
Flavio Rubens Massaro Júnior

Configuring Mode Changes in Fixed-Priority
Preemptively Scheduled Real-Time Systems

Configuração de Mudanças de Modo em
Sistemas de Tempo Real Escalonados com

Política Preemptiva de Prioridade Fixa

Limeira

2015

ii

UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Tecnologia

Flavio Rubens Massaro Júnior

Configuring Mode Changes in Fixed-Priority Preemptively
Scheduled Real-Time Systems

Configuração de Mudanças de Modo em Sistemas de
Tempo Real Escalonados com Política Preemptiva de

Prioridade Fixa

Dissertation presented to the School of
Technology at the University of Campinas
in partial fulfillment of the requirements
for the Master’s degree in Technology, in
the area of Technology and Innovation.

Dissertação apresentada à Faculdade
de Tecnologia da Universidade Estadual
de Campinas como parte dos requisitos
exigidos para a obtenção do título de
Mestre em Tecnologia, na área de Tec-
nologia e Inovação.

Supervisor/Orientador: Prof. Dr. Paulo Sérgio Martins Pedro

Co-supervisor/Co-orientador: Prof. Dr. Édson Luiz Ursini

Este exemplar corresponde à versão final
da dissertação defendida pelo aluno Flavio
Rubens Massaro Júnior, e orientada pelo
Prof. Dr. Paulo Sérgio Martins Pedro.

Limeira
2015

iii

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Faculdade de Tecnologia
Felipe de Souza Bueno - CRB 8/8577

 Massaro Júnior, Flávio Rubens, 1976-
 M382c MasConfiguring mode changes in fixed-priority preemptively scheduled real-time

systems / Flávio Rubens Massaro Júnior. – Limeira, SP : [s.n.], 2015.

 MasOrientador: Paulo Sérgio Martins Pedro.
 MasCoorientador: Edson Luiz Ursini.
 MasDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de

Tecnologia.

 Mas1. Sistemas de tempo real. 2. Escalonamento de processos. 3. Algoritmos

genéticos. I. Martins Pedro, Paulo Sérgio,1967-. II. Ursini, Edson Luiz,1951-. III.
Universidade Estadual de Campinas. Faculdade de Tecnologia. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Configuração de mudanças de modo em sistemas de tempo real
escalonados com política preemptiva de prioridade fixa
Palavras-chave em inglês:
Real-time systems
Processor scheduling
Genetic algorithms
Área de concentração: Tecnologia e Inovação
Titulação: Mestre em Tecnologia
Banca examinadora:
Paulo Sérgio Martins Pedro [Orientador]
George Marconi de Araújo Lima
Alexandre Cláudio Botazzo Delbem
Data de defesa: 23-02-2015
Programa de Pós-Graduação: Tecnologia

Powered by TCPDF (www.tcpdf.org)

iv

v

vi

Abstract
Modes of operation and mode-changes are a useful abstraction to enable configurable, flexible
real-time systems. Substantial work on the fixed priority preemptive scheduling approach
allowed tasks across a mode-change to be provided with real-time guarantees. However, the
proper configuration of critical parameters such as task offsets, despite initial work, remains
a gap in research. Without a method that automates this design step, while assuring that the
basic requirements are met, the full adoption of mode-changes in real-time systems remains
limited to relatively simple systems with limited task sets. We propose a method to assign
offsets to tasks across a mode-change, using a metaheuristic approach (genetic algorithms).
This method allows the configuration and/or the minimization of the worst-case latency of
a mode-change. The latency of a mode change is a critical parameter to be minimized, since
during the mode change the system offers limited functionality due to the fact that the
task set is still incomplete. We also provide a classification of mode changes according to
applications’ requirements. This classification was useful, once applied to a number of case
studies, both to validate the configuration approach and to a greater extent to show that the
method is flexible in that it can accommodate a wide variety of types of mode-changes.

Keywords: real-time systems; schedulability analysis of mode-change; genetic algorithms;
processor scheduling.

vii

viii

Resumo
Modos de operação e mudanças de modo são uma abstração útil para permitir que sistemas
de tempo real sejam flexíveis e configuráveis. Trabalhos prévios em escalonamento preemptivo
com prioridades fixas permitem que as tarefas passem de um modo de operação para outro
provendo garantias de tempo real. No entanto, a configuração adequada dos parâmetros
críticos, tais como o offset de uma tarefa, apesar de trabalhos anteriores terem abordado este
assunto, permanece uma lacuna a ser explorada. Sem um método que automatize esta etapa
do processo, garantindo ao mesmo tempo que os requisitos básicos sejam atendidos, a adoção
plena de mudanças de modo em sistemas de tempo real permanece limitada a sistemas
relativamente simples, com um conjuntos de tarefas limitado. Propomos um método para
atribuir offsets às tarefas em uma mudança modo, através de uma abordagem Metaheurística
(algoritmos genéticos). Este método permite a configuração e/ou a minimização da latência
de pior caso de uma mudança modo. A latência de uma mudança de modo é um parâmetro
crítico para ser minimizado, uma vez que durante a mudança de modo o sistema oferece
funcionalidade limitada, uma vez que o conjunto de tarefas está parcialmente em operação.
Também elaboramos uma classificação das mudanças de modo de acordo com as necessidades
das aplicações. Esta classificação, quando aplicada a uma série de estudos de casos, permitiu
validar a abordagem de minimização/configuração, estender a classificação anteriormente
existente e demonstrar que o método é flexível, já que pode acomodar uma ampla variedade
de tipos de mudanças de modo.

Palavras-chave: sistemas de tempo real; análise de escalonabilidade de mudança de modo;
algoritmos genéticos; escalonamento de processos.

ix

x

Contents

1 Introduction . 1
1.1 Goals . 2
1.2 Dissertation Organization . 3

2 Background and Literature Review . 5
2.1 Schedulability Analysis . 5
2.2 Computational Model and Assumptions . 5

2.2.1 Analysis for Old-mode Tasks . 8
2.2.2 Analysis for New-mode Tasks . 11

2.3 Schedulability Analysis Algorithm . 13
2.4 Definition of Mode-Change Latency (L) . 14
2.5 Offset Minimization Algorithm . 15
2.6 Evolutionary Algorithms (EA) . 16

2.6.1 Genetic Algorithm (GA) . 16
2.6.2 Basic Terminology . 17
2.6.3 Multi-Objective Genetic Algorithms (MOGA) 19
2.6.4 Use of GA in Real-Time Systems . 22

3 Minimizing the Mode-Change Latency . 23
3.1 Model and Approach to Minimization . 24
3.2 Case Studies . 27

3.2.1 Case 1 - Minimizing Offsets . 28
3.2.2 Case 2 - Minimizing Latency . 30
3.2.3 Case 3 - Minimizing Latency and Offsets - Weights-Based Multi-Objective 32
3.2.4 Case 4 - Minimizing Latency and Offsets - Multi-Objective 34

3.3 Discussion . 37
4 Configuring Mode Changes . 41

4.1 Types of Mode Change . 41
4.2 Model and Approach to Minimization . 49
4.3 Case Studies . 49

4.3.1 Study Case 1 - Minimizing Offsets and Latency (𝑀𝑂𝐹) 51
4.3.2 Case Study 2 - Minimizing Latency and Offsets (𝐴𝑂𝐹) 54
4.3.3 Case Study 3 - Minimizing Latency Imposing Offsets within a Range

(𝑀𝑂𝐹) . 57
4.3.4 Case Study 4 - Minimizing Latency with WCRT within a Range (𝑀𝑂𝐹) 59

xi

4.3.5 Case Study 5 - Minimizing Offsets with Latency within an Acceptable
Range (𝑀𝑂𝐹) . 61

4.3.6 Case Study 6 - Minimization Using the Algorithm of Real and Crespo
(2001) (𝐵𝑀𝐶) . 63

4.3.7 Case Study 7 - Minimizing Latency with 𝑃𝑁 > 𝑃𝑂 (𝑀𝑁𝐹) 64
4.3.8 Case Study 8 - Minimizing Offsets with 𝑃𝑁 > 𝑃𝑂 (𝑀𝑁𝐹) 67
4.3.9 Case Study 9 - Minimizing Latency with 𝑃𝑂 > 𝑃𝑁 (𝐴𝑂𝐹) 68
4.3.10 Case Study 10 - Minimizing Offsets with 𝑃𝑂 > 𝑃𝑁 (𝐴𝑂𝐹) 70
4.3.11 Case Study 11 - Minimizing Latency with 𝑂 > max(𝑅𝑂 − 𝑥) (𝐴𝑂𝐹) 71
4.3.12 Case Study 12 - Minimizing Latency with 𝑃𝑁 > 𝑃𝑂 (𝐴𝑁𝐹) 73

4.4 Discussion . 76
5 Summary and Conclusions . 81

Bibliography . 85

Appendix 89
APPENDIX A Software Tool . 91

xii

I dedicate this work to my wife Vanessa, to my daughters Livia and Lara and to my son
Flávio Neto. They were my source of motivation for the conclusion of this journey.

xiii

xiv

Acknowledgements

I would like to thank both my supervisor Dr. Paulo Martins and my co-supervisor
Dr. Edson Ursini for providing me with the opportunity to develop my dissertation at the
University of Campinas, and for their continuing support and interest in my work. I also
would like to thank them for the many hours of fruitful discussion and for reviewing the
work in this dissertation. I am grateful to my colleagues from the College of Technology for
their encouragement. Finally, I want to thank my wife Vanessa for her patience and support
during difficult times.

xv

xvi

Declaration

I declare that the research described in this dissertation is original work which I
undertook between February 2013 and January 2015.

xvii

“Pray as though everything depended on God. Work as though everything depended on you.”
(Saint Augustine)

xviii

List of Figures

Figure 1 – Mode-Change Model. 7
Figure 2 – Schedulability Analysis UML Diagram of Mode Change 13
Figure 3 – Algorithm to Calculate Offsets (REAL; CRESPO, 2001). 15
Figure 4 – Key Components of EA. Adapted from (COELLO et al., 2007) 18
Figure 5 – Example of Pareto-Front. 21
Figure 6 – Diagram of the Optimization Using GA 24
Figure 7 – Structure of a Chromosome (𝑛 equal to the number of new-mode tasks) . 25
Figure 8 – Non-dominated Solutions Obtained using NSGA-II. 35
Figure 9 – All Old First (AOF) . 42
Figure 10 – All New First (ANF) . 43
Figure 11 – Mostly Old First (MOF) . 43
Figure 12 – Mostly New First (MNF) . 44
Figure 13 – Balanced Mode Change (BMC) . 45
Figure 14 – 𝛿 = 𝐿 × 𝑘 (BMC) . 47
Figure 15 – 𝛿 = max(𝑅𝑂 − 𝑥)) (AOF) . 48
Figure 16 – 𝛿 = max(𝑅𝑁 + 𝑂) (ANF) . 48
Figure 17 – Case Study 1 - Utilization Chart (MOF) 53
Figure 18 – Case Study 2 - Utilization Chart (AOF) 56
Figure 19 – Case Study 3 - Utilization Chart (MOF) 58
Figure 20 – Case Study 4 - Utilization Chart (MOF) 61
Figure 21 – Case Study 5 - Utilization Chart (MOF) 63
Figure 22 – Case Study 6 - Utilization Chart (BMC) 64
Figure 23 – Case Study 7 - Utilization Chart Using Latency Definition I (MNF) . . . 65
Figure 24 – Case Study 7 - Utilization Chart Using Latency Definition II (MNF) . . 66
Figure 25 – Case Study 8 - Utilization Chart (MNF) 68
Figure 26 – Case Study 9 - Utilization Chart (AOF) 69
Figure 27 – Case Study 10 - Utilization Chart (AOF) 71
Figure 28 – Case Study 11 - Utilization Chart (AOF) 72
Figure 29 – Case Study 12 - Utilization Chart Using Latency Definition II 74
Figure 30 – Research Before and After this Work. 84
Figure 31 – Screen of Task Descriptor . 91
Figure 32 – Screen of Operation Modes Register . 92
Figure 33 – Screen of the Schedulability Analysis and GA Configuration 93

xix

Figure 34 – Screen of Shared Resources . 93
Figure 35 – Screen of Offsets Optimization . 94
Figure 36 – Screen of Analysis of Result . 95
Figure 37 – Screen of Pareto Font for NSGA Optimization 95
Figure 38 – Screen of Utilization Gantt . 96

xx

List of Tables

Table 1 – Summary of the Case Studies . 27
Table 2 – Case Study 1 - Set of tasks . 28
Table 3 – Case Study 1 - Scenarios for GA Optimization 29
Table 4 – Case Study 1 - GA Sensitivity Analysis to Offset Minimization 29
Table 5 – Case Study 1 - Offsets Obtained 1Algorithm of Real and Crespo (2001) and

2Genetic Algorithm . 30
Table 6 – Case Study 2 - GAP Tasks for Cruise Mode 31
Table 7 – Case Study 2 - GAP Tasks for Defense Mode 31
Table 8 – Case Study 2 - Offsets Obtained . 32
Table 9 – Case Study 3 - Scenarios for Optimization with GAs 33
Table 10 – Case Study 3 - GAs Sensitivity Analysis to Offset Minimization 33
Table 11 – Case Study 3 - Offsets Obtained 1Algorithm of (REAL; CRESPO, 2001)

2Genetic Algorithm . 34
Table 12 – Case Study 4 - Offsets Obtained with NSGA-II 1 𝑁𝐷𝑆1 (Lower Latency)

2 𝑁𝐷𝑆2 (Intermediate) 3 𝑁𝐷𝑆3 (Lower Offsets) 36
Table 13 – Case Study 4 - Comparison between Cases 1-4 36
Table 14 – Mode-Change Types . 47
Table 15 – Task Set Used in Cases 1 through 11 . 51
Table 16 – Case Study 1 - Scenarios for GA Minimization 52
Table 17 – Case Study 1 - GAs Sensitivity Analysis 52
Table 18 – Case Study 1 - Offsets Obtained . 53
Table 19 – Case Study 2 - GAs Sensitivity Analysis 55
Table 20 – Case Study 2 - Offsets Obtained . 56
Table 21 – Case Study 3 - Range for Offsets . 57
Table 22 – Case Study 3 - GAs Sensitivity Analysis 57
Table 23 – Case Study 3 - Offsets Obtained . 58
Table 24 – Case Study 4 - Scenarios for GA Minimization 59
Table 25 – Case Study 4 - Range for WCRT . 60
Table 26 – Case Study 4 - GAs Sensitivity Analysis 60
Table 27 – Case Study 4 - Offsets Obtained . 60
Table 28 – Case Study 5 - GAs Sensitivity Analysis 62
Table 29 – Case Study 5 - Offsets Obtained . 62
Table 30 – Case Study 6 - Offsets Obtained . 63

xxi

Table 31 – Case Study 7 - Latency Definition I - Offsets Obtained 65
Table 32 – Case Study 7 - Latency Definition II - Offsets Obtained 66
Table 33 – Case Study 8 - Offsets Obtained . 67
Table 34 – Case Study 9 - Offsets Obtained . 69
Table 35 – Case Study 10 - Offsets Obtained . 70
Table 36 – Case Study 11 - Offsets Obtained . 72
Table 37 – Case Study 12 - Set of Ten Tasks . 73
Table 38 – Case Study 12 - Offsets Obtained Using Latency Definition II 74
Table 39 – Summary of Case Studies . 76
Table 40 – Requirements for Each Type of Mode-Change 78

xxii

List of Acronyms and Abbreviations

Latin Characters

𝐵 Block Time
𝐶 Computation Time
𝐶𝑜 Active Constraints Vector
𝐷 Deadline
𝑘 Constant value dependent on the application (which is arbitrarily

set to 30% in this work)
𝐿 Latency
𝑂 Offset Y or Z
𝑂𝑏 Objective Values Vector
𝑃 Priority
𝑃𝑁 Set of priority from the new-mode tasks
𝑃𝑂 Set of priority from the old-mode tasks
𝑄 Largest number of invocations of task 𝜏𝑖 that may occur within the

busy period
𝑅 WCRT of a task 𝜏𝑖

𝑅𝑁 Set of WCRT from the new-mode tasks
𝑅𝑂 Set of WCRT from the old-mode tasks
𝑇 Period between releases of a task 𝜏𝑖

𝑈 Utilization of Processor
𝑤 Window Time
𝑊𝑒 Objective Weights Vector
𝑥 Interval of time between the mode-change request (MCR) and the

activation of task 𝜏𝑖

𝑌 Offset measured from the mode-change request MCR
𝑍 Offset measured from the end of the last task instance in the old-mode
#𝑇𝑖𝑛𝑠(𝑁) Number of new-mode tasks inserted within significant interval 𝛿

#𝑇𝑟𝑚𝑣(𝑂) Number of old-mode tasks completed within significant interval 𝛿

#𝜏(𝑁) Number of new-mode tasks
#𝜏(𝑂) Number of old-mode tasks

xxiii

Greek Characters

𝜏 Task
𝛿 Interval from the mode-change request (significant interval)
𝛼 Relation between new-tasks inserted and old-mode tasks removed during inter-

val 𝛿

𝜌 Tolerance factor

Subscript

𝐴 Aborted Tasks
𝐶 Changed Tasks
𝑁 New Mode Tasks
𝑂 Old Mode Tasks (Completed)
𝑈 Unchanged Tasks
𝑊 Wholly New Tasks

Abbreviations

MIN Minimum
MAX Maximum

Acronyms

AOF All-Old Mode Tasks First
ANF All-New Mode Tasks First
BMC Balanced Mode-Change
DMS Deadline Monotonic Scheduling
DPGA Elitist Distance-Based Pareto Algorithm
EA Evolotionary Algorithm
EDF Earliest Deadline First
EP Evolutionary Programming
ES Evolution Strategy

xxiv

GA Genetic Algorithm
GAs Genetic Algorithms
IPCP Immediate Priority Ceiling Protocol
LD Latency Definition
MCD Mode-Change Deadline
MCR Mode-Change Request
MNF Mostly-New Mode Tasks First
MOF Mostly-Old Mode Tasks First
MOGA Multi-Objective Genetic Algorithms
NDS Nondominated Solution
NSGA-II Elitist Nondominated Sorting Genetic Algorithm
RSS WCRT of a Task in Steady-State Mode
SPEA-2 Strength Pareto Evolutionary Algorithm
WCRT Worst Case Response Time
WECT Worst Case Execution Time

xxv

xxvi

Glossary

Busy Period - “A level-i busy period is defined as the maximum time for which a processor
executes tasks of priority greater than or equal to the priority of task 𝜏𝑖” (LEHOCZKY, 1990).

Cross interference - Interference between tasks from distinct modes.

Immediate Priority Ceiling Protocol (IPCP) - “With IPCP, a resource has a ceiling
priority assigned to it, not lower than that of the highest priority task that may use it. A task
using a resource, immediately inherits its ceiling priority, thus avoiding unbounded priority
inversion, deadlocks and transitive blocking” (REAL; CRESPO, 2001).

Latency Definition I (LD I) - “A window starting with the arrival of the mode change
request to the system and ending when the set of new tasks have completed their first execu-
tion and the set of old tasks have completed their last execution” (PEDRO; BURNS, 1998).

Latency Definition II (LD II) - “The latency of mode-change has been considered as
the time interval between MCR and completion of the first activation off all new-mode tasks”
(REAL; CRESPO, 2004).

Promptness - “There may be new-mode tasks whose execution must be completed before a
determinate time after the mode change was requested. This requirement models the need for
a prompt response, specially useful when switching to an emergency mode” (REAL; CRE-
SPO, 2001).

Mode Change - The mode change occurs when one entity issues a mode-change request
command (MCR). Once the system receives the MCR, its state changes to transient-mode.
During the mode change the old-mode tasks will either be aborted or completed. New-mode
tasks will start their execution. At the end of the transition the system changes back to steady
state/mode.

xxvii

Offset - Offset is a value that delays the introduction of a task during the mode change.
Offsets are assigned to new-mode tasks to reduce the interference between tasks during the
mode change.

Steady State - The system is in steady state when it executes a fixed task set (without
mode changes).

Transition of Modes - Same as mode change.

xxviii

1

1 Introduction

The new generation of real-time systems is required to be multifunctional and dy-
namically adaptable to the environment where they are deployed. One way of achieving
multifunctionality and adaptability is by organizing the design of the system around modes
of operation. Each mode implements a certain, well-defined system behavior and the system
transitions from one mode to another in response to changes in the surrounding environment.
The new active mode is customized and configured to the new operational phase and can
thus deliver more performance than a general, monolithic (i.e. single mode) implementation
of system functionality. In real-time systems, a mode of operation is defined by its behavior
and implemented by a task set (schedule) (PEDRO, 1999). Changes in mode of operation
thus involve changes in the task set, by adding, replacing or removing tasks from the sched-
ule. In order to implement modal (or flexible) real-time systems, the transitions from mode
to mode have to be guaranteed by offline (i.e. static) schedulability analysis.

This work is developed within the context of fixed-priority preemptively scheduled
uniprocessor real-time operating systems (TINDELL et al., 1994). As it is implied, these sys-
tems consist of multiple tasks with fixed priorities scheduled preemptively by the underlying
operating system kernel. It offers a method to minimize the latency of a mode change in
these systems. As we shall see in chapter 2 in more detail, in our model any new task is
introduced in the system during a mode change (or transition) with an offset (or delay) 𝑂

after the start of the transition to the new mode of operation. In one hand, offsets that are
too small may increase the CPU utilization of the system at the start of the transition to a
point where the system is no longer schedulable and therefore miss deadlines. On the other
hand, if offsets are assigned with large values, the latency of a mode-change may increase
to the point where the mode-change itself is not longer viable (i.e. assuming that the mode
change must be completed within a certain deadline). This is due to the fact that, during a
mode change, while the system is self-configuring its tasks, the system may be only partially
delivering some of its critical functions. Therefore, it is of utmost importance that the latency
of the system is reduced to the lowest possible value.

In this work we wish to find a method, based on genetic algorithms (GA), to auto-
matically assign proper offsets to tasks in a mode-change so that the latency of the transition
is minimized while real-time guarantees are also preserved. Real-time guarantees mean that
some or all the tasks have real-time deadlines that must be fulfilled at design time, other-
wise the system is deemed not schedulable leading to some sort of undesired behavior. This

2 Chapter 1. Introduction

problem is a multi-objective optimization one that has to deal with tradeoffs as it will be
discussed later.

To our knowledge, there is currently no work in the literature that addresses such
concerns. The work that is closest to ours is the work by Real and Crespo (2001), whereby
the authors tackle the issue of minimizing offsets. However, our goal in this work is completely
different in that we wish to minimize the worst-case latency of a mode-change 1 (and not
offsets). Notice also that most work using genetic algorithms in real-time systems fall outside
the scope of this paper, as they deal with the issue of allocating tasks to multiprocessors,
such as the work by Yoo (2009) and ManChon et al. (2011).

A secondary contribution of this work is a method combined with a software tool that
allows the configuration of mode-changes in fixed-priority preemptively scheduled real-time
systems. This method extends the mode-change classification proposed by Real and Crespo
(2004) by introducing five new classes of mode changes according to the relative ordering
of tasks in a mode change. Therefore, it is possible for the designer to specify the type of
transition desired (which is application dependent feature), have it implemented and then
minimized before deployment of the actual application.

In this work, was adopt the asynchronous mode-change model, where tasks from the
new-mode begin execution in parallel with tasks from the old-mode, thus leading to shorter
mode-change delays. Old-mode completed tasks are actually discarded from the system,
leaving resources for tasks arriving from the new-mode. Therefore, the number of modes
of operation is only limited by the available memory in the system. This approach allows
systems to be schedulable, with a large number of modes and tasks. It also enables faster
mode-changes due to the (pseudo) parallelism of old and new-mode tasks, and the early
introduction of new-mode tasks at the beginning of a mode-change. This approach requires
schedulability analysis, which is provided by existing work (REAL; CRESPO, 2001; PEDRO;
BURNS, 1998).

1.1 Goals

In a broad sense, the goal of this work was to propose a method that allows the
configuration of a mode-change based on an evolutionary algorithm in a way that meets the
requirements of such transitions. These requirements include minimized mode-change latency,
real-time guarantees, and the ability to express and configure various types of mode-changes
as discussed later in this work. More specifically, in this work we wish to find a method

1 whenever we refer to latency, we mean the worst-case latency

1.2. Dissertation Organization 3

to assign proper offsets to tasks in a mode-change so that the latency of the transition is
minimized while real-time guarantees are also preserved.

1.2 Dissertation Organization
The remainder of this dissertation is organized as follows:

Chapter 2 surveys the field of fixed priority preemptive scheduling, schedulability
analysis of mode-change in fixed priority systems, the offset minimization algorithm, the
evolutionary algorithms with an emphasis in single and multi-objective genetic algorithms as
well as related work.

Chapter 3 introduces the approach chosen for minimization of mode-change latency
using genetic algorithms. In addition, was presented a number of case studies to prove the
efficacy of this method.

Chapter 4 focus on exploring a number of case studies that evidentiate the flexibility
(or versatility) of the approach. Furthermore, a method for classification of mode changes is
introduced in order to facilitate the proper configuration of mode-changes.

Finally, chapter 5 summarizes the main conclusions and proposals for future work.

4

5

2 Background and Literature Review

This work integrates topics from two distinct areas: Schedulability Analysis (real-time
systems) and Evolutionary Algorithms (artificial intelligence). Therefore, in this chapter we
present background and literature review related to this work such as schedulability analysis,
schedulability analysis for mode change, offsets optimization in real-time systems and genetic
algorithms.

