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Resumo

SILVA, Priscilla Brandão. Análise dinâmica de estruturas periódicas utilizando uma abordagem de
propagação de ondas e técnicas de sub-estruturação. 2015. 232p. Tese (Doutorado). Faculdade de
Engenharia Mecânica, Universidade Estadual de Campinas, Campinas.

Nesta tese de doutorado, o método dos elementos finitos ondulatórios é utilizado para
cálculo da resposta harmônica de sistemas mecânicos envolvendo estruturas com periodicidade
unidimensional, i.e., estruturas compostas por subestruturas idênticas arranjadas ao longo de
uma direção. Tais sistemas mecânicos podem ser complexos e são comumente encontrados em
aplicações de engenharia como, por exemplo, nas fuselagens de aviões. A primeira parte da tese é
dedicada ao cálculo das ondas que se propagam ao longo dessas estruturas. Uma breve revisão da
literatura sobre as formulações disponíveis para o problema de autovalor associado ao método dos
elementos finitos ondulatórios é apresentada, assim como um estudo dos erros numéricos induzidos
por estes problemas de autovalor no caso de um guia de ondas sólido. Na segunda parte desta tese,
modelagens de superelementos para estruturas periódicas são propostas. Neste contexto, matrizes
de rigidez dinâmica e de receptância ou flexibilidade de estruturas periódicas são expressas a
partir dos modos de onda. Comparadas às matrizes de rigidez dinâmica e receptância obtidas pelo
método dos elementos finitos convencional, as matrizes baseadas no método dos elementos finitos
ondulatórios são calculadas de forma bastante rápida e sem perda de acuracidade. Ademais, uma
estratégia eficiente de redução de ordem de modelo é apresentada. Comparada às formulações que
utilizam a base completa de ondas, esta estratégia proporciona redução do tempo computacional
requerido para cálculo da resposta forçada de estruturas periódicas. De fato, é mostrado que
elementos espectrais numéricos de alta ordem podem ser construídos a partir do método dos
elementos finitos ondulatórios. Isto constitui uma alternativa ao método dos elementos espectrais
convencional, cuja utilização está limitada a estruturas simples para as quais soluções analíticas
por ondas existam. A motivação por trás das formulações de matrizes de superelementos a partir
do método dos elementos finitos ondulatórios está na utilização do conceito de ondas numéricas
para calcular a resposta harmônica de sistemas mecânicos acoplados que envolvam estruturas
com periodicidade unidimensional e junções elásticas a partir de procedimentos de montagem
clássicos de elementos finitos ou técnicas de decomposição de domínio. Este assunto é tratado
na terceira parte desta tese. Nesse caso, o método de Craig-Bampton é usado para expressar as
matrizes de superelementos de junções por meio de modos estáticos e de interface fixa. Um critério
baseado no método dos elementos finitos ondulatórios é considerado para a seleção dos modos
da junção que mais contribuem para a resposta forçada do sistema. Isto também contribui para o
aumento da eficiência da simulação numérica de sistemas acoplados. Finalmente, na quarta parte
desta tese, o método dos elementos finitos ondulatórios é utilizado para mostrar que é possível
projetar estruturas periódicas com potencial para funcionar como filtros de vibração em bandas
de frequência específicas. Com o intuito de destacar a relevância dos desenvolvimentos propostos
nessa tese, ensaios numéricos envolvendo guias de onda sólidos, pórticos planos e estruturas

xv



tridimensionais do tipo fuselagem aeronáutica são realizados.

Palavras-chave: Estruturas periódicas, Propagação de ondas, Método dos elementos finitos,
Métodos de decomposição, Dinâmica estrutural.
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Abstract

SILVA, Priscilla Brandão. Dynamic analysis of periodic structures via wave-based numerical ap-
proaches and substructuring techniques. 2015. 232p. Tese (Doutorado). Faculdade de Engenharia
Mecânica, Universidade Estadual de Campinas, Campinas.

In this thesis, the wave finite element (WFE) method is used for assessing the harmonic
forced response of mechanical systems that involve structures with one-dimensional periodicity,
i.e., structures which are made up of several identical substructures along one direction. Such
mechanical systems can be quite complex and are commonly encountered in engineering applica-
tions, e.g., aircraft fuselages. The first part of the thesis is concerned with the computation of wave
modes traveling along these structures. A brief literature review is presented regarding the available
formulations for the WFE eigenproblem, which need to be solved for expressing the wave modes,
as well as a study of the numerical errors induced by these eigenproblems in the case of a solid
waveguide. In the second part of the thesis, the WFE-based superelement modeling of periodic
structures is proposed. In this context, the dynamic stiffness matrices and receptance matrices of
periodic structures are expressed in terms of wave modes. Compared to the conventional FE-based
dynamic stiffness and receptance matrices, the WFE-based matrices can be computed in a very
fast way without loss of accuracy. In addition, an accurate strategy for WFE-based model order
reduction is presented. It provides significant computational time savings for the forced response
analysis of periodic structures compared to WFE-based superelement modeling, which makes
use of the full wave basis. Indeed, it is shown that higher-order numerical spectral elements
can be built by means of the WFE method. This is an alternative to the conventional spectral
element method, which is limited to simple structures for which closed-form wave solutions exist.
The motivation behind the formulation of WFE-based superelement matrices is the use of the
concept of numerical wave modes to assess the forced response of coupled mechanical systems
that involve structures with one-dimensional periodicity and coupling elastic junctions through
classic finite element assembly procedures or domain decomposition techniques. This issue is
addressed in the third part of this thesis. In this case, the Craig-Bampton method is used to express
superelement matrices of coupling junctions by means of static and fixed-interface modes. A
WFE-based criterion is considered to select among junction modes those that contribute most to
the system forced response. This also contributes to enhancing the efficiency of the numerical
simulation of coupled systems. Finally, in the fourth part of this thesis, the WFE method is used to
show the potential of designing periodic structures which work as vibration filters within specific
frequency bands. In order to highlight the relevance of the developments proposed in this thesis,
numerical experiments which involve solid waveguides, two-dimensional frame structures, and
three-dimensional aircraft fuselage-like structures are carried out.

Keywords: Periodic structures, Wave propagation, Finite element method, Decomposition methods,
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Structural dynamics.
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1 Introduction

1.1 Motivation

Since the early days of aeronautics, there has always been an interest in assessing the dynamic
response of structural systems. The interest may be either at the design stage or during operation.
In the former case, understanding the dynamic response of the system is important for the pur-
pose of modeling. On the other hand, during operation, it allows structural health monitoring and
control. Regarding the kind of analysis, analytical, numerical, or experimental studies can be per-
formed. Although experimental tests may provide the best reproduction of the system behavior,
they are usually expensive and may take a long time to be performed. At the design stage of the
development of complex real engineering systems, a fast and cheap numerical analysis is sought
for predicting their dynamic responses. This is because, at this stage, one of the main concerns is
the difficulty in meeting the design criteria, which usually require structural optimization involving
dynamic responses. Moreover, variability is often present in manufacturing processes and it causes
a deviation from the nominal design specification which affects the structural response. Due to the
growing demands for robust optimum design prediction, the development of numerical tools for un-
certainty quantification in industrial applications is of importance for design engineers. However,
either in optimization or uncertainty analyses, the use of conventional prediction tools for structural
dynamics, such as the finite element method (FEM) (Petyt, 2010), may not be convenient due to
excessive computational cost. This is because, in both cases, the dynamic problem under concern
must be solved several times. The issue becomes critical when a very large number of degrees of
freedom is involved. This motivates the development of reliable and efficient predictive numerical
tools.

In this thesis, the interest lies in developing efficient numerical approaches for the forced re-
sponse computation of periodic structures. Indeed, we are interested in mechanical systems which
are composed of periodic structures or structures that can be approximately modeled as one. Engi-
neering systems like those are common in real applications; we can mention, for instance, train rails
(Figure 1.1(a)1), pipeline systems (Figure 1.1(b)2) in the oil and gas industry, some nanostructures

1available on www.blacknaija.com/new-update/lagos-calabar-rail-line-underway-jonathan on July 29th, 2015.
2available on www.pennenergy.com/articles/pennenergy/2013/02/magellan-acquires-800-miles-of-pipeline on

July 29th, 2015.
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like the nanorods, nanobeams and nanotubes (Figure 1.1(c)3), aircraft fuselages (Figure 1.1(d)4) or
the fuselage of a space shuttle (which can be roughly regarded as stiffened cylindrical shells) in
the aerospace industry, tires and chassis frames (Figure 1.1(e)5) in the automotive industry and the
hull of a submarine (Figure 1.1(f)6 ) in the naval industry. Since periodic structures are formed by
a regular repetition of a periodic unit in space, by applying periodic boundary conditions, only one
periodic unit needs to be modeled in order to describe the dynamics of the whole structure. This
yields a reduction of the problem size to be solved and it allows for the use of less complicated
numerical techniques. One of the aims of this thesis is, thus, to propose numerical approaches that
can describe low-to-mid frequency dynamics of periodic structures and that can compete in accu-
racy and computational time with conventional numerical methods, such as FEM associated with
substructuring techniques such as the Craig-Bampton (CB) method (Craig and Bampton, 1968a).

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of real engineering structures which can be regarded as waveguides (a, b, c)
or which are composed of periodic parts (d, e, f): (a) train rail, (b) pipeline system, (c) nano sensor,
(d) aircraft structure, (e) chassis frame, (f) submarine.

Besides, from the physical point of view, periodic structures have attracted a lot of attention
due to the striking possibility of controlling mechanical and electromagnetic waves. Within the

3available on www2.lbl.gov/publicinfo/newscenter/features/2008/MSD-golden-scales on July 29th, 2015.
4available on business.citifmonline.com/2014/11/06/41227/ on July 29th, 2015.
5available on www.mercedes-benz.com.au/content/australia/mpc/mpc_australia__website/en/home_mpc/truck_

home/home/trucks/actros/chassis on July 29th, 2015.
6available on www.naval-technology.com/projects/andrasta-submarine/andrasta-submarine2 on July 29th, 2015.
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www.mercedes-benz.com.au/content/australia/mpc/mpc_australia__website/en/home_mpc/truck_home/home/trucks/actros/chassis
www.mercedes-benz.com.au/content/australia/mpc/mpc_australia__website/en/home_mpc/truck_home/home/trucks/actros/chassis
www.naval-technology.com/projects/andrasta-submarine/andrasta-submarine2


framework of this thesis, we are only concerned with the mechanical properties of these structures.
The regular arrangement of such structures may give rise to frequency zones in which waves do
not propagate or are highly attenuated — i.e., the so-called band gaps or stop bands. The design of
periodic structures with a view to optimize the positioning of band gaps within a specific frequency
band and their characteristics make them good candidates to work as passive vibroacoustic filters.

In the context of structural dynamic analysis of weakly dissipative complex structures, three
different frequency bands can be defined within the audio-frequency range, which is the fre-
quency range of interest for automotive and aerospace structures (Ohayon and Soize, 1998; Desmet
et al., 2012). In practice, numerical methods for frequency response analysis are usually developed
for a limited frequency range (see Figure 1.2). The limitations are either due to the practical lim-
its of computing power or to the constraints imposed by the hypotheses underlying the employed
theory. At low frequencies, i.e., the domain of analysis characterized by low modal density, the
FEM is one of the most powerful and popular computational methods. It allows to easily model
complex structures and it is available in many commercial softwares. However, as it makes use of
frequency independent shape functions to approximate structural responses, the mesh size should
be sufficiently small compared to the smallest wavelength within the frequency range of analy-
sis in order to guarantee an accurate solution. Thus, as the frequency rises, finite element (FE)
models become extremely large and the computational cost sets a practical high frequency limit
for the low-frequency (LF) range. Other deterministic methods can be used to perform LF analy-
ses, such as the boundary element method (BEM) (Lachat and Watson, 1976), the infinite element
method (IEM) (Bettess, 1977; Bettess and Zienkiewcz, 1977) and the spectral element method
(SEM) (Doyle, 1997; Lee, 2009). The common feature of these methods is that in all of them the
continuum domains or their boundary surfaces are discretized into elements within which the field
variables — i.e., kinematic (displacements/rotations) and kinetic (forces/moments) quantities —
are described.

On the other hand, at high frequencies, vibroacoustic systems exhibit a high modal density
and their responses are very sensitive to uncertainties in the model parameters, such as: geometrical
component dimensions, material properties, and boundary conditions. Thus, differently from the LF
range, where the structural response is deterministic and numerical methods such as FEM, BEM
and SEM are computationally efficient, in the high-frequency (HF) range it is more appropriate to
consider the averaged dynamic response and the associated confidence levels for a population of
nominally identical systems. This has led to the development of probabilistic techniques, of which

3
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ran
ge

Figure 1.2: Scheme relating conventional numerical methods with distinct ranges of the frequency
domain.

the most popular one is the statistical energy analysis (SEA) (Lyon, 1975; Maidanik, 1981). In
developing this numerical method, a diffuse field is assumed — i.e., the time-averaged energy is
considered the same within a subsystem—, subsystems are assumed weakly coupled and the exci-
tation forces uncorrelated. The methodology of HF numerical approaches is based on expressing
the energy balance for various subsystems.

In recent years, researchers have been concerned about a mid-frequency (MF) gap in model-
ing capabilities (Desmet and Vandepitte, 2002; Mencik and Ichchou, 2008; Desmet et al., 2012),
i.e., the available prediction techniques were not suitable to model structural acoustic systems at
mid frequencies. In this intermediate frequency range, the modal density exhibits large variations,
hence the dynamic behavior of coupled systems is expected to involve global as well as local
resonances (Ohayon and Soize, 1998; Mencik and Ichchou, 2008). Thus, it is expected that the
structure response might be affected by variability at mid frequencies. The lower and upper lim-
its of this frequency range are qualitatively defined as the frequencies in which the computational
cost of FE simulations becomes too high and the minimum frequency for which SEA solution is
appropriate, respectively. Consider the case of a free-free rod subjected to uniform axial force ap-
plied to its left end as shown in Figure 1.3(a). In Figure 1.3(b), velocity responses obtained through
Monte Carlo (MC) simulations (Metropolis and Ulam, 1949) with 197 trials , �̄�(𝐸) = 𝐸nom and
𝜎(𝐸) = 0.05 𝐸nom — where 𝐸 denotes the Young’s modulus, and �̄� and 𝜎 stand for the mean
and standard deviation of the sample, respectively — are plotted against the nominal response of
the structure. The results confirm that at low frequencies — i.e., below 300 kHz in the present
case — the structural response is deterministic. However, for frequencies higher than 300 kHz, the
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structure response becomes really sensitive to perturbations, which is a feature of the MF range. In
order to bridge the gap in dynamic analysis, wave-based methods have been employed. A scheme
is presented in Figure 1.2 to shed light on this frequency issue.
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Figure 1.3: Dynamic analysis of a free-free rod subjected to axial force at its left end: (a) sketch of
the problem case, velocity solution in the 𝑥-direction at the center of the right cross-section com-
puted by means of WFE-based DSM (Section 3.2.2):(—) for 𝐸 = 𝐸nom, (—) for MC simulations
with 197 trials, �̄�(𝐸) = 𝐸nom and 𝜎(𝐸) = 0.05 𝐸nom.

According to Desmet and Vandepitte (2002), three major methodologies can be adopted to
solve the mid-frequency issue. One of them consists in developing efficient deterministic-based
methods for the MF range. A second one proposes probabilistic-based approaches which attempt
to relax some stringent assumptions of SEA and provide spatial information. Among them, one can
cite the energy finite element method (EFEM) (Nefske and Sung, 1989; Shorter and Langley, 2004;
Shorter and Langley, 2005), the statistical modal energy distribution analysis (SmEdA) (Maxit and
Guyader, 2001a; Maxit and Guyader, 2001b) and the wave intensity analysis (Langley, 1992). Fi-
nally, the third possible methodology combines deterministic and probabilistic techniques. In this
case, the strongly coupled and stiff structures are modeled deterministically, while weakly cou-
pled and flexible parts are modeled statistically using SEA (Soize, 1993; Ohayon and Soize, 1998;
Langley and Bremner, 1999). The development of numerical methods for mid-frequency range
analysis is also a motivation for this work. The numerical approaches considered here follow the
first methodology. Hence, the computational performance of the novel techniques compared to the
conventional finite element method is one of the major issues addressed in this thesis.

Here, wave-based numerical approaches have been developed. Although the use of such tech-
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niques in structural dynamics analysis has a long history, the abundance of computing power has
contributed to the dominance of modal approaches (Arruda and Silva, 2015). This might be ex-
plained by the widespread use of FEM in structural linear dynamic analysis. It was only recently,
with the development of symbolic computation, that analytical and numerical wave-based methods
have attracted some renewed interest. It is worth recalling here the main features of the wave and
modal approaches.

The modal approach consists in approximating the response of finite structures as a superpo-
sition of mode shapes, which satisfy the same boundary conditions that the displacement field does.
In other words, the mode shapes describe vibration patterns of the finite dynamic system at spe-
cific angular frequencies, i.e., the natural frequencies, which depend on the boundary conditions.
On the other hand, wave approaches involve the solution of the problem for an infinitely extended
dynamic system by means of a superposition of waves. The response of a finite structure can also
be addressed by considering wave reflections and transmissions within its boundaries. The modal
and wave descriptions of finite systems are fully equivalent to each other. However, depending on
the frequency range of interest or the aspect of structural vibration under concern, one description
can be preferred in detriment of the other. For instance, the number of vibration modes required
to describe the response of a dynamic system appears to be more influenced by the frequency rise
than the number of wave modes. Indeed, the wave modes are not dependent on the structure length
and boundary conditions. Vibration modes are due to the interference of waves and also their in-
teraction with the system boundaries. Therefore, the number of waves to be considered is likely
to be smaller than the corresponding number of vibration modes. For instance, let’s consider the
free-free rod problem previously stated (see Figure 1.3(a)). Table 1.1 provides a comparison be-
tween the number of wave modes and that of vibration modes to be considered in order to get
accurate responses at the opposite end with respect to the WFE-based DSM solution (see Section
3.2.2). The velocity responses computed by means of a wave-based and a modal-based approach
are shown in Figure 1.4. The results highlight the relevance of a wave-based approach — here, the
reduced-order WFE-based approach was employed (see Section 3.3) — in terms of computational
savings compared to a modal-based one — here, the CB method was employed (see Annexe A).

The development of wave-based approaches in this thesis is also motivated by the possibility
of assessing the dynamic behavior of periodic structures by means of dispersion relations. This
feature of wave-based approaches is interesting as it avoids the need of computing the forced re-
sponse. As a matter of fact, the dispersion relations provide information about the characteristics
of waves traveling along an infinite medium. Thus, far from the excitation source and boundaries,
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Table 1.1: Comparison between wave and modal approaches in the simulation of a free-free rod
structure subjected to uniform axial force.

Maximum 𝜆 Modal approach Wave approach
Frequency

nb of modes error nb of waves error

700 kHz 0.0050 m 650 < 20 % 6 < 20 %

0 2 4 6

x 10
5

−160

−150

−140

−130

−120

−110

Frequency (Hz)

V
el

oc
ity

 (
ce

nt
er

) 
(d

B
)

Figure 1.4: Velocity solution in the 𝑥-direction at the center of the right cross-section of a free-free
rod subjected to axial force at its left end, computed by means of: (—) a wave-based approach, (- -)
a modal-based approach.

the response of a finite structure is approximately known. Then, if one is interested in the far-field
dynamic behavior of a structure, optimization and uncertainty quantification analyses can be per-
formed based on the information provided by dispersion relations. Moreover, dispersion relations
are important tools in the design of periodic structures exhibiting band gaps, as it will be discussed
in Chapter 5.

In recent years, a lot of research has been conducted on the development of the wave fi-
nite element (WFE) method (Mace et al., 2005; Mencik and Ichchou, 2005; Mencik, 2014; Silva
et al., 2014b). This is a numerical wave-based method for describing the dynamics of periodic
structures. As it involves the modeling of only one periodic unit by means of conventional FEs, the
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model size is considerably reduced compared to the full FE model. For this reason, the WFE method
is often presented as a suitable method for describing MF dynamics (Desmet et al., 2012; Men-
cik, 2010). As a wave-based method, the dynamic behavior of periodic structures can be assessed
through the computation of dispersion relations and forced responses. Inspired on SEM, which uses
a basis of analytical waves to build spectral superelements, this thesis is concerned about the for-
mulation of WFE-based superelements of periodic structures composed of an arbitrary number of
periodic units. The key point here is the possibility of using conventional assembly techniques to
handle coupled systems. Moreover, the use of FEs to model the periodic unit makes it possible to
describe complex structures, which, in the wave domain, are characterized by higher-order waves.
Hence, another motivation for this work is the possibility of building numerical spectral elements
of arbitrary order. The origin of this work was set by Nascimento (2009), who proposed a hybrid
approach — i.e., the wave spectral finite element method (WFSEM) — and used it to formulate nu-
merical spectral elements of rod and Euler-Bernoulli beam. The scheme in Figure 1.5 summarizes
the motivations for the developments in WFE-based superlement matrices.

WFE
FE model of

a periodic unitΔ

Numerical
dispersion relations

Wave mode shapes
related to

displacement/rotation
DOFs

Wave mode shapes
related to

force/moment DOFs

Superelement
matrix
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ur
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th

SEM
Governing

differential equations

Analytical
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Wave amplitude ratios
related to
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Wave amplitude ratios
related to

force/moment DOFs

Superelement
matrix

Superelement
matrix

WSFEM

Assemblage
with

FEM/SEM

Coupled
system model

Figure 1.5: Graphical representation of the general scheme for the formulation of wave-based nu-
merical superelement matrices in this thesis.

8



1.2 Literature review

1.2.1 Periodic structures

A periodic structure consists of a regular arrangement of identical elements along one or more
directions. Within the framework of this thesis, only one-dimensional (1D) periodic structures have
been considered. The study of wave propagation through periodic media has attracted the interest
in various application fields as, for instance, solid state crystals, optics, acoustics and vibrations.
The common feature among them is that, in all those fields, the wave propagation is governed by
partial differential equations with periodic coefficients, which stand for material parameters related
to the physics being described.

1687 1883 1887 1928 1930 · · ·

Isaac Newton
Lattice of point masses

Gaston Floquet
𝑦′′ +𝑄(𝑥)𝑦 = 0,
𝑄(𝑥+ 𝑇 ) = 𝑄(𝑥)

Lord Rayleigh
Continuous periodic structure

Félix Bloch
𝜓(r) = 𝑒ik.r𝑢(r)

Léon Brillouin
Brillouin zones

Figure 1.6: Historical timeline presenting remarkable contributions on the study of periodic struc-
tures.

The wave motion in periodic systems has been studied for centuries. It dates back to the sev-
enteenth century when Newton attempted to determine the sound velocity in air by considering the
elastic wave propagation through an one-dimensional lattice of point masses connected to springs
(Newton, 1687 apud Brillouin, 1946). From a mathematical point of view, the basis for the study of
periodic structures was pioneered by Floquet (1883), which proposed analytical solutions to ordi-
nary differential equations with periodic coefficients. Until 1887, only discrete models of periodic
structures composed of regular lattices of springs connected to point masses had been considered.
In 1887, the first continuum model of a periodic structure was studied by Rayleigh (1887 apud
Mead, 1996), which consisted in an stretched string with continuous and periodic variation of den-
sity along its length. Later, Bloch (1928) extended the results presented by Floquet (1883) for the
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1D spatial periodicity to the three-dimensional (3D) case. He showed that the solutions for general
periodic structures are such that

q(r) = q𝛽(r)𝑒i𝛽.r. (1.1)

The geometric interpretation concerning the wave behavior in periodic structures was proposed by
Brillouin (1946). He showed that there are irreducible zones in the wavenumber 3D space in which
the wave behavior in periodic structures is completely described — the so-called Brillouin zones.
These first important milestones on the study of periodic structures are shown in Figure 1.6.

Since then, important developments on state-solid physics, optics and electrical transmission
lines have been observed due to a broader understanding of the physical wave phenomena in pe-
riodic systems. Later, elastic wave propagation has been considered. Cremer and Leilich (1953)
studied the flexural wave motion in periodic beam structures. By means of reflection and transmis-
sion coefficients, Heckl (1964) has studied the wave propagation in grillages. The interest in under-
standing the structural vibrations caused by the noise of jet engines has motivated a series of works
concerning the wave propagation in periodic beams, rib-skin structures, plates and cylindrical shells
developed at the University of Southampton since 1964 (Mead, 1996). At the beginning, receptance
methods such as the direct method and the transfer matrix method have been used to study the free
and forced responses of periodic structures. Later, much effort has been placed in developing nu-
merical approaches which take advantage of the structure periodicity. Indeed, these methods in
general make use of Bloch’s theorem, which states that, regardless the nature of the propagating
wave, only a special type of waveform may propagate in periodic media (Gazelet et al., 2013).
Among these approaches, the most popular ones are the plane wave expansion (PWE) method, the
finite discrete time difference (FDTD) method and the WFE method. PWE or method of space-
harmonics is a Fourier domain method for calculating the dispersion curves (or band structures)
of infinite periodic structures (Economou and Sigalas, 1993; Miyashita, 2005; Xiao et al., 2012;
Gazelet et al., 2013). The analysis of finite size periodic structures can be addressed by means of
the FDTD method, which involves the discretization of both time and spatial domains. It has the
advantage of enabling the simulation of the propagation in more complex periodic structures than
analytical methods and it is of simple implementation. However, in order to guarantee stability
and avoid numerical dispersion, very fine discretizations are necessary, which require the use of
formidable computational resources (Busch et al., 2007).

The wave behavior of periodic structures presents interesting features, which are due to the
unusual dispersion relations that are characteristic of Bloch waves. Indeed, periodic media exhibit
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band structure, i.e., there may be frequency intervals in which the propagation of certain waves are
not allowed. These frequency bands are usually known as band gaps or stop bands, as opposed to
pass bands, i.e., intervals of frequency in which waves are allowed to propagate.

Although the dispersive characteristics of general periodic media have been known for a
long time, only recently the potential of these structures for enabling new technological devices
and applications has been recognized. The papers of Yablonovitch (1987) and John (1987) are
in general considered the responsible for opening this research in the electromagnetic field with
photonic crystals. The success of this research in optics has motivated similar researches in the
acoustic and vibration fields. Periodic systems designed for elastoacoustic wave propagation have
the potential to be used as passive frequency filtering devices, beam splitters, sound or vibration
protection devices, acoustic lasers and superlenses, acoustic cloaking devices, and waveguides,
among other applications (Sigmund and Jensen, 2003; Deymier, 2013).

The development of passive vibration control strategies for periodic structures that use band
gaps is a current research topic, which aims at proposing efficient lightweight solutions for global
reduction of the vibration levels. There exist two band gap mechanisms which are Bragg scattering
(Sigalas and Economou, 1992; Kushwaha et al., 1993; Kushwaha et al., 1994) and local resonance
(Liu et al., 2000; Goffaux et al., 2002). Regarding Bragg scattering, band gaps represent zones of
destructive interference between incident and reflected waves which occur when the wavelengths
are of the same order as the dimension of the periodic units. This means that band gaps in the low-
frequency range are usually possible only in large structures. In elastodynamics, this mechanism
has been investigated in numerous engineering systems, which are usually named phononic crys-
tals (PCs), such as rods, plates and cylindrical shells (Bennett and Accorsi, 1994; Lee et al., 2010;
Sorokin and Ershova, 2004; Goldstein et al., 2011). More recently, researchers in the field have
moved their attention to locally resonant (LR) structures motivated by the possibility of designing
band gaps at low frequencies, up to two orders of magnitude smaller than those created via Bragg
scattering (Liu et al., 2000). For instance, one can mention locally resonant phononic crystals, also
known as metamaterials, which exhibit effective negative elastic constants in certain frequency
bands. The key idea here is to consider periodic arrays of locally resonant devices which are at-
tached to periodic structures. Although the concept has been applied to academic structures such
as strings, rods, beams, and plates (Xiao et al., 2011; Xiao et al., 2012; Xiao et al., 2013; Wang
et al., 2013), its application to complex structures with periodic heterogeneities seems to constitute
an open research topic.
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1.2.2 Wave-based methods

The analytical wave propagation solution of a dynamic problem is possible through consider-
ation of the governing differential equations for the structural model under consideration. The field
variables — i.e., kinematic (displacements/rotations) and kinetic (forces/moments) variables—, in
this case, are functions of space and time. By making use of the Fourier transform, the displace-
ments/rotations at a particular point can be expressed in spectral form as

q(𝑥,𝑦,𝑧,𝑡) =
∑︁
𝑛

q̂𝑛(𝑥,𝑦,𝑧,𝜔𝑛)𝑒i𝜔𝑛𝑡, (1.2)

where the coefficients q̂𝑛 are functions of the space (𝑥, 𝑦, 𝑧) and angular frequency 𝜔. Substituting
this expression in the equations of motion yields a frequency domain formulation, which can pro-
vide fast steady state solutions, as well as transient solutions in the case some damping is present,
if the Fourier transform is applied.

Consider the following general, linear, and one-dimensional homogeneous equation of mo-
tion in the frequency domain:

𝐶0(𝑥,𝜔) + 𝐶1(𝑥,𝜔)
𝑑q̂

𝑑𝑥
+ 𝐶2(𝑥,𝜔)

𝑑2q̂

𝑑𝑥2
+ · · · = 0, (1.3)

where 𝐶0, 𝐶1, · · · are coefficients which may depend on the space and frequency. The subscript 𝑛
is dropped for the purpose of brevity. In the special case where these coefficients are periodic with
respect to the space variable 𝑥 or constant — i.e., is a particular case of the periodicity assumption
—, a second Fourier transformation can be considered. Then, the harmonic solutions may expressed
as

q̂(𝑥,𝑦,𝑧,𝜔) =
∑︁
𝑚

q̄𝑚(𝑦,𝑧,𝜔,𝛽𝑚)𝑒−i𝛽𝑚(𝜔)𝑥, (1.4)

where 𝛽𝑚 are complex wavenumbers and the coefficients q̄𝑚 have the meaning of wave amplitudes.

Transforming the wave representation — which involves the computation of wave amplitudes
— into a dynamic stiffness representation facilitates the use of wave-based methods by users fa-
miliar with dynamic analyses via the finite element method. This has been the motivation behind
the development of the spectral element method (SEM) (Silva et al., 2014a; Beli et al., 2015),
which was introduced by Narayanan and Beskos (1978) and, organized, later, by Doyle (1989).
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A comprehensive reference concerning the method is the book published by Lee (2009). Like the
dynamic stiffness method (DSM) (Kolousek, 1941 apud Lee, 2009; Leung, 1993), the exact dy-
namic stiffness matrix of a structural element is formulated. Then, because it is an element-based
method, discretization is also possible and it might be required when externally applied loads or
discontinuities of material or geometric type exist within the spatial domain of concern. As the
conventional FEM, SEM is stiffness formulated, thus spectral element matrices of subsystems of a
coupled problem can be assembled in an analogous way as in FEM in order to form a global system
matrix. Moreover, as any other analytical approach, it gives accurate solutions, which are consid-
ered exact provided all assumptions made are within the scope of the theory adopted to model the
problem. Thus, only one spectral element is sufficient to model a regular structure without discon-
tinuities. It is also worth mentioning that the field variables are represented as a superposition of
a finite number of wave modes at discrete frequencies, which results from the application of the
fast Fourier transform (FFT) in the time and space domains as the spectral analysis method (SAM)
does.

Many mechanical structures are made of thin panels and beams. Waves that propagate in
waveguides formed by two parallel free surfaces are referred to as Lamb waves (Graff, 1975;
Doyle, 1997). These include flexural, torsional, longitudinal and other types of elastic waves. Low
order flexural waves can be modeled, at low frequencies, using theories such as Euler-Bernoulli’s
and Timoshenko’s for beams and Kirchhoff’s and Mindlin-Reissner’s for plates. At higher fre-
quencies, higher order theories such as Flügge’s and Donnell-Mushtari’s for cylindrical shells and
Mindlin-Herrmann’s for rods can be used to predict analytically the wave solution for simple ge-
ometries. In the case of more complex geometries, modeling can only be achieved practically using
numerical methods such as finite and boundary element methods.

Wave-based methods can take advantage of the particular characteristics and symmetry of
waveguides and allow in many cases a more accurate prediction of the dynamic behavior with less
computational effort. Wave-based solutions either do not require mesh refinement (wave propaga-
tion solution, SEM) or the solutions are approximated by frequency dependent shape functions,
which allow faster convergence than the ordinary ones used by the conventional FEM. Thus, they
might be, in many applications, efficient numerical approaches for MF analysis.

As pointed out earlier, the ability of handling MF analysis has also motivated the development
of such techniques. Among them, we may cite the wave based method (WBM), which makes use
of an indirect Trefftz approach (Desmet and Vandepitte, 2002; Desmet et al., 2012), the semi-
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analytical finite element (SAFE) method (Gavrić, 1994; Gavrić, 1995), which has the spectral finite
element (SFE) method (Finnveden, 1997; Birgersson et al., 2005) as one of its variants, and the
wave finite element (WFE) method (Mace et al., 2005; Mencik and Ichchou, 2005). The main
features of those wave-based methods are summarized in Table 1.2.

Table 1.2: Main features of wave-based methods for MF dynamic analysis.

WBM SAFE WFE

(B. Pluymers, W. Desmet, D. Van-
depitte)

(L. Gavrić, S. Finnveden, F. Birg-
ersson, C. M. Nilsson, P. Loveday,
A. Marzani)

(D. J. Mead, B. R. Mace,
D. Duhamel, J.-M. Mencik,
M. N. Ichchou, J. R. F. Arruda)

general bounded / unbounded
domains

waveguides
waveguides / periodic struc-
tures

indirect approach FE model of the cross-section FE model of a periodic unit

The WBM has been developed for nearly a decade now and it is used to solve bounded and
unbounded steady-state dynamic problems. The field variables are expressed as an expansion of
wave functions. The wave functions are chosen such that the homogeneous form of the governing
equations as well as certain global boundary conditions are satisfied. The degrees of freedom are
not the dynamic field variables, but the weighting factors of the wave functions in the expansion.
For this reason, it is considered an indirect approach. Using a weighted residual formulation in or-
der to enforce boundary and continuity conditions, it yields a linear system of equations in terms of
the wave weighting factors. Compared to element based methods (FEM or BEM), the wave based
(WB) model does not require the discretization of the domain into small elements, only a partition-
ing into convex subdomains, which can be large and their sizes are independent of frequency since
exact wave functions are used to describe the dynamic response. On the other hand, the WB system
matrices are dense and ill-conditioned, which makes the construction of WB matrices computation-
ally more demanding than FE or boundary element (BE) matrices. However, as the problem size is
usually much smaller and the convergence rate higher, it is still suitable for MF analysis.

While the WBM is a wave-based technique able to model structures that are not necessarily
periodic, but which can be partitioned into convex subdomains (Genechten et al., 2008), many
researchers have been working in wave-based methods which make use of the symmetry and/or
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periodicity of structural waveguides and periodic structures in order to efficiently describe MF
dynamics.

The work published by Nelson et al. (1971) has led the way for the development of nu-
merical wave-based methods for waveguides. The approach proposed in that work is, in fact, a
semi-analytical technique, where the displacement field for a waveguide undergoing steady state
harmonic motion with angular frequency 𝜔 is written as

q(𝑥,𝑦,𝑧,𝑡) = q̂(𝑦,𝑧)𝑒i(−𝛽𝑥+𝜔𝑡). (1.5)

Here, q̂(𝑦,𝑧) is a spatial vector function which describes the displacements of the waveguide cross-
section, 𝑡 is time variable, 𝑥 is the main axis of the waveguide and 𝛽 is the wavenumber relative
to elastic waves traveling in the 𝑥-direction. The equations of motion in this case are obtained
from Hamilton’s principle by considering the expression for the waveguide displacements (Equa-
tion (1.5)). The displacement field of the waveguide cross-section q̂(𝑦,𝑧) is described by means
of a two-dimensional (2D) finite element formulation in the case of a 3D model — or 1D and
zero-dimensional (0D) FE formulations for 2D and 1D models, respectively. The numerical prob-
lem here consists in solving matrix equations of motion of the discretized waveguide for complex
valued-scalars 𝛽, i.e. the wavenumbers, and complex vectors q̆, which has the meaning of cross-
section wave mode shapes, for a given frequency 𝜔.

Such a numerical method was used by Nelson et al. (1971) for the analysis of laminated
orthotropic cylinders. Then, the study was also applied to laminated orthotropic plates (Dong and
Nelson, 1972). One year later, Aalami (Aalami, 1973) analyzed 3D prismatic guides using a two-
dimensional interpolation function to describe the displacement field in a bar with arbitrary cross
section. Then, more recently, Gavrić (Gavrić, 1994; Gavrić, 1995) used a similar approach to ob-
tain dispersion properties of thin-walled beams and a free rail. The strategy used by Gavrić in his
works has been applied by many researchers to compute frequency and time transient responses
of elastic and viscoelastic waveguides (Loveday, 2008; Marzani, 2008), or associated with classi-
cal finite element method to study the interaction of guided waves with non-axisymmetric dam-
age (Benmeddour et al., 2011). This method is usually known as the semi-analytical finite ele-
ment (SAFE) method. Variants of this method have been applied by researchers to model, among
other applications, rail tracks (Gry and Gontier, 1997), fluid-filled pipes (Finnveden, 1997), plates
(Birgersson et al., 2005)), beams and shells (Mazuch, 1996; Volovoi et al., 1998), and thin-walled
structures (Nilsson, 2002).
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1.2.3 The wave finite element method

The study of the propagation of waves in periodic systems within the framework of Rayleigh’s
method and of the Rayleigh-Ritz technique was proposed independently by Mead (1973) and Abra-
hamson (1973). These studies revealed the possibility of applying approximate methods such as
the finite element method to wave propagation in periodic structures. The paper published by
Mead (1973) is regarded as the starting point for the development of a wave-based numerical
method for general periodic structures: the WFE method. In this work, Mead presented the gen-
eral theory of wave propagation for periodic structures. Initially, a simplified version of this the-
ory was applied to rib-skin structures and beams with periodic supports, which were analyzed by
means of analytical methods, such as the receptance method (Sen-Gupta, 1971), the direct solution
(Mead, 1970), and the transfer matrix method (Lin and McDaniel, 1969). Then, the work pub-
lished by Mead (1973) extended the wave propagation theory to general multi-coupled periodic
structures — i.e., structures which are coupled to other structural components through many de-
grees of freedom. The use of this theory for periodic structures in conjunction with the h-version of
FEM was first performed by Orris and Petyt (1974). In the 1980’s, the p-version of FEM was used
to study the wave propagation in stiffened plates and cylindrical shells (Mead and Bardell, 1986;
Mead and Bardell, 1987; Mead et al., 1988; Bardell and Mead, 1989a; Bardell and Mead, 1989b).
In association with FEM, the periodic structure theory was also used to investigate the vibrations
in a periodic truss (Signorelli and von Flotow, 1988) and supported rails (Thompson, 1993). Us-
ing the symplectic property of the eigenvalue problem formulated by means of the WFE method
for symmetric substructures, alternative procedures for computing the propagation constants and
wave mode shapes related to waves propagating in periodic structures were proposed by Zhong and
Williams (1995).

With the advent of powerful computers, recent works have been done with the aim of taking
advantage of the structural periodicity and make finite element computations more efficient (Mace
et al., 2005; Mencik and Ichchou, 2005; Duhamel et al., 2006; Mencik and Ichchou, 2008). These
works have also been motivated by the necessity of developing numerical techniques capable of
describing the dynamics of engineering systems in the MF range. Thus, closed-form formulations
for the method which are based on the periodic structure theory (Mead, 1973) and use conventional
finite elements to model a substructure were presented, independently, by Mace et al. (2005), and by
Mencik and Ichchou (2005). Since then, the acronym WFE has been used to refer to this numerical
method, which has received various names, such as waveguide finite element (Mace et al., 2005;
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Duhamel et al., 2006), wave and finite element (Mace and Manconi, 2008; Renno and Mace, 2012)
and wave finite element (Mencik and Ichchou, 2008). For the sake of clarity, in this thesis, WFE is
always used as the acronym for wave finite element. Some important milestones on the development
of the WFE method are presented in Figure 1.7.
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Figure 1.7: Historical timeline of the WFE method development.

