ν2, . . . , νD) is a ν-series then

TV = cν1 ◦ cν2 ◦ · · · ◦ cνD(•),

where • denotes the tree with one vertex 0 ∈ Z1.

Proof. (Sketch of the proof) If T is a tree, the defoliate of T is another tree T ′ obtained
from T by removing all its leaves. Since T1 ' T2 implies that T ′1 ' T ′2, the defoliate is well
defined on isomorphism classes of trees. Another important properties of the defoliate are
(T1 ⊕ T2)′ = T ′1 ⊕ T ′2, (n× T )′ = n× T ′ and 〈T1, T2, . . . , Tk〉′ = 〈T ′1, T ′2, . . . , T ′k〉 if at least
one of the Ti is non-empty (by convention ∅′ = ∅). Using the recursive definition of TV
we have that T ′V ' TV ′ where V ′ = (ν2, . . . , νD) is a ν ′-series, where ν ′ = ν

ν1
.

As above, ρT (x) denotes the set of predecessors of x in T , HT denotes the set
of leaves in T and we define ρhT (x) = ρT (x) ∩HT and indegh(x) = #ρhT (x).

We can choose T a representative of TV and T0 a representative of TV ′ with
vertices Zν and Zν′ , respectively, and root 0 ∈ Zν and 0 ∈ Zν′ , respectively. Since
T ′V = TV ′ we can define an injective homomorphism of trees f : T0 → T . Counting
predecessors in T , we obtain indeg(0) = ν1

ν2
· indegh(0) + ν1

ν2
− 1 and

• indeg(f(x)) = ν1
ν2
· indegh(f(x)) for x 6∈ HT0 , x 6= 0,

• indeg(f(x)) = ν1 for x ∈ HT0 , x 6= 0.

This property allows us to define a partition P as in Definition 5.1.11 and we obtain
that T = cν1(T0). Applying this several times we obtain the equivalence between both
definitions of TV .

Lemma 5.1.15. Let n and ν be integers such that rad(ν) | rad(n). We denote by
ν1 = gcd(n, ν) and by ν ′ = ν

ν1
. We have that T0(n/Zν) ∈ Tree(ν1, ν) and T0(n/Zν) =

cν1(T0(n/Zν′)).

Proof. For ν = 1 we have T0(n/Zν) = • the tree with only one vertex and it is clear
that this tree belongs to Tree(1, 1). If ν > 1 then ν ′ < ν (because rad(ν) | rad(n)) and
by Proposition 5.1.13 it is sufficient to prove that T0(n/Zν) = cν1(T0(n/Zν′)) assuming
T0(n/Zν′) ∈ Tree(ν2, ν

′) where ν2 = gcd(n, ν ′).
Hence, we can assume ν > 1 and if we denote by T = T0(n/Zν) and T ′ =

T0(n/Zν′) we prove that T = Cν1(T ′) from some adequate choice of (P , f).
We define the function f : Zν′ → Zν as f(x) = ν1x (mod ν). This function

is well defined because ν/ν1 = ν ′. We also define the partition P = {Dt : t ∈ Zν′}∪
{Ht : t ∈ HT ′} where

Dt = {ν1t+ kν ′ : 0 ≤ k <
ν1

ν2
} for t ∈ Zν′ ,
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Ht = {ω0t+ kν ′ : 0 ≤ k < ν1} for t ∈ HT ′ ,

and where ω0 is such that ω0 ·
(
n
ν1

)
≡ 1 (mod ν ′).

To prove that the sets Dt are disjoint and #Dt = ν1/ν2 suffices to prove that
for t1, t2 ∈ Zν′ and 0 ≤ k1, k2 < ν1/ν2, the congruence ν1t1 + k1ν

′ ≡ ν1t2 + k2ν
′ (mod ν)

implies k1 = k2 and t1 = t2. We have that ν1t1 + k1ν
′ ≡ ν1t2 + k2ν

′ (mod ν) implies
k1ν

′ ≡ k2ν
′ (mod ν1), that is, k1 ≡ k2 (mod ν1/ν2) (since gcd(ν1, ν

′) = ν2) and so k1 = k2.
Now, ν1t1 ≡ ν1t2 (mod ν) implies t1 ≡ t2 (mod ν ′), and so t1 = t2.

