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Abstract
In Computer Vision, the task of classification is complex, as it aims to identify the presence
of high-level categories in images, depending critically upon learning general models from
a set of training samples. Deep Learning (DL) for visual tasks usually involves seamlessly
learning every step of this process, from feature extraction to label assignment. This pervasive
learning improves DL generalization abilities, but brings its own challenges: a DL model will
have a huge number of parameters to estimate, thus requiring large amounts of annotated
data and computational resources. In this context, transfer learning emerges as a promis-
ing solution, allowing one to recycle parameters learned among different models. Motivated
by the growing amount of evidence for the potential of such techniques, we study transfer
learning for deep architectures applied to image recognition. Our experiments are designed
to explore the internal representations of DL architectures, testing their robustness, redun-
dancy and precision, with applications to the problems of automated melanoma screening,
scene recognition (MIT Indoors) and object detection (Pascal VOC). We also take transfer
learning to extremes, introducing Complete Transfer Learning, which preserves most of the
original model, showing that aggressive transfer schemes can reach competitive results.

Keywords: transfer learning, deep learning, feature redundancy, deep features, automated
melanoma screening.
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Resumo
Em Visão Computacional, a tarefa de classificação é complexa, pois visa a detecção da pre-
sença de categorias em imagens, dependendo criticamente da habilidade de aprender mode-
los computacionais generalistas a partir de amostras de treinamento. Aprendizado Profundo
(AP) para tarefas visuais geralmente envolve o aprendizado de todos os passos deste processo,
da extração de características até a atribuição de rótulos. Este tipo pervasivo de aprendi-
zado garante aos modelos de AP maior capacidade de generalização, mas também traz novos
desafios: um modelo de AP deverá estimar um grande número de parâmetros, exigindo um
imenso conjunto de dados anotados e grandes quantidades de recursos computacionais. Neste
contexto, a Transferência de Aprendizado emerge como uma solução promissora, permitindo
a reciclagem de parâmetros aprendidos por modelos diferentes. Motivados pela crescente
quantidade de evidências para o potencial de tais técnicas, estudamos de maneira abrangente
a transferência de conhecimento de arquiteturas profundas aplicada ao reconhecimento de
imagens. Nossos experimentos foram desenvolvidos para explorar representações internas de
uma arquitetura profunda, testando sua robustez, redundância e precisão, com aplicações nos
problemas de rastreio automático de melanoma, reconhecimento de cenas (MIT Indoors) e
detecção de objetos (Pascal VOC). Também levamos a transferência a extremos, introduzindo
a Transferência de Aprendizado Completa, que preserva a maior parte do modelo original,
mostrando que esquemas agressivos de transferência podem atingir resultados competitivos.

Palavras-chave: transferência de aprendizado, aprendizado profundo, representações redun-
dantes, descrições profundas, rastreio automático de melanoma.
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1 Introduction

Artificial Intelligence (AI) aims at studying and designing intelligent entities. With
strong relations to Computer Vision and other fields, AI’s object of study is the intelligent
behavior present in humans and animals [Russel and Norvig, 2010]. As a subject, it poses
many exciting and difficult questions, not only technical but also philosophical (e.g., would
finding a logical explanation for our most human feature make us “less human”?). Whitby
[2008] explains that the intellectual rewards are even more exciting, as AI is pursuing scientific
comprehension for one of the most tough questions we could pose about ourselves or the world;
guiding us at the beginning of a journey for the inner, in which fundamental questions of
being a thinking entity are investigated.

In Computer Vision, the task of image classification addresses the identification of
the presence of a category in a given image, a complex task, demanding the ability to learn a
general model from a set of training samples. Traditionally, this process starts by extracting
numerical descriptions (features) for each image, and then follows by training a classifier
using an annotated set of images.

The performance of classification depends critically on the features used as input to
the classifier, since it can only learn from the information preserved in such features. Because
many classifiers (e.g. Support Vector Machines and Artificial Neural Networks) are known to
converge in probability to the correct model [Hammer and Gersmann, 2003; Haykin, 2009],
the quest for representations able to preserve discriminability while ignoring noise will be
often the most challenging in a classification system.

The Bag-of-Visual-Words (BoVW) model [Sivic and Zisserman, 2003] was, until re-
cently, the most successful scheme to describe images for classification. It draws inspiration
from textual information retrieval, in which the Bag-of-Words (BoW) model describes tex-
tual documents by the frequency of the words they contain [Baeza-Yates and Ribeiro-Neto,
1999], while ignoring the structure of the text. In the same spirit, the standard BoVW
model describes visual documents by the frequency of local features (e.g. SIFT [Lowe, 2004])
reinterpreted as visual “words”, while ignoring their spatial configuration. The visual words
come from a visual “vocabulary” or codebook, which represents a quantization of the local-
feature space. The BoVW model creates, thus, features of higher level from the local fea-
tures [Boureau et al., 2010]. These features are fed to a supervised classifier that learns and
decides on the labels.

In contrast to that model, Deep Learning (DL) networks are artificial neural networks
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with many layers and a huge number of parameters. For visual tasks, DL usually involves
learning every step from feature extraction to supervised classification in a unified scheme.
This pervasive learning gives DL more generalizing capacity, but creates its own challenges:
a DL model will have a huge number of parameters to estimate, thus requiring large amounts
of annotated data.

The advent of gigantic annotated image datasets, such as ImageNet [Russakovsky
et al., 2015], allowed for advocates of the DL models to overcome many problems, while
small datasets remained largely insufficient to estimate the millions of parameters involved
in DL architectures [Bengio, 2009; Bengio and LeCun, 2007]. This is easily perceived in the
task of Computer-Aided Diagnosis, since annotated datasets for medical imagery are, due
to the cost of acquiring and annotating the data, almost always small (only a few hundred
to a few thousand examples). This poses a serious challenge for DL, that generally uses
hundreds of thousands (up to millions) of annotated samples for training, mainly due to the
impossibility of learning, in a deep schema, different representation levels from such small
datasets.

When one does not have many data nor the computational resources needed for DL,
transfer learning emerges as a promising solution, as it allows transferring knowledge between
models in order to reduce the demand for several labeled examples.

In this work we take transfer learning to extremes, showing that feature maps can
be extracted from the last layer of a Convolutional Neural Network (CNN) in a way that it
is still possible to achieve good results on diverse tasks. We have reason to believe that the
preservation of most of the original network, allied to its application in tasks that suffer from
lack of annotated data, lead to competitive performance. We also offer an extensive analysis
of the information redundancy in the internal network representations, suggesting that such
models could be strongly simplified by removing unnecessary precision and costly internal
procedures. To the best of our knowledge, this has not been attempted before.

1.1 Our Approach and Contributions

Our main goal is to further study deep architectures and their applicability to image
recognition through transfer schemes, as the piling amount of evidence for the potential of
such techniques, explored by the scientific community, is starting to grow. We’re particularly
interested in the problem of small datasets. For this purpose, we’ve started from a problem
that suffers from the lack of annotated data, the automated melanoma screening, using
transfer learning as our main tool.
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The objectives of this work are as follows:

∙ Evaluate the applicability of Deep Convolutional Neural Networks (DCNNs) to small
datasets by better understanding the network internal representations;

∙ Explore transfer learning as a means to alleviate the need of very large training sets
for DCNNs;

∙ Extend the possibilities of classification through transfer learning by analyzing and
proposing different approaches.

With that in mind, we have formulated three hypotheses: (1) Unusual transfer schemes,
such as the use of the last layers of a DCNN, may achieve competing results, specially when
applied to small datasets, due to their smaller dimensionality; (2) The internal representations
of such networks may contain unnecessary precision or information redundancy (similar to
neural redundancy in animals, for recovering from brain damage), possibly suggesting that
they can be compressed; and (3) the application of high-level representations, inspired by
techniques such as Object Bank [Li et al., 2010] and Spatial Pyramid Matching [Lazebnik
et al., 2006] (SPM), may be used during the process of the transfer for increasing the robust-
ness of the features.

Finally, the contributions of this project are:

∙ A novel approach for applying transfer learning to small datasets;

∙ State-of-the-art results for automated melanoma screening;

∙ An extensive analysis of the network internal representations.

1.2 Outline

Chapter 2 - Literature Review starts with a high-level introduction to topics in classi-
fication of visual data (Section 2.1), including the task of classification, the Bag-of-
Visual-Words model and Support Vector Machines. Section 2.2 briefly introduces the
contents of Artificial Neural Networks strongly related to this work, focusing on the
artificial neuron and convolutional neural networks. In Section 2.3 we talk about some
successful deep neural networks, including recent frameworks for implementing and run-
ning deep neural networks. Transfer Learning is explored and explained in Section 2.4,
where we examine the basic concepts behind classical transfer learning and initiatives
for improving the quality of the transferred features. In Section 2.5 we discuss the
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problem of melanoma screening, which motivated the outset of this work, showing the
current state-of-the-art and methods used in the field. Finally, in Section 2.6, we offer
a light discussion on some of these topics, arguing on problems in the BoVW model,
how deep learning can offer better strategies and why our experiments are important
for those fields.

Chapter 3 - Complete Transfer Learning describes our approach to the problem of au-
tomated melanoma screening (Section 3.1), using the network final layers for the trans-
fer process. Our experimental setup, detailing the choices of datasets, architectures
and configurations for the experiments, is discussed in Section 3.2. The results of our
experiments, shown in Section 3.3, are very promising, but the comparison with the
state-of-the-art is problematic due to differences in the datasets and methods. We also
offer comparative results in two different datasets: MIT Indoors and Pascal VOC 2007,
showing that the complete approach can be advantageous in adverse situations.

Chapter 4 - Internal Representations explores the representations constructed by deep
models, and their use for transfer learning. In Section 4.1, we propose six experiments,
which (1) reduce the dimensionality of the feature vectors (Section 4.3); (2) decrease
the precision of the feature representations (Section 4.4); (3) quantize their values and
analyze the impact of positiveness and negativeness (Section 4.5); (4) combine two
of the previous experiments (Section 4.6); (5) apply fusion methods in an attempt
to improve the quality of the representation (Section 4.7) and (6) adopt an approach
inspired by high level methods for obtaining discriminative features (Section 4.8). Our
results reveal strong redundancy in deep representations, suggesting that aggressive
compression methods may be used with such architectures in different scenarios.

Chapter 5 - Conclusions synthesizes our contributions, showing the impacts of this work
in the fields of Automated Melanoma Screening and Transfer Learning. We also provide
open questions and guidelines for future work, since our results suggest that few changes
in some experiments could improve the effects we have observed.
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2 Literature Review

In the last few years, the machine learning community advanced the state-of-the-
art for several classification and localization challenges. This was possible mainly due to
the successful application of very deep architectures in classification challenges, such as the
proposal of Krizhevsky et al. [2012].

Not surprisingly, the results obtained through such methods gained the attention of
new researchers, since they suggested changing the standard classification paradigm for large
scale problems, discussed in Section 2.1, to a more unified scheme.

Artificial Neural Networks (ANN), introduced in Section 2.2, are connexionist models
inspired by the human brain, and were already under exploration since the beginning of the
studies in neurocomputing. They are behind some of the most famous deep architectures,
shortly presented in Section 2.3. We limit our scope, therefore, to deep architectures related
to ANN and to image classification problems, which are most central to this work.

Because the models created by such huge architectures were expected to be very
robust, the application of transfer learning (discussed in Section 2.4) was promising, as the
knowledge acquired by them could be effectively used for problems without enough samples
for training a deep network. Results obtained by the use of transfer learning, as the ones
presented by Razavian et al. [2014] and Chatfield et al. [2014], inspired some of the approaches
of this work, and are among our recommended readings.

Seeking further reduction in the amount of parameters to be learned, we have adopted
the task of automating the melanoma screening, briefly introduced in Section 2.5, which
suffers from the lack of enough annotated data for a deep approach. The experiments proposed
in Chapter 3 are strongly related to this subject.

Finally, in Section 2.6, we offer a discussion connecting some of these topics, and how
they contributed to the decisions made for our experiments.

2.1 Classification of Visual Data

In Computer Vision, the task of image classification addresses the identification of
the presence of a category in a given image, a complex task, demanding the ability to learn
a general model from a set of training samples.