The WFE method has been applied to address the dynamic analysis of various engineer-
ing systems, such as beams (Mace et al., 2005; Waki et al., 2009b; Nascimento, 2009; Silva
et al., 2013b), truss beams (Signorelli and von Flotow, 1988), simply-supported plates (Mace
et al., 2005; Silva and Arruda, 2012), multi-layered systems (Mencik and Ichchou, 2008), fluid-
filled pipes (Manconi et al., 2009), curved structures (Zhou and Ichchou, 2010; Silva et al., 2013a),
composite panels (Chronopoulos et al., 2013), flat shells (Mencik, 2013), cylinders (Renno
and Mace, 2014), stiffened and non-stiffened cylindrical shells (Renno and Mace, 2014; Silva
et al., 2014b). Also, using the WFE method, the problem of multiple periodic waveguides cou-
pled through a common elastic coupling element has been addressed (Mencik and Ichchou, 2005).
Later, by coupling the FE model of a damaged part and the WFE model of healthy structures,
damage detection has been studied (Ichchou et al., 2009; Zhou and Ichchou, 2010; Bouchoucha
et al., 2012). The method was also extended to 2D periodic structures (Mace and Manconi, 2008)
and cylindrical structures (Manconi et al., 2009).

The numerical issues involved in the computation of wave modes via the WFE method has
been investigated for simple waveguides (Waki et al., 2009b). The consistency of the wave so-
lutions obtained via the WFE method was demonstrated through comparison with those obtained
analytically via SEM (Arruda et al., 2007). Later, the numerical wave modes of an one-dimensional
waveguide predicted by means of the WFE method was compared to those computed via the SAFE
method (Zhou et al., 2011). The analysis showed that WFE solutions approach the SAFE solutions
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when the element aspect ratio — i.e., the ratio between the element size along the axial direction
and the cross section dimension — is considerable small.

Besides, the forced response of periodic structures has also been addressed via the WFE
method (Duhamel et al., 2006; Mead, 2009; Waki et al., 2009a; Waki et al., 2009b; Mencik, 2010;
Renno and Mace, 2010; Renno and Mace, 2011; Mencik, 2013; Mencik, 2014). In some works
(Waki et al., 2009a; Waki et al., 2009b; Mencik, 2010; Mencik, 2013; Mencik, 2014), the strategy
involved the explicit computation of the wave mode amplitudes. Although efficient, the WFE ap-
proach that uses the concept of wave mode amplitudes is, however, difficult to handle as it is based
on complex matrix formulations that need to be expressed on a case-by-case basis. On the other
hand, expressions for the condensed dynamic stiffness matrices of straight periodic structures by
means of the WFE method were also proposed (Duhamel et al., 2006; Mead, 2009). This approach
appears to be an efficient alternative to the spectral element method (Doyle, 1997; Lee, 2009; Silva
et al., 2013b) that make use of analytical waves for expressing the condensed dynamic stiffness ma-
trices of waveguides. This is so because the WFE method works well in the MF range, as opposed
to the analytical methods, which are limited by LF assumptions.

Arruda and Nascimento (2008) showed that a spectral element, as defined by Doyle (1997),
can be derived from the dynamic stiffness matrix of a waveguide slice modeled with conventional
finite elements using the elastodynamic equations for the given structure. This method, called wave
spectral finite element method (WSFEM), was applied to homogeneous rod problems (Goldstein
et al., 2010), and, also, to the investigation of phononic band gaps in periodic waveguide problems
(Goldstein et al., 2011). It is important to note here that the acronym, WSFEM, is also used in
the literature to refer to the wavelet-based spectral finite element method, which, differently from
the approach considered in this thesis consists in using Daubechies scaling functions for approxi-
mation in time and exact interpolating functions, from SEM, for spatial discretization (Mitra and
Gopalakrishnan, 2006).

It is worth pointing out that, although the development of WFE method dates back to the
1970’s, it has not yet been made available in commercial softwares. This might be explained by the
fact that most of the developments have proposed formulations in terms of wave parameters which
do not allow a direct link to FE codes — in general, based on dynamic stiffness or modal-based for-
mulations. This explains the popular use of cyclic symmetry analysis, proposed by Thomas (1974)
based on the work of Orris and Petyt (1974). He showed that, for rotationally periodic structures,
the consideration of free wave propagation allows determining the normal modes of vibration of
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the complete structure through the analysis of a single substructure. This is because the boundary
condition which results from the fact that the chain of identical substructures is closed has always to
be considered. As this technique, results in a modal-based solution, it has experimented widespread
use, being available in most of commercial FE softwares. This thesis is motivated by the possibil-
ity of using wave-based approaches in commercial FE codes for general periodic structures. For
this reason, WFE-based superelement models of structures with one-dimensional periodicity are
proposed.

1.2.4 Dynamic analysis of coupled problems

In the last decades, the fast growth in computing power has motivated scientists and engineers
to analyze ever larger and more complex systems. However, the resources are still limited. Thus,
depending on the number of degrees of freedom and the number of steps involved, simulations can
take very long time. This has led to the development of methods which optimize the efficiency of
calculations. Within the framework of coupled problems, the concept of domain decomposition,
which consists in decomposing the problem into subdomains that are described independently and
solving the interface coupling problem, has often been used to solve complex engineering problems
(Klerk et al., 2008).

With the motivation of providing a further increase in efficiency, the so-called dynamic sub-
structuring methods have been proposed. In this case, the dynamic behavior of individual subdo-
mains is described by means of a reduced number of degrees of freedom for which approximate
local solutions are obtained and then coupled. Among the reduction techniques proposed within the
framework of dynamic substructuring, we may consider those in which the reduction process results
of the application of a transformation matrix composed of Ritz vectors. Those usually combine the
static response of the structure at the interfaces with internal displacement modes (Rixen, 2009).
Two kinds of internal displacement modes are considered: the fixed-interface modes, as in the
Craig-Bampton method (Craig and Bampton, 1968b), or the free-interface modes, as it is the case
in the MacNeal (MacNeal, 1971) and the Rubin (Rubin, 1975) methods, or in the Craig-Chang
(Craig and Chang, 1977) and the Dual Craig-Bampton (Rixen, 2004) methods. These methods are
known as component-mode synthesis (CMS).

As discussed earlier (see Section 1.1), modal-based approaches are efficient for describing LF
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dynamics. However, as frequency rises, a very high number of modes must be taken into account
and wave-based approaches are preferred. It is worth pointing out that the potential of wave-based
methods for modeling waveguides and uncoupled structures has been extensively investigated. Nev-
ertheless, the use of wave-based approaches for solving coupled problems has rarely been proposed.

The formulation of superelement matrices by means of the WFE method appears to be of
simple use in the framework of substructuring techniques, i.e., when dealing with several superele-
ments connected to each other. Wave-based matrix formulations which use the concept of wave
mode amplitudes have been developed in (Mencik, 2013) to compute the frequency response func-
tions (FRFs) of assemblies involving flat shells and coupling junctions at a very low computational
cost compared to the conventional FE method. Within that framework, the coupling junctions are
modeled by means of the CB method (Craig and Bampton, 1968a), i.e, in terms of static modes
and a reduced number of fixed-interface modes, which are selected via a wave-based procedure
(Mencik, 2011). By combining low and high-order wave modes for modeling periodic structures
and fixed-interface modes for modeling coupling junctions, the WFE method constitutes an effi-
cient numerical tool for assessing the MF dynamics of coupled systems. A qualitative compar-
ison between the WFE method and other wave-based MF techniques such as analytical Trefftz
techniques (Vanmaele et al., 2007; Ladevèze and Riou, 2005) and enrichment techniques (Farhat
et al., 2001) has been proposed in (Mencik, 2013). One of the main features of the WFE method
when compared to those MF techniques concerns the use of matrix equations which are likely to
be well-conditioned. Also, a quantitative comparison between the WFE method and the conven-
tional CB method — i.e., when all the periodic structures are modeled in terms of fixed-interface
modes instead of wave modes — has been performed in (Mencik, 2013) . It should be emphasized
that, unlike the CB method or CB-like techniques such as the automated multilevel substructuring
(AMLS) method (Kaplan, 2001), the WFE method does not require either the truncation of (wave)
mode bases or the reduction of interface degrees of freedom (DOFs) for assessing the FRFs of peri-
odic structures at a low computational cost. This can be explained by the fact that the WFE method
usually deals with full sets of wave modes whose number appears to be much smaller than the
total number of DOFs involved for modeling periodic structures. Thus, the WFE method appears to
be more accurate than the CB and AMLS methods, while considering matrix equations of similar
sizes. It should be noticed, however, that the WFE method remains applicable only to the study of
periodic systems, even though those periodic systems can be connected by means of junctions of
arbitrary shapes, which makes it a less general method than the conventional CB method and other
wave-based MF techniques.

20



So far, the WFE method has never been applied to the study of truly periodic structures
— i.e., structures involving heterogeneous substructures which contain many internal DOFs —
that may be coupled to complex elastic junctions. Thus, the motivation of the present thesis may
be viewed as to propose efficient and ease-to-use superelement-based approaches based on the
aforementioned WFE and CB procedures, and that can compete with other conventional model
reduction techniques for predicting the harmonic response of complex structural systems. This
research objective is addressed in this thesis in Chapter 4.

1.3 Objectives

The objectives of this thesis are listed in the following.

∙ Analyze the numerical errors associated to the WFE-based eigenproblem formulation for a
3D solid waveguide.

∙ Analyze the numerical errors associated to the FE mesh for a 3D solid waveguide.

∙ Present a general formulation for the WSFEM.

∙ Formulate the numerical spectral element of a Timoshenko beam by means of WSFEM.

∙ Formulate WFE-based superelement matrices of periodic structures.

∙ Propose a WFE-based model-order reduction strategy which yields a reduced eigenproblem
to be solved and provides efficient computation of forced responses by means of superele-
ment matrices.

∙ Propose WFE-based dynamic substructuring techniques for simulating nonacademic coupled
systems like those encountered in real engineering applications, which can involve several
truly periodic structures and arbitrarily-shaped elastic junctions.
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∙ Use the WFE-based numerical approaches proposed in the thesis to design local resonant
devices to be attached to a stiffened cylindrical shell and provide vibration attenuation at
specific frequencies.

1.4 Outline of the thesis

This thesis is organized as follows.

In Chapter 2, a general form of the WFE method for the the analysis of free wave propagation
in 1D periodic structures with symmetric substructures is presented. A comprehensive view of the
method which includes the assumptions involved and alternative formulations for the WFE-based
eigenproblem is provided. The numerical errors associated to the computation of the WFE-based
eigenproblem are evaluated and discussed. Formulations of the WFE-based eigenproblem are com-
pared in terms of the accuracy of numerical wave modes, which is checked through comparison
with analytical wave modes. The relationship between left and right-going wave modes due to the
substructure symmetry is also investigated. The errors in the computation of the WFE-based eigen-
problem are analyzed with respect to the discretization level of the substructure. Finally, details
regarding the implementation are presented.

Chapter 3 is mainly dedicated to the forced response computation of 1D periodic structures.
The numerical wave mode basis computed by means of the WFE method in Chapter 2 is used to
formulate superelement matrices of finite periodic structures: either the dynamic stiffness matrix
(DSM) or the receptance matrix (RM). A WFE-based model-order reduction strategy is presented.
It involves a selection criterion of wave modes, the formulation of reduced eigenvalue problems,
and receptance matrices for the computation of free and forced wave propagation solutions. At
the end, a general form of WSFEM is presented and a spectral element of a Timoshenko beam is
formulated.

In Chapter 4, the objective is to deal with the dynamic analysis of coupled systems composed
of periodic structures and elastic junctions by means of a WFE-based approach. The dynamic
description of periodic parts is made by the superelement formulations presented in Chapter 3.
A WFE-based strategy for modeling coupling elastic junctions is recalled. Dynamic substructuring
techniques, such as the dynamic stiffness method and the receptance matrix method which makes
use of Lagrange multipliers, are addressed. Numerical test cases are carried out in order to show that
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the proposed WFE-based approaches may outperform conventional methods in terms of accuracy
and computational time.

In Chapter 5, the interest in periodic structures from the point of view of engineering appli-
cation is concerned. In particular, the possibility of designing vibration filters by attaching periodic
resonators to the structure is highlighted. This feature of periodic structures is shown by means
of dynamic analyses. Hence, the objective of this chapter is also to show that the WFE-based
approaches proposed in this thesis can be used in the design of periodic structures with relevant
applications.

Finally, in Chapter 6, the general conclusions regarding the work developed in this thesis
are drawn. Then, the original contributions of this work are highlighted. At the end, a list of the
publications that resulted from this thesis is presented.
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2 The wave finite element method: free wave propagation analysis

2.1 Overview

In this chapter, the objective is to present the wave finite element (WFE) method for free wave
propagation analysis. This method provides a numerical wave description for structures that are pe-
riodic in the sense that they are constituted by identical substructures coupled together along one
or more directions(Mead, 1973; Mencik and Ichchou, 2005; Mace et al., 2005). In this work, only
structures with one-dimensional periodicity are considered. One of the advantages of this method
is that conventional finite elements can be used to model a substructure, which thus may involve
several materials or complex geometries, as depicted in Figure 2.1. Moreover, the wave propaga-
tion of the whole structure, which may be either infinite or finite, can be assessed from the analysis
of a single substructure. This reduces the size of the numerical problem to be solved — which is
directly related to the number of degrees of freedom to be analysed —, thus producing computa-
tional time savings and making possible to extend the analysis to the mid-frequency range, where
sufficiently fine mesh discretizations are required. Compared to analytical wave-based methods,
such as the spectral element method (SEM) (Doyle, 1997; Lee, 2009), the WFE method is clearly
advantageous since complex dynamics produced either by geometric complexities or higher-order
kinematics behaviors, which are difficult to be handled analytically (Arpaci et al., 2003; Rafezy and
Howson, 2006; Kim and Kim, 2004), can be described in a straightforward way. This is because
conventional finite elements are used to model the substructure.

Figure 2.1: Substructure with complex heterogeneities — involving multiple materials and complex
geometry — of a structure periodic along the 𝑥-direction with spatial period ∆.

This chapter is organized as follows. In Section 2.2, the mathematical formulation of the WFE
method is reviewed. The dynamic equilibrium of a substructure is considered in Section 2.2.1 and,
equivalently, formulated in terms of state variables in Section 2.2.2. The eigenvalue problem related
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to a periodic structure is formulated in Section 2.2.3. Then, the mathematical properties associated
to the eigenproblem into consideration and the basics of the numerical waves computed by means
of the WFE method are discussed in Section 2.2.4. Alternative eigenvalue formulations, which have
the aim of preventing numerical errors, are presented in Section 2.2.5. Section 2.2.6 is concerned
about strategies for following a given wave mode in frequency. A numerical analysis of errors
involved in the WFE method is presented in Section 2.3. Next, in Section 2.4, the implementation
of the method is discussed. Finally, the conclusions of this chapter are drawn (Section 2.5).

2.2 Mathematical formulation

2.2.1 Dynamic equilibrium formulation of a substructure

Consider an elastic system composed of 𝑁 identical substructures arranged along a certain
straight direction — say, axis 𝑥—, as shown in Figure 2.2. Each substructure has a length ∆, which
corresponds to the periodic unit length in case of periodic systems or an arbitrary small length in
case of waveguides. The system is supposed to be linear elastic and the substructure is assumed
symmetric with respect to a plane perpendicular to the 𝑥-axis1.

Figure 2.2: FE model of a one-dimensional periodic structure composed of 𝑁 substructures; in
detail, the FE model of a substructure.

Within the framework of the WFE method, only one substructure is modeled by means of
conventional finite elements (see Figure 2.2). Here, the left and right boundaries of the substruc-
ture are meshed in the same way, i.e., by means of the same number 𝑛 of degrees of freedom

1It is worth mentioning that the symmetric assumption is not a requirement for the use of the WFE method. Recently,
Mencik and Duhamel (2015) has addressed the issue of describing the dynamic behavior of a 1D periodic structures
involving arbitrarily-shaped substructures by means of a WFE-based approach.
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(DOFs). The stiffness and mass matrices (K and M, respectively) of the substructure follow from
this FE model, which yields, in the frequency domain, the so-called dynamic stiffness matrix
D = −𝜔2M+(1+i𝜂)K, where 𝜔 is the angular frequency and 𝜂 is the constant structural damping
loss factor2. As a result, the dynamic equilibrium equation of the substructure is expressed in the
frequency domain as

Dq = F, (2.1)

where q and F are vectors of nodal displacements/rotations and forces/moments, respectively. By
partitioning the DOFs into those on the left boundary L, right boundary R, and internal I DOFs (as
depicted in Figure 2.2), this yields⎡⎢⎣DLL DLI DLR

DIL DII DIR

DRL DRI DRR

⎤⎥⎦
⎡⎢⎣qL

qI

qR

⎤⎥⎦ =

⎡⎢⎣FL

0

FR

⎤⎥⎦ . (2.2)

Notice that the coupling actions (i.e., external loads) are supposed to be confined to its left and right
boundaries only (Mead, 1973). Therefore, the internal DOFs are not subject to external loads, which
means that FI = 0. By condensing the matrix D on the left and right substructure boundaries, the
dynamic equilibrium system of equations can be readily expressed as[︃

D*
LL D*

LR

D*
RL D*

RR

]︃[︃
qL

qR

]︃
=

[︃
FL

FR

]︃
, (2.3)

where D* denotes the condensed dynamic stiffness matrix, which is expressed as D* = DBB −
DBID

−1
II DIB, with the subscript B denoting the DOFs on the left and right boundaries of the sub-

structure. This matrix relates external nodal forces/moments to nodal displacements/rotations de-
fined at the left/right cross-sections of the substructure.

2It is important to point out here that we have chosen in this thesis to consider structural damping, i.e., the one
caused by internal friction within the material or at the joints (Petyt, 2010), because it is of simple treatment and also
seems to be more closely related to the problem cases treated in this work. However, viscous damping or other linear
damping models could have been considered by means of the damping matrix C, which would allows to express the
dynamic stiffness matrix as D = −𝜔2M+ i𝜔C+K.
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2.2.2 State space formulation

Figure 2.3: Schematics of three consecutive substructures with representation of state vectors.

In the state space formulation3 nodal forces/moments and nodal displacements/rotations of
adjacent substructures (or adjacent substructure boundaries) are linked. The formulation follows
from the dynamic equilibrium equations. Using Equation (2.3), it is possible to express the vectors
of nodal displacements/rotations and that of nodal forces/moments within the right cross-section of
a substructure 𝑘 in terms of the corresponding vectors related to the left substructure boundary, as
follows (Mencik and Ichchou, 2005)

u
(𝑘)
R = Su

(𝑘)
L , (2.4)

where u
(𝑘)
L and u

(𝑘)
R are 2𝑛× 1 state vectors (shown in Figure 2.3), expressed as

u
(𝑘)
L =

[︃
q
(𝑘)
L

f
(𝑘)
L

]︃
=

[︃
q
(𝑘)
L

−F
(𝑘)
L

]︃
, u

(𝑘)
R =

[︃
q
(𝑘)
R

f
(𝑘)
R

]︃
=

[︃
q
(𝑘)
R

F
(𝑘)
R

]︃
. (2.5)

Notice that the vectors of internal elastic forces/moments (fL, fR) are related to the vectors of ex-
ternal forces/moments (FL, FR) by means of a sign convention. In Equation (2.5), S is a 2𝑛 × 2𝑛

symplectic transfer matrix expressed as

S =

[︃
−D*−1

LR D*
LL −D*−1

LR

D*
RL −D*

RRD
*−1
LR D*

LL −D*
RRD

*−1
LR

]︃
. (2.6)

The consequences of the symplectic feature of matrix S are addressed in Section 2.2.4.

By considering two consecutive substructures 𝑘 − 1 and 𝑘, as shown in Figure 2.3, the cou-

3In general associated to state vectors in the form of
[︀
q𝑇 q̇𝑇

]︀𝑇
, where q is the displacement vector and q̇, the

velocity vector (derivative of q with respect to time), in control engineering. Within the framework of this thesis, the
state vector is of the form

[︀
q𝑇 f𝑇

]︀𝑇
, where f is the vector of internal elastic forces/moments.
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pling conditions — i.e., compatibility of displacements/rotations and equilibrium of forces/mo-
ments — must be satisfied in the interface between them, which means that

q
(𝑘−1)
R = q

(𝑘)
L , (2.7a)

F
(𝑘−1)
R + F

(𝑘)
L = 0, (2.7b)

where the superscripts (𝑘−1) and (𝑘) are used to label the substructure which the vector is referred
to. The application of those relations to Equation (2.4) allows one to establish a link between
kinematic/kinetic (or mechanical) quantities on the left boundaries of substructures 𝑘− 1 and 𝑘, as
follows

u
(𝑘)
L = Su

(𝑘−1)
L . (2.8)

2.2.3 Bloch’s theorem and the symplectic eigenvalue problem

As u(𝑘) is a state vector of size 2𝑛 × 1, it can be expanded in terms of a complete basis —
i.e., a set of 2𝑛 linearly independent vectors—, as

u(𝑘) =
2𝑛∑︁
𝑗=1

𝜑𝑗𝑄
(𝑘)
𝑗 , (2.9)

where {𝜑𝑗}𝑗=1,··· ,2𝑛 and {𝑄𝑗}𝑗=1,··· ,2𝑛 are indexed families of vectors of wave shapes and wave am-
plitudes, respectively. As a result of Bloch’s theorem for periodic systems (Mencik, 2010; Gazelet
et al., 2013), the wave amplitudes between two consecutive substructures 𝑘 and 𝑘− 1 are linked as

𝑄
(𝑘)
𝑗 = 𝜇𝑗𝑄

(𝑘−1)
𝑗 with 𝜇𝑗 = 𝑒−i𝛽𝑗Δ, (2.10)

where {𝛽𝑗}𝑗 have the meaning of wavenumbers. Using this relation in Equation (2.9), the state
vector related to the left boundary of a substructures 𝑘 can be expressed as

u
(𝑘)
L =

2𝑛∑︁
𝑗=1

𝜑𝑗𝑒
−i𝛽𝑗Δ𝑄

(𝑘−1)
𝑗 . (2.11)

Then, substituting Equation (2.11) into Equation (2.8), it yields the following eigenproblem

S𝜑𝑗 = 𝜇𝑗𝜑𝑗. (2.12)
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In this framework, the set of parameters {𝜇𝑗}𝑗=1,··· ,2𝑛 are referred to as a family of the eigen-
values of the matrix S and {𝜑𝑗}𝑗=1,··· ,2𝑛 appear to be a family of the right eigenvectors of S,
which can be partitioned into 𝑛×1 vectors of displacement/rotation and force/moment components,
{𝜑q𝑗}𝑗=1,··· ,2𝑛 and {𝜑F𝑗}𝑗=1,··· ,2𝑛, respectively. The solutions {(𝜇𝑗,𝜑𝑗)}𝑗=1,··· ,2𝑛 of the symplectic
eigenvalue problem (Equation (2.12)) are referred to as the waves modes of the periodic structure.
The eigenvalues {𝜇𝑗}𝑗=1,··· ,2𝑛 are propagation constants, which are related to the wavenumbers
{𝛽𝑗}𝑗=1,··· ,2𝑛 by means of Equation (2.10). Besides, the right eigenvectors provide a spatial descrip-
tion for the wave motion over the substructure boundaries. There are twice as many wave modes
as the number of DOFs used to discretize each substructure boundary: 𝑛 of them being related to
right-going waves {(𝜇𝑗,𝜑𝑗)}𝑗=1,··· ,𝑛, while the other 𝑛, to left-going waves {(𝜇⋆

𝑗 ,𝜑
⋆
𝑗)}𝑗=1,··· ,𝑛 (see

Figure 2.4).

Figure 2.4: Illustration of a substructure, associated vectors of wave mode shapes, and wave ampli-
tudes related to left- and right-going waves.

2.2.4 Properties of the eigensolutions

Due to the symmetric feature of the substructure model, the transfer matrix S, Equation (2.6),
is symplectic, i.e., S𝑇JS = J (Zhong and Williams, 1995), where J is the unit symplectic matrix,
defined as

J =

[︃
0 I𝑛

−I𝑛 0

]︃
, (2.13)
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with I𝑛 being a 𝑛-dimensional identity matrix. Matrix J has the following properties

J2 = −I2𝑛, J
𝑇 = J−1 = −J. (2.14)

Due to the symplectic properties of matrix S, if 𝜇𝑗 is an eigenvalue, it can be shown that 1/𝜇𝑗 is
also an eigenvalue (Zhong and Williams, 1995). Indeed, left multiplying Equation (2.12) by S𝑇J,
it yields

S𝑇JS𝜑𝑗 = 𝜇𝑗S
𝑇J𝜑𝑗. (2.15)

Then, using the symplectic relation — i.e., S𝑇JS = J — in Equation (2.15) and taking the trans-
pose of the resultant equation, the following eigenproblem is formulated

(︀
𝜑𝑗J

)︀𝑇
S = 𝜇−1

𝑗

(︀
𝜑𝑗J

)︀𝑇
. (2.16)

Notice that {𝜓𝑗}𝑗=1,··· ,2𝑛 = {
(︀
𝜑𝑗J

)︀𝑇}𝑗=1,··· ,2𝑛 is a family of left eigenvectors of S, so that 𝜇−1
𝑗 is

also an eigenvalue. This confirms that 𝜇𝑗 and 𝜇𝑗
−1 are eigenvalues of the same problem. Therefore,

the 2𝑛 eigenvalues can be divided into two groups

𝜇𝑗 with |𝜇𝑗| ≤ 1, 𝑗 = 1, 2, · · · , 𝑛,
𝜇⋆
𝑗 = 1

𝜇𝑗
with |𝜇⋆

𝑗 | ≥ 1, 𝑗 = 1, 2, · · · , 𝑛.
(2.17)

From the physical point of view, this property of eigenvalue pairs means that a pair of waves travel
to the left and right directions with equal phase speed, which is an expected consequence of the
symmetric nature of the substructure model. Besides, the eigenvectors of Equation (2.12) are or-
thogonal in the symplectic sense4. Thus, given two right eigenvectors 𝜑𝑗 and 𝜑𝑖, or a left eigenvec-
tor 𝜓𝑗 and a right eigenvector 𝜑𝑖, the following conditions hold (Yao et al., 2009)

𝜓𝑗𝜑𝑖 = − 𝜑𝑇
𝑗 J𝜑𝑖 = 0 , if 𝜇𝑖 −

1

𝜇𝑗

̸= 0, (2.18a)

𝜓𝑗𝜑𝑖 = − 𝜑𝑇
𝑗 J𝜑𝑖 = 𝑐 ̸= 0 , if 𝜇𝑖 −

1

𝜇𝑗

= 0. (2.18b)

From these relations, it follows that an eigenvector 𝜑𝑖 associated to an eigenvalue 𝜇𝑖 is sym-
plectic orthogonal to all other eigenvectors including itself but excluding its adjoint (Zhong and
Williams, 1995)— i.e., the one which is associated to an eigenvalue 1/𝜇𝑖.

4Notice that the relationship between these eigenvectors is different from the one among normal mode shapes —
i.e., those obtained by solving

(︀
K− 𝜔2M

)︀
q = 0 —, which are orthogonal with respect to the mass matrix M.
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Due to the non-symmetric nature of the symplectic matrix S, the eigenvalues may be com-
plex. Thus, a wavenumber 𝛽𝑗 can be expressed as

𝛽𝑗 = ℜ (𝛽𝑗) + iℑ (𝛽𝑗) , (2.19)

where the real and the imaginary parts of 𝛽𝑗 are referred to the phase and the attenuation constants
per unit length, respectively. Regarding the representation of the wavenumbers {𝛽𝑗}𝑗=1,··· ,2𝑛 in
the complex plane, the wave modes can be classified as: purely propagating, i.e., the imaginary
part of the wavenumber is close to zero (ℑ (𝛽𝑗) ≈ 0)5; purely evanescent, i.e., the real part of
the wavenumber is close to zero (ℜ (𝛽𝑗) ≈ 0); or complex (decaying, but propagating), i.e., the
real and the imaginary part of the wavenumber are of the same order of magnitude (𝒪 (ℜ (𝛽𝑗)) ∼
𝒪 (ℑ (𝛽𝑗))).

As discussed earlier, the eigenvalues come in pairs as (𝜇𝑗,1/𝜇𝑗), which correspond to 𝑛 right-
going wave shapes {𝜑𝑗}𝑗=1,··· ,𝑛 and 𝑛 left-going wave shapes {𝜑⋆

𝑗}𝑗=1,··· ,𝑛. The right-going (respec-
tively, left-going) waves are those whose energy travels in the direction of increasing (respectively,
decreasing) spatial coordinate 𝑥. Langley (1994) has shown that the energy velocity is always equal
to the group velocity (𝑐𝑔) for an undamped system. Therefore, in the absence of damping, the direc-
tion of purely propagating waves is determined by the sign of the energy flow, which corresponds
to that of the group velocity (Equation (2.20)). The sign is positive if the wave propagates to the
right, and negative, if it propagates to the left.

sgn(𝑐𝑔𝑗) = sgn

(︂
−1

2
ℜ
(︁
𝜑𝐻

F𝑗�̇�q𝑗

)︁)︂
= sgn

(︂
−1

2
ℜ
(︀
i𝜔𝜑𝐻

F𝑗𝜑q𝑗

)︀)︂
(2.20)

On the other hand, near-field waves (i.e., purely evanescent or complex waves) are classified as
right-going (respectively, left-going) waves if their amplitudes decay in the direction of increasing
(respectively, decreasing) spatial coordinate 𝑥 with respect to the member local coordinate system.
Thus, for these waves, right-going and left-going wave shapes are associated to eigenvalues whose
magnitudes are, respectively, less and greater than one. For damped systems, which is usually
the case in real engineering structures, the classification of wave shapes as right-going or left-
going follows the criterion used for evanescent and complex waves of undamped systems, as the
magnitude of 𝜇𝑗 is always different from the unity when damping is present. Table 2.1 summarizes

5The imaginary part of the wavenumber of a purely propagating wave is not exactly zero, either because some
damping is present or due to round-off errors, which may be avoided by improving the precision of the routines
for solving the corresponding eigenvalue problem. Those errors are also avoided if the symplectic structure of the
eigenvalue problem is preserved.
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Table 2.1: Wave classification

Type of wave ℜ (𝛽𝑗) ℑ (𝛽𝑗) Direction

Purely Propagating ̸= 0 ≈ 0
sgn(𝑐𝑔𝑗) > 0 → right-going

sgn(𝑐𝑔𝑗) < 0 → left-going

Purely Evanescent ≈ 0 ̸= 0
|𝜇𝑗| < 1 (ℑ (𝛽𝑗) < 0) → right-going

|𝜇𝑗| > 1 (ℑ (𝛽𝑗) > 0) → left-going

Complex ̸= 0 ̸= 0
|𝜇𝑗| < 1 (ℑ (𝛽𝑗) < 0) → right-going

|𝜇𝑗| > 1 (ℑ (𝛽𝑗) > 0) → left-going

the classification of waves according to their type and direction.

For periodic systems that exhibit symmetric substructures — i.e., the left and right parts of
each substructure are symmetric with respect to a plane perpendicular to the main axis 𝑥 —, the

right- and left-going wave shapes — i.e., Φ =
[︁
Φ𝑇

q Φ𝑇
F

]︁𝑇
and Φ⋆ =

[︁
Φ⋆𝑇

q Φ⋆𝑇
F

]︁𝑇
, respectively

— are linked as (Thompson, 1993; Mace et al., 2005; Mencik, 2010)

Φ = 𝒯 Φ⋆, (2.21)

or, alternatively, as
Φ⋆

q = ℛΦq , Φ⋆
F = −ℛΦF, (2.22)

with

𝒯 =

[︃
ℛ 0

0 −ℛ

]︃
. (2.23)

and ℛ being a diagonal symmetry transformation matrix — i.e., whose elements are ±1 and such
that ℛ2 = I𝑛. Equations (2.21)-(2.22) provide an analytical means to strictly enforce the coherence
between the right- and left-going wave shapes. It is used to circumvent the issue of numerical
dispersion which results from the computation of the eigensolutions of the matrix S, and which can
be detrimental for the computation of the forced response of periodic structures.

Expressing the symplectic orthogonality between left and right eigenvectors (Equations
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(2.18)) and using the relations in Equation (2.22), it is possible to verify that

𝜑⋆𝑇
𝑗 J𝜑𝑗 = 𝜑𝑇

F𝑗ℛ𝜑q𝑗 + 𝜑𝑇
q𝑗ℛ𝜑F𝑗, (2.24a)

𝜑𝑇
𝑗 J𝜑

⋆
𝑗 = −

(︀
𝜑𝑇

F𝑗ℛ𝜑q𝑗 + 𝜑𝑇
q𝑗ℛ𝜑F𝑗

)︀
, (2.24b)

which means that
𝜑⋆𝑇

𝑗 J𝜑𝑗 = −𝜑𝑇
𝑗 J𝜑

⋆
𝑗 or −𝜓𝑗𝜑𝑗 = 𝜓⋆

𝑗𝜑
⋆
𝑗 (2.25)

A normalization procedure can be introduced between adjoint eigenvectors, which would make

𝜓𝑗𝜑𝑗 = 𝜓⋆
𝑗𝜑

⋆
𝑗 = 1. (2.26)

It suffices to express the normalized left and right eigenvectors as

𝜓𝑗

⃒⃒
𝑛𝑒𝑤

= −
𝜑⋆𝑇

𝑗 J√︁
𝜑⋆𝑇

𝑗 J𝜑𝑗

, 𝜓⋆
𝑗

⃒⃒
𝑛𝑒𝑤

=
𝜑𝑇

𝑗 J√︁
𝜑⋆𝑇

𝑗 J𝜑𝑗

, ∀𝑗 = 1, . . . , 𝑛, (2.27a)

𝜑𝑗

⃒⃒
𝑛𝑒𝑤

=
𝜑𝑗√︁
𝜑⋆𝑇

𝑗 J𝜑𝑗

, 𝜑𝑗

⃒⃒
𝑛𝑒𝑤

=
𝜑⋆

𝑗√︁
𝜑⋆𝑇

𝑗 J𝜑𝑗

, ∀𝑗 = 1, . . . , 𝑛. (2.27b)

2.2.5 Alternative eigenvalue problems

The eigenvalue problem as stated in Equation (2.12), is usually subject to numerical ill-
conditioning. One of the possible sources of numerical errors is the inversion of the matrix D*

LR

in Equation (2.6) (Zhong and Williams, 1995). Moreover, the matrix of right eigenvectors, i.e.,

Φu =

[︃
Φq Φ⋆

q

ΦF Φ⋆
F

]︃
, (2.28)

has largely disparate components as it involves displacement/rotation and force/moment compo-
nents, which contributes to increase its condition number and, thereafter, according to the Bauer-
Fike theorem (Golub and Loan, 1998; Mencik, 2010) recalled below, the eigenvalue sensitivity.

Theorem 2.1. (Bauer-Fike) If �̃�𝑗 is an eigenvalue of S + E ∈ C2𝑛×2𝑛, where E is a perturbation
matrix with small norm —i.e., ‖E‖𝑝 ≪ ‖S‖𝑝 —, and Φ−1

u SΦu = 𝜇 = diag(𝜇1, 𝜇2, · · · , 𝜇2𝑛),
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then
min

𝜇∈𝜇(S)
|𝜇− �̃�𝑗| ≤ 𝜅(Φu)‖E‖𝑝,

where ‖˙‖𝑝 denotes any of the 𝑝-norms6 and 𝜅 denotes the condition number7 of a given matrix.

Signorelli and von Flotow (1988) showed numerical errors in their study of periodic truss
beams, and attributed them to computational inaccuracy (i.e., round-off errors). However, these
errors might be the evidence of the numerical ill-conditioning of the eigenvalue problem. Later
on, Zhong and Williams (1995) addressed the issue and proposed alternative formulations for the
eigenvalue problem by making use of the symplectic property. The main idea behind the alter-
native formulations is to write the eigenvalue problem as a function of the vectors of displace-
ments/rotations only, in order to avoid the conditioning problems related to the consideration of
force/moment components. In the following, alternative formulations for the eigenproblem stated
in Equation (2.12) are presented. Afterwards, their final expressions are summarized in Table 2.2.

(N,L) eigenvalue problem

To begin with, the state vectors related to the left (right) cross-section of adjacent substruc-
tures are written as a function of the vectors of displacements/rotations, as follows

u
(𝑘)
L = Lw(𝑘), u

(𝑘)
R = Nw(𝑘), (2.29)

where
w(𝑘) =

[︁
q
(𝑘)𝑇
L q

(𝑘)𝑇
R

]︁𝑇
, (2.30)

L =

[︃
I 0

−D*
LL −D*

LR

]︃
and N =

[︃
0 I

D*
RL D*

RR

]︃
. (2.31)

Using the relation in Equation (2.11), which results from Bloch’s theorem, in Equations (2.29), an
alternative eigenvalue problem is formulated

Nw𝑗 = 𝜇𝑗Lw𝑗. (2.32)

6The 𝑝-norms are defined by ‖x‖𝑝 = (|𝑥1|𝑝 + |𝑥2|𝑝 + · · ·+ |𝑥𝑛|𝑝)1/𝑝.
7The condition number provides a measure of the sensitivity of the linear system Ax = b (Golub and Loan, 1998).

Here, the condition number is defined in terms of the 2-norm of A as 𝜅2(A) = ‖A‖2‖A‖−1
2 .
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Notice that the relation between the matrix S and matrices L and N is given by S = NL−1.
In Equation (2.32), {w𝑗}𝑗 refer to right eigenvectors which involve displacement/rotation compo-
nents, only. They can be partitioned into 𝑛 × 1 vectors of displacement/rotation defined at the left
cross-section of the substructure

{︀
𝜑q𝑗

}︀
𝑗

and 𝑛 × 1 vectors of displacement/rotation defined at the
right cross-section of the substructure

{︀
𝜇𝑗𝜑q𝑗

}︀
𝑗
. Thus, once these eigenvectors are computed by

means of the eigenproblem in Equation (2.32), the wave shapes {𝜑𝑗}𝑗 can be easily retrieved as
𝜑𝑗 = Lw𝑗 (Mencik, 2014).

