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Resumo

Segmentação de pele humana possui diversas aplicações nas áreas de visão computacional
e reconhecimento de padrões, cujo propósito principal é distinguir regiões de pele e não
pele em imagens. Apesar do elevado número de métodos dispońıveis na literatura, a
segmentação de pele com precisão ainda é uma tarefa desafiadora. Muitos métodos contam
somente com a informação de cor, o que não discrimina completamente as regiões da
imagem devido a variações nas condições de iluminação e à ambiguidade entre a cor da pele
e do plano de fundo. Dessa forma, há ainda a demanda em melhorar a segmentação. Este
trabalho apresenta três contribuições com respeito a essa necessidade. A primeira é um
método autocontido para segmentação adaptativa de pele que faz uso de análise espacial
para produzir regiões nas quais a cor da pele é estimada e, dessa forma, ajusta o padrão da
cor para uma imagem em particular. A segunda é a introdução da detecção de saliência
para, combinada com detectores de pele baseados em cor, realizar a remoção do plano de
fundo, o que elimina muitas regiões de não pele. A terceira é uma melhoria baseada em
textura utilizando superpixels para capturar energia de regiões na imagem filtrada, que é
então utilizada para caracterizar regiões de não pele e assim eliminar a ambiguidade da
cor adicionando um segundo voto. Resultados experimentais obtidos em bases de dados
públicas comprovam uma melhoria significativa nos métodos propostos para segmentação
de pele humana em comparação com abordagens dispońıveis na literatura.



Abstract

Human skin segmentation has several applications on computer vision and pattern recog-
nition fields, whose main purpose is to distinguish skin and non-skin regions. Despite
the large number of methods available in the literature, accurate skin segmentation is
still a challenging task. Many methods rely only on color information, which does not
completely discriminate the image regions due to variations in lighting conditions and
ambiguity between skin and background color. Therefore, there is still demand to im-
prove the segmentation process. Three main contributions toward this need are presented
in this work. The first is a self-contained method for adaptive skin segmentation that
makes use of spatial analysis to produce regions from which the overall skin color can be
estimated and such that the color model is adjusted to a particular image. The second
is the combination of saliency detection with color skin segmentation, which performs a
background removal to eliminate non-skin regions. The third is a texture-based improve-
ment using superpixels to capture energy of regions in the filtered image, employed to
characterize non-skin regions and thus eliminate color ambiguity adding a second vote.
Experimental results on public data sets demonstrate a significant improvement of the
proposed methods for human skin segmentation over state-of-the-art approaches.
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Chapter 1

Introduction

The human skin segmentation is the process in which its input is an image and the output

corresponds to the pixels that belong to human skin, if any. This task can be perceived

as a classification problem of two classes, skin and non-skin, where the main goal is to

determine each class given the pixel features. In this work, the terms skin detection and

skin segmentation will be used interchangeably.

1.1 Motivation

Human skin segmentation serves as a key step in a diverse of applications in image anal-

ysis. In this manner, if human skin is detected, there is a human, potentially the image

contains a face and, if there is a large amount of visible skin for a single person, poten-

tially there is nudity. From the segmented skin, it is possible to track the person’s hand

movements and then identify gestures. Summarily, the human skin segmentation aids

human detection [11, 27], face detection [24, 25], nudity detection [46, 55, 53], gesture

analysis [5, 66] and content-based image retrieval [9, 33] since it can benefit from any

semantics extracted from the images.

However, the applications will still demand further processing and analysis, such that

the skin detection configures as a preprocessing stage, which creates a requirement for

speed and simplicity. The term simplicity here means that complex configuration, pa-

rameter selection and manual adaptation should be avoided. In other words, the method

for skin segmentation should enable real-time applications and be adaptable to different

purposes.

There are many challenges when working to segment skin in real-world images. First,

the images acquired through different illumination conditions will present different skin

characteristics. Furthermore, shadows, light intensity variation, reflections and person’s

pose will cause discrepancy between skin regions of the same image. Image resolution and

size, as well as compression techniques, are also significant aspects.

Beyond the digital aspects, there are difficulties implied by the natural human skin

characteristic: its color varies with ethnic diversity; its texture change with age — babies

have a soft skin while elders have a more coarse skin; elasticity, which means that facial

expressions and pose can change its aspect.

11
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Although not robust to all these problems, color presents a meaningful evidence for

skin detection. In fact, the vast majority of researches in the literature focus on color

information to determine whether a pixel belongs to skin or not.

Nevertheless, there is an intrinsic problem associated with the use of color. It does not

provide a separability between the pixels belonging to skin and one portion of non skin,

referred to as skin-like pixels. This transition is considerably large and can frequently

occur in an image, causing more errors than later applications could normally afford.

1.2 Objectives and Contributions

The main purpose of this work is to improve the human skin segmentation process through

increasing the separability between skin and skin-like pixels. This dissertation presents

three major contributions on this matter:

• A self-adaptive method that generates a skin color model specific to each image,

which reduces color ambiguity and, that way, decreases the skin-like pixels. Al-

though there are methods that perform adaptive segmentation, they usually rely on

face detection or previous knowledge, whose both these issues can be hard to find

or not be available. This method presents the novelty to be self-contained, that is,

it uses spatial analysis to obtain true skin regions from which a specific color model

is derived.

• A saliency-based framework, that uses saliency detection to remove background skin-

like regions. A saliency detector captures the regions that “catch the eye” on an

image. Thus, they can be used to separate foreground from background. A frame-

work that combines color skin detection with a saliency detector is proposed to

remove false positives from the first process.

• A texture-based method that models texture energy in skin and non-skin regions. It

aims to remove the ambiguity caused by color, providing a second vote for classifi-

cation. Texture is captured by a convolution filter and an energy measure is derived

from each region to characterize it. The skin and non-skin energies are learned

through Gaussian models, which are then applied to the image to obtain a skin

texture probability. Skin texture and skin color are combined in a way that the

pixel is considered skin only if both information agree.

1.3 Organization

This text is organized as follows. Chapter 2 presents relevant works related to skin

segmentation, their advantages and drawbacks, the evolution of this field, as well as con-

cepts and methods used in this dissertation. Chapter 3 details the self-adaptive proposed

methodology and shows its results. Chapter 4 introduces the proposed saliency and color

framework and presents its results. The texture-based improvement and its experimental

results are shown in Chapter 5. Finally, Chapter 6 discusses the general contributions of

the work and presents final conclusions and future directions.



Chapter 2

Background

This chapter describes some relevant works and concepts related to the skin segmentation

problem in digital images.

2.1 Skin Segmentation

There are different approaches to skin segmentation and they can be categorized into

pixel-based and region-based methods. In pixel-based approaches, the classification is

performed by considering an individual pixel, independently on its neighbors. Region-

based methods add contextual information by considering neighbors or the whole image.

This section briefly presents a review of human skin segmentation. For a more exten-

sive survey, one could refer to Kawulok et al. [31].

2.1.1 Pixel-Based Methods

Initially, pixel-based methods are described and discussed for skin segmentation, which

can be further categorized into rule-based, parametric models, non-parametric models,

and adaptive.

Rule Based Methods

The simplest and older strategy for classifying a pixel is based on static decision rules

that restrict skin to some positions on a chosen color space. Sobottaka et al. [56] proposed

one of the first methods for skin detection using the HSV color space. They discarded the

value channel and stated that the pixel will be considered as skin if S ∈ [0.23, 0.68] and

H ∈ [0, 50]. Later, Tsekeridou et al. [62] refined these rules to accommodate the value

channel and add more conditions.