When trying to understand the real world, computers usually cannot gather all of the
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(a) The dog class and some of its instances (b) Instances from an unknown class

Figure 1 – The construction of a general model for identifying a given class is a complex task,
demanding the ability to identify objects of interest while ignoring background
and noise in the image. Figure 1a shows the dog class, and some of its instances.
Figure 1b exemplifies the task of learning what is a dog, from a set of images
limited by camera perspective and other factors.

characteristics of an individual due to many reasons (e.g. occlusion and perspective). Because
of this lack of information, learning algorithms have to be able to estimate the class of a given
set of instances by trying to find common characteristics in their limited description1. An
example of such task is shown in Figure 1, where Figure 1a shows the ground-truth, with
the originating class (dog) and some of its instances, and Figure 1b exemplifies the task of
learning what is a dog.

Until very recently, the typical classification procedure for visual data was composed
of 4 steps: (1) feature extraction for the training set; (2) supervised/unsupervised learning
using the training data; (3) feature extraction for the test set; and (4) classification of the
test data [Avila, 2013]. This procedure was used for both online (with a stream of data as
test set) and offline (with a pre-defined test set) classification, and is exemplified in Figure 2.

The steps of feature extraction (1) and (3) could be performed with the use of hand-
crafted descriptors, which can be divided into two groups: low-level descriptors focus on
capturing local invariances and correlations directly from the image; and mid-level descrip-
tors usually work on combining low-level features in an information-preserving manner. This
hierarchical organization allows for features to become increasingly more meaningful and
specialized, but each step also forces part of the information to be strongly compressed or
lost.

1 In the scope of this work, each instance is described by a picture, containing noise (e.g. background and
other objects) and limited by the camera perspective and the pose of the subject.
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Figure 2 – The typical classification procedure was, until recently, composed of 4 steps:
(1) feature extraction for the training set; (2) supervised/unsupervised learning
using the training data; (3) feature extraction for the test set; and (4) classification
of the test data.

The process of describing an image with a low-level descriptor usually involves the
use of an interest point detector to select the regions we want to represent (exemplified in
Figure 3b) or dense sampling, in which a grid of regions (possibly overlapping) is selected to
be described (exemplified in Figure 3c). The adoption of such strategies is usually associated
with the improvement of the robustness of the representations, but they also cause an increase
in the size of the final representation, since many regions may be selected for a single image.

After extracting the low-level description of the image, a mid-level representation can
be constructed. A common approach for such is to resort to the information retrieval’s Bag-
of-Words, in which a set of words is chosen to compose a dictionary, and the description
of a text is the occurrence of such words in the dictionary. In the Bag-of-Visual-Words
(BoVW), however, we have visual words (in most cases, the low-level description) and a visual
dictionary. There are many ways to choose the words that will compose the dictionary, like
random sampling and 𝑘-means clustering2, and many ways to re-describe the image with
respect to words contained in the dictionary (coding stage)3.

The final step in the learning process is to use the mid-level description to train a
classifier. Although a wide variety of classifiers have been proposed by the scientific commu-
nity, we are going to focus on two types: Artificial Neural Networks (discussed in the next
section) and Support Vector Machines (SVM).

2 For more information on k-means clustering, we recommend the reader to refer to the book of Duda et al.
[2000], subsection 10.4.3.

3 We recommend the Ph.D. thesis of Avila [2013], subsection 2.2.3, for extended details on the BoVW
coding and its pipeline.
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Figure 3 – The low-level description of an image (a) can be extracted using many sampling
strategies. Each yellow circle represents a region to be described and two popu-
lar strategies for defining such regions are by detecting interest points (b), which
involves the use of a detector (e.g. a simple edge detector), and by dense sam-
pling (c), which uses a dense grid to define the regions to be described. Reproduced
from Tuytelaars [2010] apud Avila [2013].

The emergence of kernel functions [Aizerman et al., 1964], capable of operating in
high dimensional spaces without previously transforming every data point, contributed to
the creation of SVMs [Vapnik, 1998]. Duda et al. [2000] explain that using a proper nonlinear
mapping, data from two different categories can always be separated by a hyperplane in a
sufficiently high dimensionality space, as long as the two categories do not have points in
common. The idea behind SVM, represented in Figure 4, is to find such hyperplane, while
maximizing its distance from its neighbor points. Figure 4a shows the input space (original
data); in this space, it is clear that the categories are not linearly separable. Figure 4b,
however, shows the input space after being transformed to a space with higher dimensionality
(the feature space), where it is possible to find a hyperplane separating the categories4.

For classifying the test data, each image has to be represented by the same descriptor
used during the training phase. The mapping 𝜙() and the hyperplane (obtained by means of
the training of the SVM classifier), can then be used to decide which category best represents
the given sample, completing the classification procedure.

2.2 Artificial Neural Networks
The first mathematical model inspired by the biological neuron was introduced in

1943 by McCulloch and Pitts [1943]. This publication not only started the studies of neuro-
computing, but also created the first artificial neuron (exemplified in Figure 5). In 1949, in
The Organization of Behavior, Hebb [1949] described a system capable of learning using neu-
4 More details about SVM can be found in the book of Duda et al. [2000], section 5.11.
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(a) Data in R2 (b) Data transformed to R3

Figure 4 – Support Vector Machines rely on kernel functions to implicitly find a space of
higher dimensionality where the categories can be easily separated. To exemplify
how a space of higher dimensionality can help in separating classes, we show in
Figure 4a data in R2, with two categories: red and blue. Clearly, there is no way
to linearly separate such categories in this space. In Figure 4b, the original data
is transformed to R3, with 𝑧 = 𝑥2 + 𝑦2, where it can be easily separated by a
hyperplane (green).

Figure 5 – An artificial neuron. The internal value 𝑢 is obtained by subtracting an activation
threshold 𝜃 from the sum of all of the input values 𝑥𝑖 multiplied by their respective
trainable weights 𝑤𝑖. The output of the artificial neuron is obtained by 𝑔(𝑢), where
𝑔(·) is the activation function. Figure adapted from da Silva et al. [2010].

ron correlations, introducing the Hebb’s rule, the first training method for Artificial Neural
Networks (ANN).

In 1959, Rosenblatt [1959] developed the first neurocomputer, named Mark I – Per-
ceptron, creating the first model of a Perceptron, a linear classifier inspired by the artificial
neuron. The design of a Perceptron was further debated by Minsky and Papert [1969], in
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their book Perceptrons, also known for proving that a Perceptron could not represent the
operation XOR (eXclusive-OR). In the same book, a conjecture (as they termed: “intuitive”
judgement) marked the history of ANN, arguing that such limitations would extend to any
possible configuration of Perceptrons, discouraging many researchers to continue working in
these models.

Four years later, Werbos [1974] introduced a procedure based on the idea of reverse
gradients that could be directly used for training ANNs, but its potential was not fully
understood by then, and eight years later Hopfield [1982] proposed the Hopfield Network,
capable of mimicking associative memory. It was only by mid 80s that ANNs started regaining
the interest of the scientific community, when a procedure very similar to the one proposed
by Werbos [1974] was reintroduced under the name of backpropagation [Rumelhart et al.,
1986], showing how multilayered networks could be efficiently trained and proving wrong the
XOR conjecture.

A little earlier, Fukushima [1980] proposed the first Convolutional Neural Network
(CNN). Although many authors have also presented models with such capabilities, it was
only in 1995 that the first popular CNN was proposed, by Lecun and Bengio [1995]. A CNN
is a variant of a Multilayer Perceptron (MLP), also inspired by biological processes, strongly
founded on the mathematical operation of convolution.

Modern CNNs for state-of-the-art classification challenges have to deal with massive
amounts of data and create robust representations. For this reason, their architecture is
usually very complex, demanding efficient ways to be trained. Many authors have addressed
this issue, creating simple techniques for improving the quality of the model, like the Dropout
regularization [Hinton et al., 2012], exemplified in Figure 6, and for reducing computational
cost of training the classifier, like the Rectified Linear Unit (ReLU), which simplifies the
activation function to 𝑔(𝑧) = 𝑚𝑎𝑥(𝑧, 0) [LeCun et al., 2015].

In Figure 7, we show an example of a CNN; each layer (represented by a horizontal
block) is the result of a convolution operation applied to the previous layer, and modern CNN
architectures may contain several convolutional and fully connected layers. Fully connected
layers have each of their artificial neurons connected to all of the outputs of the previous
layer, forming a complete bipartite graph. In Figure 6a, all of the layers are fully connected.

For an extended review of the ANN literature, we recommend the reader to refer to
the book of Haykin [2009].
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(a) Standard multilayer feedforward neural net-
work (b) After applying dropout

Figure 6 – Example of the Dropout regularization. Figure 6a shows a neural network with
two hidden layers, Figure 6b shows the same network after applying dropout
(crossed units have been dropped). This procedure is repeated for each training
case, effectively creating different random architectures inside the same network.
Reproduced from Srivastava et al. [2014].

Figure 7 – Representation of a Convolutional Neural Network. Each layer has a bank of filters
and its output is the application of such filters to the input of the layer. The input
of the first layer is usually a raw image, with Red, Green and Blue color channels.
Pooling strategies (like max pooling) and activation functions (like ReLU) may
be applied between convolutional layers. Reproduced from LeCun et al. [2015].
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2.3 Deep Learning
Deep architectures have been around for a long time, as the very model presented

by Fukushima [1980] may be considered a Deep Neural Network. The term Deep Learning
(DL), however, was broadly adopted only after a publication of Hinton et al. [2006]. By then,
timing was just right for the technique to gain the attention of the scientific community:
computers were much faster than before and graphics boards were widely accessible, allowing
bold optimizations with the use of General-Purpose Graphics Processing Units (GPGPUs),
as described by Oh and Jung [2004].

Recently, Le et al. [2011] reported a huge architecture trained in an unsupervised
protocol that achieved great results. The size of the model, however, is so big that a modest-
sized cluster would be required just for using it in test mode, making the technique accessible
for big companies needing powerful classifiers, but not for standard laboratory experiments.
This work marks the transition of ANN from the laboratories to a massively parallel scheme,
distributed in many computers, greatly increasing their scalability. At the time, there was
no architecture learning at such magnitudes (one billion trainable parameters), specially in
a strongly distributed environment (1,000 machines).

(a) Shallow Network (b) Deep Network

Figure 8 – A comparison between shallow (a) and deep (b) architectures. Each layer from
a deep architecture operates on the outputs of its previous layer, creating an
architecture that can be progressively more complex. Because of the additional
depth, (b) may also demand less parameters for the same number of nodes.

A variety of different definitions for deep architectures have circulated the scientific
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community. In this work, we adopt the one proposed by Bengio and LeCun [2007]: “In
general terms, deep architectures are composed of multiple layers of parameterized non-
linear modules. The parameters of every module are subject to learning”. In Figure 8 we
represent a shallow (Figure 8a) and a deep (Figure 8b) architecture. Bengio [2009] argues
that a shallow architecture, in contrast with a deep architecture, may need exponentially
more computational elements (in this case, artificial neurons) to complete the same task. This
perspective encouraged scientists to try DL in very complex tasks, like the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [Russakovsky et al., 2015] and the PASCAL
Visual Object Classes (VOC) Challenge [Everingham et al., 2010].

It was only in 2012, when Krizhevsky et al. [2012] won the ILSVRC 2012 (classification
challenge), that a DL network reached an established degree of scientific and public attention.
They reported a large, deep convolutional neural network, with 60 million parameters and
650,000 neurons, trained to classify the 1.2 million images from the ILSVRC contest (a subset
of the ImageNet dataset). Their results were considerably better than the previous state-of-
the-art, but a detailed description on ImageNet classification and localization with CNNs
was published only a few months later.

In 2013, Jia et al. [2014] made available the Caffe deep learning framework and, along
with Donahue et al. [2014], the DeCAF convolutional neural networks framework. Sermanet
et al. [2013] also released an open-source package for classification and off-the-shelf image
description and, in 2014, Vedaldi and Lenc [2014] released the MatConvNet, making easier
the task of creating and training deep models. These were to be the building blocks for a
generation of models that redefined the state-of-the-art panorama for several classification
tasks through Transfer Learning, discussed in the next section.

2.4 Transfer Learning
Transfer learning is used when one has a model, trained for a specific source task,

and wants to reuse part of its knowledge to help solving another problem. There are many
schemes that can be employed for making the transfer of knowledge, ranging from combining
the source and target training sets to estimate the parameters, to completely reusing some
of the parameters estimated in the source task into the target task. Several authors have
addressed transfer learning, with or without ANN involved (e.g. Razavian et al. [2014]; Oquab
et al. [2014]; Donahue et al. [2014]; Zeiler and Fergus [2014]; Gong et al. [2014]; Girshick et al.
[2014]; Tommasi et al. [2010]; Aytar and Zisserman [2011]; Pan and Yang [2010]; Iandola et al.
[2014]).

