NG

¥ Flavio Rubens Massaro Jdnior

UNICAMP

Configuring Mode Changes in Fixed-Priority
Preemptively Scheduled Real-Time Systems

Configuracao de Mudancas de Modo em
Sistemas de Tempo Real Escalonados com

Politica Preemptiva de Prioridade Fixa

Limeira

2015

ii

&"’A UNIVERSIDADE ESTADUAL DE CAMPINAS
a¥ Faculdade de Tecnologia

UNICAMP

Flavio Rubens Massaro Junior

Configuring Mode Changes in Fixed-Priority Preemptively
Scheduled Real-Time Systems
Configuracao de Mudancas de Modo em Sistemas de
Tempo Real Escalonados com Politica Preemptiva de

Prioridade Fixa

Dissertation presented to the School of
Technology at the University of Campinas
in partial fulfillment of the requirements
for the Master’s degree in Technology, in
the area of Technology and Innovation.

Dissertagdo apresentada a Faculdade
de Tecnologia da Universidade FEstadual
de Campinas como parte dos requisitos
erigidos para a obtencao do titulo de
Mestre em Tecnologia, na drea de Tec-
nologia e Inovacao.

Supervisor/Orientador: Prof. Dr. Paulo Sérgio Martins Pedro
Co-supervisor/Co-orientador: Prof. Dr. Edson Luiz Ursini
Este exemplar corresponde a versao final

da dissertacao defendida pelo aluno Flavio

Rubens Massaro Junior, e orientada pelo
Prof. Dr. Paulo Sérgio Martins Pedro.

Limeira

2015

iii

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca da Faculdade de Tecnologia
Felipe de Souza Bueno - CRB 8/8577

Massaro Junior, Flavio Rubens, 1976-
M382c Configuring mode changes in fixed-priority preemptively scheduled real-time
systems / Flavio Rubens Massaro Junior. — Limeira, SP : [s.n.], 2015.

Orientador: Paulo Sérgio Martins Pedro.

Coorientador: Edson Luiz Ursini.

Dissertacdo (mestrado) — Universidade Estadual de Campinas, Faculdade de
Tecnologia.

1. Sistemas de tempo real. 2. Escalonamento de processos. 3. Algoritmos
genéticos. |. Martins Pedro, Paulo Sérgio,1967-. Il. Ursini, Edson Luiz,1951-. III.
Universidade Estadual de Campinas. Faculdade de Tecnologia. IV. Titulo.

Informac@es para Biblioteca Digital

Titulo em outro idioma: Configuracdo de mudancas de modo em sistemas de tempo real
escalonados com politica preemptiva de prioridade fixa
Palavras-chave em inglés:

Real-time systems

Processor scheduling

Genetic algorithms

Area de concentrag&o: Tecnologia e Inovacdo
Titulagc&o: Mestre em Tecnologia

Banca examinadora:

Paulo Sérgio Martins Pedro [Orientador]

George Marconi de Araujo Lima

Alexandre Claudio Botazzo Delbem

Data de defesa: 23-02-2015

Programa de Pds-Graduagao: Tecnologia

DISSERTACAO DE MESTRADO EM TECNOLOGIA

AREA DE CONCENTRACAO: TECNOLOGIA E INOVACAO

Configuring Mode Changes in Fixed-Priority Preemptively Scheduled Real-Time Systems

FLAVIO RUBENS MASSARO JUNIOR

A Banca Examinadora composta pelos membros abaixo aprovou esta Dissertagdo:

PROF. D

UNICAMP
Presidente

LI L

[PROF. DR/GEORGE MARCONI DE ARAUJO LIMA

UFBA
/@M 28

PROF. DR. ALEXANDRE CLAUDIO BOTAZZO DELBEM
USP

vi

Abstract

Modes of operation and mode-changes are a useful abstraction to enable configurable, flexible
real-time systems. Substantial work on the fixed priority preemptive scheduling approach
allowed tasks across a mode-change to be provided with real-time guarantees. However, the
proper configuration of critical parameters such as task offsets, despite initial work, remains
a gap in research. Without a method that automates this design step, while assuring that the
basic requirements are met, the full adoption of mode-changes in real-time systems remains
limited to relatively simple systems with limited task sets. We propose a method to assign
offsets to tasks across a mode-change, using a metaheuristic approach (genetic algorithms).
This method allows the configuration and/or the minimization of the worst-case latency of
a mode-change. The latency of a mode change is a critical parameter to be minimized, since
during the mode change the system offers limited functionality due to the fact that the
task set is still incomplete. We also provide a classification of mode changes according to
applications’ requirements. This classification was useful, once applied to a number of case
studies, both to validate the configuration approach and to a greater extent to show that the

method is flexible in that it can accommodate a wide variety of types of mode-changes.

Keywords: real-time systems; schedulability analysis of mode-change; genetic algorithms;

processor scheduling.

vii

viil

Resumo

Modos de operacao e mudancas de modo sao uma abstracao ttil para permitir que sistemas
de tempo real sejam flexiveis e configuraveis. Trabalhos prévios em escalonamento preemptivo
com prioridades fixas permitem que as tarefas passem de um modo de operacao para outro
provendo garantias de tempo real. No entanto, a configuragdo adequada dos parametros
criticos, tais como o offset de uma tarefa, apesar de trabalhos anteriores terem abordado este
assunto, permanece uma lacuna a ser explorada. Sem um método que automatize esta etapa
do processo, garantindo ao mesmo tempo que os requisitos basicos sejam atendidos, a adogao
plena de mudancas de modo em sistemas de tempo real permanece limitada a sistemas
relativamente simples, com um conjuntos de tarefas limitado. Propomos um método para
atribuir offsets as tarefas em uma mudanga modo, através de uma abordagem Metaheuristica
(algoritmos genéticos). Este método permite a configuragdo e/ou a minimizagao da laténcia
de pior caso de uma mudanca modo. A laténcia de uma mudanca de modo é um parametro
critico para ser minimizado, uma vez que durante a mudanca de modo o sistema oferece
funcionalidade limitada, uma vez que o conjunto de tarefas esta parcialmente em operacao.
Também elaboramos uma classificacado das mudancas de modo de acordo com as necessidades
das aplicacoes. Esta classificacdo, quando aplicada a uma série de estudos de casos, permitiu
validar a abordagem de minimizagao/configuragao, estender a classificacdo anteriormente
existente e demonstrar que o método é flexivel, ja que pode acomodar uma ampla variedade

de tipos de mudancas de modo.

