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Abstract

The problems discussed in this thesis focuses mainly in the theory of non-smooth differential
system. Several topics of this subject are treated. The main results may be resumed as following.
First, the hypotheses of the classical averaging theorems are relaxed to compute periodic solutions
of non-smooth differential systems. Second, regarding planar piecewise linear differential system
with two zones it is shown that oscillating the line of discontinuity several configurations of limit
cycles can be obtained. In addition it is proved that for a given n € N there exists a planar
piecewise linear differential system with two zones having exactly n limit cycles. Moreover, using
the Chebyshev theory, it is established sharp upper bounds for the maximum number of limit cycles
that some classes of planar piecewise linear differential systems with two zones can have when the
set of discontinuity is a straight line. Third, the concept of sliding Shilnikov orbit is introduced in
the context of Filippov systems, then the Shilnikov problem is considered for this case. Finally, the
recent extensions of the Filippov’s conventions for solutions of discontinuous differential systems
is studied and some results concerning its regularization are established. Moreover the pinching of
continuous systems is studied in the context of these new conventions.

Keywords: Discontinuous vector fields, Filippov’s systems, Averaging method, Singular per-
turbation.
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Resumo

Os problemas discutidos nesta tese concentram-se principalmente na teoria dos sistemas dina-
micos nao diferenciaveis, da qual varios tépicos sao abordados. Os resultados principais podem
ser resumidos da seguinte forma. Primeiramente, relaxa-se as hipoteses dos teoremas classicos
da teoria “averaging” para o calculo de solugbes periddicas de sistemas dinamicos nao diferen-
ciaveis. Em segundo lugar, com relacao a sistemas dinamicos planares lineares por partes com
duas zonas, mostra-se que ao oscilar a linha de descontinuidade obtém-se diferentes configuracgoes
de ciclos limite. Em particular, prova-se que para um dado n € N existe um sistema dinamico
planar linear por partes com duas zonas tendo exatamente n ciclos limite. Além disso, usando a
teoria de Chebyshev, fica estabelecido limites superiores 6timos para o nimero maximo de ciclos
limites que algumas classes de sistemas dinamicos planares lineares por partes com duas zonas
podem ter quando o conjunto de descontinuidade ¢ uma linha reta. Em terceiro lugar, introduz-se,
no contexto de sistemas de Filippov, o conceito de érbita de Shilnikov deslizante e, em seguida,
considera-se o problema Shilnikov para este caso. Por fim, estuda-se as recentes extensoes das
convengoes de Filippov para solugoes de sistemas dinamicos descontinuos, obtendo-se resultados
referentes a regularizacdo e “pinching” no contexto destas novas convengoes.

Palavras-chave: Campos vetoriais descontinuos, Sistemas de Filippov, Método averaging
(Equagoes diferenciais), Perturbagao singular (Matematica).
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Introduction

The main results provided in this thesis are essentially about non—-smooth differential systems
(both continuous and discontinuous) and can be split in three main parts: the first one, composed
by chapters 1 and 2, deals with the averaging theory to compute periodic solutions of non—smooth
differential systems; the second one, composed by chapters 3, 4, and 5, deals with piecewise linear
differential systems; and the third one, composed only by chapter 6, deals with extensions of the
Filippov’s conventions for solutions of discontinuous differential systems and their regularizations.
Apart of the chapters mentioned above, Chapter 7 is dedicated to present some possible directions
for further investigations. In what follows a short introduction of the main results of each one of
these parts is given.

Averaging theory for non—smooth differential systems

The main results of chapter 1 (Theorems [A| and are based on the papers [74, [73] and deal
with nonlinear differential systems of the form

k
2(t) = St 7) + FHR(E 7€),
i=0
where F; : RxD — R" fori = 0,1, -+, k,and R : Rx D x (—¢qg,g9) — R" are continuous functions,

and T—periodic in the first variable, being D an open subset of R" and ¢ a small parameter. For
such differential systems, which there is no need to be of class C!, under suitable assumptions we
extend the averaging theory for computing their periodic solutions.

The main results of sections [1.8.1] and [1.8.2] of chapter 1 (Theorems [C|and D)) are based on the
papers [53] and [78], respectively, and study the existence of periodic solutions of discontinuous
differential systems in two different situations. First it is studied the existence of periodic solutions
of discontinuous piecewise differential systems of the form

Ft@,r,e) if 0<60<aq,
F~=(0,r,e) if a<60<2m,

where F*(0,7,¢) = S5 & FF(0,7) + " R*(0,r,¢) with § € S! and r € I, where I is an open
interval of RT. Second it is studied the existence of periodic solutions of discontinuous piecewise



differential systems of the form

Ft(0,x,e) if 0<60<0,
F(0,x,e) if ¢6<O<T,

where F*(0,x,e) = Fi(0,x) + eFiF(0,x) + 2F57(0,x) + R*(0,x,¢) with € S! and x € D,
where D is an open bounded subset of R™. As the main hypothesis it is assumed that there exists
a manifold Z embedded in D such that the solutions of the unperturbed system x" = Fy(6,x)
starting in Z are all T—periodic functions.

The main results of chapter 2 (Theorems (G| and [H]) are based on the papers 71, [72].
Motivated by problems coming from different areas of the applied science it is studied the periodic
solutions of the following differential system

() = Fy(t,x) + eFi(t,x) + 2 Fy(t,2) + 2 R(t,x,¢), (t,x) € S' x D

when Fj, F}, F5 and R are discontinuous piecewise functions, ¢ is a small parameter, and D is an
open bounded subset of R?. The averaging theory is one of the best tools to attack this problem
for continuous systems. Nevertheless until the works [77, [71, [72] such technique, to the best of
our knowledge, was not known for studying the existence of periodic solutions of discontinuous
differential system. Chapter 2 studies the above problem in two distinguished cases, namely Fy = 0
and Fo # 0.

When Fy = 0, following [71], the averaging theory of first and second order is developed to
study the periodic solutions of discontinuous piecewise differential systems in arbitrary dimension
and with an arbitrary number of systems.

When Fy # 0, following [72], the averaging theory of first order is developed provided that
the manifold Z of all periodic solutions of the unperturbed system z’ = Fy(t,x) has dimension
smaller or equal than d. In this case the theory is also developed in arbitrary dimension and with
an arbitrary number of systems.

Piecewise linear differential systems

The main result of chapter 3 (Theorem [I)) is based on the paper [91]. Recently Braga and Mello
[12] conjectured that for a given n € N there is a piecewise linear system with two zones in the
plane with exactly n limit cycles. In this chapter, it is proved a result from which the conjecture
is an immediate consequence. Several explicit examples are given where location and stability of
limit cycles are provided.

The main results of chapter 4 (Theorems [J] [K] and [[]) are based on the paper [76]. They deal
with the question of the determinacy of the maximum number of limit cycles for some classes of
planar discontinuous piecewise linear differential systems defined in two half—planes separated by
a straight line 3. The problem is restricted to the non—sliding limit cycles case (see Figure 1), i.e.
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limit cycles that do not contain any sliding segment. Among all cases treated, here it is proved
that the maximum number of limit cycles is at most 2 if one of the two linear differential systems of
the discontinuous piecewise linear differential system has a focus in 3, a center, or a weak saddle.
The theory of Chebyshev systems (see Appendix B) is used for establishing sharp upper bounds
for the number of limit cycles. Some normal forms are also provided for these systems.

Figure 1: Left: non-sliding limit cycle, i.e. limit cycle that does not contain sliding segments.
Right: sliding limit cycle, i.e limit cycle that contains a sliding segment.

The main results of chapter 5 (Theorems [M] [N] and are based on the paper [92]. In
this chapter, it is introduced the concept of a sliding Shilnikov orbit for 3D Filippov systems (see
Figure . Versions of the Shilnikov’s Theorems are provided for those systems. Specifically, it
is shown that arbitrarily close to a sliding Shilnikov orbit there exist countable infinitely many
sliding periodic orbits, and for a particular system having this kind of connection we investigate the
existence of continuous systems close to it having an ordinary Shilnikov homoclinic orbit. It is also
proved that, in general, a sliding Shilnikov orbit is a co-dimension 1 phenomenon. Furthermore a

family Z, s of piecewise linear vector fields is provided as a prototype of systems having a sliding
Shilnikov orbit.

Regularization of discontinuous differential systems

The main results of chapter 6 (Theorems [P} [Q] [R] [S] [T} and [U]) are based on the paper [90].
This chapter studies the equivalence between differentiable and non-differentiable dynamics in R".
Filippov’s theory of discontinuous differential equations allows us to find flow solutions of dynamical
systems whose vector fields undergo switches at thresholds in phase space. The canonical conver
combination at the discontinuity is only the linear part of a nonlinear combination that more
fully explores Filippov’s most general problem: the differential inclusion [34]. Here it is shown
how recent works relating discontinuous systems to singular limits of continuous (or regularized)

3



Figure 2: Sliding Shilnikov orbit T'.

systems extends to nonlinear combinations. It is proved that if sliding occurs in a discontinuous
systems, there exists a differentiable slow-fast system with equivalent slow invariant dynamics. It
is also established the corresponding result for the pinching method (see Figures|3)), a converse to
regularization which approximates a smooth system by a discontinuous one.

M; , o Mot 0
A X1,X xte,1 |
- ) () obrtl) g
V! extrinsic v Y

8
ﬂ\/i S\ /Vf\ A Y\

— X — X

> —— X1
—& +& 0 >N

0 +¢ 0

Figure 3: Two ways to pinch a continuous vector field. Left: Extrinsic pinching. Right: Intrinsic
pinching



Chapter 1

Higher order averaging theory for
finding periodic solutions via Brouwer
degree

The main results of this chapter (Theorems |[A| and [B]) are based on the papers [74, [73]. The
main results of sections[1.8.1 and [1.8.2] (Theorems [C|and [D)) are based on the papers [53] and [78],
respectively.

1.1 Introduction to averaging theory

The method of averaging is a classical and matured tool that allows to study the dynamics
of the nonlinear differential systems under periodic forcing. The method of averaging has a long
history that starts with the classical works of Lagrange and Laplace, who provided an intuitive
justification of the method. The first formalization of this theory was done in 1928 by Fatou
[32]. Important practical and theoretical contributions to the averaging theory were made in the
1930’s by Bogoliubov and Krylov [9], and in 1945 by Bogoliubov [8]. In 2004, Buica and Llibre
[19] extended the averaging theory for studying periodic orbits to continuous differential systems
using the Brouwer degree. Recently a version of averaging theory for studying periodic orbits of
discontinuous differential systems has been provided by Llibre, Novaes and Teixeira in [77]. We
refer to the book of SV, Verhulst and Murdock [99] for a general introduction to this subject.

All these previous works develop the averaging theory usually up to first order in a small
parameter €, and at most up to third order. In a recent work of Giné, Grau and Llibre [40]
the averaging theory for computing periodic solutions was developed to an arbitrary order in &
for analytical differential equations of one variable. An example that qualitative new phenomena
can be found only when considering higher order analysis is the following. Consider arbitrary

5



polynomial perturbations

7 = —y+ Zgjfj($7 y)>
=1 (1.1.1)
y = z+) dglay),
Jj=1

of the harmonic oscillator, where ¢ is a small parameter. In this differential system the polynomials
f; and g; are of degree n in the variables # and y and the system is analytic in the variables z,
y and . Then in [40] (see also Iliev [51]) it is proved that system for € # 0 sufficiently
small has no more than [s(n — 1)/2] periodic solutions bifurcating from the periodic solutions of
the linear center & = —y, y = z, using the averaging theory up to order s, and this bound can
be reached. Here [x] denotes the integer part function of the real number x. So, to take into
account higher order averaging theory can improve qualitatively and quantitatively the results on
the periodic solutions.

The goal of this chapter is to extend the averaging theory for computing periodic solutions to
an arbitrary order in ¢ for continuous differential equations in n variables. Thus, the main theorem
stated in this chapter extends the results of Buica and Llibre [I9] to an arbitrary order in a small
parameter € and to an arbitrary number of variables.

1.2 Averaging theory at any order

Here we are interested in studying the existence of periodic orbits of general differential systems

expressed by
k

2'(t) =Y e'Fy(t,x) + " R(t, 2, €), (1.2.1)
i=0
where F; : Rx D — R" for i = 1,2,-+-,k, and R : R x D X (—&g,&9) — R™ are continuous
functions, and T—periodic in the first variable, being D an open subset of R™.

In order to state our main results we introduce some notation. Let L be a positive integer, let
r=(z1,...,2,) € D, t € Rand y; = (yj1,...,yjn) ER*for j=1,...,L. Given F: R x D — R"
a sufficiently smooth function, for each (t,7) € R x D we denote by 0YF(t,z) a symmetric L—
multilinear map which is applied to a “product” of L vectors of R", which we denote as szl y; €
R™". The definition of this L-multilinear map is

L n I’
O"F(t,x
Jj=1 11,40, =1 11 iy,

We define 9° as the identity functional. Given a positive integer b and a vector y € R" we also
denote y* = QY_, y € R™.

Remark 1.2.1. The L-multilinear map defined in (1.2.2)) is the L Fréchet derivative of the
function F'(¢,x) with respect to the variable x. Indeed, fixed ¢t € R, if we consider the function

Fy: D — R"™ such that Fy(z) = F(t,x), then X F(t,z) = Ft(L)(x).



Example 1.2.1. To illustrate the above notation (1.2.2) we consider a smooth function F' :
R x R? — R2. So for x = (x1,73) and y' = (yi,ys) we have

oF oF

Now, for y* = (yi,ys) and y* = (y?,y3) we have

O*F(t,x) O*F(t,x)

2F 1 2 — ) 1,2 ) 1,2

a (t7x><y Y ) axlaxl 1J1 8x15’x2 ylyQ
PF(t,x) | o O?F(t,x) | ,
83:28961 Y24 + 8@8@ Y2l

Observe that for each (t,z) € R x D, OF(t, ) is a linear map in R? and 9*F(t,x) is a bilinear
map in R? x R2.
Let (-, 2) : [0,t,] — R™ be the solution of the unperturbed system, z’(t) = Fy(t, x) such that

©(0,2) = z.
Fori=1,2,...,k, we define the Averaged Function f; : D — R™ of order i as

fi(z) = w2 (1.2.3)

7!

where y; : R x D — R”, for i = 1,2,...,k — 1, are defined recurrently by the following integral
equation

bilt 2) = Z!/o (E (s, (s,2)) + ;z&: b byl 2l 0 T (s, (s, 2)) j@lyj(& 2) J) ds,
(1.2.4)

where S is the set of all [-tuples of non—negative integers (by, by, - - - , by) satisfying by +2by+- - -+1b; =
l, andL:b1+b2—|—---+bl.

In section [1.5| we compute the sets S; for [ = 1,2,3,4,5. Furthermore, we make explicit the
functions fx(z) up to k =5 when Fy = 0, and up to k = 4 when Fj # 0.

Related to the averaging functions there exist two cases of , essentially different,
that must be treated separately. Namely, when F; = 0 and when Fj # 0. It can be seen in the
following remarks.

Remark 1.2.2. If Fy = 0, then ¢(t, z) = z for each t € R. So

y1(t, 2) :/OtFl(t,z)ds, and  fi(t, 2) :/TFl(t,z)dt

0

as usual in averaging theory (see for instance [19]).

Remark 1.2.3. If Fj # 0, then
t
yi(t, z) = /0 Fy (s,0(s,2)) + 0Fy (s, (s, 2)) ya(s, z)ds. (1.2.5)

7



The integral equation ({1 is equivalent to the following Cauchy Problem

U(t) = Fl (ta ¢<t7 Z)) + aF‘O (ta ‘P(ta Z)) u and U(O) = 07
that is y1 (¢, z) = u(t). If we denote by Y'(¢, z) the fundamental matrix of the system

u'(t) = OFy(t, o(t, 2)) u (1.2.6)

such that Y'(0, z) = Id is the identity matrix, so

t

yi(t, z) = Y(t,z)/o Y (s,2) " Fy(s, ¢(s,2))ds (1.2.7)

and
filz) =Y (T, z)/o Y (t, 2) PR (t, o(t, 2))dt.

Moreover, each y;(t,z) is obtained similarly from a Cauchy problem. The formulae are given
explicitly in section Later on, under hypotheses of Theorem B, it will follow that Y (7', z) = Id
because Y (¢, z) = Dap(t, 2).

In the following, we state our main results: Theorem [A] when Fy = 0, and Theorem [B] when
Fy # 0. The Brouwer degree dg, which is defined in the Appendix A, is used.

Theorem A. Suppose that Fy, = 0. In addition, for the functions of (|1.2.1), we assume the
following conditions.

(i) For each t € R, F(t,-) € C* for i = 1,2,---, k; 0" 'F} is locally Lipschitz in the second
variable for ¢+ = 1,2,---,k; and R is a continuous function locally Lipschitz in the second
variable.

(ii) Assume that f; = 0 for i = 1,2,...,7r — 1 and f, # 0 with r € {1,2,...,k} (here we are
taking fo = 0). Moreover, suppose that for some a € D with f.(a) = 0, there exists a
bounded neighborhood V' C D of a such that f,.(z) # 0 for all z € V \ {a}, and that

dp (f+(2),V,0) # 0.
Then, for |e|> 0 sufficiently small, there exists a T-periodic solution z(-,¢) of ( such that
z(0,¢) — a when € — 0.

Theorem B. Suppose that Fy # 0. In addition, for the functions of ((1.2.1), we assume the
following conditions.

(j) There exists an open subset W of D such that for any 2 € W, ¢(t, 2) is T-periodic in the
variable ¢.

(jj) For each t € R, Fi(t,-) € C*¥"* for i = 0,1,2,---,k; O**F; is locally Lipschitz in the second
variable for ¢ = 0,1,2,---,k; and R is a continuous function locally Lipschitz in the second
variable.



(jij) Assume that f; = 0 for i = 1,2,...,r — 1 and f, # 0 with r € {1,2,...,k}. Moreover,
suppose that for some a € W with f,.(a) = 0, there exists a bounded neighborhood V- C W
of a such that f,.(z) # 0 for all z € V '\ {a}, and that dz (f,(2),V,0) # 0.

Then, for |e|> 0 sufficiently small, there exists a T-periodic solution z(-,&) of (1.2.1]) such that
z(0,e) — a when € — 0.

Theorems [A] and [B] are proved in section [T.4]

Remark 1.2.4. When f; for i = 1,2,...,k (defined in (1.2.3)) are C' functions the hypotheses
(ii) and (jjj) become:

(k) Assume that f; = 0 for i = 1,2...,7 — 1 and f,. # 0 with » € {1,2,...,k}. Moreover,
suppose that for some a € W with f,.(a) = 0 we have that f/(a) # 0.

In this case, instead Brouwer degree theory, the Implicit Function Theorem could be used to prove
Theorems [Al and [Bl

We emphasize that our main contribution to the advanced averaging theory is based on Theo-
rems [A]and [B] In fact, we provide conditions on the regularity of the functions, weaker than those
given in [40)].

1.3 Examples of applications

1.3.1 Application of Theorem [A]

Consider the following n + 2-dimensional differential system

?(t)= y+eF(z,y,z)+ Re(z,y,2,¢),
y,(t) = —.T+EG(JI,y,Z)+82R0($,y,z,8), (131>
Z(t) = eH'(z,y,z) +&° Ry(z,y,2,¢),

where F,G,H' : D — R and Rp, Rg, Ry : D x (—¢&¢,60) — R fori = 1,2,...,n are C! functions,
D C R™™ is an open subset, and z = (21, 22, -+, 2,) € R™.

System ([1.3.1)), when ¢ = 0, is a linear oscillator having its phase portrait foliated by cylinders
which are themselves foliated by periodic orbits. Theorem [A] allows the study of the persistence
of periodic solutions when ¢ # 0.

Let F(z,y,z) = (Fo(z,y,2), Fi(z,y,2), -, Fu(z,y,2)) be the function defined by

27
Fo(r,z) = / (F(T cosf,rsinf,z) cos + G(rcosf,rsinb, z) sin 9)d0, and
0 (1.3.2)

2 .
Fi(r,z) = / H'(rcosf,rsinf,z) cos 0db,
0

fori=1,2,...,n.



Proposition 1.3.1. For each zero (r*,z*) of the system F(r,z) = 0 such that |JF(r*, z*)|# 0
there exists a periodic solution ¢(,¢) of (1.3.1)) and a point (z*,y*) with |(z*,y*)|= r* such that
©(0,e) = (z*,y*,2z*) when ¢ — 0.

Here |JF(r*,z*)| denotes the determinant of the Jacobian matrix of F evaluated at (r*,z*).
A proof of Proposition [1.3.1]is given in section [1.6]

1.3.2 Application of Theorem

Consider the following non—autonomous perturbation of a linear oscillator.

2" (t) = —x+¢e (a1()x + bi(t)y) +&° <a2(t)x2 + bg(t)yQ) + &% (t, x,y, €), (1.3.3)

where a;,b; : R — R for i = 1,2 are C! functions, 27 periodic in the variable ¢, and D C R? is an

open subset.
Let IT';(t) = (a;(t),b;(t)) and A,(t) = (Sinj*100082*j 0, (—1)7 sin*7 f cos’ ! 9) for i,j = 1,2.
We define the following functions

Aij(t) = (=1)'cost /t sin®“ 0 cos" 1 0T (0) - A;(t)do
0 (1.3.4)

t ) .
+ sin t/ sin'~! 0 cos®> 0T (0) - A;(t)d,
0

for i,j = 1,2. Here the dot denotes the inner product, that is (ug, us) - (v1,v2) = ugvy + Ugvs.
Now let B;(t) = (A(t), Ag;(t)) for j = 1,2 and Cj(t) = (cosjtsink t,(—1)7 cos® t sin t).
Similarly to ([1.3.4), we define the following functions

) t . )
Bi;(t) = 2(-1)' Cost/o sin®~* 0 cos" ' 0T, (0) - B;(t)do

t (1.3.5)
+2 sint/ sin'~! 0 cos* " 0T, (0) - B;(t)do,
0
fori,5 = 1,2, and
. . t . .
Cijr(t) = 2781 (=1) cost/ sin®~" 0 cos ' O T5(0) - Cj.(t)do
o (1.3.6)
oI+ gin ¢ / sin1 0 cos?~ 0 Ty(6) - C;4(t)db,
0
fori=1,2,and k,5 =0,1,2.
Proposition 1.3.2. Denote A(t) = (A4y(1)),;, = B;;(2n) for 4,5 = 1,2, and Cjj;, = Cyi(2m)
fori=1,2and j,k=0,1,2. Let G(x,y) = (G ( ),gz( x,y)) be the function defined by
Gi(x,y) = Buz + Biay + Cia0z® + Cinnzy + Cigey?,  and (137)

Ga(z,y) = Boyx + Baoy + Cao02® + Conzy + Cogay®.
So
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(a) If A(2m) # 0 and det(A(27)) # 0, then for |¢|> 0 sufficiently small there exists a periodic
solution ¢(t, ) of (1.3.3]) such that ¢(¢,e) — 0 (constant 0 solution) when ¢ — 0.

(b) If A(27) = 0, then for each zero (z*,y*) of the system G(x,y) = 0 such that |JG(z*, y*)|# 0
there exists, for |¢|> 0 sufficiently small, a periodic solution ¢(t,¢) of (1.3.3) such that
©(0,e) = (z*,y*) when € — 0.

Here |JG(z*, y*)| denotes the determinant of the Jacobian matrix of G evaluated at (x*, y*).
A proof of Proposition [I.3.2]is given in section [1.6]
Now assume that

a(t) = 11sint — 16sin®¢, by(t) = 5cost —4cos*t, ay(t) =sin’t, by(t) = cos’t,
and 7(t,x,y,e) = az(t)2® + bs(t)y® + eF(t, v, y, €).
Proposition 1.3.3. Let H(z,y) = (Hi(x,y), Ha(x,y)) be the function defined as
27
Hi(z,y) = a2 — ——y® — 6a° / (as(60) sin 0 cos® 6 — bs(0) sin’ 6)
0
2
—6y° / (a3(9) sin® @ + bs(0) sin 6 cos® 6’)
0
2m
—18:1:2y/ sin? 0 cos 6 (a3(0) cos 6 + bz(6) sin 0)
0
27
—18xy? / sin? 0 cos 6 (a3(6) sin 6 — b3() cos 0)
0
1497 , 53w

2m
3 3 .3
8L oW + 6z /0 cos 6 (ag(G) cos” § — bz(0) sin )

+63/2ﬂ 0 (a5(6) sin® 0 + by (0) cos® 0
y ), cos (CL3<)SIH + b3(6) cos )

Ho(z,y) =

27
+182%y / sin 0 cos® 0 (a3(6) cos 6 + bs(6) sin 0)
0
27
+18xy> / sin 6 cos? 6 (a3(6) sin @ — b3 () cos f) .
0

So for each zero (z*, y*) of the system H(z,y) = 0 such that |JH(z*, y*)|# 0 there exists a periodic
solution ¢(t, ) of (1.3.3]) such that ¢(0,e) — (z*,y*) when ¢ — 0.

Again |JH(z*, y*)| denotes the determinant of the Jacobian matrix of H evaluated at (z*,y*).
A proof of Proposition [1.3.3]is given in section [1.6]

1.4 Proofs of main results

Let g : (—e0,60) — R™ be a function defined on a small interval (—eg,g9). We say that
g(e) = O(&") for some positive integer ¢ if there exists constants ¢ > 0 and M > 0 such that

11



lg(e)|< M|ef| for —e; < & < &;. Here |-| denotes the usual norm in the Euclidean space R™ for
n > 1. The symbol O is one of the Landau’s symbols (see for instance [99]).
To prove Theorems [A] and [B] we need the following lemma.

Lemma 1.4.1 (Fundamental Lemma). Let z(-, z,¢) : [0,f,) — R™ be the solution of ([1.2.1]) with
(0, z,€) = z, and assume the hypothesis (jj) of Theorem [B] If ¢, > T, then

i (¢,
x(t,z,e) = @(t, 2) +Z€Zy ?) + eM1O(1),

where y;(t, z) for i = 1,2,..., k are defined in (1.2.4).

Proof. By continuity of the solution z(t, z, ) and by compactness of the set [0, T] X V x [—¢&1,&1],
there exits a compact subset K of D such that z(t,z,¢6) € K for all t € [0,T], 2 € V and € €
[—e1,€1]. Now, by the continuity of the function R, |R(s, x(s, z,¢),¢)|< max{|R(t, x,¢)|, (t,z,¢) €
[0,7] x K x [—¢€1,61]} = N. Then

¢ T
/ R(s,x(s,z,¢€),€)ds §/ |R(s,x(s,2,¢),e)|ds = TN,
0 0

which implies that
t
/ R(s,x(s,z,¢),e)ds = O(1). (1.4.1)
0

Related to the functions z(t, z,e) and ¢(t, z) we have the followings equalities

k ) t
wlt,2,2) = 2+ 3¢ [ Fils, (s, 2,6))ds + O, and
i=0 70 (1.4.2)

o(t,2) =2+ /Ot Fo(s, (s, 2))ds.

Moreover x(t, z,e) = ¢(t, z) + O(e). Indeed, Fy is locally Lipschitz in the second variable, so from
the compactness of the set [0,T] x V x [—¢, &o] and from (1.4.2)) it follows

t t
2(t,2,6) = p(t.2)|< [ 1Fo(s,a(s,2,2)) = Fols, (s, 2)lds + Je| | [Fa(s,a(s, 2,))Ids
+0(e?)
t
< |5|M—i—/ Lo|z(s, z,€) — (s, 2)|ds < |e|MeTto.

0
Here Lg is the Lipschitz constant of Fy on the compact K. The first and second inequality was
obtained similarly to (1.4.1). The last inequality is a consequence of Gronwall Lemma (see, for
example, Lemma 1.3.1 of [99]).

In order to prove the present lemma we need the following claim.

12



Claim 1.4.1. For some positive integer m let G : R x D — R" be a C"™ function. Then

G(t,z(t, z,€)) / AT 1/ PULE / Am— 1/0 O"G(t, by 0 by 0--- 0 ly(x(t, 2,€)))

—0"G(t, p(t, 2)) | A1 - dA - (2(t, 2, €) = (t, 2))"
(x(tv 2 5) B Qp(ta Z>>L

+30 08l 2) TR AL AT

L=0

where £;(v) = \v + (1 — A\)e(t, 2) for v € R™.

We shall prove this claim using the principle of finite induction on m.
Form =1, G € C'. Let L1(\) = G(¢,¢1(x(t, 2,€))). So

G(t,z(t,z,e)) = G(t,p(t,2)) + L1(1) — L1(0) = o(t, z) —|—/ L7(A)d\
= Gt p(t2)+ /01 OG(t, 01 (x(t, z,€)))d\ - (z(t, z,¢) — @(t, 2))

= /1 0G(t, 1 (x(t, 2,€))) — OG(t, (t, 2))|dAs - (x(t, 2,€) — o, 2))

0

+G(t,p(t, 2)) + 0G(t, o(t, 2))(x(t, z,€) — @(t, 2)).

Given an integer k > 1 we assume as the inductive hypothesis (I1) that the claim is true for
m=k—1. B B
Now for m = k, G € C* c C¥~1. So from inductive hypothesis (1),

G(t,x(t,z,¢€)) //\kz/)‘k?) /kZ/ ﬁle lrqolp 50

oly(x(t,2,2)) — PGt o(t, 2))|dNg_ydAg_, -+ ds (1.4.3)

(:B(tv Z, 5) — Sp(tv Z))L
L! ‘

_ k-1
(@t 2,8) = o(t,2)" 1 + 3 0"G(t ¢t 2))
L=0
Let £(\;) = O 'G(t, bz 0 lz_yo---0 li(z(t, 2,€))). So
1
| £ond= ) -£o)
= OIG(t b 0 l_y0-0 bi(x(t,2,€))) — IG(t, p(t, 2)).

The derivative of £(\;) can be easily obtained as

El(/\E> = Aﬁfl)‘E72 T AlaEG@’ EE © g%—l 00 £1<Ji(t, 2 8)))(I(t, 2 5) - @(tﬂ Z))
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So
1 1. —
[ 2000 = NNy A [ [0G oty o0 (et 2,2)))
0 0
—0"G(t, p(t, 2))|dXg - (w(t, 2, €) — (1, 2)) (1.4.4)
N N MOPG( p(t, 2)) (w(t 2,) — (1, 2)).
Hence, from ([1.4.3]) and we conclude that

G(t,z(t, z,¢€)) / Ab- 1/ Ab-2. / i 1/ 8'“ Gt by oly_yo---ol(x(t,2,€)))
—0"G(t, p(t, 2))|dNgddg_y - dAy - (2(t 2,€) — (t, 2))F

(2(t,2,€) = olt, 2))"

k
+ 300 Gt plt )

L=0

This completes the proof of the claim.
Given a non—negative integer m, we note that for a C"™ function G such that 9™G is locally
Lipschitz in the second variable, the claim implies the following equality

G@mmmnzip%mm@aWW”@;¢@”V+ow“w (1.4.5)

Indeed, for m = 0 G is a continuous function locally Lipschitz in the second variable, so

|G(t,2(t, 2,€)) — G(t, p(t, 2))|<  Lalo(t, z,e) — o(t, 2)|< |e|LaMe ™.

Here Lg is the Lipschitz constant of the function G' on the compact K. Thus
G(t,x(t,z,€)) = G(t, ¢(t, 2)) + O(e).

Moreover for m > 1 the claim implies in an similar way to (|1.4.1]).
Again we shall use the principle of finite induction, now on k, to prove the present lemma.
For k = 1, Fy € C! and the functions 0F, and F} are locally Lipschitz in the second variable.
Thus from , taking G = Fy and G = Fi, we obtain

Fo(t,x(t, z,€)) = Fo(t, o(t, 2)) + OFy(t, p(t, 2))(z(t, z,€) — @(t, 2)) + O(e?) and
(1.4.6)

Fi(t,x(t, z,¢)) = Fi(t, o(t, 2)) + O(e),
respectively. From ( and (L.4.6) we compute
CZ (z(t, 2,8) — p(t,2)) = OFo(t, p(t, 2)) (x(t, z,€) — @[, 2)) + eF1(t, o(t, 2)) + O(2).
14



Solving the linear differential equation (1.4.6) with respect to z(t,z,¢) — ¢(t, z) for the initial
condition x(0, z,&) — ¢(0, z,&) = 0 and comparing the solution with ([1.2.7)) we conclude that

z(t, z,€) = p(t, 2) + eyi(t, 2) + O(2).

Given an integer k we assume as the inductive hypothesis (I12) that the lemma is true for
k=Fk-—1.

Now for k = k, F; = CFifor i = 0,1,...,k and &*F, is locally Lipschitz in the second
variable for i = 0,1,...,k. So from ({1.4.5))

Fi(t, o(t, 2, ) Z OV E(t, ol 2)) (x(t’z’g); P2 | oy, (1.4.7)

fori=0,1,...,k.
Applying the inductive hypothesis (/2) in (1.4.7]) we get

k—i—L+1

Fi(t,z(t, 2, €)) = Fi(t, o(t, ) +ZaL (t, o(t, z))( 5 bl )> + O (1.4.8)

1l
i=1 (3

for i = 1,2,..., k. Now using the Multinomial Theorem (see for instance [47], p. 186) in ((1.4.8)
we obtain

Fi(t,x(t,z,e)) = F;(t,0(t, z))

k—i k—i el Lp
+ — 0" F; (t,0(t, 2) @y] (t, 2)b
L=1 IZLS;—I bl' b2' 2!b2 A bE*l! (k - 1)' k-1
,L
_I_O(gk—z—i-l)’
for i = 1,2,...,k. Here Sp', is the set of all n—tuples of non-negative integers (b1,by,...,b,)

satisfying by + 20y + --- +nb, = [l and by + by + --- + b, = L. We note that if n > [ then
biy1 =bo=---=10,=0. Hence

E(t,x(t,z,s)) = F (t>¢(t Z))

T—i ki ! l
€ L b,
* by! byl 22 ... byl 1t O“F; (t,(t, 2)) Oyt 2) (1.4.9)
L:ll:lelL =1
—|—O(€k z+1)

fori=1,2,...,k, because k —i > [

15



Finally, doing a change of indexes in and observing that U, _ Sl{ ., = S, we may write

Fi(t,x(t,z,e)) = F;(t,(t, 2))
k—i ; 1 L l
1.4.10
+2_ ¢ Zbllbglz'bQ' .blmba @ ( )

=1

—i—O(ek_”l),

o~

fori=1,2,... k.
Following the above steps we also obtain

Fo(t,l'(t, Z>€>> = FO (ta @(ta Z)) + aFo(t,(p(t, Z))(iC(t,Z E) — gp(t Z))
k
i 1 L
t2.¢ {; byl byl 2102 - - b1 4lbr "y (t, ¢(t, 2) @?/J (t,2)" (1.4.11)

i=1

—OFy(t, o(t, 2)) y"(j; 2)} + O,

Now from we compute
d ko _
s (x(t,z,€) — p(t, 2)) = Fo(t,x(t, 2,€)) — Fo(t,p(t, 2)) + > ' Fi(t,x(t, z,¢)) + O(eF). (1.4.12)
i=1

Proceeding with a change of index we obtain from ({1.4.10)) that

k k i—1
! L
; F (t .ZC t zZ, 5 Zs Z Z b1| bQ' 2”)2 . bl' l!bla Fi—l (t, QD(t’ Z))

=1 =0 S;
l (1.4.13)

@y](t,z i+ O(e k“).
7=1

Substituting (1.4.11)) and (1.4.13)) in (1.4.12)) we conclude that

g tze) —elt 2) = OF(telt 2)) (2(t, 2,8) — ¢(t, 2)
1

k %
) L
2 Y e P et2) (1414)

21 =0 S;

@y]sz okt et 2) 2] L o),

7l

Solving the linear differential equation ((1.4.14]) with respect to x(¢,z,e) — @(t, z) for the initial
condition z(0, z,£) — ¢(0, z) = 0 we obtain

x(t,z,e) = @(t, z) + zkjsi + O(e k+1)



where

l

t 7l
Vit = v [ Vs [zz e Bt (60 ) O, )

J=1

0
—0Fy(s, (s, 2) ylsz]

The function Y (¢, z) was defined in (1.2.6]). Hence

d il L l
@Yi(tvz): OFo(t, o(t, 2))Yi(t, 2 +ZZb1|b12wz. .bl!llbza it @

=0 S;

—0Fy(t, o(t, 2))yi(t, z)ds.

Computing the derivative of the function y;(t,z) we conclude that the functions y;(t,2) and
Yi(t, z) are defined by the same differential equation. Since Y;(0,z) = y;(0,2) = 0 it follows that
Y,(t,z) = y.(t, 2) for every i = 1,2,..., k. So we have concluded the induction, which completes
the proof of the lemma. O

1.4.1 Proof of Theorem [A]

In few words the proof of Theorem [A|is an application of the Brouwer degree (see Appendix
A) to the approximated solution given by Lemma m

Proof of Theorem[4]. Let x(-, z, ) be a solution of such that (0, z,&) = z. For each z € V,
there exists 1 > 0 such that if ¢ € [—£1,&1] then x(-, z,¢) is defined in [0,7]. Indeed, by the
FEzistence and Uniqueness Theorem of solutions (see, for example, Theorem 1.2.4 of [99)]), x(-, z, €)
is defined for all 0 <t <'inf (T',d/M(e)), where
k
M(e) > Y e'Fi(t,x) + "' R(t, x,¢)

i=1

for all ¢ € [0,T], for each z with |z — z|< d and for every z € V. When ¢ is sufficiently small we
can take d/M (g) sufficiently large in order that inf (T',d/M(e)) =T for all z € V.
We denote
5f(z e)=ux(T,z¢) — 2.

From Lemma and equation we have that
f(z.8) = filz) +efol2) + 2 f3(2) + - + " fi(2) +£°0(1),

where the function f; is the one defined in ((1.2.3)) for ¢ = 1,2,---, k. From the assumption (ii) of
the theorem we have that

flz,e) = fo(2) + -+ () + £5O(1),
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Clearly (-, z,¢) is a T—periodic solution if and only if f(z,e) = 0, because x(t, z, €) is defined
for all ¢ € [0, 7.

From the Brouwer degree theory (see Lemma of Appendix A) and hypothesis (ii) we have
for |e|> 0 sufficiently small that

dp (fr(z)u V. O) =dp (f(Z,E), v, O) # 0.

Hence, by item (i) of Proposition (see Appendix A), 0 € f(V,¢) for |e|> 0 sufficiently small,
that is there exists a. € V such that f(a.,¢) =0.

Therefore, for |e|> 0 sufficiently small, z(t, a.,€) is a periodic solution of (L.2.1). Clearly we
can choose a. such that a. — a when ¢ — 0, because f(z,e) # 0in V' \ {a}. This completes the
proof of the theorem. O

1.4.2 Proof of Theorem [Bl

For proving Theorem [B] we also need the following lemma.

Lemma 1.4.2. Let w(-,z,¢) : [0,,] — R" be the solution of the system

w/(t> = Z gi ([D%O(tv w)]_l Fi<t7 (p(tv w))) + €k+1 [DQ(p(t? w)]_l R(t7 @(tv U}), 6)7 (1415>

=1

such that w(0, z,&) = z. Then (-, z,¢) : [0,£.] — R"™ defined as ¥(t,z,¢) = ¢ (t,w(t, z,€)) is the
solution of ([1.2.1]) such that (0, z,¢) = 2.

Proof. Given z € D, let M(t) = Dsp(t,z). The result about differentiable dependence on initial
conditions implies that the function M (t) is given as the fundamental matrix of the differential
equation v’ = JFy(t, p(t, z))u. So the matrix M(t) is invertible for each ¢ € [0, 7]. From here, the
proof follows immediately from the derivative of ¥ (t, &, ) with respect to t. ]

Proof of Theorem[B. Let x(-, z,¢) be a solution of such that (0, z,&) = 2. For each z € V,
there exists €; > 0 such that if ¢ € [—e1,e1] then z(-, z,¢) is defined in [0,7]. Indeed, from
Lemma , z(t,z,€) = o (t,w(t, z,¢€)) for each z € V, where w(-, z, €) is the solution of .
Moreover for |e1|> 0 sufficiently small, w(t,z,e) € W for each (t,2,¢) € [0,T] x V X [—&q,¢e1].
Repeating the argument of the proof of Theorem |A| we can show that £, = T for every z € V.
Since (-, 2) is defined in [0,T] for every z € W, it follows that ¢, = T, that is z(-, z,¢€) is also
defined in [0, 7.