Classical use of CNNs for transfer learning takes into account that the lower levels of
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the network are essentially learning to mimic simple Gabor filters, producing very simplistic
features that can be considered as a low-level description by the architecture, while subse-
quent layers learn to generate descriptors with increasingly higher abstraction by associating
features of lower levels [Yosinski et al., 2014]. Zeiler and Fergus [2014] not only support this
claim, but also show that deeper layers have better invariance to transformations on the
input. The similarity between Gabor filters and the first layer of a CNN can be easily seen
in Figure 9. Filters from the first convolutional layer of a CNN (Figure 9a) look like simpli-
fied versions of Gabor filters (Figure 9c), and it is possible to see that their application in
an image can produce similar looking images, emphasizing borders and local characteristics
(Figures 9b and 9d).

A straightforward strategy for transferring knowledge is to fix the weights up to a
chosen layer of the network and then reshape and retrain the remaining layers for the new
task (see Figure 10). This kind of setup aims to reduce the number of parameters to be
learned by reusing knowledge, considered to be convenient to a new task, from the previous
model. Although it is possible to end up admitting some knowledge that may no longer be
useful, the computational effort needed is reduced by focusing only on learning the new task,
instead of also learning how to represent the input data (see the work of Razavian et al.
[2014] and Yosinski et al. [2014] for applications of this strategy).

This procedure grants more control over the transfer process, since it is possible
to simply pick different layers from the original network, resulting in distinct degrees of
knowledge being transferred, and because no training is needed in the fixed layers, the output
of the last fixed layer can be seen as a feature vector, enabling the use of a different classifier
(e.g. an SVM) at the end of the network.

Choosing the layers to be fixed is a problem addressed by Razavian et al. [2014].
Although there are layers that usually yield best results, there is no layer known to always
be the optimal choice. The basic assumption is that layers located close to the input are
learning to act as low-level descriptors, while layers located near the output can detect high-
level features, very specific to the task. It is reasonable to believe that the chosen layer should
be selected according to the similarity between the original and the new tasks, as similar tasks
should demand similar features, and tasks with less similarity should share only the basic
filters of the network, having different representations in higher layers.

To improve the results obtained by the transference of knowledge between models,
Gong et al. [2014] described a procedure for extracting features from different regions of
the image, aiming to better geometry invariance. Such procedure vaguely resembles Spatial
Pyramid Matching, proposed by Lazebnik et al. [2006] (Lazebnik is part of both teams).
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(a) Normalized filters extracted from the first
convolutional layer of MatConvNet M

(b) Correspondent normalized outputs of the
first convolutional layer

(c) Normalized Gabor filters (d) Correspondent normalized output of con-
volution operations using Gabor filters

Figure 9 – The similar nature of the first convolutional layer of a CNN and Gabor filters.
Figure 9a shows 9 filters extracted from the first convolutional layer of the Mat-
ConvNet M network [Vedaldi and Lenc, 2014] and Figure 9b shows the resulting
images after the convolution operation with such filters. The same process is shown
with 9 Gabor filters in Figures 9c and 9d, respectively.
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(a) Original network

(b) New network, with fixed layers surrounded by a blue
dashed rectangle

Figure 10 – Transferring knowledge from a deep neural network to a new task. Figure 10a
shows the original network, trained in an animal dataset (fictional), and Fig-
ure 10b shows the resulting network, after fixing the first 𝑛 layers and reshaping
and retraining the remaining layer to classify a skin cancer dataset.

Similar approaches were proposed by Girshick et al. [2014], Zhang et al. [2014] and Iandola
et al. [2014].

Another promising way to apply transfer learning to medium-sized datasets is by
also fine-tuning the network. This means that the layers inside the blue dashed rectangle, in
Figure 10b, are not completely fixed, but have smaller learning rates instead. Allowing these
layers to slightly adapt during the process of transferring knowledge may have an important
impact in the network’s performance, as small problems caused by them may be corrected,
without drastically changing the weights and the representation inside the network. Although
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fine-tuning is out of the scope of this project, we strongly recommend the reader to refer to
the work of Yosinski et al. [2014] for a better understanding of the subject.

Osadchy et al. [2007] presented an architecture similar to the one proposed by LeCun
et al. [1998], but trained for detecting faces and estimating pose. They postulated that such
tasks may have correlation in lower layers of the network, and created a model that can benefit
from this concept, achieving better scores than individual classifiers for both assignments.
Their results indicate that models can benefit from task similarities to improve performance.

It is Oquab et al. [2014] who finally argued that deep architectures can be sur-
passed because of their data-hungry nature. Several low-level and mid-level descriptors have
emerged due to the problem of small datasets, since learning such representations from the
images is not trivial and may require large amounts of data. Examples of such descriptors
are SIFT [Lowe, 2004], SURF [Bay et al., 2008], RootSIFT [Arandjelovic and Zisserman,
2012], Spatial Pyramid Matching [Lazebnik et al., 2006], VLAD [Jégou et al., 2010], Super-
Vector [Zhou et al., 2010], LLC [Wang et al., 2010] and BossaNova [Avila et al., 2013].

Donahue et al. [2014] and Razavian et al. [2014] explored transfer learning across
many tasks and reported good results. As Donahue et al. [2014] point, although training DL
models is a time-consuming task, using them as feature descriptors is not necessarily slower
than other robust descriptors available.

We also acknowledge that Razavian et al. [2014] and Zeiler and Fergus [2014] suggest
experiments resembling the ones we will describe in Chapter 3, using network’s final layers.
These experiments, however, are performed up to the last but one layer, contrary to our
experiments. Razavian et al. [2014] also present an analysis of the performance’s impact
of choosing different layers for the transferred features, complementary to our experiments
presented in Chapter 4, and show that layers close to the end of the network lead to the best
results, strongly supporting some of our findings.

2.5 Automated Melanoma Screening

According to Urteaga and Pack [1966], the first recorded case of melanoma probably
dates back to the fifth century B.C.E., but the first report of the surgical removal of a
melanoma points to the year of 1787 [Rebecca et al., 2012]. Formerly known as the “black
cancer”, melanoma is the most dangerous of all skin cancers [Gniadecka et al., 2004], and
cutaneous melanoma is among the most aggressive types of human cancer [Monzani et al.,
2007]. It has, however, high survival rates if detected and treated early, but in the absence
of early treatment it can quickly become fatal [Gniadecka et al., 2004; Jerant et al., 2000].
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Because of the infeasibility of having a dermatologist available for isolated and remote
regions, automating the melanoma screening is an important task, already under exploration
by the scientific community [Fornaciali et al., 2014]. Even though skin lesions are known to
have visual patterns, the similarities between malign and benign cases make it a task of very
high complexity, as shown in Figure 11.

Figure 11 – Examples of skin lesions. Their classification is a challenging task, as melanomas
(top row) may be very similar to benign skin lesions (bottom row). Reproduced
from Fornaciali et al. [2014].

Most of the studies on automated melanoma screening, however, rely on computa-
tional implementations of the methods used by dermatologists, analyzing predefined visual
characteristics, instead of a straightforward machine learning approach. Successful examples
are the approaches based on the ABCD5 rule, which is one of the most adopted techniques
(e.g. Abbas et al. [2012]; Pellacani et al. [2006]; Gola Isasi et al. [2011]; Iyatomi et al. [2008]),
and the ones based on the 7-point checklist6, which allows less experienced observers to obtain
high diagnostic accuracy [Argenziano et al., 1998] (e.g. Di Leo et al. [2010]). Both methods,
however, perform poorly on atypical cases, as explained by Argenziano and Soyer [2001].

We highlight three approaches that differ from the ones previously mentioned: Baldi
et al. [2009] proposed a content-based information retrieval strategy, searching in a set of
labeled images for the more similar to the lesion under classification; Zouridakis et al. [2015]
extracted features according to many clinical schemes, including the ABCD rule and the 7-
point checklist, and other algorithms (for segmentation, iterative self-organizing data analysis,
clustering, connected components and more), using many classifiers; finally, Fornaciali et al.

5 ABCD stands for the characteristics of melanomas: (A) asymmetrical, (B) irregular border, (C) multiple
colors and (D) differential structure or diameter. The ABCD rule is often extended to ABCDE, with (E)
for evolving, indicating changes in the lesion. Please refer to the work of Nachbar et al. [1994] for more
information on the ABCD rule, from the medical point of view.

6 The 7-point checklist comprises 2 groups, the first with the major features of a melanoma: (1) atypical
pigment network, (2) gray-blue areas and (3) atypical vascular pattern; and the second with the minor
features: (1) streaks, (2) blotches, (3) irregular dots and globules and (4) regression pattern. Please refer
to the original proposal, by Argenziano et al. [1998], for more information on the 7-point checklist.
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[2014] applied a modern mid-level descriptor, based on the BoVW model, and show the
impact of the different description levels for the classification.

Table 1 – State-of-the-art for automated melanoma classification.

Authors Method Dataset AUC (%)#pos/#neg

Fornaciali et al. [2014] BossaNova; SVM 187/560 93.7
Seidenari et al. [2005] Color descriptor; Linear combination 95/364 93.3
Iyatomi et al. [2008] Color and texture descriptors; Neural network 198/1060 92.8
Wadhawan et al. [2011] Haar wavelet; SVM 388/912 91.4
Abbas et al. [2012] ABCD rule-based features; SVM 60/60 88.0
Situ et al. [2008] Color histogram; Gabor filter; BoVW; SVM 30/70 82.2

We show the state-of-the-art results for automated melanoma classification in Table 1.
In the scope of this project, we have limited our search only to the authors who report their
Area Under the ROC Curve (AUC) scores.

2.6 Discussion
In Section 2.1, we presented two sampling methods for extracting low-level features:

by interest point detector and dense sampling (see Figure 3). Although both approaches are
known to yield good results in a variety of tasks, the first clearly relies on a robust detector
and the second may encode information not relevant to the problem, forcing the next steps
to filter out the noise.

It is also easy to perceive that learning from any of the mentioned {low and mid}
description levels have disadvantages: (1) A low-level description is usually in a space of very
high-dimensionality and may have no distant spatial correlation, making it hard to learn a
model directly from it, and (2) a mid-level description passes through destructive coding and
pooling processes, removing potentially important information from the final description.
The first problem can be properly addressed by correctly choosing the classifier to be used,
but we would still suffer from poor description, as low-level features are very localized and
would not be able to capture distant correlations in the image. For the second problem,
alternative coding and pooling strategies have been formulated by the scientific community,
like changes in the soft-assignment coding, proposed by Liu et al. [2011], but even the most
carefully handcrafted descriptor will inevitably suffer from biases introduced by its authors.

The idea behind autoencoders, based on the concept of sparse coding [Olshausen and
Field, 1996], is to learn the coding operation while maximizing the amount of information
preserved. This approach has strong advantages over the traditional coding operations, but
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it introduces to the model an extra level that needs to be learned independently. The DL
approach, however, usually involves learning every step in the process, from feature extraction
to supervised classification, in a unified scheme that progresses from the pixels to the local
features, from those to the higher level features, and from those to the final label assignment.
Although DNNs may also have pooling layers, they are trained with these layers from the
beginning, allowing the model to adapt itself in a way that minimizes the information lost by
the pooling operation. This pervasive learning gives DL more generalizing capacity, because
all of the operations necessary to the classification are learned by the same model at the
same time, but creates new challenges: a DL model will have a huge number of parameters
to estimate, thus requiring very large amounts of annotated data.

For small datasets, we have seen that transfer learning (Section 2.4) can be an inter-
esting alternative to benefit from the power of DL models. The quality of the initial model,
from which features are to be extracted, is, however, a pressing issue. It is arguable that as
big datasets get even bigger, the features obtained by DL techniques will become more robust
and general, improving the performance of transferred models in other datasets.

As for the transfer itself, one would expect the tasks from the original and the new
models to be strongly different, because in scenarios where both tasks have class intersections,
like ImageNet and Pascal VOC [Everingham et al., 2010], part of the transfer could be seen
as a cross-dataset experiment. It is important, then, to evaluate the transferred features in
tasks that are disconnected at semantic level, like the classes of ImageNet and the detection
of skin cancer, further explored in Chapter 3. This reinforces the importance of this work,
not only by the numerical results obtained, but also for better understanding how knowledge
is represented inside DL models.