Many other methods with different rules and conditions have been developed since

then [6, 7, 22, 23, 32, 34, 57, 68]. Soriano et al. [57] proposed a rule based on two

quadratic functions for the normalized RG space. Kovac et al. [32] opted for the RGB

space, however, with rules concerning the minimum and maximum values of the channel

and their differences. Hsu et al. [23] adopted various thresholds that divide the HSI space

on three zones that define the skin pixels.

13
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An interesting approach was proposed by Cheddad et al. [7]. They perform a trans-

formation from the RGB to one dimensional error signal e expressed as

e = (0.298936 ·R + 0.587043 ·G+ 0.140209 ·B)−max(G,B); (2.1)

with RGB between [0, 1]. The pixel is considered as skin if 0.02511 ≤ e ≤ 0.1177.

This method achieves better results for general purpose human skin segmentation in

comparison with many of other rule-based methods [52].

Parametric Models

Another approach is to fit a parametric model for the distribution of skin and non-skin

color. Most of the methods available in the literature rely on mixture of Gaussians [27,

39, 61, 71], although there are also methods based on a single Gaussian [3, 59] or elliptical

boundary model [37].

For a Gaussian Mixture Model, the skin or non-skin conditional probability is estab-

lished as

P (c|class) =
N∑
i=1

wi
1

(2π)
3
2 |Σi|

1
2

e
−1

2
(c− µi)τΣ−1

i (c− µi)
(2.2)

where c is the color vector, class can be skin or non-skin and the contribution of the i-th

Gaussian is determined by a scalar weight wi, mean vector µi, and diagonal covariance

matrix Σi. To train the models is used the Expectation-Maximization algorithm. More

details can be found in [19].

Yang et al. [71] used the CIE LUV color space discarding the luminance and using

2 components on the mixture (N = 2). Terrillon et al. [61] compared nine different

chrominance spaces using N = 8. McKenna et al. [39] used only Hue and Saturation to

model a GMM of 2 components.

Jones et al. [27] used 16 Gaussian kernels and the RGB space to model both skin

(P (c|skin)) and non-skin (P (c|¬skin) in order to define the probability of a pixel as skin

given its color (c) to be

P (skin|c) =
P (c|skin)P (skin)

P (c|skin)P (skin) + P (c|¬skin)P (¬skin)
(2.3)

as stated by the Bayes’ rule. P (skin) and P (¬skin) are the prior probabilities and usually

are set to 0.5. Vezhnevets et al. [63] demonstrated that the choice of the prior probabilities

does not influence the overall result.

With the parameters of the Gaussian Mixture that defines the skin probability, given

an input image, every pixel is evaluated by Equations (2.2) and (2.3) resulting in a skin

color probability map. Thus, the final segmentation can be performed through a threshold.

Non-Parametric Models

On the other hand, non-parametric models estimate the probabilities directly from the

training data without any assumptions on its distribution shape. To do so, histograms
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for skin (Hskin(c)) and non-skin (H¬skin(c)) are built over an annotated data set. The

conditional probabilities are obtained as

P (c|skin) =
Hskin(c)∑
(Hskin(i))

(2.4)

P (c|¬skin) =
H¬skin(c)∑
(H¬skin(i))

(2.5)

From these probabilities, the Bayes’ rule in Equation (2.3) can be applied to produce

the desired posterior probability. A skin color probability look-up table is then produced

mapping every color value into a skin probability. In the test stage, given an input image,

every color value is search on the look-up table to generate the skin color probability map.

Jones et al. [27] conducted an extensive evaluation of this method using the RGB

space. A 3D histogram was built with different quantization values, ranging from 2563

to 163. They concluded that the bin size depends directly on the training set size, that

is, some quantization is better than none. They also compared the approach with the

Gaussian mixture model, which was found to perform better for a small training set,

whereas the histogram model outperforms it for a sufficient large training data set.

Adaptive

There is a intrinsic overlap between skin and non-skin colors that limit the accuracy of

color models [31]. Taking this fact into consideration, many researchers have adapted the

previous mentioned methods according to the context. For instance, Kovac et al. [32]

defined two rules: one for a uniform daylight illumination and other for flashlight lateral

illumination. Still, this type of information requires a previous knowledge that can be

unavailable.

Phung et al. [45] created an iterative method based on a homogeneity measurement for

determining an optimal threshold, for the skin probability map of a particular image, by

adapting it to maximize the homogeneous regions. In order to also adapt the threshold,

Zhang et al. [73] used an Artificial Neural Network (ANN). Local minima are considered

as candidates and 13 features are extracted from them. The neural network is trained to

respond whether the candidate is an optimum threshold or not.

Lee et al. [36] also worked with ANN, however, to choose the best histogram model

from a set of five models that were obtained by clustering models for individual training

images. The input image is imposed to the neural network and, based on their responses,

the best model is used in the detection. In the end, this method performs a lighting

adaptation as the models represent the skin in different illumination conditions.

The most significant results are obtained by content-based adaptation, more specif-

ically using face or hand detection. The first of such approaches [15] uses the region

acquired by a face detector to update a unimodal Gaussian previously trained in the RG

color space. To prevent non-skin facial pixels, such as hair and eyes to contribute to the

skin model, it restricts the adaptation to pixels present in the original general model.

Stern et al. [58] used the facial region to select the best of five 2D color spaces (RG,

rg, HS, YQ, CbCr). Each color space is evaluated in terms of their separability between



CHAPTER 2. BACKGROUND 16

face pixels and non-skin surrounding pixels. With the appropriate color space, a Gaussian

model is derived. Bilal et al. [4] used not only face, but also hand detection. To speed up

the detection process, only Cb and Cr were used to define the histogram-based model.

Taylor et al. [60] have recently proposed to only use the face skin in RG to build a

Gaussian model, discarding any previous training. They reduced the detected area to a

circular region and used an outline detection technique to eliminate non-skin facial pixels.

A more robust technique is presented by Kawulok [29], which uses an eye detection

to generate a facial region. All the pixels in this region are used to build a local skin

histogram, whereas general skin and non skin histograms are built by using training data.

It is reported that the histogram quantization should be smaller for the local model, and

then extrapolate to the quantization of the general histogram. A Pface(skin|c) is then

derived through Bayes’ Equation (2.3) using the local skin and general non skin models.

Finally, the global and local probability maps are combined by weighted mean to produce

a final skin probability map.

2.1.2 Region-Based Methods

Region-based methods are generally used as a second step for pixel-based methods. They

add neighborhood information to increase the separability between skin and skin-like

pixels. Wang et at. [67] used fixed rules for RGB and Y CbCr, combined the result of both

and used the grey-level co-occurrence matrix (GLCM) [17, 43] to extract textural features

and classify the found skin regions. Although the false positive rate decreased, the true

positives also decreased.

Ng et al. [42] applied the entropy of 2D Daubechies wavelets [17, 43] over a GMM

skin color classification results. They clustered the texture vectors, using K-means, and

eliminates the pixels from clusters whose mean is maximal, assuming that it will have

rougher texture. This method is much dependent on the number of clusters and clusters

to be eliminated. The improvement is not significant since the decrease in true skin

detection is close to the false skin.