Zhong’s eigenvalue problem

A second companion eigenvalue problem has been proposed by Zhong and Williams (1995).
It takes advantage of the fact that the eigenvalues come in pairs as 𝜇𝑗 and 1/𝜇𝑗 . Here, Equa-
tion (2.32) is left multiplied, independently, by L𝑇J and by N𝑇J,which gives

L𝑇JNw𝑗 = 𝜇𝑗L
𝑇JLw𝑗, (2.33a)

N𝑇JNw𝑗 = 𝜇𝑗N
𝑇JLw𝑗. (2.33b)

Then, using the fact that

L𝑇JL = N𝑇JN =

[︃
0 −D*

LR

D*
RL 0

]︃
(2.34)

in the second equation, one can write

N𝑇JLw𝑗 = 1/𝜇𝑗L
𝑇JLw𝑗. (2.35)

Finally, adding Equations (2.33a) and (2.35), yields

Z1𝜙𝑗 = 𝜆𝑗Z2𝜙𝑗, (2.36)

where

Z1 = (L𝑇JN + N𝑇JL) =

[︃
(D*

RL −D*
LR) (D*

LL + D*
RR)

−(D*
LL + D*

RR) (D*
RL −D*

LR)

]︃
(2.37)

and

Z2 = L𝑇JL =

[︃
0 −D*

LR

D*
RL 0

]︃
. (2.38)
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This alternative eigenvalue problem has double eigenvalues in the form 𝜆𝑗 = (𝜇𝑗 +1/𝜇𝑗). Thus, as-
suming that 𝜇𝑗 ̸= 0, the original eigenvalues are the solutions of the quadratic polynomial equation
𝜇2
𝑗 − 𝜆𝑗𝜇𝑗 + 1 = 0, i.e.,

𝜇𝑗 =
1

2

(︁
𝜆𝑗 ±

√︁
𝜆2𝑗 − 4

)︁
. (2.39)

Moreover, each double eigenvalue 𝜆𝑗 has two corresponding linearly independent eigenvectors𝜙(1)
𝑗

and 𝜙(2)
𝑗 of size 𝑛 × 1 each. The original right eigenvectors of Equation (2.12) can be viewed as a

linear combination of the eigenvectors related to double eigenvalues of Equation (2.36) (Zhong and
Williams, 1995). Thus, for an eigenvalue 𝜇𝑗 , the corresponding eigenvector can be expressed as

w𝑗 = 𝜙𝑗a𝑗 = 𝑎
(1)
𝑗 𝜙

(1)
𝑗 + 𝑎

(2)
𝑗 𝜙

(2)
𝑗 , (2.40)

where 𝜙𝑗 =
[︁
𝜙

(1)
𝑗 𝜙

(2)
𝑗

]︁
is a 2𝑛 × 2 matrix, a𝑗 =

[︁
𝑎
(1)
𝑗 𝑎

(2)
𝑗

]︁𝑇
is a 2 × 1 vector composed of

scalar coefficients 𝑎(1)𝑗 and 𝑎(2)𝑗 . Substituting this equation into Equation (2.32), yields

(N− 𝜇𝑗L)𝜙𝑗a𝑗 = 0, (2.41)

A natural way of obtaining the relationship between coefficients 𝑎(1)𝑗 and 𝑎(2)𝑗 consists in left multi-
plying Equation (2.41) by 𝜙(1)𝐻

𝑗 (or, alternatively, by 𝜙(2)𝐻
𝑗 ), which allows one to write

𝑎
(1)
𝑗

𝑎
(2)
𝑗

= −
𝜙

(1)𝐻
𝑗 (N− 𝜇𝑗L)𝜙

(2)
𝑗

𝜙
(1)𝐻
𝑗 (N− 𝜇𝑗L)𝜙

(1)
𝑗

. (2.42)

Although algebraically correct, this expression may suffer from numerical difficulties when 𝜙(1)
𝑗

is almost parallel to w𝑗 . An alternative way of determining w𝑗 involves the use of singular value
decomposition (SVD), as proposed by Waki et al. (2009b). For the sake of clarity and precision,
the procedure is presented hereafter.

Let A𝑗 = (N−𝜇𝑗L)𝜙𝑗 . Using SVD, this matrix may be written as A𝑗 = UA𝑗ΣA𝑗V
𝐻
A𝑗

, where
UA𝑗 is a square 2𝑛 × 2𝑛 matrix, ΣA𝑗 is a 2𝑛 × 2 diagonal matrix of singular values and VA𝑗 is a
square 2 × 2 matrix, expressed as [︃(︀

𝑉A𝑗
)︀
11

(︀
𝑉A𝑗
)︀
12(︀

𝑉A𝑗
)︀
21

(︀
𝑉A𝑗
)︀
22

]︃
.
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Then, Equation (2.41) can be re-written as

UA𝑗

⎡⎣𝜎(1)
A𝑗

(︁(︀
𝑉A𝑗
)︀
11
𝑎
(1)
𝑗 +

(︀
𝑉A𝑗
)︀
21
𝑎
(2)
𝑗

)︁
𝜎
(2)
A𝑗

(︁(︀
𝑉A𝑗
)︀
12
𝑎
(1)
𝑗 +

(︀
𝑉A𝑗
)︀
22
𝑎
(2)
𝑗

)︁⎤⎦ = 0(2𝑛×1), (2.43)

where 𝑉𝑝𝑞 indicates the complex conjugate of the matrix entry 𝑉𝑝𝑞. As w𝑗 is a linear combination of
the eigenvectors related to double eigenvalues 𝜆𝑗 , A𝑗 is rank-deficient, which makes 𝜎(1)

A𝑗
≫ 𝜎

(2)
A𝑗

≈
0, then the equality in Equation (2.43) is guaranteed by making

(︁(︀
𝑉A𝑗
)︀
11
𝑎
(1)
𝑗 +

(︀
𝑉A𝑗
)︀
21
𝑎
(2)
𝑗

)︁
= 0,

which requires
𝑎
(2)
𝑗

𝑎
(1)
𝑗

= −
(︀
𝑉A𝑗
)︀
11(︀

𝑉A𝑗
)︀
21

. (2.44)

Quadratic eigenvalue problem

It is also possible to solve a companion quadratic eigenvalue problem. This is possible
through consideration of Bloch’s theorem, i.e., u

(𝑘)
𝑗 = 𝜇𝑗u

(𝑘−1)
𝑗 , which allows one to write

qR𝑗 = 𝜇𝑗qL𝑗 and fR𝑗 = −𝜇𝑗fL𝑗 . Using these relations in Equation (2.3), yields

FL𝑗 = D*
LLqL𝑗 + 𝜇𝑗D

*
LRqL𝑗 (2.45a)

−𝜇𝑗FL𝑗 = D*
RLqL𝑗 + 𝜇𝑗D

*
RRqL𝑗 (2.45b)

Substituting Equation (2.45a) into Equation (2.45b), a quadratic eigenvalue problem of the form

Cq𝜑q𝑗 = 0(𝑛×1) (2.46)

is formulated, where Cq =
(︀
𝜇2
𝑗D

*
LR + 𝜇𝑗 (D*

LL + D*
RR) + D*

RL

)︀
.

Eigenvalue problem with symmetric matrices

From Equation (2.46), an eigenvalue problem with symmetric matrices can be formulated
(Arruda et al., 2007), which enhances the performance of the eigenvalue problem computation.
The key idea here is to associate to Equation (2.46) additional equations which would make the
matrices A and B of a generalized eigenvalue problem Az = 𝜆Bz symmetric. To begin with,
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Equation (2.46) is re-written in terms of w𝑗 , which yields[︁
−D*

RL 0
]︁
w𝑗 = 𝜇𝑗

[︁
(D*

RR + D*
LL) D*

LR

]︁
w𝑗. (2.47)

To this equation the following equation is associated[︁
0 D*𝑇

LR

]︁
w𝑗 = 𝜇𝑗

[︁
D*𝑇

LR 0
]︁
w𝑗, (2.48)

which allows one to express the following eigenvalue problem

N̄w𝑗 = 𝜇𝑗L̄w𝑗, (2.49)

where N̄ =

[︃
−D*

RL 0

0 D*𝑇
LR

]︃
and L̄ =

[︃
(D*

RR + D*
LL) D*

LR

D*𝑇
LR 0

]︃
.

Table 2.2: Overview of the eigenproblems used to compute the wave modes of a periodic structure.

Eigenvalue Problem Associated Eigenvector Reference
Equation

S𝜑𝑗 = 𝜇𝑗𝜑𝑗 𝜑𝑗

[︁
𝜑𝑇

q𝑗 𝜑𝑇
F𝑗

]︁𝑇
(2.12)

(︀
J𝜑𝑗

)︀𝑇
S = 𝜇−1

𝑗

(︀
J𝜑𝑗

)︀𝑇
𝜓𝑗 =

(︀
J𝜑𝑗

)︀𝑇 (2.16)

Nw𝑗 = 𝜇𝑗Lw𝑗 w𝑗 =
[︁
𝜑𝑇

q𝑗 𝜇𝑗𝜑
𝑇
q𝑗

]︁𝑇
(2.32)

N̄w𝑗 = 𝜇𝑗L̄w𝑗 w𝑗 =
[︁
𝜑𝑇

q𝑗 𝜇𝑗𝜑
𝑇
q𝑗

]︁𝑇
(2.49)

Z1𝜙𝑗 = 𝜆𝑗Z2𝜙𝑗

𝜙𝑗 (2.36)
w𝑗 = 𝑎

(1)
𝑗 𝜙

(1)
𝑗 + 𝑎

(2)
𝑗 𝜙

(2)
𝑗

C𝜑q𝑗 = 0(𝑛×1) 𝜑q𝑗 (2.46)
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Additional comments regarding the eigenvalue problem formulation for periodic
structures

The mathematical formulation presented in this chapter is stated in the frequency domain.
The displacements/rotations and force/moments vectors (q and F, respectively) are harmonic so-
lutions of the dynamic problem under concern — i.e., the free wave propagation through a 1D
periodic system —, with the harmonic term 𝑒i𝜔𝑡 being omitted for the sake of conciseness. Thus,
the associated eigenvalue problems are functions of the angular frequency 𝜔 and the wavenumber
𝛽. There are two ways of solving these eigenvalue problems: the direct and the inverse methods.
The inverse method is considered to solve the numerical problems that will be presented in this
thesis. It consists in solving the eigenvalue problem with respect to the wavenumber 𝛽𝑗 , for speci-
fied angular frequencies within the range of analysis. One of the advantage of this approach is that
complex wavenumbers are possible.

On the other hand, the direct method consists in solving an eigenproblem, for prescribed val-
ues of the wavenumber 𝛽, with respect to the angular frequency 𝜔. This approach is typically used
to evaluate the dispersion relation of undamped periodic systems. Here, phase constant surfaces
(𝜔 = 𝑓(𝛽) in the 1D case, 𝜔 = 𝑓(𝛽𝑥, 𝛽𝑦) in the 2D case, 𝜔 = 𝑓(𝛽𝑥, 𝛽𝑦,, 𝛽𝑧) in the 3D case) are
obtained, which are convenient to the identification of attenuation zones (or band gaps), typical
in periodic structures. The eigenproblem into consideration here is formulated without condensing
internal degrees of freedom as it must be linear with respect to 𝜔2. This yields a problem of large
size, compared to those solved via inverse method (where the condensation of internal DOFs is
possible). From Bloch’s theorem (stated in Section 2.2.3), qR𝑗 = 𝜇𝑗qL𝑗 and FR𝑗 = −𝜇𝑗FL𝑗 . Using
these relations in Equation (2.3) and by assuming that damping is not present, it yields(︁

K̃(𝜇) − 𝜔2M̃(𝜇)
)︁
𝜑q = 0, (2.50)

where

K̃(𝜇) =

[︃
(𝜇2KLR + 𝜇 (KLL + KRR) + KRL) KRI + 𝜇KLI

KIL + 𝜇KIR KII

]︃
and

M̃(𝜇) =

[︃
(𝜇2MLR + 𝜇 (MLL + MRR) + MRL) MRI + 𝜇MLI

MIL + 𝜇MIR MII

]︃
,

both of them are symmetric matrices.
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2.2.6 Frequency tracking of wave modes

Within the WFE framework, the dispersion curve of each wave mode is obtained by ana-
lyzing the frequency evolution of the wavenumbers 𝛽𝑗 which are defined so that 𝜇𝑗 = 𝑒−i𝛽𝑗Δ

(Equation (2.10)). Tracking each wave mode over the frequency domain appears to be a crucial
task aiming at providing a deep physical insight of the dynamic behavior of periodic structures.
Indeed, the dispersion curves can be used to predict the far-field dynamic behavior of periodic
structures composed of a sufficient number of substructures. The issue when assessing the fre-
quency evolution of 𝛽𝑗 (or 𝜇𝑗) consists in tracking each wave mode over the frequency domain,
it being understood that many wave modes are to be computed at several discrete frequencies and
there exists a priori no direct connection to link these modes between two consecutive frequencies.
In other words, a given mode 𝑟 defined at a frequency 𝜔𝑖 may not match with the mode 𝑟 defined
at the previous frequency 𝜔𝑖−1. By comparing the dispersion curves relative to tracked and non-
tracked wave modes in frequency (see Figure 2.5), the importance of tracking the wave modes in
frequency is highlighted.

Two approaches are usually used for that purpose, they are: the modal assurance criterion
(MAC), which provides information about eigenvectors correlation and originally applied to nor-
mal vibration modes (Allemang, 2003), and another one which makes use of the symplectic or-
thogonality of wave mode shapes.

The MAC consists in evaluating the consistency (degree of linearity) between two wave
modes evaluated at consecutive angular frequencies, 𝜔𝑖−1 and 𝜔𝑖 = 𝜔𝑖−1 + ∆𝜔, where ∆𝜔 is
sufficiently small. It is important to notice that the wave modes are not orthogonal in the Euclidean
space due to the symplectic property of matrix S. Thus, within the framework of the WFE method,
MAC only provides information about the correlation between two wave modes, it cannot be used
for orthogonality check. It is stated, as follows. Given a wave mode 𝑗 at the frequency 𝜔𝑖−1, the
same wave mode 𝑗 at the consecutive frequency 𝜔𝑖 is chosen so that⃒⃒

𝜑𝐻
𝑗 (𝜔𝑖−1)𝜑𝑗(𝜔𝑖)

⃒⃒2
‖𝜑𝑗(𝜔𝑖)‖‖𝜑𝑗(𝜔𝑖)‖

= max
𝑘

{︃ ⃒⃒
𝜑𝐻

𝑗 (𝜔𝑖−1)𝜑𝑘(𝜔𝑖)
⃒⃒2

‖𝜑𝑗(𝜔𝑖−1)‖‖𝜑𝑘(𝜔𝑖)‖

}︃
. (2.51)

An alternative procedure makes use of the symplectic orthogonality properties of the wave
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modes (Zhong and Williams, 1995) between two consecutive discrete frequencies 𝜔𝑖−1 and 𝜔𝑖

spaced by a small step ∆𝜔. The procedure can be stated as follows (Mencik, 2010). Given two
wave modes 𝑗 and 𝑙 verifying 𝜇𝑙 = 1/𝜇𝑗 at the frequency 𝜔𝑖−1, the wave mode 𝑚 at the frequency
𝜔𝑖 is chosen so that⃒⃒⃒⃒

𝜑𝑗(𝜔𝑖−1)
𝑇

‖𝜑𝑗(𝜔𝑖−1)‖
J
𝜑𝑙(𝜔𝑖)

‖𝜑𝑙(𝜔𝑖)‖

⃒⃒⃒⃒
= max

𝑘

{︂⃒⃒⃒⃒
𝜑𝑗(𝜔𝑖−1)

𝑇

‖𝜑𝑗(𝜔𝑖−1)‖
J
𝜑𝑘(𝜔𝑖)

‖𝜑𝑘(𝜔𝑖)‖

⃒⃒⃒⃒}︂
. (2.52)
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Figure 2.5: Dispersion curves of a solid waveguide plotted (a,c) before tracking wave modes, (b,d)
after applying a wave mode tracking procedure: (a,b) magnitude of the real part of normalized
wavenumbers |ℜ (𝛽𝑗∆) |, (c,d) imaginary part of the normalized wavenumbers ℑ (𝛽𝑗∆).
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2.3 Error analysis

The WFE method, as other numerical methods, is prone to errors, which arise at different
steps of the method. They may be of different types, for instance, round-off errors, discretization
errors, truncation errors, among others. It is important to be aware of the possible sources of errors
in order to seek for alternatives, if they exist, and know the maximum accuracy level that can be
reached with the method. In Figure 2.6, a schematics of the different steps involved in the WFE
method as long as the numerical errors that can be associated to them is presented.

The first step of the WFE method is to construct the FE model of the substructure. To this
step, a discretization error is associated. This occurs because, in FEM, the interpolation shape
functions are polynomials independent of the frequency. Thus, as a consequence of Shannon’s
sampling theorem (Jerry, 1977), a minimum number of elements per wavelength is required to
obtain accurate solutions via FEM. The common applied rule of thumb consists in using FE meshes
with six to ten nodes per wavelength (Marburg, 2008), i.e.,

𝑒 ≤ 𝑙𝜆
8
, (2.53)

where 𝑒 is the element size and 𝑙𝜆 is the wavelength. In this thesis, we will be dealing with multi-
coupled periodic structures, which means that multiple wave modes are involved. In this case, the
minimum element size is related to the wave mode of minimum wavelength, which corresponds to
a wave mode whose real part of the corresponding wavenumber is maximum, as stated below:

𝑙𝜆𝑚𝑖𝑛 =
2𝜋

max
𝑗

(ℜ (𝛽𝑗))
. (2.54)

Let’s consider that 𝑚Δ elements are used to discretize the substructure along the 𝑥-axis. Recalling
that the substructure has a length of ∆, the element size along the 𝑥-direction is 𝑒 = ∆/𝑚Δ. Using
this expression and Equation (2.54) in Equation (2.53), it yields

∆

𝑚Δ

≤ 𝜋

4

(︂
max
𝑗

(ℜ (𝛽𝑗))

)︂−1

, max
𝑗

(ℜ (𝛽𝑗)) ∆ ≤ 𝑚Δ𝜋

4
. (2.55)

As |ℜ (𝛽𝑗) | is typically a monotonically increasing function with respect to 𝜔, Equation (2.55)
provides the upper endpoint of the interval of discrete frequencies in which 𝛽𝑗 is evaluated for a
given discretization. Moreover, notice that a bound for |ℜ (𝛽𝑗∆) | is completely determined by the
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number of finite elements across the substructure length 𝑚Δ.
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)︀ Error in
eigenvalues

/eigenvectors

Figure 2.6: Flowchart of the different steps and associated numerical errors within the WFE method.
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Round-off errors are those associated to finite precision with which computers represent
floating-point numbers. This kind of error may occur in every arithmetic operation. However, within
the WFE method, it is crucial when the dynamic stiffness matrix of the substructure is formulated.
In this step, the round-off error occurs if any of the elements of the stiffness matrix, for instance,
K𝑖𝑗), is very large compared to the corresponding mass proportional value 𝜔2M𝑖𝑗 leading to the
truncation of inertia terms after the subtraction. As explained by Waki et al. (2009b), the number
of truncated digits may be approximate by 𝑛𝑟𝑖𝑗 = log10 (|K𝑖𝑗/𝜔2M𝑖𝑗|), which allows one to con-
clude that the numerical errors associated to the round-off of inertia terms affect mainly at very low
frequency. Besides, if the number of digits lost is greater than 16, for double arithmetic precision,
all information regarding the mass matrix is lost. This constitutes a frequency limit below which
the numerical solution is not acceptable. Such errors can be prevented without need of remeshing.
Indeed, the initial mesh size is retained, but the number of elements within a substructure (𝑚Δ) is
increased, which means an increase of the substructure length (thus, large M𝑖𝑗).

The WFE method is also subject to numerical errors due to the inversion of matrices with
high condition numbers. This is the case in the process of condensing the internal DOFs, which
involves the inversion of DII. This kind of error may also cause numerical difficulties when the
eigenvalue problem is formulated by means of the symplectic transfer matrix S. As discussed in
Section 2.2.2, matrix S involves the inversion of D*

LR.

2.3.1 Numerical errors related to the eigenvalue problem formulation

(a) (b)

Figure 2.7: Schematics of the solid waveguide used to analyze numerical errors related to the WFE
method: (a) full waveguide, (b) FE model of the substructure.
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Consider a linear elastic and damped waveguide as shown in Figure 2.7(a). A substructure of
length ∆ = 0.004/36 m is modeled by means of 3D solid hexahedral elements with eight nodes
and three DOFs per node — i.e., translations along the 𝑥, 𝑦 and 𝑧 axes —, the SOLID45 elements
from ANSYS® (see Figure 2.7(b)). The structure is made of steel (Young’s modulus𝐸 = 2.1×1011

Pa, density 𝜌 = 7800 kg.m-3, Poisson’s ratio 𝜈 = 0.3, and internal loss factor 𝜂 = 0.01) and it has
a rectangular cross-section (height ℎ𝑦 = 0.003 m and width ℎ𝑧 = 0.004 m). The numerical errors
involved in the computation of the numerical wave modes of this waveguide by means of the WFE
method are analyzed. The frequency range of interest here is 𝛽𝑓 = [200 Hz —2 MHz], evaluated
at every 2000 Hz. It is important to point out here that substructure model was built using a fine
enough FE mesh for the maximum frequency within the range under concern.

Here, the different eigenproblems presented in Section 2.2.5 are compared in terms of the
accuracy of the computed numerical wave modes. To begin with, low-order numerical wave modes
are compared to the analytical ones computed by means of the elementary theory of rods and
Timoshenko’s beam theory. The comparison is restricted to the frequency range for the validity of
these theories, which according to Doyle (1997), would be below

𝑓max ≈
3

4

𝑐𝑠
ℎ
, (2.56)

where 𝑐𝑠 is the speed of shear S-waves given by
√︀
𝐺/𝜌, with 𝐺 being the shear modulus, and

ℎ, the cross-section length. This frequency is chosen to be close to the first cut-on frequencies of
the Lamb symmetric and antisymmetric modes. For the structural model into consideration here,
𝑓max ≈ 0.4 MHz. In Figure 2.8, the dispersion curves — |ℜ (𝛽𝑗∆) | in the positive 𝑦-axis, ℑ (𝛽𝑗∆)

in the negative 𝑦-axis — for some low-order wave modes computed by means of the various nu-
merical formulations and analytical relations are plotted as well as the relative errors associated to
the computation of the propagation constants 𝜇𝑗 and the wave mode shapes 𝜑𝑗 . These errors are
expressed as

𝜖𝜇𝑗
(𝜔𝑖) =

|𝜇𝑗(𝜔𝑖) − 𝜇𝑗 ref(𝜔𝑖)|
|𝜇𝑗 ref(𝜔𝑖)|

, 𝜖𝜑𝑗
(𝜔𝑖) =

‖𝜑𝑗(𝜔𝑖) − 𝜑𝑗 ref(𝜔𝑖)‖2
‖𝜑𝑗 ref(𝜔𝑖)‖2

, (2.57)

respectively, where the subscript ref is used to denote reference, which, in this case, is the analyt-
ical value. From this analysis, one may notice that all eigenproblem formulations provide almost
the same accuracy, with exception of the (N,L) eigenproblem (Equation (2.32)), which seems to
be more sensitive to errors at very low frequencies. Moreover, a good agreement is observed until
the first cut-on frequency of the shear mode w.r.t. the 𝑦-axis.
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Figure 2.8: Comparison of numerical wave modes, related to the longitudinal wave (a,c,e) and the
shear wave w.r.t. the 𝑦-axis (b,d,f), computed by means of WFE method with the corresponding
analytical values. (a,b) Dispersion curves, (c,d) 𝜖𝜇𝑗

, (e,f) 𝜖𝜑𝑗
(Equation (2.57)). The following ap-

proaches are compared: (—) analytical solution, (- - -) Equation (2.36), ( ∘ ) Equation (2.12), ( ∙ )
Equation (2.32), ( x ) Equation (2.49).
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The various formulations for the WFE-based eigenproblem are also compared with respect to
the symplectic and symmetry conditions between left- and right-going wave modes. As discussed
in Section 2.2.4, due to the symplectic property of the eigenvalue problems the eigenvalues might
be in pairs 𝜇𝑗 and 1/𝜇𝑗 , which means that if a wave travels to the right direction with a propagating
constant 𝜇𝑗 , the corresponding left-going wave would travel with a propagating constant 𝜇⋆

𝑗 = 1/𝜇𝑗 .
With exception to the generalized eigenproblem with antisymmetric matrices which provides pairs
of repetitive eigenvalues (Equation (2.36)), we expect that all other formulations provide pairs (𝜇𝑗 ,
1/𝜇𝑗) as eigenvalues. The error associated to the guarantee of obtaining as eigenvalues 𝜇𝑗 and 1/𝜇𝑗 ,
or double eigenvalues in the case of Equation (2.36), is presented in Figure 2.9(a). The expressions
for the error in the eigenvalue computation are given by

𝜖𝜇(𝜔𝑖) =

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1

(︂
|𝜇𝑛+𝑗(𝜔𝑖) − 𝜇𝑗(𝜔𝑖)|

|𝜇𝑗(𝜔𝑖)|

)︂2

, for the eigenproblem stated in Equation (2.36),

(2.58a)

𝜖𝜇(𝜔𝑖) =

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1

(︂ |𝜇⋆
𝑗(𝜔𝑖) − 1/𝜇𝑗(𝜔𝑖)|

|1/𝜇𝑗(𝜔𝑖)|

)︂2

, for all other eigenproblems. (2.58b)

Notice that the errors are really small for almost all formulations, with exception to the (N,L)
eigenproblem (Equation (2.32)). For this eigenproblem, the error regarding the eigenvalues is in-
vestigated with respect to the wave mode rank in Figure 2.10. The magnitude of the corresponding
right-going propagating constants is also plotted as a function of the wave mode rank and frequency.
From the results shown in Figure 2.10, one may conclude that the eigenvalues which are prone to
more errors are neither purely evanescent or propagating. The propagation of those errors can be
avoided by enforcing the property of the eigenvalues related to left- and right-going waves.

Regarding the wave mode shapes, the symmetry condition stated in Equation (2.22) is evalu-
ated by means of the following error expression

𝜖Φ(𝜔𝑖) =

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1

(︃⃦⃦
𝜑𝑛+𝑗(𝜔𝑖) − 𝒯 𝜑𝑗(𝜔𝑖)

⃦⃦
2

‖𝒯 𝜑𝑗(𝜔𝑖)‖2

)︃2

. (2.59)

This error analysis is performed for all eigenproblem formulations with exception of the Zhong’s
eigenproblem (Equation (2.36)), as in this case the symmetry condition is always enforced. The
results are presented in Figure 2.9(b). As in the previous analysis, the eigenproblem of Equa-
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tion (2.32) provides the worst results, thus requiring the enforcement of the symmetry condition
at each frequency step.
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Figure 2.9: Verification of the symmetry relation, by means of : (a) 𝜖𝜇 (Equation (2.58)), (b) 𝜖Φ
(Equation (2.59)), for the following approaches: (- - -) Zhong’s (Z1,Z2) eigenproblem (Equa-
tion (2.36)), ( ∘ ) S eigenproblem (Equation (2.12)), ( ∙ ) (N,L) eigenproblem (Equation (2.32)),
( x )(N̄,L̄) eigenproblem (Equation (2.49)).
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Figure 2.10: (a)Magnitude of right-going propagation constants (|𝜇𝑗|𝑗,=1,··· ,𝑛), (b) error 𝜖𝜇 com-
puted via the (N,L) eigenproblem stated in Equation (2.32) as a function of the wave mode rank
and frequency.

The WFE eigenproblems have also been compared in terms of the sensitivity of their cor-
responding eigenvalues to numerical errors. The Bauer-Fike theorem (Section 2.2.5) demonstrates
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that the sensitivity of the eigenvalues can be measured by evaluating the condition number of the
eigenvector matrix, which is plotted in Figure 2.11(a). As expected, for small perturbations, the
eigenvalues computed by means of Equation (2.12) seem to be the highly prone to errors. The
alternative formulations are related to small condition numbers of almost the same order of magni-
tude.

Moreover, WFE-based eigenproblems are compared in terms of computational time in Figure
2.11(b). The results show that the eigenproblem stated in Equation (2.12) is the fastest one, it saves
72.6 % of the time used for solving Zhong’s eigenproblem (Equation (2.36)). However, as just
discussed, it may be prone to numerical errors. The same justification holds for avoiding the L/N
eigenproblem in Equation (2.32) although it saves 12.6 % of computational time. In order to meet
a good compromise in terms of performance and accuracy, the eigenproblems in Equations (2.36)
and (2.49) are preferred.
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Figure 2.11: (a) Condition number of the matrix of eigenvectors and (b) elapsed times are compared
for the following eigenproblems: (- - -) or 1 Equation (2.36) , ( ∘ ) or 2 Equation (2.12), ( ∙ ) or 3
Equation (2.32), ( x ) or 4 Equation (2.49).

2.3.2 Numerical errors related to the FE mesh

In this section, the effect of the finite element mesh size in the computation of the numerical
wave modes is investigated. Here, the eigenproblem stated in Equation (2.36) is used to compute
the numerical wave modes. The accuracy of the wave modes for three different models (see Figure
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(a) (b) (c)

Figure 2.12: FE models of the substructures used to investigate the numerical errors related to the
FE mesh size along the main 𝑥-axis (the element sizes along the orthogonal 𝑦 and 𝑧-axes remained
unchanged): (a) substructure with length ∆ = ∆ref = 0.004/36 m, (b) substructure with length
∆ = 2∆ref, (c) substructure with length ∆ = 2∆ref and internal DOFs.

2.12) — (a) same model used in the previous section with length ∆ = ∆ref of 0.004/36 m and
without internal DOFs, (b) substructure with length ∆ = 2∆ref and without internal DOFs, (c)
substructure with length ∆ = 2∆ref and with internal DOFs — are compared.

The accuracy provided by each substructure model is assessed by comparing the numerical
wave modes to the low-order analytical modes (the longitudinal mode, Timoshenko’s bending and
shear modes w.r.t. 𝑦-axis). The dispersion curves for the three substructure models and errors rela-
tive to the propagating constants and the wave mode shapes are shown in Figure 2.13. Notice that,
as expected, the substructure model with the smallest thickness (Figure 2.12(a)) provides the most
accurate values for the propagating constants. On the other hand, the wave mode shapes seem to be
less affected by the mesh size. However, it is important to notice that although some improvement
in the accuracy of the wave modes computed for the model in (Figure 2.12(c)) is obtained com-
pared to that of model in Figure 2.12(b), the inclusion of internal DOFs may add some perturbation
to the wave mode shapes.
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Figure 2.13: Comparison of numerical wave modes, related to the longitudinal wave (a,c,e) and the
shear wave w.r.t. the 𝑦-axis (b,d,f), computed by means of WFE method with the corresponding
analytical values. (a,b) Dispersion curves, (c,d) 𝜖𝜇𝑗

, (e,f) 𝜖𝜑𝑗
. The following substructure models

are compared: (—) analytical model, (- - -) ∆ = ∆ref = 0.004/36 m without internal DOFs, ( ∘ )
∆ = 2∆ref = 0.004/18 m without internal DOFs, ( ∙ ) ∆ = 2∆ref = 0.004/18 m with internal
DOFs.
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2.4 Implementation

For the sake of clarity, the numerical tasks and platform environments involved in the WFE
method are shown in Figure 2.14. ANSYS® is used as a means to assess the mass and stiffness
matrices of substructures. Post-treatment of those matrices is achieved using MATLAB® with a
view to compute the numerical wave basis which describe the dynamic behavior of a periodic
structure of arbitrary length. All the numerical simulations are performed in double precision.

A procedure for extracting FE matrices (M, C, K) and the information regarding nodal
coordinates and DOFs obtained with the aid of ANSYS® and making them available to be han-
dled in MATLAB® has been implemented. Notice that this task is a crucial step within the WFE
method, the reasons are twofold: there is no automatic link between the two softwares (as occurs,
for instance, with COMSOL® and MATLAB®), and there is not a unique way of performing matrix
extraction in ANSYS®, depending on which one is chosen to be implemented, the extraction of
matrices relative to substructures having a large number of DOFs may be become prohibitive. The
procedure implemented in this thesis provides an efficient way for accessing the FE data. The codes
are available in Appendix A.

Regarding the numerical steps involved in the WFE method, the choice of the eigenproblem
formulation to be solved in order to get information from the numerical wave modes is among
the most critical steps. It is known that the eigenproblem of Equation (2.36) performs better, but
it requires additional manipulations to get the original propagation constants and wave modes. In
a practical sense, we usually avoid the use of (N,L) eigenproblem stated in Equation (2.32), and
choose one among the alternative ones. Moreover, in order to avoid numerical issues in the use
of the WFE method for forced response analysis, which is the topic addressed in Chapter 3, some
analytical relations might be enforced. For instance, although the eigenproblem is inherently sym-
plectic, one must ensure that the eigenvalues are in pairs (𝜇 and 1/𝜇) as the numerical computation
of the eigenvalue problem is subject to numerical errors. Additionally, the symmetric relation be-
tween left- and right-going wave modes may not be well stated when obtaining them from the
eigenvectors. For this reason, we include a numerical task which enforces the symmetric feature.
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ANSYS®

FE model of substructure

Extract mass and stiffness matrices
(M, K)

MATLAB®

Express the DSM of a substructure
(D = −𝜔2M + (1 + i𝜂)K)

Condense internal DOFs(︀
D* = DBB −DBID

−1
II DIB

)︀
State Space representation(︃

Su
(𝑘−1)
L = u

(𝑘)
L , u

(𝑘)
L =

2𝑛∑︁
𝑗=1

𝜑𝑗𝑄
(𝑘)
𝑗

)︃

Bloch’s Theorem(︁
𝑄

(𝑘)
𝑗 = 𝑒−i𝛽𝑗Δ𝑄

(𝑘−1)
𝑗

)︁

Eigenvalue Problem

Nw𝑗 = 𝜇𝑗Lw𝑗S𝜑𝑗 = 𝜇𝑗𝜑𝑗 N̄w𝑗 = 𝜇𝑗L̄w𝑗 Z1𝜙𝑗 = 𝜆𝑗Z2𝜙𝑗

({𝜇𝑗}𝑗, {𝜑𝑗}𝑗)

Classifying according to the direction
(𝜇𝑗,Φ𝑗), 𝑗 = 1, 2, · · · , 𝑛
(𝜇⋆

𝑗 ,Φ
⋆
𝑗), 𝑗 = 1, 2, · · · , 𝑛

Eigenvalues in pairs
({𝜇𝑗}𝑗, {1/𝜇𝑗}𝑗), 𝑗 = 1, 2, · · · , 𝑛

Symmetry between wave modes
Φ⋆

q = ℛΦq , Φ⋆
F = −ℛΦF

Figure 2.14: Flowchart illustrating the different numerical steps involved in the WFE method.

54



2.5 Conclusions

This chapter has presented the general formulation of the WFE method for the free wave
propagation analysis of one-dimensional periodic structures. Several formulations of the WFE-
based eigenvalue problem were presented and discussed. The main sources of numerical errors
in the use of the WFE method for the computation of the wave modes traveling along a periodic
structure were discussed. Considering a 3D beam-like structure modeled with solid finite elements,
the numerical errors in the computation of the associated wavenumbers and wave mode shapes via
the WFE method were analyzed. The numerical wave modes were compared to analytical ones
predicted by the elementary theory of rods and Timoshenko’s beam theory. As expected, they are
in agreement at low frequencies within the limits of the corresponding theory. The effect of the
eigenvalue problem formulation on the computation of wave modes were also analyzed. They were
compared in terms of: (i) accuracy of wavenumbers and wave mode shapes, (ii) analytical relation
between right- and left-going wave modes, (iii) conditioning of the eigenvalue problem and (iv)
computational time. In addition, the accuracy of the wave modes were analyzed with respect to the
FE mesh. Finally, some considerations were made with respect to the implementation of the WFE
method in this thesis.
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3 WFE-based superelement modeling for the forced response anal-
ysis of periodic structures

3.1 Overview

In this chapter, the WFE method is used to compute the forced response of one-dimensional
periodic structures (see Figure 3.1). The main objective here is to use the concept of numerical wave
modes to express the dynamic stiffness matrix (DSM) or the receptance matrix (RM) of a periodic
structure. The issue may be viewed as circumventing the computational cost of the conventional
finite element method or the Craig-Bampton (CB) method when large-sized numerical models are
to be solved at many discrete frequencies, while keeping a high level of accuracy.

Figure 3.1: Illustration of a superelement model of a periodic structure.

Although WFE-based DSM formulations have been proposed earlier by Duhamel
et al. (2006) and Mead (2009), the formulations proposed in this thesis provide new contributions
which are listed in the following.

∙ In this thesis, not only a DSM formulation is proposed, but it is also shown that by making
use of wave modes the RM of a periodic structure is built without explicitly inverting the
DSM and, then, avoiding numerical issues.

∙ The WFE-based DSM formulated in this chapter involve better conditioned matrices than the
previous formulations.

∙ The formulation of WFE-based DSM and RM are motivated by the possibility of analyz-
ing low-to-mid frequency dynamics of complex engineering systems which involve periodic
structures in a very efficient way by using the concepts of superelement modeling and dy-
namic substructuring — this issue is addressed in Chapter 4.
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Besides, the superelement modelings treated in this chapter were also motivated by the concept of
spectral element. Originally, SEM involves the construction of dynamic stiffness matrices of peri-
odic structures through consideration of analytical waves. However, exact wave descriptions are not
always available, for instance, in the case of structures involving complex heterogeneities. Thus,
the possibility of obtaining a numerical description for the waves traveling in a periodic structure by
means of the WFE method has brought new perspectives for building high-order spectral elements
— i.e., which consider not only elementary wave motions, but also highly oscillating waves which
are typical of MF dynamics. A first attempt in this sense,the so-called WSFEM, was proposed by
Arruda and Nascimento (2008). The general idea of the WSFEM is to use the numerical wavenum-
bers and the displacement components of the wave mode shapes obtained by means of the WFE
method in the governing differential equations of motion, which allows one to find approximate
expressions for the related forces and moments and, then, derive the spectral element matrix. The
inconvenient here is that analytical expressions for the forces/moments acting on the structure are
still required, thus limiting the application of the method to simple periodic structures. Alterna-
tively, numerical spectral elements of arbitrary order can be built by means of a WFE-based model
order reduction strategy. From the author’s knowledge, such kind of strategy within the framework
of the WFE method has been addressed for the first time in this thesis.

The chapter starts with the formulation of WFE-based dynamic stiffness and receptance ma-
trices expressed by means of the full wave basis. The second part of the chapter is dedicated to
formulation of reduced-order WFE-based superelement matrices. The WSFEM is proposed in the
third part of the chapter. Finally, numerical results which validate the proposed approaches with
reference solutions are presented for various one-dimensional periodic structures.

3.2 WFE-based superelement modeling for periodic structures

3.2.1 Wave expansion

In Chapter 2, the WFE method has been used to compute numerical wave modes {𝜇𝑗, 𝜑𝑗}𝑗 of
a given periodic structure. Now, if one considers the family {𝜑𝑗}𝑗 ∪ {𝜑⋆

𝑗}𝑗 as a wave basis, where
{𝜑𝑗}𝑗 and {𝜑⋆

𝑗}𝑗 are subsets of wave mode shapes related to right- and left-going waves, respec-
tively, it becomes possible by considering Equation (2.11) to express the state vector u(𝑘) at the left
and right boundaries of a substructure within a periodic structure composed of 𝑁 substructures, as
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Figure 3.2: Illustration of the waves propagating along a periodic structure and the vectors of dis-
placement/rotation and force/moment for a substructure (𝑘). The reference positions for the wave
amplitudes related to right- and left-going waves are shown.

follows

u
(𝑘)
L = ΦQ(𝑘) + Φ⋆𝜇Q⋆(𝑘) , u

(𝑘)
R = Φ𝜇Q(𝑘) + Φ⋆Q⋆(𝑘) 𝑘 = 1, . . . ,𝑁, (3.1)

where

Φ =

[︃
Φq

ΦF

]︃
, Φ⋆ =

[︃
Φ⋆

q

Φ⋆
F

]︃
, (3.2)

i.e., 2𝑛 × 𝑛 matrices of wave mode shapes composed of 𝑛 × 𝑛 sub-matrices Φq, Φ⋆
q, ΦF and Φ⋆

F

expressed as Φq = [𝜑q1 · · ·𝜑q𝑛], Φ⋆
q = [𝜑⋆

q1 · · ·𝜑⋆
q𝑛], ΦF = [𝜑F1 · · ·𝜑F𝑛] and Φ⋆

F = [𝜑⋆
F1 · · ·𝜑⋆

F𝑛].

Also, Q(𝑘) =
[︁
𝑄

(𝑘)
1 · · ·𝑄(𝑘)

𝑛

]︁𝑇
and Q⋆(𝑘) =

[︁
𝑄

⋆(𝑘)
1 · · ·𝑄⋆(𝑘)

𝑛

]︁𝑇
are vectors of wave amplitudes

defined at the left and right boundaries of a substructure (𝑘), as shown in Figure 3.2. Finally, 𝜇
is the 𝑛 × 𝑛 diagonal matrix whose components are the eigenvalues {𝜇𝑗}𝑗 related to right-going
waves.

Figure 3.3: Illustration of the waves propagating along a periodic structure and the vectors of dis-
placement/rotation and force/moment for the full periodic structure. The reference positions for the
wave amplitudes related to right- and left-going waves are shown.