In Section 2.5 we briefly describe the techniques currently being used for the auto-
mated melanoma screening. Clearly, most of the art in this subject is still strongly related
to methods used by dermatologists. We believe the attachment to such procedures, which
analyze predefined characteristics, is mainly due to the transparency of the final model. By
knowing the exact steps in the classification process, it is not only easier to validate the whole
system, because of its behavior similar to the methods used by dermatologists, but also to
justify possible misdiagnoses.

We defend that, even though machine learning approaches are not as explicit as the
ones inspired by procedures from the medicine, they may find an unbiased perspective to the
problem, allowing for high accuracy diagnosis. Our claim is strongly supported not only by
the results in the melanoma problem (e.g. Fornaciali et al. [2014]), but also by the analysis
of other tasks for visual classification, such as the ILSVRC and the Pascal VOC.
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3 Complete Transfer Learning

As seen in Section 2.4, the classical use of Convolutional Neural Networks (CNNs)
for transfer learning is based on the idea that the lower levels of the network are essentially
learning to mimic common Gabor filters. Subsequent layers, then, learn to generate descrip-
tors with increasingly higher abstraction by associating features of lower levels and, although
there are layers that usually yield best results while being transferred, there is none known
to always be the optimal choice.

In this chapter we explore a novel perspective to the problem, showing that feature
maps can be extracted from the last layer of a CNN in a way that makes it possible to achieve
good results, even for tasks that are semantically different from the dataset for which the
original model was trained. We believe that the preservation of every layer of the original
network, allied to its application in tasks that suffer from the lack of annotated data, may
lead to competitive performance.

The scheme that we call Complete Transfer Learning (CTL) keeps every layer in the
source network in order to transfer its knowledge to different tasks. Since the high-level layers
tend to be very task-specific, the idea to preserve all layers might seem preposterous at first,
but we demonstrate experimentally that it works well, when compared to classical transfer-
learning (see Section 3.3). Our results reveal interesting properties of the representations
constructed by deep architectures, suggesting that the information loss in higher layers of
the network is not as large as previously thought.

3.1 Proposed Approach

Because Deep Convolutional Neural Networks (DCNNs) are composed of multiple
layers, each containing several parameters, training them is a matter of estimating such
parameters. In order to avoid overfitting (when the model over-adapt to the training data,
memorizing it and reducing generalization) and underfitting (when the model is undertrained,
whether by lack of enough training data, training time or other factors), the required size for
the dataset can grow as much as the increase in the sophistication level of the model [Oquab
et al., 2014].

Many transfer schemes have been proposed for DCNNs, and their use is reported to
have state-of-the-art results for many challenging tasks (e.g. [Chatfield et al., 2014; Razavian
et al., 2014; Oquab et al., 2014; Donahue et al., 2014; Zeiler and Fergus, 2014; Gong et al.,
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(a) 𝐷(𝐿): Classifier 𝐷, trained for classifying a large dataset 𝐿

(b) 𝐷(𝑆): Classifier 𝐷, trained for classifying a large dataset 𝐿 and
adapted for classifying the melanoma dataset 𝑆

Figure 12 – The Complete Transfer Learning proposal. 𝐷(𝐿): Large dataset classifier; 𝐷(𝑆):
Melanoma classifier. Layers starting with C are Convolutional and layers starting
with F are Fully Connected. On 𝐷(𝑆), part of the network corresponding to 𝐷(𝐿)
(surrounded by a blue dashed rectangle) is fixed, so the last layer, added to the
model, can learn how to classify the new dataset 𝑆 based on the output of 𝐷(𝐿)’s
final layer.

2014; Girshick et al., 2014]). Such approaches, however, rely on feature vectors extracted from
the outputs of middle-upper layers of the network, which usually bring extra dimensionality
into the problem, potentially causing an increase in the number of parameters to be estimated
and, consequentially, requiring bigger training sets.

Our approach to this problem is to take transfer learning to extremes, as illustrated
in Figure 12. We assume to have two datasets: a small 𝑆, with few training examples, and
a large 𝐿, containing several examples, many classes and high intraclass variety. A DCNN
model 𝐷, represented in Figure 12a, was successfully trained on the large dataset 𝐿.

Due to the nature of DCNN models, we assume that 𝐷 can detect and internally
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represent small nuances in the input. The intuition behind this assumption is that in order
to correctly classify 𝐿, the model must be capable of representing small nuances in the input.
This is specially reinforced by datasets with many examples and high intraclass variety (e.g.
images taken from non-controlled environments), since the model would have to learn to
locate the objects of interest by their many distinctive features. We postulate, then, that
details about the input data may be preserved throughout the classification process and,
given the state of one of the final layers of 𝐷, there may be important information coded
into this state, allowing us to distinguish classes from 𝑆, even if they are not semantically
related to the categories of 𝐿.

By assuming that the output layer 𝐹1 of 𝐷(𝐿) can also represent important infor-
mation about the input, we can attach another classifier to F1 as the new decision-making
procedure; the parameters originated from 𝐷(𝐿) are then fixed and the new classifier 𝐷(𝑆)
is trained in the melanoma dataset 𝑆 (Figure 12b). In our example, the new classifier is a
fully connected layer 𝐹2.

When an image is introduced to 𝐷(𝑆), it is processed by the fixed layers and, upon
reaching the new classifier 𝐹2, the output of 𝐹1 is treated as input feature vector for training
it. This new architecture is shown in Figure 12b. Our experimental results suggest that the
removal of the Softmax operation in the last layer of the original network leads to better
results and, because such operations do not characterize a visible layer, the cut is not visually
represented in Figure 12. This claim will be further evident in Section 3.3 and Chapter 4.

An important remark is that, in our experiments, the new task (𝑆) can be semantically
different from the original task (𝐿), in which the model may not be trained to detect any
type of skin lesions or skin whatsoever. When we present the new dataset 𝑆 to the new
classifier 𝐷(𝑆) with the expected output (“melanoma” or “non-melanoma”), it will learn to
recognize the state of 𝐹1 (with fixed parameters from 𝐷(𝐿)) and to distinguish the new
classes based upon any information preserved by it.

3.2 Experimental Setup

In order to validate the proposed approach, we address a very important problem that
suffers intrinsically from small datasets: the automated melanoma screening. According to
Gniadecka et al. [2004], melanoma is the most aggressive and dangerous of all skin cancers.
It has, however, high survival rates if detected and treated early, but in the absence of early
treatment it can quickly become fatal [Jerant et al., 2000] (see Section 2.5 for more details
about automated melanoma screening).
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In general, the protocols for creating annotated data for computer-aided diagnosis are
very expensive and time-consuming, as the data must be manually annotated by medical
specialists. It is, thus, impractical to obtain large datasets for training a whole DCNN for
melanoma screening.

Figure 13 – Excerpts from the IRMA dataset. The melanoma images are shown at top row
and the benign lesions are exhibited at bottom row. The similarity between
positive and negative samples makes it a hard task.

Part of the experiments we describe in this chapter are performed on a third-party
dataset composed of 747 dermoscopic images with resolution of 512× 512 pixels each, devel-
oped by the Department of Medical Informatics from RWTH Aachen University. 187 of the
747 images in the IRMA dataset are considered melanomas and the other 560 are considered
benign skin lesions. A few excerpts from it are shown in Figure 13.

With the purpose of strengthening our analysis of the differences between the CTL
and the classical transfer approach, we also perform experiments on two extra datasets: MIT
Indoors [Quattoni and Torralba, 2009] and Pascal VOC 2007 [Everingham et al., 2010]. Our
goal in these experiments is not to reach state-of-the-art results for the mentioned tasks,
leaving aside the tests using different classifiers, optimizations, and focusing only on the
MLP approach. For this reason, we perform only the MLP experiments and we do not offer
a comparison with results from the literature. Because the images from such datasets are not
of fixed ratio, they were resized so their smaller side is of size 221 and square of size 221×221
was cut from their center.

Our initial model was chosen to be OverFeat [Sermanet et al., 2013], a publicly avail-
able CNN. OverFeat was trained on a 1000-category dataset, from the ILSVRC 20131, satis-
fying our conditions for size and variability of the training set in the initial task. Two models
1 http://image-net.org/challenges/LSVRC/2013/
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are provided with OverFeat: (1) fast, with reduced number of parameters and layers, increas-
ing the speed of the network and (2) accurate, with smaller error on the ILSVRC dataset,
but bigger and slower than the fast model. For the purpose of validating our approach, the
accurate network was chosen, and the output of the last layer (Layer 9 in Table 2) was used as
feature vector. For comparison, we have also performed the same experiments with the layer
suggested by the OverFeat team for transfer learning (Layer 8 in Table 2, features extracted
before its activation function).

Figure 14 – Producing a bigger spacial output map by using convolutional layers, without the
need for training another network with the desired image size. Figure reproduced from
Sermanet et al. [2013].

Two setups were chosen for the experiments, the first with the original size of the
images (512 × 512), and the second with the expected size for the accurate model (i.e. the
size used for training it, 221 × 221). By using an image size bigger than the originally used
during the training phrase, the output of each layer is changed due to the nature of the
convolution operation. Such changes are represented in Figure 14, which shows how a spatial
output map can be generated by CNNs using images of different sizes. Finally, a feature
vector can be generated by applying the vectorization operation in the spatial output map.

After defining the layer to be transferred, we have described every image in our dataset
by presenting it to the trained model, taking as feature vector the output of each of the chosen
layers (8 pre-activation and 9). This procedure is repeated for the two different sizes we have
defined.

For the next stage of our approach, two distinct classifiers were trained with the
feature vectors previously extracted. The first, an SVM (see Section 2.1), and the second,
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Table 2 – Details for the OverFeat accurate model. For both of our setups, the spatial input
size is shown at the bottom of the table, with images in the expected size (221×221)
and in their original size (512× 512). Adapted from Sermanet et al. [2013].

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9

Stage conv + max conv + max conv conv conv conv + max full full full
Num. channels 96 256 512 512 1024 1024 4096 4096 1000
Filter size 7×7 7×7 3×3 3×3 3×3 3×3 – – –
Conv. stride 2×2 1×1 1×1 1×1 1×1 1×1 – – –
Pooling size 3×3 2×2 – – – 3×3 – – –
Pooling stride 3×3 2×2 – – – 3×3 – – –
Zero-padding size – – 1×1×1×1 1×1×1×1 1×1×1×1 1×1×1×1 – – –

Spatial input size 221×221 36×36 15×15 15×15 15×15 15×15 5×5 1×1 1×1
512×512 84×84 39×39 39×39 39×39 39×39 13×13 9×9 9×9

an MLP (see Section 2.2). LibSVM [Chang and Lin, 2011] was chosen for running our SVM
experiments, as it is a widely adopted library that supports all the desired features, and
Theano [Bergstra et al., 2010], which is a compiler for mathematical expressions in Python2,
was chosen for the implementation of the MLP, as it provides easy ways to accelerate the
experiments by using Graphics Processing Units (GPUs).

For the SVM experiment, preliminary tests have shown that the scores obtained by
the linear kernel were not considerably different than those obtained by the Radial Basis
Function (RBF) kernel, which presented higher training time. The linear kernel was then
selected as our main SVM classifier.

As for the MLP experiment, we have used the hyperbolic tangent as activation func-
tion for the hidden layer, varying the number of hidden neurons in the architecture. The
maximum number of training epochs was fixed at 1000, and the best epoch was chosen by its
score on the validation set. This procedure encourages the network to be initially overtrained,
evaluating its performance on the validation set for each epoch. After reaching the maximum
number of epochs, we search for the epoch in which the training should have stopped (i.e. the
one with the smallest validation error) and restore its state, effectively undoing its subsequent
training.

With the purpose of maintaining the simplicity of the architecture, we have limited
our search for the number of hidden neurons in the MLP to 7 distinct values: 5, 10, 20, 50,
100, 200, 500; as well as the number of hidden layers to 1.

The final architecture for the MLP experiment was composed of two layers: a hidden
layer with variable number of neurons and a logistic regression layer with output of size 2,
for positive and negative classification; and trained using the stochastic gradient descent.