The histogram based skin probability map is used by Jiang et al. [26] to find initial

skin candidates. Then, a lower threshold is used as a texture second step to eliminate the

high number of skin-like pixels. Gabor wavelets are used to extract textural features that

are combined to produce an untrained texture map. Therefore, a threshold on this map

is required to eliminate non-skin texture. Similarly to other methods, this approach also

disturb the true skin detection. Then, the authors used color and texture information to

select markers of watershed segmentation [17, 43] to grow skin regions.

Similar strategies using region growing have been developed, which can be further

categorized as spatial analysis [31]. They consider the structural alignment in the neigh-

borhood of pixels classified as skin — generally with a probability map — such that it

refines the segmentation process by removing false positives.

These methods apply region growing algorithms, where the seeds are found through

a high threshold on a skin probability map. Ruiz et al. [48] proposed a diffusion process

where a criterion considers the Euclidean distance in color space or skin probability be-

tween the seed pixel and its adjacent neighbors. A threshold decides if a neighbor must be
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merged as skin. Additionally, there is a minimum threshold for the neighbor probability.

The method is similar to a threshold hysteresis [17, 43], just adding a distance constraint.

An energy accumulation criterion was proposed by Kawulok [29]. The seed pixels

receive energy 1 and pass an amount of energy to its neighbors based on their skin prob-

abilities. The process continues until there is no more energy to be passed. This is done

to avoid that the growing “leaks” to non-skin regions by imposing a limit to it.

Kawulok [30] also proposed a much more complex method that uses a distance trans-

form and relies not only on skin probability but also on hue and luminance information.

In order to perform the propagation, shortest routes from the seeds are calculated using

Dijkstra’s algorithm [12]. The cost of a pixel x to adjoin a pixel y is defined as

ρ(x→ y) = ρI(x, y) · [1 + ρP (x→ y)] (2.6)

ρI(x, y) = αdiag · (|Y (x)− Y (y)|+ |H(x)−H(y)|) (2.7)

ρP (x→ y) =


Pt − P (y)

1− Pt for P (y) > Pβ

∞ for P (y) ≤ Pβ
(2.8)

where Y (·) is the luminance and H(·) is the hue obtained from the HSV color space, αdiag
represents a penalty of

√
2 if the neighbor is at diagonal direction, P (·) is the probability,

and Pt is a probability threshold that is said to be fixed in 0.6 and is not very sensitive

in the results.

2.2 Saliency Detection

The goal of the saliency detection methods is to find the content in images which attracts

human attention. There are two approaches toward this issue: estimation of the eye

fixation points or determination of the saliency object. Here, we discuss the second

approach in more details since it is coherent with our background elimination purpose.

The methods that perform figure-ground separation – a term to define the separation

between object and background content – can be further classified based on the its domain:

spatial frequency or color space.

The first relies on the signal within an image transform. Hou et al. [21] proposed the

use of spectral residual – the difference between the log amplitude signal obtained with

Fourier Transform (FT) and its smoothed version. Later, Guo et at. [18] showed that the

image phase spectrum of the FT can generate the saliency map. More recently, Hou et

al. [20] described an image signature based on Discrete Cosine Transform (DCT), which

is used to obtain a saliency map that was proved to concentrate energy of spatially sparse

foreground. This method is simple and provides good accuracy in terms of biological

principles, however, we found that the produced map is too blurry (Figure 2.1b), which

affects segmentation precision and also tends to work well only for small centered objects.

The methods that rely on color spatial domain can be further divided into using

local or global contrast. They deal with the rarity of the foreground in relation to the

vicinity of the pixel/region [1] or the entire image, respectively [8]. Local approaches are

more sensitive to edges and noise, whereas global ones explore the overall structure and
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relations, making them more suitable for segmentation. A combination of both [16] can

also be beneficial.

The intuitive strategy of the global methods is to calculate the contrast of each region

to the entire image. Nevertheless, this produces unsatisfied results and often classifies

background regions as salient. Recent works have introduced boundary priors with the

assumption that the image boundaries belong to the background [70] or the regions that

most easily connect with the boundary to form the background [69].

The drawback of these methods is that they fail if the foreground object touches the

boundary. In order to overcome this, Zhu et al. [75] proposed a measure of boundary

connectivity, BndCon, defined as

BndCon(R) =
|{patch|patch ∈ R, patch ∈ Bnd}|√

|{patch|patch ∈ R}|
(2.9)

where R is an image region, Bnd is the set of image boundary patches and patch is an

small image block. Regions that are heavily connected to the boundary, in other words,

regions that have more patches belonging to the boundary set in relation to the total

patches will produce larger values of boundary connectivity. For effective computation,

they extend this notion through superpixels. Zhu et al. [75] also proposed to determine

saliency with the minimization of a cost function that considers a background weight, a

foreground weight and a smoothness term.

Figure 2.1 shows saliency map results for some of the described methods.

(a) Original (b) Image Signature [20]

(c) Geodesic Saliency [69] (d) Manifold Ranking [70] (e) Saliency Optimization [75]

Figure 2.1: Examples of some saliency detection maps.
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2.3 Superpixel Segmentation

In image analysis applications, there is often demand to work on a region rather than

an individual pixel. Detection of objects, faces, people and other relevant contents are

commonly done through a regular grid. Features are extracted for all windows of fixed

size and verified to match the desired content. However, this is neither a good or natu-

ral representation. Inside a regular grid, there might be pixels that belong to different

perceptually regions, raising noise and uncertainty.

A superpixel is an atomic region, formed by groups of perceptually meaningful pixels.

It suppresses the need for a more reliable, unambiguous underlying representation. It also

offers speed advantages for pixel-wise algorithms when the pixels are redundant in the

information they provide. That way, superpixel segmentation algorithms are evaluated

in their speed and adherence to boundaries. Figure 2.2 shows an example of an image

divided into superpixels and regular grid.

(a) Superpixels (b) Regular Grid

Figure 2.2: Example of superpixel versus regular grid representation.

Several methods have been developed to produce superpixels. Mori et al. [41] for

instance, used a classical segmentation algorithm, namely Normalized Cuts [54], to obtain

superpixels through an over-segmentation. Comaniciu et al. [10] used mean shift, an

iterative general segmentation algorithm that performs clustering.

Other works [13, 14, 47, 64] followed the idea of using general purpose segmentation

algorithms with an over segmentation criterion. Some problems that arise with those

approaches include the fact that size, quantity and regularity of superpixels can be un-

controlled and the computational complexity may not be suitable for the preprocessing

goal.

Moore et al. [40] proposed a segmentation method specific for generating superpixels.

It uses a graph-based segmentation combined with a regular grid to conform the super-

pixels into a consistent topology, in order to hold the regularity and relationship with its

neighbors.

Levinshtein et al. [38] proposed a geometric-flow based method that dilates seeds

adapting to a local image structure. This method constraints the superpixels to uniform
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sizes and compactness, however, it is still slow and has a poor boundary adherence.

To address common problems found in superpixel segmentation methods, Achanta et

al. [2] proposed a fast, memory efficient method, named SLIC (Simple Linear Iterative

Clustering). It is an adaptation of the well-known K-means algorithm that performs clus-

tering by iteratively setting the elements to clusters with the nearest mean and updating

their means.

SLIC implements two crucial changes on K-means: a spatial restriction to the distance

calculations and the distance measure. It initially samples the clusters centers into a

regular grid of S×S, then calculates the distances of each center pixel Ck to every pixel i

in a 2S×2S region around it. The pixels are assigned to the closest center and the center

is updated to correspond to the new mean of the cluster.