From here the proof follows similarly of Theorem [A] ]

1.5 Computing formulae

In this section we illustrate how to compute the formulae of Theorems [A] and [B]for some k € N.
In 3.1 we compute the formulae when F = 0 for Theorem [A] up to & = 5. In 3.2 we compute the
formulae when Fy # 0 for Theorem [Bjup to k = 4.
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First of all from ((1.2.4]) we should determine the sets S; for [ = 1,2,3,4,5.

St = {1},
Sy = {(07 1)7 (27 O)}a
S3 ={(0,0,1),(1,1,0),(3,0,0)},

Sy = {(070707 1)’ (1707 170)a (2’ 17070)7 (0, 27070)7 (47()’ 070)}

To compute S; is conveniently to exhibit a table of possibilities with the value b; in the column
7. We starts it from the last column.

Clearly the last column can be only filled by 0 and 1, because 5b5; > 5 for b5 > 1. The same
happens with the fourth and the third column, because 3bs, 4by > 5, for b3, by > 1. Taking bs = 1,
the unique possibility is by = by = b3 = by = 0, thus any other solution satisfies b5 = 0. Taking
bs = 0 and by = 1, the unique possibility is by = 1 and by = b3 = 0, thus any other solution must
have by = b; = 0. Finally, taking b5 = by = 0 and b3 = 1, we have two possibilities either b; = 2
and by = 0, or by = 0 and b, = 1. Thus any other solution satisfies b3 = by = b5 = 0.

Now we observe that the second column can be only filled by 0, 1 or 2, since 2by > 5 for by > 2;
and taking b3 = by = b5 = 0 and by = 1 the unique possibility is by = 3. Taking b3 = by = b5 =0
and by = 2 the unique possibility is b; = 1, thus any other solution satisfies by = b3 = by = b5 = 0.
Finally, taking by = b3 = by = b5 = 0 the unique possibility is by = 5. Therefore the complete table
of solutions is

(=
i
=
v
S
W
(=
o~
=
[Sn

Ss

I
T WO = O
SO RFR OO
cCoo—~ Rk OO
cCooo0oOo—~O
cCoococo o

Now we can use the ((1.2.4) and ([1.2.3)) to compute the expressions of y; and f;.
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1.5.1 Fifth order averaging theorem (assuming a vanishing Fj)

From (|1.2.4)) we obtain the functions y;(¢, z) for k = 1,2,3,4,5.

t
yi(t, 2) = /0 Fi(s, z)ds,
t
ya(t, z) = /0 <2F2(s, 2) 4+ 20F (s, )y (s, z))ds,
t
ys(t, z) = /o (6F3(3, 2) + 60F5(s, 2)yi(t, 2)
+30°F1 (s, 2)y1(s, 2)? + 30F1(s, 2) ya (s, z))ds,
t
ya(t, 2) = /0 (24F4(s,z) + 240F5(s, 2)y1(s, 2)
+120°Fy (s, 2)y1(s, 2)* + 120F5(s, 2)ya(s, 2)
+1282F1(87 Z)yl (87 Z) © y2(87 Z)

+483F1(3, 2)y1(s, z)3 +40F (s, 2)ys(s, z))ds,

ps(t.2) = [ (120E5(s, 2) + 1200F3 (s, 2y (5,2
+600°F3(s, 2)y1 (s, 2)? + 600F5(s, 2)ya(s, 2) + 600> Fy(s, 2)y1 (s, 2) © ya(s, 2)
+200°Fy(s, 2)y1 (s, 2)® + 200F5 (s, 2)ys(s, z) + 200°Fy (s, 2)11 (s, 2) © ys(s, 2)
+150%Fy (s, 2)y2(s, 2) + 300° Fi (s, 2)y1(s, 2)* © ya(s, 2)

+50*F1 (s, 2)y1(s, 2)* + BOF1 (s, 2)ya(s, z))ds.
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So from (|1.2.3) we have that

fi(z) = / U Rt ),

0

£ = " (Bo(t,2)ds + OF (1, 2)y(t, 2) ),

)= [ (B(t.2)+ 0Bt e, 2

1 1
+5 0P Rt )t 2) + SO (¢ 2)ualt, 2))dt,

fie) = [ (Rt )+ 0F(E (s, 2)
+;82Fg(t, Dt 2)? + ;an(t, Dt 2)

1
+582F1 (ta Z)yl (tv Z) © Zl2(t7 Z>dt

1 1
+ SOt 2yt 2)° + Ot st 2))dt,

T
f5(2) = /0 <F5(t, 2) 4+ OFy(t, 2)yi(t, 2)
+;a2F3(t, Dt 2)? 4+ ;8F3(t, Dalt,2) + ;ang(t, Dt 2) © lt, )

1 1 1
+683F2(t, 2y (t, 2) + 6aFQ(t, 2)ys(t, 2) + 6821?1(15, 2yt 2) © ys(t, 2)

1 1
+§62F1(t7 Z)y2<t7 Z)2 + ZaSFl (ta Z)yl (ta 2)2 © y2<t7 Z)

1.4 4 1
o0 2t )+ 5 OR (L 2yt 2))dt.

1.5.2 Fourth order averaging theorem (assuming a nonvanishing F})

First of all, a Cauchy problem, or equivalently an integral equation (see Remark , must
be solved to compute the expressions y;(t, z) for i = 1,2,..., k. We give the integral equations and
its solutions for £ = 1, 2, 3, 4.

Let Y (t,z) be the function defined in (1.2.6). Hence, from (|1.2.4)) and we obtain the

functions (¢, z) and fi(2):

n(t.2) = [ (Filsols,2)) + OFs, (s, 2D (s. ) ds,
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yi(t, 2) =Y (t,2) /OtY(s,z)_lFl(s, ©(s,z))ds,
and

fi(z) = /OTY(t, 2) Rt o(t, 2))dt.

Similarly, the functions ya(t, z) and f2(z) are given by

n(t2) = [ (2Fils0(5,2) + 20F1 (5. 005 )52

+0*Fy(s, (s, 2))y1 (s, 2)? + OFy(s, o(s, 2)) ya (s, z))dt,

plt2) = Y(2) [ V(5.2 (2Falssp5,2)) + 20Fi (5,005, 25 2)
+07Fo(s, ¢(s, 2))yi(s, 2)* ) ds,
and
B = [ Y0 (Rt ot 2) + OR 1 ol )0, 2)
450 Folt ol 2, 2 ),
The functions ys(f, =) and fy(=) are given by
yalt, 2) = /Ot (6F3(s, (s, 2)) + 60Fa(s, (s, )y (5, 2)

1302F (s, s, 2))ua (5, 2)2 + BOFi(5, (5, 2)) s, 2)
+30%Fo(s, (s, 2) )y (s, 2) © ya(s, 2)

+0° Fo(s, (s, 2))n (s, 2)* + OFo(s, (s, 2) )us(s, 2) ) ds,

ys(t,z) = Y(t,2) /OtY(s, z)7t <6F3(s, (s, 2)) + 60Fy(s, p(s,2))u(s, 2)
+30%Fy (s, 0(s,2))y1(s, 2)* + 30F (s, 0(s, 2)) ya(s, 2)
+382F0(57 (p(S, z))yl(sa Z) © y2(57 Z)

+OPFo(s. (s, 2))yi(s, 2)° ) ds,
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and
B = [ Vi) (Bl ot 2) + OBt olt, 2o, 2)
PRt 26 + 5OF 16 (1,2) 1alt, 2
5P Eo(t (1,2 (6:2) © walt, 2)

1
+OFo(t, o(t, ) (1, 2)°)ds,

Finally, the functions y4(t, z) and f4(z) are given by

it = [ ' (24F(s, p(s, 2)) + 240Fs(s, 0(5, 2))ya (s, 2)
+120%Fy(s, ¢(s, 2) (s, 2)* + 120F5(s, (s, 2))y(s, 2)
+120%F1 (s, (s, 2) )y (5, 2) © ya(s, 2)
HADPF) (5, 0(5, 2))ya (5, 2) + 40F i (s, (s, 2))ys(s, 2)
+4O Fo(s, (s, 2))y1(s, 2) © ys(s, 2)
+302Fo(s, @(s, 2))a(s, 2)2ds + 60° Fo(s, (s, 2) w1 (s, 2)> @ wals, 2)
FO'Fo(s, (5, 2))n (5, 2)1 + OFo(s, (5, 2))yals, 2)) ds.

nlt2) = Y(t2) [ V(s,2)7 (PU(s,pl5,2)) + 240Fs(s. 005, s, 2)
+120°Fy(s, (s, 2))yn(s, 2)* + 120Fy(s, (s, 2))ya(s, 2)
+H120%F, (5, (5, 2) )1 (5, 2) © yals, 2)
+HI0*Fy(s, (s, 2))y1(s, 2)° +40F1 (s, (s, 2))ys(s, 2)
+40°Fy (s, (s, 2))y1(s, 2) © ys(s, 2)
+307Fy(s, (s, 2))ya(s, 2)°ds + 60° Fo(s, (s, 2))y1 (s, 2)* © yals, 2)
+0'Fo(s, (s, 2))y (s, 2)* ) ds.
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and
Ao = [ V(6 (Riltot, ) + 0By (e (0, a2
SO Rt ol 2t 2 + SOFs(t, olt, 2)lt, 2)
PR ol Dt ) © 1, 2)
FSOPRolt, (2 + ZOR (1 olt, 2)s(t, 2)
+€1582F0(t, o(t, 2)yi(t, 2) © ys(t, 2)
+;82F0(t, o(t, 2))ya(t, 2)2ds + 41183F°(t’ o(t, 2))yi(t, 2)* © ya(t, 2)
+21434F0(t, Pt 2))ya(t, 2)")ds.

1.6 Proofs of examples

For proving Propositions [1.3.1], [1.3.2] and [1.3.3| we use the formulae obtained in section [1.5]

Proof of Proposition[1.3.1. Applying the change of variables (z,y,z) = (rcos6,rsin6,z), system

becomes
()= ¢ (F(r cosf,rsinf, z) cosf + G(rcosf,rsinf, z)sin 0) + 0(?),
o' (t) = si(G(rcos@,rsinG,z) cosf — F(rcosf,rsinf, z) sin@) +O(e?), (1.6.1)
Zi(t) = e H'(rcosf,rsinf,z) + O(c?).

Now rescaling the time by ¢ = 6, the system is reduced to
7(0) = —e (F(rcosf,rsin®, z)cos + G(rcosf,rsinf,z)sinf) + O(e?), 162)
2(0) = —e H'(rcosf,rsinf, z) + O(e?). B

Computing the function f; (defined in ([1.2.3))) for the system ([1.6.2)) we have that
27
fi(r,z) = (— / (F(T cosf,rsinf,z) cos + G(rcosf,rsinb, z) sin 9)d0,
0

2w
- / H'(rcos®,rsin6,z))db,
0

2w
—/ H"(rcos@,rsin@,z))d&).
0
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We observe that the system fi(r,z) = 0 is equivalent to the system F(r,z) = 0 with F defined in
(1.3.2). So applying Theorem |[A| and observing Remark the result follows. O

Proof of Proposition[1.5.3. Computing the function y; and y, (defined in (1.2.3))) for the system
(1.3.3) we have that

it z,y) = (An(t)z + Ay, An(t)z + An(t)y),
and

ot 7,y) = (Bu(®)a + Bia(t)y + Ciao(t)2? + Crai(H)zy + Croa(8)y?,

Byi(t)x + Baa(t)y + Cazo(t)a” + Cona(t)ay + Cona(£)y?),

where A;;(t), B;j(t) for i,j = 1,2, and Cyjj, for i = 1,2 and j = 0, 1,2, are defined respectively in

([34), (L35), and (L3.6).
If A(t) = (A;(1)),;, then

fula,y) = 1 (2m,2,) = A(2r) ( ’ ) |

So, for det(A(27)) # 0 we have that (z,y) = (0,0) is the unique solution of the linear system
fi(z,y) = 0. Applying Theorem [B| and observing Remark the proof of item (a) of theorem
follows.

Now, if A(27) = 0 then f; = 0. So to find the periodic solutions of ([1.3.3]) using Theorem
we have to study the system fy(x,y) = 0, where

21, x, 1
foz,y) = yz(2y) = i(an + By + Cio0z? + Ciiizy + Chrooy?,

Bo1x + Bagy + Cagoz® + Copyy + Czoz?f)-

Since the system fo(x,y) = 0 is equivalent to the system G(z,y) = 0, with G defined in ((1.3.7)),
the proof of item (b) of theorem follows. O

Proof of Proposition[1.3.3. Analogously to the proof of item (b) of Proposition [1.3.2] since the
hypotheses implies f; = fo = 0. The result follows immediately by computing the function

f3(x,y), applying Theorem |B| and observing Remark [1.2.4] O

1.7 Simpler proof of the fundamental lemma

In this section, using the Fad di Bruno’s Formula instead the finite induction, we present an

alternative proof of Lemma assuming that (1.2.1]) is a C* system.
We recall the Fad di Bruno’s Formula (see [58]) about the I derivative of a composite function.
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Faa di Bruno’s Formula If g and f are functions with a sufficient number of derivatives, then

d' I l
il - (
a9 ) = ; byl byl 2102 - --bl!l!bl @fj
: =1
where S; is the set of all -tuples of non—negative integers (by, by, - -+, b)) which are solutions of the

equation by +2by + -+ +1lby =1 and L =by + by + --- + by.

The result about differentiable dependence on parameters implies that the map ¢ — z(¢, z, €)
is k times differentiable. So we can use the Faa di Bruno’s Formula to prove Lemma [1.4.1] as
following.

Since x(t,z,0) = ©(t,z), the Taylor expansion of Fi(t,z(t, z,¢)) around ¢ = 0, for i =
0,1,...,k—1, is given by

+ "), (1.7.1)

e=0

k—i 1 o
Ftalt,16)) = it (0.2 + X ( Fitott.2,2)
= U1\ Oe
The Faa di Bruno’s formula allows to compute the [-derivatives of Fj(t,z(t,z,¢)) in ¢, for
i=0,1,.. . k—1:

o ! !

_ Lp , b;
al“wzws(zﬂmmmmwm@ @wzwtogwmy (1.7.2)
Here S is the set of all [-tuples of non—negative integers (b, by, - - -, b;) which are solutions of the

equation by +2by + -+ 1oy =1, L =b; + by + --- + b, and

1t.2) =  grsatt.0))

Substituting (1.7.2)) in (1.7.1)) the Taylor expansion at € = 0 of Fj(s, z(t, z,£)) becomes

(1.7.3)

e=0

E@J@JﬁDZ-ﬂ@w@ZD

I
+ZZbl' bQIlez. by [ 0" Fi (s, ¢(s,2) @ s, %) (1.7.4)

=1 5

—i—&?k_i—HO(l),
forte=0,1,...,k — 1. Moreover, for : = k we have that

Fi(s,2(s,2,¢)) = Fy (s, ¢(s,2)) + O(1). (1.7.5)

Now, from (1.4.2)), (1.7.4), (1.7.5), and (1.4.1), the following equation holds

x(t, z,€) = z+/ Q(s,z,¢) ds—i—Ze / (s,0(s, 2))ds + " O(1), (1.7.6)
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where

k—1k—i 1
_ I+ L i
Qo2 =2, 2. §/0 bl b2 gy 0 L5905 2)) qu]“ o
We may write
k 1
Qs 2,¢) = ZZ€ZZ/b|bIQIb2. b,l,banszsz @y]sz
1=1i=t g 70 V1° 92 l
. ; . l (1.7.7)
= g OLE,_ (s, (s, = (s, 2)%ds.
Z-z::l - 125;/0 by! byl 2102 ... p;l 10 15, ))9‘%( )

Finally, from (| and - we get

(tze —z—i—/ Fo(t, (s, z))ds

1 !
+Z€ (/ SSOSZ +Zzb1!b2!2!b2"-bl!l!blaF’ZZSSOSZ @ )

=1 5

t
+5’f+l/ R(s, (s, 2,),€)ds + 1 O(1).
0

Now, using this last expression of z(t, z, ) we conclude that functions y;(¢, z) defined in (1.7.3)),
fori=1,2,...,k — 1, can be computed recurrently from the following integral equation

E;O

O'x
yi(t,z) = <(‘95i(t’ z, 8))
d 1

t I
— )
_2./0 (E(&SO(S,Z))-I—ZZIH! b2!2!b2---bl!l!bla Fi (s, (s, 2) @ )

=1 S

Since
t
olt,2) = 2+ [ Folt,p(s,2))ds,
we obtain

k

i I t?

z(t,z,e) = p(t, 2) + ZEZZ/ (,| ?) + eM1O(1),
i=1 v

which completes the proof of Lemma [1.4.1]
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1.8 Applications in discontinuous dynamical systems

1.8.1 Application 1

In this section we provide the bifurcation function at any order for computing the periodic
solutions of discontinuous piecewise differential system of the form

Ft(@,re) if 0<aq,
r = (1.8.1)

F=(0,r,e) if a<2m,

where i
Fi(Q, re) = ZsiFZ-i(G, r) 4+ €k+1Ri(0, T, E).
i—1

The set of discontinuity of system (1.8.1) is ¥ = {# = 0} U{f = a} if 0 < a < 27. Here

Fr:S'x D —=Rfori=0,1,...,n, and R* : S' x D x (—&g,&9) — R are C¥*! functions, where
D is an open and bounded interval of (0,0), and S' = R/(2).
Fori=1,2,...,k, we define the averaged function f; : D — R of order 7 as
+ —
yi (o, p) =y (a—=2m,p
filp) = %0) i ( ), (1.8.2)
where 45 : S' x D - R, for i = 1,2, ...,k — 1, are defined recurrently as
+ , = (
(0, p) = !/ FE (6, p :
y; (6,p) v 0 < (@0 +lz;;blbzl21bz. by [
(1.8.3)

O Fr, (¢ H yi (¢ ) do,

where S is the set of all [-tuples of non—negative integers (by, by, - - - , by) satisfying by +2by+- - -+1b; =
l, andL:b1+b2+"'+bl.
Our main result on the periodic solutions of (1.8.1)) is the following.

Theorem C. Assume that, for some ¢ € {1,2,...,k}, fi=0fori=1,2,....,/ —1 and f, # 0.
If there exists p* € D such that f,(p*) = 0 and f;(p*) # 0, then for |¢|> 0 sufficiently small there
exists a 2r—periodic solution 7 (6, ¢) of (1.8.1)) such that r(0,¢) — p* when & — 0.

The proof of Theorem [C]is based on the following lemma.

Lemma 1.8.1. Let r%(-, p,€) : [0,6,) — R* be the solution of 7' = F*(0,r, &) with 7£(0, p, &) = p.
If §, > T, then

k +
z‘yi eap
re(0,pe) =p+> ¢ <Z., ) + Op41(e),

i=1

where y(t,2) for i = 1,2,..., k are defined in (1.8.3)).
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Proof. The proof of this lemma is a direct consequence of the Fundamental Lemma [1.4.1 n
Now we prove Theorem [C]

Proof of Theorem[(. First of all we have to show that there exists gy sufficietly small such that
for each p € D and for every € € [—¢o, &o] the solutions r£(0, p, €) are defined for every 6 € [0, T].
Indeed, by the Ezistence and Uniqueness Theorem of solutions (see, for example, Theorem 1.2.4
of [99]), (0, p, ) is defined for all 0 < @ < inf (T,d/M*(¢)), for each z with |r — p|< d and for
every p € D, where

k
ME(e) > S FED, p) + EHRED, pre).
i=1
Clearly ¢ can be taken sufficiently small in order that inf (T, d/M*(¢)) = T for all p € D. Moreover,

since the vector fields F£(0, r, €) are T-periodic, the solutions 7= (6, p, €) can be extended for § € R.
We denote

f(pa 6) = 7’+(Oé, Ps 8) - T_<Oé - T7 Ps 5)'
It is easy to see that system (1.8.1)) for ¢ = & € (—&g, &9) has a periodic solution passing through
p € D if and only if f(p,&) = 0.
From Lemma [[.8.1] we have that

i yl 0, p) ?/1(9 p) + Oki1(e)
Z —|— Ok—i—l( )

where the function f; is the one defined in (1.8.2)) for i = 1,2, - -, k. From hypothesis

flp.e) =€ fulp) + -+ " fu(p) + Opya(e).

Since f,.(p*) = 0 and f/(p*) # 0, the implicit function theorem applied to the function F(p,e) =
f(p,e)/e" guarantees the existence of a differentiable function p(¢) such that p(0) = p* and
f(p(e),e) = e"F(p(e ),e) = 0 for every |e|# 0 sufficiently small. Then the proof of the theo-
rem follows. O

1.8.2 Application 2

In this section we provide the bifurcation function up to order 2 for computing the periodic
solutions of discontinuous piecewise differential system of the form

Ft(0,x,e) if 0<6<0,
x' = (1.84)

F~(0,x,¢e) if ¢<0<T,
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where
F*(0,x,¢) = F(0,x) + eFF(0,x) + 2 FF(0,x) + 2 R¥(0, %, €).

The set of discontinuity of system is given by ¥ = {# = 0} U {0 = ¢}. Here F;* : S' x D —
R for i = 0,1,2, and R* : St x D x (—¢gg,&9) — R are C3 functions, where D is an open
bounded subset of R4 and S = R/T for a positive real number 7.

For z € D let p*(6,z) be the solutions of the systems

x' = F;(0,x), (1.8.5)

such that ©*(0,z) = z, respectively, and let ¢(f,z) be the solution of the unperturbed system
x' = Fy(0, %), such that ¢(0,z) = z. Clearly

et(0,z) if 0<60<g,
©(0,2) =
o (0,z) if ¢9<OLT,

As the main hypothesis of this section we shall assume that there exists a manifold Z embedded
in D such that the solutions starting in Z are all T—periodic functions. Formally for p = d 4+ 1
and ¢ < plet o : V — RP~? be a C? function with V' an open and bounded subset of R?, and let
Z={z,= (v,0(v)): v € V}. We suppose that

(H) Z C D and for each z, the unique solution ¢(0,z,) such that ¢(0,z,) = 2z, is T—periodic.

Now for z € D we consider the linearization of the systems ([1.8.5]) along the solution p*(6,z),
that is
Y' = D F{(0,0%(0,2))Y. (1.8.6)

Let Y*(0,z) be the fundamental matrices of the differential system ([1.8.6)).

Let £ : R? x RP~7 — R? and &+ @ R? x RP~7 — RP~? be the projections onto the first g
coordinates and onto the last p — ¢ coordinates, respectively. For a point z € D we also consider
7 = (u,v) € RP x RP~%. Thus we define the averaged functions fi, fo : V — R? as

hv) = &a(z),

falv) = 2§gz(zy)—|—26§§1(zy)7(z/) (1.8.7)
+ 250,

where
(V) = =A) ¢ gi1(z), (1.8.8)
and
9i(z) =y (¢,2) —y; (6 —T,2), (1.8.9)
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being
y(:)t(97z) = gpi(e,z),

s 0.7) = YH0.5) [ V*(5,0) FE (5,7 (5,9,
) (1.8.10)
vi.2) = Y¥(0.2) [ V¥ (s.2)7 (2B (s, 0¥ (s.2)

OFt O Ey

+
+2—- (s, 0(s,2))yi (s,2) + — 3

(s, 0% (s,2))yi (5,2)*) ds.

Our main result on the periodic solutions of the DPDS ([1.8.4) is the following.

Theorem D. In addition to the hypothesis (H) we assume that for any v € V the matrix
Y*(¢p,v) =Y (¢—T,v) has in the upper right corner the null ¢ X (p — ¢) matrix, and in the lower
right corner has the (p — ¢) x (p — ¢) matrix A, with det(A,) # 0. So the following statement
hold.

(a) If there exists v* € V such that fi(v*) = 0 and det(f](v*)) # 0, then for |e|> 0 sufficiently
small there exists a T—periodic solution x(0, ) of system (1.8.4) such that x(0,&) — z,+ as
e — 0.

(b) Assume that f; = 0. If there exists v* € V such that fo(v*) = 0 and det(f5(v*)) # 0, then
for |e|> 0 sufficiently small there exists a T—periodic solution x(6,¢) of system ([1.8.4]) such
that x(0,e) — z,+ as ¢ — 0.

The following result is an immediate consequence of Theorem [D]

Corollary 1.8.1. Assume that ¢ = p, in this case Z = V C D is a compact bounded p-dimensional
manifold. Then the statements (a) and (b) of Theorem [D] hold by taking fi = g1 and fo = 2go,
and without any assumption about the matrix A,.

The proof of Theorem [D|is based on the next lemma which is a particular case of the Lyapunov—
Schmidt reduction for finite dimensional function (see for instance [27]).

Lemma 1.8.2. Assuming ¢ < p are positive integers, let D and V be open bounded subsets of
R? nd RY, respectively. Let g : D x (—&p,60) — RP and o : V — RP~7 be C? functions such that
9(z,€) = go(z) + €g1(z) + %g2(z) + O(e?) and Z = {z, = (v,0(v)) : v € V} C D. We denote
by ', the upper right corner ¢ x (p — ¢) matrix of D gy(z,), and by A, the lower right corner
(p —q) X (p — q) matrix of D go(z,). Assume that for each z, € Z, det(A,) # 0 and go(z,) = 0.
We consider the functions fi, fo : V — RY defined in . Then the following statements hold.

(a) If there exists v* € V with fi(v*) = 0 and det(D f,(v*)) # 0, then there exists v. such that
9(z,.,¢) =0 and z,. — z,~ when ¢ — 0.
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(b) Assume that f; = 0. If there exists v* € V with fo(v*) = 0 and det(D fo(v*)) # 0, then
there exists v. such that ¢(z,_,¢) = 0 and z,, — z,- when ¢ — 0.

The proof of this lemma can be found in [I7, [72].

Note that in Lemma the functions g; for ¢+ = 0, 1,2 which appears in the expression of
and are the ones of the function g(z,e) = go(2) + £91(2) + €%g2(2) + O(?), instead
of the functions which appear in ((1.8.9).

Now we prove Theorem

Proof of Theorem[D. Let 1(0,z,¢) be the solution of system (1.8.4) such that (0,z,¢e) = z.
Similarly let 1%(6,z, ) be the solutions of the systems x’ = F*(f, x, ¢) such that ¢*(0,z,¢) = z.
So

Wt (0,z,5) if 0<0< g,
V(0,2,¢) =
v (0,z,e) if ¢p<OLT,

Since the vector field (1.8.4) is T—periodic it may also read

vr(0,z,¢) if 0<6< o,
0(0,2z,¢) =
V=(0,2z,e) if ¢—T <6<2m

Now we consider the function g(z,e) = ¥ " (¢,z,e) — (¢ — 0,2,¢). It is easy to see that the
solution (0, z, ) is T—periodic in 6 if and only if ¢g(z,c) = 0. So from hypothesis (H) we have
that g(z,) = 0 for every z, € Z.

Applying Lemma to the functions ¢*(f, z, ) we obtain

0
VH0.2,2) = 5 0,0) + e 0,0) + 2207 o),
where y;(0,z) is given in (1.8.10). Therefore g(z,e) = go(z) + €g1(z) + £292(z) + O(£?), where
gi(z) =y (¢,2) — g; (¢ — T, z) for i = 0,1,2. Moreover

3¢ Op~

(¢7 ) - 7<¢ T ) Y+(¢>Z) - Yﬁ(gb - T,Z).

Dgo(z) = Oz

So from hypothesis (H) we have that the matrix Dgg(z) has in the upper right corner the null
g % (d—q) matrix, and in the lower right corner has the (p—¢) X (p—¢) matrix A, with det(A,) # 0.

The proof of this theorem concludes by applying Lemma for the function g(z,¢) defined
above. O
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Chapter 2

On the continuation of periodic solutions
in discontinuous dynamical systems

The main results of this chapter (Theorems [E] and [H]) are based on the papers [71], [72].

2.1 Introduction to the non—smooth averaging theory

One of the main problem in the qualitative theory of differential systems is the study of their
periodic solutions. A good tool to study the periodic solutions is the averaging theory, see for
instance the books of Sanders, Verhulst, and Murdock [99] and Verhulst [I13]. We point out that
the method of averaging is a classical and matured tool that provides a useful means to study the
behaviour of nonlinear smooth dynamical systems. The method of averaging has a long history
that starts with the classical works of Lagrange and Laplace who provided an intuitive justification
of the process. The first formalization of this procedure was given by Fatou in 1928 [32]. Very
important practical and theoretical contributions in the averaging theory were made by Krylov
and Bogoliubov [9] in the 1930s and Bogoliubov [§] in 1945.

On the other hand the study of the discontinuous differential systems has it importance and
motivation lying in some fields of the applied sciences. Indeed, in these last years a big interest has
appeared for studying such systems. This interest has been stimulated by discontinuous phenomena
in control systems [5], impact and friction mechanics [13], nonlinear oscillations 2, [88], economics
[44, 54], and biology [6l, 62], and it has become certainly one of the common frontiers between
Mathematics, Physics and Engineering. For more details see Teixeira [106]. A recent review
appears in [I12].

Despite to the importance of the discontinuous differential systems mentioned above, there
still exist only a few analytical techniques to study the invariant sets of discontinuous differential
systems. In [77] the averaging theory has been extended for the following class of discontinuous
differential systems

el (t,x) + 2Ry (t,x,e) if h(t,z) >0,

(t) = {aFQ(t,x) +2Ry(t,m,e) if h(t,x) <O0. 2L1)
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where F1, F5, Ry, Ry and h are continuous functions, locally Lipschitz in the variable x, T—periodic
in the variable ¢, and h is a C* function having 0 as a regular value. The results stated in [77] have
been extensively used, see for instance the works [69, [70} 89, 68 [84].

In this chapter we focus on the development and improvement of the averaging theory for
studying periodic solutions of a much bigger class of discontinuous differential systems than (2.1.1)).
Regarding the averaging theory for finding periodic solutions there are essentially three main
theorems. In what follows we describe these theorems.

The first one is concerning about the study of the periodic solutions of the periodic differential
systems of the form

o =ceFi(t,x) + e Fy(t,x) + -+ ™ Fy(t,x) + e R(t, x,€),

with z € R?. For continuous differential systems, even for the non-differentiable ones, this theory
is already completely developed (see for instance [113| 99, [19} 40, [74] [73]), and for discontinuous
differential systems this theory is develop up to order 2 in € (see [77, [71]).

The other two theorems go back to the works of Malkin [86] and Roseau [98]. They studied
the periodic solutions of the periodic differential systems of the form

' = Fy(t,z) +eFi(tz) + Rt z) + -+ "t x) + €™ R(t, x,€),

with € R?, distinguishing when the manifold Z of all periodic solutions of the unperturbed system
x’ = Fy(t, z) has dimension d or smaller than d. These theories are well developed for continuous
differential systems (see for instance [16, 17, I8, 97, 40} [74] [73]). Nevertheless there is no theory
for studying such problems in discontinuous differential systems. Thus our main objective in this
chapter is to develop these last theorems for a big class of discontinuous differential systems.

Here, assuming Fy # 0 (resp. Fy # 0), we develop the averaging theory of first order (resp.
first and second order) for studying the periodic solutions of discontinuous piecewise differential
systems in arbitrary dimension and with an arbitrary number of systems (pieces). We generalize
the results established in [19] [77] considering minimal conditions of differentiability. Furthermore,
we use this theory to study perturbed linear systems.

2.2 Preliminaries: Discontinuous dynamical systems

In what follows we define the necessary elements for the statements of our main results.
Let D be an open subset of R and S! = R/T for some period T > 0. We consider a finite set
of ODE’s

Z(t) = f"(t,x), (tzx)elxD for n=1,2,...,M, (2.2.1)

where f":S!' x D — R? is a continuous function. Here the prime denotes derivative with respect
to the time ¢. Let (S,) be a finite sequence of open disjoints subset of S! x D for n =1,2,..., M.
We suppose that the boundaries of each S, are piecewise C* embedded hypersurfaces with k > 1.
Furthermore the union of all boundaries, denoted by X, and all S,, together cover S' x D. So we
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define a M —Discontinuous Piecewise Differential System (M -DPDS) as

fit,x), (t,x) €S,

f2(t,z), (t,x)€ S,
'(t) = f(t,z) = bk >. (2.2.2)

M(t,x), (t,xz) € Sy,

where S, denotes the closure of S, in D. When the context is clear we shall refer to the systems of
kind only by DPDS. Later on in this chapter it will be assumed that the functions f" are
Lipschitz in the second variable for n = 1,2,..., M. However the theory described in the following
is developed without these assumptions.

Let A be a subset of St x D and let x4(t,x) be the characteristic function defined as

altz) = 1 %f (t,x) € A,
0 if (t,x)¢ A
So system can be written as
M
d(t) = f(t,x) =D xg, (tx)f"(t,z), (t,x)eS' xD. (2.2.3)
n=1

We stress that systems and does not coincides in X. Indeed system ([2.2.2]) is mul-
tivalued in 3 whereas system ([2.2.3)) is single valued in 3. Nevertheless the Filippov’s convention
for the solutions of these systems (see [34]) passing through a point (¢, ) € ¥ does not depend on
the value f(¢,x). So the solutions of systems and , in the sense of Filippov, are the
same.

We say that a point p € ¥ is a generic point of discontinuity if there exists a neighborhood
G, C S' x D of p such that S, = G, N Y is a C* embedded hypersurface in S' x D with k¥ > 1. In
this case we can always assume that S, splits G,\S, in two disconnected regions, namely G\ and
G, , and that the vector fields f" = f g+ and f7 = flq- are continuous. We define I(p) as the
segment connecting the vectors f,"(p) and f, (p) when they have the same origin p

Let S C X be an embedded hypersurface in S' x D and T,S denotes the tangent space of
S at the point p. The set X¢(S) = {p € S: l(p) NT,S = 0} is called the crossing region of the
hypersurface S. This definition only makes sense when the linear space 7,S is based at the origin
of the vectors Ff(p) and F, (p). Moreover when the hypersurface S C ¥ is given by & = h™'(0)
for some C* function h : S! x D — R having 0 as a regular value, the crossing region of S writes

298) = {p € 8 (Vh(p), (1, F*()){Vh(p), (1, F~(p))) > 0} (2.2.4)

Globally we define the crossing region 3¢ as the generic points of discontinuity p such that p €
¥°(S,). Later on this chapter for a point p € ¢ we shall denote T,,X = T,,S,.
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For a point ¢ € S,, we denote by @ (t, ¢) the solution of system such that ¢ (0,q) = q.
Now for a point p € ¥¢ such that I(p) C G} and taking the origin of time at p, the trajectory
through p, given by the Filippov’s convention, is defined as ¢r(t, p) = Ppr (t,p) fort € I,N{t < 0},
and p(t,p) = @ps(t,p) fort € I,N{t > 0}. Here I, is an open interval having the 0 in its interior.
For the case l(p) C G, the definition is the same reversing the time.

The following proposition gives a condition for the existence and uniqueness of solutions of
system ([2.2.3]).

Proposition 2.2.1. For every point p € 3¢ there is a solution passing either from G into G; , OT
from G} into G, and uniqueness in not violated.

For a proof of Proposition see Corollary 1 of section 10 of chapter 2 of [34].

Assuming that the functions f" (¢, x) are Lipschitz in the variable x for n = 1,2, ..., N, Propo-
sition implies the uniqueness of the solutions which reach the set of discontinuity only at
points of Y.

2.3 Case 1: Averaging of first and second order for a van-
ishing F

We consider the following DPDS.

2'(t) = eFi(t,x) + 2 Fy(t, ) + e R(t, x, €), (2.3.1)
with
M .
Fi(t,x) =Y xg,(t,2)F/(t,x), fori=1,2, and
j=1
M .
R(tv Z, 8) = Z XE(@ x>Rj <t7 1;)7
j=1

where Fij :Stx D — R4 RIS x D x (—ep,60) = Réfori = 1,2 and j = 1,2,..., M are
continuous functions, T-periodic in the variable ¢t and D is an open subset of R?. For i = 1,2 we
denote

D, Fi(t,z) =) Xz, (t, 2)D, F/(t,2). (2.3.2)

Jj=1

In order to state our main results we define the averaged functions fi, fo : D — R? as

fi(z) = /T Fi(t,z)dt, and (2.3.3)

0

falz) = /0 ! (DuFi(t, 2)n(t, 2) + Falt, 2) )dt, (2.3.4)
where

n(t,z) = /Ot Fi(s, z)ds.

Moreover we state the next condition which is common for our main results.
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(HC) There exists an open bounded set C' C D such that for each z € C the curve {(¢,2) : t € S'}
reaches transversely the set ¥ and only at generic points of discontinuity.

The principal consequence of assumption (HC') is the following:

Proposition 2.3.1. The assumption (/) implies that, for [¢|# 0 sufficiently small, every solution
of (2.3.1)) starting in C' reaches the set of discontinuity ¥ only at its crossing region.

Proposition [2.3.1] is proved in subsection [2.7.1]

Our main results on the periodic orbits of DPDS are given in the next two theorems.
Their proofs use the Brouwer degree theory for finite dimensional spaces (see Appendix A for a
definition of the Brouwer degree dg(f,V,0)).

Theorem E (First order averaging). In addition to the crossing hypothesis (HC') assume the
following conditions.

(Hal) For i = 1,2 and j = 1,2,..., M, the continuous functions F} and R} are locally Lipschitz
with respect to x, and T—periodic with respect to the time ¢t. Furthermore, for j = 1,2,..., M,
the boundaries of S; are piecewise C¥ embedded hypersurfaces with &k > 1.

(Ha2) For a* € C with fi(a*) = 0, there exist a neighborhood U C C' of a* such that f;(z) # 0 for
all z € U\{a*} and dp(f1,U,0) # 0.

Then for |e|# 0 sufficiently small, there exists a T—periodic solution z(t,¢) of system ([2.3.1)) such
that x(0,e) — a* as € — 0.

Theorem [E] is proved in subsection [2.7.1]

Theorem F (Second order averaging). Suppose that fi(z) = 0. In addition to the crossing hy-
pothesis (HC') assume the following conditions.

(Hb1) For j = 1,2,..., M, the functions F(t,-) are of class C! for all t € R; for j = 1,2,..., M,
the functions D, F}, FJ and R are locally Lipschitz with respect to z. Furthermore, for
Jj=1,2,..., M, the boundaries of S; are piecewise C¥ embedded hypersurfaces with & > 1.

(Hb2) I (t,2) € ¥ then (0,y1(t, 2)) € TypoE.

(Hb3) For a* € C with fy(a*) = 0, there exist a neighborhood U C C of a* such that fy(z) # 0 for
all z € U\{a*} and dp(fs,U,0) # 0.

Then for |e|# 0 sufficiently small, there exists a T—periodic solution z(t,¢) of system ([2.3.1)) such
that z(0,e) — a* as € — 0.

Theorem [F]is also proved in subsection [2.7.1]

We remark that when f; (resp. fo) is a C! function the assumption “there exists a* € V such
that fi(a*) = 0 (resp. fa(a*) = 0) and det(f{(a*)) # 0 (resp. det(f5(a*)) # 0)” is a sufficient
condition to guarantees the validity of the hypothesis (Ha2) (resp. (Hb3)).
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2.4 Remark on discontinuous perturbation of planar linear
centers

In this subsection we show how to use the Theorems [E| and [F] for studying the linear centers
perturbed by DPDS having the set of discontinuity composed by rays passing through the origin of
coordinates. In other words we shall show that the hypothesis of crossing (HC') and the hypothesis
(Hb2) of Theorem [F|always hold for such systems after a change of variables and a time-rescaling.

Let M be a positive integer greater than 1, let a = (ay, an, -+, ay) € TY (M-Torus) be a
M—tuple of angles such that 0 < a; < ag < -+ < ayy < 27 and let X = (X, Xy, -+, Xy) be a
M—tuple of locally Lipschitz vector fields defined on an open neighborhood D C R? of the origin.

We define the set of discontinuity ¥ = UM, L;, where L; for i = 1,2,..., M, is the intersection
between the ray starting at the origin and passing through the point (cos «;,sin «;) with the set
D. We note that the set X splits the set D\X C R? in M disjoint open sectors. We denote the
sector delimited by L; and L;,; by C; for i =1,2,..., M.