Palavras-chave: sistemas de tempo real; andlise de escalonabilidade de mudanga de modo;

algoritmos genéticos; escalonamento de processos.

ix

1

Contents

Introduction e e e e 1
1.1 Goals. o 2
1.2 Dissertation Organization 3
Background and Literature Review 5
2.1 Schedulability Analysis 5
2.2 Computational Model and Assumptions 5
2.2.1 Analysis for Old-mode Tasks 8
2.2.2 Analysis for New-mode Tasks 11
2.3 Schedulability Analysis Algorithm 13
2.4 Definition of Mode-Change Latency (L) 14
2.5 Offset Minimization Algorithm 15
2.6 Evolutionary Algorithms (EA) 16
2.6.1 Genetic Algorithm (GA)o 16
2.6.2 Basic Terminology L o0 17
2.6.3 Multi-Objective Genetic Algorithms (MOGA) 19
2.6.4 Use of GA in Real-Time Systems 22
Minimizing the Mode-Change Latency 23
3.1 Model and Approach to Minimization 24
3.2 CaseStudies 27
3.2.1 Case 1 - Minimizing Offsets 28
3.2.2 Case 2 - Minimizing Latency 30
3.2.3 Case 3 - Minimizing Latency and Offsets - Weights-Based Multi-Objective 32
3.2.4 Case 4 - Minimizing Latency and Offsets - Multi-Objective 34
3.3 Discussion 37
Configuring Mode Changes 41
4.1 Types of Mode Change 41
4.2 Model and Approach to Minimization 49
4.3 Case Studies 49
4.3.1 Study Case 1 - Minimizing Offsets and Latency (MOF) 51
4.3.2 Case Study 2 - Minimizing Latency and Offsets (AOF) o4
4.3.3 Case Study 3 - Minimizing Latency Imposing Offsets within a Range
(MOF) . . 57

4.3.4 Case Study 4 - Minimizing Latency with WCRT within a Range (M OF') 59

xi

4.3.5 Case Study 5 - Minimizing Offsets with Latency within an Acceptable
Range (MOF) 61
4.3.6 Case Study 6 - Minimization Using the Algorithm of Real and Crespo
(2001) (BMC) . . . 63
4.3.7 Case Study 7 - Minimizing Latency with Py > Pop (MNF) 64
4.3.8 Case Study 8 - Minimizing Offsets with Py > Po (MNF) 67
4.3.9 Case Study 9 - Minimizing Latency with Po > Py (AOF) 68
4.3.10 Case Study 10 - Minimizing Offsets with Pp > Py (AOF) 70
4.3.11 Case Study 11 - Minimizing Latency with O > max(Ro — =) (AOF) 71
4.3.12 Case Study 12 - Minimizing Latency with Py > Po (ANF) 73
4.4 DiIScussion 76
5 Summary and Conclusions e 81
Bibliography e 85
Appendix 89
APPENDIX A Software Tool 91

xii

I dedicate this work to my wife Vanessa, to my daughters Livia and Lara and to my son

Fldvio Neto. They were my source of motivation for the conclusion of this journey.

xiii

Xiv

Acknowledgements

I would like to thank both my supervisor Dr. Paulo Martins and my co-supervisor
Dr. Edson Ursini for providing me with the opportunity to develop my dissertation at the
University of Campinas, and for their continuing support and interest in my work. I also
would like to thank them for the many hours of fruitful discussion and for reviewing the
work in this dissertation. I am grateful to my colleagues from the College of Technology for
their encouragement. Finally, I want to thank my wife Vanessa for her patience and support

during difficult times.

XV

XVi

Declaration

I declare that the research described in this dissertation is original work which I

undertook between February 2013 and January 2015.

Xvii

“Pray as though everything depended on God. Work as though everything depended on you.”
(Saint Augustine)

xXviil

List of Figures

Figure 1 — Mode-Change Model. 7
Figure 2 — Schedulability Analysis UML Diagram of Mode Change 13
Figure 3 — Algorithm to Calculate Offsets (REAL; CRESPO, 2001). 15
Figure 4 — Key Components of EA. Adapted from (COELLO et al., 2007) 18
Figure 5 — Example of Pareto-Front. 21
Figure 6 — Diagram of the Optimization Using GA 24
Figure 7 — Structure of a Chromosome (n equal to the number of new-mode tasks) . 25
Figure 8 — Non-dominated Solutions Obtained using NSGA-II. 35
Figure 9 — All Old First (AOF) 42
Figure 10 — All New First (ANF) o o 43
Figure 11 — Mostly Old First (MOF) 43
Figure 12 — Mostly New First (MNF) 44
Figure 13 — Balanced Mode Change (BMC) 45
Figure 14 - d =L x k (BMC) 47
Figure 15 — § =max(Ro —x)) (AOF) 48
Figure 16 — d = max(Ry + O) (ANF) 48
Figure 17 — Case Study 1 - Utilization Chart (MOF) 53
Figure 18 — Case Study 2 - Utilization Chart (AOF) 56
Figure 19 — Case Study 3 - Utilization Chart (MOF) 58
Figure 20 — Case Study 4 - Utilization Chart (MOF) 61
Figure 21 — Case Study 5 - Utilization Chart (MOF) 63
Figure 22 — Case Study 6 - Utilization Chart (BMC) 64
Figure 23 — Case Study 7 - Utilization Chart Using Latency Definition I (MNF) . . . 65
Figure 24 — Case Study 7 - Utilization Chart Using Latency Definition IT (MNF) . . 66
Figure 25 — Case Study 8 - Utilization Chart (MNF) 68
Figure 26 — Case Study 9 - Utilization Chart (AOF) 69
Figure 27 — Case Study 10 - Utilization Chart (AOF) 71
Figure 28 — Case Study 11 - Utilization Chart (AOF) 72
Figure 29 — Case Study 12 - Utilization Chart Using Latency Definition IT 74
Figure 30 — Research Before and After this Work. 84
Figure 31 — Screen of Task Descriptor 91
Figure 32 — Screen of Operation Modes Register 92
Figure 33 — Screen of the Schedulability Analysis and GA Configuration 93