To prove that the sets Ht are disjoint and #Ht = ν1 suffices to prove that for
t1, t2 ∈ HT ′ and 0 ≤ k1, k2 < ν1, the congruence ω0t1 + k1ν

′ ≡ ω0t2 + k2ν
′ (mod ν) implies

t1 = t2 and k1 = k2. We have that ω0t1 + k1ν
′ ≡ ω0t2 + k2ν

′ (mod ν) implies t1 ≡ t2

(mod ν ′) (because gcd(ω0, ν
′) = 1) and so t1 = t2. Now, k1ν

′ ≡ k2ν
′ (mod ν) implies

k1 ≡ k2 (mod ν1), and so k1 = k2.
As Dt ⊂ ν2Zν for all t ∈ Zν′ and Ht∩ν2Zν = ∅ for all t ∈ HT ′ (because t ∈ HT ′

implies t 6≡ 0 (mod ν2)) we have that the sets in P are disjoint. Computing cardinalities
we can conclude that P is a partition. It is immediate to check that f(t) = ν1t ∈ Dt for
all t ∈ Zν′ and so we have T = cν1(T ′).

Theorem 5.1.16. Let n and ν be integers such that rad(ν) | rad(n) then

T (n/Zν) = Tν(n).

Proof. If ν(n) = (ν1, ν2, . . . , νD), applying several times Lemma 5.1.15 we have

T (n/Zν) = cν1

(
T
(
n/Z ν

ν1

))
= cν1 ◦ cν2

(
T
(
n/Z ν

ν1ν2

))
= · · ·

= cν1 ◦ cν2 ◦ · · · ◦ cνD(T (n/Z1)) = Tν(n),

where in the last equation we use T (n/Z1) = • and Lemma 5.1.14.

5.2 Application to Rédei functions

In this section we show how to translate dynamic properties of the n-map to
the case of Rédei functions. Using results of the previous section we can obtain a complete
description of the functional graph of Rédei function and a formula for the period and
preperiod of points. We obtain a more explicit description for a special case and use it to
obtain Rédei functions with prescribed cycles with length in a geometric progression that
extends results obtained in [SSP].

We start this section by introducing some preliminaries about Rédei functions.
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5.2.1 Background on Rédei functions

There are several equivalent definitions for Rédei function. The classical def-
inition considers the binomial expansion (x + √y)n = N(x, y) + D(x, y)√y. Then, the
Rédei function Rn(x, a) defined over P1(Fq) := Fq ∪ {∞} for a ∈ Fq is Rn(x, a) = N(x,a)

D(x,a) .
Table 1 gives the first few Rédei functions for a ∈ Fq.

R1(x, a) = x
R2(x, a) = (x2 + a)/2x
R3(x, a) = (x3 + 3ax)/(3x2 + a)
R4(x, a) = (x4 + 6ax2 + a2)/(4x3 + 4ax)
R5(x, a) = (x5 + 10ax3 + 5a2x)/(5x4 + 10ax2 + a2)
R6(x, a) = (x6 + 15ax4 + 15a2x2 + a3)/(6x5 + 20ax3 + 6a2x)
R7(x, a) = (x7 + 21ax5 + 35a2x3 + 7a3x)/(7x6 + 35ax4 + 21a2x2 + a3)

Table 5.1: First few Rédei functions Rn(x, a) for a ∈ Fq.

The most convenient way of writing Rédei functions for us is due to Car-
litz [Car62]. For a fixed a ∈ F∗q we define

Rn(x, a) =
√
a

(x+
√
a)n + (x−

√
a)n

(x+
√
a)n − (x−

√
a)n , if char(Fq) 6= 2.

In this section, we consider the Möbius function over finite fields defined as γ(u) = u+
√
a

u−
√
a

for u ∈ P1(Fq), with γ(u) =∞ if u =
√
a. Then we can write

Rn(x, a) =
√
a
γ(x)n + 1
γ(x)n − 1 , (5.2.1)

where we use the standard rules when γ(x) = ∞, that is ∞n = ∞, ∞∞ = 1 and ∞± 1 =
∞. If we define Rn(x, a) = ∞ when the denominator vanishes, we have a mapping
Rn : P1(Fq) → P1(Fq). We are interested in understanding the functional graph of this
mapping.

One important property of Rédei functions that we use in this section is that
Rn ◦Rm = Rnm for fixed a ∈ F∗q and n,m positive integers; see [Réd46].

Another classical result that we use is that the Rédei function Rn(x, a) induces
a permutation function on P1(Fq) if and only if gcd(n, q − χ(a)) = 1 where χ is the
quadratic character in F∗q (that is, χ(a) = 1 if a is a square in F∗q, and −1 otherwise).
This is a well known fact about Rédei functions; see for example [Car62, Réd46]. Partial
results giving the description in disjoint cycles of Rédei functions are presented in [SSP].