Now let Zx o(z,y) be the DPDS defined in D as

ZX,a(xay) :Xz($ay) lf ($,y) € Cz
Let X and )Y be two M—tuples of vector fields. We shall study the following DPDS.
(@,9) = (y, —2) +eZxalr,y) + 2 Zyalz,y). (2.4.1)

Here the dot denotes derivative with respect to the time ¢.
Using the polar coordinates = r cos @ and y = rsin 6, system ([2.4.1)) becomes equivalent to

(0, 7) = (=1,0) +£A(0,r) +B(0,7), (2.4.2)
where A and B are DPDS with the set of discontinuity ¥ being the union of the rays {(a;,r) :

r> 0} fori=1,2,..., M. Moreover A(,r) = A;(6,r) and B(0,r) = B;(0,r) if a; < 0 < ;44 for
1=1,2,..., M, where a1 = a1, and

1
J(0,r)= | - (X7 (rcosf,rsinf)cosd — X, (rcosf,rsinf)sinf),
A; (0 " X? 0 0 0 — X} 0 0 0
X! (rcosf,rsinf)cosf + X? (rcosf,rsinf)sin 0)

and
1
Bi(0,r) = < (Yf (rcos®,rsinf)cosd — Y;' (rcosf,rsiné)sin 9) ,
r
Y (rcosf,rsinf) cos @ + Y2 (r cos 6, rsin ) sin 9).
Here X; = (X}, X?) and Y; = (Y}, Y?) for i = 1,2,..., M.
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Taking 6 as the new time system ([2.4.2) writes

dr 7 _ eA2(0,r) +e*B2(0,r)
A9 §  —1+cAN0,r)+e2BX6,r)

for a; < 0 < ayy1. Here A; = (A}, A?) and B; = (B}, B?) for i = 1,2,..., M. So system (2.4.2)
and consequently system ([2.4.1)) become equivalent to

r'=TR(O,re), (2.4.3)

where, for i =1,2,..., M, R(0,r,e) = R;(0,r,e) if a; <0 < 11, and

Ri(0,r,e) = —e¢ (Xil (rcos®,rsinf)cosd + X? (rcosf,rsinf)sin 0)
—&? (i (XZ2 (rcos®,rsinf)cosd — X, (rcosf,rsind)sin 9)
: (Xz»l (rcos®,rsinf)cosf + X7 (rcos,rsind)sin 6’)
+ (Y;l (rcos®,rsinf)cosf + Y7 (rcos b, rsinf) sin (9) ) + O(?).

Now the prime denotes derivative with respect to the time 6.
Proposition 2.4.1. The hypotheses (HC') and (Hb2) hold for system (2.4.3).

Proof. The assumption (HC) holds because the set of discontinuity of system (2 is the union
of the rays ¥; = {(ai,r) v >0} fori=1,2,..., M. Let hy(0,r) = 6 — a;, so Z = h 1(0). Hence
(s,91(as,7)) € Tia,m> if and only if 0 = ((1 0) (s,y1(ci, 7)) = (Vhi(ay, 1), (s, yl(az,r)» = s.
Therefore (0,y,(0,r)) € TQT)E for every (0,7) € 2. O

2.5 Case 2: Averaging of first order for a nonvanishing Fj

Let D be an open subset of R? and for n = 1,2,..., N let I : S x D — R? be a C™ function
with m > 1, and F7': S* x D — R? and R" : S* x D x [0, 1] — R? be continuous functions which
are Lipschitz in the second variable. Later on in this chapter we shall assume more conditions
under these functions.

Now taking
N
Z "(t,x), fori=0,1, and
_N
R(t,x,¢) Z (6, ) R"(t, ),
we consider the following DPDS,
7'(t) = Fo(t,x) +eFi(t,x) + 2 R(t, x,¢). (2.5.1)
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The parameter ¢ is assumed to be small. We recall that > denotes the union of the boundaries of
Spforn=1,2,...,N.

A first approach to deal with the periodic solutions of system would use the regularizar-
ion technique (see [103]) mimetizing the procedure of [77]. Nevertheless this approach does not
apply directly in our problem because it demands more information about the set of discontinuity
than we have, for instance in [77] it is assume that 3 is a regular manifold.

In order to present our main results we have to introduce more definitions and notation.

For z € D and ¢ > 0 sufficiently small we denote by z(-,z,¢) : [0,¢.¢) — R? the so-
lution of system (2.5.1) such that z(0,z,&) = z. Given a subset B of D we define B° =
{(t,z(t,z,6)) - z€ Bt € [0,t.)}

We denote by ¥ the set of points # € D such that the function F'(0, z) is discontinuous, clearly
{0} x ¥y C X.

One of the main hypothesis of this chapter is that the unperturbed system

Z'(t) = Fy(t, x), (2.5.2)

has a manifold Z embedded in D\0Y, such that the solutions starting in Z are all T—periodic
functions and reach the set of discontinuity ¥ only at its crossing region X¢. Here 0%, denotes the
boundary of ¥y with respect to topology of D. Precisely,

(H) let Z = {2z, = (a,B(a)) : a € V}, where V is an open bounded subset of R¥, an
Bo V — R%* is a C™ function with m > 1. We shall assume that Z C D, ZN 9%, = 0,
Z°NY C 3¢ and for each z, € Z the unique solution z,(t) = z(t, z4,0) is T-periodic.

Remark 2.5.1. Suppose that the solution x,(t) reaches the set ¢ k, times. The assumption
Z N 0%y = 0 in hypothesis (H) implies that for each z, € Z there exists a small neighborhood
U, C D of z, such that for ¢ > 0 sufficiently small every solution of the perturbed system ([2.5.1))
starting in U, reach the crossing region of the set of discontinuity 3¢ also k, times. This fact will
be well justified in the proofs of Lemmas [2.7.5 and 2.7.6] in subsection [2.7.2]

For z € D we take the following discontinuous piecewise linear differential system
y, = DxF()(t,CC(t,Z7O)) Y, (253>

which can be seen as the linearization of the unperturbed system ([2.5.2)) along the solution z(¢, z, 0).
We note that for each z € D the matrix—valued function Q(t) = D, Fy(t,x(t,2,0)) is piecewise
C™ differentiable with m > 1, so we can consider a fundamental matrix Y(¢, z) of the differential

system (25.3).
t
it 2) = Y(t, z)/ Y (s, 2) " Fi(s, z(s, 2, 0))ds. (2.5.4)
0

Now for z, € Z we denote Y, (t) = Y (¢, z,). Let 7 : R¥ x R% — RF and 7t : RF x R¥* — RI-*
be the projections onto the first & coordinates and onto the last d — k coordinates, respectively.
Thus we define the averaged function f; : V — R* as

fi(a) = 1y (T, z4)-
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In what follows dis(z, A) denotes the Hausdorff distance function between a point x € D and
a set A C D, and as usual the function dg(fi, W,0) denotes the Brouwer degree (see for instance
[15] for details on the Brouwer degree). Our main result on the periodic solutions of DPDS
is the following.

Theorem G. In addition to the hypothesis (H) we assume that

(H1) forn=1,2,..., N, the functions F' and 3y are of class C'; the continuous functions D, F,
F* and R are locally Lipschitz with respect to z; and the boundary of S,, are piecewise C!
embedded hypersurface in R x D,

(H2) there exists a fundamental matrix solution Y'(¢, 2) of (2.5.3]) such that, for every a € V, the
matrix Y, (T)Y,(0)~! — Id has in the upper right corner the null k& x (d — k) matrix, and in
the lower right corner has the (d — k) x (d — k) matrix A, with det(A,) # 0;

H3) for an open subset U of D such that Z C U we have that (0,y1(s, 2)) € T(s.2(s.-.0))> Whenever
(s,2(s,2,0))
(s,2(s,2,0)) € X for (s,2) € St x U;

(H4) there exists W open subset of V' such that fi(«) # 0 for a € OW and dg(fi, W, 0) # 0.

Then for ¢ > 0 sufficiently small, there exists a T—periodic solution ¢(t,e) of system (2.5.1)) such
that dis(¢(0,¢),Z) — 0 as e — 0.

Theorem [G] is proved in subsection [2.7.2]
Remark 2.5.2. When f; is a C! function the assumption
(h4) there exists a € V such that fi(a) = 0 and det(f{(a)) # 0,
is a sufficient condition to guarantees the validity of the hypothesis (H4).

Theorem H. We suppose that the hypotheses (H), (H2) and (H3) of Theorem |G| hold. If we
assume that

(h1) forn=1,2,...,N, F', D, F}, FI', R", and j3) are C? functions and the boundary of S, are
piecewise C? embedded hypersurface in R x D,

then fi(a) is a C* function for every a € V. Moreover, if we assume in addition that hypothesis
(h4) holds, then for € > 0 sufficiently small, there exists a T—periodic solution ¢(¢,¢) of system

(2.5.1)) such that ¢(0,¢) = 2z, as € = 0.

2.6 Examples of applications

2.6.1 Example 1: Application of Theorem
In the following example we solve a problem of type (2.4.1)).
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Consider a = (0,7/2,7,37/2,2r) € T*. Thus L; = {(x,0) : = > 0}, Ly = {(0,y) : y > 0},
Ly ={(z,0): x <0}, and Ly = {(0,y) : y < 0}. Then for i = 1,...,4 we have that C; is the first,
second, third and fourth quadrants, respectively.

In this example we study the maximum number of limit cycles given by the averaging theory of
first and second order for DPDS, which can bifurcate from the periodic orbits of the linear center
T =1y, y = —ux, perturbed inside the following class of linear DPDS:

X =Y(x,y) if (z,y)eCy i=1,...4 (2.6.1)

where

y+eP!(z,y) + P (x,y)
Yi(z,y) = :

—z +eQj(x,y) + Q7 (x,y)
with P (z,y) = agi + ayx +axy, P (z,y) = coi+ iz + oy, Q1 (x,y) = by + bz + by, Q7 (x,y) =
do; + dy;x + doyy and |e|#£ 0 is a small parameter.
Let A denote the set of the following two conditions
dag — 4(ag2 + aos — ags — bor — boz + bos + bos) =0 and

2a91 — 2(agy — asg + asg — by + b1z — biz + bia)+

((111 + 19 -+ a13 -+ Q14 + 521 + bgg + b23 + b24)7T = 0.

Our results on the limit cycles of system ([2.6.1)) are stated in the next two propositions.

Proposition 2.6.1. For |¢|# 0 sufficiently small and using Theorem [E| system (12.6.1]) has at most
1 limit cycle for any chosen of parameters for which the conditions of A do not hold. Moreover we
can find parameters a;;, b;;, ¢;j, and d;; such that system (2.6.1)) has exactly 0 or 1 limit cycle.

Proposition 2.6.2. For |¢|# 0 sufficiently small and using Theorem |F|system (2.6.1)) has at most
4 limit cycles for any chosen of parameters for which the two conditions of .4 holds. Moreover we
can find parameters a;;, b;j, ¢;;, and d;; such that system (2.6.1]) has exactly 0, 1, 2, 3 or 4 limit
cycles.

Proposition [2.6.1 and [2.6.2] are proved in section [2.8]

2.6.2 Example 2: Application of Theorem [F]|

In the following example we solve a problem which is not of type (2.4.1).
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Let h(z,y) = y —x?. The set ¥ = h~1(0) is a regular manifold which splits the set R*\¥ in two
disjoint open regions. We consider the following system

x +eP(z,y) + 2 P*(z,y),
if h(x,y) >0,
i —y+eQ' (z,y) + £2Q*(x,y),
_ (2.6.2)
y x+€Rl(ﬂc‘,y)+€2RQ($>ya)
—y + &St (z,y) +25%(z,y),

where
P’ = péo + pliox + pfny + pZéon + phzy + p62y2a
Q' = oo + GioT + nY + G’ + ¢y + g0y’
i i i i 2, i 2
R =14y + 1107 + 701y + rogT” + XY + 1oy,
S* = sty + siT + sy + 5305752 + sty + 562y2,
for i =1,2.

Let B denote the set of conditions

dio = —p(ln - 210%07 Qh = —p(l)z - 229%07

Our results on the limit cycles of system ([2.6.2)) are given in the next two propositions.

Proposition 2.6.3. For |¢|#£ 0 sufficiently small and using Theorem [E| system (12.6.2)) has at most
4 limit cycles for any chosen of parameters for which the conditions of B do not hold. Moreover
we can find parameters pj;, ¢;, rj;, and sj; such that system (2.6.2)) has exactly 0, 1, 2, 3 or 4 limit
cycles.

Proposition 2.6.4. For |¢|# 0 sufficiently small and using Theorem [F| system (2.6.2)) has at most
6 limit cycles for any chosen of parameters for which the conditions of B hold. Moreover we can

find parameters pg;, Py, Piis Po2s St Tij Pijs G5 7oy and s7; such that system (2.6.2) has exactly
0,1, 2, 3,4, 5 or 6 limit cycles.

Proposition [2.6.3] and [2.6.4] are proved in subsections [2.8.1] and 2.8.2] respectively.
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2.6.3 Example 3: Applications of Theorems [G] and [H]

In what follows we provide an application of Theorems [G] and [H We study the existence of
limit cycles which bifurcate from the periodic solutions of the linear differential system (u, 0, w) =
(—v, u, w) perturbed inside the class of all discontinuous piecewise linear differential systems with
two zones separated by the plane 3 = {v =0} C R?, i.e.
—v+e(af +bfu+ cfv+dfw)
u+elay +bju+ cyv+diw) it v>0,

w+e(ay +bju+cjv+diw)
o | = (2.6.3)

—v+ela; +bju+civ+dyw)

u+e(ay +byu+ cyv+ dyw) if v<DO.

w+e(ag +bgu+c3v+ dyw)

Our result on the existence of a limit cycle of system ([2.6.3)) is the following.

Proposition 2.6.5. If (a3 —az)(by + b +¢; +¢;) > 0, then for |¢]> 0 sufficiently small there
exists a periodic solution (u(t, 5),1}( e),w(t,e)) of system (2.6.3) such that w(0,e) — 0 when
e — 0. Moreover, we can find (u*,v*) € R? such that

4(ay —a3)
by +bf +c3 +c5)’

(w0 [=

and (u(0,¢),v(0,¢)) — (u*,v*) when € — 0.

Proposition is proved in subsection [2.8.3]

2.7 Proofs of main results

2.7.1 Proofs of main results of section 2.3

We start this section proving Proposition [2.3.1l Then we state some preliminary lemmas
needed to prove our main results. After that, the remainder of this section consists of the proof of
Theorems [E] and [F] As usual p denotes the Lebesgue Measure.

Proof of Proposition[2.3.1. For a fixed z € C let (t',2) € ¥ be a generic point of discontinuity.
So there exists a neighborhood G .y of (t*, z) such that Spizy = GuiyNYis a C* embedded
hypersurface of S' xR with k > 1. It is well known that S ») can be locally described as the inverse
image of a regular value of a C* function, that is, there exists a C* function A, : G4,y = R such
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that é(ti’z) ﬂ~8(ti7z) = h;'(0) N Y. Here é(ti7z) is an open subset such that (¢, z) € CNT'(W) C G
For (t,z) € G .y system becomes
| Sy te) = eF} Lt @) + 2FyH (t,2) 4+ S RIH (t,x,e)  if (L, @) > 0,
" faon(t @, €)= eFi(t,x) + 2 Fji (t,x) + 3 RIi(t, x, €) if  hi(t,z) <O0.
From hypothesis (HC) we know that (9/0t)h;(t", z)? > 0. Hence

. . oh; . \°
7 + 7 — . e
<Vh2(t ) Z), f(t'i,z) (ta x, €)> <Vhl(t I Z>7 f(ti,z) (ta x, €)> - ( (‘31& (t ’ Z)) + O<5>7
which is positive for |¢|# 0 sufficiently small. So from we conclude this proof. O
Lemma 2.7.1. The averaged functions and ( are continuous in C.

Proof. Let zg € C' and let V be a neighborhood of zy with a compact closure contained in C. For
z € V we define the sets AL(t) = {s € [0,t] : (s,2) € S;}, and A%t) = {s € [0,t] : (s,2) € T}.
From hypothesis (HC) we have that u (A%(t)) = 0 for every ¢t € [0,T] and z € C. So

A(t, 2, 20) = |11 (t, 20) — (2, 2)]

J
s, 20)d s, z)ds
/Aio() 2 S

<

FY ds — [F7 d
/ Fi s

(2.7.1)
<3 (|Fis )|d /F /F )d
Z A t (5,2)]ds + Z } Jon Zo(tf
<MTL|zO—z|—|—Z g g)ds— (s z)ds
\Az ad NAL (1)
< MTL|z — 2|+ Y Luy (1 (AL (O\AL(E)) + i (AL(0\AL (1)) ,
j=1
where L is maximum of the Lipschitz constants of the functions Fij forj=1,2,...,M,and L, ; =

max{F} (s,2) : (s,z) € [0,T] x V} for j = 1,2,..., M. We observe that p (Aio(t)\Ag(t» — 0 and
0 (Ag(t)\Ago(t)) — 0, as z — 2o for every ¢t € [0,T]. Thus A(t,z,20) — 0, as z — 2o for every
t € [0,T). So the function y; (¢, z) is continuous in C for each ¢ € [0, 7. Since fi(z) = y1 (T, z), we

conclude that the averaged function f; is continuous in C.

Repeating the computations ([2.7.1), now for [J Fy(s, z)ds, we get that this function is con-
tinuous for z € C. So to prove the continuity of the function f; it is sufficient to estimate the
difference

D(zy,2) = ’/OT (Da;Fl(t,zo)yl(t,zo) — D, Fi(t, 2)u (¢, z))dt ,
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for z € V. Thus
T T
D(a0.2) < [ IDaFi(t20) = DaFy(t )| (b z0)ldt + [ [DeFi(t2) i (t20) = a2
T T
< TY / \DLFi(t, 20) — DoFi(t, 2)| dt + TL / (L, 20) — (L, 2)|dt,
0 0

where Y = max{|yi(s,2)|: (s,2) € [0,T] x V} and L' = maxj]‘/il{|Dfo(s,z)|: (s,2) € [0,T] x
V}. The function (¢, z) is continuous in z. Hence repeating the computations , now for
D,Fi(t,z), we conclude that D(zp,2) — 0 when z — 2y, which implies the continuity of the
averaged function f5 in C. O]

Let g : (—&0,20) — R? be a function defined on a small interval (—ep, o). We say that

1. g(g) = O(e*) for some positive integer ¢ if there exists constants ; > 0 and k& > 0 such that
lg(e)|< klet| for —e; < e < &y.

2. g(g) = o(c") for some positive integer ¢ if

tim 190G _
e—0 55

Here || denotes the usual norm in the Euclidean space R™ for n > 1. The symbols O and o are
called the Landau’s symbols (see for instance [99]).

Lemma 2.7.2. Let z(-, z,¢) : [0,t.) — R" be the solution of system (2.2.3) with (0, z,¢) = z.
Then we have the following statements.

(a) Under the hypotheses of Theorem [E|t, > T and the equality z(t, 2,¢) = z +ey; (¢, 2) + O(&?)
holds.

(b) Under the hypotheses of Theorem [F| ¢, > T and the equality (¢, z,e) = z + ey (t, z) +
e [W(DyFi(s, 2) yi(s, 2) + Fy(s, 2))ds + £ o(¢) holds. Furthermore if for j = 1,2,..., M the
boundaries of S; are piecewise C* embedded hypersurfaces with k& > 2 then we have that
w(t,z,e) = 2 +eyi(t, 2) + 2 [5(D,Fi(s, 2)y1 (s, 2) + Fa(s, 2))ds + O(?).

Proof. For each z € C the function t € [0,¢,) — x(¢, z,€) is continuous and piecewise differentiable.
From hypothesis (HC), for |¢|# 0 sufficiently small, we can assume that

ri(t,z,e) if 0= t2<t<tl,
wo(t, z,6) if th <t <t

z(t,z,e) = ' _ ‘ .

( ) zi(t, z,e) if o<t <t
1.(t,z,€) if Tt <t<tt=t,<T,
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for which we have the following recurrence

21(0,2,6) =2z and a;(t7 'z e) = @ (t7 2, 8), (2.7.2)

for i = 2,..., k. Moreover each function x;(t, z, ¢) satisfies the DPDS ({2.3.1)), that is, there exists
a subsequence (j;) for i = 1,..., k such that

0 . . :
axi(t, z,e) = eF{i(t,i(t, 2,€)) + E2FJ (t, 23(t, 2,€)) + > RV (t, 24(t, 2, €), €), (2.7.3)
In other words, for ¢ = 1,...,k, the function z;(¢, z,¢) is the solution of the Cauchy Problem

defined by the differential equation together with the initial condition ([2.7.2)).

We note that there exists |go|# 0 sufficiently small such that, for each z € C, the solution
z;(t, z,€) of is defined in [0, T for every € € [—&g, &) and i = 1,2,..., k. Indeed, using the
FEzistence and Uniqueness Theorem of solutions (see, for instance, Theorem 1.2.4 of [99]) we have
that, for each z € C, z;(t, z,€) is defined for all 0 < ¢ <inf (7, d/M;(e)), where

R (t,3i(t, 2,6)) + E2FY (t, milt, 2, €)) + 2Rt milt, 2,€), €)|

for all t € [0, T, for each z with |z — z|< d and for every z € C'. When ¢ is sufficiently small we can
take d/M;(e) sufficiently large in order that inf (T, d/M;(¢)) = T for all z € C. So for any z € C
we have that the solution z(¢, z, ) of system is also defined for every t € [0, 7.

From the continuity of the solution z(t,z,&) and by compactness of the set [0,7] x C x
[—¢0,€0], there exits a compact subset K of D such that z(t,z,e) € K for all t € [0,7], z €
C and € € [—¢&p,&0]. Now, by the piecewise continuity of the function R, |R(s,z(s,z,¢),¢)|<
max{|R(t,z,e)|, (t,z,e) € [0,T] x K x [—€1,e1]} = N. Then

¢ T
/ R(s,z(s,z,¢),e)ds| < / |R(s,x(s,z,€),e)|ds = TN,
0 0

which implies that
t
/ R(s,2(s, 2,¢),€)ds = O(1).
0

Now for a given t € (0,7') there exists & € {1,2,...,x — 1} such that ¢ € [tf~! tF) and

x(t,z,e) = zx(t, z,¢€)

_ t ¢
= zpa (i z8) € / Fi(s x(s, 2,€))ds + g / (s, x(s, 2,€))ds + O(e%).
te™ te™

Since

it1 i+l

Tt 2 ) :xi(tg,z,s)Jre/_E Fl(t,x(t,z,e))dt—kg/g Fy(t,z(t, z,€))dt + O(?),

ti t

i
€

proceeding by induction on ¢, we obtain

ot 2,6) = = + g/ﬂt Fils,2(s, 2,))ds + & /Ot Fo(s,2(s,2,6)ds + O(%).  (2.7.4)
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Claim 2.7.1. Statement (a) of Lemma holds.

For i = 1,2,...,r and for 1 < t < ', x;(t,z,e) = x(t,2¢€). Since F}’ is Lipschitz for
1 =1,2,...,k in the variable z, we have that

it ailt2,0) = F(2)| = [ (t0(t2,0) = F(1,2)
< Ljl|x(t, z,e) — z|= O(e),

for all #:-1 <t < 1, where L;, is the Lipschitz constant of the function Fj'. Tt implies that
F{'(t,2,(t, 2,€)) = FI*(t,2) + O(e), (2.7.5)

for t71 <t < ¢! and for each i = 1,2,..., k. .
Let t* = lim._,ot% for i = 1,2,...,k — 1. Observing that, for t"! <t < ', F{'(s,2) = Fi(s, 2)

and using (2.7.5) we compute

, t
/t‘_1 Ffi(s,xi(s,z,e))ds> + - F{*(s, (s, 2,€))ds

/Ot Fi(s,2(s,2,€))ds =

£

K
€

r—1

— (EZ /:21 Flj"(s, z)dS) + /tt1 Ff‘;ﬂ"(& z)ds + O(e)

/:il Fli(s, z)ds) + /tt Fi%(s,2)ds + E1(e) + O(e) (2.7.6)

R—

= (fgz;l /tlt Fl(s,z)ds> + /tt X Fi(s, z)ds + Ei(g) + O(e)

=/ Fi(s,z)ds 4+ Ey(e) + O(e),

where
tR* 1

Rl /it o .
Ei(e) = Z( . Ffi(s,z)ds—/ Ff%s,z)ds) —i—/{ - FR (s, 2)ds.

i=1 \’te tt a

It is easy to see that there exists a constant E such that
[Ev(e)|< B[t —tl.
i=0

We shall prove that 7 : e — ¢ is a C* function with k > 1.

As in the proof of Proposition for a generic point of discontinuity (¢,z) € ¥ with
z e C, let é(ti’z) be a neighbourhood of (¢, z) such that Syi,) = é(ti,z) N Y is a C* embedded
hypersurface of S' x R? with k¥ > 1, for which there exists a C* function h; : (N}(ﬂz) — R such
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that é(ti’z) N Siny = by '(0) NE. We define H;(t,e) = hy(t, z;(t, z,¢)). So H;(t",0) = 0 and from
hypothesis (HC')

o 9

SHL(E,0) = bt it 2,2) "
= &h’l(t 7‘rz(t 7Z7O)> + &hz(t 7xz(t 7Z70))§xl<t 727())
= Dl il 2,0)) #0
- 8t K3 7x'L 7Z7 )

because (2.7.3)) implies (9/0t)z;(t, z,0) = 0. Hence from the Implicit Function Theorem, 7%(¢) is a
C* function with H(7%(¢), ) = 0 for every |e|# 0 sufficiently small and 7¢(0) = #'. So

7i(e) =t + (') (0)e + ofe) (2.7.7)

for every i = 1,2,...,k — 1, because k > 1. This implies that E;(e) = O(e).
Going back to the equality (2.7.6) we have

t t
/ Fi(s,a(s,2,€)) = / Fi(s, 2)ds + O(). (2.7.8)
0 0
Hence from (2.7.4)) and (2.7.8) we conclude that
t
x(t, z,€) = z + 6/ Fi(s, 2)ds + O(£?).
0

Therefore the claim 1 is proved.

Claim 2.7.2. Statement (b) of Lemma holds.

Fori=1,2,...,x and for t:"! < < t! we prove that
[FY(t,2i(t, 2,€)) — FY'(t,2) — eDoFY'(t, 2)yi (8, 2) |= O(E7). (2.7.9)

To do this we define '
G(\) = F)'(t, \zi(t, z, ) + (1 — N)2).

Computing the derivative in A\ we get
G'(N\) = D FY (t, Awi(t, z,€) + (1 — N)2) (2L, 2,€) — 2).

So from the Fundamental Theorem of Calculus and observing that, for t°1 < < ¢ z;(t,2,¢) =
x(t, z,¢) it follows that

G(1) — G(0) = /01 D, Fyi(t, \o(t, z,€) 4+ (1 = N)2)(x(t, 2,€) — 2)dA.
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Thus for ¢ <t < ¢,

1 . . .
5 (FE(t,2i(t 2,) — FL(t, 2) — eDLFYi(t, 2)n (¢, 2)) =

1

S (60) = GO) = DL 1,21, ) =

t,z,6) — 2)

1 /1 ;. 1 3
0

i (/01 DL F (£, \a(t, 2, ) + (1 — )\)z)d)\) /Ot Fi(s, (s, 2 ¢))ds—

1 .
gDzFljZ@? Z)yl(ta Z) + 0(1) -

i </01 {DzFfi(t, Me(t, z,e) 4+ (1= N)z) — DFY(t, z)} d)\) /Ot Fi(s,x(s,z,¢))ds+

S (42) | [ Fisia(s,2,9) - Fils, 2)ds| +0(1),

Let B = max{|Fi(s,z(s, z,€))|: (t,z) € [0,T] x C}. Observing that D,F* is locally Lipschitz in
the second variable, and (from ([2.7.8))) that [y Fi(s,z(s,z,¢)) — [g Fi(s, z) = O(¢), it follows that

512 (Fi (1,2t 2,€)) — FI (1, ) — D (1, =) (1 z))' <

1 /1 N 3
g/ DLFf(t el 2,€) + (1= A)2) — D FY (£, 2)| dA
0

¢
/ Fi(s,z(s,z,¢))ds| +
0

+0(1) <

1 . t
- ’DzFfl(t, z)‘ ‘/ Fi(s,z(s,z,¢)) — Fi(s, z)ds
5 0

TLiBW +0(1) = 0(1),

where L; is the Lipschitz constant of the function D, FY*. Hence for 771 <t < t! and for ev-
ery i = 1,2,...,x the equality (2.7.9) holds, which implies that F}'(t,z(t,2,¢)) = F{'(t,2) +
eD F{ (t,2)yi(t, 2) + O(£?).
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Observing that for -1 < s < ', F{i(s, z) = Fi(s, z) we compute

/Ot Fi(s,x(s,z,¢))ds = (/ttl Fli(s, zi(s, z 5))d8> /tjl FU7(s,x5(s, z,€))ds

=1
r—1 te ) )

= > (/ti_l [F{i(s,2) +eD, F{ (s, 2)y1(s, z)]ds)
im1 \’te

¢ . .
+ | [F"(s,2) + D F{™(s, 2)y1 (s, 2)]ds + O(£?)

e~

_ z_;l( /tt [Ffi(s,z)+5D1Ff"(s,z)y1(s,z)]ds>

i—1

(2.7.10)

+

/tzl [F{%(s, 2) + e Do Fi* (s, 2)u1 (s, 2)]ds + Fa(e) + O(£?)

— z:: ( - [Fy(s,2) + €Dy Fii(s, 2)y (s, z)]ds)

t

+ | [Fi(s,2) + €D F{™ (s, 2)ya(s, 2)]ds + Ea(e) + O(€?)

th—1

_ /O “IFy(s,2) + eDuFy(s, 2)in (s, 2)|ds + Ea(e) + O(2).

The last equality comes from (2.3.2)). Here

$i—1

[y [ (s.2) + DL F (s 2)n (s, 2)]ds

€

Rl
By(e) = z(
i=1
t ) .
- [Ffi(s,z)—i—sDfoi(s,z)yl(s,z)]ds)
t
tk—l

+ [ [ng(s,z)+8D1Ffﬁ(s,z)y1(s,z)]d3_

It is easy to see that there exists a constant E such that

|Es(e gEZ t—ti. (2.7.11)
=0

From statement (a) the function € — x(7%(¢), 2, €)) is differentiable at ¢ = 0. Moreover y; (¢, z) =
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(0/0¢e)x(t, z,0). Since for |e|# 0 sufficiently small h;(7(g), x(7%(¢), z,€)) = 0, so

0 i i
0— &h(T (e), (T (8)7275))‘5:0
o . 0

= 5t 2)() (0) + —h(t', 2) (;x@i, 2,0)(7)'(0) + aix(ti, Z’E)Lo>

z

= (A2, (Y 0.t 2)).

SO ((TZ)/(O)a yl(tia Z)) € T(tl7z)2 . |
Now we shall prove that (r)'(0) = 0 and Ez() = o(e). If (7')/(0) # 0, we get that (s, y1(¢', 2)) €

T 2 for every s € R, because from hypothesis (Hb2), (0,y1(t', 2)) € T(si ,y2. Thus

0= (VA(H,2), (5, 0(F,2))) = S h(E,2) s+ b 2l 2),

for every s € R. Computing the derivative in s of the last equality it follows that (0h/0t)(t!,2) = 0
contradicting then the hypothesis (HC'). Hence we conclude that (7°)'(0) = 0. Moreover from

(2.7.11)) and (2.7.7) we obtain that Es(e) = o(e).
Going back to the equality (2.7.10)) we have

/Ot Fi(s,z(s,z,€))ds = /Ot Fi(s,z)ds — ¢ /Ot D, Fi(s,2)y1(s,2)ds + o(e). (2.7.12)

Analogously to the proof of statement (a) and using that F(e) = o(e) C O(e) we can show
that

/Ot Fy(s,z(s,z,€))ds = /Ot Fy(s, z)ds + Ofe). (2.7.13)

So from ([2.7.4)), (2.7.12) and we get
z(t,z,e) = 2z + 5/; Fi(s, 2)ds — & /Ot (D, Fi(s, 2)y1(s, 2) + Fa(s, 2)]ds + co(e). (2.7.14)
To conclude the proof of statement (b) we assume that for j = 1,2,..., M the boundaries

of S; are piecewise C* embedded hypersurfaces with k& > 2. From (HC) and following the steps
of the proof of Claim 1 we can find a C* function h; : Gy — R, now with k& > 2, such that

Guizy NSuiyy = h;1(0) N X. Again, é(ti’z) is an open subset such that (¢',z) € é(tgz) C Guiy.
Applying the Inverse Function Theorem we conclude that 7¢(¢) is a C? function. So

Ti(e) =t + () (0)e + O(£?).
which implies that Ey(e) = O(e?). From here, analogously to (2.7.14)), we obtain that
t t
x(t,z,€) = z + 5/ Fi(s,z)ds — 62/ [D.Fi(s,2)y1(s, 2) + Fa(s, 2)]ds + O(%).
0 0
It concludes this proof. O

52



Lemma 2.7.3. Let U be a bounded open set of R” and let f : U x [—&g,&0] — R™ be a con-
tinuous function. We assume that f(z,0) # 0 for all z € JU. Then for |¢|# 0 sufficiently small
d(f(z,e),U,0) is well defined and d(f(z,¢),U,0) = d(f(z,0),U,0) for |¢|# 0 sufficiently small.

Proof. For each e € [—¢gg,e0]\{0} we consider the continuous homotopy

ft(I,&T) = f(I,O) +1 (f(l‘,é) - f('I?O)) .

Suppose that there exist sequences (g;) C [—¢¢,€0], (z;) C OV and (¢;) € [0,1] with &; — 0 when
e — oo such that f;,(z;,&;) = 0, that is 0 € f;,(9V, ;). Since the sets OV and [0, 1] are compacts,
there exists convergent subsequences (x;,) C 9V and (t;;) € [0,1], namely z;, — = € OV and
ti; = t € [0,1] when j — oco. So t;, f(x;;,0) — f(x;,,0) = t; f(x;,,&;;). Passing the limit we
conclude that f(z,0) = 0, contradicting then the hypotheses. So it must exists € € [0, go] such
that 0 ¢ f,(OV,¢) for every ¢ € [—£,&]. From statement (7ii) of Theorem (see Appendix A)
we conclude that d(f(z,¢),V,0) = d(f(z,0),V,0) for every ¢ € [—£, £]. O

Proof of Theorem[E. Let f be the function such that ef(z,¢) = z(T, z,¢) — z. This function is
well defined because, from statement (a) of Lemma the solution z(t, z,¢) is defined for all
t € [0,T]. Moreover f is continuous on C. Also from statement (a) of Lemma we have that

f(275) = fl(z) + 0(5)’

where the function f; is the one defined in ({22.3.3), which, from Lemma [2.7.1} is continuous.
Clearly, z(t, z,¢) is a T—periodic solution if and only if f(z,¢) = 0. However from Lemma m
and hypothesis (Ha2) we have, for |¢|# 0 sufficiently small, that

dB (fl(z)a U7 0) = dB (f(Z,é), U7 0) 7é 0.

Hence, by item (i) of Theorem (see the Appendix A), 0 € f(U,¢) for |e|# 0 sufficiently
small, that is, there exists a. € U such that f(a.,e) = 0. Therefore, for |¢|# 0 sufficiently small,
x(t,a.,€) is a periodic solution of . We can choose a. such that a. — a* when ¢ — 0,
because f(z,e) #0in U \ {a*}. It completes this proof. O

Proof of Theorem[F. Let f be the function such that e?f(z,e) = z(T, 2,¢) — 2. From statement
(b) of Lemma we have that

where the function f; is the one defined in ({2.3.4]), which, from Lemma [2.7.1} is continuous. Since
o(g)/e = 0 when € — 0 the proof follows similarly to the proof of Theorem [E] O

2.7.2 Proofs of main results of section 2.5

Before proving our main result we state some preliminary lemmas.
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Given a function £ : [0,1] — R? we say that £(e) = O(&’) for some positive integer ¢ if there
exists constants £; > 0 and k > 0 such that ||£(e)||< k|ef| for 0 < & < &1, and that £(g) = o(e")
for some positive integer ¢ if

@I,
e—0 55
Here ||-|| denotes the usual Euclidean norm of R?. The symbols O and o are called the Landau’s

symbols (see for instance [99]).

Lemma 2.7.4. Under the hypotheses (H), (H1), and (H3) of Theorem |G| there exist a neigh-
bourhood C' of Z with C' C U\d%, and a small parameter ¢, > 0 such that ¢,. > T and
x(t,z,e) = x(t, 2,0) + ey (t, 2) + o(e) for every z € C, € € [0,&), and t € S*.

Proof. We note that Z and 0% are compact subsets of D such that, from the hypothesis (H),
ZN 0% = 0. So there exists an open subset A of D such that Z C A and AN o%, = 0.

Also from hypothesis (H) we have that for « € V' the continuous function z,(t) reaches the
set 2 only at points of X¢. From the definition of the crossing region ¥¢ these intersections are

transversal. Since this function is T-periodic, we can find a finite sequence (t%) for i = 0,1, ..., Kq,
with t2 = 0 and #"> = T such that

zt(t) if 0= £ <t<tl,
2A(t) if th <t <t
To(t) = ) ) .
Q zh () if ot <t <t
whe(t) if thel <t < the =T,

where each curve z?/(t), for ¢t € [ti7!¢'], reaches the set X¢ only at ¢ = t/! and ¢t = ¢! for
i =2,3,...,kq — 1; the curve z} reaches the set ¢ only at ¢t = 0 and ¢t = ¢} if (0, z,) € 2, and
only at t =t} if (0,z,) ¢ %; and the curve zf* reaches the set ¢ only at ¢t = tfe~! and t = T if
(T, z(T, z4,0)) € 3, and only at ¢ =t~ if (T, 2(T, 2,,0)) & 2.

Since z¢, for i = 1,2,..., K, are solutions of Lipschitz differential equations, the results of
continuous dependence of the solutions on initial conditions and parameters ensure the existence
of a small parameter ¢, and a small neighborhood C,, € ANU of z, such that CA’EHZ C X¢ for every
€ € [0,24). The family {C, : a € V} is a cover of the compact set Z. Therefore there exists a finite
subcover {Cy; : j = 1,2,...,jo} of Z. We fix then €; = min{e,, : j = 1,2,...,jo}. Now taking
C = Ujioleaj it follows that Cc N’ C X for every € € [0,e1]. Moreover, we can take ey > 0 and
C smaller in order that the function ¢ — x(t, z,¢) is defined for all (¢, z,¢) € S' x C x [0, ;]. This
is again a simple consequence of the continuous dependence on initial conditions and parameters.

Thus for z € C and ¢ € [0, g;] the function ¢ — x(t, 2, ) is continuous and piecewise C'. So we
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can find a finite sequence (#'(z,¢)) for i = 0,1, ... kS with t1(2,€) = 0 and t**(z,e) = T such that

ot (t,z,e) if 0= t%z,e) <t <tl(z,e),
22 (t, z,e) if th(z,e) <t < t¥(z,¢e),
x(t,z,e) = o . . 2.7.15
( ) z'(t, z,e) if t(z,e) <t < t'(z,¢), ( )
T (t, 2, e) if 5 z,6) <t <t (z,6) =T,
for which we have the following recurrence
21(0,2,6) =2z and 2'(t"Y(z,€),2,6) = 2"t (2, ¢), 2, €), (2.7.16)

fori =2,3,..., k5. Each (¢, z,¢) for t € [t'"'(z,¢),t(2,¢)] is called a differentiable piece of the
solution xz(t, z, €).

The crossing region ¢ is an open subset of ¥, so for each 2 € C we can find 0 < &, < ¢,
and a neighbourhood U, C D of z such that the number x; of intersections between the curve
t — x(t, z,¢) with the set 3¢ for 0 < ¢ < T is constant for € € [0,£,]. From compactness of C' we
can find 5 < g7 such that the function € — k¢ is constant for £ € [0, 5], and the function z +— k<
is piecewise constant for z € C. So for € € [0, 5] we can take k¢ = k.

Here again for every z € C and ¢ € [0, &5 each curve t — x'(t, 2, ) reaches the set ¥.¢ only at
t=t"Yz¢) and t = t'(z,¢) for i = 2,3,...,k, — 1; the curve z'(¢, 2, €) reaches the set ¥¢ only at
t=0and t =t'(z,¢e) if (0,2) € 2, and only at t = t!(z,¢) if (0,2) ¢ X; and the curve x*(t, 2, €)
reaches the set ¢ only at t = t*:7!(2,¢) and t = T if (T, x(T, 2,0)) € 3, and only at t = t*=71(z, ¢)
if (T,z(T,z,0)) ¢ X.