Consider now vectors of wave amplitudes Q = [𝑄1 · · ·𝑄𝑛]𝑇 and Q⋆ = [𝑄⋆
1 · · ·𝑄⋆

𝑛]𝑇 defined
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at the left and right ends of the global periodic structure, respectively (see Figure 3.3). By making
use of Bloch’s Theorem (Equation (2.10)), the following relations can be expressed

Q(𝑘) = 𝜇𝑘−1Q, Q⋆(𝑘) = 𝜇𝑁−𝑘Q⋆. (3.3)

Substituting these into Equation (3.1), it yields

u
(𝑘)
L = Φ𝜇𝑘−1Q + Φ⋆𝜇𝑁+1−𝑘Q⋆ , u

(𝑘)
R = Φ𝜇𝑘Q + Φ⋆𝜇𝑁−𝑘Q⋆ 𝑘 = 1, . . . ,𝑁. (3.4)

It is important to point out here that the reference for the vector of wave amplitudes related to
left-going waves is placed at the right end of the global periodic structure in order to avoid numer-
ical errors. Otherwise, Equation (3.4) might invoke terms of extremely low and of extremely high
amplitudes, related, respectively, to 𝜇 and 𝜇−1.

As defined in Equation (2.5), the state vectors can be split into a vector of displacements/ro-
tations and a vector of forces/moments, which allows one to re-write the equations in (3.4) as

q
(𝑘)
L = Φq𝜇

𝑘−1Q + Φ⋆
q𝜇

𝑁+1−𝑘Q⋆ , q
(𝑘)
R = Φq𝜇

𝑘Q + Φ⋆
q𝜇

𝑁−𝑘Q⋆ 𝑘 = 1, . . . ,𝑁,

(3.5a)

−F
(𝑘)
L = ΦF𝜇

𝑘−1Q + Φ⋆
F𝜇

𝑁+1−𝑘Q⋆ , F
(𝑘)
R = ΦF𝜇

𝑘Q + Φ⋆
F𝜇

𝑁−𝑘Q⋆ 𝑘 = 1, . . . ,𝑁.

(3.5b)

3.2.2 Dynamic stiffness matrix (DSM)

In this section, the condensed dynamic stiffness matrix D(𝑝) of a given periodic structure —
namely (𝑃𝑝) — in terms of WFE wave modes {𝜇𝑗, 𝜑𝑗}𝑗 (discussed in Chapter 2) is formulated.
This dynamic stiffness matrix links the vector of nodal displacements/rotations to the vector of
nodal forces/moments on the structure ends — i.e., the left end of the substructure 1 and the right
end of the substructure 𝑁 (see Figure 3.3(b)) —, as follows

D(𝑝)q(𝑝) = F(𝑝), (3.6)
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where

q(𝑝) =

[︃
q
(1)
L

q
(𝑁)
R

]︃
, F(𝑝) =

[︃
F

(1)
L

F
(𝑁)
R

]︃
. (3.7)

The motivation behind the use of WFE wave modes is to compute the matrix D(𝑝), as well as its
inverse (see Section 3.2.3), at a low computational cost compared to the conventional approaches.
Compared to the FE-based DSM, it is smaller in size, as it is written in terms of the DOFs on the left
and the right ends of the periodic structure. Indeed, if the same level of discretization is considered
in the FE model of whole periodic structure, D(𝑝) seems to be as accurate as the FE-based DSM
after dynamic condensation of internal DOFs and, also, it is of fast computation. Moreover, as the
full wave basis is considered — i.e., there is no truncation — the WFE-based DSM is more accurate
than the DSM issued from CB method, for which a truncated set of normal modes is considered
(see Annexe A).

The WFE procedure is achieved in this way. Using Equations (3.5a) and (3.5b), the vectors
of nodal displacements/rotations and forces/moments on the left and right ends of the periodic
structure are expressed as

q
(1)
L =ΦqQ + Φ⋆

q𝜇
𝑁Q⋆ , q

(𝑁)
R =Φq𝜇

𝑁Q + Φ⋆
qQ

⋆, (3.8a)

−F
(1)
L =ΦFQ + Φ⋆

F𝜇
𝑁Q⋆ , F

(𝑁)
R =ΦF𝜇

𝑁Q + Φ⋆
FQ

⋆. (3.8b)

In matrix form, this yields [︃
q
(1)
L

q
(𝑁)
R

]︃
=

[︃
Φq Φ⋆

q𝜇
𝑁

Φq𝜇
𝑁 Φ⋆

q

]︃[︃
Q

Q⋆

]︃
, (3.9)

and [︃
F

(1)
L

F
(𝑁)
R

]︃
=

[︃
−ΦF −Φ⋆

F𝜇
𝑁

ΦF𝜇
𝑁 Φ⋆

F

]︃[︃
Q

Q⋆

]︃
. (3.10)

To derive the condensed dynamic stiffness matrix D(𝑝) of the periodic structure, Equation (3.9) is
left multiplied by the following matrix [︃

Φ−1
q 0

0 Φ⋆−1
q

]︃
, (3.11)
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which yields [︃
Φ−1

q 0

0 Φ⋆−1
q

]︃[︃
q
(1)
L

q
(𝑁)
R

]︃
=

[︃
I Φ−1

q Φ⋆
q𝜇

𝑁

Φ⋆−1
q Φq𝜇

𝑁 I

]︃[︃
Q

Q⋆

]︃
. (3.12)

The motivation behind the use of the matrix (3.11) is to provide a matrix, on the right-hand side of
Equation (3.12), which is of the form[︃

I Φ−1
q Φ⋆

q𝜇
𝑁

Φ⋆−1
q Φq𝜇

𝑁 I

]︃
. (3.13)

From Equation (2.22) and using the fact that ℛ = ℛ𝑇 = ℛ−1, it is possible to show that

Φ−1
q Φ⋆

q = Φ−1
q ℛΦq = (ℛΦq)

−1Φq = Φ⋆−1
q Φq. (3.14)

Notice also that if one considers a periodic structure with a clamped boundary — i.e., either q(1)
L =

0 or q(𝑁)
R = 0 — it is possible to write

Q = Cc𝜇
𝑁Q⋆ or Q⋆ = Cc𝜇

𝑁Q, (3.15)

where Cc = −Φ−1
q Φ⋆

q = −Φ⋆−1
q Φq, as a result of Equation (3.14), and it corresponds, physically,

to the reflection/transmission matrix in the case of a clamped boundary. Thus, matrix (3.13) can be
re-written as [︃

I −Cc𝜇
𝑁

−Cc𝜇
𝑁 I

]︃
. (3.16)

From Equation (3.12) and using the notation in (3.16), the vectors of wave amplitudes Q and Q⋆

can be expressed as [︃
Q

Q⋆

]︃
=

[︃
I −Cc𝜇

𝑁

−Cc𝜇
𝑁 I

]︃−1 [︃
Φ−1

q 0

0 Φ⋆−1
q

]︃[︃
q
(1)
L

q
(N)
R

]︃
. (3.17)

Now, substituting Equation (3.17) into Equation (3.10), the DSM of the periodic structure is readily
derived, as follows

D(𝑝) =

[︃
−ΦF −Φ⋆

F𝜇
𝑁

ΦF𝜇
𝑁 Φ⋆

F

]︃[︃
I −Cc𝜇

𝑁

−Cc𝜇
𝑁 I

]︃−1 [︃
Φ−1

q 0

0 Φ⋆−1
q

]︃
, (3.18)

which is a dense complex matrix expressed in terms of the left and right DOFs of the periodic
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structure.

The motivation behind the use of the premultiplication by (3.11) is to formulate a condensed
dynamic stiffness matrix which involves the inversion of a matrix, (3.14) or (3.16), that is likely to
be well-conditioned (Mencik, 2010). This is a 2𝑛× 2𝑛 matrix — i.e., it is related to the number of
DOFs on the left and right ends of the structure, only — which appears to be very small compared
to the number of DOFs that would be used to model the whole periodic structure (which is 2(𝑁 +

1)𝑛+𝑁𝑛𝑖 DOFs, where 𝑛𝑖 is the number of internal DOFs within a substructure). Also, it is sparse,
as it has identity matrices as diagonal block terms. Finally, the inversion of matrix (3.16) can be
performed in an efficient way, as depicted in the following. The analytic formula for blockwise
inversion is expressed as (Banachiewicz, 1937 apud Puntanen and Styan, 2005)[︃

A B

C D

]︃−1

=

[︃
(A−BD−1C)

−1 −A−1B (D−CA−1B)
−1

−D−1C (A−BD−1C)
−1

(D−CA−1B)
−1

]︃
. (3.19)

Hence, the inverse of (3.16) is given by

[︃
I −Cc𝜇

𝑁

−Cc𝜇
𝑁 I

]︃−1

=

⎡⎣ (︁
I−

(︀
Cc𝜇

𝑁
)︀2)︁−1

Cc𝜇
𝑁
(︁
I−

(︀
Cc𝜇

𝑁
)︀2)︁−1

Cc𝜇
𝑁
(︁
I−

(︀
Cc𝜇

𝑁
)︀2)︁−1 (︁

I−
(︀
Cc𝜇

𝑁
)︀2)︁−1

⎤⎦ , (3.20)

which can be, alternatively, written as

[︃
I −Cc𝜇

𝑁

−Cc𝜇
𝑁 I

]︃−1

=

[︃
I Cc𝜇

𝑁

Cc𝜇
𝑁 I

]︃⎡⎣(︁I− (︀Cc𝜇
𝑁
)︀2)︁−1

0

0
(︁
I−

(︀
Cc𝜇

𝑁
)︀2)︁−1

⎤⎦ .
(3.21)

Due to the nature of (3.16), its inversion requires only the inversion of
(︁
I−

(︀
Cc𝜇

𝑁
)︀2)︁, which is

a 𝑛 × 𝑛 matrix — i.e., a half of the size of the original matrix. Moreover, if the spectral radius of(︀
Cc𝜇

𝑁
)︀2 is inferior to one, the following identity is verified

(︁
I−

(︀
Cc𝜇

𝑁
)︀2)︁−1

=
∞∑︁
𝑖=0

(︀
Cc𝜇

𝑁
)︀2𝑖
, (3.22)

which corresponds to a convergent Neumann series. Assumption 1 is verified as follows. By def-
inition, the spectral radius of a matrix A verifies 𝜌𝑠(A) < ‖A‖, where 𝜌𝑠 stands for the spectral
radius of a matrix. Thus, one may write 𝜌𝑠

(︁(︀
Cc𝜇

𝑁
)︀2)︁

< ‖C2
c‖‖𝜇2𝑁‖. Since ‖𝜇‖ ≤ 1 (see Equa-
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tion (2.17)) and ‖Cc‖ ≤ ‖Φ−1
q ‖‖ℛ‖‖Φ⋆

q‖ = 1, Assumption 1 is satisfied provided that ‖𝜇‖ is
small enough compared to one (which depends on the structure damping). In this case, the series in
Equation (3.22) can be truncated to the first 𝑚 terms, such that 𝜌𝑠

(︀
𝜇2𝑁(𝑚+1)

)︀
< 𝜖 with 𝜖 being a

small tolerance value (for instance, 10−16, which is about the limit of floating point representation).
Then, the dynamic stiffness matrix of the periodic structure can be approximated to

D(𝑝) ≈

[︃
−ΦF −Φ⋆

F𝜇
𝑁

ΦF𝜇
𝑁 Φ⋆

F

]︃[︃
I Cc𝜇

𝑁

Cc𝜇
𝑁 I

]︃⎡⎢⎢⎢⎣
𝑚∑︁
𝑖=0

(︀
Cc𝜇

𝑁
)︀2𝑖

0

0
𝑚∑︁
𝑖=0

(︀
Cc𝜇

𝑁
)︀2𝑖
⎤⎥⎥⎥⎦
[︃
Φ−1

q 0

0 Φ⋆−1
q

]︃
.

(3.23)
In this case, the computation of D(𝑝) involves only the inversion of Φq (as Φ⋆−1

q = Φ−1
q ℛ, see

Equation (2.22)), a dense complex matrix of size 𝑛 × 𝑛, the evaluation of a power series of size
𝑛× 𝑛 and matrix multiplications of size 2𝑛× 2𝑛.

3.2.3 Receptance matrix (RM)

One interesting feature behind the use of wave modes is to formulate the inverse of the dy-
namic stiffness matrix D(𝑝) without the need of explicitly inverting the matrix appearing on the
right-hand side of Equation (3.6). Such an inverse is usually called receptance matrix

(︀
R(𝑝)

)︀
. It

links the vector of nodal forces/moments to the vector of nodal displacements/rotations, as follows

q(𝑝) = R(𝑝)F(𝑝). (3.24)

The derivation of R(𝑝) is presented hereafter. To begin with, Equation (3.10) is left multiplied by
the following matrix [︃

−Φ−1
F 0

0 Φ⋆−1
F

]︃
, (3.25)

which yields [︃
−Φ−1

F 0

0 Φ⋆−1
F

]︃[︃
F

(1)
L

F
(𝑁)
R

]︃
=

[︃
I Φ−1

F Φ⋆
F𝜇

𝑁

Φ⋆−1
F ΦF𝜇

𝑁 I

]︃[︃
Q

Q⋆

]︃
. (3.26)

In a similar way as in Equation (3.12), the matrix appearing on the right-hand side of Equa-
tion (3.26) is sparse with identity matrices as diagonal block terms, i.e., it is likely to be invertible.
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In addition, if one considers a periodic structure with one of its end free from external excitations,
— i.e., either F(1)

L = 0 or F(𝑁)
R = 0 — using Equation (3.8b), one gets

Q = Cf𝜇
𝑁Q⋆ or Q⋆ = Cf𝜇

𝑁Q, (3.27)

where Cf = −Φ−1
F Φ⋆

F = −Φ⋆−1
F ΦF is the reflection/transmission matrix in the case of a free

boundary. Thus, it turns out that the vectors of wave amplitudes Q and Q⋆ can be expressed as[︃
Q

Q⋆

]︃
=

[︃
I −Cf𝜇

𝑁

−Cf𝜇
𝑁 I

]︃−1 [︃
−Φ−1

F 0

0 Φ⋆−1
F

]︃[︃
F

(1)
L

F
(N)
R

]︃
. (3.28)

Then, from Equations (3.9) and (3.28), the receptance matrix of a periodic structure is expressed as

R(𝑝) =

[︃
Φq Φ⋆

q𝜇
𝑁

Φq𝜇
𝑁 Φ⋆

q

]︃[︃
I −Cf𝜇

𝑁

−Cf𝜇
𝑁 I

]︃−1 [︃
−Φ−1

F 0

0 Φ⋆−1
F

]︃
, (3.29)

which, as the DSM, is a dense complex matrix expressed in terms of the DOFs on the left and right
ends.

Analogously to the case of the dynamic stiffness matrix, the inversion of the matrix in the
right-hand side of Equation (3.26), i.e.,[︃

I −Cf𝜇
𝑁

−Cf𝜇
𝑁 I

]︃
, (3.30)

can be computed as

[︃
I −Cf𝜇

𝑁

−Cf𝜇
𝑁 I

]︃−1

=

[︃
I Cf𝜇

𝑁

Cf𝜇
𝑁 I

]︃⎡⎢⎢⎢⎣
∞∑︁
𝑖=0

(︀
Cf𝜇

𝑁
)︀2𝑖

0

0
∞∑︁
𝑖=0

(︀
Cf𝜇

𝑁
)︀2𝑖
⎤⎥⎥⎥⎦ . (3.31)
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This allows one to approximate the receptance matrix in an efficient way to

R(𝑝) ≈

[︃
−Φq −Φ⋆

q𝜇
𝑁

Φq𝜇
𝑁 Φ⋆

q

]︃[︃
I Cf𝜇

𝑁

Cf𝜇
𝑁 I

]︃⎡⎢⎢⎢⎣
𝑚∑︁
𝑖=0

(︀
Cf𝜇

𝑁
)︀2𝑖

0

0
𝑚∑︁
𝑖=0

(︀
Cf𝜇

𝑁
)︀2𝑖
⎤⎥⎥⎥⎦
[︃
Φ−1

F 0

0 Φ⋆−1
F

]︃
,

(3.32)
where 𝑚 is such that 𝜌𝑠

(︀
𝜇2𝑁(𝑚+1)

)︀
< 𝜖 with 𝜖 being a small tolerance value (for instance, 10−16,

which is about the limit of floating point representation). It is worth pointing out that the computa-
tion of matrix R(𝑝) involves the inversion of ΦF (as Φ⋆−1

F = −Φ−1
F ℛ, see Equation (2.22)), a dense

complex matrix of size 𝑛× 𝑛, the evaluation of a power series of size 𝑛× 𝑛 and multiplications of
matrices whose size is 2𝑛× 2𝑛.

3.3 Reduced-order WFE-based superelement modeling for periodic structures

In previous sections, the full wave mode basis has been used to express the dynamic stiffness
matrix and the receptance matrix of a periodic structure (𝑃𝑝). Here, the objective is to describe
superelement models based on a reduced set of wave modes obtained by means of the WFE method.

As discussed in Section 2.2.3, the number of wave modes that can be computed by means of
the WFE method depends on the number of DOFs used to discretize the substructure boundaries.
Moreover, it was shown in Section 2.3 that FE mesh size determines the accuracy of numerical
wave modes. In other words, as the maximum frequency within the range of analysis increases,
the element size must decrease in order to better approximate short wavelengths. Depending on the
problem boundary conditions, not all wave modes effectively contribute to the structure response.
Besides, some wave modes are highly evanescent. Thus, even if they are locally excited, they may
not propagate or their amplitude decays rapidly, which avoids that they reach the opposite end
where they would be reflected or transmitted to a coupled structure — i.e., they may not have far-
field effect. For the purpose of improving computational performance, it would be useful if we
could select among all wave modes the most contributing ones and use them to obtain accurate
forced responses of periodic structures. In the following, a strategy for building reduced-order
WFE-based models is proposed. It involves three main steps: in the first step, a set of WFE wave
modes is selected by means of a convenient criterion; then, the reduced set of wave modes is used
to build reduced WFE-based eigenproblems; finally, by considering the reduced set of WFE wave
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modes computed in the second step, the superelement model is constructed.

3.3.1 Selection criterion of WFE wave modes

The complexity of the dynamic response of a structure increases with frequency. Thus, it is
expected that, at the highest frequency within the frequency range of analysis, the number of wave
modes that contribute to the structure response is maximum. In order to accurately describe the
dynamic behavior of periodic structures within the whole frequency range, the selection procedure
must be repeated for some discrete frequencies within the frequency band 𝛽𝑓 . This is because the
wave mode shapes related to propagating waves may change their directions as they evolve in fre-
quency. Variations in the wave shapes usually occur at cut-on frequencies — i.e., when evanescent
waves start propagating —, at high frequencies due to boundary effects, or as result of coupling
effects (Droz et al., 2014). Thus, considering 𝑚 sub-frequency bands 𝛽𝑓𝑖 =

[︀
𝜔ref
𝑖−1 + ∆𝜔, 𝜔ref

𝑖

]︀
,

the selection criterion is applied only to the maximum frequency within the sub-frequency band,
i.e., 𝜔ref

𝑖 , where the structure response is evaluated by means of the DSM or the RM formulations
presented in Section 3.2, which make use of full wave mode basis. At first, the wave modes are
selected in terms of the magnitude of the corresponding wave amplitudes.

We recall from Section 2.2.4 that the left and right eigenvectors of the eigenproblem stated in
Equation (2.12), by means of a normalization procedure, can be related as follows

ΨuΦu = I2𝑛, (3.33)

where

Ψu =

[︃
ΨF Ψq

Ψ⋆
F Ψ⋆

q

]︃
(3.34)

and

Φu =

[︃
Φq Φ⋆

q

ΦF Φ⋆
F

]︃
. (3.35)

From Equation (3.4), the state vectors at the left and the right ends of periodic structure can be
expressed as

u
(1)
L = ΦQ + Φ⋆𝜇𝑁Q⋆ , u

(𝑁)
R = Φ𝜇𝑁Q + Φ⋆Q⋆. (3.36)
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Left multiplying u
(1)
L by Ψ and u

(𝑁)
R by Ψ⋆, yields

Q =
[︁
ΨF Ψq

]︁
u
(1)
L , Q⋆ =

[︁
Ψ⋆

F Ψ⋆
q

]︁
u
(𝑁)
R . (3.37)

Thus, for a given wave mode 𝑗, the related wave amplitudes 𝑄𝑗 and 𝑄⋆
𝑗 can be expressed as[︃

𝑄𝑗

𝑄⋆
𝑗

]︃
=

[︃
𝜓F𝑗 0

0 𝜓⋆
F𝑗

]︃[︃
q
(1)
L

q
(𝑁)
R

]︃
+

[︃
−𝜓q𝑗 0

0 𝜓⋆
q𝑗

]︃[︃
F

(1)
L

F
(𝑁)
R

]︃
, 𝑗 = 1, . . . , 𝑛. (3.38)

If the solution for the boundary value problem is known, two amplitude ratios (𝑟𝑄𝑗
and 𝑟𝑄⋆

𝑗
) can be

defined

𝑟𝑄𝑗
=

|𝑄𝑗|

max
(︁
{|𝑄𝑗|}𝑗

)︁ , 𝑗 = 1, . . . , 𝑛, (3.39a)

𝑟𝑄⋆
𝑗

=
|𝑄⋆

𝑗 |

max
(︁{︀

|𝑄⋆
𝑗 |
}︀
𝑗

)︁ , 𝑗 = 1, . . . , 𝑛, (3.39b)

which are used to measure the contribution of a given wave mode 𝑗 to the structure response. Then,
a criterion for selecting the wave modes which effectively contribute to the structure response can
be stated as

Selection Criterion 1:

1. Let M = {𝜇𝑗,𝜑𝑗}𝑗=1,··· ,𝑛 ∪ {𝜇⋆
𝑗 ,𝜑

⋆
𝑗}𝑗=1,··· ,𝑛, with 𝜇⋆

𝑗 = 1/𝜇𝑗 and 𝜑⋆
𝑗 = 𝒯 𝜑𝑗 .

2. If 𝑟𝑄𝑗
> 𝜖𝑄 or 𝑟𝑄⋆

𝑗
> 𝜖𝑄, then (𝜇𝑗,𝜑𝑗) ∈ M𝑄.

3. Otherwise, (𝜇𝑗,𝜑𝑗) ∈ M𝑅 in such a way that M = M𝑄 ∪M𝑅.

Here, M𝑄 is the set of 2𝑛𝑄 wave modes — as wave modes are considered in pairs of left- and
right-going waves — which effectively contribute to the forced response of the periodic structure,
and 𝜖𝑄 is the threshold value — by experience, we usually choose 𝜖𝑄 = 10−6 in order to guarantee
accurate results (some investigation regarding the choice of 𝜖𝑄 is carried out in Section 3.5). Thus,
in the complement of this set, i.e., M𝑅, which is denoted as the set of rejected wave modes, there
might be 2𝑛𝑅 = 2𝑛− 2𝑛𝑄 wave modes.
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It is worth pointing out that the number of propagating wave modes tends to increase as the
frequency rises (a numerical validation is proposed in Section 3.5.1, see Figure 3.13). This occurs
because wave modes which are initially evanescent at low frequencies, may become purely prop-
agating or complex at angular frequencies greater than 𝜔𝑐𝑗 ̸= 0, which corresponds to the cut-on
frequency for a given wave mode (𝜇𝑗,𝜑𝑗). The construction of a spectral element of order 𝑛𝑤

involves the consideration of the 𝑛𝑤 most propagating right-going wave modes and correspond-
ing left-going wave modes. Thus, in order to build higher-order superelement models, a second
selection criterion of wave modes must be applied to the set of wave modes in M𝑄, as follows

Selection Criterion 2:

1. Let {𝜇𝑗,𝜑𝑗}𝑗=1,··· ,𝑚𝑄
⊂ M𝑄 such that |𝜇𝑗| < 1, sort {𝜇𝑗,𝜑𝑗}𝑗=1,··· ,𝑚𝑄

in ascending order of
|𝜇𝑗|.

2. Among them, select the first 𝑛𝑤 wave modes, i.e.,

{𝜇𝑗,𝜑𝑗}𝑗=1,··· ,𝑛𝑤 ⊂ M𝑤 ⊂ M𝑄, with |𝜇1| ≤ |𝜇2| ≤ · · · ≤ |𝜇𝑛𝑤 | .

3. Then, M𝑤 = {𝜇𝑗,𝜑𝑗}𝑗=1,··· ,𝑛𝑤 ∪ {𝜇⋆
𝑗 ,𝜑

⋆
𝑗}𝑗=1,··· ,𝑛𝑤 , with 𝜇⋆

𝑗 = 1/𝜇𝑗 and 𝜑⋆
𝑗 = 𝒯 𝜑𝑗 .

4. Otherwise, (𝜇𝑗,𝜑𝑗) ∈ M𝑟, where M𝑟 ∪M𝑤 = M𝑄.

3.3.2 Reduced-order WFE method

Using the reduced set of 2𝑛𝑘 wave modes selected by application of Criterion 1 , associated
or not with Criterion 2 — in the former case, 𝑛𝑘 = 𝑛𝑄; otherwise, 𝑛𝑘 = 𝑛𝑤 —, transformation
matrices for model order reduction — i.e., the left- and right-hand side transformation matrices T̃L

and T̃R of sizes 2𝑛𝑘×2𝑛 and 2𝑛×2𝑛𝑘, respectively — can be constructed. For each sub-frequency
band 𝛽𝑓𝑖 defined before, in which a reduced set of wave modes {𝜇𝑗,𝜑𝑗}𝑗 ⊂ M𝑘(𝜔ref

𝑖 ) has been
selected, T̃R can be defined as

T̃R =

[︃
Φq𝑘 Φ⋆

q𝑘

ΦF𝑘 Φ⋆
F𝑘

]︃
= Φu𝑘. (3.40)
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The right-hand side transformation matrix T̃R is used to project the state vector expressed in terms
of physical DOFs u(𝑘) into a vector of generalized coordinates ũ(𝑘), as follows

u(𝑘) = T̃Rũ
(𝑘), (3.41)

which allows for the system linear projection

S̃ = T̃LST̃R, (3.42)

where S is the original symplectic transfer matrix of size 2𝑛× 2𝑛, T̃L is the left-hand side transfor-
mation matrix and S̃ is the reduced system matrix of size 2𝑛𝑘×2𝑛𝑘. In order to guarantee numerical
stability in the reduction process, T̃L and T̃R must be orthogonal and satisfy

T̃LT̃R = I2𝑛𝑘
. (3.43)

Using the relation between the left and right eigenvectors of S, defined in Equation (3.33), T̃L can
be expressed as

T̃L = Ψu𝑘. (3.44)

By writing ũ
(𝑘)
L as a series expansion and applying Bloch’s Theorem, as stated in Section 2.2.3, the

following reduced eigenproblem can be formulated:

S̃�̃�𝑗 = �̃�𝑗�̃�𝑗. (3.45)

The eigenvectors of the reduced eigenproblem are related to the ones defined in terms of the phys-
ical DOFs, as follows

�̃�𝑗(𝜔) = T̃R�̃�𝑗(𝜔). (3.46)

An alternative scheme is proposed in Appendix B to formulate the reduced WFE-based eigenprob-
lem (Equation 3.45).
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Additional comments about the reduced system matrix

As S is diagonalizable, one may write S as

S =
[︁
Φu𝑘 Φu𝑟

]︁ [︃ 𝜇𝑘 0𝑛𝑘𝑛𝑟

0𝑛𝑟𝑛𝑘
𝜇𝑟

]︃ [︁
Φu𝑘 Φu𝑟

]︁−1

. (3.47)

If this eigendecomposition is used at the same frequency used to express the reduced wave basis
—i.e., 𝜔 = 𝜔ref

𝑖 —, one may re-write Equation (3.42) as

S̃(𝜔ref
𝑖 ) =

[︁
I𝑛𝑘

0𝑛𝑘𝑛𝑟

]︁ [︃𝜇𝑘(𝜔ref
𝑖 ) 0𝑛𝑘𝑛𝑟

0𝑛𝑟𝑛𝑘
𝜇𝑟(𝜔

ref
𝑖 )

]︃[︃
I𝑛𝑘

0𝑛𝑟𝑛𝑘

]︃
= 𝜇𝑘(𝜔ref

𝑖 ). (3.48)

Moreover, at this frequency, one may show that S̃(𝜔ref
𝑖 ) is symplectic as

S̃(𝜔ref
𝑖 )𝑇J𝑛𝑘

S̃(𝜔ref
𝑖 ) = 𝜇𝑘(𝜔ref

𝑖 )J𝑛𝑘
𝜇𝑘(𝜔ref

𝑖 )

= 𝜇𝑘(𝜔ref
𝑖 )J𝑛𝑘

𝜇𝑘(𝜔ref
𝑖 ) = J𝑛𝑘

.
(3.49)

For an angular frequency 𝜔𝑖 ∈ 𝛽𝑓𝑖 distinct from that used to get the reduced basis (𝜔ref
𝑖 )

— usually, the maximum frequency within the range —, one can show that S̃(𝜔𝑖) may not be
symplectic, but close to it. Using the original eigenvalues/eigenvectors to decompose the symplectic
transfer matrix at 𝜔𝑖, the reduced matrix at this frequency can be written as

S̃(𝜔𝑖) = Ψu𝑘(𝜔ref
𝑖 )Φu(𝜔𝑖)𝜇(𝜔𝑖)Φ

−1
u (𝜔𝑖)Φu𝑘(𝜔ref

𝑖 )

= [Ψu𝑘(𝜔ref
𝑖 )Φu(𝜔𝑖)]𝜇(𝜔𝑖)

[︀
Φ−1

u (𝜔𝑖)Φu𝑘(𝜔ref
𝑖 )
]︀
.

(3.50)

One can expand the wave mode shapes evaluated at 𝜔𝑖 in terms of the wave modes at the frequency
the reduction basis is set (𝜔ref

𝑖 ), as follows

[︁
Φu𝑘(𝜔𝑖) Φu𝑟(𝜔𝑖)

]︁
=
[︁
Φu𝑘(𝜔ref

𝑖 ) Φu𝑟(𝜔
ref
𝑖 )
]︁ [︃𝛼𝑘𝑘 𝛼𝑘𝑟

𝛼𝑟𝑘 𝛼𝑟𝑟

]︃
. (3.51)

Left multiplying Equation (3.51) by [︃
Ψu𝑘(𝜔ref

𝑖 )

Ψu𝑟(𝜔
ref
𝑖 )

]︃
(3.52)
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and making use of the symplectic orthogonality as stated in Equation (3.33), one may write

[︁
Ψu𝑘(𝜔ref

𝑖 ) Φu𝑟(𝜔
ref
𝑖 )
]︁ [︃Ψu𝑘(𝜔ref

𝑖 )Φu𝑘(𝜔𝑖) Φu𝑘(𝜔ref
𝑖 )Φu𝑟(𝜔𝑖)

Ψu𝑟(𝜔
ref
𝑖 )Φu𝑘(𝜔𝑖) Ψu𝑟(𝜔

ref
𝑖 )Φu𝑟(𝜔𝑖)

]︃
=

[︃
I𝑛𝑘

0𝑛𝑘𝑛𝑟

0𝑛𝑟𝑛𝑘
I𝑛𝑟

]︃[︃
𝛼𝑘𝑘 𝛼𝑘𝑟

𝛼𝑟𝑘 𝛼𝑟𝑟

]︃
,

(3.53)
which yields [︃

𝛼𝑘𝑘 𝛼𝑘𝑟

𝛼𝑟𝑘 𝛼𝑟𝑟

]︃
=

[︃
Ψu𝑘(𝜔ref

𝑖 )Φu𝑘(𝜔𝑖) Ψu𝑘(𝜔ref
𝑖 )Φu𝑘(𝜔𝑖)

Ψu𝑟(𝜔
ref
𝑖 )Φu𝑘(𝜔𝑖) Ψu𝑟(𝜔

ref
𝑖 )Φu𝑟(𝜔𝑖)

]︃
(3.54)

Assuming that 𝛼𝑘𝑟 = 𝛼𝑟𝑘 = 0 and using Equation (3.51) in Equation (3.50), yields

S̃(𝜔𝑖) = 𝛼𝑘𝑘𝜇𝑘(𝜔𝑖)𝛼
−1
𝑘𝑘 (3.55)

Thus, the nature of S̃(𝜔𝑖) is directly related to the form of 𝛼𝑘𝑘. As a result of the symplectic or-
thogonality of wave mode shapes (Equation (3.33)), 𝛼𝑘𝑘 tends to the identity matrix, which makes
S̃(𝜔𝑖) close to symplectic. It is worth to emphasize here that procedures which respect the structure
are usually preferred with the interest of guaranteeing efficiency, stability and accuracy ((Watkins,
2007), (Hogben, 2013)). It is also important to point out that the unsymmetric Lanczos process,
which is the algorithm used when the MATLAB® function eigs is called, is a structure-preserving
method when applied to the skew-Hamiltonian matrix S + S−1 (Watkins, 2004). The considera-
tion of Lanczos method for the computation of the generalized eigenvalue problem based on the
skew-Hamiltonian matrix S+S−1 within the framework of the WFE method has been recently pro-
posed by Mencik and Duhamel (2015). Moreover, if the symplectic nature is preserved, one might
make use of algorithms which by exploiting the structure leads to reduced computational time as,
for instance, the SR algorithm based on the butterfly form (Fassbender, 2002) or the condensed
symplectic Lanczos process (Watkins, 2004). Regarding the proposed reduced eigenvalue problem,
which is not strictly symplectic, one may not profit from the efficiency of symplectic-based algo-
rithms and may not enforce that if �̃�𝑗 is an eigenvalue of S̃, then 1/�̃�𝑗 might be an eigenvalue as
well either. However, the key idea behind the proposed eigenvalue problem is the possibility of
computing only the desired wave modes, which are not necessarily the ones of highest or lowest
magnitudes, and thus may not be efficiently performed by means of Lanczos method.
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3.3.3 Reduced-order RM matrix

Associated to the proposed reduced-order (RO) WFE method, a reduced receptance matrix in
terms of generalized DOFs can be built. The solution of the reduced eigenproblem stated in Equa-
tion (3.45) yields a reduced basis of wave modes expressed in generalized coordinates (�̃�𝑗, �̃�𝑗)𝑗 .
In order to recover displacements/rotations and forces/moments components of the wave mode
shapes, one may make use of the associated right-hand transformation matrix T̃R, as follows

Φ̃ =

[︃
Φ̃q

Φ̃F

]︃
= T̃R�̃�. (3.56)

Notice that the transformation matrix T̃R is applied to the wave modes related to right-going waves
only. In order to express the reduced set of left-going wave mode shapes in terms of physical DOFs,
one might make use the symmetry relation stated in Equation (2.22). Then, using the orthogonal-
ity relation between the left and right eigenvectors of S (Equation (2.18)) and the normalization
procedure stated in Equation (3.33), the corresponding left eigenvectors (Ψ̃, Ψ̃

⋆
) are obtained.

Given the reduced basis of wave modes expressed in the physical DOFs, the vector of dis-
placements/rotations at the ends of a periodic structure composed of 𝑁 substructures can be ex-
pressed as [︃

q
(1)
L

q
(𝑁)
R

]︃
=

[︃
Φ̃q Φ̃

⋆

q�̃�
𝑁

Φ̃q�̃�
𝑁 Φ̃

⋆

q

]︃[︃
Q̃

Q̃⋆

]︃
. (3.57)

This system of equations is over-determined as it is composed of 2𝑁 equations, but it is expressed
in terms of only 2𝑛𝑤 variables: the vectors of wave amplitudes Q and Q⋆. In order to make it full-
ranked some constraints are considered. It consists in writing the vectors of displacements/rotations
in terms of independent vectors of generalized coordinates, as follows[︃

q
(1)
L

q
(𝑁)
R

]︃
= P̃q

[︃
q̃
(1)
L

q̃
(𝑁)
R

]︃
, (3.58)

where

P̃q =

[︃
Φ̃q 0

0 Φ̃
⋆

q

]︃
. (3.59)
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Thus, by substituting Equation (3.58) in 3.57, one gets[︃
Φ̃q 0

0 Φ̃
⋆

q

]︃[︃
q̃
(1)
L

q̃
(𝑁)
R

]︃
=

[︃
Φ̃q Φ̃

⋆

q�̃�
𝑁

Φ̃q�̃�
𝑁 Φ̃

⋆

q

]︃[︃
Q̃

Q̃⋆

]︃
. (3.60)

Left multiplying Equation (3.60) by [︃
Ψ̃F 0

0 Ψ̃
⋆

F

]︃
, (3.61)

allows one to write[︃
q̃
(1)
L

q̃
(𝑁)
R

]︃
=

[︃
Ψ̃FΦ̃q 0

0 Ψ̃
⋆

FΦ̃
⋆

q

]︃−1 [︃
Ψ̃FΦ̃q Ψ̃FΦ̃

⋆

q�̃�
𝑁

Ψ̃
⋆

FΦ̃q�̃�
𝑁 Ψ̃

⋆

FΦ̃
⋆

q

]︃[︃
Q̃

Q̃⋆

]︃
. (3.62)

The reduced wave mode basis can also be used to express the vectors of forces/moments at
the ends of the periodic structure, as follows[︃

F
(1)
L

F
(𝑁)
R

]︃
=

[︃
−Φ̃F −Φ̃

⋆

F�̃�
𝑁

Φ̃F�̃�
𝑁 Φ̃

⋆

F

]︃[︃
Q̃

Q̃⋆

]︃
. (3.63)

Left multiplying this system of equations by[︃
−Ψ̃q 0

0 Ψ̃
⋆

q

]︃
, (3.64)

it yields [︃
−Ψ̃q 0

0 Ψ̃
⋆

q

]︃[︃
F

(1)
L

F
(𝑁)
R

]︃
=

[︃
Ψ̃qΦ̃F Ψ̃qΦ̃

⋆

F�̃�
𝑁

Ψ̃
⋆

qΦ̃F�̃�
𝑁 Ψ̃

⋆

qΦ̃
⋆

F

]︃[︃
Q̃

Q̃⋆

]︃
. (3.65)

Then, considering the pre-multiplication of this system of equations by⎡⎣(︁Ψ̃qΦ̃F

)︁−1

0

0
(︁
Ψ̃

⋆

qΦ̃
⋆

F

)︁−1

⎤⎦ , (3.66)

one gets⎡⎣−(︁Ψ̃qΦ̃F

)︁−1

Ψ̃q 0

0
(︁
Ψ̃

⋆

qΦ̃
⋆

F

)︁−1

Ψ̃
⋆

q

⎤⎦[︃F(1)
L

F
(𝑁)
R

]︃
=

[︃
I𝑛𝑘

−C̃f�̃�
𝑁

−C̃f�̃�
𝑁 I𝑛𝑘

]︃[︃
Q̃

Q̃⋆

]︃
, (3.67)
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where C̃f = −
(︁
Ψ̃qΦ̃F

)︁−1 (︁
Ψ̃qΦ̃

⋆

F

)︁
, which can be shown to be equivalent to

−
(︁
Ψ̃

⋆

qΦ̃
⋆

F

)︁−1 (︁
Ψ̃

⋆

qΦ̃F

)︁
. Here, the generalized vectors of forces/moments defined at the left

and right ends of the periodic structure are defined as[︃
F̃

(1)
L

F̃
(𝑁)
R

]︃
= P̃F

[︃
F

(1)
L

F
(𝑁)
R

]︃
, (3.68)

where

P̃F =

⎡⎣−(︁Ψ̃qΦ̃F

)︁−1

Ψ̃q 0

0
(︁
Ψ̃

⋆

qΦ̃
⋆

F

)︁−1

Ψ̃
⋆

q

⎤⎦ . (3.69)

Thus, the vector of wave amplitudes can be expressed in terms of these generalized vectors, as
follows [︃

Q̃

Q̃⋆

]︃
=

[︃
I𝑛𝑘

−C̃f�̃�
𝑁

−C̃f�̃�
𝑁 I𝑛𝑘

]︃−1 [︃
F̃

(1)
L

F̃
(𝑁)
R

]︃
(3.70)

Using Equations 3.62 and 3.70, a reduced-order receptance matrix can be formulated in terms
of generalized DOFs and it is given by

R̃ =

[︃
Ψ̃FΦ̃q 0

0 Ψ̃
⋆

FΦ̃
⋆

q

]︃−1 [︃
Ψ̃FΦ̃q Ψ̃FΦ̃

⋆

q�̃�
𝑁

Ψ̃
⋆

FΦ̃q�̃�
𝑁 Ψ̃

⋆

FΦ̃
⋆

q

]︃[︃
I𝑛𝑘

−C̃f�̃�
𝑁

−C̃f�̃�
𝑁 I𝑛𝑘

]︃−1

. (3.71)

The structural response in terms of the physical DOFs are recovered by means of Equations 3.58
and 3.68. A schematics of the numerical steps involved in the formulation of reduced-order WFE-
based superelement models is presented in Figure 3.4 .