Rédei functions have been applied in many areas such as pseudorandom num-
ber generators [GW08a, GW08b, MW07], cryptography [Nöb85], to solve Pell equations
[BCM10b], for interleavers in turbo codes [SSP], and to solve a conjecture about permu-
tation trinomials [Zie13].
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5.2.2 The functional graph of Rédei functions

Lemma 5.2.1. Let a ∈ F∗q be a non-square element in a non binary finite field, then we
have γ(P1(Fq)) = U , the multiplicative subgroup of order q + 1 of F∗q2.

Proof. Since χ(a) = −1 we have γ(P1(Fq)) ⊆ Fq2 . Let x, y ∈ P1(Fq). We need to prove
that γ(x)γ(y) ∈ γ(P1(Fq)). If x =∞ or y =∞ the assertion is clear. Otherwise we have

γ(x)γ(y) = x+
√
a

x−
√
a
· y +

√
a

y −
√
a

= xy + a+ (x+ y)
√
a

xy + a− (x+ y)
√
a

=
 1 = γ(∞) if x+ y = 0,
γ
(
xy+a
x+y

)
if x+ y 6= 0.

In both cases we have γ(x)γ(y) ∈ γ(P1(Fq)).

When a is an square over F∗q we restrict the domain of Rn(x, a) to the set
Dq = P1(Fq) \ {±

√
a}. Since in this case

√
a and −

√
a are isolated fixed point, the

functional graph of the Rédei function over P1(Fq) and Dq are essentially the same. When
a ∈ F∗q is a non-square element we define Dq = P1(Fq).

From here on we denote G(n, a, q) by G(Rn(x, a)/Dq) and we let Gper(n, a, q)
be Gper(Rn(x, a)/Dq). The function γ is injective and γ(Dq) = Uq+1 the multiplicative
subgroup of order q+1 of Fq2 when χ(a) = −1 (Lemma 5.2.1) or γ(Dq) = F∗q when χ(a) =
1. If Rn(x) = Rn(x, a) we have by direct calculation that in both cases γ◦Rn(x) = xn◦γ(x)
for all x ∈ Dq and therefore the following diagram commutes:

if χ(a) = −1: Dq
Rn //

γ

��

Dq

γ

��
Uq+1

xn // Uq+1

if χ(a) = 1: Dq
Rn //

γ

��

Dq

γ

��
F∗q

xn // F∗q

We observe that if G is a multiplicative cyclic group of order m then xn : G→
G is conjugate to n : Zm → Zm (multiplication by m) via any isomorphism ϕ : G → Zm
and so G(xn/G) ' G(n/Zm). Since both Uq+1 and F∗q are multiplicative cyclic groups we
have the following proposition.

Proposition 5.2.2. Let n ∈ Z+ and Fq be a finite field and a ∈ F∗q. We have

• G(n, a, q) ' G(xn/Uq+1) ' G(n/Zq+1) if χ(a) = −1,

• G(n, a, q) ' G(xn/F∗q) ' G(n/Zq−1) if χ(a) = 1.

If q − χ(a) = νω with rad(ν)|rad(n) and gcd(ω, n) = 1, we have in both cases
G(n, a, q) ' G(n/Zνω) ' G(n/Zν × Zω) where the last isomorphism is via the remainder
Chinese theorem since gcd(ν, ω) = 1.
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We denote by {•} any graph consisting of a unique vertex v with a loop (v, v).
If we apply the above observations together Definition 3.3.10, Corollary 5.1.8 and Theorem
5.1.16 we obtain the following proposition.

Theorem 5.2.3. Let n ∈ Z+, a ∈ F∗q and G(n, a, q) the functional graph of the Rédei
function Rn(x, a) as a map over P1(Fq). We express q − χ(a) = νω with rad(ν) | rad(n)
and gcd(n, ω) = 1. If λ ∈ R is such that nλ = ν, then

G(n, a, q) '
⊕
d|ω

{
ϕ(d)
od(n) ×Hn(od(n), λ)

}
⊕ (1 + χ(a))× {•}.

Example 5.2.4. Let us describe the structure of the functional graph associated with
R3(x, 1) = x3+3x

3x2+1 over P 1(F37). First, we have q − χ(a) = 36 = 32 · 22, and so n = 3,
λ = 2 and ω = 4. Using Theorem 5.2.3 we get (see Fig. 5.1)

G(3, 1, 37) '
⊕
d|4

{
ϕ(d)
od(3) ×H3(od(3), 2)

}
⊕ {•, •}

' 2×H3(1, 2)⊕H3(2, 2)⊕ {•, •}

Figure 5.1: Structure of the functional graph associated with R3(x, 1) = x3+3x
3x2+1 over

P 1(F37).