The functions t — (¢, z,¢) for i = 1,2,..., k. are C! and satisfy the DPDS , so there
exists a subsequence (n;) for i =1,... k, with n; € {1,2,..., N} such that

o o o .
axz(t, z,e) = Fyi(t,a'(t, z,€)) + el (t,2'(t, 2, €)) + e R™ (¢, 2'(t, 2, €), €). (2.7.17)

Therefore the function (¢, z, €) is the solution of the Cauchy Problem defined by the differential
system together with the corresponding initial condition given in (2.7.16). Moreover
2'(t, 20,0) = 2, (t) and t'(24,0) = ¢!, fori =1,2,...,K,.

From the continuity of the function z(¢, z,€) we can choose a compact subset K of D such
that z(t, z,¢) € K for all (t,2,¢) € S' x C x [0, ;). From the continuity of the functions F/* and
R" for i+ = 0,1 and n = 1,2,..., N we have that these functions are bounded on the compact
set S! x K x [0,&3]. So let M be an upper bound for all these functions, and let L be being the
maximum Lipschitz constant of the functions F*, DFJ', and R" fori = 0,1 and n =1,2,...,N
on the compact set S' x K x [0, o).

We compute

t T
/ R(s,x(s,z,¢),€)ds g/ ||R(s,z(s, z,€),¢)||ds = TM,
0 0
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t
which implies that / R(s,xz(s,z,¢),e)ds = O(1) in the parameter .
0
For z € C and t € (0,7) we can find ® € {1,2,...,r, — 1} such that ¢t € [tF1(z,¢),t"(2,¢))
and
z(t,z,e) = 2"(t,2,¢)
t

= 2"t N(z,0),2,6) + Fo(s, z(s, z,€))ds

th—1(ze)

+e /tt Fi(s,2(s, z,€))ds + O(g?).

E_I(Z,E)

Since
o . . t'(ze)
T (t'(2,€),2,6) = a1t z,8),2,6) + | y )Fo(t,x(t,z,e))dt
t'—1(z,e
t*(2,€) 9
+e [, 1. Falta(t 2,9t + O),
t*—1(z,e
forv=1,2,...,k,, we obtain, by induction on ¢, that

x(t,z,e) = 2z + /Ot Fo(s,z(s,z,€))ds + ¢ /Ot Fi(s,2(s,2,€))ds + O(e?). (2.7.18)

Claim 2.7.3. There exists a small parameter ¢y > 0 such that the function t'(z,¢), for i =
0,1,2,...,k,, is of class C! for (z,¢) € C x [0,&¢], and (9t"/9e)(z,0) = 0. Moreover, y;(t,z) =
(0x"/0e)(t, 2,0) for t'7%(2,0) <t < t'(2,0) and i = 1,2,... Kk,.

First of all we note that t!(z,e) = 0 and t"*(z,¢) = T. So the first part of Claim is clearly
true for = 0 and i = k,.

We have already concluded that for each z € C the curve t — z(t, 2, 0) reaches the discontinuity
set only at points of 3¢ Let 2! = 2'(t'(z,0), 2,0) and p’ = (t(2,0),2") € 3¢, then p’ € X¢ for
every i = 1,2,...,k, if (0,2(T,2,0)) € ¥, and for every i = 1,2,...,%, — 1 if (0,2(7,2,0)) ¢
Y. Particularly p; is a generic point of ¥, so there exists a neighborhood G of p’ such that
Syi = Gpi NX is a C™ embedded hypersurface of S' x D with m > 1. It is well known that
S,i can be locally described as the inverse image of a regular value of a C™ function. Thus there
exists a small neighborhood épi of p’ with épi C Gy and a C™ function h; : (v;'pé — R such that
Gy NS, = hi ' (0)NX.

For (t,x) € Cur’pi system (2.5.1)) can be written as the autonomous system

7! X(r,z,e) if hy(r,z) >0,
/ Y(r,z,e) if hi(1,z) <0,
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where

X(1,z,6) =

Y(r,2,¢6) =

1

Fy(r,2)e F"™ (1, 0) + 2R+ (1, 1, €)

1

Fyi(r,z) + eFy"(1,2) + 2R (1,2,€)

From the definition of crossing region we also have Xh;(p%,0)Y h;(p’,0) > 0, therefore

0t = (500 5e0). (1L E0)

Oh;

(2.7.19)
o
Ot

i ahi i\ G (0
(pz) + %(pz)FO (pz)

Now defining H;(t,(, ) = hi(t,z'(t,(,€)) we get H;(t'(z,0),2,0) = 0, and

0H;
ot

(t'(2,0),2,0) =

D bt (8,,9))

ot (6.62)=(t1(2,0),2,0)
i 4i(, 0,47 (#(2,0), 2,0))
ot
ohi , ; i (i oz’ i
+%<t (270)737 (t (270)7270)) ot (t (’270)7270)
ohi, ;.  Oh; ., 0x' .
) + S ) S (1(2,0), 2,0)
oh; , , oh; , , g

The Implicit Function Theorem leads to the existence of a small neighborhood V, C D of z and a
small parameter £, > 0 such that t'((,¢) is the unique C™ function such that H(t'(¢,¢),e) = 0 for

every ( € V, and ¢

for every i = 1,2,.

€ [0,&,]. So

F(G2) = F(G0) +220(C.0) +o)

.k, — 1. Now, from the compactness of C, there exists gy > 0 such that the

above conclusion is true for every e € [0, &].
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Now we shall use finite induction to conclude the proof of Claim We note that h;(t'(z, ),
0 for € € [0,&¢], so

0= Lh(ti(z,2), 2 (E (2, 2), )]

Oe e=0
oh, , Ot oh ox' ot
= 050+ 50 (G 0,205 0
or'
+oo (#'(2,0), z70)> (2.7.20)
oh, , ot oh ot o

= D50+ S0 (R0 G 0+ G .0, 20))

= (ThO0. (G0 B 0 G .00+ G (2,00 2,0) ).

fori=1,2,...,k,
Taking ¢ = 1, from (2.7.17)) we obtain
8'1: n 1 a ' n 1
dt 9% —(t,2,0) | = DEJ*(t, 2 (t, 2,0)) PR —(t,2,0) | + F{"'(t, 2" (¢, 2,0)). (2.7.21)
So for 0 <t < t'(2,0) the differential system (2.7.21]) becomes
d (0x! ox!
— | = = DF —_— F . 2.7.22
o ( o (t,z,())) o(t,z(t, z,0)) < o (t,z,O)) + Fi(t,z(t, 2,0)) (2.7.22)
1
Since %Z(o, z,0) = 0 the solution of the linear differential system ([2.7.22)) is
dzt t
g(t, z,0) = Y(t, z)/ Y (s,2) ' Fy(x(s, 2,0))ds =y (t, 2), (2.7.23)
0
for 0 <t < t!(z,0). Now from hypothesis (H3) and from equality (2.7.20)), for ¢ = 1, we have that
ot! ot!
(A (0L AR (p) S (2,0) + i 1(2,0),2)) € Tu¥ (2.7.24)

for every A € [0, 1]. Thus

o= (0, (0 0 A ) 2 0 (2.0),2) )

= (G5 0+ SR G E0) + 0. 27

ot oh
_ 1 1 1
- Ath(p,wO) Oe (Z 0) Oz (pz>y1(t (270)72)7

o8

2'(t'(z,€), 2,



for every A € [0,1]. Computing the derivative with respect to A in (2.7.25)) it follows that
1

th(pi,O)aat(z,O) = 0. So from ([2.7.19)) we conclude
3

1
%tg(z, 0) = 0. (2.7.26)

Hence from ([2.7.23)) and ([2.7.26)) the claim is proved for i = 1.
Given a positive integer £ > 1, we assume by induction hypothesis that Claim [2.7.3|is true for

i = ¢ — 1. Taking 7 = ¢, the relation (2.7.17]) implies

d (0a" . Oz n
pr <8a(t’z’0>> = DFy*(t,2"(t, 2,0)) <8£<t’z’0)> + FP(t, 2" (t, 2,0)). (2.7.27)
So for t*71(2,0) <t < t%(2,0) the differential system (2.7.27) becomes
d (0z' oz’
— = = DF, — F . 2.7.2
o (85 (t,z,O)) o(t,z(t, z,0)) <6€ (t, z,O)) + Fi(t,z(t, 2,0)) (2.7.28)

From (2.7.16]) we have that 2°(t*~1(z,¢), 2,¢) = 21 (t*"1(2, €), 2, €) for every € € [0,&0]. Computing
its derivative with respect to € at ¢ = 0 we obtain that

oxt , | ottt 9zt
W(t (270)7270)W(z70)+§<t (Z,O),Z,O)—
axéfl o1 atéfl axéfl o1
ot (t (270>7270)?(270)+ Oe (t (Z,O),Z,O).
So from induction hypothesis it follows that
¢ -1
O 1(2,0),2,0) = 22 (174 (2,0),2,0) = (17 (2, 0), 2). (27.29)

We note that (2.7.29)) is the initial condition of the differential equation (2.7.28)). Thus for
t1(2,0) < t < t%(2,0) regarding linear differential equation (2.7.28)) we get that

Ozt - . .

8i<t’ 2,0) =Y (t,2)y: (1" 1(2,0), 2) + Y(t,2) /e (Y(Ss, 2) LRy ((s, 2,0))ds, (2.7.30)

e tt=1(2,0

where Y (¢, ) is the fundamental matrix of the linear differential system ((2.5.3)) such that Y (t1(2,0), 2)
is the identity matrix. Clearly Y (t,2) =Y (t, 2)Y (""" (2,0),2)7", where Y (t, 2) is fixed in (2.5.4).
So substituting Y (¢, z) and (2.5.4)) in (2.7.30]) we get

t

¢ t=1(2,0)
ai(15, 2,0) = Y(t, z)/ Y (s,2) ' Fi(x(s, 2,0))ds
Oe 0

t

+Y(t, z)/ Y (s, 2) ' Fi(2(s, 2,0))ds

tt=1(2,0)
t

~- Y, z)/t Y (s, 2) Yy (a(s, 2, 0))ds = 1 (¢, 2),

471(2,0)
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for *=1(2,0) <t < t%(2,0). This claim follows by repeating the procedure of (2.7.24)) and (2.7.25)
¢

t
for i = ¢ to obtain 628(27 0) = 0. So we have proved Claim [2.7.3

Claim 2.7.4. The equality x(t, z,&) = z(t, z,0) + O(g) holds for every z € C and ¢ € [0, &].

For t € [t"71(z,¢),t(z,¢)) we compute

t r—1 t(z,€)
/ FO(S7$(87275))dS: Z </ )FgLi(S,ZL‘<S,Z,€))dS>
0 i—1 t

z—l(z’g
t

+ Fy™ (s, x(s, z,¢))ds

th—1(z,e)
r-1 t'(2,0)
= Y / Fyi(s,x(s, z,€))ds
=1 ti—1(z,0)
t —
+ Fy=(s,z(s, z,€))ds + Fy(e),

t5=1(2,0)

where

-1 t'=1(2,0) t'(2,0)
B = X ([, F et ends = [ R sals, o)

=1 i—1(z,) ti(z,¢)
t*=1(2,0) _

+ [ Fy™(s,x(s, z,€))ds.
tv—1(z,e)

The function Fj"(t,z) is bounded in the set S! x K, so

t'(2,0) _
< [ IE (s (s, 2 2 ds
t

“(2.2)

t*(2,0)
/ Fy'i(s,x(s, 2z,€))ds
ti(z,e)

< M|t'(z,0) — t'(z,¢)|,

for i = 0,1,2,...,%. Therefore there exists a constant F such that
|| Eo(e) SEZ (2,0) — t'(z,¢)|.
i=0

From Claim t'(z,e) = t'(z,0)+o(e), implying Ey(¢) = o(e), particularly Ey(e) = O(e). Thus

¢ "1 t(2,0)
/ F0<S7x(3a275))d‘9: Z </ Fg”(s,x(s,z,e))d8>
0 . ti=1(2,0
=t (=0 (2.7.31)
t
+ Fy=(s,x(s, z,¢))ds + O(e).

t5=1(2,0)

60



Using that the functions £y, i = 1,2,..., k,, are locally Lipschitz in the second variable we

obtain, from ([2.7.31)), that

/t Fo(s,x(s, z,¢)) — Fy(s, x(s, 2,0))ds

t'(2,0)
gjz/}( 1B (s, 2(5,.2)) = Fy" (s,a(s.,0))|ds
#-1(2,0)
[ IS0l 202) = F(s.a(s, 20) s + OC)
t*(2,0)
< LZ/ ||xsz€) x(s, z,0)||ds
t
+L [ y )Hx(s,z,g) —x(s,2,0)||ds + O(e)
th=1(2,0
t
- L/ (s, 2,€) — (s, 2, 0)||ds + O().
0
From ([2.7.18]) we obtain

||z(t, z,€) — z(t, z,0)||< /OtHFO(s, x(s,z,€)) — Fo(s,z(s, z,0))||ds

t
el [N (5,5, 2,))lds + O)
t : (2.7.32)
< EIMT + L [ |lo(s,2,¢) = (s, 2,0)|ds
0
< le|MTe™™.

The last inequality is a consequence of Gronwall Lemma (see, for example, Lemma 1.3.1 of [99]).
The inequality (2.7.32)) implies that (¢, z,¢) = z(t, z,0) + O(e), which proves this claim.

Claim 2.7.5. The equality x(t,z,¢) = x(t,2,0) + eyi(¢, 2) + o(¢) holds for every z € C and
e € [0,¢e0).
In the proof of Lemma it has been proved that
Fyi(t,a'(t,z,¢)) = Fyi(t,a'(t,2,0)) + D Eg(t, 2'(t, 2,0))
(2'(t, 2,€) — 2'(t, 2,0)) + O(£?), (2.7.33)
F(t,a'(t, z,e)) = F"(t,2'(t,2,0)) + Oe),
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for all t*71(z,e) <t <t'(z,¢) and for every i = 1,2,..., k.. So we obtain that

Fg‘i(t,mi(t, z,e)) = Fyi(t, a:i(t, 2,0)) + D, Fy'(t, xi(t, 2,0))

| (2.7.34)
a 1
S (8:2,0) + O,
for all #71(z,e) <t <t'(2,¢) and for every i = 1,2,..., k.. For the moment we cannot use Claim

7

0
2.7.3| to ensure that ; (t,2,0) = yi(t, z) because it is only true when t~1(z,0) <t < #/(z,0).
Given z € C we have that, for every t""(z,e) < t < t¥(z,¢), 2%(t,2,6) = x(t,z,¢) for
i =1,2,...,kq. Moreover if ti_l(z,e) < s < t'(z,¢) and € € [0,g], then ﬂm(s,yci(s,z,a)) =
Fi(s,x(t,z,¢)) for j = 0,1 and for every i = 1,2,...,&. So from (2.7.33) we compute

t
Fl(s,x(s, z,€))ds =
0

ti(2,€) t _
Z/ Fl'i(s,2'(s, 2 5))d5> /7 F'(s,2"(s,2,€))ds =
£

ti—1(z) £=1(z€)

t

(Z /tﬂ(za Fl'i(s,2'(s, 2 0))ds> /{ F'(s,2%(s,2,0))ds + O(e) =

l(z0)
t

Z/ttZ(ZO Fl'i(s,2'(s, 2 O))ds) /f F'™(s,2"(s,2,0))ds + Ey(c) (2.7.35)

N*l(z’o)

+0(e) =

(“z: /t_tZ(z,O) Fi(s, x(s, z,O))ds) - /tt Fi(s,2(s,2,0))ds + Ei(¢) + Oe) =

1—1(z,0) n—l(z’o)

/Ot Fi(s,z(s,2,0))ds + E1(e) + O(e),

for t"71(z,¢) <t < t"(z,¢). Here

t'=1(2,0)

Ei(e) = jE:ll (/ﬁ ) Ff“(s,xi(s,z,O))ds—/

—1(ze) ti(z,)

tF=1(2,0) _ _
+ F/'™(s,2"(s,2,0))ds.

F=1(z,¢)

t'(2,0)

Ffi(s,xi(s,z,O))ds>

Now, as in the case Ey(e) of the proof of Claim m, it is easy to see that there exists a constant
E such that

[ary

IE(E)II< B Y J6(2,0) — ti(z,2)].

=0
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From Claim we have that E)(g) = o(e), consequently E;(g) = O(e). Going back to inequality
(2.7.35]) we obtain

t ¢
/ Fi(s, (s, 2,€))ds :/ Fi(s, (s, 2,0))ds + O(c). (2.7.36)
0 0

Claim [2.7.3| also implies that %ac (t,2,0) = yi(¢, 2) for t*71(2,0) <t < t(2,0), so from ([2.7.34))

we compute

/Ot Fo(s,z(s, z,¢))ds =

IME

t'(2,€) . t _
(/ ng(s,xz(s,z,s))ds> + /7 Fi™(s,2"(s,2,€))ds =
ti—1(z,e) th=1(z,e)

Mz

t'(2,€) . ) . ox’
</ oo [Fo'(s,2'(s,2,0)) + eDy Fy (s, x' (s, z, O))a—z(s, z, 0)](13) +
ti=l(z,e

t . . R
/ [Fo™(s,27(s,2,0)) + eD Fy™(s,2"(s, 2, 0))8;;(15, z,0)]ds + (9(52) =
¢

F1(z8)
r—1

t*(2,0) ) ' i
Z (/ [Fi(s,2'(s, 2,0)) +€D$F6‘i(s,xl(s,z,0))a&;(t,z70)]ds> + (2.7.37)
t

i=1 i=1(2,0)

t . . orr
/. oy [F (52752, 0)) D,y (s,27(5,2,0) 5 (1,2, 0)]ds + Eae)
th—1(z,0

t*(2,0)
/ Fo(s, x(8,2,0)) + D, Fy (s, z(s,2,0))yi (s, z)]ds) +

/t:_l(z,[)) [Fo(s,2(s,2,0)) + D, Fy¥ (s, 2(s, 2,0))y1(s, 2)|ds + Ey(e) + O(e?)

The last equality comes from observing that Fj(s, (s, 2,0)) = Fy(s,z(s,2,0)) for every s €
[t71(2,0),t(2,0)) and i = 1,2,...,&. From definition (2.3.2) the inequality (2.7.37) becomes

/Ot Fo(s,x(s,2,¢€))ds = /Ot [Fo(s,x(s,2,0)) + Dy Fo(s,x(s, z,0))
(2.7.38)

1(s, 2)]ds + Ey(e) + O(e?).
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Here

r—1

t71(2,0) ‘ . _ ) ort
Ey(e)= ) (_/ti—l( : [Fyi(s,2'(s,2,0)) + D, Fyi(s, x'(s, z,0)) aa; (t,2,0)]ds
=1 2,

ti(z,O) ) ] i axz
" [Fo'(s,x(s,2,0)) + D Fyi (s, 2'(s, z, O))E(t, 2, 0)]ds>
t'(z,e

tF=1(2,0) :

. o 9]
+ [ . [Fﬁ”(s,x’(s,z,O))+5DxFél“(s,a:’(s,z,0))8—x(t,Z,O)]ds.
th—1(z,e €

Again, it is easy to see that there exists a constant E such that

|
_

K

[B2()II< B3 I(2,0) = t'(z,2)].

[e=]

From Claim it follows that Ey(e) = o(¢). Going back to inequality ([2.7.38]) we have

/Ot Fy(s,z(s,z,€))ds = /Ot Fo(s,x(s,2,0))ds

(2.7.39)
+5/0 D, Fy(s,x(s, 2,0))y1(s, 2)ds + o(e).

So from ([2.7.18)), (2.7.36)), and (2.7.39)) we conclude that

t
x(t,z,e) = Z—i—/ Fo(s,z(s,2,0))ds
0

t
+e /0 (Do Fo(s, 2(s, 2,0)y1(s, 2) + Fi(s, 2(s, 2, 0))|ds + o(c)
— (5, %,0) + ennlt, )+ ofe).
The last equality is a simple consequence of the computations made in Claim [2.7.3] Indeed from

(2.7.28) and Claim if t71(2,0) <t <t%(2,0), then

t

yl<t7 Z) - yl(te_l(za O)? 0) + -1(5,0) [D$F0(87 JI(S, 2, 0))y1(87 Z) + F1(87 CL’(S, Z, 0))]d8
ti—1(z,

From here, proceeding by induction on ¢, we obtain that

yi(t, 2) = /Ot [D.Fo(s,z(s,2,0))y1(s, z) + Fi(s,z(s, z,0))]ds

This completes the proof of Claim and, consequently, the proof of this lemma.
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Lemma 2.7.5. Under the hypothesis of Theorem . the solution z(t, z,0) of the unperturbed dif-
ferential system ([2.5.2)) is of class C! in the variable z for every z € C. Moreover (9z/9z)(t, z,0) =

Y (t,2)Y(0,2)"'. The set C is defined in the statement of Lemma [2.7.4)and Y is the fundamental
matrix solution of (2.5.3).

Proof. Given z € C, the solution of system (2.5.1)) (resp. of the uperturbed system (2.5.2))) starting

at z is given by (22.7.15)) (resp. by (2.7.15)) taking € = 0). From the proof of Lemma we know
that for each z € C' there exists a small neighborhood U, C D of z such that the solution x(t, ¢, 0)

can be written as for every ( € U, having the same number k, of differentiable pieces.
Let ¢, (t, to, o) be the solution of the differential equation z’ = F{'(¢, x) such that ¢, (o, to, zo) =

xo. From the results of the differential dependence of the solutions we conclude that each of these

functions are of class C! in the variables (¢, to, 7y). Indeed the function F}' is C' fori =1,2,...,x,

From Claim of the proof of Lemma we know that the function t'((, €), fori = 1,2, ..., k.,
is of class C! for every ¢ € U, and ¢ € [0, &).

From ([2.7.16|) we have that

2'(t,¢,0) = ¢, (1,0,() and
(2.7.40)

CCZ (t7 C’ O) - SOTLZ' (t7 tZ_l(C? 0)7 I‘Z_1<t1_1(<-7 0)7 C? 0))7

for ( € U, and for i = 2,3,..., k.. So for i = 1 the function (¢,¢) — x'(¢,¢,0) = ¢n, (£,0,) is C,
1

Moreover for 0 < t < t1(¢,0) we have that 86 (t,¢,0) =Y (t,¢). Indeed, it follows from (2.7.17))
that

ox!

0 <8x1 ) . 1
— | =—(,¢,0) ] = D,Fy*(t,x(t,(,0))—(t,¢,0)
ot \ 0z 0 0z (2.7.41)

1

== DxFO(tv l’(t, Ca O))ai

az (t7 C? 0)7

5] 1
for 0 <t < t!(¢,0). Solving the linear differential equation (2.7.41)) we obtain that ai(t ¢,0)
is a fundamental matrix solution of system ([2.5.3] - for 0 <t < t1(¢,0) and ¢ € U,, which is the

identity matrix for ¢ = 0. So we conclude that % (t,¢,0) =Y (£,)Y(0,2)7! for 0 <t < #1(¢,0)
and ¢ € U,.

Now we assume by induction hypothesis that the function ¢ — 2*~1(¢,¢,0) is C! for each t € S*,
and that the equality (98 (t,¢,0) =Y (t,0)Y (0, 2)~* holds for t-2(¢,0) <t < t71(¢,0).
From (2.7.40) we have that, for i = £, 2(¢,(,0) = ¢, (t,t71(¢,0), 271 (#71(¢, 0), ¢, 0)). So the

the function ¢ — 2%(¢,¢,0) is C! because from the induction hypothesis it is composition of C!
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functions. From ([2.7.17)) and (2.7.40) we compute

o (9! Oz’
5 (Focn) -ncucnucn
oxt
= DxFO(th(ta C? O))E(t C’ 0)7

for t*-1(¢,0) <t < t(¢,0). Solving the above linear differential equation we get

axéfl

0z

ox’

7(757 <7 0) = Y(ta C)Y(te_l(gu O)? C)_l

> (1(, 0):€, 0)

= Y(t,QY(0,0)7",

for t=1(¢,0) < t < #(¢,0) and ¢ € U,. The last equality comes from the induction hypothesis

because
oxt Oxt—1

E(te_l(C7 0)7 C’ 0) = W(tg_l(gv O)? Ca 0) - Y(te_l(g7 0)7 C)Y<07 C)_l'

The above induction has proved that for every z € C, z'(t,2,0) is a C! function in the second

oxt . .
variable and a—x(t, 2,0) =Y (t,2)Y(0,2)!, provided that *~! <t < ¢'. The proof of this lemma
2 .
follows by observing that for z € C and t € S! there exists £ € {1,2,..., .} such that t*~!(z,0) <
t < t¥(z,0), hence z(t, z,0) = (¢, 2,0). O

Lemma 2.7.6. Under the hypotheses of Theorem there exists a small parameter € [0, gg] such
that for every e € [0, go] the function z — (T, z,€) is locally Lipshchitz for z € C'. The parameter
g0 and the set C' are defined in the statement of Lemma [2.7.4]

Proof. Given z € C, the solution of system starting at z is given by . From the proof
of Lemma we know that for each z € C there exists a small neighborhood U, C D of z such
that the solution z(t,(, ) can be written as having the same number r, of differentiable
pieces for every ( € U, and ¢ € [0, &].

Let ¥, (t, to, o, €) be the solution of the differential equation

o' = F"(t,x) = F(t,r) + eF'(t,z) + 2 R"(t, , ),

such that 1, (to, to, z0,€) = xo. Clearly 1, (t,t9, 0,0) = @u(t,t9,20) which has been defined
in Lemma [2.7.5] From the result of the continuous dependence of the solutions on the initial
conditions we conclude that each of these functions are continuous in the variables (t, %o, x¢).
Indeed F™ is a continuous function which is Lipschitz in the second variable for ¢ = 1,2,..., k..
So using the Gronwall Lemma (see, for instance, [99]) we conclude that

[¢n(t, 51, 21,€) — Yn(t, 59, 20, €)||< Me |51 — so|+elT |21 — 2], (2.7.42)
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for each t, 51,59 € S, 21,20 € U,, and ¢ € [0, g0, where the constant L and M are defined in the
proof of Lemma [2.7.4] Moreover,

Oy,
H 015,29 = N Eults 5,0t 5,2, 2),2)| < M,
therefore
M
||Un(t1, s, 2,€) — Yn(te, s, 2,€)|| < max||——(,s,z,¢)| - |t1 — ta]
test || Ot
(2.7.43)
< Mlt; — ta].
The relations (2.7.42)) and ([2.7.43) gives the following inequality
[t (t1, 51, 21, ) — Un(ta, 2, 22, €)||< Mty — o]+ Me"T|sy — s
(2.7.44)
etz — 2|,
for t1,ts, 51,50 €S, 21,20 € U,, e € [0,60), and n=1,2,..., N.
From ([2.7.16]) we obtain
z'(t,¢,€) = ¥, (t,0,(,e) and
(2.7.45)

xi<t7 ¢, O) = Un, (ta ti_l(g 5)a xi_l(ti_l(Ca 5)7 ¢, 5)’ 5)7

for € U, and for i = 2,3,... k.. Thus, for i = 1, 2*(t,(,€) = ©,,(t,0,¢). So from (2.7.44) we
have that

HiUl(thl,S) — 2l (ta, 20, €)||=  |[thn, (11,0, 21, €) — ty, (£2,0, 29, €)]|
S eLTH,zl — ZQH“‘M’Tfl — tg‘,

for every 21,20 € U,, 0 < t; < t1(21,¢), 0 <ty < t'(29,¢), and € € [0, 7.
We assume by induction hypothesis that there exist constants A, ; and B,_; such that

25 (1, 21, ) — 25 (ta, 20, €)||< Aroi[ts — to|+Bei]|z1 — 2|,
for every 21,2 € U, t*7%(21,¢) < t; < 77121, ¢), 772 (20, 6) <ty < t'71(29,¢), and € € [0, g¢].
Now for i = ¢ the relation (2.7.45)) implies that z(t,(,e) = ¥, (¢, t71(¢, €), 271 (#71((, €), ¢,

g),e) for ¢ € U,, t*"1(¢,e) <t <t'(¢,e) and ¢ € [0,50]. So from induction hypothesis we obtain
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that
|2 (t1, 21,€) — 2 (b2, 22, €)||= |[thn, (81,87 (21, ), 2 (E (21, €), 21, €), €)
— U, (b2, 7 (22, 8), "7 (H (22, €), 22, €), €)[|<
Mlty — to|+Me |t (2, &) — £ (29, €))] (2.7.46)
e T2 (21, €), 21, €) — 2P (20, €), 22, €)||<

Milt; — t2|—|—6LT(M + Ag_1)|té_1(zl, ) — té_l(ZQ, €)|—|—€LTBg_1||Z1 — 2|

for every z1, 20 € U,, "7 (21,6) <ty < t¥(z1,8), t"" N 2g,¢) <ty < t¥(29,¢), and € € [0, ).
From Claim 1 of the proof of Lemma we have that t*~1(z, ) is a C! function, then there
exists a constant § > 0 such that [t*"1(21,¢) — t/7 (29, €)|< 6]]21 — 22| for every e € [0, &]. Going

back to the inequality (2.7.46) we get
|2(t1, 21, €) — 2 (t2, 22, €)||< Adlts — ta|+Bel|21 — 22l

for every 21,20 € U,, t71(21,¢) < t; < t¥(21,¢), t*" Hz,6) <ty < t¥(20,€), and € € [0, &), where
Ay = Me" and By = e (6(M + Ay_1) + Be_1).

The proof of this lemma follows by noting that x(7), z,&) = (T, z, &) which, from the above
induction, is locally Lipschitz in the variable z. O

Lemma 2.7.7. Under the hypothesis of Theorem [H| the solution z(t, z,¢) of the unperturbed
differential system (2.5.2)) is C? in the variable z for every z € C. Moreover (0x/92)(t,z,0) =
Y (t,2)Y(0,2)"!. The set C is defined in the statement of Lemma and Y is the fundamental

matrix solution of (2.5.3]).

Proof. Assuming the hypothesis (h1) instead of (H1) we can prove, analogously to Claim of
the proof of Lemma , that for a given 2z € C the functions t'(z,¢), i = 0,1,2,--, k., are of
class C? for every ( in a neighborhood U, C C of z and € € [0, &y]. The proof of this lemma follows
analogous the proof of Lemma but now considering the functions 1, (¢, tg, g, €) defined in
Lemma 2.7.6 O

The next two lemmas are versions of the so called Lyapunov—-Schmidt reduction for finite dimen-
sional function (see for instance [24]). Their proofs can be found in [20] and [17, [18], respectively.
The first lemma will be used for proving Theorem [G], and the second one will be used for proving
Theorem [Hl

Lemma 2.7.8. Let P : R? — R? be a C! function, and let Q : R? x [0,&] — R? be a continuous
functions which is locally Lipschitz in the first variable, and define f : R? x [0,g0] — R? as
f(z,6) = P(2)+eQ(z,€). We assume that there exists an open bounded subset V' C R* with k < n
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and a C! function B : V — R?* such that P vanishes on the set Z = {2z, = (a, Bo(a)) : a € V}
and that for any a € V the matrix DP(z,) has in its upper right corner the null k£ x (d — k) matrix
and in the lower corner the (d —k) x (d — k) matrix A, with det(A,) # 0. For any a € V we define
fi(a) = mQ(24,0). Thus if fi(a) # 0 for all & € IV and dg(f1,V,0) # 0, then there exists e; > 0
sufficiently small such that for each ¢ € (0,&] there exists at least one 2. € R? with F(z.,&) =0
and dis(z., Z) - 0 ase — 0.

Lemma 2.7.9. Let P : R? — R? and Q : R? x [0,gg] — R? be C? functions, and define f :
R? x [0,e0] — R? as f(z,6) = P(z) +eQ(z,¢). We assume that there exists an open bounded
subset V C RF with k£ < n and a C? function By : V' — R%* such that P vanishes on the set
Z ={zq = (o, o)) : a € V} and that for any a € V the matrix DP(z,) has in its upper
right corner the null k& x (d — k) matrix and in the lower corner the (d — k) x (d — k) matrix A,
with det(A,) # 0. For any o € V we define fi(a) = 7Q(24,0). Thus if there exists a € V with
fi(a) # 0 and det(f’(a)) # 0, then there exists . such that f(z,.,e) =0 and 2, — z, as e — 0.

Now we prove our main results.
Proof of Theorem[G. We consider the C! function f : C' x [0, 0] — R, given by
f(z,e) =2(T, z,¢) — z. (2.7.47)

Its differentiability comes from Lemma 2.7.5] Clearly system for e = & € [0,g0] has a
periodic solution passing through z € C' if and only if f(Z,2) = 0.

From Lemma2.7.4 we have that z(t, z, ) = x(t, z,0)+eyi (¢, z) +o(e). Taking P(z) = z(t, z,0)—
z and Q(z,¢) = yi(t, 2) +o(e) /e, thus f(z,e) = P(z)+eQ(z,¢). Moreover from Lemma 2.7.5 P(2)
is a C! function, and from Lemma Q(z,¢) is a continuous function which is locally Lipschitz
in the first variable because Q(z,¢) = (2(T, z,¢) — x(T, 2,0)) /e.

In order to apply Lemma to function we compute

P(z,) = (T, 24,0) — 24 = 0,

and

oP ox
g(za) = g(T,ZQ,())—Id

= Y (T)Y,(0)"! - Id.

From hypothesis (H) the function P vanishes on the set Z, and from hypothesis (H2) the matrix
DP(z,), for each a € V, has in its upper right corner the null k£ x (d — k) matrix and in the lower
corner the (d—k) x (d— k) matrix A, with det(A,) # 0. Since 7Q(«, Bo(a)) = 7y1 (T, z0) = fi(«),
the proof follows by applying Lemma [2.7.8| O

Proof of Theorem[H. The proof is analogous to the proof of Theorem [G] applying Lemma,
instead of Lemmas [2.7.5] and [2.7.6, and applying Lemma instead of Lemma [2.7.8] O
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2.8 Studying examples

2.8.1 Proof of example 1
Proof of Proposition[2.6.1. The linear DPDS in polar coordinates (r, ) becomes
7= ¢ (ag;cosB + ayr cos? O + by; sin @ + ay;r cos 0sin 6 + by cos @ sin O + by;r sin? ) +
2 (co; o8 O + c137 cos? 0 + cor cos O sin O + dy;r cos 0sin 0 + dy;r sin? 0 + dy; sin 6)
0= —1-— ; (—bo; cos O — by;r cos? 0 + ag; sin 6 + a1;7 cos 0 sin 6 — by;r cos 0 sin 6 + ayr sin? §) —
E: (—dg; cos 0 — dy;r cos® 0 + co; sin 0 + c1;7 cos 0sin § — do;r cos @ sin 6 + o7 sin? 6)

withi=1if0<0<7/2,i=2ifr/2<60<mi=3ifn <0 <3r/2,andi=41if 37/2 <6 < 27.
Taking the angle 6 as the new independent variable the DPDS (2.6.1]) writes

7= EFM + 52F2i + 0(83), (281)
where
Fii = —r(ag; cos 8 + ayr cos? 0 + by; sin 0 + agr cos 0 sin 6 + by;r cos 0 sin 6 + byyr sin? 0),
1
Fy = —(=byrcos* 0 — by; cos 0 + ay;rsin 0 cos 6 — by;r sin 6 cos 0 + ag;r sin® 6 + ag; sin 6)
r

(@137 cos? 0 + ag; cos O + agr sin 0 cos O + by;r sin 6 cos 6 + by;r sin® 6 + by, sin )

—(e137 c08% 0 + cg; cos 0 + o7 sin 0 cos 0 + dygr sin 6 cos 6 + da;r sin® 0 + dg; sin 6).

From Proposition the assumptions of Theorem |[Ef hold for the DPDS (2.8.1]). Computing

the averaged function f; we obtain
1
filr) = 17"(—4(101 + 4(age + ao3 — aps — bo1 — boz + bosz + boa)
—(2a91 — 2(age — ags + agq — biy + b1z — byz + b1a)

+(a11 + a12 + a13 + @14 + bag + bag + bag + boy)m)7).

Clearly fi has at most 1 zero. Moreover we can choose coefficients a;;, in such a way that f;
has a simple positive zero. Hence this proposition is proved. O]

Proof of Proposition[2.6.3. We choose coefficients a;;, such that the conditions contained in A
hold. Then fi(r) = 0. Again from Proposition m the assumptions of Theorem |F| hold for the
DPDS ([2.8.1). Using some algebraic manipulator as Mathematica or Maple we obtain

fg(?”) = ]CO + ]{517” + ]{327“2 + ]{?37"3 + ]{347’4, (282)
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where k;, i = 0, ...,4, depends on the coefficients a;;, 7 = 0,1, j =1, ...,4 and can be taken freely.
The function is a polynomial in the variable r of degree 4. So, clearly, it has at most 4
zeros. Moreover we can choose coefficients a;;, ¢ = 0, 1, such that has 0, 1, 2, 3 or 4 simple
zeros. So this proposition is proved. O

2.8.2 Proof of example 2

First of all we recall the Descartes Theorem about the number of zeros of a real polynomial
(for a proof see for instance either the pages 82 and 83 of [7], or the appendix of [82]).

Descartes Theorem Consider the real polynomial p(x) = a;z" + ay,x™ + -+ + a;, 2" with
0<ip <iy < <i, and a;, # 0 real constants for j € {1,2,---,r}. When a;;a;,,, <0, we say
that a;; and a;,,, have a variation of sign. If the number of variations of signs is m, then p(z) has
at most m positive real roots.

Now consider the functions

g1(u) =1,
go(u) = u?,
93(U) = u4v

g4(u) = u (2 + u?) arccos (h) ,

gi(u) = u(2+u?),

G2 (u) = u (2 +u?) (w — arccos (h)) ,

gs(u) = v2ub — u (8 — 4u* — u®) (;T + arcsin (ﬁ)) , and

3rud (2 4 u?)? u
u) = —v2ub — —u (8 — 4u* — ub) arccos | — | .
97( ) \/_ 9 ( ) m

We deﬁne the sets Of functions Gl = {9179279379479%} and G2 = {91a92793794a9§>g(57g7}-

Lemma 2.8.1. The sets of functions G' and G? are ECT-systems (see Appendix B) on the interval
(0, 00).

Proof. To prove the statement we compute the Wronskians W1 (u) = g1 (u), Wa(u) = W(g1, g2)(u),
Wa(u) = W(g1, g2, 93)(w), Wa(u) = W (g1, g2, g3, 9a) (u), Wi (u) = W (g1, g2, g3, 9a, g5) (1), WE (u) =
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W(g1, 92,93, 94, 92) (w), We(u) = W (g1, 92, 93, 94, 92, g6 ) (u), and We(uw) = W (g1, g2, g3, 94, G5, g, 97) (w).
So

Wl(u) = 1,

WQ(U) = 2“7

Ws(u) = 16u?,

Wy(u) = Mo (P (u) + Po(u) arccos (u))
4 - (2 + u2)2 1 2 \/m )
Loy 6144y/20°

WS (U') - (2 + U2)3 )

2, N _6144\/§7Tu3
W5 (U) - (2 + u2)3 )
—12288
We(u) = M (Ql(u) + Q2(u) arcsin (h)) , and
W (u) = 14495 514 6247%u (11 + u?)
7 - )

(2 +u?)®

where
Pi(u) = V2u (12 + 4u® + 3u4) )
2
Py(u)= 3 (2 — u2) (2 + uz) )
Qi(u) = 144v2m — 288u — 336/ 2mu220u® + 1656+ 2mu? + 14 584u” + 5 760v/ 27’

+14700u” + 4 305v/27u® + 3 780u” + 945v27u'?,  and

Qo(w) = 6v2(2+u?) (12 - 40u” + 175u" + 3150°).

Clearly Wi(u) # 0, Wa(u) # 0, Wi(u) # 0, Wi (u) # 0, W2(u) # 0 and Wr(u) # 0 for u > 0.
To see that the function Wy(u) does not vanish for any u > 0 we shall prove that

V2 +u?

is an increasing function. Computing its derivative we have

P'(u) = 6u (x/iu (24 3u?) + (3u' + 4u* — 4) arcsin ( h)) .

f’(u):Pl(u)—i—Pg(u)arccos( “ )
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It is easy to see that (3u® + 4u* — 4) is increasing. So P’ (u) is also a increasing function for u > 0,
because it is sums and products of increasing functions. Since P’(0) = 0 it follows that P’(u) > 0
for every u > 0. This implies that P(u) is an increasing function for u > 0. Again, since P(0) = 0
it follows that P(u) > 0 for every u > 0. Thus Wy(u) # 0 for u > 0.