The distance calculations are an important ingredient. They use the CIELAB color

space and the x and y pixel positions to compose a 5D pixel representation: [l a b x y]T .

However, a 5D Euclidean distance is not suitable, as the position range of values varies

with the grid size. Thus, they proposed to calculate color and space separately, both

normalized and combined in the end. Equations (2.10), (2.11) and (2.12), taken from [2],

show this process.

dc =
√

(lj − li)2 + (aj − ai)2 + (bj + bi)2 (2.10)

ds =
√

(xj − xi)2 + (yj − yi)2 (2.11)

D =

√(
dc
m

)2

+

(
ds
S

)2

(2.12)

where m is a constant and S is the maximum expected spacial distance. Notice that m

can be used for balance between a regular size and shape and adherence to boundaries.

SLIC is the most commonly used method for superpixel segmentation since it is fast,

provides high segmentation quality and is simple, requiring only the amount of superpixels

in its default version.

2.4 Evaluation Metrics

The performance of the skin detection methods is measured through a number of metrics:

• True positive rate (ηtp - percentage of skin correctly classified as skin);

• False positive rate (δfp - percentage of non-skin classified as skin);

• Precision (ηprec - percentage of correctly classified pixels out of all the pixels classified

as skin);

• Fscore (harmonic mean between ηprec and ηtp);

• Detection error (δmin = (1− ηtp) + δfp).
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Additionally for probabilistic classification, the ROC (receiver operating characteris-

tics) and the respective area under curve (AUC) are applied. In this dissertation we show

the ROC curve relating true positives and false positives. That way the better curve is

that with the largest area.

2.5 Data Sets

Three publicly available skin detection databases were used on this research. All of them

provide a manually annotated ground-truth that makes possible to identify the pixel class

(skin or non-skin) for the training and quantitatively evaluate the detection output.

The Compaq Database [27] contains images acquired from the Internet in a diverse

variety of settings. There are 8963 non-skin images and 4666 skin images, which sum

approximately 1 billion pixels. It is one of the largest databases for skin segmentation

and is extensively used in the literature. The smallest image that contains skin has 38×39

pixels, the largest one has 1068× 848 pixels, whereas the median 254× 266 pixels.

The ECU Database [44] contains 4000 images, where most of them were collected

manually from the Internet and a very small portion captured by researchers. In total,

there are nearly 138 billion pixels, as the image sizes vary from 117× 99 pixels to 1500×
2000 pixels with median 584×464 pixels. They ensure a diversity in terms of background

scenes, lighting conditions and skin types. Table 2.1, extracted from [44], shows the

different types of skin and lighting conditions for ECU Database.

Table 2.1: Statistics of ECU data set (Extracted from [44]).

Skin Types Images
whitish, pinkish 1665
yellowish, light brownish 1402
reddish, darkish, dark brownish 965
other skin types 102

Lighting Conditions Images
indoor lighting conditions 1931
outdoor lighting conditions 1855
other lighting conditions 214

The IBTD Database [74] is composed of 555 images extracted from a larger database.

The process occurred in the following way: 16,500 images with a minimum size of 150×150

were randomly selected from news, sports and entertainment websites available in the

Internet, then these images were submitted to a filtering tool for objectionable images,

where the suspicious images were retained in the data set. This means that these images

present more skin-like pixels, which constitutes a more difficult database.
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A Self-Adaptation Method for

Human Skin Segmentation Based on

Seed Growing

Most studies [28, 31, 44] use color information as evidence for detecting skin since this

property is able to provide computational efficiency while it demonstrates to be robust to

occlusions and rotation and scaling transformations [28].

The main obstacle is the existence of an overlap between skin and non-skin colors that

occurs independently of the color space, so objects made of wood, a wall or clothes are

very often mistaken as skin. To minimize that, some segmentation methods [31] attempt

to perform a color separability dependent on the skin color that appears in the image.

The most significant improvements are performed with the aid of face detection, which

provides an estimation of the remaining skin.

This chapter presents an adaptive segmentation method with no need for face or any

other body content detection. It is based on an estimation from regions found through

spatial analysis performed with a skin probability map. Experiments conducted on a

large well known data set show that our method outperforms other skin segmentation

approaches available in the literature.

The methods developed herein resulted in a paper [49] presented at the 10th Interna-

tional Conference on Computer Vision Theory and Applications (VISAPP’2015).

3.1 Proposed Methodology

We propose a method for skin segmentation that combines spatial analysis and adaptive

models for better skin probability estimation. The methodology can be divided into

three main steps. First, seeds are extracted from the general probability map through a

precise and systematic strategy for spreading them over the images. Second, a controlled

propagation method is applied to grow the seeds into skin blobs. Finally, these blobs

are used to estimate the skin color present in the images and such that can optimize the

probability map. The main steps of our method are presented in the diagram shown in

Figure 3.1.

22
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Input
image

Seed
Extraction

Propagation

General
probability

map

Local
probability

map

Adaptive
Detection

Final probability map

Figure 3.1: Main stages of the skin detection process.

Figure 3.2 illustrates the application of the proposed method to an input image, where

the general probability map, the extracted seeds, the blobs after propagation, the final

probability map and the resulting segmentation are shown.

(a) Original (b) General probability map (c) Seeds

(d) Blobs after propagation (e) Final probability map (f) Segmentation result

Figure 3.2: Examples of images obtained by applying each stage of our method to an
input image.

Algorithm 1 describes in details the main steps performed by the proposed skin seg-

mentation method.
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Algorithm 1: Proposed skin segmentation method based on seed growing.

input : color image I, histogram of skin (Hskin) and non-skin (Hnonskin) colors.
output: Final probability map Mfinal

1 Build general probability map (Mglobal) according to Equations (2.3), (2.4), (2.5),
using Hskin and Hnonskin

2 Mblur ← blur(Mglobal, size)
3 Tseed ← max(Mblur)
4 if Tseed ≤ Tseedmin

then
5 return M
6 end
7 edges← edgeDetector(I)
8 for x ∈ I do
9 if Mglobal(x) ≥ Tseed ∧ x /∈ edges then

10 Seeds← x
11 end

12 end
13 Q← {Seeds} {where Q is a priority queue}
14 for x ∈ I do
15 if x ∈ Seeds then
16 C(x) = 0
17 else
18 C(x) = −1
19 end

20 end
21 while Q 6= ∅ do
22 q = pop(Q)
23 for s ∈ Neighbors(q) do {8 - neighborhood}
24 c = C(q) + ρ(q → s)
25 if (c < C(s) ∨ C(s) < 0) ∧ s /∈ edges then
26 C(s) = c
27 Q← s

28 end

29 end

30 end
31 Normalize C by scaling the costs from 0 for the maximal cost to 1 for a zero cost
32 for x ∈ I do
33 if C(x) > 0 then
34 Hskin local(color(x))++
35 end

36 end
37 Build final probability map (Mfinal) according to Equation (3.2) using Hskin local

38 return Mfinal
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3.1.1 Seed Extraction

The most important step in a region growing algorithm is the proper choice of the seeds.

Since seeds can correspond to false positives, the propagation process does not guaran-

tee that inadequate seeds do not occur in the images, which can compromise the final

estimation.