An important consequence of Theorem 5.2.3 is that it allows us obtain a for-
mula for the period and preperiod of Rédei functions.

Proposition 5.2.5. Let G(n, a, q) be the functional graph of the Rédei function Rn(x, a)
as a map over P1(Fq) and q − χ(a) = νω with rad(ν) | rad(n) and gcd(n, ω) = 1. If
u ∈ P1(Fq) and we express the multiplicative order over Fq2 as ord(γ(u)) = νud with
rad(νu) | rad(n) and gcd(n, d) = 1 (by convention ord(∞) = ord(0) = 1) we have that
νu | ν, d | ω and
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• per(u) = ordd(n),

• pper(u) = depth(νu(n)) = min{t ∈ Z+ : νu | nt}.

There is a special case of interest when ω = pα or ω = 2pα where p is an odd
prime and α is a positive integer. In this case it is possible to obtain a more explicit
representation of the functional graph. We recall that ω is such that q − χ(a) = νω with
rad(ν) | rad(n) and gcd(n, ω) = 1.

Theorem 5.2.6. Let n, a, q, λ and ω be as in Theorem 5.2.3 with the additional condition
ω = pα if n is even or ω = 2pα if n is odd, where p is an odd prime. Let η = ϕ(ω)

oω(n) = phκ

with p - κ and f = p−1
κ
. We have the following isomorphism for the functional graph

associated with the Rédei function Rn(x, a) over P1(Fq).
For n even:

G(n, a, q) ' Hn(1, λ)⊕ ph+1 − 1
f

×Hn(f, λ)

⊕
α⊕

i=h+2
{κph ×Hn(fpi−h−1, λ)} ⊕ (1 + χ(a))× {•},

and for n odd:

G(n, a, q) ' 2×Hn(1, λ)⊕ 2(ph+1 − 1)
f

×Hn(f, λ)

⊕
α⊕

i=h+2
{2κph ×Hn(fpi−h−1, λ)} ⊕ (1 + χ(a))× {•}.

Proof. We observe first that

η = ϕ(ω)
oω(n) = pα−1(p− 1)

oω(n) = phκ (5.2.2)

with 0 ≤ h ≤ α− 1 and κ | p− 1.
Let r be a primitive root modulo ω (and therefore a primitive root modulo d,

for all d | ω). As gcd(n, ω) = 1 then n ≡ rt (mod ω) for some integer t, 1 ≤ t ≤ ϕ(ω).
Changing r for another primitive root if it is necessary, we can suppose that t | ϕ(ω) and
in this case we have:

oω(n) = oω(rt) = oω(r)
gcd(t, ϕ(ω)) = ϕ(ω)

t
.

Comparing with (5.2.2) we conclude that t = η and n ≡ rη (mod ω).
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For d | ω of the form d = pi or d = 2pi with 1 ≤ i ≤ α we have

od(n) = od(rη) = od(r)
gcd(od(r), η) = ϕ(d)

gcd(ϕ(d), η) = pi−1(p− 1)
gcd(pi−1(p− 1), phκ)

= pi−1(p− 1)
pmin(i−1,h)κ

= pmax(i−1−h,0)f =
 f if i ≤ h+ 1,
pi−h−1f if h+ 1 < i ≤ α.

Then, we can rewrite Theorem 5.2.3 in the following way. For n even:

G(n, a, q) = ϕ(1)
o1(n) ×Hn(1, λ)⊕

(
h+1∑
i=1

ϕ(pi)
opi(n)

)
×Hn(f, λ)

⊕
α⊕

i=h+2

{
ϕ(pi)
opi(n) ×Hn(fpi−h−1, λ)

}
⊕ (1 + χ(a))× {•}.

For n odd:

G(n, a, q) =
(
ϕ(1)
o1(n) + ϕ(2)

o2(n)

)
×Hn(1, λ)⊕

(
h+1∑
i=1

ϕ(pi)
opi(n) + ϕ(2pi)

o2pi(n)

)
×Hn(f, λ)

⊕
α⊕

i=h+2

{(
ϕ(pi)
opi(n) + ϕ(2pi)

o2pi(n)

)
×Hn(fpi−h−1, λ)

}
⊕ (1 + χ(a))× {•}.