To see that the function Ws(u) does not vanish for any u > 0 we shall prove that

Q) = Qu(u) + Qa(u) arcsin (ﬁ)

is a positive function for u > 0. From Descartes Theorem the polynomials ); and () have at
most 2 zeros, and 1 minimum or maximum. Numerically we find u; ~ 0.247 and uy = 0.269 as
the minimums for (); and )5 respectively. So @(u) is an increasing function for u > max{uy, us}.
Finally it is easy to see that Q(u) > 0 for 0 < u < max{uy,us}. Thus We(u) # 0 for u > 0. Hence
this lemma is proved. O

Proof of Proposition[2.6.3. Consider system (2.6.2]). Proceeding with the change of variables z =
rcosf and y = rsin @, and taking € as the new time, system ([2.6.2]) becomes equivalent

A(0,r) if rsin®f +sinf —r > 0,
r' = (2.8.3)
B(#,r) if rsin®+sinf—r <0,
where
A(f,r) = —pygr?cos®§ — rcos® 0 (pio + (Ph + ‘J%o) 7 sin 9)
—cos 6 (p[l)o +rsinf (pél + Q%o + (p(lJ2 + q%l) 7 sin 9))
—sind (q(l]o +rsind (qél + qgor Sin 0)) ,
_ 1.2 ..3 2 1 1 1 .
B(0,r) = —ryr-cos’d —rcos” 0 (7"10 + (7“11 + 320) 7 sin 8)
—cos 0 (7”(1)0 +rsind (r(l)l + 879 + (7’52 + 8%1) rsin 6))
—sin@ (séo +rsin 6 (S(l)l + 8957 sin 8)) .

Clearly hypothesis (Hal) holds for system (2.8.3)). Given

0,(r) = arcsin (21142) and 6y(r) = m — arcsin (23—1@2) :

we have that for r > 0, rsin®6 +sinf — 7 > 0 if and only 0 < 6 < 6y(r) and 6;(r) < 6 < 27; and
rsin? @+sin@—r < 0if and only if 0, (r) < 6 < 0y(r). Let h(6,7) = rsin? @ +sin 6 —r, thus the set of
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discontinuity of system (|2 is given by ¥ = A~1(0) = {(61(r),7) : 7> 0} U{(02(r),7) : > 0}
Since

(1+4r?) (-1 + VI+47)

<V}~L(91(T), T)? (17 A(el (T)v T))> <VE(01 (7’), T)a (17 B(el (T), T))> =

2r2
B N 1+4r2) (=1 + /1 +4r2
<Vh<92<r>,r>,<1,A<ez<r>,r>>><Vh<92<r>,r>,<1,B<eg<r>,r>>>=( . )(27; u >,

we conclude that ¥ has only crossing regions. So hypothesis (HC') holds for system (2.8.3)).
Taking r = uv/2 + u2?/2 and computing the averaged function f; we obtain

fi(u) = k1gi(u) + kaga(u) + ksgs(u) + kaga(u) + ksgs (u),

where
ki = 24v/2 (qéo — 3(1)0) ,
ky = 22 (—3]9%0 +2p1y + 3oy + Aoy + 259 + 3ryg — 217y — 3sg; — A5y — 25%0) ,
ks = 62 (QéQ - 3(1)2) ;
ky = —6 (pl() +do1 — 710 301)
ks = —3 (plo +do1 — T 501)
So from Lemma [2.8.1] and Theorem [E] the proof follows. O

Proof of Proposition[2.6.4). In order to apply Theorem [F| to system (2.8.3) we have to guarantee
that fi(u) = 0. By the linearity of the set of functions G', fi(u) = 0 if and only if k; = 0 for
t=1,2,...,5. Thus assuming that k; = 0 for : = 1,2,...,5, it is easy to see, using some algebraic
manipulator as Mathematica or Maple, that the statement (VA(0:(r),7), (s,y1(61(r),t))) = 0
implies s = 0 holds if and only if the conditions B holds. So assuming conditions B the hypothesis
(Hb2) holds.

Taking r = uv/2 + u?/2 and computing the averaged function f; we obtain

fo(u) = k1g1(w) + kaga(u) + ksgs(u) + kaga(u) + ksgs (w) + kegs(u) + kege(u).

Hence from Lemma and Theorem [F] the proof follows. n

2.8.3 Proof of example 3

To study system - ) it is conveniently to proceed with the change of variables (u,v,w) =
(rcos®, rsin, z). Taking 6 as the new time by doing 7' = 7/0 and 2’ = #/6 system (2.6.3)) becomes
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(0,2) +eGH(O,r,2)+ 0O if 0<0<m,
(r',2) = (2.8.4)

(0,2) +eG(0,r,2) +O(?) if 7<6<2n,
where G* = (Gli, G’f), and
Gi = bircos?f+ (af +dfz + (by + ¢f)rsin 9) cos
+ (CL;[ +diz + cirsin 9) sin 4,
G =

1
- (r(a§ +dyz) — byrzcos® 0+ (Cyr® + (af +di2)z + c¢irsinf)sin @
,

(bir? — (a3 +dF)z + (bF — c§)rzsinf) cos 9) .

Here the prime denotes the derivative with respect to 6.

For system we have that D = {(r,2z) : 0 < r < 19, 2 € R} and T = 27 with rg
arbitrarily large. We note that ¥ = {(0,7) : » > 0} U {(w,7) : r > 0} U {(2m,r) : r > 0}, thus
taking h(0,r,2) = 6(0 — 7)(0 — 27) it follows that ¥ = h=1(0).

In what follows we prove Proposition [2.6.5]

Proof of Proposition[2.6.5. To prove this proposition we shall study the elements of hypothesis (H)
of Theorem [G] For £ = 0 the solution (6,7, z,0) of system such that (0,7, 2,0) = (r, z) is
given by x(0,7,2,0) = (r,e’z). Taking V = {r € R: r; < a < ry} with r; > 0 arbitrarily small
and rog > ro > 11, and By = 0 we have that the solution z,(f) = («,0) is constant for every a € V,
particularly 2m—periodic. In this case the compact manifold Z of periodic solution of the system
(2.8.4) when € = 0 is given by Z = {(«,0) : r; < a <13}, and ¥y = D is an open bounded set.
Since Z C ¥ it follows that Z N 0%y = 0. Moreover computing the crossing region of system
for ¢ > 0 sufficiently small we conclude that ¥¢ = ¥, so we obtain that Z0 N Y C X°.
Therefore hypothesis (H) hods for system (2.8.4).

Hypothesis (H1) of Theorem [G] clearly holds for system (2.8.4). To check hypothesis (H2) we
take

Ox 1 0

Y(6,r,2) = 5
z

0,r,2,0) =

0 &

as the fundamental matrix solution of system ([2.5.3)) in the case of system ([2.8.4). So

0 0
Y, (27)Y,(0)™! — Id = Y (27, ,0)Y(0,,0) ! — Id =

0 ™ —1
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Note that A, = e*™ — 1 # 0 for every o € V. Hence hypothesis (H2) holds for system ([2.8.4)).
Now if (0,7,z) € X3, then # € {0,7}. On the other hand Vh(0,r,z) = (27%0,0) and
Vh(m,r,z) = (=7%,0,0) for every (r,z) € D. So (Vh(0,r,z),(0,v)) = 0 for every 6 € {0,7},
(r,z) € D, and v € R?, which means that for any v € R* we have that (0,v) € T{g,..)¥ for every
6 € {0,7} and (r,z) € D. In short hypothesis (H3) holds for system ([2.8.4)).
Using an algebraic manipulator as Mathematica or Maple we compute

fi(a) :g(bf—l—bl——kc;—l—c;)a—l—Q(a;—a;).
From hypotheses (b;r + by +c5 + 02_) (aQ_ — a;) > 0, thus

i)
_ﬂ(bf+bf+c§r+cg)

is a solutions of the equation f;(a) = 0 such that fj(a) # 0. From Remark it is a sufficient
condition to guarantee the existence of a small neighborhood W C V' of a such that dg(fi, W,0) #
0. Since f; is linear, it is clear that fi(«) # 0 for every o € OW. Therefore hypothesis (H4) of

Theorem |G| holds for system ([2.8.4)).

Now the proof of the proposition follows directly by applying Theorems [G] and [H] O
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Chapter 3

Limit cycles of planar piecewise linear
systems with two zones

The main result of this chapter (Theorem [I) is based on the paper [91].

3.1 Introduction to the Braga—Mello conjecture

The computation of upper bounds for the number of limit cycles in all possible configurations
within the family of planar piecewise linear differential systems with two zones has been the subject
of some recent papers. Assuming that the separation boundary is a straight line, Han and Zhang
[43] conjectured in 2010 that for such planar piecewise linear systems there can be at most two
limit cycles. However, Huan and Yang [48] promptly gave a negative answer to this conjecture
by means of a numerical example with three limit cycles under a focus-focus configuration. Such
counter-intuitive example led researchers to look for rigorous proofs of this fact, see [80] for a
computer-assisted proof, and [37] for an analytical proof under a more general setting.

Recently, in [I1] one can find a study showing that the three limit cycles of the Huan and
Yang’s example can be simultaneously obtained through a rather special bifurcation. Later, a
general and analytical proof for the existence of three nested limit cycles in certain open regions
of the parameter space in the focus-focus configuration was given in [37]. In [38] it is proved that
one can have three limit cycles not only in the focus-focus case, as shown in [37], so that the
lower bounds for the maximum number of limit cycles corresponding both to the focus-node and
focus-saddle cases is three, one more than stated before, see [83]. This number three seems to be
the maximum number of limit cycles that can be obtained through piecewise linear perturbation
of a linear center, see [22]. In all the cases, the existence of a sliding set is crucial for existence of
multiple limit cycles; otherwise, it can be shown the uniqueness of limit cycles, see [87].

When the boundary between the two linear zones is not a straight line any longer, it is possible
to obtain more than three limit cycles. Thus, by resorting to the same example introduced in
[48] and analyzed in [80], Braga and Mello studied in [I2] some members of the following class of
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discontinuous piecewise linear differential system with two zones

G-X if H(X,p) <0,
X' = (3.1.1)

G*X if H(X,p) >0,

where the prime denotes derivative with respect to the independent variable ¢, p is a parameter
vector, X = (z,y), and

ot g 9is
921 92
are matrices with real entries satisfying the following assumptions:
(H1) gz <0,
(H2) G~ has complex eigenvalues with negative real parts while G has complex eigenvalues with
positive real parts, and
(H3) the function H is at least continuous.

After using some broken line as the boundary between linear zones, Braga and Mello in [12] put
in evidence the important role of the separation boundary in the number of limit cycles. They
obtained examples with different number of limit cycles, and accordingly stated the following
conjecture in [12].

Braga—Mello Conjecture Given n € N there is a piecewise linear system with two zones in the
plane with exactly n limit cycles.

As a consequence of this conjecture we have that the number of limit cycles for the family of
planar piecewise linear differential systems with two zones is unbounded.

3.2 Oscillating the line of discontinuity to create several
limit cycles

In this section, we prove that the Braga—Mello Conjecture is true by showing how to perturb
a rather simple vector field in order to get as many limit cycles as wanted. We provide several
concrete examples. Furthermore, we show that the involved methodology allow us to locate the
position of the limit cycles and determine their stability.

We start from the normal form given in [36] for systems of kind and after selecting an
appropriate value for v > 0, we take

+2y -1
G* = : (3.2.1)
¥+1 0
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and

x it y <0,
H(X)= (3.2.2)

x—h(y) if y>0,

where h(y) is a C' function such that h(0) = 0. We also assume that for y > 0 the following
hypotheses:

(HY') |h(y)l< y/7,
(H2') h(y)(2y — (1 +~*)R'(y)) <y, and
(H3') h(y)(2y + 1+~ (y)) > —y.

As shown in Section Hypothesis H1' is just assumed to facilitate the computation of solutions,
whilst Hypotheses H2' and H3' allow us to assure that the two linear vector fields can be concate-
nated across the discontinuity curve in the natural way, so avoiding the existence of sliding sets,
see [64].

It should be noticed that when h(y) = 0 the boundary separating the two linear zones is a
straight line, namely the y-axis. In such a case, we have indeed a continuous vector field with a
global nonlinear center at the origin, since from each side the origin is a focus and the expansion
in the right part is perfectly balanced with the contraction in the left part. Furthermore, all the
periodic orbits of the center are homothetic. See the left panel of Figure [3.2] and Proposition 4.2
of [36] for more details.

In the case of a non-vanishing function h, the discontinuity set for system (3.1.1)) is given by

Y ={(h(y),y) : y > 0,h(y) # 0},

so that the balance between expansion and contraction is lost; as it will be seen, some periodic
orbits from the original center configuration can persist, becoming isolated and so leading to limit
cycles.

Our main result is the following.

Theorem I. Assume v > 0 and consider system (3.1.1)-(3.2.1)) and the switching curve H(X) = 0
as in , where h satisfies Hypotheses H1', H2' and H3'. For a given positive real number y*
there exists a periodic solution of system passing through (h(y*), y*) if and only if h(y*) = 0,
in this case the periodic solution cut the y—axis at the points (0,y*) and (0, —e~""y*). Moreover
if W' (y*) <0 (h'(y*) > 0) this periodic solution is a stable (unstable) limit cycle.

Theorem [[| is proved in Section [3.3]
The Braga—Mello Conjecture is a direct consequence of Theorem [[|as we can see in the following
corollaries. See also the right panel of Figure [3.2]
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Figure 3.1: Left: The unperturbed piecewise linear center for v = 0.75. Right: Here we consider
the system of Corollary for n = 2 and 7 = 0.75. The continuous bold (dashed) closed curve
surrounding the origin represent one stable (unstable) limit cycle, while the remaining orbits are
not closed any longer. The discontinuity set is represented by the dashed line crossing the y—axis
twice for y > 0.

Corollary 3.2.1. If 0 < vy < 4/3/5 and

h) 2y sin(ry), 0<y<(2n+1)/2,
Y =127~
L > (2n+1)/2,

then system (3.1.1)) has exactly n limit cycles for any n € N. These limit cycles are nested and
surround the origin, which is a stable singular point of focus type. The limit cycles cut the y—axis
at the points (0, k) and (0, —ke™ ™) for k = 1,...,n, being stable (unstable) for k even (odd).

Using Theorem [[] we can find some systems exhibiting exotic configurations of limit cycles. As
an example we prove the following corollary, where we find an infinite sequence of limit cycles
accumulating at the origin.

Corollary 3.2.2. Given 0 < o < (=1 ++/3)/2, if v = 1 and h(y) = ag?sin(1/y) for y > 0 with
h(0) = 0, then for each k = 1,2, -- there exists a limit cycle of system (3.1.1)) cutting the y—axis
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at the points (0,1/(kn)) and (0, —e~™/(kw)) being stable (unstable) for k& even (odd). These limit
cycles are nested and surround the origin, which is a stable singular point of focus type.

Corollaries [3.2.7] and [3.2.2] are proved in Section Note that the function A is bounded and
that its upper bound can be taken as small as desired. Thus, we do not need a big perturbation
to obtain as much limit cycles as wanted.

The oscillating line used here to define the discontinuity set or switching curve seems to have
the same effect for getting several limit cycles than the one achieved in piecewise linear Liénard
systems with an oscillating continuous function, see [79] and [81], or with a discontinuous one, see
[108]. It is difficult however to establish a relationship between the Liénard systems studied in the
quoted papers (whose phase plane is split into many bands with different linear vector fields) and
the discontinuous systems considered here with only two linear pieces; the study of the existence of
(non-smooth) changes of variables relating these two contexts is beyond the scope of this chapter.

To finish, we emphasize that with a suitable choice of function A one can also get as much
semi-stable limit cycles as you want. We call semi-stable limit cycles the isolated periodic orbits
that are stable from the interior and unstable from the exterior or vice versa. Thus, we next state
our last result.

Corollary 3.2.3. If 0 < v < 4/3/13 and

2y 1 —cos(my), 0<y<2n+1,
hy) = -
(V2 +Dm

2, y>2n+1,

then system (3.1.1)) has exactly n limit cycles for any n € N. These limit cycles are nested and
surround the origin, which is a stable singular point of focus type. The limit cycles cut the y—axis
at the points (0,2k) and (0, —2k e ") for k = 1,...,n, being all of semi-stable type.

Corollary can be proved in a very similar way than Corollary in fact, its proof (to
be omitted for sake of brevity) is even easier since the function h is non-negative. In showing the
semi-stable character of limit cycles, first two statements of Lemma should be taken into
account, see below.

3.3 Proofs of main results

The proof of Theorem [[] is made by constructing a displacement function for points of kind
(h(y),y) with y > 0. Since system has a focus at the origin in the both sides, we obtain
this displacement function by computing the difference between the position of the first return
to the section {x = 0, y < 0} in forward time and the position of the first return to the section
{r =0, y <0} in backward time considering the flow starting in (h(y),y).
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Proof of Theorem[] We start by computing

. oo | T2hy) -
(VH(h(y),y), G=(My),y)) = (1,=h(y)) :
(v + Dh(y)

so that, from Hypotheses H2' and H3', we get

(VH(h(y).y), GT(h(y),y)) = =y + h(y) 2y — (1 +¥*)P'(y)) <0, and

(VH(h(y),y), G~ (h(y),y)) = =y + h(y) (=27 — (1 +~+*)'(y)) < 0.

Therefore for y > 0 the flow of system in all points (h(y),y) crosses always ¥ from
the right to the left, all becoming crossing points, in the usual terminology of Filippov systems,
see [64]. In other words, excepting at the origin, the two vector fields have with respect to X
nontrivial normal components of the same sign. In short, all orbits cross the curve H(z,y) = 0 in
an anti-clockwise sense with respect to the origin. Note that this property also guarantees that
orbits only intersect the discontinuity curve once after completing a turn around the origin.

Let ot (t,z,y) = (gpf(t, x,y), 05 (t,x, y)) be the solution of system for H(x,y) > 0 such

that 1 (0,z,y) = (x,y), and let o~ (¢t,z,y) = (7 (t,x,y), ¢5 (L, z, y)) be the solution of system

(3.1.1) for H(x,y) < 0 such that ¢~ (0, z,y) = (z,y). Since system ({3 is piecewise linear, these
solutions can be easily computed as

i (t,x,y) = e [(£yx — y)sint + x cost],
(3.3.1)

o5 (t,z,y) = e [(v?x F yy + ) sint + y cost] .

Let m/2 < tr(y) < 37/2 be the smallest positive time such that o7 (t.(y),h(y) ,y) = 0
and o5 (tr(y), h(y),y) < 0. We note that t.(y) > = if h(y) > 0, tL(y) = 7 if h(y) = 0, and
tr(y) < mif h(y) < 0. Similarly let —37/2 < tg(y) < —7/2 be the biggest negative time such
that ¢f (tr(y), h(y),y) = 0 and ¢35 (tr(y), h(y),y) < 0. We note that tr(y) > —7 if h(y) > 0,
tr(y) = —m if h(y) =0, and tr(y) < —m if h(y) < 0. From hypothesis H1" we have |h(y)|< y/7,
so y +vh(y) > 0 and y — vh(y) > 0, therefore we can easily compute ¢.,(y) and tg(y) as

tr(y) = m + arctan (h(y)) ,

y+h(y)
h(y) )
tr(y) = —7 +arctan | ————— | .
«w) (y = 7h(y)
Accordingly, we have
y+7h(y) . h(y)

cos(t1(y)) = —

, sin(tp(y)) = — :
\/

VW +7h())? + h(y)? ( +vh(y))? + h(y)®
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and

cos(in(y)) = ———L—2W " Gin(tn(y)) = - M)

V& = 7h(y))? + h(y)? V= 7h())? + h(y)?
Finally, substituting in (3.3.1)) and after some standard manipulations, we obtain

—~ym—"y arctan h(y)>
w3 (tr(y), h(y),y) = —e <y W) S+ h(m)? + hly)?,

and
h(y)

23 (tr(y), hy),y) = —e y‘”“”>¢@—vmwv+h@ﬂ
We construct now the displacement function as f(y) = ©3 (tr.(y), h(y), y) — 03 (tr(y), h(y), y), thus
h(y) )
=)/ g = k() + h(y)?

—~ym—"y arctan <h(y)>
— VEAR) g h(w) + R

—ym—+y arctan <

—ym—+y arctan (

fly)= e

If y* > 0 is such that h(y*) = 0 it is easy to see that f(y*) = 0. Therefore there exists a
periodic solution passing through (h(y),y). The following auxiliary results, where we prove a little
bit more than needed for Theorem [I| can be easily shown under the previous hypotheses.

Lemma 3.3.1. Taking y > 0, if we have h(y) > 0 (h(y) < 0) then f(y) >0 (f(y) < 0).

Proof. We show first that if A(y) > 0 then f(y) > 0. To see this, we consider for a fixed y > 0 the

function
x

'yarctan( )
Fy(z)= e y=2) (g — yx)? + 22

T
—'yarctan( )
—e y+ozx \/(y+7x)2+x2.

Clearly f(y) = e ""F,(h(y)). We note that F,(0) =0 and

Fy(z) = d,(x) = 6,(—),

where

T

’yarctan( )
oy(z) =e y—nx \/(y—vm)Q—i-xQ.
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Since we are dealing with a difference of two positive terms, for determining its sign we can
work with the difference of squares, avoiding so to deal with square roots. Now the derivative of
o, (x)? — &, (—x)? with respect to  simplifies to

) (y572)
— —2varctan
Y17/ —22(1+4%)e y+ax

2’yarctan<
2z (1 + ’yz) e ,
which is obviously positive for all 0 < z < y/v. Then F,(x) is monotone increasing for the same
range, and we can assure that f(y) = e " F,(h(y)) is positive.

Since Fy(—x) = —F,(x), the case h(y) < 0 is a direct consequence of the above reasoning and
the lemma follows. L

Lemma 3.3.2. Assume y* > 0 such that h(y*) = 0. The following statements hold.

(1) If there exists € > 0 such that h(y) < 0 (h(y) > 0) for y* — e < y < y* then the periodic
orbit passing for (0,y*) is stable (unstable) from the interior.

(73) If there exists ¢ > 0 such that h(y) > 0 (h(y) < 0) for y* < y < y* + ¢ then the periodic
orbit passing for (0,y*) is stable (unstable) from the exterior.

(z3i) If B'(y*) > 0 (W' (y*) < 0) then there exist a periodic solution passing for (0,y*) which is a
stable (unstable) limit cycle.

Proof. The three statements follow from the standard properties of displacement function and
Lemma [3.3.1]

In the case of statement (iii), an alternative proof can be obtained by direct computations of
derivatives of the displacement function f at y*. The expressions are quite long but simplify a lot
after substituting h(y*) = 0. One obtains f'(y*) = 0, so that the limit cycles are non-hyperbolic
and we need to resort to successive derivatives, getting f”(y*) = 0 and

2\ =T L (4,%)\3
() = §Y(1 +7)eH (y")"

Y2

We conclude again that the periodic solution is a stable limit cycle if A/(y*) > 0, and an unstable
limit cycle if A'(y*) < 0. O
From Lemma [3.3.2] Theorem [I| is shown. O

It follows the proofs of corollaries.
Proof of Corollary[3.2.1] Tt is easy to see that

2y
7+l

W (y)|<

Y

and to fulfill Hypothesis H1" we should need




which is true for all 0 < v < 1.
Furthermore, for y < (2n + 1)/2 we have
B(5)(27 £ (147 () = el sin(ry)(1 + cos(my)
(v + m '
We note that for 0 < v < ,/3/5 the inequality 8y*/(m + 7y?) < 1 holds. Again using that
sin(y)|< y for y > 0 we obtain

2

h(y)(2y — (1 +*)K (y)) < (148_772)%9 <y, and

82
h(y)(2y + (1 + ) > -y > —Y.
)2y + (1 + )W (y)) Ao Y
So the Hypotheses H2' and H3' hold for y < (2n+ 1)/2.
Now for y > (2n+1)/2 > 3/2 we have h'(y) = 0, so that

2

)y £ (1470 (1) = ()"

and the inequalities in Hypotheses H2' and H3' trivially hold.
Computing the zeros of the function h and applying Theorem [I[| we conclude that system (3.1.1|)

has exactly n limit cycles for any given n € N cuting the y-axis at the points (0, k) and (0, —k e ™)
for k=1,...,n. O]

Proof of Corollary[3.2.3 We note first that the hypothesis 0 < a < (—1 + v/3)/2 implies that
2a(1 4+ ) < 1. Thus, we also have a < 1, so that using the inequality [sin(1/y)|< 1/y for y > 0,
it is easy to see that |h(y)|< ay < y, and Hypothesis H1’ holds.

Since v = 1, we have

hy)(2y £ (1+ )R (y) = 2h(y) (L £ 1 (y)),
and then

Y
So using again the inequality [sin(1/y)|< 1/y for y > 0 we obtain

2h(y)(1 £ 1'(y)) = 2ay®sin <1> T 2a%y?sin <1> cos <1> + 4a2y? sin? <1> ‘
Y Yy Y

2h(y)(1 — N (y)) < 20y + 2%y = 2a(1 + a)y <y, and

2h(y)(1+ 1 (y)) > —2ay — 202y = —2a(1 + a)y > —y.

Hence the inequalities in Hypotheses H2' and H3' hold for y > 0.
Computing the zeros of the function h and applying Theorem [, we conclude the proof of the
corollary:. ]
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Chapter 4

Maximum number of limit cycles for
certain piecewise linear dynamical
systems

The main results of this chapter (Theorems [J] [K] and [L]) are based on the paper [76].

4.1 Introduction to the Lum—Chua’s problem

Non—smooth dynamical systems emerge in a natural way modelling many real processes and
phenomena, for instance, recently piecewise linear differential equations appeared as idealized
models of cell activity, see [26, 107, [[09]. Due to that, in these last years, the mathematical
community became very interested in understanding the dynamics of these kind of system. In
general, some of the main source of motivation to study non—-smooth systems can be found in control
theory [5], impact and friction mechanics [10, 13, 63], nonlinear oscillations [2), [88], economics
[44], 54], and biology [6, [62]. See for more details the book [29] and the references therein. In this
chapter we are interested in discontinuous piecewise linear differential systems. The study of this
particular class of non—smooth dynamical systems has started with Andronov and coworkers [2].

We start with a historical fact. Lum and Chua [96] in 1990 conjectured that a continuous
piecewise linear vector field in the plane with two zones separated by a straight line, which is the
easiest example of this kind of system, has at most one limit cycle. This conjecture was proved
by Freire et al [35] in 1998. Even this relatively easy case demanded a hard work to show the
existence of at most one limit cycle.

In this chapter we address the problem of Lum and Chua extended to the class of discontinuous
piecewise linear differential systems in the plane with two zones separated by a straight line. Here
we deal with non-—sliding limit cycle, which is a limit cycle that does not contain any sliding segment
in ¥. This problem is very related to the Hilbert’s 16th problem [52].

Limit cycles of discontinuous piecewise linear differential systems with two zones separated by
a straight line have been studied recently by several authors, see among others [3, 22], 111, [39] 43,
48, [49], 50, [65], (75, [80), 83]. Nevertheless the problem of Lum and Chua remains open for this class of
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differential equations. In this work we give a partial solution for this problem. We note that in [31]
the authors proved that if one of the two linear systems has its singular point on the discontinuity
straight line then the number of limit cycles of such a system is at most 4. Our results reduce this
upper bound to 2 and, additionally, we prove that it is reached.

Our point of interest in the Lum and Chua problem is aligned with two directions which face
serious technical difficulties. First, while solutions in each linear regions are easy to find, the times
of passage along the regions are not simple to achieve. It means that matching solutions across
regions is a very difficult task. Second, to control all possible configurations one must generally
consider a large number of parameters.

It was conjectured in [43] that a planar piecewise linear differential systems with two zones
separated by a straight line has at most 2 non—sliding limit cycles. A negative answer for this con-
jecture was provided in [48] via a numerical example having 3 non-sliding limit cycles. Analytical
proofs for the existence of these 3 limit cycles were given in [80, [37]. Finaly in [38] it was studied
general conditions to obtain 3 non—sliding limit cycles in planar piecewise linear differential sys-
tems with two zones separated by a straight line. Recently, perturbative techniques (see [77, [75])
were used together with newly developed tools on Chebyshev systems (see [93]) to obtain 3 limit
cycles in such systems when they are near to non—smooth centers.

When a general curve of discontinuity is considered instead of a straight line, there is no upper
bound for the maximum number of non-sliding limit cycles that a system of this family can have.
It is a consequence of a conjecture stated by Braga and Mello in [I2] and then proved by Novaes
and Ponce in [91].

4.2 Bounds for the maximum number of limit cycles

In this section we deal with planar vector fields Z expressed as Z = F(z) + sign(x)G(z), where
z = (z,y) € R? and F and G are linear vector fields in R? or, equivalently,

X(z) if >0,
i = (4.2.1)

Y(2) if x<0,

where X (z) = F(z) + G(z) and Y (z) = F(z) — G(z). The line ¥ = {z = 0} is called disconti-
nuity set. Our main goal is to study the maximum number of non-sliding limit cycles that the
discontinuous piecewise linear differential system (4.2.1)) can have.

The systems Z = X (z) and 2 = Y (z) are called lateral linear differential systems (or just lateral
systems) and more specifically right system and left system, respectively.

A linear differential system is called degenerate if its determinant is zero, otherwise it is called
non—degenerate. From now on in this chapter we only consider non—degenerate linear differential
systems.

System (|4.2.1)) can be classified according to the singularities of the lateral linear differential
systems. A non—degenerate linear differential system can have the following singularities: saddle
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(S), node (N), focus (F'), and center (C'). Among the above classes of singularities we shall also dis-
tinguish the following ones: a weak saddle, i.e. a saddle such that the sum of its eigenvalues is zero
(5Y); a diagonalizable node with distinct eigenvalues (N); star node, i.e. a diagonalizable node with
equal eigenvalues (N*); and an improper node, i.e. a non—diagonalizable node (iN). We say that
the discontinuous differential system is an LR-system with L, R € {S,S°, N, N*iN, F,C},
when the left system has a singularity of type L and the right system has a singularity of type R.

We define subclasses of LR-systems according to the position of the singularity of each lateral
system. The right system can have a virtual singularity (R,), i.e. a singularity p = (p,,p,) with
ps < 0; a boundary singularity (Ry), i.e. a singularity p = (p,, py) with p, = 0; or a real singularity
(R,) i.e. a singularity p = (pg,p,) with p, > 0. Accordingly the left system can have a wvirtual
singularity (L), i.e. a singularity p = (pg,py) with p, > 0; a boundary singularity (L), i.e. a
singularity p = (ps,py) with p, = 0; or a real singularity (L,) i.e. a singularity p = (p,,p,) with
Pe < 0.

We denote by N (L, R) the maximum number of non-sliding limit cycles that an L R-system
can have. Clearly N'(L, R) = N(R, L).

In this chapter we compute the exact value of N'(L, R) always when one of the lateral systems
is a saddle of kind S, S, S°, a node of kind N,,, Ny, N*, iN,, iN, a focus of kind F}, and a center
C. Particularly we obtain that N (L, R) < 2 in all the above cases.

It is easy to see that if one of the lateral linear differential systems is of type S,, Sy, N, Np,
N*, iN,, or Ny, then the first return map on the straight line x = 0 of system is not
defined. Consequently system does not admit non-sliding limit cycles in all these cases. So
N (R, L) =0 for the systems having one of these kind of equilibria.

It remains to study the cases when one of the lateral system is Fy, C or S°. For these cases we
shall prove the following theorems.

Theorem J. All numbers N (F, F,), N (F, F,.), N(E,, N,), N(Fy,iN,) and N (F,, S,) are equal
to 2, and all numbers N (F}, F), N (Fy, C) and N (Fy, SY) are equal to 1.

Theorem K. The equality N(SY, F,.) = 2 holds, all numbers N'(S°, F,), N (S°, Fy), N(S°, N,),
N(SY,iN,) and N(S?, S,) are equal to 1, and all numbers NV(S?, C') and N(S?, SY) are equal to 0.

We shall see that the next result can be obtained as an immediately corollary of the proofs of

Theorems [J] and [Kl

Corollary 4.2.1. The equality N'(Cy, F}.) = 2 holds, all numbers N'(Cy, F,), N (Cy, F,), N'(Cy, N,),
N (Cy,iN,) and N(Cy, S,) are equal to 1, and all numbers N(Cy, C') and N(Cj, SY) are equal to 0.

The equalities of Corollary can be extended for all linear centers.

Theorem L. The equality N (C, F,) = 2 holds, all numbers N'(C, F,)), N(C, Fy), N(C, N,), N(C,
iN,) and NV (C, S,) are equal to 1, and all numbers N'(C, C) and N(C, S?) are equal to 0.

Theorems [J| [K] and [}, and Corollary are proved in Section [4.4]

Our results give sufficient conditions in order to guarantee that system (4.2.1)) has at most 2,
1, or 0 limit cycles. We study the non-degenerate cases for which the expression of the time that
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a trajectory starting in p € ¥ remains in the region x > 0 (or z < 0) is known. The remaining
cases are those ones whose this associated time is not explicitly determined for both regions.

The systems studied in [48], 80, [77, 37, [38], possessing 3 limit cycles, have in one side a real
focus, and in the other side either a real focus or a linear system with trace distinct from zero.
Thus they do not satisfy the conditions of our theorems.

4.3 Preliminary results

A linear change of variables in the plane preserving the vertical lines will be called a vertical
lines—preserving linear change of variables.

Proposition 4.3.1. Let M = (my;), ; be a 2 X 2 matrix. If the linear differential system
(#,9)" = M(z,y)" (4.3.1)
Is a

(a) S—system then after a vertical lines—preserving linear change of variables and a time-rescaling

system ({4.3.1)) becomes (i,9)T = Mi(z,y);

(b) N-system then after a vertical lines—preserving linear change of variables and a time-rescaling

system (4.3.1)) becomes (&, 9) = My(x,y)7;

(¢) F-system (C-system) then after a vertical lines—preserving linear change of variables and a
time-rescaling system (4.3.1)) becomes (i&,9)T = M3(z,y)" with a # 0 (a = 0);

(d) iN-system then after a vertical lines—preserving linear change of variables and a time-
rescaling system ([4.3.1]) becomes (&, 9)T = My(x,y)7T,

where

a 1 a 1

M, = with |a|< 1; M, = with  |a|> 1;
1 a 1 a
a 1 AA

Ms = with a€R; and M, = with A = +1.
-1 a 0 A

Proof of Proposition[f.3.1 Let S = (s;;);; be a 2 x 2 matrix. The change of variables (u,v)’ =
S(z,y)T is a vertical lines—preserving linear change of variables if and only if s;5 = 0 and s;; = 1.
Indeed, S(x,y) = (s11 + S12¥, S91 + S22y) and sy1x + S12y = z for every x € R if and only if
s11 = 1 and s;2 = 0. So in what follows we fix s15 = 0 and s;; = 1.
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Claim 4.3.1. The statement (a) holds.

Since we are assuming that we have a saddle at the origin and in the expression of its eigenvalues

appears \/4m12m21 + (my1 — m22)27 we must assume that 4mqoma; + (mq; — m22)2 > 0. Taking

mip — Ma2 2my
So21 = 5 and sy = 5
\/4m12m21 + (ma1 — maz) \/4m12m21 + (m11 — ma)
it follows that
2
L1 myy + Ma \/4m12m21 + (M1 — mag)
SMS_ - 5
\/4m12m21 + (my1 — m22)2 mip + Mao

Then we can rescale the time by

1
T = 5\/4m12m21 + (M1 — ma)’ .

Denoting a = (mq1 + mas) /\/4m12m21 + (mq — m22)2 system (4.3.1)) becomes

where now the prime denotes the derivative with respect to the new time variable 7. Computing
the eigenvalues of the above system {—1+ a, 1+ a} we conclude that |a|< 1, because this system
is a saddle, i.e. the eigenvalues have different sign. Therefore we have proved statement (a).

Claim 4.3.2. The statement (b) holds.

The proof of statement (b) follows similarly to the proof of statement (a). Nevertheless we
conclude that |a|> 1, because in this case the system is a diagonalizable node, i.e. the eigenvalue
have the same sign. Thus we have proved statement (b).

Claim 4.3.3. The statement (c) holds.
Taking

mi11 — Mag 2my
= and Sy =

S21 =

Y
\/—4m12m21 — (M1 — ma) \/—4m12m21 — (ma — mzz)2

it follows that

L1 myy + Maa \/—4m12m21 — (my — m22)2
SMS_ - 5

2
—\/—4m12m21 — (M1 — map) myy =+ Ma2
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From hypotheses this system is a focus thus —4miome; — (mq; — m22)2 > 0. So we can rescale the

time by 7 = f\/—4m12m21 — (mq — m22)2 t. Denoting a = (mq1 + ma2) /\/—4m12m21 — (mq — m22)2

system (4.3.1)) becomes

where now the prime denotes the derivative with respect to the new time variable 7. Computing
the eigenvalues of the above system {—i + a,i + a} we conclude that when a # 0 this system has
a focus and a center when a = 0. Hence statement (c) is proved.

Claim 4.3.4. The statement (d) holds.

One of the entries mqo or my; are distinct of zero. Indeed, suppose that mis = 0, so {m1, mas}
are the eigenvalues of the matrix M. Since system (4.3.1)) is a non—diagonalizable node we have
that my; = mos which implies that mo; # 0, in other way the matrix M would be diagonalizable.
On the other hand, supposing that mo; = 0 we obtain miy # 0. From here we assume, without
loss of generality, that mqs # 0.

We also have that mq; + mos # 0, we prove this by reduction to the absurd. Suppose that
mi1+mae = 0, then i\/mfl + mqamsa; are the eigenvalues of the matrix M. Since system (4.3.1)) is
a non—diagonalizable node we have that the matrix M has only one eigenvalue with multiplicity 2.

This implies that the eigenvalues are zero, which is a contradiction with the fact that we are working
with non—degenerate linear differential systems. In short we have proved that mq; + moy # 0.

From the expression of the eigenvalues it is also easy to see that 4mismo; + (mq; — m22)2 =0.
Taking
my1 — Mog 2my2
S91 = ——————— and S99 = ———,
2mo my1 + Moo

it follows that

Sarg-1 1| Mir+mMma2 My + Ma2
S 2

0 mi1 + ™Moo

1
So we can rescale the time by 7 = §|m11 + mog| t system (4.3.1)) becomes

where A = £1, and now the prime denotes the derivative with respect to the new time variable 7.
This completes the proof of statement (c). O
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A limit cycle of our piecewise linear differential system expends a time tg in the region
x > 0 and a time t7, in the region x < 0. As we shall see later on we know explicitly the time ¢,
and we do not know explicitly the time tz. The next lemma will help us to work with one of the
intersection points of the limit cycle with the discontinuity straight line instead of the unknown
time tp.

Lemma 4.3.1. We consider the functions

F(t) = e "csc(t) — cot(t), G(t) = e "esch(t) — coth(t),
(4.3.2)

The following statements hold.

(a) For every a € R, F(t) is a monotonic increasing function in the interval (—m, 7) such that
F(t) < —afor t € (—m,0), and F(t) > —a for t € (0, ).

(a') For every a > 0 (resp. a < 0), F(t) is a monotonic increasing function in the interval (7, 27)
(resp. (—2m, —m)).

(b) For |a|> 1, G(t) is a monotonic increasing function on R such that G(t) > —a for ¢t > 0; and
for |a]< 1 G(t) is a monotonic decreasing function on R such that G(t) > —a for ¢ > 0.

(¢) H(t) is a monotonic increasing function on R such that H(t) < —1 for ¢t < 0.

Proof. To prove statement (a) we compute
F'(t) = esc(t) (1 — e (cos(t) + asin(t))) = esc*(t)p(t),

where p(t) = 1 — e *(cos(t) + asin(t)) and p'(¢t) = (1 + a?)e *sin(t). Clearly, p'(t) > 0 when
0<t<m, and p'(t) <0 when —7 <t < 0. So p(t) is a decreasing function in the interval (—m,0)
and it is an increasing function in the interval (0, 7). Since p(0) = 0 we conclude that p(¢) > 0 for
t € (—m,m)\ {0}. Finally, F'(0) = (1+a%)/2 > 0so F'(t) > 0 for every t € (—m, ), which implies
that F' is monotonic increasing for ¢t € (—m, 7). The proof of statement (a) follows by noting that
lim; .o F/(t) = —a. The proof of statement (a’) is completely analogous to the proof of statement
(a).