As described in Section 2.1, skin region propagation methods usually rely on a fixed

high threshold and size based analysis for producing the seeds. Such methods do not take

different characteristics of each image into account, as well as its respective probability

map, once the same threshold is applied to all images. Another disadvantage is the

assumption that the resulting skin-like seeds (false positives) are very small, which is

not always true. Taking these factors into consideration, we propose an adaptive seed

extraction with a homogeneity-based analysis.

In order to obtain the best high threshold for a particular image, we first apply a

mean filter [17] to the probability map and then take the maximum probability (Line 3,

Algorithm 1). To allow for images with no skin, if the maximum value is smaller than a

minimum threshold (Tseedmin
), it is discarded, otherwise it is assigned as the seed threshold

for the original probability map. Therefore, we obtain seeds with high probability by

considering the context.

To prevent the occurrence of false positives, we exclude the choice of seeds located

in edge regions, since skin is usually a smooth and homogeneous region. The used edge

detector is described in the following section.

3.1.2 Propagation

The objective here is to expand the seeds into skin blobs. The main drawback of propaga-

tion methods is the “leakages”, that is, the seed growth to a region of non skin. In order

to avoid those, we establish a strict control of the propagation. We modified the cost

propagation proposed in Kawulok [30] by adding a constraint in which the propagation

cannot flow out the image edges. As a consequence, an increase in the false negative rate

is expected with the reduction of the false positive rate. The next step will address these

undetected skin regions.

Prior to the actual propagation, an edge detector is applied to the images. In order to

benefit from color information, we utilize a color edge detection technique that combines

(through logical or operator) the results of Canny detector [17] for each of the three chan-

nels in HSV color space. Following that, a morphological dilation operation is performed,

such that small gaps can be closed.

The propagation process is similar to the work by Kawulok [30] except that the process

stops when an edge is reached for a certain direction (Line 25, Algorithm 1). Besides

preventing false positives, this also speeds up the algorithm, once the original approach

calculates the costs from the seeds to every other pixel in the image.
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3.1.3 Adaptive Detection

Once we have generated the skin blobs, we use them to build a local statistical model

(Line 34, Algorithm 1) that adapts to the particular conditions of the image. From the

histogram of these resulting skin regions, we obtain a Plocal(c|skin). As for non-skin, we

assume that the local distribution follows the global one, which gives

Plocal(c|¬skin) = Pglobal(c|¬skin) (3.1)

The final probability is defined as

P (skin|c) = γPlocal(skin|c) + (1− γ)Pglobal(skin|c) (3.2)

where Plocal(skin|c) and Pglobal(skin|c) are both calculated as in Equation (2.3), dif-

ferentiating by using local and global data, respectively. The parameter γ controls the

importance of the local model.

From Equation (3.2), we generate the final skin probability map, in which the detection

can be performed through a fixed threshold or generated by more complex techniques

developed for the general probability map. However, the description of such methods is

beyond the scope of this paper.

3.2 Experiments

The experiments were evaluated on two different data sets. To train the Bayes classifier,

we used 8963 non-skin images and 4666 skin images from the Compaq database [27]. For

evaluation and comparison purposes, we used the ECU database [44] divided into a 1000

images for validation and 3000 images for test.

All the following experiments were conducted on an Intel Core i7 3.50GHz with 32GB

RAM running 64 bits Ubuntu 12.04 operating system.

In order to determine the bin size of the histogram, we experimented a number of

different sizes, as shown in Table 3.1. Since 32 bins per channel produced the highest

value of AUC, this value was used in the proposed method both for local and general

models.

Table 3.1: Bin size evaluation for validation data set.

Bin size AUC

83 0.892348
163 0.918403
323 0.934036
643 0.923436
1283 0.917958
2563 0.914159

Furthermore, the seed detection process demonstrated to be sensitive to the bin size,

performing better for more quantized color values. Another factor that influenced the
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seeds is the kernel size for the median filter. We empirically observed that the amount

of seeds found is directly related to it. If it is too small, then very few seeds are found;

otherwise, if it is too large, several false positives are placed as seeds. A 15× 15 median

filter was used to generate the reported results.

A comparison between our seed extraction method and different fixed thresholds are

presented in Table 3.2. Since an important issue in the seed extraction is to avoid false

positives while retaining some true positives, the precision (ηprec) seems appropriate for

the evaluation. As it can be noticed, our method provides superior results with a large

difference.

Table 3.2: Evaluation of seed extraction for validation data set.

Method ηprec (%)

Tseed = 0.70 68.32
Tseed = 0.80 73.39
Tseed = 0.90 82.64
Tseed = 0.95 88.70
Our seeds 94.66

Another desired quality for seeds is that they should be spread over the skin regions to

prevent from missing any isolated region. Therefore, we present a qualitative comparison

in Figure 3.3. The seeds acquired with fixed thresholds are displayed along with the seeds

collected by our method and the Tseed found by it are placed in brackets.

(a) Tseed = 0.8 (b) Tseed = 0.9 (c) Tseed = 0.95 (d) Our seeds [0.983012]

(e) Tseed = 0.7 (f) Tseed = 0.8 (g) Tseed = 0.9 (h) Our seeds [0.722982]

Figure 3.3: Examples of seeds detected through different thresholds for our method.

It is possible to observe that our method not only avoids the non-skin regions but also

maintains the dispersal. It is also noticeable that a high threshold is required in the first
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image in order to avoid misclassification, while the second will not produce significant

seeds for the same value. Thus, our seed extraction method overcomes such problem with

a choice of a proper threshold for each image.

The edge detection is an important stage of our method since it supports both seed

extraction and propagation. Some experiments were conducted in the edge detector for

different color spaces: only luminance, HSV, RGB and YCbCr. The HSV model better

captured people’s contours in images under abnormal lighting and, therefore, was em-

ployed in the experiments. Canny detector was applied with both low and high thresholds

equal 100 and a dilation process was performed with a 3× 3 structuring kernel.

For comparison, we selected some state-of-the art methods available in the literature:

Cheddad’s decision rule [7], statistical model [27], face-based adaptation [29] built with

Viola-Jones face-detector [65] and cost propagation [30]. Our method was tested with

γ = 0.8 and Tseedmin
= 0.5, whereas original parameters were employed in the other

approaches.

Figure 3.4 presents a comparison of the ROC curves. The points in the curves were

obtained with different thresholds, except for Cheddad’s rule, whose output is binary.
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Statistical model − AUC = 0.9323

Cost Propagation − AUC = 0.9132

Face−based adaptation − AUC = 0.9487

Proposed Method − AUC = 0.9520

Figure 3.4: ROC curves for comparison of the tested methods.

To present quantitative values, Table 3.3 shows the results for a fixed threshold ob-

tained through maximal Youden’s index [72], which represents the closest point to the

optimum value (0,1). Best values are highlighted in bold.

Cheddad’s rule, as expected, holds the worst results, which demonstrates the inad-

equacy of such restrict and biased method. Statistical model performs a little better,

however, it still has a higher false positive rate.

From the compared methods, the cost propagation has the lowest δmin whereas the

face-based adaptation the highest Fscore. In fact, their values are very similar, considered
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Table 3.3: Detection results for different methods.