Note that for n odd and i ≥ 1 we have ϕ(pi) = ϕ(2pi) and opi(n) = o2pi(n),
therefore ϕ(pi)

opi (n) + ϕ(2pi)
o2pi (n) = 2 ϕ(pi)

opi (n) .
We conclude the proof observing that in both cases we have

h+1∑
i=1

ϕ(pi)
opi(n) =

h+1∑
i=1

pi−1(p− 1)
f

= κ
h+1∑
i=1

pi−1 = κ · p
h+1 − 1
p− 1 = ph+1 − 1

f
,

and for h+ 1 < i ≤ α, we have

ϕ(pi)
opi(n) = pi−1(p− 1)

pi−1−hf
= κph.

5.2.3 Rédei permutations and their cycle decomposition

Here we give other corollaries that can be obtained from Theorem 5.2.3 related
to the cycle decomposition. In particular we give a way to construct Rédei functions whose
length cycles are in arithmetic progression that extend results obtained in [SSP].

Corollary 5.2.7. The Rédei function Rn(x, a) induces a permutation of P1(Fq) if and
only if gcd(n, q − χ(a)) = 1. In this case we have the following decomposition in disjoint
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cycles

G(n, a, q) '
⊕

d|q−χ(a)

{
ϕ(d)
od(n) × Cyc(od(n))

}
⊕ (1 + χ(a))× {•},

where Cyc(c) denotes a directed cycle of length c.

Proof. As a consequence of Theorem 5.2.3 it is easy to conclude that Rn(x, a) induces a
permutation if and only if λ = 0 (Remark 3.3.11). This is equivalent to gcd(n, q−χ(a)) =
1. In this case each Hn (od(n), λ) = Cyc (od(n)), and so it is a directed cycle of length
od(n).

Corollary 5.2.8. The number of fixed points of Rn(x, a) over P1(Fq) is given by the
formula

gcd (n− 1, q − χ(a)) + (1 + χ(a)) .

This corollary can be seen as a consequence of the following more general result
(by taking k = 1).

Corollary 5.2.9. Let k be a positive integer. The number of points of Rn(x, a) over
P1(Fq) whose period divide k is given by the formula

gcd
(
nk − 1, q − χ(a)

)
+ (1 + χ(a)) .

Proof. We consider the set Pk = {x ∈ P1(Fq) : per(x) | k}. If x ∈ Pk, x belongs to a
connected component Hn(od(n), λ) with od(n) | k. Now, od(n) | k if and only if nk ≡ 1
(mod d) if and only if d | nk − 1.

On the other hand, each component Hn(od(n), λ) with d | nk − 1 have exactly
od(n) points in Pk, so

#Pk =
∑

d|ω,d|nk−1

{
ϕ(d)
od(n) · od(n)

}
+ (1 + χ(a))

=
∑

d|gcd(nk−1,ω)
ϕ(d) + (1 + χ(a)) = gcd(nk − 1, ω) + (1 + χ(a))

= gcd(nk − 1, q − χ(a)) + (1 + χ(a)).

Remark 5.2.10. Corollary 5.2.9 gives an alternative way to prove Theorem 3.14 of [SSP].
If we denote by Nj the number of cycles of length j, we obtain

jNj +
∑
i|j,i<j

iNi = gcd(nj − 1, q − χ(a)) + (1 + χ(a)).

In particular, when χ(a) = −1 the point ∞ is an isolated fixed point and we can consider
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Rn(x, a) : Fq → Fq. In this case we have

jNj +
∑
i|j,i<j

iNi = gcd(nj − 1, q − χ(a))− 1

as stated in Theorem 3.14 of [4].

The following corollary that characterize Rédei permutations with cycles of
length 1 and j (where j is an integer greater than 1) appears in [SSP] and can be seen as
a direct consequence of Theorem 5.2.3.

Corollary 5.2.11. (Theorem 3.15 of [SSP]) If gcd(n, q + 1) = 1 and χ(a) = −1, then
the Rédei permutation Rn(x, a) has all its cycles of length 1 or j if and only if for every
divisor d of q + 1 we have n ≡ 1 (mod d) or j = ordd(n).

Proof. The length of the cycles are given by od(n) = ordd(n) where d runs over the divisors
of q + 1 and ordd(n) = 1 if and only if n ≡ 1 (mod d).

A naive generalization of the above corollary is given next. It can be proved
in the same way as above.

Corollary 5.2.12. If gcd(n, q + 1) = 1 and χ(a) = −1, then the Rédei permutation
Rn(x, a) has all its cycles of length belonging to a set S = {1, j1, . . . , jt} if and only if for
every divisor d of q + 1 we have ordd(n) ∈ S.

Corollary 5.2.13. The length of the largest cycle in G(`, a, q) is m = ordω(n), where
q − χ(a) = nλω and n - ω as in Theorem 5.2.3.