To prove statement (b) we compute

G'(t) = csch(t) (esch(t) — e~ *(a + coth(t)))

e~ *csch(t)
(et —1)(et +1)
e~ “csch(t)

R CEEE 1)q(?f),

(@ —1—e* — qe? + 2etTat)
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where q(t) = a—1—e* —ae* + 2" and ¢/(t) = —2(1+a)e’ (¢! — e™). When |a|> 1, ¢'(t) = 0 for
t 2 0, because ¢! — e = 0 for t < 0 (resp. ¢t = 0) when a > 1 (resp. a < —1). Since ¢(0) = 0 we
conclude that ¢(t) > 0, consequently G'(t) > 0, for every ¢ # 0. It implies, for |a|> 1, that G is a
monotonic increasing function on R such that G(t) Z —a for t Z 0, because lim; o G(t) = —a. On
the other hand, when |a|< 1, ¢/(t) = 0 for ¢t < 0, because in this case e! —e® = 0 for ¢ = 0. Hence,
for |a|< 1, we conclude that G is a monotonic decreasing function on R such that G(t) < —a for
every t > 0. It concludes the proof of statement (b).
To prove statement (¢) we compute
e’ et
H'(t) = ) (ef—t—1)= tTr(t)’

where r(t) = e —t — 1 and 7/(t) = €' — 1. Since 7(0) = 0 and 7'(¢) < 0 for ¢t < 0 we conclude that
r(t) > 0, consequently H'(t) > 0, for t # 0. It implies that H is an monotonic increasing function
for t > 0. The proof of statement (c) follows by noting that lim, o H(t) = —1. ]

Now consider the functions

&G(t) =1,
521(15) = COt(t) — et CSC(t), gg(t) — COth(t) _ eatCSCh(t)’ 53 _ 1 —t et
f:%(t) = COt(t) — et (jsc(t)7 gg(t) — COth(t) _ eiatCSCh(t% £§’ _ 1 —t@t

_ &) — &)

&(t) = T csc(t) sinh(at),
) = W = csch(t) sinh(at),
oy — 080 _snbit)

We define the ordered sets of functions F* = (&, &, &%) and Fi= (&,&5,88) for i = 1,2,3, and
Fi=(£,8) for i =4,5,6.

The next two technical lemmas together with Definition and Propositions[B.0.3|and [B.0.4]
will be used later on in the proofs of Theorems 1, 2 and 4 to establish sharp upper bounds for the
maximum numbers of non—sliding limit cycles that system can have.

Lemma 4.3.2. The following statements hold.

(a) The set of functions F' is an ECT-system on the intervals (0, 7) and (—, 0) for every a # 0.

(a/) The set of functions F' is an ECT-system on the interval (r,27) (resp. (—2m, —n)) for every
a >0 (resp. a <0).
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(b) The set of functions F? is an ECT-system on R* for every a ¢ {0,+1}.
(¢) The set of functions F? is an ECT-system on RT.
(d) The set of functions F* is an ECT-system on the intervals (0, 7) and (—,0) for every a # 0.

(d') The set of functions F* defined on the intervals (m,2m) (or (=27, —7)) satisfies Z(F*) = 2
for every a # 0.

(€) The set of functions F? is an ECT-system on RT for every a ¢ {0, +1}.

(f) The set of functions F¢ is an ECT-system on RT.

Proof. To prove the statements (a)-(f) we compute the Wronskians Wi (t) = W (&) (), Wa(t) =
W (&, &) (¢) for i =1,2,...,6, and Wi(t) = W(&, &, &) () for i =1,2,3.

Wi(t) =1,
W3 () = ese(t) (e (cot(t) - a) — eseft))

Wi () =2 (1+ a?) esc?(t) (a — esc(t) sinh(at)) |
W3 () = esch(t) (" (coth(t) — a) — esch(t))

W2(t) =2 (1 — a2) csch?(t) (esch(t) sinh(at) — a),

3 e(l—t)—1

W2 —_— t—z,
s = 2= sinh(®)
t?’

W4 (t) = csc(t) (acosh(at) — cot(t)sinh(at)),

W3 (t) = csch(t) (a cosh(at) — coth(t) sinh(at)),

W) = tcosh(t)t; sinh(t).

From here, it is easy to see that for each a # 0 the Wronskians Wy, W, and W} do not vanish
at any point of the intervals (0,7) and (—m,0); for each a ¢ {0, 41} the Wronskians W2, W2 and
W3 do not vanish at any point of R™; and the Wronskians W3, W3 and W¥ do not vanish at any
point of R*. So statements (a) — (f) are proved.
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To see statement (a’) we compute the Wronskians

W3(t) = W (&, &)(t) = esc(t) (e (cot(t) — a) — esc(t)),

Wi(t) = W(&,&,6)(t) = W ().

Again it is easy to see that for each a > 0 (resp. a < 0) the Wronskian Wzl does not vanish at any
point of the interval (m, 27) and (resp. (—2m, —7)).

Finally, statement (d’') follows by showing that the Wronskian Wj(¢) has exactly one zero in
each one of the intervals (7, 27) and (=27, —7). Indeed

W3 (t) = csc(t) cosh(at)(a — cot(t) tanh(at)) = csc(t)csch(at) P, (t).

Since csc(t) cosh(at) is nonvanishing for every a € R, it is sufficient to study the zeros of P,(t) in
order to study the zeros of W5 (t). For a > 0

}%Elr P,(t) = — ltlﬁrl P,(t) =00 and t}l_anﬂ P,(t) = — lim P,(t)

tt—m

o0,

and for a <0
lim P,(t) = —lim P,(t) = oo and lim P,(t) = — lim P,(t) = oc.

tlm 127 tt—m tl—27

So, for a # 0, there exist {, € (m,27) and t, € (—2m, —m) such that P,(f,) = P.(t,) = 0.
Indeed function P,(t) is continuous on the intervals (m,27) and (=27, —7). Computing P! (t ( ) =
csc?(t) tanh(at) —a cot(t)sech?(at) we see that P! (t) # 0 for every a # 0 and t € (m, 2m)U(—27, —7),
which implies that P,(t) has at most one zero in each one of these intervals. This proof ends by

applying Proposition forn=+0¢=1.
]

Lemma was stated assuming a # 0. For a = 0 we define the sets of functions G* = {&;, &4}

for + = 1,2 and we prove the next lemma.
Lemma 4.3.3. Then following statements hold.

(a) The set of functions G' is an ECT-system on the intervals (0,7), (—m,0), (,27), and
(=2m, —).

(b) The set of functions G? is an ECT-system on R™T.

Proof. Assuming a = 0 and proceeding analogously to the proof of Lemma {4.3.2| we compute the
Wronskians.

W, (t) = csc(t) cot(t) — csc?(t),
W2(t) = csch(t) coth(t) — csch?(t).
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From here, it is easy to see that the Wronskian W, does not vanish at any point of the interval
(0,7), (—7,0), (m,27), and (=27, —7), and that the Wronskian W3 does not vanish at any point
of R, O

4.4 Proofs of main results

The proofs of Theorem [J] and Corollary will be immediate consequences of Propositions

the proof of Theorem [K]will be an immediate consequence of Propositions [4.4.6H4.4.T1}
and the proof of Theorem [[] will be an immediate consequence of Propositions and

Corollary [4.2.1]

We note that some of the partial results contained in this section could be obtained using
different approaches. Particularly, the results in [36] may lead to the Propositions 4.4.1] 4.4.2| and
[4.4.3] For sake of completeness, we shall prove all propositions using the same technique.

Using Proposition the matrix, which defines the right system X of is transformed
into one of the matrices of the statements (a)-(d), namely A = (a;;); ;. Of course the transformation
is applied to the whole system , so the matrix which defines the left system Y is also
transformed into a (general) matrix B = (b;;);;. Then system (4.2.1)), after this transformation,
reads

aip a2 T+ u
if >0,
T Qo1 Q22 Y+ Uz
= (4.4.1)
y b11 b12 T+ v
if x<0.
ba1 Do Y+ V2

The solution of can be easily computed, because it is a piecewise linear differential
system. So let o™ (¢, z,y) = (gpf(t, r,y), o5 (t, x,y)) be the solution of for x > 0 such that
0T (0,2,y) = (x,y). Similarly, let o~ (¢, 2,y) = (p1 (t,2,y), ¥3 (t,2,y)) be the solution of
for x < 0 such that ¢~ (0, z,y) = (z,y).

In what follows, let t7(y) > 0 be the smallest positive time such that ¢ (t7(y),0, y) = 0, and
let ¢, (y) < 0 be the biggest negative time such that ¢i (¢, (y),0,y) = 0. Analogously, let ¢~ (y) < 0
be the biggest negative time such that ¢ (t~(y),0,y) = 0, and t_(y) > 0 be the smallest positive
time such that 7 (t-(y), 0,y) = 0. Observe that the functions t*(y), t4(y), t~(y), and t_(y) are
not necessarily always defined.

Assuming that ¢*(y) > 0 and ¢~ (y) < 0 are defined then there exists a limit cycle passing
through the point (0,y) with y € J* = Dom(¢*) N Dom(¢™) if and only if ¢35 (¢t (y),0,y) =
3 (t7(y),0,y). Thus, in this case, we must study the zeros y* of the function

f) = o3t ), 0,y) — ;3 (t (),0,y), (4.4.2)
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on the domain J*.

Equivalently, if ¢, (y) < 0 and ¢_(y) > 0 are defined then there exists a limit cycle passing
through (0,y) with y € J, = Dom(t,) N Dom(¢t_) if and only if ¢35 (t4(y),0,y) = @5 (t_(y),0,y).
Thus, in this case, we must study the zeros y, of the function

fW) = o3 t:(y),0,9) — @5 (t_(y),0,y), (4.4.3)

on the domain J,.

Since the vectors fields X and Y are linear, then a limit cycle passing through a point (xq, yo)
must contain points of kind (0, 4*) and (0, y.) such that y* € J* and y, € J.. Therefore detecting
all the zeros of (4.4.2)) or (4.4.3) we must detect all non-sliding limit cycles of (4.4.1]).

Let X = (X1, Xy) and Y = (Y1, Ys). We say that a point (0,y) is an

(a) invisible fold point for the right system when

0X1

X1<07 y) =0 and Ty(07y)x2(07y) < 07
(c) inwisible fold point for the left system when
Y,
Y1(0,y) =0 and 871(0,?/)3/2(0, y) > 0.

An affine (linear) change of variables in the plane preserving the straight line z = 0 will be
called in what follows a X—preserving affine (linear) change of variables, and a Y.—preserving affine
(linear) change of variables which also preserves the semiplane z > 0 will be called in what follows
a X —preserving affine (linear) change of variables. Clearly a X" —preserving affine (linear) change
of variables also preserves the semiplane x < 0.

The case when the left system has a focus or a center on > will be studied in subsection [4.4.1}
the case when the left system has a weak saddle will be studied in subsection [£.4.2] and the case
when the left system has a virtual or real center will be studied in subsection [4.4.3]

4.4.1 Left system has a focus or a center on X

In this case v; = 0, 4b12boy + (b11 — b22)2 < 0 and the point (0, —vy) is a singularity of focus or
center type.

Let I' = \/—4blgb21 — (b1 — 622)2. The function ¢t~ (y) < 0 is defined for every y > —uv9, and we
compute ¢~ (y) = —27/I". Analogously the function ¢_(y) > 0 is defined for every y < —uv,, and
we compute t_(y) = 27 /T,

In order to fix the clockwise orientation of the flow of system (4.4.1)) we assume that Y7(0,1 —
UQ) = b12 > 0.
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Proposition 4.4.1. The equalities N'(F}, F,) = 2, N (F}, C,) = N(Cy, F,) = 1 and N (G}, C,) =0
hold.
Proof. From Proposition (c) we can assume that a7 = ass = a with a € R, a0 = —ag; = 1,
and by a X t—preserving translation we can take us = 0. Moreover u; > 0 because the right system
has a focus or a center which is virtual for system (4.4.1])).

It is easy to see that the point (0, —awu;) € ¥ is an invisible fold point for the right system.

So the function ¢*(y) > 0 is defined for every y > —awu; (see Figure . Moreover its image is
the interval (0, 7). Indeed, given y > —au; consider the line ¢(y) passing through the focus point
(—u1,0) and (0,y). The trajectory of the left system starting at (0,y) returns to the line ¢(y) at

t =, so it must return to X in a time ¢ < 7. Thus t*(y) € (0, 7) for every y > —a u.
Yy

f(yo)

,
’

Figure 4.1: Virtual focus for the right system. The shaded line represents the domain of the
definition of the function ¢*(y) > 0.

We know that ¢ (t7(y),0,y) = 0 for every y > —awuy, that is
—uy + et W (u1 cos(t™ (y)) + ysin(t*(y))) = 0.

Hence taking y*(t) = wy F(t) for t € (0,7) we have that y* (t7(y)) = y for every y > —au;. The
function F' is defined in (4.3.2)).

Now we claim that ¢+ (y*(t)) =t for every ¢t € (0,7). Indeed, for ¢, € (0,7) let yo = y* (o).
From Lemma [4.3.1(a) yo > —aus, so from the above comments we obtain that yo = y* (t*(yo)).
Thus y*(to) = y* (t*(y)). Again from Lemma [4.3.1(a) y*(t) = uy F(t) is injective on the interval
(0,7), so to =t (yo). Hence to =t*(yo) =t (yT(to)). Since ty was arbitrarily chosen in (0, 7) we
conclude that t* (y*(¢)) = t for every t € (0, 7). Therefore the function t* : (—auy,00) — (0, 7)
is invertible with inverse equal to y* : (0,7) — (—auy, 00).
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Let Yy = max{—awu;, —vy}, so computing the zeros of the function (4.4.2) for y > Y, is
equivalent to compute the zeros of the function ¢;(¢) = f(y*(¢)). Since

B (b11 + bgg)ﬂ'
) =vt+e T (n+y)+e @ (yoostt(y)) —wsin(tt(y))),

_ (b1 +boo)m
T

taking 6 = e we obtain

g1(t) = vo(1+ ) 4 uy (cot(t) — e esc(t)) — duq (cot(t) — e * ese(t))
(4.4.4)

= k& + k&) + ks,

for t € I C (0,7). Clearly k1 = vo(1 +9), ko = ug, ks = —duq, and I = ¢t ((Yar,0)). Note that
I = (0, 7) provided vy > au;.

Applying Lemma [4.3.2(a) we obtain the inequality N'(F}, F,,)) < 2. The equality is not a direct
consequence of Lemma m(a) and Proposition because the parameters k; and ko are not
free to be chosen among the real numbers. However choosing a = —1, u; = 8, v = —40/9, and
b;; for i,7 = 1,2 such that 6 = 1/8 we obtain k; = —5, ks = 8, and k3 = —1. We claim that for
these choice of parameters the function has exactly 2 simple zeros in (0, 7).

To see the claim it is sufficient to prove the existence of two distinct zeros in (0, 7). Indeed,
once proved their existence, Lemma m(a) and Proposition imply, directly, that they
are simple and that the function ¢g; has no more zeros in (0,7). This argumentation will be
recurrently used, with less details, throughout the proofs in this section. Accordingly we compute
91(1/2) =~ 1.13 > 0, ¢1(3/2) = —1.80 < 0, and ¢;(5/2) ~ 4.89 > 0. Thus, from continuity, there
exist at least two zeros in the interval (1/2,5/2) C (0, ), which leads to the claim. We may also
estimate t; ~ 0.770 and t5 ~ 2.203. Hence for y*(t;) ~ 16.572 > Y); = 8 and y™ (¢2) ~ 95.667 > 8
there exist two limit cycles of system passing respectively through the points (0,3 (¢1))
and (0,y™(t2)).

Now, the right system is a center if and only if @ = 0, in this case & (t) = &3 (¢) = cot(t) — csc(t),
so the function becomes

() =k & + k&,

where ky = ko + k3. Since now &y and ky can be chosen freely, we conclude that N'(F,,C,) = 1 we
obtain, from Lemma [4.3.3(a), that N'(F;,C,) < 1.

The left system has a center if and only if by = —by; and b3, + biabs; < 0. In this case § = 1,
ki = 2vy, k3 = —kg = —uy, so the function (4.4.4]) becomes

ga(t) = k1 & — 2ke &5

Multiplying g4 by a parameter, if needed, we see that k; and ky can be chosen freely. Hence
applying Lemma [1.3.2(d) we conclude that N (Cy, F,) = 1.

Finally the lateral systems are centers if and only if a = 0, byy = —by; and b2, + byoby; < 0. In
this case the function (4.4.4) becomes ¢,(t) = k1. So if ky # 0, that is vy # 0, then there is no

100



solutions for the equation g;(¢t) = 0; if k; = 0, that is v = 0, then g; = 0, which implies that all
the solutions of system (4.4.1)) passing through (0,y) for y > Y, are periodic solutions, in other
words there are no limit cycles. Hence we conclude that N'(Cy, C,) = 0. O

Proposition 4.4.2. The equalities N (Fy, F,.) = N (Cy, F,.) = 2, N(F,,C,.) = 1 and N(Cy,,C,) =0
hold.

Proof. From Proposition m(c) and by a Xt—preserving translation we can assume that a;; =
as = a with a € R, a5 = —as; = 1, us = 0, and u; < 0 because the right system has a focus
which is real for system (4.4.1).

In the case that a < 0 it is easy to see that the focus (—uy,0) is an attractor singularity and
that the point (0, —au;) € X is a visible fold point for the right system. So the function ¢, (y) < 0
is defined for every y < —au;. Moreover its image is the interval (—7, —7), where 7 = —t, (—au,)
so ™ < 7 < 2m. Indeed given y < —au; consider the line ¢(y) passing through the focus point
(—uy,0) and (0,y). The trajectory of the left system starting at (0,y) returns to the line £(y)
at t = —m, so it must return to ¥ for —27 < —7 <t < —m. Thus t,(y) € (—7,—m) for every
y < —auy (see Figure |4.2) left).

In the other case a > 0 the focus (—uy,0) is a repulsive singularity. Considering now the
function ¢*(y) > 0 defined for every y > —auy, the same analysis can be done (see Figure
right).

Y
A ﬁ(yo)

v
av
> 1 L > 1

I/ ’
L o
’ A}
ll ! A
Ay

TCL:‘U,l .
! 1
! 1

Yo

=

1

()

Figure 4.2: Left: Real focus for the right system when a < 0. In this case the shaded line represents
the domain of the definition of the function ¢, (y) < 0. Right: Real focus for the right system
when a > 0. In this case the shaded line represents the domain of the definition of the function
tT(y) > 0.

From now on in this proof we assume, without loss of generality, that a < 0.
We know that 7 (¢, (y),0,y) = 0 for every y < —auy, that is

—uy + "W (uy cos(ty.(y)) + ysin(t4(y))) = 0.
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Hence taking y.(t) = u F'(t) for t € (—7, —7m) we have that y, (t;(y)) = y for every y < —au;.

Now we claim that ¢, (y.(t)) = ¢ for every t € (—7,—7). Indeed for t, € (—7,—m), let
Yo = y+(to). From Lemma [1.3.1(a’) y4(t) is decreasing on the interval (—7,—7) C (=2, —7),
and since y4(7) = —au, it follows that yo < —aw;. So from the above comments we obtain that
Yo = Y+ (t+(y0)). Thus yi(to) = 4 (t4()). Again from Lemma {.3.1(a) y4.(t) = wiF(t) is
injective on the interval (—7, —7m) C (=27, —m), so to = t(yo). Hence to =t (yo) = t+ (y+(to)).
Since toy was arbitrarily chosen in (—7, —7) we conclude that ¢, (y,(t)) =t for every t € (—7, —7).
Therefore the function ¢y : (—oo, —au;) — (—7,—m) is invertible with inverse equal to y, :
(=7, —7) = (—o0, —auy).

Let Y,, = min{—auy, —vs}, so computing the zeros of the function for y < Y, is
also equivalent to compute the zeros of the function now for t € I C (—7,—m), where
I =t ((—00,Yy)). Note that I = (—7, —7) provided vs < auy.

Applying Lemma [4.3.2a’) we conclude that N'(F, F,) < 2. Now choosing a = —3/4, u; =
—1/10, v, = —3/22, and b;; for i,j = 1,2 such that 0 = 10 we obtain k; = —3/2, ky = —1/10,
and k3 = 1 which implies, analogously to the proof of Proposition , that has exactly
2 simple zeros, at first, in (—27, —7), namely ¢; &~ —3.733 and t, ~ —3.250. We wish to conclude
that t1,ty € (—7,—m) or, equivalently, y*(t1),y"(t2) < Yy,. Indeed, y*(t;) =~ —0.160 < Y,, =
—0.075 and y*(t2) = —0.999 < —0.075. So there exist two limit cycles of system passing
respectively through the points (0, y4(¢1)) and (0, y,(t2)).

The equalities N(F,,C,) = 1 and N(C,,C,) = 0 follows in a similar way to the proof of
Proposition [4.4.1]

The inequality N(Cy, F,.) < 2 also follows in a similar way to the proof of Proposition but
now applying Lemma [4.3.2(d’) to the function g4(t) = 2vs & — 2uy &4 for t € (—7, —7). To see the
equality we take a = u; = —1/10, and v, = —1/20. It implies that g4 has exactly 2 simple zeros, at
first, in (—27, —7), namely t; ~ —4.176 and t; ~ —4.796. Again, y*(¢;) ~ —0.136 < Y,, = —0.01
and y*(t2) =~ —0.054 < —0.01. So there exist two limit cycles of system passing respectively
through the points (0,y(¢1)) and (0,y4(¢2)). It concludes the proof of this proposition. O

Proposition 4.4.3. The equalities N (F}, F}) = N (Fy, Cp) = 1 and N (Cy, Cy) = 0 hold.

Proof. Here u; = 0, because the right system have its focus on the line ¥. From Proposition
4.3.1(c) and by a Xt-preserving translation we can assume that a;; = a = a with a € R,
19 = —Q91 = 1, and Ug = 0.

The function ¢*(y) > 0 is defined for every y > 0, because the point (0,0) is a focus for the
right system. Moreover we compute ¢t (y) = .

Let Ys = max{0, —vs}, so computing the zeros of the function (4.4.2)) for y > Y}, is equivalent
to compute the zeros of the linear function

fi(y) = k1 + kay, (4.4.5)

for y > Yy, where k1 = va(1 4 6) and ky = (0 — ™). Hence N (Fy, F,) < 1. Nevertheless we can

1446
(SRl > Y}y is the unique zero of (4.4.5)).

choose coefficients such that y = - 5
ear —
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From here, the equalities N (F,, Cy) = 1 and N (Cy, Cy) = 0 follows similarly to the proof of
Proposition [4.4.1] It concludes the proof of this proposition. O

Proposition 4.4.4. The equalities N'(F}, N,) = 2 and N(C}, N,) = 1 hold.

Proof. From Proposition [£.3.1(b) and by a Et—preserving translation, we can assume that a;; =
ase = a with |a|> 1, a3 = ag; = 1, us = 0, and u; > 0, because the right system is a diagonalizable
node, which is virtual for system (4.4.1)).

It is easy to see that the point (0, —awu;) € ¥ is an invisible fold point for the right system.

In the case a < —1 the node (—uy,0) is an attractor singularity. The stable manifold and the
strong stable manifold of the node intersect ¥ at the points (0, y*) and (0, y*°), respectively, where
y* =wu; < —awu; and y** = —uy < ug. So the function ¢t (y) > 0 is defined for every y > —au; (see
Figure 4.3| left).

In the other case a > 1 the node (—uy,0) is an repulsive singularity. The stable manifold and
the strong stable manifold of the node intersect ¥ at the points (0,y*) and (0, y**), respectively,
where y* = —u; > —aw; and y** = u; > —uy. So the function ¢, (y) < 0 is defined for every

y < —auy (see Figure [4.3| right).
)
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Figure 4.3: Left: Virtual diagonalizable node for the right system when a < —1. In this case
the shaded line represents the domain of the definition of the function ¢*(y) > 0. Right: Virtual
diagonalizable node for the right system when a > 1. In this case the shaded line represents the
domain of the definition of the function ¢, (y) < 0

From now on in this proof we assume, without loss of generality, that a < —1.
We know that 7 (t7(y),0,y) = 0 for every y > —auy, that is

—uy + e W (u1 cosh(t*(y)) + ysinh(t*(y))) =0.
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Hence taking y*(t) = u1G(t) for t € RT we have that y* (¢ (y)) = y for every y > —au;.

The image of the function ¢t* is R*. Indeed, computing implicitly the derivative in the variable
y of the identity y* (t7(y)) = y we obtain

dt*(y)
dy

sinh(0)
uy (esch(f) — e~ (a + coth(0)))

=P (t+(y)> ,  where P(0) =

It is easy to see that P(0) > 0 for every > 0. So any solution 6(y) of the differential equation
6 = F(0) starting at § = 0 > 0 and y = 3 , i.e. 0(y) = 0, keeps itself positive for every y > @,
moreover this solution will be strictly increasing. Hence we conclude that ¢*(y) > 0 is a positive
strictly increasing function for y > —au;.

We claim that ¢* (y™(¢)) = t for every ¢t > 0. Indeed for to > 0, let yo = y*(to). From
Lemma [£.3.1(b) yo > —auy, so from the above comments we obtain that yo = y* (t¥(yp)). Thus
yT(to) =y" (t"(v0)). Again from Lemmal[d.3.1(b) y*(t) = u1G(t) is injective on RT, so ty = t(yo).
Hence to = t*(yo) =t (y*(to)). Since ty > 0 was arbitrarily chosen we conclude that ¢+ (y*(t)) = ¢
for every ¢ > 0. Therefore the function ¢ : (—au;,00) — R¥ is invertible with inverse equal to
yT :RY = (—auy, 00).

Computing the zeros of the function for y > Yy = max{—au;, —vy} is equivalent to
compute the zeros of the function

9t) = flyT(t) =ki & + k& + k3 &5 (4.4.6)

_ (b1 +bog)m

for t € I C RY, where k; = va(1 +0), ko = uy, ks = —0uy, 6 = e
t* ((Yar,00)). Note that I = RT provided vy > au;.

Applying Lemma [4.3.2(b) we conclude that N (F,, N,)) < 2. Now choosing a = —3/2, uy = 75,
vy = —375/4, and b, ; for i, j = 1,2 such that § = 1/15 we obtain k; = —100, ky = 75, and k3 = —5
which implies, analogously to the proof of Proposition , that has 2 zeros in Rt namely
t1 = 0.704 and t5 ~ 2.069. Hence for y*(¢;) ~ 158.781 > Yy, = 112.5 and y ™ (t5) =~ 351.490 > 112.5
there exist two limit cycles of system passing respectively through the points (0,47 (¢1))
and (0,y™(t2)).

From here, the equality N'(Cy, N,,) = 1 follows similarly to the proof of Proposition but
now applying Lemma [4.3.2)(e) to the function go(t) = k1& — 2k2 £5. It completes the proof of this
proposition. ]

, and here I =

Proposition 4.4.5. The equalities N (F}, iN,) = 2 and N(Cy,iN,) = 1 hold.

Proof. From Proposition M(d) and by a Y T-preserving translation, we can assume that a;; =
Q12 = Qg9 = A with A = £1, as; = 0, uy = 0, and w; > 0, because the right system is a non
diagonalizable node, which is virtual for system (4.4.1)).

It is easy to see that for A = £1 the point (0, —u;) € X is a invisible fold point for the right
system and that the invariant manifold of the node intersects ¥ at the origin (0,0) (see Figure
4.4). In order to fix the clockwise orientation of the flow of system we assume that A = 1,
otherwise the first return map would not be defined and there would not exist limit cycles. In this
case the function ¢ (y) < 0 is defined for every y < —uy.
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Figure 4.4: Virtual non-diagonalizable node for the right system when A = 1. In this case the
shaded line represents the domain of the definition of the function ¢, (y) < 0.

We know that 7 (£, (y),0,y) = 0 for every y < —uy, that is
—uy + e+ (uy +yt) = 0.

Hence taking y, (t) = uy H(t) for t € R~ we have that y, (¢4 (y)) = y for every y < —uj.

The image of the function ¢, is R™. Indeed, computing implicitly the derivative in the variable
y of the identity y, (t,(y)) = y we obtain

dt4 (y) e’6”

gy = @), where Q) = .

So the function ¢, is the solution #(y) of the above differential equation such that 6(—u,) = 0. It
is easy to see that Q(6) > 0, moreover by continuity we have that Q(0) = 2. So it follows that the
solution 0(y) is strictly increasing. Hence we conclude that ¢, (y) < 0 is strictly increasing function
such that ¢, (—u;) = 0, which implies that ¢, (y) < 0 for y < —uy.

Now we claim that t; (y4(¢)) = t for every ¢t < 0. Indeed for ty < 0, let yo = y4(ty). From
Lemma [4.3.1(c) yo < —u1, so from the above comments we obtain that yo = y4 (f1(y0)). Thus
y+(to) = y4 (t+(yo)). Again from Lemma [4.3.1](c) the function y,(t) = u;H(t) is injective, so
to =t (yo). Hence tg =t (yo) = t+ (y+(to)). Since ty < 0 was arbitrarily chosen we conclude that
ty (ys(t)) =t for every t > 0. Therefore the function t, : (—oco,—u;) — R~ is invertible with
inverse equal to y, : R™ — (—o0, —uq).

Let Y, = min{—uy, —vs}, so computing the zeros of the function for y <Y, is equivalent
to compute the zeros of the function

g3(t) = fy+ (1) = k1 & + k2 &5 + k3 & (4.4.7)

_ (b11+boo)T

for t € I € R™, where k; = vo(1 +9), ko = wy, ks = —dug, 6 = e
Y- ((—00,Yr)). Note that I = R~ provided ve > u;.

Applying Lemma [4.3.2(c) we conclude that N(F,,iN,) < 2. Now choosing u; = 149, vy =
298/3, and b; ; for ¢,j = 1,2 such that 6 = 1/149 we obtain k; = 100, ky = 149, and k3 = —1

, and here I =
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which implies, analogously to the proof of Proposition , that has 2 zeros in R™, namely
t; &~ —6.146 and ty ~ —0.897. Hence for y*(t;) ~ —11295.600 < Y,, = —149 and y*(t2) ~
—241.197 < —149 there exist two limit cycles of system passing respectively through the
points (0,y"(t1)) and (0,y™(t2)).

From here the equality N(Cj,iN,) = 1 follows similarly to the proof of Proposition but
now applying Lemma M( f) to the function g3(t) = k1 & — 2ko £5. Tt concludes the proof of
proposition. O

Proposition 4.4.6. The equalities N'(Fy, S,) = 2, N'(Fy, S?) = N(C}, S,) = 1 and N (Cy, S?) =0
hold.

Proof. From Proposition M(a) and by a X t—preserving translation, we can assume that a;; =
ase = a with |a|< 1, a12 = ag; = 1, us = 0, and u; < 0, because the right system is a saddle, which

is real for system (4.4.1)).

It is easy to see that the point (0, —au;) € 3 is an invisible fold point for the right system and
that the stable and unstable invariant manifolds of the saddle intersect X at the points (0, y®) and
(0,y"), respectively, where y* = —u; and y; = uy. So the function ¢*(y) > 0 is defined for every
—auy <y < —u.

We know that 7 (t*(y),0,y) = 0 for every —au; < y < —uy, that is
—uy + et W) (u1 cosh(t*(y)) + ysinh(t*(y))) =0.

Hence taking y*(t) = u1G(t) for t € RT we have that y* (t*(y)) = y for every —au; <y < —u;.

In the proof of Proposition we have seen that the function t* : (—auj,00) — RT is
invertible with inverse equal to y* : Rt — (—auy,00). So its restriction to —au; < y < —uy is
also invertible with inverse defined in ¢t (—auy, —uy).

Computing the zeros of the function (4.4.2)) for max{—au;, —vo} = Yy < y < —uy is equivalent
to compute the zeros of the function (4.4.6) for ¢ € I C RT, where k; = vo(1 4 0), ko = uy,
ks = —0up, 6 = e T and I =t (Yar, —u1)).

Applying Lemma[4.3.2(b) we conclude that N'(F;, S,) < 2. Now choosing a = —1/2, u; = —100,
vy = 1600/27, and b, ; for 4,5 = 1,2 such that § = 7/20 we obtain k; = 80, k; = —100, and
ks = 35 which implies, analogously to the proof of Proposition that (4.4.6) has 2 zeros in
I5, namely ¢, ~ 0.689 and ¢, ~ 2.761. Hence for y*(t;) = —22.071 € (Y, —u1) = (=50, 100) and
yT(t2) ~ 50.318 € (—50,100) there exist two limit cycles of system (4.4.1)) passing respectively
through the points (0,y%(¢1)) and (0,y7"(¢2)).

The right system has a saddle with trace equal 0 if and only if a = 0, in this case £3(t) = £2(t) =
coth(t) — csch(t). So the equality N'(Fy, S°) = 1 follows applying lemma [4.3.3{(b) to the function
ga(t) = k1&1(t) + 2kqo&3. From here the equalities N(C}, S,) = 1 and N(Cy, S?) = 0 follows
similar to the proof of Proposition but now by applying Lemma M(e) to the function
Ga(t) = k1&1(t) — 2k2€5(t). Tt concludes the proof of this proposition. O
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4.4.2 Left system has a weak saddle

In this case byy = —by1, b3 + biaby; > 0 and vy > 0 and the point (—v;, —v,) is a singularity of
saddle type.

Let I' = /b3 + biaboy, let y* be the y—coordinate of the intersection between the unstable
manifold with 3, and let y° be the y—coordinate of the intersection between the stable manifold
with . We compute

U1 (F — bll)
b12

v (' + b11)
b12

y' = —vg + and Y’ = —vy — .
In order to fix the clockwise orientation of the flow of system ({4.4.1)) we assume that y* < y*, which
is equivalent to assume that b5 > 0.

The left system has an invisible fold point (0, 7) given by

For y* <y < y¥ we define

(%1

' — b11) — b1z (vg +y)> ‘

() = L g (1
t(y)—rlg< (I +b11) + bz (v2 +9)

U1
Sot (y) =t*(y) <O0forgy<y<y“andt_(y) =t"(y) >0 for y* <y <.
) =1

Proposition 4.4.7. The equalities N'(S?, F, and NV(S?Y, C,) = 0 holds.

Proof. From Proposition M(c) we can assume that a7 = ass = a with a € R, a0 = —as; = 1,
and by a X*—preserving translation we can take us = 0. Moreover u; > 0 because the right system
has a focus which is virtual for system (4.4.1)).

From the proof of Proposition we know that the function t* : (—auy,00) — (0,7), such
that ¢*(t*(y),0,y) = 0 for y > —auy, is invertible with inverse y* : (0,7) — (—au;, 00) given by
y (t) = wm F ().

Let Yy, = max {—awuq,9}, so computing the zeros of the function for Yay <y < y* is
equivalent to compute the zeros of the function

9a(t) = fly" (1) = k1 & + ka & (4.4.8)

for t € I C (0,7), where k; = 2(by1v1 + bive)/bio and ky = —2uy, and here I = t+ ((Yar, y*)).
Multiplying the function g4 by a parameter, if necessary, we see that k; and ky can be chosen
freely. So applying Lemma [4.3.2|d) we conclude that N(S?, F,) = 1.

The right system has a center if and only if a = 0. In this case & = 0 and the function (4.4.8))
becomes g4(t) = ky. So if ky # 0, that is bjjv; # —biave, then there are no solutions for the
equation g4(t) = 0; and if k; = 0, that is byjyv; = —bjove, then g4 = 0, that is system is a
center. Hence we conclude that N'(S?,C,) = 0. O
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Proposition 4.4.8. The equalities N(S?, F,.) = 2 and N(SY, C,) = 0 hold.

Proof. From Proposition [4.3.1)¢) we can assume that a;; = age = a with a € R, a19 = —ag = 1,
and by a Xt -preserving translation we can take us = 0. Moreover u; < 0 because the right system
has a focus which is real for system (4.4.1)).

From the proof of Proposition we know that the function ¢, : (—oo, —auy) — (—7, —7)
is invertible with inverse y, : (—7, —7) — (—o00, —au;) given by y(t) = uy F'(t). Here as we have
done in the proof of Proposition we are assuming, without loss of generality, that a < 0.

Let Y,, = min{—auq,y}, so computing the zeros of the function for y* <y <Y, is
also equivalent to compute the zeros of the function (4.4.8) now for ¢t € I C (—7,—m), where
=1t (4" Ym)).

Applying Lemma (d’) we conclude that N (S?, F,) < 2. Now choosing by; = by = by =
vy =1,a=—1/10,u; = —1/20, v, = —21/20, we obtain b?,+b12bo; = 2 > 0, and ky = —k; = 1/10.
It implies, analogously to the proof of Proposition , that has 2 zeros in (—2mw, —m),
namely t; &~ —3.508 and t; ~ —5.646. Hence for y*(¢t;) = —0.048 € (y*,Y;,) ~ (—1.364,—0.005)
and y*(t2) =~ —0.05 € (—1.364,—0.005) there exist two limit cycles of system passing
respectively through the points (0,3 (1)) and (0,y7"(t2)).

The equality N (SY, C,) = 0 follows similarly to the proof of Proposition m It concludes the
proof of this proposition. O

Proposition 4.4.9. The equality N'(S°, N,) = 1 holds.

Proof. From Proposition [4.3.1(b) and by a ¥"—preserving translation, we can assume that a;; =
ase = a with |a|> 1, a3 = as1 = 1, us = 0, and u; > 0, because the right system has a
diagonalizable node, which is virtual for system (4.4.1)).

Following the proof of Proposition the function ¢+ : (—au;,00) — RY is invertible with
inverse y* : R™ — (—auy,00) given by y*(t) = u1G(t). Here as we have done in the proof of
Proposition [£.4.3] we are assuming, without loss of generality, that a < 1.

Let Yy = max{—aus,7y}, so computing the zeros of the function (4.4.2) for Yy, < y < y* is
equivalent to compute the zeros of the function

gs(t) = fyt (1) = k1 & + k2 &3 (4.4.9)

for t € I C RY, where k1 = 2(by1v1 + biav) /bia, ks = —2uq, and I = y* ((Yas, y*)). Multiplying
the function g5(¢) by a parameter, if necessary, we see that the parameters k; and ks can be chosen
freely. So applying Lemma m(e) we conclude that A(S%, N,) = 1. ]

Proposition 4.4.10. The equality N (S°,iN,) = 1 holds.

Proof. From Proposition M(b) and by a Y T-preserving translation, we can assume that ay; =
G192 = Ao = A with A\ = 1, as; = 0, up = 0, and u; > 0, because the right system has a non
diagonalizable node, which is virtual for system (4.4.1)).

Following the proof of Proposition the function t* : (—uj,00) — RT is invertible with
inverse y* : RT — (—uy,00) given by y*(t) = u; H(t). Here as we have done in the proof of
Proposition we are assuming, without loss of generality, that A = 1.
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Let Yy = max{—uy,y}, so computing the zeros of the function (4.4.2)) for Yy, < y < y* is
equivalent to compute the zeros of the function

g6(t) = fyt (1) = k1 & + k2 &5

fort e I C R+, where kl = 2<b11U1 -+ blgvg)/blg, kg = —2u1, and [ = y+ ((YM,yu)) Multlplymg
the function g¢(t) by a parameter, if necessary, we see that k; and ko can be chosen freely. So
applying Lemma [4.3.2) f) we conclude that N'(S°,iN,) = 1. O

Proposition 4.4.11. The equalities N'(S?,S,) = 1 and N(S?, S?) = 0 hold.

Proof. From Proposition [4.3.1(d) and by a X*-preserving translation, we can assume that ay; =
ase = a with |a|< 1, a3 = ag = 1, uy = 0, and uy < 0, because the right system has a saddle,
which is real for system (4.4.1)).

Following the proof of Proposition the function ¢+ : (—au;,00) — RY is invertible with
inverse y* : I — (—auy, uy) given by y*(¢t) = u1G(t), where I =t (—auy, —uy).

Let Yy, = max{—auq,y} and Y,, = min{uy, y*}, so computing the zeros of the function (4.4.2))
for Yy < y < Y, is equivalent to compute the zeros of the function (4.4.9) for t € I C RY,
where k; = 2(b11v1 + biava)/bia and ky = —2u;. Multiplying the function by a parameter,
if necessary, we see that ki and ko can be chosen freely. So applying Lemma [4.3.2|(e) we conclude
that NV(S?,S,) = 1.