2.1 Schedulability Analysis

The basic premise of a real-time system is that it provides a guarantee that it meets
all timing requirements for a given configuration during its life-cycle.

One way to achieve real-time guarantees is by applying the schedulability analysis.
The schedulability analysis uses the WCRT (Worst-Case Response Time) to determine if a
task set meet its requirements. We calculate the worst-case response time (𝑅) for each task
in the system and compare it with its respective deadline (𝐷). The system is deemed to be
feasible if all tasks meet their deadlines (i.e. 𝑅 ≤ 𝐷). Otherwise, it is necessary to reconfigure
the system and redo the analysis.

Throughout this chapter we will provide schedulability analysis that has been used
to calculate the worst-case latency of a task across a mode change. For more details on the
basic fundamentals of real-time schedulability analysis, the reader is referred to Burns and
Wellings (2009).

2.2 Computational Model and Assumptions

We shall consider a set of periodic or sporadic tasks 𝜏 = {𝜏1, 𝜏2, . . . 𝜏𝑖, . . . 𝜏𝑝} per
mode. Each task 𝜏𝑖 is characterized by the tuple 𝑆𝑖 = {𝑇𝑖, 𝐷𝑖, 𝐶𝑖, 𝑃𝑖}, where: 1) 𝑇𝑖 and 𝐷𝑖

are respectively the period of task 𝜏𝑖 (or, if a sporadic task, the minimum inter-arrival time
between successive tasks of the stream 𝑖) and the deadline; 2) 𝐶𝑖 is the worst-case execution
time (WCET) of the task 𝜏𝑖. This value is deemed to contain the overheads due to context
switching. Moreover, the values of 𝐶𝑖, 𝐷𝑖 and 𝑇𝑖 are such that 𝐶𝑖 < 𝐷𝑖 ≤ 𝑇𝑖 . We remove the
restriction that𝐷𝑖 ≤ 𝑇𝑖 ; 3) 𝑃𝑖 represents the priority of task 𝜏𝑖 , assigned according to the
Deadline Monotonic Scheduling algorithm.

6 Chapter 2. Background and Literature Review

Throughout this chapter, we use the notation 𝐶𝑖(𝑂),𝐶𝑖(𝐴) and 𝐶𝑖(𝑁) when referring to
the computational time of an old-mode completed task, an aborted task, and a new-mode
task, respectively. 𝜏𝑖 denotes a task for which we are finding the WCRT and 𝜏𝑗 denotes a
higher-priority task. We use the term steady-state analysis to refer to the body of schedu-
lability analysis of single-mode systems, where the task set is fixed and there are no mode
changes. We also use the notation:

∙ ∀ 𝜏𝑗(𝑂) ℎ𝑝 𝜏𝑖 : set of old-mode tasks 𝜏𝑗 with priority higher than task 𝜏𝑖;

∙ ∀ 𝜏𝑗(𝐴) ℎ𝑝 𝜏𝑖 : set of aborted tasks 𝜏𝑗 with priority higher than task 𝜏𝑖;

∙ ∀ 𝜏𝑗(𝑁) ℎ𝑝 𝜏𝑖 : set of new-mode tasks 𝜏𝑗 with priority higher than task 𝜏𝑖.

The mode-change model is based on the following assumptions:

∙ Tasks are executed in a uniprocessor system;

∙ Tasks are not permitted to voluntarily suspend themselves during an invocation (so,
for example, tasks are not allowed to execute internal Ada-like delay statements);

∙ There are fixed task sets before and after the mode change;

∙ The worst-case response time of a generic task 𝜏𝑖 (WCRT), denoted 𝑅𝑖, is the longest
time ever taken by that 𝜏𝑖 from the time it arrives until the time it completes its required
computation;

∙ Tasks are scheduled with time offsets during the mode change only. This time phasing
between tasks may or may not hold after the mode change.

Furthermore, we assume that there is to some extent a certain leeway in defining the
tasks’ real-time parameters such as the period, worst-case execution time and priorities. For
example, the worst-case execution time depends at least on the processor speed, and on the
code that implements the desired behavior for a task. A task may be divided in sub-tasks in
case the value of 𝐶 is unacceptably large. Similarly, the value of 𝑇 may lie within a range:
in one hand, the largest value (or upper bound) is dictated by the physical process variable
monitored by the task, which must be scanned using a minimum sampling rate; the lower
bound on T is the processor utilization, as a small periods substantially increase processor
utilization. Within these limits, the application designer has some flexibility in choosing an
appropriate value of 𝑇 . Priorities can also be adjusted as long as the deadline monotonic
policy (DMS) is ensured. This assumption is not unrealistic for most types of real world

2.2. Computational Model and Assumptions 7

systems and it plays an important role in chapters 3 and 4 where we present our approach
to latency minimization.

Old Mode New Mode

Y1

Unchanged Completed

Aborted

Changed

Time

x

Z

Y2

L

T
a
s
k
s

τ1

τ2

τ3

τ4

Mode

Change

Mode Change Request (MCR)

End of Mode Change

τ5

Wholly New

Figure 1 – Mode-Change Model.

A mode-change request (MCR) is the event that triggers a transition from an old-
mode of operation to a new one. The window 𝑥 is the phasing between the MCR and the
activation of task 𝜏𝑖. A MCR may not be preempted by another 𝑀𝐶𝑅. The mode-change
model comprises of five types of tasks (Fig. 1):

∙ Old-mode completed tasks, 𝜏𝑖(𝑂): These tasks are released in the old-mode, i.e. before
the arrival of the 𝑀𝐶𝑅. These tasks need to advance their execution in the transition
window to finish execution. They cannot be simply aborted as they would leave the
system in an inconsistent state. Once they complete during the transition, there are no
further releases. They are used to model the behavior of the system in the old-mode
that is no longer needed in the new-mode.

∙ Old-mode aborted tasks, 𝜏𝑖(𝐴): These tasks are also released prior to the MCR. They need
to be immediately discarded after the 𝑀𝐶𝑅 in order to release allocated resources back
to the system. The functionality they implement is no longer needed in the new-mode
of operation.

8 Chapter 2. Background and Literature Review

∙ New-mode changed tasks, 𝜏𝑖(𝐶): These tasks are released during the transition, with an
offset 𝑌 from the 𝑀𝐶𝑅. This class models the behavior that is changed in the new-
mode. Changed new-mode tasks have a modified timing parameter compared to their
corresponding old-mode version, such as changed worst-case execution time (𝐶), period
(𝑇), or priority (𝑃).

∙ New-mode unchanged tasks, 𝜏𝑖(𝑈): These tasks are released during the transition window,
with an offset 𝑍, from the end of the period of their corresponding old-mode version.
They model the behavior of the application that is not changed across the mode change
and in the new-mode. Their timing parameters are the same as the preceding old-mode
version.

∙ Wholly new task, 𝜏𝑖(𝑊): These tasks are released during the transition window with an
offset 𝑌 . They are used to model the behavior that is totally new, i.e. has no equivalent
in the old-mode of operation.

With respect to the way tasks are executed across a mode change, they are classified
as: 1)Tasks with mode-change periodicity: these tasks are executed across the mode change
and maintain their activation pace, and 2) Tasks without mode-change periodicity: These
tasks do not preserve their activation pace across a mode change. The schedulability analysis
of mode change is divided into two parts: analysis of the old-mode tasks and analysis of the
new-mode tasks.

2.2.1 Analysis for Old-mode Tasks

The interference level of old-mode tasks is given in accordance with its classification
of the types of tasks:

∙ Interference from higher priority old-mode completed tasks 𝐼ℎ𝑝(𝑖)𝑂
: it is necessary to take

into account the interference of higher priority old-mode tasks released in the interval
𝑥 exclusively. Therefore, we have:

𝐼ℎ𝑝(𝑖)𝑂
=

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑂

⌈︃
𝑥

𝑇𝑗

⌉︃
𝐶𝑗 (2.1)

∙ Interference from higher priority aborted tasks 𝐼ℎ𝑝(𝑖)𝐴
: while it is clearly not necessary

to guarantee the schedulability of this class of tasks, we still need to consider their
interference upon lower priority old-mode tasks. There are two components to this
term: first we should consider the number of complete periods of the higher priority

2.2. Computational Model and Assumptions 9

aborted task 𝑗 that fit in in the interval 𝑥, which is given by ⌊𝑥/𝑇 ⌋. For any given higher
priority aborted task 𝑗, there are a number of complete executions in the interval by
⌈𝑥/𝑇 ⌉. Also, we must consider for each higher priority aborted task the amount of
interference in the remaining time before the start of the mode change. The remaining
time can be great enough to either contain another complete execution of task 𝑗 or
great enough to fit only a partial execution of task 𝑗. This can be calculated by the
following expression:

𝐼ℎ𝑝(𝑖)𝐴
=

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝐴

(︃⌊︃
𝑥

𝑇𝑗

⌋︃
𝐶𝑗 + min

(︃
𝑥 −

⌊︃
𝑥

𝑇𝑗

⌋︃
𝑇𝑗, 𝐶𝑗

)︃)︃
(2.2)

∙ Interference from higher priority new-mode tasks 𝐼ℎ𝑝(𝑖)𝑁
: new tasks (𝜏𝑁) have their first

release at a time (𝑥 + 𝑌) after the start of the window 𝑤. Therefore, higher priority
new tasks can preempt the execution of the old-mode task 𝑖 from the remaining time
in the window 𝑤, causing an interference that can be represented by:

𝐼ℎ𝑝(𝑖)𝑁
=

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑁

⌈︃
𝑤𝑖 − 𝑥 − 𝑌𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗 (2.3)

∙ Interference of unchanged tasks ℎ𝑝(𝑖)𝑈 : tasks from the old-mode that remain unchanged
in new-mode, using the same temporal behavior (period and deadline). Therefore, we
have:

𝐼ℎ𝑝(𝑖)𝑈
=

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑈

⌈︃
𝑥

𝑇𝑗

⌉︃
𝐶𝑗 +

⌈︃
𝑤𝑖 − ⌈𝑥/𝑇𝑗⌉𝑇𝑗 − 𝑍𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗 (2.4)

In summary, combining the analysis of interference of each task type we obtain the analysis
model of the old-mode, given by the following equation:

𝑤𝑖 = 𝐶𝑖 + 𝐵𝑖 +
∑︁

∀𝑗∈ℎ𝑝(𝑖)𝑂

⌈︃
𝑥

𝑇𝑗

⌉︃
𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝐴

(︃⌊︃
𝑥

𝑇𝑗

⌋︃
𝐶𝑗 + min

(︃
𝑥 −

⌊︃
𝑥

𝑇𝑗

⌋︃
𝑇𝑗, 𝐶𝑗

)︃)︃
+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑁

⌈︃
𝑤𝑖 − 𝑥 − 𝑌𝑗+

𝑇𝑗

⌉︃
0

𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑈

⌈︃
𝑥

𝑇𝑗

⌉︃
𝐶𝑗 +

⌈︃
𝑤𝑖 − ⌈𝑥/𝑇𝑗⌉𝑇𝑗 − 𝑍𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗

(2.5)

The notation ⌈𝑧⌉0 denotes a modified ceiling function that returns zero if 𝑍 < 0. Because
𝑤𝑖 exists on both sides of equation (2.5), it is necessary to adapt the equation to predict the

10 Chapter 2. Background and Literature Review

recurrence relation as follows:

𝑤𝑛+1
𝑖 = 𝐶𝑖 + 𝐵𝑖 +

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑂

⌈︃
𝑥

𝑇𝑗

⌉︃
𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝐴

(︃⌊︃
𝑥

𝑇𝑗

⌋︃
𝐶𝑗 + min

(︃
𝑥 −

⌊︃
𝑥

𝑇𝑗

⌋︃
𝑇𝑗, 𝐶𝑗

)︃)︃
+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑁

⌈︃
𝑤𝑛

𝑖 − 𝑥 − 𝑌𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑈

⌈︃
𝑥

𝑇𝑗

⌉︃
𝐶𝑗 +

⌈︃
𝑤𝑛

𝑖 − ⌈𝑥/𝑇𝑗⌉𝑇𝑗 − 𝑍𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗

(2.6)

The initial value of 𝑤𝑖 is set to zero. It can be shown that 𝑤𝑛+1
𝑖 > 𝑤𝑛

𝑖 , and hence the equation
is guaranteed either to converge (i.e. 𝑤𝑛+1

𝑖 = 𝑤𝑛
𝑖) or to exceed some threshold, such as 𝐷𝑖.

However, the worst case for the response task 𝑅𝑖, which must then be compared with the
respective deadline is given by 𝑅𝑖 = 𝑤𝑖 + 𝐶𝑖.

Therefore, the analysis should consider that the deadlines of the tasks may be greater
than their respective periods, so it is necessary to identify which is the largest number of
invocations of task 𝑖 that may occur within the busy period, represented by 𝑄𝑖. The 𝑄𝑖 for
the task 𝑖 is given by:

𝑄𝑖 =
⌈︂

𝑡𝑖

𝑇𝑖

⌉︂
(2.7)

where 𝑇𝑖 is the period of task 𝑖 and 𝑤𝑖, represents a recurrence relation, with the first
invocation, 𝑡0

𝑖 = 𝐶𝑖 and last, 𝑡𝑛+1
𝑖 = 𝑡𝑛

𝑖 , with:

𝑡𝑛+1
𝑖 = 𝐵𝑖 +

∑︁
∀𝑗∈ℎ𝑝(𝑖)∪𝑖

⌈︃
𝑡𝑛
𝑖

𝑇𝑗

⌉︃
𝐶𝑗 (2.8)

when ℎ𝑝(𝑖) ∪ 𝑖 is the set of tasks with priority equal or higher that the task 𝑖.

In summary, the worst window value 𝑤 for 𝑖 task using arbitrary deadlines is given
by equation:

𝑤𝑛+1
𝑖 (𝑞) = (𝑞 + 1)𝐶𝑖 + 𝐵𝑖 +

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑂

⌈︃
𝑥

𝑇𝑗

⌉︃
𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝐴

(︃⌊︃
𝑥

𝑇𝑗

⌋︃
𝐶𝑗 + min

(︃
𝑥 −

⌊︃
𝑥

𝑇𝑗

⌋︃
𝑇𝑗, 𝐶𝑗

)︃)︃
+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑁

⌈︃
𝑤𝑛

𝑖 − 𝑥 − 𝑌𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑈

⌈︃
𝑥

𝑇𝑗

⌉︃
𝐶𝑗 +

⌈︃
𝑤𝑛

𝑖 − ⌈𝑥/𝑇𝑗⌉𝑇𝑗 − 𝑍𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗

(2.9)

2.2. Computational Model and Assumptions 11

Thus, the worst-case response time 𝑅 of task 𝑖 using arbitrary deadlines is given by:

𝑅𝑖 = max(𝑤𝑖(𝑞) − 𝑞𝑇𝑖 + 𝐶𝑖)
𝑞=0...𝑄𝑖−1

(2.10)

2.2.2 Analysis for New-mode Tasks

Because new-mode tasks suffer interference from other higher priority new and other
higher priority old-mode tasks, we need to guarantee their schedulability during the mode
change. If, however, a new task 𝑖 has an offset such that its first release occurs after all
higher priority old-mode tasks have completed, its schedulability is guaranteed by steady-
state analysis and we do not need to apply the following analysis to obtain its WCRT.

∙ Interference from higher priority old-mode tasks ℎ𝑝(𝑖)𝑂: old-mode tasks may progress
through the mode change until completion. In the worst-case scenario, all old tasks are
released momentarily before the mode change, thus sharing a critical instant with the
window 𝑤𝑖. Therefore, we have:

𝐼ℎ𝑝(𝑖)𝑂
=

∑︁
∀𝑗∈ℎ𝑒𝑝(𝑖)𝑂

𝐶𝑗 (2.11)

∙ Interference from higher priority new-mode tasks 𝐼ℎ𝑝(𝑖)𝑁
: the interference caused by all

new higher priority tasks 𝑗 (released at 𝑌𝑗) upon a new-mode task 𝑖. This can be
calculated by the following expression:

𝐼ℎ𝑝(𝑖)𝑁
=

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑁

⌈︃
𝑤𝑖 − 𝑌𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗 (2.12)

∙ Interference of unchanged tasks ℎ𝑝(𝑖)𝑈 : tasks from the old-mode that remain unchanged
in new-mode, using the same temporal behavior (period and deadline). Therefore, we
have:

𝐼ℎ𝑝(𝑖)𝑈
=

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑈

(︃
𝐶𝑗 +

⌈︃
𝑤𝑖 − 𝑇𝑗 − 𝑍𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗

)︃
(2.13)

The worst-case response time of a new task 𝑖 across a mode change is therefore given
by:

𝑤𝑖 = 𝐵𝑖 +
∑︁

∀𝑗∈ℎ𝑒𝑝(𝑖)𝑂

𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑁

⌈︃
𝑤𝑖 − 𝑌𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑈

(︃
𝐶𝑗 +

⌈︃
𝑤𝑖 − 𝑇𝑗 − 𝑍𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗

)︃ (2.14)

12 Chapter 2. Background and Literature Review

Because 𝑤𝑖 exists on both sides of equation (2.14), it is necessary to adapt the equation to
predict the recurrence relation as follows:

𝑤𝑛+1
𝑖 = 𝐵𝑖 +

∑︁
∀𝑗∈ℎ𝑒𝑝(𝑖)𝑂

𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑁

⌈︃
𝑤𝑛

𝑖 − 𝑌𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑈

(︃
𝐶𝑗 +

⌈︃
𝑤𝑛

𝑖 − 𝑇𝑗 − 𝑍𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗

)︃ (2.15)

The initial value of 𝑤𝑖 is set to zero. It can be shown that 𝑤𝑛+1
𝑖 > 𝑤𝑛

𝑖 , and hence the equation
is guaranteed either to converge (i.e. 𝑤𝑛+1

𝑖 = 𝑤𝑛
𝑖) or to exceed some threshold, such as 𝐷𝑖.

However, the worst case for the response task 𝑅𝑖, which must then be compared with the
respective deadline is given by 𝑅𝑖 = 𝑤𝑖 - 𝑌𝑖.

However, it should also be considered in the analysis of new tasks so that the deadlines
of tasks may be greater than the respective periods (arbitrary deadlines), so the derived
equation corresponds to:

𝑤𝑛+1
𝑖 (𝑞) = 𝐵𝑖 + (𝑞 + 1)𝐶𝑖(𝑁) +

∑︁
∀𝑗∈ℎ𝑒𝑝(𝑖)𝑂

𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑁

⌈︃
𝑤𝑛

𝑖 − 𝑌𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗+

∑︁
∀𝑗∈ℎ𝑝(𝑖)𝑈

(︃
𝐶𝑗 +

⌈︃
𝑤𝑛

𝑖 − 𝑇𝑗 − 𝑍𝑗

𝑇𝑗

⌉︃
0

𝐶𝑗

)︃ (2.16)

whereas the task 𝑖 was released with an offset 𝑂𝑖, corresponding to 𝑌 offset, when the task
belongs only to the old-mode and 𝑍 offset, when the task the old-mode continues its execution
in the new-mode, to determine the worst response time of task 𝑅𝑖 must be subtracted from
the 𝑤𝑖 window corresponding to the assigned offset value, so:

𝑅𝑖(𝑞) = 𝑤𝑖(𝑞) − 𝑞𝑇𝑖 − 𝑂𝑖 (2.17)

2.3. Schedulability Analysis Algorithm 13

2.3 Schedulability Analysis Algorithm

Fig. 2 shows an UML activity diagram modeling the flow of the algorithm that calcu-
lates the schedulability analysis using arbitrary deadlines. It consists of the following steps:

Calc RSS

Get Q
q0..Q-1

Calc x

[q Q-1]

Calc R

Calc w

wmax = w

[w(n-1)=wn)]

[R D]

[R>D]
Unfeasible

Feasible

i1..num_tasks

[i num_tasks]

i++

q++

Figure 2 – Schedulability Analysis UML Diagram of Mode Change

∙ CALC RSS: The worst-case steady-state response time for each old-mode task 𝜏𝑖 (RSS)
is calculated. This value is used to place a bound on the maximum value of 𝑥 for each
task;

∙ Get 𝑄: In this step it is calculated the value of 𝑄, i.e. the largest number of invocations
of task 𝜏𝑖 that may occur within the busy-period (analysis with arbitrary deadline).
This is the outermost loop in the analysis. It is repeated for values of q = 0,1,2,3 . . .
and until 𝑞 ≤ 𝑄.;

∙ Calc 𝑥: For each value of 𝑄, and for each old-mode task, it is calculated the value of
𝑥, i.e. the arrival time of the old-mode task before the start of the transition (MCR).
This is the second outermost loop in the analysis;

14 Chapter 2. Background and Literature Review

∙ Calc 𝑤: For each task in the system, the worst-case response time window 𝑤𝑖 is calcu-
lated using a recurrence relation. This relation converges when 𝑤𝑛 = 𝑤𝑛−1. This is the
innermost loop in the system.

∙ Calc R: Once the previous loops are ended, the system then is ready to calculate the
worst-case response time 𝑅𝑚𝑐 of a task across the mode change. This value takes into
account the worst values of 𝑄, 𝑥 and 𝑤 found in the previous steps. In case 𝑅 ≤ 𝐷 for
all tasks, the system is deemed feasible, and otherwise unfeasible (or unschedulable).

2.4 Definition of Mode-Change Latency (L)
The mode-change latency is usually an important performance criteria when dealing

with mode changes. We often seek to minimize the latency since during the mode change the
system may deliver only partial functionality at the expenses of more critical services. The
mode change latency is defined by Pedro and Burns (1998) and Real and Crespo (2004) as
follows:

∙ Definition I: “A window starting with the arrival of the mode-change request (MCR)
and ending when the set of new-mode tasks have completed their first execution and the
set of old-mode tasks have completed their last execution” (PEDRO; BURNS, 1998).
The worst-case latency is given by equation (2.18):

𝐿 = max(𝑅𝑖(𝑁) + 𝑂𝑖(𝑁), 𝑅𝑖(𝑂) − 𝑥𝑖) ∀ 𝑖 𝜖 𝜏 (2.18)

where 𝑅𝑖(𝑁) is the worst-case response time of new-mode task 𝜏𝑖 across the mode change,
and 𝑅𝑖(𝑂) is the worst-case response time of the old-mode task 𝜏𝑖 in the mode change.
This definition of latency is the default definition adopted for this work.

∙ Definition II: “The latency of mode change has been considered as the time interval
between MCR and completion of the first activation off all new-mode tasks” (REAL;
CRESPO, 2004). This definition is given by equation (2.19):

𝐿 = max(𝑅𝑖(𝑁) + 𝑂𝑖(𝑁)) ∀ 𝑖 𝜖 𝜏 (2.19)

where 𝑅𝑖(𝑁) is the worst-case response time of new-mode task 𝜏𝑖 across the mode change,
𝑂𝑖(𝑁) is the offset 𝑌 or 𝑍 assigned to new task 𝜏𝑖.

2.5. Offset Minimization Algorithm 15

2.5 Offset Minimization Algorithm
An algorithm for the optimization tasks’ offsets across a mode change was proposed

by Real and Crespo (2001). This algorithm reduces offsets for high-priority tasks and con-
siders two scenarios in order to achieve consistency in the use of shared resources across an
asynchronous mode change: increased blocking of new-mode tasks and violation of the IPCP
(Immediate Priority Ceiling Protocol). The IPCP protocol ensures that lower-priority old-
mode tasks sharing resources do not lock resources used by new-mode, higher-priority tasks
(REAL; WELLINGS, 1999). Fig. 3 shows the algorithm used in Real and Crespo (2001).

There are three vectors used in this approach:

∙ 𝑌𝑟 is a vector with the values of the response time of each 𝜏𝐿𝑖(𝑂) (set of lowest priority
old-mode tasks that may use the conflicting resource), initialized with 0.

∙ 𝑌𝑚𝑖𝑛 is a vector holding the values of the minimum offsets at any point in the analysis,
which has all its values initialized with 0.

∙ 𝑌𝑚𝑎𝑥 is a vector with the maximum offsets that can be used by new-mode tasks, ini-
tialized with an arbitrarily large offset for each task.

∙ 𝑌𝑖 is a vector that holds the values of the current repetition of the analysis, which may
or not be minimum values. This vector is initialized with large values (step 5).

 1. Yr := (0,0,... 0)

 2. Ymax := (, , ...)

 3. Ymin := (0,0,... 0)

 4. loop

 5. ∀i, Yi := Yi,max

 6. if Feasible then

 7. Reduce-Offsets

 8. Y'r := (RL1,RL2,..., RLn)

 9. exit when Y'r = Yr

10. Yr =Y'r

11. Ymin =Yr

12. else

13. -- Not feasible

14. endif

15. end loop

Figure 3 – Algorithm to Calculate Offsets (REAL; CRESPO, 2001).

The offset of the higher priority task is reduced to a point where the system is closest
to becoming unschedulable or it is zero. This procedure is repeated to the next lower priority

16 Chapter 2. Background and Literature Review

task until all tasks in the task set are covered. All final offsets must be within a limited range
of values [𝑌𝑖,𝑚𝑖𝑛 . . . 𝑌𝑖,𝑚𝑎𝑥].