3.4 The wave spectral finite element method

The (wave spectral finite element method) WSFEM provides a procedure for deriving nu-
merical spectral matrices of periodic structures. The method proposed here can be considered a
semi-analytical numerical method. This is because the displacement field is expressed by means of
a numerical wave basis obtained via the WFE method and the elastodynamic equations are used
to express the corresponding loads as a function of the displacement field as SEM does. The mo-
tivation behind the use of the WSFEM is the possibility of deriving spectral elements of periodic
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For 𝜔 = 𝜔ref
𝑖

Selection Criteria

Criterion 1: based on 𝑟𝑄𝑗
, 𝑟⋆𝑄𝑗

.

Criterion 2: based on |𝜇𝑗|.

For 𝜔 ∈ 𝛽𝑓𝑖

RO wave basis

Transformation matrices
T̃L = Ψu𝑘, T̃R = Φu𝑘

Reduced substructure
S̃(𝑘) = T̃LS

(𝑘)T̃R

Reduced WFE Eigen-
problem S̃Φ̃𝑗 = �̃�𝑗Φ̃𝑗

For 𝜔 ∈ 𝛽𝑓

RO Forced Response Problem

Reduced Receptance matrix R̃(𝑠)

Forced Problem R̃(𝑠)F(𝑠) = q(𝑠)

Figure 3.4: Flowchart illustrating the different numerical steps to build the ROM.

structures with geometric and material complexities in a straightforward way, as finite elements are
used to model the substructure. On the other hand, the method remains limited as it requires analyti-
cal expressions for the applied loads. The method was pioneered by Arruda and Nascimento (2008),
and it is clearly stated for an elementary rod and the Euler-Bernoulli beam in (Nascimento, 2009).
Here, the method is described in a general form and, then, extended to the case of a Timoshenko
beam.

For a given structure, a set of wave modes is selected among those obtained via the WFE
method. The choice of the wave modes is determined by the dynamic behavior being described.
For instance, if an elementary rod is modeled, only the longitudinal wave mode is kept. In contrast,
if a frame is considered, not only the longitudinal mode, but also bending and shear wave modes
should be kept. Considering the displacement/rotation component of the set of wave modes kept
Φ̃q = {𝜑𝑗}𝑗∈M𝑘

∪ Φ̃
⋆

q = {𝜑⋆
𝑗}𝑗∈M𝑘

— M𝑘 being the set of 𝑛𝑘 wave modes kept — as a wave basis,
the vector of nodal displacements/rotations at the left and at the right ends of a substructure within
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the full periodic structure may be expressed as in Equation (3.5a), which yields

q
(𝑘)
L = Φ̃q�̃�

𝑘−1Q̃ + Φ̃
⋆

q�̃�
𝑁+1−𝑘Q̃⋆ , q

(𝑘)
R = Φ̃q�̃�

𝑘Q̃ + Φ̃
⋆

q�̃�
𝑁−𝑘Q̃⋆ 𝑘 = 1, . . . ,𝑁. (3.72)

Notice that the wave shapes Φ̃q and Φ̃
⋆

q may be discrete functions of the cross-section coordinates
(𝑦 in a 2D case, 𝑦 and 𝑧 in a 3D case). Besides, the diagonal matrices of propagation constants �̃�
and �̃�⋆ are discrete functions of 𝑥. Thus, the vector of displacements/rotations can be written, in
general form, as

q(𝑥,𝑦,𝑧) = Φ̃q(𝑦,𝑧) diag
(︀
𝑒−i𝛽𝑗𝑥

)︀
𝑗∈M𝑘

Q̃ + Φ̃
⋆

q(𝑦,𝑧) diag
(︀
𝑒−i𝛽𝑗(𝑁Δ−𝑥)

)︀
𝑗∈M𝑘

Q̃⋆,

𝑥 ∈ [0,∆, 2∆, . . . , 𝑁∆],

𝑦 ∈ [0, ℎ, 2ℎ, . . . , 𝑁𝑦ℎ],

𝑧 ∈ [0, 𝑤, 2𝑤, . . . , 𝑁𝑧𝑤],

(3.73)

where ℎ and 𝑤 are, respectively, the element sizes along the 𝑦- and the 𝑧-axis, and the number of
finite elements used to the discretize the cross-section along these axes are𝑁𝑦 and𝑁𝑧, respectively.

Approximate structural theories are derived by means of variational methods, such as Hamil-
ton’s Principle. With the aid of these methods, natural boundary conditions (BC), which corre-
sponds, in this case, to Neumann BC, i.e., forces and moments expressions, are specified for classi-
cal and higher-order structural theories. Forces and moments are expressed in terms of derivatives
of displacements and rotations. They can be, in general form, expressed as

F(𝑥,𝑦,𝑧) = ±L(q(𝑥,𝑦,𝑧)) (3.74)

where F(𝑥,𝑦,𝑧) and q(𝑥,𝑦,𝑧) are, respectively, the vectors of forces/moments and displace-
ments/rotations evaluated at an arbitrary (𝑥,𝑦,𝑧) position along the structure, and L is used to
denote a general function which involves derivatives of q(𝑥,𝑦,𝑧). In fact, the vectors of displace-
ments/rotations and forces/moments (q and F, respectively) consist of 𝑁𝐷𝑂𝐹 DOFs each, which
may correspond to some of or all of the DOFs used to discretize the cross-section within a FE
model. Equation (3.74) can be used with Equation (3.73) to express the vectors of forces/moments,
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as follows

F(𝑥,𝑦,𝑧) = ±L
(︁
Φ̃q(𝑦,𝑧) diag

(︀
𝑒−i𝛽𝑗𝑥

)︀
𝑗∈M𝑘

Q̃ + Φ̃
⋆

q(𝑦,𝑧) diag
(︀
𝑒−i𝛽𝑗(𝑁Δ−𝑥)

)︀
𝑗∈M𝑘

Q̃⋆
)︁
,

𝑥 ∈ [0,∆, 2∆, . . . , 𝑁∆],

𝑦 ∈ [0, ℎ, 2ℎ, . . . , 𝑁𝑦ℎ],

𝑧 ∈ [0, 𝑤, 2𝑤, . . . , 𝑁𝑧𝑤],
(3.75)

which can be re-written as

F(𝑥,𝑦,𝑧) = ±Φ̃F(𝑦,𝑧) diag
(︀
𝑒−i𝛽𝑗𝑥

)︀
𝑗∈M𝑘

Q̃ + Φ̃
⋆

F(𝑦,𝑧) diag
(︀
𝑒−i𝛽𝑗(𝑁Δ−𝑥)

)︀
𝑗∈M𝑘

Q̃⋆,

𝑥 ∈ [0,∆, 2∆, . . . , 𝑁∆],

𝑦 ∈ [0, ℎ, 2ℎ, . . . , 𝑁𝑦ℎ],

𝑧 ∈ [0, 𝑤, 2𝑤, . . . , 𝑁𝑧𝑤],

(3.76)

where
Φ̃F = L

(︁
Φq(𝑦,𝑧) diag

(︀
𝑒−i𝛽𝑗𝑥

)︀
𝑗∈M𝑘

)︁
diag

(︀
𝑒i𝛽𝑗𝑥

)︀
𝑗∈M𝑘

and
Φ̃

⋆

F = L
(︁
Φ⋆

q(𝑦,𝑧) diag
(︀
𝑒−i𝛽𝑗(𝑁Δ−𝑥)

)︀
𝑗∈M𝑘

)︁
diag

(︀
𝑒i𝛽𝑗(𝑁Δ−𝑥)

)︀
𝑗∈M𝑘

.

As we are dealing with discrete functions, their derivatives are calculated by means of the finite
difference method. Using Equation (3.76), the vector of nodal forces/moments at the left and at the
right ends of a substructure within the full periodic structure can be expressed as

F
(𝑘)
L = −Φ̃F�̃�

𝑘−1Q̃− Φ̃
⋆

F�̃�
𝑁+1−𝑘Q̃⋆ , F

(𝑘)
R = Φ̃F�̃�

𝑘Q̃ + Φ̃
⋆

F�̃�
𝑁−𝑘Q̃⋆ 𝑘 = 1, . . . ,𝑁. (3.77)

Then, using Equations (3.72) and (3.77), respectively, to relate, in matrix form, the vector of dis-
placements/rotations and the vector of forces/moments evaluated at the ends of the full periodic
structure with the vector of wave amplitudes, one may write[︃

q
(1)
L

q
(𝑁)
R

]︃
(2𝑁𝐷𝑂𝐹×1)

=

[︃
Φ̃q Φ̃

⋆

q�̃�

Φ̃q�̃� Φ̃
⋆

q

]︃
(2𝑁𝐷𝑂𝐹×2𝑛𝑘)

[︃
Q̃

Q̃⋆

]︃
(2𝑛𝑘×1)

, (3.78a)[︃
F

(1)
L

F
(𝑁)
R

]︃
(2𝑁𝐷𝑂𝐹×1)

=

[︃
−Φ̃F −Φ̃

⋆

F�̃�

Φ̃F�̃� Φ̃
⋆

F

]︃
(2𝑁𝐷𝑂𝐹×2𝑛𝑘)

[︃
Q̃

Q̃⋆

]︃
(2𝑛𝑘×1)

. (3.78b)

Unless the full wave mode basis is kept, the matrices in the above equations are not square. Thus,
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they cannot be directly inverted. Let P̃(2𝑁𝐷𝑂𝐹×2𝑛𝑘) be a matrix of the form

P̃(2𝑁𝐷𝑂𝐹×2𝑛𝑘) =

[︃
P̄(𝑁𝐷𝑂𝐹×𝑛𝑘) 0(𝑁𝐷𝑂𝐹×𝑛𝑘)

0(𝑁𝐷𝑂𝐹×𝑛𝑘) P̄(𝑁𝐷𝑂𝐹×𝑛𝑘)

]︃
, (3.79)

which relates the simulated DOFs (i.e., those that come from the FE model discretization) with the
condensed ones (i.e., those used within the WSFEM) on the left and the right cross-sections, as
follows [︃

q
(1)
L

q
(𝑁)
R

]︃
= P̃

[︃
q̃
(1)
L

q̃
(𝑁)
R

]︃
, (3.80a)[︃

F̃
(1)
L

F̃
(𝑁)
R

]︃
= P̃𝐻

[︃
F

(1)
L

F
(𝑁)
R

]︃
. (3.80b)

By substituting Equation (3.80a) into Equation (3.78a), and left-multiplying the resultant equation
by P̃𝐻 , one gets

P̃𝐻P̃

[︃
q̃
(1)
L

q̃
(𝑁)
R

]︃
= P̃𝐻

[︃
Φ̃q Φ̃

⋆

q�̃�

Φ̃q�̃� Φ̃
⋆

q

]︃[︃
Q̃

Q̃⋆

]︃
. (3.81)

Now, the matrices multiplying the wave amplitudes on the right-hand side yield a square matrix,
which allows one to express the vector of wave amplitudes as[︃

Q̃

Q̃⋆

]︃
=

(︃
P̃𝐻

[︃
Φ̃q Φ̃

⋆

q�̃�

Φ̃q�̃� Φ̃
⋆

q

]︃)︃−1

P̃𝐻P̃

[︃
q̃
(1)
L

q̃
(𝑁)
R

]︃
. (3.82)

Substituting this into Equation (3.78b) and using Equation (3.80b), the following condensed dy-
namic equilibrium system of equations is derived for the full periodic structure[︃

F̃
(1)
L

F̃
(𝑁)
R

]︃
= P̃𝐻

[︃
−Φ̃F −Φ̃

⋆

F�̃�

Φ̃F�̃� Φ̃
⋆

F

]︃(︃
P̃𝐻

[︃
Φ̃q Φ̃

⋆

q�̃�

Φ̃q�̃� Φ̃
⋆

q

]︃)︃−1

P̃𝐻P̃

[︃
q̃
(1)
L

q̃
(𝑁)
R

]︃
. (3.83)

Using a simplified notation, this system of equations can be re-written as[︃
F̃

(1)
L

F̃
(𝑁)
R

]︃
= D̃

[︃
q̃
(1)
L

q̃
(𝑁)
R

]︃
, (3.84)
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where

D̃ = P̃𝐻

[︃
−Φ̃F −Φ̃

⋆

F�̃�

Φ̃F�̃� Φ̃
⋆

F

]︃(︃
P̃𝐻

[︃
Φ̃q Φ̃

⋆

q�̃�

Φ̃q�̃� Φ̃
⋆

q

]︃)︃−1

P̃𝐻P̃, (3.85)

i.e., the condensed numerical spectral matrix of size (2𝑛𝑘 × 2𝑛𝑘).

3.4.1 Case of a Timoshenko beam

In this subsection, the numerical spectral matrix of a Timoshenko beam is derived. The Tim-
oshenko beam theory considers the effects of rotational inertia and shear deformation in beam
bending, which are not taken into account by the classical beam theory (i.e., the Euler-Bernoulli
beam theory). For this reason, the limit of validity of the Timoshenko beam theory is extended in
comparison to that of the Euler-Bernoulli beam theory, which means that it is suitable to model
thicker beams and predict the behavior of a beam at higher frequencies.

The kinematics of a Timoshenko beam which experiences bending about the 𝑧-axis is de-
scribed by two independent variables: 𝑣(𝑥) and 𝜙𝑧(𝑥), respectively, the transverse displacement
and the rotation about the 𝑧-axis. They are considered constant across the cross-section, varying
only along the beam length. The rotation is expressed as

𝜙𝑧(𝑥) = − 𝜕𝑢

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

, (3.86)

where 𝑢 is the axial displacement along the 𝑥-direction. Besides, the displacements of a Timo-
shenko beam can be written as

𝑢(𝑥,𝑦) = −𝑦𝜙𝑧(𝑥), 𝑣(𝑥,𝑦) = 𝑣(𝑥). (3.87)

Using Hamilton’s Principle, it is possible to derive the equations of motion for a Timoshenko beam
(Doyle, 1997), which in the frequency domain are given by

𝜅𝐺𝐴
𝜕

𝜕𝑥

[︂
𝜕𝑣

𝜕𝑥
− 𝜙𝑧

]︂
= −𝜔2𝜌𝐴𝑣 − 𝑞𝑦, (3.88a)

𝐸𝐼𝑧
𝜕2𝜙𝑧

𝜕𝑥2
+ 𝜅𝐺𝐴

[︂
𝜕𝑣

𝜕𝑥
− 𝜙𝑧

]︂
= −𝜔2𝜌𝐼𝑧𝜙𝑧. (3.88b)
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where 𝜌 is the material density, 𝐸 is the Young’s modulus, 𝐺 is the shear modulus, 𝜅 is the shear
correction factor (𝜅 = 0.89 was adopted in this work for rectangular cross-sections), 𝐴 is the cross-
section area, 𝐼𝑧 is the second moment of area with respect to (w.r.t.) the 𝑧-axis, 𝑞𝑦 is the distributed
transverse load, and 𝜔 is the angular frequency. To these equations, the following natural boundary
conditions are associated

𝑓𝑦 = 𝑉 = 𝜅𝐺𝐴

(︂
𝜕𝑣

𝜕𝑥
− 𝜙𝑧

)︂
, 𝑚𝑧 = 𝑀 = 𝐸𝐼𝑧

𝜕𝜙𝑧

𝜕𝑥
, (3.89)

where 𝑓𝑦 is the transverse force and 𝑚𝑧 is the bending moment about the 𝑧-axis. In order to apply
the WSFEM to the case of a Timoshenko beam, a substructure of arbitrary length ∆ is modeled
with finite elements — either beam or solid finite elements can be used. Then, the WFE method
is used to obtain the wave mode basis associated to the substructure modeled. This allows one to
select propagation constants and wave mode shapes associated to bending and shear wave modes
with respect to the 𝑧-axis — thus, 𝑛𝑘 = 2 in this case —, which are used to express the nodal
displacement vector, as follows[︃

u(𝑥,𝑦,𝑧)

v(𝑥,𝑦,𝑧)

]︃
=

[︃
𝜑𝑏

qx
(𝑦,𝑧) 𝜑𝑠

qx
(𝑦,𝑧)

𝜑𝑏
qy

(𝑦,𝑧) 𝜑𝑠
qy

(𝑦,𝑧)

]︃[︃
𝑒−i𝛽𝑏𝑥 0

0 𝑒−i𝛽𝑠𝑥

]︃
Q̃+[︃

𝜑⋆𝑏
qx

(𝑦,𝑧) 𝜑⋆𝑠
qx

(𝑦,𝑧)

𝜑⋆𝑏
qy

(𝑦,𝑧) 𝜑⋆𝑠
qy

(𝑦,𝑧)

]︃[︃
𝑒−i𝛽𝑏(𝑁Δ−𝑥) 0

0 𝑒−i𝛽𝑠(𝑁Δ−𝑥)

]︃
Q̃⋆

,

𝑥 ∈ [0,∆, 2∆, . . . , 𝑁∆],

𝑦 ∈ [0, ℎ, 2ℎ, . . . , 𝑁𝑦ℎ],

𝑧 ∈ [0, 𝑤, 2𝑤, . . . , 𝑁𝑧𝑤],

(3.90)

where the super/subscripts 𝑏 and 𝑠 are used to denote bending and shear wave modes, respectively.
Using Equations (3.86) and (3.90), the rotation can also be expressed by means of the selected
numerical wave modes, as follows

𝜙𝑧(𝑥,𝑦,𝑧) =
[︁
𝜑𝑏

𝜙𝑧
𝜑𝑠

𝜙𝑧

]︁ [︃𝑒−i𝛽𝑏𝑥 0

0 𝑒−i𝛽𝑠𝑥

]︃
Q̃+

[︁
𝜑⋆𝑏

𝜙𝑧
𝜑⋆𝑠

𝜙𝑧

]︁ [︃𝑒−i𝛽𝑏(𝑁Δ−𝑥) 0

0 𝑒−i𝛽𝑠(𝑁Δ−𝑥)

]︃
Q̃⋆,

𝑥 ∈ [0,∆, 2∆, . . . , 𝑁∆],

𝑦 ∈ [0, ℎ, 2ℎ, . . . , 𝑁𝑦ℎ],

𝑧 ∈ [0, 𝑤, 2𝑤, . . . , 𝑁𝑧𝑤],

(3.91)

81



where𝜑𝑏
𝜙z

= −𝜕𝜑𝑏
qx

𝜕𝑦
,𝜑𝑠

𝜙z
= −𝜕𝜑𝑠

qx

𝜕𝑦
,𝜑⋆𝑏

𝜙z
= −𝜕𝜑⋆𝑏

qx

𝜕𝑦
and𝜑⋆𝑠

𝜙z
= −𝜕𝜑⋆𝑠

qx

𝜕𝑦
. The expression above requires

the differentiation of the wave mode shapes with respect to 𝑦, which is accomplished by making
use of a finite difference scheme.

Alternatively, assuming solutions of the form 𝑣(𝑥) = 𝑣(𝛽)𝑒−i𝛽𝑥 and 𝜙𝑧(𝑥) = 𝜙𝑧(𝛽)𝑒−i𝛽𝑥 for
a Timoshenko beam problem and, if transverse distributed loads are not applied, Equation (3.88a)
may be expressed as

𝜅𝐺𝐴 (−i𝛽)2 𝑣𝑒−i𝛽𝑥 − (−i𝛽)𝜙𝑧𝑒
−i𝛽𝑥 = −𝜔2𝜌𝐴𝑣𝑒−i𝛽𝑥, (3.92)

which yields

𝜙𝑧 =

[︂
𝜅𝐺𝐴 (−i𝛽) +

𝜔2𝜌𝐴

−i𝛽

]︂
𝑣, (3.93)

or, in terms of wave modes,

𝜑𝑏
𝜙z

= 𝜑𝑏
qy

(︁
𝜅𝐺𝐴 (−i𝛽𝑏) + 𝜔2𝜌𝐴

−i𝛽𝑏

)︁
,

𝜑𝑠
𝜙z

= 𝜑𝑠
qy

(︁
𝜅𝐺𝐴 (−i𝛽𝑠) + 𝜔2𝜌𝐴

−i𝛽𝑠

)︁
,

𝜑⋆𝑏
𝜙z

= 𝜑⋆𝑏
qy

(︁
𝜅𝐺𝐴 (i𝛽𝑏) + 𝜔2𝜌𝐴

i𝛽𝑏

)︁
,

𝜑⋆𝑠
𝜙z

= 𝜑⋆𝑠
qy

(︁
𝜅𝐺𝐴 (i𝛽𝑠) + 𝜔2𝜌𝐴

i𝛽𝑠

)︁
.

(3.94)

The advantage here is that discrete differentiation is not required.

Using the transverse displacement and the rotation about the 𝑧-axis to write the displacement
field for a Timoshenko beam, yields[︃

v(𝑥,𝑦,𝑧)

𝜙(𝑥,𝑦,𝑧)

]︃
=

[︃
𝜑𝑏

qy
𝜑𝑠

qy

𝜑𝑏
𝜙z

𝜑𝑠
𝜙z

]︃[︃
𝑒−i𝛽𝑏𝑥 0

0 𝑒−i𝛽𝑠𝑥

]︃
Q̃+[︃

𝜑⋆𝑏
qy

𝜑⋆𝑠
qy

𝜑⋆𝑏
𝜙z

𝜑⋆𝑠
𝜙z

]︃[︃
𝑒−i𝛽𝑏(𝑁Δ−𝑥) 0

0 𝑒−i𝛽𝑠(𝑁Δ−𝑥)

]︃
Q̃⋆

,

𝑥 ∈ [0,∆, 2∆, . . . , 𝑁∆],

𝑦 ∈ [0, ℎ, 2ℎ, . . . , 𝑁𝑦ℎ],

𝑧 ∈ [0, 𝑤, 2𝑤, . . . , 𝑁𝑧𝑤].

(3.95)

The vectors of displacements/rotations evaluated at the left and at the right ends of the beam may
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be expressed as [︃
q
(1)
L

q
(𝑁)
R

]︃
=

⎡⎢⎢⎢⎢⎣
v
(1)
L

𝜙
(1)
L

v
(𝑁)
R

𝜙
(𝑁)
R

⎤⎥⎥⎥⎥⎦ =

[︃
Φ̃qT Φ̃

⋆

qT�̃�T

Φ̃qT�̃�T Φ̃
⋆

qT

]︃[︃
Q̃

Q̃⋆

]︃
, (3.96)

where

Φ̃qT =

[︃
𝜑𝑏

qy
𝜑𝑠

qy

𝜑𝑏
𝜙z

𝜑𝑠
𝜙z

]︃
, Φ̃

⋆

qT =

[︃
𝜑⋆𝑏

qy
𝜑⋆𝑠

qy

𝜑⋆𝑏
𝜙z

𝜑⋆𝑠
𝜙z

]︃
and

�̃�T =

[︃
𝑒−i𝛽𝑏𝑁Δ 0

0 𝑒−i𝛽𝑠𝑁Δ

]︃
.

As discussed before, in the case of a Timoshenko beam, the transverse displacement and the rotation
are considered constant across the cross-section, thus the sub-matrix P̄T of P̃T (Equation (3.79)) is
expressed as

P̄T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
1 0
...

...
1 0

⎤⎥⎥⎦
(𝑁𝐷𝑂𝐹/2×2)⎡⎢⎢⎣

0 1
...

...
0 1

⎤⎥⎥⎦
(𝑁𝐷𝑂𝐹/2×2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.97)

where𝑁𝐷𝑂𝐹 is the number of DOFs corresponding to transverse displacements and rotations about
the 𝑧-axis across a cross-section of the FE model.

The expressions for the transverse force and bending moment applied to the beam can also be
written as function of wave modes. Substituting Equation (3.95) in Equation (3.89), the vectors of
nodal loads applied to the Timoshenko beam at the left and at the right cross-sections are expressed
as [︃

F
(1)
L

F
(𝑁)
R

]︃
=

⎡⎢⎢⎢⎢⎣
V𝑦

(1)
L

M𝑧
(1)
L

V𝑦
(𝑁)
R

M𝑧
(𝑁)
R

⎤⎥⎥⎥⎥⎦ =

[︃
−Φ̃FT −Φ̃

⋆

FT�̃�T

Φ̃FT�̃�T Φ̃
⋆

FT

]︃[︃
Q̃

Q̃⋆

]︃
, (3.98)

where

Φ̃FT =

[︃
𝜅𝐺𝐴

[︁
−i𝛽𝑏𝜑

𝑏
qy
− 𝜑𝑏

𝜙z

]︁
𝜅𝐺𝐴

[︁
−i𝛽𝑠𝜑

𝑠
qy
− 𝜑𝑠

𝜙z

]︁
−i𝛽𝑏𝐸𝐼𝑧𝜑

𝑏
𝜙z

−i𝛽𝑠𝐸𝐼𝑧𝜑
𝑠
𝜙z

]︃
,
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Φ̃
⋆

FT =

[︃
𝜅𝐺𝐴

[︁
i𝛽𝑏𝜑

⋆𝑏
qy
− 𝜑⋆𝑏

𝜙z

]︁
𝜅𝐺𝐴

[︁
i𝛽𝑠𝜑

⋆𝑠
qy
− 𝜑⋆𝑠

𝜙z

]︁
i𝛽𝑏𝐸𝐼𝑧𝜑

⋆𝑏
𝜙z

i𝛽𝑠𝐸𝐼𝑧𝜑
⋆𝑠
𝜙z

]︃
,

𝐴 = 2𝐴/𝑁𝐷𝑂𝐹 and 𝐼𝑧 = 2𝐼𝑧/𝑁𝐷𝑂𝐹 are, respectively, the cross-section area and the second
moment of area corresponding to a node assuming a uniform average over the number of nodes.
The condensed vectors of nodal loads at the left and at the right ends of the beam can be expressed in
terms of the original DOFs by means of Equation (3.80b). Besides, using the procedure described
in Equations (3.80)-(3.85), the condensed numerical spectral matrix for a Timoshenko beam is
obtained.

An alternative procedure for deriving the condensed numerical spectral matrix of a Timo-
shenko beam consists in writing the vector of condensed displacements/rotations in terms of the
original vector of displacements/rotations as[︃

q̃
(1)
L

q̃
(𝑁)
R

]︃
=
(︁
P̃𝐻

T P̃T

)︁−1

P̃𝐻
T

[︃
q
(1)
L

q
(𝑁)
R

]︃
, (3.99)

which yields [︃
q̃
(1)
L

q̃
(𝑁)
R

]︃
=

⎡⎢⎢⎢⎢⎣
𝑣
(1)
L

𝜙
(1)
L

𝑣
(𝑁)
R

𝜙
(𝑁)
R

⎤⎥⎥⎥⎥⎦ =

[︃
Φ̃qT Φ̃

⋆

qT�̃�T

Φ̃qT�̃�T Φ̃
⋆

qT

]︃[︃
Q̃

Q̃⋆

]︃
, (3.100)

where

Φ̃qT =
2

𝑁𝐷𝑂𝐹

[︃∑︀
𝑖𝜑

𝑏
qy𝑖

∑︀
𝑖𝜑

𝑠
qy𝑖∑︀

𝑖𝜑
𝑏
𝜙z𝑖

∑︀
𝑖𝜑

𝑠
𝜙z𝑖

]︃
and

Φ̃
⋆

qT =
2

𝑁𝐷𝑂𝐹

[︃∑︀
𝑖𝜑

⋆𝑏
qy𝑖

∑︀
𝑖𝜑

⋆𝑠
qy𝑖∑︀

𝑖𝜑
⋆𝑏
𝜙z𝑖

∑︀
𝑖𝜑

⋆𝑠
𝜙z𝑖

]︃
.

Then, using Equation (3.89) with Equation (3.100) to write the condensed vector of applied loads
evaluated at the ends of the beam, yields

[︃
F̃

(1)
L

F̃
(𝑁)
R

]︃
=

⎡⎢⎢⎢⎢⎣
𝑉𝑦

(1)
L

𝑀𝑧
(1)
L

𝑉𝑦
(𝑁)
R

𝑀𝑧
(𝑁)
R

⎤⎥⎥⎥⎥⎦ =

[︃
−Φ̃FT −Φ̃

⋆

FT�̃�T

Φ̃FT�̃�T Φ̃
⋆

FT

]︃[︃
Q̃

Q̃⋆

]︃
, (3.101)
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where

Φ̃FT =
2

𝑁𝐷𝑂𝐹

[︃
𝜅𝐺𝐴

[︁
−i𝛽𝑏

∑︀
𝑖𝜑

𝑏
qy𝑖 −

∑︀
𝑖𝜑

𝑏
𝜙z𝑖

]︁
𝜅𝐺𝐴

[︁
−i𝛽𝑠

∑︀
𝑖𝜑

𝑠
qy𝑖 −

∑︀
𝑖𝜑

𝑠
𝜙z𝑖

]︁
−i𝛽𝑏𝐸𝐼𝑧

∑︀
𝑖𝜑

𝑏
𝜙z𝑖 −i𝛽𝑠𝐸𝐼𝑧

∑︀
𝑖𝜑

𝑠
𝜙z𝑖

]︃
,

Φ̃
⋆

FT =
2

𝑁𝐷𝑂𝐹

[︃
𝜅𝐺𝐴

[︁
i𝛽𝑏
∑︀

𝑖𝜑
⋆𝑏
qy𝑖 −

∑︀
𝑖𝜑

⋆𝑏
𝜙z𝑖

]︁
𝜅𝐺𝐴

[︁
i𝛽𝑠

∑︀
𝑖𝜑

⋆𝑠
qy𝑖 −

∑︀
𝑖𝜑

⋆𝑠
𝜙z𝑖

]︁
i𝛽𝑏𝐸𝐼𝑧

∑︀
𝑖𝜑

⋆𝑏
𝜙z𝑖 i𝛽𝑠𝐸𝐼𝑧

∑︀
𝑖𝜑

⋆𝑠
𝜙z𝑖

]︃
.

3.5 Numerical Results

In this section, the WFE-based superelement formulations presented in this chapter are used
to compute the harmonic response of periodic structures. The following test cases are considered:
(1) a 3D beam-like structure (Figure 3.5(a)) and (2) a 3D aircraft fuselage-like structure (Figure
3.5(b)).

(a) (b)

Figure 3.5: Test cases considered in this chapter: (a) 3D beam-like structure, and (b) 3D aircraft
fuselage-like structure.

For each test case, the frequency response functions (FRFs) provided by the WFE-based
superelement formulations are compared with a reference FE solution. Regarding the WFE mod-
elings, ANSYS® is used as a means to assess the mass and stiffness matrices of substructures.
Post-treatment of those matrices are achieved using MATLAB®. This software is used to compute
the WFE wave modes and the forced responses of the structures into consideration. Moreover, the
performances of the WFE-based formulations in terms of computational time savings are assessed
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by means of the MATLAB®’s built-in tic/toc functions. The reference FE solutions are provided by
ANSYS®, which builds the global dynamic stiffness matrices for the complete periodic structure
and solves the harmonic problems using the direct method. All the numerical simulations are per-
formed in double precision using a 64-bit CPU equipped with an Intel® Xeon® E5345 2.33 GHz
processor and 32 GB of RAM memory.

3.5.1 Forced response analysis of a beam-like structure via WFE-based DSM and
RM

In this section, the harmonic forced response of a straight clamped-free 3D beam-like struc-
ture is addressed (see Figure 3.5(a)). The free end is subjected to either axial or transverse loads, as
shown in Figure 3.6. Here, the homogeneous beam-like structure has the following characteristics:
length 𝐿 = 0.011 m, density 𝜌 = 7800 Kg/m3, Young’s modulus 𝐸 = 210 GPa, loss factor 𝜂 =

0.01, Poisson’s ratio 𝜈 = 0.3 and a rectangular cross-section of size ℎ𝑧 = 0.004 m×ℎ𝑦 = 0.003 m.
The full structure is composed of 100 identical substructures along the 𝑥-axis. Besides, solid linear
hexahedral finite elements, with eight nodes and three DOFs per node — i.e., translations along
the 𝑥, 𝑦 and 𝑧 axes —, the SOLID45 elements from ANSYS®, are used to model the substructures.
Each substructure (Figure 2.7(b)) is of length ∆ = 0.111 mm and meshed by means of 6 × 6 brick
finite elements, which yields 𝑛 = 147 DOFs over its left/right boundary and no internal DOFs. As a
result, the corresponding FE model (Figure 3.5(a)) of the global periodic structure contains 14,847

DOFs.

(a) (b) (c)

Figure 3.6: Schematics of the clamped-free 3D beam-like structure subjected to: (a) uniformly
distributed transverse forces over the left surface boundary, (b) axial forces over a line on the left
boundary, (c) a punctual transverse force applied at an edge node on the left boundary.

The forced responses of the global structure under either axial or transverse loads are ana-
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lyzed over a frequency band 𝛽𝑓 = [200 Hz—2 MHz], which involves discrete frequencies equally
spaced steps of 2000 Hz.

Within the WFE framework, 147 right-going and 147 left-going wave modes are obtained
through the WFE eigenvalue problem stated in Equation (2.49). Thus, regarding the WFE-based
superelement approaches which makes use of the full wave basis, the dimension of the problem is
2𝑛, i.e., 294, which corresponds to the number of boundary DOFs of the periodic structure. Besides,
one may use the CB method to model the periodic structure. In this case, if all fixed-interface
modes whose eigenfrequencies are below 2 × 𝜔𝑚𝑎𝑥 are considered — i.e., the rule of thumb —,
1,882 fixed-interface modes are kept, which means that the dimension of the model is 2,176, which
corresponds to the sum of static and fixed-interface modes. On the other hand, the dimension of the
reference FE model is 14,847. The WFE-based solutions are compared with the results issued from
the conventional FE method in terms of accuracy. The relative error of the WFE-based solutions,
averaged over several sub-frequency bands of same width {𝛽𝑖

𝑓}𝑖, is expressed as

𝜖𝛽𝑖
𝑓

=
< ‖qRMS‖2 − ‖qref

RMS‖2 >𝛽𝑖
𝑓

< ‖qref
RMS‖2 >𝛽𝑖

𝑓

, (3.102)

where qRMS denote the the root mean square (RMS) value of the total velocity at the left excited
boundary, ref is used to denote the reference solution, while the notation < . >𝛽𝑖

denotes the
quadratic mean over a sub-frequency band 𝛽𝑖

𝑓 . Here, twenty sub-frequency bands {𝛽𝑖
𝑓}𝑖 are consid-

ered which cover the whole frequency band 𝛽𝑓 (i.e., 𝛽𝑓 = ∪𝑖𝛽
𝑖
𝑓 ). The performance of WFE-based

approaches in terms of elapsed time is compared to that of CB method.

In the case the beam is subjected to uniformly distributed transverse forces (Figure 3.6(a)),
the WFE solutions which make use of the full wave mode basis — i.e., DSM and RM approaches
(Sections 3.2.2 and 3.2.3, respectively) — are compared to solutions issued from the DSM approach
proposed by Duhamel et al. (2006) and the conventional FE method in Figure 3.7(a). The responses
issued by the CB method, which makes use of 1,882 fixed-interface modes and 294 static modes
— which correspond to the number of DOFs over the left and right ends of the structure —, and
Guyan reduction (or static reduction), which reduces the size of the model to 9,898 DOFs — i.e.,
it considers only the static modes related to axial (𝑥) and the transverse (𝑦) displacement DOFs of
the whole periodic structure — are compared to the conventional FE solution in Figure 3.7(b).

The relative errors of the WFE-based, CB and Guyan solutions are displayed in Figure 3.7(c).
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(c) (d)

Figure 3.7: (a,b) RMS total velocity at the left boundary of the beam-like structure subjected to
uniformly distributed transverse forces, (c) relative error, Equation (3.102), (d) zoom over forced-
response solutions within [1.5 — 1.9] MHz: (—–) FE solution; ( x ) CB method which makes use
of 1,882 fixed-interface modes; ( + ) Guyan reduction which makes use of 9,898 static modes; (- -
-) WFE-based DSM approach; ( ∘ ) WFE-based RM approach; ( ∙ ) WFE-based Duhamel’s DSM
approach.

As it can be seen, all WFE-based approaches are completely in agreement and show extremely
low error with respect to the conventional FE solution — i.e., of order 10−4%—, which validates
the proposed DSM and RM approaches and confirms that WFE-based solutions which make use
of the full wave mode basis can be considered as accurate as the conventional FE solution for
equivalent mesh density. The CB solution provides a good approximation to the reference solution,
but it produce considerably higher errors than WFE-based approaches. The worst solution is the
one provided by Guyan reduction, which is one of the most popular reduction techniques. This
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approach fails in simulating the structure dynamics even if a large number of DOFs are retained —
9,898 over 14,847 DOFs, i.e., 67%, are considered — because it neglects the inertia effect of the
degrees of freedom that are neglected. The accuracy of the different approaches is highlighted by
making a zoom over a narrow band, as in Figure 3.7(d).
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Figure 3.8: Elapsed times for the forced response computation of the beam-like structure subjected
to uniformly distributed transverse forces, by means of: (magenta color) CB method which makes
use of 1,882 fixed-interface modes; (brown color) Guyan reduction which makes use of 9,898 static
modes; (blue color) WFE-based DSM formulation; (red color) WFE-based RM formulation; and
(green color) WFE-based Duhamel’s DSM formulation.

In terms of elapsed time, WFE-based superelement approaches (DSM, RM and Duhamel’s
DSM) perform better than CB method and Guyan reduction, as shown in Figure 3.8. Table 3.1
summarizes the total number of DOFs and elapsed times involved in the various solutions.

Table 3.1: Total number of DOFs, maximum errors, and elapsed times involved by the proposed
approaches regarding the beam-like structure subjected to a uniformly distributed transverse load.

Approach Total number of DOFs Maximum error Elapsed time Reduction
FE 14,847 ref — —

Guyan reduction 9,898 5.1 104 % 68,814 s ref

CB 2,176 8.7 % 22,772 s 67 %
DSM 294 0.0005 % 1,619 s 98 %
RM 294 0.0005 % 1,622 s 98 %

Duhamel’s DSM 294 0.0005 % 1,639 s 98 %

The WFE-based DSM and RM approaches have also been used to compute the forced re-
sponse in the case the beam is subjected to axial forces over a line (Figure 3.6(b)). The results are
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shown in Figure 3.9. As in the first load case, all WFE-based approaches are in agreement and
provide very low level of error.
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Figure 3.9: (a,b) RMS total velocity at the left boundary of the 3D beam-like structure subjected
to uniformly distributed transverse forces, (c) relative error, Equation (3.102), (d) zoom of forced-
response solutions over [1.5 — 1.9] MHz: (—–) FE solution; ( x ) CB method which makes use
of 1,882 fixed-interface modes; (- - -) WFE-based DSM approach; ( ∘ ) WFE-based RM approach;
( ∙ ) WFE-based Duhamel’s DSM approach.

The last load condition considered is the beam subjected to a punctual vertical load (Figure
3.6(c)). Although the level of error relative to the conventional FE solution has increased compared
to the WFE-based solutions for the previous load cases, the error is still negligible (the mean error
value is inferior to 0.001%).
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Figure 3.10: (a) RMS total velocity at the left boundary of the 3D beam-like structure subjected to
axial forces over a line and (b) relative error, Equation (3.102): (—–) FE solution; (- - -) WFE-based
DSM approach; ( ∘ ) WFE-based RM approach; ( ∙ ) WFE-based Duhamel’s DSM approach.

