
Carlos Eduardo de Andrade

“Evolutionary Algorithms for some Problems in
Telecommunications”

“Algoritmos Evolutivos para alguns Problemas em
Telecomunicações”

CAMPINAS
2015

i

ii

University of Campinas
Institute of Computing

Universidade Estadual de Campinas
Instituto de Computação

Carlos Eduardo de Andrade

“Evolutionary Algorithms for some Problems in
Telecommunications”

Supervisor/Orientador : Prof. Dr. Flávio Keidi Miyazawa
Co-Supervisor/Co-orientador : Dr. Mauricio Guilherme de Carvalho Resende

“Algoritmos Evolutivos para alguns Problemas em
Telecomunicações”

PhD Thesis presented to the Post Gradu-
ate Program of the Institute of Computing
of the University of Campinas to obtain a
PhD degree in Computer Science.

Tese de Doutorado apresentada ao Programa de
Pós-Graduação em Ciência da Computação do
Instituto de Computação da Universidade Es-
tadual de Campinas para obtenção do título de
Doutor em Ciência da Computação.

This volume corresponds to the fi-
nal version of the Thesis defended
by Carlos Eduardo de Andrade, un-
der the supervision of Prof. Dr.
Flávio Keidi Miyazawa.

Este exemplar corresponde à versão fi-
nal da Tese defendida por Carlos Edu-
ardo de Andrade, sob orientação de
Prof. Dr. Flávio Keidi Miyazawa.

iii

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Andrade, Carlos Eduardo de, 1981-
 An24e AndEvolutionary algorithms for some problems in telecommunications / Carlos

Eduardo de Andrade. – Campinas, SP : [s.n.], 2015.

 AndOrientador: Flávio Keidi Miyazawa.
 AndCoorientador: Mauricio Guilherme de Carvalho Resende.
 AndTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 And1. Otimização combinatória. 2. Redes de computadores - Projetos e

construção. 3. Algoritmos genéticos. I. Miyazawa, Flávio Keidi,1970-. II. Resende,
Mauricio Guilherme de Carvalho. III. Universidade Estadual de Campinas. Instituto
de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Algoritmos evolutivos para alguns problemas em telecomunicações
Palavras-chave em inglês:
Combinatorial optimization
Computer networks - Design and construction
Genetic algorithms
Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:
Mauricio Guilherme de Carvalho Resende [Coorientador]
Thiago Ferreira de Noronha
Luciana Salete Buriol
Cid Carvalho de Souza
Kelly Cristina Poldi
Data de defesa: 05-03-2015
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

iv

vi

Institute of Computing /Instituto de Computação
University of Campinas /Universidade Estadual de Campinas

Evolutionary Algorithms for some Problems in
Telecommunications

Carlos Eduardo de Andrade1

March 05, 2015

Examiner Board/Banca Examinadora:

• Dr. Mauricio Guilherme de Carvalho Resende (Co-supervisor/Co-orientador)
Amazon.com

• Prof. Dr. Thiago Ferreira de Noronha
Department of Computer Science – Federal University of Minas Gerais

• Prof. Dr. Luciana Salete Buriol
Institute of Informatics – Federal University of Rio Grande do Sul

• Prof. Dr. Cid Carvalho de Souza
Institute of Computing – University of Campinas

• Prof. Dr. Kelly Cristina Poldi
Institute of Mathematics, Statistics, and Scientific Computing – University of Camp-
inas

• Prof. Dr. Débora Pretti Ronconi
Production Engineering Department – University of São Paulo (Substitute/Suplente)

• Prof. Dr. Eduardo Cândido Xavier
Institute of Computing – University of Campinas (Substitute/Suplente)

• Prof. Dr. Luis Augusto Angelotti Meira
School of Technology – University of Campinas (Substitute/Suplente)

1Financial support: CAPES 2010; FAPESP grant 2010/05233-5 (2010–2015) and grant 2012/08222-0
(2012–2014)

vii

viii

Abstract

In last twenty years, telecommunication networks have experienced a huge increase in
data utilization. From massive on-demand video to uncountable mobile devices exchang-
ing text and video, traffic reached scales that overcame the network capacities. Therefore,
telecommunication companies around the world have been forced to increase their capac-
ity to serve this increasing demand. As the cost to deploy network infrastructure is usually
very large, the design of a network heavily uses optimization tools to keep costs as low
as possible. In this thesis, we analyze several aspects of the design and deployment of
communication networks. First, we present a new network design problem used to serve
wireless demands from mobile devices and route the traffic to the core network. Such
access networks are based on modern wireless access technologies such as Wi-Fi, LTE,
and HSPA. This problem has several real world constraints and it is hard to solve. We
study real cases of the vicinity of a large city in the United States. Following, we present
a variation of the hub-location problem used to model these core networks. Such prob-
lem is also suitable to model transportation networks. We also study the overlapping
correlation clustering problem used to model the user’s behavior when using their mobile
devices. In such problem, one can label an object with multiple labels and analyzes the
connections between them. Although this problem is very generic, it is suitable to analyze
device mobility which can be used to estimate traffic in geographical regions. Finally, we
analyze spectrum licensing from a governmental perspective. In these cases, a govern-
mental agency wants to sell rights for telecommunication companies to operate over a
given spectrum range. This process usually is conducted using combinatorial auctions.
For all problems we propose biased random-key genetic algorithms and mixed integer
linear programming models (except in the case of the overlapping correlation clustering
problem due its non-linear nature). Our algorithms were able to overcome the state of
the art algorithms for all problems.

ix

x

Resumo

Nos últimos anos, as redes de telecomunicação tem experienciado um grande aumento
no fluxo de dados. Desde a utilização massiva de vídeo sob demanda até o incontável
número de dispositivos móveis trocando texto e vídeo, o tráfego alcançou uma escala
capaz de superar a capacidade das redes atuais. Portanto, as companhias de telecomu-
nicação ao redor do mundo tem sido forçadas a aumentar a capacidade de suas redes
para servir esta crescente demanda. Como o custo de instalar uma infraestrutura de rede
é geralmente muito grande, o projeto de redes usa fortemente ferramentas de otimiza-
ção para manter os custos tão baixos quanto possível. Nesta tese, nós analisamos vários
aspectos do projeto e implementação de redes de telecomunicação. Primeiramente, nós
apresentamos um novo problema de projeto de redes usado para servir demandas sem
fio de dispositivos móveis e rotear tal tráfego para a rede principal. Tais redes de acesso
são baseadas em tecnologias sem fio modernas como Wi-Fi, LTE e HSPA. Este problema
considera várias restrições reais e é difícil de ser resolvido. Nós estudamos casos reais
nas vizinhanças de uma grande cidade nos Estados Unidos. Em seguida, nós apresen-
tamos uma variação do problema de localização de hubs usado para modelar as redes
principais (backbones ou laços centrais). Este problema também pode ser utilizado para
modelar redes de transporte de cargas e passageiros. Nós também estudamos o problema
de clusterização correlacionada com sobreposições usado para modelar o comportamento
dos usuários quando utilizam seus equipamentos móveis. Neste problema, nós podemos
rotular um objeto usando múltiplos rótulos e analisar a conexão entre eles. Este prob-
lema é adequado para análise de mobilidade de equipamentos que pode ser usada para
estimar o tráfego em uma dada região. E finalmente, nós analisamos o licenciamento de
espectro sobre uma perspectiva governamental. Nestes casos, uma agência do governo de-
seja vender licenças para companhias de telecomunicação para que operem em uma dada
faixa de espectro. Este processo usualmente é conduzido usando leilões combinatoriais.
Para todos problemas, nós propomos algoritmos genéticos de chaves aleatórias viciadas
e modelos de programação linear inteira mista para resolvê-los (exceto para o problema
de clusterização correlacionada com sobreposição, devido sua natureza não-linear). Os
algoritmos que propusemos foram capazes de superar algoritmos do estado da arte para
todos problemas.

xi

xii

A minha esposa Andreia
e minha avó Judith.

To my wife Andreia
and my grandmother Judith.

xiii

xiv

Agradecimentos
Gostaria de agradecer meu orientador Prof. Flávio Keidi Miyazawa por seu constante

suporte, orientação e, especialmente, por acreditar no meu trabalho. Também gostaria
de agradecer meu coorientador Mauricio G. C. Resende por seu suporte, amizade, e por
ter me introduzido em um distinto grupo de pesquisadores. Eu me considero muito
afortunado por ter sido supervisionado por tão grandes pessoas e certamente não tenho
palavras para expressar minha gratidão.

Eu agradeço meus colegas do Laboratório de Otimização e Combinatória da Unicamp
e meus colegas do AT&T Labs Research (Florham Park and Middletown, NJ, EUA),
especialmente meus co-autores Mauro Lopes, Howard Karloff, Weiyi (Max) Zhang, Rakesh
Sinha, Kenneth Reichmann, and Robert Doverspike. Também deixo minha gratidão para
o staff do IC/Unicamp por sua ajuda e cortesia. Agradeço a CAPES e a FAPESP pelo
suporte financeiro.

Eu gostaria de agradecer Lúcia Resende por sua grande hospitalidade e por ter me
recebido tantas vezes eu sua casa. Eu agradeço Rodrigo Toso e Daniela Vianna por sua
amizade, por ter abrigado minha esposa e eu em nosso primeiro mês nos EUA, e por
todo suporte provido. Eu agradeço os amigos do departamento de engenharia química e
ambiental da Universidade de Yale, em especial o grupo do prof. Menachem Elimelech,
onde minha esposa tem feito seu pós-doutoramento, por momentos alegres e, algumas
vezes, comida grátis. Eu agradeço a amizade oferecida por Carlos e Janaina Oliveira,
Frank e Dora Bacchus, e Fernando Stefanello. Os últimos anos tem sido inestimáveis.

Eu agradeço toda minha família especialmente meus pais José Carlos e Nilza, e meus
sogros Djair e Helena (in memoriam). Eu tenho um gratidão especial por minha avó
Judith (in memoriam) por seus incondicionais apoio e amor.

Finalmente e mais importante, eu gostaria de agradecer muito minha esposa Andreia
por seu amor e dedicação durante todos esses anos. Sem seu suporte e companheirismo,
não teria sido possível realizar esta jornada. Seu trabalho duro, cortesia e delicadeza tem,
e sempre o fará, inspirar e confortar-me. Eu sou muito grato a Deus por ter me permitido
compartilhar minha vida com tão boa alma. Eu gostaria tem apenas uma fração da
bondade dela. Existem muitas poucas mulheres como Andreia neste mundo e eu sou,
certamente, muito sortudo de tê-la ao meu lado.

xv

xvi

Combati o bom combate, completei a corrida e guardei a Fé.
Segunda Carta de São Paulo a Timóteo, Capítulo 4, Versículo 7

I have fought a good fight, I have finished my course, I have kept the faith.
The Second Epistle of St. Paul to Timothy, Chapter 4, Verse 7

xvii

xviii

Contents

Abstract ix

Resumo xi

Dedication xiii

Agradecimentos xv

Epigraph xvii

1 Introduction 1
1.1 Definitions and main techniques . 2
1.2 Biased random-key genetic algorithms . 5

1.2.1 Basic framework . 5
1.2.2 Decoding . 7
1.2.3 Improvements . 9
1.2.4 Parameters . 10
1.2.5 Successful use cases . 10

1.3 Results and thesis organization . 11

2 The Wireless Backhaul Network Design Problem 15
2.1 Introduction . 16
2.2 Problem description . 17

2.2.1 Demand splitting and routing trees 18
2.2.2 Capacity of access equipment . 18
2.2.3 Capacity of retransmitter equipment 18
2.2.4 Sight and minimum distance . 19
2.2.5 Number of hops . 20

2.3 Related literature . 22
2.4 Formal Definition . 24

xix

2.4.1 Mixed integer linear programming model 27
2.5 Solution procedure using BRKGA . 30

2.5.1 Representation . 31
2.5.2 Decoder . 32

2.6 Maximum Backhaul Flow Problem . 39
2.6.1 Bounds . 39
2.6.2 Solution approach . 42

2.7 Experimental Setup . 46
2.7.1 Instances and scenario descriptions 46
2.7.2 Instance preprocessing . 47
2.7.3 Post-optimization flow recomputation 49
2.7.4 Computational environment and parameters 49

2.8 Experimental Results and Discussion . 50
2.8.1 Instance preprocessing . 50
2.8.2 Computing flow during the optimization 51
2.8.3 Comparing the profit generated by the algorithms 53
2.8.4 Analyzing a solution . 57

2.9 Final considerations . 59

3 The k-Interconnected Multi-Depot Multi-Traveling Salesmen Problem
for backbone network design 63
3.1 Introduction . 64
3.2 Related Work . 64
3.3 Definitions . 66
3.4 BRKGA for the k-IMDMTSP . 69

3.4.1 Representation . 69
3.4.2 Decoding a solution . 70
3.4.3 Initial Population . 74

3.5 Experimental Results . 74
3.5.1 Computational environment . 75
3.5.2 Algorithm settings . 75
3.5.3 Instances . 76
3.5.4 Results and Discussion . 76

3.6 Concluding Remarks . 79

4 The Overlapping Correlation Clustering Problem 81
4.1 Introduction . 82
4.2 Definitions . 83
4.3 Biased random-key genetic algorithms and local search 84

xx

4.3.1 Representation . 85
4.3.2 Decoding a solution . 86
4.3.3 Error Reduction Local Search . 88
4.3.4 Bonchi et al. Local Search . 90

4.4 Experimental results . 91
4.4.1 Instances . 91
4.4.2 Evaluated algorithms . 93
4.4.3 Computational environment and parameters 94
4.4.4 Defining maximum running times for BRKGA 94
4.4.5 Evaluating the quality of the algorithms on ground-truth instances 96
4.4.6 Evaluating the algorithms for instances with unknown multi-labeling 99

4.5 Concluding remarks . 102

5 The Winner Determination Problem in Combinatorial Auctions 103
5.1 Introduction . 104
5.2 General combinatorial auctions and their formulations 106
5.3 Biased random-key genetic algorithms for the winner determination problem108
5.4 Initializing the population of BRKGA . 112
5.5 Experimental Setup . 114

5.5.1 Instances . 115
5.5.2 Algorithms . 117
5.5.3 Computational environment and algorithm settings 122

5.6 Experimental Results and Discussion . 123
5.6.1 Comparing revenue . 123
5.6.2 Iterations and runtime analyses . 128
5.6.3 Comparing the heuristics on hard instances 131
5.6.4 Comparing heuristics on small number of generations 131
5.6.5 Effect of LP-based initialization . 134

5.7 Final Remarks . 136

6 Concluding remarks 137

Bibliography 141

A Additional results for Chapter 2 161
A.1 Instance details . 161
A.2 Experimental results . 162

xxi

B Additional results for Chapter 3 167
B.1 Detailed results . 167

C Additional results for Chapter 4 173
C.1 Additional plots of Section 4.4.4 . 173
C.2 Statistical test tables of Section 4.4.6 . 176

D Additional results for Chapter 5 179
D.1 Statistical tests . 179
D.2 Additional running time results . 184
D.3 Best results for each instance . 186

xxii

List of Tables

2.1 Summary of characteristics for WBNDP instances 47
2.2 Description of parameters for WBNDP instances 48
2.3 Difference in median location for profit distributions 55
2.4 Algorithm performance . 56

3.1 Median test for cost distributions (k-IMDMTSP) 78
3.2 BRKGA means of best results . 78

4.1 Algorithms that computed the best results (OCC) 102

5.1 Instance classes and sizes of the WDP . 116
5.2 Average of instances tightness . 118
5.3 Algorithm performance . 127
5.4 Average of iterations in finding the best solution 129
5.5 Ratio between the revenue of LP-based and the best chromosomes 134
5.6 Ratio between the revenue of LP-based and the best chromosomes by in-

stance class . 135

A.1 Detailed characteristics of the instances for WBNDP 161
A.2 Instance characteristics after preprocessing – restricted scenario 162
A.3 Instance characteristics after preprocessing – unrestricted scenario 163
A.4 Best results – 5hr, restricted scenario . 164
A.5 Best results – unrestricted scenario . 165

B.1 Best results for ST scenario (k-IMDMTSP) 168
B.2 Best results for SL scenario . 169
B.3 Best results for LT scenario . 170
B.4 Best results for LL scenario . 171
B.5 Best results for SQ scenario . 172

C.1 Difference in median location for cost distributions for Starkey dataset
(OCC) . 176

xxiii

C.2 Difference in median location for cost distributions for SCOP datasets . . . 177
C.3 Difference in median location for cost distributions for newsgroup messages 178

D.1 Difference in median location for revenue distributions for all instances
(WDP) . 180

D.2 Difference in median location for revenue distributions for instances with
400 bids or less . 180

D.3 Difference in median location for revenue distributions for instances with
1000 bids or more . 181

D.4 Difference in median location for revenue distributions for LG 1500/1500
instances . 181

D.5 Difference in median location of revenue distributions for all instances,
considering the best solutions until 100 generations 182

D.6 Difference in median location of revenue distributions for instances with
400 bids or less, considering the best solutions until 100 generations 182

D.7 Difference in median location of revenue distributions for instances with
more than 400 bids, considering the best solutions until 100 generations . . 183

D.8 Difference in median location of revenue distributions for for LG 1500/1500
instances, considering the best solutions until 100 generations 183

D.9 Running time comparison among the algorithms 185
D.10 Best results for CATS instances with less than 400 bids 186
D.11 Best results for CATS instances more than 400 bids 188
D.12 Best results for LG 1000/500 instances . 191
D.13 Best results for LG 1000/1000 instances 193
D.14 Best results for LG 1500/1500 instances 195

xxiv

List of Figures

1.1 Illustration of an iteration of BRKGA . 7
1.2 Example of two decoders for the knapsack problem 8

2.1 Example of instance of the WBNDP . 21
2.2 Evolution of the profit using different flow algorithms 52
2.3 Dispersion of profit for each algorithm . 54
2.4 Evolution of revenue, cost, profit, and coverage 57
2.5 Example of region . 60
2.6 Example of coverage . 61
2.7 Example of backhaul network . 62

3.1 Examples of a simple and degenerate cases of k-IMDMTSP 68
3.2 Example of solution extraction . 70
3.3 Local improvement steps . 72
3.4 Boxplot of the medians . 77
3.5 Time-to-target plots . 80

4.1 Compact representation of a solution by a chromosome (OCC) 85
4.2 Evolution of the cost for the Emotions dataset 95
4.3 Comparison of costs, precision, and recall for the Emotions dataset. . . . 97
4.4 Comparison of costs, precision, and recall for the Yeast dataset. 98
4.5 Boxplot of median and quartiles in Starkey dataset 100
4.6 Boxplot of median and quartiles for each algorithm in SCOP dataset . . . 101
4.7 Boxplot of median and quartiles for each algorithm in newsgroup messages 101

5.1 Example of decoding for the WDP . 110
5.2 Dispersion of revenue for each algorithm. 125
5.3 Running time distributions for each algorithm 130
5.4 Dispersion of revenue LG 1500/1500 instances 132
5.5 Dispersion of revenue using 100 generations at most 133

xxv

C.1 Evolution of the cost for the Yeast dataset (OCC) 173
C.2 Evolution of the cost for the Starkey project dataset 174
C.3 Evolution of the cost for the protein alignment dataset 1 174
C.4 Evolution of the cost for the newsgroup messages 175

xxvi

List of Algorithms

1.1 BRKGA scheme . 6

2.1 Decoder for the WBNDP . 33
2.2 Equipment activation and installation . 34
2.3 Building of backhaul forest (level 0) . 35
2.4 Building of backhaul forest (level ≥ 1) . 37
2.5 Equipment and poles pruning . 38
- Procedure pruneSubtree(·) . 38
2.6 Pumping Root . 44
2.7 Pump pole level 0 . 44
2.8 Pump pole level ≥ 1 . 45

3.1 Adjust cycle sizes (k-IMDMTSP) . 71
3.2 Decoder for k-IMDMTSP . 73

4.1 Decoder for OCC – Phase 1 . 87
4.2 Error Reduction Local Search – OLS . 89
4.3 Bonchi et al. Local Search – BSL . 91

5.1 Decoder for the WDP . 111
5.2 Initialization by LP relaxations . 113

xxvii

xxviii

Chapter 1
Introduction

S INCE the first deployment of a copper wire between two telegraphs in separate
rooms in 1832, telecommunication networks have expanded healtly. These ancient

“digital-like” telegraph networks of the 19th century brought to humankind a powerful
tool to satisfy the necessity of communication of our modern society. Several technologies
were developed in the past 180 years, and other thousand were imagined. Indeed, some
prophesied tools became reality. In the Star Trek TV series of the early 60’s, the members
of the star fleet usually make use of a device called a “communicator”. The communicator
was used for direct communication between individuals or via the ship’s command center.
This device can be considered the fictional father of the modern mobile phones. In the
same TV series, video conferencing was also usually used, foreseeing the video conference
calls of current days. One can find several examples of such devices in the popular media,
again showing the necessity for communication.

Although great part of population have gained access to such communication devices,
the history of such devices brings us back to the beginning of 20th century. At that
time, the telephone was invented and the first intercontinental submarine cables deployed.
Wireless communications also dates back to that time, although the concept of cell phones
was only proposed in 1947. However, only at the end of 20th century, did phone calls,
wired or wireless, become accessible to most people due to the steep decrease in cost.

Concurrent with the evolution of the communication between people, the increasing
of utilization of computing machines also brought with it the necessity for communication
between equipment. In 1963, the idea of an “intergalactic computer network” emerged
in the United States Department of Defense. This network, called ARPANET, was first
deployed in 1969 connecting the University of California in Los Angeles (UCLA), the
University of California in Santa Barbara, the Stanford Research Institute’s Augmentation
Research Center, and the University of Utah. The first message on the ARPANET was
sent from UCLA in the same year. The ARPANET was a packet switching network and

1

2 Chapter 1. Introduction

was the foundation of the modern Internet. The commercial Internet was launched in the
1990’s and its widespread adoption occurred in the first decade of the 2000’s. Primary
connecting computers, such as desktops and servers, most links were wired using copper
wires and optical fiber.

Currently, we have seen a huge increase in the utilization of voice and data. In private
communication, text, voice, photos, and videos are exchanged in an incredible rate. The
entertainment industry has also pushed terabytes of content into the internet: almost all
TV show can be watched on the Internet, and some shows are specifically produced to be
streamed over the Internet. Streaming of meetings, sport events, on-line classes, on-line
gaming also contribute to the congestion of these networks. More and more, this content
is being consumed on mobile devices using wireless networks. For example, in the United
States, mobile devices now account for more than 50% of Internet usage (O’Toole [160]).
Cisco VNI Global IP Traffic Forecast predicts a 61% annual growth rate for mobile data,
resulting in an 11-fold increase from 2013 to 2018 (Cisco [37]). Therefore, wired and
wireless networks have suffered large congestions and telecommunication companies have
been forced to expand their networks. This is a trillionaire market and fine optimizations
must be carried out to achieve economical efficiency.

This thesis investigates several optimization problems that appear in the planning and
deployment of telecommunication networks and related activities. Problems in several
levels are considered: from the market of electromagnetic spectrum for wireless communi-
cations to the planning of core and access networks. This thesis also studies a clustering
problem used in analysis of network utilization. This work is oriented from a practical
point of view, and the objective is to obtain solutions that can be used in real scenarios.
Several algorithms are proposed and a novel family of problems are devised. The work
presented here makes heavy use of biased random-key genetic algorithms and local search
procedures. We also use branch-and-bound algorithms provided by commercial solvers.
Our techniques overcome the state of the art algorithms for the known problems and
present very good results for the novel problems.

1.1 Definitions and main techniques

According to Pedrosa [164], an optimization problem is the task to find the best so-
lution among a well-defined set of feasible solutions. There are several classes that an
optimization problem can lie. These classes are usually linked to the space of the set
of solutions and the constraints that define the problem. In a linear continuous prob-
lem, the set of feasible solutions is defined in the space of the rational numbers and the
constraints and objective function can be described using linear inequalities, i.e., the fea-
sible solutions are in a convex space limited by the polytope defined by the constraints.

1.1. Definitions and main techniques 3

Such problems can be solve in polynomial time (in the size of the input) by the ellipsoid
algorithm (Khachiyan [110]) or Karmarkar’s interior point method (Karmarkar [108]).
In practice, most linear programming problems are solved using the simplex algorithm
(Dantzig [44]). Although simplex is an exponential-time algorithm, it is often faster than
the other algorithms in practice, and offers duality information while solving the problem.
Another class of optimization problems is the class of the non-linear problems where the
objective function and/or constraints cannot be described by linear inequalities. Such
problems are in general referred as global optimization problems. For more details see
Horst et al. [99].

An important class of optimization problems are the combinatorial optimization prob-
lems. In such problems, the feasible solutions lie in a discrete space. For example, suppose
we must determine the best schedule for crews of an airline company. Picking half of a pilot
or 5.25 flight attendants is impossible. The solution for this problem must have a positive
integer number of pilots and flight attendants. Several practical problems in real life are
combinatorial optimization problems. Some of them can be solved in deterministic poly-
nomial time with respect to the input size, e.g., the maximum flow problem (Edmonds
and Karp [53], Ford Jr. and Fulkerson [62], Goldberg and Tarjan [71]), the shortest
path problem (Bellman [17], Dijkstra [48]), and the minimum spanning tree problem
(Borůvkra [24], Kruskal [115], Prim [169]). However, for most practical combinatorial op-
timization problems such as routing (Applegate et al. [9], Lahyani et al. [118], Savelsbergh
and Sol [187]), packing (Kantorovic [106], Martello and Toth [141], Wäscher et al. [205]),
location (Melo et al. [146], Pedrosa [164], Prodhon and Prins [171]), scheduling (Allahverdi
et al. [3], Graham [88], Vance et al. [198]), and network design problems (Pathak and
Dutta [163], Prömel and Steger [172], Winter [208]), a deterministic polynomial time
algorithm is unknown. Such problems belong to the NP-hard class (Garey and John-
son [65]) and most researchers believe that there are no deterministic polynomial time
algorithms to solve them to the optimality. Currently, only enumeration algorithms and
pseudo-polynomial time algorithms are able to solve these problems to optimality. Un-
fortunately, the worst case running-times for enumeration algorithms for these problems
are exponential. Some weakly NP-hard problems, such as the 0-1 knapsack problem
(Martello and Toth [141]), admits a pseudo-polynomial time algorithm. Although these
algorithms are fast in practice, their running-times are polynomial in the size of the prob-
lem and in the magnitudes of the data involved (provided these are given as integers).

Several techniques have been proposed to solve combinatorial optimization problems,
namely exact algorithms, approximation algorithms, probabilistic algorithms, and heuris-
tics. Exact algorithms are able to guarantee that the best solution will be found in the
end of the optimization when carried out completely. Generally, this is done observing the
gap between the lower and upper bound values for feasible solutions. Exact algorithms

4 Chapter 1. Introduction

usually follow some enumeration procedure and use some techniques to prune the search
space. Branch-and-bound algorithms (Land and Doig [119]) are the most used exact al-
gorithms and several variants of branch-and-bound have been proposed in the literature.
This thesis uses some branch-and-bound algorithms although indirectly through commer-
cial solvers. One may refer to Nemhauser and Wolsey [155] and Wolsey [209] for more
details.

Approximation algorithms are able to produce, in polynomial time, a solution with
value guaranteed to be close to the value of an optimal solution. Such algorithms define
an approximation factor that can be a constant or a ratio. Although approximation algo-
rithms are not commonly used in practice, they are invaluable to better understand the
underlying structure of the treated problem. This thesis does not make use of approxi-
mation algorithms. The interested reader can consult Vazirani [200] or Williamson and
Shmoys [207].

Probabilistic algorithms follow the same idea of approximation algorithms but present
their results in a given probability. Such algorithms use a random signal to make decisions
about the optimization process. In general, probabilistic algorithms are simple albeit their
analyses are complex. We do not make use of probabilistic algorithms in this thesis. The
reader may refer to Mitzenmacher and Upfal [148] and Motwani and Raghavan [150] for
more details.

A heuristic is a method to obtain a good solution for a given problem, however, with-
out offering a guarantee in the quality of this solution. In general, a heuristic takes into
account the problem structure and improvement steps are done considering this structure.
Constructive heuristics generally start from an infeasible solution and, in each iteration, a
move is done trying to achieve the feasibility. Local search heuristics start from a feasible
solution and, in each iteration, explore a certain neighborhood of this solution trying to
improve it. These neighborhoods are defined on the problem structure and can be com-
plex. For example, in the traveling salesman problem, the 2-opt neighborhood consists in
exchanging two edges in the cycle for two other edges that are not in the cycle, trying to
improve the cost (Applegate et al. [9]). While heuristics are designed for a specific prob-
lem, metaheuristics are more general frameworks that guide the search in a well-defined
way. Some metaheuristics make allusions to natural processes such as simulated annealing
(Černý [32], Kirkpatrick et al. [111]), genetic algorithms (Goldberg [72], Mitchell [147]),
ant colony optimization (Dorigo et al. [51], Dorigo and Stützle [52]), particle swarm opti-
mization (Kennedy and Eberhart [109], Olsson [159]), and variants. Other metaheuristics
only describe the search procedure such as tabu search (Glover [67], Glover and La-
guna [68]), greedy randomized adaptive search procedure (Feo and Resende [59], Resende
and Ribeiro [179]), and variable neighborhood search (Hansen et al. [93], Mladenović and
Hansen [149]). For other metaheuristics and variations, refer to Gendreau and Potvin [66].

1.2. Biased random-key genetic algorithms 5

This thesis makes heavy use of a particular variant of genetic algorithms called biased
random-key genetic algorithms which is described in detail in the next section.

1.2 Biased random-key genetic algorithms

1.2.1 Basic framework
Before we discuss the origins and main characteristics of the Biased Random-Key

Genetic Algorithms (BRKGAs), let us recall some terminology of genetic algorithms: the
chromosome c is a vector in a certain space Hn such that n is the number of components.
Each component ci, for i = 1, . . . , n, is called gene and its value is called allele. The
genetic algorithm keeps a pool of vectors called population and for each chromosome in
this population, a fitness function is applied to evaluate these chromosomes. In general,
the fitness function constructs a solution from the chromosome and calculates its value.
These values are used as fitness measures of each individual. The evolutionary step
consists in building a new population by combining individuals of the current population,
in general, selecting alleles from them to create offspring. An additional step, called
mutation, is applied with low probability when an allele is chosen and modified randomly.
The great advantage of genetic algorithms is to combine two or more different solutions.
This is easier to achieve by keeping a pool of solutions in a different space of solutions
(chromosome space) from the original space of solutions of the problem to be solved.
Using the concept of genetic operators and inheritance, genetic algorithms are able to
combine portions of good solutions and keep them “alive”. There is a large number of
variations of this process and a comprehensive list can be found in Goldberg [72].

One of the main issues in the design of a genetic algorithm for solving a problem is
how to represent or encode a solution, i.e., how to define the chromosome space. In 1994,
Bean [14] proposed a standardized chromosome representation using a unit hypercube.
To obtain a solution, it is necessary to apply a function f : [0, 1)n → S that maps a
vector in the n-dimensional space [0, 1)n to a solution in the space S which is the space
of solutions of the problem to be solved. Such function is called decoder. Bean named his
algorithm Random-Key Genetic Algorithm (RKGA) and applied this algorithm to machine
scheduling problems where one seeks a sequence of machines to perform operations such
that the completion time of the last operation is minimized.

The Biased Random-Key Genetic Algorithm (BRKGA) was introduced in Gonçalves
and de Almeida [80] and Ericsson et al. [55] and follows the same structure of RKGAs
with respect to chromosome representation. Three key features distinguish BRKGAs from
traditional genetic algorithms:

6 Chapter 1. Introduction

1. A standardized chromosome encoding that uses a vector with n uniformly drawn
random keys (alleles) over the interval [0, 1) as proposed by Bean [14];

2. A well-defined evolutionary process which uses parameterized uniform crossover for
exploitation (Spears and DeJong [194]);

3. The substitution of the application of the mutation operator on existing chromo-
somes with newly introduced mutants — defined as n-long vectors of (uniformly
drawn) random keys — for exploration.

Algorithm 1.1 summarizes a typical BRKGA framework. Basically, we generate p
chromosomes as initial individuals using vectors with n uniformly drawn random keys
over the interval [0, 1). At each iteration, a problem-specific decoder extracts a solution
from each chromosome whose value is used as the fitness of that chromosome. To build
a new population, we copy the best pe individuals (called the elite set), add pµ random
chromosomes (the mutants), and generate p− pe− pµ offspring by applying the crossover
operator. The crossover operator is the component of genetic algorithms responsible to
combine two or more chromosomes generating new ones. Crossover is done between a ran-
dom individual from the elite set and an individual from the remainder of the population:
an offspring is generated by mating, where we take each allele from the elite parent with
probability ρe or from the other parent with probability 1 − ρe. Figure 1.1 exemplifies
this procedure. With ρe = 0.5, the standard uniform crossover occurs. With ρe > 0.5
by definition, intensification happens at two levels: when parents are selected, because
one is drawn from the elite set, and when offspring are conceived, because their alleles

Algorithm 1.1: BRKGA scheme.
1 Generate the initial population P ;
2 while a stopping criteria is not reached do
3 Decode each chromosome of P and extract their solutions and fitness;

4 Sort the population P in non-increasing order of fitness. Consider the top pe
individuals as the elite group E;

5 Copy E to the next generation Q, unaltered;

6 Add pµ randomly-generated new chromosomes (mutants) to Q;

7 Generate p− pe − pµ chromosomes (offspring) by parameterized crossover,
selecting a random parent from E and another from P \ E. Add them to Q;

8 P ← Q;
9 return best individual found.

1.2. Biased random-key genetic algorithms 7

Elite

Non-Elite

Copy elite set

Elite

Mutants

Offspring

Random v′ ∈ [0, 1]n

Elite
0.9 0.6 0.5 0.3 0.1

0.8 0.1 0.9 0.7 0.2

≤ ρ

> ρ

0.9 0.1 0.5 0.3 0.2

copy to next gen.

Figure 1.1: Illustration of an iteration of BRKGA. Note that the mating is done in favor
to the elite individual (in red) when ρ > 0.5.

are inherited from the elite parent with greater probability. Diversification occurs with
the introduction of mutants at each generation, since they are vectors with n uniformly
drawn random keys. The usual mutation operators on individual genes are not employed
by the BRKGA. Observe that the above scheme prevents infeasibility with respect to the
chromosome space since, by definition, the resulting chromosomes — both offspring and
mutants — are always vectors of random keys over [0, 1).

1.2.2 Decoding
The decoding process makes use of a function f : [0, 1)n → S, where n is a given

number and S is the space of solutions of the problem to be solved. Function f is usually
called a decoder. To use the BRKGA, one must define the size of the chromosome n and
build the decoder f . Such task is problem dependent and can be done in several ways.
The alleles can be used as indicators values, induce permutations, or yet, be combined to
produce complex structures.

To illustrate some decoding alternatives, consider the knapsack problem (Martello and
Toth [141]). This problem consists in packing a set of items I = {1, . . . , n} into a knapsack
of capacity C. Each item i ∈ I has a weight wi and a value vi, and the objective is to
maximize the sum of the values of packed items respecting the knapsack capacity. This
problem is well-known in the literature and, in fact, it does not require a sophisticated
genetic algorithm to solve. We use the knapsack problem only for illustrative purposes.
First, one must determine the size of the chromosome. In this case, let n = |I|. Each gene
of the chromosome, represented by the vector x ∈ [0, 1)n, will be tied to an item. We call

8 Chapter 1. Introduction

xi the key of item i. Two simple decoders can be built from this representation. The first
decoder consists in picking, in order, the items that have their keys greater than 0.5. If the
current item cannot be packed due to the capacity constraint, it is just ignored. Decoders
of this type are usually referred as indicator decoders. In the second decoder, the items
are sorted according to the value of their keys generating a permutation. Next, one packs
the items according to this permutation, ignoring those that cannot be packed due to the
capacity constraint. Decoders of this type are usually referred as permutation decoders.
Figure 1.2 depicts an example of these two decoders. Consider I = {1, 2, 3, 4} with weights
{5, 1, 7, 4} and values {5, 3, 20, 10}, respectively, and a knapsack of capacity C = 10. The
indicator decoder first picks item 1, skips item 2 due to v2 < 0.5, also skips item 3 since
it does not fit in the knapsack together item 1, and finally picks item 4 resulting in a
solution with value 15. In the permutation decoder, the items are sorted according to
their keys resulting in the permutation (3, 1, 4, 2). Then, the decoder proceeds picking
item 3, skipping items 1 and 4 due to their size, and finally picking item 2. The solution
in this case has value 25.

The decoders presented above are simple but very effective. In Chapter 5, simple
decoders were used and were able to outperform state of the art algorithms for the winner

1

3

5

7

5

2

1

1

5

3

3

4

7

4

20

4

2

4

1

10

0.7 0.50.1 0.8

0.8 0.10.7 0.5

Chromosome
Keys

Items

Weight

Value

Chromosome
Keys

Items

Weight

Sort the keys in
non-decreasing order

Selected items: {1, 4}
Total weight: 9
Total value: 15

Selected items: {3, 2}
Total weight: 8
Total value: 25

Indicator Decoder

Permutation Decoder

Figure 1.2: Example of two decoders for the knapsack problem. In the indicator decoder,
the items are picked in the order that they appear. In the permutation decoder, the items
are sorted by their keys and, then, picked using the resulting ordering.

1.2. Biased random-key genetic algorithms 9

determination problem. For some problems, it is convenient to use the chromosome to
represent structural parts of a solution or actions to build a solution. In Chapter 2, a
complex representation is used where the chromosome is divided in five parts. Some parts
are used as indicator parameters and others are used to induce some type of ordering.
The representation used in Chapter 3 also has several parts but is simpler than the
representation of Chapter 2.

One may note that, since the chromosome space is a unitary continuous hypercube,
theoretically we have an infinity number of chromosomes (in the practice, this number is
limited to the float point precision of the machine used). In turn, an infinity number of
chromosomes maybe be decoded to the same solution. For example, the chromosomes x1 =
(0.1, 0.2, 0.3, 0.4) and x2 = (0.5, 0.6, 0.7, 0.8) may result in the same solution if we use them
to induce permutations by ordering the keys solely. In fact, the basic BRKGA framework
does not tackle issue and the population can be made from different chromosomes that
result in the same solution. This can slow down the convergence of the algorithm leading
to useless decoding iterations. However, the crossover between two different chromosomes
that result in the same solution, can generate a completely different solution. For example,
the offspring x3 = (0.1, 0.5, 0.6, 0.4) resulting from the crossover of x1 and x2, may be a
completely different solution if we consider the induced permutation by ordering the keys
solely.

During the decoding phase, local search procedures can be applied to the decoded
solution. Often, the solution is improved offering faster convergence. In such cases, a
good idea is to rewrite the chromosome to reflect these changes. Note that it is not
necessary in fact, if both the decoding process and the local search are deterministic (i.e.
the multiple decoding of same chromosome always results in the same solution). However,
a chromosome that reflects exactly the improved solution can offer good subregions to be
combined with another chromosome in the mating phase. In some cases, rewriting a
chromosome is straightforward (Chapters 4 and 5), while in others one must be careful
due to the magnitude of the keys (Chapter 3). In some cases it is impossible due to the
complexity of decoding.

1.2.3 Improvements
A common approach used in genetic algorithms is the island model (Whitley et al. [206]),

where several populations are evolved independently and exchange their best individuals
every given number of generations. This improves the variability of individuals, usually
speeding up convergence and reduces the risk that the algorithm will get stuck in local
optima. Note that it is not necessary that this process be done in parallel in the sense
of using several parallel machines or CPUs. It is straightforward to adapt the BRKGA

10 Chapter 1. Introduction

framework: π separate populations are created such that they are evolved simultaneously
applying the evolutionary process in lines 3–8 of Algorithm 1.1 to each population. In
this case, we will have P1, . . . , Pπ populations, E1, . . . , Eπ elite sets, and Q1, . . . , Qπ “next
generation” pools. The individual exchanges occur when a given threshold is reached, for
instance, at every δ generations. For each population Pi, the η best individuals are copied
from other populations Pj 6=i and replace the η(π − 1) worst individuals in Pi.

Another common approach is to restart the algorithm following a given criterion. This
is particularly important for evolutionary algorithms since most of them are considered
Las Vegas algorithms, i.e., they always produce a correct solution when they stop, however
their running time is a random variable. There is a rich literature with respect restart to
strategies and the reader may refer to Jansen [103], Luby et al. [136], Shylo et al. [192] and
Shylo et al. [191]. For illustration, consider an evolutionary algorithmA that solves a given
problem. Consider an instance of this problem such that the best solution is x. Suppose
that several independent runs of this algorithm on the given instance are performed. In
some of these runs, say 75% of total runs, A is able to reach x using no more than 400
iterations. This means that the (empirical) probability of A will be running after 400
iterations is 25%. Some runs, say 5%, A takes more than 2,000 iterations to reach x.
Now, suppose that A is restarted after each 400 iterations. The probability of A will still
be running after 2,000 iterations is the probability of A will still be running after the first
400 iterations, and the probability of A will still be running after the first, the second,
the third, the forth, and the fifth restarts (totalizing 2,000 iterations). Therefore, this
probability is 0.255 ' 0.0009 = 0.09% which is much lower than 5% of probability given
by runs without restart.

1.2.4 Parameters
The parameters that must be specified beforehand are the size of the chromosomes n,

the size of the population p, the size of elite set pe, the number of mutants pµ introduced
at each generation, and the inheritance probability ρe. If using parallel populations, we
must set the number of populations π and the generation threshold δ to exchange the η
best individuals. If using restart, we must choose a strategy and respective parameters.
Advice for the parameter setup can be found in Gonçalves and Resende [81].

1.2.5 Successful use cases
Biased random-key genetic algorithms have been used with success both in several

classical hard combinatorial optimization problems as well as on real-world problems. For
example, Resende [178] surveys applications of BRKGA in optimization problems arising
in telecommunications. Gonçalves and Resende [82, 83, 84] present BRKGAs for 2D and

1.3. Results and thesis organization 11

3D packing and bin packing. BRKGAs have been applied to a number of scheduling
problems, e.g. job-shop scheduling (Gonçalves et al. [75], Gonçalves and Resende [78]),
and resource constrained project scheduling (Gonçalves et al. [76, 77, 79]). In Lucena
et al. [138], some variations of BRKGA are proposed. The first variation is a gender-
defining BRKGA where each chromosome has a gender. Two chromosome are chosen
for mating if and only if their gender are different. The second variation consists in
performing the mating with several parents at once. Experimental results show that
the gender-defining BRKGA does not present improvement over the original BRKGA.
However, the multi-parent version was able to overcome both the original and gender-
defining algorithms.

1.3 Results and thesis organization
This thesis presents optimization algorithms for a list of problems that appears in

network planning. Chapters 2 and 3 consider the project of access and core networks
respectively. Chapter 4 studies a clustering problem that can be used to estimate the
usage of a network. Finally, Chapter 5 deals with spectrum auctions from the point of
view of government regulatory agencies. Each chapter is self-contained with exception of
references to biased random-key algorithms. Such content is concentrated in Section 1.2
of this chapter. In each chapter, the formal definition of the problem treated there as well
as a brief literature review of similar problems and techniques are presented.

Chapter 2 presents a new problem called Wireless Backhaul Network Design Problem
(WBNDP). The objective of this problem is to build backhaul networks responsible for
collecting access traffic from mobile devices such as smart phones and tablets. Such
networks are constituted of routing trees that use wireless links. Each routing tree must
have a limited depth and breadth respecting the geographical characteristics of the region
where the network will be deployed. The access traffic is collected by technologies such as
Wi-Fi and LTE. Several real-world constraints such as radio interference between pieces
of equipment, capacities, and geographical location are imposed. The WBNDP is closely
related to facility location and the Steiner tree problem. However, WBNDP differs
from other problems in the literature mainly for its objective function which depends on
the total traffic that the network can route. Moreover, the underlying maximum flow
problem is not common and presents some peculiarities which differs it from the classical
maximum flow problems. A mixed integer linear programming model (MIP) and a biased
random-key genetic algorithm (BRKGA) are proposed to solve the WBNDP. Although
the model is not complex, it is lengthy due to the complexity of this problem. Several real-
world instances were considered and two scenarios analyzed. Using IBM ILOG CPLEX
Optimizer [101] to solve the MIP, only one instance was solved to optimality. BRKGA

12 Chapter 1. Introduction

presented solid results, mainly on large instances, and exposed itself as a valuable tool to
solve the WBNDP.

Once built the network responsible to collect and route access traffic, it is necessary
to build the core infrastructure. In general, such core is characterized by main loops or
backbones with high speed and capacity. Such links are usually deployed using fiber or
high frequency microwaves. Chapter 3 presents the k-Interconnected Multi-Depot Multi-
Traveling Salesmen Problem (k-IMDMTSP) that can be used to model core networks.
In the k-IMDMTSP, one must select k vertices from a graph and link them in a cycle.
For each chosen location, a cycle of size at most C must span the remaining vertices of
the graph. One can use the cycle connecting the k chosen vertices to model a satellite
loop, and the spanning cycles to model fiber loops, for example. A BRKGA and a
multi-start heuristic were proposed to solve the k-IMDMTSP. Both algorithms use local
search procedures based on heuristics for the traveling salesman problem in the decoding
procedure. Five scenarios were proposed varying the sizes of the inner cycle and the outer
cycles. For each scenario, 63 instances were tested. BRKGA outperformed the multi-start
heuristic in all cases with significant difference.

Chapter 4 addresses the Overlapping Correlation Clustering (OCC). In such problem,
we want to assign labels to objects such that the labeling reflects the similarities between
the objects. In OCC, each object may be labeled with one or more labels, differing from
traditional clustering problems where usually only one label is allowed per object. In other
words, while in the traditional correlation clustering we create a partition of objects, in
the OCC the “partitions” may overlap (in fact, there is no partition in the strict sense).
The OCC can be used to analyze several kinds of scenarios in different fields. Particularly
in telecommunications, we may use the OCC to analyze patterns of mobility from mobile
devices, consumption paths, and make demand predictions. Note that such analysis are
very important to telecommunication companies in offering improved and new services.
We propose a BRKGA with two representations and two decoders. We also improved the
algorithm considered the state of the art for OCC. The algorithms were applied to three
scenarios with distinctive characteristics and similarity functions: animal trajectories,
protein analysis, and text analysis. BRKGA was able to overcome the state of the art
algorithm in most and relevant cases although requiring large running-time to do it.

In Chapter 5, we take the side of governmental agencies selling electromagnetic spec-
trum rights to telecommunication companies. The large increase of mobile devices has
pushed the utilization of new spectra, which are licensed by governmental regulatory
agencies in most countries. Such market is billionaire and represents a large revenue for
governments. In general, such spectrum licenses are auctioned in so called combinatorial
auctions. In Chapter 5, we address the Winner Determination Problem (WDP), which is
used to determine the winners of these auctions. In the WDP for combinatorial auctions,

1.3. Results and thesis organization 13

the bidders submit bids for bundles of objects that can represent complementarity or sub-
stitutability among these objects. For instance, suppose that we want to sell two adjacent
regions A and B. A telecommunication company may valuate US$ 10 million the rights to
operate in region A, and US$ 15 million the rights in region B, if the company can only
secure one region. But the company knows that operating in both regions at same time
is more profitable. Therefore, it can offer US$ 40 million for the rights of both regions A
and B. Such combinatorial auctions are able to generate efficiency in the market. The
task in the WDP is to determine the mutual exclusive bundles for which the sum of the
bid values is maximized. We proposed six variants of BRKGA using simple decoders.
We compared our approaches with: an integer linear programming model solved by IBM
ILOG CPLEX Optimizer [101], a state of the art exact algorithm, and two state of the
art genetic algorithms for the WDP. These ten algorithms were applied to 537 instances
with several sizes and difficult levels. Again, the BRKGAs were able to produce the best
results in the most cases, specially for large and hard instances.

Finally, Chapter 6 summarizes our main contributions.

14

Chapter 2
The Wireless Backhaul Network
Design Problem

With the increasing utilization of mobile devices, telecommunication companies have
been pushed to expand their network infrastructure offering better coverage to their
clients. Wireless devices generate a huge amount of data traffic when compared with
traffic due to voice, and to manage these data networks is substantially more expensive
and complex than to manage voice networks. This is partially because coverage range of
data traffic equipment is much smaller than that of voice equipment and because data
traffic is more susceptible to external interference such as weather conditions. To be able
to offer a quality service, the provider must build a network that maximizes coverage and
be capable of routing the traffic to the core network. This kind of network is known as
Backhaul Network. To cover all demand by fiber may be very costly (this is referred as
the last mile problem) and, recently, some providers have not honored network expansion
contracts because of their high costs (Brodkin [28]). Instead, providers have tried to build
backhaul networks using high capacity wireless links.

This chapter describes a biased random-key genetic algorithm for a real-world wireless
backhaul network design problem. This is a novel problem, closely related to variants
of the Steiner tree problem and the facility location problem. Given a parameter H,
we want to build a forest where each tree has at most H hops. Each tree is rooted at
specific nodes, called root nodes, and has leaves at demand nodes, where traffic originates.
Candidate Steiner nodes do not have any demand but represent locations where we can
install cellsites to cover the traffic and equipment to backhaul the traffic to the cellular
core network. Each Steiner node can cover demand nodes within a given distance, subject
to a capacity constraint. The aggregate set of constraints may make it impossible to cover
or backhaul all demands. A revenue function computes the revenue associated with the
total amount of traffic covered and backhauled to the root nodes. The objective of the

15

16 Chapter 2. The Wireless Backhaul Network Design Problem

problem is to build a forest that maximizes the difference between the total revenue and
the cost associated with the installed equipment. Although we will have a forest when
we consider only the backhaul links and root nodes, the addition of demand vertices can
induce undirected cycles resulting in a directed acyclic graph. We consider real instances
of this problem with several additional constraints that are motivated by the requirements
of real telecommunication networks. This chapter is based on Andrade et al. [6].

2.1 Introduction

There has been a surge in the popularity of mobile devices (smart-phones and tablets).
For example, in United States, mobile devices now account for more than 50% of Internet
usage (O’Toole [160]). This, coupled with the popularity of high bandwidth services such
as video, has pushed mobile data usage. Cisco VNI Global IP Traffic Forecast (Cisco [37])
predicts a 61% annual growth rate for mobile data, resulting in an 11-fold increase from
2013 to 2018. Service providers need to keep up with this growth in mobile data usage
by providing better coverage and higher rates to their customers.

The associated network design problem needs to decide on the optimal concentration
of cellular and Wi-Fi equipment to provide good service to users. We also need to find
the right backhaul strategy to route this traffic to the core network. A naive solution may
be to run fiber to all sites, but it may be prohibitively expensive. Instead we judiciously
use the existing fiber infra-structure to pick the right backhaul. First of all, for installing
Wi-Fi or cellular equipment, we may prefer a site that already has fiber. For other sites,
we may be able to use a wireless backhaul to aggregate their traffic to a fibered site.
Finally there are sites where running new fiber may be the best option.

We propose the Wireless Backhaul Network Design Problem (WBNDP) with practi-
cal constraints, and present a model to deal with real networks. The motivation of the
proposed problem is to model wireless backhaul networks that operate over technologies
such as Wi-Fi, LTE (4G technology), and HSPA+ (3G technology). In such networks,
we must collect data traffic in a given geographic region and route it to the core network.
Their structure is determined by equipment and service quality constraints. Usually, one
wants to build tree at high-capacity nodes over a sparse graph with capacity constraints.
Although the WBNDP resembles variants of the Steiner tree and facility location prob-
lems, its revenue and cost structures distinguish it from these two problems.

To solve the WBNDP, we propose a biased random-key genetic algorithm (BRKGA)
with a sophisticated decoding procedure. The algorithm has several phases, such as
equipment deployment, construction of routing trees, flow computation, and pruning of
unused equipment. The choice of BRKGA is grounded on its recent success in solving
large combinatorial optimization problems (Gonçalves and Resende [81]). In order to

2.2. Problem description 17

evaluate the quality of results obtained by the BRKGA, we also formulate and solve a
mixed integer linear programming model for computing the optimal solution.

The structure of the chapter is as follows. Section 2.2 presents the WBNDP in detail
and Section 2.3 reviews the related literature. In Section 2.4, a formal definition as well as
a mixed integer linear programming model are presented. Section 2.5 describes a biased
random-key genetic algorithm to solve the WBNDP and Section 2.6 discusses the maxi-
mum flow problem that arises in WBNDP. Section 2.7 describes some instances derived
from real-world problems and pre- and post-processing phases. Section 2.8 presents ex-
perimental results, and we make some final considerations and conclusions in Section 2.9.

2.2 Problem description
Consider a geographical region with each point in the region identified by its coor-

dinates (latitude and longitude). Consider the graph G = (V,A), where V and A are,
respectively, the sets of vertices and arcs of G. The set V d ⊂ V is the subset of vertices
that correspond to demand points or city blocks in this region. These demand points
consist of mobile devices, such as mobile phones, tablets, laptops, and other devices that
make use of wireless communication. The set V s ⊂ V is the set of vertices that correspond
to equipment used to collect and route traffic from the demand points. This equipment
is installed on utility poles distributed across the streets and highways of the region. We
consider small cells network design, meaning that cellsites have relatively small coverage
radii. Small cells have the advantage of using spectrum more efficiently. We consider three
types of equipment: Wi-Fi and LTE for access traffic (demand collection), and retransmit-
ter for routing/backhauling. The set V r ⊂ V represents the Fibered Access Points (FAPs)
where we have existing fiber connected to the core network. VRADs (Video-Ready Access
Devices) are one example of FAPs. Installing equipment close to a VRAD will enable us
to route the traffic on this fiber with no or little additional cost. We also have many
existing macro cellsites where we can add additional radio equipment to carry traffic. If
this macro has a fiber backhaul, we can technically consider it a FAP but because macros
also cover access traffic directly, we make a distinction between macro cells and other
FAPs for notational convenience. Finally certain macro cellsites are connected to the core
with very high speed wireless links. In our formulation, they serve the same purpose as
macros with a fiber backhaul and we treat them identically.

The objective is to create routing trees such that the tradeoff between the revenue
derived from the routed traffic and the network cost be the best possible. We call this
problem the Wireless Backhaul Network Design Problem (WBNDP) and in the following
we describe each one of these particularities so that later on we can present a formal
definition.

18 Chapter 2. The Wireless Backhaul Network Design Problem

2.2.1 Demand splitting and routing trees
In general, it is difficult to estimate the demand of each user due to the user’s mobility

in the region where the network will be built. One way to approximately model this
scenario is to concentrate, for each city block, its total demand at the center of the block.
Although this appears to be oversimplified, the errors are diluted by the mobility of the
users. Therefore, it is reasonable to assume that a certain block may be served by several
cellsites and its demand split among them. Although the demand may be split among
several pieces of access equipment, this equipment and the routing equipment must be
connected through trees rooted at the FAPs or the macrocells.

Thus, one can note that a solution S for a backhaul network may contain an undirected
cycle originated at a demand. Therefore, although we have a forest when we consider only
the Steiner vertices and root nodes of S, the addition of demand vertices can induce these
undirected cycles, resulting in a directed acyclic graph (DAG).

2.2.2 Capacity of access equipment
Each access equipment is limited in its handling of traffic. These constraints are

access radius and access capacity. Values of these parameters vary across vendors and
also depend on geographic terrain. We have used the following representative values in
our simulations. For access radius, we have Wi-Fi: 100 meters; LTE small cell: 400
meters; LTE macro cell and HSPA: 3,000 meters. For access capacity, we have Wi-Fi:
100 Mbps; LTE small cell: 20 Mbps single band, 40 Mbps dual band; LTE macro cell
and HSPA: 25 Mbps. Although, for sake of simplification, we considered LTE macro cell
and HSPA with the same access radius and capacity, these two technologies can present
different values. See more details about these limitations, see Rayal [175].

2.2.3 Capacity of retransmitter equipment
The capacity of retransmitter equipment is one of the most complex aspects of this

type of network. In addition to having a maximum access radius (representative value
of 1,000 meters), retransmitter equipment also have a physical restriction that limits the
sum of the flow that it receives and sends to the other retransmitters. This quantity is
limited to a value Ubh (e.g., 100 Mbps). Though this equipment also deals with access
traffic from other equipment (Wi-Fi/LTE) that share the same utility pole, this limit is
not applied to that traffic. Therefore, the limit Ubh does not account for all incoming
traffic but shapes the outgoing traffic.

More precisely, let v ∈ V s be a retransmitter. Take A+s
v = {(w, v) ∈ A : w ∈ V s} as

the set of arcs outgoing from neighbors of v that send to it backhaul traffic. Let a−v be

2.2. Problem description 19

the outgoing arc of v in the solution (recall that we are looking for a backhaul forest).
Let A+d

v = {(w, v) ∈ A : w ∈ V d} be the set of arcs from demand vertices to v. Let
f : A→ R+ be a function that defines the flow on the arcs. Therefore, we have∑

e∈A+s
v

fe + fa−v ≤ Ubh, ∀v ∈ V s (2.1)

such that ∑
e∈A+s

v

fe +
∑

e∈A+d
v

fe = fa−v , ∀v ∈ V s. (2.2)

While Inequality (2.1) only restricts the backhaul flow to at most the capacity Ubh,
Equality (2.2) is the classical flow conservation equation which ensures that v has no excess
flow. Although these restrictions do not influence the structure of the backhaul forest,
they have a direct impact on the maximum flow in the forest, used to compute the revenue.
In this case, we cannot use a classical algorithm for maximum flow such as Edmonds-Karp
or Goldberg-Tarjan directly (see Goldberg and Tarjan [71] for a comprehensive list).

Another physical restriction on the retransmitters is that they support only a limited
number of neighbors sending backhaul traffic to it (known as fan-in, equal to 5 in our
simulation results). Thus, this restriction limits the incoming degree of each retransmitter
vertex.

2.2.4 Sight and minimum distance
One can note that the subgraph induced by V s may be sparse. The main reason

for this is the existence of physical barriers, such as buildings and hills, between pairs
of utility poles. Moreover, the distance between them can be so large that the signal
loses strength and impairs communication. Therefore, one must consider that the links
(u, v) and (v, u) only exists when poles u and v are close enough (1,000 meters in our
simulations) and they are in each other’s line of sight, i.e. we can trace a straight line
between them without obstruction. In this problem, we do not treat omnidirectional
communication in the backhaul.

Another important aspect is the interference among cellsites. Both LTE and HSPA use
licensed spectrum and can interfere with each other. Therefore, a pair of LTE equipment
cannot be installed too close to each other. In our simulations, we restrict a minimum
distance of 300 meters between two LTE small cellsites and a minimum distance of 500 me-
ters between LTE small cell and macro cellsites. Note that this concern does not exist
with Wi-Fi equipment which, although can exhibit interference, occupies a non-licensed
spectrum. Such spectrum is very hard to control due to external interferences.

20 Chapter 2. The Wireless Backhaul Network Design Problem

2.2.5 Number of hops
The first hops are defined to be arcs that link root nodes to poles. In practice, these

hops may be built using either wireless links or fiber links. The links between utility poles
and FAPs must use fiber. Links between poles and macrocells may use fiber or be wireless.
The other hops are built over wireless links. The restriction is that the number of wireless
hops must be limited to an upper bound (in practice, two or three hops). This restriction
aims to reduce the latency of the wireless network and is commonly considered in network
planning according to Dahl et al. [43]. Note that only backhaul links are considered.

Example
Figure 2.1a depicts an example of a base graph where the dashed arcs represent possi-

ble wireless links and the solid blue arc represents an optical fiber link. The dotted sinuous
arcs represent the possible links between a demand block and an access equipment. This
graph is based on geographic information of the backhaul region and takes into considera-
tion maximum coverage radii as well as the lines of sight of pairs of equipment. Note that
the macrocell (represented by a large yellow rhombus/diamond) contains two attached
vertices. These are the backhaul traffic aggregator (BTA) and the macrocell traffic ag-
gregator (MTA) (represented by small yellow diamonds). Note that these vertices are
virtual and the links between them are internal to the devices. They are used to better
model the traffic (more detail is given in Section 2.4). As with the macrocells, each utility
pole is represented by a red square and has attached to it two virtual vertices represent-
ing Wi-Fi and LTE equipment and their respective aggregators (small orange diamonds
for WTAs and purple diamonds for LTAs). The demands are represented by light blue
circles. Note that each demand may be satisfied in three distinct ways: Wi-Fi, LTE, and
HSPA. In this example, only demands 0 and 2 can be served by the macro cell because
of their proximity to the macrocell. Demand 2 can split its traffic between the macrocell
and utility poles UP0 and UP1 using LTE. The same situation occurs with demand 3.
Demand 1 can use Wi-Fi or LTE on pole UP2, and LTE on pole UP1. Demand 4 is only
close to pole UP4 and can use both Wi-fi and LTE. Note that utility poles UP0, UP1,
and UP2 are close enough to each other and in each other’s lines of sight, enabling the
installation of retransmitters on them. Utility poles UP3 and UP4 are in another region
and do not have communication links with UP0, UP1, or UP2.

Figure 2.1b shows a valid solution. The solid arcs represent the links among the
pieces of equipment. In this example we ignore capacities. Note that several pieces of
equipment are not installed since they do not serve any demand. For example, in utility
pole UP2 it suffices to install Wi-Fi. Note that if we consider only the black and blue
arcs (straight lines), we have a forest. Note also that demand 2 splits its traffic between

2.2. Problem description 21

utility pole UP0 using LTE and the macrocell. Demand 3 is more interesting: it is split
between two distinct subtrees. In this case, demand 3 uses LTE on UP3 and UP1 but
nothing prevents it from using the Wi-Fi on UP1 and LTE on UP3.

Macro VRAD

0

1

2

3

4

UP1

UP3

UP4UP0

UP2

WTA0

WTA2 WTA3

WTA4LTA0

LTA2 LTA3

LTA4

WTA1 LTA1

MTA0 BTA0

(a) Base graph.

Macro VRAD

0

1

2

3

4

UP1

UP3

UP4UP0

UP2

WTA2

WTA4LTA0

LTA3

LTA1

MTA0 BTA0

(b) Valid solution.

Figure 2.1: The figures above represent a base graph from where a valid solution is
extracted. We omitted equipment capacities for legibility.

22 Chapter 2. The Wireless Backhaul Network Design Problem

2.3 Related literature

The wireless backhaul network design problem (WBNDP) is closely related to variants
of the Steiner tree and the facility location problems. Steiner tree problems have been
widely studied and among their many applications, network design may be the most
expressive. Given a graph with a set of terminal nodes, a set of intermediate nodes
called Steiner nodes, and edge costs, the Steiner Tree Problem (STP) consists in creating
a minimum cost tree connecting all terminal nodes. The general version is NP-hard
(Garey and Johnson [65]) and a survey of the STP is presented in Voß [202].

A variant with many applications in industry is the Prize-Collecting Steiner Tree
Problem (PCSP). In this problem, each vertex has a penalty value and each edge has a
cost. The objective is to build a tree minimizing the sum of the costs of used edges plus the
sum of the penalties of the vertices not spanned by the tree. This is a well-studied problem
originated in Goemans and Williamson [69, 70]. Goemans and Williamson [69] presented
a 2-approximation algorithm for the PCSP for which practical results were discussed in
Canuto et al. [30] and Johnson et al. [104]. Lucena and Resende [137] presented lower
bounds using linear programming and cutting planes and their results were improved by
Ljubić et al. [131]. Klau et al. [112] proposed a hybrid heuristic where the final population
from a memetic algorithm is used to build reduced instances to be solved by an exact
algorithm. In da Cunha et al. [42] a Lagrangian non-delayed relax-and-cut algorithm is
proposed to generate primal and dual bounds for the problem.