Proof. The lengths of the cycles are given by od(n) where d runs over the divisors of ω.
If d is a divisor of ω we have nm ≡ 1 (mod ω) if and only if nm ≡ 1 (mod d) if and only
if od(n) | m and thus m ≥ od(n).

Theorem 5.2.6 allows us to construct special types of Rédei functions.
Despite the fact that we have the above characterizations, it is not clear how to

construct Rédei functions where all its non-trivial cycles (that is, cycles of length greater
than one) have length j. We show next, a method to construct such Rédei functions.
Moreover, given an integer j ≥ 2 and an integer t ≥ 1, the method allows us to construct
Rédei functions whose non-trivial cycles have length j, jp, jp2, . . . , jpt−1 for some prime
number p (when t = 1 we obtain a Rédei function whose non-trivial cycles have length j).

Remark 5.2.14. Let j and t be positive integers with j ≥ 2, and p a prime number such
that p ≡ 1 (mod j). Let us suppose that we want to construct a Rédei function Rn(x, a)
defined over a finite field Fq with exactly t different lengths for the non-trivial cycles
following the geometric progression j, jp, jp2, . . . , jpt−1. We can apply the next steps:
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1. Pick a number α ≥ t such that 2pα − 1 = q is a power of prime.

2. Pick a non-square element in Zq+1.

3. Choose a primitive root r modulo Zq+1.

4. Compute n ≡ rp
α−t( p−1

j ) (mod q + 1).

Then, the Rédei function Rn(x, a) defined over Fq has non-trivial cycles of length j, jp, jp2,

. . . , jpt−1 as required. Indeed, we have that χ(a) = −1 and gcd(n, q + 1) = 1. With the
notation used in Theorem 5.2.6, ω = q + 1, ν = 1, oω(n) = j = f and n is odd (because
q + 1 is even). We obtain that ν = phκ where h = α− t and κ = p−1

j
. By Theorem 5.2.6

we have the largest cycle in G(n, a, q) has length fpα−h−1 = jpt−1 which appear exactly
κph = (p−1)ph

j
times. The other length cycles are 1, j, . . . , jpt−2 and their multiplicities can

be obtained from Theorem 5.2.6.

5.3 Estimates for the cycle structure of iterating Rédei functions

Shallit and Vasiga [VS04] obtain several results about tails and cycles in orbits
of iterations of quadratic polynomials over prime fields. These results were extended to
repeated exponentiation by Chou and Shparlinski [CS04]. In this section, using a different
strategy based on isomophisms of Rédei iteration graphs, we show analogous results to
Chou and Shparlinski but for Rédei functions and the n-map.

5.3.1 Some parameters related to the cycle structure

We consider a parametric family of rational functions with integer coefficients
{fu(x)}u∈U such that the denominator of such functions not vanish when they are consid-
ered modulo p for p large enough prime number. In this case, for x ∈ P1(Fp) we consider
the least integers s ≥ 0 and r ≥ 1 such that f (s+r)

u (x) = f (s)
u (x) (where f (k) is the k-th

iterate of f) and we define:

• cu,p(x) = r (the cycle length or period of x),

• tu,p(x) = s (the tail length or pre-period of x).

We are interested in studying the following parameters:

• C(u, p), the expected value of cu,p.

• T (u, p), the expected value of tu,p.

• T0(u, p), the number elements for which tu,p = 0.

• N(u, p), the number of cycles in fu as map in P1(Fq).
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• S(u,N), the expected value of T (u, p) for p runs over all primes p ≤ N .

• S0(u,N), the expected value of T0(u, p) for p runs over all primes p ≤ N .

In [CS04], Chou and Shparlinski studied these parameters for the case fe(x) =
xe. We are interested on the Rédei function case, that is when f(n,a)(x) = Rn(x, a). The
dynamics of the Rédei function defined over P1(Fp), for the case when a is a square element
in Fp is essentially the same that the dynamics of the map xe over F∗p; in this sense our
results on Rédei function can be seen as a generalization of [CS04].

Review of results on Rédei functions and the n-map

Here we review some results about isomorphism of Rédei function and the n-
map to be used in the estimate of some parameters related to their cycle structure.

Let G(n, a, q) be the functional graph of the Rédei function Rn(x, a) defined
over Da = P1(Fq) \ {±

√
a} (where q is an odd prime power) and G(n/Zνω) be the func-

tional graph of the n-map defined over Zνω where rad(ν) | rad(n) and gcd(nω) = 1.

We are interested in the parametric family of Rédei functions, that is {fu}u∈U
where U consist of pairs (n, a) ∈ Z+ × F∗q and f(n,a)(x) = Rn(x, a) defined over Da.