Method ηtp δfp Fscore δmin
(%) (%) (%) (%)

Cheddad 89.33 19.51 64.78 30.18
Statistical model 87.90 14.51 69.71 26.61
Face-based adaptation 86.83 11.79 72.63 24.96
Cost propagation 90.40 14.46 71.05 24.06

Proposed method 89.78 11.24 74.95 21.46

as a tie. The first has δfp very similar to the statistical model, what suggests that its

improvement is accomplished by an increase in the true positive rate. Oppositely, the

second maintains the ηtp, performing a reduction in the number of false positives. Our

proposed method, which holds the best results, improves on both metrics.

Table 3.4 gives the true positive rate for fixed false positive rate values, where only

methods of probabilistic output were considered. It shows the behavior of the methods

in different tolerance settings.

Table 3.4: True positive rates for fixed values of false positive rate.

Method ηtp δfp ηtp δfp
(%) (%) (%) (%)

Statistical model 81 10 92 20
Face-based adaptation 85 10 92 20
Cost propagation 84 10 94 20

Proposed method 88 10 95 20

Figure 3.5 illustrates the results for applying the evaluated methods on four different

image samples from the test set. In the first row, it is possible to observe that the face-

based adaptation misclassified a piece of blue shirt possibly due to the girl’s blue eyes.

Furthermore, in the second row shows the detection of several different false positives,

which suggests that the face was not correctly detected.

The main drawback of the cost propagation approach is that it detects part of the

background as skin, as illustrated in the third row of Figure 3.5. This occurs because, in

some points, there is a smooth transition between skin and false skin regions, such that a

“leakage” occurs.

Our method overcomes such problems since it tends to use more than just one region

for the estimation. Thus, our local model is an accurate representation in cases of variation

of skin through different locations. Furthermore, seeds were always found in our tests,

while no faces were detected in 12% of the images. Although “leakages” can still occur,

they are significantly reduced as demonstrated through the results.

It is also important to highlight the viability of our method in real-time applications,

since the average time per image in the test set was 282ms in an unoptimized version of

our code.
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Original Probability map Cheddad Cost propagation Face-based Proposed

Figure 3.5: Examples of skin detected with different methods.

3.3 Discussion

This work presented a new adaptive human skin segmentation method that makes use of

skin probability map and eliminates the need for object detection. The main contributions

of our approach include: a new method for seed extraction based on spatial analysis and

a self-contained adaptation.

Experimental results demonstrated that the proposed technique outperforms state-

of-the-art skin segmentation methods for a large and well-known test set. Nevertheless,

additional improvements can be made. False positives generated in the propagation stage

of our method have a large contribution to the overall accuracy, what makes us conjecture

that even little enhancements in the propagation control, such as better edge detection,

will significantly decrease the error rates.

Our method could also be combined with face-based adaptive methods through two

strategies: use of detected faces to improve seed extraction and use as an alternative when

a face is not present in the image or has not been correctly detected.

As future directions, we intend to investigate more powerful features, such as textu-

ral information, to discard incorrect seeds, as well as new strategies for controlling the

propagation.
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Human Skin Segmentation Improved

by Saliency Detection

In this chapter, we propose the use of saliency to reduce false positives found in probability

maps. The objective of the saliency detection process here is to exclude background from

the images. Skin probability information is combined with saliency to generate the final

skin probability map.

Experiments conducted on large and challenging data sets demonstrate that the pro-

posed method is capable of improving other skin segmentation approaches available in

the literature.

The methods developed herein resulted in a paper [50] accepted for presentation

in the 16th International Conference on Computer Analysis of Images and Patterns

(CAIP’2015).

4.1 Proposed Methodology

We propose a method for reducing the false positive rate in skin segmentation with the use

of a saliency detection method. This is based on the premise that the skin is not always

salient in the image, but that the background will be not salient. Therefore, saliency

detection methods that operate by finding the background to achieve the salient region

are preferable, for instance, methods with boundary priors.

Since the skin regions will not be always classified as salient, we need to provide

skin information for the considered saliency detector. We deal with skin probability

information, however, binary output methods would also be suitable just by considering

then having only probability 0 and 1. The main steps of our skin detection framework

are illustrated in the diagram of Figure 4.1.

First, the skin detector (Stage 1) is applied to the image, creating a probability map

(Pmap) (Stage 2). This is used to build a weighted image (Stage 3), as shown in Equa-

tion 4.1

WI(i, j, k) = Pmap(i, j) · I(i, j, k) (4.1)

where WI(i, j, k) represents the weighted image pixel in channel k and I(i, j, k) the original

image pixel in channel k.

31
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Figure 4.1: Main stages of the proposed skin detection framework.

The weighted image serves as input for the saliency detector (Stage 4), whereas the

probability map is also used to exclude probable skin from the boundary list. This is done

with a threshold (Tβ) applied to the map and aims to prevent that skin pixels adjacent

to the boundary will be discarded. Since many saliency implementations use superpixels,

in that case the probability map needs to be modeled with the same superpixel structure,

however the representative value of each superpixel will be the minimum value of the

region instead of the usual mean value. This is done such that only regions containing all

probability values larger than Tβ will be excluded as background.

The output saliency map (Smap) (Stage 5) is again combined with Pmap, as shown in

Equation 4.2

Fmap(i) = γPmap(i) + (1− γ)Smap(i) (4.2)

where Fmap is the final skin map (Stage 6) and γ defines the weight of the probability

map in the mean combination in the range between 0 and 1.

At the final stage, the framework outputs a map for the skin, even for binary skin

detectors. Thus, the final segmentation can be performed by a simple threshold or a more

sophisticated strategy.

Figure 4.2 illustrates the application of the proposed method to an input image, where

the probability map, the weighted image, the saliency map, the final map and the resulting

segmentation are shown.
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Original Probability map Weighted image

Saliency map Final map Segmentation

Figure 4.2: Examples of images obtained by applying each stage of our method to an
input image.

4.2 Experiments

Experiments were conducted on different data sets to evaluate the proposed methodology.

For training, we used 8963 non-skin images and 4666 skin images from the Compaq

database [27].

For evaluation and comparison purposes, we used two publicly available skin databases.

The ECU database [44] was divided into 1000 images for validation and 3000 images for

test, and all the 555 images of IBTD database [74] were used for test.

In order to evaluate the proposed framework, we selected three widely used skin detec-

tors with different approaches: Cheddad’s rule [7] (rule based), Gaussian Mixture Model

(GMM) [27] (parametric) and Histogram Model [27] (non-parametric). For the Gaussian

Mixture, we used the 16 kernels trained in the original paper for skin and non-skin sam-

ples. The Histogram Model was built with 64 bins per channel in the RGB space. It is

important to highlight that both GMM and Histogram share the same training set.

As the saliency detector, we chose the saliency optimization method from Zhu et

al. [75] since it can cope with the wild scenario of the skin images. In other words, it

can work with no centralized foreground and with images of different sizes, preserving the

scale and producing less false saliencies. We maintained its original parameters changing

only the boundary list as stated in Section 4.1.

Besides the parameters of the chosen skin detectors and saliency detector, our frame-
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work adds only two new parameters: the threshold Tβ and the weight γ. In the validation

stage, we performed a grid search and found that 0.5 is a proper value for both.

Figures 4.3 and 4.4 shows comparative ROC curves between the original skin detector

and our combination with saliency detector. It can be seen that the proposed method

always achieves superior results on both tested data sets.
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Figure 4.3: ROC curves showing the results on ECU data set for the original method and
the improvement with the framework.