The first problem to deal with limited number of hops was proposed by Gouveia [85]
and is called Hop-Constrained Minimum Spanning Tree Problem (HMSTP). In this prob-
lem, we want to obtain a minimum spanning tree such the path between the root node
and a leaf node has no more than H hops (edges). In Gouveia [85], a formulation based
on subcycle elimination inequalities was presented as well as several lifting procedures
and bounds based on Lagrangian relaxation. This approach was refined in several pa-
pers described in Dahl et al. [43]. Recently, Gouveia et al. [86] presented several local
search neighborhoods resulting in good solutions. In Gouveia et al. [87], HMSTP was
presented as a directed Steiner tree model over layered graphs. Several cutting planes
from other Steiner problems were applied. A branch-and-cut algorithm was also proposed
and it was able to obtain the best results so far described in the literature. Furthermore,
Gouveia et al. [87] reduced the Diameter-Constrained Minimum Spanning Tree Problem
(DMSTP) to a Steiner tree problem using the same technique. In the DMSTP, the hop
constraint is applied to a path between any pair of vertices in the tree.

Another related problem is the Steiner Tree Problem with Revenues, Budget and Hop
Constraints (STPRBH). In this problem, the objective is to build a tree that maximizes
the collected profit respecting an upper bound on the network costs and the maximum

2.3. Related literature 23

number of hops from the root node to other any node in the network. Differing from
the HMSTP, in the STPRBH it is not mandatory to include all vertices and one has
a limited budget to spend building the network. This problem was proposed by Costa
et al. [39] in which a two-phase greedy algorithm was developed: one phase consists in a
simple local search that destroys part of a solution and rebuilds it greedily, and a tabu
search using two simple search neighborhoods. Later, Costa et al. [40] presented several
integer linear programming models for the STPRBH and branch-and-cut algorithms were
developed for each formulation. Layeb et al. [121] presented a compact formulation based
on Miller-Tucker-Zemlim constraints which resulted in similar solutions to those found
previously in the literature. Recently, Fu and Hao [64] proposed a new heuristic for the
STPRBH which was able to find optimum solutions for instance with known optima and
improved solutions for instances with unknown optima.

A similar problem is the Connected Facility Location Problem (ConFL) introduced
in Karger and Minkoff [107]. This problem consists in assigning each client to exactly
one opened facility and connecting the opened facilities using a Steiner tree. Ljubić and
Gollowitzer [130] introduced a modification in the ConFL limiting the number of hops
between the facilities and a root node. This problem is known as the Hop Constrained
Connected Facility Location Problem (HCConFL). Ljubić and Gollowitzer [130] used
the same technique presented in Gouveia et al. [87] where the problem is modeled on a
layered graph. Branch-and-cut algorithms were developed.

One can note that the problem addressed in here (WBNDP) has characteristics that
are similar to those of the problems reviewed above. This is especially true with respect
to the maximum number of hops. However, there are two main characteristics that
distinguish the WBNDP from other problems. The first is the possibility that each
demand node be served by more than one Steiner node or root node. In this sense, we do
not have a tree like in the other problems. The second and most important characteristic
is how the revenue is computed. In the previous works in the literature, the revenue
considers the “full value” of a vertex if it is in the solution, i.e., the backhaul network
is capable of routing all the traffic. In the WBNDP, due to natural constraints, this
is not always true. In fact, we consider that the network has a limited routing capacity
and the revenue is a function of the maximum flow in this network. This way, there
is a strict relation between the network structure and the revenue, once both topology
and link capacity directly influence the flow. Another small difference is that the degree
constraints are applied only to Steiner nodes and macrocells (only wireless links and not
fiber links).

24 Chapter 2. The Wireless Backhaul Network Design Problem

2.4 Formal Definition

Let V d be the set of demand points or demand nodes. Let V s be the set of utility poles
where the access and retransmission equipment are installed. We refer to V s as Steiner
nodes. Let V r be the set of points which have fiber or a high capacity link which we call
root nodes. Consider V m ⊆ V r as the set of macrocells and V v ⊆ V r as the set of FAPs.
Let V = V d ∪ V s ∪ V r and note that V m ∪ V v = V r, and the sets V d, V s, V m, and V v

are pairwise disjoint. Consider V ld ⊆ V r to be the set of FAPs whose through traffic is
leased.

To model the traffic in the different technologies, consider the following sets:

• WTA: set of vertices that represents units of Wi-Fi equipment to be installed on
the poles. We call each w ∈WTA a Wi-Fi Traffic Aggregator. There is a one-to-one
correspondence between Wi-Fi traffic aggregators and utility poles;

• LTA: set of LTE Traffic Aggregators whose description is similar to WTA, except
that they are for LTE equipment;

• MTA: set of Macrocell Traffic Aggregators which have a one-to-one correspondence
with each macrocell;

• BTA: set of Backhaul Traffic Aggregators which also have a one-to-one correspon-
dence with each macrocell. The BTAs are restricted to wireless backhaul traffic.

Let v ∈ V s, u ∈ WTA. If u is assigned to pole v, then wta(v) = u and wta(u) = v.
Consider the same for LTA, MTA, and BTA. As in previous sections, consider a directed
graph G = (W,A) such that W = V ∪WTA ∪ LTA ∪MTA ∪ BTA. We will define the
set of arcs A later. Let d : V d → R+ be the function that maps the maximum traffic (in
Mbps) that originates at each demand point.

Consider the following constants:

• Maximum number of wireless hops: H;

• Access Radii (in meters):

– Wi-Fi access radius: Rwifi;
– LTE access radius: Rlte;
– Macrocell access radius: Rmc;
– Retransmitter radius: Rbh;

• Minimum distance (in meters):

2.4. Formal Definition 25

– LTE to LTE (pole to pole): δlte;
– LTE (pole) to macrocell: δmacro;

• Capacities (in Mbps):

– Wi-Fi: Uwifi;
– LTE: Ulte;
– Macrocell (HSPA and LTE access): Umc;
– Retransmitter: Ubh;

• Revenue factor (in some monetary unit): %;

• Cost (in some monetary unit):

– Equipment deployment on a pole: Cp;
– Wi-Fi equipment: Cwifi;
– LTE equipment: Clte;
– Retransmitter with one-element antenna (fan-in = 1): Cfan1 ;
– Retransmitter with two-or-more-element antenna (fan-in ≥ 2): Cfan2 ;
– Maintenance of equipment on a pole (per year): Cman. The maintenance cost

is the sum of the pole leasing costs and small cell maintenance costs, per year.
Note that, if the pole has no access equipment but has a retransmitter, the
maintenance cost shall be paid;

– Macrocell annual cost: Cmc. This costs is compounded by the annual site
leasing cost and the annual maintenance cost;

– Meter of deployed fiber: Cfiber ;
– Leased traffic (in $/Mbps): Cld ;

• Maximum number of incoming backhaul neighbors: δ+
bh;

• Length of fibered hop: `uv for arc (u, v);

• Maximum length of fibered link: Rfiber . Theoretically, this limit does not exist since
we may spread fiber over the entire network. In practice, the cost to do this is very
high and therefore we impose this limit. However, this is a weak restriction which
may be violated if necessary.

26 Chapter 2. The Wireless Backhaul Network Design Problem

Let dist : V ×V → R+ be the (geodesic) distance between two points. For v ∈ V s∪V m,
consider LOSv = {w ∈ V s∪V m : dist(v, w) ≤ Rbh and there is direct line of sight between
v and w}. The set of arcs A is defined as the union of the following sets:

• Adm = {(u, v) : u ∈ V d, v ∈ MTA and dist(u,mta(v)) ≤ Rmc}: Set of arcs from
demand blocks to macrocells (MTAs) whose blocks are inside the radius of action
of a macrocell;

• Adw = {(u, v) : u ∈ V d, v ∈ WTA and dist(u,wta(v)) ≤ Rwifi}: Set of arcs from
demand blocks to utility poles (WTAs) inside the radius of action of Wi-Fi equip-
ment;

• Adl = {(u, v) : u ∈ V d, v ∈ LTA and dist(u, lta(v)) ≤ Rlte}: Set of arcs from demand
blocks to utility poles (LTAs) inside the radius of action of LTE equipment;

• Ass = {(u, v) : u, v ∈ V s and v ∈ LOSu}: Set of arcs between utility poles. Note
that both (u, v) and (v, u) belongs to Ass;

• Asmw = {(u, v) : u ∈ V s, v ∈ BTA and u ∈ LOS bta(v)}: Set of arcs from utility poles
to macrocells (BTAs). This set is restricted to wireless links;

• Asmf = {(u, v) : u ∈ V s, v ∈ V m and dist(u, v) ≤ Rfiber + ε}: Set of arcs from utility
poles to macrocells using fibered links (recall that this is a weak restriction which
can be relaxed by adjusting the value of ε);

• Asv = {(u, v) : u ∈ V s, v ∈ V v and dist(u, v) ≤ Rfiber + ε}: Set of arcs from utility
poles to FAPs (same as before);

• Awta = {(wta(v), v) : v ∈ V s}: Set of arcs from WTAs to utility poles;

• Alta = {(lta(v), v) : v ∈ V s}: Set of arcs from LTAs to utility poles;

• Amta = {(mta(v), v) : v ∈ V m}: Set of arcs from MTAs to macrocells;

• Abta = {(bta(v), v) : v ∈ V m}: Set of arcs from BTAs to macrocells.

Note that arc sets Adm, Adw, Adl , Ass, and Asmw correspond to wireless links. Arc sets
Asv and Asmf correspond to fibered links. Arc sets Awta, Alta, Amta, and Abta represent
connections between several pieces of equipment in the same small cell or macrocell. We
use these arcs to model equipment capacities.

2.4. Formal Definition 27

2.4.1 Mixed integer linear programming model
To better describe the objective function and constraints of the WBNDP, we next

model it as a mixed integer linear program (MIP). The constraints are based on the ob-
servations of Section 2.2 and on topological restrictions of a DAG, as well as maximum
capacity and flow conservation limitations. One important definition to model the WB-
NDP, it is the notion of level. We define level as the number of wireless hops between a
utility pole and a root node. Consider the following decision variables:

• xpuv ∈ {0, 1} for (u, v) ∈ A, u ∈ V s, v ∈ V s ∪ V r ∪MTA: xpuv = 1 indicates that arc
(u, v) is in level p of some tree, for p = 0, . . . , H; xpuv = 0, otherwise. For v ∈ V r,
only variables x0

uv are defined. For v ∈ BTA, only variables x1
uv are defined;

• yv ∈ {0, 1} for v ∈ V s: yv = 1 indicates that a vertex/pole v is in the solution;
yv = 0, otherwise;

• fuv ∈ R+ for (u, v) ∈ A: is the flow through arc (u, v);

• tv ∈ {0, 1} for u ∈ V s: tv = 1 indicates that pole v has installed Wi-Fi equipment;
tv = 0, otherwise;

• zv ∈ {0, 1} for u ∈ V s: zv = 1 indicates that pole v has installed LTE equipment;
zv = 0, otherwise;

• a1
v ∈ {0, 1} for v ∈ V s ∪BTA: a1

v = 1 indicates that the pole or the macrocell has a
retransmitter with a one-element antenna (fan-in = 1); a1

v = 0, otherwise;

• a2
v ∈ {0, 1} for v ∈ V s ∪BTA: a2

v = 1 indicates that the pole or the macrocell has a
retransmitter with a two-or-more-element antenna (fan-in ≥ 2); a2

v = 0, otherwise.

Variables x are used to model the backhaul trees in levels. If an arc (u, v) is in level 0
(i.e., x0

uv = 1), then the arc is a fibered link of high capacity. If the same arc is in level 1
(i.e., x1

uv = 1), then it is a wireless link. Note that the variables x may be not defined
for all arcs (u, v) and all levels p while some arcs only appear in deep levels of some tree.
For instance, arc (UP1, UP2) from the example of Figure 2.1a can only appear in level 3.
Such cases can be identified in a preprocessing phase, as we will describe in Section 2.7.2.

28 Chapter 2. The Wireless Backhaul Network Design Problem

The following MIP models the WBNDP:

max %
∑

(u,v):v∈V r
fuv (2.3a)

−
∑
v∈V s

(Cp + Y Cman)yv (2.3b)

−
∑
v∈V s

Cwifitv −
∑
v∈V s

Cltezv (2.3c)

−
∑

v∈V s∪Vm
(Cfan1a

1
v + (Cfan2 − Cfan1)a2

v) (2.3d)

−
∑

(u,v)∈Asv∪Asmf

Cfiber`uvx
0
uv (2.3e)

−
∑

(u,v)∈A:v∈V ld

Cldfuv + Cmc (2.3f)

s.t.
H∑
p=0

xpuv ≤ 1 ∀(u, v) ∈ A : u ∈ V s (2.3g)

xp+1
uv ≤

∑
(v,w)∈A:w 6=u

xpvw
∀(u, v) ∈ A : u ∈ V s,

p = 0, . . . , H − 1 (2.3h)

∑
(u,v)∈A

H∑
p=1

xpuv ≤ δ+
bhyv ∀v ∈ V s ∪ BTA (2.3i)

∑
(v,w)∈A

H∑
p=0

xpvw ≤ yv ∀v ∈ V s (2.3j)

a1
v ≥

1
δ+

bh

 ∑
(u,v)∈A

H∑
p=1

xpuv

 ∀v ∈ V s ∪ BTA (2.3k)

a2
v ≥

1
δ+

bh

 ∑
(u,v)∈A

H∑
p=1

xpuv − 1
 ∀v ∈ V s ∪ BTA (2.3l)

a1
v ≥

∑
(v,w)∈A

H∑
p=1

xpvw ∀v ∈ V s (2.3m)

tv ≤ yv ∀v ∈ V s (2.3n)
zv ≤ yv ∀v ∈ V s (2.3o)

zu + zv ≤ 1 ∀u, v ∈ V s :
dist(u, v) ≤ δlte

(2.3p)

zu = 0 ∀u ∈ V s, v ∈ V m :
dist(u, v) ≤ δmacro

(2.3q)∑
(v,w)∈A

fvw ≤ dv ∀v ∈ V d (2.3r)

2.4. Formal Definition 29

fuv ≤ Uwifi tv
∀(u, v) ∈ A :
u ∈WTA (2.3s)

fuv ≤ Ulte zv
∀(u, v) ∈ A :
u ∈ LTA (2.3t)

fuv ≤
H∑
p=1

Ubhx
p
uv

∀(u, v) ∈ A :
u, v ∈ V s ∪ BTA (2.3u)

fuv ≤Mx0
uv

∀(u, v) ∈ A :
u ∈ V s, v ∈ V r (2.3v)∑

(u,v)∈A:u∈V s
fuv +

∑
(v,w)∈A

fvw ≤ Ubh ∀v ∈ V s (2.3w)
∑

(u,v)∈A
fuv −

∑
(v,w)∈A

fvw = 0 ∀v ∈ V \ (V r ∪ V d) (2.3x)

fvw ≤ Ubh ∀v ∈ BTA (2.3y)
fvw ≤ Umc ∀v ∈ MTA. (2.3z)

Terms (2.3a–2.3f) constitute the objective function and computes the net profit that
the network generates in a time windows of Y ∈ R+ years. In practice, the revenue is
computed by a complex function based on service packages offered to customers and, in
general, is an estimate based on the experience of operators and on market fluctuations.
For the particular scenario considered in here, the revenue is a function of the total traffic
routed through the FAPs. We consider a linear function using the revenue factor % as
shown by Term (2.3a). The remaining terms add up to the total cost: Term (2.3b) is
the cost of deployment and maintenance of poles over Y years; Term (2.3c) is the cost of
Wi-Fi and LTE equipment; Term (2.3d) is the cost of retransmitters; Term (2.3e) is the
cost of trenching for fiber; and Term (2.3f) is the cost of leased traffic. The constant Cmc

represents the macrocell cost as described in the beginning of this section.
The constraints can be partitioned into three blocks. The first block (2.3g–2.3j) mod-

els the backhaul trees: Constraint (2.3g) forbids an arc to be in more than one level;
Constraint (2.3h) requires that if an incoming arc into node v is in level p + 1, v should
have an outgoing arc in level p; Constraint (2.3i) limits the incoming degree for poles
and BTAs according Section 2.2.3 (note that the constraint only consider levels greater
than or equal to one, since fibered arcs of level 0 are only allowed to be incoming arcs at
FAPs and macrocells); and Constraint (2.3j) guarantees that each pole has at most one
outgoing arc.

The second block of constraints (2.3k–2.3p) is tied to equipment deployment. Con-
straints (2.3k) and (2.3l) indicate, respectively, the presence of a retransmitter with a one-
element antenna or a multiple-element antenna. Note that if, for some node v, a2

v = 1,
then necessarily a1

v = 1. In this case, we do not consider a one-element antenna sub-

30 Chapter 2. The Wireless Backhaul Network Design Problem

tracting its cost from the objective function as shown in Term (2.3d). Constraint (2.3m)
guarantees placement of a retransmitter in node v if there exists an arc outgoing from v.
Constraints (2.3n) and (2.3o) permit the deployment of Wi-Fi and LTE equipment on
pole v, respectively, only if pole v is used. Constraints (2.3p) and (2.3q) prohibit the
deployment of two pieces of LTE equipment near each other or close to a macrocell, re-
spectively. Note that Constraint (2.3q) may be redundant since closeby pole/macrocell
pairs are discarded in a preprocessing phase.

The last block of constraints (2.3r–2.3z) is related to flow. Constraint (2.3r) limits
the flow outgoing from demand blocks. Constraints (2.3s) and (2.3t) ensure that Wi-
Fi and LTE capacities are respected. Constraint (2.3u) limits the capacity of wireless
arcs to the retransmitter capacity. Constraint (2.3v) enables unlimited flow on fibered
links when M ≥ ∑

v∈V d dv. Constraint (2.3w) limits the retransmitter capacity as dis-
cussed in Section 2.2.3 (note that only backhaul flow is considered in this constraint).
Constraint (2.3x) is the classical flow conservation constraint. Finally, Constraint (2.3y)
applies the retransmitter capacity to BTAs, while Constraint (2.3z) limits macro cellsite
traffic. All integrality requirements are omitted since they are described in the beginning
of this section.

2.5 Solution procedure using BRKGA

Because of the large-scale nature of practical instances of MIP (2.3), it can be difficult
to solve the WBNDP using an exact approach, such as a branch-and-cut algorithm.
Typically, these instances are situated in regions of approximately 80 km2 with about
15 macrocells, 130 VRADs, 3,200 utility poles, and 16,000 demand blocks. Although the
underlying graph is relatively sparse, the number of valid solutions can be huge. To deal
with this situation, we propose a Biased Random-Key Genetic Algorithm (BRKGA) to
solve the WBNDP. See Section 1.2 for more details about the BRKGA.

From an implementation point of view, most of the effort in building a BRKGA fo-
cuses on devising a decoder, which takes as input a vector of random keys and outputs
a valid solution for the problem. The decoding phase for the WBNDP consists in iter-
atively building acyclic directed graphs and the computation of maximum flows, costs,
and revenues. This procedure builds the solution in a bottom-up fashion, starting at the
root nodes and ending at the demand nodes. Since the WBNDP has a large number of
peculiarities, the design of a decoder is not trivial and consists of a number of intermediate
steps. In the next subsections, we describe each of these steps.

2.5. Solution procedure using BRKGA 31

2.5.1 Representation
Given an instance of the problem, without loss of generality we assume that the

utility poles are listed in an arbitrary but fixed order V s = (p̄1, . . . , p̄n) where n is the
number of poles, i.e., n = |V s|. We also assume that the root nodes are listed in an
arbitrary but fixed order beginning with macrocells and ending with the FAPs, i.e, V r =
(m̄1, . . . , m̄α, f̄1, . . . , f̄β) where α is the number of macrocells and β is the number of FAPs.

A chromosome is a vector of real numbers v ∈ [0, 1]5n. This vector is partitioned
into five sections whose values are used to build the backhaul network. Each value is
associated with a utility pole through an index given by V s. As we explain below, each
pole is associated with five values, or keys, of the chromosome, one in each partition.

The first section consists of values v1, . . . ,vn that define which poles are present in
the solution and their deployment order. The deployment order defines the sequence of
LTE equipment installation. We refer to this first group as κA = (v1, . . . ,vn).

The second section consists of the values vn+1, . . . ,v2n which are used as activation
parameters. They determine whether:

• an LTE equipment is deployed on the utility pole (L or NL);

• the utility pole is connected via fiber (F or NF);

• the utility pole connects directly to a FAP or a macrocell (D or ND).

Using this notation we have:

- vi ∈ [0.000, 0.125), then: NL, NF, ND;

- vi ∈ [0.125, 0.250), then: NL, NF, D;

- vi ∈ [0.250, 0.375), then: NL, F, ND;

- vi ∈ [0.375, 0.500), then: NL, F, D;

- vi ∈ [0.500, 0.625), then: L, NF, ND;

- vi ∈ [0.625, 0.750), then: L, NF, D;

- vi ∈ [0.750, 0.875), then: L, F, ND;

- vi ∈ [0.875, 1.000), then: L, F, D.

The first parameter controls how to distribute LTE equipment and, as a consequence, how
the demands are distributed amongst them. Furthermore, it may be valuable not to install
LTE on a given utility pole even if there is nearby demand, since the cost/benefit ratio

32 Chapter 2. The Wireless Backhaul Network Design Problem

may be too low or negative. The second parameter dictates if a pole can be connected
by fiber. It is used in cases where the utility pole is connected to a macrocell by fiber
or by a wireless link. Again, this parameter controls the cost/benefit ratio. Lastly, the
third parameter dictates the minimum tree level in which a pole appears in the backhaul
network. We refer to these keys as κP = (vn+1, . . . ,v2n).

The third section κO = (v2n+1, . . . ,v3n) defines the evaluation order of the utility poles
as the network is grown. This order is used to build the next level of nodes in the forest.
Suppose, for example, that a utility pole is already connected to the network and that
it can only support one additional backhaul connection (i.e., Constraint (2.3i) is nearly
saturated). If there are two other poles to be connected to this one, the order induced by
κO will define which pole will be connected. Another order induced by κO′ can potentially
generate a different network.

The fourth section κN = (v3n+1, . . . ,v4n) defines the evaluation order of a pole neigh-
borhood. Suppose that a pole is about to be included in the network and that it has two
or more previously deployed neighbor nodes with utility poles to which it can connect to.
The order induced by κN will determine to which neighbor the connection will be made.

Lastly, the fifth section κL = (v4n+1, . . . ,v5n) defines the minimum tree level on which
a utility pole can be placed. The root nodes and fibered utility poles are considered to be
at level zero. Thus, the remaining poles are distributed among levels 1 through H. The
minimum level of utility pole i is given by b(H + 1)κLi c. If the minimum level of pole i is
zero, it can be placed in any tree level. If it is one, pole i can only be placed in level 1 or
above. In this case, the pole cannot be connected by fiber.

Although at first glance, there is a superposition of functionalities among the several
keys, we see below that each key plays a very particular role in the process of network
construction.

2.5.2 Decoder
Algorithm 2.1 shows the basic steps to decode a chromosome into a valid solution. It

consists of several procedures described in Algorithms 2.2–2.5. In addition to the above
discussion, the algorithms also make use of the following definitions:

• parent(p): indicates which utility pole, macrocell, or FAP that pole p is linked to,
i.e., arc (p, parent(p)) exists in the backhaul network;

• children(p): set of poles linked to p, i.e., there exist links (w, p) for w ∈ children(p);

• level(p): indicates the level in which pole p is placed in the tree;

• fibered(p): indicates if pole p is linked by fiber to a root node;

2.5. Solution procedure using BRKGA 33

Algorithm 2.1: Decoder.
1 Define the activation order and install (LTE) equipment in the poles;
2 Build the backhaul graph;
3 Remove non-used pieces of equipment and poles (1st phase);
4 Compute the maximum flow. Let fmax be the value of maximum flow;
5 Remove non-used pieces of equipment and poles (2nd phase);
6 Compute the cost over the time window of Y years. Let Ctotal be the total cost;
7 Compute the revenue over the time window of Y years. Let Rtotal be the revenue
obtained;

8 return Rtotal − Ctotal

• deg+(p): number of arcs leaving p (i.e., outgoing degree of p);

• CP: set of the most external poles in the current stage of network construction, i.e.,
the leaves of current forest;

• TK : set of all utility poles in current forest. Note that CP ⊆ TK ;

• NL: set of utility poles to be considered for connection in the next forest levels.

The first step is to choose which poles can be added to the solution. Line 1 of Al-
gorithm 2.2 chooses the poles whose keys have a value greater than or equal to 0.5, and
activates these poles in an order defined by their key values. Therefore, for each activated
pole, we install Wi-Fi and LTE equipment in the given order when there is demand in
the access radii of the pole. In the case of LTE, we need to check whether the pole is suf-
ficiently far from any macrocell or other poles with previously installed LTE equipment.
Line 1 has run-time complexity of O(|V s| log |V s|), since it is a sorting of the keys κA.
For each pole in the loop of line 2, in the worst case, we must test all possible neighbors
in line 5, leading to run-time complexity of O(|V s|2) which is the dominant run-time
complexity of Algorithm 2.2.

The construction of the backhaul forest is an iterative bottom-up process. First,
we create the first level connecting poles to the root nodes using Algorithm 2.3. Sets
CP,TK , and NL are initially empty. We initialize pole levels to indicate that level as-
signment has not yet been made. Likewise, we initialize no connectivity by fiber to all
poles (lines 1 and 2). We add to CP, the set of current poles, all active neighbors of each
root node (lines 3 and 5) sorted in non-increasing order of their corresponding keys in the
chromosome (line 6). Using this permutation, we try to connect each pole to a FAP or
a macrocell obeying the minimum level and activation parameters (note that the func-
tion extractparameters() returns a triple according to the description of Section 2.5.1).

34 Chapter 2. The Wireless Backhaul Network Design Problem

Algorithm 2.2: Equipment activation and installation.

1 Let L be a pole list in non-increasing order of keys κA such that p ∈ L iff κAp ≥ 0.5.
Each p ∈ L is said active and each p′ /∈ L is said inactive;

2 foreach p ∈ L in the given order do
3 if ∃v ∈ V d : d(p, v) ≤ Rwifi then
4 Install a Wi-Fi equipment on p;

5 if (κPp ≥ 0.5) and (∃v ∈ V d : d(p, v) ≤ Rlte) and (@v ∈ V m : d(p, v) ≤ δmacro)
and (@v ∈ V s : lte(v) = 1 and d(p, v) ≤ δlte) then

6 Install a LTE equipment on p;

If a connection by fiber is allowed, we choose the closest FAP or macrocell under the
maximum distance constraint (line 12) and connect the pole to the chosen root node,
setting it as “parent” of this pole, and placing the pole in the set of children of the root
node. As it is a fibered connection, we consider that the pole is in level zero. If it is
not possible to connect by fiber, we try to create a wireless link. To do this, we create
a list of neighbor root nodes of the pole which will be visited circularly from the point
i determined by the corresponding key in the chromosome. This is done until we obtain
a connection (lines 19–31). Note that, in this case, the pole will be in level 1 and its
parent will have its incoming degree incremented by one (line 26). In the last case, when
it is impossible to make a connection, we remove the pole from the set CP of current
poles and place it in the set NL of poles for consideration in the next level. The run-time
complexity of lines 1 and 2 are O(|V s|). Again, the keys are sorted in line 6 which leads
to O(|V s| log |V s|). Although the loop of line 7 is relatively long, the most operations are
O(1). The exception if the inner loop beginning in line 22, which test all root nodes in
the worst case. Therefore, the outer loop leads to O(|V s| |V r|). Since the number of root
nodes is usually smaller than the number of utility poles, i.e., |V r| < |V s|, we can consider
the run-time complexity of Algorithm 2.3 to be O(|V s|2).

After the first level of the backhaul forest is created, set CP consists in the poles that
are forest leaves. From them, Algorithm 2.4 tries to augment the reach of the network.
First, we add to list NL the neighbor poles of CP that are active, in the line of sight with
some pole in CP, and are not yet part of the forest. We only consider neighbors from
poles whose incoming degree is not saturated (line 3). These operations are described
in lines 2–5. After constructing these lists, we consider the poles in NL as current poles
and take a permutation according to the order induced by the chromosome keys. The
remainder of the algorithm (lines 12–28) is similar to Algorithm 2.3 with respect to wireless

2.5. Solution procedure using BRKGA 35

Algorithm 2.3: Building of backhaul forest (level 0).
1 CP ← ∅; TK ← ∅; NL ← ∅;
2 foreach p ∈ V s do level(p)← −1; fibered(p)← 0;

3 foreach r ∈ V r do
4 Let N−r = {p ∈ V s : (p, r) ∈ E and p is active};
5 CP ← CP ∪N−r ;

6 Let Π to be a permutation of CP induced by the non-increasing order of
correspondent keys in κO;

7 foreach p ∈ Π in given order do
8 minimum_level ← b(H + 1)κLp c;
9 (ˆ̀, f̂ , d̂)← extractParameters(κPp);

10 if d̂ = ‘D’ and minimum_level ≤ 1 then
11 if f̂ = ‘F’ then
12 Choose r = argminr′∈V r(dist(p, r)−Rfiber) ≤ 0;
13 if r exists then
14 parent(p)← r;
15 children(r)← children(r) ∪ {p};
16 fibered(p)← 1; level(p)← 0;
17 TK ← TK ∪ {p};

18 if level(p) = −1 then
19 Let N+

p = {m ∈ V m : (p, bta(m)) ∈ Asmw} and consider that N+
p is in

the order induced by V r;

20 i← b|N+
p |κNp c;

21 begin ← i; repeated ← False;
22 while level(p) = −1 and not repeated do
23 if deg+(N+

p [i]) < δ+
bh then

24 parent(p)← N+
p [i];

25 children(N+
p [i])← children(N+

p [i]) ∪ {p};
26 deg+(N+

p [i])← deg+(N+
p [i]) + 1; level(p)← 1;

27 TK ← TK ∪ {p};
28 else
29 i++;
30 if i = |N+

p | then i← 1;
31 repeated ← (i = begin);

32 if level(p) = −1 then
33 CP ← CP \ {p}; NL ← NL ∪ {p};

36 Chapter 2. The Wireless Backhaul Network Design Problem

connections. Note that at the end of this procedure, set NL may have poles that are not
connected to any tree. These poles will be eliminated from the solution in a pruning
phase. The run-time complexity of Algorithm 2.4 is trick to compute. First, note that in
each iteration, the number of connections is a function of the size of current leaves CP
and maximum number of incoming backhaul neighbors δ+

bh. Note also that the size of NL
depends on the size of CP and δ+

bh but also depends on the number of poles not connected
in the previous iteration and postponed to be connected in the current iteration. Let
n = |V s|, ni = |CP| and mi = |NL| in the iteration i, and suppose that the algorithm
iterates over k iterations. Note that ∑k

i=1 ni = n but ∑k
i=1 mi ≥ n due to the carry over

of poles from previous iterations. In line 8, for each pole to be connected, we sort the
possible neighbors in CP. Since, in each iteration, there are performed mi sortings, the
complexity of this piece of code is

k∑
i=1

(mini log ni) ≤
k∑
i=1

(mini log n)

≤ log n
k∑
i=1

mini

≤ log n
k∑
i=1

nni

= n log n
k∑
i=1

ni

= n2 log n,

since ni ≤ n and mi ≤ m, for all iterations i. Therefore, the complexity of these sortings
is O(|V s|2 log |V s|). Note that the loop of line 12 iterates over the same frontier nodes
used in the previous sortings. Therefore, the run-time complexity is

k∑
i=1

mini ≤ n2 ∈ O(|V s|2).

Therefore, the run-time complexity of Algorithm 2.4 belongs to O(|V s|2 log |V s|).
After the complete construction of the backhaul forest, it is possible that there exist

active poles not used in the forest, or yet poles present in the forest but not serving any
demand. Algorithm 2.5 removes these poles. We have two pruning phases. The first
occurs after the construction of the backhaul forest and the second after the maximum
flow computation. In the first phase, we generate a “virtual” flow in each arc only present
for the convenience of the algorithm. Thus, a recursive pruning procedure is applied in
each root node (pruneSubtree()). This procedure traverses each tree using the depth-
first strategy until it reaches a leaf node. This way it verifies if demand is served by this

2.5. Solution procedure using BRKGA 37

Algorithm 2.4: Building of backhaul forest (level ≥ 1).
1 while CP 6= ∅ do
2 foreach p ∈ CP do
3 if deg+(p) < δ+

bh then
4 Let N−p = {p′ ∈ V s : (p′, p) ∈ Ass, p′ is active and p′ /∈ TK};
5 NL ← NL ∪N−p ;

6 foreach p ∈ NL do
7 N+

p ← {p′ ∈ CP : (p, p′) ∈ Ass};

8 ∀p ∈ V s, sort N+
p in a non-increasing order of dist(p, q) such that q ∈ N+

p ;
9 CP ← NL;

10 NL ← ∅;
11 Let Π to be a permutation of CP induced by the non-increasing order of

correspondent keys in κO;

12 foreach p ∈ Π do
13 minimum_level ← b(H + 1)κLp c;
14 i← b|N+

p |κNp c;

15 begin ← i; repeated ← False;
16 while level(p) = −1 and not repeated do
17 if deg+(N+

p [i]) < δ+
bh then

18 parent(p)← N+
p [i];

19 level(p)← level(N+
p [i]) + 1;

20 deg+(N+
p [i])← deg+(N+

p [i]) + 1;
21 TK ← TK ∪ {p};
22 else
23 i++;
24 if i = |N+

p | then i← 1;
25 repeated ← (i = begin);

26 if level(p) = −1 then
27 CP ← CP \ {p};
28 NL ← NL ∪ {p};

38 Chapter 2. The Wireless Backhaul Network Design Problem

leaf node using either Wi-Fi or LTE (lines 5–8). In case demand is present, the pole is
kept. If there is no demand but the pole has chidren nodes, then we can deduce that the
pole is being used only as a retransmitter and we keep the pole in the forest. Otherwise,
the pole is marked for later removal from set TK . Note that when the recursion returns,
line 3 removes all marked children. Since this procedure visits just once each pole, its
run-time complexity is O(|V s|).

After the forest construction and first pruning phases, it is necessary to create a graph
induced by this forest to compute the maximum flow from the demand nodes to the root
nodes. As pointed out in Section 2.2.3, the maximum flow problem to be solved is neither
classical nor straightforward. To solve this problem, we proposed two solutions which are
described in Section 2.6. The run-time complexity of this phase depends on the chosen
algorithm to compute the maximum flow. As pointed out in Section 2.2.3, we chose

Algorithm 2.5: Equipment and poles pruning.
1 if first phase then
2 foreach e ∈ E do
3 fe ← 1;

4 foreach r ∈ V r do
5 pruneSubtree (r);
6 Mark as inactive all p /∈ TK that is marked as active;

Procedure pruneSubtree(r).
1 foreach p ∈ children(r) do
2 pruneSubtree (p);

3 Remove from children(r), all p marked to remotion;

4 if r ∈ V s then
5 if deg+(wta(r)) = 0 or f(wta(r),r) = 0 then
6 wifi(r)← 0;
7 if deg+(lta(r)) = 0 or f(lta(r),r) = 0 then
8 lte(r)← 0;

9 if |children(r)| = 0 and wifi(r) = lte(r) = 0 then
10 Mark r to remotion;
11 TK ← TK \ {r};

2.6. Maximum Backhaul Flow Problem 39

to use the Goldberg and Tarjan [71] push-relabel algorithm whose run-time complexity
is O(|V |2

√
|A|). Note that we must consider all nodes V and all arcs A as defined in

Section 2.4. The pumping algorithm proposed in Section 2.6.2 to augment the flow has
run-time complexity O(|V s|).

Computed the maximum flow, a second pruning phase is applied to the forest and all
non-used pieces of equipment are removed as described earlier (Algorithm 2.5). Lastly,
the revenue and the costs are computed. As aforementioned, these calculations may use
different approaches depending on the objective of the study. Here, the revenue is derived
from the maximum flow directly as shown in Term (2.3a) of the objective function of
MIP (2.3). The cost is computed using the remaining Terms (2.3b–2.3f). The total cost
depends on the deployed equipment, deployed fiber, deployment and maintenance costs,
and leased traffic. Computed the revenue and costs, the profit is returned as the solution
value and fitness of the current decoded chromosome. This phase is pretty simple and
has run-time complexity O(|V |).

The run-time complexity of the decoder is the sum of the run-time complexities from
each component. The dominant ones are from Algorithm 2.4 and the algorithm used
to compute the maximum flow. Therefore, the run-time complexity of the decoder is
O(|V s|2 log |V s|+ |V |2

√
|A|).

2.6 Maximum Backhaul Flow Problem

2.6.1 Bounds
As pointed out in Section 2.2.3, wireless backhaul equipment has very specific con-

straints with respect to the reception and retransmission of backhaul traffic. These con-
straints are mainly related to the physical proprieties of the wave spectrum used. This
way, the total capacity of reception and retransmission is limited to a certain constant
Ubh. At the same time, this equipment also collects local traffic sent by other equipment,
such as Wi-Fi and LTE receptors.

For a given retransmitter v, we can assume three distinct components. The first com-
ponent is the incoming backhaul traffic, denoted by F i

b , such that F i
b = ∑

u∈V s:(u,v)∈Ass fuv,
i.e., the sum of backhaul traffic sent to v from neighbors. The second component is the
access traffic, denoted by Fa, which is the sum of the Wi-Fi and LTE traffic in v, i.e.,
Fa = fwta(v),v + flta(v),v.1 The third component is the outgoing backhaul traffic, denoted
by F o

b , such that F o
b = fv,parent(v) = F i

b +Fa. The relationship among these components is
given by Inequality (2.1), that restricts the backhaul flow capacity, and by Equation (2.2)
that ensures flow conservation. The difficulty is that classical maximum flow algorithms

1Notation detail: fu,v = fuv

40 Chapter 2. The Wireless Backhaul Network Design Problem

do not deal with these restrictions at the same time and, as far as we know, there is no
reduction from the maximum backhaul flow problem to any classical flow problem.

One way to bypass this problem is to consider the access traffic as incoming backhaul
traffic. Thus, note that

F i
b + Fa + F o

b ≤ Ubh. (2.4)

However F i
b + Fa = F o

b , which leads us to

F o
b ≤

Ubh

2 ∀v ∈ V s. (2.5)

In this case, as both incoming flows are of the same kind, it suffices to bound either
the incoming or outgoing flow to half of the original capacity. The major drawback of this
approach is the large flow loss that may result. Suppose, for example, a backhaul capacity
of Ubh = 100, backhaul incoming flow of F i

b = 30, and an access flow of Fa = 40. Using
the previous technique, we will have the nominal capacity of U ′bh = 50 in the outgoing
arc, which limits the maximum flow to the same value. In this case, 20 units of traffic,
either demand or backhaul traffic, cannot be backhauled. But note that using the original
constraints, all traffic can be routed since the outgoing traffic would F o

b = Fa + F i
b = 70

that respects the capacity constraint (F i
b + F o

b = 30 + 70 = 100 = Ubh). In fact, we can
provide a bound on this loss using simple algebra. Note that the most constraining factor
is the incoming backhaul traffic. As it tends to zero, it enables the increase of the capacity
of the outgoing traffic, thus allowing more access traffic be routed (see Lemma 1 below).
Consider Inequality (2.1) in terms of access traffic:

F i
b + F o

b ≤ Ubh

F i
b + F i

b + Fa ≤ Ubh

Fa ≤ Ubh − 2F i
b . (2.6)

Now consider Inequality (2.4) in terms of access traffic:

F i
b + Fa + F o

b ≤ Ubh

2F i
b + 2Fa ≤ Ubh

Fa ≤
Ubh − 2F i

b

2 . (2.7)

Taking the limit of the proportion between Inequalities (2.6) and (2.7) when the incoming
backhaul traffic tends to zero, we have:

lim
F i
b
→0

Ubh−2F ib
2

Ubh − 2F i
b

= 1
2 . (2.8)

2.6. Maximum Backhaul Flow Problem 41

Therefore, the proposed simplification may cause a loss of up to 50% in access traffic
(and, consequently, total traffic) that the network can transport. Although the theoretical
bound is not very good, this approach leads to reasonable results in practice, as shown in
Section 2.8.2. The following lemmata also give us bounds of the flows in the forest.

Lemma 1: Consider a vertex v ∈ V s with backhaul capacity Ubh, F o
b be the outgoing

backhaul traffic from v, and Fa be the value of the access traffic incoming in v. Then, F o
b

is maximum only if Fa is maximum.

Proof. The proof is simple by inspection of the maximality. First, note that we want to
maximize F o

b = Fa + F i
b . But, by constraint capacity (2.1), we have that F i

b + F o
b ≤ Ubh

which means that Fa + 2F i
b ≤ Ubh. Let 0 ≤ F̂a < Fa and 0 ≤ F i

b < F̂ i
b and suppose that

F̂a and F̂ i
b yield the maximum flow F̂ o

b . Suppose that F̂ i
b is maximum which means that

F̂ i
b = Ubh/2 enforcing F̂a = 0. Therefore F̂ o

b = Ubh/2. But choosing F i
b = F̂ i

b − ε, we have
that Fa + 2(Ubh/2 − ε) ≤ Ubh which is Fa ≤ 2ε. Therefore maxF o

b = 2ε + Ubh/2 − ε =
ε+ Ubh/2 > F̂ o

b contradicting the maximality of F̂ o
b .

Lemma 2: Let v ∈ V s such that v is in level 1 or greater in the backhaul forest. Let
T (v) be a subtree of Steiner vertices rooted at v. For all vertices x, y ∈ T (v) such that arc
(x, y) ∈ A, fxy ≤ Ubh/2.

Proof. Let N b(v) be the neighbor vertices of v that send to it backhaul traffic. Also
consider Fa and F o

b as defined before.
Let x ∈ T (v) such that (x, v) ∈ A. Therefore:∑

u∈Nb(v)
fuv + F o

b ≤ Ubh

fxv +
∑

u6=x∈Nb(v)
fuv + F o

b ≤ Ubh

fxv ≤ Ubh − F o
b −

∑
u6=x∈Nb(v)

fuv

= Ubh −

 ∑
u∈Nb(v)

fuv + Fa

 − ∑
u6=x∈Nb(v)

fuv

= Ubh − fxv − 2
∑

u6=x∈Nb(v)
fuv − Fa

=
Ubh − 2∑u6=x∈Nb(v) fuv − Fa

2
≤ Ubh/2.

As T (v) is a tree, all descendent arcs of v have their capacities bounded by Ubh/2 since
v is the unique output vertex in T (v).

42 Chapter 2. The Wireless Backhaul Network Design Problem

Lemma 1 shows that it is worthwhile to route the maximum access traffic available at
a pole. Although this lemma is valid for all poles, it may be enforced in nodes at level 1
of the forest, since nodes at level 0 have a fiber connection allowing us to route all access
traffic and backhaul traffic subject to the processing constraint. For poles at level 2 or
above, we may drop Lemma 1 due to Lemma 2. Note that by Lemma 2, the capacity
Constraint (2.1) does not play a role at poles at levels 2 or above since all traffic in those
poles will respect this constraint.

2.6.2 Solution approach
The maximum backhaul flow problem can be solved to optimality using a linear pro-

gramming formulation derived from Constraints (2.1) and (2.2). The major problem with
this approach is that, computationally, it is too slow to be used within the decoder. In
Section 2.8.2, experimental results illustrate this problem. Another approach is to map
this flow problem into a classical maximum flow problem [71]. One way to implement
backhaul capacity constraint (2.1) in a classical maximum flow problem, is to set capac-
ities on arcs instead of node equipment. To guarantee feasibility, one sets the capacities
of all arcs connecting pairs of poles and arcs connecting pairs of poles/BTAs to half of
the backhaul capacity, i.e, Ubh/2. Restricting capacity this way enables the utilization
of classical flow algorithms at the expense, however, of potentially producing suboptimal
flows.

Consider a forest generated with Algorithms 2.2–2.5. In particular, consider the set
TK of poles determined to be in the backhaul network. The maximum flow is computed
over the graph induced by TK . For this, we take all vertices in TK and create subsets
WTA′ and LTA′ restricted to poles in TK . This means that WTA′ ⊆ WTA and
LTA′ ⊆ LTA since not all poles are in the forest and, for some poles, LTE equipment
are forbidden. We also create the set BTA′ with vertices that aggregate wireless backhaul
traffic in the macrocells. Note that a BTA exists in a macrocell only if it has children
connected to it by wireless links. If all children are connected by fiber, then neither
backhaul equipment nor a BTA are needed. Vertices in V d and V r also are considered
when they are part of the backhaul forest. We add the vertex s to be the source node and
vertex t to be the sink. We consider all arcs induced by the chosen vertices and create arcs
from s to all demands and from all root nodes to t. In the following, define cap : E → R+

be the capacity of an arc:

• For arc a incident to v ∈ V d, let cap(a) = dv;

• For arc a, outgoing from vertex:

– v ∈WTA, let cap(a) = Uwifi;

2.6. Maximum Backhaul Flow Problem 43

– v ∈ LTA, let cap(a) = Ulte;
– v ∈ MTA, let cap(a) = Umc;
– v ∈ BTA, let cap(a) = Ubh;
– v ∈ V r, let cap(a) =∞;

• For each arc a ∈ Ass ∪ Asmw, let cap(a) = Ubh/2;

• For each arc a ∈ Asv ∪ Asmf , let cap(a) = Ubh.

Note that, although the fibered links in set Asv∪Asmf are considered to have unlimited
capacity, we set their capacities to the capacity of retransmitter, modeling the incoming
wireless backhaul traffic. In such case, we may lose access traffic if the pole with the fibered
link has Wi-Fi and/or LTE traffic. To overcome this, we do the following. Let v be a pole
with a fibered link to some root node w. We remove the arcs (wta(v), v) and (lta(v), v)
and add the arcs (wta(v), w) and (lta(v), w) with the same respective capacities. Such
change allows the maximum access traffic to by-pass pole v and only limits the incoming
backhaul traffic. Since we remove capacity Constraint (2.1), we may use any classical
maximum flow algorithm to solve the maximum backhaul flow problem.

As noted above, our approach may generate a suboptimal flow. To improve this, we
propose a pumping algorithm to augment the generated flow. This algorithm is inspired on
push-relabel algorithm of Goldberg and Tarjan [71] using Lemmas 1 and 2. The general
idea is to push residual flow from the root vertices to the demand vertices observing
Lemmas 1 and 2 and the capacity constraints. For each vertex v, let excess(v) be the
excess flow in v that must be pushed away. Algorithm 2.6 considers each root vertex
and pumps flow through its subtrees. Lines 3–7 treat the fibered connections. For each
child pole, the maximum flow increment is computed and passed to it as excess traffic.
Then a procedure applied only to poles in level zero is called, and upon return, the flow
is accumulated. In lines 10–19, the wireless connections are considered. In this case, the
maximum flow of Ubh must be shared with all wirelessly connected children. This is done
by computing the maximum flow from the remaining capacity and excess. Since wireless
children are considered be in level two or greater, a special procedure is called to treat
this case. Again, the totals are accumulated.

Algorithm 2.7 deals with poles at level zero. Since the above described by-pass guar-
antees that access traffic is maximum, one can limit their attention to only the incoming
backhaul traffic. The algorithm just accumulated the access traffic (line 1) and pumped
the maximum allowed flow to the children poles. In the end, if the pole has excess flow,
it is pumped back to the parent vertex (line 9).

Algorithm 2.8 deals with poles at level 1 or greater. The basic idea is the same of
previous algorithms except that one must pay attention to the backhaul capacity and

44 Chapter 2. The Wireless Backhaul Network Design Problem

Algorithm 2.6: Pumping Root.
1 Let r be a FAP or macrocell;
2 frt ← 0;
3 foreach p ∈ children(m) such that fibered(p) = 1 do
4 excess(p)← Cbh − fpr;
5 fpr ← Cbh;

6 pumpPoleLevelZero(p);

7 frt ← frt + fpr;
8 if r is not a macrocell then
9 return;

10 excess(r)← Cbh − fbta(r),r;
11 fbta(r),r ← 0;

12 foreach p ∈ children(r) such that fibered(p) = 0 do
13 maxflow ← min(excess(r), Cbh − fp,bta(r));
14 excess(r)← excess(r)−maxflow;
15 excess(p)← excess(p) + maxflow;
16 fp,bta(r) ← fp,bta(r) + maxflow;

17 pumpPoleLevelOneorMore(p);

18 fbta(r),r ← fbta(r),r + fp,bta(r);
19 frt ← frt + fp,bta(r);

Algorithm 2.7: pumpPoleLevelZero(p).
1 fp,parent(p) ← fwta(p),p + flta(p),p;

2 foreach c ∈ children(p) do
3 maxflow ← min(excess(p), Cbh − fcp);
4 excess(p)← excess(p)−maxflow;
5 excess(c)← excess(c) + maxflow;
6 fcp ← fcp + maxflow;

7 pumpPoleLevelOneorMore(c);

8 fp,parent(p) ← fp,parent(p) + fcp;
9 excess(parent(p))← excess(parent(p)) + excess(p);

10 excess(p)← 0;

2.6. Maximum Backhaul Flow Problem 45

Algorithm 2.8: pumpPoleLevelOneorMore(p).
1 bf ← ∑

c∈children(p) fcp;

2 Let ω be wta(p), φ be fwta(p),p, Φ be flta(p),p, and Γ be Cwifi;

3 maxflow ← min(excess(p),Γ− fωp);

4 if level(p) = 1 then
5 maxflow ← min(maxflow, Cbh − 2bf − Φ);
6 else
7 maxflow ← min(maxflow, Cbh/2− (bf + φ+ Φ));

8 foreach b ∈ V d such that (b, ω) ∈ E do
9 maxinc ← min(maxflow, fsb − fbω);

10 fbω ← fbω + maxinc; φ← φ+ maxinc;
11 maxflow ← maxflow −maxinc; excess(p)← excess(p)−maxinc;

12 if ω = wta(p) then
13 Let ω be lta(p), φ be flta(p),p, Φ be fwta(p),p, and Γ be Clte;
14 Go to line 3;

15 fp,parent(p) ← fwta(p),p + flta(p),p;

16 if level(p) = 1 then
17 residue ← (Cbh − fp,parent(p))/2;
18 else
19 residue ← (Cbh/2)− fp,parent(p);

20 pushable ← min(residue − bf , excess(p));
21 foreach c ∈ children(p) do
22 maxflow ← min(pushable, Cbh − fcp);
23 if maxflow ≤ 0 then
24 fp,parent(p) ← fp,parent(p) + fcp;
25 Go to line 21;
26 t← excess(p);
27 excess(p)← excess(p)−maxflow; excess(c)← excess(c) + maxflow;
28 fcp ← fcp + maxflow;

29 pumpPoleLevelOneorMore(c);

30 fp,parent(p) ← fp,parent(p) + fcp; bf ← bf − excess(p) + t;
31 pushable ← min(residue − bf , excess(p));
32 excess(parent(p))← excess(parent(p)) + excess(p);
33 excess(p)← 0;

46 Chapter 2. The Wireless Backhaul Network Design Problem

Lemmas 1 and 2. Considering Lemma 1, lines 2–14 aim to first maximize the access
traffic. This block is considered twice: once for Wi-Fi and once for LTE. Because of this,
we rename some terms to reduce the algorithm (lines 2 and 13). After the maximization
of the access traffic, lines 20–31 try to push the remaining flow to the children nodes
using a recursive call. As in other pumping algorithms, in the last two lines the excess is
pumped back to the parent vertex. The key of this algorithm are lines 4–7 and 16–19. If
the pole is in level 1, the access flow is given by Equation (2.7) using simple substitution
(the same occurs for the backhaul traffic in line 16). If the pole is in level two or greater,
Lemma 2 comes into scene limiting the traffic to at most Cbh/2. In this case, we can
consider that all traffic flows are of the same type and calculate the maximum local flow
from the residue flow of all types. This ensures that the flow through that pole will respect
the capacity constraint.

Note that the proposed pumping heuristic has no relabel phase as in the push-relabel
algorithm. The pumping algorithm ends after no more pushing is possible in the recursive
calls and, therefore, its run-time complexity is O(|V |). Furthermore, the resulting flow
is sensitive to the order that the poles are visited. Although the optimum flow is not
guaranteed to be found, the pumping heuristic can improve the flow considerably (see
Section 2.8.2 for more details).

2.7 Experimental Setup

2.7.1 Instances and scenario descriptions
In this section, we describe the setup of the computational experiments performed

to analyze the algorithms. The experiments were conducted using 30 instances derived
from real-world scenarios. These instances are taken from neighborhoods of a large city
in the United States. Each instance consists of a set of macrocells, VRADs, utility poles,
and demand blocks. For each location, longitude and latitude coordinates are given. For
each macrocell and utility pole, a list of street segments is given. We assume that if two
locations share a segment, they are in the line of sight of each other. For each block, a
traffic demand is given. For each macrocell and VRAD, there is an indication of whether
traffic through them is leased or not. We classify the instances as small, medium, and
large according the number of poles. Each class has ten instances. Table 2.1 shows a
summary and Table A.1 (in Appendix A.1) brings a complete description. The areas of
the regions were computed for illustrative purposes only. The calculation of each area
was based on the convex hull considering all locations in the region and their geodesic
characteristics. Instance re01 is the smallest in terms of number of poles with 454 poles

2.7. Experimental Setup 47

while instance re30 is the largest with 8740 poles. In terms of area, the smallest instance
is re19 with 4.82 km2 and the largest is re30 with 411.71 km2.

While all locations are real, the demand values are based on estimates of the actual
demand and are scaled in an arbitrary range. The access radii, minimum distances,
capacities, and backhaul constraints are real life constraints and are displayed in Table 2.2.
We also consider a scenario where the backhaul trees have restrictions neither in depth
nor in breadth, and therefore the maximum number of hops H and the maximum number
of incoming backhaul links δ+

bh are unlimited (in practice, they are the number of poles
in the instance). We call this scenario unrestricted in opposition to the restricted real life
scenario. The revenue factor and the costs are based on actual values but are also scaled
in an arbitrary range. It is worthwhile to mention that the revenue factor, costs, and
demands were scaled similarly so as to mimic real world values. The size of the fibered
hop, `uv, is defined by the geodesic distance, in meters, between locations u and v. We
consider a 3-year planning horizon, i.e. Y = 3.

2.7.2 Instance preprocessing
The instance preprocessing aims to reduce the size of the instance and build the base

graph that represents the potential wireless and fibered links, and the arcs representing
the links between the demands points and access equipment. This graph is built using the
definitions of Section 2.4. Note that, due to the minimum distance constraint between a
macrocell and a LTE equipment, a pole u has a LTA associated with if and only if for
each macrocell v, dist(u, v) ≥ δmacro.

The first step is to prune poles that will never be used in feasible solutions. To do
this, we calculate the shortest path from each root node to each utility pole annotating
the size of the shortest path from any root node to that utility pole. We consider that
wireless arcs have weight one and fibered arcs have weight zero. Such paths represents the
minimum level that a pole can have in the forest. Let q be the length of the shortest path
from pole u to its closest root node. All poles for which q is greater that the maximum

Table 2.1: Summary of instance characteristics. The presented values are averages of the
numbers of respective locations and are rounded to the next integer (except the demand
and area).

Type Poles VRADs Macros Blocks Demand (Mbps) Area (km2)

Small 718 63 10 3907 8210.70 35.92
Medium 2281 86 14 17306 36348.00 72.14
Large 6396 243 22 25566 53601.00 132.87

48 Chapter 2. The Wireless Backhaul Network Design Problem

number of hops allowed (i.e., q > H) are eliminated since they cannot be used in any
valid solution. Note that the corresponding WTA and LTA vertices are also deleted.

The distances are also used to create the x variables of MIP (2.3). We only define the
variables xpuv, for p = q, . . . , H, and (u, v) ∈ A. Note that as u can be in level q or greater,
the outgoing backhaul link (u, v) can only be in level q or greater. This preprocessing
significantly reduces the size of the MIP and, consequently, the computational time needed
to solve it.

Another important observation is that several demand blocks may be served by the
same group of poles and macrocells. This is particularly true for residential buildings

Table 2.2: Description of equipment capacities, design constraints, revenue factor, and
costs. The values reflect usual assumptions made in the practice.

Short Description Symbol Value Unit

Wi-Fi radius Rwifi 100
LTE radius Rlte 400
Macrocell radius Rmc 3000
Retransmitter radius Rbh 1000

M
et
er
s

Wi-Fi capacity Uwifi 100
LTE capacity Ulte 20
HSPA capacity Umc 25
Retransmitter capacity Ubh 100

M
bp

s

LTE to LTE min. distance δlte 300
LTE to macro min. distance δmacro 500
Max. fiber size Rfiber 300 M

et
er
s

Max. # of incoming links δ+
bh 5 / ∞

Max. # of wireless hops H 2 / ∞ U
ni
ts

Revenue factor % 150.00
Equipment deployment Cp 90.00
Wi-Fi Cwifi 12.00
LTE Clte 70.00
Backhaul equip. (fan-in = 1) Cfan1 40.00
Backhaul equip. (fan-in ≥ 2) Cfan2 70.00
Maintenance (annual) Cman 120.00
Macrocell (annual) Cmc 1050.00
Meter of deployed fiber Cfiber 12.00
Leased traffic (in $/Mbps) Cld 10.00

M
on

et
ar
y
un

its

2.7. Experimental Setup 49

and commercial areas. In such cases, we group these blocks making a super block whose
demand is the sum of the demands of the original blocks. However, at the conclusion of
the optimization, it will be necessary to “ungroup” these super blocks and redistribute
the access flow to the original blocks.

2.7.3 Post-optimization flow recomputation
At the conclusion of the BRKGA iterations, we obtain an optimal or near-optimal

solution using the strategy described in Section 2.6.2. One may note that if we compute
the exact flow using the forest structure of the best solution found so far, we may be able
to improve its objective function value. Note that this is true since this best solution
was obtained using the heuristic maximum flow algorithm, a lower bound of the actual
maximum flow. In view of this fact, at the end of the BRKGA iterations, we recompute
the maximum flow for the best solution found using the linear programming model with
Constraints (2.1) and (2.2). As we compute the exact flow just once, the execution time
of entire algorithm is not compromised.

The new linear programming based flow may traverse new paths. In some cases, some
devices will no longer serve demands and can be disregarded. We can apply Algorithm 2.5
again to prune such unused equipment. Note that this post-processing can potentially
further reduce the costs and improve the overall solution.

2.7.4 Computational environment and parameters
The experiments were conducted on identical machines with four-core Intel Xeon

2.4 GHz CPUs (two threads per core) and 50 GB of RAM running GNU/Linux. Running
times reported are UNIX real wall-clock times in seconds, excluding the effort to read the
instance. The algorithms are implemented in C++ and we use the GNU g++ compiler
version 4.8. Random numbers were generated by an implementation of the Mersenne
Twister (Matsumoto and Nishimura [143]). We used the Lemon library (Dezsõ et al. [47])
to implement the graph structures and compute the maximum flow using its push-relabel
algorithm implementation.

To tune the BRKGA parameters, we use the iterated racing procedure (Birattari
et al. [21]). This method consists in sampling configurations from a particular distribution,
evaluating them using either the Friedman test or the t-test, and refining the sampling
distribution with repeated applications of F-Race. We use the irace package (López-
Ibáñez et al. [135]), implemented in R, for parameter tuning. For each heuristic, we use a
budget of 1,000 experiments in the tuning procedure, where each experiment was limited
to one hour. To tune the BRKGA parameters, we used the following ranges: population
size ∈ [300, 2000], elite percentage ∈ [0.15, 0.30]; percentage of mutants introduced at each

50 Chapter 2. The Wireless Backhaul Network Design Problem

generation ∈ [0.10, 0.20]; probability of inheriting each allele from elite parent ∈ [0.5, 0.8];
number of independent populations ∈ {1, 2}; exchange interval ∈ [50, 200]; number of
elite individuals in an exchange ∈ [1, 2]; and reset population ∈ [300, 700].

The following values were recommended by irace. The population size was set to
p = 500, the elite size to pe = d0.30pe, and the number of mutants to pm = b0.15pc. The
probability of inheriting each allele from the elite parent was ρe = 0.70. We used the island
model (Whitley et al. [206]) with three independent and concurrent populations where
every 100 generations each population exports its best solution to the other populations.
After 300 generations without improvement, all populations are reset to vectors of random
keys. We use four simultaneous cores for decoding.

To solve the MIP, we used IBM ILOG CPLEX Optimizer version 12.6.0.0. We set
CPLEX to use a maximum of 40 GB of memory, using at most 40 GB of disk memory
when necessary. We allowed CPLEX use four threads in parallel. All other parameters
were kept at their default values. We use a short run of the BRKGA to generate an
incumbent solution for CPLEX. For this, we use BRKGA with the same parameters as
above but limit its run to 100 iterations or 10% of maximum time, whichever comes first.

We also tested a multi-start algorithm that uses the decoder of Section 2.5.2. In each
iteration, the multi-start algorithm generates a random vector and uses the decoding
function to obtain a solution. It also keeps the best solution over all iterations. In the
end, the post-processing is applied to the best solution.

Thirty independent runs were performed for the BRKGA and the multi-start algo-
rithm. Since CPLEX is an implementation of an exact algorithm2, a single run for each
instance was performed. We carried out two types of experiments, one limiting the run-
ning time of each algorithm to one hour and another to five hours. The limit of one hour
enables network designers to work with several models in a manageable time while the
limit of five hours enables a more thorough search. For both the BRKGA and the multi-
start algorithm, we use an additional stopping criterion: 1,000 generations (or iterations)
without improvement of the best solution.

2.8 Experimental Results and Discussion

2.8.1 Instance preprocessing
As discussed in Section 2.7.2, it is important to preprocess the instance in order to

reduce its size before optimization. With respect to the number of poles, the preprocessing
phase in the restricted scenario achieved an average reduction of 13.00± 16.39% (min =

2According to its documentation, the IBM ILOG CPLEX Optimizer, version 12.6.0.0 is fully deter-
ministic when used with its default parameters (as done in our experiments).

2.8. Experimental Results and Discussion 51

0.59, 1st Qu. = 2.31, median = 6.06, 3rd Qu. = 17.97, max = 67.61). For the unrestricted
scenarios, the reduction was 4.04 ± 7.68% (min = 0.15, 1st Qu. = 0.58, median = 1.30,
3rd Qu. = 3.82, max = 39.40), since there is no restriction imposed on depth and breadth
of the forest. As expected, this reduction has more impact on the MIP than it does on
the BRKGA.

The reduction in the number of demand blocks was huge in both scenarios: 95.96 ±
1.88% of the original number of blocks for the restricted scenarios (min = 88.26, 1st Qu. =
95.49, median = 96.25, 3rd Qu. = 97.04, max = 98.05), and 95.65± 2.69% of the original
number of blocks for the unrestricted scenarios (min = 85.67, 1st Qu. = 95.45, median
= 96.17, 3rd Qu. = 96.98, max = 98.05). This fact is mainly due to the concentration
of demand blocks in residential buildings and commercial areas. On average, each super
block corresponds to 30.97± 11.43 original blocks.