In Proposition 5.2.2 we obtained the following isomorphism of graph

G(n, a, q) ' G(n/Zq−χ(a))

where χ is the quadratic character in F∗q.

This proposition allows us to reduce our problem of obtain the parameters
C, T, T0, N, S and S0 for the case of the n-mapping. The following results is a direct
consequence of Corollary 5.1.8 and Theorem 5.1.16.

Proposition 5.3.1. Let q − χ(a) = νω where rad(ν) | rad(n) and gcd(n, ω) = 1. Let
ν(n) = (ν1, ν2, . . . , νD) the ν-serie generated by n. We have the following isomorphism
formula

G(n/Zq−χ(a)) =
⊕
d|ω

{
ϕ(d)
od(n) × Cyc(od(n), Tν(n))

}
(5.3.1)

where the rooted tree Tν(n) is defined by

T 0 = •
T k = 〈νk × T k−1 ⊕⊕k−1

i=1 (νi − νi+1)× T i−1〉, 1 ≤ i < D

Tν(n) = 〈(νD − 1)× TD−1 ⊕⊕D−1
i=1 (νi − νi+1)× T i−1〉

(5.3.2)
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The following proposition is a direct consequence of Proposition 3.3.7 and
Proposition 3.3.9.

Proposition 5.3.2. If rad(ν) | rad(n) and ν(n) = (ν1, ν2, . . . , νD) the number of vertices
of Tν(n) is given by

#Tν(n) = ν, (5.3.3)

and its depth is satisfies

depth(Tν(n)) = depth(ν(n)) = D. (5.3.4)

5.3.2 Formulas for C, T, T0, N

Let n andm = νω be positive integers such that rad(ν) | rad(n) and gcd(n, ω) =
1. First, we deduce formulas for N(n,m) the number of connected components of
G(n/Zm), T (n,m) the number of periodic points for the n-mapping over Zm and for

C(n,m) = 1
m

∑
u∈Zm

per(u) and T (n,m) = 1
m

∑
u∈Zm

pper(u),

where per(u) and pper(u) denote the period (length cycle) and pre-period (length tail) of
u ∈ Zm with respect to the n-mapping, respectively.

Proposition 5.3.3. Let n and m = νω be positive integers with rad(ν) | rad(n) and
gcd(n, ω) = 1, and let ν(n) = (ν1, ν2, . . . , νD) be the ν-serie associated to n. For the
n-mapping over Zm we have the following quantities:

N(n,m) =
∑
d|ω

ϕ(d)
od(n) , T0(n,m) = ω, C(n,m) = 1

ω

∑
d|ω

ϕ(d)od(n)

and T (n,m) = 1
ν

D−1∑
j=0

ν1 . . . νj.

Proof. The formula for N(n,m) is straightforward from Equation (5.3.1) and also the
formula for T0 since T0(n,m) = ∑

d|ω
ϕ(d)
od(n) · od(n) = ∑

d|ω ϕ(d) = ω.
Using Equation (5.3.1) and Equation (5.3.3) we obtain:

∑
u∈Zm

per(u) =
∑
d|ω

ϕ(d)
od(n) · od(n) ·#Tν(n) · od(n) =

∑
d|ω

νϕ(d)od(n),

and dividing by νω we obtain the formula for C(n,m). If h(j) denote the number of
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vertices at depth j in Tν(n), using Equation (5.3.1) we have

∑
u∈Zm

pper(u) =
∑
d|ω

 ϕ(d)
od(n) · od(n) ·

D∑
j=1

jh(j)
 = ω

D∑
j=1

jh(j). (5.3.5)

Denoting hi(j) the number of vertices at depth j in T i, using Equation (5.3.2) we have
 h0(0) = 1 and h0(j) = 0 for j > 0
hk(j) = νkhk−1(j − 1) +∑k−1

i=1 (νi − νi+1)hi−1(j − 1) for 1 ≤ k ≤ D

from which we obtain hi(j) = ∏j
k=1 νk for 0 ≤ j ≤ i. Therefore h(j) = hD(j)− hD−1(j −

1) = pj − pj−1 for 0 ≤ j ≤ D, where pj = ν1ν2 . . . νj. By partial summation we have∑D
j=1 jh(j) = ∑D

j=1 j(pj − pj−1) = Dν − ∑D−1
j=0 pj (since pD = ν). Substituting this in

Equation (5.3.5) and dividing both sides by νω we obtain the desired formula.