Xix

Figure 34 — Screen of Shared Resources 93

Figure 35 — Screen of Offsets Optimization 94
Figure 36 — Screen of Analysis of Result 95
Figure 37 — Screen of Pareto Font for NSGA Optimization 95
Figure 38 — Screen of Utilization Gantt 96

XX

List of Tables

Table 1 — Summary of the Case Studies 27
Table 2 — Case Study 1 -Setoftasks 28
Table 3 — Case Study 1 - Scenarios for GA Optimization 29
Table 4 — Case Study 1 - GA Sensitivity Analysis to Offset Minimization 29
Table 5 — Case Study 1 - Offsets Obtained ' Algorithm of Real and Crespo (2001) and

2Genetic Algorithm 30
Table 6 — Case Study 2 - GAP Tasks for Cruise Mode 31
Table 7 — Case Study 2 - GAP Tasks for Defense Mode 31
Table 8 — Case Study 2 - Offsets Obtained 32
Table 9 — Case Study 3 - Scenarios for Optimization with GAs 33
Table 10 — Case Study 3 - GAs Sensitivity Analysis to Offset Minimization 33
Table 11 — Case Study 3 - Offsets Obtained 'Algorithm of (REAL; CRESPO, 2001)

2Genetic Algorithm 34
Table 12 — Case Study 4 - Offsets Obtained with NSGA-IT ' NDS; (Lower Latency)

2 NDS, (Intermediate) ® NDS; (Lower Offsets) 36
Table 13 — Case Study 4 - Comparison between Cases 1-4 36
Table 14 — Mode-Change Types 47
Table 15 — Task Set Used in Cases 1 through 11 51
Table 16 — Case Study 1 - Scenarios for GA Minimization 52
Table 17 — Case Study 1 - GAs Sensitivity Analysis 52
Table 18 — Case Study 1 - Offsets Obtained 53
Table 19 — Case Study 2 - GAs Sensitivity Analysis 55
Table 20 — Case Study 2 - Offsets Obtained 56
Table 21 — Case Study 3 - Range for Offsets 57
Table 22 — Case Study 3 - GAs Sensitivity Analysis 57
Table 23 — Case Study 3 - Offsets Obtained 58
Table 24 — Case Study 4 - Scenarios for GA Minimization 29
Table 25 — Case Study 4 - Range for WCRT 60
Table 26 — Case Study 4 - GAs Sensitivity Analysis 60
Table 27 — Case Study 4 - Offsets Obtained 60
Table 28 — Case Study 5 - GAs Sensitivity Analysis 62
Table 29 — Case Study 5 - Offsets Obtained 62
Table 30 — Case Study 6 - Offsets Obtained 63

Xx1

Table 31 — Case Study 7 - Latency Definition I - Offsets Obtained 65

Table 32 — Case Study 7 - Latency Definition II - Offsets Obtained 66
Table 33 — Case Study 8 - Offsets Obtained 67
Table 34 — Case Study 9 - Offsets Obtained 69
Table 35 — Case Study 10 - Offsets Obtained 70
Table 36 — Case Study 11 - Offsets Obtained 72
Table 37 — Case Study 12 - Set of Ten Tasks 73
Table 38 — Case Study 12 - Offsets Obtained Using Latency Definition IT 74
Table 39 — Summary of Case Studies L. 76
Table 40 — Requirements for Each Type of Mode-Change 78

xxii

List of Acronyms and Abbreviations

Latin Characters

B Block Time

C Computation Time

Co Active Constraints Vector

D Deadline

k Constant value dependent on the application (which is arbitrarily
set to 30% in this work)

L Latency

O Offset Y or Z

Ob Objective Values Vector

P Priority

Py Set of priority from the new-mode tasks

Po Set of priority from the old-mode tasks

Q Largest number of invocations of task 7; that may occur within the

busy period

R WCRT of a task 7;

Ry Set of WCRT from the new-mode tasks

Ro Set of WCRT from the old-mode tasks

T Period between releases of a task 7;

U Utilization of Processor

w Window Time

We Objective Weights Vector

x Interval of time between the mode-change request (MCR) and the
activation of task 7;

Y Offset measured from the mode-change request MCR

A Offset measured from the end of the last task instance in the old-mode

#Tins(yy Number of new-mode tasks inserted within significant interval §
#Trmvey Number of old-mode tasks completed within significant interval ¢
#T(\) Number of new-mode tasks

#7(0) Number of old-mode tasks

xXxiii

Greek Characters

7 Task

Interval from the mode-change request (significant interval)