The instance graphs that result from preprocessing are sparse. In the restricted in-
stances, the number of vertices varies from 717 to 25,690 and the number of arcs from
6,917 to 314,229. The graph density, given by 2|A|/(|V |(|V | − 1)), has an average of
0.0056 ± 0.0063. For unrestricted instances, the number of vertices varies from 1,290 to
27,322 and the number of arcs from 10,224 to 315,330. The graph density has an average
of 0.0043± 0.0035. Detailed results can be found in Tables A.2 and A.3 in Appendix A.

2.8.2 Computing flow during the optimization
In Section 2.6, one can see that the maximum flow problem embedded in the WBNDP

is not trivial and, as far as we know, a fast combinatorial algorithm to solve it does not
exist in the literature. As commented in Section 2.6.2, one can solve this flow problem with
a linear programming formulation using Constraints (2.1) and (2.2), but this approach
can be too slow to be used in the decoding procedure. Therefore, in the same section, we
presented a fast heuristic, coupled with pumping, to compute the maximum flow. Given
a forest, this section studies the effects of choosing one or the other strategy to compute
the maximum flow.

The first experiment consists of 1,200 independent runs of the decoder. For each run a
random chromosome was generated and decoding was done twice: once using the heuristic
flow algorithm and once using the exact flow algorithm. Then, the proportional difference
in the flow values and solution times were computed. The heuristic flow algorithm was able
to compute an average of 95.19±2.68% of the maximum flow computed by the exact flow
algorithm (min = 79.66, 1st Qu. = 93.58, 3rd Qu. = 96.47, max = 100.00). We consider
this performance very good even in light of Lemma 1. However, the computing times
were extremely different. Since the decoding process is very fast, we chose to compare the
number of CPU ticks used by each algorithm. The exact flow algorithm used an average

52 Chapter 2. The Wireless Backhaul Network Design Problem

of 2027± 2080.42% more CPU ticks than did the heuristic flow algorithm (min = 200, 1st

Qu. = 800, 3rd Qu. = 2450, max = 15100). This means that the exact flow algorithm is
three orders of magnitude slower than the heuristic flow algorithm.

Figure 2.2 shows the evolution of the profit as a function of number of iterations and
CPU wall-clock time. For this, we used instance re30 and let BRKGA evolve for 100 iter-
ations. In Figure 2.2a the X axis represents the number of iterations and, in Figure 2.2b,
the wall-clock time in seconds in log scale. The Y-axis represents the scaled profit in both
figures (see the definition of scaled profit in the beginning of Section 2.8.3). The shaded
area represents the standard deviation. The red line and dots represent the algorithm us-
ing exact flow computation, while the blue squares and line represent the algorithm using
the heuristic flow. The green triangles and line represent the utilization of heuristic flow
and post-processing. In the experiment with the heuristic flow computation and post-
processing, the exact flow was recomputed (followed by pruning) in each iteration. One
may note in Figure 2.2a that both heuristic and exact flow are able to generate almost
the same profit in a given iteration. The post-processing approach performs better than
the others since it has a second phase pruning as described in Section 2.7.3. In terms of
running time, one can note in Figure 2.2b that the exact flow algorithm obtains about
the same profit as the heuristic but using much more time.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Iteration

S
c
a
le

d
 P

ro
fi
t

Algorithms

Exact

Heuristic

Posproc.

(a) Evolution over iterations.

0.00

0.25

0.50

0.75

1.00

1 10 100
Time (seconds)

S
c
a
le

d
 P

ro
fi
t

Algorithms

Exact

Heuristic

Posproc.

(b) Evolution over time.

Figure 2.2: Evolution of the profit using different flow algorithms. The shadow around
the curves represents the standard deviation.

2.8. Experimental Results and Discussion 53

2.8.3 Comparing the profit generated by the algorithms
To compare the algorithms with respect to profit, it is necessary to scale the results

since instances can have very different profit values. For each instance I, let χI be the
set of values of the solutions found for I, and DI = max(χI) −min(χI). The scaling is
done by the simple transformation

χ′I =

(x−min(χI))/DI ∀x ∈ χI and DI > 0,
1 otherwise,

where χ′I is the set of scaled values. Note that all values are scaled to the range [0, 1].
Using this scaling process, Figure 2.3 shows the distribution of profits for each al-

gorithm. The box plots show the location of the first quartile, the profit median, and
the third quartile. The whiskers extend to the most extreme revenue no more than 1.5
times the length of the box. The dots are the outliers. In the bar labels, MS stands for
the multi-start algorithm, MIP stands for the exact algorithm using CPLEX and Formu-
lation (2.3), and BRKGA is the biased random-key genetic algorithm. In the restricted
scenario, MIP was able to overcome BRKGA for most small instances on the one-hour ex-
periments and on most small and medium instances on the five-hour experiments. BRKGA
presented a small variation in its results, although close to those of the MIP in both cases.
MS presented a large variation and its results were the worst in all cases. This is due to,
mainly, the decoder has no local search procedures (unless the pumping algorithm). This
fact just reinforces the importance of the learning mechanism of BRKGA. For medium
size instances, BRKGA presented more solid results while MIP showed more variation for
one-hour experiments. In the five-hour runs, the results were similar to those for the
small instances. For large instances, BRKGA was able to produce very good results when
compared to MS and MIP in both cases. In fact, MIP does not produce any results besides
the incumbent value generated by the BRKGA short run in large instances considering the
limit of one hour. For five hours, only in two instances did MIP improve the incumbent.
In the unrestricted scenario, BRKGA presented the best results. In fact, for all medium and
large instances, MIP was not able to produce any solution (because of memory issues in
building the model).

To confirm the results presented in Figure 2.3, we tested the normality of these dis-
tributions using the Shapiro-Wilk test and applied the Mann-Whitney-Wilcoxon U test,
considered more effective than the t-test for distributions sufficiently far from normal and
for sufficiently large sample sizes (Conover [38], Fay and Proschan [57]). For all tests,
we assume a confidence interval of 99%. For small, medium, and large instances, the
Shapiro-Wilk tests revealed that no profit distribution fits a normal distribution since the
p-values for all tests are less than 0.01. Therefore, we applied the U test which assumes

54 Chapter 2. The Wireless Backhaul Network Design Problem

Algorithms

S
c
a
le

d
 P

ro
fi
t

0.0

0.2

0.4

0.6

0.8

1.0

B
R

K
G

A

M
IP

M
S

●

●

●

●

●

●●

●

●

●●

●

●
●

Small

B
R

K
G

A

M
IP

M
S

●●●●

Medium

B
R

K
G

A

M
IP

M
S

●
●●
●●
●●●●●●●
●●

●

●●●●
●●
●

●

●

Large

(a) Restricted scenarios (1h).

Algorithms

S
c
a
le

d
 P

ro
fi
t

0.0

0.2

0.4

0.6

0.8

1.0

B
R

K
G

A

M
IP

M
S

●●●●●●●●●●●●●●●●●●●●●●● ●
●
●

●

●●●●

●

●●
●●
●

●●

Small

B
R

K
G

A

M
IP

M
S

●●

●●

●●●●●●●●
●

Medium

B
R

K
G

A

M
IP

M
S

●●●●●●●●

Large

(b) Unrestricted scenarios (1h).

Algorithms

S
c
a
le

d
 P

ro
fi
t

0.0

0.2

0.4

0.6

0.8

1.0

B
R

K
G

A

M
IP

M
S

●

●

●

●

●

●●

●

●

●●

●

●
●

Small

B
R

K
G

A

M
IP

M
S

●●

Medium

B
R

K
G

A

M
IP

M
S

●●●●●
●
●
●●●
●

●●●●

●
●●
●●●●
●
●

●

●

●●●

Large

(c) Restricted scenarios (5h).

Figure 2.3: Dispersion of profit for each algorithm. Each section corresponds to a instance
class.

as null hypothesis that the location statistics are equal in both distributions. As several
statistical tests were performed, we used a p-value correction procedure based on false dis-
covery rate (FDR) to minimize the number of false positives (Type I error) as indicated
by Benjamini and Hochberg [18].

Table 2.3 shows U test results for each pair of algorithms and different instance sizes
of the restricted scenario, at a 99% confidence level. The structure of this table is as
follows: Each row and column is indexed by one algorithm. Each element in the diagonal
(bold) is the median of the scaled profit of the corresponding algorithm. The upper-right
diagonal elements are the differences in location statistics for each pair of algorithms. A
positive difference indicates that the “row algorithm” has its location statistics higher

2.8. Experimental Results and Discussion 55

(better) than the “column algorithm,” and the negative difference is the opposite. The
bottom-left diagonal elements are the p-values of each test. We omitted all p < 0.01
values, that indicate that the difference is statistically significant for those pairs. We also
omitted confidence intervals since for all tests the values lie in these intervals and are very
narrow. One can notice that almost all comparisons are statistically significant, confirming
the box plot results. The exception is BRKGA and MIP for medium instances using one-
hour runs for which the test was inconclusive since p > 0.01. MS is significantly worse
than the other algorithms except for the one-hour MIP experiments on large instances.
Summarizing, BRKGA was better than MIP on large instances and the opposite was true for
the small instances. For medium-size instances, both apparently performed in a similar
way although we cannot affirm this since p > 0.01. For the unrestricted scenario, the
statistical test only makes sense for the small instances since for the medium and large
instances, MIP did not produce any feasible solution. In this case, BRKGA presented the
median of 0.89, MS presented 0.01, and MIP presented 0.40. The tests indicate that all
differences are significant, confirming the box plot.

Table 2.4 reports the performance of the algorithms. The first column indicates the
instance class and the second column is the name of the algorithm. The two large blocks
consider experiments limited to one hour and five hours, respectively. Each block has four
columns. Column “% Best” represents the percentage of the number of instances for which

Table 2.3: Difference in median location for profit distributions for the restricted scenario
using a confidence interval of 99%. The omitted p-values are less than 0.008. The diagonal
elements represents the medians, the upper-right elements represent the median diffence,
and the bottom-left elements represent the p-values.

Class
1h experiment 5h experiment

BRKGA MIP MS BRKGA MIP MS

BRKGA 0.92 -0.07 0.84 0.91 -0.08 0.83
MIP 1.00 -0.92 1.00 0.92

Sm
al
l

MS 0.08 0.07

BRKGA 0.96 0.07 0.92 0.92 -0.08 0.89
MIP p > 0.33 0.88 -0.85 1.00 0.97

M
ed
iu
m

MS 0.03 0.03

BRKGA 0.94 0.92 0.89 0.97 0.80 0.95
MIP 0.00 0.03 0.15 0.13

La
rg
e

MS 0.05 0.02

56 Chapter 2. The Wireless Backhaul Network Design Problem

the algorithm found a best solution; column “% Run” shows a percentage of the number of
runs on which the algorithm found a best solution. The two columns under label “Prod.
diff.” show, respectively, the average of the proportional difference between the value
of the best solution found and the achieved value (%), and its corresponding standard
deviation (σ). First, note that MIP presents the same values for % Best and % Run since
only one experiment is done per instance. Considering the restricted scenario, MIP found
9 of 10 best solutions, although only one was proved be optimal in the five-hour run.
BRKGA found 20% of best solutions in about 10% of the runs. However, the BRKGA results
are stable and its solutions are within about 5% of the best. MS did not find any good
solution on any instance. For the medium and large instances, the roles of BRKGA and
MIP were exchanged on the one-hour runs. However, MIP obtained all best solutions on
the medium-size instances when it was given five hours to run. In general, BRKGA did
not find best solutions in several runs but presented very good alternative solutions. MIP
found many best solutions but its results varied considerably. In the unrestricted scenario,
BRKGA dominates MS and MIP since the latter could not solve any instance. BRKGA found
the best solutions in 4.16% of the runs. The average proportional difference between the
BRKGA results and the best solutions found was 13.94± 9.67. For detailed results, please
refer to Tables A.4 and A.5 in Appendix A.

Table 2.4: Algorithm performance considering the best results found in restricted scenario.

Class Alg.

1h experiment 5h experiment

Best solutions Prop. diff. Best solutions Prop. diff.

% Best % Run % σ % Best % Run % σ

BRKGA 20.00 10.42 4.55 2.17 20.00 10.41 5.06 2.34
MIP 90.00 90.00 3.30 — 90.00 90.00 2.36 —

Sm
al
l

MS 0.00 0.00 94.14 124.78 0.00 0.00 94.37 124.71

BRKGA 60.00 2.50 3.27 2.60 0.00 0.00 6.06 2.91
MIP 40.00 40.00 21.33 15.17 100.00 100.00 — —

M
ed
.

MS 0.00 0.00 64.33 5.03 0.00 0.00 66.16 4.71

BRKGA 90.00 3.75 3.63 2.94 90.00 3.75 3.29 4.68
MIP 10.00 10.00 57.49 7.38 10.00 10.00 50.54 18.44

La
rg
e

MS 0.00 0.00 58.11 8.77 0.00 0.00 65.37 8.01

BRKGA 56.67 5.56 3.80 2.65 36.67 4.72 4.81 3.66
MIP 46.67 46.67 40.54 22.76 66.67 66.67 45.72 23.12A

ll

MS 0.00 0.00 72.20 73.88 0.00 0.00 75.57 74.37

2.8. Experimental Results and Discussion 57

Iteration

S
ca

le
d

va
lu

es

Revenue
Cost

Profit
Coverage

0 100 200 300 400 500 600 700

0
10

20
30

40
50

60
70

80
90

10
0

S
ca

le
d

va
lu

es

270 290 310 330 350

15
20

25
30

35

S
ca

le
d

va
lu

es

70 75 80 85 90

5
15

25
35

45

Figure 2.4: Evolution of revenue, cost, profit, and coverage over the first iterations of the
algorithm. All values are scaled in the range [0, 100].

2.8.4 Analyzing a solution
One can note that the WBNDP is a problem rich in structure from the point of view

of network engineering. Similar to the number of input parameters, a typical output has
more than 50 parameters, such as number of pieces of equipment of each type, flows,
coverage, costs, revenue, and other metrics besides the network structure itself. In this
section, we briefly analyze some of these output parameters considering solutions for the
restricted scenario since it is based on real constraints.

Figure 2.4 shows the evolution of revenue (dark blue line with dots), cost (red line
with squares), profit (light blue with rhombus), and coverage (magenta dashed line with
triangles) for instance re17 for a given run. Revenue, cost, and profit are scaled to
the range [0, 100]. Coverage is already represented in this range. One can note as the
coverage increases, so does the revenue. This is expected since revenue is a function of
traffic volume. Note that while the profit is monotone increasing, the revenue and cost
display some bumps. In the close-up figure showed on the top right, one can see that
both revenue and cost vary up and down while profit always non-decreasing. Such cases
show a phase transition. When both revenue and cost curves are sloped downwards, the
algorithm has found a solution that is less expensive using less equipment. In bottom

58 Chapter 2. The Wireless Backhaul Network Design Problem

right close-up, note that the profit is constant between iterations 77 and 87, but both
revenue and cost have slightly negative slopes.

Each tree in the backhaul forest has an average depth of 2.49 ± 0.50. Each node
has an average of 1.381 ± 0.76 incoming neighbors which shows that the fan-in limit is
rarely reached. Indeed, the average of the maximum fan-in is 3.73 ± 0.64, and for some
instances, no pole has more than two incoming neighbors. On average, 48.88± 14.32% of
the used poles have only Wi-Fi, 19.51 ± 15.42% have only LTE, and 9.22 ± 5.98% have
both technologies. In 22.38 ± 6.93% of the used poles, only retransmitters are installed.
In only 0.34±0.51% of used poles, can one find a small cell without a retransmitter. Such
poles have no neighbors and are linked directly to a FAP or macrocell using fiber.

With respect to traffic, Wi-Fi was responsible for an average of 77.28 ± 16.50% of
the total covered access traffic while LTE served only 17.14± 12.59% of the traffic. The
macrocells served only 4.02±6.70% of the traffic. Wi-Fi has shown itself as an important
resource to serve the demand due to it large capacity and low cost when compared to LTE
and HSPA equipment. The backhaul networks were able to serve, on average, 55.78 ±
16.82% of total demand.

For the 3-year scenario, the deployment cost reached an average of 5.46 ± 1.22% of
the total cost and the pole annual maintenance was about 21.86 ± 4.88%. The average
proportional cost of the equipment was the following: Wi-Fi 0.43 ± 0.13%; LTE 1.26 ±
0.86%; retransmitter 2.78± 0.62%. The cost for fiber trenching was 57.00± 13.22% and
represents the most expensive component of the network. The leased traffic was about
1.87±2.60%. However, even with a high cost infrastructure, these backhaul networks can
potentially generate a profit margin of 213.54± 88.32%.

In Figure 2.5, we show an example which is a small portion of a given region where
a backhaul network is to be built. This region has three macrocells represented by small
antenna figures. Each light green square represents a set of demand points in a specific
block. The average number of demand points is 30 per block, but can reach hundreds of
residential and commercial buildings. The dark red squares represent the VRAD/FAPs.
The very small dark blue squares represent the utility poles. Figure 2.6 shows the equip-
ment deployment and the coverage radii. The symbols with small equipment and two
antennas represent Wi-Fi equipment while the blue stars represent LTE equipment. The
poles with only retransmitters (backhaul equipment) are represented by a parabolic an-
tenna. The brown and blue circles are, respectively, the Wi-Fi and LTE access radii.
One can note that some blocks are not served. In particular, some blocks in the upper
right-hand side of the figure are not covered. Figure 2.7 shows the backhaul network. The
dashed purple arrows are wireless links, the black solid arrows are fibered links, and the
arrows indicate the direction of a root nodes.

2.9. Final considerations 59

2.9 Final considerations
We proposed a new problem called the Wireless Backhaul Network Design Problem

(WBNDP) which resembles variants of the Steiner tree and the facility location problems.
The objective is to build a forest to collect and route wireless traffic. Differing from other
problems in the literature, WBNDP uses routed traffic to compute the profit. This
traffic is constrained to the network infrastructure with several real-world constraints.
We proposed a biased random-key genetic algorithm (BRKGA) to solve the WBNDP.
Its decoder relies on building the forest in a bottom-up fashion. We also proposed a mixed
integer linear programming model to solve the WBNDP.

BRKGA presented solid results with little variation. It was able to overcome the IBM
ILOG CPLEX 12.6 using MIP (2.3), in several medium and large instances of one-hour
runs. For longer experiments, BRKGA excelled on large instances. Such results enable
BRKGA to be used as an important tool in the planning phase of a wireless backhaul
network where, usually fast iterations are required. However, BRKGA also showed itself
valuable for longer optimizations, mainly on large instances. The stable results produced
by the BRKGA give network engineers a better understanding of the characteristics of
an optimal network and makes it easier to modify some assumptions if needed.

60 Chapter 2. The Wireless Backhaul Network Design Problem

Figure 2.5: Example of region.

2.9. Final considerations 61

Figure 2.6: Example of coverage.

62 Chapter 2. The Wireless Backhaul Network Design Problem

Figure 2.7: Example of backhaul network.

Chapter 3
The k-Interconnected Multi-Depot
Multi-Traveling Salesmen Problem
for backbone network design

IN recent years, the huge growth of data utilization has pushed the current backhaul
networks to their limits. Among many factors, the on-demand streaming of voice

and video are the major consumers of bandwidth. Even using techniques to reduce the
bandwidth usage over entire network, such as caching and content delivery prediction,
traffic has been very large. On other hand, large band services are able to generate large
profits for several tiers in the market: content generators, paid streaming services, and
advertisement in free services. All these tiers have pushed telecommunication companies
to improve the quality of their services.

In this chapter, we introduce the k-Interconnected Multi-Depot Multi-Traveling Sales-
men Problem that can be used to plan backhaul networks. This problem resembles some
network design and location routing problems but carries the inherent difficulty of not
having a fixed set of depots or terminals. We propose a heuristic based on a biased
random-key genetic algorithm to solve it. This heuristic uses local search procedures to
best choose the terminal vertices and improve the tours of a given solution. We compare
our heuristic with a multi-start procedure using the same local improvements and we show
that the proposed algorithm is competitive. This chapter is based on Andrade et al. [4]
and Lopes et al. [133].

63

64 Chapter 3. The k-IMDMTSP for backbone network design

3.1 Introduction
Many practical routing and scheduling problems seek to determine sequences of actions

subject to one or more constraints. Most of these problems can be modeled as variants of
the Traveling Salesman Problem (TSP). Given an undirected weighted graph, the TSP
consists in finding a Hamiltonian cycle of minimum weight. Other practical applications
extend this concept, requiring the salesman to visit a given subset of the vertices. Prob-
lems such as the vehicle routing problem and the location routing problem are examples
of these extensions. Such problems are also usually used to model telecommunication
networks since the structures of a freight network and a data network are very similar.

We propose a variant of this family of problems called the k-Interconnected Multi-
Depot Multi-Traveling Salesmen Problem (k-IMDMTSP) where we choose a subset of
terminal vertices of size k from a base graph and connect these vertices with a cycle (called
the inner cycle). Furthermore, for each terminal vertex, we build a cycle that begins and
ends at the terminal and covers a subset of vertices from the remaining graph (called the
outer cycles). All outer cycles must be pairwise disjoint, span all vertices, and have at
most C vertices (C is the capacity of the outer cycle). The objective is to minimize the
sum of edge weights of the inner and outer cycles. This problem occurs in the design
of ring networks used to prevent communication failures in presence of single link-fault
events. Another application is in transportation networks that use several echelons with
different external constraints, such as vehicle types, transportation rules, and service-level
agreements.

This chapter is organized as follows. In Section 3.2 we present related work. In
Section 3.3 we formalize the k-IMDMTSP. We then present a description of our heuristic
in Section 3.4. Experimental results are provided and discussed in Section 3.5. Finally,
concluding remarks are made in Section 3.6.

3.2 Related Work
The k-IMDMTSP resembles some network design and location routing problems,

widely study in the literature. A closely related problem is the Multi-Depot Multi-
Traveling Salesmen Problem (MDMTSP) introduced by Oberlin et al. [158]. In the
MDMTSP, an unlimited number of salesmen have to visit a set of customers using
routes that can be based on a subset of available depots. Malik et al. [139] presented a
2-approximation algorithm for the Generalized MDMTSP, a variant where each depot
has m salesmen available but at most p can be used. Yadlapalli et al. [210] proposed
a Lagrangian-based algorithm to deal with a variation of GMDMTSP where each tour
must have at least three vertices.

3.2. Related Work 65

Another family of problems related to the k-IMDMTSP are the Location Routing
Problems (LRP). In LRPs, we seek to find a set of routes based at a given set of depots to
serve customer demands with vehicles of limited capacity. Depots have opening costs and
limited capacity to serve its routes. There is an abundant literature with respect to these
problems and their variations and a recent survey can be found in Nagy and Salhi [154].
In Prins et al. [170], a hybrid heuristic based on Lagrangean relaxation and tabu search
was developed for the LRP. This heuristic is considered to be the most effective to date
for the LRP. The best results of an exact algorithm are from Belenguer et al. [16] where
a branch-and-cut procedure was developed with a series of new inequalities tailored for
the LRP.

A close variant of k-IMDMTSP is the Many-to-Many Hub Location-Routing Problem
(MMLRP) that was proposed by Nagy and Salhi [153] and which has many applications,
e.g. freight industry, transportation of parcels, including passengers, mail, and bever-
ages (Kuby and Gray [116], Lin et al. [127]), as well as in telecommunications (Wang
et al. [204]). On the other hand, if there is no inner cycle, the problem reduces to a
variant of the Plant-Cycle Location Problem (Labbé et al. [117]) in which any node is
a candidate to be a plant. This problem arises in the design of Global System for Mo-
bile (GSM) networks. Camargo et al. [45] proposed a large-scale integer programming
formulation for the MMLRP which combines models of the single allocation hub loca-
tion and traveling salesman problems. Their formulation uses four-index integer variables
combined with five-index continuous variables, but once integer variables are fixed, two
simple subproblems result. This characteristic allowed Benders decomposition to be ap-
plied so that instances with up to 100 nodes were solved. Recently, Rodríguez-Martín
et al. [181] proposed a branch-and-cut algorithm for a variant of the MMLRP in which
there is a fixed number of hubs to locate, at most one local route per hub, and each of
these routes is constrained to have at most a given number of non-hub nodes. Their in-
teger programming model considers five types of variables related to: hub location; hubs
without local routes; local routes with one, two, or more non-hub nodes; flow between
nodes; and routes with three or more edges. Families of valid inequalities and separation
algorithms for connectivity, subtour elimination, and capacity constraints were proposed
so that their branch-and-cut algorithm was capable of solving to optimality instances
with up to 50 nodes within a time limit of two hours. Lopes et al. [134] presented an
integer linear programming formulation for a variant of MMLRP called Many-to-Many
p-Location-Hamiltonian Cycle Problem and Lopes et al. [133] proposed several heuristics
to the same problem.

Another interesting problem related to the k-IMDMTSP is the 2-Echelon Vehicle
Routing Problem (2E-TSP), introduced by Perboli et al. [165]. In this problem, freight is
dispatched from a distribution center on long-haul vehicles to small satellite depots. From

66 Chapter 3. The k-IMDMTSP for backbone network design

the satellite depots, the freight is transported in small vehicles to their final destinations.
In the first echelon, routes are set between the distribution center and the satellites. In
the second, routing occurs between the satellites and customers. Each route must start at
the distribution center (respectively satellite) and visit a subset of satellites (respectively
customers), to supply the required demand. Heuristics for the 2E-TSP were developed in
Mehrjerdi and Nadizadeh [145], Nguyen et al. [156], Yu et al. [212] and Zarandi et al. [213].

The main difference between the k-IMDMTSP and these related problems is that
the latter have a specific set of vertices where the depots are located, while in the former,
each vertex is a potential depot/terminal. Furthermore, with respect to the MDMTSP
and LRP, the k-IMDMTSP requires an extra “inner cycle” connecting the terminals.
With respect to LRP and 2E-TSP, the k-IMDMTSP permits only a single cycle con-
necting the terminals and a single outer cycle (possibly empty) for each terminal. The
k-IMDMTSP plays an important role in networking planning specially because it en-
ables flexibility in the optimization of the internal gateway locations and leads to cheaper
networks with link-failure tolerance.

3.3 Definitions

Let G = (V,E) be an undirected complete simple graph with vertex set V and edge
set E, where each e ∈ E has a weight or cost ce ∈ R+. Without loss of generality, consider
V = {1, 2, . . . , n} where n = |V |. Consider also V [A] and E[A], respectively, as subsets of
vertices and edges induced by A. A cycle D of size t is a subgraph of G such that vertices
V [D] form a sequence of distinct vertices v1, . . . , vt and each edge (vi, v(i mod t)+1) ∈ E[D]
for all 1 ≤ i ≤ t. Note that, by this definition, a cycle of size two is a simple edge. We
also consider a cycle of size 1 (without edges) and call it empty cycle. In this way, we
consider that all vertices belong to a cycle, even an empty cycle.

In the k-IMDMTSP, we seek a subset of vertices T ⊆ V , called terminals, such that
the size of T is exactly a constant k. A cycle I formed by the terminals T is called the
inner cycle. For each terminal t ∈ T , an outer cycle Ot is built such that for all t′ ∈ T
and t 6= t′, V [Ot]∩V [Ot′] = ∅, i.e., the outer cycles are pairwise disjoint. We assume that
the terminal t ∈ V [Ot] is accounted for in the size of Ot. Therefore, |V [Ot]| ≥ 1, for all
t ∈ T . Each external cycle must have no more than C vertices. A valid solution S for the
k-Interconnected Multi-Depot Multi-Traveling Salesmen Problem is a set of terminals T ,
of size k, connected by an inner cycle I and a collection of spanning outer cycles Ot such
that |V [Ot]| ≤ C, for all t ∈ T . The cost of a solution S is defined as∑

e∈E[S\R]
ce + 2

∑
e∈E[R]

ce (3.1)

3.3. Definitions 67

where R = {O ∈ {O∀t∈T , I} : |E[O]| = 1}, i.e., the set of cycles with one edge only. The
second term of the sum corresponds to the edges that belong to a cycle of size two. In
this case, we consider a round trip and the cost of these edges are doubled. The objective
of the k-IMDMTSP is to minimize this cost.

We can address degenerate cases for the k-IMDMTSP. With respect to the external
cycles, we have two cases. In the first, the outer cycle has size one indicating that only the
terminal is in the cycle. We call this case an empty cycle. In the second case, the outer
cycle has size two, indicating that it has a terminal and a non-terminal vertex connected
by an edge. Such case is called return trip. Figure 3.1 shows examples of a simple case
and the two degenerate cases using the TSP instance bayg29 from TSPLIB [176] and
six terminals. The edges of inner cycle are the thick double red lines while the edges of
outer cycles are thin blue lines. In Figure 3.1a, all terminals are attached by an outer
cycle. In Figure 3.1b, vertices 1, 9, and 19 are not attached to any cycle and we therefore
consider they lead empty cycles. In Figure 3.1c, each terminal is connected to a single
vertex outside the inner cycle (having the appearance of spikes of the inner cycle).

With respect to the inner cycle, one can address three special cases all related to
parameter k. For k = 2, the inner cycle is formed by one edge as a “bridge” between
two outer cycles (Figure 3.1d). For k = 1 or k = n, we have a single cycle (either an
outer cycle or an inner cycle, respectively). If the capacity C ≥ n, the problem reduces to
the Traveling Salesman Problem. In fact, using this reduction, one can easily argue that
k-IMDMTSP is NP-hard.

Corollary 3.3.1: Given an instance I, let TSP(I) be an optimal solution value for the
TSP, and k-IMDMTSP(I) be an optimal solution value for k-IMDMTSP such that k ≥ 1
and C ≥ d|V [I]|/ke. Then TSP(I) ≤ k-IMDMTSP(I).

Note that the maximum capacity of the outer cycles and the number of terminals are
closely related. A low capacity requires a greater number of short cycles to cover all the
vertices in a valid solution. Therefore, feasible instances have the number of terminals
and the capacity of the outer cycles related according to C ≥

⌈
n

k

⌉
.

68 Chapter 3. The k-IMDMTSP for backbone network design

3

9 12

15

19

20 0

1

2
4

5

6

7

8

10

11

13

14

16

17

18

21

22

23

24

25

26

27
28

(a) Simple case.

3

9
19

1

20

12

0

2
4

5

6

7

8

10

11

13

14

15

16

17

18

21

22

23

24

25

26

27
28

(b) Empty cycle on vertices 1, 9, and
19.

1

9

17

13

14
18

24

15

26
23

0

5
4

25

28

19

3

16

21
10

6

12

22

7

27

11

20

8

2

(c) Return trips.

12

20 0

1

2

3

4
5

6

7

8

9

10

11

13

14

15

16

17

18

19

21

22

23

24

25

26

27
28

(d) Bridge between vertices 12 and 20.

Figure 3.1: Examples of a simple and degenerate cases of k-IMDMTSP on bayg29 TSP
instance.

3.4. BRKGA for the k-IMDMTSP 69

3.4 Biased random-key genetic algorithm for the k-
IMDMTSP

To use a biased random-key genetic algorithm (BRKGA), we need to represent a solu-
tion with a chromosome and implement a decoder using this representation. The decoding
phase is the only connection between the BRKGA and the problem itself. The imple-
mentation of the decoder needs to maintain the compatibility of the solution extraction
and the genetic operators which means to choose an adequate representation of a solution
by a chromosome. In this phase, it is also possible to intensify the search applying a
local search procedure on the decoded solution. Note that to find a better solution in the
neighborhood implies in changing the allele values of the chromosome to reflect this new
solution. The fitness of a decoded chromosome is the cost of the cycles found. In the
following sections, we describe these particularities.

3.4.1 Representation
In most BRKGA implementations, a chromosome is a real vector v′ ∈ [0, 1]m following

the procedure given in Bean [14]. Here, we use an integer vector v ∈ Nm. The projection
of v′ → v is done with the function f(v′) = dαv′e with α > 1 sufficiently large. Recall
that k is the number of terminals, n is the number of vertices, and C is the maximum
number of vertices in an outer cycle.

A chromosome is a (k+n)-vector v of integers. The first alleles v1, . . . ,vk ∈ {1, . . . , C}k
represent the size of the outer cycles. The remaining alleles vk+1, . . . ,vk+n ∈ Nn represent
the position of a vertex in an outer cycle.

To extract a solution from this chromosome, we sort the alleles vk+1, . . . ,vk+n in a non-
increasing order, generating a permutation π of the vertices. Vertices π1, . . . , πk represent
the terminals T . Each terminal πi, for i = 1, . . . , k, has an outer cycle formed by vertices
πk+o(i)+j, for j = 1, . . . ,vi and vi ≥ 2, such that

o(i) =

o(i− 1) + vi−1 − 1 if i > 1,
0 otherwise.

The function o(·) indicates the offset in the alignment of cycles in the permutation π.
Note that vi = 1 indicates terminal i is alone in an empty cycle.

For instance, consider the chromosome of Figure 3.2, where n = C = 6 and k = 3. To
extract a solution, we sort the indices representing the vertices, using their corresponding
keys and generate the permutation π. The first terminal is the vertex 3 and it leads the
cycle O3: 3→ 6→ 4. The second cycle O5 is an empty cycle formed only by terminal 5.
Cycle O1 is a degenerate cycle formed by terminal 1 and vertex 2.

70 Chapter 3. The k-IMDMTSP for backbone network design

3 1 2 47 16 63 29 50 33Chromosome
Keys

Cycle sizes Vertices

1 . . . k 1 2 3 4 5 6

π 3 5 1 6 4 2

Sort the keys in
non-increasing order

O3

4

6

2

O1Terminals

1

35

Figure 3.2: Example of solution extraction. Note that vertex 5 has an empty cycle O5

that is not shown in the chromosome.

The advantage of this representation is that any modification in the values of keys
vk+1, . . . ,vk+n will not destroy the feasibility of the solution extracted from the chromo-
some. This approach was used in several papers, such as Samanlioglu et al. [184] and
Snyder and Daskin [193]. On the other hand, arbitrary modifications of keys v1, . . . ,vk
can result in invalid cycle sizes. In this case, it is necessary to use the repair procedure
described in Section 3.4.2.

Note that distinct chromosomes may decode to the same solution either by rotation
of the position of the alleles or by different allele values in the same order. However, this
in unlikely to occur because of the range of the integers used in practice.

3.4.2 Decoding a solution
In BRKGAs, the decoder extracts a solution from the chromosomes as well as tries

to improve the solution with some local search procedure. Using the representation of
the previous section requires that we guarantee that the sizes of the outer cycles are
correct, i.e., that the total sum of the keys equals the number of vertices. Algorithm 3.1
increments or decrements the sizes of each cycle based on the difference between the sum
of the key values and the number of vertices. Note that the modifications are done among
randomly selected cycles with the objective of preserving the “structures” inherited from
the parents. Therefore, we avoid deep changes in a particular cycle. The complexity of
this repair procedure is O(|kC − n|).

After the repair phase, the decoder proceeds with solution extraction as described
in Section 3.4.1. At this point, it is possible (although rare) that two or more keys
have identical values. This could generate different solutions with different values from
the same chromosome. To avoid this situation, the decoder modifies the keys to have
different values and, therefore, guarantee a unique solution. However, note that this

3.4. BRKGA for the k-IMDMTSP 71

modification must be done only on the keys corresponding to the node ordering. The
keys corresponding to the cycle size are kept untouched. Algorithm 3.2 summarizes the
entire process, including the local search procedures described in next section.

Algorithm 3.1: adjustCycleSizes(v, k, n, C)
Input: a vector v ∈ Nk+n, integers k, n, C ∈ N
Output: modified v

1 Let A = {1, . . . , k};

2 diff ← ∑
i∈A vi − n;

3 if diff > 0 then
4 sign ← −1;
5 else
6 sign ← 1;

7 while diff 6= 0 do
8 Choose i from A uniformly;

9 if (vi ≥ 2 and sign < 0) or (vi < C and sign > 0) then
10 vi ← vi + sign;
11 diff ← diff + sign;
12 else
13 A← A \ {i};

Local Improvements

Local improvement procedures have been shown to help convergence of genetic al-
gorithms. Potentially, each chromosome can be in the neighborhood of a different local
minimum. In such a case, local search would be able to reach these minima (Levine [124]).

To perform local improvements, we explore two different neighborhoods. The first is
the well-known “edge exchange” neighborhood obtained from 2-opt and 3-opt movements
(it is also known as the “λ-opt” neighborhood). Let (u, v) and (u′, v′) be two edges of the
cycle (appearing in the orientation). If c(u,v′) + c(u′,v) < c(u,v) + c(u′,v′), we remove (u, v)
and (u′, v′), and insert (u, v′) and (u′, v), performing a 2-opt move. Note that the path
v, . . . , v′ is reversed in this process becoming v′, . . . , v. A λ-opt move is done in a similar
way but involves the exchange of λn edges. Lin and Kernighan [128] generalize these
methods resulting in one of best heuristics for the traveling salesman problem. Their
procedure is adaptive and at each step decides dynamically what type of λ-opt should

72 Chapter 3. The k-IMDMTSP for backbone network design

be applied. In Martin et al. [142], the Lin-Kernighan heuristic was improved using, at
the start of each iteration, a “guess” or “kick” tour instead of only doing restarts. The
double-bridge move, cheaper than a 4-exchange move, was also proposed. This heuristic
is known as the Chained Lin-Kernighan procedure. In Helsgaun [95] several refinements
of Lin-Kernighan are described. A sequential 5-opt step, restricted to a neighborhood of
five α-nearness members, is used. This is computed using 1-trees on a modified weight
distance matrix.

To explore the “edge exchange” neighborhood, we apply the Chained Lin-Kernighan
heuristic to each outer cycle as well as the inner cycle but with a limited number of
iterations. One can note that an exchange in positions of vertices in a cycle implies that
the allele values of the vertices must be also swapped. In particular, the modification in
the positions of terminals in the inner cycle must be done carefully so that the remaining
structure of the chromosome is not destroyed. Lines 5 and 6 of Algorithm 3.2 summarize
this procedure.

The second neighborhood “rotates” the outer cycles looking for new terminal vertices
capable of reducing the cost of the solution. Let t be the terminal of outer cycle O, ts,
and tp be, respectively, the successor and predecessor terminals of t in the inner cycle I.
Rotating cycle O means finding a vertex t′ = argmint′′∈O c(tp,t′′) + c(t′′,ts), i.e., finding a
vertex to be the new terminal that minimizes the cost of the inner cycle. Note that the
outer cycles are kept intact but the terminal and, consequently, the cost of inner cycle
is changed. In fact, the vertex exchange can result in a new inner cycle to which is
applied the Chained Lin-Kernighan procedure. Lines 7–11 of Algorithm 3.2 summarize
this procedure. One can note that these operations can be done efficiently, but we prefer to
describe it this way for notational convenience. Figure 3.3 illustrates these improvements.

It is important to note that all these modifications on the solution implies that the
keys of the corresponding chromosome must be modified to reflect the new solution.
Lines 14–19 copy back the key values from ordered vector s to reflect these modifications.

1

2

3

4

1

2

3

4 4

1

2

3

After simple
decoding

After applying
Chained LK

After
“rotation”

Figure 3.3: Example of local improvement steps. First, we apply the Lin-Kernighan
heuristic and then the “rotate” neighborhood.

3.4. BRKGA for the k-IMDMTSP 73

Algorithm 3.2: Decoder
Input: a vector v ∈ Nk+n, integers k, n, C ∈ N
Output: modified v, the fitness of v

1 adjustCycleSizes(v, k, n, C);

2 Sort the alleles vk+1, . . . ,vk+n in non-decreasing order, generating a vector s of
sorted keys and a permutation π of the vertices;

3 Keeping the order, modify the values of s to ensure all different;

4 Extract the inner cycle I and the outer cycles O using π and s;

5 foreach O ∈ (O ∪ {I}) do
6 ChainedLinKernighan(O);

7 foreach Ot ∈ O do
8 t′ ← findBestTerminal(Ot);
9 Ot′ ← Ot;

10 I ← (I \ {t}) ∪ {t′}; // Keeping the order
11 O ← (O \ {Ot}) ∪ {Ot′};

12 ChainedLinKernighan(I);

13 i← 1;
14 foreach Ot ∈ O do
15 vk+t ← si;
16 i++;
17 foreach v ∈ Ot do
18 vk+v ← si;
19 i++;

20 return the solution value according to Equation (3.1)

The complexity of Algorithm 3.2 is hard to determine due to the chained Lin-Kernighan
multiple calls. The chained Lin-Kernighan is a complex procedure that uses computa-
tion of minimum spanning trees, subgradient optimizations, and other features that are
very sensible to the input. The λ-opt neighborhoods can be large since consider the
combination of λ vertices (which can be exponential).

74 Chapter 3. The k-IMDMTSP for backbone network design

3.4.3 Initial Population
The common approach to initialize the population of a BRKGA is to generate the

chromosomes with uniformly drawn random keys over the interval [0, 1]. This results in
highly heterogeneous individuals that may slow down the convergence of the algorithm.
On the other hand, these individuals may lie in different local minima neighborhoods
and help avoid premature convergence of the algorithm. In an attempt to speed up the
search, we use a fast heuristic to generate some good initial solutions and then, complete
the initial population with random chromosomes. An advantage of using such individuals
in the starting population is that they are probably closer to a good solution than most
random individuals.

The heuristic is based on k-means clustering algorithm that partitions the vertices in k
clusters such that each vertex belongs to the cluster with the nearest mean (Lloyd [132]).
This is a well-know algorithm, used in several fields, such as machine learning and com-
putational geometry. Each cluster generated by k-means is considered as an outer cycle
and the terminal is the vertex closest to the mean of the cluster. The vertices are taken
in arbitrary order since the cycles will be optimized in the decoding procedure. Although
the cost of this solution is usually not very good, it carries some geometric information
about the distribution of the vertices and it is likely that some parts of these clusters will
be part of the final solution. One can note that this approach can be used only in geo-
metric instances. In Barreto et al. [12], a similar approach is used to solve the capacitated
location-routing problem.

The encoding of the chromosome from this solution is done in the following way: a
vector s′ is generated with n random keys, sorted in non-increasing order. The first k
positions of the chromosome are associated with the size of the clusters taken in some
arbitrary but fixed order, say t1, . . . , tk. Using this same order, we associate each terminal
ti with a key of s′. For each cluster Oti , we associate the vertices of this cluster with
the remaining keys of s′ in the order they appear. This ensures the compatibility and
uniformity with the BRKGA framework.

3.5 Experimental Results
We conducted several experiments with the goal of evaluating the effectiveness of the

BRKGA to find good solutions on instances of varying sizes. By adjusting the BRKGA
framework, we also implemented a simple Multi-Start Heuristic (MSH) using the same
local search procedure as used by the BRKGA and compare the results obtained by both
heuristics.

3.5. Experimental Results 75

3.5.1 Computational environment
We implemented the algorithms in the C++ programming language using the GNU

g++ compiler version 4.4.2. Random numbers were generated by an implementation of
the Mersenne-Twister [143]. We use the Chained Lin-Kernighan implementation of the
Concorde TSP Solver [8] to do the local search. The experiments were conducted on a
quad-core Intel Xeon 2.4 GHz CPU with 8 GBytes of RAM running GNU/Linux. Running
times reported are UNIX real wall-clock times in seconds, excluding the time to read the
instance. Each run was limited to 3,600 seconds.

3.5.2 Algorithm settings
The proposed algorithm was implemented on top of the BRKGA API [196], which

implements all of the problem-independent components described in Section 1.2. We set
the population size to p = min(10n, 100), where n is the number of vertices, the size of
elite set of individuals to pe = d0.30pe, and the number of mutants introduced at each
generation to pm = b0.15pc. The probability of inheriting each allele from the elite parent
was set to ρe = 0.70. We evolved Π = 3 populations simultaneously and once every 100
generations each population exchanged its two best solutions with the other populations.
After 500 iterations without improvement, all three populations are reset to randomly
generated individuals. This setup followed suggestions of Gonçalves and Resende [81].

To create the Multi-Start Heuristic (MSH), we set the size of the elite set to pe = 1 and
the number of mutants in each generation to pm = p−1. This setting disables any type of
offspring generation and only keeps the best solution found throughout the optimization.
We also disabled the initial heuristic leaving just the random chromosome generation.

At each iteration of the decoder, the Chained Lin-Kernighan heuristic was executed
once for each cycle, using no time or tour length bounds. The stall counter was set to at
most 1000 iterations, limiting the number of 4-swaps without progress. We use a random
walk as the kicking strategy. This perturbs the Lin-Kernighan solution creating three
independent random walks of a given length from a vertex v in the neighborhood of this
solution. According to Fischer and Merz [61], this type of kicking strategy presents better
results than other strategies suggested in Applegate et al. [9].

In addition to stopping after 3,600 seconds, we also stop if 1,000 generations go by
without improvement of the best solution. The algorithm decodes the chromosomes in
parallel, using four cores. It was necessary to make slight modifications in the Concorde
code to support multi-threading.

76 Chapter 3. The k-IMDMTSP for backbone network design

3.5.3 Instances
Our experiments use TSP instances from the TSPLIB repository [176] as base graphs.

We build five scenarios based on different numbers of terminals k and cycle capacity C.
We consider the 63 TSP instances with fewer than 700 vertices. We exclude instance
linhp318 due to problems in the loading routine of Concorde.

The first scenario varies the size of the inner cycle. We argued earlier that the extremal
values k = 1 and k = n reduce the k-IMDMTSP to the TSP (with capacity C ≥ n).
Therefore, we use other values of k in the experiments. We first set k = d0.2ne to build a
small inner cycle. This is common, for instance, in transportation problems that deliver
heavy truckloads to one or more depots. We then set k = d0.5ne, promoting larger inner
cycles. This occurs, for instance, when large optical fiber ring is used to maximize the
throughput of a network. Our third variation is described below.

We also vary the capacity of the outer cycles looking for interesting instances. First,
we set C = dn/ke, forcing each terminal to have a non-empty outer cycle. One can easily
see that the sizes of these cycles differ by at most one. Second, we set C = 2dn/ke,
allowing for the possibility of some empty or larger cycles. Note that C ≥ n leads to a
solution with one outer cycle and one inner cycle.

Using the above settings, we built the following five scenarios for each of the 63 TSP
graphs, generating 315 instances:

ST – small inner cycle: k = d0.2ne and tight outer cycles: C = dn/ke;

SL – small inner cycle and loose outer cycles: C = 2dn/ke;

LT – large inner cycle: k = d0.5ne and tight outer cycles;

LL – large inner cycle and loose outer cycles;

SQ – Inner and outer cycles of same size: k = C =
√
n.

It is important to note that, for the instance classes ST and SL, the capacities converge,
respectively, to 5 and 10 for all n ≥ 17, since the limits for those functions converge to
these values. Similarly, for the instances in LT and LL, the capacities converge to 2 and 4,
respectively. Therefore, we observe that the instance class LT corresponds to the “return
trip” instances exemplified in Figure 3.1c.

3.5.4 Results and Discussion
For each instance, 30 independent runs of each algorithm were performed. This re-

sulted in 1890 experiments per scenario, and 9450 experiments per algorithm. To compare

3.5. Experimental Results 77

the algorithms, we needed to scale the resulting costs since their magnitudes vary greatly
from instance to instance. For each instance, we scaled the cost in the interval [0, 1] using
the minimum and maximum costs from both algorithms.

Figure 3.4 shows the distributions of the results for each scenario. The box plots show
the smallest cost, the first quartile, the median cost, the third quartile and the largest
cost. First, we can note that all distributions have fat tails, indicating that they are not
symmetric. A skewness statistic shows a skew of, at least, 0.46 for BRKGA indicating
that these distributions have the most points in the left-side that means lower costs. To
the MSH, the skewness is, at most, -0.17, resulting a long left-side tail and the points
concentrated in right-side, therefore with higher costs. We can note that the medians
and the quartiles of BRKGA results are systematically lower than the those of MSH,
indicating better performance of BRKGA over MSH.

To confirm these results, we tested the normality of these distributions using the
Shapiro-Wilk test and we applied the Wilcoxon-Mann-Whitney test, considered more
efficient than the t-test for distributions sufficiently far from normal and for sufficiently
large sample sizes (Conover [38], Fay and Proschan [57]). For all tests, we assume a
confidence interval of 95%. The Shapiro-Wilk tests revealed that no cost distribution fit
normal distributions since the p-values for all tests are less than 2.5 × 10−28. Therefore,
we applied the Wilcoxon-Mann-Whitney which we show in Table 3.1. This test assumes
as null hypothesis that the location statistics are equal in both distributions. The second
column shows a difference in medians of the BRKGA and the MSH such that the medians

Algorithms

S
c
a

le
d

 C
o

s
t

0.0

0.2

0.4

0.6

0.8

1.0

B
R

K
G

A

M
S

H

ST

B
R

K
G

A

M
S

H

SL

B
R

K
G

A

M
S

H

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●●●●

●●●●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●
●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●●
●
●

●

●
●

●

LT

B
R

K
G

A

M
S

H

LL
B

R
K

G
A

M
S

H

SQ

Figure 3.4: Boxplot of the medians and quartiles for each algorithm in each scenario.

78 Chapter 3. The k-IMDMTSP for backbone network design

of the BRKGA are less than those of the MSH. As all differences are in the respective
confidence intervals and all p-values are much less than 0.05, we can conclude that the
BRKGA presents significantly better results that does the MSH.

Table 3.2 shows, for BRKGA over all instances, the average number of iterations,
the time taken by the initial heuristic, and the total time to reach the best solution. As
suggested by McGeoch [144], we use the bootstrapping method with resample size of 1000
and show the standard errors and 95% confidence intervals. Note the BRKGA uses an
average of 2900 iterations to reach the best solution, showing that the genetic operations
contribute to the convergence. We can also note that the minimum number of iterations
is below 1,000, indicating that the maximum running time was used to stop the algorithm
in certain large instances. In general, the initialization heuristic is very fast and does
not add much in total running time. With respect to the last, we computed good means
although in some extreme cases we use about 3,600 seconds. These cases are related to
the size of the instance and, in general, do not perform many iterations. Detailed results
can be found in Appendix B.

Figure 3.5 shows the cumulative probability to reach a target cost over time. The
target costs were set using the values of the best solution found for each instance. For
each algorithm, we performed 30 runs for each instance (9,600 experiments per algorithm),
limiting the maximum runtime to 1,800 seconds. The experiments with running time

Table 3.1: Median test for cost distributions.

Scen. Diff. Loc. Conf. Interv. U p-value

ST −0.24 [−0.27,−0.21] 1.1× 106 8.0× 10−86

SL −0.23 [−0.26,−0.21] 1.1× 106 2.9× 10−82

LT −0.63 [−0.66,−0.60] 5.3× 105 8.5× 10−305

LL −0.19 [−0.22,−0.17] 1.2× 106 1.1× 10−67

SQ −0.36 [−0.39,−0.33] 9.4× 105 6.1× 10−140

Overall −0.32 [−0.33,−0.31] 2.4× 107 0.00

Table 3.2: BRKGA means of best results using bootstrapping resampling (1000 repli-
cates).

Dimension Mean Error Conf. Interval Min Max

Iterations 2901.33 165.58 [2580, 3244] 199 17989
Init. Time 0.57 0.11 [0.34, 0.78] 0.00 23.34
Total Time 573.00 46.84 [480.50, 664.1] 1.30 3604.78

3.6. Concluding Remarks 79

greater than or equal to 1,800 were pruned from the plot. Note that the cumulative
probability curves for BRKGA are to the left and above those of MSH, indicating that it
has a higher probability than MSH of reaching good solutions in a given time. Overall,
BRKGA reached 53.19% of the target costs while MSH reach only 14.56%, with 1,000
seconds. Following the methodology proposed in Ribeiro et al. [180], BRKGA has a
79.83% probability (with error e = 0.001) of finding a target solution in less time than
MSH.

In both the LT and LL scenarios, both algorithms found few good solutions. We think
that the main reason for this are the larger internal cycles required by these instances.
In the other scenarios where the size of the cycles are more balanced, BRKGA reached
more than 70% of the best solutions and outperformed MSH by a large margin. Another
interesting observation is that on the SL and LL scenarios, the target values are found
faster than on the other scenarios, indicating that the former are apparently easier than
the latter.

3.6 Concluding Remarks
We introduced a new problem called the k-Interconnected Multi-Depot Multi-Traveling

Salesmen Problem. The k-IMDMTSP is closely related to the Location Routing Problem
and the 2-Echelon Vehicle Routing Problem. Unlike these problems, the k-IMDMTSP
has the inherent difficulty of not having a fixed set of depots. To solve the k-IMDMTSP,
we propose a biased random-key genetic algorithm (BRKGA) with a local search proce-
dure in the decoding phase, using adaptations of classical procedures for the traveling
salesman problem. We compare our algorithm with a multi-start heuristic (MSH) using
the same local search algorithm, on five different scenarios with 63 instances each. We
found that the BRKGA is significantly better than the MSH in our experiments, pre-
senting a good performance that trades off solution quality with running time. Future
research directions include extending our approach to address constraints like demands
and flow limits and to compare it with other possible approaches like exact algorithms
and their hybridizations.

80 Chapter 3. The k-IMDMTSP for backbone network design

0.01 0.1 1 10 100 1000

0
.1

0
.3

0
.5

0
.7

●●
●●
●
●●
●●

●
●●

●●
●

●●

●

Scenario: ST

BRKGA
MSH

0.01 0.1 1 10 100 1000

0
.1

0
.3

0
.5

0
.7

●●
●
●●
●

●●
●
●
●●

●
●●

●

Scenario: SL

BRKGA
MSH

0.01 0.1 1 10 100 1000

0
.1

0
.3

0
.5

0
.7

●●
●
●

●

●

Scenario: LT

BRKGA
MSH

0.01 0.1 1 10 100 1000

0
.1

0
.3

0
.5

0
.7

●●●●
●●●●

●●●●
●●●●

●

●

Scenario: LL

BRKGA
MSH

0.01 0.1 1 10 100 1000

0
.1

0
.3

0
.5

0
.7

●●
●●

●●
●●
●●

●●
●●

●●
●

●

Scenario: SQ

BRKGA
MSH

0.01 0.1 1 10 100 1000

0
.1

0
.3

0
.5

0
.7

●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●

●●●●●●●
●● ●●●●●●● ●●●●●●●●●●● ●● ●● ●●●●● ●●

●

Overall

BRKGA
MSH

C
u

m
u

la
ti
ve

 p
ro

b
a

b
ili

ty

Seconds to reach the best solution

Figure 3.5: Time-to-target plots showing the cumulative probability to reach a determined
cost in 1,800 seconds. The points corresponds to 0.2% of runs.

Chapter 4
The Overlapping Correlation Cluster-
ing Problem

MODERN wireless networks have been capable to route a huge mass of data. In
addition of this capability, these networks have also collected information about

the mobility and usage of wireless devices. Such information may consist of geographical
location, data consumption, calls, and texting over a period of time. This behavioral
information is invaluable in several aspects. First, such information is crucial for planning,
delivery, and operating old and new networks. Second, the analysis of this data may reveal
behaviors of the users and help to plan for new products and/or sales promotions. It is
also possible to use this information for security reasons such as finding threats, estimate
travel routings, carbon emissions, traffic volumes, and others (Becker et al. [15]).

In this chapter, we address the Overlapping Correlation Clustering Problem (OCC)
which is suitable for such analyses. In this problem, a number of objects are assigned
to clusters such that two objects in the same cluster have correlated characteristics. As
opposed to traditional clustering where objects are assigned to a single cluster, in OCC
objects may be assigned to one or more clusters. Such multi-classification can be used
in contexts where we do not know clearly the boundaries between the characteristics of
the objects. We propose biased random-key algorithms (BRKGA) using four different
decoders and compare the results with those obtained from state of the art algorithms
for the OCC. We use databases from several different contexts such as mobility patterns,
bioinformatics, and text analysis. The BRKGAs presented very good results outperform-
ing in almost all types of instances other algorithms. This chapter is based on Andrade
et al. [5].

81

82 Chapter 4. The Overlapping Correlation Clustering Problem

4.1 Introduction
One of the most fundamental tasks in data analysis is to categorize objects in different

sets such that two objects in the same set have certain characteristics that are correlated.
This correlation is usually measured by a similarity value. The standard way of clustering
is the creation of a partition of these objects. However, for some applications, it is
natural that an object belongs to two or more clusters since it can share characteristics
with objects in more than one cluster. In this case, to partition the ground set does
not make sense. Instead, it is more appropriate to assign the objects to clusters with
possible overlapping. Several scenarios with these properties can be addressed: in social
networks, a user belongs to several communities; in mobility analysis, individuals share
trajectories with respect to time and space; in biology, a protein belongs to several protein
complexes having similar expressions. We can model scenarios like these usingOverlapping
Correlation Clustering (OCC), introduced in Bonchi et al. [23]. This problem is closely
related to Correlation Clustering Problem (Bansal et al. [11]) but allows overlapping of
the clusters. Another major difference is in the relation among the objects. In OCC,
this relation is expressed as a value in the range [0, 1] while in the correlation clustering
it takes on one of two discrete values in the set {0, 1}. This enables the utilization of
different types of similarity functions leading to a more sophisticated analysis.

As commented, the OCC has similarities with the correlation clustering problem. In
this problem, a complete graph is given and each edge is labeled as positive or negative.
The objective is to find a partition in the vertices such that it minimizes the number
of positive edges between the partitions and the number of negative edges within the
partitions. This problem has received a lot of attention in the literature (Ailon and
Liberty [1], Charikar et al. [34], Demaine et al. [46], Swamy [195]). The best-known
approximation algorithm for this problem was proposed by Charikar et al. [34] and is a
linear programming based method with a factor of 4. Demaine et al. [46] presented a
O(log n)-approximation for edges with arbitrary weights. Recently, Wang and Li [203]
proposed a neighborhood-based heuristic which considers that if two vertices belong to
the same cluster, they should have the same neighborhood. Following this observation,
the algorithm iteratively chooses two connected vertices and restores their neighborhood.
Lingas et al. [129] proposed an iterative heuristic that starts from singleton clusters.
Whenever merging two clusters improves the current quality score, the heuristic merges
them into a single cluster.

In general, one may use the overlapping clustering to label objects as members of
one or more clusters and two or more objects may share a single cluster. As far as we
know, the origin of the overlapping clustering problem is not known. However, there is an
abundant literature with respect to this problem and a comprehensive list can be found in

4.2. Definitions 83

Pérez-Suárez et al. [166]. One of the first algorithms that deal with overlapping clustering
was proposed by Shepard and Arabie [190]. This algorithm considers that the similarity
of any two objects is a simple additive function of weights associated with properties that
are shared by both objects. Banerjee et al. [10] proposed a model-based overlapping clus-
tering using probabilistic relational models that works with any regular exponential family
distribution making the model applicable for a wide variety of distance functions. Gold-
berg et al. [73] analyzes the overlapping clustering from a different perspective: instead to
worry about finding the clusters, they are concerned in how to compare two overlapping
clusters. The paper describes three new definitions of distance between the clusters and
presented algorithms to compute them. Recently, Pérez-Suárez et al. [166] presented a
graph-based algorithm for building overlapping clusters. The method is based on graph
covering given a relevance metric for each vertex. This method was able to overcome
other algorithms previously proposed in the literature.

This chapter presents biased random-key genetic algorithms associated with local
search procedures aiming to solve the overlapping correlation clustering problem under
an optimization point of view. This chapter is organized as follows. Section 4.2 formalizes
the problem. Section 4.3 presents high level algorithms to deal with OCC. Section 4.4
depicts the experimental results and Section 4.5 presents the concluding remarks.

4.2 Definitions

Let V = {v1, . . . , vn} be a set of n objects such that there exists a symmetric function
s : V × V → [0, 1] which gives the similarity s(u, v) between two objects u and v in V .
Let L = {1, . . . , k} be the set of k available labels (clusters). Since we allow an object to
be in several clusters, we define ` : V → 2L \∅ with `(v) being the set of labels assigned to
object v. Note that we require that each object have at least one label. If the set `(v) =
{c1, . . . , cs} of labels is given to object v, then we assume that v is in clusters c1, . . . , cs.
Consider alsoH : 2L×2L → [0, 1], a symmetric function which gives the similarity between
two sets of labels. Higher “similarity” of E and F should correspond to higher H(E,F),
and H(E,E) should be 1 for all E. In Overlapping Correlation Clustering (OCC), the
task is to find a multi-labeling function ` that minimizes the cost function

1
2

∑
(u,v)∈V×V,u 6=v

|H(`(u), `(v))− s(u, v)|. (4.1)

Note that Objective Function (4.1) represents the absolute error between the labeling and
the similarity measure. In this sense, the objective is to find a labeling as close as possible
to the given similarities.

84 Chapter 4. The Overlapping Correlation Clustering Problem

This formulation enables the application in different contexts. However, we first
need to measure the similarities that are context dependent. As the problem is gen-
eral enough, we can use any type of comparison measure as long as it scales to the real
interval [0, 1]. Another challenging task is to find the appropriate H function. As sug-
gested in Bonchi et al. [23], we use two functions: The Jaccard Similarity Coefficient
and the Set-Intersection Indicator. The Jaccard similarity coefficient, also known as the
Jaccard index, was proposed by Jaccard [102] and is a well-known measure of similarity
between two sample sets, widely used in biology and machine learning (e.g. Kosman and
Leonard [113], Leskovec et al. [123], Shamshurin [189], Vorontsov et al. [201]). Let E and
F be two sets, not both empty. The Jaccard index of E and F is defined as

J (E,F) =

|E ∩ F |
|E ∪ F |

if |E|+ |F | > 0,

1 otherwise.
(4.2)

The set-intersection indicator function is a simple function defined as

I(E,F) =
{

1 if E ∩ F 6= ∅,
0 otherwise. (4.3)

Some scenarios require objects to be assigned to a restricted number of labels among
those available. A good example is in the analysis of mobility patterns, where in spite of
the fact that trajectories can have a large number of characteristics, we restrict ourselves
to only a few of the most meaningful ones. In these cases, we introduce a parameter p
such that |`(v)| ≤ p for all v ∈ V .

It is easy to see that, if we considerH = I and p = 1, each object will belong to a single
cluster and the similarity between pairs of objects will be an indication as to whether they
share the same cluster. In this case, if s follows the set-intersection function, we face the
original correlation clustering problem, which is NP-hard (Bansal et al. [11]). In Bonchi
et al. [23], hardness proofs for the other cases are presented.

4.3 Biased random-key genetic algorithms and local
search

For solving the OCC, we proposed biased random-key genetic algorithms (BRKGAs)
with two different representations and two different decoders. For comprehensive descrip-
tion of BRKGAs, please refer to Section 1.2.

4.3. Biased random-key genetic algorithms and local search 85

4.3.1 Representation
In most BRKGA implementations, a chromosome is encoded as a real vector x′ ∈

[0, 1]n, following the procedure given by Bean [14]. However, other encodings are possible.
Here, we use two forms of chromosomes to represent a labeling. Let n be the number of
objects and k the number of available clusters. The first representation, called compact, is
an integer vector xc ∈ Nn, and the second, called extended, is a binary vector xe ∈ {0, 1}nk.

For the compact chromosome xc, each xc
i is a positive integer that represents the

clusters to which object vi belongs. In this case, we consider each bit as a set indicator
in which the least-significant bit corresponds to the first cluster, and so on.1 Figure 4.1
shows an example of a compact representation where there are eight objects and it is
allowed only five different labels on each object. Supposing that eight bits are being used
to represent the labels, the object four has the key 163 that can be decomposed in the
bit sequence (1, 0, 1, 0, 1, 1, 0, 1). In this case, one can ignore the most significant bits and
take the set {1, 3, 4} as the labels assigned to the object.