In addition to the schedulability analysis work of (PEDRO; BURNS, 1998; REAL;
CRESPO, 2004; TINDELL et al., 1992) on mode changes in uniprocessor, fixed-priority
preemptive real-time systems using the deadline monotonic policy, other authors have con-
tributed to the theme employing other models and/or approaches, such as mode changes in
1) systems with the rate-monotonic policy (SHA et al., 1988), 2) time-triggered real-time sys-
tems (FOHLER, 1993), 3) multiprocessor systems’ scheduling (NÉLIS; GOOSSENS, 2008;
YOMSI et al., 2010), 4) uniprocessor using Earliest Deadline First (EDF) scheduling (AN-
DERSSON, 2008; STOIMENOV et al., 2009), (NELIS et al., 2011), and 5) multiprocessor
systems with mixed-criticality constraints (NEUKIRCHNER et al., 2013; NIZ; PHAN, 2014).

2.6 Evolutionary Algorithms (EA)

Evolutionary algorithms are based on “Biologically Inspired Computing” (BONGARD,
2009) and “Natural Computing” (CASTRO, 2006), i.e, inspired on biological processes and
natural evolution to solve optimization problems. The genetic algorithm was introduced by
Holland (1975) with the goal of applying concepts related to the law of evolution to find
optimization solutions, assuming that the process of natural evolution could be adapted
for application in the search for complex optimization solutions, due to its robustness and
simplicity.

Although the exploration of the evolutionary algorithm approach started in the 30s,
it was only in the 60s that its application was expanded. It was motivated by an increase of
the availability of low-cost computers (JONG, 2006; RECHENBERG, 1965; FOGEL et al.,
1966).

“The initial specification and analysis of these simple evolutionary algorithms (EAs) in
the 1960s left two major issues unresolved: 1) characterizing the behavior of implementable
systems, and 2) better understanding how these system could be used to solve problems”
(JONG, 2006). In the 70s, researchers were focused on finding answers to these questions
by conceiving methods to apply the existing theory, which resulted in three types of EAs:
Evolutionary Programming (EP), Evolution Strategies (ES) and genetic algorithms.

2.6.1 Genetic Algorithm (GA)

The genetic algorithm (GA) was introduced by Holland (1975), with the purpose of
applying the concept related to the law of species evolution to find optimization solutions.

2.6. Evolutionary Algorithms (EA) 17

His approach was that the process of natural evolution could be adapted for application in
the search of complex solutions of optimization due to its robustness and simplicity.

According to Jong (2006), different from EP and ES, the GAs allow the application of
the algorithm in an independent form from the application. For that, they used a universal
genetic representation for the individuals that simplify its utilization. The mutation operators
are applied from a fixed probability, and the recombination selects the genetic sequence of
a pair of progenitor’s individuals randomly, generating new individuals that inherit genetic
characteristics of both.

According to Michalewicz (1996), traditionally, the GAs uses the binary notation for
the individual’s representation. Although, in some cases it can cause a delay in the search of
solutions with the degree of accuracy required. Thus, he conducted studies that demonstrate
that the individuals representation from the numerical notation, using float point, allow to
reduce the exploratory space, enabling to find solutions in a more effective way.

The taxonomy reported in Corte et al. (2012) divides metaheuristics frameworks into
three classes:

1. Local search metaheuristics, which operate on a single complete solution and iteratively
improve it by making small adjustments called moves;

2. Population-based metaheuristics, which operate on a set of solutions and find better
solutions by combining solutions from that set into new ones;

3. Constructive metaheuristics, which build a solution by working with a single, unfin-
ished, solution and adding one solution element at a time.

We found that methods belonging to the Local search metaheuristics risk to be
trapped in unfeasible spaces, while methods belonging to constructive metaheuristics are
promising but quite difficult to be calibrated and require further research.

GA methods belong to the population based metaheuristics are stable and produce
a sure improvement without the need to calibrate parameters that do not have their own
physical meaning, and which therefore must be estimated empirically.

2.6.2 Basic Terminology

The basic terminology presented was adapted based on Coello et al. (2007). Fig. 2.6.2
represents the key components used by evolutionary algorithms.

18 Chapter 2. Background and Literature Review

D
a
ta

 S
tr

u
c
tu

re
A

lg
o
ri

th
m {

{

- Population

- Parents

- Descendants

- Generations

- Chromosome

- Fitness

- Set of people (Solutions)

- Members of the current generation

- Members of the next generation

- Populations created successively

 (EA Iteration)

- Encoded solution; Array compose of

 genes with alleles assigned

- Number assigned to solution;

 Represents ¨desirability"

Figure 4 – Key Components of EA. Adapted from (COELLO et al., 2007)

Chromosomes, Genes and Alleles

In biology, a chromosome contains the genetic code that determines how the organisms
are composed. The number of chromosomes can vary from one species to another. The set of
chromosomes that compose an individual is called genotype. The genes are a set of symbols
that represent the codification of a chromosome. The position of a gene inside a chromosome
is called locus. The values assigned to a gene are called alleles. As an analogy, the values
assigned to a chromosome are a candidate solution to a given optimization problem.

Fitness Function

The fitness function allows the calculation of the level of fitness of an individual inside
a population.

Selection, Recombination and Mutation

The selection process selects the chromosomes with higher fitness for reproduction,
i.e., the larger the fitness of a chromosome, the larger its probability of being chosen for
reproduction. After the selection process, pairs of selected chromosomes are recombined using
a crossover operator. Therefore, a new individual is created inheriting genetic characteristics
from both parents.

2.6. Evolutionary Algorithms (EA) 19

Another genetic operator, the mutation operator, is used to increase the diversity
of chromosomes in a population. The mutation operator randomly changes the data of a
chromosome, following a mutation probability previously determined.

2.6.3 Multi-Objective Genetic Algorithms (MOGA)

At first, GA’s were used in optimization problems involving only a single objective
function. Multi-objective problems were solved by assigning different weights to each objec-
tive (weights-based multi-objective GA), thus converging to a single fitness. However, it is
a simplistic approach which cannot achieve the requirements of real applications. This per-
ception led to research towards another approach: optimization of competing or conflicting
objectives, giving rise to the development of Multi-Objective Genetic Algorithms. The basic
concepts on multi-objective optimization are presented in the following paragraphs.

Multi-Objective Problems

According to the Vilfredo Pareto’s (1848-1923) concept, multi-objective problems have
a set of optimal solutions: non-dominated (or Pareto optimal), and Pareto efficient (or non-
inferior) (PARETO, 1896). However, this set of solutions raises another question: “Which
solution to choose?”. This question can be answered using the multi-criteria analysis. Its
main goal is to assist the decision-makers in articulating their preferences in the presence
of ambiguities and uncertainties. Thus, it makes their decision more consistent with their
interests (COELLO, 2000).

In real-world problems, in addition to objective optimization, it is normally necessary
to meet application constraints. These constraints may be modeled using an inequality func-
tion such as 𝑔𝑖(�⃗�) ≥ 0. Therefore, �⃗� = (𝑥, . . . , 𝑥𝑘) is the vector of optimization variables. A
multi-objective problem (𝑀𝑂𝑃) is given by:

𝑚𝑖𝑛𝐹 (�⃗�) = (𝑓1(�⃗�), 𝑓2(�⃗�), . . . , 𝑓𝑚(�⃗�)),

subject to 𝑔𝑖(�⃗�) ≥ 0, 𝑖 = 1, 2, . . . , 𝑙,

𝑥𝑖 ∈ [𝑥𝑚𝑖𝑛𝑖, 𝑥𝑚𝑎𝑥𝑖], 𝑖 = 1, 2, . . . , 𝑘

(2.20)

It is denominated objective space the coordinated space where are represented the obtained
arrays from the objective function evaluation it is called the space of optimization vari-
ables, the coordinate space in which the axes represent each decision variable. The objective
functions make, therefore, the mapping between each point 𝐹 (�⃗�) = (𝑓1, 𝑓2, . . . , 𝑓𝑚) in the
objective space.

20 Chapter 2. Background and Literature Review

Pareto-Optimal Concept

The nonexistence of a global optimum that meet at the same time all conflict objec-
tives, as it happens in mono-objective optimization, is expected to have a set of solutions for
the multi-objective problems. This set can be defined using the concepts of the dominance
relation and Pareto-optimal to the solutions that meet 𝑛 constraints simultaneously. These
concepts are shown below, assuming the same minimization problem.

Dominance Relation

In an optimization problem of minimization, using two arrays �⃗�𝐴 e �⃗�𝐵 ∈ ℜ𝑚 have
been: �⃗�𝐴 ≺ �⃗�𝐵 if, at least one dimension 𝑗, �⃗�𝐴 is less than �⃗�𝐵 and in the other dimensions
𝑖 ̸= 𝑗, �⃗�𝐴 is less than or equal �⃗�𝐵. In this case, array �⃗�𝐵 is dominated by �⃗�𝐴. Applying
this definition for the multi-objective optimization problem suggested, given two points �⃗�𝐴 e
�⃗�𝐵, where �⃗�𝐴 = (𝑓1(�⃗�𝐴), 𝑓2(�⃗�𝐴), . . . , 𝑓𝑚(�⃗�𝐴)) and �⃗�𝐵 = (𝑓1(�⃗�𝐵), 𝑓2(�⃗�𝐵), . . . , 𝑓𝑚(�⃗�𝐵)), we have
(VELDHUIZEN; LAMONT, 2000):

�⃗�𝐴 ≺ �⃗�𝐵 ↔ ∀𝑖 ∈ {1, 2, . . . , 𝑚}, 𝑓1(�⃗�𝐴) ≤ 𝑓1(�⃗�𝐵)∧

∃𝑗 ∈ {1, 2, . . . , 𝑚}, 𝑓𝑗(�⃗�𝐴) < 𝑓𝑗(�⃗�𝐵)
(2.21)

The dominance relation concept allows to introduce the condition for optimal solutions
for multi-objective problems. Determining the feasible region Ω, each possible solution �⃗�𝐴 ∈ Ω
is called Pareto-Optimal Solution if it doesn’t exist another point �⃗�𝐵 ∈ Ω such as, �⃗�𝐵 =
(𝑓1(�⃗�𝐵), 𝑓2(�⃗�𝐵), . . . , 𝑓𝑚(�⃗�𝐵)) dominates �⃗�𝐴 = (𝑓1(�⃗�𝐴), 𝑓2(�⃗�𝐴), . . . , 𝑓𝑚(�⃗�𝐴)).

Pareto-Optimal Set

The optimality concept for a multi-objective problem, define a set of efficient solutions,
given by (VELDHUIZEN; LAMONT, 2000):

𝑃* := {�⃗�𝐴 ∈ Ω|¬∃�⃗�𝐵 ∈ Ω : 𝐹 (�⃗�𝐵) ≺ 𝐹 (�⃗�𝐴)}.

These set of Pareto-optimal solutions is the set of evaluation arrays of the objective
functions that meet the space of front, i.e, a Pareto-Optimal front 𝑃𝐹* or simply Pareto
-Front, given by:

𝑃𝐹* := {𝐹 (�⃗�)|∀�⃗� ∈ 𝑃*}

2.6. Evolutionary Algorithms (EA) 21

f1

f2

Ω

PF*

convex portion left

f1

f2

Ω

PF*

not convex portion left

Figure 5 – Example of Pareto-Front.

Note: The Pareto front may delimit a convex or not convex portion of the feasible
region (Fig.2.6.3).

Selection in Multi-Objective Genetic Algorithms (MOGA)

The selection criteria for MOGA has as a goal to guide the GA for the most viable
regions where are found the Pareto front. Thus, beyond preserving the efficient solution and
discarding the dominated ones it’s necessary to guarantee a good distribution over the front.
In the literature there are many MOGA’s, which differences are the way the selection operator
promotes the non-dominant solutions and the solution that are found in less populated areas
(DEB, 2011).

Nowadays the most important MOGA are: Elitist Non-dominated Sorting Genetic Al-
gorithm (NSGA-II), Strength Pareto Evolutionary Algorithm (SPEA-2) and Elitist Distance-
Based Pareto Algorithm (DPGA)(DEB et al., 2000; KIM et al., ; DEB, 2011).

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)

The NSGA-II is a multi-objective genetic algorithm developed by Deb et al. (2000)
that uses the optimization concept presented in the preceding section. It is currently widely
used to find solutions for multi-objective optimization problems. Its main characteristics are:

∙ Combined population;

∙ Fast selection operator for sorting by dominance;

∙ Use of two ordering algorithms:

– Non-dominated Sorting Algorithm: Finds solution near the Pareto-Front;

22 Chapter 2. Background and Literature Review

– Crowding-Distance Sorting: Finds well-distributed solutions in space.

Thus, the selection operator for NSGA-II assigns for each individual two indexes. The
first index, represented by 𝑛𝑓 , determines the front in which each individual belongs. To
achieve this, it is necessary to classify the population in non-dominated front, where the first
front should correspond to non-dominated points of the actual population; the second should
correspond to points dominated by first front, and so on. Thus, for all individuals belonging
to the first front is assigned the value 𝑛𝑓 = 1, for all individuals belonging to the second
front is assigned the value 𝑛𝑓 = 2, and so on. The second index is the crowding distance
that corresponds to measure the distance around of the a determined individual that not is
occupied by another solution.

2.6.4 Use of GA in Real-Time Systems

An example of the application of GA in real-time systems is the work by Briand et al.
(2006). GAs were used to provide automated analysis of the schedulability of tasks during
the design process, as well as to test the systems’ response time to events in an effective
manner - once implemented. Their main goal was to automate stress testing, i.e. based on
the system task architecture, the derivation of test cases that maximize the chances of critical
deadline misses within the system. The second goal was to enable, at design time, an early
but realistic analysis of tasks’ schedulability. The authors have developed a specific solution
based on genetic algorithms and implemented it in a tool. Case studies were run and results
showed that the tool was effective at identifying test cases that would likely stress the system
to such an extent that some tasks could miss deadlines. Furthermore, the case studies could
identify scenarios that were deemed to be schedulable and, nevertheless, exhibited missed
deadlines. Most work using genetic algorithms in real-time systems fall outside the scope of
this paper, as they deal with the issue of allocating tasks to multiprocessors, such as the work
by Yoo (2009) and ManChon et al. (2011).

23

3 Minimizing the Mode-Change Latency

In this chapter we present a method for latency and/or offsets minimization in fixed
priority systems across a mode-change, using single and multi-objective GAs. To validate
the efficacy of this method, we perform a number of case studies each illustrating distinct
mode-change scenarios.

The focus of this chapter is to address this challenge and propose a workable solution,
which involves the modeling of the approach and its validation. Therefore, it is not the aim
of this research to experiment with different meta-heuristics or evolutionary algorithms and
compare their performance. We have opted to use genetic algorithms due to their known
efficiency and simplicity. More advanced approaches could certainly be adopted here, but the
results obtained in this work have shown that the proposed approach is feasible, i.e. it is able
to find solutions that satisfy the requirements defined for the problem. Therefore, we reserve
the comparison analysis of meta-heuristics and evolutionary algorithms to future work, see
chapter 5.

The choice of Genetic Algorithms may be strengthened by the taxonomy reported in
(CORTE et al., 2012), which divides metaheuristics frameworks into three classes:

1. Local search metaheuristics, which operate on a single complete solution and iteratively
improve it by making small adjustments called moves;

2. Population-based metaheuristics, which operate on a set of solutions and find better
solutions by combining solutions from that set into new ones;

3. Constructive metaheuristics, which build a solution by working with a single, unfin-
ished, solution and adding one solution element at a time.

We found that methods belonging to the Local search metaheuristics risk to be
trapped in unfeasible spaces, while methods belonging to constructive metaheuristics are
promising but quite difficult to be calibrated and require further research.

24 Chapter 3. Minimizing the Mode-Change Latency

3.1 Model and Approach to Minimization
The flow of the optimization process using GA is illustrated in Fig. 6. Each one of

the steps presented are explained in details as follows:

Initial Population

i1..max_generations

[i max_generations]

Decode

Chromosome

[j max_individuals]

Assign Offsets

(Y and Z)

j1..max_individuals

Schedulability

Analysis

[constraints not feasible]

Calculate Fitness

Discard

Chromosome

Selection

Mutation

and crossover

Apply Genetic

Operators
i++

j++

Figure 6 – Diagram of the Optimization Using GA

∙ Initial Population: The first step is to create the initial population, can be predeter-
mined or randomly defined. We chose to adopt an initial random population. In this
work, the population is the set of offsets from all new-mode tasks. Determining an
appropriate initial population for this analysis is not straightforward. Small values for
offsets are not good candidates, since small offsets lead to larger latencies. Large offsets
are amenable to reduction to some extent, and there is not relationship that establishes
a direct function between latency and offsets. Considering that offsets and latency are
very application dependent.

∙ Decode Chromosome: The analysis of the problem to be optimized shows that each
gene in a chromosome must correspond to an offset value 𝑂𝑖 (𝑌 or 𝑍). The genetic
algorithm adopted in this work uses a permutation-based representation (COELLO et
al., 2007). Each gene is expressed in hexadecimal notation and uses 4 characters that

3.1. Model and Approach to Minimization 25

represents an integer value between 0 and 65535 (Fig. 7). A chromosome must have 𝑛

genes, where 𝑛 is the number of new-mode tasks across a mode-change.

0 2 E D

0 1

C 4 B 1

2

5 7 8 A

3

C 1 B B

n

Gene (offset O
i
) Allele = 1 character

...

Figure 7 – Structure of a Chromosome (𝑛 equal to the number of new-mode tasks)

∙ Assign Offsets (𝑌 and 𝑍): Each chromosome belonging to a generation is decoded, and
the value of its genes are assigned to the task offsets.

∙ Schedulability Analysis: Having assigned the offsets, the tasks set is submitted to the
mode-change schedulability analysis, using equations (2.6) and (2.15).

∙ Check Constraints: The optimization process must meet constraints represented as 𝐶𝑜.
𝐶𝑜 is a vector that uses binary notation1. In the case study described in the sections
3.2.1 to 3.2.4 two constraints were used:

1. System feasibility (constraint 𝐶𝑜1), i.e. all tasks meet their deadlines, where we
apply the schedulability analysis (i.e. 𝑅 ≤ 𝐷) tests to discard unfeasible solutions.
This analysis are based on the worst-case response time windows as shown in
equations (2.15).

2. Resource sharing via IPCP protocol (constraint 𝐶𝑜2). This objective is also used
to discard solutions that do not comply with the IPCP protocol when resources
are shared across a mode-change. In case tasks are independent, the objective is
simply removed from the search (i.e. by assigning 𝐶𝑜2 = 0).

At the end of the analysis process, we check the constraints (system feasible and com-
pliance with the IPCP protocol, when necessary). Case the constraints were not feasible
the chromosome is discarded.

1 a 1 represents an active (or valid) constraint and a 0 an inactive one

26 Chapter 3. Minimizing the Mode-Change Latency

∙ Calculate Fitness: Upon completion of the real-time analysis, if the constraints ate met,
the algorithm proceeds by calculating the fitness function as follows:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑛∑︁

𝑗=1
𝑂𝑏𝑗.𝑊𝑒𝑗 (3.1)

where 𝑂𝑏𝑗 corresponds to the value of objective 𝑗, and 𝑊𝑒𝑗 represents its weight (i.e.
the relative importance of one objective 𝑗 in comparison to the other ones). 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 is
the degree of aptitude of a chromosome. The smaller the value of 𝑓𝑖𝑡𝑛𝑒𝑠𝑠, the better
the individual within the population.

The minimization of the latency of mode-changes is a multi-objective optimization
problem. For example, in the case studies described ahead we used two objectives to
compose the fitness function:

1. Reduction of latency (objective 𝑂𝑏1), using equation (2.18). In this case the mini-
mization of latency is modeled as the main, single/multi-objective GA.

2. Minimization of offsets (objective 𝑂𝑏2), where we use the summation of all task
offsets (i.e. ∑︀ 𝑂𝑖) as a measure of the degree of minimization of a candidate
solution. Clearly, the lower the sum of offsets for a given solution, the better (or
more fit is) a solution in regards to this objective.

However, other objectives can also been adopted such as minimization of the interfer-
ence between tasks for a given value of latency, and minimization of offsets for higher
priority tasks.

The rating or the quality of the solution is represented by the fitness function, which
expresses the fitness of a particular chromosome within a population. The greater the
fitness (smaller value), the higher are the chances of a chromosome adapting to its
environment and passing its genes to its successors.

∙ Selection: The selection process chooses the chromosomes with the highest degree of
suitability for reproduction, i.e., the larger the fitness of a chromosome, the greater
are its chances of reproduction. The selection operator used in this work was elitist
selection (COELLO et al., 2007).

∙ Genetic Operators: After the selection process, the selected chromosomes are recom-
bined to a certain extent using a crossover operator. Pairs of chromosomes from a

3.2. Case Studies 27

population are randomly chosen, taking into account their fitness, and then recom-
bined, generating a new individual that inherits the genetic characteristics of both
parents. The crossover operator adopted was the two-point crossover(COELLO et al.,
2007; JONG, 2006). The mutation operator was also used to increase the diversity of
a population of chromosomes. The mutation and crossover probabilities were fixed at
10% and 70% respectively, for all scenarios and case studies.

3.2 Case Studies

This section is subdivided into four case studies described as follows:

1. Minimization of offsets (single-objective),

2. Minimization of the latency (single-objective),

3. Minimization of both latency and offsets (weights-based multi-objective), and

4. Minimization of both the latency and the offsets (multi-objective optimization).

These case studies are set to according to scenarios that are likely to be encountered
in real applications. They also provide a range of possibilities with enough coverage to allow
us to understand the behavior of the search in the face of its objectives and constraints. Table
1 shows a summary of the cases studies introduced in this section.

Table 1 – Summary of the Case Studies

Case Study Goal Algorithm
1 Minimizing Offsets Single Objective GA
2 Minimizing Latency Single Objective GA
3 Latency and Offsets Weights-Based Multi-Objective GA
4 Latency and Offsets Multi-Objective NSGA-II

The following case studies were performed on a hardware/software platform consist-
ing of 1) Processor: Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz; 2) Installed Memory
(RAM): 6.00 GB; 3) Operating System: Windows 7 Home Premium 64 Bits; 4) RDBMS:
Oracle 11g Standard Edition.

28 Chapter 3. Minimizing the Mode-Change Latency

3.2.1 Case 1 - Minimizing Offsets

Definition: In this case study the optimization was performed on a set of six generic
tasks (Table 2), in order to minimize offsets. The goal of this case is twofold: 1) demon-
strate the flexibility of the approach, i.e. the weights-based multi-objective GA mode-change
minimization approach can also be used to minimize offsets (in addition to minimization of
latency); 2) compare the GA with the algorithm by Real and Crespo (2001). In case the
two methods lead to the same values of offsets, this example validates both methods used to
offset minimization.

Therefore, we used the same task set used by Real and Crespo (2001). Table 2 presents
two modes of operation 𝑀1 and 𝑀2; each mode of operation comprises of six tasks, i.e. 𝜏1

through 𝜏6. The CPU utilization rate is 73.1% in 𝑀1 and 66.35% in 𝑀2. Tasks share two
resources, 𝑅1 and 𝑅2, as represented in the second half of Table 2. As there are shared re-
sources, the immediate priority ceiling protocol (IPCP) was used to protect against deadlocks
and transitive blocking, due to the sharing of resource 𝑅2 across a mode-change. In mode
𝑀1, this resource is used by task 𝜏5 with ceiling priority 4. In mode 𝑀2 resource 𝑅2 is used
by new-mode tasks 𝜏2 and 𝜏5 with ceiling priority 2.

Table 2 – Case Study 1 - Set of tasks

Mode M1 Mode M2
Tasks P C B T=D R TEST Tasks P C B T=D R TEST
𝜏1(𝑂) 1 10 0 100 10 OK 𝜏1(𝑈) 1 10 0 100 10 OK
𝜏2(𝑊) not active in this mode 𝜏2(𝑊) 2 20 25 120 55 OK
𝜏3(𝑂) 2 30 25 200 65 OK 𝜏3(𝐶) 3 30 25 270 85 OK
𝜏4(𝑂) 3 40 24 280 115 OK 𝜏4(𝑈) 4 40 24 280 155 OK
𝜏5(𝑂) 4 50 25 300 165 OK 𝜏5(𝐶) 5 50 25 350 180 OK
𝜏6(𝑂) 5 60 0 350 200 OK 𝜏6(𝑂) not active in this mode

Resources C
Mode M1 Mode M2

Users Ceiling Users Ceiling
𝑅1 25 𝜏3,𝜏5,𝜏6 2 𝜏3,𝜏5 3
𝑅2 25 𝜏5 4 𝜏2,𝜏5 2

Note: The column "TEST" shows that the task is feasible in steady-state mode.

GA configuration: To determine the best parameters to be used in the optimization
process using GA, eight distinct scenarios 𝑆1, 𝑆2 . . . 𝑆8 were created (Table 3). Each scenario:
1) varies the size of the population and the number of generations, and 2) was subject to ten
repetitions, to measure the accuracy of the data obtained.

3.2. Case Studies 29

Table 3 – Case Study 1 - Scenarios for GA Optimization

Parameters
Scenarios

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8

Population 100 100 250 250 500 500 1000 1000
Generations 25 50 25 50 25 50 25 50

Modeling: The minimization of offsets was treated as a single-objective minimization
problem with two constraints, i.e., the schedulability of the task set across a mode-change
and the compliance with the IPCP protocol (due to shared resources).

To achieve these objectives the fitness function was instantiated with the weights 𝑊𝑒

= {0, 1}, thus canceling the first objective (reduction of latency), and the constraints used
were 𝐶𝑜 = {1 ,1}, i.e., system feasibility and compliance with the IPCP protocol. The fitness
function chosen was the sum of the offsets of all new-mode tasks, i.e., 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀

𝑂𝑖 ∀ 𝑖 𝜖 𝜏 .
The smaller value of the sum the better the solution found.