=%

Relation between new-tasks inserted and old-mode tasks removed during inter-
val o

p Tolerance factor

Subscript
A Aborted Tasks
¢ Changed Tasks
~ New Mode Tasks
o Old Mode Tasks (Completed)
v Unchanged Tasks
w Wholly New Tasks

Abbreviations

MIN Minimum
MAX Maximum

Acronyms

AOF All-Old Mode Tasks First

ANF All-New Mode Tasks First

BMC Balanced Mode-Change

DMS Deadline Monotonic Scheduling

DPGA Elitist Distance-Based Pareto Algorithm

EA Evolotionary Algorithm
EDF Earliest Deadline First

EP Evolutionary Programming
ES Evolution Strategy

XX1V

GA Genetic Algorithm

GAs Genetic Algorithms

IPCP Immediate Priority Ceiling Protocol
LD Latency Definition

MCD Mode-Change Deadline

MCR Mode-Change Request

MNF Mostly-New Mode Tasks First

MOF Mostly-Old Mode Tasks First

MOGA Multi-Objective Genetic Algorithms
NDS Nondominated Solution

NSGA-IT Elitist Nondominated Sorting Genetic Algorithm
RSS WCRT of a Task in Steady-State Mode

SPEA-2 Strength Pareto Evolutionary Algorithm
WCRT Worst Case Response Time
WECT Worst Case Execution Time

XXV

XXVi

Glossary

Busy Period - “A level-i busy period is defined as the maximum time for which a processor
executes tasks of priority greater than or equal to the priority of task ;7 (LEHOCZKY, 1990).

Cross interference - Interference between tasks from distinct modes.

Immediate Priority Ceiling Protocol (IPCP) - “With IPCP, a resource has a ceiling
priority assigned to it, not lower than that of the highest priority task that may use it. A task

using a resource, immediately inherits its ceiling priority, thus avoiding unbounded priority
inversion, deadlocks and transitive blocking” (REAL; CRESPO, 2001).

Latency Definition I (LD I) - “A window starting with the arrival of the mode change
request to the system and ending when the set of new tasks have completed their first execu-
tion and the set of old tasks have completed their last execution” (PEDRO; BURNS, 1998).

Latency Definition IT (LD II) - “The latency of mode-change has been considered as
the time interval between MCR and completion of the first activation off all new-mode tasks”
(REAL; CRESPO, 2004).

Promptness - “There may be new-mode tasks whose execution must be completed before a
determinate time after the mode change was requested. This requirement models the need for
a prompt response, specially useful when switching to an emergency mode” (REAL; CRE-
SPO, 2001).

Mode Change - The mode change occurs when one entity issues a mode-change request
command (MCR). Once the system receives the MCR, its state changes to transient-mode.
During the mode change the old-mode tasks will either be aborted or completed. New-mode
tasks will start their execution. At the end of the transition the system changes back to steady
state/mode.

XxXVvii

Offset - Offset is a value that delays the introduction of a task during the mode change.
Offsets are assigned to new-mode tasks to reduce the interference between tasks during the

mode change.

Steady State - The system is in steady state when it executes a fixed task set (without

mode changes).

Transition of Modes - Same as mode change.

xxviii

1 Introduction

The new generation of real-time systems is required to be multifunctional and dy-
namically adaptable to the environment where they are deployed. One way of achieving
multifunctionality and adaptability is by organizing the design of the system around modes
of operation. Each mode implements a certain, well-defined system behavior and the system
transitions from one mode to another in response to changes in the surrounding environment.
The new active mode is customized and configured to the new operational phase and can
thus deliver more performance than a general, monolithic (i.e. single mode) implementation
of system functionality. In real-time systems, a mode of operation is defined by its behavior
and implemented by a task set (schedule) (PEDRO, 1999). Changes in mode of operation
thus involve changes in the task set, by adding, replacing or removing tasks from the sched-
ule. In order to implement modal (or flexible) real-time systems, the transitions from mode

to mode have to be guaranteed by offline (i.e. static) schedulability analysis.

This work is developed within the context of fixed-priority preemptively scheduled
uniprocessor real-time operating systems (TINDELL et al., 1994). As it is implied, these sys-
tems consist of multiple tasks with fixed priorities scheduled preemptively by the underlying
operating system kernel. It offers a method to minimize the latency of a mode change in
these systems. As we shall see in chapter 2 in more detail, in our model any new task is
introduced in the system during a mode change (or transition) with an offset (or delay) O
after the start of the transition to the new mode of operation. In one hand, offsets that are
too small may increase the CPU utilization of the system at the start of the transition to a
point where the system is no longer schedulable and therefore miss deadlines. On the other
hand, if offsets are assigned with large values, the latency of a mode-change may increase
to the point where the mode-change itself is not longer viable (i.e. assuming that the mode
change must be completed within a certain deadline). This is due to the fact that, during a
mode change, while the system is self-configuring its tasks, the system may be only partially
delivering some of its critical functions. Therefore, it is of utmost importance that the latency

of the system is reduced to the lowest possible value.

In this work we wish to find a method, based on genetic algorithms (GA), to auto-
matically assign proper offsets to tasks in a mode-change so that the latency of the transition
is minimized while real-time guarantees are also preserved. Real-time guarantees mean that
some or all the tasks have real-time deadlines that must be fulfilled at design time, other-

wise the system is deemed not schedulable leading to some sort of undesired behavior. This

2 Chapter 1. Introduction

problem is a multi-objective optimization one that has to deal with tradeoffs as it will be

discussed later.

To our knowledge, there is currently no work in the literature that addresses such
concerns. The work that is closest to ours is the work by Real and Crespo (2001), whereby
the authors tackle the issue of minimizing offsets. However, our goal in this work is completely
different in that we wish to minimize the worst-case latency of a mode-change ! (and not
offsets). Notice also that most work using genetic algorithms in real-time systems fall outside
the scope of this paper, as they deal with the issue of allocating tasks to multiprocessors,
such as the work by Yoo (2009) and ManChon et al. (2011).