In the extended chromosome xe, the subvector x̃e = x̃e
(i−1)k+1, . . . , x̃e

ik is an indica-
tor vector where, for each object vi, x̃e

j is 1 if vi is in cluster j, or 0 otherwise. This
representation can be used with any n > 1 and k > 1.

Although both compact and extended representations are quite similar, they affect
the evolutionary mechanism of BRKGA differently. In the compact representation, each
allele is the full labeling of an object and therefore, in the mating process, the offspring

47

1

255

2

142

3

163

4

222

5

63

6

1

7

111

8

Chromosome
Keys 163

Labels 1

8

0

7

1

6

0

5

1

4

1

3

0

2

1

1

Figure 4.1: Compact representation of a solution by a chromosome. The grey area are
the ignored bits.

1 Although this representation limits the number of possible clusters (k < 64 on a 64-bit machine),
it enables very fast set operations since they are done bitwise, and for most applications, this limit is
sufficient. If a specialized bitset structure like C++’s bitset<> template is used, this limitation can be
overcame although at the expense of increased complexity.

86 Chapter 4. The Overlapping Correlation Clustering Problem

inherits these full labelings. Learning occurs through the combination of entire sets of
labels of each object. In the extended representation, each allele represents a specific label
of an object. In the mating process, the offspring inherits each label individually, enabling
learning to occur at the level of each label for each object.

4.3.2 Decoding a solution
To decode a solution from a chromosome using the representations of Section 4.3.1,

we use a two-phase decoder in which the first phase extracts a solution and the second
phase is committed to local search procedures. We assume that the input vector to the
decoder is in compact representation. Note that in case of the extended representation, we
need to “compactify” the vector obtaining from each subvector x̃e = x̃e

(i−1)k+1, . . . , x̃e
ik, for

each object vi, the integer that can be described by this sequence of bits. Algorithm 4.1
describes the first phase.

First of all, we must guarantee that the number of clusters of each object is limited
to p. If the number |`(v)| of clusters containing object v is greater than p, we repair the
chromosome by removing |`(v)| − p clusters from v uniformly at random. Lines 1–2 of
Algorithm 4.1 summarize this procedure, in which by “s ∈ x” we mean that “s = xh for
some h,” and by “|s|,” the number of bits equal to one in the binary representation of s.

After the repair, we have a feasible solution whose value is computed in lines 4–14. We
compare each pair of objects (u, v), calculating the Jaccard or set-intersection similarity
and adding the error to the solution value, according to Equation (4.1). Note that in
lines 5 and 6, we abuse notation: l(u) ← xu gets the labeling of object u. We also split
the amount of error caused by u and v into two parts: the positive error e+, indicating
that labels assigned to u and v are too similar, and the negative error e−, indicating
otherwise. These errors are used in the local search phase to improve the solution. Note
that vectors e+, e− ∈ R+. After local search, the solution may be improved and, in such
case, we consolidate the change of the solution in the chromosome (line 16).

The running time complexity of the first phase is O(kn2) when k is unrestricted. Note
that the repair phase runs in O(kn) time. The solution value computation has a quadratic
factor due to the comparison of each pair of objects. The time complexity of function H
depends directly on k and the type of function. Assuming k is unrestricted, when H = J ,
we need to compute the union and intersection of the two sets of labels, which takes O(k)
time each. In the case of H = I, we only need to calculate the intersection, which takes
O(k) time. However as observed in the previous section, for most practical applications,
k < 64, which enables the representation using a 64-bit integer. The intersection can
be implemented using a single machine AND operation, the union using a single machine

4.3. Biased random-key genetic algorithms and local search 87

OR operation, and the bit counting running in O(1) using a lookup table2. Using this
implementation, the time complexity of phase 1 is O(n2), if k < 64.

In the second phase, a local search procedure is applied to the solution found in
phase 1. We developed a local search that explores neighborhood solutions based on
error reduction. This procedure is detailed on Section 4.3.3. We also use the local search
methods proposed by Bonchi et al. [23]. They developed two local searches, one for OCC
using the Jaccard index as the H function and another using the set-intersection function.
Section 4.3.4 details these algorithms.

Algorithm 4.1: Decoder – Phase 1
Input: a vector x ∈ Nn, integers k, p ∈ N, and set V .
Output: modified x and the fitness C of x.

// Repair chromosome
1 foreach s ∈ x such that |s| > p do
2 Remove |s| − p elements from s uniformly at random;

3 C ← 0;
4 foreach pair (u, v) ∈ V × V do
5 l(u)← xu;
6 l(v)← xv;

7 error ← H(`(u), `(v))− s(u, v);
8 C ← C + absval(error);

9 if error > 0 then
10 e+

u ← e+
u + error ;

11 e+
v ← e+

v + error ;
12 else
13 e−u ← e−u − error ;
14 e−v ← e−v − error ;

15 LocalSearch();

16 Rewrite the improved solution on the chromosome x;

17 return modified x and solution value C;

2Another approach is to use the special hardware instruction POPCNT found in modern processors.
For details, see Haque et al. [94].

88 Chapter 4. The Overlapping Correlation Clustering Problem

4.3.3 Error Reduction Local Search
Algorithm 4.2 depicts the local search procedure based on error reduction, which we

call OLS. In line 4, we sort the objects v in nonincreasing order of e+
v + e−v , such that

we start with the object whose labeling leads to the largest error in the entire clustering
process. For the first given τ ≤ n objects in this order, OLS attempts to reduce or augment
the total similarity driven by the values of e+ and e−. This is done by removing or adding
labels that impact total similarity. For a given object v, if e+

v ≥ e−v , we try to find
a most common label between v and all other objects, and remove it from v (line 16).
Otherwise, if e+

v < e−v , we try to add to v a most common label that was not assigned to it
(line 18). If none of these add or remove operations can be done, we remove a label from v

uniformly at random and replace it with a label not assigned to v, also chosen uniformly
at random (line 10–14). In this case, in each exchange we only select a new label not
previously chosen in the previous iterations. In the worst case, we try all k labels. If
an improvement is reached, the solution value and the errors of each object are updated
(lines 19–25) and a new iteration begins. After τ iterations without improvement, the
local search stops.

The time complexity of OLS is tricky to compute since it depends on the starting
solution. The innermost loop (starting in line 10) iterates at most k times since each
label is added or removed only once. Note that adding (respectively, removing) a label
that was removed (respectively, added) in earlier iterations (of the loop starting on line 10)
does not lead to an improvement in solution quality. The exchange on line 14 can be done
in O(1) time. The operations in lines 16 and 18 can be done in O(log k) time using a red-
black tree data structure (Bayer [13]) for the histogram of labels that we use to keep track
of the most used labels. However, note that for small values of k, it is worthwhile to use
a naive linear approach running in time O(k). The update operations in lines 19–25 take
O(n) time since we need to recalculate the function H for all pairs (v, w) with fixed v and
w 6= u ∈ V . Therefore, the loop starting on line 6 has time complexity O(τ(k log k+kn)).
If k < 64 and τ ≤ n, then the time complexity is O(n2). As observed earlier, it is hard
to estimate the complexity of the loop starting on line 3, but its main components are
O(n log n) from line 4 and the complexity of the loop starting on line 6. Therefore, each
iteration has time complexity O(n2).

4.3. Biased random-key genetic algorithms and local search 89

Algorithm 4.2: Error Reduction Local Search – OLS.
Input: labeling function `; vectors e+, e− ∈ R+; integers p, τ ∈ N; set V.

1 Let C be the cost of ` computed with Obj. Func. (4.1);
2 impr ← True;
3 while impr = True do
4 Let V ′ be the set of objects v ∈ V , sorted in non-increasing order of e+

v + e−v ;
5 impr ← False; i← 0;
6 while i ≤ τ do
7 Take the next v ∈ V ′ in the given order;
8 ˆ̀(v)← `(v);
9 local_impr ← True;

10 while local_impr = True do
11 Ĉ ← C;
12 local_impr ← False;
13 if e+

v ≥ e−v and |`(v)| = 1 then
14 Exchange the unique label c ∈ `(v) for a c′ /∈ `(v) chosen uniformly

at random;
15 if e+

v ≥ e−v and |`(v)| > 1 then
16 Remove from `(v) the c ∈ `(v) which corresponds to the largest

cluster containing v;
17 if e+

v < e−v and |`(v)| < p then
18 Add to `(v) the c which corresponds to the largest cluster not

containing v;
19 foreach u ∈ V \ {v} do
20 δ ← H(`(u), ˆ̀(v))−H(`(u), `(v));
21 if δ > 0 then
22 e+(v)←e+(v)+δ; e+(u)←e+(u)+δ;
23 else
24 e−(v)←e−(v)+δ; e−(u)←e−(u)+δ;
25 C ← C + δ;
26 if C ≤ Ĉ then
27 impr ← True; local_impr ← True;
28 else
29 C ← Ĉ;

30 if local_impr = True then Go to line 3;
31 else `(v)← ˆ̀(v); i++;

32 return labeling ` and solution value C;

90 Chapter 4. The Overlapping Correlation Clustering Problem

4.3.4 Bonchi et al. Local Search
Bonchi et al. [23] proposed two local search algorithms to deal with OCC using the

Jaccard index and set-intersection functions. Their framework is based on the relabeling
of objects, one at time, by solving a system of linear equations in the case of Jaccard, and
by applying a simple greedy algorithm in the case of set intersection. The main idea is to
find a good labeling of a single object given a fixed labeling of the other objects.

Let v be an object and ` be a labeling for all objects. The error incurred by v is defined
as

Cv(`(v)|`) =
∑

u∈V \{v}
|H(`(v), `(u))− s(v, u)|, (4.4)

and, consequently, the objective function (4.1) can be rewritten as

1
2
∑
v∈V

Cv(`(v)|`). (4.5)

Using these observations, Bonchi et al. proposed Algorithm 4.3, which is a simple local
search algorithm.

In the case of the Jaccard index, the following approach is used. Let v be an object to
be relabeled and ` be a fixed labeling for all u ∈ V \ {v}. Let xv be an indicator vector
such that xvj = 1 if label j is assigned to object v, and xvj = 0, otherwise. Assume that
the number of labels assigned to v is t, that is,∑

j∈L
xvj = t. (4.6)

Ideally we would like to have J (`(v), `(u)) = s(v, u) for all u ∈ V \ {v}. This can be
written as

J (`(v), `(u)) =
∑
j∈`(u) x

v
j

|`(u)|+ t−∑j∈`(u) x
v
j

= s(v, u),

which is equivalent to

(1 + s(v, u))
∑
j∈`(u)

xvj − s(v, u)t = s(v, u)|`(u)| (4.7)

for all u ∈ V \ {v}. Although Equations (4.6) and (4.7) are linear with respect to
the unknowns xvj and t, these variables are integral and therefore the system seemingly
cannot be solved in polynomial time. Bonchi et al. [23] applied a nonnegative least-squares
optimization method which led to possibly fractional xv and t values. They then sort xv
in non-increasing order, breaking ties arbitrarily. Let πv be the permutation of labels
induced by this order and consider the p sets {πv1 , . . . , πvi } for i = 1, . . . , p. The new set
of labels for v is the set {πv1 , ..., πvi } that minimizes Equation (4.4).

4.4. Experimental results 91

Algorithm 4.3: Bonchi et al. Local Search – BSL
Input: labeling function `; set V.

1 Let C be the cost of ` computed with Obj. Func. (4.1);
2 improvement ← True;
3 while improvement = True do
4 improvement ← False;
5 foreach v ∈ V do
6 Find the labeling L that minimizes Cv(L|`);
7 Let Ĉ be the cost of (L|`) computed with Obj. Func. (4.1);
8 if Ĉ < C then
9 `(v)← L; Ĉ ← C;

10 improvement ← True;

11 return labeling ` and solution_value;

For the set-intersection indicator, Bonchi et al. presented a greedy approach which
starts from an empty labeling for a given object and fixes the labeling for the other
objects as is done in the approach for the Jaccard index. In each iteration, the label that
causes the least error while improving the solution value is chosen. If such a label cannot
be found, the algorithm stops the search for this object and goes on to the next. In fact,
this greedy search solves Cv(`(v)|`) in line 6 of Algorithm 4.3.

As in Algorithm 4.2, the time complexity of Algorithm 4.3 is tricky to determine
because of its dependency on the starting solution. For the Jaccard function, the dominant
factor is the nonnegative least squares that can be computed in O(m3) time, where m is
the major dimension of the matrix (Householder [100]). Note that the matrix resulting
from Equation (4.7) has dimension n × (k + 1). As observed earlier, if k < n, then
the complexity of an iteration of the main loop (starting on line 3) is O(n4). For the
set-intersection function, each label search takes O(k2) time, which is done at most p
times. As this operation is performed for each object, each iteration of the main loop
takes O(nk3) time.

4.4 Experimental results

4.4.1 Instances
We used several datasets, grouped in two major categories, to evaluate our algorithms.

The first category has instances with known multi-label assignments. For this case, we

92 Chapter 4. The Overlapping Correlation Clustering Problem

computed the similarities between the objects using the Jaccard index. These datasets
were used to check the quality of the labelings produced by the algorithms when com-
pared to the actual labelings. We used two datasets in this category. The first, named
Emotions, corresponds to psychological trials of people listening to music (Trohidis
et al. [197]). There are 593 objects (trials) and six available labels. The second dataset,
named Yeast, is formed by micro-array expression data and phylogenetic profiles with
2417 genes in a learning set for which 14 functional classes (labels) are assigned (Elisseeff
and Weston [54]).

The second category contains instances with unknown multi-labelings. The first
dataset in this category corresponds to animal trajectories from the Starkey Project (Row-
land et al. [183]3). We used an instance with 88 trajectories of elk, mule deer, and cattle,
and classify them using five labels. To calculate the similarity between each trajectory, we
used the approach presented in Chen et al. [35], which defines the Edit Distance in Real
Sequences (EDR). The EDR is defined as following: let P = [(x1, y1, t1), . . . , (xn, yn, tn)]
be a trajectory such that each triple (x, y, t) is a position in space and time. Denote
by r(P) = [(x2, y2, t2), . . . , (xn, yn, tn)] the remainder of the trajectory, i.e., the original
trajectory without the first point. Let P and Q be two different trajectories. For p ∈ P ,
q ∈ Q, we say that m(p, q) = 1 if |px − qx| < εx and |py − qy| < εy and |pt − qt| < εt, i.e.,
the distance in space and time is not larger than a constant factor. We take m(p, q) = 0
otherwise. We say the EDR is

EDR(P,Q) =

|P | if |Q| = 0,
|Q| if |P | = 0,
min(EDR(r(P), r(Q)) +m(p1, q1),

EDR(r(P), Q) + 1,
EDR(P, r(Q)) + 1), otherwise.

The similarity between two trajectories u and v is given by

s(u, v) = 1− EDR(u, v). (4.8)

The second group of instances in this category is from the field of biology. They
consist of homologous groups of proteins from the SCOP taxonomy (Murzin et al. [151]4).
This taxonomy is a hand-made tree classification of functional proteins. We tested four
databases with 669, 587, 567, and 654 proteins (objects) for which we assigned at most
with five labels. The similarities were calculated as follows: For a node u in the protein
tree, let d(u) be the depth of u in the tree. If u is the root, d(u) = 0. For any pair of

3Available at http://www.fs.fed.us/pnw/starkey.
4Available at http://scop.mrc-lmb.cam.ac.uk/scop.

http://www.fs.fed.us/pnw/starkey
http://scop.mrc-lmb.cam.ac.uk/scop

4.4. Experimental results 93

nodes u and v, let lca(u, v) denote the lowest common ancestor of u and v. Let V be the
set of leaves of the classification tree. The similarity between different objects u ∈ V and
v ∈ V is defined as

s(u, v) = d(lca(u, v))
max(d(u), d(v))− 1 .

The third group in this category consists of 1,000 newsgroup messages spread over 20
newsgroups (Rennie et al. [177]). The similarities are calculated using a base dictionary
of the 500 most common words excluding stop words and common names but keeping
political and religious references. For each message, we construct a characteristic vector
to reflect the Term Frequency – Inverse Document Frequency (TF-IDF) of each word in
the dictionary (Jones [105]). TF-IDF is defined as

TF-IDF(t, d,D) =
(

0.5 + 0.5× f(t, d)
max{f(w, d) : w ∈ d}

)
× log |D|

|{d ∈ D : t ∈ d}|

where t is the term, d is the message, D is the set of all messages, and f(t, d) is the
frequency of term t in message d. Using these vectors, we applied a radial basis function
to obtain the similarities

s(u, v) = e||u−v||2 (4.9)

where u and v are the characteristic vectors of messages u and v, respectively.

4.4.2 Evaluated algorithms
Using the two representations of Section 4.3.1 and decoders from Sections 4.3.3 and 4.3.4,

we consider the following variations of BRKGAs:

• OLS-Comp: BRKGA using the compact representation and local search from Sec-
tion 4.3.3;

• OLS-Ext: Same as above but using the extended representation;

• BLS-Comp: BRKGA using the compact representation and Bochi et al. local search
from Section 4.3.4;

• BLS-Ext: Same as above but using the extended representation;

We also tested the algorithms from Bonchi et al. [23]. Originally, each run of those
algorithms starts with a simple random vector and ends when Algorithm 4.3 cannot find
improvements. To fortify these algorithms, we built multi-start approaches around them,
allowing each run to take several iterations, each starting with a different random vector.
We always keep the best solution and the algorithms stop when a stopping criterion is

94 Chapter 4. The Overlapping Correlation Clustering Problem

reached. These modifications have a great impact on the original algorithms in terms
of solution quality. As expected, the multi-start approaches outperformed the original
algorithms. Consequently, we use them here but still refer to them as Bonchi.

It worths to mention that we also try to build a integer linear programming to the
set-intersection case but this approach is very slow even for the smallest instances. As we
aim at large datasets, we discarded this approach.

4.4.3 Computational environment and parameters
The experiments were conducted on identical machines with two 6-core Intel Xeon 2.4

GHz CPUs (two threads per core) and 32 GBytes of RAM running GNU/Linux. Running
times reported are UNIX real wall-clock times in seconds, excluding the effort to read the
instance. The algorithms are implemented in C++ and we use the GNU g++ compiler
version 4.8. Random numbers were generated by an implementation of the Mersenne
Twister [143]. For the nonnegative least-squares method, we use the Householder rank-
revealing QR decomposition [100] provided by the Eigen library [89].

For the BRKGAs, we set the parameters following the advise of Gonçalves and Re-
sende [81]. The population size was set to pop = 500, the elite size to pope = d0.30pope,
and the number of mutants to popm = b0.15popc. The probability of inheriting each allele
from the elite parent was ρe = 0.70. We used the island model (Whitley et al. [206]) with
three independent and concurrent populations where every 100 generations each popula-
tion exports its two best solutions to the other populations. After 300 generations without
improvement, all populations are reset to vectors of random keys. We set τ = 2

√
n after

performing some short tuning trials and analyze the quality of solutions as a function of
optimization time. We use 12 simultaneous cores for decoding.

Thirty independent runs were performed for all five algorithms. Each algorithm ran for
a given maximum amount of time (instance dependent) or at for most 1,000 generations
(or iterations) without improvement of the best solution.

4.4.4 Defining maximum running times for BRKGA
Since we have several types of problems, a significant variation in BRKGA running

times is expected on each problem. We carried out some preliminary experiments and
observed that the BRKGAs obtained a large number of small improvements in solution
quality. In fact, in the first hour of optimization, the BRKGAs improved the solution
about every two or three generations. In light of this, we performed one long run for
an instance of each scenario. For these long runs we did not set a time limit but rather
stopped after 1,000 generations without improvement of the best solution. As we only
did one long run per scenario, we cannot draw any statistically significant conclusion

4.4. Experimental results 95

about comparisons of the BRKGAs with the different H functions. We limit ourselves to
observing the general behavior of these BRKGAs.

Figure 4.2 depicts the convergence of the cost value as a function of time and iterations
for the Emotions dataset. The Y -axis shows the cost value. The X-axis represents the
time in seconds in Figure 4.2a and the number of iterations in Figure 4.2b. The solid red
lines show the convergence for the BRKGA with the set-intersection function for values
of p from one to six. The dashed blue line shows the same but for the Jaccard index
function. We note that the BRKGA takes a long time with small improvements in the
best solution and, after 30,000 seconds (about 8.3 hours), the improvements are even
rarer. For the BRKGA with the Jaccard index function, values very close to zero, a lower
bound on the optimum, are reached. Using the set-intersection indicator, the results are
worse but the convergence behavior is similar. Looking at the number of iterations, one
can note that the BRKGA with set-intersection function converges faster than it does
with respect to time. We can conclude, therefore, that the local search spends more time
using this function.

For other instances, the curves have the same behavior and they can be found in
Appendix C.1. For the Yeast dataset, running times are much larger than those on
Emotions. In this case, the BRKGA with the set-intersection function has slower con-
vergence than it does with the Jaccard index but is able to obtain improvements even
after running for 1,000,000 seconds (about 11 days). For the Starkey project dataset, the
running times are very small for both H functions, mainly due to the size of the problem

0 10000 30000 50000

0
5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

Time (seconds)

C
o

s
t

●

●

●

●

●

●
●

●

●

Labels (p)

Intersection p=1

Intersection p=2

Intersection p=3

Intersection p=4

Intersection p=5

Intersection p=6

Jaccard p=1

Jaccard p=2

Jaccard p=3

Jaccard p=4

Jaccard p=5

Jaccard p=6

(a) Evolution over time.

0 1000 2000 3000

0
5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

Iteration

C
o

s
t

●

●

●

●

●

●
●

●

●

Labels (p)

Intersection p=1

Intersection p=2

Intersection p=3

Intersection p=4

Intersection p=5

Intersection p=6

Jaccard p=1

Jaccard p=2

Jaccard p=3

Jaccard p=4

Jaccard p=5

Jaccard p=6

(b) Evolution over iterations.

Figure 4.2: Evolution of the cost for the Emotions dataset. Only 1% of the symbols
correspondent to solutions are showed.

96 Chapter 4. The Overlapping Correlation Clustering Problem

(88 objects). One notes that the BRKGA with set intersection is much worse than with
the Jaccard index (except for the case of p = 2, in which they obtained similar results).
For the SCOP dataset 1, we observe different behavior: although the convergence is sim-
ilar, running times are smaller than for the previous scenarios and, more importantly,
the BRKGA with set intersection shows poor results when compared to Emotions and
Yeast. Later, we discuss these results in more detail. For newsgroup messages, we omit-
ted the curves for the BRKGA with set intersection since it obtained results 20 times
worse than with the Jaccard index but with convergence about 400 times faster. This
may indicate that set intersection is not appropriate for clustering in this type of instance.

From these experiments, we can estimate the running times for each scenario and set
time bounds for the experiments to follow. For Emotions and Yeast, we limit the
experiments to at most eight hours (28,800 seconds) trying to balance running time and
solution quality. This limit is less favorable to the BRKGA with set intersection which still
finds solution improvements after 15 days (1,250,000 seconds). For Starkey and SCOP,
we set the maximum running time to one hour (3,600 seconds). For newsgroup messages,
the maximum running time is set to seven days (604,800 seconds).

4.4.5 Evaluating the quality of the algorithms on ground-truth
instances

To evaluate the quality of the algorithms, we first applied them on instances in which
we know the actual labeling a priori. We compare the costs of the final solutions produced
by the algorithms and also make use of two metrics, precision and recall. Define P (x) =
{{u, v}, u 6= v : x(u) ∩ x(v) 6= ∅}, the set of unordered pairs of objects with at least one
common label in x. Let g be the labeling of the ground truth. The precision of a labeling
` is defined as

Precisiong(`) = |P (`) ∩ P (g)|
|P (`)| . (4.10)

The precision is proportion of the number of relevant true positives obtained by the
algorithm to all labeling assigned by the algorithm. In other words, it is the proportion of
obtained labelings that are similar to the given labelings. The recall of a labeling can be
seen as the relative quantity of correct labels (true positives) obtained by the algorithm.
The recall of a labeling ` is defined as

Recallg(`) = |P (`) ∩ P (g)|
|P (g)| . (4.11)

Note that for ` = g, Precisiong(`) = Recallg(`) = 1.
Figure 4.3 shows the performance of the algorithms for the Emotions dataset. The

X-axis on all plots corresponds to the maximum number of allowed labels per object.

4.4. Experimental results 97

For Figures 4.3a and 4.3c, the Y -axis corresponds to the scaled solution costs (lower
being better). In the plots, the red line with circles shows results for Bonchi, the black
lines with triangles for the BRKGAs with the OLS decoder, while the blue lines with
squares show results for the BRKGAs with the BLS decoder. Solid symbols correspond to
the compact chromosome representation and hollow symbols correspond to the extended
representation. The description of Figures 4.3b and 4.3d is similar, but there, solid lines
show precision and dashed lines, recall (with higher being better). Figures 4.3a and 4.3b

Max. number of labels per object (p)

S
c
a

le
d

 C
o

s
t

1 3 52 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

●

●

●

●

● Bonchi

OLS−Comp

OLS−Ext

BLS−Comp

BLS−Ext

(a) Cost – Jaccard.

Max. number of labels per object (p)

P
re

c
is

io
n

/R
e

c
a

ll

1 3 52 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

●
● ● ●

●

●

●
●

● ●

●

●

Bonchi − Precision
Bonchi − Recall
OLS−Comp − Precision
OLS−Comp − Recall
OLS−Ext − Precision

OLS−Ext − Recall
BLS−Comp − Precision
BLS−Comp − Recall
BLS−Ext − Precision
BLS−Ext − Recall

(b) Prec./Rec. – Jaccard.

Max. number of labels per object (p)

S
c
a

le
d

 C
o

s
t

1 3 52 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
● ●

●

●

●

● Bonchi

OLS−Comp

OLS−Ext

BLS−Comp

BLS−Ext

(c) Cost – Set-intersection.

Max. number of labels per object (p)

P
re

c
is

io
n

/R
e

c
a

ll

1 3 52 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

● ● ●

● ● ●

● ● ●

● ● ●

●

●

Bonchi − Precision
Bonchi − Recall
OLS−Comp − Precision
OLS−Comp − Recall
OLS−Ext − Precision

OLS−Ext − Recall
BLS−Comp − Precision
BLS−Comp − Recall
BLS−Ext − Precision
BLS−Ext − Recall

(d) Prec./Rec. – Set-intersection.

Figure 4.3: Comparison of costs, precision, and recall among the algorithms for the Emo-
tions dataset.

98 Chapter 4. The Overlapping Correlation Clustering Problem

correspond to the Jaccard index function and Figures 4.3c and 4.3d, to the set-intersection
function.

The algorithms using the Jaccard index with p = 1 have similar performance. One
notes that this case is very close to traditional clustering and results in a partition of the
objects. But as more labels per object are allowed, the performance of Bonchi degrades
while all but one of the BRKGAs perform well. The exception is OLS-Comp, which followed
the performance of Bonchi and displayed a large variation in its results. The same
decoder using the extended representation (OLS-Ext) obtained the best results on average.
Analyzing Figure 4.3b, one can see that the precision and the recall of the BRKGAs are
always above those of Bonchi. Even OLS-Comp, which obtained costs similar to those of
Bonchi, showed better precision and recall. The algorithms that use the Bonchi et al.
approach for set intersection showed worse performance than those using the OLS decoder.
It is worthwhile to mention that the solutions obtained using the Jaccard index function
have different cost values from those obtained using the set-intersection function, as the
objective functions are different.

Figure 4.4 depicts results for the Yeast dataset. Its description is identical to that
of Figure 4.3. Here, we observe a very different behavior for both the Jaccard index and
set-intersection functions. For the Jaccard index, note that the algorithms using the OLS
decoder perform poorly (Figure 4.4a) when the number of labels allowed for each object is
small, while algorithms using BLS performed quite well. As p increases, OLS outperforms
BLS. In particular, when p is between 8 and 11, the algorithms switch their behavior.

Max. number of labels per object (p)

S
c
a

le
d

 C
o

s
t

1 3 5 7 9 11 132 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

●

●

●

●

● ●

●

● ● ●

●

● Bonchi
OLS−Comp
OLS−Ext
BLS−Comp
BLS−Ext

(a) Cost – Jaccard

Max. number of labels per object (p)

P
re

c
is

io
n

/R
e

c
a

ll

1 3 5 7 9 11 132 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●
● ●

● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

●

Bonchi − Precision
Bonchi − Recall
OLS−Comp − Precision
OLS−Comp − Recall
OLS−Ext − Precision

OLS−Ext − Recall
BLS−Comp − Precision
BLS−Comp − Recall
BLS−Ext − Precision
BLS−Ext − Recall

(b) Prec./Rec. – Jaccard

Figure 4.4: Comparison of costs, precision, and recall among the algorithms for the Yeast
dataset (continue in the next page).

4.4. Experimental results 99

Max. number of labels per object (p)

S
c
a

le
d

 C
o

s
t

1 3 5 7 9 11 132 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●
●

●

● ● ● ● ● ●

●

● ● ● ●

● Bonchi
OLS−Comp
OLS−Ext
BLS−Comp
BLS−Ext

(c) Cost – Set-intersection

Max. number of labels per object (p)

P
re

c
is

io
n

/R
e

c
a

ll

1 3 5 7 9 11 132 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Bonchi − Precision
Bonchi − Recall
OLS−Comp − Precision
OLS−Comp − Recall
OLS−Ext − Precision

OLS−Ext − Recall
BLS−Comp − Precision
BLS−Comp − Recall
BLS−Ext − Precision
BLS−Ext − Recall

(d) Prec./Rec. – Set-intersection

Figure 4.4: (Continued) Comparison of costs, precision, and recall among the algorithms
for the Yeast dataset.

However, it is interesting to notice that both precision and recall are relatively stable.
For the set-intersection function, the plots resemble the behavior of those for the Jaccard
index function on the Emotions dataset. Finally, note that the BRKGAs with BLS
found better solutions on the Yeast dataset than they did on Emotions. All BRKGAs
obtained better precision on Yeast than they did on Emotions.

4.4.6 Evaluating the algorithms for instances with unknown multi-
labeling

To evaluate the algorithms on instances with no multi-labeling given a priori, we
first consider the Starkey project dataset. The algorithms were run for labelings of size
p = 1, 2, 3, from a total of k = 5 available labels. Figure 4.5 shows the costs of the
labelings obtained by the algorithms. For each scenario (consisting of an H function and
a value of p), we scaled the costs into the interval [0, 1] using the minimum and maximum
costs of all algorithms. The box plots show the smallest cost (lowest whiskers), the first
quartile (bottom box), the median cost (filled circles), the third quartile (upper box), the
largest cost (highest whiskers), and the outliers (gray hollow circles). We observe that
the sizes of the boxes for all configurations are very small, indicating that similar costs
were found for all runs on a given algorithm.

For the Jaccard index, BLS-Comp and BLS-Ext were able to produce the best results,
although slightly different. For set intersection, OLS-Comp found better solutions, although
in some cases OLS-Ext also found good solutions as its outliers suggest. To confirm these

100 Chapter 4. The Overlapping Correlation Clustering Problem

Algorithms

S
c
a

le
d

 C
o

s
t

0.0

0.2

0.4

0.6

0.8

1.0

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●

●

 : P 1

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●●●

●●●

●

●●●

●

●

●●

●

●

 : P 2

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●●
●

●● ●
●

●●

 : P 3

(a) Jaccard.

Algorithms

S
c
a

le
d

 C
o

s
t

0.0

0.2

0.4

0.6

0.8

1.0

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●

●

●

●

●

●

● ●

 : P 1

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●●●●●●
●●

●●

●

●

●

 : P 2

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●●●●●●

●

●

●

●

●

●

●

●●●●●● ●●●●●●

 : P 3

(b) Set-intersection.

Figure 4.5: Boxplot of median and quartiles for each algorithm in Starkey dataset.

results, we applied the Wilcoxon-Mann-Whitney U test (Conover [38]). This test assumes
as the null hypothesis that the location statistics are equal in both distributions. Assuming
a confidence interval of 95%, almost all algorithms presented significant difference in their
results when compared to each other for the Jaccard index. The exception is the pair
BLS-Comp and BLS-Ext for p = 3, whose p-value is 0.67 and we cannot thus assure a
significant difference. For the set-intersection function, OLS-Comp was significantly better
than the other algorithms. Bonchi, BLS-Comp, and BLS-Ext found solutions having the
same value on all runs. Detailed test results are presented in Table C.1 in Appendix C.2.

Figure 4.6 shows results on the four SCOP datasets. The structure is similar to that of
Figure 4.5, except that the scaling was done for each dataset set separately and then com-
bined in the plots for each configuration. For the Jaccard index, BLS-Comp and BLS-Ext
found good solutions for p = 1, whereas OLS-Comp, OLS-Ext, and BLS-Ext had the best
results for p = 2. In fact, the U test did not present significant difference among these
three algorithms and value of p (for a confidence interval of 95%). For p = 3, OLS-Ext
presented significantly better results than the other algorithms. For set intersection, the
algorithms performed similarly and for most cases, no significant difference was found.
Notice that the results are closer to 1.0 (worst solutions) which indicates that the algo-
rithms converged to local minima frequently. But since the bottom whiskers are at 0.0,
the algorithms did find a good solution. Again, refer to the Appendix C.2 for the complete
tests.

Figure 4.7 shows results for the instance from the newsgroup messages dataset. For
the Jaccard index function, the behaviors of the algorithms are similar to those on the

4.4. Experimental results 101

other instances. For p = 1, the algorithms using the Bonchi approach are able to find
better results, but for p ≥ 2, OLS-Comp found significantly better solutions. For set
intersection, the algorithms using the Bonchi approach found the best results with no
significant difference among them.

Table 4.1 lists the algorithms that obtained the best results for each dataset and
configuration. For the Jaccard index, both OLS-Ext and BLS-Ext presented the best
results for most cases, which indicates that algorithms using the extended representation

Algorithms

S
c
a

le
d

 C
o

s
t

0.0

0.2

0.4

0.6

0.8

1.0

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●●●●●

●
●

 : P 1
B

o
n

c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●

●

●

●

●

 : P 2

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●●●
●●

●●

●

●

 : P 3

(a) Jaccard.

Algorithms

S
c
a

le
d

 C
o

s
t

0.0

0.2

0.4

0.6

0.8

1.0

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●●

 : P 1

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●

●

 : P 2

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●●

 : P 3

(b) Set-intersection.

Figure 4.6: Boxplot of median and quartiles for each algorithm in SCOP dataset.

Algorithms

S
c
a

le
d

 C
o

s
t

0.0

0.2

0.4

0.6

0.8

1.0

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

 : P 1

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

 : P 2

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

 : P 3

(a) Jaccard.

Algorithms

S
c
a

le
d

 C
o

s
t

0.0

0.2

0.4

0.6

0.8

1.0

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

 : P 1

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●

 : P 2

B
o

n
c
h

i
O

L
S

−
C

o
m

p
O

L
S

−
E

x
t

B
L

S
−

C
o

m
p

B
L

S
−

E
x
t

●●

 : P 3

(b) Set-intersection.

Figure 4.7: Boxplot of median and quartiles for each algorithm in newsgroup messages.

102 Chapter 4. The Overlapping Correlation Clustering Problem

are able to find better solutions than those using the compact representation. The OLS
approach obtained more best solutions than did the BSL approach. For set intersection,
the performances of the algorithms were similar, reaching the best solution at least once in
most cases. In the Starkey dataset, the algorithms using OLS performed better than those
which did not. For the newsgroup message dataset, Bonchi found the best solutions.

Table 4.1: Algorithms that computed the best results for each instance, H function, and p.

Inst. p Jaccard Intersec Inst. p Jaccard Intersec

1 BLS-Ext
OLS-Comp/
OLS-Ext

1 BLS-Ext All

2 BLS-Ext OLS-Comp 2 OLS-Comp
Except
OLS-ExtSt

ar
ke
y

3 BLS-Ext
OLS-Comp/
OLS-Ext

SC
O
P3

3 OLS-Ext All

1 BLS-Ext All 1 BLS-Ext All
2 OLS-Ext All 2 OLS-Ext All

SC
O
P1

3 OLS-Ext All SC
O
P4

3 OLS-Ext All

1 BLS-Ext All 1 Bonchi Bonchi
2 OLS-Ext All 2 OLS-Comp Bonchi

SC
O
P2

3 OLS-Ext All N
ew

s.

3 OLS-Comp Bonchi

4.5 Concluding remarks
In general, the BRKGAs are effective at finding good solutions and are able to beat

the Bonchi et al. approach on most cases when using the Jaccard index in the objective
function. For set intersection, the algorithms based on Bonchi et al. approach presented
better results than other algorithms in most scenarios. Also, the extended representation
allows the BRKGAs to obtain better results when compared to the compact representation
on most cases. On the negative side, running times to convergence for the BRKGAs can
be high. We believe that this is not a major issue, since most applications of OCC are
prospective in nature and therefore do not require real-time response.

Chapter 5
The Winner Determination Problem
in Combinatorial Auctions

THIS chapter addresses the Winner Determination Problem (WDP) in combinatorial
auctions. This problem consists in picking a subset of bids in a general combina-

torial auction to maximize the overall profit using the first-price model. This winner
determination problem assumes that a single bidding round is held to determine both
the winners and prices to be paid. Although this problem is not directly related to net-
work design, combinatorial auctions have been widely used by governmental agencies to
sell rights of electromagnetic spectrum. In these spectrum auctions, telecommunication
companies place bids over spectrum ranges in a given region. The winner will have the
rights to operate over that region. An extensively number of spectrum auctions have
been conducted in the last 15 years mainly due to the increase of wireless data demand
and the introduction of new technologies. There is abundant literature on spectrum auc-
tions. Cramton et al. [41] present a good review and recent results can be found in Hoefer
et al. [96] and Yang et al. [211].

In this thesis, we do not address spectrum auctions themselves but more general
auctions that can be used in several scenarios. We introduce six variants of biased random-
key genetic algorithms for this problem. Three of them use a novel initialization technique
that makes use of solutions of intermediate linear programming relaxations of an exact
mixed integer-linear programming model as initial chromosomes of the population. An
experimental evaluation compares the effectiveness of the proposed algorithms with a
standard mixed linear integer programming formulation, a specialized exact algorithm,
and the best-performing heuristics proposed to date for this problem. The proposed
algorithms are competitive and offer strong results, mainly for large-scale auctions. This
chapter is based on Andrade et al. [7].

103

104 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

5.1 Introduction
An auction is a mechanism or negotiation protocol for exchanging goods and services.

In general, such goods are offered for bid, followed by a pre-determined round of bids,
after which the highest bidder is pronounced the winner and pays for the negotiated item.
Procurement auctions, on the other hand, are defined as follows: the auctioneer requests a
set of goods, and each bidder can submit bids for this set. The lowest bidder is pronounced
the winner and the auctioneer is paid for the goods. Today, auctions are widespread and,
more importantly, distributed, thanks mainly to the Internet. Examples can be found in
advertisement and position auctions in search engines such as Google and Yahoo!, as well
as those coordinated by governments to negotiate radio spectrum, offshore oil and gas
exploration, general goods, and services, among others.

In this chapter, we are interested in general combinatorial auctions where bidders place
bids (usually sealed) on subsets of goods, also known as bundles. Each bidder has access
to a finite set of goods and is asked to come up with a list of bids, where each bid is an
offer for a subset of goods. The objective of a bidder is to win the bid at an acceptable
price. The greatest advantage of this type of auction is that it generates high economic
efficiency since it allows the bidders to express both complementarity and substitutability
of their preferences within bids. More formally, let M be a set of goods, g1, g2 ∈ M be
two goods, and let f : 2M → R be a valuation function for sets of these goods. Goods g1

and g2 are said to be complementary if and only if f({g1}) + f({g2}) ≤ f({g1, g2}), where
{g1, g2} denotes a bundle of goods g1 and g2. They are said to be substitutes if and only
if f({g1}) + f({g2}) ≥ f({g1, g2}). For other variations, see Parsons et al. [162]. Since we
allow bids for any subset of goods, there could be as many as n(2m − 1) bids, where n is
the number of bidders andm is the number of goods. Hence, one of the key problems arise
in auction mechanisms is to determine the winners of the auction, i.e. selecting pairwise
disjoint bids to maximize the sum of the values of the selected bids. For other associated
problems, see Cramton et al. [41].

We focus on the Winner Determination Problem or WDP. In general, the WDP is
equivalent to the weighted set packing problem, a well-known NP-hard problem (Garey
and Johnson [65]). Notice that solving the WDP in auctions with no additional con-
straints and where only simple bids are allowed (i.e., bids for a single good) can be easily
done in O(nm)-time. The seminal work on the WDP is credited to Rothkopf et al. [182],
who identified several special cases that can be solved in polynomial time. Such cases
involve special bid structures like bid trees, geometrical regions, and cardinal restricted
bids. However, these structures limit the expressiveness of the bids, potentially leading
to an inefficient economy (Bichler et al. [19]).

5.1. Introduction 105

Sophisticated exact approaches to solve the WDP were proposed by Sandholm [185,
186] and Escudero et al. [56], who also presented a polyhedral study applying cuts in an
exact algorithm that scaled well in auctions with up to 300 bids. With regard to approx-
imation algorithms, the general case cannot be approximated by a factor of O(m1/2+ε)
of the optimal total value of the selected bids (unless P = NP), a bound inherited
from the set packing problem (see Halldórsson [92], who also describes an algorithm with
O(`/(log `)2)-approximation that runs in O(max(`c,m2`2))-time, where ` is the number
of bids and c is a constant). An approximation algorithm with factor O(

√
m) is described

in Lehmann et al. [122] for the case in which each bidder has interest in only one partic-
ular bundle. For more approximation algorithms for special formulations, see Dobzinski
et al. [49] and Feige and Vondrák [58]. Several such algorithms and special cases of the
winner determination problem are revisited in Blumrosen and Nisan [22].

The first heuristic addressing the WDP specifically is the Casanova algorithm (Hoos
and Boutilier [98]), a multi-start stochastic local search algorithm that runs on top of
greedy randomized initial solutions. A hill-climbing procedure can be found in Holte [97].
The first metaheuristic-based heuristics addressing the problem were a genetic algorithm
and a simulated annealing heuristic (Schwind et al. [188]). A hybrid simulated annealing
with local search called SAGII was proposed by Guo et al. [90]. To date, the strongest
results come from a memetic algorithm by Boughaci [25] and Boughaci et al. [26].

It is interesting to observe that the WDP can also be modeled as the Multidimensional
Knapsack Problem (MDKP), enabling the utilization of the algorithms developed to
tackle the latter. As with the weighted set packing, the MDKP is a well-studied NP-
hard problem frequently used to evaluate new algorithms due to its intrinsic difficulty and
its well-established benchmark test sets. One of the best heuristics to deal with MDKP
was developed by Raidl and Gottlieb [174] and consists in a genetic algorithm with weight-
biased representation using surrogate duality to modify item weights. Recently, Mansini
and Speranza [140] presented an exact algorithm based on the idea of restricted core
problems where a recursive variable fixing step is done until a given threshold is reached.
The remaining subproblems are explored by a branch-and-bound approach. Several other
approaches can be found, among them genetic algorithms (Chu and Beasley [36]), tabu
search (Vasquez and Vimont [199]), ant-based optimization (Alaya et al. [2]), GRASP
(Chardaire et al. [33]) and other hybridization techniques, e.g. Puchinger et al. [173] and
Boyer et al. [27].

We address the winner determination problem of general combinatorial auctions using
the first-price model for single goods. We restrict ourselves to sealed auctions that use a
single round to determine winners and prices to be paid, where the bids can be placed
with no constraints other than their non-negativity. We also consider that the bids are
anonymous and that bidder identity is not used to model or solve the underlying prob-

106 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

lem. Six variants of biased random-key genetic algorithms (BRKGAs) are implemented
to address this problem, three of them adopting a novel scheme that employs linear pro-
gramming (LP) relaxations to initialize the population when the underlying problem can
be modeled as a 0–1 integer linear program. In such problems, an LP relaxation directly
serves as a chromosome of the BRKGA heuristic, since both are defined over the inter-
val [0, 1]. Experiments comparing the BRKGAs with a standard mixed integer-linear
programming formulation of the WDP solved with a commercial solver, as well as the
best performing heuristics proposed for the problem, the best performing exact algorithm,
and the best performing heuristic for the MDKP, are carried out to identify the strengths
and drawbacks of each approach.

This chapter is organized as follows. In Section 5.2 we formalize the winner determi-
nation problem in combinatorial auctions. We then address biased random-key genetic
algorithms follow up with a description of our heuristics in Section 5.3. Experimental re-
sults are provided and discussed in Sections 5.5 and 5.6, respectively. Concluding remarks
are made in Section 5.7. Additional results are found in Appendix D.

5.2 General combinatorial auctions and their formu-
lations

Several models for combinatorial auctions have been proposed in the literature, but
most of them introduce additional constraints to limit the context of the auction so as to
expose special properties that make the problem computationally easier. We next present
a general description. Let N = {1, 2, . . . , n} be a set of bidders and M = {1, 2, . . . ,m}
be a set of goods. A collection of bids is represented by a tuple B = (B1, . . . ,Bn) such
that Bi is the bid set of bidder i. Each bid B ∈ Bi, for i = 1, . . . , n, is a list of desired
goods (bundle), i.e., B ⊆ M such that bidder i provides the function bi : 2M → R+

that measures how much bidder i is willing to pay for a bundle. An allocation of goods
is represented by a tuple S = (S1, . . . ,Sn) where Si is the set of winner bids of bidder
i = 1, . . . , n. Note that (⋃

S∈Si
S

)
∩
(⋃
R∈Sj

R

)
= ∅, for all i, j ∈ N.

We consider the private information model in which the auctioneer only knows the set
of bids B and the functions bi, for all i = 1, 2, . . . , n. We restrict ourselves to first-price
sealed auctions where the bidders submit one bid per desired bundle. This contrasts
with iterative auctions, where the bidders may submit multiple bids to the same bundle
in different rounds. Only the auctioneer can handle the bids and the winning bidders

5.2. General combinatorial auctions and their formulations 107

pay what they offered in their winning bids, i.e., bi(Si). Sealed auctions are used mainly
in government and industry procurements. For more on the theory of auctions and its
variants, see Krishna [114].

The major work done in the literature has related the WDP with both the weight
set packing problem and the multidimensional knapsack problem (see Bikhchandani and
Ostroy [20] for other models). In the set packing problem, we want to select weighted
pairwise disjoint sets from a collection of items while maximizing the sum of the weights
of the selected sets. A special case of this problem is the weighted stable set problem
where we have a graph whose nodes have weights and one must choose a subset of nodes
with no common incident edge and maximize the sum of weights. The WDP can be
reduced to the weighted stable set problem in the following way: consider the intersection
graph G = (V,E), where each s ∈ V represents a bid. An edge (s, s′) ∈ E exists if and
only if Bs ∩ Bs′ 6= ∅, such that Bs ∈ Bi, Bs′ ∈ Bj, i, j ∈ N and i 6= j, i.e., the edge
exists if and only if two bids from different bidders request a common good. A stable
set on this intersection graph corresponds to a set of pairwise-disjoint bids from different
bidders. Mathematically, the stable set problem can be written as the standard integer
programming model

max
∑
s∈V

bsxs

s.t. xs + xs′ ≤ 1 ∀(s, s′) ∈ E (5.1)
xs ∈ {0, 1} ∀s ∈ V,

where we use the abbreviation bs = b(Bs), i.e., bs is the value offered for bundle s. Let
the binary variable xs = 1 if and only if bid s is a winner. The above formulation enables
overlapping among bids of a same bidder. Its main advantage is that the bidder in question
need not present a bid for each subset of desired goods although the bidder may possibly
overpay for some of them. In fact, this formulation is appropriate for super-additive
valuations. The number of variables and constraints of this formulation is, respectively, `
and O(`2), where ` is the total number of bids.

Another very common way to deal with WDP is to model it as a multidimensional
knapsack problem. We consider that each bid is an item to be packed in the dimensions
induced by the goods. Let B̂ = ⋃n

i=1 Bi be the set of all bids. In case two or more bids
contain the same goods, we add a “dummy” good to each bid such that the new good
uniquely identifies the bundle (Nisan [157]). Let wjk = 1 if good j ∈ M is considered in
bid k ∈ B̂, wjk = 0, otherwise. The MDKP can be model as

max
∑
k∈B̂

bkxk

s.t.
∑
k∈B̂

wjkxk ≤ cj ∀j ∈M (5.2)

108 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

xk ∈ {0, 1} ∀k ∈ B̂.

Again, we abuse the notation of bk as the value offered for bundle k and we consider as
winning bids, all k such that xk = 1. For combinatorial auctions with single goods, we
have that cj = 1 for all j ∈M . A first observation is that this formulation can deal with
multi-unit auctions where we can have multiple copies of good j (by allowing cj ∈ N for all
j ∈M) and a bid can request a certain number of copies of the good (by allowing wjk ∈ N,
for j ∈ M and k ∈ B̂). The number of variables and constraints of this formulation are,
respectively, ` and O(m), where ` is the number of bids and m is the number of goods.

The choice between the stable set and MDKP models can be very tricky in the case
of single-unit combinatorial auctions. There are two important aspects to analyze: the
tightness of the formulations and their sizes. With respect to tightness, it is well-known
that the MDKP model (again, for the single-unit case) generates tighter formulations
than the stable set model, since the former contains more clique inequalities than the
latter and, therefore, results in better linear programming relaxations (Padberg [161]). In
fact, it is known that the stable set model, even with clique inequalities, leads to poor
relaxations (Carr and Lancia [31]).

With respect to size, although the MDKP formulation has the size O(`m), it can be
much larger than the stable set formulation. The problem does not lie in the formulation
itself, but in the input that can potentially be exponential for the MDKP in the number of
goods. To illustrate this, suppose that a bidder has the following bids: B1 = ({1, 2}, $10),
B2 = ({2, 3, 4}, $10), and B3 = ({4, 5}, $10). If we consider only these bids, the stable set
formulation will have three variables and no constraint, since the overlapping bids belong
to the same bidder. In the MDKP, the bidder must generate, besides the given bids,
the bids B′12 = ({1, 2, 3, 4}, $20), B′13 = ({1, 2, 4, 5}, $20), B′23 = ({2, 3, 4, 5}, $20), and
B′123 = ({1, 2, 3, 4, 5}, $30) since the bidder cannot win overlapping bids in this model.
Although we have only one constraint, the number of variables (bids) is exponential with
respect to the those in the stable set model. Note that if bidder identities are unknown,
we must consider each bid individually and the MDKP becomes the best choice. In this
work, we do not consider bidder identities and therefore adopt the MDKP model.

5.3 Biased random-key genetic algorithms for the win-
ner determination problem

For solving the WDP, we proposed biased random-key genetic algorithms with three
different decoders and two initialization schemes. We now focus on BRKGA decoders
for the winner determination problem. Recall that an instance of the WDP consists
of finite sets of bidders N = {1, . . . , n}, goods M = {1, . . . ,m}, and a collection of bids

5.3. Biased random-key genetic algorithms for the winner determination problem 109

B = (B1, . . . ,Bn), where Bi is the bid set of bidder i ∈ N . As aforementioned, we have not
addressed the bidder identities; instead, we consider the bids B̂, as defined in Section 5.2,
but in some fixed order such that B̂ = (B1, B2, . . . , Bt), where t = |B̂|. Each bid Bj has
value bj. The decoders select a subset of bids that is maximal with respect to the sum of
their values while respecting the pairwise-disjoint constraints among selected bids.

We develop three approaches for decoding a solution. These approaches are related
in how they select and analyze the bids based on chromosome values and structural
information of the problem. Define the size of each chromosome to be t. Our decoders
associate each bid with an allele, i.e., the value of the j-th random key is associated with
the j-th bid. The first step is to sort the bids in some particular order, generating a
permutation of bids.

Chromosomal approach: The keys are sorted in non-increasing order of their values.
Ties are broken by element indices;

Greedy approach: We first choose the keys whose values are greater than or equal to a
threshold τ ; then, these keys are sorted in non-increasing order of the cost/benefit of
their respective bids, i.e., bj/|Bj|. Notice that, in the greedy approach, the relative
order of the bids is fixed for all possible chromosomes and, in fact, a permutation of
the bids is not generated. Instead, we generate an ordered list containing a subset
of the original bids. Ties are broken by element indices;

Surrogate Duality approach: Similar to the greedy approach but the cost/benefit is
calculated differently. Let α be the dual solution vector of the relaxation of Formu-
lation (5.2) when x ∈ [0, 1]t. Note that each αi is tied to good i and represents the
“shadow price” of i. The cost/benefit of Bj is bj/

∑
i∈Bj αi. This surrogate duality

approach was first proposed by Pirkul [168]. As in the above greedy approach, the
dual vector α may be computed only once, and ordered lists can then be generated
from it. Again, ties are broken by element indices;

Note that in the greedy and surrogate approaches, the parameter τ induces an implicit
binary chromosome encoding and does not take advantage of the magnitude of the keys
as does the chromosomal approach. The rationale behind the greedy approach is that
the algorithm will take the most efficient bundles at first. This means that it will prefer
the bids that most value the goods individually. The surrogate duality approach tries
to capture the aggregate consumption levels of goods, meaning that bid efficiency is a
measure of how much the bid impacts the entire system when it is chosen as the winner.
In other words, if the marginal cost of the goods for a given bid is high, then this bid
considers goods with high demand and it may not be worthwhile to choose it as winner
if it were to offer a low value for these goods.

110 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

As an example, consider the chromosome in Figure 5.1. In chromosomal approach,
we simply sort the keys generating a permutation of bids, as shown by the indices of the
vector in Figure 5.1a. In the greedy and surrogate dual approaches, we first filter the
bids by their keys (using τ = 0.5 in this example) and then sort the remaining bids in
non-increasing order of their cost/benefit (as shown in the grey vector in Figure 5.1b).

One can note that in the chromosomal approach, the chromosome is used to generate a
permutation of bids to be used in the subsequent processing. In the greedy and surrogate
dual cases, the chromosome is used to generate a subset of bids whose size is controlled by
parameter τ . Note that if τ = 0, then all bids are considered at once and, as the relative
order of bids is fixed a priori due the cost/benefit relation, the decoder always returns
the same solution. This way, τ > 0 can be viewed as a separation threshold. Lines 3–7 of
Algorithm 5.1 summarize these procedures.

The next phase (lines 8–14) uses the sorted list of bids detailed above to construct
a solution for the WDP. Initially, no bid is selected and all goods are unmarked. The
decoder iterates over the bids in the supplied list, selecting a bid whenever all of its goods
are not yet marked, thus maintaining the property that the winning bids are mutually
exclusive with respect to their goods. If the current bid Bj is selected, its corresponding
goods are then marked. Otherwise, if bid Bj has a conflicting good with another bid
already selected, it is ignored and the value of the corresponding key, say κj, is reset to
1−κj if κj > 0.5, discouraging this bid from being considered in the following generations.
Note that if κj ≤ 0.5, this bid is already discouraged and its key value need not change.

After this primary construction phase, the algorithm has checked all bids in the chro-
mosomal approach. Therefore, in this case, it returns the solution value. In the greedy

1

0.6

2

0.9

3

0.8

4

0.5

5

0.3

6

0.2Keys

Bids 2 3 1 4 5 6

0.9 0.8 0.6 0.5 0.3 0.2
Sort keys in

non-increasing order

(a) Chromosomal Approach.

1

0.6

2

0.9

3

0.2

4

0.5

5

0.3

6

0.8Keys

Bids

5.5

1

0.6

4.0

2

0.9

7.1

4

0.5

3.2

6

0.8

Cost/Benefit: bj

|Bj |

Filter Keys

≥ τ = 0.5

5.5

1

0.6

4.0

2

0.9

7.1

4

0.5

3.2

6

0.8

Sort keys

by bj

|Bj |

(b) Greedy Approach.

Figure 5.1: Example of sorting keys using the chromosomal and greedy approach.

5.3. Biased random-key genetic algorithms for the winner determination problem 111

Algorithm 5.1: Decoder for the Winner Determination Problem.
1 Let S be an empty list to hold the solution;
2 Let κj be the key associated with bid Bj;

3 if the chromosomal approach is used then
4 Let L be a list of bid indexes ordered in non-increasing order of keys κ;
5 else
6 Let L be a list of bid indexes such that κj ≥ τ for all bid Bj;
7 Sort L in non-increasing order of cost/benefit according to greedy or surrogate

dual approach;
8 foreach j ∈ L in the given order do
9 if Bj has no marked goods then

10 S ← S ∪ {j};
11 Mark all goods of Bj;
12 else if κj > 0.5 then
13 κj ← 1− κj ; // discourage bid Bj

14 L← L \ {j};
15 if the chromosomal approach is used then
16 Go to Line 25;

// Process the remaining bids
17 Let L′ be the list of indexes of remaining bids with unmarked goods;
18 Sort L′ in non-increasing order of cost/benefit according to greedy or surrogate dual

approach;
19 foreach j ∈ L′ do
20 if Bj has no marked goods then
21 S ← S ∪ {j};
22 Mark all goods of Bj;
23 if κj < 0.5 then
24 κj ← 1− κj ; // encourage bid Bj

25 return the fitness ∑j∈S bj.

and surrogate dual cases, some bids are not visited because of filtering by τ . Therefore,
the algorithm builds a secondary list containing those bids that include only unmarked
goods (disregarding those that were not selected in the previous phase due to conflicts).
The bids are then sorted according to one of the above criteria, and the algorithm iterates
over this list adding the bids that do not create conflict with the bids already selected.

112 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

Each added bid Bj has its corresponding key κj reset to 1 − κj if κj < 0.5, encouraging
this bid to be considered in further generations. This secondary phase is described in
lines 17–24.

The running time for this procedure to obtain the sorted list of bids is bounded by
O(t log t), where t is the number of bids.1 In the worst case, the sum of the number of
iterations in the two foreach loops is at most t, given that all bids may be analyzed.
Checking and marking of goods can be implemented in O(1) using a simple binary vec-
tor indexed by the goods. This implies that, for each iteration, we have O(m) checks
and markings in the worst case, where m is the number of goods. Therefore, in the
chromosomal case, we can bound the running time of the decoder by O(t log t+ tm).

The running times for the greedy and surrogate duality cases are different from the
previous cases since we have an extra sorting procedure and a second traversal over the
bids. As argued in the start of this section, the relative order of bids is fixed and need
only be calculated once a priori. In this case, the sort procedures of lines 7 and 18
can be done in linear time using an indicator vector, where each position corresponds
to the position of a bid in the pre-calculated order. Note that each sort procedure is
done over a partition of the bids and, therefore, both together have running times that
can be bounded by O(t). The first filtering traversal in line 6 takes t steps. The second
traversal in line 17 is a function of τ and takes less than t steps. Both loops together take
t iterations over m goods. Thus, we can bound the total running time of these decoders
by O(t) + 2t+ tm = O(tm).

5.4 Initializing the population of BRKGA
The most common approach to initialize the population of a BRKGA is to generate its

chromosomes with uniformly drawn random keys over the interval [0, 1]. In an attempt to
speed up the search, we introduce a novel approach where we use solutions to the linear
programming (LP) relaxations of Equation (5.2) as chromosomes, given that the decision
variables of these relaxations are such that 0 ≤ xk ≤ 1 for all k ∈ B̂, where B̂ represents
the set of all bids and t = |B̂|. Therefore, a solution to the relaxed LP is a vector x ∈ [0, 1]t
that is compatible with the requirement of the keys of a BRKGA, and therefore we simply
use the values of the optimal relaxed variables xk as the corresponding alleles of an initial
chromosome. An advantage of using such an individual in the initial population is that
it is perhaps closer to a good solution than are most random individuals. In addition
to the pure relaxation, we use relaxations generated by the insertion of cutting planes in

1Note that this term depends on the sort algorithm used, and, in fact, can be reduced to Θ
(
t log t

log log t

)
using fusion trees (Fredman and Willard [63]).

5.4. Initializing the population of BRKGA 113

the original formulation. A cutting plane is an inequality that eliminates an infeasible
solution for the original integer program. The insertion of cutting planes leads to tighter
formulations with respect to the integer solutions (see e.g. Wolsey [209] for more details).
We expect that chromosomes generated from these tighter relaxations will be decoded
into solutions that are even closer to good integer solutions.

This process consists in two nested phases as shown in Algorithm 5.2. In the first
phase (lines 5–7), cutting planes are generated and added to the formulation and its linear
relaxation solved. This results in vector x̃ such that 0 ≤ x̃k ≤ 1, for all k = 1, . . . , t except
the fixed variables which have their values defined in next phase. Cut-generation proce-
dures have been widely studied in the mathematical programming literature and can be
implemented in different ways. Here, we do not make use of any particular cut-generation
procedure but, rather, delegate their generation to the mixed integer programming (MIP)
solver. To date, most modern MIP solvers, such as IBM ILOG Cplex [101], Gurobi Opti-
mizer [91], and Fico Xpress [60], are able to generate general strong cuts, such as clique

Algorithm 5.2: Initialization by LP relaxations.
1 Let x1, . . . , xt be a vector such that xk is the variable associated to bid Bk ∈ B̂;
2 Let P be the empty initial population;
3 k ← 1; bound← 0;
4 while k < t and a stopping criterion is not reached do

5 while maximum cutting iterations or the time limit are not reached do
6 Insert cutting planes in the formulation if possible;
7 Solve the LP relaxation;

8 Let x̃ ∈ [0, 1]t be the relaxed optimal solution;
9 P ← P ∪ {x̃};

// Do variable fixing
10 Fix xk to bound;
11 if bound = 0 then
12 bound← 1;
13 if k ≥ 2 then
14 Unfix xk−1;

15 else
16 bound← 0; k++;

17 if P is not complete then
18 Generate random chromosomes to complete P ;

114 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

cuts (Nemhauser and Wolsey [155]) and Gomory fractional cuts (Gomory [74]) known for
the tight relaxations they produce. The task of finding cutting planes and reoptimization
can be time consuming and therefore we limit this procedure to at most a predetermined
number of steps or stop after a maximum time limit is reached. The relaxed solution x̃ is
added to the initial population.

To generate several different chromosomes, we fix variables iteratively, generating other
relaxations (lines 10–16). In alternating iterations, we fix some variable xs to 0, meaning
that the corresponding bid will not belong to any solution, or to 1, implying that the
corresponding bid will belong to all solutions. This way, two consecutively generated
chromosomes enforce the decision to select or not select the bid in question. One can note
that we fix the variables in the order that they appear in set of bids. Another possible
strategy is to choose a variable to fix uniformly at random saving the last fixed variable
to restore its bounds. Both types of variable fixing procedures do not guarantee any
solution quality, but diversify the search. Note that in the first iteration of Algorithm 5.2,
no variable is fixed and a full relaxation of the model is solved. It is also possible, although
unlikely, that two or more distinct variable fixings result in the same relaxation. In this
case, we discard the duplicates.

Although the initialization with LP relaxations can speed up the convergence of the
BRKGA, the time to generate these initial chromosomes is not negligible. It is worthwhile
mentioning that solving an LP relaxation is a polynomial-time process, but finding cutting
planes can be slow in certain situations, and several practical issues can contribute to this
slowdown (Wolsey [209]). In this regard, we set the stopping criterion for this type of
initialization to a specific running time or number of chromosomes, whichever comes first
(line 4). The remaining chromosomes are generated at random as is usual in the standard
BRKGA.

5.5 Experimental Setup
We conducted several experiments with three objectives. The first objective was to

investigate the effectiveness of biased random-key genetic algorithms to find optimal so-
lutions for instances where exact algorithms succeeded in finding one. The second was to
evaluate the solution quality for those instances where an optimal solution could not be
found. Finally, the third objective was to investigate the effectiveness of the initialization
of BRKGA with LP relaxations. Throughout the experiments, we compare our results
with state of the art algorithms for the WDP and the MKDP.