Both of our SVM and MLP experiments followed a classical 5-fold cross-validation
2 https://www.python.org/
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protocol and, for optimizing the hyperparameters in the MLP experiment, we have further
separated each training set in 4 balanced groups, using each combination of 3 to 1 as train-
ing and validation sets, respectively. The models with the biggest Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC) for their validation set were, then, chosen as
representatives.

In order to promote a fair comparison between the results obtained by the different
classifiers, the 5 folds were ensured to be the same for both experiments. We have also carefully
altered the source code for both architectures in order to optimize the models by their AUC,
which, in comparison to the accuracy, provides a better description of their performance.

3.3 Results and Discussion
A direct comparison between our results and most of the state-of-the-art for auto-

mated melanoma screening is troublesome, as each result is reached by different means. The
contacted authors either refused to share their code or their datasets, therefore, reproducing
their experiments was not feasible for the scope of this project. We do offer, however, an
informative comparison, assuming equivalent noise and bias in all datasets.

Table 3 shows the results for our experiments with the IRMA dataset. Due to the
elevated execution time, we chose to perform the RBF experiment only on the CTL approach
for the 512× 512 configuration. The scores are measured by the AUC, and the average score
of all folds is considered in our analysis.

Table 3 – Results for our experiments with the IRMA dataset. The scores are given in AUC.
Rows marked with Complete follow the proposed approach and rows marked with
Classical use features extracted from the recommended OverFeat layer. RBF
indicates an SVM with a radial basis function kernel, LIN an SVM with linear
kernel and MLP a multilayer perceptron.

Approach Resolution Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Classical + MLP 221× 221 93.8 91.9 92.9 91.6 96.2 93.3
Complete + RBF 512× 512 94.2 91.4 91.5 92.3 95.2 92.9
Classical + LIN 221× 221 91.4 91.8 93.7 90.0 94.8 92.3
Classical + LIN 512× 512 90.0 90.7 92.8 92.2 95.0 92.1
Complete + MLP 512× 512 95.4 89.2 93.8 90.4 91.2 92.0
Classical + MLP 512× 512 93.8 89.5 92.8 89.0 93.7 91.8
Complete + MLP 221× 221 91.4 91.2 89.3 88.3 94.9 91.0
Complete + LIN 512× 512 90.1 87.4 90.0 92.7 91.1 90.3
Complete + LIN 221× 221 88.3 91.8 89.4 87.0 93.0 89.9

For the MLP experiment, we have calculated the ROC curve by displacements in
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the probabilities of each class, while the SVM experiment considered the distance to the
hyperplane. We have adopted the composite trapezoidal rule to estimate the integral of the
ROC curve, obtaining the desired AUC.

The results for the 512× 512 experiment indicate that using an SVM with the RBF
kernel as the new classifier, in the CTL approach, lead to slightly better results, with the
average AUC of 92.9% versus 90.3% for the linear kernel and 92.0% for the MLP. In addition,
the RBF kernel was more stable (best AUC = 95.2%, worst AUC = 91.4%, variation = 3.8
p.p.) than the linear kernel (best AUC = 92.7%, worst AUC = 87.4%, variation = 5.3 p.p.)
and the MLP (best AUC = 95.4%, worst AUC = 89.2%, variation = 6.2 p.p.). However,
the small sample of 5 folds was not enough to establish a statistical difference between the
methods, as the paired Wilcoxon signed-rank test fails with p-value = 0.104 for the linear
kernel and p-value = 0.625 for the MLP, suggesting that their difference is not significant.

As for the 221 × 221 experiments, it is clear that the classical approach with the
MLP classifier was better, having the best average AUC for all of our experiments and the
best overall scores in 2 out of 5 folds. We believe there are at least two factors behind the
difference between the results of the 221 × 221 and of the 512 × 512 experiments: (1) The
imposed constraints may cause underfitting in the latter (see Section 3.2 for details); and (2)
Bigger-sized images may preserve less information during the feature extraction, as of any
process composed of finite pre-defined convolutions and sliding-windows, in which resizing
the input makes it harder to associate distant pixels. Although the classical approach with
the MLP classifier had the best results, we point that such model was trained with feature
vectors of 212 dimensions, while the results for the CTL approach are reached having less
than 210 dimensions in the feature vectors. A statistical difference could not be established,
since the paired Wilcoxon signed-rank test fails even in unfair comparisons, between the best
classical and the worst CTL approaches, with p-values of 0.0625 for the 221× 221 setup and
0.3125 for the 512× 512 setup.

In Table 4, we show the approximated training time for our experiments. The MLPs
were trained using General-Purpose Computing on Graphics Processing Units (GPGPU) in
a GTX Titan Black video card, and the SVMs in a i5-3337U processor. We offer the SVM
training times for reference, but we chose to exclude them from our analysis due to differences
in the pipeline and implementation, causing the training time to spike up.

For the MLP training times, the overhead of the experiment, such as reading the
input data and building the model, is clearly dominant in the 221 × 221 setup, in which
no significant difference was noted. For the 512 × 512 setup, however, the feature vectors
were much bigger, increasing the training time and suggesting that the MLP experiments
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Table 4 – Approximated training time for our experiments. Rows marked with Complete
follow the proposed approach and rows marked with Classical use features ex-
tracted from the recommended OverFeat layer.

Architecture Average Training
Time (in sec.)

Complete Transfer MLP (512× 512) 6× 101

Complete Transfer MLP (221× 221) 3× 101

Complete Transfer SVM (512× 512) 3× 103

Complete Transfer SVM (221× 221) 6× 101

Classical Transfer MLP (512× 512) 2× 102

Classical Transfer MLP (221× 221) 3× 101

Classical Transfer SVM (512× 512) 6× 105

Classical Transfer SVM (221× 221) 3× 101

with the CTL approach were faster than the classical experiment. An important highlight is
the benefits of training these models on a GPU, greatly reducing their training time when
compared to our SVM experiments, and still maintaining results close to the ones obtained
by the SVM models, after an expensive (in terms of resources and time) grid search.

In order to facilitate our analysis, we reproduce the state-of-the-art for the automated
melanoma screening in Table 5. We only consider the authors who have reported the AUC
for their proposals.

Table 5 – State-of-the-art for automated melanoma classification.

Authors Method Dataset AUC (%)#pos/#neg

Fornaciali et al. [2014] BossaNova; SVM 187/560 93.7
Seidenari et al. [2005] Color descriptor; Linear combination 95/364 93.3
Iyatomi et al. [2008] Color and texture descriptors; Neural network 198/1060 92.8
Wadhawan et al. [2011] Haar wavelet; SVM 388/912 91.4
Abbas et al. [2012] ABCD rule-based features; SVM 60/60 88.0
Situ et al. [2008] Color histogram; Gabor filter; BoVW; SVM 30/70 82.2

In terms of performance, our classical results are better than most of the state-of-
the-art reported AUCs [Situ et al., 2008; Abbas et al., 2012; Wadhawan et al., 2011; Iyatomi
et al., 2008], while our complete approaches are better than Situ et al. [2008]; Abbas et al.
[2012]; Wadhawan et al. [2011] and slightly worst than Iyatomi et al. [2008]; Seidenari et al.
[2005] and Fornaciali et al. [2014]. Our results are very similar to the ones obtained by
Fornaciali et al. [2014], indicating that transferring knowledge from deep models, without
prior information about the problem, can compete against very specialized architectures.

With the purpose of further validate our results, we show in Table 6 scores in two
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Table 6 – Our results for the MIT Indoors and the Pascal VOC datasets. Two different evalua-
tion methods were used, according to the standard evaluation for each dataset. The
experiments followed our MLP setup and because the images from such datasets
are not of fixed ratio, they were resized so their smaller side is of size 221 and
square of size 221× 221 was cut from their center.

Approach Dataset Evaluation Score

Classical + MLP MIT Indoors Acuracy 54.18
Complete + MLP MIT Indoors Acuracy 53.88
Classical + MLP Pascal VOC mAP 44.86
Complete + MLP Pascal VOC mAP 45.11

different multiclass datasets, the MIT Indoors (67 categories) and the Pascal VOC 2007 (20
categories). Because we do not aim to reach state-of-the-art results, but rather compare the
classical and the CTL approaches, we kept an experimental setup similar to the automated
melanoma screening, further detailed in Section 3.2.

The results for the MIT Indoors experiments show small difference between the clas-
sical and the complete approaches, while the results for the Pascal VOC 2007 show better
mAPs for the CTL approach. This reinforces that different description sizes may be efficient
in adverse situations, in which there are constraints (controllable or not) to the experiment.
The limited number of neurons in the hidden layer, limited number of training iterations,
number of classes from the dataset and their separability in the semantic level favored the de-
sign with less parameters to be learned. This phenomenon may emerge in diverse situations,
specially in the case of very small datasets.

Because the CTL approach discards the Softmax operation in the last layer, we can
say that it is, in fact, learning from rich probability estimations. On this perspective, deep
models with very distinct classes may generate stronger complete features, since they are
able to represent images with less correlation in the class probabilities.

We also highlight that the choice of the model and the constraints of the experiment
have a fundamental part in the success of the transfer. This claim will be evident in light
of the results brought by Chapter 4, which further explores the Pascal VOC 2007 dataset,
using a different deep model and aggressively stressing the representations used for transfer
learning.
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4 Internal Representations

Despite the great performance of DCNNs in many tasks, a complete analytical de-
scription of the models built through their use is still lacking. As a consequence, deep repre-
sentations are not always fully understood. A great part of this is due to the unknown nature
of the learned features, which may be subject to co-adaptation between layers and diverse
transformations.

With the intention of better understanding such architectures, we devise, in this chap-
ter, a series of experiments for measuring the robustness of their internal representations,
aiming to analyze their redundancy, both in terms of dimensions and precision, and for ver-
ifying whether the use of strategies inspired by high-level representations can improve the
quality of the description extracted from a deep model.

Our results point to strong internal repeatability, suggesting that the studied DCNN
may have properties similar to neuron redundancy in animals, for recovering from brain
damage. We offer an extensive analysis of this phenomena, showing ways to exploit properties
of internal representations to achieve better classification results.

4.1 Proposed Approach
Aiming at better understanding the representations extracted from DCNNs, we have

formulated 6 experiments, described as follows:

Stress 1 reduces the number of dimensions of the feature vector extracted from the model,
randomly dropping a determined number of neurons from the last preserved layer before
taking its output. With this experiment, we expect to detect redundant information
in the representation of a given layer, should the performance of the model not fall
accordingly. Figure 15 exemplifies the setup for this experiment.

Stress 2 systematically removes rightmost bits from the extracted features. This experiment
will give us insight on how much precision is really needed for the elements of the feature
vector, in order to achieve satisfying results.

Stress 3 forces quantization on the feature vector, in a manner similar to the way dictio-
naries do it in the Bag-of-Visual-Words model (see Section 2.1). Because of the nature
of the chosen model, we have created 4 branches for this experiment. The first two
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Figure 15 – Our Stress 1 experiments: A fixed number of neurons is randomly dropped from
the last preserved layer and a new model is learned with the resulting features.
In this example, red-scratched neurons are dropped.

branches (3A and 3B) find, each, a unidimensional Voronoi tessellation in a different
interval, and the generated points are chosen as the dictionary entries. We have defined
the intervals as follows:

Stress 3A [𝑗, 𝑘], where 𝑗 is the minimum value and 𝑘 is the maximum from all features,
in all training samples;

Stress 3B [0, 𝑘], where 𝑘 is the maximum value from all the features, in all training
samples;

The next two branches (3C and 3D) create one dictionary for each dimension of the
feature vector. This is specially useful for dealing with features that are in different
scales, giving them similar weight during the training phase. The intervals for the last
two branches are defined as follow:

Stress 3C [𝑗, 𝑘], where 𝑗 is the minimum value and 𝑘 is the maximum value of the 𝑖𝑡ℎ

elements from all training samples.

Stress 3D [0, 𝑘], where 𝑘 is the maximum value of the 𝑖𝑡ℎ elements from all training
samples.

The approaches 3B and 3D are based on the idea that models with the ReLU activation
function often disregard negative values during training and testing, possibly making
them less informative. Finally, the feature vector is quantized by assigning to each
element the value of the closest point in the dictionary.
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Combined Stresses simultaneously applies stresses 1 and 2, dropping neurons in the last
preserved layer of the original model and removing rightmost bits from the features at
the same time. This will allow us to observe if the effects measured by stresses 1 and 2
are complementary.