Remark 5.3.4. Since G(xn/Z∗p) ' G(n/Zp−1), Theorem 1 of [CS04] is a particular case
of Proposition 5.3.3 (taking m = p− 1, p prime).



Chapter 6
CONCLUSIONS AND PERSPECTIVES

In this thesis we derive several results on perfect codes in the Lee and Cheby-
shev metrics and on the cycle structure of Rédei functions. For the two dimensional case
we characterize all perfect codes (linear and non-linear) in the p-Lee metric for p = 1,∞.
Regarding the Lee metric we prove that there is only one (2, e, q)-perfect code up to sym-
metry and for the Chebyshev metric we obtain a parametrization of the isometry classes
and also of the isomorphism classes through certain generalized cosets of Zd. We approach
the classification problem for Chebyshev perfect codes in arbitrary dimensions. Several
construction of perfect codes in this metric from codes of smaller dimension and via sec-
tions are given. These constructions allow us to extend results obtained in dimension 2
to arbitrary dimensions as well as to derive interesting families of perfect codes (as those
in Corollaries 4.3.8 and 4.3.9). We introduce a class of matrices (perfect matrices) which
provides generator matrices with a special form for Chebyshev perfect codes. Character-
izations of what group isomorphism classes can be represented by (n, e, q)-perfect codes
in the two-dimensional case, the maximal case and in the cyclic case are provided. In all
the above cases we prove that the set of admissible structures form an ideal in the set of
isomorphism classes of abelian groups of order tn. In the last chapter we characterize the
functional graph of Rédei functions, using the dynamic of the n-map over cyclic groups.
Results on the cycle decomposition of Rédei permutations and estimates for the period
and preperiod of points are derived. A method for constructing Rédei functions with
prescribed cycles is also presented. As an application of our structural theorem for Rédei
function we obtain estimates for some parameters related to the cyclic structure of some
maps.

Potential further problems related to this work are described next. It may
be possible, in dimension 2, to extend our results on Lee perfect codes and Chebyshev
perfect codes to p-Lee perfect codes for other values of p 6= 1,∞. Another problem closely
related to this is to find a p-Lee perfect code which is neither a Lee perfect code nor a
Chebyshev perfect code, or prove that such code does not exist (see Conjecture 4.2.50).
Regarding Chebyshev perfect codes in arbitrary dimensions, the fact that every linear
perfect code is standard (which is consequence of Minkoski-Hajós theorem) guarantee
that the permutation associated to a code (Definition 4.4.2) is well defined. It is likely to
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be possible to extend some of our results from the linear case to non-linear codes for which
the permutation associated to the code is well defined. We can also consider isometries
acting on perfect non-linear codes aiming to classify isometry classes and [KP12c, MC03]
could be helpful in this sense. In Section 4.4 we obtain a parametrization for linear perfect
codes in such a way that isometry classes and isomorphism classes correspond to certain
generalized cosets (Theorem 4.2.46), so it would be interesting to obtain an analogous
result for higher dimensions (Theorems 4.4.27 and 4.4.29 provide a partial answer for the
maximal case). One of the obstacles when we try to generalize this theorem is obtaining
a generator matrix for t−1C (see Notation 4.3.5) from a generator matrix for C, where
C ∈ LPL∞(n, e, q). Other open question is regarding to the description of the (n, e, q)-
admissible structures (isomorphism classes that can be represented by a (n, e, q)-perfect
code), we prove that this set form an ideal in the graph Gn(t) of isomorphism classes of
abelian groups of order tn in several cases (in dimension 2, in the maximal case and in
the cyclic case) and we wonder if this is always true. In [Kol98], tilings by the notched
cube and by the extended cube were considered, it may be possible to extended some of
results obtained here for these more general shapes. Regarding iterating Rédei functions,
in [BCM10a] a generalization of Rédei function is given. It may be possible to explain
the dynamics of such generalization. In particular one could characterize when they give
a permutation and in this case, describe their decomposition into disjoint cycles. One
could also attempt to extend the characterization of the functional graph associated with
the n-map in cyclic groups to more general endomorphism over finite abelian groups. An-
other natural question is to understand when two functional graphs associated with Rédei
functions are isomorphic. A partial answer can be obtained using the results of [Den13]
and our remarks in Section 5.2.2 for the case when the second parameters of the Rédei
functions are congruent modulo a square. It could be interesting to obtain conditions
when the functional graphs associated with Rn(x, a) and Rm(x, b) are isomorphic for the
case χ(a) 6= χ(b) (over the domain P1(Fq)). Finally, as in [Gas14], we could define a
tower of field extensions related to Rédei functions and then study how rational primes
decompose in such tower of field extensions.
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