Results: Table 4 shows the summary of the mode-change latency sensitivity analysis for
the set of six tasks, using the fitness function set to minimize offsets. The columns represent
1) the scenario used for optimization, 2) the average number of tests processed during the
optimization, 3) the average time spent on each repetition of the scenario, 4) the lowest,
highest and the average sum of offsets, and 5) the variation of the average in relation to the
lowest value.

At it can be seen, scenario 𝑆8 presented the smallest sum of offsets (265).

Table 4 – Case Study 1 - GA Sensitivity Analysis to Offset Minimization

Scen.
of Time Sum of Offsets

Analysis (Min) Low High AVG Var.
𝑆1 3418 0.81 265 281 272.9 3.0%
𝑆2 6110 1.16 265 289 274.8 3.7%
𝑆3 8364 1.39 265 281 267.9 1.1%
𝑆4 15053 2.55 265 267 267.9 0.3%
𝑆5 16504 2.89 265 267 265.7 0.3%
𝑆6 30083 4.86 265 268 265.3 0.1%
𝑆7 33224 5.58 265 266 265.1 0.0%
𝑆8 60143 9.95 265 265 265.0 0.0%

After optimization, the values of the best offsets obtained are shown in Table 5. The
left table describes old-mode tasks across the mode-change. Likewise, the right table shows

30 Chapter 3. Minimizing the Mode-Change Latency

new-mode tasks during the transition.

The left table shows the deadlines 𝐷, the worst-case response time obtained with the
genetic algorithm 𝑅2, the worst-case response time 𝑅1 obtained with the algorithm of Real
and Crespo (2001), variable 𝑥, and the results of the schedulability test. The right table
shows the same attributes for all new-mode tasks. It includes the offsets for each task.

Table 5 – Case Study 1 - Offsets Obtained 1Algorithm of Real and Crespo (2001) and
2Genetic Algorithm

Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2
Task T=D R1 R2 x1 x2 Test Task T=D O1 R1 O2 R2 Test

𝜏1 100 10 10 0 0 OK 𝜏1 100 0 10 0 10 OK
𝜏3 200 65 65 0 0 OK 𝜏2 120 195 55 195 55 OK
𝜏4 280 115 115 101 101 OK 𝜏3 270 0 70 0 70 OK
𝜏5 300 195 195 1 1 OK 𝜏4 280 70 240 70 240 OK
𝜏6 350 260 260 1 1 OK 𝜏5 350 0 350 0 350 OK

3.2.2 Case 2 - Minimizing Latency

Definition: In this case study the optimization was performed on a set of 21 tasks
(Tables 6 and 7). This set of tasks was based on the Generic Avionics Platform (GAP),
initially described by Locke et al. (1991). Table 6 presents mode 𝑀1 (Cruise Control) and
Table 7 mode 𝑀2 (Defense). The CPU utilization rate is 76.58% in 𝑀1 and 85.01% in 𝑀2.
The goal of this study was to search for the solutions that minimize the latency. There is no
concern for the resulting configuration of task offsets in this case.

GA Configuration: We applied the basic GA, where We = {1, 0}. thus canceling the
second objective (minimization of offsets), and the constraints used were 𝐶𝑜 = {1 ,1}, i.e.,
system feasibility and compliance with the IPCP protocol.

Modeling: This search is modeled as a single-objective optimization problem, where
latency minimization is the single objective, and system feasibility is treated as a constraint
as in the preceding case.

3.2. Case Studies 31

Table 6 – Case Study 2 - GAP Tasks for Cruise Mode

Task Cruise Control Mode M1
Description P C T D R Test

𝜏1(𝑂) Auto-Pilot 1 10 1000 50 10 OK
𝜏2 not active in this mode

𝜏3(𝑂) Radar Tacking Filter 12 200 2000 1200 742 OK
𝜏4(𝑂) RWR Contact Mgmt 13 5 2000 1400 747 OK
𝜏5(𝑂) Data Bus Pull Service 4 10 400 400 100 OK

𝜏6 not active in this mode
𝜏7(𝑂) Mission Advisor 5 20 600 450 120 OK
𝜏8(𝑂) Fueling Mgmt 6 50 800 500 170 OK

𝜏9 not active in this mode
𝜏10(𝑂) Nav Update 15 80 1100 1550 977 OK
𝜏11(𝑂) Display Graphic 1 16 40 1700 1600 1187 OK
𝜏12(𝐴) Display Hook Update 17 100 1700 1650 1397 OK
𝜏13(𝑂) Tracking Target Upd 10 30 2000 800 342 OK
𝜏14(𝑂) Display Graphic 2 11 90 3000 900 442 OK

𝜏15 not active in this mode
𝜏16(𝑂) Nav Steering Cmds 2 20 250 60 30 OK
𝜏17(𝑂) Display Stores Updates 3 60 250 120 90 OK
𝜏18(𝑂) Display Keyset 14 10 3000 1500 897 OK
𝜏19(𝑂) Display Stat Update 7 30 4000 590 200 OK
𝜏20(𝑂) BET E Status Update 8 15 20000 600 215 OK
𝜏21(𝑂) Nav Status 9 17 20000 700 232 OK

Table 7 – Case Study 2 - GAP Tasks for Defense Mode

Task Defense Mode M2
Description P C T D R Test

𝜏1 not active in this mode
𝜏2(𝑊) Weapon Release 1 30 2000 50 30 OK
𝜏3(𝐶) Radar Tacking Filter 2 20 250 60 50 OK
𝜏4(𝐶) RWR Contact Mgmt 3 50 250 120 100 OK
𝜏5(𝐶) Data Bus Pull Service 4 10 400 400 110 OK
𝜏6(𝑊) Weapon Aiming 5 30 500 450 140 OK

𝜏7 not active in this mode
𝜏8 not active in this mode

𝜏9(𝑊) Radar Target Update 6 50 500 500 190 OK
𝜏10(𝐶) Nav Update 7 80 590 590 340 OK
𝜏11(𝐶) Display Graphic 1 8 90 800 600 440 OK
𝜏12(𝐶) Display Hook Update 9 20 800 700 460 OK
𝜏13(𝐶) Tracking Target Upd 10 50 1000 800 740 OK

𝜏14 not active in this mode
𝜏15(𝑊) Weapon Protocol 11 10 2000 900 750 OK
𝜏16(𝐶) Nav Steering Cmds 12 30 2000 1200 970 OK
𝜏17(𝐶) Display Stores Updates 13 10 2000 1400 980 OK
𝜏18(𝐶) Display Keyset 14 10 2000 1500 990 OK
𝜏19(𝐶) Display Stat Update 15 30 2000 1550 1380 OK
𝜏20(𝐶) BET E Status Update 16 10 10000 1600 1390 OK
𝜏21(𝐶) Nav Status 17 10 10000 1650 1400 OK

32 Chapter 3. Minimizing the Mode-Change Latency

Results: After optimization, the values of the best offsets obtained are shown in Ta-
ble 8. The left table represents the old-mode tasks across a transition, and their real-time
attributes whereas the right table describe the new-mode tasks.

Table 8 – Case Study 2 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Task D R x Test D O R Test
𝜏1 50 10 0 OK not active in this mode
𝜏2 not active in this mode 50 257 30 OK
𝜏3 1200 742 601 OK 60 1185 50 OK
𝜏4 1400 787 1 OK 120 1187 100 OK
𝜏5 400 100 1 OK 400 1143 110 OK
𝜏6 not active in this mode 450 973 140 OK
𝜏7 450 120 1 OK not active in this mode
𝜏8 500 170 1 OK not active in this mode
𝜏9 not active in this mode 500 1026 190 OK
𝜏10 1550 1007 1 OK 590 787 340 OK
𝜏11 1600 1197 1101 OK 600 695 440 OK
𝜏12 1650 1407 1251 OK 700 640 460 OK
𝜏13 800 342 251 OK 800 500 740 OK
𝜏14 900 442 401 OK not active in this mode
𝜏15 not active in this mode 900 199 193 OK
𝜏16 60 30 1 OK 1200 420 272 OK
𝜏17 120 90 1 OK 1400 397 480 OK
𝜏18 1500 897 801 OK 1500 0 897 OK
𝜏19 590 200 1 OK 1550 961 126 OK
𝜏20 600 215 1 OK 1600 260 877 OK
𝜏21 700 232 1 OK 1650 136 1191 OK

In short, the processing time was 112.42 minutes using GA, the sum of offsets was
10766 and the latency was 1327. The values obtained using the algorithm of Real and Crespo
(2001) will be presented in the case study 3.

Note: Sensitivity does not work in this case study, thus, the optimization was per-
formed just with a population of 2000 individuals for 500 generations.

The results are going to be analyzed later in section 3.3.

3.2.3 Case 3 - Minimizing Latency and Offsets - Weights-Based Multi-Objective

Definition: In this case study the optimization was performed on the same set of tasks
(Tables 6 and 7). The goal of this study was to search for the solutions that minimize the
worst-case latency of a mode-change as the main priority, and also attempt to keep offsets
at minimum values, as a second priority.

3.2. Case Studies 33

GA Configuration: As with the previous case, we have determined the best parameters
for the optimization process based on nine distinct scenarios (Table 9). Each scenario was
subject to ten repetitions in order to measure the accuracy of the resulting data.

Table 9 – Case Study 3 - Scenarios for Optimization with GAs

Parameters
Scenarios

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9

Population 500 500 500 1000 1000 1000 2000 2000 2000
Generations 100 250 500 100 250 500 100 250 500

Modeling: This search is modeled as a one-objective optimization problem, where
solutions, that are schedulable (i.e. feasible) and with lower offsets, are seen as constraints.
As there are no shared resources, the IPCP protocol was not necessary, thus, canceling
constraint 2.

To achieve these goals, the objective function was instantiated with weights We =
{1, 0.00001}. Thus, the fitness function chosen was the combination of 1) the latency of the
mode-change (the fitness value is captured in a decimal part) (𝑂𝑏1), 2) the sum of the offsets
of all new-mode tasks (𝑂𝑏2), where the fitness value is accounted for in the fractional part.
The constraints used was 𝐶𝑜 = {1 ,0}, i.e., system feasibility and no resource sharing.

Results: Table 10 shows the summary of the sensitivity analysis of the set of twenty-one
tasks. The columns represent: 1) the scenario used for optimization, 2) the average number
of tests processed during optimization, 3) the average time spent on each repetition of the
scenario, 4) the lowest, high, average and variation between average and lowest worst-case
latency, 5) the lowest sum of offset for lowest and 5) high worst-case latency. The minimum
values were found in scenario 8.

Table 10 – Case Study 3 - GAs Sensitivity Analysis to Offset Minimization

Scen.
Time Measured Latency

∑︀
Offsets

Analysis (Min.) Low High AVG Var.% Low High
1 51501 3.65 1397 1665 1475 5.6 8951 7971
2 126501 8.21 1397 1982 1479 5.9 7533 1397
3 251501 15.78 1397 1636 1464 4.8 7579 5600
4 103001 6.06 1397 1453 1403 0.4 8170 9389
5 253001 15.45 1397 1417 1399 0.1 7540 7696
6 503001 38.06 1397 1397 1397 0.0 7585 7585
7 503001 14.09 1397 1397 1397 0.0 7657 7657
8 506001 31.25 1397 1397 1397 0.0 7133 7693
9 1006001 64.43 1397 1412 1399 0.1 7487 7558

34 Chapter 3. Minimizing the Mode-Change Latency

After optimization, the values of the best offsets obtained are shown in Table 11. The
left table represents the old-mode tasks across a transition, and their real-time attributes
whereas the right table describe the new-mode tasks. The parameters with superscript 1 are
the ones from the algorithm of Real and Crespo (2001), whereas the ones with superscript 2
are the ones resulting from the GA.

Table 11 – Case Study 3 - Offsets Obtained 1Algorithm of (REAL; CRESPO, 2001) 2Genetic
Algorithm
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Task D R1 R2 x1 x2 Test D O1 R1 O2 R2 Test
𝜏1 50 10 10 0 0 OK not active in this mode
𝜏2 not active in this mode 50 0 40 288 30 OK
𝜏3 1200 1152 802 1 1 OK 60 119 50 1152 50 OK
𝜏4 1400 1157 1017 1 1 OK 120 70 120 1152 100 OK
𝜏5 400 200 100 1 1 OK 400 0 210 256 110 OK
𝜏6 not active in this mode 450 0 260 400 140 OK
𝜏7 450 230 120 1 1 OK not active in this mode
𝜏8 500 310 170 1 1 OK not active in this mode
𝜏9 not active in this mode 500 286 154 897 190 OK
𝜏10 1550 1257 1137 1 1 OK 590 1546 340 816 340 OK
𝜏11 1600 1417 1277 1 1 OK 600 1546 440 608 440 OK
𝜏12 1650 1557 1397 1101 251 OK 700 1546 460 146 106 OK
𝜏13 800 562 342 1 251 OK 800 1546 740 400 740 OK
𝜏14 900 722 492 1 1 OK not active in this mode
𝜏15 not active in this mode 900 1546 750 146 356 OK
𝜏16 60 60 30 1 1 OK 1200 1546 970 146 866 OK
𝜏17 120 120 90 1 1 OK 1400 1546 980 146 881 OK
𝜏18 1500 1167 1037 1 1 OK 1500 1546 990 146 901 OK
𝜏19 590 470 200 1 1 OK 1550 1546 1380 288 949 OK
𝜏20 600 485 215 1 1 OK 1600 1546 1390 146 1141 OK
𝜏21 700 532 232 1 1 OK 1650 567 1650 0 1397 OK

In summary, by using GA, the number of processed analysis (i.e. # iterations) was
506001, the total processing time was 31.25 minutes, the sum of offsets was 7133 and the
worst-case latency was 1397. Using the algorithm Real and Crespo (2001) the number of
analysis processed was 53145, the processing time was 4.35 minutes, the sum of offsets was
16502 and the worst-case latency was 2936.

The results are going to be analyzed later in section 3.3.

3.2.4 Case 4 - Minimizing Latency and Offsets - Multi-Objective

Definition: In this case study the optimization was performed on the same set of tasks
(Tables 6 and 7). The goal of this study was to search for the solutions that minimize both

3.2. Case Studies 35

the worst-case latency of a mode-change and task offsets using a multi-objective GA.

GA Configuration: We applied the NSGA-II algorithm, where We = {1, 1}. Thus,
the objectives 1 and 2 have the same weights in the optimization process. The crossover and
mutation operators used for NSGA-II are the same as the ones employed in the GA. The
constraints used were 𝐶𝑜 = {1 ,0}, i.e., system feasibility and no resource sharing.

Modeling: This search is modeled as a multi-objective optimization problem, where
latency and offsets are the main objectives and schedulability is a constraint. As with the
previous case, since there are no shared resources, the IPCP protocol was not necessary, thus,
canceling constraint 2.

Results: After optimization, the values of the best offsets obtained are shown in Ta-
ble 12. The left table represents the old-mode tasks across a transition, and their real-time
attributes whereas the right table describe the new-mode tasks. The parameters with su-
perscript 1 are the ones from the algorithm Real and Crespo (2001), whereas the ones with
superscript 2 are the ones resulting from the GA and with superscript 3 are the ones resulting
from the NSGA-II.

Latency

1
4

7
0

1
4

6
0

1
4

5
0

1
4

4
0

1
4

3
0

1
4

2
0

1
4

1
0

1
4

0
0

1
3

9
0

1
3

8
0

S
u

m
 o

f
O

ff
s
e

ts

7000

6800

6600

6400

6200

6000

5800

5600

5400

non-dominated solutions

NDS1

NDS2

Figure 8 – Non-dominated Solutions Obtained using NSGA-II.

Fig. 8 shows the best frontier of non-dominated solutions found during the optimiza-
tion process using NSGA-II. From the solutions illustrated, three were used as a comparison
in Table 12: 𝑁𝐷𝑆1, the solution that has the smallest value of mode-change latency; 𝑁𝐷𝑆2,
an intermediate solution and 𝑁𝐷𝑆3, the solution that has the smallest sum of offsets. How-
ever, any of the solutions could be used, as the criteria for selection may vary according to

36 Chapter 3. Minimizing the Mode-Change Latency

the premises adopted by the system designer.

Table 12 – Case Study 4 - Offsets Obtained with NSGA-II 1 𝑁𝐷𝑆1 (Lower Latency) 2 𝑁𝐷𝑆2
(Intermediate) 3 𝑁𝐷𝑆3 (Lower Offsets)

Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2
Task R1 R2 R3 x1 x2 x3 O1 R1 O2 R2 O3 R3

𝜏2 not active in this mode 0 40 0 40 0 40
𝜏3 812 812 812 601 601 601 1248 50 1248 50 480 50
𝜏4 847 847 1007 601 601 1 1280 100 1280 100 1280 100
𝜏5 130 130 130 1 1 1 0 140 0 140 0 140
𝜏6 not active in this mode 1024 140 512 140 512 140
𝜏7 160 160 160 1 1 1 not active in this mode
𝜏8 210 210 210 1 1 1 not active in this mode
𝜏9 not active in this mode 1024 190 1024 190 1024 190
𝜏10 1107 1137 1197 1 1 1 848 340 880 340 880 340
𝜏11 1337 1337 1347 1101 1101 1 768 440 768 440 768 440
𝜏12 1557 1557 1557 1251 1251 1251 0 292 0 292 0 292
𝜏13 402 402 402 251 251 251 512 740 512 740 512 740
𝜏14 502 502 502 401 401 401 not active in this mode
𝜏15 not active in this mode 0 432 0 432 0 432
𝜏16 60 60 60 1 1 1 0 712 0 742 0 1002
𝜏17 120 120 120 1 1 1 0 727 0 757 0 1097
𝜏18 1007 1007 1107 801 801 1 0 747 0 977 0 1117
𝜏19 240 240 240 1 1 1 0 1137 0 1167 0 1257
𝜏20 255 255 255 1 1 1 0 1187 0 1227 0 1357
𝜏21 272 272 272 1 1 1 0 1377 0 1407 0 1467

Table 13 – Case Study 4 - Comparison between Cases 1-4
Case Algorithm # of Time

∑︀
Latency of

Analysis (Minutes) Offsets Mode
Set 0f 6 Tasks

1 Real et al. (2001) - < 1 265 350
1 Single-Objective GA 60143 9.95 265 350

Set of 21 Tasks
2 Single-Objective GA 506001 112.42 10766 1327

2 and 3 Real et al. (2001) 53145 4.35 16502 2936
3 Weights-Based MOGA 506001 31.25 7133 1397
4 NSGA-II - 𝑁𝐷𝑆1 1002001 395.08 6704 1380
4 NSGA-II - 𝑁𝐷𝑆2 1002001 395.08 6224 1407
4 NSGA-II - 𝑁𝐷𝑆3 1002001 395.08 5456 1467

Comparison: Table 13 presents comparison between cases 1-4 with latency and offset
optimization using the algorithm of (REAL; CRESPO, 2001), GA, NSGA-II - 𝑆1 (lowest
latency), NSGA-II - 𝑆2 (intermediate) and, NSGA-II - 𝑆3 (lowest sum of offsets). Note:

3.3. Discussion 37

Sensitivity does not work with NSGA-II. Thus, the optimization was performed just with a
population of 2000 individuals for 500 generations.

3.3 Discussion

Case study 1 (Reduction of offsets - single-objective GA) validates the results of
the work by Real and Crespo (2001) and vice-versa, as both procedures resulted in the same
values for minimum offsets for the new-mode tasks. For example, in Table 5 we notice that the
offsets by Real and Crespo (2001) 𝑂1 were {0, 195, 0, 70, 0} and the ones from our approach
𝑂2 were also the same.

In Case 2 (Reduction of latency - single-objective GA), it is shown that the reduction
to minimum offsets does not necessarily lead to a minimum mode-change latency. This aspect
of the analysis was unclear before this work commenced, and it has now been quantitatively
corroborated. For example, the latency obtained with Real and Crespo (2001) was 2936, and
the one by the GA was 1327, a gain of 54.8% in reduction in the worst-case latency.

In Case 3 (Reduction of latency and offsets using weights-based multi-objective GA),
there is an increase in the latency from 1327 to 1397 (i.e. a 5.3% increase) in comparison with
Case 2. However, there was a 33.74% reduction in offsets (from 10766 to 7133). Comparing
this case with Real and Crespo (2001) algorithm, there is a 52.4% gain in latency and 34.8%
gain in offsets (i.e. sum of offsets) reduction.

In Case 4 (Reduction of latency and offsets using a multi-objective NSGA-II algo-
rithm), seven non-dominated solutions were found with NSGA-II (Fig. 8): The first solution
had the lowest mode-change latency, but a higher sum of offsets. The last solution had a
higher latency and a lower sum of offsets. Therefore, in this case, it is also possible to see
that the reduction of the sum of offsets caused an increase in latency.

As we moved from a weights-based multi-objective GA (case 3) to NSGA II (case 4),
there was a 1.22% decrease in the worst-case latency of the mode-change (i.e. in favor of the
NSGA II). However, the reduction in the sum of offsets was 6.01%.

Based on the results and previous analysis, we ranked the solutions according to their
ability to reduce worst-case mode change latency as follows:

1. Single-Objective GA (Case Study 2): This was the best solution as far as lowest worst-
case latency is concerned. However, the sum-of-offsets was larger in comparison with
the other approaches.

38 Chapter 3. Minimizing the Mode-Change Latency

2. Multi-Objective GA (NSGA-II) to reduce the worst-case latency and sum of offsets
(Case Study 4): NSGA-II showed to be the best choice where it is necessary to reduce
worst-case latency and sum of offsets simultaneously, as it offers a set of well-balanced
solutions (i.e. non-dominant solutions) to the system designer.

3. Weights-Based Multi-Objective GA to reduce the worst-case latency and sum of offsets
with weights (Case Study 3): This approach has showed the worst results in comparison
with NSGA-II and single-objective GA regarding the reduction of the worst-case latency
only.

Note that our solution using GA can also accommodate the requirement of promptness
as defined by Real and Crespo (2001). It would be required the definition of a fitness function
whereby the objective is the minimization of the sum of offsets of the higher-priority tasks
of interest (i.e. the ones that respond to alarms and have an mode-change deadline (MCD)
(section 3.1). It is also possible to allow the fitness function to process a task’s MCD, such
as defined by Real and Crespo (2001). In this regard, the work presented in this research can
be seen as a superset of the analysis of Real and Crespo (2001), i.e. it is the general case
that can be instantiated through adjustments to the fitness function for more specialized
requirements such as promptness.

As mentioned earlier in this work, our goal in this work is completely different from
the work of Real and Crespo (2001) in that it lies in reducing the worst-case latency of
a mode-change. The assumption is that the mode-change itself (and not the tasks across a
mode-change) has a deadline, and the mode-change should be completed before this deadline.
This is due to the fact that during a mode-change the system delivers its functionality and
performance only partially as either the new-mode task set is not yet complete or both.

A priori analysis of the algorithm of Real and Crespo (2001) shows that it is not easily
adaptable to accomplish the minimization of mode-change latencies due to the existence of
old-mode tasks and consequently the window 𝑥 in the analysis. Finding the latency is simple
only if we consider changed and wholly new-mode tasks, because they all start with respect
to the MCR, considering their offsets. The challenge is with the old-mode tasks and purely
periodic tasks with an offset Z. With old-mode tasks, we have their 𝑅 (worst-case response
time (WCRT)) that depends on 𝑥. This WCRT for an old-mode task is not necessarily the
time that goes farther into the transition, precisely because of 𝑥. For example, one can have
an old-mode task with WCRT 100, but with an 𝑥 = 90. It could be the case that for 𝑥 = 0
one has a slightly lower WCRT, but the task would effectively complete later with respect
to the MCR than it does with an 𝑥 = 90. This issue also occurs with purely periodic tasks
with an offset 𝑍 > 0.

3.3. Discussion 39

Another point to emphasize is the software tool developed to perform this research, as
it fully implements the presented approach. The tool has a high-level interface where the user
can select the goals to be achieved when configuring the offsets. From an internal software
design perspective, the program is also modular so that it can be easily extended to include
more optimization objectives. This software tool is presented in details in Appendix A.

40

41

4 Configuring Mode Changes

In chapter 3, we have shown the feasibility of mode-change minimization using GAs.
In this chapter we show that the approach is also flexible in that is can accommodate a wider
variety of mode-change scenarios.

In order to do so, we classify the mode changes in five types and extend previous
case studies to establish that it is possible to 1) generate these types of changes by adjusting
tasks’ parameters, and 2) minimize these mode changes using the proposed approach.

4.1 Types of Mode Change

Real and Crespo (2001) proposed two types of mode change: asynchronous and syn-
chronous. In this chapter we adopt the asynchronous mode-change model, where tasks from
the new-mode begin execution in parallel with tasks from the old-mode, thus leading to
shorter mode-change delays. Old-mode completed tasks are discarded from the system, leav-
ing resources for tasks arriving from the new-mode. Therefore, the number of modes of
operation is only limited by the available memory in the system. This approach allows sys-
tems to be scalable, with a large number of modes and tasks. It also enables faster mode
changes due to the (pseudo) parallelism of old and new-mode tasks, and the early introduc-
tion of new-mode tasks right at the beginning of the mode change. This approach requires
schedulability analysis, which is provided by existing work (REAL; CRESPO, 2001; PEDRO;
BURNS, 1998).