Fused Descriptors tries to combine, through early and late fusion strategies, the descrip-
tions extracted from two different layers. By associating outputs from different layers
we may enhance the quality of the features, since it would allow mid-level and high-level
information to be used by the new classifier. Depending on the chosen layer, spatial
information may be preserved, creating a model capable of deciding based on both
abstraction degrees.

High Level Representations employs strategies inspired by the approaches of Object
Bank [Li et al., 2010] and Spatial Pyramid Matching [Lazebnik et al., 2006] in attempt
to improve the quality of the feature vectors obtained for the transfer process.

4.2 Experimental Setup
Because we are not addressing a specific problem, the experiments described in this

chapter are not bound to a determined dataset. It is desirable, though, that the size of the
chosen dataset is not too small (< 2000 samples), since having more images would increase the
precision of results. For this reason, we have defined that the Pascal VOC 2007 [Everingham
et al., 2010] images should be used in all of the experiments of this chapter. Composed of 2501
images in the training set, 2510 images in the validation set and 4952 images in the test set,
the Pascal VOC is well known in the literature, and was considered fit for our experiments.

The initial model, represented in Figure 16 and from which feature vectors were
extracted, was chosen to be the 𝑀 model, provided by MatConvNet [Vedaldi and Lenc,
2014] and proposed by Chatfield et al. [2014]. The expected image size for such model is
224× 224 and, as suggested by the MatConvNet team, a bicubic interpolation was used for
resizing the images from VOC 2007 before their use. The average image from the ImageNet
training set was then subtracted, and the result was presented to the model as input.

In the M model, different operations are separated, yielding 21 layers instead of only 8.
Table 7 shows the correspondence between the 8 groups represented in Figure 16 and such
layers. Throughout this chapter, every reference to a layer points to one of the layers described
in Table 7.

After extracting the image representations from the MatConvNet, we normalized them
by dividing the features of each image by their L2 norm. Finally, a linear SVM was trained,
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Figure 16 – Representation of the 𝑀 model from the MatConvNet, used in our experiments.
Conv. indicates a convolutional group, and Fully a fully connected group; the
second row of each label indicates the number of filters and their size for the
convolutional groups, or the number of neurons for the fully connected groups;
the following lines indicate the extra operations or modifications used: st. for
stride, pad. for padding, pool for max pooling and Dropout for the the dropout
regularization.

Table 7 – Layers for the MatConvNet M model. Group 𝑖 indicates the group from Figure 16;
the first column of each line indicates the operation: Convolution for a convolu-
tional layer, Fully for a fully connected layer, ReLU for the activation of Rectified
Linear Units, LRN for Local Response Normalization, Pooling for Max Pooling
and Softmax for the activation of the Softmax function. Each cell, belonging to
a group (column) and operation (first column of each row), indicates the number
of the correspondent layer. A dash indicates the absence of such operation in the
group.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

Convolution Layer 1 Layer 5 Layer 9 Layer 11 Layer 13 – – –
Fully – – – – – Layer 16 Layer 18 Layer 20
ReLU Layer 2 Layer 6 Layer 10 Layer 12 Layer 14 Layer 17 Layer 19 –
LRN Layer 3 Layer 7 – – – – – –

Pooling Layer 4 Layer 8 – – Layer 15 – – –
Softmax – – – – – – – Layer 21

having its hyperparameters chosen by the model with the best Mean Average Precision (mAP)
in the validation set.

Before training the classifier, however, each of our experiments adopted a different
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strategy which may involve manipulating the normalized representations, and detailed in-
formation about them is given in the next sections of this chapter. We present the baseline
for the experiments of this chapter in Figure 17, representing the transfer learning without
disturbances in the descriptors extracted from the deep model. Although the layer 19 had
the best results, the CTL approach (layer 20), proposed in Chapter 3, holds scores very close
to it, with a difference of 1.02 p.p.

Figure 17 – Baseline for Transfer Learning. The mAP of features extracted from different
layers of the MatConvNet 𝑀 model for the Pascal VOC 2007 dataset.

4.3 Stress 1
In this experiment, we limit the number of features extracted from a deep architecture.

Because feature vectors extracted from different layers may have different sizes (i.e. different
number of dimensions), we defined that the number of features to be preserved would be
determined by Pseudocode 4.1, which receives the size of the feature vector and returns an
array, with each element dictating the number of dimensions to be preserved in one of the
experiments to be performed.

The pseudocode generates a Fibonacci-like sequence, which is denser for smaller num-
bers and becomes sparser as the numbers grow. This setup was chosen as it gives us more
information about the highly stressd models.
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Pseudocode 4.1 Selecting the number of dimensions to be preserved
for the Stress 1 experiments

1: function get_preserved_dimensions(size_of_feature_vector)
2: 𝑖← 100
3: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 𝑖
4: 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠← [ ]
5: while 𝑖 < 𝑠𝑖𝑧𝑒_𝑜𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 do
6: append 𝑖 to 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
7: 𝑖← 𝑖 + 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
8: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 𝑖− 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
9: end while

10: return 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
11: end function

In order to reduce the effects of the randomness on subsequent runs, we wanted the
set of dimensions preserved in any experiment to contain the sets of dimensions that were
preserved on all other experiments with fewer features. This is exemplified in Figure 18, where
the set 𝐴 is contained in the set 𝐵, which is contained in the set 𝐶 and so on.

Figure 18 – A representation of the desired sets of dimensions for Stress 1. We expect each
set to be contained in all of the sets bigger than itself, in order to reduce the
effect of randomness in choosing their elements.

A straightforward approach to achieve this requirement, adopted in our experiments,
is to start from the end of the array obtained by Pseudocode 4.1. Because the numbers will
be in descending order, when a set of smaller size is required, we simply have to randomly
drop a number of dimensions from the current set, corresponding to the difference between
its size and the new desired number of dimensions for it, guaranteeing that the new set is
contained in the set that came before it.

Finally, for each layer, we keep the same sets of dimensions for all samples, varying
only their value according to their feature vector. This is crucial for the proper execution of
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the experiment, since changing the selected dimensions across samples would not allow the
new classifier to be correctly trained due to inconsistency in the image descriptions.

Results and Discussion

Figure 19 shows the average of 10 runs for the Stress 1 experiments, with standard
deviation values displayed as error bars. We chose to omit the layer 15 from our analysis
because of its elevated number of dimensions.

Figure 19 – Average of 10 runs for the Stress 1 experiments with standard deviation displayed
as error bars. In this experiment we randomly drop dimensions from the feature
vector, aiming to verify its redundancy. Layer 15 was omitted from our analysis
because of its elevated number of dimensions.

Our experiments reveal strong information redundancy throughout deep representa-
tions, since small variations in the score were measured across different runs. We observe
that for obtaining robust features, choosing the description extracted from layer 19 remains
the best option, while the layer 20 is a strong candidate for compact features, having good
performance (> 70% mAP) with only 100 dimensions preserved, corresponding to 10% of its
original size, and very small loss with only 200 dimensions preserved (> 74% mAP).
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They also indicate that for all of the tested layers, with the exception of the layer
21, there is usually small decreases in the score when dropping half of the dimensions in
the feature vectors. As expected, the layer 19, which is usually the first choice for transfer
learning, performs better for most of the configurations. For any setup with less than 1000
dimensions, however, layer 20 showed to be the best choice.

We point that most of the non-parameterized operations, such as the ones in layer 21,
may negatively affect the transfer process and, even though we rely on an SVM for classifying
the deep features, the effects of the scale of the input, which are known to be problematic,
are reduced by the normalization applied on the feature vectors before the training stage.

4.4 Stress 2
Stress 2 reduces the precision of the features by erasing rightmost bits from their

binary representation. Because we are working with the double-precision floating-point format,
represented in Figure 20, there are 64 bits to be removed.

Figure 20 – A representation of the double-precision floating-point format according to the
IEEE 754 standards. Adapted from Campbell and Shin [2012].

In this experiment, we start by erasing (setting to 0) the rightmost binary digit from
the binary representation of each feature. After training the classifier and testing its perfor-
mance, we erase one more digit (the second rightmost digit) and train another classifier. This
process is repeated until all of the digits are erased, yielding 64 iterations for each layer.

Results and Discussion

Figure 21 shows the results for a single run of Stress 2 experiment, since our approach
is deterministic and cannot generate different results for extra executions. We chose to omit
the setups that removed less than 45 bits, as no significant loss was observed.

With up to 52 bits removed, no important change was perceived in the scores given
by the model trained on the stressed features. Although the mAP of most layers dropped
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Figure 21 – Results for our Stress 2 experiments, in which we systematically erase rightmost
bits from the binary representation of the features, allowing us to investigate
how important is the precision for these representations.

slightly at the layers 54 and 55, their difference to the baseline scores was of only 0.91 p.p.
on average (0.49 p.p. if we exclude layer 15 from the calculations). A drastic change was
observed when we erased the 56𝑡ℎ bit, with an average drop of 51.49 p.p., which worsened
with further erases, until all information was excluded from the features.

The results from Figure 21 and the information presented in Figure 20 indicate that
the entire section reserved for the binary representation of the fraction was erased without
significant loss. The fact that the double-precision floating-point format has an implicit bit
set to 1 at the beginning of the fraction sector, between bits 51 and 52, allowed us to continue
erasing bits without a major drop in the performance, since the fraction was not completely
erased during the calculation of its value, given by (−1)𝑠𝑖𝑔𝑛 × 1.𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛× 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−𝑏𝑖𝑎𝑠.

Our experiments also indicate that the 8 most significant bits of the exponent and
the sign bit play the main role in coding information into the features. These results not only
suggest that there is unnecessary precision in deep representations, but also that they may be
heavily compressed by exploiting this characteristic. This may be specially useful for portable
devices, in which memory and representation size are critical, or in remote classification, in
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which data must be transferred efficiently over the network.

4.5 Stress 3

In this experiment, we quantize the features extracted from a deep architecture, lim-
iting the number of distinct values for them. This can be seen as a translation between
two languages: the features are described in a language 𝑋, and we want to rewrite them
in language 𝑌 ; but there are no direct translations for some words, forcing us to translate
each word of a text written in 𝑋 as the one with the closest meaning in 𝑌 . We divided
this experiment in two categories: AB, in which we have one language for all of the features
and CD, with one language for each dimension of the feature vector. The CD approach is
specially useful for cases in which each dimension of the feature vector may be in a different
scale. The process of quantization for the AB category is shown at Pseudocode 4.2, and in
Pseudocode 4.3 for the CD category.

Pseudocode 4.2 Quantization of the feature vector for the AB category
1: function quantize_feature_vector(feature_vector, new_language)
2: 𝑓𝑠𝑖𝑧𝑒← 𝑠𝑖𝑧𝑒(𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟)
3: 𝑙𝑠𝑖𝑧𝑒← 𝑠𝑖𝑧𝑒(𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒)
4: 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟
5: for 𝑖 = 1 to 𝑓𝑠𝑖𝑧𝑒 do
6: 𝑤𝑖𝑛𝑛𝑒𝑟 ← 1
7: 𝑑𝑖𝑠𝑡𝑤 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟[𝑖]− 𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒[𝑤𝑖𝑛𝑛𝑒𝑟]
8: for 𝑗 = 2 to 𝑙𝑠𝑖𝑧𝑒 do
9: 𝑑𝑖𝑠𝑡𝑗 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟[𝑖]− 𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒[𝑗]

10: if |𝑑𝑖𝑠𝑡𝑗| < |𝑑𝑖𝑠𝑡𝑤| then
11: 𝑤𝑖𝑛𝑛𝑒𝑟 ← 𝑗
12: 𝑑𝑖𝑠𝑡𝑤 ← 𝑑𝑖𝑠𝑡𝑗
13: end if
14: end for
15: 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑖]← 𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒[𝑤𝑖𝑛𝑛𝑒𝑟]
16: end for
17: return 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
18: end function

One of our hypothesis, as stated in Section 4.1, is that negative values in the features
may be of low importance due to the nature of the activation functions adopted by such
models. For this reason, we have subdivided each category into two branches, creating new
languages with and without direct translations to negative values.
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Pseudocode 4.3 Quantization of the feature vector for the CD category
1: function quantize_feature_vector(feature_vector, new_language)
2: 𝑓𝑠𝑖𝑧𝑒← 𝑠𝑖𝑧𝑒(𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟)
3: 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟
4: for 𝑖 = 1 to 𝑓𝑠𝑖𝑧𝑒 do
5: 𝑤𝑖𝑛𝑛𝑒𝑟 ← 1
6: 𝑑𝑖𝑠𝑡𝑤 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟[𝑖]− 𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒[𝑖][𝑤𝑖𝑛𝑛𝑒𝑟]
7: 𝑙𝑠𝑖𝑧𝑒← 𝑠𝑖𝑧𝑒(𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒[𝑖])
8: for 𝑗 = 2 to 𝑙𝑠𝑖𝑧𝑒 do
9: 𝑑𝑖𝑠𝑡𝑗 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟[𝑖]− 𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒[𝑖][𝑗]

10: if |𝑑𝑖𝑠𝑡𝑗| < |𝑑𝑖𝑠𝑡𝑤| then
11: 𝑤𝑖𝑛𝑛𝑒𝑟 ← 𝑗
12: 𝑑𝑖𝑠𝑡𝑤 ← 𝑑𝑖𝑠𝑡𝑗
13: end if
14: end for
15: 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑖]← 𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒[𝑖][𝑤𝑖𝑛𝑛𝑒𝑟]
16: end for
17: return 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
18: end function

Pseudocode 4.4 describes our process for creating a new language, given an interval
[𝑗, 𝑘] and a number of desired entries (words) 𝑛. This process is analogue to creating a one
dimensional Voronoi tessellation, and taking the generated points as the new words.