5.5. Experimental Setup 115

5.5.1 Instances
For the following experiments, we use two sets of instances. We first generated sev-

eral instances using the Combinatorial Auction Test Suite, or CATS (Leyton-Brown
et al. [125]), a standard generator of instances for combinatorial auction, largely adopted
in the literature. The advantage of this suite lies in its ability to generate instances for
several scenarios, such as time-scheduling auctions, matching auctions, region-border auc-
tions, and even legacy distributions used in earlier works. We generated two blocks of
instances: one of smaller instances containing from 40 to 400 bids whose number of goods
vary between 10 and 100; and another comprised of larger instances with 1000 to 4000 bids
and 256 to 1500 goods. Preliminary experiments showed that the number of goods does
not considerably affect the running time of the algorithms. This fact was also observed
by Buer and Pankratz [29]. Henceforth, we set the number of goods to be smaller than
the number of bids in the test problems, seeking auctions with relevant conflicts among
the bids, i.e. with several bids competing for the same sets of goods.

From CATS, we used legacy distributions L2, L3, L4, L6, L7, and the “arbitrary,”
“matching,” “paths,” “regions,” and “scheduling” distributions (a total of 10 classes). We
did not use the L1 and L5 distributions due to problems generating non-dominated bids.2
These instances broadly cover general combinatorial auctions. Following, we replicate the
description given by Leyton-Brown and Shoham [126]:

L2: Random distribution that chooses a number of goods g uniformly at random from
[1,m] and assigns a price drawn uniformly from [g, 1000g];

L3: Uniform distribution that sets the number of goods to some constant c and draws
the price offer from [0, 1000]. Default: c = 3;

L4: Decay distribution that starts with a bundle size of 1, and repeatedly increments the
bundle size and draws a uniform random number from [0, 1], stopping when this
number exceeds a given parameter α. The prices is drawn uniformly from [g, 1000g]
where g is the number of selected goods. Default: α = 0.55;

L6: Exponential distribution that requests g goods with probability e−g/q, and assigns a
price offer drawn uniformly at random from [g, 1000g]. Default: q = 5;

L7: Binomial distribution that assigns each good an independent probability p of being
included in a bundle, and assigns a price offer drawn uniformly at random from
[1, 1000g], where g is the number of selected goods;

2 We said that a bid (Bi, bi) is non-dominated if either Bi * Bj for all bid j, or if Bi ⊆ Bj then
bi > bj , for any bid j.

116 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

Paths: Models an auction of transportation links between cities, or more generally of
edges in a nearly-planar graph. Bids request sets of goods correspond to paths
between randomly selected pairs of nodes. Substitutable bids are those that connect
the same pairs of nodes. Prices depend on path lengths;

Regions: Models an auction of real estate, or more generally of any good over which
two-dimensional adjacency is the basis for complementarity. Bids request goods
that are adjacent in a planar graph;

Arbitrary: Similar to regions, but relaxes the planarity assumption and models arbitrary
complementarities between discrete goods such as electronics parts or collectibles;

Matching: Models auctions for airline take-off and landing rights. Each bid requests one
take-off and landing slot bundle, and each bidder submits a set of bids for acceptable
bundles;

Scheduling: Models a distributed job-shop scheduling domain, with bidders requesting
a set of resource time-slots that will satisfy their specific deadlines.

For further details, see Chapters 18 and 19 of Cramton et al. [41]. For each distribu-
tion, we generated three instances of each type according to Table 5.1 using the default
parameters supplied by CATS. We also used the CATS hard mode (-default_hard flag),
that generates three instances with approximately 1024 bids and 256 goods for each dis-
tribution with the objective of being hard to solve. The suite does not generate hard
instances for “path” distributions. In summary, we used CATS to generate 120 small and
117 large instances.

A drawback of CATS is that instances appear to be easy in the sense that they can
generally be solved by exact algorithms in reasonable time (see Boughaci et al. [26],
Guo et al. [90]). In fact, such studies adopted a set of instances provided by Lau and
Goh [120], which are indeed harder than instances generated by CATS. These instances
were generated using several factors observed in real brokering systems as pricing of a
bundle, preference of each bidder, and fairness of good distributions. We selected three

Table 5.1: Instance classes and their sizes.

CATS LG

Bids 40 80 200 400 1000 1024† 2000 4000 1000 1000 1500
Goods 10 10 50 50 256 256 512 1024 500 1000 1500

of insts. 30 30 30 30 30 27 30 30 100 100 100
† Generated using default_hard flag.

5.5. Experimental Setup 117

classes of such instances and called them LG. Each class contains 100 instances, all having
more than 1000 bids.

In short, we experimentally analyzed the proposed algorithms on 537 instances where
417 of them are large with respect to number of bids, i.e., they have more than 1000 bids.
Table 5.1 summarizes the instances adopted in the subsequent analysis. The last line of
this table shows the number of instances in each class.3

An important aspect of instances for the winner determination problem (WDP) is
their tightness. This metric is used by Chu and Beasley [36] to craft instances of the
Multidimensional Knapsack Problem (MDKP), largely used in the literature as the main
benchmark for this problem. The tightness of a constraint j is defined as

tj = cj∑
k∈B̂ wjk

, (5.3)

where cj is the availability of resource j and wjk is the amount of resource j requested by
k, as defined in Formulation (2) of the main text. Note that for the WDP, the tightness
is

tj = 1
|{B : j ∈ B,B ∈ B̂}|

, ∀j ∈M, (5.4)

by definition, i.e., the tightness is defined as the inverse of the number of bids that
request a certain good. Note that a low tj indicates that good j is required by several
bids, probably increasing the problem difficulty.

In the Chu and Beasley MDKP instances, every constraint of a given problem has
the same tightness, which is either 0.25, 0.5, or 0.75. For the WDP instances, tightness
varies for each constraint and depends heavily on the type and size of the problems. For
the most classes, as the size increases, tightness decreases, notably for the L2, L7, and
LG classes. By definition, for some classes tightness is almost constant as, e.g. L3 and
matching. Table 5.2 shows the average tightness of each constraint for each class and
problem size. Note that the hard “path” instances are not shown since the CATS suite
does not generate hard instances for “path” distributions.

5.5.2 Algorithms
In our evaluation, we considered specialized algorithms for both the winner determina-

tion problem and the multi-dimensional knapsack problem. We test two exact algorithms
and two heuristics, both considered to be state of the art for both problems.

To tune the parameters of the heuristics, we use the iterated racing procedure (Birattari
et al. [21]). This method consists in sampling configurations from a particular distribution,
evaluating them using either the Friedman test or the t-test, and refining the sampling

3These instances can be found in http://www.loco.ic.unicamp.br/instances/wdp.html

http://www.loco.ic.unicamp.br/instances/wdp.html

118 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

Table 5.2: Average of instances tightness.

Class
Size

40 80 200 400 1000 1024 2000 4000

L2 0.347 0.341 0.094 0.098 0.019 0.026 0.012 0.008
L3 0.333 0.333 0.333 0.333 0.333 0.208 0.333 0.333
L4 0.506 0.436 0.507 0.420 0.555 0.605 0.514 0.511
L6 0.433 0.381 0.355 0.314 0.351 0.578 0.351 0.344
L7 0.543 0.471 0.111 0.109 0.015 0.068 0.009 0.004
Arbitrary 0.192 0.207 0.132 0.140 0.134 0.138 0.130 0.131
Matching 0.347 0.333 0.333 0.333 0.333 0.333 0.333 0.333
Paths 0.562 0.567 0.350 0.375 0.192 — 0.171 0.143
Regions 0.196 0.220 0.133 0.135 0.133 0.135 0.134 0.131
Scheduling 0.317 0.249 0.190 0.252 0.202 0.114 0.195 0.216

Size 1000/500 1000/1000 1500/1500
LG 0.317 0.249 0.190

distribution with repeated applications of F-Race. We use the irace package (López-
Ibáñez et al. [135]), implemented in R, for parameter tuning. For each heuristic, we use a
budget of 2,000 experiments in the tuning procedure, where each experiment was limited
to one hour. For this propose, we chose one instance of each size from each CATS class,
and ten instances from each LG class, totalling 109 instances.

Boughaci et al. Memetic Algorithm — BOMA

Boughaci et al. [26] presented a specialized memetic algorithm for WDP. It is a genetic
algorithm that uses random-key encoding tied to a local search procedure for exploitation.
Their representation and decoding phase is similar to our chromosomal approach. But
in the reproduction phase, the individuals are chosen to crossover only if their “differ”
sufficiently based on a similarity metric. In this case, the similarity is the size of the
intersection of the winning bid sets induced by these individuals.

For crossover, the algorithm chooses an individualX from the set C1 of best individuals
and another individual Y from a set C2 that contains individuals with small similarity with
respect to individuals in C1. The crossover is done traversing the concatenation XY and
choosing no-conflict bids in this order. The local search that characterizes the memetic
flavor is the following: With probability wp choose the best bid (one that maximizes the
auctioneer’s revenue) or, with probability 1−wp, a random bid. This bid is added to the
solution and all other conflicting bids are removed. This process is repeated for a given
number of iterations and returns the best individual found.

5.5. Experimental Setup 119

This algorithm outperformed other algorithms for the WDP that were previously pro-
posed in the literature (Casanova of Hoos and Boutilier [98] and SAGII of Guo et al. [90])
and, indeed, presents competitive results, as we show in next sections.

We use the original C implementation provided to us by the author of Boughaci [25].
A slight modification was done to their implementation to support timing limits. In pa-
rameter tuning, we use the following ranges: population size pop_size ∈ [300, 2000];
|C1| ∈ [5, 20]; |C2| ∈ [7, 30]; wp ∈ [0.1, 0.5]; and maximum local search iterations
max_lsi ∈ [100, 500]. The best setup indicated by irace was: pop_size = 1400;
|C1| = 12; |C2| = 24; wp = 0.3; and max_lsi = 150.

Raidl and Gottlieb Weight-Biased Genetic Algorithm — RGRK

Raidl and Gottlieb [174] proposed a genetic algorithm for the MDKP where a solution
is represented by a weight-biased real vector using surrogate dual information in the
decoding phase. The authors used several probability distributions to generate the biased
vectors. Their experiments show that following a log-normal distribution often works
best. The weighted vector w is generated such that wj = (1 + γ)N (0,1) where N denotes a
normally distributed random number with mean 0 and unit standard deviation and γ > 0
is a parameter that controls the intensity of biasing. Thus, the item j is biased by a new
price p′j = pjwj.

The decoding phase uses the approach of Pirkul [168] and is similar to our surrogate
dual ordering. In this case, the pseudo utility of a item j is

uj =
p′j∑m

i=i αirij
,

where m is the number of dimensions, αi is the dual value associated with dimension i

and rij is the demand of item j in dimension i.
The offspring generation is done by selecting two parents via binary tournaments, per-

forming uniform crossover in their characteristic vectors, flipping each bit with probability
1/n (mutation probability), performing repair if a capacity constraint is violated, and al-
ways applying local improvement. If such a new candidate solution is different from all
solutions in the current population, it replaces the worst of them only if the new candidate
has a better fitness than the worst solution (Puchinger et al. [173]). This algorithm, to
date, is one of the best heuristics for the MDKP.

We use the Java code provided to us by the authors of Pfeiffer and Rothlauf [167]. In
parameter tuning with irace, we use the following ranges: population size pop_size ∈
[300, 2000]; tournament size tourn_size ∈ [10, 30]; and γ ∈ [0.01, 0.20]. The best results
were obtained with: pop_size = 500; tourn_size = 20; and γ = 0.15.

120 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

Mansini and Speranza Exact Algorithm — CORAL

Mansini and Speranza [140] presented an exact algorithm for MDKP using the idea of
core items. This algorithm divides the problem into subproblems with a limited number of
variables. For each subproblem, a recursive variable fixing procedure is applied trying to
fix as many variables as possible. The remaining unfixed variables represent the core items
for which it is difficult to decide whether they belong to an optimal solution. For these
items, a restricted core problem is built and solved with a branch-and-bound procedure.
To speed up the branch-and-bound, several pruning conditions are introduced. This
algorithm has a non-trivial implementation and we omit several details here which can be
found in the original publication.

CORAL is considered to be a state of the art exact algorithm for the MDKP. It works
particularly well on instances with a large number of items. Its key feature is the ability
to continually improve lower bounds using the optimal solutions from their restricted sub-
problems. However, in instances with a large number of constraints, CORAL has difficulty
in finding good solutions, as observed in Mansini and Speranza [140].

We use the original Java implementation provided to us by the authors. Slight modifi-
cations were done to their implementation to support timing limits. All parameters were
set as in the original paper.

Standard Mixed Integer Programming Solver — CPLEX

We also used the IBM ILOG CPLEX Optimizer [101] as a standard mixed integer
programming solver to deal with Formulation (5.2) directly. CPLEX uses a branch-and-
cut algorithm which is a deterministic enumerative procedure that explores a solution
space using a bounding process in the solution values of the tree built during the search.
Further detail can be found in Wolsey [209]. This type of algorithm has exponential
running time in the worst case. The implementation of the IBM ILOG CPLEX Optimizer
uses linear programming relaxations to bound the solution values in addition to using
primal heuristics to produce integer solutions. According to its documentation, the IBM
ILOG CPLEX Optimizer is fully deterministic with default parameters that are used in
our experiments.

Note that we use the cut generation procedure in our LP initialization approaches. In
that situation, however, we only use solutions from the root node and the first level of
the branching tree. In fact, we do not use CPLEX branching mechanism there but only
solve the LP and apply cut generation procedures. All variable fixing is controlled by our
procedure as shown in Algorithm 5.2.

We use the IBM ILOG CPLEX Optimizer version 12.5.0.0. All default control param-
eters were used, except time limit, which was set to 3,600 wall-clock seconds, and number

5.5. Experimental Setup 121

of threads, set to four. Using the default settings, CPLEX performs a preprocessing step
to try to eliminate variables and constraints and calculate initial bounds. Unfortunately,
we cannot know what methods are used to perform this preprocessing since CPLEX is a
closed-source commercial package.

It is important to note that these settings are used only in the case where CPLEX
is run stand-alone. To create the initial chromosomes for our algorithms based on LP
relaxations, we set up CPLEX differently as described next.

Our approaches

Our algorithms are described as follow:

CARA: The proposed algorithm, defined in Section 5.3, using the chromosomal approach
and random initialization;

CALP: The proposed algorithm using the chromosomal approach but initialized with the
optimal variables from the LP relaxations;

GARA: The proposed algorithm using the greedy approach and random initialization;

GALP: The proposed algorithm using the greedy approach and initialized with the optimal
variables from the LP relaxations;

SDRA: The proposed algorithm using the surrogate duality approach and random initial-
ization;

SDLP: The proposed algorithm using the surrogate duality approach and initialized with
the optimal variables from the LP relaxations.

The proposed algorithms were written in C++ on top of the BRKGA API of Toso and
Resende [196], which implements all of the problem-independent components described
in Section 5.3. Random numbers were generated by an implementation of the Mersenne-
Twister (Matsumoto and Nishimura [143]) and we used the standard sort algorithm of the
C++ Standard Template Library. In particular, the used version implements the introsort
algorithm whose worst case running time is O(n log n) (Musser [152]). Our algorithms
used four cores for simultaneous decoding.

To tune the BRKGA parameters with irace, we used the following ranges: elite per-
centage ∈ [0.10, 0.30]; percentage of mutants introduced at each generation ∈ [0.05, 0.20];
probability of inheriting each allele from elite parent ρe ∈ [0.5, 0.8]; number of independent
populations π ∈ [1, 3]; exchange interval δ ∈ [50, 200]; and number of elite individuals in
an exchange η ∈ [1, 2]. The population size was set to p = min(10t, 2000), where t is

122 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

the number of bids. The main reason for this upper bound is to bound the running time
of each generation and allow the BRKGA to evolve for several generations. We noted
that populations with over 2,000 individuals had slow convergence because of the time
needed to evaluate each generation. This is true mainly on large instances. The tuning
results obtained with irace were very close to the values suggested by Gonçalves and Re-
sende [81]. The elite size was set to pe = d0.20pe, the number of mutants to pµ = b0.15pc,
and inheritance probability to ρe = 0.70. We evolved π = 3 populations simultaneously
and once every δ = 100 generations, each population exchanged its η = 2 best solutions
with the other populations.

For the greedy and surrogate duality approaches, we set the filter threshold τ = 0.5.
In these cases, we expect that half of the bids are assigned to the first phase allocation
and the other half to the second phase. As the algorithm evolves, good bids will have
random key values greater than or equal to τ and the impact of the second phase will
diminish since bad bids will have their goods marked in the first phase. Note that τ has
more impact on initial and mutants chromosomes than on others since on the latter the
random keys evolved to a better solution.

For the approaches with LP-based initialization, we relaxed the integrality constraints
of Formulation (5.2) to 0 ≤ xk ≤ 1. Since this procedure is time consuming, they were
restricted as follows. The number of initial chromosomes was set to lpinit = b0.1pc.
Note that in Algorithm 5.2, this number may be small, since it is limited by the number
of bids and duplications. If we obtain no duplicates, lpinit ≤ 2t + 1, where t is the
number of bids (the additive factor 1 is due the initial unrestricted relaxation). We allow
two iterations of cut generation or five seconds to generate each chromosome. Both cut
generation and the solution of the LP relaxation were done with the IBM ILOG CPLEX
Optimizer version 12.5.0.0. We do not use other CPLEX features, such as variable fixing
and branch-and-bound.

5.5.3 Computational environment and algorithm settings
The experiments were conducted on identical machines with quad-core Intel Xeon

E5530 2.4 GHz CPUs and 32 GBytes of RAM running GNU/Linux. Running times re-
ported are UNIX real wall-clock times in seconds, excluding the effort to read the instance.
Each run was limited to 3,600 seconds for all algorithms. There are two reasons behind
our choice of time limit. On the application side, procurement auctions are often man-
aged in a short period of time to limit the response time of the bidders in order to achieve
economic efficiency (for further details, see Chapters 2 and 23 in Cramton et al. [41]).
On the algorithmic side, the exact approaches produced a pattern of slow convergence
characterized by minimal decrease in the optimality gap throughout the execution on all

5.6. Experimental Results and Discussion 123

instances where an optimal solution was not found. This pattern can be clearly identified
in the first hour of computation according to preliminary experiments. Notice in the re-
sults that follow that some running times are slightly over 3,600 seconds. This is because
we wait for each algorithm to complete its current iteration before actually stopping it.

For the heuristics, we use an additional stopping criterion: 1,000 generations without
improvement of the best solution found so far. In preliminary experiments, no instance
presented an offset greater than 1,000 between two subsequent improvements. In fact, the
average offset was about 126.20±138.00, and the largest offset was 791 iterations. This
way, we reduced the total computation time though we may have also reduced the long
term effect of mutation in BOMA and RGRK, and perhaps more seriously, the effect of the
introduction of mutants in the BRKGAs.

To compile the C/C++ code, we use the GNU g++ compiler version 4.8.1 and libstdc++
version 6.0.18. To compile the Java code, we use the Oracle Java 64-Bit JDK runtime
environment version 1.7.0_45. To allow for full memory utilization, we run the Java
bytecodes with JVM parameter -Xmx32g.

5.6 Experimental Results and Discussion
This section presents our experimental results. For CPLEX and CORAL, we performed

one run per instance since both are exact and deterministic algorithms. For the remaining
algorithms, we performed 30 independent runs for each instance. One can note that this
experimental setup is huge, and in fact it took more than 100 CPU days running over
32 identical machines. Each experiment was conducted individually on one machine to
ensure the algorithm had exclusive use of all of the machine’s resources. This way, we
minimized external effects. All reported times are wall-clock times where we reported
only the optimization time excluding the effort to load the instance and log the run.

5.6.1 Comparing revenue
To compare the algorithms with respect to revenue, it is necessary to scale the results

since each instance can have very different revenue values and even different orders of
magnitude. For each instance I, let χI be the set of values of the solutions found for I,
and DI = max(χI)−min(χI). The scaling is done by the simple transformation

χ′I =

(x−min(χI))/DI ∀x ∈ χI and DI > 0,
1 otherwise.

where χ′I is the set of scaled values. Note that all values are scaled to the range [0, 1].

124 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

Using this scaling process, Figure 5.2 shows the distribution of revenues for each
algorithm. The box plots show the location of the first quartile, the revenue median and
the third quartile. The whiskers extend to the most extreme revenue no more than 1.5
times the length of the box. The dots are the outliers.

Figure 5.2c shows the revenue distribution over all instances. One can note that CORAL
presented poor results when compared to the other algorithms. Indeed, this behavior was
expected since Mansini and Speranza [140] reported large solution times for instances with
500 bids (items, in their case). This can be clearly observed if we compare the distribution
for small instances (≤ 400 bids) in Figure 5.2a with the distribution for large instances
(≥ 1000 bids) in Figure 5.2b. CORAL is able to achieve a large range of values on small
instances with a median of 0.99, close to the other results. For the large instances, CORAL
rarely found a good solution, as shown by its outliers: it obtained only 20 optimal solutions
on the large instances. One could argue that these instances are hard to solve by exact
algorithms, however we observe that CPLEX does very well on them. CPLEX’s distributions
are consistently good, with 113 optimal solutions found on large instances. The heuristics
presented overall good results. Among them, RGRK experienced the worst results, followed
by BOMA. Our approaches did better than the other algorithms, although among our
approaches, it is tricky to determine their relative performance simply examining the box
plots. Note that the utilization of the pseudo utility derived from surrogate dual vectors
did not, as expected, have a favorable impact on the results since SDRA and SDLP presented
greater variances and lower medians than our other approaches that did not use surrogate
duality.

The box plots help shape our intuition that our approaches obtained better results
than those of previous methods. To confirm our conclusions, we tested the normality of
these distributions using the Shapiro-Wilk test and applied the Mann-Whitney-Wilcoxon
U test, considered more effective than the t-test for distributions sufficiently far from
normal and for sufficiently large sample sizes (Conover [38], Fay and Proschan [57]). For all
tests, we assume a confidence interval of 99%. For small, large, and full distributions, the
Shapiro-Wilk tests revealed that no revenue distribution fits a normal distribution since
the p-values for all tests are less than 2.2× 10−16. Therefore, we applied the U test which
assumes as null hypothesis that the location statistics are equal in both distributions. As
several statistical tests were performed, we used a p-value correction procedure based on
false discovery rate (FDR) to minimize the number of false positives (Type I error) as
indicated by Benjamini and Hochberg [18].

5.6. Experimental Results and Discussion 125

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●
●
●●

●

●

●
●●●●●●●●●●●●●●●
●
●●
●●

●●●

●

●

●

●
●●

●●●●●●●●●●●

●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●
●

●

●

●
●

●
●●●
●
●
●

●
●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●●

●
●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●
●
●●
●

●
●
●

●●

●

●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●

●

●●

●●●●●●●

●●●●●●

●●●●

●

●●●

●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●
●●●
●●
●
●●

●●

●

●●●●

●

●

●●●●●●●●●●●

●●●●

●●●●●●●●●

●

●●●

●●

●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●●●●

●●●

●●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●●

●●●●●●●

●

●●●

●●●●●
●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●

●●●
●
●●●●
●
●●
●
●●●●●

●

●

●

●

●●●●

●●●●●●●●

●●●●

●●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●
●●●

●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●
●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●

●

●●●●●●●

●

●●

●●

●●●●●●●

●

●●

●●●●

●●●●●●●●●

●●●●●●

●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●●●

●●

●
●●●●●●
●

●

●●●

●

●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●

S
c
a
le

d
 R

e
ve

n
u
e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
C
O
R
AL

C
PLE

X

R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

(a) Instances with less than or equal
to 400 bids.

●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●●●

●●

●

●
●●●
●●●
●●●

●●
●

●●

●●
●●●●
●●●●
●●●
●●
●
●●●

●●
●●
●●
●●
●●●●●
●●●●
●●●●
●
●

●

●●
●●
●
●●
●●●●
●
●●
●
●
●
●●
●●
●

●
●●

●●

●

●●
●

●●●
●●
●●
●

●●
●
●
●

●●

●

●

●

●

●●●
●●●●●●●●●●
●

●

●●
●●

●●●●●

●

●

●

●●

●●
●●
●

●●
●
●

●
●
●

●

●
●●

●●
●

●●●●

●
●●●●

●●●●●●●●●●

●●●●

●●●●●●●●

●

●●●●●●●●●●●
●

●

●
●●●●

●
●●
●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●
●
●
●

●●
●●●●●
●●●●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●●
●

●●
●

●●

●●●
●●●

●●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●●
●●
●●
●●
●●●
●●
●

●●●●●●
●●●
●
●
●
●

●

●
●●●●●
●●

●

●●
●●
●●

●●●
●

●
●

●

●

●

●●

●●

●●

●
●

●

●

●

●
●

●

●●●

●
●

●●●
●●

●●
●

●
●

●

●
●

●
●●●
●

●
●●

●●
●●●●
●
●

●

●

●●
●

●

●●

●●

●
●●
●●
●●●
●

●●
●

●●
●●
●●
●●●

●
●

●●●
●
●●
●

●●

●

●

●

●●●
●●
●
●●
●●●●
●
●
●●●

●
●
●

●

●

●
●

●●
●
●

●●●●●

●
●●

●●●●

●●
●●
●

●●

●

●

●
●●

●

●
●●●●
●

●
●●●●
●●
●

●●

●

●

●●
●

●●

●●
●●

●●●

●

●●●●●●●●●●●●●●●●●●

●
●
●

●

●
●

●

●

●

●

●
●●●●

●
●●
●
●●●●●

●●
●

●●

●

●

●

●

●●●
●

●●

●●●●●
●●●●

●●
●

●

●●

●●●

●
●●●

●●

●

●
●●
●

●●
●●●

●
●

●

●

●
●●
●●●●●
●●●

●

●●●
●●
●●●
●
●●

●

●●●
●
●
●●
●
●
●

●

●●●●

●
●

●

●
●
●
●

●●

●

●
●●

●

●

●

●
●●
●

●

●
●

●

●

●
●
●●
●●●●
●
●●
●

●

●

●

●●●
●

●

●●●●●●●
●

●

●
●
●
●

●●

●
●●●●

●

●

●

●

●
●
●

●●●

●
●

●
●
●●●
●

●●
●

●

●
●
●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●●●

●

●

●

●●

●●●
●●●●●●
●●

●
●
●
●

●

●
●

●

●
●

●

●

●

●●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●●●

●

●●●
●●●
●

●
●●

●
●

●

●

●●●●●●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●●
●

●
●

●

●●

●

●●●

●

●●●●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●
●●●●●●●●●●
●●●
●●●●
●●
●●●

●●●●●●●●●●

●

●

●
●●●●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●●

●
●

●

●

●●●●●
●
●●
●

●

●

●●●
●●●●

●

●

●

●

●●●●●●●●
●
●●●●●
●●●●●●●●
●●●●
●
●●
●
●●●●●●●
●

●●

●

●●
●
●●●●

●●●●●

●

●
●

●

●
●●●●●

●

●

●

●

●●

●

●●●●
●
●
●
●●●●●●
●●●●●●●
●●●●●●
●
●●●●

●●
●

●●
●
●
●

●
●●●
●

●

●
●●●●●●●●

●

●

●
●●
●●●●
●●●●●●●●●●●
●●
●●

●

●

●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●
●
●●●●
●

●●●●●●
●●●●●
●●●
●
●
●●●●●●●●●●

●●
●
●
●●●●●
●●●●●
●

●
●●●●●●●●●●●●

●●
●●●●
●●●●●●●●
●●●●

●●●
●●●●●●●●

●●●●●●●●●●●●

●●

●●

●●
●●●

●

●●●

●
●

●●●

●●●
●

●
●
●

●●●●●●●●●●●●●●●●●
●
●●●●●
●●

●●●●●●●●●●●●●●
●●●●
●●●

●●

●●●
●

●

●●
●●
●●●●●●●●

●

●

●

●●
●●●●
●●●●●●●●

●
●

●

●

●●●●●●
●
●
●

●

●●●●●●●●●●
●
●●●●●●
●

●
●●
●●●●
●●●
●●●●●
●

●●●●

●●
●

●

●●
●

●
●●
●
●
●●●

●

●

●

●

●
●●●●●●●

●

●●●

●
●

●●●

●

●
●

●●●●

●

●

●

●

●●

●

●
●
●

●●

●
●

●●
●●●

●

●

●

●●●

●
●

●

●

●

●●

●
●●
●

●
●●
●●●
●●
●

●

●

●●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●●●

●
●●

●
●

●

●●●●●
●●
●●●●

●●●
●
●●●

●●●

●●

●●

●

●●

●

●

●
●

●
●●●
●
●●●●
●
●●●
●●●●
●●●●

●

●

●

●
●●●●●●●●
●●●●●●●●●
●●●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●●●
●

●
●

●

●●●●
●●
●●●

●●●

●

●●
●

●●●●●●●●●●●

●
●●
●●●●●●●●●●●

●●●●

●
●●●

●

●

●
●

●

●

●●

●●

●●
●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●●●

●

●●

●●●●

●●●●
●●

●●●

●●

●●

●●
●●●●●●●●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●
●●●●●
●●●●

●

●
●
●●●
●●
●
●●

●●

●

●

●

●
●
●●

●●
●●
●●●●●
●●●

●

●

●

●●●●●●●●●●●●●●●●●●
●●●●

●●●●
●
●●●●●●

●
●
●●●●●●●●
●
●●

●●●●●

●●●●●●●

●●●

●
●

●
●

●
●
●
●●●
●
●
●
●
●●
●●

●
●●●●

●
●●●●●●
●●

●●●
●●●●●●●

●●●

●●●●
●●●

●

●

●●

●●●
●●●●●●●●●
●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●
●●●
●●●●●●●

●

●●●
●●●
●●●●●●

●
●●
●
●●●●●●

●●●●
●●●●●

●●●●●●●●●●●●
●

●
●
●●●
●●●●●●

●

●
●●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●●●

●●●●●
●●●●

●●●●

●●

●●●

●●●●

●
●

●●●●●●●●●
●
●●●
●
●●

●

●

●●●●

●

●●

●●●

●●●●

●
●
●●●
●●●

●

●

●

●●
●
●
●●●●●●

●

●
●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●
●●●●
●●

●
●●●
●
●●●●●●●
●●●●
●●●

●

●●●●●

●

●
●
●●
●●
●●
●
●

●●●●
●●
●

●
●●

●

●●
●●●●●●●●●●●●●●●

●

●

●●
●●●
●
●●

●

●●●
●●●
●●
●●
●●
●

●●

●●
●

●

●
●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●●●●●●●●

●●●●
●●●●●●
●●

●●●●●●●●●
●
●●●

●

●

●
●●●
●
●

●●

●

●●●

●
●
●
●●

●
●

●
●

●

●

●

●

●

●●
●●

●●●●

●

●●

●

●●

●●

●
●●●

●●●

●
●●
●

●
●

●●

●

●
●

●

●

●●
●

●

●

●●●

●●

●
●
●
●
●●
●●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●●●

●●●

●●●

●●●

●

●

●

●●

●

●●

●●

●●

●●

●●●

●●
●

●●

●

●●

●

●

●●

●

●●

●

●
●●

●●

●

●●●
●●
●●

●
●
●
●●●●

●●

●
●●

●
●

●
●●
●●●●
●
●●
●

●●

●
●●●●●●

●

●
●●
●●

●

●
●

●

●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●

●

●
●

●●●●●
●
●●●●●●●

●●●

●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●

●●●●●●●
●
●●●●●●●●

●●●●●●●●●●●●●●

●

●
●●

●

●
●
●●
●
●
●
●●

●●●

●
●
●
●
●●●

●●●●●●●
●
●●●●●
●●

●

●●●●

●
●●●
●
●
●●●
●●

●

●

●●

●●

●●
●
●

●●
●●●●

●

●

●
●

●

●

●
●●●

●●●●
●●●●●●●●●●●●●●●●●
●●

●●

●

●●●●●●●●●

●

●●

●

●●●●●

●

●●●
●●●●●●

●
●●●●●●●●●●●

●
●●
●

●●

●●
●●●
●

●

●
●
●●
●
●

●

●●

●
●

●●●●

●

●

●
●●

●●

●●●●

●

●

●●●●●

●●●●●
●●

●●

●●●

●

●●●●●●●

●

●●●
●
●

●●
●
●●
●●
●●
●
●●
●
●
●●

●
●

●●●●
●●●

●
●
●
●●

●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●●●●●●●●
●●●●

●●●
●●●●●●●

●

●●●●

●

●
●

●
●●●●
●
●●●●●●●●
●●●●●
●
●●
●●●●●
●

●●●

●

●●●
●●●●

●●

●●●●
●●●●●●
●
●
●●●●●●
●
●●
●
●●●
●●●●

●

●
●●●●●
●
●●●●●●●●●
●●●

●●●●●
●●●

●●●●●●●●●●●
●●●●

●
●
●●●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●

●●
●●●●

●●●

●●●

●●

●

●●●●●●

●

●●●●

●●●●●●●●

●
●
●●●●●●

●

●
●

●

●●●●

●

●●●

●●●

●

●

●●●●

●●●●●

●
●●
●●●

●●●●●●●●

●●●●●

●

●

●●●
●●●●
●●
●
●
●●●●●●
●●●●
●●●●
●
●
●●●
●
●

●●

●●●●●
●

●●●●

●●

●

●

●

●
●●
●

●

●

●●●

●
●●●●

●

●

●
●

●●●●●●●●

●●●●●●●●●●●●
●

●
●

●
●●●●●●

●
●
●
●●●●
●

●
●
●
●●
●

●●
●●●
●
●
●●●

●

●

●

●

●●●

●●●

●●●●●●●●

●

●●●●●

●●

●●●●●●●●

●●●

●●

●

●

●●●●●●

●●

●●●●●

●●●

●

●●●●●●●

●●●●●●

●●

●

●●

●●●

●●●

●

●●●●●●

●●●●

●

●●●

●

●

●
●

●
●

●

●

●

●●

●●●●

●

●

●

●●

●

●●
●

●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●

●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●

●
●

●●
●
●

●●●●

●

●●

●●

●

●

●

●

●

●

●

●●
●
●

●

●

●●

●

●●

●●●
●●

●
●

●

●

●●●

●●●

●●●

●●

●●
●●●●

●

●

●

●
●

●
●
●

●
●

●

●●●●
●●
●●●●●●●●●

●●

●●●

●

●

●●●●●●

S
c
a
le

d
 R

e
ve

n
u
e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
C
O
R
AL

C
PLE

X

R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

(b) Instances with more than 400 bids.

●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●
●●
●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●

●●●

●●●
●●

●●
●

●●

●●
●●

●

●●
●●
●
●●
●●●●
●
●●
●
●
●
●●

●

●●

●

●

●

●●●
●

●

●

●
●●

●

●●●

●

●

●
●

●●●●

●●●

●

●●
●

●●

●●●●●●●●●●●●●●●●●

●●●●●

●

●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●
●●●●●●●●●●
●

●●

●

●

●●

●●
●●
●

●●
●
●

●
●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●

●

●●●●●●●●●●●
●

●
●●
●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●
●

●●
●

●●

●●●
●●●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●●
●●
●●
●

●●●●●●
●●●
●
●
●
●

●

●
●●●●●
●●

●

●●
●●
●●

●●●
●

●
●

●

●

●

●●

●●

●●

●
●

●

●

●

●
●

●

●●●

●
●

●●●
●●

●●●

●

●

●

●
●●

●●●●●●●●●●●

●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●

●
●

●
●●●
●

●
●●

●●
●

●

●

●●
●

●

●●

●●

●
●●
●●

●●
●

●●
●●
●●
●●●

●
●

●●●
●
●●
●

●●

●

●

●

●●●
●●
●
●●
●●●●
●
●
●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●
●
●

●
●●

●●●●

●●
●●
●

●

●

●
●●

●

●
●●●●
●

●
●●●●
●●
●

●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●●

●

●●

●

●
●●●●

●
●●
●
●●●●●

●●
●

●●

●

●

●

●●●
●

●●

●●●●●
●●●●

●●
●

●

●●

●●●

●
●●●

●●

●

●
●●
●

●●
●●●

●
●

●

●

●

●
●

●

●

●
●

●
●●●
●
●
●

●
●

●

●

●

●

●
●

●●

●
●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●●●●●●●●●●●

●●●●●●●

●

●●

●

●●●
●

●

●
●●●
●

●
●●

●

●
●

●●
●
●
●●

●●
●
●
●

●

●●●●

●
●
●

●

●
●
●
●

●●

●

●
●●

●

●

●

●
●●
●

●

●
●

●

●

●
●
●●
●●●●
●
●●
●

●

●

●

●●●●●
●
●●●
●
●

●●

●

●●●
●
●

●
●●●
●
●

●

●

●

●
●
●
●

●●

●
●●●●

●

●

●

●

●●
●●
●●●
●●
●
●●

●●

●

●
●
●

●●●

●
●
●

●
●
●●●
●

●●
●

●

●
●
●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●●●

●

●

●

●
●

●●●●

●

●●●●●●●●●●●

●●●

●●●
●●●●
●
●●
●●

●
●
●
●

●

●
●

●

●
●

●

●

●

●●

●●●
●●
●●●●●●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●●●●
●
●
●●●●●●
●

●

●●●
●●●
●

●
●●

●
●

●

●
●●●●

●●●●●●●●●

●

●●●
●●
●●●●●
●
●●●●●●●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●●
●

●
●

●

●●

●

●●●

●

●●

●●●●●●●●

●●●●

●

●

●

●●●

●●●●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●
●●●●●●●●
●
●
●

●
●●●
●●●●
●●●
●

●

●●

●●●
●
●●
●●●●●●●●●●●●●
●●
●
●●
●
●
●●●●
●●●●●
●●
●●●●●

●

●●●●●●●●●
●

●
●●
●
●
●
●
●
●●●

●
●
●●
●
●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●
●

●●
●●
●

●

●

●●●
●●●●

●

●

●

●

●●●●●●●●
●
●●●●●

●

●●

●
●●
●●

●●●
●
●●●
●●●●●
●
●●
●

●
●●●
●

●●

●

●

●●●

●●

●●

●

●●
●
●●●●

●●●●●

●

●
●

●

●
●●●●●

●

●

●

●

●●

●

●
●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●
●
●
●
●●●●●●●●●●●●
●●
●
●
●●
●●●●

●●

●●
●
●●●
●●

●

●●●
●●
●●●●
●●
●●
●●●●●●●●●

●●
●●●●●
●●
●●●●
●
●
●●
●●●

●●
●
●●●
●●●
●●●
●●●●
●●●●●●●●●●●
●

●●

●

●
●

●

●

●●●●●●●

●
●●●
●

●

●
●●●●●●●●

●

●

●

●
●●
●

●●●●●●●

●●

●●●●●

●
●
●●
●●●●●●●●●●●
●●
●●
●●●●●

●

●

●●
●●
●

●
●

●●

●●●●●●●
●

●●●

●●

●●●

●●
●●●●●●●●●●●●●●●
●
●●●●
●

●●●●●●●●●●●

●●●●●●

●●●●●●●●
●●●
●
●●●
●●●●●●●●●●●●●●●●●
●

●●●●●
●
●
●
●●●●●●
●
●●●●●●●●
●
●●

●●
●
●
●●●●●
●●●●●
●

●
●●●

●●●●●●●●●●●●

●●
●●●●
●●●●●●●●

●●●●●●●●●●

●●●●

●●●●●
●●●●●
●●●●●●●
●●
●

●●●●●●●●●
●

●●●●●●●●●●●●

●
●
●

●●

●●●●
●●
●●●●●●●●●●●●●

●

●

●●

●●

●

●●●
●

●
●

●●●

●●●
●

●
●
●

●●
●

●●●●●●
●●●●●●●●
●●●●●●●●●
●
●●●●●
●●

●●

●●●●●●●●●●
●●●●●●
●
●
●●
●
●●●●
●●●

●

●●

●●●●●●●●●●●●●

●

●

●●
●●●●●●●●●
●●
●

●

●●
●●
●●●●●●●●

●

●

●

●

●●●

●
●●●●
●●●●●●●●●●●

●
●

●

●

●●●
●

●

●●●●●
●
●
●

●

●

●●
●●
●●●

●●●●●●●●●
●
●●●●●●

●●●●
●●●●●●●●●●●●●●
●
●●●

●

●●●●

●●
●●●●
●●●
●●●

●

●

●●●

●
●
●●●●●●●●●

●●●●

●
●●
●●

●

●●
●

●
●●
●
●

●

●●●

●

●

●

●

●

●

●

●
●●
●●●●●●
●●●●●

●

●
●●

●

●●●●●
●

●
●

●●●

●

●
●

●●●●

●

●●

●

●

●●

●●

●
●
●

●●

●
●

●●
●●●

●

●

●

●●●

●
●

●

●

●

●●

●
●●
●

●●
●●
●●●●
●
●●●
●

●●●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●●●

●
●●

●

●

●

●

●●●●●
●●
●●●●

●●●●
●
●●●●●●●●
●
●

●
●●●●●
●

●●●

●●

●●

●

●●

●

●

●
●

●
●
●

●

●
●●
●●
●●●●

●

●
●●●
●●
●●●
●

●●
●
●

●●
●
●●
●●
●●●●●

●

●

●

●
●●●●●●●●
●
●

●●●●●
●●●●

●●●

●●●●●●●●
●●
●
●●●
●

●

●

●
●

●

●

●●●●●

●

●

●

●●●

●

●

●

●●●
●

●
●

●
●
●

●●●●
●●
●●●
●
●

●●●

●●●
●●●●●
●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●
●●●
●●●●●●●●●●●

●
●●
●●●●●●●●●●●

●

●●●●
●
●●
●●●●●
●●

●
●●●

●

●

●
●

●

●

●●

●●

●●
●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●●●

●

●●

●●●●

●●●●
●●

●●●

●●

●●

●●
●●●●●●●●●
●●●●

●

●

●●
●●●●●●●●●●●●●●
●●●●
●●●
●●●●●●●

●●
●●●
●
●
●●
●●●●●●
●●●●●●
●●●

●●●●●
●●●●●

●●●
●●
●●

●
●●●●●●
●●●●●●●
●●●●●●

●●
●●●●●
●●●●●●
●●●●
●

●

●
●
●●●
●●
●
●●

●●

●

●

●

●
●
●●

●●

●●

●●
●●●●●
●●●●●●●
●●●

●

●

●

●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●
●●●●●●
●●●●●●
●

●●●

●●

●
●
●●●

●

●●●

●
●
●●●●●●●●
●
●●

●●●●●

●●●●●●●

●●●

●
●
●●●●●●
●
●●●
●●
●●●●●●
●●●●

●

●●●●●●●●●●●●●●●●●●●

●
●

●
●
●

●●●●●●●●

●●

●●●●●●●

●

●●●●●●

●

●●
●
●●●●

●

●●●●●
●●
●●●
●
●
●

●●
●

●
●●
●

●●

●
●●
●●
●●
●●●●
●●●●●●
●●●●●
●●●●
●●

●
●
●●
●●●
●

●

●
●
●
●●●
●●●

●●●●●●
●

●●

●

●●●

●●●●●
●
●●
●●●●●●●
●
●●●●●●●●●●
●●●

●

●
●

●

●
●

●

●
●
●●

●
●●●●

●●

●●●●

●●●

●●●●
●●●

●

●

●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●
●●
●●●●
●
●

●●●●●●
●●●●●●●●●

●●●●●●●●
●
●●

●

●

●
●
●
●●●●
●
●●●●
●●●
●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●
●●●●●●

●

●
●
●●●●●●●●●●●●●
●●●
●

●●●●●
●●
●●●●●●
●●●●
●
●
●●
●●●●●●●●●●●●●
●●

●
●●

●
●●●●●●●●●●

●

●●●
●●
●
●●
●
●●
●●●●●●●●●●●●

●●●●●
●●●
●●●

●
●

●●●●
●●●●●

●●
●●●●●●●●●●●●
●

●
●
●●●
●●●●●●

●●●●

●

●

●●●●●●●●●●●

●●●●●●●●

●
●●
●●●●
●●●●●●
●●●●●●●
●●●●
●

●●●●●●●●●●●●
●●●●●

●●●●●●●●●●

●●●
●●●
●
●
●
●
●●
●●●●●●●
●
●●●●●●●●●

●●
●●●●●●●●●●●●
●●

●

●

●

●

●

●●●●●●●

●

●●●●

●●
●

●●●

●●●●

●
●

●
●
●●
●●●●●●●
●●●●●●●
●
●●●
●
●●

●

●

●●●●
●
●●
●●

●

●

●
●
●

●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●
●

●●
●
●●●●

●●●
●●●

●

●

●

●

●●●
●●●
●●
●●●
●●●●●●

●

●●

●

●●●●●●●

●

●●●●●
●●●●●●●●●
●

●

●●●

●●

●
●●●●●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●

●

●

●●

●●

●●●●●●●●●

●●●●●●●
●●●●

●●●
●●●●●●●●●●●
●●
●●●●●●

●

●
●●●●●
●●●

●●●
●
●●●●●●●
●●●

●

●

●
●●●●●

●●

●

●
●●●●●●
●●

●

●●●●●
●
●

●

●
●
●●
●●
●●
●

●●●●●●

●

●●●●
●●
●

●
●●
●

●

●●
●●●●●●●●●●●●●●●

●

●

●

●●
●●●
●●

●
●●

●

●●●
●●●
●●
●●
●●
●
●●●●●●●
●●●●●●●●●
●●
●●●

●●

●●
●

●

●

●
●

●●●●●●●●

●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●

●

●●●●●●●●

●●●●
●●●●●

●●

●

●●●

●

●●●

●

●●●●●●●●●
●
●●●

●

●

●
●●●
●
●

●●

●

●●●

●
●
●
●●

●
●

●
●

●

●

●

●

●

●●
●●

●●●●

●

●●

●

●●

●●

●
●●●

●●●

●
●●
●

●
●

●●

●

●
●

●

●

●●
●

●

●

●●●

●●

●
●
●
●
●●
●●●

●
●

●●

●

●

●●●●●●●●●●

●●●
●
●●●●
●
●●
●
●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●

●●●

●●●

●●●

●

●

●

●●

●

●●

●●

●●

●●

●●●

●●

●

●

●

●

●

●●●●
●

●●

●●●●●●●

●

●

●●

●

●●

●

●
●●

●●

●

●●●●

●●●
●●
●●

●
●
●
●●●●

●●

●●●●●●●●●●

●
●●

●
●

●
●●
●●●●
●
●●
●

●●

●
●●●●●●

●

●
●●
●●

●

●
●

●

●

●●●●●●●●●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●●●●●●●●

●●

●

●

●

●
●

●

●

●

●●

●●

●●●

●

●●

●

●
●

●●●●●
●
●●●●●●●

●●●

●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●

●●

●

●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●●

●●●

●

●●●●●●●
●
●●●●●●●●

●●●●●●●
●●

●●●●●●●

●●●

●
●
●●●●●●●●●●●●●●

●●

●

●
●●

●

●
●
●●
●
●
●
●●

●●●

●●

●
●
●
●
●●●

●●●●●

●●●●●●
●
●
●
●

●

●

●●

●●●
●●

●

●
●●●●
●
●
●
●●●●●●●●●●●●●●

●
●●●
●
●
●●●
●●

●

●

●●

●

●
●

●

●
●●
●

●●

●●

●

●
●

●●●●●●●●●●●●●●

●●●●●●●

●●
●●
●
●●●
●
●
●

●

●

●
●

●
●●●

●

●●●●●●●●●●●●
●●

●
●●
●●
●●●
●●●●
●

●●●●
●●●●●●●●

●●●●●
●●●

●●●●●

●●●●●●●●●●●

●●

●

●●●●●●●●●

●

●●

●

●●●●●

●

●●●
●●
●●●●
●
●●●●
●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●●●●

●●●●●●●
●●

●
●●
●

●●

●●
●●●
●

●

●
●
●●
●
●

●

●●

●
●

●●●●

●

●

●
●●

●●

●●●●

●

●

●●●●●

●●●●●
●●

●●

●●●

●

●●●●●●●●
●●●●

●

●●●●●●
●●●●
●●●●●●
●●●●
●
●
●●●
●●●●●
●●
●●●●
●●●
●●
●
●
●●

●
●●
●●●●●●●●●●●
●●
●●●

●●
●
●●
●●
●●
●
●●
●
●
●●

●

●
●

●●●●
●●●●●●
●●●●●●
●●●

●
●
●
●●

●
●
●●●●●●●●●●●●●
●●●●
●●

●●
●
●●●

●●●●●●
●●●●●●

●
●●●●●●●●
●●●●

●●●
●●●●●●●

●

●●●●

●
●
●
●
●●●●●
●

●

●
●

●
●

●●●●
●

●

●●●●●●●●●
●
●
●

●●
●
●●

●

●
●
●●

●●

●●●
●●
●
●●●●●●●●●●●●●●●
●●

●●●●●●●●●
●

●●●●

●●

●●

●●●●

●●●

●●
●●●●●●●●

●●

●●●●

●

●●

●

●●●
●●●●

●●

●●●●

●●

●●
●
●●●●●

●

●
●
●●●●●
●●●
●●●●●●●
●
●●●●
●
●
●
●●●●●●
●
●●
●
●●●
●●●●

●●●●
●

●
●●●●●

●●●●
●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●

●●●

●●●●●
●●●

●●●●●
●●●●●●●●●●●
●●●●
●●●

●
●
●●●●
●●●●●●●●●●●●●●●●●

●

●
●●●●
●●●●●●●●●●
●●●
●●●●●
●
●
●
●

●

●●●●●●●●●●●●●●

●●●●●●●●
●●

●●
●●●●

●●●●●
●●
●●
●●●

●●

●●
●
●

●●●

●●

●

●

●●●●●●

●

●●●●

●●●●●
●
●●●●●●●●●

●
●
●●●●

●

●

●

●

●

●

●●●●●●
●●●●

●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●

●

●●●●●

●●●

●

●●●

●●

●
●

●

●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●●
●

●
●●
●●●

●

●●●●●
●●●●●●●●
●

●●●●●

●

●

●●●●

●●●
●●●●
●●
●
●
●●●●●●
●●●
●
●
●●●●●

●

●●

●●

●●

●

●●

●
●
●●●
●
●

●●

●

●

●

●●●●
●

●
●
●●●●

●

●●

●

●

●

●●●●●●●●

●
●●
●

●

●

●●●

●
●●●●

●

●

●
●

●●●●●●●●

●

●●●●●●●●●●●●
●

●
●

●
●●●●●●
●●

●
●
●
●●●●
●●
●

●
●

●●●●
●●●●
●●●●
●
●●

●
●

●●
●●●
●
●
●●●
●

●

●
●●

●

●

●●●

●●●

●●●●●●●●

●

●●●●●

●●

●●●●●●●●

●●●

●●

●

●

●●●●●●

●●

●●

●●●●

●

●

●●●●●

●●●

●

●●●●●●●

●●●●●●

●●

●●●●●●●●

●●

●●●

●●●

●

●●●●●●

●●●●

●

●●●

●

●

●
●

●
●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●

●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●
●

●●
●
●

●●●●

●

●●

●●

●

●

●●

●

●

●

●●
●
●

●

●●

●

●●●

●

●●●

●

●●

●●●
●●

●

●
●
●

●

●

●●
●●
●

●

●

●●●

●●●

●●●

●●

●●

●

●●●●

●

●

●

●
●

●
●
●

●
●

●

●●●

●

●●●●●●●●
●●●●
●
●●
●

●

●●

●●●●
●

●●

●

●

●●●
●
●●●●●●

●

●●

●●●

●
●●

●●●●●●
●●●

●

●●●●●●●●
●●●

●

●●●

●●●●●●●●●●●●●●●●

●●●●●●
●●

S
c
a
le

d
 R

e
ve

n
u
e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
C
O
R
AL

C
PLE

X

R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

(c) All instances.

Figure 5.2: Dispersion of revenue for each algorithm.

We tested the results of each pair of algorithms for small instances, large instances,
and the full instance dataset.4 For a confidence level of 99%, almost all comparisons were
statistically significant, indicating differences among the results of the different algorithms
(almost all p-values are less than 0.01). CORAL presented significantly poor performance
and we believe there are two major reasons for this: first, CORAL cannot handle instances
with a large number of bids and goods as previously shown by Mansini and Speranza [140]

4The full results are available in the supplementary material in Appendix D.

126 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

and confirmed in Figure 5.2b. Second, CORAL takes advantage of the cardinality of each
dimension constraint. In MDKP, each constraint j is limited to be at most equal to cj
(Formulation (5.2)), where, in general cj ≥ 1. In single-good WDPs, all constraints have
cardinality cj = 1, which does not allow CORAL to take advantage of them, limiting its
major feature. Only on small instances does CORAL present good results, although worse
than the other approaches.

CPLEX produced results that were, in general, better than those of RGRK and BOMA. With
respect to the algorithms proposed here, CPLEX was worse except when compared to SDRA.
comparison between CPLEX and SDLP was inconclusive (p-value > 0.07). For all small
instances, CPLEX obtained an optimal solution. Although the U test returned a value of
0.00 for the differences among the algorithms and CPLEX, we believe that this difference is
very small in favor of CPLEX since the other algorithms display more variance than does
CPLEX, as shown in Figure 5.2a. Note that for the approaches using LP-based initialization
applied to small instances, the tests against CPLEX were inconclusive (p-values > 0.08).
We discuss this effect in Section 5.6.5. For large instances, its behavior was similar to
that of the general case, where all instances are considered.

The performance of RGRK was worse than that of all heuristics and even CPLEX. This is
surprising since this algorithm has been considered to be one of the best heuristics for the
MDKP (Pfeiffer and Rothlauf [167]). We argue that, like CORAL, RGRK uses in its favor the
cardinality of each constraint since cardinality is correlated with the dual variables which
are used to build the pseudo utilities. In the MDKP, this information is very rich since
the multiplicity of the demand of each dimension is weighted by its corresponding dual
cost. The WDP has unit cardinalities and therefore the pseudo utilities are less effective.
Note that even in our BRKGAs, both SDRA and SDLP, which make use of surrogate duality,
performed worse than other other variants which did not use this. BOMA performed quite
well on the entire set of instances, producing results that are slightly worse than those of
our approaches but better than previous algorithms.

Most variants of BRKGA outperformed all other algorithms in the general case.
Among these variants, one can only point to small differences. The exception to this
observation is SDRA, whose location statistics are slightly lower those of CPLEX. It is surpris-
ing that the chromosomal approach (of CARA and CALP), our most basic approach, showed
better results than our other variants. We believe that this is so because the greedy and
surrogate dual strategies can lead the algorithms to premature convergence to poor local
maxima from which they are unable to escape. Note that for small instances, the tests
comparing the LP-based initialized algorithms with CPLEX displayed p-values > 0.08 and,
therefore, we cannot reject the hypothesis that these algorithms have similar performance.
If we consider only the large instances, the behavior was similar to the general case. In
general, the results for CARA and GALP are inconclusive since in their test the p-value > 0.29.

5.6. Experimental Results and Discussion 127

Table 5.3 reports the performance of the algorithms considering the instances parti-
tioned into two sets. The first column is the name of the algorithm. The first group of
columns (2–6) shows the performance considering 202 instances for which an optimal so-
lution was found by CPLEX. There, column “# OPT” represents the number of instances
for which the algorithm found an optimal solution; column “% Opt” shows a percentage
of the number of optimal solutions found; and column “% Run” shows a percentage of
the number of runs on which the algorithm found an optimal solution. The two columns
under label “Prod. diff.” show, respectively, the average of the proportional difference
between the optimal solution value and the achieved value (%), and its corresponding
standard deviation (σ). As we used the optimum solutions obtained by CPLEX, its entries
are presented at the maximum levels (minimum levels, in columns 5–6). CORAL found few
optimal solutions (25.74% of the 202 instances for which optimal solutions are known)
while the other solutions it produced varied widely with respect to quality. Note that
both “% Opt” and “% Run” have the same value since a single run was performed per
instance (see Section 5.6, first paragraph). The heuristics performed well, finding more
than 60% of the optimal solutions. With the exception of SDRA, they were never off by
more than 4% of the optimal. As expected, the approaches using LP-based initialization
often found optimal solutions. However, in some cases they did not reach an optimal
solution, suggesting that the relaxation and variable-fixing process not always produced
chromosomes that when evolved are decoded into an optimal solution (see Section 5.6.5).

The second group of columns (7–11) of Table 5.3 reports the performance of the
algorithms on the 335 instances where no optimal solution is known. It follows the same

Table 5.3: Algorithm performance on instances with known and unknown optimum solu-
tions.

Alg.

Known Optima (202 instances) Unknown Optima (335 instances)

Optima Prop. diff. Best Prop. diff.

Opt % Opt % Run % σ # Best % Best % Run % σ

CPLEX 202 100.00 100.00 0.00 0.00 31 9.25 9.25 4.26 2.70
CORAL 52 25.74 25.74 24.49 35.41 3 0.90 0.90 58.36 16.44
RGRK 123 60.89 19.93 3.02 3.22 3 0.90 0.56 8.64 3.57
BOMA 128 63.37 18.90 2.96 4.00 93 27.76 4.05 4.92 2.76
CARA 171 84.65 24.48 0.95 0.95 200 59.70 26.36 1.00 1.29
CALP 187 92.57 30.33 0.79 0.80 201 60.00 24.51 1.02 1.28
GARA 184 91.09 23.66 2.33 3.68 142 42.39 18.89 1.54 1.55
GALP 186 92.08 28.87 0.89 0.84 200 59.70 23.67 1.14 1.36
SDRA 144 71.29 24.24 7.99 14.74 42 12.54 4.02 4.24 2.45
SDLP 186 92.08 37.17 1.29 1.09 64 19.10 5.90 3.52 2.23

128 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

structure of columns 2–6 but instead of comparing the algorithms with the optimum
solution values, we compared them using the best known solutions. CPLEX was able to
find a best known solution on 9.25% of the 335 instances, while on the remaining instances
it was about 4.26% off of the best values. CORAL and RGRK only found three best known
solutions while the average gaps of the solutions it found with respect to the best known
solution values were about 58.36% and 8.64%, respectively. Again, we emphasize that the
pseudo utility approach did not work well since RGRK, SDRA, and SDLP presented the worst
results among all heuristics. The LP-based initialization approaches again found the best
results (with the exception of SDLP), but not as good as the quality of the solutions it
found on instances with known optima.

5.6.2 Iterations and runtime analyses
Table 5.4 shows the average number of iterations taken by the heuristics to find a

best solution. The last iterations without improvement performed in the value of the
best solution found are disregarded. The first two columns of this table list, respectively,
the instance classes and their corresponding sizes. Each following pair of columns shows
the average number of iterations to find a best solution and standard deviation for each
algorithm, respectively. For instances with 40 and 80 bids, all algorithms converged very
early to an optimal solution. An analysis of CARA, the “most random” of all algorithms,
show that all instances having 40 and 80 bids are easy. This is so because all but six
runs shows only a single iteration to reach an optimal solution on 40 bids instances (one
took three iterations and another five took two). Note that for the LP-based approaches
on instances with 40 and 80 bids, the BRKGA framework did not play any role in the
optimization since all runs took a single iteration (see Section 5.6.5). All algorithms
presented a similar number of iterations in most cases, although those using LP-based
initialization required slightly fewer iterations than did the others.

Figure 5.3 shows performance profiles (Dolan and Moré [50]) for all algorithms. In
performance profiles, the abscissa shows the time needed to reach a target solution value
(in log scale), while the ordinate shows the cumulative probability to reach a target
solution value for the given time in the abscissa. Each algorithm is characterized by a
different performance profile curve made up of (time, cumulative probability) pairs, one
for each execution of the algorithm on a particular instance. Runs that took over 3,600
seconds are not shown in the figure. Therefore, the percentage of runs that concluded
within the time limit can be seen as the intersection of the profile with the left side
(ordinate) of the figure.

Figure 5.3a shows performance profiles considering only target values of instances for
which an optimum solution was found. Figure 5.3b has as target the values of the best

5.6. Experimental Results and Discussion 129

Table 5.4: Average of iterations in finding the best solution. The last iterations without
improvement in the best solution found are disregarded.

Class Size
RGRK BOMA CARA CALP

Iter. σ Iter. σ Iter. σ Iter. σ

40 2 0.07 2 14.25 1 0.14 1 0.00
80 2 0.47 21 95.38 1 0.45 1 0.00
200 17 64.24 287 516.44 29 114.36 1 0.00
400 64 167.19 348 675.30 109 227.47 30 137.06CATS 1000 243 360.07 523 629.76 322 456.50 118 271.27
1024 257 345.40 480 561.63 284 448.99 121 282.51
2000 232 204.81 435 572.54 651 767.01 220 422.79
4000 121 86.07 155 147.78 579 521.75 319 459.41

1000 95 195.78 509 515.63 197 311.99 197 317.58LG 1500 46 91.45 469 531.82 178 258.24 166 240.78

GARA GALP SDRA SDLP

Iter. σ Iter. σ Iter. σ Iter. σ

40 1 0.55 1 0.00 1 2.65 1 0.00
80 4 38.27 1 0.00 2 8.25 1 0.00
200 44 142.41 1 0.00 76 182.31 1 0.00
400 71 189.38 20 115.19 93 215.54 22 104.42CATS 1000 322 511.15 143 361.45 352 447.98 106 256.41
1024 308 450.09 127 277.23 287 449.97 100 270.16
2000 585 689.49 209 399.79 700 765.56 153 330.10
4000 748 745.53 393 567.50 777 643.72 413 637.15

1000 173 286.25 194 303.76 262 371.30 186 303.13LG 1500 140 231.15 150 224.75 212 280.29 171 248.40

solution found on instances with unknown optimal solution. Finally, Figure 5.3c takes, as
target, the values of best solutions found for all instances. The solid black line with white
squares shows the performance profile for CPLEX. As previously reported, CPLEX is quite
fast to find these optimal solutions: in 82% of runs it required less than one second and in
99% less than 1,000 seconds. Only one run took 1,230 seconds. Since CPLEX spent about
one hour on instances with unknown optima and did not find any best solution, it does not
appear on Figure 5.3b. In general, CPLEX has the empirical probability of approximately
37% to find a best solution in less than 1,000 seconds. CORAL is represented by the solid
black line with filled squares. It found 20% of optimal solutions in less than ten seconds
but only 26% in less than 3,600 seconds. For the same reason as CPLEX, CORAL does not
appear in Figure 5.3b and has around a 10% probability of finding a best solution in less

130 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

Seconds

C
u
m

u
la

ti
ve

 p
ro

b
a
b
ili

ty
●

●

●

CARA

CALP

GARA

GALP

SDRA

SDLP

BOMA

RGRK

CPLEX
CORAL

0.001 0.01 0.1 1 10 100 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

(a) Cumulative probability for reach-
ing a optimum solution.

Seconds

C
u
m

u
la

ti
ve

 p
ro

b
a
b
ili

ty

●

●

●

CARA

CALP

GARA

GALP

SDRA

SDLP

BOMA

RGRK

CPLEX
CORAL

0.1 1 10 100 1000

0
.1

0
.2

0
.3

0
.4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

(b) Cumulative probability for reach-
ing a best solution (optima excluded).

Seconds

C
u
m

u
la

ti
ve

 p
ro

b
a
b
ili

ty

●

●

●

CARA

CALP

GARA

GALP

SDRA

SDLP

BOMA

RGRK

CPLEX
CORAL

0.01 0.1 1 10 100 1000

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

(c) Cumulative probability for reach-
ing a best solution (optima included).