To allow the specification and the minimization of a wider flexibility of mode-change
configuration, we classify mode changes in regards to

“the relative rate of completion of old-mode tasks in relation to the completion of new-
mode tasks released within an interval 𝛿 from the start of the mode change”

The interval 𝛿 is called the significant interval and it is defined shortly within the
next few paragraphs. Certain applications may impose an ordering of tasks during the start
of the transition, e.g. old-mode tasks should be removed earlier (usually immediately at the
start of a change) and new-mode tasks introduce later in order to fulfill specific functional
requirements. In view of that, the following types of mode change can be identified:

42 Chapter 4. Configuring Mode Changes

1. All-old-mode tasks first (AOF) (Also Synchronous) (Fig. 9): As the name implies, in
this type of mode change the new-mode tasks are only introduced once all old-mode
tasks have completed their execution. There is no overlapping or interference between
the two tasks sets. To achieve this configuration, it is necessary to assign larger offsets
for all new-mode tasks in regards to new-mode tasks’ offsets. It is used when new-mode
tasks do not carry emergency functions and the old-mode tasks need to complete soon to
keep the system in a consistent state. It may also be used when the system’s utilization
is large in the old-mode and there is the need to release resources back to the system as
soon as possible within the transition window. This type of transition is the one that
has been traditionally used in many real-time systems. Since the two modes do not
overlap, there is no interference between old and new-mode tasks and therefore no need
for schedulability analysis. This category does not explore the potential for parallelism
between tasks from distinct modes and therefore may lead to longer transition windows.

Uo >> 0

Y >> 0

Time

Mode Change

old-mode tasks new-mode tasks

C
P

U
 U

ti
liz

a
ti
o
n
%

Figure 9 – All Old First (AOF)

2. All-new-mode tasks first (ANF) (Fig. 10): In this configuration, all new-mode tasks
precede the old-mode tasks in the transition. The old-mode tasks are preempted by
the new-mode ones at the start of a mode change. The first old-mode task executes
at the end of a busy period of the new-mode task set. Like the AOF approach, there
is no interference between the old and the new task sets. This arrangement of tasks
requires that new-mode tasks have small offsets and their priority should be higher than
the old-mode tasks. The new-mode tasks are introduced at the beginning of the mode
change, either all at once or in a staggered (step-wise) fashion. From the application
perspective, this type of transition is required when the new-mode is an emergency
mode, i.e. the new tasks are added to the system to reply (or service) an alarm or
critical condition, whereas the old-mode does not represent a relatively high priority.

4.1. Types of Mode Change 43

Note that it is not always possible to configure such type of change: it depends on the
utilization and the deadlines of the old-mode tasks. If the utilization of the old-mode
is relatively large, adding the new tasks immediately after the MCR may lead to a
processor over utilization followed by missed deadlines.

Y = 0

Time

Mode Change

PN > PO

old-mode tasks new-mode tasks

C
P

U
 U

ti
liz

a
ti
o
n
%

Figure 10 – All New First (ANF)

3. Mostly-old-mode tasks first (MOF) (Fig. 11): Unlike the previous types of changes where
the old and new task sets do not overlap in time. In this case most of the old-mode tasks
are introduced first and suffer from interference from new-mode tasks that are gradually
being introduced into the system. New-mode tasks have larger offsets allowing some
old-mode ones to complete first. This model of mode change is recommended when
the old-mode tasks need to be completed without restricting the introduction of some
new-mode tasks. Due to cross interference, this type of change requires schedulability
analysis.

Time

Mode Change

old-mode tasks new-mode tasks

C
P

U
 U

ti
liz

a
ti
o
n
%

Figure 11 – Mostly Old First (MOF)

44 Chapter 4. Configuring Mode Changes

4. Mostly-new-mode tasks first (MNF) (Fig. 12): This configuration is achieved by as-
signing relatively small offsets to the most new-mode tasks. Therefore, the start of a
transition is characterized mostly by the insertion of new-mode tasks, and to a lesser
extent by the removal of old-mode tasks. It occurs when there is the need to execute
new-mode soon (e.g. emergency) and is necessary to allow some old-mode tasks to com-
plete, avoiding missing the deadlines. It is not always possible to perform such type of
mode change, since the old-mode tasks may miss their deadlines. There must be suf-
ficient processor spare capacity in the old-mode to allow it. It requires that old-mode
tasks have larger deadlines and the tasks set has fewer new-mode tasks.

Time

Mode Change

old-mode tasks new-mode tasks

C
P

U
 U

ti
liz

a
ti
o
n
%

Figure 12 – Mostly New First (MNF)

5. Balanced mode change (BMC) (Fig. 13): In this type of transition, old-mode tasks are
removed from the system nearly at the same rate that the new-mode tasks are intro-
duced into the system. Task’s offsets and priorities have to be properly assigned to
achieve the balanced mode change: For each old-mode task that completes, there must
be a new-mode task with same (or close) priority. This type of transition is applied
when the old-mode has to be executed in a pseudo-parallel fashion with the new-mode.
If resource sharing is required, this must be the only way to allow synchronization of
resources.

4.1. Types of Mode Change 45

Time

Mode Change

old-mode tasks new-mode tasks

C
P

U
 U

ti
liz

a
ti
o
n
%

Figure 13 – Balanced Mode Change (BMC)

In essence, the underlying assumption in this model is that the applicant would choose
to configure and execute:

∙ the old-mode task set first, when the requirement of releasing resources (memory, CPU
utilization, etc) and keeping the consistency of the system (i.e. by closing files and
connections) is more important than responding to alarm conditions (which is carried
out by the new task set);

∙ new-mode task set first, when the requirement of responding to urgent alarm conditions
by releasing and running new-mode tasks first is more critical than releasing resources
back to the system and keeping the system in a consistent state;

∙ a balanced mix of both task sets, when both requirements are equally important; or

∙ an unbalanced mix of both task sets, when one requirement is more important than the
other by still both should be considered.

Note that:

∙ A tolerance factor 𝜌 is applied to the definition of a Balanced Mode Change. When 𝜌

= 0, a change is balanced if and only if the rate of old to new completed is 50/50. For
example, if 𝜌 = 5, then a 45/65 rate is a balanced change, but a 0.4 to 0.6 is no longer
balanced.

∙ Aborted tasks do not contribute to the definition.

46 Chapter 4. Configuring Mode Changes

∙ Task’s priorities may be either increased or decreased. Nevertheless, the DMS priority
assignment policy is maintained throughout this work.

The significant interval 𝛿 is defined as follows:

𝛿 = min(𝐿 × 𝑘, max(𝑅(𝑂𝑖) − 𝑥𝑖), max(𝑅(𝑁𝑖) + 𝑂𝑖)) (4.1)

where 𝐿 is worst-case latency of mode change; 𝑘 is a constant value dependent on the appli-
cation (which is arbitrarily set to 30% in this work), and it defines how far from the MCR
we wish to extend the significant interval; 𝑅𝑂 is the set of worst-case mode change response
time of all old-mode tasks; 𝑥𝑖 is the set of the values of variable “𝑥” for each old-mode task
𝜏𝑖; 𝑅𝑁 is the set of worst-case mode change response time of all new-mode tasks and 𝑂𝑖 is
the set of offsets of all new-mode tasks.

The type of mode change can be found (or approximated) by the rate of change
parameter (𝛼), which is given following relation:

𝛼 =
#𝜏𝑖𝑛𝑠(𝑁)

#𝜏𝑟𝑚𝑣(𝑂) + #𝜏𝑖𝑛𝑠(𝑁)

(4.2)

where #𝜏𝑖𝑛𝑠(𝑁) is the number of new-mode tasks inserted within the significant interval 𝛿

from the MCR (i.e 𝑂 ≤ 𝛿), and #𝜏𝑟𝑚𝑣(𝑂) is the number of old-mode tasks removed within
the same interval (i.e (𝑅𝑂 − 𝑥) ≤ 𝛿).

Note: When these exists a substantial difference between the number of new-mode
and old-mode tasks, we can use the following equation:

𝛼 =
(#𝜏𝑖𝑛𝑠(𝑁)/#𝜏(𝑁))

(#𝜏𝑟𝑚𝑣(𝑂)/#𝜏(𝑂)) + (#𝜏𝑖𝑛𝑠(𝑁)/#𝜏(𝑁))
(4.3)

where #𝜏(𝑁) is the number of new-mode tasks, #𝜏(𝑂) is the number of old-mode tasks. This
equation considers the relative percentage of tasks inserted and removed and not the absolute
number of tasks. In absolute terms, a mode-change may be deemed of being one type, whereas
in percentage terms it may be another type. The issue on whether one should adopt either
the percentage or absolute values for the definition is application dependent.

4.1. Types of Mode Change 47

The relationship between added new-mode tasks to old-mode tasks removed during
the significant interval 𝛿 allows the identification the behavior of a mode change. The mode-
change type, as defined according to the value of 𝛼, is described in Table 14.

Table 14 – Mode-Change Types
Acronym Type Rate of Change General Application

BMC Balanced 0.4 ≤ 𝛼 ≤ 0.6
used when a mix of old and new-mode
tasks need to share the processor during
the start of a transition.

AOF All-old-first 𝛼 = 0
used to complete old-mode task set
𝐴𝑆𝐴𝑃 to release resources back to the
system.

MOF Mostly-old-first 𝛼 < 0.4
used when the old-mode tasks need to
be completed quickly without restricting
the release of some new-mode tasks.

ANF All-new-first 𝛼 = 1

used when the release of all the new-
mode is a priority (e.g. due to an emer-
gency/alarm condition and the comple-
tion of the old-mode tasks can be de-
layed).

MNF Mostly-new-first 𝛼 > 0.6

It is used when we need to execute the
new-mode ASAP (e.g. emergency) and it
is necessary to release some resources by
completing a few old-mode tasks.

C
P

U
 U

ti
liz

a
ti
o
n
%

Time

Mode-Change Latency (L)

old-mode tasks new-mode tasks

δ = min(L×k,max(RO-x),max(RN+O))

max(RN+O)
max(RO-x)

L×k (k<1)

Figure 14 – 𝛿 = 𝐿 × 𝑘 (BMC)

48 Chapter 4. Configuring Mode Changes

C
P

U
 U

ti
liz

a
ti
o
n
%

Time

Mode-Change Latency (L)

old-mode tasks new-mode tasks

δ = min(L×k,max(RO-x),max(RN+O))

max(RN+O)

max(RO-x)
L×k (k<1)

Figure 15 – 𝛿 = max(𝑅𝑂 − 𝑥)) (AOF)

C
P

U
 U

ti
liz

a
ti
o
n
%

Time

Mode-Change Latency (L)

old-mode tasks new-mode tasks

δ = min(L×k,max(RO-x),max(RN+O))

max(RN+O)

max(RO-x)

L×k (k<1)

Figure 16 – 𝛿 = max(𝑅𝑁 + 𝑂) (ANF)

Therefore, in one hand the rate of change 𝛼 is maximum (i.e. 1) when the new-mode
task set is all introduced first at the start of a transition. On the other hand, it is zero when
all the old-mode task set is first completed before the introduction of any new-mode task. It
is a balanced mode change when 𝛼 tends to values around (or close to) 50%. Otherwise, for

4.2. Model and Approach to Minimization 49

the cases not covered above, it falls to either a mostly-old-first or mostly-new-first depending
upon which task set has more tasks completed within the significant interval.

Fig. 14 shows an example where 𝛿 = 𝐿 × 𝑘 - the mode-change type is a 𝐵𝑀𝐶 since
five old-mode tasks are completed and five new-mode tasks are inserted. It could have been
either a MNF or a MOF in case one task set outnumbered the other (in terms of releases
and completions) within the 𝛿 interval. Fig. 15 illustrates the case where 𝛿 = max(𝑅𝑂) and
the mode-change type is an AOF. In case we had a few releases new-mode tasks released
within 𝛿, another possible type of mode change would be 𝑀𝑂𝐹 . At last, Fig. 16 provides an
example where 𝛿 = max(𝑅𝑁 + 𝑂) (i.e. an ANF mode change). Similarly, another possible
type would have been a 𝑀𝑁𝐹 in case we had a few old-mode tasks completed within 𝛿. Note
that 𝛼 and 𝑘 can be adjusted according to the application.

4.2 Model and Approach to Minimization
The approach to minimization used in this section employs the same features, i.e.

chromosome structure, genetic operators, initial population and fitness function described
in the section 3.1, except the constraints. The constraints adopted in this chapter are the
following:

1. System feasibility (𝐶𝑜1), i.e. all tasks meet their deadlines, where we apply the schedu-
lability analysis (i.e. 𝑅 ≤ 𝐷) tests to discard unfeasible solutions. This analysis is based
on the worst-case response time windows as shown in equations (2.15).

2. Offsets within a range (𝐶𝑜2). This constraint is used to select solutions where the offsets
will be within a given range of values for some tasks.

3. WCRT within a range (𝐶𝑜3). This constraint is used to select solutions where the
WCRT will be within a range of values for some tasks.

4. Latency within an acceptable range (𝐶𝑜4). This constraint is used to select solutions
where the worst-case latency will be within an acceptable range of values.

4.3 Case Studies
∙ Cases 1 and 2 and 6 are similar to the ones from the previous chapter regarding the

goals. The task set is new. The goal was to identify the type of mode change that is
generated for each case.

50 Chapter 4. Configuring Mode Changes

∙ The remaining cases are new. They introduce new conditions and scenarios or possibil-
ities of expressing a mode change. The goal is to show the versatility of the approach
and that it is possible to configure a mode change.

∙ Cases 1-6 are spontaneous. Cases 7-12 were cases where a particular type of mode
change was forced.

Considering that 𝑃𝑁 is the set of priorities of all the new-mode tasks, 𝑃𝑂 the set of
priorities of the old-mode tasks, 𝑂 the set of offsets of all the new-mode tasks (𝑌 or 𝑍) and
𝑅(𝑀𝐶)𝑂

the set of worst-case response time during mode change of all the old-mode tasks,
this section presents twelve case studies described as follows:

1. Minimizing Offsets and Latency (𝑀𝑂𝐹)

2. Minimizing Latency and Offsets (𝐴𝑂𝐹)

3. Minimizing Latency Imposing Offsets within a Range (𝑀𝑂𝐹)

4. Minimizing Latency with WCRT within a Range (𝑀𝑂𝐹)

5. Minimizing Offsets with Latency within an Acceptable Range (𝑀𝑂𝐹)

6. Minimization Using the Algorithm of Real and Crespo (2001) (𝐵𝑀𝐶)

7. Minimizing Latency with 𝑃𝑁 > 𝑃𝑂 (𝑀𝑁𝐹)

8. Minimizing Latency with 𝑃𝑂 > 𝑃𝑁 (𝐴𝑂𝐹)

9. Minimizing Offsets with 𝑃𝑁 > 𝑃𝑂 (𝐴𝑂𝐹)

10. Minimizing Offsets with 𝑃𝑂 > 𝑃𝑁 (𝐴𝑂𝐹)

11. Minimizing Latency with 𝑃𝑂 > 𝑃𝑁 and 𝑂 > max(𝑅𝑂 − 𝑥) (𝐴𝑂𝐹)

12. Minimizing Latency with 𝑃𝑁 > 𝑃𝑂 (𝐴𝑁𝐹)

fictitious tasks were used to perform the minimization in all case studies that will be presented
below.

In case studies 1 to 11 the minimization was applied to the same task set, (Table
15), composed of modes 𝑀1 (old-mode) and 𝑀2 (new-mode). Each mode of operation is
composed of 10 tasks (𝜏1 . . . 𝜏10). The CPU utilization rate in both modes is 78.22%. Case
study 12 was performed with a modified task set.

4.3. Case Studies 51

Table 15 – Task Set Used in Cases 1 through 11
Mode M1 Mode M2

Tasks P C T T R Test Tasks P C T T R Test
𝜏1(𝑂) 6 10 450 450 170 OK 𝜏1(𝑂) not active in this mode
𝜏2(𝑊) not active in this mode 𝜏2(𝑊) 1 25 100 100 25 OK
𝜏3(𝑂) 4 30 300 300 140 OK 𝜏3(𝐶) 2 20 150 150 45 OK
𝜏4(𝑂) 2 20 200 200 45 OK 𝜏4(𝐶) 3 30 200 200 75 OK
𝜏5(𝑂) 7 25 500 500 195 OK 𝜏5(𝐶) 4 20 300 300 95 OK
𝜏6(𝑂) 5 20 400 400 160 OK 𝜏6(𝑈) 5 20 400 400 140 OK
𝜏7(𝑂) 1 25 100 100 25 OK 𝜏7(𝐶) 6 25 450 450 185 OK
𝜏8(𝑂) 3 40 250 250 85 OK 𝜏8(𝐶) 7 30 500 500 270 OK
𝜏9(𝑊) not active in this mode 𝜏9(𝑊) 8 10 600 600 280 OK
𝜏10(𝑂) 8 30 600 600 365 OK 𝜏10(𝑂) not active in this mode

The case studies were performed on a hardware/software platform consisting of 1)
Processor: Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz; 2) Memory (RAM): 6.00 GB;
3) Operating System: Windows 7 Home Premium 64 Bits; 4) RDBMS: Oracle 11g Standard
Edition.

The case studies are divided to two groups: Cases 1 through 6 are cases where we
minimize the latency and/or offsets without imposing a particular type of mode change. The
goal is to analyze the resulting type of mode change. Cases 7 through 12 are cases where a
particular type of mode change is enforced (or configured) by assigning proper values to task’s
parameters (such as offsets or priority). The particular type of mode change is also minimized
using the proposed approach. By default it is used the “latency definition I”, excluding cases
7 and 8 that use both latency definitions.

The case studies are introduced and discussed in details as follows.

4.3.1 Study Case 1 - Minimizing Offsets and Latency (𝑀𝑂𝐹)

Definition: In this case study the minimization was performed to find the smallest
sum of offsets for new-mode tasks with the smallest worst-case latency possible The goal of
this minimization process is to identify what is the type of mode change when there is low
sum of offsets.

GA Configuration: To determine the best parameters to be used in the minimization
process using GA, ten distinct scenarios 𝑆1, 𝑆2 . . . 𝑆10 were created (Table 16). Each scenario
was subjected to ten repetitions, to validate the accuracy of the data obtained. Moreover,
these scenarios will be used to perform the minimization in the case studies 2, 3, 4, and 5.

52 Chapter 4. Configuring Mode Changes

Table 16 – Case Study 1 - Scenarios for GA Minimization

Parameters Scenarios
𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10

Population 100 100 200 200 500 500 1000 1000 2000 2000
Generations 25 50 50 100 125 250 250 500 500 1000

Modeling: The minimization of offsets and latency was treated as a weights-based
multi-objective GA minimization problem with just system feasibility as the constraint.
To achieve these objectives the fitness function was instantiated with the weights 𝑊𝑒 =
{0.0000001,1}, i.e., 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀

𝑂𝑖 + (𝐿 × 0.0000001) ∀ 𝑖 ∈ 𝜏 . Thus, the main objective is
offset minimization and the second one is latency minimization. The constraints used were
𝐶𝑜 = {1, 0, 0, 0}, i.e, just system feasibility.

Results: Table 17 shows the GAs sensitivity analysis of each scenario submitted to
the minimization process using GA. In this table, the columns represent successively: 1) the
scenario used for minimization, 2) the average number of tests processed during minimiza-
tion, 3) the average time spent on each repetition of the scenario, 4) the lowest, 5) highest
and 6) average sum of offsets, 7) the variation of the average in relation to lowest value of
sum of offsets, 8) the lowest latency for lowest and 9) high worst-case sum of offsets.

Table 17 – Case Study 1 - GAs Sensitivity Analysis

Scen.
of Time Sum of Offsets Latency

Analysis (Min) Low High AVG Var. Low High
𝑆1 2801 0.07 795 1585 1057 170.9% 715 550
𝑆2 5301 0.16 504 1024 684 75.4% 600 746
𝑆3 10601 0.31 514 722 614 57.5% 595 585
𝑆4 20601 0.63 400 688 517 32.6% 600 553
𝑆5 64001 1.96 391 480 427 9.4% 595 595
𝑆6 126501 4.01 392 504 427 9.6% 595 500
𝑆7 253001 8.39 390 456 408 4.7% 595 595
𝑆8 503001 17.28 392 519 421 8.1% 595 520
𝑆9 1006001 33.79 390 441 400 2.6% 595 595
𝑆10 2006001 53.28 390 481 404 3.7% 595 470

Sensitivity analysis: From 𝑆9 onwards we notice that the algorithm presents more
stable results, i.e., variance around 2.6 %, and 𝑆10 with a variance of 3.7%. A population
around 2000 individuals is the recommended value for this case.

4.3. Case Studies 53

After minimization, the values of the best offsets obtained are shown in Table 18. The
left table describes old-mode tasks across the mode change. Likewise, the right table shows
new-mode tasks during the transition. The left table shows the deadlines 𝐷, the worst-case
response time obtained with the genetic algorithm, variable 𝑥, and the results of the schedu-
lability test. The right table shows the same attributes for all new-mode tasks. It includes
the offsets for each task. This same table format is adopted in similar tables throughout the
remainder of this chapter, and therefore (to avoid repetition) this description is omitted in
the following cases.

Table 18 – Case Study 1 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Tasks T=D R x Test Tasks T=D R O Test
𝜏1 450 265 1 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 295 OK
𝜏3 300 190 101 OK 𝜏3 150 65 0 OK
𝜏4 200 45 1 OK 𝜏4 200 135 0 OK
𝜏5 500 380 1 OK 𝜏5 300 235 0 OK
𝜏6 400 255 1 OK 𝜏6 400 255 0 OK
𝜏7 100 25 0 OK 𝜏7 450 290 0 OK
𝜏8 250 105 1 OK 𝜏8 500 460 95 OK
𝜏9 not active in this mode 𝜏9 600 595 0 OK
𝜏10 600 585 1 OK 𝜏10 not active in this mode

Time

C
P

U
 U

ti
liz

a
ti
o
n
 %

Mode Change

old-mode tasks new-mode tasks

Figure 17 – Case Study 1 - Utilization Chart (MOF)

The graph shown in Fig. 17 shows the processor utilization during the mode-change
period. The continuous line represents the old-mode and the dashed line the new-mode (this
same scheme is adopted in similar graphs throughout the remainder of this chapter). Clearly,
as the old tasks are being completed, the utilization of the old-mode task set is decreased,

54 Chapter 4. Configuring Mode Changes

Likewise, as the new tasks are being introduced the utilization of the new-mode is increased.
The processor utilization rate is given by Burns and Wellings (2009):

𝑈𝑖 = 𝐶𝑖/𝑇𝑖 for periodic tasks, or

𝑈𝑖 = 𝐶𝑖/𝑀𝑖𝑛𝑖 for sporadic tasks,

where, 𝐶𝑖 is the maximum computational time, 𝑇𝑖 is the period and 𝑀𝑖𝑛𝑖 is the minimal
interval between releases of new instances of the task 𝑖. The processor utilization rate 𝑈 for
a tasks set {𝜏1,𝜏2,𝜏3 . . . 𝜏𝑛} is given by:

𝑈 =
𝑛∑︁
𝑖

𝑈𝑖 (4.4)

Discussion: Case study 1 reinforces the fact that smaller offsets do not necessarily lead to
smaller latencies. This is in line with case 1 from chapter 3. In our example, if the sum of offsets
is 481, the latency is 470. However, if offsets are down to 390, there is an increase in the worst-
case latency to 595. We can also observe in Table 18 the following values: max(𝑅𝑁 +𝑂) = 595
(𝜏9), and max(𝑅𝑂 − 𝑥) = 586 (𝜏10). The latency value was 𝐿 = 595 (from equation (2.18))
and 𝐿 × 30% = 178.5, thus, the significant interval was 𝛿 = 𝑚𝑖𝑛(178.5, 586, 595) = 178.5.
The number of new-mode tasks completed during the significant interval was 2 (𝜏3,𝜏4) and
the number of old-mode tasks removed was 4 (𝜏3,𝜏4, 𝜏7,𝜏8), resulting in 𝛼 = 2

4+7 = 0.33.
This value indicates a mostly-old-first (𝑀𝑂𝐹) type of mode change. Fig. 17 shows a visual
representation that assists in the interpretation of the type of mode change.

This type of mode change has occurred due to the assignment of offsets (by the
minimization algorithm) to tasks 𝜏1 and 𝜏8 that have the highest priority in new-mode ,
leaving most of the old-mode tasks preempting the new-mode tasks at the start of the mode
change. However, we cannot claim that the minimization used in this case will always provide
this type of mode change since it depends on the specific real time parameters of the tasks
set.

4.3.2 Case Study 2 - Minimizing Latency and Offsets (𝐴𝑂𝐹)

Definition: In this case study the minimization was performed to find the smallest
worst-case latency with the smallest sum of offsets possible for new-mode tasks. The goal of
this case study is to identify the type of mode change using the mode-change classification
introduced, once the minimization process is completed.

Modeling: The minimization of latency and offsets was treated as a weights-based
multi-objective GA minimization problem. We applied weights for each objective with just

4.3. Case Studies 55

system feasibility as a constraint (thus, the constraints vector used was set to 𝐶𝑜 = {1, 0, 0, 0}).
To achieve these objectives, the fitness function was instantiated with the weights 𝑊𝑒 =
{1,0.0000001}, i.e., 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀(𝑂𝑖 × 0.0000001) + 𝐿 ∀ 𝑖 ∈ 𝜏 .

Results: Table 19 shows the summary of the minimization of the set of ten tasks using
the fitness function set to minimize worst-case latency and offsets. In this table, the columns
represent successively: 1) the scenario used for minimization, 2) the average number of tests
processed during the minimization process, 3) the average time spent on each repetition of
the scenario, 4) the lowest, 5) highest and the 6) average measured latency,7) the variation
of the average in relation to the lowest value, the sum of offsets for 8) lowest and 9) highest
worst-case latency.