A secondary contribution of this work is a method combined with a software tool that
allows the configuration of mode-changes in fixed-priority preemptively scheduled real-time
systems. This method extends the mode-change classification proposed by Real and Crespo
(2004) by introducing five new classes of mode changes according to the relative ordering
of tasks in a mode change. Therefore, it is possible for the designer to specify the type of
transition desired (which is application dependent feature), have it implemented and then

minimized before deployment of the actual application.

In this work, was adopt the asynchronous mode-change model, where tasks from the
new-mode begin execution in parallel with tasks from the old-mode, thus leading to shorter
mode-change delays. Old-mode completed tasks are actually discarded from the system,
leaving resources for tasks arriving from the new-mode. Therefore, the number of modes
of operation is only limited by the available memory in the system. This approach allows
systems to be schedulable, with a large number of modes and tasks. It also enables faster
mode-changes due to the (pseudo) parallelism of old and new-mode tasks, and the early
introduction of new-mode tasks at the beginning of a mode-change. This approach requires
schedulability analysis, which is provided by existing work (REAL; CRESPO, 2001; PEDRO;
BURNS, 1998).

1.1 Goals

In a broad sense, the goal of this work was to propose a method that allows the
configuration of a mode-change based on an evolutionary algorithm in a way that meets the
requirements of such transitions. These requirements include minimized mode-change latency,
real-time guarantees, and the ability to express and configure various types of mode-changes

as discussed later in this work. More specifically, in this work we wish to find a method

I whenever we refer to latency, we mean the worst-case latency

1.2. Dissertation Organization 3

to assign proper offsets to tasks in a mode-change so that the latency of the transition is

minimized while real-time guarantees are also preserved.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows:

Chapter 2 surveys the field of fixed priority preemptive scheduling, schedulability
analysis of mode-change in fixed priority systems, the offset minimization algorithm, the
evolutionary algorithms with an emphasis in single and multi-objective genetic algorithms as

well as related work.

Chapter 3 introduces the approach chosen for minimization of mode-change latency
using genetic algorithms. In addition, was presented a number of case studies to prove the

efficacy of this method.

Chapter 4 focus on exploring a number of case studies that evidentiate the flexibility
(or versatility) of the approach. Furthermore, a method for classification of mode changes is

introduced in order to facilitate the proper configuration of mode-changes.

Finally, chapter 5 summarizes the main conclusions and proposals for future work.

2 Background and Literature Review

This work integrates topics from two distinct areas: Schedulability Analysis (real-time
systems) and Evolutionary Algorithms (artificial intelligence). Therefore, in this chapter we
present background and literature review related to this work such as schedulability analysis,
schedulability analysis for mode change, offsets optimization in real-time systems and genetic

algorithms.

2.1 Schedulability Analysis

The basic premise of a real-time system is that it provides a guarantee that it meets

all timing requirements for a given configuration during its life-cycle.

One way to achieve real-time guarantees is by applying the schedulability analysis.
The schedulability analysis uses the WCRT (Worst-Case Response Time) to determine if a
task set meet its requirements. We calculate the worst-case response time (R) for each task
in the system and compare it with its respective deadline (D). The system is deemed to be
feasible if all tasks meet their deadlines (i.e. R < D). Otherwise, it is necessary to reconfigure

the system and redo the analysis.

Throughout this chapter we will provide schedulability analysis that has been used
to calculate the worst-case latency of a task across a mode change. For more details on the
basic fundamentals of real-time schedulability analysis, the reader is referred to Burns and

Wellings (2009).

2.2 Computational Model and Assumptions

We shall consider a set of periodic or sporadic tasks 7 = {7, 7,...7,...7,} per
mode. Each task 7; is characterized by the tuple S; = {T;, D;, C;, P;}, where: 1) T; and D;
are respectively the period of task 7; (or, if a sporadic task, the minimum inter-arrival time
between successive tasks of the stream i) and the deadline; 2) C; is the worst-case execution
time (WCET) of the task 7;. This value is deemed to contain the overheads due to context
switching. Moreover, the values of C;, D; and T; are such that C; < D; < T; . We remove the
restriction thatD; < T; ; 3) P; represents the priority of task 7; , assigned according to the
Deadline Monotonic Scheduling algorithm.

6 Chapter 2. Background and Literature Review

Throughout this chapter, we use the notation Cj),Cj4) and Cjny when referring to
the computational time of an old-mode completed task, an aborted task, and a new-mode
task, respectively. 7; denotes a task for which we are finding the WCRT and 7; denotes a
higher-priority task. We use the term steady-state analysis to refer to the body of schedu-
lability analysis of single-mode systems, where the task set is fixed and there are no mode

changes. We also use the notation:

® V Tj0) hp 7; : set of old-mode tasks 7; with priority higher than task 7;

V Tjcay hp 7; : set of aborted tasks 7; with priority higher than task 7;;

V 7jv) hp 7; @ set of new-mode tasks 7; with priority higher than task 7;.
The mode-change model is based on the following assumptions:

e Tasks are executed in a uniprocessor system;

e Tasks are not permitted to voluntarily suspend themselves during an invocation (so,

for example, tasks are not allowed to execute internal Ada-like delay statements);
e There are fixed task sets before and after the mode change;

e The worst-case response time of a generic task 7, (WCRT), denoted R;, is the longest
time ever taken by that 7; from the time it arrives until the time it completes its required

computation;

e Tasks are scheduled with time offsets during the mode change only. This time phasing

between tasks may or may not hold after the mode change.