The right system has a saddle with trace equal 0 if and only if @ = 0. In this case & = 0 and
the function becomes g5(t) = k1. So if ky # 0, that is bjyv; # 0, then there are no solutions
for the equation g5(t) = 0. If k& = 0, that is bj;v; = 0, then g5 = 0, which implies that all the
solutions of system passing through (0,y) for Yy, < y <Y, are periodic solutions, in other
words there are no limit cycles. Hence we conclude that A(S?, S?) = 0. ]

4.4.3 Left system has a virtual or real center

In this case v; # 0, boy = —byy1, b2 + biabey < 0 and the point (—wvy, —vy) is a singularity of
center type.
The left system has a fold point (0, ) given by

which is visible if v; > 0, and invisible if v; < 0. In order to fix the clockwise orientation of the
flow of system (4.4.1)) we assume that Y;(—vy, 1 —vy) = byy > 0.

Let I' = 24/ —b% — b12bo;. We define

4 (2 (birvy + bra(vy + y))) .

t*(y) = T arctan ol

If v <0, then t~(y) = t*(y) for y > g and t_(y) = t*(y) for y < ¢. If v; > 0, then t~(y) =
t*(y) — 4 /T for y > g and ¢t~ (y) = t*(y) + 4x /T for y < 7.
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Proposition 4.4.12. The equalities N'(C, F,) = 1, N(C, F,) = 2 and N(C,C,) = N(C,C,) =0
hold.

Proof. In Corollary these equalities have already been proved when the left system has a
center in X. So we can take vy # 0.

To obtain N (C, F,) = 1 we follow the proof of Proposition and then we compute the
solutions of the function for y > Yy = max{y,—awu;}. To obtain N(C,F,) = 2 we
follow the proof of Proposition and then we compute the solutions of the function for
y <Y, = min{y, —au;}. In both cases the equations to be solved are equivalent to ki +ks£3(t) = 0,
for t € (0,7) and t € (—7,—m), respectively. Here ky = (by1v1 + biava)/bie and ko = —uy. So
applying statements (d) and (d') of Lemmal[d.3.2 we conclude that N'(C, F,)) = 1 and N'(C, F,) < 2,
respectively. Moreover, since N'(Cy, F,.) = 2, we actually have the equality N'(C, F,) = 2. The
equality NV'(C, C,) = N(C, C,) = 0 follows similarly to the proof of Proposition [£.4.7 It concludes
the proof of this proposition. n

Proposition 4.4.13. The equalities N'(C, Fy,) = 1 and N (C, C,) = 0 hold.

Proof. In Corollary these equalities have already been proved when the left system has a
center in Y. So we can take v; # 0.

To obtain NV (C, F,) = 1 we follow the proof of Proposition and then we compute the
solutions of the function for y > Yy = max{y, 0}, which is equivalent to compute the zeros
of the liner equation k; + koy = 0. Here ky = 2(by1v1 + b12v2) /b12 and ky = (1 —e™). The equalities
N(C,F,) =1 and N(C,C,) = 0 follows similarly to the proof of Proposition [4.4.1] It concludes
the proof of this proposition. O

Proposition 4.4.14. The equalities N(C, N,)) = N(C, S,) = 1 and N (C, S%) = 0 hold.

Proof. In Corollary these equalities have already been proved when the left system has a
center in . So we can take vy # 0.

To prove the equality N(C,N,) = 1 we follow the proof of Proposition and then we
compute the solutions of the function for y > Yy = max{y, —au;}. To prove the equality
N(C,S,) = 1 we follow the proof of Proposition then we compute the solutions of the
function for Yy < y < wuy. In both cases the equations to be solved are equivalent to
ki + ko&5 = 0, where ky = 2(by1vy + b1avs)/bio and ky = —2u;. From here, the proofs of the
equalities N (C, N,) = 1 and N (C, S,.) = 1 follows similarly to the proofs of the Propositions
and , respectively. The equality N'(C,S%) = 0 follows similarly to the proof of Proposition
M.4.11] Tt concludes the proof of this proposition. ]

Proposition 4.4.15. The equality N (C,iN,) = 1 holds.

Proof. In Corollary this equality has already been proved when the left system has a center
in 3. So we can take v; # 0.

Following the proof of Proposition we compute the solutions of the function for
y < Y,, = {9, —uy}, which is equivalent to compute the zeros of the following equation kj+k»£S = 0,
where k1 = (b11v1 + b12v2) /b1 and ks = —uy. So analogously to the proof of Proposition we
conclude that N (C,iN,) = 1. Tt concludes the proof of this proposition. ]
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Chapter 5

Shilnikov problem in Filippov dynamical
systems

The main results of this chapter (Theorems [M] [N] and [5.4.1]) are based on the paper [92].

5.1 Introduction to the Shilnikov problem

The study of discontinuous piecewise dynamical systems (DPDS) produces interesting and
amazing mathematical challenges and plays an important part of so many applications in several
branches of science (see, for instance, [106], 85, 112, 21] and the references therein). The present
work focuses on the analysis of a typical phenomenon that occurs in this area which evidences a
striking resemblance to Shilnikov homoclinic loop

Consider a smooth three dimensional vector field for which p € R? is a hyperbolic saddle-focus
equilibrium admitting a two dimensional stable (resp. unstable) manifold and an one dimensional
unstable (resp. stable) manifold. In the classical theory of dynamical systems a Shilnikov homo-
clinic orbit " of this vector field is a trajectory connecting p to itself, bi-asymptotically. Under
suitable genericity conditions this connection is a codimension one scenario, and its unfolding de-
pends on the saddle quantity o = \* + Re(\],) (resp. o = A° + Re(\{,)), where A* > 0 (resp.
A* > 0) and A{, € C (resp. A{, € C) are the eigenvalues of p, clealry Re(\],) < 0 (resp.
Re(Af) > 0). In this case, when o > 0 (resp. o < 0) a chaotic behaviour occurs. We point out
that chaotic behaviour is mostly understood as the existence of strange attractors. These attrac-
tors appear when the Shilnikov homoclinic orbit is unfolded (see, for instance, [95], 46]). It is also
proved that there exists a compact hyperbolic invariant set S which contains countable infinitely
many periodic orbits of saddle type in any sufficiently small neighbourhood of T'(see, for instance,
[T00], (10T, [0, (0T, 102, (14, 1]).

In the theory of discontinuous piecewise dynamical systems the notion of solutions of a dis-
continuous differential equation is stated by the Filippov’s convention (see [34]). In this context
there exist some special points that must be distinguished and treated as typical singularities, one
of those is a pseudo—equilibrium, which we shall introduce it formally later on this chapter. This
kind of singularity gives rise to the definition of the sliding homoclinic orbit, that is a trajectory,
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in the Filippov sense, connecting a pseudo—equilibrium to itself in an infinity time at least by one
side (future or past). Particularly a sliding Shilnikov orbit is a sliding homoclinic orbit connecting
a hyperbolic pseudo saddle—focus pseudo to it self.

A sliding Shilnikov orbit is an intrinsic phenomenon of DPDS. However, for each piecewise
smooth system Z°, we conjecture (see Conjecture [1|) the existence of an one parameter family Z°
of smooth systems approaching continuously to Z° (C° x C° topology) such that, for each § > 0
small enough, Z° admits an ordinary Shilnikov homoclinic orbit with chaotic behaviour, that is
A* <0, Re(Afy) >0, and o < 0.

The main goal of this chapter is to produce versions of the Shilnikov’s Theorems for systems
having a sliding Shilnikov orbit, and also to track the above conjecture. This conjecture is formal-
ized in Subsection (see Conjecture [1]), which also contains some basic notions and definitions.
Our main results can be summarized as following. In Section [5.3] we prove that, in general, a
sliding Shilnikov orbit is a co-dimension 1 phenomenon (see Theorem , and that arbitrarily
close to a sliding Shilnikov orbit there exist countable infinitely many sliding periodic orbits (see
Theorem . Furthermore, in Section , we provide a family Z, 3 of discontinuous piecewise
linear vector fields as a prototype of systems having a sliding Shilnikov orbit (see Theorem .
Finally, using techniques of regularization and singular perturbation, we illustrate, in Section [5.5],
the Conjecture [I] for the the family Z, 3 (see Theorem [O)).

5.2 Sliding Shilnikov orbit

In this subsection the basic theory of non—smooth dynamical systems is given in order to define
the sliding Shilnikov orbits and to state our main results.

Let U be an open bounded subset of R®. We denote by C"(K,R3), K = U, the set of all C"
vector fields X : K — R? endowed with the topology induced by the norm || X||,= sup{||D'X (z)||:
re K,ie€{0,1,...,r}}. Here D" is the identity operator for r = 0, and the rth—derivative for
r > 0. In order to keep the uniqueness property of the trajectories of vector fields in C°(K,R3) we
shall assume, additionally, that these vector fields are Lipschitz.

Given h : K — R a differentiable function having 0 as a regular value we denote by Q (K, R3)
the space of piecewise vector fields

X(x), if h(xz) >0,
Z(x) = (5.2.1)

Y(z), if h(z)>0,

with X|Y € C"(K,R?). As usual, system is denoted by Z = (X,Y’) and the switching
surface h=1(0) by ¥ . So we are taking (K, R?) = C"(K,R3) x C"(K,R?) endowed with the
product topology. When the context is clear we shall refer the sets Q2 (K, R?) and C"(K,R?) only
by Q" and C", respectively. It is worth to say that the space C" can be identified as the diagonal
of Q7 that is X ~ (X, X) which is a C" vector space in Q.
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The points on ¥ where both vectors fields X and Y simultaneously point outward or inward
from ¥ define, respectively, the escaping ¢ or sliding ¥° regions, and the interior of its complement
in X defines the crossing region >¢. The complementary of the union of those regions constitute
by the tangency points between X or Y with ¥ (see Figure .

Figure 5.1: Definition of the vector field on X following Filippov’s convention in the sewing,
escaping, and sliding regions, respectively. This figure has been gotten from [22]

The points in X¢ satisfy Xh(§) - Yh(E) > 0, where Xh denote the derivative of the function h
in the direction of the vector X, i.e. Xh(&) = (Vh(§), X (§)). The points in X* (resp. X¢) satisfy
Xh(€) <0and Yh() > 0 (resp. Xh(€) > 0 and Yh(€) < 0). Finally, the tangency points of X
(resp. Y) satisfy Xh(&) =0 (resp. Yh(§) =0).

Now we define the sliding vector field

_ Yh(E)X (&) — Xh(E)Y(€)
2(8) = Yh(€) — Xh(E) '

The local trajectory ¢z (t, p) of the discontinuous piecewise differential system @ = Z(z) passing
through a point p € R? is given by the Filippov convention (see [32, [41]). Here 0 € I, C R denotes
the maximum interval of definition of pz(t,p), and ¢y denotes the flow of a vector field W. The
Filippov convention is resumed as following;:

(5.2.2)

(i) for p € R? such that h(p) > 0 (resp. h(p) < 0) and taking the origin of time at p, the
trajectory is defined as ¢z(t,p) = ¢x(t,p) (resp. vz(t,p) = py(t,p)) for t € I,.

(73) for p € X¢such that (Xh)(p), (Yh)(p) > 0 and taking the origin of time at p, the trajectory is
defined as @z(t,p) = @y (t,p) for t € I, N{t < 0} and @z (t,p) = px(t,p) for t € I,N{t > 0}.
For the case (Xh)(p), (Yh)(p) < 0 the definition is the same reversing time;

(4ii) for p € ¥° and taking the origin of time at p, the trajectory is defined as ¢z (t,p) = w;(t,p)
for t € I, N {t > 0} and @z(t, p) is either px(t,p) or py(t,p) or ¢(t,p) for t € I, N {t < 0}.
For the case p € 3¢ the definition is the same reversing time;

(1v) For p € 03°U0%* UJXe such that the definitions of trajectories for points in ¥ in both sides
of p can be extended to p and coincide, the orbit through p is this limiting orbit. We will
call these points reqular tangency points.
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(v) for any other point (singular tangency points) pz(t,p) = p for all t € R;

Remark 5.2.1. A tangency point £ € ¥ is called a wvisible fold of X (resp. Y) if (X)?h(£) > 0
(resp. (Y)2h(€) < 0). Analogously, reversing the inequalities, we define a invisible fold. Suppose
that p is a visible fold of X such that Yh(p) > 0, then p is an example of a regular tangency
point. In this case, taking the origin of time at p, the trajectory passing through p is defined as
oz(t,p) = pi(t,p) for t € I, N {t < 0} and pz(t,p) = @o(t,p) for t € I, N {t > 0}, where each
p1, p2 1s either px or gy or pz.

A pseudo—equilibrium is a critical point £* € 3°¢ of the sliding vector field, i.e. Z(S*) = 0.
When £* is a hyperbolic critical point of Z , it is called a hyperbolic pseudo—equilibrium. Particularly
if & € ¥ (resp. &* € X°) is an unstable (resp. stable) hyperbolic focus of Z then we call £* a
hyperbolic saddle—focus pseudo—equilibrium or just hyperbolic pseudo saddle—focus.

In order to study the orbits of the sliding vector field it is convenient to define the (C") nor-
malized sliding vector field

Z(&) = (Yh(§) = Xh(£)Z(€) = Yh(£)X(€) — Xh(OY(£). (5.2.3)

which has the same phase portrait of Z reversing the direction of the flow in the escaping region.

Indeed, system ([5.2.3)) is obtained from (5.2.2)) through a time rescaling multiplying (5.2.2)) by the
function Yh(§) — Xh(§) which is positive (resp. negative) for £ € ¥° (resp. £ € ¥).

Definition 5.2.1. Let Z = (X,Y) be a piecewise continuous vector field having a hyperbolic
pseudo saddle—focus p € ¥* (resp. p € X¢). We assume that there exists a tangential point
q € 0% (resp. q € 03¢) which is a visible fold point of the vector field X such that

(7) the orbit passing through ¢ following the sliding vector field Z converges to p backward in
time (resp. forward in time);

(77) the orbit starting at ¢ and following the vector field X spends a time ¢y > 0 (resp. ¢y < 0)
to reach p.

So through p and ¢ a sliding loop T is easily characterized. We call T" a sliding Shilnikov orbit (see

Figures for a« =0, , and .

Remark 5.2.2. Given Z = (X,Y) € Q" it is worth to say that if p € 0%%* is a fold—regular point
of Z, that is p is a fold of X (resp. of V) such that Yh(p) # 0 (resp. Xh(p) # 0), then the sliding
vector field Z given in ([5.2.2)) is transverse to 0¥%¢ at p. A proof of this fact can be found in [104].

In the sequel we formalize the conjecture made in the introduction.

Conjecture 1. Assume that Z° € Q" admits a sliding Shilnikov orbit I'°. So, for all 0 < s < 7,
there exists an one parameter family Z° € C* approaching continuously to Z° (Q° topology),
such that, for each § > 0 small enough, Z° admits an ordinary Shilnikov homoclinic orbit I'?,
bi-asymptotic to a saddle-focus ps, A* < 0, Re(\{,) > 0, and 0 < 0. Here A* € R and )}, € C are
the eigenvalues of the singularity ps, and o = A* + Re(A{,) is the saddle quantity.
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5.3 Main results on sliding Shilnikov orbits

In the theory of ordinary differential equations a Shilnikov homoclinic orbit of a 3D vector field
is a co-dimension 1 phenomenon in C". Our first main result shows that the sliding Shilnikov is
also a co-dimension 1 phenomenon in 2".

a <0
Figure 5.2: Unfolding Z, = (X,, Ys) of a sliding Shilnikov orbit T" in Zy = (X, Yy) € ".

Theorem M. Assume that Zy = (Xo, Yy) € Q" (with » > 1) has a sliding Shilnikov orbit I'y and
let W C Q" be a small neighbourhood of Z;. Then there exists a C* function ¢ : W — R having 0
as a regular value such that Z € W has a sliding Shilnikov orbit I' if and only if g(Z) = 0.

Proof. For simplicity we assume that h(x,y, z) = z, that is ¥ = {z = 0}. Let Zy = (X, Yy) € Q"
having a sliding Silnikov orbit I'y. We assume that I'y is a sliding loop through a pseudo—equilibrium
of a focus—saddle type py € ¥ and a tangential point ¢y which is a visible fold point for the vector
field Xy. The case when py € 3¢ would follow similarly.

Let v = B, (qo) N 0%°. Here B,(qp) C ¥ is the planar ball with center at ¢y and radius r. Of
course o is a branch of the fold line contained in the boundary of the sliding region 0%°. We
remark that in the sliding region the orbit of the sliding vector field is always transversal to the fold
line. In addition, the orbits of Z, through the points of ~, converge to po in backward time. The
forward saturation of vy through the flow of Xy meets > in a curve pg in a finite time. Moreover
Do € Ho-

Let W be a small neighborhood of Z; € ). So associated to each Z € W we can define similar
objects: pz,vz and uz. Clearly Z will have a sliding Shilnikov orbit if and only if py € uz.

We may assume that, in suitable local coordinate system (x,y) around py = (0,0) € X°, g is
the graph of a function y = r(x). So for Z € W, uz is given by y = kz(z) = ag + a1 + Oz(x)
with ag, a; small parameters.

Let pz = (27,97) and define g : W — R by g(Z) = kz(x7) — yz. Of course g is a C! function
and g(Zy) = 0. We prove now that 0 is a regular value of g, that is the linear map ¢'(Zp) : Q" — R
is surjective.

First of all we note that, for Z* € W, ¢g(Z*) = 0 if and only if pz- € uyz«, equivalently, Z*
admits a sliding Shilnikov orbit. Since

d

v=0 v—0 v
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for any curve Z(v) € Q" such that Z(0) = Z* and Z’(0) = V € Q", we can take Z(v) in such a
way that pz,) = (0,0) and kz)(x) = v (constant). Hence g(Z(v)) = v and ¢'(Z*) - V = 1, which
implies that ¢'(Z*) is surjective for every Z* € g=1(0). It concludes the proof of this theorem. [J

Our second main result is a version of Shilnikov’s theorem for sliding Shilnikov orbits.

Theorem N. Assume that Z; = (X, Yy) € Q" (with » > 0) has a sliding Shilnikov orbit I'y and
let Z, = (Xa, Ya) € Q" be an unfolding of Z, with respect to I'g. Then the following statements
hold:

(a) for a = 0 every neighbourhood G' C R? of 'y contains countable infinitely many sliding
periodic orbits of Zy;

(b) for every |a|# 0 sufficiently small there exists a neighbourhood G, C R? of T'y containing a
finite number N(«) > 0 of sliding periodic orbits of Z,. Moreover N(a) — oo when o — 0;

(¢) for every neighbourhood G C R? of T'y there exists |ag|# 0 sufficiently small such that G
contains a finite number Ng(ap) > 0 of sliding periodic orbits of Z,. Moreover Ng(a) — 0o
when a — 0.

Proof. We assume that I'y is a loop through py € 3¢ and qo € 0%°. The case py € ¥¢ and ¢y € 0%°
would follow analogously.

To prove statement (a) let v, = B,(q) N 0%* and let S, be the backward saturation of 7,

through the flow of the sliding vector field Z. The forward saturation of ~, through the flow of X
meets X in a curve p, in a finite time. So

Sr N Mty = U Ii,
=1

o0

where [; N I; = () if i # j. The sequence of compact sets (I;)2; can be taken such that I; — {po}
(see Figure [5.3).

For each © = 1,2,..., we define J; as the intersection between the backward saturation of I;
through the flow of X with the curve ~,. Clearly J;NJ; =0 if ¢ # j and J; — {qo}-

For ¢ € ¥% and z € R? let ¢*(t, &) and X (¢, ) be the flows of the sliding vector field Z and
X, respectively.

In what follows we define the applications v, : J; — J;. For & € J; there exists t§(£) < 0 such
that &(&) = p*(¢:(€),€) € I;; and there exists tX(£) < 0 such that X (tX(£),&(€)) € Ji. So we
take ¥;(€) = X (£X(€),&(€)). Note that 1; is a composition of C™ function, being then itself a C"
function.

It is easy to see that each fixed point of 1; corresponds to a sliding periodic orbit of Z (see
Figure . Now, for each ¢ = 1,2,..., ¢; is a continuous function from a compact interval J; to
itself. So applying the Brouwer fized—point Theorem we obtain a sequence (¢;)$2, such that ¢; € J;
and 1;(¢;) = ¢;- Hence we conclude that there exists a sequence of sliding periodic orbits of Z
passing through ¢;. The proof of statement (a) follows just by observing that ¢; — qo.
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Figure 5.3: A schematic representation of a Shilnikov sliding orbit T'.

In what follows we prove the statements (b) and (c). Firstly for |a|# 0 sufficiently small we
build elements 7%, S¢ and p& similarly to the elements ~,, S, and p,., respectively.

Since the new pseudo-equilibrium p, is not in u, the intersection S N p& has only a finite
number N («) of disjoint sets I;. Furthermore the number of disjoint sets N(«) in this intersection
goes to infinity when « goes to 0, and they converges to {p} when i — oo. From here the proof of
statement (b) follows analogously to the proof of statement (a).

For a fixed neighbourhood G of I'y there exists |«|# 0 sufficiently small such that p, € GN X,
because p, — 0 when o« — 0, so that pu, C G N 3. From here the proof of statement (c) follows
analogously to the proof of statement (b). O

5.4 A piecewise linear model

In this section we present a 2—parameter family of discontinuous piecewise linear dynamical
system Z, g admitting a sliding Shilnikov orbit I, 4.
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Figure 5.4: Periodic orbits close to a Shilnikov sliding orbit T".

For a > 0 and § > 0, consider the following discontinuous piecewise linear vector field.

Xop(z,y,2) = z—f if z2>0,

Za,ﬁ(x7yaz) = (5.4.1)

3o

+ it z<0.
7Y B

3p?
8

Ya,,@(xa Y, Z) =

The plane ¥ = {z = 0} is a switching manifold for system (/5.4.1]), which can be decomposed as
¥ = 3¢ U X U X¢ being

Cc __ . 3/82 s __ . 3/82 e __
b)) —{(x,y,O).y>8—a}, b)) —{(x,y,O).y<8—a} and ¢ =0.

Thus p = (0,0,0) € 2. Moreover ¢ = (3,33%/(8a),0) is a cuspid-regular singularity for system
(5.4.1) (see Figure[5.5)).

Proposition 5.4.1. For every positive real numbers o and 3 the following statements hold:
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(a) the origin p = (0,0,0) is a hyperbolic pseudo saddle-focus of system Z, 5 (5.4.1) in such
way that its projection onto ¥ is an unstable hyperbolic focus of the sliding vector field Z, g

(5.2.2)) associated with ((5.4.1);

(b) there exists a sliding Shilnikov orbit I, 5, connecting p = (0,0, 0) to itself, passing through
the fold-regular point ¢ = (33/2,38%/(8a)) (see Figure |5.5)).

Lagp

ya

Figure 5.5: A representation of the Shilnikov sliding orbit of system (5.4.1)). Here, in order to
make easy the visualization, we have used the change of variables (x,y,z) = (z,y — 22, 2) to bend
the y—axis.

Proof. We compute the sliding vector field and the normalized sliding vector field of (5.4.1]) as

7o) 4o’y 36332 4+ af?y — 2402y? 4
a,p\T,Y) = ) an
AEY day — 332 6% — 8afy

(5.4.2)

= 332 6] 3
7. = —ay, g+ Cy— 252
(7, y) ( ay, o—T+ 2y By>7

respectively. It is easy to see that (0,0) € 3° is a hyperbolic focus of Zaﬁ. Indeed, their eigenvalues

are given by
RIS 4
128~ 128

It implies that the origin is a hyperbolic pseudo saddle—focus of vector field (5.4.1). Moreover,
since Re(A*) > 0 then (0,0) is an unstable hyperbolic focus of the (normalized) sliding vector field
(5.4.2)).

After a change of variables and a time rescaling expressed by

(r,y) = (3611, 3521}) , b= —ET, (5.4.4)

(5.4.3)

2 " 8« I6]
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respectively, the normalized sliding vector field Za,ﬁ becomes

_ 1 9
Z = (v, —6u — Y + 21)2) : (5.4.5)
We note that the time rescaling (5.4.4]) reverses the direction of the flow of ((5.4.2)). The fold line
0%* is given now, in (u,v) coordinates, by ¢ = {(u, 1) : u € R}.

We claim that the orbit of system (5.4.5) starting at the point (1,1) € ¢ is attracted to
the focus equilibrium (0,0) without touching the line ¢. Clearly, going back through the trans-
formation (5.4.4), this claim implies that the orbit of system ([5.4.2)) starting at the point ¢ =

(38/2,38%/(8a)) € O%* is attracted, now backward in time, to the focus (0,0) without touching
the fold line 0%°.

To prove the claim we shall construct a compact region R in the u,v—plane that is positively
invariant through the flow of the vector field (5.4.5). To do that, let m(y) = —13/108 + 9y*/13 +
5433 /169, and take the curves

Cr={(u,1): m(1) Su <1},

Co = {(u,—2u+3): 1 <u<3/2},

Cs = {(3/2,0) : —91/72 < v < 0},

Cy = {(u,—91/72) : m(=91/72) < u < 3/2},
Cs = {(m(v),v) : —91/71 <wv < 1}.

We define R as being the compact region delimited by the curves C; for i = 1,2,...,5 (see Figure
. After some standard computations we conclude that R is positively invariant through the
flow of (5.4.5). Furthermore, the vector field has at most one limit cycle (see Theorem
A of [25]), which is hyperbolic. So from the positive invariance of R, from the stability of the
equilibrium (0,0), and from the uniqueness of a possible limit cycle we conclude that, if this limit
cycles exists, then it cannot be inside R. Applying Poincaré—Bendixson theorem we conclude that
the stable focus of attracts the orbits, forward in time, of all points in R without touching
the line ¢. The claim follows by noting that (1,1) € R.

On the other hand the vector field X, 5 is also linear. Thus its orbit starting at ¢ is easily
computed as

—at+ —,

B 36 (38 —2at)(B+2at) (38— 2at)t?
o (ta) = ( 2 8a ’ 12 ) '

So for t* = 34/(2a) > 0 we have that ¢ (t*, q) = p. It implies that there exists a sliding Shilnikov
orbit I'y g of Z, 3 connecting p to itself passing through q. O]
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Figure 5.6: The dashed bold line represents the line /. The continuous bold line delimits the
compact region R which is positively invariant through the flow of (5.4.5). The red trajectory is
the orbit starting at (1,1) being attracted to the focus (0,0).

5.5 Regularization

Shilnikov [100] 10T] showed that any smooth 3-dimensional vector field possessing a hyperbolic
saddle—focus p € R? with a 2-dimensional stable (resp. unstable) manifold and an 1-dimensional
unstable (resp. stable) manifold admits a chaotic behaviour always when its saddle quantity
o= N"+Re()\,) (resp. 0 = X*+Re(A},)) is positive (negative). Tresser extended the Shilnikov’s
results for C'! vector fields [I10] and for Lipschitz continuous piecewise C'' vector fields [I11]
when the Shilnikov homoclinic orbit is transversal to the sets of non—differentiability.

As an immediate consequence of the main result of this section we shall obtain that, for each pos-
itive real numbers « and 3, every neighbourhood U C Q° of the piecewise linear model Z, s(x,y, 2),
built in the previous section, contains a continuous piecewise quadratic vector field possessing a
Shilnikov homoclinic orbit. Moreover this vector field presents a chaotic behaviour, and any neigh-
bourhood of its Shilnikov homoclinic orbit contains infinitely many periodic orbits.

Theorem O. For each positive real numbers a and §, and for 6 > 0 small enough, there exists
a family W 5 C Q° of continuous piecewise smooth vector fields d-close to Z, g (2° topology)
having the following properties for 4 > 0 small enough.

(a) The origin is a hyperbolic saddle—focus singularity of Wg} 5 admitting an 1-dimensional stable
manifold Wj and a 2-dimensional unstable manifold Wy';
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(b) The stable and unstable manifolds intersect each other in a Shilnikov homoclinic orbit I'? 5=
W§ N Wy, which is d—close to 'y, 5.

(¢) The saddle quantity o of the origin is negative. So any neighbourhood of F‘;ﬁ contains
infinitely many periodic orbits for every ¢ > 0 sufficiently small.

Before proving Theorem |O] we describe the regularization process, which is the main tool we
shall use in its proof. Roughly speaking, a regularization of a discontinuous system Z = (X,Y)
is a one-parameter family Z° of continuous vector fields such that Z° converges (Q2° topology) to
the discontinuous system when § — 0. The regularized system Z° represents a class of continuous
functions approximated by Z as § — 0.

The Sotomayor-Teixeira method of regularization [103] takes

1+ ¢s(h(z,y
2

L= ¢ (A(z, y>)Y(.CE, y), being

D,
X9+ 2 (5.5.1)

Z(w,y) = W(x,y) =
¢s(h) := ¢(h/d),

where ¢ : R — R is a continuous function which is C! for s € (—1,1) such that ¢(s) = sign(s) for
|s|> 1, and ¢/(s) > 0 for s € (—=1,1). We call ¢ a monotonic transition function and Z°(x) the
¢—reqularization of Z.

We point out that the Sotomayor-Teixeira regularization is not the unique method to regularize
a vector field Z = (X,Y). Indeed, let F' : K x [0,00] — R™ be a continuous function such that
F(z,y,0) = 0, then Z°(z,y) = W(z,y) + F(x,y,0) is also a regularization of Z, where W?° is

given by (5.5.1).

Proof of Theorem[O. Let ¢ : R — R be the following monotonic transition function

1 if u>1,

pu) =9 u if —l<u<l,

-1 it w<-—1.

and h(z,y,z2) = z. We take Z3 5 = W3 5 +0(0, 0, Az + By) where W) ; is the ¢-regularization of
the vector field (5.4.1]). Thus the dlfferentlal system induced by Z? 5 for =0 < 2 <9, is given by

s _az
=-—
2
j— (Bxr —3ay — 20 )z+ﬁx+3ay, (5.5.2)
200 23
(4day — 35%)z  y+ (Az+ By)z  _(Az + By)
= + +6 :
8 2 2
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We note that for z > 6, Z 3 = X3 ;4+6(0, 0, A+ Bx), and for z < =8, Z3 3, = Y2 ;+6(0, 0, A+
Bz), which are linear vector fields.

In order to simplify the study, we take z = dw. Thus system ([5.5.2]) becomes

= —aw,

Bz +3ay+ (Br—3ay—28%)w
20 ’
(4day — 38%)w (Az + By)(w + 1)
45 ,
S8 2

(5.5.3)

y:

o =

Y
2+

for —1 < w < 1. Here the dot denotes derivative with respect to the variable ¢.

Let (xg, yo, wo) be a singularity of (5.5.3)). Clearly wy = 0, and xg, yo satisfy the equation

3a
B To

0A 1+0B Yo

P

Since f > 0 we have that Sdet(P) = 8 — 0(3aA — fB) > 0 for 6 # 0 small enough. So the
origin (g, Yo, 20) = (0,0, 0) is the unique singularity of system (/5.5.3)) for every § > Osmall enough.
Moreover we can estimate their eigenvalues as

362 4o a /95
N=—2T 2% 00) and A, = o 4
300 T3 TOL) and AL, =op+iog

+0(6).

In the above equalities the effects of the parameters A and B are contained in O(§). Note that, for
6 = 0, the eigenvalues \{, coincide with the eigenvalues A* (see (5.4.3))) of the sliding vector field

Zaﬁ given by ([5.4.2)). We conclude then that the origin is a hyperbolic saddle-focus singularity for
every 0 > 0 sufficiently small, which has an 1-dimensional stable manifold WWj and a 2-dimensional
unstable manifold W§'. It concludes the proof of statement (a).

System ([5.5.3]), known as slow system, can be studied using singular perturbation methods.
Doing 6 = 0 we obtain the reduced problem

= —auw,

B+ 3ay+ (Br—3ay —26%)w
23 !
(4ay — 38%)w
8a ’

Y
0: —_
2+
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which is a differential equation defined on a manifold. Solving the last equality for —1 < w <1
this manifold writes

2

_ . 367 _ Ay
MO - {(l’,y,mo(l',y)) ST E Rv Yy S Sav ) m0($5y> - 352 _ 4&y} . (554>

We note that (0,0,0) € M.
Now performing the time rescaling t = d7 we get the so called fast system

= —daw,

(Bx+3ay+ (Br —3ay —26%)w)
23 !
(day — 38*)w  _(Ax + By)(w + 1)
+ 0 )
8 2

J = 6 (5.5.5)

Y
r_ 7
w 2+

that we shall denote by Fs(z,y,w). Here the prime denotes derivative with respect to the variable
7. We note that M, is a manifold of critical points of Fp, that is system ([5.5.5)), for 6 = 0, namely

= 0, (5.5.6)

/ y + (4(1/y - 3B2)w
2 8 ‘
System ([5.5.6]) is known as the layer problem.
Using systems (5.5.5) and (5.5.6) it is straightforward to prove that the solution ¢(7,0) =

(‘Pl(T, 5)7 902(7_7 5)7903(7-7 5)) of SyStem " such that fS(Oa 6) =1 and hmt—>oo 90(7_ 75) = (0,0, )
can be estimated, for 6 > 0 small enough, as

35%t 33%t
(t,0) = 850‘2@_ 8o + O(6%) (t,0) = &;—ae_ 8a + O(6%), and
1L, - 352 ) Pa2(t, - 35 )
353%t 35%t 353%t

p3(t,0) =e Ba + ; do(8a+33%)e 8a —32 da |+ O(6?).

So the stable manifold W5 intersects the plane w = 1 at the point

I8a? S8«

ps = p(0,0) = (352’ 35 1) + O(6%).
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For (z,y,w) € My we compute

0 0 0

DFO('Ia Y, w) = 0 0 0
—33? 4oy — 332

8ay — 632 8«

Since (4ay — 33?)/(8c) # 0 for all the points of My, it follows that the manifold M, is a nor-
mally hyperbolic attracting manifold for Fy. So in any compact set of M, we can apply the
well known first Fenichel theorem (see, for instance, [33, B9, [60]), which ensures the existence
of a normally hyperbolic attracting invariant manifold Ms for § > 0, small enough, of sys-
tem (5.5.3), which is known as slow manifold. The slow manifold M; is d—close to My, that
is Ms = {(z,y,m(z,y,0)) : m(x,y,0) = mo(z,y) + dmi(x,y)}, where mg is defined in (5.5.4).
Considering that (x(t),y(t), 0 m(z(t),y(t),d)) is a solution of system (5.5.3) we compute

_ 12ap8%*(Az+ By) 48a*B(38%x + af?y — 240”y?)
Y= Gy 3PP Gay—3P7

We claim that the slow manifold Mj contains the origin for § > 0 sufficiently small. Indeed,
suppose that (0,0,0) ¢ M so it is d—close to M because (0,0,0) € M,. Since M is an attracting
invariant manifold for 6 > 0 sufficiently small, it must attract the origin which is contradiction
because the origin is a singularity. Thus we conclude that (0,0,0) € M for 6 > 0 sufficiently
small. From similar reasons the slow manifold also contains the unstable manifold Wj' of the
singularity (0,0,0) for § > 0 sufficiently small.

We can easily check that the slow manifold M intersects the plane w = 1 transversely along
the curve (z,((z,0),1), where

332 16 x 3BB3? 16«
5 — Aw— _ e
8a T ( 332 T Ba 33

Uz, d) = > + O(5?).

Now we consider the solution (z(t,6),y(t,0),w(t,0)) of system (5.5.3) starting at a point of
the slow manifold M. From its invariance property we know that w(t) = mo(x(t,9),y(t,9)) +
dmy(z(t,0),y(t,8)) + O(6%). Substituting this relation in the slow system (5.5.3) we obtain the
following planar differential system

) 4oy
36%x 4+ af?y — 2402y?
/ — 5

which is topologically equivalent to the sliding vector field (5.4.2) for y < 34%/(4a) and § > 0
small enough.
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Let g5 = (38/2,€(38/2,0),ms(gs)). From the proof of Proposition we know that, for
§ = 0, the orbit starting at gy = (38/2,36%/(8a), 1) = (¢, 1) is attracted, backward in time, to the
focus (0,0,0). So, for 6 > 0 sufficiently small, the orbit starting at

33 38%  6(64a —36Aap?— 9B [3) )
q‘§_<2’80fr 2403 ’1>+O<5)
is also attracted, backward in time, to the focus (0,0, 0).

Let g5 and p; be the points g5 and ps in the variables (z,y, z) (that is z = dw). The proof will
follow by showing that for some branches As; and Bs the flow of the linear system X, s connects
the points g5 and ps for 6 > 0 sufficiently small.

For z > 1 the vector field Z 4 is equal to the linear vector field X, g(,y,2)+6(0, 0, A+ Bz).
Computing its solution 1 (t,d) = (¢¥1(t, d),¥a(t, ), ¥s(t, d)) such that (0,) = G5 we obtain that

Py (t,0) = 325 —at+ 08,
(38 —2at)(B+2at)  6(6aa® —36Aaf® —9BS?)
Yo(t,8) = . + 21ad + O(6%),
P3(t, 0) = W + fz (12 + 32;” — (6Aa — 3BB)t* — ZBat3> + O(6?),

Since the orbit (¢, 0) reaches transversally the plane ¥ = {z = 0} in a finite time ¢, = 35/(2),
we can prove that the orbit ¢(t, ), for § > 0 small enough, will also reach transversally the plane
z = ¢ in a finite time t;. Moreover we can estimate t; = 33/(2a) + §(32a — 9A3?)/(38?) + O(6?).

Let 7 : R* = R? and 7+ : R* — R be the projections onto the two first coordinates and onto
the last coordinate, respectively. Define F(A, B,d) = (¢(ts,d) — Ds)/d. It is easy to see that, for
every 0 > 0 sufficiently small, 7+ F (A, B, ) = 0 and

4002 32 3A 3B[3?
3;“2 +o(5),—3g‘+ 25— &f +O(6)>'

We note that F(Ag, By,d) = 0, for some Ay, By, and §y > 0, if and only if the vector field
(5.5.2) (for A = Ay, B = By, and 0 = &) admits an orbit connecting the points 75 and p,,
that is an sliding Shilnikov orbit. Since for A* = 40a/(98%) and B* = —32a?%/(3?%), we have
that 7F(A*, B*,0) = 0 and det(r DF(A*, B*,0)) = —93%/8 # 0, then, using the implicit function
Theorem, we conclude that, for 6 > 0 sufficiently small, there exist two branches As and Bs such
that 7F(As, Bs,d) = 0, and A; — A* and Bs — B* when § — 0. It concludes the proof of
statement (b).

Finally, we compute the saddle quantity as 0 = —33%/(8§ a)+17a/(123) +O(J) which negative
for & > 0 small enough. The proof of statement (¢) follows by applying the classical results for
Shilnikov homoclinic orbits [110] 111].

nF(A, B,d) = <3Aa -

]

126



Chapter 6

Regularization of hidden dynamics in
piecewise smooth flows

The main results of this chapter (Theorems [P] [Q} [R][S] [T} and [U]) are based on the paper [90].

6.1 Introduction

Consider an ordinary differential equation in x € R"™ with a discontinuous righthand side,

i fH(x) if h(xz)>0, 6.1.1)

f~(z) if h(z) <O,

where f* and f~ are smooth vector fields, and h is a differentiable scalar function whose gradient
Vh is well-defined and non-vanishing everywhere. Throughout this chapter we consider an open
region z € D in which holds. The set ¥ = {x € D : h(z) = 0} is called the switching
manifold, and the regions either side of it are denoted as R* = {z € D : h(z) = 0}.

The term ‘hidden dynamics’ refers to what happens on X, specifically to behaviours governed
by terms that disappear in R* (hence they are ‘hidden’ in (6.1.1])), and which go beyond Filippov’s
standard theory [34]. The theory of Filippov relies heavily on two alternatives for extending
across h = 0. The first is a differential inclusion

ieF(z) st fr(2),f(z) € Flz) (6.1.2)

which is very general because F is any set that contains f* (F is usually assumed to be convex
to provide certain restrictions on sequences of solutions [34], but this does not prevent F being
arbitrarily large). The second alternative is a smaller set, the convex hull of f* and f~,

_ sign(h(z)) if h(z) #0,
T=Z(x;\) = 1y\f+(x)+uf_(x), A€ anh ) (6.1.3)

. 1,41  if h(z)=0,
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which is very restrictive in the sense that it selects only values of that are linear combinations
of f*. Examples of the set F and hull {Z(x; \) : X € [—1,+1]} will be illustrated in Example[6.1.]
below, along with a third alternative that unties them.