Figure 5.3: Running time distributions to optimal assignment of winner bids. The iden-
tification marks correspond to 0.2% of the points plotted for each algorithm.

than 1,000 seconds. BOMA (solid green line with asterisks) and RGRK (solid purple line with
crosses) are slower than the other algorithms (except CORAL) in most cases. Note that
BOMA has a small advantage over SDRA (dense dashed black line with triangles) when we
consider Figure 5.3b. RGRK and BOMA found about 55% of the optimal solutions in less than
3,600 seconds. But, in general, BOMA presents a slightly better probability than that of

5.6. Experimental Results and Discussion 131

RGRK, as shown in Figure 5.3c. In general, BRKGA variants using LP-based initialization
(lines with solid dots) are slower in the first ten seconds, due to the initialization process,
but outperformed their corresponding counterparts after this. This fact is due to the
time needed to create the first LP-based individuals. In fact, the average time of this
procedure is 50.71 ± 78.13 seconds and the maximum time was 1377 seconds. The 377
additional seconds are due to instance setup as a CPLEX model. Considering optimal
solutions, CPLEX presents the best time/probability tradeoff. Among the heuristics, SDLP

(dense dashed line with solid dots) presents the highest probability (approximately 92%).
Considering instances with unknown optima, CARA (solid blue line with triangles) presents
the highest probability (approximately 38%). Overall, the best empirical probability was
approximately 55% for CALP (solid blue line with solid dots).

5.6.3 Comparing the heuristics on hard instances
Since the exact methods can only solve to optimality the small or easy instances, the

heuristics play a major role in solving the large instances. The following analysis uses
the set of LG 1500/1500 instances which proved themselves to be the hardest instances
considered here. All algorithms, except BOMA, reached the time limit on most runs and
presented a relatively small number of iterations.

Figure 5.4 shows the distributions of revenues considering only the heuristics on the
LG 1500/1500 instances. The values were scaled in the same fashion as was done in
Section 5.6.1. We also performed the U test for each pair of algorithms at confidence level
of 99%.5 For the pairs of algorithms (CARA, CALP), (CALP, GALP), and (SDRA, SDLP), we cannot
reject the hypothesis that the results of each pair are similar, since the p-values obtained
from the U tests are greater than 0.01. For the other pairs, the differences presented in
Figure 5.4 are statistically significant. Note that the revenues of BOMA are inferior to those
of the BRKGAs, which confirms our previous suspicion that BOMA converges prematurely,
as shown by its number of iterations in Table 5.4. As in the previous analyses, the
algorithms using surrogate duality presented results below those of the other approaches,
while CARA, CALP, and GALP found the best values.

5.6.4 Comparing heuristics on small number of generations
Standard genetic algorithms, such as RGRK and BOMA, often converge quickly, i.e., in a

small number of generations, to locally optimal, globally sub-optimal, solutions. Most
of the diversification in their population is due to the initial population, since during
evolution, new individuals are created only by crossover or mutation. Besides creating

5The full results are available in the supplementary material in Appendix D.

132 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

●

●
●
●

●●

●●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●
●
●

●

●
●

●

●
●
●●

●
●

●

●

●

●

●

●

●●
●●
●●●
●●
●
●●

●●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●
●

●

●●

●

●
●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●●●●●●●●●●

●

●

●

●●●

●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●●

●

●
●
●
●

●

●●

●●●●●●●●

●●●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●●
●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●●

●●●●

●

●

●

●

●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●●

●

●●●●

●
●●●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●

●●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●●

●

●●

●●

●

●●●●●●●●

●●

●

●

●

●

●

●●●●●●●

●●●

●

●●

●

●●●

●

●●

●

●
●●

●

●

●

●●
●
●
●●
●●

●

●●
●●

●

●

●●

●
●●●

●
●

●●●●●●●●●●●

●
●

●
●

●●●●●

●

●

●●

●●

●

●

●
●
●●●●●

●

●●●●●

●●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●●●●
●
●
●
●●

●●●●●●

●

●●●●

●

●●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●
●
●

●●

●

●

●●

●●●●●●

●

●●

●●

●

●

●●●●●

●●●●●

●

●

●●●●●●●●●●●●●●

●●●●

●●●●

●●●

●●●●

●

●●●●

●●

●

●●●●●●●●●●●

●
●

●●●●●●

●

●

●●●●●●●

●●●

●

●

●

●

●

●

●●●●●●

●●

●
●
●●●●●●

●●

●

●●

●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●●●

●●●

●

●

●

●

●●

●

●●●●●

●

●●●●●●
●
●

●●

●●

●●●●●
●●●

●●●●

●●●

●●

●

●

●

●

●

●

●●

●●

●●●●●●●●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●●●●●●●●●
●
●●●●●●

●

●
●●●●●●●●●

●●

●●●●

●●●

●●●

●●
●

●

●

●●●●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●●

●
●●●●
●
●●●●

●

●

●●

●●

●●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●
●●●●
●
●●●●●●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●●●

●

●●

●

●
●
●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●
●
●
●

●

●●●

●
●●

●●●●●
●●●●

●●●

●

●

●

●

●

●

●●●●●

●●

●

●●●

●

●

●

●●●

●

●
●
●●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●●●

●

●
●●

●●●●
●●

●
●●

●

●

●

●

●●●●

●●

●

●

●
●●

●●

●
●●●●●●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●●
●●
●●●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●●
●

●●●●

●●

●●●

●●

●
●

●

●

●
●
●●●●●●

●
●●
●
●

●

●

●●

●●●●●●●●●●●●

●●

●●●

●

●

●

●

●●
●●
●●
●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●
●●

●●
●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●
●●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●
●●●
●●

●●●●
●
●
●●●
●●

●

●
●
●●
●●
●●●
●●
●

●
●●
●

●

●

●

●
●
●●●
●
●●
●
●

●●

●

●

●

●
●
●●

●

●●

●

●

●●●

●
●

●●●
●●
●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●
●
●
●
●●●

●

●

●●●●●●

●●

●
●
●

●

●

●●●

●●

●

●

●●●

●

●●

●

●

●

●●●●●●●●

●

●●

●

●●●●

●●●●
●●●

●●●

●

●●●●●●●●●●●●●●

●
●●

●

●●●●●●●●●●●●

●●●

●●

●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●●●●

●

●

●●

●●

●●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●
●●●●●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●●
●●

●

●●●●●●●

●

●●●

●●●

●

●

●

●●

●●●●●●●

●

●●●●●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●●●

●●
●

●●●
●

●●●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●
●
●●

●

●
●

●●●●
●●●●●●
●●●

●●

●

●

●

●●●

●

●

●●●
●
●●

●●
●●●●
●

●

●●

●●●●●●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●●●

●●●

●●●●●●

●

●

●●●●●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●●

●

●

●

●●●●●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●●

●
●
●

●●●

●

●

●●

●

●

●●

●●●●●●●●●

●

●●●

●●

●
●●

●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●●●
●●●●●
●●
●

●

●●●●

●●●

●

●

●●●●

●●●●●

●

●

●●●●●●●●●●●●

●

●

●

●●

●
●●●●●●

●●●●

●

●

●●●●●●●●●●●

●●●●●●●●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●●●●

●
●

●●●●●●●●●●●

●●●●●

●●

●

●

●

●●●●

●

●●

●
●●

●

●●●

●

●

●

●

●●

●●

●●

●●●●
●●●●●●●●●●●

●

●

●●●●●●●●●

●●

●

●●●●●●●●●●●

●

●

●●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●●●●●●●

●

●●●●

●●

●

●●●

●●●●
●

●

●

●

●
●

●●●●●●●
●

●●●●●●

●

●●

●

●

●●

●

●

●
●

●●
●

●●

●

●

●

●

●●●

●●

●●●●

●

●●●●●●

●

●

●

●●●●●
●

●

●

●●

●●●

●●●

●

●

●

●

●

●●●●

●
●

●

●●●
●●●

●

●
●

●

●

●●●

●

●

●●●●●●●●●

●

●

●●●

●●

●●●●●●●●

●●●

●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●●●●●

●●●●●●●

●●●●

●●

●●

●●●

●

●

●
●
●●●●●●●●●
●

●

●
●

●

●●
●

●

●

●

●●

●

●●●

●

●●●

●●●

●

●●●●●●●

●

●●

●

●

●

●●●●

●

●
●

●

●

●●●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●●

●●

●

●●●●

●
●

●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●●●

●
●
●

●

●●

●

●

●

●●

●
●
●

●

●●

●

●
●
●

●

●●
●
●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●
●●

●
●

●
●

●●
●

●
●

●

●●

●
●
●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●
●

●

●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●
●
●●

●
●
●●
●

●

●

●

●●●●●●●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●

●

●
●

●
●
●
●

●

●

●●●●●●●●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●●●●●●
●●
●●●●●●●●●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●

●●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●
●
●

●

●

●●

●
●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●●

●●

●●●

●●

●

●

●

●

●

●
●●
●●

●
●●
●●●●●

●

●

●
●●●●●●●●●

●●●

●●●
●●●●●●●●●●
●●
●

●●

●

●●●●●
●●●●●●●●

●●

●●●●

●●●●●●●●

●●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●

●

●●●●●●●●
●
●
●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●

●●

●●

●●●

●

●●●●●

●●

●●●●●●●

●

●●●●●●●●

●

●●

●

●●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●●

●●●

●

●

●

●●●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●●●

●

●●●

●●

●

●

●●
●
●●●●
●
●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●●●●●
●●●

●●●●●

●●

●

●●●●●●●●●

●

●●●●●●●

●

●
●

●

●
●●●●

●

●●●

●
●●●
●

●●

●

●

●●

●

●

●
●●
●

●
●

●

●
●

●●

●
●●
●●●●●

●

●

●
●●

●●

●

●

●●●
●●

●●●●●

●●

●●

●●●

●

●
●
●●●●●

●
●●
●
●

●

●

●

●

●

●

●●●●

●●●●

●●●●●●

●
●

●●

●●

●●

●
●
●●

●

●

●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●
●●

●
●

●

●

●●●

●

●

●●

●
●

●
●●
●●

●
●●

●
●

●
●

●●

●
●●

●
●●

●
●

●

●

●
●

●

●

●
●●●●●
●●●●●●

●●

●●

●

●●

●
●●
●●
●●
●

●

●

●

●●

●●●●

●
●●
●●
●●

●●●●●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●
●●

●
●

●

●●●●●
●●
●
●●

●

●
●

●

●

●

●

●●

●●
●

●

●●●

●

●

●●●●●

●

●●●●●●●●

●●●●

●

●●

●
●●●●
●●

●

●
●●●

●

●●

●

●●

●●●

●●●●●●●●●

●

●

●

●

●

●

●●●●

●
●

●

●

●●

●

●

●

●●

●

●

●●●

●●●

●●

●

●

●

●

●

●●●●●

●●●●

●

●●

●

●

●●●●●

●●●●
●
●●●●

●

●

●●●●

●●

●●

●●●

●

●●●

●
●

●●●●●●●●●

●

●

●

●●●●

●

●

●●●●

●

●●

●

●●●

●●●●

●●

●●●●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●●
●●●●
●

●

●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●

●

●●

●

●●●

●
●●●

●●●●●●●●

●●

●●●●●
●●
●

●●●

●

●

●

●

●

●

●●●

●●●

●●●

●

●●●

●

●●

●●●●●●●

●
●

●

●

●●●●●●

●

●●●

●●

●

●

●●●●

●

●

●●

●●●●●●●●

●●●●

●

●●

●●●

●●●●●

●●●

●●●●●●●●●●●

●●●●

●●●

●

●

●●●●●●●●●
●●●●●●

●●●

●

●●●●●

●

●

●

●●●●●●●

●●●●
●●●●●●●●●●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●●

●●●

●●●●●●●●●

●

●

●

●●●

●●

●●

●●●●

●

●●
●
●●

●●●
●

●

●●

●

●

●

●

●●●

●●

●●

●

●

●

●●●

●

●

●

●●●●

●●

●
●●●●

●●●●
●●
●●●
●●
●
●

●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●●●●●
●

●

●

●

●
●●●

●●●

●

●●●●●

●●●

●

●●●

●

●

●

●

●

●●●●

●●●●

●●●

●●●●●●●

●

●

●●

●●●

●
●●●●●●●●

●

●
●●
●●

●

●

●●
●

●●●

●●●●

●●

●

●

●●●●●●

●●

●●

●

●

●

●●●

●

●●●

●

●●●●●●●●●

●

●

●●●

●

●

●●

●

●

●

●●●●
●

●

●

●●●●

●●

●

●

●

●●
●
●●●●●●●●

●

●●

●

●

●

●●
●

●

●●

●●

●

●●

●

●

●

●●●●●●●●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●●
●

●●

●

●

●

●

●●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●
●●●

●

●

●●

●

●

●

●

●
●

●●●●●

●●●●●
●

●

●

●●

●

●

●●
●

●●●●●●●●

●

●●●●

●●

●

●
●●

●●

●●●

●●

●●

●
●●●
●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

S
c
a
le

d
 R

e
ve

n
u
e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

Figure 5.4: Dispersion of revenue for each algorithm on LG 1500/1500 instances.

new individuals by crossover, BRKGAs insert new genetic material into the population
at each generation in the form of mutants. This diversification can lead to long runs,
i.e., having a large number of generations. Tables 5.3 and 5.4 show us that the BRKGAs
and BOMA are able to find better solutions using, systematically, more iterations than RGRK,
suggesting that the adopted stopping criterion of 1,000 generations without improvement
of the best solution may favor BRKGAs and BOMA over RGRK.

To address this possible bias, we limit ourselves in this section to consider only the best
solutions found by the algorithms in their first 100 generations. We chose 100 generations
because this value is close to 95.49, the average number of generations taken by RGRK to
first find the best solution in a given run. This way, we expect to reduce the impact of
inserting new genetic material into the population of a BRKGA. We used the experimental
results of previous sections but extracted the values after 100 generations. Note that
for large instances, the algorithms were not able to reach the 100th generation due the
time limit. This is particularly true on large instances with 4,000 bids (and also on some
instances with 2,000 bids). Therefore, these large instances are omitted from the following
discussion.

Figure 5.5 shows the boxplots for these results. Their description is similar to Fig-
ure 5.2. We also performed U tests for each pair of algorithms using a confidence level of
99%.5 In general, BOMA outperformed RGRK but not the BRKGAs, as observed in previous
sections. The exception here is that BOMA is significantly better than all other algorithms
on small instances (Figure 5.5b). In general, CALP and GALP presented the best results,
although the test between them was inconclusive (p-value > 0.84). For large instances,
CALP and GALP reached the best results. As before, we cannot affirm which of the two is

5.6. Experimental Results and Discussion 133

●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●

●●●●●●

●●

●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●

●

●

●

●●●●●●

●●

●

●●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●
●●

●●●●●●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●

●
●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●

●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●
●

●

●

●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●
●

●

●

●
●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●
●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●
●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●
●

●

●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●●●●● ●●●●●●

●

●
●

●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●

●

●

●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●

●

●
●

●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●
●

●

●●●●●●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●

●

●●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●

●
●

●

S
c
a
le

d
 R

e
ve

n
u
e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

(a) All instances.

S
c
a
le

d
 R

e
ve

n
u
e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

(b) Small instances.

●

●

●

●●

●

●

●●

●

●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●

●●

●

●

●

●

●●●●●●

●

●

●

●

●
●

●●●●●●

●

●
●
●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●
●

●
●

●

●

●

●

●
●

●●●●●●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●●●●

●

●

●

●

●
●

●
●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●
●●

●

●
●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●●

●●●●●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●

●●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●
●

●

●

●●●●●●

●

●

●
●
●

●

●●●

●

●

●

●●●●●●

●

●

●●●

●●

●

●

●

●●●●●●

●

●

●

●●●●●●

●

●

●

●●●●●●

●

●

●●●●●●

●

●●●

●

●
●

●

●
●

●●●●●●

●

●

●●●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●●●●●●

●

●●●

●●

●

●

●●

●●●●●●

●●
●

●

●

●●●

●

●

●●●●●●

●

●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●
●

●

●
●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●●●●●●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●●●●●●

●

●

●
●

●

●
●
●
●

●

S
c
a
le

d
 R

e
ve

n
u
e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

(c) Large instances.

●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

S
c
a
le

d
 R

e
ve

n
u
e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

(d) LG 1500/1500 instances.

Figure 5.5: Dispersion of revenue for each heuristic using 100 generations at most.

best (p-value > 0.77). For hard LG 1500/1500 instances, the tests for CARA, CALP, and GALP

were inconclusive due p-values > 0.66.
We conclude this section by observing that even with a small number of generations,

the BRKGAs outperformed the other algorithms (except for BOMA on small instances). An-
other interesting observation was the performance of the algorithms with LP-initialization,
which are able to produce better results than those with random initialization. We discuss
this further in the next section.

134 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

5.6.5 Effect of LP-based initialization
One can notice in the tables of Section 5.6.1 and, with some difficulty in Figure 5.2,

that the approaches using LP-based initialization performed better than the approaches
that use only random vectors as the initial population. This could suggest that some chro-
mosomes generated by the LP relaxation are often decoded into an optimum solution. In
fact, this is not the case, as shown in Table 5.5. This table shows the average ratio RLP

of the revenues of the best chromosome generated by LP relaxations and the best chro-
mosome in the final population, i.e., RLP = best_lp/best_final, for each algorithm and
all the instances (hard and easy). The best LP-based chromosome values were obtained
with Algorithm 5.2 and do not include any random individuals. Among all LP-based
chromosomes, we select the one with the highest revenue. Note that we also consider
random initialized algorithms. In this case, we consider the best randomly chromosome
from the first generation.

Table 5.5 contains three blocks with respect to the size of the instances and each block
has a column labeled “Ratio” that shows the average ratio RLP and a column labeled
σ with the corresponding standard deviation. One can note that on small instances,
the LP-based chromosomes generate revenues very close to those in the final population,
indicating a possible dominance of LP initial solutions. But note also that the ratio of
random initialization and LP-based initialization revenues is very small. This ratio is
about 4% larger when we consider large instances exclusively. It is interesting to note
that GARA displays a better ratio than that of GALP, implying that the results between the
first and last generations of GARA are closer together than the corresponding ones for GALP.
However, GALP presented better results than GARA as shown in Section 5.6.1.

Table 5.6 presents the RLP ratios for the perspective instance class. Each column
lists the average ratio of each instance class for each algorithm, with the exception of
the last two, which are the overall average r and standard deviation σ. The results are

Table 5.5: Ratio between the revenue of LP-based chromosomes and the best chromosome.

Alg.
Size ≤ 400 Size ≥ 1000 All

Ratio σ Ratio σ Ratio σ

CARA 0.9848 0.02 0.9035 0.06 0.9183 0.06
CALP 0.9999 0.00 0.9471 0.03 0.9574 0.03
GARA 0.9963 0.00 0.9669 0.02 0.9724 0.02
GALP 0.9999 0.00 0.9529 0.03 0.9617 0.03
SDRA 0.9931 0.01 0.9295 0.05 0.9427 0.05
SDLP 0.9998 0.00 0.9640 0.03 0.9721 0.03

5.6. Experimental Results and Discussion 135

very close to those of Table 5.5. There are, however, some important points to consider.
Note that on the instance class L2, Matching, and Scheduling, the LP-based initialization
algorithms achieved a ratio of RLP = 1.00 with a standard deviation of 0.00. This implies
that for all instances of these classes, the best solution was found in the first generation.
This, in turn, implies that the LP relaxations are able to produce the best solution. This
is expected since such instance classes are known to be easy to solve. In fact, CPLEX
was able to find the optimal solutions for these instances in the root node of the branch-
and-bound tree, i.e. its heuristics were able to find these solutions without enumeration.
In these cases, the evolutionary mechanism of BRKGA plays no role in the optimization.
However, for other instance classes, BRKGA improves the solution value.

Note that for the CATS instances, the algorithms with LP-based initialization have
very tight RLP ratios, i.e. around 0.99, especially when compared with the random
initialization approach (for which they are around 0.95). For LG instances, the RLP

ratios are larger than those for CATS: For both initialization approaches, the ratios are
around 0.94. These results were expected since the CATS instances are easier than the
LG instances. Again, it is interesting to note that GARA presented tighter ratios than GALP

but only on the LG instances. This is not in contradiction with the results of Table 5.5
since the number of LG instances total more than half of all instances.

Table 5.6: Ratio between the revenue of LP-based chromosomes and the best chromosome
by instance class.

Alg CARA CALP GARA GALP SDRA SDLP
General

r σ

L2 0.99 1.00 0.99 1.00 0.92 1.00 0.99 0.05
L3 0.83 0.99 0.95 0.99 0.94 0.99 0.95 0.08
L4 0.92 0.99 0.98 0.99 0.97 0.99 0.97 0.04
L6 0.88 0.99 0.96 0.99 0.95 0.99 0.96 0.06
L7 0.98 0.99 0.99 0.99 0.97 0.99 0.99 0.02
Arbitrary 0.89 0.96 0.95 0.96 0.93 0.97 0.94 0.05
Matching 0.89 1.00 0.97 1.00 0.96 1.00 0.97 0.06
Paths 0.90 0.99 0.96 0.99 0.95 0.99 0.96 0.05
Regions 0.89 0.97 0.95 0.97 0.93 0.97 0.94 0.06
Scheduling 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.01
LG 0.91 0.93 0.97 0.94 0.93 0.94 0.94 0.03

136 Chapter 5. The Winner Determination Problem in Combinatorial Auctions

5.7 Final Remarks
In this chapter, we introduced six variants of biased random-key genetic algorithms

applied to the winner determination problem in combinatorial auctions. We also proposed
a novel initialization scheme for BRKGAs based on intermediate solutions to the LP
relaxation of the integer programming model for the that problem. Such scheme can be
easily applied in BRKGAs for other 0–1 integer linear programs, since solutions for the
LP relaxation of such problems are natural vectors of random-keys, and thus BRKGA
chromosomes. The proposed algorithms have outperformed the standard LP model using
a commercial mixed integer programming solver and other recent heuristic approaches on
large CATS instances (Leyton-Brown et al. [125]), as well as on the LG instances (Lau
and Goh [120]). On small CATS instances, where optimal solutions were found with the
commercial mixed integer programming solver but not the BRKGAs, the maximum gap
between the two was less than 3%, showing that the BRKGAs can still obtain high-quality
solutions. Another advantage of BRKGAs is their ability to find good solutions in a very
short time, enabling their application in iterative auctions with thousands of goods and
bids.

Chapter 6
Concluding remarks

THE capacity of telecommunication networks has been pushed continuously in the
last years mainly because of the huge increase in data utilization. One reason is the

popularization of streaming services as such high resolution video streaming, known for
its huge use of bandwidth. Another reason is the high increase in the number of connected
devices, particularly mobile devices such as smart phones and tablets. In this sense, it is
necessary to increase the capacity of existing networks and deploy new ones. Provided
that this is a multi-billionaire market, optimization is essential since any small improve-
ment can represent a change of millions of dollars and determine the success or failure of
the operation. In this thesis, we proposed new optimization algorithms to solve several
problems that appear in the planning and deployment of telecommunication networks and
related problems. We considered problems of planning wireless access networks and core
networks. We also studied two support problems: a clustering problem that can be used
to study customer demands; and an auction problem to commercialize electromagnetic
spectra.

In Chapter 2, we proposed a new problem called Wireless Backhaul Network Design
Problem (WBNDP). The objective of this problem is to provide an access network us-
ing wireless technologies such as Wi-Fi and LTE, such that the cost/benefit ratio is the
best possible. Although the WBNDP resembles some problems in the family of facility
location and Steiner tree problems, it has some particularities that differ it from previous
problems in the literature. In the first of these, the objective is a function of the maxi-
mum flow that can be routed through the network. Second, the underlying flow problem
cannot be reduced, as far as we know, to a classical maximum flow problem which means
that we cannot use previously proposed algorithms to solve it. We considered real-world
constraints such as radio interference between pieces of equipment, capacities, and geo-
graphical location. We proposed a biased random-key genetic algorithm (BRKGA) and
a mixed integer linear programming model for the WBNDP and tested them on 30 real-

137

138 Chapter 6. Concluding remarks

world instances. Our approaches were able to delivery excellent solutions that resulted in
profit margins that, in most cases, were greater than 100%. To date, our algorithms have
been used in production environment in one of the largest telecommunication companies
of the United States.

In Chapter 3, we proposed a BRKGA and a multi-start algorithm to solve the k-
Interconnected Multi-Depot Multi Traveling Salesman Problem (k-IMDMTSP). This
problem can be used to model core networks that offer certain degrees of resilience. Our
algorithms use sophisticated local search procedures in the decoding that are able to
deliver good results. We proposed five scenarios and performed experiments with high
statistical rigor. We were able to assert the performance of the BRKGA learning process,
and provide very good results.

In Chapter 4, we studied the Overlapping Correlation Clustering Problem (OCC). In
this problem one wants to find a multi labeling for objects that have a measure of similarity
between them. The OCC can be used to perform data analysis such as demand prediction
and consumption paths in networks, among several other applications. We proposed four
BRKGAs which combine two representations and two decoders. For one type of decoder,
we proposed a new local search procedure. For the other type, we used the state of the
art algorithm for OCC as a subroutine. We also improved this state of the art algorithm
creating a multi-start algorithm from it. We used the algorithms to solve problems from
different fields such as Biology, mobility, and text analysis. Our approaches were able
to overcome the state of the art algorithm in the most cases and delivery substantially
better results. The downside was that the BRKGAs were slower than other approaches
because of the long convergence time. As these clustering problems are generally used in
exploratory research, the slow convergence, in our opinion, may not be an issue.

In Chapter 5, we studied the Winner Determination Problem (WDP) in combinatorial
auctions. In these auctions, the bidder can place bids on bundles of objects that can
represent complementarity or substitutability among these objects. The objective is to
choose bids such the sum of their values is maximized. Note that one must grant that
winner bids are pairwise disjoint. We proposed six BRKGA variants and compare them
with a linear programming model solved by a commercial solver, two state of the art
algorithms for the WDP (one heuristic and one exact algorithm) and a popular genetic
algorithm. We performed experiments on 537 instances of different sizes and levels of
difficulty. We were able to statistically show the BRKGAs variants produced the best
results using very simple decoders. Moreover, BRKGA produced high quality solutions
specially compared with optimal solutions.

During the development of this thesis, we could assert the capability of biased random-
key genetic algorithms to delivery excellent solutions for a variety of problems. Even using
different types of encoding and several decoding paradigms, BRKGAs presented solid and

139

reliable results. For example, in Chapter 5, the decoders are simple and have no local
search. Nevertheless, the BRKGAs were able to overcome a memetic algorithm with local
search procedures in its decoding phase. Some important facts about the BRKGA must
be noted. First, the insertion of mutants instead of standard mutation in the genes, allows
much more diversification in the population and, consequently, better chances of escape
from local minima/maxima. Second, the restart approach is fundamental to obtain good
solutions. Third, local search in the decoding process is not always necessary as one can
observe in Chapters 2 and 5. Another important point is the choice of the representation
and the effects that this choice has in the BRKGA learning process as we can observe in
Chapter 4.

Summarizing, our major contributions are:

— The proposition of a new problem called the Wireless Backhaul Network Design
Problem (WBNDP) and the methods to solve it. This is a real-world problem
that occurs frequently in network design. One may note that it is possible to derive
a whole new family of problems from the WBNDP that can by applied in other
contexts;

— The proposition of new very effective algorithms for solving the overlapping corre-
lation clustering problem (OCC), the k-interconnected multi-depot multi traveling
salesman problem (k-IMDMTSP), and the winner determination problem (WDP).
Such algorithms were shown statistically, to provide solutions of excellent quality;

— The assertion that the biased random-key genetic algorithm (BRKGA) is an effective
tool for solving different kinds of combinatorial optimization problems. BRKGA
shows itself as a reliable tool from simple (but hard) problems (e.g. WDP) to
complex ones (e.g. WBNDP). The results produced by the BRKGA are usually
very stable and can present several alternative solutions. Such solution can be used
to better understand the problem and improve modeling and solution process.

140

Bibliography

[1] N. Ailon and E. Liberty. Correlation clustering revisited: The “true” cost of error
minimization problems. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Niko-
letseas and W. Thomas (editors), Automata, Languages and Programming, volume
5555 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pages 24–
36, 2009.

[2] I. Alaya, C. Solnon and K. Ghédira. Ant algorithm for the multi-dimensional knap-
sack problem. In International Conference on Bioinspired Optimization Methods
and their Applications (BIOMA 2004). Pages 63–72, 2004.

[3] A. Allahverdi, C. T. Ng, T. C. E. Cheng and M. Y. Kovalyov. A survey of scheduling
problems with setup times or costs. European Journal of Operational Research,
187(3):985–1032, 2008.

[4] C. E. Andrade, F. K. Miyazawa and M. G. C. Resende. Evolutionary algorithm
for the k-interconnected multi-depot multi-traveling salesmen problem. In Pro-
ceedings of the 15th Annual Conference on Genetic and Evolutionary Computation,
GECCO’13. ACM, New York, NY, USA, pages 463–470, 2013.

[5] C. E. Andrade, M. G. C. Resende, H. J. Karloff and F. K. Miyazawa. Evolutionary
algorithms for overlapping correlation clustering. In Proceedings of the 16th Con-
ference on Genetic and Evolutionary Computation, GECCO’14. ACM, New York,
NY, USA, pages 405–412, 2014a.

[6] C. E. Andrade, M. G. C. Resende, W. Zhang, R. K. Sinha, K. C. Reichmann, R. D.
Doverspike and F. K. Miyazawa. A biased random-key genetic algorithm for wireless
backhaul network design, 2014b. Submitted to Applied Soft Computing.

[7] C. E. Andrade, R. F. Toso, M. G. C. Resende and F. K. Miyazawa. Biased random-
key genetic algorithms for the winner determination problem in combinatorial auc-
tions. Evolutionary Computation, 2015. DOI 10.1162/EVCO_a_00138. To appear.

141

142 BIBLIOGRAPHY

[8] D. L. Applegate, R. E. Bixby, V. Chvátal and W. J. Cook. Concorde TSP
solver. http://www.math.uwaterloo.ca/tsp/concorde, 2003. Accessed on Oct
12nd, 2014.

[9] D. L. Applegate, R. E. Bixby, V. Chvátal and W. J. Cook. The traveling salesman
problem: A computational study. Princeton University Press, 2007.

[10] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu and R. J. Mooney. Model-based
overlapping clustering. In Proceedings of the 11th ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, KDD’05. ACM, New York,
NY, USA, pages 532–537, 2005.

[11] N. Bansal, A. Blum and S. Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004.

[12] S. Barreto, C. Ferreira, J. Paixão and B. S. Santos. Using clustering analysis in a
capacitated location-routing problem. European Journal of Operational Research,
179(3):968–977, 2007.

[13] R. Bayer. Symmetric binary B-Trees: Data structure and maintenance algorithms.
Acta Informatica, 1(4):290–306, 1972.

[14] J. C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal On Computing, 2(6):154–160, 1994.

[15] R. Becker, R. Cáceres, K. Hanson, S. Isaacman, J. M. Loh, M. Martonosi, J. Row-
land, S. Urbanek, A. Varshavsky and C. Volinsky. Human Mobility Characterization
from Cellular Network Data. Communications of the ACM, 56(1):74–82, 2013.

[16] J.-M. Belenguer, E. Benavent, C. Prins, C. Prodhon and R. W. Calvo. A branch-
and-cut method for the capacitated location-routing problem. Computers & Oper-
ations Research, 38(6):931–941, 2011.

[17] R. E. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

[18] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society.
Series B (Methodological), 57(1):289–300, 1995.

[19] M. Bichler, A. Pikovsky and T. Setzer. An analysis of design problems in com-
binatorial procurement auctions. Business & Information Systems Engineering,
1:111–117, 2009.

http://www.math.uwaterloo.ca/tsp/concorde

BIBLIOGRAPHY 143

[20] S. Bikhchandani and J. M. Ostroy. From the assigment model to combinatorial
auctions. In Combinatorial auctions. MIT Press, pages 189–214, 2006.

[21] M. Birattari, Z. Yuan, P. Balaprakash and T. Stützle. F-Race and iterated F-Race:
an overview. In Experimental methods for the analysis of optimization algorithms.
Springer Berlin Heidelberg, pages 311–336, 2010.

[22] L. Blumrosen and N. Nisan. Combinatorial auctions. In Algorithmic game theory.
Cambridge University Press, pages 267–299, 2007.

[23] F. Bonchi, A. Gionis and A. Ukkonen. Overlapping correlation clustering. Knowl-
edge and Information Systems:1–32, 2012.

[24] O. Borůvkra. O jistém problému minimálním. Práce mor. pr̆írodovĕd. spol., 3:37–58,
1926.

[25] D. Boughaci. Metaheuristic approaches for the winner determination problem in
combinatorial auction. In X.-S. Yang (editor), Artificial Intelligence, Evolutionary
Computing and Metaheuristics, volume 427 of Studies in Computational Intelli-
gence. Springer Berlin Heidelberg, pages 775–791, 2013.

[26] D. Boughaci, B. Benhamou and H. Drias. A memetic algorithm for the optimal
winner determination problem. Soft Computing - A Fusion of Foundations, Method-
ologies and Applications, 13:905–917, 2009.

[27] V. Boyer, D. E. Baz and M. Elkihel. Solution of multidimensional knapsack problems
via cooperation of dynamic programming and branch and bound. European Journal
of Industrial Engineering, 4:434–449, 2010.

[28] J. Brodkin. Verizon led massive astroturf campaign to end NJ broadband obligation.
Ars Technica, 2014. http://arstechnica.com/tech-policy/2014/04/verizon-
led-massive-astroturf-campaign-to-end-nj-broadband-obligation. Ac-
cessed on Sep 6th, 2014.

[29] T. Buer and G. Pankratz. Solving a bi-objective winner determination problem in
a transportation procurement auction. Logistics Research, 2:65–78, 2010.

[30] S. A. Canuto, M. G. C. Resende and C. C. Ribeiro. Local search with perturbations
for the prize-collecting Steiner tree problem in graphs. Networks, 38(1):50–58, 2001.

[31] R. D. Carr and G. Lancia. Ramsey theory and integrality gap for the independent
set problem. Operations Research Letters, 42(2):137–139, 2014.

http://arstechnica.com/tech-policy/2014/04/verizon-led-massive-astroturf-campaign-to-end-nj-broadband-obligation
http://arstechnica.com/tech-policy/2014/04/verizon-led-massive-astroturf-campaign-to-end-nj-broadband-obligation

144 BIBLIOGRAPHY

[32] V. Černý. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applications,
45(1):41–51, 1985.

[33] P. Chardaire, G. P. McKeown and J. A. Maki. Application of GRASP to the
multiconstraint knapsack problem. In E. J. W. Boers (editor), Applications of Evo-
lutionary Computing, volume 2037 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pages 30–39, 2001.

[34] M. Charikar, V. Guruswami and A. Wirth. Clustering with qualitative information.
Journal of Computer and System Sciences, 71(3):360–383, 2005.

[35] L. Chen, M. T. Özsu and V. Oria. Robust and fast similarity search for moving
object trajectories. In Proceedings of the 2005 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD’05. ACM, New York, NY, USA, pages
491–502, 2005.

[36] P. C. Chu and J. E. Beasley. A genetic algorithm for the multidimensional knapsack
problem. Journal of Heuristics, 4:63–86, 1998.

[37] Cisco. VNI Mobile forecast highlights 2013–2018. Cisco website, 2014. http:
//www.cisco.com/assets/sol/sp/vni/forecast_highlights_mobile. Accessed
on Oct 23rd, 2014.

[38] W. J. Conover. Practical nonparametric statistics. John Wiley & Sons, 2nd edition,
1980.

[39] A. M. Costa, J.-F. Cordeau and G. Laporte. Fast heuristics for the Steiner tree prob-
lem with revenues, budget and hop constraints. European Journal of Operational
Research, 190(1):68–78, 2008.

[40] A. M. Costa, J.-F. Cordeau and G. Laporte. Models and branch-and-cut algorithms
for the Steiner tree problem with revenues, budget and hop constraints. Networks,
53(2):141–159, 2009.

[41] P. Cramton, Y. Shoham and R. Steinberg. Combinatorial auctions. MIT Press,
2006.

[42] A. S. da Cunha, A. Lucena, N. Maculan and M. G. C. Resende. A relax-and-
cut algorithm for the prize-collecting Steiner problem in graphs. Discrete Applied
Mathematics, 157(6):1198–1217, 2009.

http://www.cisco.com/assets/sol/sp/vni/forecast_highlights_mobile
http://www.cisco.com/assets/sol/sp/vni/forecast_highlights_mobile

BIBLIOGRAPHY 145

[43] G. Dahl, L. Gouveia and C. Requejo. On formulations and methods for the hop-
constrained minimum spanning tree problem. In M. G. Resende and P. M. Pardalos
(editors), Handbook of Optimization in Telecommunications. Springer US, pages
493–515, 2006.

[44] G. B. Dantzig. Linear programming and extensions. Princeton University Press,
Princeton, NJ, 1963.

[45] R. S. de Camargo, G. de Miranda and A. Løkketangen. A new formulation and
an exact approach for the many-to-many hub location-routing problem. Applied
Mathematical Modelling, 37(12-13):7465–7480, 2013.

[46] E. D. Demaine, D. Emanuel, A. Fiat and N. Immorlica. Correlation clustering in
general weighted graphs. Theoretical Computer Science, 361(2–3):172–187, 2006.

[47] B. Dezsõ, A. Jüttner and P. Kovács. LEMON - An open source C++ graph template
library. Electronic Notes in Theoretical Computer Science, 264(5):23–45, 2011.

[48] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[49] S. Dobzinski, N. Nisan and M. Schapira. Approximation algorithms for combinato-
rial auctions with complement-free bidders. In Proceedings of the 37th annual ACM
Symposium on Theory of Computing, STOC’05. ACM, New York, NY, USA, pages
610–618, 2005.

[50] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

[51] M. Dorigo, V. Maniezzo and A. Colorni. Ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, 26(1):29–41, 1996.

[52] M. Dorigo and T. Stützle. Ant colony optimization. MIT Press, Cambridge, MA,
USA, 2004.

[53] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[54] A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In T. G.
Dietterich, S. Becker and Z. Ghahramani (editors), Advances in Neural Information
Processing Systems 14. Pages 681–687, 2001.

146 BIBLIOGRAPHY

[55] M. Ericsson, M. G. C. Resende and P. M. Pardalos. A genetic algorithm for the
weight setting problem in OSPF routing. Journal of Combinatorial Optimization,
6(3):299–333, 2002.

[56] L. F. Escudero, M. Landete and A. Marín. A branch-and-cut algorithm for the
Winner Determination Problem. Decision Support Systems, 46(3):649–659, 2009.

[57] M. P. Fay and M. A. Proschan. Wilcoxon-Mann-Whitney or t-test? On assumptions
for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys,
4:1–39, 2010.

[58] U. Feige and J. Vondrák. The submodular welfare problem with demand queries.
Theory of Computing, 6(1):247–290, 2010.

[59] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8(2):67–71, 1989.

[60] FICO. FICO Xpress Optimization Suite. http://www.fico.com/en/products/
fico-xpress-optimization-suite, 2014. Accessed on Oct 27th, 2014.

[61] T. Fischer and P. Merz. Embedding a chained Lin-Kernighan algorithm into a dis-
tributed algorithm. In K. F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr,
R. F. Hartl, M. Reimann, R. Sharda and S. Voß (editors), Metaheuristics, vol-
ume 39 of Operations Research/Computer Science Interfaces Series. Springer US,
pages 277–295, 2007.

[62] L. R. Ford Jr. and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

[63] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with
fusion trees. Journal of Computer and System Sciences, 47:424–436, 1993.

[64] Z.-H. Fu and J.-K. Hao. Breakout local search for the Steiner tree problem with
revenue, budget and hop constraints. European Journal of Operational Research,
232(1):209–220, 2014.

[65] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory
of NP-completeness. Freeman, San Francisco, 1979.

[66] M. Gendreau and J.-Y. Potvin. Handbook of metaheuristics. Springer Publishing
Company, Incorporated, 2nd edition, 2010.

http://www.fico.com/en/products/fico-xpress-optimization-suite
http://www.fico.com/en/products/fico-xpress-optimization-suite

BIBLIOGRAPHY 147

[67] F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 13(5):533–549, 1986.

[68] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA,
USA, 1997.

[69] M. Goemans and D. Williamson. The primal dual method for approximation algo-
rithms and its application to network design problems. In D. Hochbaum (editor),
Approximation Algorithms for NP-Hard Problems. P.W.S. Publishing Co., Boston,
MA, USA, pages 144–191, 1996.

[70] M. X. Goemans and D. P. Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

[71] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
Journal of ACM, 35(4):921–940, 1988.

[72] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Professional, Boston, MA, USA, 1st edition, 1989.

[73] M. K. Goldberg, M. Hayvanovych and M. Magdon-Ismail. Measuring similarity
between sets of overlapping clusters. In IEEE Second International Conference on
Social Computing, (SocialCom’10). IEEE Computer Society, Washington, DC, USA,
pages 303–308, 2010.

[74] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, 64:275–278, 1958.

[75] J. F. Gonçalves, J. J. M. Mendes and M. G. C. Resende. A hybrid genetic algorithm
for the job shop scheduling problem. European Journal of Operational Research,
167(1):77–95, 2005.

[76] J. F. Gonçalves, J. J. M. Mendes and M. G. C. Resende. A genetic algorithm for
the resource constrained multi-project scheduling problem. European Journal of
Operational Research, 189(3):1171–1190, 2008.

[77] J. F. Gonçalves, J. J. M. Mendes and M. G. C. Resende. A random key based genetic
algorithm for the resource constrained project scheduling problems. Computers and
Operations Research, 36:92–109, 2009.

[78] J. F. Gonçalves and M. G. C. Resende. An extended Akers graphical method
with a biased random-key genetic algorithm for job-shop scheduling. International
Transactions in Operational Research, 21(2):215–246, 2014.

148 BIBLIOGRAPHY

[79] J. F. Gonçalves, M. G. C. Resende and J. J. M. Mendes. A biased random-key
genetic algorithm with forward-backward improvement for the resource constrained
project scheduling problem. Journal of Heuristics, 17:467–486, 2011.

[80] J. F. Gonçalves and J. R. de Almeida. A hybrid genetic algorithm for assembly line
balancing. Journal of Heuristics, 8(6):629–642, 2002.

[81] J. F. Gonçalves and M. G. C. Resende. Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics, 17:487–525, 2011a.

[82] J. F. Gonçalves and M. G. C. Resende. A parallel multi-population genetic algo-
rithm for a constrained two-dimensional orthogonal packing problem. Journal of
Combinatorial Optimization, 22:180–201, 2011b.

[83] J. F. Gonçalves and M. G. C. Resende. A parallel multi-population biased random-
key genetic algorithm for a container loading problem. Computers & Operations
Research, 39(2):179–190, 2012.

[84] J. F. Gonçalves and M. G. C. Resende. A biased random key genetic algorithm for
2D and 3D bin packing problems. International Journal of Production Economics,
145(2):500–510, 2013.

[85] L. Gouveia. Using the Miller-Tucker-Zemlin constraints to formulate a minimal
spanning tree problem with hop constraints. Computers & Operations Research,
22(9):959–970, 1995.

[86] L. Gouveia, A. Paias and D. Sharma. Restricted dynamic programming based
neighborhoods for the hop-constrained minimum spanning tree problem. Journal
of Heuristics, 17(1):23–37, 2011a.

[87] L. Gouveia, L. Simonetti and E. Uchoa. Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as Steiner tree problems over layered
graphs. Mathematical Programming, 128(1-2):123–148, 2011b.

[88] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45(9):1563–1581, 1966.

[89] G. Guennebaud, B. Jacob et al. Eigen v3. http://eigen.tuxfamily.org, 2010. Ac-
cessed on Dec 29th, 2014.

[90] Y. Guo, A. Lim, B. Rodrigues and Y. Zhu. Heuristics for a bidding problem.
Computers & Operations Research, 33(8):2179–2188, 2006.

BIBLIOGRAPHY 149

[91] Gurobi Optimization. Gurobi Optimizer. http://www.gurobi.com, 2014. Accessed
on Oct 27th, 2014.

[92] M. M. Halldórsson. Approximations of weighted independent set and hereditary
subset problems. Journal of Graph Algorithms and Applications, 4(1):1–16, 2000.

[93] P. Hansen, N. Mladenović and J. A. M. Pérez. Variable neighbourhood search:
Methods and applications. Annals of Operations Research, 175(1):367–407, 2010.

[94] I. S. Haque, V. S. Pande and W. P. Walters. Anatomy of high-performance 2D
similarity calculations. Journal of Chemical Information and Modeling, 51(9):2345–
2351, 2011.

[95] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

[96] M. Hoefer, T. Kesselheim and B. Vöcking. Approximation algorithms for secondary
spectrum auctions. In Proceedings of the 23rd Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA’11. ACM, New York, NY, USA, pages
177–186, 2011.

[97] R. Holte. Combinatorial auctions, knapsack problems, and hill-climbing search. In
E. Stroulia and S. Matwin (editors), Advances in artificial intelligence, volume 2056
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pages 57–66,
2001.

[98] H. H. Hoos and C. Boutilier. Solving combinatorial auctions using stochastic local
search. In Proceedings of the 17th National Conference on Artificial Intelligence and
20th Conference on Innovative Applications of Artificial Intelligence. AAAI Press,
pages 22–29, 2000.

[99] R. Horst, P. M. Pardalos and N. V. Thoai. Introduction to global optimization.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2nd edition, 2000.

[100] A. S. Householder. Unitary triangularization of a nonsymmetric matrix. Journal of
ACM, 5(4):339–342, 1958.

[101] IBM. IBM ILOG CPLEX Optimizer. http://www.ibm.com/software/commerce/
optimization/cplex-optimizer, 2014. Accessed on Oct 21st, 2014.

[102] P. Jaccard. Étude comparative de la distribution florale dans une portion des Alpes
et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37:547–579,
1901.

http://www.gurobi.com
http://www.ibm.com/software/commerce/optimization/cplex-optimizer
http://www.ibm.com/software/commerce/optimization/cplex-optimizer

150 BIBLIOGRAPHY

[103] T. Jansen. On the analysis of dynamic restart strategies for evolutionary algorithms.
In J. J. M. Guervós, P. Adamidis, H. G. Beyer, H. P. Schwefel and J. L. Fernández-
Villacañas (editors), Parallel Problem Solving from Nature - PPSN VII, volume
2439 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pages 33–
43, 2002.

[104] D. S. Johnson, M. Minkoff and S. Philips. The prize collecting tree problem: Theory
and practice. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms. Baltimore, Maryland, USA, Pages 790–769, 1999.

[105] K. S. Jones. A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation, 28(1):11–21, 1972.

[106] L. V. Kantorovic. Mathematical methods of organizing and planning production.
Management Science, 6:363–422, 1960.

[107] D. R. Karger and M. Minkoff. Building Steiner trees with incomplete global knowl-
edge. In Proceedings of 41st Annual Symposium on Foundations of Computer Sci-
ence, FOCS’00. IEEE Computer Society, pages 613–623, 2000.

[108] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4(4):373–395, 1984.

[109] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International
Conference on Neural Networks Proceedings, volume 4. Pages 1942–1948, 1995.

[110] L. Khachiyan. A polynomial algorithm in linear programming. Soviet Math.,
20(1):191–194, 1979.

[111] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[112] G. W. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl
and R. Weiskircher. Combining a memetic algorithm with integer programming
to solve the prize-collecting Steiner tree problem. In K. Deb (editor), Genetic
and Evolutionary Computation - GECCO 2004, volume 3102 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pages 1304–1315, 2004.

[113] E. Kosman and K. J. Leonard. Similarity coefficients for molecular markers in stud-
ies of genetic relationships between individuals for haploid, diploid, and polyploid
species. Molecular Ecology, 14(2):415–424, 2005.

[114] V. Krishna. Auction theory. Academic Press, 2nd edition, 2010.

BIBLIOGRAPHY 151

[115] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7:48–50, 1956.

[116] M. J. Kuby and R. G. Gray. The hub network design problem with stopovers and
feeders: the case of Federal Express. Transportation Research Part A: Policy and
Practice, 27(1):1–12, 1993.

[117] M. Labbé, I. Rodríguez-Martin and J. J. Salazar-Gonzalez. A branch-and-cut al-
gorithm for the plant-cycle location problem. Journal of the Operational Research
Society, 55(5):513–520, 2004.

[118] R. Lahyani, M. Khemakhem and F. Semet. Rich vehicle routing problems: From
a taxonomy to a definition. European Journal of Operational Research, 2014. DOI
10.1016/j.ejor.2014.07.048. To appear.

[119] A. H. Land and A. G. Doig. An automatic method of solving discrete programming
problems. Econometrica, 18(3):497–520, 1960.

[120] H. C. Lau and Y. G. Goh. An intelligent brokering system to support multi-agent
web-based 4th-party logistics. In Proceedings of the 14th IEEE International Con-
ference on Tools with Artificial Intelligence, ICTAI ’02. IEEE Computer Society,
Washington, DC, USA, pages 154–161, 2002.

[121] S. B. Layeb, I. Hajri and M. Haouari. Solving the Steiner tree problem with rev-
enues, budget and hop constraints to optimality. In 5th International Conference on
Modeling, Simulation and Applied Optimization (ICMSAO). Hammamet, Algeria,
Pages 1–4, 2013.

[122] D. Lehmann, L. I. O’Callaghan and Y. Shoham. Truth revelation in approximately
efficient combinatorial auctions. Journal of ACM, 49:577–602, 2002.

[123] J. Leskovec, A. Rajaraman and J. Ullman. Mining of massive datasets. Cambridge
University Press, New York, NY, USA, 2012.

[124] D. Levine. Application of a hybrid genetic algorithm to airline crew scheduling.
Computers & Operations Research, 23(6):547–558, 1996.

[125] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden and Y. Shoham. CATS:
The Combinatorial Auction Test Suite, 2011. http://www.cs.ubc.ca/~kevinlb/
CATS. Accessed on Dec 29th, 2014.

[126] K. Leyton-Brown and Y. Shoham. A test suite for combinatorial auctions. In
Combinatorial auctions. MIT Press, pages 451–478, 2006.

http://www.cs.ubc.ca/~kevinlb/CATS
http://www.cs.ubc.ca/~kevinlb/CATS

152 BIBLIOGRAPHY

[127] C.-C. Lin, J.-Y. Lin and Y.-C. Chen. The capacitated p-hub median problem with
integral constraints: An application to a Chinese air cargo network. Applied Math-
ematical Modelling, 36(6):2777–2787, 2012.

[128] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operations Research, 21(2):498–516, 1973.

[129] A. Lingas, M. Persson and D. Sledneu. Iterative merging heuristics for correlation
clustering. International Journal of Metaheuristics, 3:105–117, 2014.

[130] I. Ljubić and S. Gollowitzer. Layered graph approaches to the hop constrained
connected facility location problem. INFORMS Journal on Computing, 25(2):256–
270, 2013.

[131] I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel and M. Fischetti.
An algorithmic framework for the exact solution of the prize-collecting Steiner tree
problem. Mathematical Programming, 105(2-3):427–449, 2006.

[132] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[133] M. C. Lopes, C. E. Andrade, T. A. Queiroz, M. G. C. Resende and F. K. Miyazawa.
Heuristics for a hub location-routing problem. Submitted to Networks, 2014a. To
appear.

[134] M. C. Lopes, T. A. Queiroz, C. E. Andrade and F. K. Miyazawa. Solving a variant of
the (hub) location-routing problem. In Z. Zhang, Z. M. Shen, J. Zhang and R. Zhang
(editors), Proceedings of 2014 International Conference on Logistics, Informatics
and Service Science, LISS 2014. New York, NY, USA, Pages 1–1, 2014b.

[135] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle and M. Birattari. The
irace package, iterated race for automatic algorithm configuration. techreport
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium. http:
//iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf, 2011.

[136] M. Luby, A. Sinclair and D. Zuckerman. Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47(4):173–180, 1993.

[137] A. Lucena and M. G. C. Resende. Strong lower bounds for the prize collecting
Steiner problem in graphs. Discrete Applied Mathematics, 141(1-3):277–294, 2004.

http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

BIBLIOGRAPHY 153

[138] M. L. Lucena, C. E. Andrade, M. G. C. Resende and F. K. Miyazawa. Some
extensions of biased random-key genetic algorithms. In Proceedings of the 46th

Brazilian Symposium of Operational Research, XLVI SBPO. Pages 1–12, 2014.

[139] W. Malik, S. Rathinam and S. Darbha. An approximation algorithm for a symmet-
ric generalized multiple depot, multiple travelling salesman problem. Operations
Research Letters, 35(6):747–753, 2007.

[140] R. Mansini and M. G. Speranza. CORAL: An exact algorithm for the multidi-
mensional knapsack problem. INFORMS Journal on Computing, 24(3):399–415,
2012.

[141] S. Martello and P. Toth. Knapsack problems: Algorithms and computer implemen-
tations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[142] O. Martin, S. W. Otto and E. W. Felten. Large-step markov chains for the TSP
incorporating local search heuristics. Operations Research Letters, 11(4):219–224,
1992.

[143] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8:3–30, 1998.

[144] C. C. McGeoch. A guide to experimental algorithmics. Cambridge University Press,
2012.

[145] Y. Z. Mehrjerdi and A. Nadizadeh. Using greedy clustering method to solve capac-
itated location-routing problem with fuzzy demands. European Journal of Opera-
tional Research, 229(1):75–84, 2013.

[146] M. T. Melo, S. Nickel and F. Saldanha da Gama. Facility location and supply chain
management – A review. European Journal of Operational Research, 196(2):401–
412, 2009.

[147] M. Mitchell. An introduction to genetic algorithms. MIT Press, Cambridge, MA,
USA, 1996.

[148] M. Mitzenmacher and E. Upfal. Probability and computing : Randomized algorithms
and probabilistic analysis. Cambridge University Press, New York, NY, USA, 2005.

[149] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Oper-
ations Research, 24(11):1097–1100, 1997.

154 BIBLIOGRAPHY

[150] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press,
New York, NY, USA, 1995.

[151] A. G. Murzin et al. SCOP: structural classification of proteins, 2009. http://scop.
mrc-lmb.cam.ac.uk/scop. Accessed on Oct 16th, 2013.

[152] D. R. Musser. Introspective sorting and selection algorithms. Software: Practice
and Experience, 27(8):983–993, 1997.

[153] G. Nagy and S. Salhi. The many-to-many location-routing problem. Top, 6(2):261–
275, 1998.

[154] G. Nagy and S. Salhi. Location-routing: Issues, models and methods. European
Journal of Operational Research, 177(2):649–672, 2007.

[155] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-
Interscience, New York, NY, USA, 1988.

[156] V.-P. Nguyen, C. Prins and C. Prodhon. Solving the two-echelon location routing
problem by a GRASP reinforced by a learning process and path relinking. European
Journal of Operational Research, 216(1):113–126, 2012.

[157] N. Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of the
2nd ACM Conference on Electronic Commerce. ACM, New York, NY, USA, pages
1–12, 2000.

[158] P. Oberlin, S. Rathinam and S. Darbha. A transformation for a heterogeneous, mul-
tiple depot, multiple traveling salesman problem. In American Control Conference,
ACC’09. Pages 1292–1297, 2009.

[159] A. E. Olsson. Particle swarm optimization: Theory, techniques and applications.
Nova Science Publishers, Inc., Commack, NY, USA, 2010.

[160] J. O’Toole. Mobile apps overtake PC Internet usage in U.S. CNN Money, Febru-
ary 28, 2014. http://money.cnn.com/2014/02/28/technology/mobile/mobile-
apps-internet. Accessed on Oct 23rd, 2014.

[161] M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical
Programming, 5:199–215, 1973.

[162] S. Parsons, J. A. Rodriguez-Aguilar and M. Klein. Auctions and bidding: A guide
for computer scientists. ACM Computing Surveys, 43:10:1–10:59, 2011.

http://scop.mrc-lmb.cam.ac.uk/scop
http://scop.mrc-lmb.cam.ac.uk/scop
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet

BIBLIOGRAPHY 155

[163] P. Pathak and R. Dutta. A survey of network design problems and joint design
approaches in wireless mesh networks. IEEE Communications Surveys Tutorials,
13(3):396–428, 2011.

[164] L. L. C. Pedrosa. Approximation algorithms for facility location problems and other
supply chain problems. PhD thesis, University of Campinas, Campinas, SP, 2014.

[165] G. Perboli, R. Tadei and D. Vigo. The two-echelon capacitated vehicle routing
problem: models and math-based heuristics. Transportation Science, 45(3):364–
380, 2011.

[166] A. Pérez-Suárez, J. F. Martínez-Trinidad, J. A. Carrasco-Ochoa and J. E. Medina-
Pagola. OClustR: A new graph-based algorithm for overlapping clustering. Neuro-
computing, 121:234–247, 2013.

[167] J. Pfeiffer and F. Rothlauf. Analysis of greedy heuristics and weight-coded EAS
for multidimensional knapsack problems and multi-unit combinatorial auctions. In
Proceedings of the 9th annual Conference on Genetic and Evolutionary Computation,
GECCO ’07. ACM, New York, NY, USA, pages 1529–1529, 2007.

[168] H. Pirkul. A heuristic solution procedure for the multiconstraint zero-one knapsack
problem. Naval Research Logistics (NRL), 34(2):161–172, 1987.

[169] R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389–1401, 1957.

[170] C. Prins, C. Prodhon, A. Ruiz, P. Soriano and R. W. Calvo. Solving the capac-
itated location-routing problem by a cooperative Lagrangean relaxation-granular
tabu search heuristic. Transportation Science, 41(4):470–483, 2007.

[171] C. Prodhon and C. Prins. A survey of recent research on location-routing problems.
European Journal of Operational Research, 238(1):1–17, 2014.

[172] H. J. Prömel and A. Steger. The Steiner tree problem: A tour through graphs,
algorithms, and complexity. Vieweg Teubner Verlag, 2002.

[173] J. Puchinger, G. R. Raidl and U. Pferschy. The multidimensional knapsack problem:
Structure and algorithms. INFORMS Journal on Computing, 22(2):250–265, 2010.

[174] G. R. Raidl and J. Gottlieb. Empirical analysis of locality, heritability and heuristic
bias in evolutionary algorithms: A case study for the multidimensional knapsack
problem. Evolutionary Computation, 13(4):441–475, 2005.

156 BIBLIOGRAPHY

[175] F. Rayal. LTE peak capacity explained: How to calculate it? Personal Blog, June
27, 2011. http://frankrayal.com/2011/06/27/lte-peak-capacity. Accessed
on Sep 26th, 2014.

[176] G. Reinelt. TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95,
2008. Accessed on Dec 29th, 2014.

[177] J. Rennie et al. 20 Newsgroups. http://qwone.com/~jason/20Newsgroups, 2008.
Accessed on Oct 13rd, 2013.

[178] M. G. C. Resende. Biased random-key genetic algorithms with applications in
telecommunications. TOP, 20(1):130–153, 2012.

[179] M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search pro-
cedures: advances, hybridizations, and applications. In M. Gendreau and J.-Y.
Potvin (editors), Handbook of Metaheuristics, volume 146 of International Series in
Operations Research & Management Science. Springer US, pages 283–319, 2010.

[180] C. C. Ribeiro, I. Rosseti and R. Vallejos. Exploiting run time distributions to
compare sequential and parallel stochastic local search algorithms. Journal of Global
Optimization, 54:405–429, 2012.

[181] I. Rodríguez-Martín, J. J. Salazar-González and H. Yaman. A branch-and-cut algo-
rithm for the hub location and routing problem. Computers & Operations Research,
50(0):161–174, 2014.

[182] M. H. Rothkopf, A. Pekec and R. M. Harstad. Computationally manageable com-
binational auctions. Management Science, 44(8):1131–1147, 1998.

[183] M. M. Rowland, P. K. Coe, R. J. Stussy, A. A. Ager, N. J. Cimon, B. K. Johnson and
M. J. Wisdom. The Starkey habitat database for ungulate research: construction,
documentation, and use. techreport, U.S. Forest Service General Technical Report
PNW-GTR-430, Portland, Oregon, USA, 1998.

[184] F. Samanlioglu, M. B. Kurz, W. G. Ferrell and S. Tangudu. A hybrid random-
key genetic algorithm for a symmetric travelling salesman problem. International
Journal of Operational Research, 2(1):47–63, 2006.

[185] T. Sandholm. Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence, 135(1–2):1–54, 2002.

[186] T. Sandholm. Optimal winner determination algorithms. In Combinatorial auctions.
MIT Press, pages 331–361, 2006.

http://frankrayal.com/2011/06/27/lte-peak-capacity
http://qwone.com/~jason/20Newsgroups

BIBLIOGRAPHY 157

[187] M. W. P. Savelsbergh and M. Sol. The general pickup and delivery problem. Trans-
portation Science, 29(1):17–29, 1995.

[188] M. Schwind, T. Stockheim and F. Rothlauf. Optimization heuristics for the combi-
natorial auction problem. In Evolutionary Computation, 2003. CEC ’03. The 2003
Congress on, volume 3. Pages 1588–1595, 2003.

[189] I. Shamshurin. Data representation in machine learning-based sentiment analysis
of customer reviews. In S. O. Kuznetsov, D. P. Mandal, M. K. Kundu and S. K.
Pal (editors), Pattern Recognition and Machine Intelligence, volume 6744 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pages 254–260, 2011.

[190] R. N. Shepard and P. Arabie. Additive clustering: Representation of similarities as
combinations of discrete overlapping properties. Psychological Review, 86(2):87–123,
1979.

[191] O. V. Shylo, T. Middelkoop and P. M. Pardalos. Restart strategies in optimization:
Parallel and serial cases. Parallel Computing, 37(1):60–68, 2011a.

[192] O. V. Shylo, O. A. Prokopyev and J. Rajgopal. On algorithm portfolios and restart
strategies. Operations Research Letters, 39(1):49–52, 2011b.

[193] L. V. Snyder and M. S. Daskin. A random-key genetic algorithm for the generalized
traveling salesman problem. European Journal of Operational Research, 174(1):38–
53, 2006.

[194] W. M. Spears and K. A. DeJong. On the virtues of parameterized uniform crossover.
In Proceedings of the 4th International Conference on Genetic Algorithms. Pages
230–236, 1991.

[195] C. Swamy. Correlation clustering: Maximizing agreements via semidefinite pro-
gramming. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’04. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, pages 526–527, 2004.

[196] R. F. Toso and M. G. C. Resende. A C++ application programming interface
for biased random-key genetic algorithms. Optimization Methods and Software,
30(1):81–93, 2015.

[197] K. Trohidis, G. Tsoumakas, G. Kalliris and I. Vlahavas. Multilabel classification of
music into emotions. In Proceedings of International Conference on Music Infor-
mation Retrieval, ISMIR 2008. Pages 325–330, 2008.

158 BIBLIOGRAPHY

[198] P. H. Vance, C. Barnhart, E. L. Johnson and G. L. Nemhauser. Airline crew
scheduling: A new formulation and decomposition algorithm. Operations Research,
45:188–200, 1997.

[199] M. Vasquez and Y. Vimont. Improved results on the 0-1 multidimensional knapsack
problem. European Journal of Operational Research, 165(1):70–81, 2005.

[200] V. V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc., New
York, NY, USA, 2001.