Furthermore, we assume that there is to some extent a certain leeway in defining the
tasks’ real-time parameters such as the period, worst-case execution time and priorities. For
example, the worst-case execution time depends at least on the processor speed, and on the
code that implements the desired behavior for a task. A task may be divided in sub-tasks in
case the value of C' is unacceptably large. Similarly, the value of T" may lie within a range:
in one hand, the largest value (or upper bound) is dictated by the physical process variable
monitored by the task, which must be scanned using a minimum sampling rate; the lower
bound on T is the processor utilization, as a small periods substantially increase processor
utilization. Within these limits, the application designer has some flexibility in choosing an
appropriate value of T'. Priorities can also be adjusted as long as the deadline monotonic

policy (DMS) is ensured. This assumption is not unrealistic for most types of real world

2.2. Computational Model and Assumptions 7

systems and it plays an important role in chapters 3 and 4 where we present our approach

to latency minimization.

Mode |
Old Mode Change ! New Mode
D SEGTCEEEEEEEEPEEEEPEEEEEEPEREEEErees)) CEURELERERECOND Poon e >
| A 2 I I

Tasks

L lmi
N = oo

T Dl[lxlri I

[—
' L >
' lEnd of Mode Change Time
O Unchanged . Bl Completed
O Changed [l Wholly New

O Aborted

Figure 1 — Mode-Change Model.

A mode-change request (MCR) is the event that triggers a transition from an old-
mode of operation to a new one. The window x is the phasing between the MCR and the
activation of task 7, A MCR may not be preempted by another MCR. The mode-change
model comprises of five types of tasks (Fig. 1):

e Old-mode completed tasks, Tj0): These tasks are released in the old-mode, i.e. before
the arrival of the M C'R. These tasks need to advance their execution in the transition
window to finish execution. They cannot be simply aborted as they would leave the
system in an inconsistent state. Once they complete during the transition, there are no
further releases. They are used to model the behavior of the system in the old-mode

that is no longer needed in the new-mode.

e Old-mode aborted tasks, T; 4): These tasks are also released prior to the MCR. They need
to be immediately discarded after the M C'R in order to release allocated resources back
to the system. The functionality they implement is no longer needed in the new-mode

of operation.

8 Chapter 2. Background and Literature Review

e New-mode changed tasks, T;c): These tasks are released during the transition, with an
offset Y from the M C'R. This class models the behavior that is changed in the new-
mode. Changed new-mode tasks have a modified timing parameter compared to their
corresponding old-mode version, such as changed worst-case execution time (C'), period
(T"), or priority (P).

e New-mode unchanged tasks, ;1r): These tasks are released during the transition window,
with an offset Z, from the end of the period of their corresponding old-mode version.
They model the behavior of the application that is not changed across the mode change
and in the new-mode. Their timing parameters are the same as the preceding old-mode

version.

e Wholly new task, T;ow): These tasks are released during the transition window with an
offset Y. They are used to model the behavior that is totally new, i.e. has no equivalent

in the old-mode of operation.

With respect to the way tasks are executed across a mode change, they are classified
as: 1)Tasks with mode-change periodicity: these tasks are executed across the mode change
and maintain their activation pace, and 2) Tasks without mode-change periodicity: These
tasks do not preserve their activation pace across a mode change. The schedulability analysis
of mode change is divided into two parts: analysis of the old-mode tasks and analysis of the

new-mode tasks.

2.2.1 Analysis for Old-mode Tasks

The interference level of old-mode tasks is given in accordance with its classification

of the types of tasks:

e Interference from higher priority old-mode completed tasks Ipy), : it is necessary to take
into account the interference of higher priority old-mode tasks released in the interval

x exclusively. Therefore, we have:

o= ¥ | 2|6 2.)

Vj€hp(i)o

e Interference from higher priority aborted tasks Iy, while it is clearly not necessary
to guarantee the schedulability of this class of tasks, we still need to consider their
interference upon lower priority old-mode tasks. There are two components to this

term: first we should consider the number of complete periods of the higher priority

2.2. Computational Model and Assumptions 9

aborted task j that fit in in the interval =, which is given by |z /T']. For any given higher
priority aborted task j, there are a number of complete executions in the interval by
[2/T]. Also, we must consider for each higher priority aborted task the amount of
interference in the remaining time before the start of the mode change. The remaining
time can be great enough to either contain another complete execution of task j or
great enough to fit only a partial execution of task j. This can be calculated by the

following expression:

x T
hone T (|Eermm(e|2|na) e
Vji€hp(i)a J J

o Interference from higher priority new-mode tasks Iy, - new tasks (7y) have their first
release at a time (x + Y') after the start of the window w. Therefore, higher priority
new tasks can preempt the execution of the old-mode task ¢ from the remaining time

in the window w, causing an interference that can be represented by:

w; —x =Y,
Iy = D {T]w & (2.3)
i) 0

Vi€hp(J

o [nterference of unchanged tasks hp(i)y : tasks from the old-mode that remain unchanged

in new-mode, using the same temporal behavior (period and deadline). Therefore, we

Lipiyy = D FW Cj + {wi — [x/;ﬂTj — Z]LC;' (2.4)

Vichp(iyy | +J J

have:

In summary, combining the analysis of interference of each task type we obtain the analysis

model of the old-mode, given by the following equation:

Vj€hp(i)o T]

X X
Z ({J C-—l—min(m—{J T-,C'>>+
viera \LTi 17 07 B

i —z—Y,
s [rori] g
Vji€hp(i) N j 0

5 H o fw /D10 - ZJLO],

Vichp(iyy | 77 J

The notation [z], denotes a modified ceiling function that returns zero if Z < 0. Because

w; exists on both sides of equation (2.5), it is necessary to adapt the equation to predict the

10 Chapter 2. Background and Literature Review

recurrence relation as follows:

W =G+ B+ Y H

Vjehp(i)o | 77

z z
Z ({J C‘—l—min(m—{J T-,C->>+
vichia M1 nl

" Y,
5 FU;‘W Ot
)N 0

vichp(i J

s [z]ge [metmine)

vjehp(i)y | 7 J

|

The initial value of w; is set to zero. It can be shown that w! ™" > w?, and hence the equation
n+1

is guaranteed either to converge (i.e. w; ™ = w) or to exceed some threshold, such as D;.
However, the worst case for the response task Ri, which must then be compared with the

respective deadline is given by R; = w; + C.