Table 19 – Case Study 2 - GAs Sensitivity Analysis

Scen.
of Time Latency Sum of Offsets

Analysis (Min) Low High AVG Var. Low High
𝑆1 2801 0.03 540 1053 713 98.1% 1424 4662
𝑆2 5301 0.07 385 799 522 44.9% 1187 3495
𝑆3 10601 0.14 360 410 378 5.0% 971 1100
𝑆4 20601 0.29 360 385 365 1.3% 753 882
𝑆5 64001 1.31 360 385 365 1.4% 725 732
𝑆6 126501 3.26 360 385 365 1.4% 740 805
𝑆7 253001 6.81 360 360 360 0.0% 692 944
𝑆8 503001 13.63 360 385 363 0.7% 694 773
𝑆9 1006001 25.13 360 360 360 0.0% 691 736
𝑆10 2006001 56.69 360 360 360 0.0% 690 740

Sensitivity analysis: From 𝑆9 onwards we notice that the algorithm presents more
stable results, i.e., variance around 0.0 %. A population around 2000 individuals is the rec-
ommended value for this case. The same values of the case study 1, showing that this is a
general case or trend.

After minimization, the values of the best offsets obtained are shown in Table 20.

Discussion: In case study 2 the objectives were inverted in comparison to case 1, i.e.
minimization of the worst-case latency is the major objective followed by the minimization of
the sum of offsets. The results obtained demonstrate that whereas the latency was reduced,
the offsets were increased instead (compared to case 1). The latency was reduced from to 595
to 360 and the sum of offsets increased from 390 to 690. However, larger offsets may lead to
a smaller latencies due to the reduction of the amount of task interference during the mode
change. This approximated this type of mode change to a synchronous mode-change since

56 Chapter 4. Configuring Mode Changes

Table 20 – Case Study 2 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Tasks T=D R x Test Tasks T=D R O Test
𝜏1 450 195 1 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 260 OK
𝜏3 300 140 101 OK 𝜏3 150 45 210 OK
𝜏4 200 45 1 OK 𝜏4 200 75 160 OK
𝜏5 500 290 1 OK 𝜏5 300 75 60 OK
𝜏6 400 160 101 OK 𝜏6 400 155 0 OK
𝜏7 100 25 0 OK 𝜏7 450 240 0 OK
𝜏8 250 85 1 OK 𝜏8 500 320 0 OK
𝜏9 not active in this mode 𝜏9 600 360 0 OK
𝜏10 600 460 301 OK 𝜏10 not active in this mode

Time

Mode Change

old-mode tasks new-mode tasks

C
P

U
 U

ti
liz

a
ti
o
n
 %

Figure 18 – Case Study 2 - Utilization Chart (AOF)

the new-mode tasks were shifted ahead with larger offsets. We can also observe in Table 20
the following values: max(𝑅𝑁 + 𝑂) = 360 (𝜏9) and max(𝑅𝑂 − 𝑥) = 289 (𝜏5). The latency
value was 𝐿 = 360 (from equation (2.18)) and 𝐿 × 30% = 180. Therefore, the significant
interval was 𝛿 = 𝑚𝑖𝑛(180, 289, 360) = 180. The number of new-mode tasks completed during
the significant interval was 0 and the number of old-mode tasks removed was 5, resulting in
𝛼 = 0. This value indicates an all-old-first (𝐴𝑂𝐹) type of mode change (Fig. 18). This type
of mode change occurred because all new-mode tasks were introduced with low priority at
the beginning of the mode change (𝜏6,𝜏7,𝜏8,𝜏9), and have completed their execution after the
significant interval.

4.3. Case Studies 57

4.3.3 Case Study 3 - Minimizing Latency Imposing Offsets within a Range
(𝑀𝑂𝐹)

Definition: In this case study the minimization was performed to find the smallest
worst-case latency with the smallest possible sum of offsets possible for new-mode tasks while
limiting the offsets within a range for some tasks.

Modeling: The minimization of latency and offsets was treated as a weights-based
multi-objective minimization problem with two constraints: system feasibility and offsets
within a range for some tasks. To achieve these objectives the fitness function was instanti-
ated with the weights 𝑊𝑒 = {1,0.0000001}, i.e., 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀(𝑂𝑖 × 0.0000001) + 𝐿 ∀ 𝑖 ∈ 𝜏 .
The constraints were set to 𝐶𝑜 = {1, 1, 0, 0}, i.e., system feasibility and offsets within a range
for some tasks. Table 21 shows the range of offsets used to perform the minimization in this
case study.

Table 21 – Case Study 3 - Range for Offsets

Tasks Offset Offset
Minimum Maximum

𝜏2 366 1000
𝜏3 400 600
𝜏4 100 300

Results: Table 22 shows the summary of the minimization of the set of ten tasks using
the fitness function set to minimize worst-case latency and offsets. This table is formatted
with the same columns as table 19.

Table 22 – Case Study 3 - GAs Sensitivity Analysis

Scen.
of Time Valid Latency Sum of Offsets

Analysis (Min) Iter. Low High AVG Var. Low High
𝑆1 2801 0.04 30% 593 948 733 64.6% 2438 3482
𝑆2 5301 0.07 40% 538 783 623 39.9% 1805 3216
𝑆3 10601 0.13 100% 445 641 559 25.7% 1377 2409
𝑆4 20601 0.27 90% 445 557 521 17.0% 1069 1168
𝑆5 64001 0.84 90% 445 557 492 10.6% 868 1136
𝑆6 126501 1.73 90% 445 557 480 7.9% 869 1152
𝑆7 253001 3.50 100% 445 557 488 9.6% 868 992
𝑆8 503001 19.08 100% 445 557 506 13.8% 867 982
𝑆9 1006001 14.61 100% 445 445 445 0.0% 866 880
𝑆10 2006001 28.50 100% 445 557 456 2.5% 867 980

58 Chapter 4. Configuring Mode Changes

Sensitivity analysis: In scenario 1 only 30 % of repetitions were valid. Only after
scenario five there were 90% of valid - and only in scenario seven they are all greater than
80% and mostly 100%. This case generates many unfeasible solutions because the constraints
discard the chromosomes when the offsets are outside of the established range. A better
approach is to modify the GA so that it only assign values belonging to the established
range.

After minimization, the values of the best offsets obtained are shown in Table 23.

Table 23 – Case Study 3 - Offsets Obtained

Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2
Tasks T=D R x Test Tasks T=D R O Test

𝜏1 450 195 1 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 367 OK
𝜏3 300 145 1 OK 𝜏3 150 45 400 OK
𝜏4 200 45 1 OK 𝜏4 200 15 100 OK
𝜏5 500 270 101 OK 𝜏5 300 165 0 OK
𝜏6 400 185 1 OK 𝜏6 400 185 0 OK
𝜏7 100 25 0 OK 𝜏7 450 220 0 OK
𝜏8 250 85 1 OK 𝜏8 500 275 0 OK
𝜏9 not active in this mode 𝜏9 600 365 0 OK
𝜏10 600 490 301 OK 𝜏10 not active in this mode

old-mode tasks new-mode tasks
Time

Mode Change

Figure 19 – Case Study 3 - Utilization Chart (MOF)

Discussion: Case study shows that is possible perform the minimization restricting
the offsets within a range for some tasks. We can also observe in Table 23 the following values:
max(𝑅𝑁 + 𝑂) = 445 (𝜏3) and max(𝑅𝑂 − 𝑥) = 289 (𝜏1). The latency value was 𝐿 = 445 (from

4.3. Case Studies 59

equation (2.18)) and 𝐿×30% = 133.5. The significant interval was 𝛿 = 𝑚𝑖𝑛(133.5, 194, 445) =
133.5. The number of new-mode tasks completed during the significant interval was 1 and
the number of old-mode tasks removed was 3, resulting in 𝛼 = 0.25. This value indicates a
mostly-old-first (𝑀𝑂𝐹) type of mode change. Fig. 19 shows the processor utilization across
the mode change, which assists in the interpretation of this type of mode change.

4.3.4 Case Study 4 - Minimizing Latency with WCRT within a Range (𝑀𝑂𝐹)

Definition: In this case study the minimization was performed to find the smallest
worst-case latency with the smallest sum of offsets possible for new-mode tasks, this time
limiting the WCRT to a range of values for a subset of old and new-mode tasks.

Configuration of the GA: Twelve distinct scenarios 𝑆1, 𝑆2 . . . 𝑆12 were created (Ta-
ble 24), which allowed us to determine the best parameters to be used in the minimization
process using GA. The mutation and crossover probabilities were fixed at 10% and 70% re-
spectively, for all scenarios. Each scenario was subject to ten repetitions in order to validate
the accuracy of the data obtained.

Table 24 – Case Study 4 - Scenarios for GA Minimization

Parameters Scenarios
𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

Population 100 100 200 200 500 500 1000 1000 2000 2000 3000 3000
Generations 25 50 50 100 125 250 250 500 500 1000 750 1500

Modeling: The minimization of latency and offsets was treated as a weights-based
multi-objective GA minimization problem with two constraints: system feasibility and WCRT
within a range for some tasks. To achieve these objectives, the fitness function was instanti-
ated with the weights 𝑊𝑒 = {1,0.0000001}, i.e. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀(𝑂𝑖 × 0.0000001) + 𝐿 ∀ 𝑖 ∈ 𝜏 .
The constraints used were 𝐶𝑜 = {1, 0, 1, 0}, i.e. system feasibility and WCRT within a range
for some tasks. Table 25 shows the range of WCRT used to perform the minimization in this
study case.

Results: Table 26 shows the summary of the minimization of the set of ten tasks for
each optimization scenario. This table is formatted with the same columns as table 19. The
results evaluated after the minimization are presented in Table 27.

60 Chapter 4. Configuring Mode Changes

Table 25 – Case Study 4 - Range for WCRT

Tasks WCRT (old-mode) WCRT (new-mode)
Minimum Maximum Minimum Maximum

𝜏1 250 300 not defined
𝜏5 300 400 200 300
𝜏8 not defined 300 400

Table 26 – Case Study 4 - GAs Sensitivity Analysis

Scen.
of Time Valid Latency Sum of Offsets

Analysis (Min) Iter. Low High AVG Var. Low High
𝑆1 2801 0.03 0% - - - - - -
𝑆2 5301 0.06 0% - - - - - -
𝑆3 10601 0.13 20% 513 520 517 14.8% 742 1481
𝑆4 20601 0.27 20% 473 537 505 12.2% 738 563
𝑆5 64001 0.87 20% 510 520 515 14.4% 962 759
𝑆6 126501 1.76 0% - - - - - -
𝑆7 253001 3.50 30% 540 653 593 31.9% 1127 786
𝑆8 503001 7.48 60% 480 571 522 16.0% 520 780
𝑆9 1006001 15.11 100% 450 557 508 13.0% 482 769
𝑆10 2006001 43.98 70% 451 545 516 14.6% 484 901
𝑆11 2259001 34.25 70% 457 570 509 13.1% 489 1085
𝑆12 4509001 69.01 60% 457 540 497 10.5% 486 896

Sensitive analysis: Results were satisfactory from beyond 10 cases (S9), where 100%
of repetitions were valid.

Table 27 – Case Study 4 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Tasks T=D R x Test Tasks T=D R O Test
𝜏1 450 265 1 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 432 OK
𝜏3 300 190 101 OK 𝜏3 150 65 0 OK
𝜏4 200 45 1 OK 𝜏4 200 108 27 OK
𝜏5 500 355 1 OK 𝜏5 300 205 0 OK
𝜏6 400 230 101 OK 𝜏6 400 198 27 OK
𝜏7 100 25 0 OK 𝜏7 450 290 0 OK
𝜏8 250 105 1 OK 𝜏8 500 385 0 OK
𝜏9 not active in this mode 𝜏9 600 425 0 OK
𝜏10 600 560 301 OK 𝜏10 not active in this mode

Discussion: Case study 4, shows that is possible restrict the WCTR for some tasks
within a range. We can also observe in Table 27 the following values: max(𝑅𝑁 + 𝑂) = 457
(𝜏2) and max(𝑅𝑂 − 𝑥) = 354 (𝜏5). The latency value was 𝐿 = 457 (from equation (2.18)) and
𝐿 × 30% = 137.1. The significant interval calculated was 𝛿 = 𝑚𝑖𝑛(137.1, 354, 457) = 137.1.

4.3. Case Studies 61

Time

Mode Change

old-mode tasks new-mode tasks

Figure 20 – Case Study 4 - Utilization Chart (MOF)

The number of new-mode tasks completed during the significant interval was 2 and the
number of old-mode tasks removed was 5, resulting in 𝛼 = 0.29. This value of indicates a
mostly-old-first (𝑀𝑂𝐹) type of mode change (Fig. 20).

4.3.5 Case Study 5 - Minimizing Offsets with Latency within an Acceptable
Range (𝑀𝑂𝐹)

Definition: In this case study the goal was the minimization of offsets, limiting the
worst-case latency within an acceptable range.

Modeling: The minimization of offsets and latency was treated as a weights-based
multi-objective GA minimization problem with two constraints: system feasibility and worst-
case latency within an acceptable range. Therefore, the constraint vector was set to 𝐶𝑜 =
{1, 0, 0, 1}. To achieve these objectives the fitness function was instantiated with the weights
𝑊𝑒 = {0.0000001,1}, i.e., 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀

𝑂𝑖 + (𝐿 × 0.0000001) ∀ 𝑖 ∈ 𝜏 . The latency range used
in the minimization was arbitrarily set from 400 to 450.

Results: Table 28 shows the GAs sensitivity analysis of each scenario submitted to the
minimization process using GA. In this table, the columns 1-9 represent respectively: 1) the
scenario used for minimization, 2) the average number of tests processed during minimization,
3) the average time spent on each repetition of the scenario, 4) the lowest, 5) highest and
6) average sum of offsets, 7) the variation of the average in relation to to lowest value of
sum of offsets, 8) the lowest latency for lowest, and 9) high worst-case sum of offsets. After
minimization, the results obtained are shown in Table 29.

62 Chapter 4. Configuring Mode Changes

Table 28 – Case Study 5 - GAs Sensitivity Analysis

Scen.
of Time Valid Sum of Offsets Latency

Analysis (Min) Iter. Low High AVG Var. Low High
𝑆1 2801 0.04 60% 957 1490 1255 178.9% 425 450
𝑆2 5301 0.09 70% 534 832 667 48.2% 450 450
𝑆3 10601 0.17 90% 541 736 629 39.8% 450 405
𝑆4 20601 0.33 90% 452 723 574 27.5% 450 410
𝑆5 64001 1.01 100% 452 677 534 18.7% 450 405
𝑆6 126501 2.13 100% 452 560 480 6.7% 450 445
𝑆7 253001 4.24 100% 450 536 468 3.9% 450 445
𝑆8 503001 8.52 100% 450 549 489 8.6% 450 445
𝑆9 1006001 17.07 100% 450 452 451 0.3% 450 450
𝑆10 2006001 51.76 100% 450 475 454 0.9% 450 450

Sensitivity analysis: From 𝑆9 onwards we notice that the algorithm presents more
stable results, i.e., variance around 0.3 %. A population around 2000 individuals is the rec-
ommended value for this case.

Table 29 – Case Study 5 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Tasks T=D R x Test Tasks T=D R O Test
𝜏1 450 240 101 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 350 OK
𝜏3 300 190 101 OK 𝜏3 150 65 0 OK
𝜏4 200 45 1 OK 𝜏4 200 85 50 OK
𝜏5 500 380 1 OK 𝜏5 300 205 0 OK
𝜏6 400 230 101 OK 𝜏6 400 175 50 OK
𝜏7 100 25 0 OK 𝜏7 450 290 0 OK
𝜏8 250 105 1 OK 𝜏8 500 410 0 OK
𝜏9 not active in this mode 𝜏9 600 450 0 OK
𝜏10 600 530 301 OK 𝜏10 not active in this mode

Discussion: Case study 5 shows that it is possible to restrict the worst-case latency
within an acceptable range. We can also observe in Table 29 the following values: max(𝑅𝑁 +
𝑂) = 450 (𝜏2) and max(𝑅𝑂 − 𝑥) = 379 (𝜏5). The latency value was 𝐿 = 450 (from equation
(2.18)) and 𝐿 × 30% = 135. The significant interval was 𝛿 = 𝑚𝑖𝑛(135, 379, 450) = 135. The
number of new-mode tasks completed during the significant interval was 2 and the number of
old-mode tasks removed was 5, resulting in 𝛼 = 0.29. This value indicates a mostly-old-first
(𝑀𝑂𝐹) type of mode change (Fig. 21).

4.3. Case Studies 63

Time

Mode Change

old-mode tasks new-mode tasks

Figure 21 – Case Study 5 - Utilization Chart (MOF)

4.3.6 Case Study 6 - Minimization Using the Algorithm of Real and Crespo
(2001) (𝐵𝑀𝐶)

Definition: To provide a comparison analysis, in this case study the minimization was
performed to find the smallest offsets for high priority tasks using the algorithm of Real and
Crespo (2001).

After minimization, the results obtained are presented in Table 30. The processing
time was 0.33 minutes, the sum of offsets was 1602, the worst-case latency was 754 and the
number of analysis processed was 31173.

Table 30 – Case Study 6 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2
Tasks T=D R x Test Tasks T=D R O Test

𝜏1 450 385 1 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 50 0 OK
𝜏3 300 290 1 OK 𝜏3 150 90 0 OK
𝜏4 200 70 1 OK 𝜏4 200 200 30 OK
𝜏5 500 485 1 OK 𝜏5 300 171 184 OK
𝜏6 400 375 1 OK 𝜏6 400 290 85 OK
𝜏7 100 25 0 OK 𝜏7 450 185 579 OK
𝜏8 250 175 1 OK 𝜏8 500 26 579 OK
𝜏9 not active in this mode 𝜏9 600 600 145 OK
𝜏10 600 580 1 OK 𝜏10 not active in this mode

Discussion: In this case study, the sum of offsets and the worst-case latency obtained
are both larger than those obtained in cases previously showed. The sum of offsets was 1602
and the latency 764. In case study 1 the sum of offsets was 390 and the latency was 595. In
case study 2 the sum of offsets was 690 and the latency was 360. We can also observe in Table

64 Chapter 4. Configuring Mode Changes

Time

Mode Change

old-mode tasks new-mode tasks

C
P

U
 U

ti
liz

a
ti
o
n
 %

Figure 22 – Case Study 6 - Utilization Chart (BMC)

30 the following values: max(𝑅𝑁 + 𝑂) = 764 (𝜏7), and max(𝑅𝑂 − 𝑥) = 579 (𝜏10). The latency
value was 𝐿 = 764 (from equation (2.18)) and 𝐿 × 30% = 229.2. The significant interval
was 𝛿 = 𝑚𝑖𝑛(229.2, 579, 764) = 229.2. The number of new-mode tasks completed during
the significant interval was 2 and the number of old-mode tasks removed was 3, resulting in
𝛼 = 0.4. This value indicates a balanced type of mode change (𝐵𝑀𝐶) (Fig. 22). This type
of mode-change occurs because the minimization using the algorithm of Real and Crespo
(2001) assigns small offsets for higher priority tasks and the relative lower utilization rate of
old-mode tasks allows that new-mode tasks run in (pseudo) parallel with the old-mode tasks.

4.3.7 Case Study 7 - Minimizing Latency with 𝑃𝑁 > 𝑃𝑂 (𝑀𝑁𝐹)

Definition: This case study uses the same set of ten tasks used by case studies previ-
ously presented. We have decreased the priority of the all old-mode tasks (𝑃𝑂) and maintained
the priority of the new-mode ones (𝑃𝑁). Therefore, 𝑃𝑂={11, 12, 13, 14, 15, 16, 17, 18} for tasks
{𝜏2, 𝜏3, 𝜏4, 𝜏5, 𝜏6, 𝜏7, 𝜏8, 𝜏9}. Applying this configuration, we seek to find the smallest possible
worst-case latency with the smallest sum of offsets for new-mode tasks. This is carried out
for both definitions of mode-change latency described above.

GA Configuration: Based on the sensibility analysis performed in the studies cases
above, we assigned the value 2000 to the population and ran 1000 generations. The mutation
and crossover probabilities were fixed at 10% and 70% respectively, for all scenarios. This
scenario was subjected to ten repetitions in order to measure the accuracy of the data ob-
tained. This GA configuration was used in all the remaining case studies in this chapter.

4.3. Case Studies 65

Modeling: The minimization of latency and offsets was treated as a weights-based
multi-objective GA minimization problem with just one constraint, i.e. system feasibility. To
achieve these objectives, the fitness function was instantiated with weights 𝑊𝑒 = {1,0.0000001}.
The fitness function was 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀(𝑂𝑖 × 0.0000001) + 𝐿 ∀ 𝑖 ∈ 𝜏 . The constraints’ vector
was set to system feasibility, i.e. 𝐶𝑜 = {1, 0, 0, 0}.

Minimization Using Latency Definition I

Table 31 shows the results of the minimization process using “latency definition I”.
The worst-case latency was 329 and the sum of offsets was 700.

Table 31 – Case Study 7 - Latency Definition I - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Tasks T=D R x Test Tasks T=D R O Test
𝜏1 450 305 1 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 274 OK
𝜏3 300 250 1 OK 𝜏3 150 45 192 OK
𝜏4 200 130 1 OK 𝜏4 200 75 129 OK
𝜏5 500 330 1 OK 𝜏5 300 95 35 OK
𝜏6 400 275 101 OK 𝜏6 400 20 0 OK
𝜏7 100 35 0 OK 𝜏7 450 185 35 OK
𝜏8 250 220 1 OK 𝜏8 500 270 35 OK
𝜏9 not active in this mode 𝜏9 600 10 0 OK
𝜏10 600 520 301 OK 𝜏10 not active in this mode

Time

Mode Change

old-mode tasks new-mode tasks

Figure 23 – Case Study 7 - Utilization Chart Using Latency Definition I (MNF)

Discussion: We can observe in Table 31 the following values: max(𝑅𝑁 + 𝑂) = 305
(𝜏8), and max(𝑅𝑂 −𝑥) = 329 (𝜏5). The latency value was 𝐿 = 329 (from equation (2.18)) and

66 Chapter 4. Configuring Mode Changes

𝐿 × 30% = 98.7. The significant interval was 𝛿 = 𝑚𝑖𝑛(98.7, 329, 305) = 98.7. The number of
new-mode tasks completed during the significant interval was 2 and the number of old-mode
tasks removed was 1, resulting in 𝛼 = 0.67. This value of indicates a mostly-new-first type
(𝑀𝑁𝐹) of mode change. Fig. 23 shows a visual representation that allows the interpretation
of the type of mode change. This type of mode change has occurred due to the fact that
the priority of the new-mode tasks were higher than the old-mode tasks, leading to the
preemption (and delaying) of old-mode tasks.

Minimization Using Latency Definition II

Table 32 shows the results after the minimization process using “latency definition II
”. The worst-case latency obtained was 224 and the sum of offsets was 652. Using “latency
definition I”, the worst-case latency calculated was 479.

Table 32 – Case Study 7 - Latency Definition II - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2
Tasks T=D R x Test Tasks T=D R O Test

𝜏1 450 380 1 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 179 OK
𝜏3 300 275 1 OK 𝜏3 150 45 179 OK
𝜏4 200 160 1 OK 𝜏4 200 75 91 OK
𝜏5 500 450 1 OK 𝜏5 300 95 91 OK
𝜏6 400 370 1 OK 𝜏6 400 140 80 OK
𝜏7 100 90 0 OK 𝜏7 450 185 32 OK
𝜏8 250 245 1 OK 𝜏8 500 30 0 OK
𝜏9 not active in this mode 𝜏9 600 65 0 OK
𝜏10 600 480 1 OK 𝜏10 not active in this mode

Time

Mode Change

old-mode tasks new-mode tasks

C
P

U
 U

ti
liz

a
ti
o
n
 %

Figure 24 – Case Study 7 - Utilization Chart Using Latency Definition II (MNF)

4.3. Case Studies 67

Discussion: We can observe in Table 32 the following values: max(𝑅𝑁 + 𝑂) = 224
(𝜏3), and max(𝑅𝑂 − 𝑥) = 479 (𝜏10). The latency value is 𝐿 = 479 (from equation (2.18))
and 𝐿 × 30% = 143.7, thus, the significant interval is 𝛿 = 𝑚𝑖𝑛(143.7, 479, 224) = 143.7. The
number of new-mode tasks completed during the significant interval was 2 and the number
of old-mode tasks removed was 1, resulting in 𝛼 = 0.67. This value indicates a mostly-new-
first type (𝑀𝑁𝐹) mode change. Fig. 24 shows a visual representation that assists in the
interpretation of the type of mode change. This type of mode change has occurred due to the
priority of the new-mode tasks being higher than the old-mode tasks and the minimization
process using “latency definition II”. Thus, the old-mode tasks are preempted, slowing their
execution. Note: The value assigned to 𝐿 used “latency definition I”.

4.3.8 Case Study 8 - Minimizing Offsets with 𝑃𝑁 > 𝑃𝑂 (𝑀𝑁𝐹)

Definition: This case study uses the same set of tasks employed in Case Study 7. The
major goal was to perform the minimization of offsets for new-mode tasks; the secondary goal
was to minimize the worst-case latency. We employed both mode-change latency definitions.