[201] I. Vorontsov, I. Kulakovskiy and V. Makeev. Jaccard index based similarity mea-
sure to compare transcription factor binding site models. Algorithms for Molecular
Biology, 8(1):23, 2013.

[202] S. Voß. Steiner tree problems in telecommunications. In M. G. Resende and P. M.
Pardalos (editors), Handbook of Optimization in Telecommunications. Springer US,
pages 459–492, 2006.

[203] N. Wang and J. Li. Restoring: A greedy heuristic approach based on neighborhood
for correlation clustering. In H. Motoda, Z. Wu, L. Cao, O. Zaiane, M. Yao and
W. Wang (editors), Advanced Data Mining and Applications, volume 8346 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pages 348–359, 2013.

[204] Z. Wang, C. Lin and C.-K. Chan. Demonstration of a single-fiber self-healing
CWDM metro access ring network with unidirectional OADM. Photonics Tech-
nology Letters, IEEE, 18(1):163–165, 2006.

[205] G. Wäscher, H. Haußner and H. Schumann. An improved typology of cutting and
packing problems. European Journal of Operation Research, 183:1109–1130, 2007.

[206] D. Whitley, S. Rana and R. B. Heckendorn. The island model genetic algorithm:
On separability, population size and convergence. Journal of Computing and Infor-
mation Technology, 7:33–47, 1998.

[207] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms.
Cambridge University Press, New York, NY, USA, 2011.

[208] P. Winter. Steiner problem in networks: A survey. Networks, 17(2):129–167, 1987.

[209] L. A. Wolsey. Integer programming. Wiley-Interscience, New York, NY, USA, 1998.

[210] S. Yadlapalli, W. Malik, S. Darbha and M. Pachter. A Lagrangian-based algorithm
for a multiple depot, multiple travelling salesmen problem. In American Control
Conference, 2007. ACC’07. Pages 4027–4032, 2007.

BIBLIOGRAPHY 159

[211] D. Yang, X. Zhang and G. Xue. PROMISE: A framework for truthful and profit
maximizing spectrum double auctions. In INFOCOM, 2014 Proceedings IEEE.
Pages 109–117, 2014.

[212] V. F. Yu, S.-W. Lin, W. Lee and C.-J. Ting. A simulated annealing heuristic for
the capacitated location routing problem. Computers & Industrial Engineering,
58(2):288–299, 2010.

[213] M. H. F. Zarandi, A. Hemmati, S. Davari and I. B. Turksen. Capacitated location-
routing problem with time windows under uncertainty. Knowledge-Based Systems,
37(0):480–489, 2013.

160

Appendix A
Additional results for Chapter 2

A.1 Instance details

Table A.1: Characteristics of the instances. The areas were calculated from the convex
hull considering all locations and their geodesic characteristics.

Class Name Poles VRADs Macros Blocks Demand (Mbps) Area (km2)

re01 454 17 7 2507 5270.32 61.88
re02 484 15 1 2739 5762.16 7.61
re03 630 7 3 293 594.66 77.40
re04 667 104 0 5064 10653.00 5.75
re05 670 3 1 494 990.04 134.95
re06 673 244 15 5130 10822.60 17.91
re07 687 1 28 4139 8724.86 6.55
re08 922 41 7 11465 24162.70 16.39
re09 969 142 29 4694 9805.00 20.95

Sm
al

l

re10 1018 48 5 2544 5321.20 9.77

re11 2045 157 28 25288 53110.20 26.62
re12 2113 53 9 6678 13993.10 252.26
re13 2254 139 9 13472 28260.70 24.39
re14 2288 84 22 28202 59364.20 58.21
re15 2305 49 8 12519 26320.90 62.44
re16 2327 93 8 18550 39036.60 8.69
re17 2345 43 10 13067 27434.90 23.06
re18 2347 123 24 15007 31411.00 233.10
re19 2363 86 6 17646 37125.40 4.82

M
ed

iu
m

re20 2423 27 10 22630 47422.30 27.78

re21 5153 106 11 20053 42069.30 128.04
re22 5228 260 16 24730 51805.40 50.29
re23 5266 230 20 19356 40472.90 63.64
re24 5423 163 10 20411 42844.10 23.73
re25 5544 206 16 24555 51546.70 46.40
re26 6562 297 45 35376 74382.30 134.03
re27 6773 264 23 24714 51866.90 55.65
re28 7606 272 23 23759 49652.50 147.14
re29 7660 233 17 26948 56437.60 268.09

La
rg

e

re30 8740 390 30 35754 74933.50 411.71

161

162 Appendix A. Additional results for Chapter 2

A.2 Experimental results

Table A.2: Instance characteristics after preprocessing (restricted scenario). The first
two columns represents the class and instance names. The next three columns represent,
respectively, the original number of poles, the number of poles after the preprocessing,
and the reduction percentage. The next three columns represent the same as the last, but
with respect to the demand blocks. The three last columns show the graph characteristics,
respectively, number of vertices, number of arcs, and graph density given by 2|A|/(|V | ·
(|V | − 1)).

Class Name
Poles Blocks Graph

Orig. Prep. % Red. Orig. Prep. % Red. Vert. Arcs Density

re01 454 417 8.15 2507 60 97.41 1356 9949 0.0108
re02 484 392 19.01 2739 90 96.68 1287 11083 0.0134
re03 630 296 53.02 293 11 92.15 929 10498 0.0244
re04 667 656 1.65 5064 91 97.35 2208 18275 0.0075
re05 670 217 67.61 494 51 88.26 717 6917 0.0269
re06 673 512 23.92 5130 92 98.05 1927 11525 0.0062
re07 687 659 4.08 4139 68 97.92 2150 21217 0.0092
re08 922 828 10.20 11465 262 97.59 2824 30949 0.0078
re09 969 960 0.93 4694 228 94.95 3348 38649 0.0069

Sm
al

l

re10 1018 618 39.29 2544 66 97.05 1994 21117 0.0106

re11 2045 2033 0.59 25288 922 96.29 7279 103755 0.0039
re12 2113 1465 30.67 6678 216 96.57 4706 40176 0.0036
re13 2254 2150 4.61 13472 539 95.90 7171 82290 0.0032
re14 2288 2254 1.49 28202 799 97.05 7746 99077 0.0033
re15 2305 1665 27.77 12519 406 96.67 5487 54049 0.0036
re16 2327 2273 2.32 18550 546 97.01 7493 98855 0.0035
re17 2345 2131 9.13 13067 501 96.09 6979 73646 0.0030
re18 2347 1998 14.87 15007 437 96.91 6654 53547 0.0024
re19 2363 2241 5.16 17646 502 97.08 7344 84962 0.0032

M
ed

iu
m

re20 2423 2313 4.54 22630 1031 95.38 8044 115970 0.0036

re21 5153 4671 9.35 20053 784 95.95 14966 211363 0.0019
re22 5228 5170 1.11 24730 1093 95.26 16991 249935 0.0017
re23 5266 5106 3.04 19356 1018 94.62 16651 205176 0.0015
re24 5423 5350 1.35 20411 771 96.13 17034 224754 0.0015
re25 5544 5416 2.31 24555 900 96.21 17434 286106 0.0019
re26 6562 5174 21.15 35376 1140 96.70 17123 126525 0.0004
re27 6773 6685 1.30 24714 956 96.05 21365 314229 0.0014
re28 7606 7238 4.84 23759 1195 94.62 23335 307691 0.0011
re29 7660 7127 6.96 26948 1240 95.21 22958 300128 0.0011

La
rg

e

re30 8740 7903 9.58 35754 1426 95.81 25690 253804 0.0008

Average 13.00 95.96 0.0057

A.2. Experimental results 163

Table A.3: Instance characteristics after preprocessing (unrestricted scenario). The de-
scription is the same of Table A.2.

Class Name
Poles Blocks Graph

Orig. Prep. % Red. Orig. Prep. % Red. Vert. Arcs Density

re01 454 436 3.96 2507 60 97.41 1413 10224 0.0102
re02 484 443 8.47 2739 91 96.64 1441 11743 0.0113
re03 630 598 5.08 293 28 85.67 1854 20619 0.0120
re04 667 666 0.15 5064 91 97.35 2238 18351 0.0073
re05 670 406 39.40 494 56 87.04 1290 10517 0.0126
re06 673 653 2.97 5130 92 98.05 2350 14827 0.0054
re07 687 682 0.73 4139 68 97.92 2219 21567 0.0088
re08 922 907 1.63 11465 264 97.58 3063 32427 0.0069
re09 969 962 0.72 4694 228 94.95 3354 38665 0.0069

Sm
al

l

re10 1018 993 2.46 2544 101 95.68 3154 32914 0.0066

re11 2045 2041 0.20 25288 922 96.29 7303 103943 0.0039
re12 2113 1724 18.41 6678 226 96.41 5494 44860 0.0030
re13 2254 2209 2.00 13472 539 95.90 7348 83174 0.0031
re14 2288 2282 0.26 28202 799 97.05 7830 99499 0.0032
re15 2305 2158 6.38 12519 412 96.61 6973 63240 0.0026
re16 2327 2319 0.34 18550 546 97.01 7631 100071 0.0034
re17 2345 2328 0.72 13067 501 96.09 7570 78601 0.0027
re18 2347 2177 7.24 15007 438 96.91 7192 56369 0.0022
re19 2363 2297 2.79 17646 502 97.08 7512 85752 0.0030

M
ed

iu
m

re20 2423 2405 0.74 22630 1031 95.38 8320 118320 0.0034

re21 5153 5131 0.43 20053 804 95.85 16366 223525 0.0017
re22 5228 5204 0.46 24730 1093 95.26 17093 250388 0.0017
re23 5266 5213 1.01 19356 1018 94.62 16972 207085 0.0014
re24 5423 5398 0.46 20411 771 96.13 17178 225471 0.0015
re25 5544 5507 0.67 24555 901 96.21 17708 287775 0.0018
re26 6562 6078 7.38 35376 1141 96.70 19836 143535 0.0007
re27 6773 6736 0.55 24714 956 96.05 21518 315330 0.0014
re28 7606 7554 0.68 23759 1195 94.62 24283 312417 0.0011
re29 7660 7538 1.59 26948 1240 95.21 24191 305839 0.0010

La
rg

e

re30 8740 8445 3.38 35754 1430 95.79 27322 261222 0.0007

Average 4.04 95.65 0.0043

164 Appendix A. Additional results for Chapter 2

Table A.4: Best results for instances in restricted scenarios (H = 2 and δ+
bh = 5) consid-

ering at most five hours of running time. Column “Best” is in monetary units. Column
“Value” is the proportion of the best value and the star (?) indicates that algorithm
reached the best value.. The time is in seconds.

Class Name Best
BRKGA MIP

Value Time Value Time

re01 223318.91 96.20 426 ? 11535
re02 276283.54 98.40 206 ? 18000
re03 777.70 ? 2 ? 718
re04 503390.32 99.03 811 ? 18001
re05 34260.77 98.20 109 ? 11767
re06 312983.30 94.65 818 ? 9776
re07 408958.12 94.72 1181 ? 18001
re08 1120700.40 93.38 949 ? 18003
re09 969767.30 94.82 2196 ? 18002

Sm
al
l

re10 208447.26 ? 459 97.64 18001

re11 3337910.41 95.91 17932 ? 18013
re12 763482.03 95.47 2671 ? 18004
re13 2274004.01 98.47 8643 ? 18008
re14 3595743.00 97.03 17729 ? 18016
re15 1003845.55 93.40 2645 ? 18006
re16 2918574.32 96.82 13198 ? 18011
re17 1665169.72 92.51 14950 ? 18008
re18 1012156.38 94.59 5276 ? 18008
re19 3127893.63 98.85 17196 ? 18011

M
ed

iu
m

re20 1947590.10 97.80 17413 ? 18013

re21 2446582.47 ? 17890 53.37 18029
re22 4672597.84 ? 17968 53.58 18037
re23 3306754.86 ? 17841 94.13 18031
re24 3468301.68 ? 17930 44.67 18036
re25 3523112.09 ? 17947 44.46 18048
re26 3240689.63 85.54 17895 ? 18046
re27 4105130.94 ? 17848 47.89 18054
re28 3333164.09 ? 17921 42.66 18058
re29 2870427.50 ? 17952 31.45 18069

La
rg
e

re30 3494309.59 ? 17934 32.96 18077

A.2. Experimental results 165

Table A.5: Best results for instances in unrestricted scenarios (H = ∞ and δ+
bh = ∞).

The shown results are from BRKGA since MIP could not generate results for this scenarios.
Column “Value” is in monetary units and column “Time” is in seconds.

Class Name Value Time

re01 169616.48 133
re02 223468.57 1069
re03 5308.44 298
re04 435721.68 618
re05 30915.48 301
re06 213459.59 1153
re07 319970.34 2110
re08 754766.38 3465
re09 621946.84 3545

Sm
al
l

re10 165799.06 661

re11 920374.03 3588
re12 418432.29 2041
re13 888349.09 3591
re14 948616.36 3585
re15 471514.34 3564
re16 981844.03 3588
re17 601561.67 3592
re18 498607.85 3591
re19 1020244.96 3589

M
ed

iu
m

re20 574179.03 3585

re21 563981.69 3571
re22 793855.12 3564
re23 767027.56 3572
re24 785345.52 3568
re25 800893.55 3561
re26 627323.55 3540
re27 832122.19 3552
re28 629435.90 3546
re29 495815.35 3538

La
rg
e

re30 594627.10 3515

166

Appendix B
Additional results for Chapter 3

B.1 Detailed results
The following tables describe the best solution found for each instance in each scenario

evaluated. The first column shows the instance name. Note that this name is constituted
by a description and the number of vertices in the graph. The second and third columns
represent the size of the inner cycle (k) and size of outer cycles (C), respectively. The
fourth column shows the best value found to that instance (vb). The fifth column shows
the additional percentage (v%) of the mean on 30 independent runs for the BRKGA with
respect to the best solution, which is calculated by the simple equation

v% = (v̄ − vb)
vb

× 100 (B.1)

where v̄ is the mean of the values obtained by BRKGA and vb is the best solution value
(which is the same of forth column). The sixth column brings the standard deviation
of previous mean (σv). Columns seven and eight represents the mean (t) and standard
deviations (σt) of the running times (presented in seconds). Column nine shows the time
to reach the best solution (t to vb), if BRKGA could do it. Otherwise, a bar is shown.
The columns 10–14 have the same description of columns 5–9 but applied to the MSH.

167

168 Appendix B. Additional results for Chapter 3

Table B.1: Best results for ST scenario.

Inst. k C Best
BRKGA MSH

v% σv t σt t to vb v% σv t σt t to vb

ali535 107 5 1403446.00 0.21 0.09 904 2 900 0.21 0.09 1232 0 —
att48 10 5 16776.00 15.78 6.32 73 28 96 86.94 0.01 35 0 —
att532 107 5 175972.00 0.15 0.08 695 2 681 0.16 0.07 1010 0 —
bayg29 6 5 2223.00 3.75 2.26 17 26 17 29.42 0.00 13 0 —
bays29 6 5 2759.00 4.69 2.44 16 31 29 46.73 2.60 23 35 —
berlin52 11 5 12409.00 8.64 4.36 107 24 107 33.50 1.48 43 0 —
bier127 26 5 310919.00 3.94 3.28 144 1 147 2.99 3.27 218 0 217
brazil58 12 5 43250.00 22.44 9.52 167 34 287 96.48 2.46 113 36 —
brg180 36 5 345320.00 6.83 3.01 492 30 579 21.92 2.02 555 36 —
burma14 3 5 4428.00 0.20 0.46 2 19 2 0.44 0.49 4 34 2
ch130 26 5 20812.00 0.59 0.53 114 2 114 0.57 0.49 163 1 181
ch150 30 5 21111.00 0.47 0.40 131 2 130 0.49 0.42 189 2 188
d657 132 5 322367.00 0.21 0.10 812 0 0.18 0.09 1217 0 1218
dantzig42 9 5 1153.00 6.69 4.04 51 27 73 42.63 0.96 27 0 —
eil101 21 5 1558.00 7.25 1.31 92 22 203 7.14 0.47 125 2 —
eil51 11 5 631.00 15.69 6.67 70 28 58 69.35 0.16 36 16 —
eil76 16 5 944.00 29.98 12.67 148 70 396 44.69 0.73 70 2 —
fri26 6 5 1296.00 6.54 2.72 14 40 13 38.57 2.64 18 33 —
gil262 53 5 10774.00 0.46 0.17 245 1 0.45 0.20 348 0 348
gr120 24 5 23853.00 4.81 1.12 125 25 247 5.13 0.22 172 1 —
gr137 28 5 255489.00 0.11 0.12 138 1 146 0.11 0.12 217 1 216
gr17 4 5 2481.00 2.18 1.95 5 33 10 11.64 3.51 8 29 —
gr202 41 5 127079.00 2.75 1.45 233 1 232 2.37 1.45 372 0 —
gr21 5 5 3870.00 4.59 3.26 9 33 14 27.75 2.60 11 37 —
gr229 46 5 549056.00 0.68 0.31 256 3 0.61 0.30 413 0 412
gr24 5 5 1716.00 1.32 1.34 13 33 21 32.23 2.30 15 32 —
gr431 87 5 747273.00 0.74 0.46 608 2 591 0.59 0.45 971 0 —
gr48 10 5 7555.00 16.64 8.98 69 34 47 96.50 2.20 58 41 —
gr666 134 5 1724806.00 0.32 0.17 975 1 957 0.36 0.20 1345 0 —
gr96 20 5 133823.00 22.20 4.54 114 79 499 29.90 1.77 118 3 —
hk48 10 5 18765.00 9.70 4.87 71 24 104 79.97 1.90 62 33 —
kroA100 20 5 62746.00 0.05 0.10 88 2 88 0.05 0.10 130 1 129
kroA150 30 5 112327.00 0.01 0.01 137 3 137 0.01 0.01 195 2 197
kroA200 40 5 125867.00 0.69 0.16 182 2 0.65 0.24 266 1 265
kroB100 20 5 55864.00 30.58 5.05 113 70 489 32.29 0.08 134 2 —
kroB150 30 5 106388.00 2.12 0.39 137 6 187 2.20 0.06 195 2 —
kroB200 40 5 156552.00 0.13 0.07 183 2 200 0.12 0.08 271 2 301
kroC100 20 5 70945.00 0.42 0.26 88 3 86 0.40 0.22 129 2 128
kroD100 20 5 82294.00 0.19 0.01 92 3 0.18 0.03 131 2 130
kroE100 20 5 52419.00 41.30 5.43 113 83 626 42.74 0.05 133 1 —
lin105 21 5 41678.00 17.82 2.96 158 53 611 18.86 0.79 183 1 —
lin318 64 5 260132.00 0.24 0.20 343 1 341 0.18 0.15 492 0 —
nrw1379 276 5 430369.00 0.11 0.06 2596 0 0.13 0.06 3601 0 3601
pa561 113 5 15471.00 0.18 0.12 618 0 616 0.23 0.12 895 0 895
pr107 22 5 146993.00 56.15 13.44 447 105 2111 68.62 0.13 232 0 —
pr124 25 5 279457.00 17.51 2.81 155 71 757 18.26 0.13 183 2 —
pr136 28 5 374920.00 0.39 0.20 136 1 139 0.37 0.17 190 1 191
pr144 29 5 329380.00 0.15 0.10 150 2 0.19 0.11 196 2 197
pr152 31 5 408929.00 0.11 0.15 262 3 250 0.07 0.06 322 0 —
pr226 46 5 707932.00 0.23 0.13 289 2 294 0.19 0.14 372 1 371
pr264 53 5 411099.00 0.20 0.09 630 1 0.20 0.11 971 0 971
pr299 60 5 303013.00 0.34 0.23 294 1 292 0.40 0.22 442 0 —
pr439 88 5 654763.00 0.21 0.18 601 4 604 0.20 0.13 858 0 —
pr76 16 5 221016.00 20.11 3.70 69 63 281 21.18 0.45 74 2 —
rd100 20 5 22100.00 0.27 0.08 84 2 83 0.29 0.06 120 2 —
rd400 80 5 75434.00 0.17 0.09 405 0 0.16 0.12 577 0 576
si175 35 5 37171.00 8.06 3.80 861 65 3011 24.79 0.39 446 34 —
si535 107 5 119258.00 10.56 2.74 3381 14 3600 22.90 0.33 2141 33 —
st70 14 5 1165.00 29.68 14.80 161 57 389 56.51 0.12 68 0 —
swiss42 9 5 1912.00 15.54 7.44 51 30 62 77.24 2.43 50 32 —
ts225 45 5 635554.00 0.32 0.14 203 1 0.32 0.12 289 2 287
ulysses16 4 4 8873.00 0.00 0.00 4 21 4 2.35 0.88 9 34 —
ulysses22 5 5 8461.00 1.86 1.48 8 27 9 27.37 2.98 12 41 —

B.1. Detailed results 169

Table B.2: Best results for SL scenario.

Inst. k C Best
BRKGA MSH

v% σv t σt t to vb v% σv t σt t to vb

ali535 107 10 478199.00 0.50 0.33 907 3 — 0.43 0.31 1223 0 1223
att48 10 10 13985.00 3.24 1.44 34 22 60 5.78 0.32 30 0 —
att532 107 10 56985.00 0.52 0.25 678 4 651 0.58 0.22 969 0 —
bayg29 6 10 1805.00 3.43 2.07 12 34 9 37.59 0.18 10 0 —
bays29 6 10 2264.00 2.83 2.26 15 28 25 37.32 0.97 10 18 —
berlin52 11 10 9642.00 16.71 7.47 72 66 139 26.03 0.14 40 0 —
bier127 26 10 217101.00 0.62 0.25 143 1 145 0.58 0.19 209 0 —
brazil58 12 10 32668.00 12.02 6.14 180 31 157 114.18 2.52 104 27 —
brg180 36 10 122070.00 16.61 7.67 408 26 449 118.92 4.05 625 35 —
burma14 3 10 3540.00 0.24 1.06 1 22 1 1.35 1.74 3 33 3
ch130 26 10 8858.00 0.80 0.68 98 2 98 0.62 0.80 137 1 136
ch150 30 10 9745.00 0.73 0.85 111 1 110 1.30 1.10 156 1 156
d657 132 10 120426.00 0.66 0.21 784 0 — 0.59 0.27 1093 0 1105
dantzig42 9 10 876.00 8.92 6.13 40 29 46 24.09 1.04 21 0 —
eil101 21 10 905.00 1.05 0.85 74 1 74 1.19 0.83 105 1 105
eil51 11 10 562.00 8.27 7.18 45 26 48 27.09 0.87 29 0 —
eil76 16 10 798.00 2.47 0.94 42 1 — 2.38 0.81 59 1 65
fri26 6 10 1095.00 2.52 1.19 10 27 14 35.77 2.87 15 38 —
gil262 53 10 3948.00 1.37 0.52 211 0 — 1.35 0.59 293 0 293
gr120 24 10 10205.00 1.06 0.66 105 3 102 0.94 0.62 155 0 155
gr137 28 10 118373.00 1.06 0.26 129 2 — 1.06 0.36 199 0 198
gr17 4 10 2155.00 0.01 0.07 3 21 3 9.66 2.62 6 32 —
gr202 41 10 66222.00 1.27 0.37 224 1 — 1.31 0.45 355 0 355
gr21 5 10 3186.00 0.64 1.29 6 31 5 20.97 3.36 10 35 —
gr229 46 10 214706.00 1.61 0.71 252 2 253 1.42 0.50 383 0 —
gr24 5 10 1470.00 1.07 0.61 7 38 17 25.52 2.73 14 31 —
gr431 87 10 269601.00 1.23 0.70 631 3 642 1.68 1.12 962 0 —
gr48 10 10 6245.00 12.03 6.32 55 21 60 90.04 2.54 40 33 —
gr666 134 10 621541.00 0.67 0.42 953 1 961 0.92 0.42 1277 0 —
gr96 20 10 79811.00 1.36 0.65 73 3 71 1.18 0.53 100 1 108
hk48 10 10 14029.00 10.35 4.74 62 25 53 95.55 1.66 52 31 —
kroA100 20 10 31405.00 0.47 0.38 80 1 83 0.24 0.36 112 1 120
kroA150 30 10 43554.00 0.04 0.03 121 1 121 0.05 0.07 168 1 —
kroA200 40 10 48249.00 0.51 0.34 165 1 164 0.39 0.23 228 1 227
kroB100 20 10 40344.00 0.20 0.29 84 2 87 0.22 0.24 119 0 118
kroB150 30 10 37335.00 0.16 0.15 123 1 126 0.15 0.14 170 1 179
kroB200 40 10 67539.00 0.20 0.25 168 2 — 0.19 0.12 236 0 236
kroC100 20 10 31616.00 0.76 0.20 79 4 — 0.82 0.23 111 1 111
kroD100 20 10 35187.00 0.09 0.11 81 2 78 0.15 0.11 114 2 112
kroE100 20 10 32259.00 0.36 0.23 85 2 82 0.41 0.22 115 1 —
lin105 21 10 30369.00 0.34 0.19 130 4 — 0.28 0.14 168 0 167
lin318 64 10 101604.00 0.68 0.48 313 2 313 0.53 0.40 423 0 —
nrw1379 276 10 86506.00 0.85 0.25 2469 0 — 0.71 0.31 3505 0 3505
pa561 113 10 6337.00 0.66 0.29 560 0 — 0.64 0.28 793 0 793
pr107 22 10 92314.00 1.16 0.43 194 9 287 1.22 0.42 214 0 —
pr124 25 10 198997.00 7.39 1.30 127 21 256 7.69 0.14 154 1 —
pr136 28 10 142115.00 0.70 0.48 117 2 126 0.88 0.50 163 1 162
pr144 29 10 92727.00 0.38 0.31 136 2 — 0.32 0.38 165 1 164
pr152 31 10 170696.00 0.45 0.24 243 3 235 0.42 0.30 298 1 297
pr226 46 10 433901.00 0.18 0.04 262 2 — 0.16 0.07 324 0 324
pr264 53 10 170593.00 0.14 0.14 636 1 — 0.08 0.08 940 0 942
pr299 60 10 134869.00 0.46 0.32 284 1 285 0.47 0.38 397 0 —
pr439 88 10 171725.00 0.74 0.65 599 4 593 0.83 0.60 806 0 —
pr76 16 10 165235.00 0.18 0.16 44 1 47 0.16 0.25 69 0 69
rd100 20 10 13735.00 0.07 0.02 73 8 105 0.09 0.05 99 2 —
rd400 80 10 27035.00 0.45 0.24 355 0 357 0.46 0.20 496 0 —
si175 35 10 33659.00 4.50 1.89 418 46 1100 22.00 0.62 338 31 —
si535 107 10 108002.00 1.98 0.92 3196 17 3362 19.80 0.45 2112 27 —
st70 14 10 944.00 1.51 0.40 38 22 72 1.59 0.22 50 2 —
swiss42 9 10 1545.00 3.32 2.77 35 25 36 80.26 1.92 37 35 —
ts225 45 10 226870.00 0.15 0.24 174 1 186 0.26 0.49 240 1 260
ulysses16 4 8 7081.00 0.16 0.25 3 22 3 8.15 3.43 5 30 —
ulysses22 5 10 7392.00 0.23 0.28 9 37 9 25.09 2.95 12 42 —

170 Appendix B. Additional results for Chapter 3

Table B.3: Best results for LT scenario.

Inst. k C Best
BRKGA MSH

v% σv t σt t to vb v% σv t σt t to vb

ali535 268 2 1976741.00 0.08 0.06 1966 1 1998 0.08 0.06 1966 1 1998
att48 24 2 17290.00 9.63 5.89 49 21 55 9.63 5.89 49 21 55
att532 266 2 215450.00 8.93 0.07 1537 1 — 4.52 4.21 2205 0 2217
bayg29 15 2 2251.00 5.67 3.89 6 34 12 49.74 3.88 10 31 —
bays29 15 2 2810.00 5.59 3.36 5 26 7 47.90 4.01 11 30 —
berlin52 26 2 12439.00 13.05 10.73 107 33 137 50.47 2.10 42 0 —
bier127 64 2 388875.00 2.25 1.32 202 1 — 4.35 1.70 315 0 319
brazil58 29 2 39324.00 26.02 9.27 400 30 615 128.60 3.03 239 37 —
brg180 90 2 517910.00 11.26 3.41 737 30 617 15.17 2.58 1047 32 —
burma14 7 2 4552.00 0.18 0.45 1 25 1 1.03 0.84 3 34 3
ch130 65 2 14347.00 63.00 18.61 244 119 813 83.57 2.14 136 1 —
ch150 75 2 16256.00 82.36 13.58 156 127 802 93.70 1.63 140 1 —
d657 329 2 361342.00 3.22 0.09 2579 0 — 1.69 1.50 3602 0 3603
dantzig42 21 2 1181.00 9.48 5.63 24 34 45 64.10 2.27 16 0 —
eil101 51 2 1295.00 40.75 12.06 121 105 331 60.46 6.50 76 0 —
eil51 26 2 700.00 8.80 4.03 26 20 28 77.40 4.90 22 51 —
eil76 38 2 963.00 16.50 13.65 94 54 100 55.59 8.50 37 0 —
fri26 13 2 1429.00 3.04 2.42 8 42 7 33.98 3.62 11 34 —
gil262 131 2 13100.00 0.15 0.09 264 0 — 1.21 1.03 378 0 377
gr120 60 2 14374.00 22.59 25.01 570 44 798 84.97 2.43 139 0 —
gr137 69 2 155397.00 12.91 8.72 1112 27 1532 130.72 2.77 204 0 —
gr17 9 2 2733.00 0.64 0.42 3 28 3 8.59 3.19 6 40 —
gr202 101 2 166493.00 1.48 0.52 387 0 387 1.84 0.44 651 0 —
gr21 11 2 4112.00 5.40 2.57 4 33 4 22.97 3.58 7 37 —
gr229 115 2 443023.00 56.04 9.22 487 116 2426 62.46 1.62 524 0 —
gr24 12 2 1848.00 7.10 3.42 4 31 8 36.20 2.99 8 35 —
gr431 216 2 913594.00 32.36 11.81 1838 57 3600 41.24 0.33 1890 0 —
gr48 24 2 7713.00 10.06 4.82 21 22 25 104.88 2.45 29 37 —
gr666 333 2 2479425.00 0.13 0.05 2750 0 — 1.58 1.43 3601 0 3600
gr96 48 2 105491.00 11.96 4.95 475 28 557 109.88 0.45 95 1 —
hk48 24 2 20223.00 7.20 3.94 34 28 35 80.11 3.11 37 34 —
kroA100 50 2 45063.00 10.21 6.34 435 29 587 116.72 6.38 85 0 —
kroA150 75 2 65467.00 14.37 6.77 827 24 968 147.35 2.17 165 0 —
kroA200 100 2 82026.00 18.62 8.99 1532 21 1472 127.82 2.97 268 0 —
kroB100 50 2 47210.00 6.61 4.73 415 22 478 129.60 4.17 92 0 —
kroB150 75 2 64545.00 10.11 6.30 803 29 1385 118.72 2.25 159 0 —
kroB200 100 2 84458.00 32.75 29.21 1334 47 2119 115.40 3.45 274 0 —
kroC100 50 2 44181.00 9.60 7.09 418 22 365 160.53 5.50 83 8 —
kroD100 50 2 43451.00 12.80 6.91 469 22 613 116.53 0.03 94 0 —
kroE100 50 2 43988.00 29.89 22.42 344 49 407 87.87 0.06 85 2 —
lin105 53 2 32814.00 16.04 12.09 797 34 916 115.93 0.05 146 0 —
lin318 159 2 297594.00 0.24 0.14 542 2 522 0.25 0.09 797 0 —
nrw1379 690 2 554094.00 0.09 0.04 3609 0 3604 0.07 0.03 3609 0 —
pa561 281 2 18754.00 0.17 0.09 1457 0 1449 0.18 0.09 1960 0 1968
pr107 54 2 68663.00 22.03 8.42 3406 9 3600 310.45 0.04 621 0 —
pr124 62 2 154141.00 45.31 31.19 947 74 1230 100.03 0.15 255 0 —
pr136 68 2 204334.00 66.69 23.34 519 110 1069 96.62 0.12 199 0 —
pr144 72 2 312468.00 0.12 0.12 295 4 276 0.13 0.10 376 0 —
pr152 76 2 464736.00 19.86 3.09 1055 45 3600 20.57 0.27 1358 0 —
pr226 113 2 341413.00 82.50 24.08 1472 86 3600 109.27 0.08 933 0 —
pr264 132 2 243113.00 12.74 6.32 3600 0 3600 125.41 0.04 2211 0 —
pr299 150 2 186292.00 37.44 28.83 2549 48 3600 108.51 0.12 576 0 —
pr439 220 2 886444.00 0.12 0.08 1175 2 1216 0.16 0.09 1619 0 —
pr76 38 2 232517.00 30.59 10.33 121 93 424 40.19 0.23 71 0 —
rd100 50 2 16096.00 11.67 6.46 397 24 504 102.83 0.15 85 0 —
rd400 200 2 105561.00 0.18 0.07 699 0 — 0.20 0.09 972 0 973
si175 88 2 38717.00 6.53 5.07 1103 37 1886 40.07 0.55 406 34 —
si535 268 2 125285.00 4.28 2.44 3601 0 3601 36.11 0.56 3577 2 —
st70 35 2 1205.00 12.73 6.57 90 25 80 70.23 0.64 35 0 —
swiss42 21 2 2070.00 13.62 5.54 17 28 23 77.89 2.84 23 33 —
ts225 113 2 761726.00 0.27 0.16 194 2 193 0.31 0.20 292 0 —
ulysses16 8 2 9098.00 0.65 0.45 3 32 3 4.10 1.34 5 33 —
ulysses22 11 2 9420.00 6.93 3.80 9 30 11 22.43 2.83 17 36 —

B.1. Detailed results 171

Table B.4: Best results for LL scenario.

Inst. k C Best
BRKGA MSH

v% σv t σt t to vb v% σv t σt t to vb

ali535 268 4 493588.00 0.37 0.25 2017 1 — 0.35 0.21 2954 0 2954
att48 24 4 14624.00 2.21 0.69 47 21 55 3.24 0.33 40 0 —
att532 266 4 81028.00 0.39 0.18 1633 1 1592 0.39 0.15 2333 0 —
bayg29 15 4 1959.00 7.31 2.81 14 27 17 20.72 0.20 8 0 —
bays29 15 4 2443.00 5.57 2.25 11 31 16 23.96 0.03 8 0 —
berlin52 26 4 10492.00 17.61 6.08 53 57 161 22.33 0.19 48 0 —
bier127 64 4 164116.00 1.27 0.68 217 1 218 1.24 0.55 343 0 —
brazil58 29 4 31719.00 20.72 8.47 539 30 451 131.79 2.69 256 30 —
brg180 90 4 333670.00 8.98 4.37 794 35 540 31.24 2.80 1105 31 —
burma14 7 4 3819.00 1.34 1.47 2 33 1 7.67 0.88 2 19 —
ch130 65 4 9363.00 1.25 0.50 117 2 — 1.06 0.58 168 0 167
ch150 75 4 13620.00 1.18 0.42 124 1 121 1.11 0.53 177 0 —
d657 329 4 102304.00 0.54 0.24 2999 0 2989 0.54 0.22 3602 0 —
dantzig42 21 4 932.00 7.41 2.48 33 18 36 15.67 0.00 21 0 —
eil101 51 4 991.00 1.25 0.61 71 1 71 1.05 0.55 100 0 100
eil51 26 4 579.00 5.82 4.89 51 25 70 34.12 0.32 22 0 —
eil76 38 4 768.00 5.64 1.66 41 22 90 5.49 1.47 51 0 —
fri26 13 4 1157.00 4.66 2.54 12 44 15 43.14 3.40 14 29 —
gil262 131 4 4647.00 0.64 0.39 321 0 315 0.50 0.27 445 0 —
gr120 60 4 10887.00 1.26 0.66 107 2 — 1.07 0.63 168 0 168
gr137 69 4 103672.00 1.17 0.53 150 1 151 1.23 0.52 237 0 —
gr17 9 4 2273.00 2.80 1.76 5 33 7 17.80 3.70 6 35 —
gr202 101 4 73467.00 1.31 0.34 444 1 — 1.12 0.49 706 0 705
gr21 11 4 3256.00 5.20 4.43 6 32 3 34.10 3.71 8 29 —
gr229 115 4 239960.00 1.01 0.54 387 3 389 0.86 0.46 577 0 —
gr24 12 4 1559.00 2.97 1.68 10 35 5 38.05 2.87 10 33 —
gr431 216 4 405363.00 0.54 0.37 1296 1 1286 0.46 0.39 1994 0 —
gr48 24 4 6220.00 11.15 4.09 61 28 63 107.18 3.37 35 31 —
gr666 333 4 658983.00 0.52 0.25 2845 0 — 0.48 0.30 3602 0 3602
gr96 48 4 77422.00 0.38 0.44 79 8 78 0.33 0.50 117 0 117
hk48 24 4 15338.00 12.77 6.39 77 19 65 92.29 2.69 49 30 —
kroA100 50 4 38543.00 0.41 0.30 72 2 — 0.39 0.16 110 0 110
kroA150 75 4 52564.00 0.82 0.46 139 2 134 0.76 0.53 202 0 —
kroA200 100 4 50933.00 0.28 0.26 213 1 215 0.28 0.26 320 0 319
kroB100 50 4 39313.00 0.82 0.42 80 2 80 0.83 0.31 116 0 —
kroB150 75 4 48190.00 0.76 0.33 130 1 131 0.78 0.34 197 0 —
kroB200 100 4 56982.00 0.36 0.32 221 2 216 0.43 0.26 324 0 —
kroC100 50 4 39277.00 0.40 0.25 71 2 72 0.29 0.24 106 0 106
kroD100 50 4 32942.00 0.04 0.08 77 2 80 0.08 0.17 119 0 122
kroE100 50 4 40033.00 0.03 0.07 74 2 72 0.02 0.09 108 0 112
lin105 53 4 29518.00 0.18 0.17 110 3 112 0.14 0.15 170 0 174
lin318 159 4 77281.00 1.22 0.44 605 1 — 1.20 0.53 875 0 875
nrw1379 690 4 114921.00 0.35 0.17 3608 0 3600 0.38 0.15 3608 0 —
pa561 281 4 6793.00 0.83 0.21 1558 0 — 0.72 0.28 2098 0 2099
pr107 54 4 77943.00 0.17 0.12 436 1 437 0.23 0.14 645 0 644
pr124 62 4 84521.00 1.25 0.64 188 3 — 1.12 0.59 284 0 284
pr136 68 4 222771.00 0.39 0.31 150 3 148 0.38 0.36 232 0 —
pr144 72 4 88436.00 0.35 0.29 310 3 313 0.28 0.23 409 0 409
pr152 76 4 123344.00 1.77 1.45 1003 1 — 1.37 1.24 1383 0 1383
pr226 113 4 193582.00 0.57 0.36 673 2 675 0.56 0.29 983 0 —
pr264 132 4 95447.00 0.48 0.24 1492 1 1479 0.41 0.18 2271 0 —
pr299 150 4 90494.00 0.97 0.52 436 1 — 0.71 0.42 647 0 646
pr439 220 4 262339.00 0.51 0.32 1231 2 1211 0.58 0.42 1725 0 —
pr76 38 4 148851.00 0.55 0.53 54 8 — 0.61 0.51 85 0 85
rd100 50 4 14816.00 0.85 0.63 77 2 76 1.03 0.67 110 0 —
rd400 200 4 35972.00 0.56 0.27 777 0 775 0.61 0.28 1072 0 —
si175 88 4 33123.00 10.16 3.50 769 39 1119 32.53 0.52 476 37 —
si535 268 4 101823.00 4.48 2.71 3601 0 3601 34.33 0.35 3573 1 —
st70 35 4 1039.00 19.50 3.13 39 78 204 20.62 0.60 49 0 —
swiss42 21 4 1656.00 12.50 6.51 39 24 36 83.95 2.82 34 29 —
ts225 113 4 241754.00 0.93 0.66 240 2 231 1.10 0.58 350 0 —
ulysses16 8 4 7692.00 1.41 1.06 4 31 5 9.53 2.46 7 35 —
ulysses22 11 4 7654.00 5.21 1.55 11 24 15 6.89 0.20 10 0 —

172 Appendix B. Additional results for Chapter 3

Table B.5: Best results for SQ scenario.

Inst. k C Best
BRKGA MSH

v% σv t σt t to vb v% σv t σt t to vb

ali535 24 24 495241.00 1.49 0.74 1349 0 1352 1.49 0.74 1349 0 1352
att48 7 7 15685.00 7.79 3.77 42 20 48 7.79 3.77 42 20 48
att532 24 24 78677.00 0.65 0.22 1067 1 1059 0.62 0.21 1049 0 —
bayg29 6 6 2086.00 3.38 2.08 16 41 24 19.35 0.15 11 0 —
bays29 6 6 2596.00 3.69 2.54 15 38 16 45.35 0.28 11 9 —
berlin52 8 8 10496.00 5.47 3.06 72 29 70 42.78 0.16 35 0 —
bier127 12 12 191417.00 22.57 7.77 293 99 1268 29.05 0.79 192 0 —
brazil58 8 8 38758.00 7.65 3.39 101 29 183 78.17 1.50 83 37 —
brg180 14 14 5210.00 541.45 51.61 521 64 863 1507.58 4.72 381 31 —
burma14 4 4 4320.00 0.45 0.48 3 28 2 4.63 1.77 6 30 6
ch130 12 12 13119.00 0.27 0.12 101 1 101 0.25 0.11 115 1 —
ch150 13 13 14393.00 14.86 2.53 134 75 679 15.05 0.88 130 1 —
d657 26 26 115829.00 0.35 0.16 834 0 839 0.29 0.13 656 0 —
dantzig42 7 7 1019.00 5.88 3.32 35 21 39 23.23 0.53 23 0 —
eil101 11 11 926.00 1.46 1.27 74 1 74 1.56 1.23 92 0 92
eil51 8 8 548.00 10.24 5.63 52 25 66 58.99 0.84 30 0 —
eil76 9 9 725.00 5.72 3.44 129 24 163 26.18 0.24 54 0 —
fri26 6 6 1211.00 3.26 3.03 12 30 8 43.10 2.75 16 35 —
gil262 17 17 5847.00 0.22 0.16 230 1 232 0.25 0.13 218 0 —
gr120 11 11 11319.00 22.57 9.80 260 87 496 30.93 0.18 141 0 —
gr137 12 12 141900.00 0.50 0.65 149 0 155 0.65 0.68 188 0 188
gr17 5 5 2403.00 1.51 2.26 4 35 8 18.93 3.46 7 24 —
gr202 15 15 84018.00 1.56 0.77 243 5 312 1.32 0.55 309 0 —
gr21 5 5 3870.00 4.39 3.38 7 26 9 29.24 2.48 11 39 —
gr229 16 16 274928.00 0.14 0.16 309 1 309 0.07 0.07 360 0 360
gr24 5 5 1716.00 1.43 1.90 12 32 8 32.70 2.71 15 34 —
gr431 21 21 392557.00 0.65 0.56 1089 1 1082 0.71 0.53 1363 0 —
gr48 7 7 7553.00 8.87 3.58 49 23 40 66.75 1.35 40 28 —
gr666 26 26 716090.00 0.56 0.32 1341 0 — 0.61 0.43 1224 0 1224
gr96 10 10 125671.00 0.67 0.47 73 0 73 0.56 0.40 89 1 88
hk48 7 7 16699.00 7.63 3.92 45 25 50 70.69 2.42 46 37 —
kroA100 10 10 38157.00 36.70 11.21 180 79 489 46.96 0.46 101 0 —
kroA150 13 13 67920.00 0.09 0.05 138 1 139 0.09 0.06 158 0 —
kroA200 15 15 73659.00 0.42 0.42 207 0 205 0.39 0.42 206 1 204
kroB100 10 10 40591.00 26.50 13.86 280 75 751 45.22 0.14 106 1 —
kroB150 13 13 53275.00 35.90 9.34 411 102 1869 47.39 0.26 159 1 —
kroB200 15 15 84398.00 0.21 0.17 201 0 199 0.24 0.24 214 0 213
kroC100 10 10 39666.00 32.66 13.54 276 74 823 51.79 0.45 102 1 —
kroD100 10 10 36779.00 15.54 13.68 408 42 465 51.61 0.16 103 1 —
kroE100 10 10 41415.00 37.66 12.94 197 88 468 49.34 0.69 98 1 —
lin105 11 11 29364.00 34.31 4.88 126 48 406 36.04 0.44 135 0 —
lin318 18 18 117651.00 0.16 0.13 353 0 — 0.14 0.10 292 0 292
nrw1379 38 38 154675.00 0.38 0.24 2494 1 2535 0.49 0.25 1686 0 —
pa561 24 24 6719.00 0.27 0.15 621 0 622 0.28 0.13 644 0 —
pr107 11 11 88417.00 52.33 12.41 265 105 867 63.96 0.03 132 1 —
pr124 12 12 136011.00 0.13 0.20 120 0 122 0.20 0.28 125 1 134
pr136 12 12 188640.00 29.45 11.37 370 79 854 42.57 0.13 128 0 —
pr144 12 12 175679.00 0.01 0.02 132 1 132 0.02 0.03 130 0 136
pr152 13 13 237141.00 0.47 0.18 186 1 — 0.47 0.16 188 0 188
pr226 16 16 306104.00 43.43 6.08 492 125 3600 46.52 0.09 200 1 —
pr264 17 17 246782.00 0.20 0.11 633 1 — 0.16 0.09 698 0 698
pr299 18 18 170702.00 0.33 0.08 463 0 — 0.34 0.12 450 0 450
pr439 21 21 321399.00 0.15 0.12 756 0 757 0.19 0.14 679 0 —
pr76 9 9 163369.00 23.38 15.77 167 59 302 50.76 0.08 59 1 —
rd100 10 10 13302.00 22.91 10.87 174 63 311 34.42 1.03 86 0 —
rd400 20 20 37937.00 0.39 0.16 408 0 411 0.44 0.16 352 0 —
si175 14 14 28666.00 6.22 3.86 737 40 1236 23.91 0.26 272 29 —
si535 24 24 82273.00 3.22 1.07 3278 13 3601 9.73 0.05 1788 0 —
st70 9 9 1019.00 6.40 3.10 126 23 94 43.77 0.55 49 0 —
swiss42 7 7 1810.00 6.70 3.97 34 29 51 64.22 2.64 36 30 —
ts225 15 15 350432.00 0.37 0.32 176 0 175 0.32 0.30 181 1 193
ulysses16 4 4 8873.00 0.00 0.01 4 24 6 2.58 0.76 7 26 —
ulysses22 5 5 8533.00 1.57 1.55 9 35 7 26.69 2.46 11 35 —

Appendix C
Additional results for Chapter 4

C.1 Additional plots of Section 4.4.4

0 500000 1500000 2500000

0
e
+

0
0

1
e
+

0
6

2
e
+

0
6

3
e
+

0
6

4
e
+

0
6

Time (seconds)

C
o

s
t

●

●

●

●

●
●

●
● ● ●

● ● ●

●

●
● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●

●

●

●

●

Labels (p)

Intersection p=1
Intersection p=2
Intersection p=3
Intersection p=4
Intersection p=5
Intersection p=6
Intersection p=7
Intersection p=8
Intersection p=9
Intersection p=10
Intersection p=11
Intersection p=12
Intersection p=13
Intersection p=14

Jaccard p=1
Jaccard p=2
Jaccard p=3
Jaccard p=4
Jaccard p=5
Jaccard p=6
Jaccard p=7
Jaccard p=8
Jaccard p=9
Jaccard p=10
Jaccard p=11
Jaccard p=12
Jaccard p=13
Jaccard p=14

(a) Evolution over time.

0 50000 100000 150000 200000

0
e
+

0
0

1
e
+

0
6

2
e
+

0
6

3
e
+

0
6

4
e
+

0
6

Iteration

C
o

s
t

●

●

●

●

●
●

●
●●●

●● ●

●

●
●●●●

●●

●
●●●●●●●● ●

●
●●●●●●● ● ●

●

●

●

●

●

Labels (p)

Intersection p=1
Intersection p=2
Intersection p=3
Intersection p=4
Intersection p=5
Intersection p=6
Intersection p=7
Intersection p=8
Intersection p=9
Intersection p=10
Intersection p=11
Intersection p=12
Intersection p=13
Intersection p=14

Jaccard p=1
Jaccard p=2
Jaccard p=3
Jaccard p=4
Jaccard p=5
Jaccard p=6
Jaccard p=7
Jaccard p=8
Jaccard p=9
Jaccard p=10
Jaccard p=11
Jaccard p=12
Jaccard p=13
Jaccard p=14

(b) Evolution over iterations.

Figure C.1: Evolution of the cost for the Yeast dataset. Only 1% of the symbols
corresponding to solutions are shown.

173

174 Appendix C. Additional results for Chapter 4

0 10 20 30 40 50 60

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

Time (seconds)

C
o

s
t

●

●

●

●

●

●

Labels (p)

Intersection p=1

Intersection p=2

Intersection p=3

Jaccard p=1

Jaccard p=2

Jaccard p=3

(a) Evolution over time.

0 500 1000 1500

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

Iteration

C
o

s
t

●

●

●

●

●

●

Labels (p)

Intersection p=1

Intersection p=2

Intersection p=3

Jaccard p=1

Jaccard p=2

Jaccard p=3

(b) Evolution over iterations.

Figure C.2: Evolution of the cost for the Starkey project dataset. Only 1% of the symbols
corresponding to solutions are shown.

0 1000 2000 3000 4000 5000

5
0
0
0
0

1
0
0
0
0
0

2
0
0
0
0
0

Time (seconds)

C
o

s
t

●

●

●
●

●
●

● ●
● ●

●

Labels (p)

Intersection p=1

Intersection p=2

Intersection p=3

Jaccard p=1

Jaccard p=2

Jaccard p=3

(a) Evolution over time.

0 1000 2000 3000 4000

5
0
0
0
0

1
0
0
0
0
0

2
0
0
0
0
0

Iteration

C
o

s
t

●

●

●
●

●
●

● ●
● ●

●

Labels (p)

Intersection p=1

Intersection p=2

Intersection p=3

Jaccard p=1

Jaccard p=2

Jaccard p=3

(b) Evolution over iterations.

Figure C.3: Evolution of the cost for the protein alignment dataset 1. Only 1% of the
symbols corresponding to solutions are shown.

C.1. Additional plots of Section 4.4.4 175

0 500000 1000000 1500000

2
6
0
0
0

2
6
2
0
0

2
6
4
0
0

2
6
6
0
0

2
6
8
0
0

Time (seconds)

C
o

s
t

●

●

●
●

●
●

●
●

●

Labels (p)

Jaccard p=1

Jaccard p=2

Jaccard p=3

(a) Evolution over time.

0 1000 2000 3000 4000 5000 6000

2
6
0
0
0

2
6
2
0
0

2
6
4
0
0

2
6
6
0
0

2
6
8
0
0

Iteration

C
o

s
t

●

●

●
●

●
●

●
●

●

Labels (p)

Jaccard p=1

Jaccard p=2

Jaccard p=3

(b) Evolution over iterations.

Figure C.4: Evolution of the cost for the newsgroup messages. Only 1% of the symbols
corresponding to solutions are shown. We omitted the curves for set intersection since it
obtained results 20 times worse than with the Jaccard index but with convergence about
400 times faster. This may indicate that set intersection is not appropriate for clustering
in this type of instance.

176 Appendix C. Additional results for Chapter 4

C.2 Statistical test tables of Section 4.4.6

Table C.1: Difference in median location for cost distributions for Starkey dataset using
Wilcoxon-Mann-Whitney U test with 95% of confidence. The bottom-left block shows
p-values that are greater than 0.05. A negative value means that the median of the “line”
algorithm is smaller/better than the “column” algorithm. A dash (—) indicates that the
results for that pair of algorithms are identical.

H p Algorithm Bonchi OLS-Comp OLS-Ext BLS-Comp BLS-Ext

Bonchi 0.61 -0.27 -0.27 0.60 0.61
OLS-Comp 0.89 0.00 0.87 0.88
OLS-Ext 0.16 0.89 0.87 0.88
BLS-Comp 0.01 0.01

1

BLS-Ext 0.003

Bonchi 0.98 0.80 0.73 0.96 0.97
OLS-Comp 0.17 -0.07 0.15 0.16
OLS-Ext 0.24 0.22 0.23
BLS-Comp 0.01 0.008

2

BLS-Ext 0.009

Bonchi 0.98 0.91 0.94 0.96 0.96
OLS-Comp 0.06 0.02 0.04 0.04
OLS-Ext 0.03 0.01 0.01
BLS-Comp 0.01 -0.001

Ja
cc
ar
d

3

BLS-Ext 0.67 0.01

Bonchi 0.85 0.85 0.85 — —
OLS-Comp 0.00 0.00 -0.85 -0.85
OLS-Ext 0.00 -0.85 -0.85
BLS-Comp 0.85 —

1

BLS-Ext 0.85

Bonchi 0.40 0.40 -0.04 — —
OLS-Comp 0.003 -0.44 -0.40 -0.40
OLS-Ext 0.44 0.04 0.04
BLS-Comp 0.40 —

2

BLS-Ext 0.04

Bonchi 0.62 0.59 -0.07 — —
OLS-Comp 0.03 -0.65 -0.59 -0.59
OLS-Ext 0.06 0.67 0.07 0.07
BLS-Comp 0.06 0.62 —

Se
t-
in
te
rs
ec
tio

n

3

BLS-Ext 0.62

C.2. Statistical test tables of Section 4.4.6 177

Table C.2: Difference in median location for cost distributions for SCOP datasets using
Wilcoxon-Mann-Whitney U test with 95% of confidence. The bottom-left block shows
p-values that are greater than 0.05. A negative value means that the median of the “line”
algorithm is smaller/better than the “column” algorithm. A dash (—) indicates that the
results for that pair of algorithms are identical.

H p Algorithm Bonchi OLS-Comp OLS-Ext BLS-Comp BLS-Ext

Bonchi 0.96 -0.03 -0.03 0.70 0.95
OLS-Comp 1.00 — 0.75 0.99
OLS-Ext 1.00 0.75 0.99
BLS-Comp 0.24 0.23

1

BLS-Ext 0.00

Bonchi 0.99 0.97 0.98 0.19 0.92
OLS-Comp 0.01 0.001 -0.77 -0.02
OLS-Ext 0.62 0.00 -0.74 -0.00
BLS-Comp 0.79 0.73

2

BLS-Ext 0.28 0.32 0.04

Bonchi 0.98 0.85 0.97 0.00002 0.40
OLS-Comp 0.07 0.07 -0.85 -0.43
OLS-Ext 0.0003 -0.95 -0.46
BLS-Comp 0.92 0.95 0.42

Ja
cc
ar
d

3

BLS-Ext 0.48

Bonchi 1.00 -0.00001 -0.00002 -0.00002 -0.00002
OLS-Comp 0.52 1.00 0.00003 0.00003 0.00003
OLS-Ext 0.65 1.00 — —
BLS-Comp 0.65 1.00 —

1

BLS-Ext 0.65 1.00

Bonchi 1.00 -0.00002 -0.00002 -0.00002 -0.00002
OLS-Comp 1.00 -0.00003 — —
OLS-Ext 0.34 0.48 1.00 0.0000004 0.0000004
BLS-Comp 0.48 1.00 —

2

BLS-Ext 0.48 1.00

Bonchi 1.00 -0.00002 -0.00001 -0.00002 -0.00002
OLS-Comp 1.00 -0.00003 — —
OLS-Ext 0.52 0.65 1.00 0.00003 0.00003
BLS-Comp 0.65 1.00 —

Se
t-
in
te
rs
ec
tio

n

3

BLS-Ext 0.65 1.00

178 Appendix C. Additional results for Chapter 4

Table C.3: Difference in median location for cost distributions for newsgroup messages
using Wilcoxon-Mann-Whitney U test with 95% of confidence. The bottom-left block
shows p-values that are greater than 0.05. A negative value means that the median of the
“line” algorithm is smaller/better than the “column” algorithm. A dash (—) indicates
that the results for that pair of algorithms are identical.

H p Algorithm Bonchi OLS-Comp OLS-Ext BLS-Comp BLS-Ext

Bonchi 0.001 -0.52 -0.92 -0.46 -0.51
OLS-Comp 0.52 -0.40 0.05 0.006
OLS-Ext 0.92 0.45 0.44
BLS-Comp 0.46 -0.04

1

BLS-Ext 0.70 0.51

Bonchi 0.99 0.99 0.90 0.002 0.75
OLS-Comp 0.00 -0.09 -0.99 -0.23
OLS-Ext 0.09 -0.89 -0.14
BLS-Comp 0.70 0.99 0.75

2

BLS-Ext 0.23

Bonchi 0.98 0.98 0.94 -0.01 0.77
OLS-Comp 0.0002 -0.04 -0.99 -0.21
OLS-Ext 0.04 -0.95 -0.16
BLS-Comp 0.10 0.99 0.78

Ja
cc
ar
d

3

BLS-Ext 0.21

Bonchi 0.000007 -0.99 -0.99 -0.001 -0.001
OLS-Comp 0.99 -0.005 0.992 0.99
OLS-Ext 0.99 0.998 0.99
BLS-Comp 0.10 0.001 -0.0001

1

BLS-Ext 0.10 0.70 0.001

Bonchi 0.00001 -0.98 -0.99 -0.001 -0.001
OLS-Comp 0.98 -0.01 0.98 0.98
OLS-Ext 0.99 0.99 0.99
BLS-Comp 0.10 0.001 -0.0003

2

BLS-Ext 0.10 0.10 0.001

Bonchi 0.00003 -0.99 -0.99 -0.001 -0.001
OLS-Comp 0.99 -0.007 0.99 0.99
OLS-Ext 0.99 0.99 0.99
BLS-Comp 0.01 0.001 -0.000

Se
t-
in
te
rs
ec
tio

n

3

BLS-Ext 0.01 0.10 0.001

Appendix D
Additional results for Chapter 5

D.1 Statistical tests
Tables D.1–D.8, show U test results for each pair of algorithms and different instance

sizes, at a 99% confidence level. The structure of these tables is as follows: Each row and
column is indexed by one algorithm. Each element in the diagonal (bold) is the median
of the corresponding algorithm. The upper-right diagonal elements are the differences in
location statistics for each pair of algorithms. A positive difference indicates that the “row
algorithm” has its location statistics higher (better) than the “column algorithm”, and the
negative difference is the opposite. The bottom-left diagonal elements are the p-values of
each test. We omitted all p < 0.01 values, that indicate that the difference is statistically
significant for those pairs. We also omitted confidence intervals since for all tests the
values lie in these intervals and they are very narrow. For instance, in Table D.1 we can
see that the location statistics for CPLEX (2nd line) are higher (better) than for RGRK (4th

column) since the value 0.0806 is positive. Since the p-value for this pair was omitted (3rd

line, 3rd column), the table indicates that CPLEX performed significantly better than RGRK

in these tests. We chose to display a large number of significant digits since for some pairs
of algorithms the differences are very small they are still statistically significant. This is
the case, for example, of algorithms GARA and SDLP in Table D.1 where the difference is
only 0.000009 but is still significant (in terms of the U test) in favor of GARA.

Since several tests were performed, we applied a p-value correction procedure based
on false discovery rate ([18]) aiming to minimize the number of false positives (Type I
error).

179

180
A
ppendix

D
.
A
dditionalresults

for
C
hapter

5

Table D.1: Difference in median location for revenue distributions for all instances, using a confidence interval of 99%.
The omitted p-values are less than 0.0009.

CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

CORAL 0.000000 −0.950720 −0.840038 −0.916819 −0.999908 −0.999944 −0.988866 −0.999941 −0.930584 −0.961331
CPLEX 0.982822 0.080600 0.018096 −0.001477 −0.003086 −0.000017 −0.002008 0.004974 −0.000078
RGRK 0.875503 −0.051401 −0.114096 −0.115350 −0.104717 −0.114523 −0.062547 −0.088295
BOMA 0.939643 −0.051826 −0.053154 −0.042700 −0.051845 −0.000850 −0.025455
CARA 1.000000 −0.000036 0.000002 0.000014 0.034406 0.000695
CALP 1.000000 0.000005 0.000037 0.035707 0.003093
GARA 1.000000 −0.000067 0.026002 0.000012
GALP p > 0.29 1.000000 0.034429 0.001266
SDRA 0.955629 −0.010476
SDLP p > 0.07 0.951900

Table D.2: Difference in median location for revenue distributions for instances with 400 bids or less, using a confidence
interval of 99%. The omitted p-values are less than 0.004.

CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

CORAL 0.999984 −0.000062 −0.000052 −0.000033 −0.000012 −0.000042 −0.000031 −0.000037 −0.000017 −0.000039
CPLEX 1.000000 0.000083 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RGRK 1.000000 −0.000049 −0.000057 −0.000029 −0.000070 −0.000077 −0.000007 −0.000026
BOMA 1.000000 −0.000039 −0.000011 −0.000041 −0.000016 −0.000046 −0.000025
CARA 1.000000 −0.000047 0.000012 −0.000077 0.000063 −0.000068
CALP p > 0.09 1.000000 0.000071 0.000022 0.000060 −0.000089
GARA p > 0.25 1.000000 −0.000037 0.000041 −0.000007
GALP p > 0.08 p > 0.86 1.000000 0.000083 −0.000032
SDRA p > 0.01 1.000000 −0.000076
SDLP p > 0.30 0.999300

D
.1.

Statisticaltests
181

Table D.3: Difference in median location for revenue distributions for instances with 1000 bids or more, using a confidence
interval of 99%. The omitted p-values are less than 0.001.

CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

CORAL 0.000000 −0.946779 −0.856397 −0.922194 −0.999946 −0.999927 −0.990230 −0.999915 −0.931543 −0.957204
CPLEX 0.953821 0.079737 0.022089 −0.035372 −0.035907 −0.023595 −0.034921 0.014744 −0.000004
RGRK 0.863907 −0.056439 −0.124063 −0.124426 −0.112816 −0.123114 −0.062318 −0.088282
BOMA 0.926657 −0.062474 −0.062700 −0.053631 −0.061591 −0.005172 −0.029241
CARA 1.000000 −0.000065 0.000065 0.000018 0.051891 0.027844
CALP 1.000000 0.000086 0.000071 0.052948 0.028406
GARA 0.993222 −0.000044 0.043039 0.017885
GALP p > 0.27 1.000000 0.051161 0.027183
SDRA 0.938537 −0.021078
SDLP p > 0.03 0.951700

Table D.4: Difference in median location for revenue distributions for LG 1500/1500 instances, using a confidence interval
of 99%. The omitted p-values are less than 0.00001.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.827570 −0.081040 −0.163875 −0.162074 −0.154572 −0.160352 −0.102957 −0.109679
BOMA 0.910548 −0.083920 −0.083313 −0.076227 −0.079144 −0.022304 −0.028658
CARA 1.000000 0.000027 0.000036 0.000045 0.057928 0.053322
CALP p > 0.05 1.000000 0.000036 0.000057 0.057150 0.052600
GARA 0.998888 −0.000042 0.050617 0.042824
GALP p > 0.01 1.000000 0.054981 0.047942
SDRA 0.935822 −0.005051
SDLP p > 0.01 0.942900

182
A
ppendix

D
.
A
dditionalresults

for
C
hapter

5

Table D.5: Difference in median location of revenue distributions for all instances, considering the best solutions until
100 generations. A confidence interval of 99% was used. The omitted p-values are less than 0.000009.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.365256 −0.027354 −0.484062 −0.495047 −0.439106 −0.495536 −0.082448 −0.251942
BOMA 0.410741 −0.433579 −0.443894 −0.389594 −0.444571 −0.028155 −0.208201
CARA 0.971370 −0.000033 0.000045 −0.000016 0.313978 0.115553
CALP 0.995975 0.000040 0.000046 0.321063 0.124509
GARA 0.894743 −0.000053 0.274147 0.069280
GALP p > 0.84 0.993376 0.321429 0.126418
SDRA 0.541106 −0.126061
SDLP 0.721500

Table D.6: Difference in median location of revenue distributions for instances with 400 bids or less, considering the
best solutions until 100 generations. A confidence interval of 99% was used. The omitted p-values are less than 0.009.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.713545 −0.000017 −0.000011 −0.000029 −0.000019 −0.000020 −0.000009 −0.000034
BOMA 1.000000 0.000005 0.000051 0.000030 0.000067 0.000038 0.000059
CARA p > 0.01 0.990978 −0.000027 0.000008 −0.000006 −0.000000 −0.000015
CALP p > 0.01 0.999988 0.000003 0.000033 0.000021 −0.000044
GARA p > 0.37 p > 0.11 0.999943 −0.000037 0.000018 −0.000040
GALP p > 0.04 p > 0.70 p > 0.27 0.999986 0.000039 −0.000049
SDRA p > 0.41 p > 0.37 p > 0.09 p > 0.01 0.793841 −0.000020
SDLP p > 0.52 p > 0.03 p > 0.37 1.000000

D
.1.