Therefore, the analysis should consider that the deadlines of the tasks may be greater
than their respective periods, so it is necessary to identify which is the largest number of
invocations of task ¢ that may occur within the busy period, represented by @);. The @); for

the task ¢ is given by:
t;
s = | = 2.7
=7 27)

where T; is the period of task ¢ and w;, represents a recurrence relation, with the first
invocation, t? = C; and last, ¢! = 7, with:
t

=B+ > H C; (2.8)

Vichp(iyui | 13

when hp(i) Ui is the set of tasks with priority equal or higher that the task .

In summary, the worst window value w for i task using arbitrary deadlines is given

by equation:
W) = (g +)G+ Bt Y [?

Viehp(i)o

T z
Z ({JC'—Fmin(x—{JT,C‘))—F
vichia M1 7

w —x =Y,
)N T; 0 ’

Vji€hp(i J

N EAEEEELES A

Vjehp(i)y 17 J

lo

J

(2.9)

2.2. Computational Model and Assumptions 11

Thus, the worst-case response time R of task 7 using arbitrary deadlines is given by:

Rz‘ = max(wi(q) — qﬂ + CZ) (210)

q=0...Q;—1

2.2.2 Analysis for New-mode Tasks

Because new-mode tasks suffer interference from other higher priority new and other
higher priority old-mode tasks, we need to guarantee their schedulability during the mode
change. If, however, a new task ¢ has an offset such that its first release occurs after all
higher priority old-mode tasks have completed, its schedulability is guaranteed by steady-
state analysis and we do not need to apply the following analysis to obtain its WCRT.

e [nterference from higher priority old-mode tasks hp(i)o: old-mode tasks may progress
through the mode change until completion. In the worst-case scenario, all old tasks are
released momentarily before the mode change, thus sharing a critical instant with the

window w;. Therefore, we have:

Inpyo = », G (2.11)

Vj€hep(i)o

e Interference from higher priority new-mode tasks Iy, the interference caused by all
new higher priority tasks j (released at Y;) upon a new-mode task . This can be

calculated by the following expression:

Iy = 3 {ff‘jw c, (2.12)
N J 0

Vjehp(

o [nterference of unchanged tasks hp(i)y : tasks from the old-mode that remain unchanged
in new-mode, using the same temporal behavior (period and deadline). Therefore, we
have:

w, — T — 7
Inpiyy = D Q%+{¢éﬂ Q) (2.13)
Do 0

Vjehp(

The worst-case response time of a new task ¢ across a mode change is therefore given
by:
Vj€hep(i)o

Z){ = k@+ (2.14)

Vjiehp(i J

wi—T:— 2
o O e)
Do 0

Vjehp(J

12 Chapter 2. Background and Literature Review

Because w; exists on both sides of equation (2.14), it is necessary to adapt the equation to

predict the recurrence relation as follows:

w?“ = BZ + Z C]—f—

Vjchep(i)o

wl' =Y
Zi)N’V T; J—‘ocﬂ_ (2.15)

Vi€hp(J

NS
YU T] 0

Vjehp(i

The initial value of w; is set to zero. It can be shown that w?*' > w?, and hence the equation
n+1

is guaranteed either to converge (i.e. w; ™ = w}) or to exceed some threshold, such as D;.
However, the worst case for the response task Ri, which must then be compared with the

respective deadline is given by R; = w; - Y.

However, it should also be considered in the analysis of new tasks so that the deadlines
of tasks may be greater than the respective periods (arbitrary deadlines), so the derived

equation corresponds to:

wtq) =B+ (q+)Cymy + Y. Cj+

Vjchep(i)o
wt — YJ-‘
Yo || O 2.16
Vichp(i) { T; 0 (2.16)
n_m _ g
O)
Viehp(i)y J 0

whereas the task i was released with an offset O;, corresponding to Y offset, when the task
belongs only to the old-mode and Z offset, when the task the old-mode continues its execution
in the new-mode, to determine the worst response time of task R; must be subtracted from

the w; window corresponding to the assigned offset value, so:

Ri(q) = wi(q) — qTi — O; (2.17)

2.8. Schedulability Analysis Algorithm 13

2.3 Schedulability Analysis Algorithm

Fig. 2 shows an UML activity diagram modeling the flow of the algorithm that calcu-

lates the schedulability analysis using arbitrary deadlines. It consists of the following steps:

? -~ i1..num_tasks
, L
’

,

s

©< (o i
N " T

A4
*[i < num_tasks]

Calc RSS Feasible
v reo
7\
GetQ S S Unfeasible
40.Q-1 " R>DI
RS ~ * {
AN
———— P
g+ % Calc R
fas Q-ﬂ&
Calc x
\ == wmax=w
Calcw <
i [w™D=w")]
4 \,
\, //

N/

Figure 2 — Schedulability Analysis UML Diagram of Mode Change

e CALC RSS: The worst-case steady-state response time for each old-mode task 7; (RSS)
is calculated. This value is used to place a bound on the maximum value of x for each
task;

e Get (Q: In this step it is calculated the value of), i.e. the largest number of invocations
of task 7; that may occur within the busy-period (analysis with arbitrary deadline).
This is the outermost loop in the analysis. It is repeated for values of q = 0,1,2,3 . . .
and until ¢ < Q.;

e (Cualc x: For each value of (), and for each old-mode task, it is calculated the value of
x, i.e. the arrival time of the old-mode task before the start of the transition (MCR).