Modeling: The minimization of offsets and latency was treated as a weights-based
multi-objective GA minimization problem and system feasibility as the constraint. To achieve
these objectives, the fitness function was instantiated with the weights 𝑊𝑒 = {0.0000001,1},
i.e. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀

𝑂𝑖 + (𝐿 × 0.0000001) ∀ 𝑖 ∈ 𝜏 . The constraints used were 𝐶𝑜 = {1, 0, 0, 0}.

Table 33 – Case Study 8 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Tasks T=D R x Test Tasks T=D R O Test
𝜏1 450 395 1 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 294 OK
𝜏3 300 295 101 OK 𝜏3 150 6 14 OK
𝜏4 200 200 1 OK 𝜏4 200 75 100 OK
𝜏5 500 465 1 OK 𝜏5 300 40 0 OK
𝜏6 400 315 101 OK 𝜏6 400 60 0 OK
𝜏7 100 100 0 OK 𝜏7 450 51 14 OK
𝜏8 250 240 1 OK 𝜏8 500 270 100 OK
𝜏9 not active in this mode 𝜏9 600 75 0 OK
𝜏10 600 595 1 OK 𝜏10 not active in this mode

Results: Table 33 shows the results obtained after the minimization process. The
worst-case latencies found were 594 and 370 according to “definitions I and II” respectively.
The sum of offsets resulted in 522 (conforming to both definitions).

68 Chapter 4. Configuring Mode Changes

Fig. 25 shows a chart of the processor utilization rate during the mode-change period.

Time

Mode Change

old-mode tasks new-mode tasks

Figure 25 – Case Study 8 - Utilization Chart (MNF)

Discussion: We can observe in Table 33 the following values: max(𝑅𝑁 + 𝑂) = 370
(𝜏8), and max(𝑅𝑂 − 𝑥) = 594 (𝜏10). The latency value is 𝐿 = 594 (from equation (2.18)) and
𝐿 × 30% = 178.2. This leads to a significant interval 𝛿 = 𝑚𝑖𝑛(178.2, 594, 370) = 178.2. The
number of new-mode tasks completed during the significant interval was 6 and the number of
old-mode tasks removed was 1, resulting in 𝛼 = 0.86. This value indicates a mostly-new-first
(𝑀𝑁𝐹) type of mode change (Fig. 25). This type of mode change has occurred due to the
fact that the priority of the new-mode tasks were higher than the old-mode tasks and the
main objective is to minimize offsets. This causes the first few new-mode tasks with higher
priorities to have shorter offsets. At the end of the busy period of this small task set old-mode
tasks execute and complete.

For a small new-mode task set and under the conditions set (i.e. 𝑃𝑁 > 𝑃𝑂), the
behavior of the GA resembles that of Real and Crespo (2001) since 1) both algorithms are
configured to minimize offsets and 2) new-mode tasks have higher priorities than old-mode
tasks.

4.3.9 Case Study 9 - Minimizing Latency with 𝑃𝑂 > 𝑃𝑁 (𝐴𝑂𝐹)

Definition: This case study uses the same set of ten tasks used by case studies pre-
viously presented. The goal is to configure an 𝐴𝑂𝐹 type of mode change with minimum
latency. Offsets are minimized as a secondary objective. For that purpose, we decreased the
priority of the all new mode tasks (𝑃𝑁) and maintained the priority of the old-mode set (𝑃𝑂).
Therefore, 𝑃𝑁={16, 14, 12, 17, 15, 11, 13, 18} for tasks {𝜏1, 𝜏3, 𝜏4, 𝜏5, 𝜏6, 𝜏7, 𝜏8, 𝜏10}.

4.3. Case Studies 69

Modeling: The minimization of latency and offsets was treated as a weights-based
multi-objective GA minimization problem. To achieve these objectives, the fitness function
was instantiated with the weights 𝑊𝑒 = {1,0.0000001}, i.e. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀(𝑂𝑖 × 0.0000001) +
𝐿 ∀ 𝑖 ∈ 𝜏 . The only constraint was system feasibility, therefore 𝐶𝑜 = {1, 0, 0, 0}.

Results: Table 34 shows the results of the minimization process. The worst-case latency
found (for both latency definitions) was 350, and the sum of offsets was 990. Fig. 26 shows
a chart of the processor utilization across the mode-change period.

Table 34 – Case Study 9 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Tasks T=D R x Test Tasks T=D R O Test
𝜏1 450 170 101 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 250 OK
𝜏3 300 140 101 OK 𝜏3 150 20 200 OK
𝜏4 200 45 1 OK 𝜏4 200 90 160 OK
𝜏5 500 195 101 OK 𝜏5 300 245 50 OK
𝜏6 400 160 101 OK 𝜏6 400 315 0 OK
𝜏7 100 25 0 OK 𝜏7 450 320 0 OK
𝜏8 250 85 1 OK 𝜏8 500 20 330 OK
𝜏9 not active in this mode 𝜏9 600 330 0 OK
𝜏10 600 365 301 OK 𝜏10 not active in this mode

Time

Mode Change

old-mode tasks new-mode tasks

Figure 26 – Case Study 9 - Utilization Chart (AOF)

Discussion: We can observe in Table 34 the following values: max(𝑅𝑁 + 𝑂) = 350
(𝜏8), and max(𝑅𝑂 − 𝑥) = 94 (𝜏5). The latency value was 𝐿 = 350 (from equation (2.18)) and
𝐿×30% = 105. Thus, the significant interval was 𝛿 = 𝑚𝑖𝑛(105, 94, 350) = 94. The number of
new-mode tasks completed during the significant interval was 0 and the number of old-mode
tasks removed was 8, resulting in 𝛼 = 0. This value indicates an all-old-first (𝐴𝑂𝐹) type

70 Chapter 4. Configuring Mode Changes

of mode change. Fig. 26 shows a visual representation that assists in the interpretation of
the type of mode change. This type of mode change has occurred due to the fact that the
priority of the old-mode tasks were higher that their new-mode counterparts and relatively
large offsets were assigned to the new-mode set, thus delaying their completion. Note that,
in this case study, the value assigned to 𝛿 was max(𝑅𝑂 − 𝑥).

4.3.10 Case Study 10 - Minimizing Offsets with 𝑃𝑂 > 𝑃𝑁 (𝐴𝑂𝐹)

Definition: This case study uses the same set of tasks used by Case Study 9. The
aim of this case was to produce an 𝐴𝑂𝐹 with all offsets minimized (as a first objective) and
latency minimized as a second objective. In order to do so, we set all old-mode priorities
larger than the priorities of the new-mode (i.e 𝑃𝑂 > 𝑃𝑁).

Modeling: The minimization of offsets and latency was treated as a weights-based
multi-objective GA minimization problem with just one constraint, system feasibility. To
achieve these objectives the fitness function was instantiated with the weights 𝑊𝑒 = {0.0000001,1},
i.e., 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀

𝑂𝑖 +(𝐿×0.0000001) ∀ 𝑖 ∈ 𝜏 , thus, the main objective is offsets minimization
and the secondary is latency minimization. The constraints used were 𝐶𝑜 = {1, 0, 0, 0}, i.e,
just system feasibility.

Results: Table 35 shows the values of the best obtained after the minimization pro-
cess. The worst-case latency obtained using both latency definitions was 495, and the sum of
offsets was 520.

Table 35 – Case Study 10 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Tasks T=D R x Test Tasks T=D R O Test
𝜏1 450 170 101 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 295 OK
𝜏3 300 140 101 OK 𝜏3 150 135 85 OK
𝜏4 200 45 1 OK 𝜏4 200 175 95 OK
𝜏5 500 195 101 OK 𝜏5 300 290 0 OK
𝜏6 400 160 101 OK 𝜏6 400 385 0 OK
𝜏7 100 25 0 OK 𝜏7 450 410 45 OK
𝜏8 250 85 1 OK 𝜏8 500 485 0 OK
𝜏9 not active in this mode 𝜏9 600 495 0 OK
𝜏10 600 365 301 OK 𝜏10 not active in this mode

Fig. 27 shows a chart of the processor utilization rate during the mode-change period.

4.3. Case Studies 71

Time

Mode Change

old-mode tasks new-mode tasks

Figure 27 – Case Study 10 - Utilization Chart (AOF)

Discussion: In this case the worst-case latency value independs on the definition used,
i.e. the values of latency found using definition I was the same value obtained using definition
II. This is because old-mode tasks complete their execution before the new ones complete
their execution. Comparing it with the case study 9, there was an increase of the latency
from 350 to 495 and a substantial decrease of the sum of offsets from 990 to 520. Therefore,
the algorithm delivered the results specified for this case.

The inspection of Table 35 shows the following values: max(𝑅𝑁 + 𝑂) = 495 (𝜏9)
and max(𝑅𝑂 − 𝑥) = 94 (𝜏5). As the latency value is 𝐿 = 495 (from equation (2.18)), then
𝐿 × 30% = 148.5 and the significant interval is 𝛿 = 𝑚𝑖𝑛(148.5, 94, 495) = 94. The number of
new-mode tasks completed during the significant interval was 0 and the number of old-mode
tasks removed was 8, resulting in 𝛼 = 0. This value of indicates an all-old-first (AOF) type of
mode change (Fig. 27). Therefore, we can assert that when the priorities of old-mode tasks
are higher that the new-mode tasks there is a tendency that, in most of cases, 𝛿 is equal to
max(𝑅𝑂 − 𝑥). Clearly, the exception is when 𝛿 = 𝐿 × 𝐾.

4.3.11 Case Study 11 - Minimizing Latency with 𝑂 > max(𝑅𝑂 − 𝑥) (𝐴𝑂𝐹)

Definition: The goal of this case study is to configure an 𝐴𝑂𝐹 type of mode change.
This case study uses the same task set used in Case Study 1. This type of mode change
is accomplished by having the new-mode tasks starting after all the old-mode ones have
completed. This last condition is enforced when the offsets of all new-mode tasks are larger
or equal to maximum 𝑊𝐶𝑅𝑇 of all old-mode tasks, i.e. 𝑂 > max(𝑅𝑂 − 𝑥).

Modeling: The minimization of latency and offsets was treated as a weights-based
multi-objective GA minimization problem and system feasibility as the sole constraint. To

72 Chapter 4. Configuring Mode Changes

achieve these objectives the fitness function was instantiated with the weights 𝑊𝑒 = {1,0.0000001},
i.e., 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀(𝑂𝑖 × 0.0000001) + 𝐿 ∀ 𝑖 ∈ 𝜏 . Therefore, the main objective is latency min-
imization and the secondary one is offsets minimization. The allow feasibility as the only
constraint, the constraint vector was set to 𝐶𝑜 = {1, 0, 0, 0}.

Results: Table 36 shows the main results for this case study. The worst-case latency
obtained (according to both latency definitions) was 350. The sum of offsets obtained was
1347.

Table 36 – Case Study 11 - Offsets Obtained
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2

Tasks T=D R x Test Tasks T=D R O Test
𝜏1 450 170 101 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 325 OK
𝜏3 300 140 101 OK 𝜏3 150 12 208 OK
𝜏4 200 45 1 OK 𝜏4 200 125 125 OK
𝜏5 500 195 101 OK 𝜏5 300 174 96 OK
𝜏6 400 160 101 OK 𝜏6 400 194 96 OK
𝜏7 100 25 0 OK 𝜏7 450 199 96 OK
𝜏8 250 85 1 OK 𝜏8 500 20 305 OK
𝜏9 not active in this mode 𝜏9 600 209 96 OK
𝜏10 600 365 301 OK 𝜏10 not active in this mode

Time

Mode Change

old-mode tasks new-mode tasks

Figure 28 – Case Study 11 - Utilization Chart (AOF)

Fig. 28 shows a chart of the processor utilization rate during the mode-change period.

Discussion: This type of mode change is called of synchronous mode change. In this
case, latency was relatively low (350) since many old-mode tasks have completed while still
in the old-mode (i.e. before the 𝑀𝐶𝑅), which is indicated by variable 𝑥 having larger values

4.3. Case Studies 73

(e.g. t {𝜏1, 𝜏3, 𝜏5, 𝜏6, 𝜏10} = {101, 101, 101, 101, 301}). We can observe also in Table 36 the
following values: max(𝑅𝑁 + 𝑂) = 350 (𝜏2), and max(𝑅𝑂 − 𝑥) = 94 (𝜏5). The latency value
was 𝐿 = 350 (from equation (2.18)) and 𝐿×30% = 105. The significant interval was therefore
𝛿 = 𝑚𝑖𝑛(105, 94, 350) = 94. Hence, the number of new-mode tasks introduced during the
significant interval was 0 and the number of old-mode tasks removed was 8, resulting in 𝛼 = 0
(the desired mode change 𝐴𝑂𝐹) (Fig. 28).

4.3.12 Case Study 12 - Minimizing Latency with 𝑃𝑁 > 𝑃𝑂 (𝐴𝑁𝐹)

Definition: In this case study the minimization was performed with the task set de-
scribed in Table 37. Each mode of operation 𝑀1 (old-mode) and 𝑀2 (new-mode) is composed
of 10 tasks (𝜏1 . . . 𝜏10). The CPU utilization rate is 41.61% in 𝑀1 and 78.22% in 𝑀2.

The goal of this case study is to perform an ANF type of mode change. Therefore,
the following changes were applied to the task set presented in case 11: 1) we decreased the
priority of all old-mode tasks (𝑃𝑂), and 2) we increased the deadlines and periods of the
old-mode tasks, while maintaining the deadline monotonic policy for priority assignment.

These changes allow the preemption of the old-mode tasks during the introduction of
new-mode tasks. After applying this configuration, we performed the minimization of offsets
to find the smallest worst-case latency with the smallest sum of offsets for new-mode tasks
possible, using the latency definition II and a weights-based multi-objective GA.

Table 37 – Case Study 12 - Set of Ten Tasks
Mode M1 Mode M2

Tasks P C T T=D R Test Tasks P C T T=D R Test
𝜏1(𝑂) 16 10 900 900 145 OK 𝜏1(𝑂) not active in this mode
𝜏2(𝑊) not active in this mode 𝜏2(𝑊) 1 25 100 100 25 OK
𝜏3(𝐶) 14 30 600 600 115 OK 𝜏3(𝐶) 2 20 150 150 45 OK
𝜏4(𝐶) 12 20 400 400 45 𝜏4(𝐶) 3 30 200 200 75 OK
𝜏5(𝐶) 17 25 1000 1000 170 OK 𝜏5(𝐶) 4 20 300 300 95 OK
𝜏6(𝑈) 15 20 400 400 135 OK 𝜏6(𝑈) 5 20 400 400 140 OK
𝜏7(𝐶) 11 25 200 200 25 OK 𝜏7(𝐶) 6 25 450 450 185 OK
𝜏8(𝐶) 13 40 500 500 85 OK 𝜏8(𝐶) 7 30 500 500 270 OK
𝜏9(𝑊) not active in this mode 𝜏9(𝑊) 8 10 600 600 280 OK
𝜏10(𝑂) 18 30 1200 1200 200 OK 𝜏10(𝑂) not active in this mode

Modeling: The minimization of latency offsets was treated as a weights-based multi-
objective GA minimization problem with just one constraint, i.e. system feasibility. To achieve
these objectives, the fitness function was instantiated with weights 𝑊𝑒 = {1,0.0000001}, i.e.,
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑︀(𝑂𝑖 × 0.0000001) + 𝐿 ∀ 𝑖 ∈ 𝜏 . Thus, the main objective is latency minimization
and the secondary is offsets minimization. The constraints used were 𝐶𝑜 = {1, 0, 0, 0}, i.e,

74 Chapter 4. Configuring Mode Changes

just system feasibility.

Table 38 shows the results (i.e. 𝑅, 𝐿, 𝑂, 𝑥) after the minimization process using
Latency Definition II. The worst-case latency measured was 329, and the sum of offsets was
700.

Table 38 – Case Study 12 - Offsets Obtained Using Latency Definition II
Old-Mode Tasks M1 → M2 New-Mode Tasks M1 → M2
Tasks T=D R x Test Tasks T=D R O Test

𝜏1 900 685 1 OK 𝜏1 not active in this mode
𝜏2 not active in this mode 𝜏2 100 25 84 OK
𝜏3 600 365 1 OK 𝜏3 150 45 84 OK
𝜏4 400 175 1 OK 𝜏4 200 30 0 OK
𝜏5 1000 755 1 OK 𝜏5 300 50 0 OK
𝜏6 400 385 1 OK 𝜏6 400 70 0 OK
𝜏7 200 155 0 OK 𝜏7 450 75 0 OK
𝜏8 500 335 1 OK 𝜏8 500 150 0 OK
𝜏9 not active in this mode 𝜏9 600 130 0 OK
𝜏10 1200 785 1 OK 𝜏10 not active in this mode

Time

Mode Change

old-mode tasks new-mode tasks

Figure 29 – Case Study 12 - Utilization Chart Using Latency Definition II

Fig. 29 shows a chart of the processor utilization rate during the mode-change period.

Discussion: Case study 12 was performed to force a specific mode-change, i.e., all-
new -first (ANF). It is interesting to note that this particular mode-change type can only be
minimized when using “latency definition II”, since the end of the transition is marked by
the first execution of the all new-mode tasks. Therefore, to achieve low latency, the algorithm
pushes all new mode tasks to the start of the transition, ahead of the old-mode tasks.

4.3. Case Studies 75

As the introduction of the new-mode tasks with higher priority and short offsets could
lead an system overload (and therefore missed deadlines), we forced a lower utilization of the
old-mode task set by both increasing old-mode tasks periods and deadlines.

We can also observe in Table 38 the following values: max(𝑅𝑁 + 𝑂) = 150 (𝜏8),
and max(𝑅𝑂 − 𝑥) = 784 (𝜏10). The latency value is 𝐿 = 784 (from equation (2.18)) and
𝐿 × 30% = 235.2. Therefore, the significant interval is 𝛿 = 𝑚𝑖𝑛(235.2, 784, 150) = 150. The
number of new-mode tasks completed during the significant interval was 8 and the number
of old-mode tasks removed was 0, resulting in 𝛼 = 8÷ (0+8) = 1, i.e. an 𝐴𝑁𝐹 mode change.
Fig. 29 shows a visual representation that assists in the interpretation of the type of mode
change.

76 Chapter 4. Configuring Mode Changes

4.4 Discussion

In this section we present a global discussion of the results for all case studies, which
are summarized in Table 39. This table describes for each case study, the definition of latency
used in the minimization process, the type of mode change, the worst-case latency using both
definitions , the sum of offsets, the significant interval 𝛿 and the rate of change parameter 𝛼.

Table 39 – Summary of Case Studies

Case Study LD for Type LD LD Sum
𝛿 𝛼Minim. I II Offsets

1 Minimizing Offsets and Latency LD I MOF 595 390 178.5 0.33
2 Minimizing Latency and Offsets LD I AOF 360 690 180 0
3 Minimizing Latency Imposing Offsets LD I MOF 445 866 133.5 0.25within a Range
4 Minimizing Latency with WCRT LD I MOF 457 486 137.1 0.29within a range
5 Minimizing Offsets with Latency LD I MOF 450 450 135 0.29within an Acceptable Range
6 Minimization Using the Algorithm LD I BMC 764 1602 229.2 0.4of Real and Crespo (2001)
7 Minimizing Latency with 𝑃𝑁 > 𝑃𝑂

LD I MNF 329 305 700 98.7 0.83
LD II MNF 479 224 652 143.7 0.67

8 Minimizing Offsets with 𝑃𝑁 > 𝑃𝑂 LD I, II MNF 594 370 522 178.2 0.86
9 Minimizing Latency with 𝑃𝑂 > 𝑃𝑁 LD I, II AOF 350 990 94 0
10 Minimizing Offsets with 𝑃𝑂 > 𝑃𝑁 LD I, II AOF 495 520 94 0
11 Minimizing Latency with 𝑃𝑂 > 𝑃𝑁 LD I, II AOF 350 1347 94 0and and 𝑂 > max(𝑅𝑂 − 𝑥)
12 Minimizing Latency with 𝑃𝑁 > 𝑃𝑂 LD II ANF 784 150 168 150 1

Before proceeding further, some notes on the definition of latency used for minimiza-
tion are in order:

∙ In cases 1 through 6, we used the definition of latency I to guide the minimization
process. The goal of these cases was to show the flexibility of the minimization algorithm
in addressing both offset and latency minimization requirements, as well as to compare
our approach to the one of Real and Crespo (2001).

∙ In cases 7 through 11, the goal was to minimize latency and we also sought to test
the sensitivity of the algorithm to the definition of latency employed. Therefore, each
case was minimized using latency definition I and II. However, only case 7 produced
different results depending on the definition. The remaining cases were not affected by
the type of definition of latency.

4.4. Discussion 77

∙ In case 12, the goal was specifically to configure a ANF mode change. Therefore, latency
definition II was used. As it is clarified in the next few paragraphs, the definition II is
the one to be used when configuring ANF changes.

The utilization is often not used as a schedulability analysis criteria in real-time
systems, let alone when dealing with mode changes. However, within the context of this
work, it is a useful concept to better understand the behavior of the transition. The ordering
of the mix of old and new mode tasks during the mode change may have an substantial
impact on both the functionality and performance of the application. Therefore, it was taken
in this chapter as a roadmap to study the types of mode changes and their configuration
(including minimization of the latency).

It is possible to establish, after the analysis of the case studies presented in this chapter
(also chapter 3), that there is an inverse relationship between the minimization of offsets and
latency. Clearly, small offsets tend to result in greater latencies and vice versa.

Case study 6 is the only balanced mode change (𝐵𝑀𝐶). However, recall that case 6
used the algorithm of Real and Crespo (2001) which mostly reduces the offsets of high-priority
new-mode tasks. As the additional introduction of lower-priority new-mode tasks within
the significant interval leads to unschedulability (i.e. missed deadlines), the configuration
algorithm allows old-mode tasks to execute and complete after the completion of the high-
priority new-mode tasks. Hence, the algorithm of Real and Crespo (2001) tends to a balanced
type of mode change.

From all case studies, cases 7, 8 and 12 were sensitive to the definition of latency.
These cases presented different values of latency depending on the definition of latency (I or
II) used. This occurred since in these cases new-mode tasks were assigned larger priorities
than the old-mode tasks. Therefore, the new-mode tasks completed before the old-mode
tasks. Thus, the value of latency by definition II is less than the value of latency definition I,
because the latency definition II only takes into account the worst-case response time of the
new-mode tasks. This validate the mostly-new-first and/or the all-new-first classification of
mode changes, i.e. it was possible to specify and minimize these types of changes.

Cases 3, 4 and 5 show that is possible to restrict offset values within a range for
some variables and still have the latency minimized. This approach provides the application
designer with some level of control of the behavior of tasks across the mode change, allowing,
for example, the use of precedence relations between them.

The analysis of the case studies showed that it is important to distinguish between two
separate issues or challenges at stake: 1) Configuring a particular type of mode change, and 2)

78 Chapter 4. Configuring Mode Changes

Minimizing the latency of the configuration (type of mode change). Whereas we may be able
to perform the configuration, it does not necessarily mean that it is also possible to minimize
a particular configuration, specially if the system is stressed with high utilization. As a matter
of fact, both the configuration and the minimization are susceptible to the utilization of the
system. In general, larger processor utilization reduce the range of possibilities in working
with types of mode changes, limiting the system to synchronous AOF (or MOF) types of
changes, such as case studies 1, 2, 9, 10, 11, as well as cases 3 through 5 . This is because
these are the only changes that alleviate the processor load during the transition.

In essence, the aim of this chapter was demonstrate the flexibility of the proposed
approach: it was not limited to the case studies discussed in the previous chapter. We added
12 case studies that show that we can enforce a wide range of mode-change scenarios for
which we wish to minimize the latency. The approach was not limited to these cases, and more
scenarios can be identified for minimization. In addition to that, we provide a classification
of mode-changes and study what type of mode-change results after the minimization of a
mode-change in each case study. This classification can assist the system designer providing
a method to configure a particular type of mode-change in accordance with the requirements
demanded.

Table 40 – Requirements for Each Type of Mode-Change

Type Requirements

ANF
𝑃𝑁 > 𝑃𝑂

minimization: using LD II
and not high utilization

AOF
𝑃𝑂 > 𝑃𝑁

minimization: 𝑂𝑚𝑖𝑛 = max(𝑅𝑂 − 𝑥)

BMC
Strict-Alternation: Pairwise assignment of P
Random: Random P
Uniform: Uniform P

MOF 𝑃𝑁 > 𝑃𝑂 for a few tasks

MNF
𝑃𝑁 > 𝑃𝑂 and 𝑌 ≃ 0
and not high utilization

It was possible by means of these case studies to the type of mode change depends on
the tasks priorities, the utilization of the system, and the type of definition of latency used.
Therefore, we summarize these requirements for each type of mode change as follows (Table
40):

∙ An 𝐴𝑁𝐹 type of mode change can be obtained if the priorities of all new mode tasks

4.4. Discussion 79

are larger than the priorities of the old-mode tasks (i.e. 𝑃𝑁 > 𝑃𝑂). This type of mode
change can also be minimized when we apply the latency definition II. The minimization
algorithm forces all offsets to be close to the MCR in order to fulfill the objective of
low latency.

∙ An 𝐴𝑂𝐹 mode change is likewise obtainable if all old-mode tasks have a higher priority
than the new-mode ones. To minimize the latency of this type of mode change, it is
also required that the smalls offset O is larger than the maximum completion time of
all old-mode tasks.