We will refer to the transition as h changes sign in as linear switching (implying linear
dependence with respect to \). In Filippov’s theory, one seeks values of & in the sets
or that result in continuous (though typically non-differentiable) flows at ¥. In many
situations of interest, the flow obtained from (6.1.3]) is unique (making possible, for example,
substantial classifications of singularities and bifurcations for such systems [34] 105} 29]).

The problem highlighted in [56] was that between the set-valued flow of and the
piecewise-smooth flow of , a vast expanse of non-equivalent but no less valid dynamical
systems can be considered. All that is lacking is a way to express them explicitly. This is provided
quite simply by permitting nonlinear dependence on the transition parameter A, in the form

I+ A 1

= f(z;\) = 2f+(x)—|—;\f_(x)+G(x; A), (6.1.4)

where

h(z)G(z;\) =0, M€ (b)) * )20, (6.1.5)

[—1,4+1] if h(z) =0,

with G some continuous vector field that is nonlinear in A. An example of the set generated
by {f(x;\) : X € [—1,+1]} is given in Example below. We shall refer to (6.1.4]) as the
nonlinear combination, and the transition it undergoes as h changes sign as nonlinear switching.
(Moreover the term ‘nonlinear’ throughout this chapter will refer to nonlinear dependence on A
via the function G).

Example 6.1.1. Consider in coordinates x = (1, x2) the piecewise constant system (6.1.1]) with
vector fields f+ = (1,1), f~ = (1,-2), and G(\) = (\* — 1)(2,0), with h(z) = z;. In Figure
we illustrate a convex set F satisfying (6.1.2)), the linear combination Z(x;\) defined in (6.1.3)),
and the nonlinear combination from , represented by the shaded region, dashed line, and
dotted curve, respectively. By choosing different forms of G (subject to hG = 0) we can choose
different curves {f(x;\) : A € [=1,+1]} which explore different subsets of F.

Although Filippov (followed by many authors since) favoured , it is worthwhile exploring
the more general form (6.1.4)), not least because in [56] [57] it was shown to provide new ways of
modeling real mechanical phenomena (namely static friction, the phenomenon that the force of
dry-friction during sticking can exceed that during motion, not captured by applying Filippov’s
method to the basic discontinuous Coulomb friction law), and in [42, 55| it is shown that similar
nonlinearities become inescapable when multiple switches are involved (specifically it is shown
that multiple switches create the possibility of multiple sliding solutions, which must be resolved
by some kind of regularization or blow up of the discontinuity). It is therefore important obtain
greater insight into the discontinuous dynamical systems represented by , one of the first
concerns being typically their persistence within larger classes of systems. To this end it has been
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R~ 2 Rt

Figure 6.1: The vector field f switches between f* and f~ in regions RT and R~. At the
boundary ¥ Filippov considered either a general convex set JF containing f* (shaded area), or a
convex hull Z(x;\) of f* (dashed line). The nonlinear combination f(z;\) allows us to explore
F more explicitly (dotted curve), by choosing a different G we obtain a different curve of values

f(xz; \) C F.

shown that the dynamics of persists when the discontinuity is regularized (i.e. smoothed)
[67] and, as we will show here, the same is equally true of the nonlinear combination (6.1.4)).

The behaviours associated with adding G in have been referred to as hidden dynamics,
because the first condition in (6.1.5) means that G vanishes for h # 0, i.e. everywhere except at
the discontinuity itself. The function G may, for example, be any finite vector field multiplied by
a scalar term like A(A? — 1), sin(A\? — 1), or A*” — 1 for any natural number 7.

In this chapter we will consider how the nonlinear combinations relate to singular
limits of continuous systems via both regularization [I03], and a converse to regularization known
as pinching [14] 28]. Much of our analysis will concern the closeness of dynamics on 3 in the
discontinuous system to invariant dynamics near > in a topologically equivalent smooth
system.

We set up the problem in Section [6.2] then prove results regarding regularization and pinching

in Sections [6.3H6.4]

6.2 Preliminaries: crossing or sliding in the nonlinear sys-
tem

The first step in studying is to define more precisely what happens on X, our main
interest being what happens when G(x; \) is allowed not to vanish there. We denote the interval
of values taken by \ as 7 := [—1,+1].

Henceforth the symbol p will always denote a point inside >, and where specific coordinates
are useful we will sometimes let h(z) = x; and write p = (0,y).

For any p € ¥ we define the scalar function

K(p;A) = f(p; A) - Vh(p) (6.2.1)
which is a multiple of the normal component of f to ¥. This vanishes on the set
S(p) :={ " €Z: K(p;\*) =0}, (6.2.2)
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which may or may not have solutions for A* € Z. Places where there exist solutions to
define regions where the vector field f lies tangent to 3 for one or more values of \* € Z, allowing
the flow of to slide along >3, and we call the set of all such points p € ¥ the nonlinear sliding
region ™%, given by

s = {pe X S(p) #0).

The complement to this on X is the set where (6.2.2)) has no solutions, so f is transverse to X for
all A € Z, defining the nonlinear crossing region X",

Yrei={pex: S(p) =0},

such that ¥ = s U Xre) (X7 and X¢ denoting the closures of 3™ and X"°).

The implication is that for p € ¥ the vector field f(p; \) pushes the flow transversally across
¥ between RT and R~, while for p € 3™ the flow is able to slide along Y. Substituting the
solution \* of (6.2.2)) into (6.1.4)), the system that defines these nonlinear sliding modes is given by

p=f"p) = fp: (),  N(p) €Sk, (6.2.3)

with f™* defining the nonlinear sliding vector field. Typically there may exist a set of such functions
Af,i=1,2, ..., defining branches of solutions of K (p; \*) = 0 in (6.2.2), each on a subset ¢; C X",
such that the union of all o;’s covers X" and A} : 0; C ™ — Z. We then have a set of sliding
modes specified by a set of equations defined by on different branches p € o;.

If we fix G = 0 everywhere then the nonlinear crossing region "¢ is exactly the crossing region
defined by the Filippov’s convention for the system (/6.1.3)), and the nonlinear sliding region ¥ is
the union of the sliding region, defined by the Filippov’s convention, with the tangential points.
We therefore call the linear crossing region ¢ and linear sliding region 3° (obtained directly by
solving the above conditions neglecting ). The linear system (i.e. without ) can only have one
(linear) sliding mode, on X%, while the full system (G nonzero on ¥) may have multiple (nonlinear)
sliding modes as defined by with (6.1.4). It is easily shown (see [56]) that X* C "¢ and
yne C ¥,

6.3 Regularization

Let us first show that regularizations of the linear combination (6.1.3) or of the nonlinear
combination ([6.1.4]) can be related by a simple substitution.
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Let C" denote the class of r-times differentiable functions. We shall denote by

1 :R— R a continuous function which is C* for s € (—1,1)
such that ¢ (s) = sign(s) for |s|> 1.
We call ¥ a transition function.
¢:R — R a continuous function which is C! for s € (—1,1)
such that ¢(s) = sign(s) for [s|> 1, and ¢'(s) > 0 for s € (—1,1).
We call ¢ a monotonic transition function.

We also let
¢s(h) :=¢(h/6)  and  s(h) :=(h/0) .

A regularization of a discontinuous system (/6.1.3) or (6.1.4)) is a one—parameter family Zs € C”
for r > 0 such that fs converges to the discontinuous system when o — 0. The intention is that
this represents a class of continuous functions approximated by as 6 — 0, the importance of
(6.1.4)) is that it will show this class to be larger than those derived from . The Sotomayor-
Teixeira method of regularization, see e.g. [103], replaces A in by a monotonic transition
function ¢, to consider

o LEOD) ) 10l
We refer to this as a linear-regularization (or ¢-regularization in other references). It is shown in
[4, 23] [66], 67] that this defines a system with slow invariant dynamics topologically equivalent to
Filippov’s (linear) sliding dynamics. One may ask what happens if we consider instead with
a non-monotonic transition function ¢. When modeling a physical system, for example, there is
no clear reason to exclude such possibilities, and we shall see below how they fit with established

theory for discontinuous differential equations.
We will show that the (non-monotonic) 1 regularization of Filippov’s linear combination (6.1.3)),

_ 1+ 4s(h(z)) 1 — ¢s(h(x))

= Zs(z) = fﬁ(x) + 5 [ () (6.3.1)

is equivalent to the (monotonic) ¢ regularization of a nonlinear combination (6.1.4]), given by

fs(z) = flx;6(h(x)/0)), ie.

b= fila) = O oy 12O oy G . 632

Theorem P. If ¢ is a monotonic transition function and v is a non—-monotonic transition function,
then there exists a unique function G(z;\) satisfying (6.1.5) such that the i¢-regularization of

(6.1.3)) is a ¢-regularization of (6.1.4)).

131



Proof. Let A = ¢(s), the function ¢ is monotonic in the interval Z and therefore has an inverse
s = ¢ '()\), so we can express ¢ in terms of A via a function W(\) = ¥ (¢~'(\)). The -
regularization of (6.1.3]) as given by (6.3.1)) can thus be re-arranged to

i= A )+ L2 4 ey - TS

If we define G(z; A) = (¥(A) — A) (f*(x) — f~(2)) /2, we obtain the nonlinear combination (6.1.4)),
and taking A\ = ¢6( (x)) we obtain its ¢-regularization on A € Z. Since for [s|> 1 we have
gn(s

A= 0o(s) =¢(s) = (s), this implies G(z;£1) = 0 as required by (6.1.5)). O

A simple consequence of this is that the family of ¢-regularized nonlinear combinations (6.1.4)
is larger than the family of ¢-regularized linear combinations ([6.1.3)), as shown by the following.

Corollary 6.3.1. If ¢ is a monotonic transition function, then there exists a non—monotonic
transition function v such that the ¢-regularization of (6.1.4]) is a ¥-regularization of (6.1.3)), if
and only if G(z;\) = v(\) (fT(x) — f~(x)) /2 such that h(z)y(\) = 0.

Proof. The proof follows directly by substituting G into and applying Theorem . [

Figure [6.2] provides the resulting schematic of how the discontinuous systems and their regu-
larizations considered above fit together.

combination regularization
linear i_)l// )
switch inclusion @) | 0o (10)

(1) ) (@) )

nonlinear ﬂ—)gp (1 1 )
(4) ‘——5‘

Figure 6.2: The discontinuous differential equation is not defined on ¥, so is replaced by
the inclusion , representing all possible systems at 3. A solvable form for these is provided
by the Filippov systems in the linear form or more general nonlinear form . In the
following sections we applying a regularization of nonlinear or linear kind, yielding the differentiable
systems ((6.3.1)) and (6.3.2)) respectively, which are equivalent for some choice of transition functions

¢s and 15, and conversely whose singular limits as  — 0 are and (6.1.4)).

In the next theorem we extend the results of [4], 23, 66, 67] showing that the nonlinear regu-
larization exhibits slow invariant dynamics that is conjugate to the sliding modes of the
dlscontlnuous system . The remainder of this section will consist of the proof of this theorem.
First let us see how slow—fast dynamics arises in an example.

Example 6.3.1. Consider the system

(i1, i) = H2A<1, )+ 1_2A<1, 1)+ (A2 = 1)(2,0) |
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which is discontinuous if A = sign(x;) for 1 # 0. The regularization is obtained by replacing
A — ¢s(xy) for small 6 > 0. Figure shows the discontinuous system (left) with a nonlinear
sliding region on which two sliding modes exist (one traveling upwards, the other downwards), and
conjugate to each sliding mode. Compare this to the discontinuous linear and nonlinear systems
in Example [6.1.1

S Mi)‘,l _\ f_]\{(i,Z

01 %)
\ +—
/1—>(p; )
7 \ L
—(.)—>x1 -5 +?XI

Figure 6.3: Left: a discontinuous system ((6.1.4)) with nonlinear sliding region with branches o, for
r = 1,2 (white and black filled arrows). Right: the regularization in which each sliding branch oy,
is conjugate to an invariant manifold Mjs, of a slow-fast system (6.3.2)).

Theorem Q. Let the region 0 C ¥™ be expressible as a graph x; = 0 in coordinates x =
(21,22, ..,x2), on which there exists a C" function \*(p), r > 0, such that K(p;\*(p)) = 0 in
for every p € 0. Then for any C" (or continuous) function ¢, the ¢-regularization con-
tains a slow manifold C"—diffeomorphic (homeomorphic) to ¢, on which the slow dynamics is
C"—conjugated (topologically conjugated) to the nonlinear sliding dynamics . Moreover, if
OK (p; A*(p))/OX # 0 then for 6 > 0 sufficiently small the nonlinear sliding dynamics defined on
3" persists to order 9, on a manifold Ms which is d—close to X%,

Proof. In the coordinates given, o C X" is an open subset of the hyperplane {p = (0, x5, x3,...,2,) €
D}. Writing vector components as f = (f1, fa, ..., fn) for any function f, the normal component

(6.2.1)) of the nonlinear combination (6.1.4)) is

14 A
2

Sliding modes by (/6.2.2)-(6.2.3) satisfy the differential-algebraic system

K(piA) = S22 ) + 15 () + il ),

0= fi(p; \*(p))

b= P ey 4

= X(p) (6.3.3)

5 fi (p) + Gi(p; ()

forv=2,3,...,n.
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Now consider the ¢-regularization of (6.1.4)), given by

i = 1*‘?(“71) £ (z) + “‘Z‘Wﬁ(z) + Gi(w; ps(1))
for i = 1,...,n. By a change of variables to u = x1/§ and v = (3,23, ...,x,) for small § > 0, we
obtain
si= 2 s )+ L2 s ) + G b vr (),
. ¢( ) L) (6.3.4)
T Tfﬁ(ué, v) + Tff(u(l v) + Gi(ud, v; p(u)),

where 0 is a singular perturbation parameter. In the limit 6 = 0 we obtain the so-called reduced
problem (using the notation x = p on %)

0= F )+ ) Gl o) = Koy,
m=1+f)ﬁwﬂﬁjﬂﬁﬁ@+cmwwxi=zmm

which describes dynamics on the ‘slow’ timescale ¢ (for standard concepts of singularly perturbed
or slow-fast systems see [33, 59]). This dynamics inhabits a hypersurface called the slow critical
manifold, defined implicitly by 0 = K (p; ¢(u)) in the first row of (6.3.5)).

By hypothesis there exists at least one function A*(p) satisfying , and therefore there
exists at least one slow critical manifold M, given by the restriction ¢(u) = A*(p). Since ¢
is invertible in Z and A*(p) € Z for every p € o we conclude that M, is the graph u(p) =
¢! o \*(p). This is homeomorphic to o as we can let H : ¢ — M, be the bijective function
H(0,v) = (¢~ o X*(0,v),v), for which H(o) = My. The function H is invertible and its order of
differentiability is the same as that of ¢ and \*, that is r.

Substituting ¢(u) = A*(p) into (6.3.5), the reduced problem on z; = 0 becomes

b= P g0y 1 LI ) 4 601 0) = il M),

for i =2,3,...,n. Now let p = (0,7), so if t — x:(p) = (0,v(¢,p)) is the solution of the nonlinear
sliding mode (6.3.3)) such that xy(p) = p € o, then the solution ¢ — X;(H(p)) of the reduced
problem (6.3.5)) on the slow manifold such that Xo(H (p)) = H(p) is given by

Xi(H(p)) = (¢~ o X*(v(t,)),v(t, ) = H(:(p))-

The flows of the regularized reduced (slow manifold) system and the discontinuous sliding system
are therefore C"(topologically)-conjugated.

It remains to show the persistence of the slow-fast dynamics for § > 0. By rescaling time in
by t = 07 and taking § — 0, we obtain the so-called layer problem

/ 1+¢() 1_¢(u)
2

U= ———fi"(p) + ——— £ (p) + G $(w)) = K(p; $(u)),
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which prescribes dynamics on the fast timescale 7 external to the slow manifolds. The slow
manifold M, is a manifold of critical points of the layer problem, which is normally hyperbolic if
(OK/ON)(p; A*(p)) # 0. The existence of slow manifolds é—close to the slow critical manifold, with
dynamics d—close to the reduced problem (6.3.4), then follows by Fenichel’s theorem [33]. O

6.4 Pinching

Pinching, introduced in [I4] and developed further in [28], can be thought of as an inverse to
regularization, providing a method of deriving a discontinuous system as an approximation to a
continuous system. A region of state space is chosen, say some |h|< € for £ > 0, to be collapsed
down to a manifold ¥ by means of a discontinuous transformation, resulting in a system of the
form (6.1.1)).

In considering nonlinear switching systems we are able to put the notion of pinching on a more
rigorous footing. To do so we must distinguish between intrinsic pinching, where the pinching
parameter € is a small parameter of the original continuous system, and extrinsic pinching where
the original problem is e-independent. Before venturing into the technicalities, let us illustrate
them with an example.

Example 6.4.1. Take a system

ub

(1, 72) = (=21, 2H (21 /a;0) — 1) | H(u;b) = oo

(6.4.1)
The Hill function H is a sigmoid graph with a switch about h = z; = 0, and is a function prevalent
in biological applications (starting with [45]). There is an invariant manifold along z; = 0 with
dynamics (&1, @) = (0, —1).

Let b > 1 be fixed. We shall take discontinuous approximations of this system. First, assuming
a and b are constants, let us make an extrinsic pinching with respect to a small parameter € by
transforming to a coordinate Z; = h — esign(h), creating a discontinuous system

n : b> a ) = (=31 Fe, 2c. —1+0 (i) (6.4.2)

(ii’l,.].a) = <—f]~31 F ¢, 2H (

where c. = H (ii; b), with (6.4.2]) taking the upper signs for ; > 0 and lower signs for Z; < 0.
If we fix a and pinch with respect to a small parameter ¢ that is extrinsic to the smooth system
(6.4.1), then expanding for small €/a gives ¢; = O (¢/a) and we can neglect it for small enough ¢,

giving the system in Figure Solving (6.2.2) and (/6.2.3) we obtain \* = 0 and a sliding vector
field p = (0,—1) + G. on ; = 0, which is equivalent to the dynamics on the invariant manifold

xleofWitthzo.

Although the sliding mode captures the correction dynamics at #; = 0, the approximation
outside is valid only for very small Z; because is does not capture the turning around of the flow
(the thin curves in the right of Figure |6.4]). To capture these we must use the exact expression in
, so this approximation is quite weak.

We can do something more powerful by pinching with respect to a parameter that is intrinsic
to the system (6.4.1). If we set ¢ = ay/2 as an intrinsic pinching parameter, then expanding
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(x1,x2)—(x1£,1)

\2 Cexrinsick Y

A\/ /m\'%h\

|

1

: > X1 ¥
-& +& 0

Figure 6.4: Differentiable systems with an invariant manifold z; = 0 (left), which we pinch by
removing the region |z|< e, with ¢ a small parameter extrinsic to (i.e. not appearing in) the
smooth system.

H (i%;b) for small /e gives cx = 14+ O ((a/s)b), and we have the simple piecewise linear
approximation (—&; F¢,1) for the righthand side of , as shown in the bottom row of Figure
6.5l The arrangement of the vector fields in the bottom right figure would give a linear sliding
mode p = (0, 1), which would be an incorrect representation of the dynamics of . Instead we
need to find the nonlinear sliding mode, solving and ((6.2.3) we obtain A* = 0 and a sliding
vector field p = (0,1) + G. on #; = 0, which is equivalent to dynamics on the invariant manifold
x1 =0in if we set G. = (0, —2), correctly capturing the dynamics of the smooth system.

M(51 o

>

(x1,X2)—(xy%e,1) v

A

ﬂ\
! ~
: . > X 1

- 0 +e 0

Y

Figure 6.5: Starting from the same smooth system (left), we pinch by removing the region |z1|< €,
with € = av/2 and hence intrinsic to the smooth system.

We say in these cases that G. = (0,0) and G. = (0,—2) complete the extrinsic and intrinsic
systems, respectively. Below we generalize these ideas.
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6.4.1 Extrinsic pinching

Let U be a open bounded subset of R™ and consider the dynamical system
t=F(x), zeU (6.4.3)

where F is a C! function. Assume that the manifold ¥ = {z € D : h(x) = 0} is invariant under
the flow, that is F'(p) - Vh(p) = 0 for every p € ¥.
For small € > 0 consider the discontinuous system

F(z +eVh(z)) if h(x) >0,
T = (6.4.4)

F(x —eVh(x)) if h(z) <0,

in which the manifold ¥ becomes a switching manifold between some F*(x;¢) = F(x 4+ eVh(x))
and some F~(z;¢) = F(x —eVh(x)). We call the incomplete extrinsically pinched system,
“incomplete” because like it is not yet well defined on X.

We then ask whether it is possible to complete the pinched system using a nonlinear

combination (/6.1.4]), such that its nonlinear sliding modes ([6.2.3|) agree with the dynamics of (6.4.3))

on the invariant manifold ¥. When this is possible for some family of functions G° (G* being the
nonlinear part for (6.1.4) now dependent on &) we say that G° completes the pinched system, and
we call

T = f(x;\) = ﬂF(x +eVh(x)) + QF(x —eVh(z)) + G5(x; N),
2 2 (6.4.5)

NeT, h(z)G*(z;A) =0,

the complete extrinsically pinched system. In order to obtain lim. .o f¢(z;A\) = F(z) we assume
that the function € — G¢(z; \) is sufficiently differentiable and that G°(z; \) = 0.

Completing the pinched system in this way is possible provided that restricted to the
manifold ¥ is structurally stable (see [94]). The function G that completes the pinched system is
not unique.

Theorem R. For € > 0 sufficiently small in (6.4.5)), if there exists a continuous family \*(p) € Z
of C! functions such that K(p;A\:(p)) = 0 by (6.2.2) for every p € ¥, then the nonlinear sliding

mode by ((6.2.3)) satisfies
p=f"(p)=F(p)+r(p;e) on X"
where 7(p;€) is a continuous function that is C' in the first variable, and where r(p;e) — 0 as

e — 0. Moreover if we assume that (6.4.3)) restricted to the invariant manifold ¥ is structurally
stable, then it is topologically equivalent to the nonlinear sliding dynamics.
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Proof. Direct application of (6.2.3)) to (6.4.5)) gives

o) = 2 p 4 cvm) + L2 P - cOh) + 6 )

= F(p) +r(p;e),

the second line following because A\(p) is a continuous family of functions. Since the system
p = F(p) is structurally stable it must therefore be topologically equivalent to p = f™*(p). O

We shall assume now that the function F is of class C¥!, and that
k .
G*(p; ) = D elp; A) + O
i=1

for some functions 7;. Similar to (6.2.1) we define the e~family of functions K¢(p; A\) = f(p; A) -
Vh(p), and expand

K*(pid) = 3_e'rmipi 1)/ (6.4.6)

in terms of functions k; given by

az‘
X . — N KE(m
mip ) = il oS R N

1—(—1)% i
= A7z [(Vh(p) - V)'F(p)] - Vh(p) +7i(p; A) - Vh(p),

. , . " 0h 0
fori =1,2,...,k. Here (Vh(p)- V)" F(p) € D denotes the scalar derivative VA -V = » — _—
j=1 &xj 8[Ej
applied ¢ times to F' and evaluated at p.

Theorem S. For r < k assume that k; =0 fori=1,2,...,r — 1 and &, # 0. Suppose that there
exists £(p) € (—1,1) such that k.(p;¢(p)) = 0 and (Ok,/ON)(p;£(p)) # O for every p € ¥. Then
for e > 0 sufficiently small there exists a continuous family A\*(p) € Z of C' functions such that
Ke(p; Xi(p)) = 0 for every p € ¥. Moreover if we assume that the system (6.4.3) restricted to the
invariant manifold ¥ is structurally stable, then on ¥ it is topologically equivalent to the nonlinear

sliding mode defined by (6.2.3]).
Proof. Assuming that k; =0 for i = 1,2,...,r — 1 we write using ((6.4.06)

k(D3 A)
r!

Ké(p;\) =¢ + O™,

Since k,.(p; €(p)) = 0 and (0k,/ON)(p; €(p)) # 0, applying the implicit function theorem for the
function K¢(p; \)/e" we obtain, for € > 0 sufficiently small, the existence of a differentiable family
M(p) € T of C' functions such that K¢(p; \*(p)) = 0 for every p € 3. The result follows by
applying Theorem [R] O
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In some cases it is sufficient to take G* = 0 (i.e. a linear combination) to complete the pinched
system (6.4.4]). The following corollary concerns cases, as in Example for which G* cannot
be zero everywhere.

Corollary 6.4.1. Assume in (6.4.4) that F is a C® function. The following statements hold:
(a) If [Vh(p) - VF(p)] - Vh(p) # 0 then G* = 0 completes the pinched system ((6.4.5]).

(b) If [(Vh(p) - V)F(p)] - Vh(p) = 0 and [(Vh(p) - V)?F(p)] - Vh(p) # 0 then the function
G° = 0 does not complete the pinched system. In this case G° = £%(\* — 1)C(p) with
C(p) # [(Vh(p) - V)?F(p)] - Vh(p) completes the system.

Proof. Taking G* = 0 we have from above that
K*(p; A) = eA[(Vh(p) - V)F(p)] - Vh(p) + €’ *[(Vh( ) - V)*F(p)] - Vh(p) + O(").

If [Vh(p) - VF(p)] - Vh(p) # 0 we can choose ¢(p) = 0, thus x1(p,0) = 0 and (9k1/0N)(p; €(p)) =
[Vh(p) - VF(p)] - Vh(p) # 0. Hence applying Theorem (S)) we have statement (a).

If instead [Vi(p) - VE(p)]- Vi(p) = 0 and [(Vh(p) - V)?F(p)] - Vh(p) # 0, there is no bounded
family of solutions A:(p) of the equation K°(p;A:(p)) = 0 for G° = 0. Taking instead G* =
e2(A\? — 1)C(p) such that C(p) # [(Vh(p) - V)?F(p)] - Vh(p) we have that

K*(p; \) = *C(p).

So A:(p) = 0 € T is a family of solutions of K*(p; \:(p)) = 0. Applying Theorem [ we then have
statement (b). O

A simple example is given by ©1 = —x; with (&9, ..,4,) = q(ze, ..., z,) where ¢ is any smooth
function; this would give a complete pinched system with Filippov (i.e. G° = 0) sliding dynamics
equivalent to the smooth system’s invariant dynamics on z; = 0. Instead consider the following
more interesting system.

Example 6.4.2. For 7; € R and y = (23, 73, ..., 7,) € R""! consider the system

Taking h(z1,y) = x1 the manifold ¥ = {z € D : x; = 0} is invariant under the flow. The dynamics
defined on ¥ is given by y = ¢(y), and the incomplete pinched system is given by

(I‘l -+ 6)2 if x>0 )
iy = . Yy =4ay) (6.4.7)
(r1—¢e)? if 2, <0

Computing the function K¢(0,y;\) we obtain K°(0,y;\) = G°(0,y;\) - Vh + €% Clearly for
G° = 0 (the linear/Filippov case) with € > 0 the equation K°(0,y; A\) = 0 has no solutions, instead
6.4.4) has only crossing solutions, and this does not represent the dynamics of the smooth system
6.4.7). Taking instead G*(z1,y; \) = (¢2(\* —1),0,0, ...) we find that, for ¢ > 0 sufficiently small,
A(z1,y) = 0 € T is a family of solutions of K¢(0,y; \) = 0, and produces a nonlinear sliding mode

given from (6.2.3) by y = f"*(0,y) = (0,q(y)).
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In this example, therefore, we can complete the pinched system, but we cannot use Theorem 3
to prove equivalence between the pinched sliding dynamics and the original invariant dynamics on
¥, because the original continuous system, in particular the term 4; = %, is structurally unstable.
To handle such cases it is necessary to perturb the original system by a small quantity. It is then
natural to pinch with respect to that small quantity, giving a pinching parameter that is intrinsic
to the system.

6.4.2 Intrinsic pinching

Let I and U be open bounded subsets of R and R"™!, respectively. For x; € I and y =
(9,3, ..., x,) € U consider the system

iy = F(z,y;0), y=pE(r,y;p). (6.4.8)

where F' = (Fy, Fy) is a C! function and p is a small parameter. We assume that for g = 0 the
graph ¥ = {(0,y) : y € U} is a critical invariant manifold of (6.4.8), that is F1(0,y;0) = 0 for
every y € U.

We also assume that, for g > 0 sufficiently small, the graphs X! = {(m'(y),y) : y € U}
for i = 1,2,...,k, are invariant manifolds of (6.4.8)), where mi(y) = em;(y) + O(¢?) for some
differentiable functions m; : U — R, such that the X! are order e-perturbations of ¥.. We assume
that © = O(e") where r > 1, so that taking p = u(e) we have that u(0) = 0. System
induces dynamics on each ¢, namely

y = p(e)Fy(mi(y),y;u(e)) on 1 =mi(y). (6.4.9)

Now let R be a positive real number such that R > max{|m;(y)|: y € U, i=1,2,...,k}. For
e > 0 sufficiently small we consider the following discontinuous system,

' Fi(xy+eR,y;u(e)) if x>0,
I =
Fi(x; —eR,y;u(e)) if z <0,
(6.4.10)
‘ pu(e)Fy(z1 +eR,y; pu(e)) if x>0,
y =
pe)Fy(xr —eR,y;pu(e)) if a1 <0.

We call a incomplete intrinsically pinched system, where ¥ is now the switching manifold where
the dynamics is not well defined. The discontinuous vector field (F, uFy) on the righthand side

of (6.4.10) will be denoted by F(x1,y; u(e)).

As we did for extrinsic pinching, we must now attempt to complete the system. In this case we
must ask whether the pinched system (6.4.10]) can be completed in the form (6.1.4]) such that there
exist k£ nonlinear sliding modes, each of which agrees with the dynamics of (6.4.9)) fori =1,2,... k.
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When this is possible for some family of functions G* we say that G* completes the pinched system,
and we call

Ty = fe(xlvy; >‘)

1+ ) 11—\
- 7F(ﬂc1 +eR,y; pu(e)) + 71*”(:61 —eR,y; p(e)) + G (1, y; ),

AEI? Gg(x17Ya:t1) :Oa

the complete intrinsically pinched system. As before we impose G°(z; \) = 0.

Theorem T. Suppose that the system ((6.4.8]) has an invariant manifold defined as the graph of
the function m.(y) = em(y) + O(e?). If the system

, . g2/, OF,
y=euWW%QYﬁ%+5ONWWHQ%®+QM®V—lmmﬂ)

o
OF;
21/ (0)m;(y)=2(0,y;0
+ 20/ (0)mi(y) 5 > (0,:0))
is structurally stable and
0F, oF,
"(0)—=—(0,y;0)=—F1(0,y;0) # 0
M()all,( Y5 )8x1 1( ' Y )7& )

then the function G®(z1,y;A) = (0,0) completes the system.

Proof. The graph ¥, = {(m.(y),y) : y € U} is an invariant manifold for system (6.4.8)), so taking
he(z1,y) = x1 — m.(y) we have

0= Vho(m(y),y)F(my),y; ue))

/

= Fi(m(y),y; u(e)) — wle)ml(y) Fy (e, m(y),y; u(e)),
for e > 0 sufficiently small. Thus taking the derivative in ¢ = 0 we obtain

oF,

2025 0,y;0) + miy)5 "

on (0,y;0) = 0. (6.4.11)

As previously we define

K=(0,y;A) = Vh(0,y)f(0,y; )

1+ A 1—A
= 5 Fl(gRa y;,u(g)) +

Fi(—e R,y; p(e))

_ iy OF o oF >
_ . (u 052 0.5:0)+ RAS 0.y o>) L o).
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Ke(0,y; A
Now let K(y; N\, e) = M From (6.4.11]) we have that KC (y; m](%y)’ O) = 0, and by hypoth-
€
esis
oK oF,
—(y; A\, 0 =R—(0,y;0 0.
33 VMOl o, (Y10 #

Hence from the implicit function theorem we have that for ¢ > 0 sufficiently small there exists

A0,y;¢e) = méy) +eX+O(g?) such that \(0,y;¢) € Z and K4(0,y; A\(0,y;¢)) = 0 for every y € U

and for € > 0 sufficiently small. It is easy to obtain an expression for A, but we do not require it
here.

Writing f = (f1, fy), the nonlinear sliding mode f(0,y;A(0,y;¢)) = (0, f,(0,y; A(0,y;¢))) is
given by

fy(0,y;2i(0,y3€)) = ep’(0)Fy(0,y;0) + 52<Iu2(0)Fy(an;O)

(6.4.12)
0752 0,3:0) + 1 Om(3) 5 0.5:0) + O)

Hence, expanding system (6.4.9)) about € = 0 in a Taylor series up to second order in €, we conclude
that the nonlinear sliding mode (|6.4.12)) is equivalent to the system ([6.4.9)). ]

A prototype for systems satisfying the hypotheses of Theorem [T]is &1 = 1 — u, @9 = pao, with
a slow invariant manifold zy = pm,,(x2) that becomes the critical manifold x; = 0 when p = 0.

It is clear that the function G° = 0 does not complete the system if £ > 1. In particular we
have the following.

Theorem U. Suppose that system (6.4.8) has two invariant manifolds defined as the graphs of
the functions m(y) = em;(y) + O(e?) for i = 1,2 where pu(e) = O(e?). We assume m; # my and
that

y oF, ] 82F1 )

If for € > 0 sufficiently small the system

. "0 € " " OF
7= R 030+ £ (W OR0.5:0) + 3 Om) 5 0.5:0)

is structurally stable for ¢ = 1,2, then the function

R20%F
Go(z1,y;A) =2(N* = 1) (2 axfl (0,y;0), 0)

completes the system.
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Proof. The graph ¥t = {(m'(y),y) : y € U} is an invariant manifold for system (6.4.8)), so taking
hi(z1,y) = z1 — mi(y) we have that

0= F(mi(y),y;u(é)) : th‘(mv;<Y>7Y)
= Fi(emi(y),y:pu(e)) —emi(y)Fy(e,m(y),y; 1),

for € > 0 sufficiently small. Thus taking the second derivative at ¢ = 0 we obtain

yoOF LO2F)

(0,y;0) = 0. (6.4.13)

As previously we define

K#(0,y;A) = f5(0,y;A) - VI(0,y)

14+ A 1—A
= 5 FileRyipe) + —;
_ e (o OF ) 212071 ) 2

Fi(=e R,y pu(e)) + G*(0,y: )

KE .
Now let K(y; A, e) = M

. From ([6.4.13]) we have K <y; mz}%)’) , 0) = 0, and by hypothesis

oK

0*Fy
a (y> )\7 6)

= Rm;(y)—==(0,y;0 0.
‘(/\,é)Z(mi(y)/R,O) mi(y) o2 (0,y;0) #

Hence from the implicit function theorem, for ¢ > 0 sufficiently small there exists \;(0,y;¢) =

m}éY) + O(e) such that A\;(0,y;e) € Z and K°(0,y;A\i(0,y;¢)) = 0 for every y € U and for
i=1,2.

The nonlinear sliding mode f(0,y;X;(0,y:¢)) = (0, fy(0,¥; Ai(0,y;¢))) is given by

52[1// 0 52
O R 0.3:0) + 5 0 0) B 0.3:0

-wwmmmwggumm)+ow»

fy(0,y;2(0,y;¢)) =

(6.4.14)

for i = 1,2. Hence, expanding system (6.4.9) around ¢ = 0 in Taylor series up to third order in €,
we conclude that the nonlinear sliding mode (6.4.14]) is equivalent to the system ((6.4.9) for each
i=1,2. O

A prototype for systems satisfying the hypotheses of Theorem [Ulis &) = 22 — u, @9 = pas, with
slow manifolds x; = 4, /pm(x2) which are normally hyperbolic for ;> 0, but which coalesce onto
a non-hyperbolic critical manifold x; = 0 for p = 0.
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Chapter 7

Further directions

Regarding Chapters 1 and 2, possible directions for further investigations are the extensions
and generalizations, for non—smooth systems, of the averaging theory in multifrequency systems
(see, for instance, [30]). As far as we know, up to now there are no results in this line of research.

Regarding Chapters 3 and 4, it remains an open problem to estimate the upper bound for the
maximum number of limit cycles allowed in planar piecewise linear differential systems with two
zones separated by a straight line. So it represents an obviously direction for further investigations.

Regarding Chapter 5, higher dimensional vector fields allows the existence of many other kinds
of sliding homoclinic connections. So the study of typical sliding homoclinic connection in higher
dimensions seems to be a very fertile theme of research. Another possible direction for further
investigation is to apply the techniques from ergodic theory to provide deeper results on this
kind of sliding connection. For instance, the existence of symbolic extensions, conjugation with
Bernoulli shifts, and existence of Smale horseshoes.

Regarding Chapter 6, particular forms for the function G* that complete an intrinsically pinched
system are given for slow-fast dynamics with one or two slow critical invariant manifolds, but the
result can certainly be extended in such a way that a general theory may proceed along similar
lines to normal forms of singularities.
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Appendix A

Basic results on the Brouwer degree

In this appendix we present some results of the degree theory in finite dimensional spaces. We
follow the Browder’s paper [15], where the properties of the classical Brouwer degree are formalized.

Proposition A.0.1. Let X = R” =Y for a given positive integer n. For bounded open subsets
V of X, consider the continuous map f : V — Y, and a point 7, in Y such that y, does not lie
in f(OV) (as usual OV denotes the boundary of V). Then to each triple (f, V1), there exists an
integer d(f,V,yo) having the following properties.

(i) If d(f,V,yo) # 0, then yo € f(V). If fy is the identity map of X onto Y, then for every
bounded open set V' and y, € V, we have

d<f0|V7 V,Z/(J) ==+l

(ii) (Additivity) If f: V — Y is a continuous map with V' a bounded open set in X, and V; and
V4 are a pair of disjoint open subsets of V' such that

o ¢ fF(VA(V1UV2)),

then,
d(f(bvvy()) - d(f07‘/17y0) +d(f07‘/17y0) .

(iii) (Invariance under homotopy) Let V' be a bounded open set in X, and consider a continuous
homotopy {f; : 0 <t < 1} of maps of V in to Y. Let {y; : 0 < ¢ < 1} be a continuous curve
in Y such that y; ¢ f,(0V) for any ¢t € [0, 1]. Then d(f:, V,y:) is constant in ¢ on [0, 1].

Proposition A.0.2. The degree function d(f,V,y) is uniquely determined by the conditions of
Theorem [A.0.1l

For the proofs of Theorems [A.0.1{ and [A.0.2 see [15].

Lemma A.0.1. We consider the continuous functions f; : V. — R", for i = 0,1,---,k, and
f,9,7:V X [g0,60] — R, given by

g(e) = () +efo() + 2 f3() + -+ (),
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f(,e) =g(-,e) +e¥r(-,€).

Assume that g(z,e) # 0 for all z € OV and ¢ € [—eg,&0]. If for |e|> 0 sufficiently small
dp (f(-,€),V,yo) is well defined, then

dp (f(,€),V,v0) = dp (9(-,€), V %) -

For a proof of Proposition see Lemma 2.1 in [19].
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Appendix B

Chebyshev systems

In this appendix we introduce important tools of the Chebyshev theory that we shall use to
prove the main results of chapter 4 (Theorems , and . For more details about Chebyshev
systems, see for instance, the book of Karlin and Studden [61].

Consider an ordered set of smooth real functions F = (fo, fi,..., f.) defined on a interval I.
The maximum number of zeros counting multiplicity admitted by any nontrivial linear combination
of functions in F is denoted as Z(F).

Definition B.0.1. We say that F is an Extended Chebyshev system or ET-system on [ if and
only if Z(F) < mn. We say that F is an Extended Complete Chebyshev system or an ECT-system
on [ if and only if for any k, 0 < k <n, (fo, f1,..., fx) is an ET-system.

The next proposition relates the property of an ordered set of functions (fo, fi,..., fr) being
an ECT-system with the nonvanishing property of their Wronskians

fot)  A®) - fi(®)

folt)  fit) - fi(t)
W (fo, f1,---5 fx)(t) = k

e 1w o 1P

Proposition B.0.3 ([61]). A ordered set of functions F = (fo, f1,..., fx) is an ECT—system on [
if and only if W (fo, fi,..., fi)(t) #0on [ for 0 <i < k.

The next result has been proved by Novaes and Torregrosa in [93].

Proposition B.0.4 ([93]). Let F = (ug,u1,...,u,) be an ordered set of smooth functions on
[a,b]. Assume that all the Wronskians are nonvanishing except W,,(z) which have ¢ > 0 zeros on
(a,b) and all these zeros are simple. Then Z(F) =n when ¢ =0, and n+ 1 < Z(F) < n+ ¢ when
¢ #0.
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