The WFE-based approaches which makes use of the full wave basis are also investigated
in terms of conditioning and elapsed time. The WFE-based DSM, RM and Duhamel’s DSM ap-
proaches involve the inversion of the following sparse matrices[︃

I −Cc𝜇
𝑁

−Cc𝜇
𝑁 I

]︃
, (3.103)

[︃
I −Cf𝜇

𝑁

−Cf𝜇
𝑁 I

]︃
(3.104)

and [︃
Φ⋆−1

q 𝜇𝑁 −Φ⋆
q I

I Φ−1
q 𝜇

𝑁 −Φq

]︃
, (3.105)

respectively. For the beam-like structure, the condition numbers of these matrices within the fre-
quency range 𝛽𝑓 are shown in Figure 3.11. Notice that all the three approaches are well-conditioned.

In Figure 3.12, the elapsed times required by each approach to compute the forced response
of the beam-like structure subjected to either an axial line force or a punctual transverse force are
compared.
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Figure 3.11: Condition number of the sparse matrix required to be inverted in WFE-based ap-
proaches: (—–) WFE-based DSM formulation, (- - -) WFE-based RM formulation and ( ∙ ) WFE-
based Duhamel’s DSM formulation.
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Figure 3.12: Elapsed times for the forced response computation of the beam-like structure subjected
to: (a) axial forces over a line, (b) punctual transverse force , by means of WFE-based superelement
formulations: (magenta color) CB method which makes use of 1,882 fixed-interface modes, (blue
color) WFE-based DSM formulation, (red color) WFE-based RM formulation and (green color)
WFE-based Duhamel’s DSM formulation.

In the following, reduced-order WFE-based superelement models of a clamped-free beam-
like structure are investigated. In this section, the alternative scheme proposed in Appendix B is
used to formulate the reduced WFE-based eigenproblem. To begin with, it is confirmed in Figure
3.13 that the number of propagating waves tends to increase as the frequency rises. In the case the
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selection criterion 1 alone is used for the selection of WFE wave modes, it seems that the number of
waves which effectively contribute to the structure forced response may not vary with frequency if
a sufficient low threshold value (𝜖𝑄) is chosen. This is shown, for instance, for the case of uniformly
distributed transverse forces (Figure 3.6(a)) in Figure 3.14 and it occurs because there is a minimum
set of highly contributing wave modes to the structure forced response. This issue is highlighted in
Figure 3.15(a), where the maximum value among the wave amplitude ratios 𝑟𝑄 and 𝑟⋆𝑄, evaluated
at the maximum frequency, is plotted for each right-going wave mode (147 in total).
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Figure 3.13: Average number of propagating wave modes for 20 sub-bands of frequencies within
𝛽𝑓 .
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Figure 3.14: Number of kept wave modes (𝑛𝑄) using the selection criterion 1 (Section 3.3.1) for
ten discrete frequencies within 𝛽𝑓 and six values for 𝜖𝑄 for the 3D beam-like structure subjected to
a uniformly distributed transverse load. Threshold values: (·�·) 10−6, (· ∘ ·) 10−5, (· ∙ ·) 10−4, (·x·)
10−3, (· + ·) 10−2 and (· * ·) 10−1.

Besides, the forced response and the associated error for the beam-like structure subjected to
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Figure 3.15: At the maximum frequency, value of max(𝑟𝑄, 𝑟
⋆
𝑄) for each wave mode for three load

cases: (a) uniformly distributed transverse force, (b) axial force over a line, and (c) punctual trans-
verse force applied to an edge node.
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Figure 3.16: Clamped-free 3D beam-like structure subjected to uniformly distributed transverse
forces: (a) RMS total velocity at the left boundary and (b) relative error (Equation (3.102)) com-
puted by means of the reduced-order RM for six values for 𝜖𝑄 (·�·) 10−6, (· ∘ ·) 10−5, (· ∙ ·) 10−4,
(·x·) 10−3, (· + ·) 10−2 and (· * ·) 10−1, and wave modes selected at the maximum frequency within
𝛽𝑓 .

a uniformly distributed transverse load are shown in Figure 3.16 for various reduced sets of wave
modes — which were chosen by fixing different threshold values (𝜖𝑄) at the maximum frequency
within 𝛽𝑓 . Notice that if threshold values inferior to 10−4 are chosen — i.e., 37 wave modes com-
puted at the maximum frequency are used to build the reduced matrix —, very accurate responses
are obtained, the errors being comparable to that obtained using WFE-based approaches which
make use of the full wave basis. The RMS total velocity of the structure at the left boundary com-
puted by means of the reduced-order RM formulation (Section 3.3.3), which makes use of 37 wave
modes is compared to WFE-based RM formulation which considers the full wave basis in Figure
3.16(a). The associated relative error with respect to the conventional FE solution is presented in
Figure 3.16(b). Notice that the proposed reduced-order model seems to be as accurate as the WFE-
based RM approach which makes use of the full wave basis. The effect of considering a reduced-
order model in elapsed time is shown in Figure 3.17(a). As expected, the time increases with the
number of kept waves modes. However, if one compares the elapsed time expended by the ROM
which makes use of 37 wave modes, i.e., the most conservative solution among the ROMs, with
the time expended by WFE-based approaches which makes use of the full wave basis, a reduction
of 95.3 % is achieved. Compared to the CB approach, the time reduction achieved with the ROM
is of 99.7%. The accuracy and computational speed of the ROM clearly highlight the importance
of the proposed reduced order formulation; they are summarized and compared to conventional FE
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method, WFE-based RM and CB method in Table 3.2.
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Figure 3.17: Elapsed times involved in reduced-order (RO) RM analysis of the 3D beam-like struc-
ture subjected to uniformly distributed transverse forces, (a) for various threshold values (𝜖𝑄): (blue
color) 10−6, (red color) 10−5, (green color) 10−4, (magenta color) 10−3, (cyan color) 10−2 and (yel-
low color) 10−1; (b) for 𝜖𝑄 = 10−6 (blue color) — i.e., 𝑛𝑄 = 37 wave modes — compared to
CB method (magenta color) and the WFE-based RM (red color) which makes use of the full wave
basis.

Table 3.2: Total number of DOFs, maximum errors, and elapsed times involved by the proposed
approaches regarding the beam-like structure subjected to a uniformly distributed transverse load.

Approach Total number of DOFs Maximum error Elapsed time Time reduction
FE 14,847 ref — —
CB 2,176 8.7 % 22,772 s ref

RM 294 0.0005 % 1,622 s 92.9 %
RO RM 74 0.0005 % 76 s 99.7 %

A reduced-order model has also been built for the case axial forces are applied to a line over
the left boundary (Figure 3.6(b)). The effect of the threshold value (𝜖𝑄) and the frequency on the
number of selected wave modes is shown in Figure 3.18. Thus, considering 𝜖𝑄 = 10−6, 77 over
147 wave modes are kept. The RMS value of the nodal total velocity over the left boundary and
the associated error with respect to the conventional FE solution are shown in Figure 3.19. As in
the previous load case, the accuracy of the proposed reduced-order model is comparable to that
of the WFE-based approaches which make use of the full wave basis. Regarding elapsed time,
the reduction in time achieved with the reduced model is of 82.4 % with respect to WFE-based
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approaches and 98.8 % with respect to the CB method. The accuracy, model size and computational
time involved in the forced response computations for this load case are summarized in Table 3.3.
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Figure 3.18: Clamped-free 3D beam-like structure subjected to axial forces over a line on the left
boundary: (a) number of kept wave modes by means of Selection Criterion 1 (Section 3.3.1) for
10 sub-bands of frequencies within 𝛽𝑓 and six values for 𝜖𝑄 , (b) relative error of reduced-order
solutions for six values for 𝜖𝑄 and wave modes selected at the maximum frequency, (c) value of
max(𝑟𝑄, 𝑟

⋆
𝑄) for each right-going wave mode at the maximum frequency. Threshold values: (·�·)

10−6, (· ∘ ·) 10−5, (· ∙ ·) 10−4, (·x·) 10−3, (· + ·) 10−2 and (· * ·) 10−1.
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Figure 3.19: (a) FRF of the the clamped-free 3D beam-like structure subjected to axial forces over
a line on the left boundary and (b) relative error, Equation (3.102): (—–) conventional FE solution;
( ∘ ) WFE-based RM approach; (- - -) WFE-based reduced order RM approach which makes use
of 77 over 147 wave modes.
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Figure 3.20: Elapsed times involved in the proposed approaches regarding the 3D beam-like struc-
ture subjected to axial forces over a line on the left boundary: (magenta) CB method that uses
1,882 fixed-interface modes; (red) WFE-based RM approach; (blue) WFE-based reduced-order
(RO) model which considers 77 over 147 wave modes.

Table 3.3: Total number of DOFs, maximum errors, and elapsed times involved by the proposed
approaches regarding the beam-like structure subjected to axial forces over a line.

Approach Total number of DOFs Maximum error Elapsed time Time reduction
FE 14,847 ref — —
CB 2,176 8.7 % 22,852 s ref

RM 294 0.0005 % 1,621 s 92.9 %
RO RM 74 0.0005 % 285 s 98.8 %

It is worth pointing out that the number of wave modes that must be kept is related to the
boundary condition. Indeed, Figure 3.15 shows that the number of kept wave modes increases as
the degree of homogeneity of the load condition decreases — i.e., a non-homogeneous surface
load must require a higher number of wave modes than a homogeneous one, or, in other words,
the smoother the surface load distribution, the smaller the number of wave modes needed to form
a basis to approximate it. Further evidence of this behavior is provided by evaluating the number
of wave modes required to model a beam-like structure under a punctual transverse force (Figure
3.6(c)). In Figure 3.21, the effect of the threshold value (𝜖𝑄) and the frequency on the dimension of
the reduced basis used to model the clamped-free beam under punctual load is shown. Notice that
for very accurate solutions, all the wave modes (i.e., 147) should be kept.
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Figure 3.21: Clamped-free 3D beam-like structure subjected to a punctual transverse force at an
edge node on the left boundary: (a) number of kept wave modes using the Selection Criterion 1
(Section 3.3.1) for 10 sub-bands of frequencies within 𝛽𝑓 and 6 values for 𝜖𝑄 , (b) relative error of
reduced-order solutions for six values for 𝜖𝑄 and wave modes selected at the maximum frequency.
Threshold values: (·�·) 10−6, (· ∘ ·) 10−5, (· ∙ ·) 10−4, (·x·) 10−3, (· + ·) 10−2 and (· * ·) 10−1.

3.5.2 Forced response analysis of a beam-like structure via WSFEM

In this section, the objective is to show that numerical spectral elements can be built either
by means of WSFEM (Section 3.4.1) or by making use of the reduced-order WFE-based approach
(Section 3.3). A clamped-free beam-like structure sufficiently long to behave as an one-dimensional
structure is considered. It is composed of 400 substructures (𝐿 = 400∆) and it is subjected at its
free end to a uniform transverse harmonic force in the 𝑧-direction, as shown in Figure 3.22. The
material and geometric properties of this solid beam are the same of the beam considered in Section
3.5.1. Thus, the same substructure FE model has been considered here (see Figure 2.7(b)). Here, the
forced response of the global structure is analyzed over a frequency band 𝛽𝑓 = [200 Hz—500 kHz],
which involves discrete frequencies equally spaced steps of 2000 Hz.

As a transverse load in the 𝑧-direction is applied to the structure, bending and shear wave
modes w.r.t. to the 𝑦-axis have been considered in order to build the spectral element matrices
analytically via SEM and numerically by means of WSFEM. The response of the structure at the
center point of its left end is shown in Figure 3.23. As expected, at very low frequencies, one can
observe a good agreement between analytical (SEM) and numerical solutions (WFE-based DSM
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Figure 3.22: FE model of the 3D beam-like structure considered in this section.

approach and WSFEM). The results also highlights the potential of WSFEM, which by making use
of only 2 waves modes instead of the full wave basis of 147 wave modes can be conveniently used
to describe the dynamics of a 3D beam at low frequencies.
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Figure 3.23: (a) FRF of the the clamped-free 3D beam-like structure subjected to uniformly dis-
tributed transverse forces over the left surface boundary, and (b) relative error w.r.t the analytical
solution provided via SEM: (—) SEM; (- - -) FEM; ( ∘ ) WSFEM for Timoshenko’s beam.

The forced response of the beam-like structure has also been computed by means of the
reduced-order (RO) WFE-based approach proposed in Section 3.3. Here, criteria 1 and 2 have been
used to select the wave modes. Moreover, instead of solving the full eigenvalue problem of size
294 × 294 at each frequency, this is done for just 25 over 250 frequency steps. At the remaining
frequencies, a WFE-based eigenvalue problem of reduced size is solved. Sets of wave modes of
several sizes have been considered (𝑛𝑤 = 2, 𝑛𝑤 = 5, 𝑛𝑤 = 10 and 𝑛𝑤 = 15). The responses
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issued by means of the RO WFE-based approach are compared to the ones obtained via WSFEM
and WFE-based DSM approach in Figure 3.24. The error is computed with respect to the WFE-
based DSM approach, as it makes use of the full wave basis. Notice that the accuracy increases
with the number of kept wave modes. This confirms that the accuracy of WFE-based solutions can
be enhanced by increasing the number of kept wave modes. In other words, high-order spectral
elements can be built by means of the WFE method. The main advantage of considering a reduced
set of waves modes instead of the full wave basis is the possibility of saving computational time.
This point is highlighted in Figure 3.25.
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Figure 3.24: (a) FRF of the the clamped-free 3D beam-like structure subjected to uniformly dis-
tributed transverse forces over the left surface boundary and (b) relative error w.r.t solution is-
sued by WFE-based DSM approach: (—) SEM; (- - -) FEM; ( ∘ ) WSFEM for Timoshenko’s
beam;( ∙ ) RO WFE-based approach with (𝜖𝑄 = 10−6, 𝑛𝑤 = 2); ( x ) RO WFE-based approach
with (𝜖𝑄 = 10−6, 𝑛𝑤 = 5); ( + ) RO WFE-based approach with (𝜖𝑄 = 10−6, 𝑛𝑤 = 10); ( * ) RO
WFE-based approach with (𝜖𝑄 = 10−6, 𝑛𝑤 = 15).

3.5.3 Forced response analysis of 3D fuselage-like structure via WFE-based DSM
and RM

In this section, the harmonic forced response of a free-free 3D stiffened fuselage-like struc-
ture is addressed. The left end is subjected to the transient load shown in Figure 3.27, which is uni-
formly distributed in the radial direction (see Figure 3.26(a)). No kinematic constraints are applied.
Due to the loading condition, only one-quarter of the cylindrical shell including axial (stringers)
and circumferential (frames) stiffeners periodically distributed over the cylinder are modeled and

101



1 2 3 4 5 6
10

0

10
1

10
2

10
3

Approach

E
la

ps
ed

 t
im

e 
(s

)

Figure 3.25: Elapsed time involved in the forced response analysis of a 3D beam-like structure
subjected to uniformly distributed transverse forces over the left surface boundary: 1 (blue) WFE-
based DSM approach; 2 (red) WSFEM for Timoshenko’s beam; 3 (green) RO WFE-based approach
with (𝜖𝑄 = 10−6, 𝑛𝑤 = 2); 4 (magenta) RO WFE-based approach with (𝜖𝑄 = 10−6, 𝑛𝑤 = 5); 5
(cyan) RO WFE-based approach with (𝜖𝑄 = 10−6, 𝑛𝑤 = 10); 6 (yellow) RO WFE-based approach
with (𝜖𝑄 = 10−6, 𝑛𝑤 = 15).

symmetry conditions are applied to the free edges standing along the 𝑥-axis — i.e., normal dis-
placement and tangential rotations are set to zero. The characteristics of the cylindrical shell and
stiffeners (stringers and frames) are provided in Table 3.4. The full structure is composed of 30

identical substructures periodically arranged along the 𝑥-axis. Within the framework of the WFE
method, only one substructure is modeled using conventional finite elements issued from ANSYS®.
Indeed, quadrilateral Reissner-Mindlin shell finite elements, with four nodes and six DOFs per node
— i.e., translations in the 𝑥, 𝑦 and 𝑧 axes and rotations about the same axes —, the SHELL181 ele-
ments from ANSYS®, are used to model the substructure. Each substructure (Figure 3.26(b)) is of
length ∆ = 0.4 m and it is discretized by means of 456 DOFs, with 𝑛 = 126 DOFs over its left-
/right boundary and 204 internal DOFs. As a result, the corresponding FE model (Figure 3.26(a))
of the global periodic structure contains 10,026 DOFs.

The forced responses of the global structure under either axial or transverse loads are ana-
lyzed over a frequency band 𝛽𝑓 = [0—215] Hz, which involves discrete frequencies equally spaced
steps of 0.2083 Hz.

Within the WFE framework, and by considering the symmetry boundary conditions, 120

right-going and 120 left-going wave modes are obtained through the WFE eigenvalue problem
stated in Equation (2.49). Thus, regarding the WFE-based superelement approaches which makes
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Table 3.4: Characteristics of the stiffened cylindrical shell.

Parameter cylindrical shell frames stringers
Thickness (𝑡) 0.001 m 0.0012 m 0.0012 m
Radius (𝑅) 2 m − −
Height (ℎ) − 0.05 m 0.05 m
Density (𝜌) 2700 kg/m3

Young’s modulus (𝐸) 70 GPa
Poisson’s ratio (𝜈) 0.3

Loss factor (𝜂) 0.02

(a) (b)

Figure 3.26: FE models of the 3D stiffened fuselage-like structure: (a) full periodic structure, (b)
substructure.

use of the full wave basis, the dimension of the problem is 2𝑛, i.e., 240, which corresponds to
the number of boundary DOFs of the periodic structure. Besides, one may use the CB method
to model the periodic structure. In this case, if all fixed-interface modes whose eigenfrequencies
are below 2 × 𝜔𝑚𝑎𝑥 are considered — i.e., the rule of thumb —, 484 fixed-interface modes are
kept, which means that the size of the model is 964, which corresponds to the sum of static and
fixed-interface modes. On the other hand, the dimension of the reference FE model is 9,480 after
applying symmetry boundary conditions. The WFE-based solutions are compared with the results
issued from the conventional FE method in terms of accuracy. The relative error of the WFE-based
solutions, averaged over several sub-frequency bands of same width {𝛽𝑖

𝑓}𝑖, is expressed as

𝜖𝛽𝑖
𝑓

=
< ‖qRMS‖2 − ‖qref

RMS‖2 >𝛽𝑖
𝑓

< ‖qref
RMS‖2 >𝛽𝑖

𝑓

, (3.106)
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Figure 3.27: Excitation signal applied to the aircraft fuselage in the radial direction, at 𝑥 = 0 m: (a)
in the time domain; (b) in the time domain zoomed between [2.42.7]𝑠; (c) in the frequency domain.

where qRMS denote the RMS value of the nodal total displacements over the left boundary of the
structure, ref is used to denote the reference solution, while the notation < . >𝛽𝑖

denotes the
quadratic mean over a sub-frequency band 𝛽𝑖

𝑓 . Here, twenty sub-frequency bands {𝛽𝑖
𝑓}𝑖 are con-

sidered which cover the whole frequency band 𝛽𝑓 (i.e., 𝛽𝑓 = ∪𝑖𝛽
𝑖
𝑓 ). Regarding CPU time, the

WFE-based solutions are compared with that expended by the CB method.

In the following, WFE-based solutions which makes use of the full wave mode basis —
i.e., DSM and RM approaches (Sections 3.2.2 and 3.2.3, respectively) — are compared to solutions
issued from the DSM approach proposed by Duhamel et al. (2006) and the conventional FE method
in Figures 3.28 and 3.29. There, the RMS value of the total velocity at either the left or the right
boundary of the fuselage-like structure is analyzed over the frequency range 𝛽𝑓 . The relative errors
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Figure 3.28: (a,b) RMS total velocity in the frequency domain at the left end (𝑥 = 0) of the free-free
3D fuselage-like structure subjected to radial forces over the cylindrical shell at 𝑥 = 0, (c) relative
error (Equation (3.106)), and (d) zoom over forced-response solutions within [190 — 210] Hz: (—
–) FE solution; ( x ) CB method which makes use of 484 fixed-interface modes; (- - -) WFE-based
DSM; ( ∘ ) WFE-based RM; ( ∙ ) WFE-based Duhamel’s DSM.

of WFE-based solutions are displayed in Figure 3.28(c) for 𝑥 = 0, and in Figure 3.29(c) for 𝑥 =

30∆. As it can be seen, all approaches are completely in agreement and show extremely low error
with respect to the conventional FE solution — i.e., of order 10−3%—, which validates the proposed
DSM and RM approaches and confirms that WFE-based solutions which make use of the full wave
mode basis can be considered as accurate as the conventional FE solution for equivalent mesh
density.

Time-domain responses can also be computed using the Fourier transform in Matlab®. The
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Figure 3.29: (a,b) RMS total velocity in the frequency domain at the right end (𝑥 = 30∆) of the
free-free 3D fuselage-like structure subjected to radial forces over the cylindrical shell at 𝑥 = 0,
(c) relative error (Equation (3.106)), and (d) zoom over forced-response solutions within [190 —
210] Hz: (—–) FE solution; ( x ) CB method which makes use of 484 fixed-interface modes; (- - -)
WFE-based DSM; ( ∘ ) WFE-based RM; ( ∙ ) WFE-based Duhamel’s DSM.

responses in the time domain computed by means of the WFE-based approaches, conventional FE
method or CB method are shown in Figure 3.30.

As discussed previously, the WFE-based DSM, RM and Duhamel’s DSM approaches involve
the inversion of sparse matrices (Equations (3.103), (3.104) and (3.105), respectively). In the case
of the fuselage-like structure, the condition numbers of these matrices within the frequency range
𝛽𝑓 are shown in Figure 3.31. Here, one may notice that the condition numbers relative to the WFE-
based DSM and RM approaches are relatively small (of order of 102), while those relative to the
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Figure 3.30: (a,b) RMS total velocity in the time domain at the right end (𝑥 = 30∆) of the free-free
3D fuselage-like structure subjected to radial forces over the cylindrical shell at 𝑥 = 0: (—–) FE
solution; ( x ) CB method which makes use of 484 fixed-interface modes; (- - -) WFE-based DSM;
( ∘ ) WFE-based RM; ( ∙ ) WFE-based Duhamel’s DSM.
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Figure 3.31: Condition number of the sparse matrix required to be inverted in order to build: (- - -)
WFE-based DSM, ( ∘ ) WFE-based RM and ( ∙ ) WFE-based Duhamel’s DSM.

WFE-based Duhamel’s DSM formulation are always greater and of order of 104. Regarding elapsed
time, as in the case of the beam-like structure, all the three WFE-based superelement approaches
seems to be equivalent and more efficient than the conventional CB method (see Figure 3.32).
An average reduction of 63 % in elapsed time is obtained by means of WFE-based superelement
approaches which make use of the full wave basis. Table 3.5 summarizes the number of DOFs,
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maximum errors and elapsed times involved in the forced response analysis of the fuselage-like
structure.

CB DSM RM Duhamel’s
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Figure 3.32: Elapsed times for the forced response computation of the fuselage-like structure sub-
jected to uniformly distributed radial forces: (magenta color) CB method which makes use of 484
fixed-interface modes, (blue color) WFE-based DSM, (red color) WFE-based RM and (green color)
WFE-based Duhamel’s DSM.

Table 3.5: Total number of DOFs, maximum errors, and elapsed times involved by the proposed
approaches regarding the clamped-free beam-like structure subjected to a uniformly distributed
transverse load.

Approach Total number of DOFs Maximum error Elapsed time Reduction
FE 10,026 ref — —
CB 964 17.5 % 1,875 s ref

DSM 240 0.006 % 702 s 63 %
RM 240 0.006 % 694 s 63 %

Duhamel’s DSM 240 706 % 1,639 s 62 %

The reduced-order superelement model of the free-free fuselage-like structure is also inves-
tigated. To begin with, the effect of the threshold value (𝜖𝑄) is investigated in Figure 3.33. Notice
that differently from the beam case, here the number of kept wave modes does not converge for a
specific value as the threshold value decreases. From Figure 3.33(b), it is not so clear that there is a
set of wave modes which has a strong influence on the structure response.

The forced response and the associated error for the 3D stiffened fuselage-like structure sub-
jected to uniform radial forces over the cylindrical shell at 𝑥 = 0 are shown in Figure 3.34 for
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Figure 3.33: Free-free 3D fuselage-like structure subjected to uniform radial forces on the left
boundary: (a) number of kept wave modes using the selection strategy proposed in Section 3.3.1
for ten sub-bands of frequencies within 𝛽𝑓 and six values for 𝜖𝑄 , (b) at the maximum frequency,
value of max(𝑟𝑄, 𝑟

⋆
𝑄) for each wave mode. Threshold values: (·�·) 10−6, (· ∘ ·) 10−5, (· ∙ ·) 10−4,

(·x·) 10−3, (· + ·) 10−2 and (· * ·) 10−1.

𝜖𝑄 = 10−6 at the maximum frequency within 𝛽𝑓 . This yields the consideration of 87 over 120

wave modes, which were computed at the maximum frequency and used to build the reduced RM.
Accurate responses are obtained, the errors being comparable to that obtained using WFE-based
approaches which make use of the full wave basis. In terms of elapsed time, the ROM which makes
use of 87 wave modes yields a reduction of 48 % compared to the WFE-based RM which makes
use of the full wave basis, and 81% with respect to the CB method. These features of the RO RM
are highlighted in Table 3.6, which presents the number of DOFs, maximum errors and elapsed
times involved in the CB method, WFE-based RM and WFE-based RO RM.

Table 3.6: Total number of DOFs, maximum errors, and elapsed times involved by the proposed
approaches regarding the clamped-free beam-like structure subjected to a uniformly distributed
transverse load.

Approach Total number of DOFs Maximum error Elapsed time Reduction
FE 10,026 ref — —
CB 964 17.5 % 1,875 s ref

RM 240 0.006 % 694 s 63 %
RO RM 174 0.005 % 363 s 81 %
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Figure 3.34: Free-free 3D fuselage-like structure subjected to uniformly distributed radial forces
over the cylindrical shell at 𝑥 = 0: (a) RMS total velocity in the frequency domain at the left
boundary and (b) relative error (Equation (3.106)) in the frequency domain: ( x ) CB method which
makes use of 484 fixed-interface modes; ( ∘ ) WFE-based RM; (- - -) WFE-based reduced-order
RM which makes use of 87 over 120 wave modes.
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Figure 3.35: Free-free 3D fuselage-like structure subjected to uniformly distributed radial forces
over the cylindrical shell at 𝑥 = 0, RMS total velocity in the time domain (a) at the left boundary,
and (b) at the right boundary: ( x ) CB method which makes use of 484 fixed-interface modes;
( ∘ ) WFE-based RM; (- - -) WFE-based reduced-order RM which makes use of 87 over 120 wave
modes.
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Figure 3.36: Elapsed times involved in the proposed approaches regarding the 3D fuselage-like
structure subjected to uniformly distributed radial forces over the cylindrical shell at 𝑥 = 0, for
𝜖𝑄 = 10−6 compared to the CB method and WFE-based RM approach which makes use of the
full wave basis: (magenta color) CB method that uses 484 fixed-interface modes, (red color) WFE-
based RM, (blue color) WFE-based reduced-order (RO) RM which considers 87 over 120 wave
modes.

3.6 Conclusions

This chapter addressed the forced response analysis of periodic structures via WFE-based
approaches. The main idea here was to construct superelement models of periodic structures from
a wave description. At first, the full basis of wave modes computed by means of the WFE method
were used to formulate dynamic stiffness and receptance matrices of a periodic structure. These
matrices are of reduced size as they are expressed in terms of the degrees of freedom (DOFs) on
the left and right boundaries of a periodic structure. Indeed, external loads and kinematic constraints
are assumed confined on the left and right boundaries of the superelement model. A reduced-order
WFE-based approach for the forced response analysis of a periodic structure was also proposed. It
involves three main steps, which are: the selection of the most contributing wave modes, the for-
mulation of a reduced WFE-based eigenvalue problem and the formulation of a receptance matrix
for the reduced-order superelement model. Alternatively, a reduced-order semi-analytical model
of a periodic structure can be built via WSFEM. This method was presented in general form and
applied to the case of a Timoshenko beam in this chapter. The superelement models proposed here
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were used to compute the forced responses of a 3D beam-like structure and a 3D fuselage-like
structure. Thus, the case of a simple waveguide and a periodic structure involving heterogeneities
(the stiffeners) were addressed. Frequency and time-domain solutions were presented. For both
numerical test cases, it was shown that accurate solutions can be obtained via the proposed WFE-
based approaches. They also showed to be faster than the conventional CB method. In addition, the
improvement in performance when using reduced-order models was highlighted. Moreover, it was
shown that the WFE method can used to build spectral superelement models of arbitrary order.
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4 WFE-based superelements for forced response analysis of cou-
pled systems via dynamic substructuring

4.1 Overview

In this chapter, the WFE method is used for assessing the harmonic response of coupled
mechanical systems that involve one-dimensional periodic structures and coupling elastic junctions.
The periodic structures under concern are composed of complex heterogeneous substructures like
those encountered in real engineering applications. The issue may be viewed as circumventing
the computational cost of the conventional FE method when large-sized numerical models are to
be solved at many discrete frequencies, while keeping a high level of accuracy. The challenge
especially concerns the development of efficient numerical approaches that outperform, in terms of
accuracy and computational time savings, the usual substructuring techniques like the CB method
(Craig and Bampton, 1968a). A strategy is proposed which uses the concept of numerical wave
modes to express the DSM, or the RM, of each periodic structure. Also, the CB method is used to
model each coupling junction by means of static modes and fixed-interfaces modes. An efficient
WFE-based criterion is considered to select the junction modes that are of primary importance. The
consideration of several periodic structures and coupling junctions is achieved through classic finite
element assembly procedures, or domain decomposition techniques. Numerical experiments are
carried out to highlight the relevance of the WFE-based DSM and RM approaches. The following
test cases are considered: a 2D frame structure under plane stresses; a 3D aircraft fuselage-like
structure involving stiffened cylindrical shells.

The contribution of this chapter is in assessing the potentiality of the proposed WFE-based
substructuring technique for simulating non-academic coupled systems like those encountered in
engineering applications, and which involve several truly periodic structures and arbitrarily-shaped
elastic junctions. The developments presented in this chapter constitute part of the research paper
by Silva et al. (2015b) submitted to the International Journal for Numerical Methods in Engineering
(IJNME).

The rest of the chapter is organized as follows. In Section 4.2, the CB-based modeling of a
coupling junction is investigated. In Section 4.3, the modeling of coupled systems is investigated by
means of the so-called DSM and RM approaches. The DSM approach uses the concept of classic
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FE assembly procedures for connecting subsystems to each other, while the RM approach involves
domain decomposition techniques by means of Lagrange multipliers. In Section 4.4, numerical
experiments are carried out regarding the following test cases: (i) a 2D frame structures under plane
stresses that involves beam-like structures and curved junctions; (ii) a 3D aircraft fuselage-like
structure involving stiffened cylindrical shells, holes and a conical head. The relevance of the
WFE-based DSM and RM approaches, in terms of accuracy and computational time savings, is
highlighted in comparison with the conventional FE and CB methods.

4.2 CB-based super-element modeling for non-periodic coupling junctions

The problem of predicting the dynamic behavior of several periodic structures coupled to
elastic junctions is addressed. For the sake of clarity, two periodic structures (e.g., curved stiffened
panels) — namely (𝑃1) and (𝑃2) — which are connected to an elastic junction (𝑃3) (e.g., stiffened
panel with a hole) are shown in Figure 4.1. Here, the vectors of wave amplitudes for the modes
traveling along the periodic structures (𝑃1) and (𝑃2) towards the junction (𝑃3) are denoted as Q1

and Q2, respectively, while those for the modes traveling outward from the junction are denoted
as Q⋆

1 and Q⋆
2. A WFE-based super-element modeling of periodic structures has been proposed

in Section 3.2. In the present section, the FE method combined with the Craig-Bampton (CB)
method (Craig and Bampton, 1968a) is used to model the coupling junctions. In this framework,
a coupling junction is modeled by means of static modes and fixed-interface modes. The key idea
behind the proposed approach is to select among all the fixed-interface modes those which actually
contribute to the system forced response. As just a few modes are involved, the proposed procedure
yields significant computational savings, which improves the performance of the CB method for
MF analysis. Within the WFE framework, a norm-wise selection criterion of contributing fixed-
interface modes has been developed by Mencik (Mencik, 2011). The procedure is briefly recalled
hereafter.

Consider the general problem of a coupling junction (𝑃𝑐) which is coupled to an arbitrary
number 𝑅𝑝 of periodic structures over boundary interfaces

{︁
Γ
(𝑐)
𝑝

}︁
𝑝=1,··· ,𝑅𝑝

and which is meshed by

means of internal and boundary DOFs. Here, the internal DOFs are free from external excitation
sources, while the boundary DOFs are those contained on the boundary interfaces

{︁
Γ
(𝑐)
𝑝

}︁
𝑝=1,··· ,𝑅𝑝

.

The dynamic equilibrium equation of the junction, which links the vectors of displacements/rota-
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Figure 4.1: Illustration of two periodic structures (𝑃1) and (𝑃2) connected to a coupling junction
(𝑃3).

tions q(𝑐) and forces/moments F(𝑐) on the boundary DOFs, is expressed as

D(𝑐)q(𝑐) = F(𝑐), (4.1)

where D(𝑐) is the dynamic stiffness matrix of the junction condensed at the boundary DOFs. Within
the CB framework (see Annexe A), the matrix D(𝑐) is expressed in terms of static modes and fixed-
interface modes, as follows (Craig and Bampton, 1968a):

D(𝑐) ≈ D̄(𝑐), (4.2)

where
D̄(𝑐) = Dst−st − D̄𝑇

el−stD̄
−1
el−elD̄el−st, (4.3)

Dst−st = −𝜔2(X𝑇
stM

(𝑐)
IIX𝑠𝑡 +M

(𝑐)
BIX𝑠𝑡 +X𝑇

𝑠𝑡M
(𝑐)
IB +M

(𝑐)
BB ) + (1 +i𝜂(𝑐))(K

(𝑐)
BIXst +K

(𝑐)
BB ), (4.4)

D̄el−st = −𝜔2X̄𝑇
el(M

(𝑐)
IIXst + M

(𝑐)
IB ), (4.5)

D̄el−el = diag
{︀
𝛾𝑗(−𝜔2 + �̄�2

𝑗 (1 + i𝜂(𝑐)))
}︀
𝑗
. (4.6)

In these equations, K(𝑐) and M(𝑐) are the stiffness and mass matrices of the coupling junction; the
subscripts I and B relate the internal and boundary DOFs, respectively. Also, Xst is the matrix
of static modes, defined as Xst = −K

(𝑐)−1
II K

(𝑐)
IB , while X̄el is the matrix of fixed-interface modes

{(X̄el)𝑗}𝑗 , which are obtained by solving the following eigenproblem K
(𝑐)
II (Xel)𝑗 = 𝜔2

𝑗M
(𝑐)
II (Xel)𝑗

({�̄�𝑗}𝑗 being the eigenpulsations that refer to the free vibrations of the undamped junction whose
boundary interface DOFs are fixed). The bar sign indicates that a reduced number of fixed-interface
modes are retained to formulate the matrix D(𝑐). Finally, 𝜂(𝑐) is the loss factor of the junction, while
{𝛾𝑗}𝑗 denote the modal masses (𝛾𝑗 = (X̄el)

𝑇
𝑗 M

(𝑐)
II (X̄el)𝑗 ∀𝑗).
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The procedure to select the contributing fixed-interface modes {(X̄el)𝑗}𝑗 is based on a pertur-
bation analysis of a matrix C which relates the reflection/transmission coefficients of wave modes
traveling along the periodic structures towards the junction. In case where the FE meshes of the
periodic structures are compatible with that of the junction over the coupling interfaces, the matrix
C is defined as (Mencik, 2011)

C = −[D̄(𝑐)Ψ⋆
q + Ψ⋆

F]
−1[D̄(𝑐)Ψq + ΨF], (4.7)

where

Ψq =

⎡⎢⎢⎣
𝒩 (𝑐)

1 (Φq)1 · · · 0
... . . . ...
0 · · · 𝒩 (𝑐)

𝑅 (Φq)𝑅

⎤⎥⎥⎦ , Ψ⋆
q =

⎡⎢⎢⎣
𝒩 (𝑐)

1 (Φ⋆
q)1 · · · 0

... . . . ...
0 · · · 𝒩 (𝑐)

𝑅 (Φ⋆
q)𝑅

⎤⎥⎥⎦ , (4.8)

ΨF =

⎡⎢⎢⎣
𝒩 (𝑐)

1 (ΦF)1 · · · 0
... . . . ...
0 · · · 𝒩 (𝑐)

𝑅 (ΦF)𝑅

⎤⎥⎥⎦ , Ψ⋆
F =

⎡⎢⎢⎣
𝒩 (𝑐)

1 (Φ⋆
F)1 · · · 0

... . . . ...
0 · · · 𝒩 (𝑐)

𝑅 (Φ⋆
F)𝑅

⎤⎥⎥⎦ . (4.9)

Here, the superscript ⋆ relates the wave modes that travel outward from the junction; also, 𝒩 (𝑐)
𝑝

denotes a direction cosine matrix which links the coordinate system of the junction (𝑃𝑐) to that of
a given periodic structure (𝑃𝑝) with 𝑝 = 1, · · · ,𝑅𝑝. In other words, 𝒩 (𝑐)

𝑝 plays the role of express-
ing the vectors of displacements/rotations q(𝑝)

⃒⃒
Γ
(𝑐)
𝑝

and forces/moments F(𝑝)
⃒⃒
Γ
(𝑐)
𝑝

of each periodic

structure (𝑃𝑝), on the coupling interface Γ
(𝑐)
𝑝 , in the coordinate system of the coupling junction. This

means that the coupling conditions between the junction and the periodic structure are expressed
as follows: q(𝑐)

⃒⃒
Γ
(𝑐)
𝑝

= 𝒩 (𝑐)
𝑝 q(𝑝)

⃒⃒
Γ
(𝑐)
𝑝

and F(𝑐)
⃒⃒
Γ
(𝑐)
𝑝

= −𝒩 (𝑐)
𝑝 F(𝑝)

⃒⃒
Γ
(𝑐)
𝑝

.

The selection of the fixed-interface modes is carried out by assessing how much the matrix
C is perturbed when a given mode (Xel)𝑗 is not taken into account in the reduced basis {(X̄el)𝑗}𝑗 .
Clearly speaking, consider the condensed dynamic stiffness matrix D(𝑐) of the junction that re-
sults from the consideration of all the fixed-interface modes. Omitting one mode (Xel)𝑗 yields the
perturbed matrix D̄(𝑐) = D(𝑐) + ∆𝑗D

(𝑐), ∆𝑗D
(𝑐) being expressed as (Equations (4.3-4.6)):

∆𝑗D
(𝑐) =

𝜔4

𝛾𝑗(−𝜔2 + �̄�2
𝑗 (1 + i𝜂𝑐))

(︀
B𝑇 (X̄el)𝑗

)︀ (︀
B𝑇 (X̄el)𝑗

)︀𝑇
, (4.10)

where B = M
(𝑐)
IIXst + M

(𝑐)
IB . Considering D(𝑐) + ∆𝑗D

(𝑐), instead of D(𝑐), yields the perturbed
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matrix C + ∆𝑗C. Hence, the proposed selection procedure consists in retaining the fixed-interface
modes which satisfy the following criterion,

‖∆𝑗C‖𝐹
‖C‖𝐹

≥ 𝜖 ∀𝑗, (4.11)

where 𝜖 is a given small tolerance threshold, while ‖.‖𝐹 denotes the Frobenius norm. In other
words, the selection procedure consists in rejecting the fixed-interface modes for which the relative
error ‖∆𝑗C‖𝐹/‖C‖𝐹 is below 𝜖, meaning that they weakly contribute to the dynamic behavior of
the periodic structures that are connected to the junction.

Note that the computation of the relative error ‖∆𝑗C‖𝐹/‖C‖𝐹 , for each mode (Xel)𝑗 , should
be performed once, i.e., at the maximum discrete frequency involved in the frequency band of
interest. This is understood since a maximum number of wave modes are likely to contribute to
the dynamic behavior of periodic structures at the maximum frequency, meaning that reaches
‖∆𝑗C‖𝐹/‖C‖𝐹 its maximum value.