Statisticaltests
183

Table D.7: Difference in median location of revenue distributions for instances with more than 400 bids, considering the
best solutions until 100 generations. A confidence interval of 99% was used. The omitted p-values are less than 0.0001.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.342195 −0.020136 −0.548485 −0.557676 −0.502515 −0.556347 −0.132994 −0.300077
BOMA 0.370348 −0.521230 −0.531241 −0.477689 −0.530029 −0.115826 −0.284344
CARA 0.968853 −0.000039 0.009928 −0.000032 0.365621 0.198026
CALP 0.987577 0.021097 0.000033 0.375408 0.208959
GARA 0.889071 −0.020640 0.324260 0.154933
GALP p > 0.70 0.988826 0.375060 0.208850
SDRA 0.530006 −0.153962
SDLP 0.694700

Table D.8: Difference in median location of revenue distributions for for LG 1500/1500 instances, considering the best
solutions until 100 generations. A confidence interval of 99% was used. The omitted p-values are less than 0.00004.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.228827 −0.064896 −0.661234 −0.661403 −0.608903 −0.665038 −0.242486 −0.306383
BOMA 0.312164 −0.599983 −0.601567 −0.544650 −0.604113 −0.172053 −0.239376
CARA 0.991615 −0.000039 0.009253 −0.000065 0.418796 0.334902
CALP p > 0.97 0.991615 0.012762 −0.000056 0.419685 0.334964
GARA 0.890265 −0.018571 0.351878 0.290690
GALP p > 0.68 p > 0.68 0.993368 0.421907 0.336256
SDRA 0.479321 −0.057048
SDLP 0.548400

184 Appendix D. Additional results for Chapter 5

D.2 Additional running time results
Table D.9 shows the average time in seconds taken by each algorithm to find the

best solution (recall that we limited runs to at most 3,600 seconds). The additional
time in the last iterations without improvement in the best solution found is disregard.
We also exclude the time used loading instances and logging. To be fair with the Java
implementations, each run began with a warm-up phase so that Java virtual machine
could load and optimize all necessary bytecode. The first two columns of this table list,
respectively, the instance classes and their corresponding sizes. Each following pair of
columns shows the average time and standard deviation for each algorithm, respectively.

D
.2.

A
dditionalrunning

tim
e
results

185

Table D.9: Running time comparison among the algorithms. For each algorithm, the table shows the average time to
find the best solutions. The over time used in the last iterations without improvement is disregarded. Time in seconds.

Class Size CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

Time σ Time σ Time σ Time σ Time σ Time σ Time σ Time σ Time σ Time σ

40 1 1 1 1 10 6 1 1 1 0 1 0 2 1 1 0 2 3 1 0
80 2 2 1 1 12 7 1 1 2 1 1 0 5 38 1 0 2 4 1 0
200 792 1438 1 1 18 15 17 32 14 74 1 0 31 123 1 0 46 132 1 0
400 923 1418 1 1 40 56 51 121 58 161 28 124 47 139 18 96 65 172 20 89CATS 1000 2883 1436 382 1075 473 651 736 936 53 136 30 96 60 134 36 104 75 167 32 112
1024 2803 1494 960 1568 460 591 778 1130 54 142 33 114 72 165 30 106 79 181 28 96
2000 2903 1411 1377 1708 1463 1151 1909 1324 72 181 35 106 66 135 39 114 78 166 29 99
4000 3012 1344 1802 1799 2527 1540 2611 1361 52 115 28 75 68 133 42 119 54 123 30 87

1000 3606 12 3601 1 289 529 75 68 94 196 93 192 94 196 95 197 78 181 71 168LG 1500 3624 23 3601 1 425 702 66 58 118 211 113 200 94 187 100 187 92 188 83 179

186 Appendix D. Additional results for Chapter 5

D.3 Best results for each instance
This section presents the results obtained for the LG instances. The format of the

tables is the following: the first column and second columns are the instance name and
the best revenue obtained for this instance, respectively. The following columns show the
percentage of the revenue from the best solution obtained by the algorithm that names
the column. A high percentage indicates that the obtained solution is closer to the best.
A star (?) indicates that the algorithm found the best solution.

Table D.10: Best results for CATS instances with less than 400 bids. The names of the
instances are composed by the class, number of bids, number of goods, and serial number
of the instance.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

L2_40_10_1 8774.7200 ? ? ? ? ? ? ? ? ? ?

L2_40_10_2 9229.3400 ? ? ? ? ? ? ? ? ? ?

L2_40_10_3 8967.4300 ? ? ? ? ? ? ? ? ? ?

L2_80_10_1 9828.2500 77.64 ? ? ? ? ? ? ? ? ?

L2_80_10_2 9786.7100 ? ? ? ? ? ? ? ? ? ?

L2_80_10_3 9441.1700 ? ? ? ? ? ? ? ? ? ?

L2_200_50_2 45785.7000 ? ? ? ? ? ? ? ? 92.15 ?

L2_200_50_3 49031.9000 87.41 ? ? ? ? ? ? ? ? ?

L2_400_50_1 46588.7410 ? ? ? ? ? ? ? ? 98.34 ?

L2_400_50_2 47706.0000 ? ? ? ? ? ? ? ? ? ?

L2_400_50_3 47819.7160 ? ? ? ? ? ? ? ? ? ?

L3_40_10_1 2474.2480 ? ? ? ? ? ? ? ? ? ?

L3_40_10_2 2682.7890 ? ? ? ? ? ? ? ? ? ?

L3_40_10_3 2929.2870 ? ? ? ? ? ? ? ? ? ?

L3_80_10_1 2862.1650 ? ? ? ? ? ? ? ? ? ?

L3_80_10_2 2779.9100 ? ? ? ? ? ? ? ? ? ?

L3_80_10_3 2938.3120 ? ? ? ? ? ? ? ? ? ?

L3_200_50_1 12178.8010 ? ? ? ? ? ? ? ? ? ?

L3_200_50_3 12612.9650 ? ? ? ? ? ? ? ? ? ?

L3_400_50_1 14338.1150 ? ? ? ? ? ? ? ? ? ?

L3_400_50_2 14747.9490 ? ? 99.07 ? ? ? ? ? ? ?

L3_400_50_3 14495.9880 ? ? 99.54 ? ? ? ? ? ? ?

L4_40_10_1 9543.8540 ? ? ? ? ? ? ? ? ? ?

L4_40_10_2 8870.7760 ? ? ? ? ? ? ? ? ? ?

L4_40_10_3 9249.9330 ? ? ? ? ? ? ? ? ? ?

L4_80_10_1 9770.0770 ? ? 99.69 ? ? ? ? ? ? ?

L4_80_10_2 9817.6040 ? ? 99.50 ? ? ? ? ? ? ?

L4_80_10_3 9759.7910 ? ? ? ? ? ? ? ? ? ?

L4_200_50_1 45191.2690 86.61 ? 99.65 ? ? ? ? ? ? ?

L4_200_50_2 44275.5990 92.24 ? 99.56 ? ? ? ? ? ? ?

L4_200_50_3 46496.4650 93.73 ? ? ? ? ? ? ? ? ?

L4_400_50_1 47748.4440 89.23 ? 99.42 ? ? ? ? ? ? ?

L4_400_50_2 47988.4200 ? ? 99.56 99.62 ? ? ? ? ? ?

L4_400_50_3 48410.5140 ? ? 99.40 99.55 ? ? ? ? ? ?

L6_40_10_1 8791.5910 ? ? ? ? ? ? ? ? ? ?

L6_40_10_2 9297.1700 ? ? ? ? ? ? ? ? ? ?

L6_40_10_3 9217.2400 ? ? ? ? ? ? ? ? ? ?

Continue on next page. . .

D.3. Best results for each instance 187

Table D.10: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

L6_80_10_1 9290.9270 ? ? ? ? ? ? ? ? ? ?

L6_80_10_2 9836.4500 ? ? ? ? ? ? ? ? ? ?

L6_80_10_3 9593.9010 ? ? 97.69 ? ? ? ? ? ? ?

L6_200_50_1 41639.9910 96.86 ? 95.31 ? ? ? ? ? ? ?

L6_200_50_2 38873.5410 98.44 ? 99.62 ? ? ? ? ? 99.53 ?

L6_200_50_3 40561.3300 ? ? ? ? ? ? ? ? ? ?

L6_400_50_1 44990.9010 99.12 ? ? ? ? ? ? ? ? ?

L6_400_50_2 46366.8710 99.45 ? 97.48 ? ? ? ? ? ? ?

L6_400_50_3 45216.8660 96.18 ? 96.83 95.86 99.92 ? ? ? ? ?

L7_40_10_1 8309.1230 ? ? ? ? ? ? ? ? ? ?

L7_40_10_2 9090.6580 ? ? ? ? ? ? ? ? ? ?

L7_40_10_3 8553.2690 ? ? ? ? ? ? ? ? ? ?

L7_80_10_1 9818.5880 ? ? 99.32 ? ? ? ? ? ? ?

L7_80_10_2 9435.4580 ? ? ? ? ? ? ? ? ? ?

L7_80_10_3 9775.6220 ? ? 99.81 ? ? ? ? ? ? ?

L7_200_50_1 28286.0100 ? ? ? ? ? ? ? ? ? ?

L7_200_50_2 30478.8250 69.46 ? ? ? ? ? ? ? ? ?

L7_200_50_3 29014.3000 ? ? ? ? ? ? ? ? ? ?

L7_400_50_1 32505.1200 ? ? ? ? ? ? ? ? 98.15 ?

L7_400_50_2 33512.5500 ? ? 96.52 ? ? ? ? ? ? ?

L7_400_50_3 29829.2200 ? ? 98.74 ? ? ? ? ? ? ?

arbitrary_40_10_1 1019.7600 ? ? ? ? ? ? ? ? ? ?

arbitrary_40_10_2 749.5520 99.98 ? ? ? ? ? ? ? ? ?

arbitrary_40_10_3 679.8568 ? ? ? ? ? ? ? ? ? ?

arbitrary_80_10_1 1038.7469 ? ? ? ? ? ? ? ? ? ?

arbitrary_80_10_2 775.6040 ? ? ? ? ? ? ? ? ? ?

arbitrary_80_10_3 581.9593 ? ? ? ? ? ? ? ? ? ?

arbitrary_200_50_1 3007.5090 ? ? 96.00 ? ? ? ? ? 99.13 ?

arbitrary_200_50_2 3260.1100 ? ? 97.54 ? ? ? ? ? ? ?

arbitrary_200_50_3 3271.8422 ? ? 96.60 ? ? ? ? ? ? ?

arbitrary_400_50_1 4038.0004 ? ? 93.09 90.48 ? ? ? ? ? ?

arbitrary_400_50_2 3791.8860 ? ? 93.80 85.02 ? ? ? ? ? ?

arbitrary_400_50_3 4289.3898 ? ? 88.70 ? ? ? ? ? ? ?

matching_40_10_1 10.7792 ? ? ? ? ? ? ? ? ? ?

matching_40_10_2 7.1517 ? ? ? ? ? ? ? ? ? ?

matching_40_10_3 15.6388 ? ? ? ? ? ? ? ? ? ?

matching_80_10_1 13.7825 ? ? ? ? ? ? ? ? ? ?

matching_80_10_2 1.5328 ? ? ? ? ? ? ? ? ? ?

matching_80_10_3 8.1853 ? ? ? ? ? ? ? ? ? ?

matching_200_50_1 32.2974 ? ? ? ? ? ? ? ? ? ?

matching_200_50_2 32.0509 ? ? ? ? ? ? ? ? ? ?

matching_200_50_3 23.8792 ? ? ? ? ? ? ? ? ? ?

matching_400_50_1 41.8873 ? ? ? ? ? ? ? ? ? ?

matching_400_50_2 55.8732 ? ? ? ? ? ? ? ? ? ?

matching_400_50_3 27.1398 ? ? ? ? ? ? ? ? ? ?

paths_40_10_1 4.5826 ? ? ? ? ? ? ? ? ? ?

paths_40_10_2 6.1875 ? ? ? ? ? ? ? ? ? ?

paths_40_10_3 5.3516 ? ? ? ? ? ? ? ? ? ?

paths_80_10_1 7.0575 ? ? ? ? ? ? ? ? ? ?

paths_80_10_2 5.0659 ? ? ? ? ? ? ? ? ? ?

paths_80_10_3 6.0272 ? ? ? ? ? ? ? ? ? ?

paths_200_50_1 20.2063 97.32 ? ? ? ? ? ? ? ? ?

paths_200_50_2 20.0969 ? ? ? ? ? ? ? ? ? ?

Continue on next page. . .

188 Appendix D. Additional results for Chapter 5

Table D.10: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

paths_200_50_3 22.1016 ? ? ? ? ? ? ? ? ? ?

paths_400_50_1 26.8886 ? ? ? 99.54 ? ? ? ? ? ?

paths_400_50_2 22.9762 ? ? ? ? ? ? ? ? ? ?

paths_400_50_3 23.7947 ? ? ? 99.72 ? ? ? ? ? ?

regions_40_10_1 942.2510 ? ? ? ? ? ? ? ? ? ?

regions_40_10_2 750.5340 ? ? ? ? ? ? ? ? ? ?

regions_40_10_3 659.7730 ? ? ? ? ? ? ? ? ? ?

regions_80_10_1 808.6960 ? ? 96.58 ? ? ? ? ? ? ?

regions_80_10_2 957.2460 ? ? ? ? ? ? ? ? ? ?

regions_80_10_3 1159.6219 ? ? 98.13 98.13 ? ? ? ? ? ?

regions_200_50_1 3616.3098 ? ? 97.69 ? ? ? ? ? ? ?

regions_200_50_2 3292.0154 ? ? 87.48 ? ? ? ? ? ? ?

regions_200_50_3 3401.2610 ? ? 92.77 ? ? ? ? ? ? ?

regions_400_50_1 4177.5069 ? ? 89.33 ? ? ? ? ? ? ?

regions_400_50_2 3606.1991 ? ? 91.53 ? ? ? ? ? ? ?

regions_400_50_3 3482.6069 ? ? 93.81 ? ? ? ? ? ? ?

scheduling_40_10_1 14.7840 ? ? ? ? ? ? ? ? ? ?

scheduling_40_10_2 15.1235 ? ? ? ? ? ? ? ? ? ?

scheduling_40_10_3 21.7354 ? ? ? ? ? ? ? ? ? ?

scheduling_80_10_1 22.6557 ? ? ? ? ? ? ? ? ? ?

scheduling_80_10_2 15.7918 ? ? ? ? ? ? ? ? ? ?

scheduling_80_10_3 22.8672 ? ? ? ? ? ? ? ? ? ?

scheduling_200_50_1 22.6139 ? ? ? ? ? ? ? ? ? ?

scheduling_200_50_2 53.8402 ? ? ? ? ? ? ? ? ? ?

scheduling_200_50_3 48.8045 ? ? 95.26 ? ? ? ? ? ? ?

scheduling_400_50_1 58.2749 ? ? 97.38 ? ? ? ? ? ? ?

scheduling_400_50_2 70.3185 ? ? ? ? ? ? ? ? ? ?

scheduling_400_50_3 43.8167 1.50 ? ? ? ? ? ? ? ? ?

Table D.11: Best results for CATS instances more than 400 bids. The names of the
instances are composed by the class, number of bids, number of goods, and serial number
of the instance. Instances with hard in the name have 1024 bids and 256 goods.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

L2_1000_256_1 244098.0000 ? ? ? ? ? ? ? ? 88.40 ?

L2_1000_256_2 241158.0000 ? ? ? ? ? ? ? ? 90.88 ?

L2_1000_256_3 254988.0000 ? ? ? ? ? ? ? ? 81.73 ?

L2_2000_512_1 495448.0000 ? ? ? ? ? ? ? ? 72.84 ?

L2_2000_512_2 501810.0000 4.27 ? ? ? ? ? ? ? 80.74 ?

L2_2000_512_3 505625.0000 ? ? ? ? ? ? ? ? 87.47 ?

L2_4000_1024_1 1000590.0000 ? ? ? ? ? ? ? ? 37.53 ?

L2_4000_1024_2 1010991.6920 10.66 ? ? 100.00 ? ? ? ? 59.42 ?

L2_4000_1024_3 996744.0000 ? ? ? ? ? ? ? ? 34.50 ?

L2_hard_1 262.5110 ? ? ? ? ? ? ? ? 63.91 ?

L2_hard_2 456.5370 ? ? ? ? ? ? ? ? ? ?

L2_hard_3 317.4120 ? ? ? ? ? ? ? ? 66.52 ?

L3_1000_256_1 64626.2530 75.64 ? 99.26 99.60 99.60 99.60 99.60 99.56 96.60 99.50
L3_1000_256_2 66106.1710 79.20 ? 99.08 99.31 99.75 99.78 99.78 99.66 98.58 99.78
L3_1000_256_3 64987.7430 75.45 ? 99.68 ? 99.84 ? 99.81 ? 99.79 ?

L3_2000_512_1 128004.7893 81.84 ? 98.80 97.74 99.47 99.92 99.92 99.72 98.43 99.95
Continue on next page. . .

D.3. Best results for each instance 189

Table D.11: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

L3_2000_512_2 132229.2010 93.59 ? 99.18 98.78 99.49 99.71 99.35 99.78 97.62 99.69
L3_2000_512_3 133133.1410 82.48 ? 98.95 98.83 99.07 99.64 99.43 99.62 97.09 99.62
L3_4000_1024_1 263970.8210 78.25 ? 90.99 97.45 99.88 99.74 98.87 99.50 96.46 99.25
L3_4000_1024_2 263936.8590 75.72 ? 91.47 97.29 99.48 99.62 99.60 99.55 96.62 99.53
L3_4000_1024_3 263404.1096 80.03 ? 91.46 96.98 99.09 99.30 99.17 98.94 96.70 98.93
L3_hard_1 75.4074 75.32 ? 99.35 97.11 99.28 99.39 99.18 99.35 98.89 99.18
L3_hard_2 34.1897 80.59 99.33 96.96 95.45 99.27 ? 99.09 97.74 97.17 97.74
L3_hard_3 20.8636 82.47 96.79 97.63 96.19 98.44 98.63 98.44 ? 95.31 ?

L4_1000_256_1 228752.1550 4.41 ? 99.52 99.17 99.85 ? ? ? 99.67 ?

L4_1000_256_2 229601.7270 92.34 ? 99.27 98.48 99.71 ? ? ? 99.43 ?

L4_1000_256_3 229349.1950 2.85 ? 99.58 99.70 99.90 ? ? ? 99.43 ?

L4_2000_512_1 461218.2640 3.56 ? 99.48 99.04 99.71 ? ? ? 99.07 ?

L4_2000_512_2 459425.3230 2.75 ? 99.83 98.97 99.73 ? ? ? 99.32 ?

L4_2000_512_3 458536.7260 2.64 ? 99.50 99.07 99.65 ? ? ? 99.50 ?

L4_4000_1024_1 914322.9910 2.30 ? 98.33 96.11 99.32 ? ? ? 99.15 ?

L4_4000_1024_2 920786.4330 2.22 ? 98.39 95.88 99.09 ? ? ? 98.93 ?

L4_4000_1024_3 920294.1540 3.27 ? 98.37 96.36 99.16 99.99 99.99 99.99 99.00 99.99
L4_hard_1 290.2399 16.81 ? 99.53 98.80 ? ? ? ? ? ?

L4_hard_2 383.8526 13.76 ? 99.36 99.14 ? ? ? ? ? ?

L4_hard_3 282.6879 7.06 ? 99.55 98.90 ? ? ? ? ? ?

L6_1000_256_1 199757.0790 45.81 ? 97.22 99.41 98.23 98.75 98.32 98.72 98.22 98.22
L6_1000_256_2 200559.8373 69.95 ? 97.41 96.57 98.80 99.39 97.61 99.39 97.38 99.11
L6_1000_256_3 201208.1706 3.72 ? 99.56 99.15 98.72 99.96 98.36 98.92 97.16 98.36
L6_2000_512_1 405788.3937 72.95 ? 98.00 95.24 97.76 99.00 97.85 99.00 94.39 99.00
L6_2000_512_2 411091.1370 5.22 ? 97.83 94.81 97.77 98.16 97.22 98.16 96.02 97.77
L6_2000_512_3 402472.3077 71.43 ? 98.29 95.41 97.04 97.93 97.73 97.93 94.55 97.93
L6_4000_1024_1 785686.0929 0.88 ? 98.15 93.36 97.30 97.62 97.54 97.73 97.60 97.75
L6_4000_1024_2 801026.0135 75.21 ? 98.90 92.95 97.91 97.66 97.33 97.84 95.53 95.95
L6_4000_1024_3 791849.8150 73.60 ? 98.19 93.02 97.06 97.03 96.92 97.38 95.83 96.82
L6_hard_1 377.5873 13.69 ? 99.57 99.51 ? ? ? ? ? ?

L6_hard_2 330.2240 18.25 ? 99.58 99.65 ? ? ? ? ? ?

L6_hard_3 446.4472 6.50 ? 99.62 99.68 ? ? ? ? ? ?

L7_1000_256_1 68830.4000 95.17 ? ? ? ? ? ? ? 86.30 ?

L7_1000_256_2 79025.8000 96.74 ? ? 100.00 ? ? ? ? 96.74 ?

L7_1000_256_3 81981.6000 100.00 ? ? 100.00 ? ? ? ? ? ?

L7_2000_512_1 121043.0000 ? ? ? ? ? ? ? ? 97.56 ?

L7_2000_512_2 119058.0000 ? ? ? ? ? ? ? ? 93.95 ?

L7_2000_512_3 122346.0000 99.99 ? ? ? ? ? ? ? 92.35 ?

L7_4000_1024_1 244374.0000 ? ? ? ? ? ? ? ? 90.59 ?

L7_4000_1024_2 229826.0000 ? ? ? ? ? ? ? ? 99.68 ?

L7_4000_1024_3 228342.0000 ? ? ? ? ? ? ? ? 88.19 ?

L7_hard_1 233.0348 73.22 ? ? ? ? ? 98.25 ? ? ?

L7_hard_2 127.4510 100.00 ? ? ? ? ? ? ? ? ?

L7_hard_3 261.2782 83.15 97.72 97.70 ? 99.18 ? 99.18 ? 95.56 95.56
arbitrary_1000_256_1 17186.3016 70.40 96.39 93.12 95.91 ? ? 96.87 ? 94.46 95.53
arbitrary_1000_256_2 15782.8217 6.06 98.02 96.27 95.63 98.41 ? 98.56 99.40 96.39 98.03
arbitrary_1000_256_3 17280.1375 9.31 98.04 92.55 97.45 98.69 ? 99.28 99.28 97.28 97.28
arbitrary_2000_512_1 32267.8600 0.17 96.98 96.15 93.59 99.74 98.89 ? 99.56 95.35 96.13
arbitrary_2000_512_2 32159.7621 1.56 95.83 96.42 94.28 99.97 ? 99.39 99.19 98.02 97.21
arbitrary_2000_512_3 32181.8011 2.52 95.86 96.79 97.81 99.54 99.27 ? 99.04 97.77 98.95
arbitrary_4000_1024_1 62694.3745 1.43 95.70 93.86 91.57 99.64 98.48 98.56 ? 96.90 96.76
arbitrary_4000_1024_2 61809.4598 0.35 97.64 93.42 90.90 97.84 98.90 ? 97.92 96.32 95.92
arbitrary_4000_1024_3 62366.9031 79.65 96.20 93.46 90.80 98.82 99.01 97.84 ? 96.39 95.77

Continue on next page. . .

190 Appendix D. Additional results for Chapter 5

Table D.11: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

arbitrary_hard_1 16412.4678 1.32 99.78 94.33 95.55 ? 99.78 98.07 99.78 95.12 96.07
arbitrary_hard_2 15699.7262 71.07 98.47 96.52 98.13 ? 98.47 98.02 98.47 98.26 99.65
arbitrary_hard_3 14954.8919 1.29 99.40 95.34 98.76 99.91 99.43 99.69 99.43 ? ?

matching_1000_256_1 724.3030 26.06 ? 99.88 99.88 ? ? ? ? ? ?

matching_1000_256_2 731.8279 94.91 ? 99.92 99.99 ? ? ? ? 99.99 ?

matching_1000_256_3 912.8670 92.44 ? ? 99.97 ? ? ? ? 99.82 ?

matching_2000_512_1 669.1193 30.47 ? 99.91 99.51 ? ? ? ? 99.84 ?

matching_2000_512_2 1379.1604 92.92 ? 99.72 99.48 ? ? ? ? 99.96 ?

matching_2000_512_3 881.3102 24.14 ? 99.93 99.35 ? ? ? ? 99.76 ?

matching_4000_1024_1 3047.5592 64.56 ? 94.35 98.41 99.98 ? ? ? 99.82 ?

matching_4000_1024_2 2302.0147 38.07 ? 94.29 98.19 100.00 ? ? ? 99.78 ?

matching_4000_1024_3 2508.6253 31.33 ? 95.11 98.39 99.94 ? ? ? 99.87 ?

matching_hard_1 155.0591 ? ? ? ? ? ? ? ? ? ?

matching_hard_2 421.5402 23.49 ? 99.96 99.96 ? ? ? ? ? ?

matching_hard_3 323.9873 94.06 ? ? 99.99 ? ? ? ? ? ?

paths_1000_256_1 57.7328 89.93 ? ? ? ? ? ? ? ? ?

paths_1000_256_2 65.7292 28.17 ? ? 98.37 ? ? ? ? ? ?

paths_1000_256_3 57.4862 30.51 ? ? ? ? ? ? ? 99.17 ?

paths_2000_512_1 90.3558 62.85 ? 100.00 95.94 ? ? ? ? ? ?

paths_2000_512_2 101.4873 52.98 ? 99.83 97.01 ? ? 100.00 99.98 99.21 99.98
paths_2000_512_3 106.9681 57.30 ? 99.80 97.50 99.92 99.87 99.87 99.87 99.41 99.87
paths_4000_1024_1 161.5959 99.87 ? 98.26 91.88 99.70 ? ? ? 98.50 ?

paths_4000_1024_2 165.5882 80.80 ? 98.52 93.20 99.47 ? ? ? 98.79 ?

paths_4000_1024_3 150.9125 97.21 ? 98.70 91.61 99.82 ? ? ? 98.99 ?

regions_1000_256_1 16214.3571 74.32 ? 95.20 98.99 98.94 99.36 98.12 99.36 98.09 98.89
regions_1000_256_2 17922.5058 75.94 ? 95.60 99.63 99.23 98.67 99.10 98.79 98.87 98.67
regions_1000_256_3 17391.3627 3.78 ? 97.09 ? 99.54 99.54 98.18 99.34 97.85 99.34
regions_2000_512_1 38262.6408 74.08 ? 97.36 97.88 98.30 99.55 98.68 98.99 97.65 98.86
regions_2000_512_2 32274.1576 62.09 ? 95.82 95.49 99.77 98.64 97.89 98.60 96.23 97.45
regions_2000_512_3 37199.7468 1.20 ? 96.77 98.55 99.21 99.59 98.49 99.50 97.50 98.95
regions_4000_1024_1 65807.6502 0.33 99.97 94.38 96.23 99.56 99.28 97.14 ? 96.09 96.67
regions_4000_1024_2 65628.9304 2.72 99.70 95.57 97.09 99.91 ? 98.25 99.30 98.75 98.97
regions_4000_1024_3 64800.3099 5.43 ? 95.15 95.79 99.06 99.04 96.26 99.42 94.39 95.07
regions_hard_1 15336.4868 72.73 ? 94.01 98.24 99.82 99.82 99.22 99.82 98.55 99.82
regions_hard_2 17988.3370 70.19 ? 94.17 99.48 99.48 99.74 98.55 99.74 99.74 99.48
regions_hard_3 16777.2344 72.67 ? 93.30 98.03 99.17 99.66 98.75 99.66 97.94 98.35
scheduling_1000_256_1 44.9038 22.99 ? ? ? ? ? ? ? ? ?

scheduling_1000_256_2 42.5548 20.98 ? ? ? ? ? ? ? ? ?

scheduling_1000_256_3 87.6889 11.41 ? ? ? ? ? ? ? ? ?

scheduling_2000_512_1 40.9792 25.74 ? ? ? ? ? ? ? ? ?

scheduling_2000_512_2 58.2106 3.63 ? ? ? ? ? ? ? ? ?

scheduling_2000_512_3 48.2352 1.32 ? ? ? ? ? ? ? ? ?

scheduling_4000_1024_1 28.3994 ? ? ? ? ? ? ? ? ? ?

scheduling_4000_1024_2 45.9743 ? ? ? ? ? ? ? ? ? ?

scheduling_4000_1024_3 36.6752 ? ? ? ? ? ? ? ? ? ?

scheduling_hard_1 168.4070 98.37 ? ? ? ? ? ? ? ? ?

scheduling_hard_2 1219.4075 100.00 ? ? ? ? ? ? ? ? ?

scheduling_hard_3 4812.6430 56.44 ? ? ? ? ? ? ? ? ?

D.3. Best results for each instance 191

Table D.12: Best results for LG 1000/500 instances.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in101 72724.6180 37.66 92.27 92.27 96.03 ? ? ? ? 95.02 98.63
in102 72518.2220 45.17 98.03 96.72 98.22 ? ? ? ? 97.44 99.82
in103 72129.5000 40.67 96.64 95.13 96.76 ? ? 97.41 ? ? 98.43
in104 72709.6470 65.30 98.04 94.46 97.42 ? ? ? ? 92.45 ?

in105 75646.1406 39.96 89.05 90.91 ? ? ? ? ? 94.99 ?

in106 71258.6130 51.23 89.77 93.23 94.31 ? ? ? ? 94.49 ?

in107 69713.4030 38.64 98.38 98.38 99.24 ? ? 99.55 ? ? ?

in108 75813.2109 11.33 98.39 99.12 ? 99.95 ? 99.12 99.95 99.31 99.30
in109 69475.8950 38.47 91.99 95.09 95.34 ? ? ? ? ? ?

in110 68295.2890 16.29 ? 92.75 99.79 ? ? ? ? ? ?

in111 75133.2900 42.87 96.74 95.16 97.12 ? ? ? ? 95.53 97.12
in112 71342.4830 60.02 99.25 94.80 99.81 ? ? ? ? ? ?

in113 73365.8906 53.84 92.73 96.02 ? ? ? ? ? 98.43 ?

in114 69224.7656 13.31 94.35 94.58 ? ? 98.58 99.56 99.56 96.04 96.04
in115 70221.5610 48.33 94.85 93.15 96.06 ? ? 99.55 ? 95.95 96.95
in116 70032.4609 48.56 98.32 93.80 ? ? ? ? ? 98.32 98.32
in117 69982.8330 59.34 94.96 99.92 99.92 ? ? ? ? 95.33 98.99
in118 72160.9870 57.56 95.02 93.06 97.21 ? ? ? ? 95.36 95.36
in119 67038.4297 58.44 96.86 ? ? ? ? 98.36 ? 98.27 98.27
in120 75514.9300 58.27 98.85 93.41 99.95 ? ? 99.13 99.13 97.67 98.87
in121 67639.1250 34.44 96.47 94.24 ? ? ? ? ? 96.34 96.34
in122 69546.2730 40.98 96.73 98.24 98.24 ? ? 99.97 ? 95.69 ?

in123 70618.3130 49.50 92.25 94.96 99.97 ? ? ? 99.97 98.78 99.93
in124 71686.0469 39.54 97.28 99.72 ? ? ? ? ? 96.63 99.72
in125 69233.1220 51.98 95.79 95.79 97.41 ? ? ? ? 98.14 ?

in126 70671.7700 9.53 98.45 93.05 98.61 ? ? 98.61 ? 95.98 96.62
in127 69273.3203 42.94 98.39 92.27 ? ? ? ? ? 98.74 ?

in128 72179.4310 17.30 94.35 90.70 98.32 ? ? ? ? 95.27 96.20
in129 65751.6490 37.24 97.51 97.51 97.59 ? ? ? ? 97.51 97.51
in130 71075.3000 48.78 97.39 97.90 97.90 ? ? 99.14 ? 96.04 97.90
in131 71177.9062 2.62 95.49 99.62 ? ? ? ? ? 96.39 ?

in132 75510.0469 43.34 96.88 99.90 ? ? ? ? ? ? ?

in133 71253.5610 54.48 97.85 94.16 99.35 ? ? 99.35 ? 94.95 97.67
in134 75781.7490 46.70 96.61 91.22 98.73 ? ? ? ? 97.39 ?

in135 72138.1172 2.42 95.49 90.72 ? ? ? ? ? ? ?

in136 68903.0938 43.37 94.79 96.29 ? ? ? 99.86 99.86 96.61 99.04
in137 70072.0469 48.96 ? 90.56 ? ? ? 99.99 ? ? ?

in138 71989.6330 28.25 97.43 99.24 99.24 99.24 ? 99.24 ? 99.24 97.71
in139 72840.3940 35.02 94.24 92.53 98.79 ? ? ? ? 96.13 98.94
in140 73665.2310 43.72 ? 92.15 92.42 ? ? ? ? ? ?

in141 69605.0770 40.43 98.91 96.15 99.67 ? ? ? ? 95.42 98.91
in142 74777.9850 49.90 97.26 94.59 96.20 ? ? ? ? 97.52 97.52
in143 69699.0547 34.12 95.14 98.81 ? ? ? ? ? 98.19 98.89
in144 73197.0730 49.56 94.95 93.48 99.03 ? ? ? ? ? ?

in145 73695.0150 39.38 96.88 92.77 96.25 ? ? 97.81 ? ? 97.80
in146 73746.9375 38.30 95.29 93.65 ? ? ? ? ? 97.29 97.29
in147 65878.3020 58.53 95.28 97.17 97.17 ? ? ? ? 94.88 94.88
in148 72116.9690 51.94 96.01 95.66 98.84 99.81 ? 98.84 ? 99.81 99.81
in149 70800.1800 46.53 97.27 95.68 98.61 ? ? 99.30 ? 99.02 ?

in150 72839.4240 46.46 94.35 93.20 98.91 ? ? ? ? ? ?

in151 68834.5010 45.83 99.99 97.90 99.13 ? ? ? ? 98.85 99.75
in152 76224.7812 41.04 93.71 93.62 ? ? ? ? ? 97.94 97.94
in153 70110.7650 43.46 99.49 96.81 99.49 ? ? 99.60 ? 96.54 98.00

Continue on next page. . .

192 Appendix D. Additional results for Chapter 5

Table D.12: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in154 69215.5240 7.16 94.14 96.66 98.48 ? 99.27 99.27 99.27 99.09 99.27
in155 74936.7730 36.64 96.51 96.26 97.22 ? ? 99.75 ? 99.75 ?

in156 69704.1300 50.74 93.01 99.24 99.24 ? ? ? ? 96.64 96.64
in157 73934.8438 33.75 91.20 93.38 ? ? ? ? ? 92.71 ?

in158 69489.5430 47.97 ? 92.69 97.71 ? ? ? ? ? 95.13
in159 71091.8047 55.58 96.38 95.46 ? ? ? ? ? 98.53 98.53
in160 70606.9180 46.45 96.31 99.48 99.48 ? ? ? ? 98.61 98.61
in161 66266.3710 15.81 92.56 93.91 98.53 ? 99.34 ? ? 97.88 ?

in162 74720.7940 54.27 93.32 95.58 97.44 99.44 99.44 ? ? 99.44 99.44
in163 64976.9910 46.23 98.63 98.45 99.06 ? 99.86 99.86 99.86 99.06 99.06
in164 67950.6230 43.67 93.99 91.64 99.41 ? ? ? ? 98.38 98.38
in165 70361.9531 39.37 95.13 95.97 ? ? ? 98.61 ? 97.19 97.19
in166 71460.8930 34.20 92.35 95.05 97.99 99.80 ? 99.45 99.80 97.56 97.83
in167 74523.7656 26.61 ? 96.58 ? ? ? ? ? 96.86 96.86
in168 72097.3210 43.31 97.37 96.68 96.86 ? ? 99.54 ? ? ?

in169 71827.3400 45.18 96.43 97.32 98.45 ? ? 98.62 ? 95.21 ?

in170 74564.7490 42.64 92.70 92.51 95.80 ? ? 96.46 ? 90.03 95.15
in171 71279.4840 37.03 96.53 94.32 97.33 ? ? 98.48 ? 98.48 98.45
in172 70361.8070 3.68 99.57 93.91 96.82 ? ? 99.57 ? 97.41 98.66
in173 73677.2030 57.65 96.29 93.20 99.78 ? ? ? ? 94.10 97.49
in174 73523.6094 44.59 96.31 92.89 ? ? ? ? ? 96.48 95.46
in175 72924.8740 49.45 97.54 91.49 97.26 ? 99.67 99.67 99.67 99.67 99.67
in176 67761.4830 38.10 97.51 95.42 99.35 ? ? ? ? 98.33 99.43
in177 70187.1540 49.13 94.27 95.49 98.94 ? ? ? ? 98.88 98.94
in178 70833.3720 53.70 90.85 92.84 95.71 ? ? ? ? 94.42 95.20
in179 72205.2980 42.51 96.80 95.57 96.60 ? ? 98.97 ? 96.60 ?

in180 70513.3520 54.50 93.16 94.07 96.53 ? ? ? ? 96.26 96.31
in181 72238.0859 37.33 95.06 97.16 ? ? ? ? ? 96.76 99.07
in182 71645.0312 37.70 97.82 ? ? ? ? ? ? 98.80 98.80
in183 71520.4688 37.89 98.38 93.86 ? ? ? ? ? 99.57 99.57
in184 74377.5380 1.74 92.64 87.92 94.41 ? ? ? ? ? ?

in185 73714.9531 47.24 ? 94.44 ? ? ? 99.52 ? 99.52 ?

in186 70736.2480 47.66 97.98 94.98 98.72 ? ? ? ? 97.98 97.98
in187 70166.3660 31.20 95.26 94.28 97.34 ? ? ? ? 98.55 98.55
in188 70485.1950 40.11 93.17 95.47 96.52 ? ? 98.86 ? 99.49 ?

in189 69786.0220 38.77 95.35 96.84 98.82 ? ? ? ? 98.54 ?

in190 73765.2090 38.54 97.07 97.07 98.60 ? ? ? ? ? 99.72
in191 72587.0780 8.24 99.65 97.87 98.63 ? ? 99.65 ? ? ?

in192 71156.8280 34.93 93.02 94.22 99.45 ? ? ? ? 99.61 99.61
in193 72526.4688 33.95 97.21 94.22 ? ? ? ? ? 97.46 97.46
in194 75803.5156 47.87 94.14 ? ? ? ? ? ? 99.91 99.91
in195 69066.8672 29.99 91.41 96.21 ? ? ? ? ? 96.25 96.25
in196 69776.2220 51.81 98.39 98.47 99.91 ? ? 99.91 ? 98.70 97.77
in197 68457.8040 55.49 ? ? 98.33 ? ? ? ? 97.41 97.41
in198 73474.3830 41.26 98.84 92.37 97.19 ? ? ? ? 97.19 97.19
in199 70955.9130 37.03 93.84 95.59 99.98 ? ? 99.98 ? 98.21 98.34
in200 76803.1830 46.02 95.19 95.17 98.09 ? ? 98.88 ? ? ?

D.3. Best results for each instance 193

Table D.13: Best results for LG 1000/1000 instances.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in201 81557.7578 45.28 94.10 ? ? ? ? ? ? 99.71 96.02
in202 90708.1406 38.91 98.60 93.30 ? ? ? ? ? 99.96 ?

in203 86239.2266 7.67 95.45 93.96 ? ? ? 99.12 ? 97.69 97.69
in204 87075.4453 38.39 94.14 94.39 ? ? ? ? ? 95.49 98.62
in205 86515.9510 34.40 93.59 92.44 97.11 ? ? ? ? 94.14 96.80
in206 91518.9640 19.12 94.93 93.41 94.93 ? ? ? ? ? ?

in207 93129.2900 27.22 ? 97.75 99.99 ? ? 99.99 ? 94.91 94.91
in208 94904.6953 25.73 88.80 90.18 ? ? ? 96.71 ? 96.71 96.71
in209 87268.9650 47.58 98.88 93.37 99.41 ? ? 99.41 ? 98.88 96.83
in210 89962.4062 39.71 96.64 95.73 ? ? ? ? ? 98.38 ?

in211 84913.6840 55.07 93.20 92.87 99.54 ? ? ? ? 97.60 98.48
in212 90778.2188 40.06 96.81 91.38 ? ? ? ? ? 98.97 98.97
in213 85369.1850 34.71 95.81 97.87 97.87 ? ? ? ? 98.97 98.97
in214 85181.6090 39.16 97.34 96.19 99.58 ? ? ? ? 99.58 ?

in215 91531.7031 46.31 95.42 93.46 ? ? ? ? ? 99.56 97.91
in216 91580.9800 48.61 ? 93.53 94.72 ? ? ? ? ? ?

in217 86962.9270 52.45 97.72 93.77 98.33 ? ? ? ? 97.72 99.92
in218 94965.2109 45.14 90.34 91.55 ? ? ? ? ? ? ?

in219 93586.4380 46.99 90.94 96.02 96.02 ? ? ? ? 96.08 96.08
in220 89792.9219 44.44 97.87 96.82 ? ? ? 98.48 ? 98.63 98.63
in221 87410.7800 41.62 ? 93.56 97.23 ? ? ? ? 96.00 96.23
in222 89905.5391 45.82 94.77 90.80 ? ? ? ? ? ? ?

in223 83045.4297 40.13 96.04 88.95 ? ? ? ? ? 94.30 94.71
in224 87105.2770 49.10 96.86 98.39 99.92 ? ? ? ? 97.13 97.40
in225 89430.1094 38.68 95.90 91.21 ? ? ? ? ? ? ?

in226 88176.1220 34.96 91.75 90.75 95.92 ? ? 95.09 ? 95.92 95.92
in227 92613.3710 44.80 96.95 95.57 98.94 ? ? ? ? ? ?

in228 92684.0781 56.28 96.70 96.70 ? ? ? ? ? 98.86 95.33
in229 90468.1420 49.34 96.50 91.38 96.75 ? ? ? ? 96.76 96.76
in230 91559.1562 48.44 96.66 94.13 ? ? ? ? ? 97.74 97.74
in231 101458.6094 40.11 93.07 88.09 ? ? ? ? ? ? ?

in232 87270.8630 17.55 95.18 91.66 99.45 ? ? ? ? 92.66 ?

in233 86151.8980 39.85 96.84 94.09 98.81 ? ? ? ? 96.91 97.09
in234 88874.3359 49.60 98.17 92.70 ? ? ? ? ? 96.84 96.84
in235 93246.5700 38.90 ? 89.98 ? ? ? ? ? 93.01 97.24
in236 87876.7891 38.94 98.10 91.59 ? ? ? ? ? 95.25 96.84
in237 87616.0450 54.09 96.48 94.61 98.30 ? ? ? ? 97.16 99.78
in238 87004.0781 49.72 98.22 90.70 ? ? ? 99.57 ? 98.70 ?

in239 81435.3020 41.92 99.86 92.88 99.86 ? ? ? ? 98.41 98.41
in240 86608.4120 45.38 98.11 98.61 98.61 ? ? ? ? 95.04 98.90
in241 89961.1641 39.00 98.80 92.63 ? ? ? ? ? 98.80 98.80
in242 92480.5420 35.73 90.80 91.44 92.68 ? ? ? ? 95.12 96.56
in243 91839.5970 37.24 99.91 91.99 99.91 ? ? ? ? 96.47 96.47
in244 91029.7940 42.40 95.61 92.89 98.11 ? ? 98.11 ? 97.04 97.04
in245 90590.5630 34.27 95.38 96.10 96.10 ? ? ? ? 94.46 99.06
in246 87158.2344 24.83 99.39 ? ? ? ? 99.17 ? 99.39 99.17
in247 89044.3828 45.42 96.32 96.01 ? ? ? ? ? 99.54 99.54
in248 93058.1406 57.39 91.53 92.92 ? ? ? ? ? 95.73 95.73
in249 95169.5190 62.17 93.98 93.98 98.01 ? ? ? ? 96.22 96.22
in250 93775.8359 48.37 ? ? ? ? ? ? ? 98.82 98.82
in251 88734.0770 43.94 92.56 92.35 96.09 ? ? 96.42 ? 96.11 96.11
in252 89504.9220 53.90 93.49 98.03 98.03 ? ? ? ? 99.86 99.86
in253 88253.3125 24.40 95.78 96.70 ? ? ? ? ? 96.87 ?

Continue on next page. . .

194 Appendix D. Additional results for Chapter 5

Table D.13: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in254 85897.5010 31.00 96.01 96.37 96.37 ? ? ? ? 98.85 ?

in255 89368.1990 37.11 94.69 94.32 98.13 ? ? 97.74 ? 98.67 98.67
in256 89253.2656 38.86 93.03 92.12 ? ? ? 96.74 ? ? 95.03
in257 88605.5950 12.67 96.54 94.88 99.49 ? ? ? ? 97.23 99.17
in258 85183.9110 44.59 99.33 97.74 98.65 ? ? ? ? ? ?

in259 95397.3516 37.58 ? 87.77 ? ? ? ? ? 93.80 93.80
in260 90407.2050 42.48 99.25 92.46 96.03 ? ? ? ? 99.38 ?

in261 89790.1900 46.72 ? 92.80 ? ? ? ? ? 97.30 97.30
in262 88470.1100 50.02 ? 92.98 99.03 ? ? ? ? 96.68 ?

in263 93087.8530 37.55 94.59 94.24 97.35 ? ? ? ? 98.98 98.98
in264 86498.9141 48.56 97.86 91.86 ? ? ? ? ? 99.00 99.00
in265 83621.1700 41.51 95.48 97.91 98.94 ? ? 98.47 ? ? 99.16
in266 90038.9920 31.15 96.12 94.84 98.48 ? ? ? ? 98.50 98.50
in267 91438.2109 24.48 99.40 92.66 ? ? ? ? ? ? ?

in268 89482.2790 41.41 97.93 93.04 99.78 ? ? ? ? 98.80 98.80
in269 83546.6830 48.56 99.19 96.77 99.88 ? ? ? ? 99.46 99.46
in270 87509.4062 34.87 97.20 92.81 ? ? ? ? ? 95.73 95.73
in271 85951.6810 42.83 95.87 93.42 97.72 ? ? ? ? 98.51 98.51
in272 88642.8220 49.07 92.82 95.86 97.28 ? ? ? ? ? ?

in273 87909.9070 39.27 99.20 95.06 99.96 ? ? 99.21 ? ? ?

in274 83417.7890 45.77 98.89 93.02 99.18 ? ? 98.89 ? 98.33 98.33
in275 89915.1500 37.12 98.05 94.19 99.17 ? ? 99.57 ? 98.79 98.79
in276 86626.4375 50.65 99.36 99.40 ? ? ? 99.78 ? 97.18 99.36
in277 88537.7270 37.49 96.56 98.09 98.79 ? ? 98.79 ? 96.58 96.58
in278 91326.9531 52.88 95.55 96.72 ? ? ? 99.28 ? 99.28 99.28
in279 87058.9800 46.83 ? 89.91 96.27 ? ? 98.88 ? 97.82 98.45
in280 86529.5938 38.92 97.14 93.11 ? ? ? ? ? 99.46 99.46
in281 88470.4141 53.98 96.51 95.42 ? ? ? ? ? 99.75 99.75
in282 88985.3290 46.25 92.23 91.56 96.27 ? ? ? ? 95.57 96.27
in283 88915.6590 49.94 95.47 96.33 96.33 ? ? ? ? ? ?

in284 88241.9750 39.20 96.30 96.86 96.86 ? ? ? ? ? 97.14
in285 85953.2490 45.59 96.57 93.35 97.89 ? ? ? ? 99.16 99.16
in286 88323.4844 57.41 92.98 ? ? ? ? ? ? 92.53 92.31
in287 91652.7400 32.42 99.46 88.37 99.46 ? ? ? ? 93.58 ?

in288 85639.0090 41.68 95.93 96.81 97.90 ? ? ? ? 96.81 96.17
in289 86032.8140 49.01 96.03 91.94 96.03 ? ? ? ? 97.12 97.48
in290 92103.2070 42.87 95.79 90.63 96.06 ? ? ? ? 94.55 95.24
in291 94188.2910 59.11 92.98 95.55 96.30 ? ? ? ? 94.64 94.64
in292 94063.9650 57.29 97.14 95.96 96.56 ? ? ? ? 97.90 ?

in293 85810.6210 51.78 98.18 95.25 98.82 ? ? ? ? 97.04 ?

in294 91167.3160 49.30 94.62 91.92 96.80 ? ? ? ? ? ?

in295 89267.5156 34.74 94.01 93.08 ? ? ? ? ? ? 95.56
in296 90000.2970 22.43 98.55 93.35 98.55 ? ? ? ? ? ?

in297 89725.9360 27.45 ? 94.05 94.84 ? ? ? ? 97.43 97.43
in298 89166.7422 47.96 98.65 93.52 ? ? ? ? ? ? 98.77
in299 92218.6094 41.60 98.03 95.49 ? ? ? 99.53 ? 93.10 93.10
in300 88373.3281 48.68 97.91 ? ? ? ? ? ? 99.30 96.75

D.3. Best results for each instance 195

Table D.14: Best results for LG 1500/1500 instances.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in601 108800.4450 58.25 95.76 91.03 96.77 ? ? 98.18 ? 97.43 97.43
in602 105611.4760 24.41 93.92 92.95 95.78 ? ? ? ? 94.12 94.12
in603 105121.0220 39.04 92.40 88.06 92.54 ? ? 97.57 ? ? ?

in604 107733.8050 50.52 96.29 96.13 96.29 98.96 98.96 98.96 ? 98.04 98.04
in605 109840.9840 52.38 93.23 92.38 94.98 ? ? ? ? ? ?

in606 107113.0670 37.26 92.47 97.42 98.23 ? ? ? ? 93.83 93.83
in607 113180.2840 43.74 90.23 93.54 93.54 ? ? ? ? 91.09 ?

in608 105266.1070 50.50 96.26 88.48 97.88 ? ? ? ? 99.07 99.07
in609 109472.3320 3.23 96.71 90.87 95.77 ? ? ? ? 94.18 95.55
in610 113716.9650 32.91 93.89 88.04 95.86 ? ? 98.04 ? 95.87 98.04
in611 106666.3438 10.31 94.57 88.69 ? ? ? ? ? 98.76 98.76
in612 109796.7400 54.31 ? 96.59 ? ? ? ? ? 96.91 94.91
in613 107980.1570 71.82 93.49 86.40 93.09 ? ? ? ? 96.58 ?

in614 108364.5859 49.66 ? 89.98 ? ? ? ? ? ? ?

in615 110508.8281 37.36 97.15 86.14 ? ? ? 98.92 ? 92.40 92.40
in616 109740.4922 44.02 88.30 91.67 ? ? ? ? ? 95.39 96.64
in617 113302.4340 45.99 92.27 91.02 93.78 ? ? ? ? 91.75 95.29
in618 111385.0810 47.03 94.81 88.56 99.93 ? ? 99.58 ? 95.53 99.57
in619 107571.5930 43.20 97.72 90.46 94.97 ? ? ? ? 97.72 ?

in620 110937.9750 59.54 92.13 93.65 95.07 ? ? 97.96 ? 97.96 96.75
in621 106133.8500 41.62 ? 93.40 93.40 ? ? ? ? 98.14 98.14
in622 107551.7370 55.58 91.12 94.14 98.49 ? ? ? ? 96.71 97.53
in623 109487.0290 42.38 94.77 94.57 94.99 ? ? ? ? 96.90 96.90
in624 104386.9790 48.61 92.76 92.27 95.69 ? ? ? ? ? ?

in625 109065.3594 43.83 96.90 88.55 ? ? ? ? ? 94.30 97.57
in626 114704.0340 50.12 89.36 88.28 96.60 ? ? ? ? 97.77 92.88
in627 108846.2344 37.55 91.65 95.31 ? ? ? 99.17 ? 99.17 99.17
in628 108169.6953 42.91 94.53 ? ? ? ? 97.07 ? 97.51 96.74
in629 107929.2600 40.10 95.76 94.64 97.16 ? ? ? ? 98.12 98.29
in630 105830.0620 54.00 94.55 93.68 99.65 ? ? ? ? 99.75 99.75
in631 116505.2440 31.18 94.57 94.02 96.91 ? ? ? ? ? ?

in632 104631.7140 52.88 92.98 90.76 95.18 ? ? 99.59 ? 98.28 ?

in633 105564.4000 65.72 ? 90.90 98.72 ? ? ? ? 94.20 94.02
in634 108901.7300 47.86 94.31 91.85 93.34 ? ? ? ? 93.80 93.80
in635 112902.6340 39.75 92.44 86.62 92.44 ? ? ? ? 94.72 94.72
in636 106574.7480 48.82 92.64 91.03 98.23 ? ? 99.07 ? 97.76 93.89
in637 107989.7280 33.07 92.70 91.77 99.01 ? ? ? ? 99.01 99.01
in638 112899.6320 30.01 97.48 88.95 92.88 ? ? 97.48 ? 97.48 97.48
in639 108894.4550 43.77 92.99 94.68 95.35 ? ? ? ? ? ?

in640 108275.1328 53.59 96.04 91.48 ? ? ? 99.08 ? 96.60 96.60
in641 109744.0625 56.06 98.77 92.27 ? ? ? 99.73 ? 98.77 98.77
in642 114182.9688 40.41 91.12 90.13 ? ? ? ? ? ? ?

in643 104015.0240 13.04 94.62 91.75 97.97 ? ? ? ? 97.97 ?

in644 108025.7490 60.10 98.22 93.57 98.34 ? ? 99.03 ? 99.03 98.25
in645 105841.6720 37.99 92.97 90.05 96.51 ? ? ? ? 96.08 97.25
in646 107800.1030 33.71 93.84 94.90 95.98 ? ? ? ? ? ?

in647 107701.7109 51.25 90.90 93.95 ? ? ? 95.92 ? 95.37 95.37
in648 105790.5900 37.28 ? 96.66 ? ? ? 99.93 ? 99.55 99.55
in649 107587.3710 40.30 88.79 94.52 95.70 ? ? 98.63 ? ? 99.79
in650 103330.9010 45.80 92.36 93.79 96.86 ? ? ? ? 97.02 97.50
in651 103827.2970 55.97 95.17 94.21 98.85 ? ? ? ? ? ?

in652 107760.2480 28.48 94.24 97.48 97.48 ? ? ? ? 97.20 96.19
in653 113946.4766 34.60 91.38 89.41 ? ? ? ? ? 94.22 94.22

Continue on next page. . .

196 Appendix D. Additional results for Chapter 5

Table D.14: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in654 111738.2310 35.91 94.25 89.29 98.26 ? ? ? ? ? ?

in655 111785.0640 44.33 91.74 88.65 97.39 ? ? ? ? 96.13 96.13
in656 112259.2750 43.93 90.25 96.67 96.67 ? ? ? ? 94.21 95.51
in657 112708.6560 37.47 ? 93.86 96.88 ? ? ? ? 95.65 ?

in658 110751.5340 38.17 91.70 91.29 93.87 ? ? 96.80 ? ? ?

in659 106545.4270 39.45 94.76 96.16 96.16 ? ? 99.03 ? ? ?

in660 112293.6080 39.96 98.65 91.81 96.61 ? ? 99.72 ? 99.72 98.65
in661 113106.6290 30.29 97.20 87.06 92.81 ? ? ? ? 95.86 97.63
in662 108298.0790 58.18 97.41 91.26 91.26 ? ? ? ? 94.29 94.29
in663 104826.7800 52.39 95.93 95.40 95.40 ? ? ? ? 99.03 92.33
in664 112866.8650 42.89 95.93 91.67 94.66 ? ? 99.38 ? 99.68 99.68
in665 113002.6720 39.05 98.78 94.75 97.33 ? ? 98.78 ? 96.68 96.68
in666 106441.1562 46.49 ? 91.88 ? ? ? ? ? 98.54 98.54
in667 104683.7500 65.93 97.55 91.77 ? ? ? ? ? 97.75 97.75
in668 107483.1580 45.33 94.12 93.41 98.89 ? ? ? ? 98.12 98.12
in669 108163.4690 42.49 97.80 93.65 96.78 ? ? ? ? 95.71 94.23
in670 110200.8160 50.35 94.90 92.73 96.53 ? ? ? ? 99.98 99.85
in671 109306.8438 48.13 99.75 ? ? ? ? ? ? 99.75 99.75
in672 107534.8870 43.05 93.33 95.58 95.58 ? ? ? ? 96.40 95.58
in673 112320.2500 44.61 92.20 92.34 ? ? ? ? ? 98.43 98.43
in674 109558.2344 37.01 91.87 87.59 ? ? ? ? ? 95.40 95.40
in675 108131.9880 47.04 ? 92.14 97.81 ? ? ? ? ? ?

in676 107052.1910 37.62 94.64 88.05 96.10 ? ? ? ? ? ?

in677 107831.5370 45.33 96.19 97.47 99.68 ? ? 99.68 ? 97.03 97.22
in678 102422.8290 29.45 ? 95.83 96.87 ? ? ? ? ? ?

in679 107982.4560 48.90 90.90 92.06 99.21 ? ? 98.61 ? 96.35 96.11
in680 107500.5000 44.67 96.69 91.50 ? ? ? ? ? 98.92 98.92
in681 105237.2870 53.94 93.19 92.10 99.85 ? ? ? ? ? ?

in682 107948.1260 38.39 97.33 89.67 98.25 ? ? ? ? 98.25 99.93
in683 107777.6130 7.06 95.19 93.47 96.08 ? ? ? ? 98.25 98.25
in684 114153.7410 62.07 91.14 85.74 94.52 ? ? ? ? 92.55 94.26
in685 106686.6160 39.69 94.83 92.42 92.74 ? ? 97.71 ? 97.81 97.81
in686 106364.3580 19.52 99.45 92.48 98.55 ? 99.53 99.45 99.53 97.70 97.70
in687 108301.4710 44.81 97.06 94.98 97.05 ? ? ? ? 99.10 99.10
in688 112012.5703 50.12 93.49 94.55 ? ? ? 99.83 ? 95.27 97.60
in689 105968.1680 48.45 92.72 94.96 97.70 ? ? ? ? 98.39 98.39
in690 108489.7109 34.23 92.05 92.90 ? ? ? ? ? 97.02 97.02
in691 105564.6090 37.21 93.06 96.78 96.78 ? ? ? ? 98.50 98.50
in692 109226.0700 44.39 93.71 91.40 97.15 ? ? ? ? 98.99 97.40
in693 106719.6950 31.31 97.08 93.34 97.58 ? ? 99.56 ? 99.56 97.08
in694 114477.0540 47.90 89.45 94.44 94.44 ? ? 96.94 ? 93.66 93.66
in695 110240.9860 14.09 91.30 93.91 93.91 ? ? 98.04 ? ? ?

in696 104559.9530 39.47 ? 95.00 98.94 ? ? ? ? 99.43 99.43
in697 105958.6570 23.47 98.78 92.49 98.46 ? ? ? ? 98.78 98.78
in698 105463.0312 26.21 95.12 92.14 ? ? ? ? ? 97.86 97.77
in699 107132.3340 41.24 96.37 96.85 98.42 ? ? 99.26 ? 99.14 99.14
in700 106730.6770 45.46 95.37 95.11 95.11 ? ? ? ? 97.09 94.31

	Abstract
	Resumo
	Dedication
	Agradecimentos
	Epigraph
	Introduction
	Definitions and main techniques
	Biased random-key genetic algorithms
	Basic framework
	Decoding
	Improvements
	Parameters
	Successful use cases

	Results and thesis organization

	The Wireless Backhaul Network Design Problem
	Introduction
	Problem description
	Demand splitting and routing trees
	Capacity of access equipment
	Capacity of retransmitter equipment
	Sight and minimum distance
	Number of hops

	Related literature
	Formal Definition
	Mixed integer linear programming model

	Solution procedure using BRKGA
	Representation
	Decoder

	Maximum Backhaul Flow Problem
	Bounds
	Solution approach

	Experimental Setup
	Instances and scenario descriptions
	Instance preprocessing
	Post-optimization flow recomputation
	Computational environment and parameters

	Experimental Results and Discussion
	Instance preprocessing
	Computing flow during the optimization
	Comparing the profit generated by the algorithms
	Analyzing a solution

	Final considerations

	The k-Interconnected Multi-Depot Multi-Traveling Salesmen Problem for backbone network design
	Introduction
	Related Work
	Definitions
	BRKGA for the k-IMDMTSP
	Representation
	Decoding a solution
	Initial Population

	Experimental Results
	Computational environment
	Algorithm settings
	Instances
	Results and Discussion

	Concluding Remarks

	The Overlapping Correlation Clustering Problem
	Introduction
	Definitions
	Biased random-key genetic algorithms and local search
	Representation
	Decoding a solution
	Error Reduction Local Search
	Bonchi et al. Local Search

	Experimental results
	Instances
	Evaluated algorithms
	Computational environment and parameters
	Defining maximum running times for BRKGA
	Evaluating the quality of the algorithms on ground-truth instances
	Evaluating the algorithms for instances with unknown multi-labeling

	Concluding remarks

	The Winner Determination Problem in Combinatorial Auctions
	Introduction
	General combinatorial auctions and their formulations
	Biased random-key genetic algorithms for the winner determination problem
	Initializing the population of BRKGA
	Experimental Setup
	Instances
	Algorithms
	Computational environment and algorithm settings

	Experimental Results and Discussion
	Comparing revenue
	Iterations and runtime analyses
	Comparing the heuristics on hard instances
	Comparing heuristics on small number of generations
	Effect of LP-based initialization

	Final Remarks

	Concluding remarks
	Bibliography
	Additional results for Chapter 2
	Instance details
	Experimental results

	Additional results for Chapter 3
	Detailed results

	Additional results for Chapter 4
	Additional plots of Section 4.4.4
	Statistical test tables of Section 4.4.6

	Additional results for Chapter 5
	Statistical tests
	Additional running time results
	Best results for each instance