∙ A 𝐵𝑀𝐶 can occur in strict alternation, randomly or uniformly. Strict alternation means
that tasks alternate during the significant interval, i.e. one new mode tasks is released
after the old-mode tasks followed by a new-mode tasks again and so on. Another pos-
sibility is that there is no pattern in the release of old and new tasks, however, the
total number of new-mode tasks released is the same as the number of old-mode tasks.
Uniform release means that a pattern of task releases can be identified, such as 𝑛-new
followed by 𝑛-old number of tasks (n is an integer > 1). This types of mode changes
can be accomplished if tasks priorities are assigned in accordance with the desired re-
lease pattern. If strict alternation of tasks is the goal, then priorities should likewise
be assigned in strict alternation. In this case, the highest priority level in the system is
assigned to both a new and and old-mode tasks. The next priority level is assigned to
another pair of old and new tasks and so on. This can be a challenge if priorities are
restricted somehow, e.g. by a priority-ceiling protocol (PCP).

∙ A 𝑀𝑂𝐹 can be configured by having a few new-mode tasks with larger priorities than
the old-mode tasks with lower offsets. To be able to minimize this type, it is advised
that “latency definition I” must be used.

∙ A 𝑀𝑁𝐹 type of mode change can be configured if a few old-mode tasks have priority
larger than the new-mode tasks while new-mode tasks are released close to the 𝑀𝐶𝑅.
To minimize this configuration, it is required (additionally) no mode of operation has
a high utilization.

In one hand, 𝐴𝑂𝐹 is the easiest type of mode change to accomplish (from the schedu-
lability analysis perspective), since it is always releasing resources back to the system and
allowing more system utilization (i.e. it creates more spare capacity). It is then easy for the
minimization approach to find a feasible (i.e. schedulable) solution. On the other hand, the
most difficult type to achieve is the 𝐴𝑁𝐹 . Unlike 𝐴𝑂𝐹 , this type requires substantial CPU

80 Chapter 4. Configuring Mode Changes

utilization since the old and the new mode both compete with each other for CPU utiliza-
tion. It is clearly then more difficult to the minimization algorithm to find a feasible solution.
Within these extremes lie the balanced mode change 𝐵𝑀𝐶, where nearly half of the tasks
executed during the significant interval are new and the other half are old. The 𝑀𝑁𝐹 is
relatively more difficult than the 𝑀𝑂𝐹 for the same reason mentioned earlier. The more
new-mode tasks introduced during the significant interval, the harder it is for the configura-
tion tool to find a feasible solution. Another factor that impacts on the difficulty in achieving
one type of mode change or another is the utilization of the old and the new-mode task set.
If either the old or the new-mode has a high processor utilization, then few or no new-mode
tasks are able to be introduced without causing missed deadlines. Therefore, heavily loaded
modes of operation call for either an 𝐴𝑂𝐹 or a 𝑀𝑂𝐹 type of mode change. In essence, Table
40 is a guideline to configure the set of types of mode changes. Whether or not the method
will be able to achieve such type with minimized latency will depend on the configurability of
a mode of operation. The configurability itself will largely depend on the processor utilization.
In general, modes of operation that are lightly loaded will be amenable to be configured in
most types of mode changes, whereas heavily loaded modes cause the minimization algorithm
to produce either a minimized 𝐴𝑂𝐹 or 𝑀𝑂𝐹 types of mode changes.

81

5 Summary and Conclusions

Mode changes are a structured way to dynamically configure real-time systems. During
a mode change, new tasks are introduced and old-mode ones are removed, where some other
tasks are simply changed according to the applications’ demands. Although there has been
significant work presented for mode changes in the realm of fixed-priority scheduled systems,
work on the assignment of offsets, and specifically work on the minimization of the latency of
mode changes has remained largely an open issue in real time systems. The latency of a mode
change is clearly a crucial parameter since during the transition the system only partially
delivers its functionality and desired performance. Hence, the shorter the latency, the better
are the chances of the system coping with its mission and pre-specified requirements. In the
absence of algorithms, methods and tools that automate and facilitate minimization, offset
assignments have to be accomplished manually. The drawbacks of manual assignment of
offsets are at least the following: 1) It is manually tedious and may require detailed knowledge
of the inner workings of mode change protocols; 2) It may not lead to results that fulfill
real-time systems requirements, and 3) It may not be feasible for large task sets and more
complex mode-change scenarios. Therefore, the introduction of mode changes in fixed-priority
preemptively scheduled real-time systems depends on the availability of higher-level tools and
methods that allow practitioners to configure the mode change, including the minimization
of the worst-case mode change latency.

This work was introduced as a first step to overcome this challenge and research gap,
by presenting a model and approach to minimization of the latency of mode changes in real
time systems. The approach chosen is based on evolutionary algorithms due to their known
ability to solve relatively complex optimization scenarios. The approach was validated by
test cases, each of which considered a different scenario to the optimization of latency.

Future work may include one or more of the following avenues: 1) Use of other evolu-
tionary algorithms and finding their suitability to this sort of problem: As the focus of this
work was not on artificial intelligence, but instead on modeling and finding a solution to the
challenge of minimization, we have left for future work issues such as which is the most appro-
priate metaheuristic to the challenge at hands. We have adopted single and multi-objective
GAs, but clearly other approaches such as simulated annealing, particle swarm intelligence
(PSO) and other methods could have clearly been used and compared among each other; 2)
Use of evolutionary algorithms to configure the parameters of the task set (C, T, D, P, B) to
meet real-time goals: This work has focused on the latency, but other real-time parameters

82 Chapter 5. Summary and Conclusions

can also be tweaked to improve system performance. For example, periods, deadlines and
execution times are parameters that usually can be adjusted and configured (through evolu-
tionary approaches) within a range in order to achieve better results; 3) Minimization using
a large number of tasks: This work used a small set of tasks, but, in future work it is possible
increase the performance using parallel computing to allows it for use with a large number of
tasks; 4) Use with multicore/multiprocessor analysis: The schedulability analysis model used
in this work is to uniprocessor systems. In future work this approach may be expanded for use
in multicore/multiprocessor systems; 5) Finally, in this work we focused on demonstrating
the approach. There was not much effort dedicated to fine tuning the parameters of the GA
algorithms, where there might be potential for improving the results even further.

To sum up, the major conclusions and/or results of this work were:

∙ Identification of latency as a key requirement: Before this work commenced, previous
work have primarily dealt with the assignment of offsets as a critical parameter to be
minimized. This work has recognized and brought up the importance of the latency of
a mode change as well as an important parameter to be optimized.

∙ Minimization of offsets does not necessarily lead to the minimization of latency: The
state-of-the-art before this work was such that it was not formally clear what was the
impact of offsets on the duration of a mode change. It was intuitively established among
practitioners that a reduction of offsets would lead to shorter latencies. This work raised
and analyzed the issue by showing a counter- example: a reduction in offsets may lead
to an increase in the latency in some scenarios, especially when the CPU utilization is
relatively large at the start of the mode change.

∙ Feasibility of the approach (use of metaheuristics): There were many questions raised
earlier at the inception of this work, as to how to model the minimization problem
in terms of metaheuristics, and whether or not it would be computationally feasible
to execute the approach. We have shown that the approach is viable and the results
for a variety of scenarios are significant. These considerations led us to the conclusion
that the issues of latency minimization and mode-change configuration are best dealt
with metaheuristic approaches such as genetic algorithms. Furthermore, the use of
metaheuristics has previously been confined to the assignment of tasks to processors
in multi-processor real-time systems. This work has expanded the application of such
methods in the field of real-time systems.

∙ Flexibility of the approach (based on metaheuristics): In general, we found that the
approach presented is a general and flexible tool in that it can be easily customized to

83

deal with various mode-change scenarios. These scenarios may vary from simple ones,
such as the bare reduction of offsets, to more complex scenarios which may include
multiple optimization objectives, allowing the configuration of the mode changes. Before
this work started, there were no tools or methods to deal with the reduction of mode-
latency in real-time systems. The closest method available was the one by Real and
Crespo (2001). However, this method was exclusively applicable to the reduction of
offsets. Whereas the reduction of offsets is ideal to improve promptness (the requirement
that some tasks need to execute soon at the start of a mode change to fulfill urgent,
e.g. alarm functions), reducing latency requires another algorithm. 1

∙ Framework for identification and management of mode changes (understand, configure
and minimize): Before this dissertation, the classification of mode changes was based on
a two-tiered system comprised of synchronous and asynchronous changes. Whereas this
was a significant step towards identifying and understanding the behavior of changes, it
was somehow limited to recognizing and modeling the motivation of a mode change from
the application perspective. Therefore, this work has expanded on this issue, as well by
identifying and describing five types of mode changes. This classification brings up the
issue of which task set must execute first across a mode change, which is ultimately
dictated by the application requirements. Whereas this classification scheme can be
extended to deal with more complex scenarios, we deem it satisfactory to deal with
most of the applications in real time systems. The types of mode change uncovered
not only allow one to better understand the behavior of the application during a mode
change: with the framework provided (classification and tool) it is now possible for a
designer to specify the type of mode change desired, the configuration of the mode
change parameters to achieve it, and ultimately the minimization of the latency for
that type of mode change.

1 Our experience has shown that it is not an easy task to modify Real and Crespo (2001) algorithm to deal
with latency reduction.

84 Chapter 5. Summary and Conclusions

Minimizing

Latency

with WCTR

within

Range

Minimizing

Offsets

with Latency

within

Range

Minimizing

Latency

with PN > PO

using LD I e II

Minimizing

Offsets

with PN > PO

using LD I e II

Minimizing

Offsets

with PO > PN

using LD I e II

Minimizing

Latency

with PO > PN

using LD I e II

Minimization Using

Genetic Algorithms

BEFORE

(Algorithm of Real et al. (2001)

Minimizing

Latency

Minimizing

Latency and

Offsets

Minimizing

Latency

Imposing

Offsets within

Range

Minimizing

Offsets

(Promptness)
AFTER - CONFIGURING MODE CHANGE

Figure 30 – Research Before and After this Work.

Fig. 30 shows an overview of the state-of-the-art on offset minimization before and
after this work. In summary, there was previously only one algorithm to minimize offsets
aiming at promptness. This work approached different ways of configuring the minimization
of mode changes.

85

Bibliography

ANDERSSON, B. Uniprocessor edf scheduling with mode change. In: Proceedings of the
12th International Conference on Principles of Distributed Systems. Berlin, Heidelberg:
Springer-Verlag, 2008. (OPODIS ’08), p. 572–577. ISBN 978-3-540-92220-9. Available from
Internet: <http://dx.doi.org/10.1007/978-3-540-92221-6_43>.

BONGARD, J. Biologically inspired computing. Computer, v. 42, n. 4, p. 95–98, 2009. ISSN
0018-9162.

BRIAND, L. C.; LABICHE, Y.; SHOUSHA, M. Using genetic algorithms for early
schedulability analysis and stress testing in real-time systems. Genetic Programming and
Evolvable Machines, Kluwer Academic Publishers, Hingham, MA, USA, v. 7, n. 2, p.
145–170, jun. 2006. ISSN 1389-2576. Available from Internet: <http://dx.doi.org/10.1007/
s10710-006-9003-9>.

BURNS, A.; WELLINGS, A. Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX. 4th. ed. USA: Addison-Wesley Educational
Publishers Inc, 2009. ISBN 0321417453, 9780321417459.

CASTRO, L. de. Fundamentals of Natural Computing: Basic Concepts, Algorithms,
and Applications. Taylor & Francis, 2006. (Chapman & Hall/CRC Computer &
Information Science Series). ISBN 9781584886433. Available from Internet: <http:
//books.google.com.br/books?id=N6iYpNVP9RgC>.

COELLO, C. A. C. Handling preferences in evolutionary multiobjective optimization: a
survey. In: . [s.n.], 2000. v. 1. Available from Internet: <http://dx.doi.org/10.1109/CEC.
2000.870272>.

COELLO, C. A. C.; LAMONT, G. B.; VELDHUIZEN, D. A. V. Evolutionary Algorithms
for Solving Multi-Objective Problems. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2007.

CORTE, A. D. et al. Optimisation of water distribution network design: a critical review.
[S.l.], 2012.

DEB, K. Multi-Objective Optimization Using Evolutionary Algorithms : An Introduction.
KanGAL Report Number 2011003, p. 1–24, february 2011.

DEB, K.; AGRAWAL, S.; PRATAP, A.; MEYARIVAN, T. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: . [S.l.]: Springer,
2000. p. 849–858.

FOGEL, L.; OWENS, A.; WALSH, M. Artificial Intelligence Through Simulated Evolution.
John Wiley & Sons, 1966. Available from Internet: <http://books.google.com.br/books?id=
QMLaAAAAMAAJ>.

http://dx.doi.org/10.1007/978-3-540-92221-6_43
http://dx.doi.org/10.1007/s10710-006-9003-9
http://dx.doi.org/10.1007/s10710-006-9003-9
http://books.google.com.br/books?id=N6iYpNVP9RgC
http://books.google.com.br/books?id=N6iYpNVP9RgC
http://dx.doi.org/10.1109/CEC.2000.870272
http://dx.doi.org/10.1109/CEC.2000.870272
http://books.google.com.br/books?id=QMLaAAAAMAAJ
http://books.google.com.br/books?id=QMLaAAAAMAAJ

86 Bibliography

FOHLER, G. Changing Operational Modes in the Context of Pre Run-Time Scheduling.
1993.

HOLLAND, J. H. Adaptation in Natural and Artificial Systems. [S.l.]: The University of
Michigan Press, 1975.

JONG, K. D. Evolutionary Computation: A Unified Approach. Mit Press, 2006. (Bradford
Book). ISBN 9780262041942. Available from Internet: <http://books.google.com.br/books?
id=OIRQAAAAMAAJ>.

KIM, M.; HIROYASU, T.; MIKI, M.; WATANABE, S. Spea2+: Improving the
performance of the strength pareto evolutionary algorithm 2. In: Parallel Problem
Solving from Nature - PPSN VIII. Springer Berlin Heidelberg, (Lecture Notes in
Computer Science, v. 3242). p. 742–751. ISBN 978-3-540-23092-2. Available from Internet:
<http://dx.doi.org/10.1007/978-3-540-30217-9_75>.

LEHOCZKY, J. Fixed priority scheduling of periodic task sets with arbitrary deadlines.
Real-Time Systems Symposium, 1990. Proceedings., 11th, p. 201 –209, december 1990.

LOCKE, C.; VOGEL, D.; MESLER, T. Building a predictable avionics platform in ada: a
case study. In: Real-Time Systems Symposium, 1991. Proceedings., Twelfth. [S.l.: s.n.], 1991.
p. 181–189.

MANCHON, U.; HO, C.; FUNK, S.; RASHEED, K. Gart: A genetic algorithm based
real-time system scheduler. In: Evolutionary Computation (CEC), 2011 IEEE Congress on.
[S.l.: s.n.], 2011. p. 886–893. ISSN Pending.

MICHALEWICZ, Z. Genetic Algorithms + Data Structures = Evolution Programs (3rd
Ed.). London, UK, UK: Springer-Verlag, 1996. ISBN 3-540-60676-9.

NELIS, V.; ANDERSSON, B.; MARINHO, J.; PETTERS, S. Global-edf scheduling of
multimode real-time systems considering mode independent tasks. In: Real-Time Systems
(ECRTS), 2011 23rd Euromicro Conference on. [S.l.: s.n.], 2011. p. 205–214. ISSN 1068-3070.

NÉLIS, V.; GOOSSENS, J. Mode change protocol for multi-mode real-time systems
upon identical multiprocessors. CoRR, abs/0809.5238, 2008. Available from Internet:
<http://arxiv.org/abs/0809.5238>.

NEUKIRCHNER, M.; LAMPKA, K.; QUINTON, S.; ERNST, R. Multi-mode monitoring
for mixed-criticality real-time systems. In: Proceedings of the Ninth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis. Piscataway,
NJ, USA: IEEE Press, 2013. (CODES+ISSS ’13), p. 34:1–34:10. ISBN 978-1-4799-1417-3.
Available from Internet: <http://dl.acm.org/citation.cfm?id=2555692.2555726>.

NIZ, D. de; PHAN, L. Partitioned scheduling of multi-modal mixed-criticality real-time
systems on multiprocessor platforms. In: Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014 IEEE 20th. [S.l.: s.n.], 2014. p. 111–122. ISSN
1080-1812.

PARETO, V. Cours d’Economie Politique. Genève: Droz, 1896.

http://books.google.com.br/books?id=OIRQAAAAMAAJ
http://books.google.com.br/books?id=OIRQAAAAMAAJ
http://dx.doi.org/10.1007/978-3-540-30217-9_75
http://arxiv.org/abs/0809.5238
http://dl.acm.org/citation.cfm?id=2555692.2555726

Bibliography 87

PEDRO, P. Schedulability of Mode Changes in Flexible Real-Time Distributed Systems. Tese
(Doutorado) — "The University of York", 1999.

PEDRO, P.; BURNS, A. Schedulability analysis for mode changes in flexible real-
time systems. Proceeding. 10th EUROMICRO Workshop on Real-Time Systems (Cat.
No.98EX168), IEEE Comput. Soc, p. 172–179, june 1998. Available from Internet:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=685082>.

REAL, J.; CRESPO, A. Offsets for scheduling mode changes. Real-Time Systems, 13th
Euromicro Conference on, 2001., p. 3–10, 2001.

REAL, J.; CRESPO, A. Mode change protocols for real-time systems: A survey and a new
proposal. Real-Time Systems, v. 26, n. 2, p. 161–197, march 2004. ISSN 0922-6443. Available
from Internet: <http://link.springer.com/10.1023/B:TIME.0000016129.97430.c6>.

REAL, J.; WELLINGS, A. Dynamic ceiling priorities and ada 95. Ada Letters, XIX(2), p.
41–48, 1999.

RECHENBERG, I. Cybernetic solution path of an experimental problem. [S.l.], 1965.

SHA, L.; SHA, L.; RAJKUMAR, R.; RAJKUMAR, R.; LEHOCZKY, J.; LEHOCZKY, J.;
RAMAMRITHAM, K.; RAMAMRITHAM, K. Mode change protocols for priority-driven
preemptive scheduling. Real-Time Systems, v. 1, p. 243–264, 1988.

STOIMENOV, N.; PERATHONER, S.; THIELE, L. Reliable mode changes in real-time
systems with fixed priority or EDF scheduling. 2009 Design, Automation & Test in
Europe Conference & Exhibition, Ieee, p. 99–104, abr. 2009. Available from Internet:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5090640>.

TINDELL, K.; BURNS, A.; WELLINGS, A. Mode changes in priority preemptively
scheduled systems. In: Real-Time Systems Symposium, 1992. [S.l.: s.n.], 1992. p. 100–109.

TINDELL, K.; BURNS, a.; WELLINGS a.J. An extendible approach for analysing fixed
priority hard real-time systems. Journal of Real-Time Systems, p. 133–152, march 1994.

VELDHUIZEN, D. A. V.; LAMONT, G. B. Multiobjective Evolutionary Algorithms:
Analyzing the State-of-the-Art. 2000.

YOMSI, P.; NELIS, V.; GOOSSENS, J. Scheduling multi-mode real-time systems upon
uniform multiprocessor platforms. In: Emerging Technologies and Factory Automation
(ETFA), 2010 IEEE Conference on. [S.l.: s.n.], 2010. p. 1–8. ISSN 1946-0740.

YOO, M. Real-time task scheduling by multiobjective genetic algorithm. Journal of Systems
and Software, v. 82, n. 4, p. 619 – 628, 2009. ISSN 0164-1212. Special Issue: Selected
papers from the 2008 {IEEE} Conference on Software Engineering Education and Training
(CSEET08). Available from Internet: <http://www.sciencedirect.com/science/article/pii/
S0164121208002070>.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=685082
http://link.springer.com/10.1023/B:TIME.0000016129.97430.c6
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5090640
http://www.sciencedirect.com/science/article/pii/S0164121208002070
http://www.sciencedirect.com/science/article/pii/S0164121208002070

88

Appendix

91

APPENDIX A – Software Tool

In this appendix we illustrate a software tool developed within the context of this
dissertation to allow the configuration of mode changes. This tool has a high-level interface
where the user can select the goals to be achieved when configuring the offsets. From an
internal software design perspective, the program is also modular so that it can be easily
extended to include more optimization objectives. Besides the usage in operation systems,
this software was designed to be used for the analysis of messages across a mode change in
a Controller Area Network (CAN). This tool was developed using Oracle Datatabase and
Delphi programming language. The main features of the software tool are as follows:

1. Tasks descriptor: This feature allows the definition of the tasks that compose the various
modes of operation. The tasks are described through the following fields: id, description,
size, priority, periodicity, deadline and type (periodic or sporadic), as it can be observed
in the Fig. 31.

Figure 31 – Screen of Task Descriptor

92 APPENDIX A. Software Tool

2. Definition of Operational Modes: Having defined the tasks, it is necessary to associate
them to an operational mode. Fig. 32 shows that, using the tasks registered previously,
it is possible to create a mode of operation by just selecting the task set intended.
The operational modes created may then be used in multiple analysis/optimization
processes.

Figure 32 – Screen of Operation Modes Register

93

3. Schedulability analyzer engine: To begin the process of schedulability analysis, it is
required to set the configuration parameters. These parameters are: object of analysis
(task’s in an operating system or CAN network), tasks set for new and old-mode, type
of latency definition, priority assignment policy (deadline monotonic, rate monotonic
or user defined), use of arbitrary deadlines, use of blocking and use of IPCP (Fig. 33).
When the object to be analyzed are messages in a CAN, one must also associate the
bus rate and the message header size. If IPCP is checked, the user is prompted to enter
the shared resources and to which tasks they need to be allocated (Fig. 34).

Figure 33 – Screen of the Schedulability Analysis and GA Configuration

Figure 34 – Screen of Shared Resources

94 APPENDIX A. Software Tool

4. Genetic Algorithm engine: The parameters used by the genetic algorithm for offsets
optimization are initialized on the same screen provided by the schedulability analyzer
(Fig. 33). These parameters are: population size, crossover probability, chance of ran-
dom selection, number of generations, mutation probability, size of gene , number of
iterations, kind of GA (conventional or NSGA II), latency limits (when applicable), the
fitness functions and their weight.

5. Offsets optimization process: After completing the setting of the analysis / GA, the
offsets/latency optimization process (Fig. 35) is ready to start. During this process,
the system stores all the results (partial and complete ones) in a database for further
(post-mortem) analysis. Note that, before starting the optimization process, the data
related to any tasks can be adjusted without having to change the primary register.

Figure 35 – Screen of Offsets Optimization

95

6. Analysis of results: The values obtained from the optimization process can be easily
analyzed using the charts and graphs made available by the software tool. Fig. 36 shows
the values of latency, sum of offsets, WCRT, etc., for each run (or cycle/iteration) of
the optimization process. Fig. 37 shows a chart with the optimal Pareto front for an
optimization process using NSGA II. Fig. 38 shows the utilization chart for a specific
system configuration.

Figure 36 – Screen of Analysis of Result

Figure 37 – Screen of Pareto Font for NSGA Optimization

96 APPENDIX A. Software Tool

Figure 38 – Screen of Utilization Gantt

7. Export results: Another feature is the possibility to export data related to the results
obtained to a spreadsheet format , as well as the charts to image format.

The software showed in this appendix was an important by-product of this disserta-
tion. It was used as a support tool to achieve the results throughout the research process,
due to its versatility under different usage scenarios. Also, it is an asset and contribution to
the implementation of future work.

	Title page
	Abstract
	Contents
	Dedication
	Acknowledgements
	Epigraph
	List of Figures
	List of Tables
	Introduction
	Goals
	Dissertation Organization

	Background and Literature Review
	Schedulability Analysis
	Computational Model and Assumptions
	Analysis for Old-mode Tasks
	Analysis for New-mode Tasks

	Schedulability Analysis Algorithm
	Definition of Mode-Change Latency (L)
	Offset Minimization Algorithm
	Evolutionary Algorithms (EA)
	Genetic Algorithm (GA)
	Basic Terminology
	Multi-Objective Genetic Algorithms (MOGA)
	Use of GA in Real-Time Systems

	Minimizing the Mode-Change Latency
	Model and Approach to Minimization
	Case Studies
	Case 1 - Minimizing Offsets
	Case 2 - Minimizing Latency
	Case 3 - Minimizing Latency and Offsets - Weights-Based Multi-Objective
	Case 4 - Minimizing Latency and Offsets - Multi-Objective

	Discussion

	Configuring Mode Changes
	Types of Mode Change
	Model and Approach to Minimization
	Case Studies
	Study Case 1 - Minimizing Offsets and Latency (MOF)
	Case Study 2 - Minimizing Latency and Offsets (AOF)
	Case Study 3 - Minimizing Latency Imposing Offsets within a Range (MOF)
	Case Study 4 - Minimizing Latency with WCRT within a Range (MOF)
	Case Study 5 - Minimizing Offsets with Latency within an Acceptable Range (MOF)
	Case Study 6 - Minimization Using the Algorithm of Real2001 (BMC)
	Case Study 7 - Minimizing Latency with PN > PO (MNF)
	Case Study 8 - Minimizing Offsets with PN > PO (MNF)
	Case Study 9 - Minimizing Latency with PO > PN (AOF)
	Case Study 10 - Minimizing Offsets with PO>PN (AOF)
	Case Study 11 - Minimizing Latency with O > max(RO-x) (AOF)
	Case Study 12 - Minimizing Latency with PN>PO (ANF)

	Discussion

	Summary and Conclusions
	Bibliography
	Appendix
	Software Tool