4.3 Coupled system modeling

The WFE-based numerical model of a fully coupled system, which involves several periodic
structures and coupling junctions, is presented. Two well-known procedures are recalled hereafter,
which use, respectively, the dynamic stiffness matrices and receptance matrices of subsystems. For
the sake of simplicity, it is assumed throughout this section that the FE meshes of the subsystems
— i.e., periodic structures and junctions — are compatible at the coupling interfaces.

4.3.1 Dynamic stiffness matrix (DSM) method

Consider a coupled system that involves 𝑁𝑝 periodic structures and 𝑁𝑐 coupling junctions.
Also, denote as 𝒪𝑝 and 𝒪𝑐 (𝒪𝑝∩𝒪𝑐 = ∅) the sets of integers used to number the periodic structures
and the coupling junctions, respectively. Within the DSM framework, the global dynamic stiffness
matrix of the coupled system — namely Dgl — is constructed from the dynamic stiffness matrices
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of the periodic structures and coupling junctions (see Sections 3.2.2 and 4.2). The construction of
Dgl follows from a classic assembly procedure, i.e.,

Dgl =
∑︁
𝑝∈𝒪𝑝

ℒ(𝑝)𝑇 D̂(𝑝)ℒ(𝑝) +
∑︁
𝑐∈𝒪𝑐

ℒ(𝑐)𝑇 D̂(𝑐)ℒ(𝑐), (4.12)

where ℒ(𝑝) and ℒ(𝑐) are mesh incidence matrices; also, D̂(𝑝) and D̂(𝑐) are defined as

D̂(𝑝) = 𝒩 (𝑝)𝑇D(𝑝)𝒩 (𝑝) , D̂(𝑐) = 𝒩 (𝑐)𝑇D(𝑐)𝒩 (𝑐), (4.13)

where 𝒩 (𝑝) and 𝒩 (𝑐) are direction cosine matrices which link the local coordinate frames of the pe-
riodic structures and coupling junctions, respectively, to the global coordinate frame of the coupled
system.

The dynamic equilibrium equation of a coupled system, free from kinematic constraints —
i.e., prescribed displacements/rotations —, is expressed as Dglqgl = Fgl, where qgl and Fgl

are vectors of nodal displacements/rotations and forces/moments, respectively. More generally, the
consideration of kinematic constraints yields the following dynamic equilibrium equation:

Dgl
IIq

gl
I = Fgl

I −Dgl
IBq

gl
B , (4.14)

where qgl
B denotes a vector of prescribed displacements/rotations. Here, the subscript B (resp. I)

relates the DOFs subject to (resp. free from) kinematic constraints. The vector of nodal displace-
ments/rotations of the coupled system is finally assessed by solving Equation (4.14), i.e.,

qgl
I = (Dgl

II)
−1
(︀
Fgl
I −Dgl

IBq
gl
B

)︀
. (4.15)

4.3.2 Receptance matrix (RM) method

An alternative strategy is investigated to determine the vector of nodal displacements/rota-
tions of the coupled system. It uses the concept of domain decomposition techniques in which
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receptance matrices of subsystems are involved. In fact, the receptance matrix R(𝑝) of a periodic
structure (𝑃𝑝) can be easily computed from Equation (3.29), without the need of explicitly inverting
a dynamic stiffness matrix. This means computational time savings compared to the DSM method,
i.e., when the inverse of a global matrix Dgl

II (Equation (4.15)) is estimated. This interesting feature
has motivated the development of the present RM method. The latter is detailed as follows.

Recall that the FE meshes of the subsystems are compatible at the coupling interfaces. By
considering the conventional domain decomposition method with Lagrange multipliers, the local
dynamic equilibrium equations, for the periodic structures and coupling junctions, can be expressed
in the following way:

D̂(𝑝)q̂(𝑝) = F̂(𝑝) − ℬ(𝑝)𝑇𝜆LM , D̂(𝑐)q̂(𝑐) = F̂(𝑐) − ℬ(𝑐)𝑇𝜆LM, (4.16)

where q̂ and F̂ relate, respectively, vectors of nodal displacements/rotations and forces/moments in
the global reference frame of the coupled system; also, ℬ(𝑝) and ℬ(𝑐) are Boolean matrices, while
𝜆LM is to be understood as a vector of Lagrange multipliers. Notice that the length of the vector 𝜆LM

is equal to the total number of interface DOFs — i.e., those involved in the coupling between the
subsystems — and boundary DOFs where prescribed displacements/rotations are applied.

The consideration of receptance matrices yields

q̂(𝑝) = R̂(𝑝)
(︁
F̂(𝑝) − ℬ(𝑝)𝑇𝜆LM

)︁
, q̂(𝑐) = R̂(𝑐)

(︁
F̂(𝑐) − ℬ(𝑐)𝑇𝜆LM

)︁
. (4.17)

Here, R̂(𝑝) = 𝒩 (𝑝)𝑇R(𝑝)𝒩 (𝑝) where R(𝑝) is the receptance matrix of a periodic structure (𝑃𝑝)

in its local coordinate frame ( Equation (3.29)), while 𝒩 (𝑝) is a direction cosine matrix defined
after Equation (4.13). Also, the receptance matrix of a coupling junction (𝑃𝑐) is to be expressed as
R̂(𝑐) = (D̂(𝑐))−1, D̂(𝑐) being the dynamic stiffness matrix of the junction in the global reference
frame (Equation (4.13)).

The consideration of kinematic constraints — which relate the coupling conditions between
subsystems as well as the boundary conditions where prescribed displacements/rotations apply —
leads to ∑︁

𝑝∈𝒪𝑝

ℬ(𝑝)q̂(𝑝) +
∑︁
𝑐∈𝒪𝑐

ℬ(𝑐)q̂(𝑐) = qgl
0 , (4.18)

where qgl
0 is a vector of prescribed displacements/rotations, which may be partitioned as qgl

0 =
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[0𝑇 (qgl
B )𝑇 ]𝑇 , where qgl

B has been defined previously, see Equation (4.14). The determination of
the vector of Lagrange multipliers 𝜆 in Equation (4.16) follows from Equation (4.18) as (Klerk
et al., 2006):

𝜆LM =
(︀
ℬRglℬ𝑇

)︀−1 (︀ℬRglFgl − qgl
0

)︀
, (4.19)

where ℬ = [ℬ(1)ℬ(2) · · · ℬ(𝑁𝑝+𝑁𝑐)], and

Rgl =

⎡⎢⎢⎢⎢⎣
R̂(1) 0 · · · 0

0 R̂(2) · · · 0
...

... . . . ...
0 0 · · · R̂(𝑁𝑝+𝑁𝑐)

⎤⎥⎥⎥⎥⎦ , Fgl =

⎡⎢⎢⎢⎢⎣
F̂(1)

F̂(2)

...
F̂(𝑁𝑝+𝑁𝑐)

⎤⎥⎥⎥⎥⎦ . (4.20)

The determination of the vector of nodal displacements/rotations of the coupled system finally
results from Equation (4.17).

It is worth pointing out that the computation of the vector of Lagrange multipliers 𝜆LM

involves inverting a matrix (ℬRglℬ𝑇 ) whose size relates the number of kinematic constraints only.
This means that the size of (ℬRglℬ𝑇 ) can be small compared to the global dynamic stiffness
matrix Dgl

II appearing in Equation (4.15), provided that the number of kinematic constraints is
small compared to the total number of coupling interface DOFs and boundary DOFs of the whole
system. In this case, the RM method appears to be interesting for improving the computational
speed of the proposed WFE approach. Notice, however, that the matrix (ℬRglℬ𝑇 ) is expected to
be dense as opposed to Dgl

II, which contains several zero block components. In other words, the
RM method can be considered efficient only when the size of (ℬRglℬ𝑇 ) is significantly small
compared to Dgl

II. This feature will be highlighted in Section 4.4.2.

4.4 Numerical results

The WFE-based DSM and RM methods are applied to compute the frequency forced response
of two elastic systems involving periodic structures and elastic junctions. Recall that, within the
present framework, the periodic structures are modeled using the WFE method (Section 3.2), while
the coupling junctions are modeled using the CB method (Section 4.2). Here, a reduced set of fixed-
interface modes, which are selected by means of the WFE-based strategy proposed in Section 4.2,
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is used to model the junctions.

The following test cases are considered: (1) a 2D frame structure under plane stresses (Figure
4.3); (2) a 3D aircraft fuselage-like structure involving stiffened cylindrical shells (Figure 4.8).
The first test case is rather simple, while the second one includes complexities of real engineering
applications.

For each test case, the frequency response functions (FRFs) provided by the WFE-based
DSM and RM approaches are compared with a reference FE solution issued from the ANSYS®

software, which uses a sparse direct solver. Also, the DSM and RM approaches are compared with
the conventional CB method, i.e., when each subsystem (periodic structure, junction) is modeled
in terms of static modes and fixed-interface modes. For the sake of clarity, the numerical tasks
and platform environments involved when simulating the DSM and RM approaches are shown in
Figure 4.2. Regarding the WFE and CB modelings, ANSYS® is used as a means to assess the
mass and stiffness matrices of substructures and subsystems. Post-treatment of those matrices is
achieved using MATLAB® with a view to computing the forced response of the coupled system.
All the numerical simulations are performed in double precision using a 64-bit CPU equipped with
an Intel® Xeon® E5-2609 2.40 GHz processor and 32GB of RAM memory. It is worth emphasizing
that the MATLAB® environment is used as a means to assess the performances of the DSM and
RM approaches in terms of computational time savings, when compared to the conventional CB
method.

4.4.1 2D frame structure

Problem description

This section investigates the harmonic response of a 2D frame structure undergoing plane
stresses. The structure can be partitioned into three straight beam-like structures (𝑃1), (𝑃2) and
(𝑃3), and two quarters of torus (junctions (𝑃4) and (𝑃5)), as shown in Figure 4.3. Here, the beam-
like structures are considered periodic, it being understood that their meshes are periodic (as out-
lined in Chapter 2). The whole structure is clamped over its left bottom edge while being subject
to harmonic nodal loads (𝐹𝑥 = 100𝑁,𝐹𝑦 = 50𝑁) over the whole right bottom edge. The periodic
structures and junctions exhibit the following characteristics: Young’s modulus 𝐸 = 2.1× 1011 Pa,
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Commercial FE package environment (ANSYS
®

has been used in this paper):

MATLAB
®

environment:

Frequency domain

(to be considered at each discrete frequency ): at max

Figure 4.2: Numerical steps involved in the DSM and RM approaches.

density 𝜌 = 7850 kg.m-3, Poisson’s ratio 𝜈 = 0.3, loss factor 𝜂 = 0.01, thickness 0.001 m and width
0.4 m. The length of the periodic structures (𝑃1) and (𝑃3) is 2 m, while that of the periodic structure
(𝑃2) is 1.5 m. Besides, the coupling junctions (𝑃4) and (𝑃5) exhibit an internal and external radius
of curvature of 0.2 m and 0.4 m, respectively.

Within the WFE framework, each periodic structure is modeled by means of identical sub-
structures, as explained in Chapter 2. Here, the substructures used are similar (up to a rotation of
90𝑜), with a length ∆ = 0.01 m (Figure 4.3). Thus, it turns out that the periodic structures (𝑃1)
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Figure 4.3: 2D frame structure composed of three periodic structures (𝑃1), (𝑃2) and (𝑃3), and two
coupling junctions (𝑃4) and (𝑃5); FE model of a substructure that is used to model the periodic
structure (𝑃2).

and (𝑃3) are composed of 𝑁1 = 𝑁3 = 200 substructures, while the periodic structure (𝑃2) is com-
posed of 𝑁2 = 150 substructures. Besides, 2D plane stress quadrilateral elements, with four nodes
and two translational DOFs per node, are used to model the substructures as well as the coupling
junctions (Figure 4.3). Each substructure is meshed by means of 20 finite elements over its width,
which yields 𝑛 = 42 DOFs over the left/right boundary and no internal DOFs. Also, each coupling
junction is meshed by means of 2,226 DOFs that incorporate 42 DOFs over each coupling inter-
face. As a result, the number of DOFs involved for modeling the whole coupled system is 27,468.
This mesh is expected to be fine enough to capture the local stress fields, which can be sharp in the
vicinity of the corners, as well as the propagating wave modes along the periodic structures. Here,
about 30 elements, at least, are used to capture the wavelengths of the propagating wave modes at
the highest frequency considered1, which fully agrees with the classic rule of thumb of 8 elements
per wavelength.

1This can be proved by plotting the related dispersion curves which are not shown here for the sake of conciseness.
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The harmonic response of the coupled system is analyzed over a frequency band 𝛽𝑓 = [110−
10,000] Hz that involves discrete frequencies that are equally spaced with a step of 10 Hz. This
frequency band is supposed to be wide enough so that the periodic structures and the junctions
exhibit local resonances.

Junction modeling

The modeling of each junction is carried out by considering the CB strategy proposed in Sec-
tion 4.2. Recall that the standard strategy for selecting the fixed-interface modes of a junction is
to retain those for which the eigenfrequencies are below a certain frequency limit, while rejecting
the other modes. As a rule of thumb, this frequency limit is classically chosen as twice the maxi-
mum frequency of the frequency band of interest, i.e., 20,000 Hz in the present case. This yields 51
fixed-interface modes to be retained (cf. Figure 4.4(a)). In contrast, the selection strategy proposed
in Section 4.2 enables one to retain 43 fixed-interface modes only, which means subsequent compu-
tational time savings. This is done by considering a tolerance threshold 𝜖 = 1% in Equation (4.11),
when the ratio ‖∆𝑗C‖𝐹/‖C‖𝐹 is calculated for each of the aforementioned 51 modes (see Figure
4.4(b)). This result confirms that the contribution of a junction mode is not necessarily linked to its
rank.
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Figure 4.4: Strategies used to select the fixed-interface modes of the coupling junctions (𝑃4) and
(𝑃5) occurring in the 2D frame structure: (a) classic strategy consisting in retaining the modes
whose eigenfrequencies are below twice the maximum frequency of the frequency band of interest
(this yields 51 modes); (b) WFE-based strategy proposed in Section 4.2 (this yields 43 modes).
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Forced response computation

The FRF of the 2D frame structure is assessed by means of the WFE-based DSM and RM
approaches depicted in Section 4.3. In this framework, each periodic structure is modeled using the
WFE method (Section 3.2), while the coupling junctions are modeled using the CB method (Sec-
tion 4.2). In the present case, the number of right/left-going wave modes involved for modeling
each periodic structure is 𝑛 = 42. Here, the magnitude of the velocity (𝑦-direction) of the periodic
structure (𝑃3) is analyzed at a corner node on the right excited edge. The WFE solutions are com-
pared with the results issued from the conventional FE method in Figure 4.5(a). Also, the relative
error of the WFE solutions, averaged over several sub-frequency bands {𝛽𝑖

𝑓}𝑖 of same width, is dis-
played in Figure 4.5(b). Such an average procedure is used here as a means to clearly highlight the
frequency zone over which the relative error is high. Also, it acts like a filter to smoothen the effects
of slight shifts between the resonance frequencies of the WFE and FE solutions, which generate
high errors locally although they are of minor importance. The relative error is expressed as

< ‖qWFE
meas‖2 − ‖qFE

meas‖2 >𝛽𝑖
𝑓

< ‖qFE
meas‖2 >𝛽𝑖

𝑓

, (4.21)

where qmeas denotes the vector of nodal displacements at the measurement point, while the notation
< . >𝛽𝑖

denotes the quadratic mean over a sub-frequency band 𝛽𝑖
𝑓 . Here, ten sub-frequency bands

{𝛽𝑖
𝑓}𝑖 are considered which cover the whole frequency band 𝛽𝑓 (i.e., 𝛽𝑓 = ∪𝑖𝛽

𝑖
𝑓 ). As it can be seen,

the WFE results completely match the reference FE solution over the whole frequency band where
the relative error (Equation (4.21)) never exceeds 5%. This fully validates the proposed approaches.

Besides, the WFE approaches are compared with the conventional CB method that consists in
modeling each subsystem (periodic structure, junction) in terms of static modes and fixed-interface
modes. For the purpose of the conventional CB method, each junction is modeled by means of
51 fixed-interface modes, as suggested by the rule of thumb consisting in selecting the modes
whose eigenfrequencies are below twice the maximum frequency of the frequency band of interest.
Within the CB method, two procedures are investigated to model the periodic structures, i.e.: (1) by
considering a large number of fixed-interface modes whose eigenfrequencies are below four times
the maximum frequency of the frequency band of interest — this yields 531 fixed-interface modes
for the periodic structures (𝑃1) and (𝑃3), and 396 fixed-interface modes for the periodic structure
(𝑃2); (2) by considering a small number of fixed-interface modes which is equal to that of the
right/left-going wave modes of each periodic structure — this yields 42 fixed-interface modes only.
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Figure 4.5: FRF of the 2D frame structure (a) and relative error, Eq. (4.21) (b): FE solution (—–);
WFE-based DSM approach (- - -); WFE-based RM approach (- - -).

The related FRFs are displayed in Figure 4.6(a), along with the following relative error (Figure
4.6(b)):

< ‖qCB
meas‖2 − ‖qFE

meas‖2 >𝛽𝑖
𝑓

< ‖qFE
meas‖2 >𝛽𝑖

𝑓

, (4.22)

As it can be seen, the relative error involved in the first CB modeling remains confined below 5%

in the same way as the WFE-based approaches. In contrast, the second CB modeling which uses
42 fixed-interface modes for each periodic structure yields erroneous results, as shown in Figure
4.6(a). In this case, the basis of fixed-interface modes and static modes used to model each periodic
structure has been chosen so that its dimension is equal to that of the wave mode basis used by
the DSM and RM approaches. From this point of view, the WFE-based DSM and RM approaches
are much more accurate than the CB method. For the sake of clarity, the maximum values of the
relative errors — i.e., when averaged over all the sub-frequency bands {𝛽𝑖

𝑓}𝑖 — involved in the
WFE and CB solutions are compared as shown in Figure 4.7(a).

Regarding the elapsed/running times, it takes 183 s and 190 s to compute the forced response
of the coupled system with the WFE-based DSM and RM approaches, respectively, against 838

s with the conventional CB method that uses 531 and 396 fixed-interface modes for the periodic
structures. It is worth recalling that those elapsed times are obtained using MATLAB® regarding
both the WFE and CB techniques. This yields a computational saving of 78% in benefit of the
DSM and RM approaches, which clearly highlights the relevance of the proposed approaches. It
should be emphasized that the WFE-based DSM and RM methods give almost the same elapsed
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Figure 4.6: FRF of the 2D frame structure (a) and relative error, Eq. (4.22) (b): FE solution (—–);
CB method that uses 531 and 396 fixed-interface modes to model the periodic structures (- - -); CB
method that uses 42 fixed-interface modes to model the periodic structures (- - -).

time, which might be explained because the matrices D𝑔𝑙II and (ℬR𝑔𝑙ℬ𝑇 ) which are inverted in
Equations 4.15 and 4.19 have the same size. This is due to the fact that, in the present case, the
number of boundary DOFs where prescribed forces are applied is equal to that where prescribed
displacements are considered.

For the sake of clarity, the elapsed time involved when computing the full FE model with
MATLAB® has been also assessed. For this purpose, a matrix system is to be solved which requires
the inversion of a 27,468 × 27,468 sparse dynamic stiffness matrix at several frequency steps. This
gives 21,612 s, which appears to be 26 times larger compared to the first CB modeling and means
99% time saving in benefit of the WFE method.

Finally, note that the conventional CB method that uses 42 fixed-interface modes for the
periodic structures yields a elapsed time of 138 s, which appears small compared to the WFE ap-
proaches. However, as outlined previously, such a method appears inefficient to accurately capture
the FRF of the system. For the sake of conciseness and clarity, the elapsed times involved in the
WFE and CB approaches are shown in Figure 4.7(b) and Table 4.1. Also, the total number of
physical and generalized DOFs managed by each approach is listed in Table 4.1. Regarding the
FE method, this number corresponds to the total number of DOFs involved in the full FE model;
regarding the conventional CB method, it corresponds to the sum of the numbers of static modes
and fixed-interface modes among all the structural components (periodic structures and junctions);
regarding the WFE approaches, it corresponds to the sum of the number of boundary DOFs of
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the periodic structures with the number of static modes and fixed-interface modes of the junctions.
This provides a coarse estimate of the size of the matrix equations which are to be managed by
each approach. As it can be seen, the total number of DOFs involved in the WFE-based DSM and
RM approaches constitutes a better compromise between accuracy and performance than it is the
case with the CB method.
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Figure 4.7: Maximum relative errors (a), and elapsed times (b) involved regarding the 2D frame
structure: (black) CB method that uses 531 and 396 fixed-interface modes to model the periodic
structures; (blue) CB method that uses 42 fixed-interface modes to model the periodic structures;
(red) WFE-based DSM approach; (green) WFE-based RM approach.

Table 4.1: Total number of DOFs and elapsed times involved by the proposed approaches regarding
the 2D frame structure.

Approach Total number of DOFs Elapsed time (s) Reduction (%)

FE 27,468 21,612 —
CB (531 and 396 modes) 1,595 838 —

CB (42 modes) 648 137 84

DSM 506 184 78

RM 506 190 77
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4.4.2 Aircraft fuselage-like structure

Problem description

This section investigates the harmonic response of an aircraft fuselage-like structure. The
structure under concern consists of a conical head (coupling junction (𝑃3), a long cylindrical shell
(periodic structure (𝑃1)), a short cylindrical shell with holes (coupling junction (𝑃4)) that may
correspond to aircraft doors, and a short cylindrical shell (periodic structure (𝑃2)) (Figure 4.8). The
cylindrical shells incorporate axial and circumferential flat stiffeners (i.e., stringers and frames,
respectively) so as to include true periodicities. The coupled system is subject on its right end to
two vertical forces acting in opposite directions, as shown in Figure 4.8.

The periodic structures and junctions share the same material characteristics, i.e.: Young’s
modulus 𝐸 = 7 × 1010 Pa, density 𝜌 = 2700 kg.m−3, Poisson’s ratio 𝜈 = 0.3 and loss factor
𝜂 = 0.01. The cylindrical shells exhibit a diameter of 4 m and a thickness of 0.001 m. The circum-
ferential and axial stiffeners have a height of 0.035 m, and respective thicknesses of 0.005 m and
0.002 m. Those stiffeners are periodically distributed over the cylinders (i.e., periodic structures
(𝑃1) and (𝑃2), and coupling junction (𝑃4)), two consecutive circumferential (resp. axial) stiffeners
being spaced with a length of 0.4 m (resp. an angle of 11.25∘). Besides, the conical head (𝑃3) has
a parabolic curvature and it does not have stiffeners.

Within the WFE framework, the periodic structures (𝑃1) and (𝑃2) are modeled by means of
𝑁1 = 30 and 𝑁2 = 10 identical substructures, respectively, as shown in Figure 4.8. The substruc-
tures and coupling junctions are meshed by means of quadrilateral Reissner-Mindlin shell elements
with six DOFs per node, i.e., translations in the 𝑥, 𝑦 and 𝑧 directions and rotations about the same
axes. Here, the total number of DOFs used to discretize the whole coupled system is 32,586. Each
substructure is meshed by means of 𝑛 = 288 DOFs over its left/right boundary, and 384 internal
DOFs. Also, the coupling junctions (𝑃3) and (𝑃4) are meshed by means of 3,174 and 2,724 DOFs,
respectively. Finall,y note that the coupling interface between the components (𝑃1) and (𝑃3) in-
volves 192 DOFs — this results from the fact that the conical head (𝑃3) does not have stiffeners —
while the coupling interfaces between the components (𝑃1) and (𝑃4), and between the components
(𝑃2) and (𝑃4), involve 288 DOFs, respectively.
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Figure 4.8: 3D aircraft fuselage-like structure composed of two periodic structures (𝑃1) and (𝑃2),
and two coupling junctions (𝑃3) and (𝑃4); FE model of a substructure (cylindrical shell with lon-
gitudinal and circumferential stiffeners) that is used to model the periodic structures.

The harmonic response of the coupled system is analyzed over a frequency band
𝛽𝑓 = [20 − 200] Hz that involves discrete frequencies that are equally spaced with a step
of 0.2 Hz.

Junction modeling

The CB strategy proposed in Section 4.2 is used to model the coupling junctions (𝑃3) and
(𝑃4). Again, a tolerance threshold 𝜖 = 1% is considered to carry out the selection of the fixed-
interface modes being involved by means of Equation (4.11). Recall that the classic selection strat-
egy consists in retaining the fixed-interface modes for which the eigenfrequencies are smaller than a
certain frequency limit, which, in the present case, is chosen as four times the maximum frequency
of the frequency band of interest (i.e., 800 Hz). The choice of this frequency limit is justified by
the fact that the coupled system under concern is rather complex — i.e, its geometry is locally het-
erogeneous, due to stiffeners and holes —, meaning that high order modes are likely to contribute
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to its dynamic behavior, even at low frequency. This classic selection strategy yields, respectively,
350 and 114 fixed-interface modes for the coupling junctions (𝑃3) and (𝑃4), as shown in Figures
4.9(a) and 4.10(a). On the other hand, the WFE-based CB strategy proposed in Section 4.2 enables
107 and 58 fixed-interface modes to be retained among those aforementioned modes, as shown in
Figures 4.9(b) and 4.10(b). Notice that high order junction modes are expected to contribute to
the system forced response, hence giving credit to the choice of the extended frequency limit (as
discussed previously). To summarize, it appears that the proposed selection strategy yields a large
decrease in the number of fixed-interface modes to be retained, which means subsequent computa-
tional time savings.
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Figure 4.9: Strategies used to select the fixed-interface modes of the coupling junction (𝑃3) oc-
curring in the fuselage-like structure: (a) classic strategy consisting in retaining the modes whose
eigenfrequencies are below four times the maximum frequency of the frequency band of interest
(this yields 350 modes); (b) WFE-based strategy proposed in Section 4.2 (this yields 107 modes).

Forced response computation

The FRF of the aircraft fuselage-like structure is assessed by means of the WFE-based DSM
and RM approaches depicted in Section 4.3. Recall that the periodic structures (𝑃1) and (𝑃2) (i.e.,
the stiffened cylindrical shells) are modeled by means of the WFE method (Chapter 3), while the
coupling junctions (𝑃3) and (𝑃4) (conical head and cylindrical part with doors) are modeled by
means of static modes and fixed-interface modes (Section 4.2). Here, the number of right/left-
going wave modes involved for modeling each periodic structure — i.e., which relates the number
of DOFs used to discretize the cross-section — is 𝑛 = 288, which appears to be large compared to
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Figure 4.10: Strategies used to select the fixed-interface modes of the coupling junction (𝑃4) oc-
curring in the fuselage-like structure: (a) classic strategy consisting in retaining the modes whose
eigenfrequencies are below four times the maximum frequency of the frequency band of interest
(this yields 114 modes); (b) WFE-based strategy proposed in Section 4.2 (this yields 58 modes).

the previous test case. The magnitude of the velocity in the vertical 𝑦-direction, at an excited node, is
analyzed over the frequency 𝛽𝑓 = [20−200] Hz (Figure 4.11(a)). Also, the relative error of the WFE
solutions is displayed in Figure 4.11(b). The relative error is expressed by Equation (4.21) when
qmeas denotes the vector of displacements/rotations at the excitation point. As it can be seen, the
WFE solutions perfectly agree with the FE results. The relative error of the WFE solutions appears
smaller than 6% over the whole frequency band, which fully validates the proposed approaches.

50 100 150 200
−75

−60

−45

−30

−15

Frequency (Hz)

V
el

oc
it

y 
(d

B
)

50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

Frequency (Hz)

R
el

at
iv

e 
er

ro
r 

(%
)

(a) (b)

Figure 4.11: FRF of the fuselage-like structure (a) and relative error, Eq. (4.21) (b): FE solution
(—–); WFE-based DSM approach (- - -); WFE-based RM approach (- - -).
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Again, the WFE-based approaches are compared with the conventional CB method when
each subsystem (periodic structure, coupling junction) is modeled by means of static modes and
fixed-interface modes. Here, the coupling junctions (𝑃3) and (𝑃4) are modeled by means of 350

and 114 fixed-interface modes, respectively, as explained earlier. Also, two procedures are investi-
gated to model the periodic structures (𝑃1) and (𝑃2), i.e.: (1) when the fixed-interface modes are
selected by means of the rule of thumb that consists in retaining those for which the eigenfrequen-
cies are smaller than four times the maximum frequency of the frequency band of interest — this
yields 1,133 fixed-interface modes for the periodic structure (𝑃1) and 350 fixed-interface modes
for the periodic structure (𝑃2); (2) when the number of fixed-interface modes is equal to that of the
right/left-going wave modes of each periodic structure — this yields 288 fixed-interface modes for
each periodic structure. The related FRFs are displayed in Figure 4.12(a), along with the relative
error, Equation (4.22) (Figure 4.12(b)). In addition, the elapsed times and total numbers of physi-
cal and generalized DOFs involved in performing the WFE-based approaches and CB methods are
listed in Table 4.2. As it can be seen, the WFE-based DSM and RM approaches outperform both
CB procedures in terms of computational times. Also, they appear to be more accurate compared
to the CB procedure (2), i.e., when the dimension of the basis of static modes and fixed-interface
modes is equivalent to that of the basis of wave modes. The solution provided by the CB proce-
dure (2) exhibits a relative error that reaches 29%, while the related elapsed time appears almost
50% greater than those involved by the WFE-based approaches. In other words, the CB method re-
quires a mode basis of large dimension to reach the convergence of its solution. Regarding the CB
procedure (1), the relative error is very small, but the related elapsed time appears tremendous, i.e.,
almost 300% greater than those required by the WFE-based approaches. A comparison between the
maximum relative errors and the elapsed times involved in the WFE and CB methods is proposed
in Figure 4.13. Again, it is clear that the WFE-based DSM and RM approaches constitute the best
compromise between accuracy and performance.

To summarize, the WFE-based DSM and RM approaches constitute two efficient numerical
tools for assessing the dynamic behavior of coupled systems that involve complex periodic struc-
tures. Also note that, in the present case, the elapsed time involved in the RM method is smaller
than that of the DSM method. This interesting feature has been underlined in Section 4.3.2 and
results from the fact that the size of the matrix (ℬR𝑔𝑙ℬ𝑇 ) in Equation (4.19) — i.e., 768 × 768 in
the present case — is significantly small compared to that of the matrix D𝑔𝑙

II in Equation (4.15),
which is 1,152 × 1,152. This highlights the capability of the proposed RM approach for treating
complex coupled systems with many DOFs.
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Figure 4.12: FRF of the fuselage-like structure (a) and relative error, Equation (4.22) (b): FE solu-
tion (—–); CB method that uses 1,133 and 350 fixed-interface modes to model the periodic struc-
tures (- - -); CB method that uses 288 fixed-interface modes to model the periodic structures (- -
-).
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Figure 4.13: Maximum relative errors (a), and elapsed times (b) involved regarding the fuselage-like
structure: (black) CB method that uses 1,133 and 350 fixed-interface modes to model the periodic
structures; (blue) CB method that uses 288 fixed-interface modes to model the periodic structures;
(red) WFE-based DSM approach; (green) WFE-based RM approach.

As a last advantage of the WFE-based approaches, the spatial distribution of the displace-
ment/rotation fields of periodic structures can be assessed without difficulty at a very small com-
putational cost. This is done by considering the vectors of nodal displacements/rotations on the
interfaces, between subsystems, and making use of the wave expansion in Equation (3.5). Then,
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Table 4.2: Total number of DOFs and elapsed times involved by the proposed approaches regarding
the aircraft fuselage-like structure.

Approach Total number of DOFs Elapsed time (s) Reduction (%)

FE 32,586 — —
CB (1,133 and 350 modes) 3,867 30,532 –

CB (288 modes) 2,960 11,404 63

DSM 2,085 7,577 75

RM 2,085 6,608 78

the vector of nodal displacements/rotations, on any substructure boundary 𝑘, is expressed as

q(𝑘) =
[︁
Φq𝜇

𝑘−1 Φ⋆
q𝜇

𝑁−𝑘+1
]︁ [︃ I Φ−1

q Φ⋆
q𝜇

𝑁

Φ⋆−1
q Φq𝜇

𝑁 I

]︃−1 [︃
Φ−1

q 0

0 Φ⋆−1
q

]︃[︃
q
(1)
L

q
(N)
R

]︃
. (4.23)

For instance, the displacement field (𝑦-direction) of the periodic structures (𝑃1) and (𝑃2),
at 123 Hz, is displayed in Figure 4.14. The WFE and FE solutions are shown in Figure 4.14. As
shown, the WFE-based approaches seem to be highly accurate for predicting the spatial dynamics
of the coupled system.
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Figure 4.14: Displacement field (real part, 𝑦-direction) of the periodic structures (𝑃1) and (𝑃2)
occurring in the fuselage-like structure, at 123 Hz: (a) FE solution; (b) WFE-based solution.
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Additional comparisons

Other simulations are carried out to highlight the efficiency of the proposed approaches fur-
ther. For this purpose, the approach proposed by Duhamel et al. (2006) is considered which pro-
vides an alternative WFE-based expression of the dynamic stiffness matrices of periodic structures.
Although it has never been applied to the study of coupled systems like those depicted in the cur-
rent work, the Duhamel’s approach may be considered here, which provides almost the same time
reduction as the proposed DSM approach. The interesting feature of the DSM and RM approaches
lies in the consideration of well-conditioned matrices which can be inverted without difficulties in
Equations (3.18) and (3.29), as explained in Sections 3.2.2 and 3.2.3. In comparison, the expression
of the dynamic stiffness matrix proposed by Duhamel et al. (2006) involves the inverse of a matrix
(see Equation (3.105)) whose condition number can be much higher, which may be the source of
computational issues. This is highlighted by plotting the condition numbers of those matrices (i.e.,
for the Duhamel’s, DSM and RM approaches) over the frequency domain, regarding for instance
the periodic structure (P2) (see Figure 4.15(a)). As it can be seen, the Duhamel’s approach yields a
condition number which is about 102 times higher than those in the DSM and RM approaches, as
expected. For the sake of clarity, the elapsed times involved in those three approaches are displayed
in Figure 4.15(b), where it is seen that the proposed RM approach gives the best reduction.
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Figure 4.15: Condition numbers of the matrices involved in the WFE-based modelings (a), and
related elapsed times (b): (blue) DSM approach; (red) RM approach; (green) Duhamel’s approach.

136



4.5 Conclusions

Two WFE-based approaches have been proposed for modeling complex periodic structures.
The consideration of sophisticated systems involving several periodic structures and arbitrary cou-
pling junctions follows from classic FE assembly procedures or domain decomposition techniques,
which make the proposed approaches quite simple of use. The CB method has been applied for
modeling the coupling junctions in terms of static modes and fixed-interface modes. A WFE-based
strategy was considered for efficiently selecting the fixed-interface modes being retained. This is
done by assessing how much they contribute to the system forced response. Such a strategy enables
the number of junction modes to be considerably reduced compared to the classic CB strategy that
consists in retaining those for which the eigenfrequencies are below a certain frequency limit. The
proposed WFE based DSM and RM approaches were applied to describe the harmonic response
of a simple structure (2D frame) and a complex system (3D aircraft fuselage-like structure) that
involves truly periodic structures. In both cases, the WFE-based approaches proved to be highly
accurate in comparison with the conventional FE method. Also, they yielded large computational
savings in comparison with the conventional CB method that makes use of fixed-interface modes
for modeling the periodic structures and coupling junctions.
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5 On the use of the WFE method for passive vibration control of
periodic structures

5.1 Overview

In this chapter, a strategy for passive vibration control of periodic structures is proposed
which involves adding a periodic array of simple resonant devices for creating band gaps. It is
shown that such band gaps can be generated at low frequencies as opposed to the well known Bragg
scattering effects when the wavelengths have to meet the length of the elementary cell of a periodic
structure. For computational purposes, the WFE method is employed, which provides a straightfor-
ward and fast numerical means for identifying band gaps through the analysis of dispersion curves.
Also, the WFE method constitutes an efficient and fast numerical means for analyzing the impact
of band gaps in the attenuation of the frequency response functions of periodic structures. In order
to highlight the relevance of the proposed approach, numerical experiments are carried out on a 1D
academic rod and on a 3D aircraft fuselage-like structure.

The contribution of this chapter is threefold. First, the effect of attaching a vibration absorber
or an array of periodic local resonators to a structure is investigated by means of a simple rod
model. Second, the feasibility of using periodic arrays of locally resonant devices for band gaps
generation and passive vibration control of periodic structures is shown. Moreover, the potential
of the use of a WFE-based approach in the design of periodic structures exhibiting band gaps at
targeted frequency bands is concerned. The developments presented in this chapter constitute part
of the research paper by Silva et al. (2015a) to be published in a Special Issue in Advances in
Aircraft and Spacecraft Sciences.

The chapter is organized as follows. In Section 5.2, a comprehensive numerical analysis is
carried out regarding a 1D homogeneous rod which is connected to periodic arrays of harmonic
oscillators or to a single vibration absorber. Additional experiments are brought in Section 5.3
regarding a 3D fuselage-like structure equipped with a periodic array of locally resonant devices.
Finally, conclusions are drawn in Section 5.4.
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5.2 Comparing local and global attenuation effects

Vibration absorbers are mass-spring or mass-spring-damper systems which are widely used
in the field of vibration control engineering. Since the early development of the theory of dynamic
vibration absorbers (Ormondroyd and Den Hartog, 2008), they have been applied in a wide range
of applications. In many situations, a single vibration absorber punctually attached to one structure
is considered so as to avoid the vibrations induced by some vibrational modes. The use of periodic
arrays of these locally resonant devices, along structures, is very recent (Thompson, 2008). It has
been first investigated by Kashina and Tyutekin (1990) who proposed the use of a set of undamped
resonators to reduce the longitudinal and flexural motions in beams and plates. This idea has re-
ceived new attention with the publication of the work of Liu et al. (2000), in which emphasis is
placed on exploring the impact of using periodic arrays of resonant devices on wave propagation
in artificial periodic composites known as phononic crystals. In such systems, band gaps can be
optimized by tuning the resonator’s natural frequency on the control procedure targeted one.

F F F

(a) (b) (c)

Figure 5.1: 1D homogeneous rod: (a) without resonant devices; (b) with a periodic array of resonant
devices; (c) with a single vibration absorber.

In this section, the decrease of the vibration levels produced by adding a periodic array of
resonant devices to a periodic structure is analyzed by means of the WFE method. The efficiency
in using such devices is highlighted through comparisons with the vibration levels produced by a
single vibration absorber. While a single vibration absorber produces local vibration attenuation, a
periodic array of small absorbers yields global vibration control. These phenomena are illustrated
for a simple 1D homogeneous rod structure as shown in Figure 5.1, whose material and geometric
properties are listed in Table 5.1. The left and right ends of the rod are, respectively, excited by a
unitary axial harmonic force and free. Here, the structure is either connected to a periodic array of
nine spring-mass systems (Figure 5.1(b)), or connected to one single spring-mass system (Figure
5.1(c)). The dispersion curves and the FRFs of the free and the coupled structure are computed
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using the WFE method (see Chapter 2). Within this framework, the substructure being considered
represents either a single rod cell (see Figure 5.1(a)), or a rod cell with a spring-mass resonant sys-
tem (see Figure 5.1(b)).Notice that each substructure is modeled by means of the spectral element
method (SEM) which provides an exact analytical expression of the dynamic stiffness matrix D

(Equation (3.18)) (Doyle, 1997; Xiao et al., 2012). Within the analytical framework, the displace-
ment field of a rod cell is described in a standard way by means of two longitudinal waves, i.e., two
propagating ones traveling in opposite directions along a one-dimensional system. The considera-
tion of mass-spring-damper systems is simply achieved through basic kinematic compatibility and
force equilibrium equation.

Table 5.1: Characteristics of the 1D homogeneous rod.