The values of 𝑘 and 𝑗 for each branch were chosen as follows:

Stress 3A 𝑗 = 𝑚𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) and 𝑘 = 𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 are all of the
features of the training set;

Stress 3B 𝑗 = 0 and 𝑘 = 𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 are all of the features of the
training set;

Stress 3C 𝑗[𝑖] = 𝑚𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[:][𝑖]) and 𝑘[𝑖] = 𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[:][𝑖]), where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 are all
of the features of the training set, [:] indicate that we are taking all of the training
samples and [𝑖] that we are taking only the 𝑖𝑡ℎ feature from them;

Stress 3D 𝑗[𝑖] = 0 and 𝑘[𝑖] = 𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[:][𝑖]), where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 are all of the features of
the training set, [:] indicate that we are taking all of the training samples and [𝑖] that
we are taking only the 𝑖𝑡ℎ feature from them;

Clearly, the approaches 3C and 3D, which are part of the CD category, generate arrays
of values for 𝑗 and 𝑘 with sizes equal to the size of a feature vector. This is necessary since we
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Pseudocode 4.4 Creating a new language for the quantization process
1: function create_language(j, k, n)
2: 𝑠𝑡𝑒𝑝← 𝑘 − 𝑗

𝑛

3: 𝑣𝑎𝑙𝑢𝑒← 𝑗 + 𝑠𝑡𝑒𝑝

2
4: 𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒← [ ]
5: while 𝑣𝑎𝑙𝑢𝑒 < 𝑘 do
6: append 𝑣𝑎𝑙𝑢𝑒 to 𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒
7: 𝑣𝑎𝑙𝑢𝑒← 𝑣𝑎𝑙𝑢𝑒 + 𝑠𝑡𝑒𝑝
8: end while
9: return 𝑛𝑒𝑤_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

10: end function

are building a new language for each dimension of it, and the Pseudocode 4.4 will be called
once for each element of such arrays. The value of 𝑛, indicating the number of words to be
used in the new language, is tested for all integer values in the interval [2, 30]

Results and Discussion

Figures 22 and 23 show our results for the Stress 3 experiments, in which we limit
the number of different values (words) allowed in a deep representation by a process similar
to the coding of a BoW model. The AB group (Figure 22) restricts the values in a global
manner, while the CD group (Figure 23) applies a feature-wise restriction.

Evidently, the layers 15, 17, 19 and 21 are invariant to the changes from the ex-
periments 3A to 3B and 3C to 3D, which discards negative values, since the first three of
the mentioned layers come from a ReLU and the latter from a Softmax layer, which have
non-negative outputs only.

With a small number of words (6 3), discarding negative values had a bad impact for
the AB experiments, and a good impact for the CD experiments. Because the AB experiment
create a single language to redescribe all of the features, different ranges of features may force
entire dimensions to be crushed into a single point in the final representation, losing all the
information they contain and reducing the classification score. These effects, however, are
expected to become smaller as we increase the number of words. We exemplify this situation
in Figure 24.

Clearly, the performance of the CD experiments was better than the AB’s, indicating
that there are dimensions from the feature vectors in very different scales. Discarding neg-
ative values also contributed to the performance of the models, as the improvements of the
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(a) Results for the Stress 3A

(b) Results for the Stress 3B

Figure 22 – Results for the stresses 3 AB. We create a set of words to redescribe the features
extracted from the deep model. In the AB experiments, words are created based
on all of the features of the training set. The 3A branch considers negative values
and the 3B branch discards them.
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(a) Results for the Stress 3C

(b) Results for the Stress 3D

Figure 23 – Results for the stresses 3 CD. We create a set of words to redescribe the features
extracted from the deep model. In the CD experiments the words are created
based on the indexes from the features of the training set. The 3C branch con-
siders negative values and the 3D branch discards them.
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(a) Quantizing two features with 2 different
words, considering negative values.

(b) Quantizing two features with 2 different
words, disregarding negative values.

Figure 24 – A quantization problem: when disregarding negative values while choosing the
words, the use of a single language to redescribe all of the features may erase
large amounts of information.

experiment D (Figure 23b) over the experiment C (Figure 23a) were, on average, 1.57 p.p.
bigger for the layers 16, 18 and 20.

The D branch also had the best overall performance of all four experiments. In this
setup, 4 words were enough to promote an improvement of 0.67 p.p., on average, compared
to the baseline experiments. With 10 words, this number was increased to 1.20 p.p.

Figure 25 – Removing positive or negative values from the feature vectors. The red line corre-
sponds to the preservation of positive values and, the blue line, the preservation
of negative values.
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These results lead us to believe that negative values are not as important in deep rep-
resentations as the non-negative ones. To test this hypothesis, we have repeated the baseline
experiments in 2 different manners: (1) setting all negative values to zero; and (2) setting
all positive values to zero. The results for this approach are shown in Figure 25, and clearly
indicate that, although the negative values have no big influence over the classification perfor-
mance, they contain enough information to achieve good classification scores. As previously
stated, layers 15, 16, 19 and 21 do not contain negative values, causing a severe drop in
the mAP. We highlight that the models trained only with non-negative values held the best
performance for all layers, with equal performance to the baseline on layers with no negative
values in the output. The removal of negative values caused an increase of 1.55 p.p. in the
scores, in comparison to the baseline experiments; this is a strong indicative that positive
values are highly informative.

4.6 Combined Stresses

In this section, we merge Stress 1 and Stress 2, testing their performance at the same
time (e.g. erasing 16 bits and picking 200 dimensions).

In order to decrease the execution time for this experiment, we have reduced the
search space inherited from Stress 2 for testing only the removal of 0, 16, 32, 50, 52, 54, 55,
56, 57, 59 and 61 bits. These numbers were chosen based on results obtained for the Stress
2 experiments, presented in Section 4.4.

Results and Discussion

Figures 26 and 27 show our results for the combination of Stresses 1 and 2. Because
each stress had, initially, 2 dimensions (preserved dimensions + score and removed bits +
score), with 1 dimension in common, their combination has 3 dimensions, and is displayed
separately for each layer.

As discussed in Section 4.3, layer 21 may suffer with problems caused by the Softmax
operation in the last layer, and its results are in accordance with what we have already seen in
Sections 4.3 and 4.4. For the other layers, however, we have detected large regions with high
classification scores. These regions correspond to combinations of parameters from Stress 1
and 2 with complementary characteristics, and indicate that deep features can be compressed
in terms of dimensions and precision at the same time. We also point that, proportional
to their size, higher layers tend to have broader surfaces with high classification scores,
suggesting that they may be able to perform better with a reduced number of dimensions.



4.6. Combined Stresses 47

0

10

20

Removed bits

30

Stressed-performance surface

40

50

60

5000

Preserved dimensions

10000

15000

80

70

60

50

40

30

20

10

m
A

P

(a) Results of the layer 15 in Combined Stresses
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(b) Results of the layer 16 in Combined Stresses
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(c) Results of the layer 17 in Combined Stresses
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(d) Results of the layer 18 in Combined Stresses
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(e) Results of the layer 19 in Combined Stresses
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(f) Results of the layer 20 in Combined Stresses

Figure 26 – Results for the Combined Stresses at layers 15-20. We combine the stresses 1
and 2 to verify if the redundancy in the dimensions of the feature vector is
independent of the precision (in bits) of their description.



48 Chapter 4. Internal Representations

0

10

20

Removed bits

30

Stressed-performance surface

40

50

60
200

Preserved dimensions

400

600

800

20

50

10

60

70

80

40

30

1000

m
A

P

Figure 27 – Results for the Combined Stresses at layer 21. We combine the stresses 1 and 2
to verify if the redundancy in the dimensions of the feature vector is independent
of the precision (in bits) of their description.

4.7 Fused Descriptors

In this experiment, we combine features from different layers in attempt to create a
description with increased quality. For this purpose, we adopt two different approaches:

1. Late fusion. The proposal behind late fusion is to fuse information in a semantic-
level. For this approach we train the classifier with the feature vectors extracted from
the deep model, taking their scores (instead of labels) as output. The scores of two
different layers s1 and s2 are then fused in three combinations, by calculating: (1) their
sum ssum = s1 + s2; (2) their average savg = 0.5 · s1 + 0.5 · s2 and (3) the max value
for each position of the score vector 𝑠𝑚𝑎𝑥,𝑖 = 𝑚𝑎𝑥(𝑠1,𝑖, 𝑠2,𝑖).

For each one of the three combinations, a value 0.9 6 𝑡 6 0.1 is used to decide if the
label is positive 𝑠𝑖 > 𝑡 or negative 𝑠𝑖 < 𝑡; this value is determined by maximizing the
mAP in the validation set and, because this is not a convex optimization, we test all of
the values in the interval [0.1, 0.9] with step 0.1.

Finally, the scheme chosen as representative for the late fusion of two layers is the one
with the highest mAP in the validation set, and the mAP in the test set is calculated
using the same combination and the same value of 𝑡;

2. Early fusion, also known as feature-level fusion. In this approach, we concatenate
feature vectors extracted from two different layers, prior to training the classifier. This
procedure has potential to increase the amount of information preserved in the descrip-
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tion by incorporating, for example, spatial characteristics, at the cost of also increasing
its size.

Results and Discussion

Tables 8 and 9 show our results for Late Fusion and Early Fusion, respectively. We
highlight, in blue, the best results in each of them.

Table 8 – Late fusion of different layers. The layers were combined at semantic level: the
scores given by the classifiers of two levels were fused before deciding on the label.