Tables 4.1 and 4.2 show the result values when considering the closest point to the

optimum point (0, 100%) in the ROC curve. For Cheddad’s rule, which is a binary

method, the tables present isolated point values. A noticeable aspect in Table 4.1 is that

the methods which holds worst results, becomes better than all others without saliency

when they are combined by our method with saliency detection.

Table 4.1: Detection results for different methods (ECU data set).

Method
Original + Saliency

ηtp δfp Fscore δmin ηtp δfp Fscore δmin
(%) (%) (%) (%) (%) (%) (%) (%)

Cheddad 89.33 19.51 64.78 30.18 85.81 12.10 71.67 26.29
Gaussian Mixture 87.55 20.30 63.09 32.76 85.91 11.84 72.08 25.93
Histogram Model 87.21 16.54 66.95 29.33 84.10 10.00 73.63 25.91

For a better view of the differences in performance with and without our proposed

methodology, Figure 4.5 shows a graph bar for F-score metric for the original method and

its improved version.
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Figure 4.4: ROC curves showing the results on IBTD data set for the original method
and the improvement with the framework.

Table 4.2: Detection results for different methods (IBTD data set).

Method
Original + Saliency

ηtp δfp Fscore δmin ηtp δfp Fscore δmin
(%) (%) (%) (%) (%) (%) (%) (%)

Cheddad 95.74 39.98 53.96 44.24 88.12 26.10 60.36 37.98
Gaussian Mixture 90.83 22.59 64.71 31.76 92.69 19.78 68.30 27.09
Histogram Model 89.70 20.91 65.74 31.21 91.37 16.19 71.44 24.82

For a more detailed comparison, we provide true positive rate values for a 10% false

positive rate in Tables 4.3 and 4.4. In other words, this represents how much of true skin

is possible to detect since there is only 10% tolerance for skin-like. In case of the original

Cheddad method, we perform a linear approximation preserving the same ratio between

ηtp and δfp.

It is worth mentioning that our method always results in higher true positive rates

with a considerable advantage over the original approaches.

Figure 4.6 shows some examples of final segmentation in the two tested data sets. The

first column presents the original image, the second one shows the ground-truth, whereas

the remaining columns show the segmentation result for each original method on the left

and its correspondent improved segmentation results on the right.

It can be observed that the segmentation results of the methods improved by our

framework are clearer and have much less non-skin background. From the last row, it is

noticeable that our method not only removes false skin, but also is capable of recovering
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Figure 4.5: Comparative Fscore results for original methods and our approach both in (a)
ECU and (b) IBTD data sets.

Table 4.3: True positive rates for a fixed value of false positive rate (ECU data set).

Method
ηtp(%), δfp = 10%

Original + Saliency

Cheddad 46 83
Gaussian Mixture 70 83
Histogram Model 77 84

Table 4.4: True positive rates for a fixed value of false positive rate (IBTD data set).

Method
ηtp(%), δfp = 10%

Original + Saliency

Cheddad 24 48
Gaussian Mixture 67 74
Histogram Model 70 80

false negatives.

4.3 Discussion

This work described and analyzed a new general framework for improving skin segmen-

tation using saliency detection. It supports any skin segmentation technique and can be

adapted to any saliency detection method based on background priors.

Experiments conducted on two public data sets, a well-known large test set and a more
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Figure 4.6: Examples of skin regions detected through different methods.

challenging data set, demonstrated that the proposed technique can provide a significant

improvement on the results for different skin detection approaches. Nevertheless, addi-

tional refinements can be incorporated into the framework, for instance, in cases where

skin covers most of the image, avoiding that true skin is discarded due to its classification

as background.

As future directions, we intend to expand the framework to address false positives

that inevitably belong to a salient region by removing not only non-skin background, but

also non skin present in the foreground.



Chapter 5

Human Skin Segmentation Improved

by Texture Energy Under

Superpixels

In this chapter, we propose the use of texture energy to reduce the false positives found

by color-based methods. Skin color detection is combined with a skin texture probability

to generate a final skin probability map.

Experiments conducted on a large and challenging data set demonstrate that the

proposed method is capable of improving the skin color segmentation approaches available

in the literature.

The methods developed herein resulted in a paper [51] accepted for presentation in

the 20th Iberoamerican Congress on Pattern Recognition (CIARP’2015).

5.1 Proposed Methodology

We propose a method for reducing the rate of false positives in skin detection caused by

skin-like color. Law’s texture energy measure [35] is employed in the process, which works

on the response of the intensity image to a special filter mask. The main steps of our skin

detection method are illustrated in the flowchart of Figure 5.1.

The filters defined by Law are build by the product of two vectors obtained from a

fixed set of 1-D masks designed to detect edges, spots, ripple, among others. A filter is

named according the purpose of the vectors from which it was produced and it’s size. For

example, an E5S5 mask is a 5× 5 mask produced by the product of a 1-D edge mask and

a 1-D spot mask. In the next section, we explore the choice of the filter for this proposed

method.

To allow the calculation of energy over a region and prevent that the same region

covers both skin and non-skin, we use the Simple Linear Iterative Clustering (SLIC) [2].

technique for segmenting the image into superpixels. Thus, we calculate the mean energy

of each superpixel in the training and test sets.

The goal of the training stage is to obtain two Gaussian models, one for skin and

another for non-skin texture energy measures. The images are submitted to superpixels

38
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Input image

Superpixels

Color map
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Figure 5.1: Main stages of the proposed skin detection method.

over segmentation and convoluted with a spatial filter. The texture energy is computed for

each superpixel, such that mean and standard deviation are extracted for each class (skin

and non-skin), forming the two Gaussian models. Algorithm 2 summarizes the training

stage.

In the test stage, once the energies of an image have been computed through the

same pipeline as in the training step, the skin and non-skin probability densities for each

superpixel are obtained. Then, the skin probability given the texture energy is computed

in a similar manner to Equation 2.3, as stated in Equation 5.1

P (skin|EΦ) =
f(EΦ, µskin, σskin)

f(EΦ, µskin, σskin) + f(EΦ, µ¬skin, σ¬skin)
(5.1)

where EΦ is the energy measure and f(EΦ, µclass, σclass) is the Gaussian probability density

function for the texture energy.

As texture in a face can vary from the rest of the body, the skin probability in the region

close to the nose, around the eyes and mouth will be very low. Thus, it is necessary to

apply a heuristic to avoid this type of problem. In our work, we perform a postprocessing

mechanism, where areas with low probabilities, surrounded by high probabilities, are filled

with the mean of these surroundings high probabilities. Finally, the result of this process

constitutes the skin texture probability map.

The texture probability map (Tmap) is combined with a color probability map (Cmap)

through an AND operation, as shown in Equation 5.2

Fmap =
√
Cmap · Tmap (5.2)

producing the final skin probability map Fmap.
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Algorithm 2: Proposed Skin Texture Training.

input : List of images L, list of ground truth pixels G, filter mask f , size of
superpixels sp size.

output: Gaussian Models

1 Xskin ← ∅
2 X¬skin ← ∅
3 for I ∈ L do
4 SPlist ← SLIC(I, sp size) /* SPlist holds the superpixels coordinates */
5 Igray ← rgb2gray(I)
6 If ← Igray ∗ f /* where ∗ denotes a convolution */
7 for x ∈ SPlist do

8 EΦ ←
∑
If (x)2

length(SPlist)

9 if I(x) ∈ G then
10 Xskin ← {EΦ}
11 else
12 X¬skin ← {EΦ}
13 end

14 end

15 end
16 Compute µ and σ for Xskin and X¬skin.
17 return µskin, µ¬skin, σskin, σ¬skin

The color probability map can be calculated from any color skin detector, even binary

output methods that produce only probability 0 or 1. At the final stage, the framework

outputs a skin map. Thus, the final segmentation can be performed by a simple threshold

or a more sophisticated strategy.