Parameter Value
Density (𝜌) 1200 kg/m3

Young’s modulus (𝐸) 3 GPa
Poisson’s ratio (𝜈) 0.3

Structural damping (𝜂) 0.01

Cross-section area (𝐴) 100 × 10−6 m2

Total length (𝐿) 4.5 m

Band gaps formed by Bragg scattering mechanisms occur in periodic structures when the
wavelength 𝜆 of a traveling wave is equal to twice the substructure length ∆ (Sigalas et al., 2005).
The corresponding frequency 𝑓ref, which is the frequency-edge of the first Bragg scattering band
gap, in the case of longitudinal wave propagation is given by

𝑓ref =
1

2∆

√︃
𝐸

𝜌
. (5.1)

To begin with, a periodic array of resonant devices (Figure 5.1(b)) is considered so that their res-
onance frequency is 0.5𝑓ref = 790.6 Hz. Two test cases are considered which involve a periodic
array whose total mass represents, respectively, 44% and 14% of that of the rod with the peri-
odic array. The related dispersion curves of the longitudinal wave traveling in the coupled rod are
displayed in Figure 5.2, along with the dispersion curve that concerns the uncoupled rod. Here
the non-dimensional wavenumber 𝛽∆ is analyzed as a function of the non-dimensional frequency
𝑓/𝑓ref, where 𝑓 = 𝜔/2𝜋. As it can be seen in Figure 5.2(a), the longitudinal wave in the rod
without resonant devices is always propagative, as expected. Notice that the imaginary part of 𝛽∆,
although small, is not equal to zero due to damping effects. Regarding the resonant devices, three
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band gaps (i.e., attenuation zones) occur in Figures 5.2(b) and (c): one is around 0.5𝑓ref while oth-
ers are around 𝑓ref and 2𝑓ref. It is seen that the first band gap occurs at the resonance frequency of
the spring-mass system, which is a characteristic of band gaps formed by local resonance mecha-
nism. On the other hand, other band gaps occur at multiples of the reference frequency and have
constant phase angle, which characterize them as band gaps of Bragg-type.

To highlight further those band gaps, the 2D maps of the frequency response functions (FRFs)
of the rod are shown in Figure 5.3. In these figures, the FRFs are plotted as functions of the position
along the length of the rod. Regarding Figure 5.3(a), the resonance frequencies of the rod are
clearly identified by red lines. Attenuation zones occur in Figures 5.3(b) and (c) in accordance with
the band gaps in Figures 5.2(b) and (c), which extend along the structure length except at 𝑥 = 0

m, i.e., in the vicinity of the excitation. The interesting feature when using a periodic array of
resonant devices is that it generates band gaps with global attenuation of the vibration levels (i.e.,
in frequency and space) along the structure. By comparing resonant devices of different masses
to each other, one may notice that higher mass fractions produce higher levels of attenuation and
larger attenuation zones (see Figures 5.3(b) and (c)).

Consider now the 2D maps of the FRFs of the rod with one single vibration absorber. The
results are shown in Figure 5.4 for different mass fractions (8%, 44% and 14%) and positions of the
vibration absorber (𝑥 = 𝐿/2 and 𝑥 = ∆/2). Those results are issued from a conventional analytical
approach that consists in modeling each rod component (before and after the resonator) by means
of a spectral element (Doyle, 1997) — i.e., by modeling its dynamic stiffness matrix by means
of two longitudinal waves propagating in right and left directions, respectively — and modeling
the resonator by means of a spring-mass system. As it can be seen, band gaps formed by Bragg
scattering mechanisms — i.e., for 𝑓/𝑓ref = 1 and 𝑓/𝑓ref = 2 — are not observed in any case,
as opposed to the periodic array of resonant devices even though in case when the added masses
involved are the same. Also, the attenuation zone remains restricted to a short frequency bandwidth
around 𝑓/𝑓ref = 0.5. Notice that the attenuation zone is local, i.e., concentrated at anti-resonance
points. Moreover, it depends on the locations of the vibration absorber and excitation point along
the structure. In contrast, due to their global attenuation effect, periodic arrays of resonant devices
have the potentiality to be used for excitations located at arbitrary location, i.e., which are not
necessarily known. This feature is clearly highlighted in Figure 5.5 in which the spatial variations
in the reduction of the vibration levels produced, respectively, by the vibration absorber and a
periodic array of resonant devices of same masses, are plotted at the target resonance frequency
𝑓 = 0.5𝑓ref.
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Figure 5.2: Dispersion curves of the longitudinal wave in the homogeneous rod: (a) without reso-
nant devices; (b) with a periodic array of resonant devices composed of 9 resonators with a mass
ratio of 44%; (c) with a periodic array of resonant devices composed of 9 resonators with a mass
ratio of 14%. (blue color) real part of 𝛽∆; (red color) imaginary part of 𝛽∆.
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Figure 5.3: 2D maps of the FRF (in dB) of the homogeneous rod: (a) without resonant devices; (b)
with a periodic array of resonant devices composed of 9 resonators with a mass ratio of 44%; (c)
with a periodic array of resonant devices composed of 9 resonators with a mass ratio of 14%.

144



Normalized Frequency

P
o

si
ti

o
n

 (
m

)

 

 

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 −200

−150

−100

−50

F

(a)

Normalized Frequency

P
o

si
ti

o
n

 (
m

)

 

 

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 −200

−150

−100

−50

F

(b)

Normalized Frequency

P
o

si
ti

o
n

 (
m

)

 

 

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 −200

−150

−100

−50

F

(c)

Figure 5.4: 2D maps of the FRF (in dB) of the homogeneous rod with one vibration absorber: (a)
mass fraction of 8%, location at 𝑥 = 𝐿/2; (b) mass fraction of 44%, location at 𝑥 = 𝐿/2; (c) mass
fraction of 14%, location at 𝑥 = ∆/2.
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Figure 5.5: Spatial variations in the reduction of the vibration levels at 𝑓 = 0.5𝑓ref = 790.6 Hz:
(—) periodic array of resonant devices with 9 resonators and mass fraction of 44%, (- - -) vibration
absorber located at 𝑥 = ∆/2 and with a mass fraction of 44%.

5.3 Tuning local resonators for vibration attenuation in a 3D aircraft fuselage-like
structure

5.3.1 Problem description

In this section, one aims at showing that important reduction of the vibration levels of com-
plex periodic structures can be achieved through the use of a lightweight periodic array of resonant
devices whose parameters are adequately tuned. The periodic structure that is considered here rep-
resents a coarse approximation of a 3D aircraft fuselage-like structure, consisting in a cylindrical
thin shell with axial stiffeners (stringers) and circumferential stiffeners (frames). Those stiffeners
are periodically distributed over the cylinder, two consecutive circumferential (resp. axial) stiff-
eners being spaced of 0.4 m (resp. of 11.25∘). The material and geometric characteristics of the
stiffened cylindrical shell are listed in Table 5.2.

Within the framework of the WFE method (Chapter 2), a substructure is considered as shown
in Figure 5.6(b), which consists in a quarter of the stiffened cylindrical shell with a length ∆ = 0.4.
Symmetry boundary conditions are considered so as to model the structure along the whole circum-
ference. Regarding the substructure, both cylinder and stiffeners are meshed by means of quadri-
lateral Reissner-Mindlin shell elements with six DOFs per node, i.e., translations in the 𝑥, 𝑦 and
𝑧 directions and rotations about the same axes. Here, the total number of DOFs used to discretize
the substructure is 1,578, with 246 DOFs over the left/right boundary and 1086 internal DOFs. The
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Table 5.2: Characteristics of the stiffened cylindrical shell.

Parameter cylindrical shell frames stringers
Thickness (𝑡) 0.001 m 0.0012 m 0.005 m
Radius (𝑅) 2 m − −
Height (ℎ) − 0.10 m 0.05 m
Density (𝜌) 2700 kg/m3

Young’s modulus (𝐸) 70 GPa
Poisson’s ratio (𝜈) 0.3

Loss factor (𝜂) 0.01

whole periodic structure is modeled by means of 𝑁 = 40 identical substructures connected along
the 𝑥-direction (see Figure 5.6(c)). It is excited by unitary harmonic radial and axial forces and
moments which are applied on the left end at 𝜃 = 45𝑜, and it is free from excitations on its right
end.

(a) (b)

(c)

Figure 5.6: FE model of the 3D aircraft fuselage-like structure: (a) unit cell; (b) substructure; (c)
whole structure.

Periodic arrays of resonant devices are considered so as to attenuate the vibration levels
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throughout the whole structure. The motivation behind the present study is to design lightweight
resonant devices which may be effectively attached to a real aircraft fuselage. In the present study,
each resonant device is modeled as a beam with a concentrated mass, without rotary inertia, on
one end and whose other end is connected to the stringers and frames of the periodic structure, as
shown in Figure 5.6(a). Here, the first flexural resonances of the resonators, which are attached to
the frames and stringers, are assigned to be 197 Hz — which corresponds to a resonance frequency
of the whole periodic structure — and 275 Hz, respectively. The characteristics of the resonators
are listed in Table 5.3. Notice that the added mass induced by the periodic array of these resonant
devices represents about 12.5% of the total mass to the original periodic structure, i.e., it remains
small. Within the WFE framework, a new substructure is thus being considered which takes into
account the FE modeling of the resonant beams. This yields 3,114 DOFs for modeling the sub-
structure, with 246 DOFs over the left/right boundary and 2,622 internal DOFs. By considering the
symmetry boundary conditions, this makes 𝑛 = 240 right-going and left-going wave modes which
are to be computed by means of the WFE method.

Table 5.3: Characteristics of resonant devices.

Parameter mounted on frames mounted on stringers
Beam cross-section area (𝐴𝑟𝑙) 5.4359 mm2 7.5878 mm2

Beam length (𝐿𝑟𝑙) 0.03 m
Beam density (𝜌𝑟𝑙) 1400 kg/m3

Beam Young’s modulus (𝐸𝑟𝑙) 70 GPa
Beam Poisson’s ratio (𝜈𝑟𝑙) 0.3

Beam loss factor (𝜂𝑟𝑙) 0.01
Concentrated mass (𝑚𝑟𝑙) 0.0125 kg

5.3.2 Numerical analysis and discussion

The dispersion curves of the periodic structure are assessed by means of the WFE method as
shown in Figure 5.7. Regarding Figure 5.7(a) (without resonant devices), it should be noticed that
one particular wave mode which propagates along the 3D aircraft fuselage-like structure becomes
evanescent between 230 Hz and 240 Hz, which characterizes a band gap phenomenon. This might
be explained by the fact that the circumferential stiffeners (frames) exhibit some flexural vibration
modes in this frequency band. Regarding Figure 5.7(b) (with resonant devices), it is seen that the
added periodic array of resonant devices yields large evanescent parts around the target frequencies
197 Hz and 275 Hz, which means that the propagation of waves is strongly attenuated.
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Also, the 2D maps of the FRFs of the periodic structure are shown in Figure 5.8. Here, the
RMS levels of the radial, tangential and axial displacements (over each cross-section between two
consecutive substructures) are displayed as functions of the frequency and position along the struc-
ture. As it can be seen, the consideration of the periodic array of resonant devices induces a large
decrease of the vibration levels around the target frequency 197 Hz, as expected. Vibration decrease
is also observed around the other target frequency 275 Hz, even though it does not correspond to a
resonance frequency of the periodic structure. The attenuation between the FRFs of the controlled
and uncontrolled structure are plotted in Figure 5.8 in dB. Such a decrease in the vibration levels
appears to be widely spread over the length of the structure, even near the excited cross-section.
This phenomenon is clearly highlighted in Figures 5.9-5.10, which show the spatial distributions of
the structure displacements at 197 Hz and 275 Hz. This provides a clear evidence that the magnitude
of the whole displacement field of the structure can be strongly decreased.
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Figure 5.7: Dispersion curves of the waves traveling along the 3D aircraft fuselage-like structures:
(a) without resonant devices; (b) with the periodic array of resonant devices. (blue color) real part
of 𝛽𝑗∆; (red color) imaginary part of 𝛽𝑗∆.

It is worth pointing out that the proposed WFE approach makes use of a full wave mode
bases to model the aircraft fuselage-like structures, i.e., they do not invoke either basis truncation
processes or the reduction of the number of interface DOFs. In other words, the WFE method
provides, in theory, the same level of accuracy as the FE method for modeling periodic structures.
Besides, the WFE method improves the computational efficiency as the FE model of just a single
substructure needs to be modeled. Further evidence of the efficiency of the WFE method is shown
by comparing the problem size involved in the conventional FE method and in the WFE method.
Considering the present case, the corresponding FE model of the structure with resonant devices
would have involved 114,966 DOFs, compared to 3,144 DOFs with the WFE method.
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Figure 5.8: RMS levels of the radial (a,b), tangential (c,d) and axial (e,f) displacements of the
structure without devices (left) and with resonant devices (right).
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Figure 5.9: Attenuation between the FRFs of the controlled and uncontrolled structure (in dB): (a)
radial displacements; (b) tangential displacements; (c) axial displacements.
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Figure 5.10: Spatial distribution of the total displacement of the periodic structure (in dB), at 197
Hz: (a) without resonant devices; (b) with resonant devices.
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Figure 5.11: Spatial distribution of the axial displacement of the periodic structure (in dB), at 275
Hz: (a) without resonant devices; (b) with resonant devices.
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5.4 Conclusions

In this chapter, a passive vibration control of periodic structures has been analyzed which
involves considering periodic arrays of simple resonant devices. The WFE method has been used
for this purpose which constitutes a fast and efficient means for assessing the dispersion curves
and FRFs of periodic structures. It was been shown that the consideration of lightweight periodic
arrays of resonant devices yields large and global decreases of the vibration levels, even at low
frequencies. Such resonant devices have proved to be relevant for treating large-sized complex 3D
structures such as aircraft fuselages.
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6 General conclusions

Wave-based approaches have been used for a long time in the dynamic analysis of structures.
However, the widespread use of finite element techniques has promoted the dominance of modal-
based approaches. Although of simple use, these approaches may require excessive computational
resources (time and memory) for the analysis of large complex structures, specially as the frequency
rises. In this thesis, it was shown that it is possible to combine the benefits of wave-based and
element-based approaches, and develop efficient wave-based superelement models for the forced
response analysis of periodic structures and coupled systems.

The numerical approaches proposed here are based on the WFE method. Within the frame-
work of this thesis, this method was used to provide a numerical wave description for the periodic
structures under consideration. A summary of the main formulations for the WFE-based eigenvalue
problem was presented. For the case of a 3D solid waveguide, it was shown that the eigenvalue
problem that involves symmetric matrices provides the best compromise between accuracy and
computational time.

From the numerical wave basis provided by the WFE method, original dynamic stiffness
and receptance matrices (DSM and RM) of periodic structures were formulated. The interesting
feature here is that, within the WFE framework, the receptance matrix is expressed without need
of explicitly inverting the DSM. These WFE-based matrices have been shown to provide very
accurate solutions for the forced response analysis of 3D beam-like and fuselage-like structures.
They have also been shown to provide faster computations than the conventional CB method. In
one of the cases studied in Chapter 3, more than 90% of the computational time was saved. Indeed,
the advantages of the proposed DSM and RM approaches are better highlighted when sufficiently
high frequency effects are analyzed.

With the aim of further improving the performance of WFE-based approaches, a strategy for
building reduced-order WFE-based superelement models was proposed. It is assumed that the prob-
lem boundary conditions are known a priori. Hence, the strategy allows the selection of the most
contributing wave modes to the structure response and uses them to formulate reduced WFE-based
eigenproblem and receptance matrix. The originality here lies in proposing a complete procedure
for computing accurate free and forced responses of periodic structures in terms of a reduced set of
wave modes. The results obtained with this strategy have shown to be as accurate as the WFE-based
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approach which makes use of the full basis of wave modes, and provide greater computational time
savings. In addition, it was shown that the number of kept wave modes increases as the excitation
load becomes more spatially concentrated. It was shown that in the limit, i.e., when a punctual force
is applied, the full basis of wave modes must be kept.

The development of a reduced-order WFE-based approach was also motivated by the possi-
bility of building numerical spectral elements. At first, this issue was addressed within the frame-
work of the WSFEM (Arruda and Nascimento, 2008). This method is presented in general form,
and, then, used to formulate the spectral element of a Timoshenko beam. The use of the numerical
spectral element of a Timoshenko beam to model a 3D solid waveguide shows a very good agree-
ment with solutions provided by the analytical SEM and the WFE-based DSM approach that makes
use of the full basis of wave modes at low frequencies. Also, compared to the latter, it also provides
a great reduction in computational time. Moreover, by adding a second criterion for the selection of
wave modes, it is possible to use the reduced-order WFE-based strategy to build spectral elements
of arbitrary order. In other words, the frequency limit of the numerical spectral model increases
with the number of kept wave modes.

The forced response analysis of coupled systems involving periodic structures and arbitrarily-
shaped coupling elastic junctions has also been addressed in this thesis. It was shown that su-
perelement models of periodic structures and coupling elastic junctions can be assembled through
a classic finite element assembly procedure — i.e., the dynamic stiffness method — or a domain de-
composition technique — for instance, the receptance method, which involves the use of Lagrange
multipliers. The CB method enhanced with a WFE-based criterion to select the most contributing
fixed-interface modes has been used to express the dynamic stiffness matrix of coupling elastic
junctions. The two WFE-based approaches proposed in this thesis (DSM and RM) were applied
to compute the forced responses of a 2D frame structure and a 3D aircraft fuselage-like structure.
The latter is a complex coupled system involving periodic structures with heterogeneities. In both
cases, the DSM and RM approaches showed to be accurate compared to conventional FE solutions,
and more efficient than the classic CB method, as they yielded considerable computational time
savings. The potential of the WFE-based RM approach for modeling large coupled systems was
also highlighted.

The WFE-based approaches have also been used in the investigation of an interesting physical
phenomenon in periodic structures, i.e., the existence of frequency bands in which waves cannot
propagate: the band gaps. Here, the use of the WFE method was motivated by: (i) the possibility
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of predicting band gaps through free wave propagation analysis — i.e., by means of the dispersion
curves —, and (ii) the possibility of computing forced responses of finite periodic structures. The
potential of the attachment of lightweight periodic arrays of resonant devices to large-sized complex
3D structures such as an aircraft fuselage-like structure has been shown.

6.1 Future work

In the following, topics which appear as future prospects for continuation of the research
developed in this thesis are listed.

∙ Perform a broad study on the approximation level of wavenumbers and wave mode shapes
computed by means of the WFE method as a function of the discretization of the substructure
into finite elements. The issue of considering internal nodes within a substructure modeled
with solid finite elements has been addressed in this thesis. However, the effect of the con-
sideration of an increasing number of internal elements and the impact on the performance
of the approach have not yet been addressed.

∙ Improve the performance of the numerical approaches proposed in this thesis by making use
of parallel programming, sparse representation, and code optimization.

∙ Extend the WFE-based approaches proposed in this thesis to describe vibroacoustic periodic
systems, i.e., structures in interaction with internal and external acoustic fields. During this
thesis, the formulation of WFE-based superelement models of periodic structures with inter-
nal fluid has been investigated, but it has not been included in the thesis because it is still
under development.

∙ Extend the WFE-based approach to multiphysics problems with periodic symmetry, for in-
stance, to study the acoustic-optic coupling in phoxonic structures — i.e., periodic structures
that can simultaneously control the propagation of phonons and photons—, or the thermo-
mechanical coupling in nanostructures.

∙ Formulate WFE-based DSM and RM superelement models for structures with two and three-
dimensional periodicities. In this thesis, only the case of structures which are periodic along
one direction has been addressed.
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∙ Investigate the formulation of the WFE method for quasiperiodic structures. Within the
framework of the WFE method, Duhamel (2012) studied for the first time the propagation
of waves in waveguides whose section sizes increase proportionally to the distance from an
origin. However, he addressed only the case of acoustic radiation in the exterior domain of
convex bodies. To the author’s knowledge, the case of a finite quasiperiodic structure has not
yet been addressed.

∙ Compare the reduced-order models built by means of the WFE-based strategy proposed in
this thesis with spectral elements derived from higher-order analytical theories. Here, it has
been shown that numerical spectral elements of arbitrary-order can be built and their forced-
responses were compared to the response of a Timoshenko beam model. However, it would
be interesting to investigate the convergence rate of the reduced-order models proposed in
this thesis with respect to analytical solutions and alternative numerical strategies such as
Carrera unified formulation (Carrera, 2003).

∙ Propose strategies to couple reduced-order superelement models of periodic structures de-
scribed in terms of generalized coordinates with models of coupling junctions modeled by
means of SEM, FEM or BEM,

∙ Investigate the use of WFE-based DSM and RM approaches in optimization and uncertainty
quantification analyses. In these cases, either the best configuration among a set of available
possibilities or confidence levels of the system response are sought. As they are computa-
tionally intensive analyses, they require efficient resolution methods, such as the WFE-based
approaches proposed in this thesis. This is because the WFE-based model size is consider-
ably reduced with respect to the whole structure model, which allows the simulation of more
complex structures or dynamics at a lower computational cost.

∘ One of the potential applications is the the use of WFE-based approaches in topological
optimization to design structures with optimal band gaps at specific frequencies, and
the desired vibration reduction.

∘ The consideration of uncertainties in modeling parameters within the framework of the
WFE method is an open research field, as in this case the periodic assumption breaks
down.

∙ The use of WFE-based approaches for describing the dynamics of structures made of com-
plex materials which do not follow the theory of linear elasticity as, for instance, nanostruc-
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tures modeled using non-local elasticity theories, periodic materials with nonlinear constitu-
tive laws. In this thesis, only linear elastic materials have been considered.

∙ Investigate the use of the WFE-based approaches proposed in this thesis for structural dam-
age identification. This is motivated by the possibility of building reduced-order numerical
spectral elements and getting accurate frequency response functions from them. In this case,
only those wave modes which interact with the damage can be used to construct the WFE-
based superelement model.
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ANNEXE A – Craig-Bampton method

The Craig-Bampton method is shortly recalled hereafter. More details can be found in (Craig
and Bampton, 1968b). In this framework, a structure (𝑆𝑠) is modeled by means of static and fixed-
interface modes.

Figure A.1: Illustration of a general structure modeled by means of the Craig-Bampton method: (—
) boundary interface subjected to external excitation, (—) boundary interface subjected to kinematic
constraints, (—) coupling interface.

Consider a general structure which is meshed with conventional finite elements. The DOFs
may be classified into internal or boundary DOFs. Here, the boundary DOFs relate the coupling
interfaces, the DOFs subjected to external excitation, and those subjected to kinematic constraints.
The equilibrium equations of the structure are expressed as

D(𝑠)q(𝑠) = F(𝑠), (A.1)

where D(𝑠) = −𝜔2M(𝑠) + (1 + i𝜂(𝑠))K(𝑠) is the dynamic stiffness matrix of the structure, with
K(𝑠) and M(𝑠) being the stiffness and mass matrices of the structure, and 𝜂(𝑠), the loss factor of the
structure, while q(𝑠) and F(𝑠) are, respectively, the vectors of displacements/rotations and forces/-
moments, which are of the form

q(𝑠) =

[︃
q
(𝑠)
B

q
(𝑠)
I

]︃
, F(𝑠) =

[︃
F

(𝑠)
B

F
(𝑠)
I

]︃
, (A.2)

where the subscripts I and B relate the internal and boundary DOFs, respectively.
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Within the framework of the CB method, the total displacement vector is written as a sum of
a static part (q(𝑠)

st ) and a dynamic part (q(𝑠)
d ). The static part follows from Guyan reduction, which

allows one to write

q
(𝑠)
st =

[︃
I

Xst

]︃
q
(𝑠)
B , (A.3)

where Xst is the matrix of static modes, defined as Xst = −
(︁
K

(𝑠)
II

)︁−1

K
(𝑠)
IB . The dynamic part of

the displacement vector consists in writing the internal displacement DOFs as a linear combination
of a reduced set of constraint or fixed-interface normal modes, as follows

q
(𝑠)
d =

[︃
0

X̄el

]︃
�̄� (A.4)

which are obtained by solving the eigenvalue problem K
(𝑠)
II (Xel)𝑗 = 𝜔2

𝑗M
(𝑠)
II (Xel)𝑗 , where {𝜔𝑗}𝑗

is the set of eigenpulsations. As only a subset of the fixed-interface modes is considered, — in
general, those modes with eigenpulsations 𝜔𝑗 in the frequency band [0, 𝑚𝐶𝐵 × 𝜔𝑚𝑎𝑥], where 𝜔𝑚𝑎𝑥

is the maximum angular frequency within the frequency range of interest and 𝑚𝐶𝐵 is a factor
which depends on the problem under study (usually 𝑚𝐶𝐵 = 2, as a rule of thumb) — it provides
approximate solutions which are expected to be sufficiently accurate. Using Equations (A.3) and
(A.4), the total displacement vector is expressed as

q(𝑠) = q
(𝑠)
st + q

(𝑠)
d = T̄p̄, (A.5)

where

T̄ =

[︃
I 0

Xst X̄el

]︃
(A.6)

is the transformation matrix and

p̄ =

[︃
q
(𝑠)
B

�̄�

]︃
(A.7)

is the vector of component generalized coordinates, which consists in boundary DOFs (q(𝑠)
B ) and a

selected set of generalized DOFs (�̄�). Using the expression in Equation (A.5) into Equation (A.1)
and left multiplying the resultant system of equations by T𝑇 , it yields[︃

D
(𝑠)
st−st D̄

(𝑠)𝑇
el−st

D̄
(𝑠)
el−st D̄

(𝑠)
el−el

]︃[︃
q
(𝑠)
B

�̄�

]︃
=

[︃
F

(𝑠)
B + X𝑇

stF
(𝑠)
I

X̄𝑇
elF

(𝑠)
I

]︃
, (A.8)
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where

D
(𝑠)
st−st = − 𝜔2(X𝑇

stM
(𝑠)
IIX𝑠𝑡 + M

(𝑠)
BIX𝑠𝑡 + X𝑇

𝑠𝑡M
(𝑠)
IB + M

(𝑠)
BB ) + (1 + i𝜂(𝑠))(K

(𝑠)
BIXst + K

(𝑠)
BB ),

(A.9a)

D̄
(𝑠)
el−st = − 𝜔2X̄𝑇

el(M
(𝑠)
IIXst + M

(𝑠)
IB ), (A.9b)

D̄
(𝑠)
el−el =diag

{︀
𝛾𝑗(−𝜔2 + �̄�2

𝑗 (1 + i𝜂(𝑠)))
}︀
𝑗
. (A.9c)

In these equations, {𝛾𝑗}𝑗 denote the modal masses (𝛾𝑗 = (X̄el)
𝑇
𝑗 M

(𝑠)
II (X̄el)𝑗 ∀𝑗).

Alternatively, the equilibrium equations in Equation (A.8) can be written in terms of the
boundary DOFs only, as follows

D̄(𝑠)q
(𝑠)
B = F

(𝑠)
B − D̄

(𝑠)𝑇
el−stD̄

(𝑠)−1
el−elX̄

𝑇
elF

(𝑠)
I , (A.10)

where
D̄(𝑠) = D

(𝑠)
st−st − D̄

(𝑠)𝑇
el−stD̄

(𝑠)−1
el−elD̄

(𝑠)
el−st. (A.11)
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APPENDIX A – Implemented codes

A.1 Codes for FE data extraction

A.1.1 ANSYS® code

filename = solid2

filename_K = solid2_K

filename_M = solid2_M

filename_MAPP = solid2_MAPP

h = 0.003

w = 0.004

d = 0.004/36

Nh = 6 !* Nb of elements along y/z-axes

Nd = 1 !* Nb of elements along x-axis

rho = 7800

Young = 210e9

Poisson = 0.3

/FILNAME,filename

/PREP7

!* Element type

et,1,45

!* Material properties

mp,ex,1,Young

mp,nuxy,1,Poisson

mp,dens,1,rho

!* Geometric properties

block,0,d,0,h,0,w

!* Building substructure model

LSEL,S,LENGTH,,h

LSEL,A,LENGTH,,w

CM,LINE1,LINE

LESIZE,LINE1,,,Nh

LSEL,ALL

CMDELE,LINE1

LSEL,S,LENGTH,,d
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CM,LINE2,LINE

LESIZE,LINE2,,,Nd

LSEL,ALL

CMDELE,LINE2

!* Mesh

VMESH,ALL

NUMMRG,ALL

NUMCMP,ALL

FINISH

!***************************************************************!

!* Solution

/SOLU

ANTYPE,MODAL

MODOPT,LANB,20,1,10000,

WRFULL,1

SOLVE

FINISH

!***************************************************************!

!* Getting matrices

/AUX2

FILE,solid2,FULL

HBMAT,filename_K,,,ASCII,STIFF,NO,NO

HBMAT,filename_M,,,ASCII,MASS,NO,NO

HBMAT,filename_MAPP,,,ASCII,MASS,NO,YES

NLIST,ALL,,,COORD,NODE

!***************************************************************!

A.1.2 MATLAB® codes

1. Code: Ansys2mat-HBMAT-SYM.m

% Ansys2mat_KMC ---> Converts Ansys output file of stiffness and mass

% matrices to MAT-file of Matlab

%

% - For symmetric problems: one physics (structural or acoustic)

$\%$

%Using HB_to_MAT converter

%

% This program converts ANSYS matrices to matlab

% 1 - First, it asks for the mapping file (obtained with the command HBMAT

% in ANSYS while extracting stiffness or mass matrices)
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% 2 - Second,

%

% COMMANDS IN ANSYS:

% AFTER MODAL ANALYSIS SOLUTION

% \AUX2

% NLIST,NODE1,NODE2,NINC,LCOORD (blank or COORD (just XYZ coord)),SORT1

%(sorting process),SORT2,SORT3,KINTERNAL

% SAVE MANUALLY THE OPENED CHART

%

% FILE,FILENAME(RESULTS),EXT(FULL),

% HBMAT,FILENAME(FOR MATRIX FILE),EXT(DEFAULT .MATRIX),,ASCII,MATRIX TYPE

% (STIFF, MASS, or DAMP),RIGHT HAND SIDE(YES** or NO),MAPPING FILE (YES or

% NO)

%

%

% MAPPING FILE: presents matrix order (LINE NB, NODE NB, DOF)

% SYMMETRIC MATRICES: Just lower triangular part is extracted

% UNSYMMETRIC MATRICES: Full TRANSPOSED matrices are extracted

%

% EXAMPLE (MOST COMMON):

% NLIST,ALL,,,COORD,NODE

% FILE,TEST,FULL,

% HBMAT,M_TEST,,,ASCII,MASS,NO,YES

% HBMAT,K_TEST,,,ASCII,STIFF,NO,NO

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

close all

fclose all

clc

% addpath(’C:\Users\Priscilla_2\Documents\MATLAB\HBtoMATLAB\’);

Data=1:64;Data=(Data’*Data)/64;

headt=[’DMC/FEM/UNICAMP’];

message=strvcat(’ Ansys2Mat_KMC ’,...

’using HB_to_MAT converter’,...

’revised by Priscilla B. Silva’);

msgbox(message,headt,’custom’,Data,hsv(64),’Modal’)

clear Data

[FileInput,pathname]=uigetfile(’*.*’, ’Input FileName for MAPPING file[HB-file]’);

if FileInput==0

clc;

flag1=0;

return;

else

flag=1;

end

dir_name=[pathname FileInput];

[fid]=fopen(dir_name,’r’);
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frewind(fid);

close

prompt={’Output-Data FileName for nodal coordinates[MAT-file]: ’};

titlm=’Enter required data’;

lineNo=1;

def={’Ansys3D_data’};

FileOut=inputdlg(prompt,titlm,lineNo,def);

FileOut=FileOut{1};

if isempty(FileOut);

break;

return;

end

clear prompt def titlm lineNo

close

while feof(fid)==0;

job=fgetl(fid);

data=textscan(fid,’%f %f %s’);

mapDOF = [data{1,1} data{1,2}];

end

fclose(fid);

nbDOF = size(mapDOF,1);

L_inc = zeros(nbDOF);

true_nodes = unique(mapDOF(:,2));

nbnode = length(true_nodes);

dof_pos = 0;

for i1 = 1:nbnode

ind1=find(mapDOF(:,2)==true_nodes(i1));

nbdof = length(ind1);

L_inc(ind1,dof_pos+(1:nbdof)) = eye(nbdof);

dof_pos = dof_pos+nbdof;

end

[FileInput,pathname]=uigetfile(’*.*’, ’Input nodal coordinate data file’);

if FileInput==0

clc;

flag1=0;

return;

else

flag=1;

end

dir_name=[pathname FileInput];

[fid]=fopen(dir_name,’r’);

frewind(fid);

close

datai = [];

while feof(fid)==0;

job=fgetl(fid);
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if strcmp(job,’ NODE X Y Z’) ...

|| strcmp(job,’NODE X Y Z’)

data=fscanf(fid,’%f’);

datai = [datai; data];

end

end

fclose(fid);

cord_xyz=(reshape(datai,4,length(datai)/4))’;

prompt={’Input FileName for mass matrix[HB-file]:’};

titlm=’Enter required data’;

lineNo=1;

filename=inputdlg(prompt,titlm,lineNo);

filename=filename{1};

% M_ini = hb_to_msm(filename);

newfile=newHBMAT(filename);

M_ini = readHBMAT(newfile);

prompt={’Input FileName for stiffness matrix[HB-file]:’};

titlm=’Enter required data’;

lineNo=1;

filename=inputdlg(prompt,titlm,lineNo);

filename=filename{1};

% K_ini = hb_to_msm(filename);

newfile=newHBMAT(filename);

K_ini = readHBMAT(newfile);

lowK = tril(K_ini,-1);

K1 = lowK+lowK.’+diag(diag(K_ini));

K2 = (K1+K1.’)/2;

lowM = tril(M_ini,-1);

M1 = lowM+lowM.’+diag(diag(M_ini));

M2 = (M1+M1.’)/2;

K=(L_inc.’*K2*L_inc);

M=(L_inc.’*M2*L_inc);

eval([’save ’ FileOut ’ cord_xyz K M nbnode nbdof’]);

close all

clc

2. Code: ListDOF-solid.m

clear all

close all

fclose all

clc
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%% FE Model (Solid model)

data_file = ’Ansys3D_solid2_data’;

print_file = ’id_solid5_data.mat’;

% Extracting matrices from FE model

% file containing K,M,C & other data of slice modeled in ANSYS

load(data_file);

% Obtaining Global Kg,Mg,Cg (Different from K,M,C if there are constrained DOFs)

xcord=cord_xyz(:,2);

ycord=cord_xyz(:,3);

zcord=cord_xyz(:,4);

minx = min(xcord);

maxx = max(xcord);

miny = min(ycord);

maxy = max(ycord);

minz = min(zcord);

maxz = max(zcord);

Ls = maxx - minx; % Slice Length

DOF_node = nbdof;

Cg=zeros(nbnode*DOF_node);

Kg = K;

Mg = M;

% This is because periodic structure has been built in the negative part of

% x-axis

IL=intersect(find(xcord>minx-1e-5),find(xcord<minx+1e-5)); % junction - index of nodes at Left

IR=intersect(find(xcord>maxx-1e-5),find(xcord<maxx+1e-5)); % junction - index of nodes at Right

% Left Nodes

NCord1=unique(ycord(IL)); % No. of different values of x-coordinate

NCord2=unique(zcord(IL)); % No. of different values of y-coordinate

NodesIn1=length(NCord1); % No. of divisions in x-coordinate

NodesIn2=length(NCord2); % No. of divisions in y-coordinate

I13L=[];

for i1=1:NodesIn1;

I11=find(ycord(IL)==NCord1(i1));

[lixo,I12]=sort(zcord(IL(I11)));

I13L=[I13L ; IL(I11(I12))];

end

L_nodes=I13L;

cordL = cord_xyz(L_nodes,1:4);

% Right Nodes

NCord1=unique(ycord(IR)); % No. of different values of y-coordinate

NCord2=unique(zcord(IR)); % No. of different values of z-coordinate

NodesIn1=length(NCord1); % No. of divisions in y-coordinate

NodesIn2=length(NCord2); % No. of divisions in z-coordinate
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I13R=[];

for i2=1:NodesIn1;

I11=find(ycord(IR)==NCord1(i2));

[lixo,I12]=sort(zcord(IR(I11)));

I13R=[I13R ; IR(I11(I12))];

end

R_nodes=I13R;

cordR = cord_xyz(R_nodes,1:4);

L_DOFs=[]; % DOFs at LEFT (x=0)

R_DOFs=[]; % DOFs at RIGHT (x=L)

% LEFT DOFs

for i1=1:length(L_nodes);

Node=L_nodes(i1);

L_DOFs=[L_DOFs (Node-1)*DOF_node+(1:DOF_node)];

end

% RIGHT DOFs

for i2=1:length(R_nodes);

Node=R_nodes(i2);

R_DOFs=[R_DOFs (Node-1)*DOF_node+(1:DOF_node)];

end

% INTERNAL DOFs

I_nodes=(setxor(cord_xyz(:,1),[L_nodes’ R_nodes’]))’; % INTERNAL node numbers

I_DOFs=[]; % internal DOFs (not left & not right)

for i=1:length(I_nodes);

Node=I_nodes(i);

I_DOFs=[I_DOFs (Node-1)*DOF_node+(1:DOF_node)];

end

cordI = cord_xyz(I_nodes,1:4);

cord = [cordL; cordR; cordI];

dofL=length(L_DOFs);

% save data

save(print_file,’dofL’,’Mg’,’Kg’,’L_DOFs’,’R_DOFs’,’I_DOFs’,’cord’);
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APPENDIX B – Reduced-order WFE method: alternative scheme

The reduced order procedure can be either applied to the dynamic equilibrium system of
equations (Equation (2.1)) or directly to the state space formulation (Equation (2.8)). In the former
case, the displacement/rotation components of the selected right-going wave mode shapes are used
to express a transformation matrix T̃, as follows

T̃ = orth
[︁
ℜ (Φq𝑘(𝜔ref

𝑖 )) ℑ (Φq𝑘(𝜔ref
𝑖 ))

]︁
. (B.1)

It is used to write the vector of displacements/rotations, i.e. the physical DOFs, at the left end (or at
the right end) of a substructure in terms of a condensed vector of generalized DOFs of size 𝑛𝑘 × 1,
as follows

q
(𝑘)
L = T̃q̃

(𝑘)
L , q

(𝑘)
R = T̃q̃

(𝑘)
R , (B.2)

which, in matrix form, yields
q(𝑘) = T̃Rq̃

(𝑘), (B.3)

where

T̃R =

[︃
T̃ 0

0 T̃

]︃
, (B.4)

and

q̃(𝑘) =

[︃
q̃
(𝑘)
L

q̃
(𝑘)
R

]︃
. (B.5)

Due to the orthogonalization step in Equation (3.33), T̃L = T̃𝑇
R . Then, T̃L and T̃R can be used as

in Equation (3.42) to reduce the dynamic equilibrium equations for a substructure (Equation (2.3)),
which yields

D̃*(𝑘)(𝜔)q̃(𝑘)(𝜔) = F̃(𝑘)(𝜔), (B.6)

where
D̃*(𝑘)(𝜔) = T̃𝑇

RD
*(𝑘)(𝜔)T̃R (B.7)

and

F̃(𝑘)(𝜔) =

[︃
F̃

(𝑘)
L

F̃
(𝑘)
R

]︃
= T̃𝑇

RF
(𝑘)(𝜔). (B.8)
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The generalized variables can be expanded in wave components by making use of Bloch’s
theorem, as stated in Section 2.2.3. This yields a reduced eigenvalue problem to be solved, which,
in general form, can be expressed as

S̃�̃�𝑗 = �̃�𝑗�̃�𝑗. (B.9)

The eigenvectors of the reduced eigenproblem are related to the ones defined in terms of the phys-
ical DOFs, as follows

Φ̃𝑗(𝜔) = T̃R�̃�𝑗. (B.10)

From Equations (2.22), (B.3), and (B.8), the following relations between pairs of reduced left- and
right-going waves shapes must be satisfied as the substructure is symmetric with respect to a plane
perpendicular to the 𝑥-axis

�̃�⋆
q(𝜔) = T̃𝑇ℛT̃�̃�q(𝜔), �̃�⋆

F(𝜔) = −T̃𝑇ℛT̃�̃�F(𝜔). (B.11)
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