This is the second outermost loop in the analysis;

14 Chapter 2. Background and Literature Review

e (alc w: For each task in the system, the worst-case response time window w; is calcu-
lated using a recurrence relation. This relation converges when w" = w™!. This is the

innermost loop in the system.

e (Calc R: Once the previous loops are ended, the system then is ready to calculate the
worst-case response time R,,. of a task across the mode change. This value takes into
account the worst values of (), x and w found in the previous steps. In case R < D for

all tasks, the system is deemed feasible, and otherwise unfeasible (or unschedulable).

2.4 Definition of Mode-Change Latency (L)

The mode-change latency is usually an important performance criteria when dealing
with mode changes. We often seek to minimize the latency since during the mode change the
system may deliver only partial functionality at the expenses of more critical services. The
mode change latency is defined by Pedro and Burns (1998) and Real and Crespo (2004) as

follows:

e Definition I: “A window starting with the arrival of the mode-change request (MCR)
and ending when the set of new-mode tasks have completed their first execution and the
set of old-mode tasks have completed their last execution” (PEDRO; BURNS, 1998).

The worst-case latency is given by equation (2.18):
L= maX(Ri(N) + Oi(]v), Ri(O) - ZL‘Z) VierT (2.18)

where R;(y) is the worst-case response time of new-mode task 7; across the mode change,
and R;o) is the worst-case response time of the old-mode task 7; in the mode change.

This definition of latency is the default definition adopted for this work.

o Definition II: “The latency of mode change has been considered as the time interval
between MCR and completion of the first activation off all new-mode tasks” (REAL;
CRESPO, 2004). This definition is given by equation (2.19):

L =max(Ryn)+Oywy) Vier (2.19)

where R;(y) is the worst-case response time of new-mode task 7; across the mode change,

O;(ny is the offset Y or Z assigned to new task ;.

2.5. Offset Minimization Algorithm 15

2.5 Offset Minimization Algorithm

An algorithm for the optimization tasks’ offsets across a mode change was proposed
by Real and Crespo (2001). This algorithm reduces offsets for high-priority tasks and con-
siders two scenarios in order to achieve consistency in the use of shared resources across an
asynchronous mode change: increased blocking of new-mode tasks and violation of the IPCP
(Immediate Priority Ceiling Protocol). The IPCP protocol ensures that lower-priority old-
mode tasks sharing resources do not lock resources used by new-mode, higher-priority tasks
(REAL; WELLINGS, 1999). Fig. 3 shows the algorithm used in Real and Crespo (2001).

There are three vectors used in this approach:

e Y, is a vector with the values of the response time of each 77,0) (set of lowest priority

old-mode tasks that may use the conflicting resource), initialized with 0.

e Y, .in is a vector holding the values of the minimum offsets at any point in the analysis,

which has all its values initialized with 0.

e Y, ... is a vector with the maximum offsets that can be used by new-mode tasks, ini-

tialized with an arbitrarily large offset for each task.

e Y, is a vector that holds the values of the current repetition of the analysis, which may

or not be minimum values. This vector is initialized with large values (step 5).

1. Y,:=(0,0,...0)
2. Ymax = (0,9, ...®)
3. Ymin:=(0,0,..0)
4. loop

5. VY, Y= Yimax
6 if Feasible then

7 Reduce-Offsets
8

9

exitwhen Y' =Y,

10. Y. =Y,

11. Ymin =Y,

12. else

13. -- Not feasible
14. endif

15. end loop

Figure 3 — Algorithm to Calculate Offsets (REAL; CRESPO, 2001).

The offset of the higher priority task is reduced to a point where the system is closest

to becoming unschedulable or it is zero. This procedure is repeated to the next lower priority

16 Chapter 2. Background and Literature Review

task until all tasks in the task set are covered. All final offsets must be within a limited range

of values [Y;min - - - Yimaz]-

In addition to the schedulability analysis work of (PEDRO; BURNS, 1998; REAL;
CRESPO, 2004; TINDELL et al., 1992) on mode changes in uniprocessor, fixed-priority
preemptive real-time systems using the deadline monotonic policy, other authors have con-
tributed to the theme employing other models and/or approaches, such as mode changes in
1) systems with the rate-monotonic policy (SHA et al., 1988), 2) time-triggered real-time sys-
tems (FOHLER, 1993), 3) multiprocessor systems’ scheduling (NELIS; GOOSSENS, 2008;
YOMSI et al., 2010), 4) uniprocessor using Earliest Deadline First (EDF) scheduling (AN-
DERSSON, 2008; STOIMENOV et al., 2009), (NELIS et al., 2011), and 5) multiprocessor
systems with mixed-criticality constraints (NEUKIRCHNER et al., 2013; N1Z; PHAN, 2014).

2.6 Evolutionary Algorithms (EA)

Evolutionary algorithms are based on “Biologically Inspired Computing” (BONGARD,
2009) and “Natural Computing” (CASTRO, 2006), i.e, inspired on biological processes and
natural evolution to solve optimization problems. The genetic algorithm was introduced by
Holland (1975) with the goal of applying concepts related to the law of evolution to find
optimization solutions, assuming that the process of natural evolution could be adapted
for application in the search for complex optimization solutions, due to its robustness and

simplicity.

Although the exploration of the evolutionary algorithm approach started in the 30s,
it was only in the 60s that its application was expanded. It was motivated by an increase of
the availability of low-cost computers (JONG, 2006; RECHENBERG, 1965; FOGEL et al.,
1966).

“The initial specification and analysis of these simple evolutionary algorithms (EAs) in
the 1960s left two major issues unresolved: 1) characterizi