5.2 Experiments

Experiments were conducted on two different data sets to evaluate the proposed method-

ology. For training, we used 8963 non-skin images and 4666 skin images from the Compaq

database [27]. For evaluation and comparison purposes, we used the ECU database [44]

that was divided into 1000 images for validation and 3000 images for test.

In order to select the filter, we used four 1D vectors:

L5 (Level) = [ -1 4 6 4 1 ]

E5 (Edge) = [ -1 -2 0 2 1 ]

S5 (Spot) = [ -1 0 2 0 1 ]

R5 (Ripple) = [ 1 -4 6 -4 1 ]

which generates sixteen 5× 5 filters. Each one is convoluted with the image; the results

of filters that are just transposed of others are combined to produce their mean, resulting

in nine features. From the validation set, we evaluate the gain provided by each feature

in relation to the color individually. The filter E5S5/S5E5 produced the best results.
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E5t · S5 =


1 0 -2 0 1

2 0 -4 0 2

0 0 0 0 0

-2 0 4 0 -2

-1 0 2 0 -1


In order to evaluate the proposed method, we selected three widely used skin detectors

with different approaches: Cheddad’s rule [7] (rule based), Histogram Model [27] (non-

parametric) and Gaussian Mixture Model (GMM) [27] (parametric). The Histogram

Model was built with 64 bins per channel in the RGB space. For the Gaussian Mixture,

we used the 16 kernels trained in the original paper with the same database as used here.

Figure 5.2 shows comparative ROC curves between the original skin detector and our

improvement. It is possible to observe that the proposed method always achieves superior

results.
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Figure 5.2: ROC curve illustrating the results on test data set for the original method
and the improvement through our method.

Table 5.1 shows the result values when considering the closest point to the optimum

point (0, 100%) in the ROC curve. For Cheddad’s rule, which is a binary method, the

tables present isolated point values.

For a more detailed comparison, we provide true positive rate values for a 10% false

positive rate in Table 5.2. In other words, this represents how much of true skin is possible

to detect since there is only 10% tolerance for skin-like. In case of the original Cheddad

method, we perform a linear approximation preserving the same ratio between ηtp and

δfp.

It is worth mentioning that our method always results in higher true positive rates
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Table 5.1: Detection results for different methods (ECU data set).

Method
Original Improved

ηtp δfp Fscore δmin ηtp δfp Fscore δmin
(%) (%) (%) (%) (%) (%) (%) (%)

Cheddad 89.33 19.51 64.78 30.18 87.32 16.22 67.38 28.90
Gaussian Mixture 87.55 20.30 63.09 32.76 87.37 17.78 65.64 30.41
Histogram Model 87.21 16.54 66.95 29.33 86.96 14.55 69.17 27.59

with a considerable advantage over the original approaches.

Table 5.2: True positive rates for a fixed value of false positive rate (ECU data set).

Method
ηtp(%), δfp = 10%

Original Improved

Cheddad 46 71
Gaussian Mixture 70 75
Histogram Model 77 81

Figure 5.3 shows some examples of final segmentation in the tested data set. The first

column presents the original image, the second one shows the ground-truth, whereas the

remaining columns show the segmentation result for each original method on the left and

its correspondent improved segmentation results on the right.

Source im-
age

Ground
truth

Original Improved
Cheddad

Original Improved
GMM

Original Improved
Histogram

Figure 5.3: Examples of skin regions detected through different methods.
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5.3 Discussion

This work described a new technique for reducing the high number of false positives in

color-based skin segmentation. It can be applied in conjunction with any skin segmenta-

tion method, while not adding more sensitive parameters to perform the skin classification.

Experiments conducted on a well-known large test set demonstrated that the proposed

technique can provide a significant improvement on the results obtained with different

color-based skin detection approaches. Furthermore, the use of texture for skin segmen-

tation is very difficult; although human skin has a distinguishable texture, this can only

be noticeable on high resolution images. Age, amount of body hair, expression and pose

constitute obstacles in finding a structural pattern for skin.

As directions for future work, we intend to expand the method with multi-resolution

analysis to take account into the variety in quality and size of the images. We also plan

to propose a better filter, designed specifically for the skin detection problem.



Chapter 6

Conclusions and Future Work

In this work, a set of improvements were proposed to satisfy the need of increasing the

separability between skin and skin-like regions for human skin segmentation. Three main

contributions are given: a self-adaptive skin color model, a method that use saliency for

non-skin background removal and a combination of skin texture and color.

The self-adaptive proposed method fits a skin color model to particular conditions of

the images, addressing the problem of lighting variation and natural differences that occur

in skin colors among people. Although this approach is not novel, our method avoids the

use of weak heuristics and relies only on the skin color itself. Experiments demonstrated

that it overcomes not only non-adaptive methods but also an adaptive method based on

faces. This is explained due to the inevitable errors brought by the face detector and

because faces contain more than just skin.

The improvement by using the concept of saliency detection is a novelty since it has

not been well explored in the skin segmentation problem. The use of saliency has many

advantages: no training is necessary, it is fast and there are many different methods that

can be employed. It was possible to observe from the experiments that the use of saliency

always improved the results of color-based detectors. The weaker the detector is, the

larger is the improvement.

The use of texture for skin detection is a complex task. The image quality, person’s

pose, age and amount of hair represent a major obstacle to define a skin pattern. Thus,

our method focuses on simple features, such as coarseness and homogeneity. Nonetheless,

they are not explicitly defined but learned from a training set. In the end, it is observed

that texture detectors work as an anomaly detection process, eliminating non-skin regions

that are very different from the skin. The use of superpixels makes the process more

accurate since each evaluated region must contain only skin or non-skin pixels. If a region

presents both skin and non skin portions, any classification method will fail. Experimental

results showed that any type of approach using color can be combined with our texture

classification, providing an overall improvement.

Each of these three methods have theirs advantages and drawbacks in relation to the

others. The self-adaptive is not suitable when the skin color varies a lot in the same

image, but is excellent for data sets with high intra-image skin color variation. The

method with saliency is useful for images where the skin will be centralized and most the

image constitutes of non-skin background. The texture energy method is the one with

44
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the low results in comparison with the first two, this happens because it operates in a

more specific space. So the accuracy depends on the textural difference between skin and

non skin in the data sets. It will be more suitable for images where the background is not

uniform, like natural images.

As directions for future work, we intend to propose a skin detection framework by

combining all the multiple evidences presented here. It is expected that the combination of

the methods will probably overcome the obtained individual results. For instance, saliency

could be used to limit the propagation step of the self-adaptive method. Furthermore,

texture energy could be used to better select seeds.

Finally, we plan to apply and evaluate our approaches to other problems, such as

gesture detection, nudity identification, face detection, among others.
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Segmentation. In Computer Vision Systems, pages 66–75. Springer, 2008.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. SLIC Su-

perpixels Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 34(11):2274–2282, 2012.

[3] J. Ahlberg. A System for Face Localization and Facial Feature Extraction. Technical

Report LITH-ISY-R-2172, Department of Electrical Engineering, Linköping Univer-
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