Layer 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

4 – 35.6 40.6 40.5 45.2 38.7 46.7 48.5 53.7 51.1 64.7 67.3 69.6 67.7 71.1 69.5 65.2 62.8
5 35.6 – 40.6 41.0 45.5 39.8 48.3 50.0 55.0 55.8 64.9 68.0 69.1 69.9 71.4 70.8 64.6 59.5
6 40.6 40.6 – 44.3 45.3 41.8 49.2 47.7 55.6 55.3 65.6 68.8 65.2 71.7 66.8 69.3 65.2 60.2
7 40.5 41.0 44.3 – 45.3 42.2 49.8 48.4 56.4 56.5 66.3 69.2 64.4 71.2 67.0 71.1 68.6 60.7
8 45.2 45.5 45.3 45.3 – 45.8 49.8 49.9 53.9 53.9 65.3 68.2 63.3 65.4 66.8 67.2 61.2 58.0
9 38.7 39.8 41.8 42.2 45.8 – 50.4 52.2 57.0 58.1 65.7 69.5 71.4 73.4 73.7 74.9 72.8 66.9

10 46.7 48.3 49.2 49.8 49.8 50.4 – 50.6 57.4 54.4 66.4 69.1 67.4 70.8 68.3 71.9 66.1 63.4
11 48.5 50.0 47.7 48.4 49.9 52.2 50.6 – 57.6 54.4 65.9 69.7 69.3 72.0 72.7 72.3 70.6 63.9
12 53.7 55.0 55.6 56.4 53.9 57.0 57.4 57.6 – 59.4 66.6 69.2 63.9 70.1 66.6 69.6 66.6 63.4
13 51.1 55.8 55.3 56.5 53.9 58.1 54.4 54.4 59.4 – 67.8 70.2 70.6 72.7 71.0 71.5 70.8 67.6
14 64.7 64.9 65.6 66.3 65.3 65.7 66.4 65.9 66.6 67.8 – 70.4 70.8 73.3 72.6 74.3 71.9 70.8
15 67.3 68.0 68.8 69.2 68.2 69.5 69.1 69.7 69.2 70.2 70.4 – 69.5 73.2 69.7 71.3 70.5 71.0
16 69.6 69.1 65.2 64.4 63.3 71.4 67.4 69.3 63.9 70.6 70.8 69.5 – 74.5 74.4 75.4 72.6 74.9
17 67.7 69.9 71.7 71.2 65.4 73.4 70.8 72.0 70.1 72.7 73.3 73.2 74.5 – 74.8 75.3 74.8 71.7
18 71.1 71.4 66.8 67.0 66.8 73.7 68.3 72.7 66.6 71.0 72.6 69.7 74.4 74.8 – 73.5 74.2 75.8
19 69.5 70.8 69.3 71.1 67.2 74.9 71.9 72.3 69.6 71.5 74.3 71.3 75.4 75.3 73.5 – 74.8 75.3
20 65.2 64.6 65.2 68.6 61.2 72.8 66.1 70.6 66.6 70.8 71.9 70.5 72.6 74.8 74.2 74.8 – 75.4
21 62.8 59.5 60.2 60.7 58.0 66.9 63.4 63.9 63.4 67.6 70.8 71.0 74.9 71.7 75.8 75.3 75.4 –

Table 9 – Early fusion of features from different layers. The feature vectors were concatenated
forming a descriptor with richer information and bigger size.

Layer 21 20 19 18 17 16 15

21 – 74.4 76.1 74.8 76.3 75.2 74.4
20 74.4 – 76.8 76.4 77.0 76.4 76.0
19 76.1 76.8 – 77.1 77.3 76.7 76.9
18 74.8 76.4 77.1 – 76.7 76.4 76.4
17 76.3 77.0 77.3 76.7 – 76.4 76.4
16 75.2 76.4 76.7 76.4 76.4 – 73.1
15 74.4 76.0 76.9 76.4 76.4 73.1 –

In the context of our experiments, we find no evidence to support the use of late
fusion, since the best result achieved by it (75.8%) is still inferior to the results from 2 layers
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of the baseline (76.09% for layer 17 and 76.74% for layer 19) and very close to the results
obtained by layer 20 (75.72%).

We point, however, that the best mean scores were achieved by layers 19 and 17,
with averages of 72.23% and 71.91%, suggesting that they could be further explored with
other setups. The overall best result for this approach was achieved by the fusion of layers
18 and 21, indicating that they may be encoding complementary information, and could
also be further explored, despite the controversial performance of layer 21 in the previous
experiments.

As for the early fusion, many pairs achieved better performance than the baseline
experiments ({15, 19}, {17, 19}, {17, 20}, {18, 19} and {19, 20}), and the best score for it
(the fusion of layers 17 and 19) offered an increase of 0.55% over our best baseline result. We
also observed that layer 19 had an average slightly better than the baseline, although not of
much significance (0.07%).

Our results reveal that the application of early fusion, although expensive, because of
the increased size of the feature vector, may be rewarding, since small improvements can be
of great significance for many tasks (as in the case of automated screening). Furthermore, the
adoption of strategies based on high level representations, discussed in the next section, may
be complementary to other strategies discussed in this work, suggesting their combination.

4.8 High Level Representations

For the experiments of this section, we draw inspiration from the Object Bank repre-
sentation and the Spatial Pyramid Matching method, aiming to improve the quality of the
feature vectors extracted from a deep model. Although our approaches do not follow exactly
their steps, both are similar in many points, as we describe below.

Scale Invariance A follows an approach similar to the Object Bank representation, which
uses a series of object detectors to describe an image with respect to the activation of
such detectors. We consider, however, the deep model as a multi-object detector, and
its output as the activation for the many objects.

For each image, we have extracted square patches (regions) corresponding to 1
5 , 3

10 , 1
3 ,

2
5 and 1

2 of its original size, with steps of 1
10 , 3

20 , 1
6 , 1

5 and 1
4 , respectively. These regions

were presented to the deep model and their feature vectors were combined into a single
description, obtained by the element-wise 𝑚𝑎𝑥 operation, which was then presented to
the classifier.
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Compared to a simple transfer approach, this setup may offer better scale invariance,
since the objects of interest may be presented many times in the patches, at different
scales.

Scale Invariance B tries to capture part of the invariance of the Spatial Pyramid Matching
method, which introduces spatial information in the features by the use of regions
extracted from the image. In our experiments, however, we adopt only the pyramid
based patches from SPM; and instead of introducing spatial information to the features,
we further explore invariances to scale that can be achieved by the different levels of
the pyramid.

For this reason, we devised two branches of this experiment. The first, adopts pyramids
of 1 × 1, 2 × 2 and 4 × 4, and the second adopts pyramids of 1 × 1, 2 × 2 and 3 × 1.
These configurations were chosen based on the nature of the dataset in which we are
experimenting (Pascal VOC 2007).

At each level of the pyramid, we have extracted patches and presented them to our
Scale Invariance A approach with the 1

3 configuration, combining the resulting feature
vectors with the element-wise 𝑚𝑎𝑥 operation. The three feature vectors obtained by the
different levels of the pyramid were then concatenated, creating a single description.

Compared to the Scale Invariance A approach, this setup offer richer features, with
better scale invariance, since the information was extracted at different levels and is
still preserved by the concatenation in the final representation.

Results and Discussion

Figure 28 shows our results for the Scale Invariance A experiments (Figure 28a) and
Scale Invariance B experiments (Figure 28b).

For the Scale Invariance A experiments, all configurations except for the 1
5 resulted

in improved scores. The best numbers were achieved by the 1
2 setup, which had an average

increase of 3.20 p.p. in the classification score over the baseline experiments (and 0.72 p.p.
for 1

5 , 2.42 p.p. for 3
10 and 2.87 p.p. for 2

5).

These results indicate that many of the objects of interest in our dataset may be
detected by looking at regions with area equivalent to 1

4 of the total area of the image.
Intriguing results were also achieved for the layer 21, which had the biggest increase for our
experiments, with 9.79 p.p. above the baseline results.

As for our Scale Invariance B results, both setups affected positively the final score,
with average increases of 3.57 p.p. for the first branch and 2.48 p.p. for the second. The first
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(a) Results for our Scale Invariance A approach

(b) Results for our Scale Invariance B approach

Figure 28 – Results for the High Level Representations. We have created two experiments in-
spired by the Object Bank approach and the Spatial Pyramid Matching method,
aiming to embed scale invariance to the feature vector.
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branch achieved a score of 80.20% on the layer 19, which is the best mAP across all of our
experiments.

Since these approaches preserve more information than the Scale Invariance A (which
is equivalent to the first pyramid alone), we have reason to believe they can be further
improved by adopting different scales for the Object Bank-like description and more levels
for the pyramids.

4.9 Conclusion
In this chapter, we have presented our experiments which explored internal represen-

tations of a deep model, aiming at better understanding them and improving their discrim-
inability.

In Section 4.3, we’ve shown that representations extracted from deep architectures
can contain redundant properties, with information replicated across different feature in-
dexes. Our results suggest that they can be strongly compressed, without significant loss
in performance. We’ve also shown, in Section 4.4, that the precision in the description ex-
tracted from such models is much higher than the necessary, when working with transfer
learning. After removing more than 81% of their binary representation, we still could not
detect significant change in the scores.

These effects were revealed to be complementary, as we successfully reduced the pre-
cision of features extracted from a deep model and, at the same time, exploited redundancy
in their dimensions (Section 4.6).

To better comprehend the extent of our findings, we have further limited the values
of deep representations in Section 4.5, showing that 3 different values for each feature were
enough to achieve results similar to our baseline experiments. In the same section, it was
shown that positive values in the description are highly informative, and their use incremented
our scores by 1.55 p.p.

In attempt to increase the amount of information coded into these representations, we
have tested fusion strategies (Section 4.7), detecting slight improvements with the adoption
of an Early Fusion method. Finally, we have discovered that approaches inspired by the
Object Bank representation and the Spatial Pyramid method, often associated to BoVW-like
strategies, can offer significant enhancements to the quality of the features. Our experiments
from Section 4.8 detected an average gain of 3.57 p.p. over the baseline results.

Although deep representations have been applied with much success in many image
recognition challenges and tasks, our results suggest that most of their internal representa-
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tions is very redundant, even though bigger networks tend to achieve better performance
when compared to smaller architectures. It remains to be tested whether the effects we have
observed are also valid for their original task, rather than being particular to the transfer
approach adopted in our experiments.
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5 Conclusions

In this chapter, we summarize the main contributions of this work regarding the prob-
lem of automated melanoma screening and our exploration of deep features. Furthermore, we
provide guidelines for future work, highlighting points that could not be thoroughly explored
due to limitations in time and scope.

5.1 Main Contributions
The experiments we describe in this work revealed interesting aspects of the represen-

tations created by deep architectures, and are yet to be published. Among our many findings,
we emphasize contributions related to:

Automated Melanoma Screening: In Chapter 3, we have shown robust approaches to
the problem of automated melanoma screening, with state-of-the-art results. Contrary
to its current art, our proposal is independent from medical classification procedures,
relying only on images of the lesion. We highlight that our setup can be efficiently
optimized to be used in remote regions, where the presence of a full-time dermatologist
is not economically feasible, and that the automation of the melanoma screening would
be able to aid in the identification of special cases, for which the attention of a specialist
is needed. We also emphasize that part of our exploration of the melanoma problem,
involving the use of BoVW model and in cooperation with Fornaciali et al. [2014],
resulted in the following publication:

Fornaciali, M., Avila, S., Carvalho, M., & Valle, E. (2014). Statistical Learning
Approach for Robust Melanoma Screening. In Proceedings of the 2014 27th SIBGRAPI
Conference on Graphics, Patterns and Images (pp. 319–326). IEEE Computer Society.

Deep Representations: Our results are valuable for better understanding the properties
of representations extracted from deep models, with evidences pointing to strong inter-
nal redundancy both in terms of precision and number of dimensions, resembling the
neural redundancy commonly observed in animals. We have also identified complemen-
tary characteristics that can be exploited in order to obtain compact representations,
without significant loss in the classification score.

Enhanced Features: The adoption of techniques inspired by state-of-the-art representa-
tions, such as the Object Bank approach and the Spatial Pyramid Matching scheme,
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has proved to offer notable benefits to the process of transferring knowledge constructed
by deep architectures. We have detected gains of up to 9.79 p.p. for specific configura-
tions, with an average increase of 3.57 p.p. with our best strategy. Fusion methods are
also shown to be capable of creating richer features, by combining information from
multiple layers. We have reason to believe that many of our findings can be successfully
combined to generate powerful image descriptors.

5.2 Open Questions and Future Work
In this section, we present questions we could not explore in this work due to limi-

tations of time and scope. We also point further investigations that could be conducted in
light of our results.

Automated Melanoma Screening: We have seen that deep features are powerful enough
to achieve state-of-the-art results for automated melanoma screening. We believe, how-
ever, that our results can be further improved by different experimental setups, such
as the use of other models (e.g. the MatConvNet M) and classifiers. The experiments
we describe in Chapter 4 can also be employed to increase the quality of the feature
vectors, with immediate impacts to the screening problem.

Moreover, recent investigations by Yosinski et al. [2014] point fine-tuning as a promis-
ing solution to correct small problems in the extracted features. This topic remains a
prominent investigation for the melanoma screening community.

Finally, we believe that ensuring reproducibility for the proposed methods are of ex-
treme importance, and should be a concern for any research in this area. Except for the
proposal of Fornaciali et al. [2014], we could not successfully reproduce any results from
the melanoma literature, hindering a fair comparison between different approaches.

Enhanced Features: Our results from Section 4.8 suggest that small changes to our exper-
iments, such as increasing the size of the sliding window, could lead to better scores.
Additionally, data augmentation techniques, which aim to increase the size of the train-
ing set and gain invariance to a series of transformations, could not be explored due to
limitations in the scope of this project. We believe that such approaches may be comple-
mentary, and their combination can further increase the quality of the representations
extracted from a deep model.
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